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Abstract
In this work, we will study the existence of chimera states in the Complex Ginzburg-

Landau (CGL) equation with a non-local interaction. We have studied analytically the
stability of the plane wave solutions of the equation (coherent states) and, using that
result and numerical simulations, we find that the transition between the turbulent phase
(incoherence) and the plane wave phase (coherence) is supercritical. Therefore, chimeras,
as states in which coherent and incoherent states coexist, can not form in the CGL with
these conditions.

We have also changed the kernel of the interaction to a general kernel using a moment
expansion. However, this has proved insufficient to produce the conditions for the exis-
tence of the chimeras. Further research can be made by adding other nonlinear terms to
the CGL equation in order to generate the appropiate conditions to observe a coexisting
region in parameter space between coherent and incoherent states.
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Chapter 1

Introduction

Recently, chimera states have become a field of increasing relevance. Scientists are finding
these states in a lot of different systems, from systems of oscillators [3, 8] to networks of
neurons [7]. The possible importance of chimera states ranges across various disciplines,
pertaining to phenomena such as the unihemispheric sleep of animals, signal propagation
through synchronized firing in otherwise chaotic neuronal networks, and the existence of
turbulent-laminar patterns in Couette flow.

There are many studies about chimeras in different discrete models, and some of them
have also been demonstrated in experiments. Nevertheless, the study of chimera states
in continuous systems has received much less attention.
The most relevant example of chimera states in a continuous system has been found in a
variation of the Complex Ginzburg-Landau (CGL) equation, using a non-local coupling.
The model was proposed in a paper by Kuramoto and Battogtokh [6] and has become
one of the most popular examples of chimera states. However, after a further analysis,
we have found that these chimera states have been discovered in a system that does not
represent properly a continuous system. Therefore, they can be only a spurious result
product of an incorrect simulation.

The goal of this work is to make a proper analysis of the chimeras in the non local
CGLE, and study their existence in proper simulations. In the following sections, we will
introduce briefly the CGL equation and the chimera states. After that, we will deepen
in the problem, and show the results of our numerical and analytical work. Finally, we
will make different variations to the CGL equation, trying to find a condition that leads
to the appearance of chimera states in a continuous system.
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1.1 Complex Ginzburg-Landau equation

The complex Ginzburg-Landau equation is one of the most studied nonlinear equations in
the physics community, and constitutes a generic model for extended systems at the onset
of oscillations. It is important because it arises as the natural description of many physical
situations, in particular of any oscillatory extended system close to a Hopf bifurcation.
Its solutions display a very rich variety of dynamical behaviors when its parameters are
changed, reflecting the interplay of dissipation, dispersion and nonlinearity.

Due to its generality, it is capable of describing many phenomena like spatio-temporal
chaos in reaction-diffusion systems, nonlinear waves, second-order phase transitions, su-
perconductivity or superfluidity [2].

The general form of the local CGL equation is given by:

∂A

∂t
= A+ (1 + ib)∆A− (1 + ic)|A|2A, (1.1)

where A is a complex function of (scaled) time t and space ~x (often in reduced dimensions
D = 1 or 2) and the real parameters b and c characterize linear and nonlinear dispersion
and the variation of frequency with the oscilations of the amplitude.

The basic solutions of the equation are the plane waves, but the phase diagram is way
more complex. It shows phase turbulence, defect turbulence, spirals, etc. [1] [2]. However,
the CGLE is not known to support chimera states.

In this work, we will use variations over the general CGL equation, changing from the
local interaction of the spatial derivative to non-local interactions with terms like:∫

G(x− x′)A(x′, t)dx′; (1.2)

and look for chimera states in those variations.

2



1.2 Chimera States

A chimera state is defined as a spatio-temporal pattern in which a system of identical
oscillators is split into coexisting regions of coherent (phase and frequency locked) and
incoherent (drifting) oscillation [3]. On their own, neither of these behaviours were unex-
pected. Both incoherence and coherence were well documented in arrays of non-identical
coupled oscillators, but complete incoherence and partial coherence were usually stable
at different coupling strengths. This coexistence was found easily in systems with a fre-
quency distribution [5]. However, this is not trivial to be formed in homogeneous systems.
What makes the chimera states interesting is the possibility of finding in such a system a
stable state in which both the coherent and the incoherent regimes coexist.

They take the name from the Greek mythology, where the chimera was a fire-breathing
hybrid creature composed of the parts of more than one animal. Now the word refers to
anything composed of incongrous parts.

Chimera states have been found in many discrete models, such as networks of oscil-
lators or neurons [7], and there are even experimental results in the search of chimeras
[4]. Nevertheless, chimera states in continuous systems are quite more elusive. There are
some publications about chimera states found in continuous systems, but the conditions
in which they have been found are the motivation of this work. In the next section, we will
discuss the chimera states that have been found in the CGL equation using a non-local
coupling.

Figure 1.1: Example of a chimera state in a network of bursting neurons. The figure
show the membrane potential xi for each neuron i for the cases of incoherent regime (a),
a coherent regime (c), and a chimera state (b), where both regimes coexist. The images
have been taken directly from [7].
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Chapter 2

The problem

In 2002, Y. Kuramoto and D. Battogtokh published a paper called ”Coexistence of Co-
herence and Incoherence in Nonlocally Coupled Phase Oscillators[6]. In this paper, they
proposed a continuous model based on the CGL equation, consisting in adding a nonlocal
interaction to the equation; and in that model they found chimera states using numerical
simulations. Nevertheless, a closer analysis of the results offered in the paper shows that
there is something out of place.

Figure 2.1: Chimera state found by Kuramoto and Battogtokh. The figure represents the
argument of the field φ(x) as a function of the space, for the non-local CGLE in a periodic
environment. The chimera is formed with the coexistence of the incoherent regime in the
center of the figure with the coherent regime, located in the borders. In the incoherent
regime, we can see the high discontinuities of the simulation. The figure has been taken
directly from [6].
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The results of the simulation shown in the paper do not represent a continuous system
properly, as there is too much vertical distance between neighboring points (Figure 2.1
shows the result obtained in the paper). More technically, the simulations has aliasing,
as the highest modes of the fourier transform of the simulations have non negligible am-
plitudes within the numerical precision, which in a numerical pseudo-spectral simulation
is crucial for a good accuracy. In other words, fast spatial frequencies contributing to the
dynamics are not resolved with enough precision.

Hence, the first step of this work is to reproduce these results, and analyze the Fourier
transform of the simulation to confirm what, naked eyes, can be seen in the figures of
Kuramoto and Battogtokh: that the simulation have aliasing, and therefore all the re-
sults may be spurious, caused by false interactions originated in the inaccuracies of the
simulation.
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2.1 Replica of the results

The proposed model is:

∂

∂t
A(x, t) = (1 + iωo)A− (1 + ib)|A|2A+K(1 + ia) (Z(x, t)− A(x, t)) , (2.1)

where the function Z is the convolution product of the kernel G and the field:

Z(x, t) =

∫
G(x− x′)A(x′, t)dx′. (2.2)

In this particular case, the kernel used was an exponential:

G(y) =
κ

2
exp(−κ|y|). (2.3)

Using a pseudo-spectral method to simulate the model proposed by Kuramoto Bat-
togtokh [6], we could reproduce the results obtained by them in the paper with the same
values of the parameteres. In the next figure, we can observe the chimera state and its
Fourier transform:

Fourier Transform of A in log scale. Complex argument of A: φ(x).

Figure 2.2: Replica of the chimeras obtained by [6] using our simulation of the non-local
CGLE (equation 2.1). Parameters used: N = 512 (Number of points), L = 1 (system
size), δt = 0.05, ω0 = 1, b = 0.88, K = 0.1, κ = 4 and a = −1.

A we can see, the Fourier components with the largest k have a large amplitude, much
above the numerical precision. In a good simulation, higher frequencies in the Fourier
transform should decay to the numerical precision, which is of the order of 10−15 for
the amplitude of the Fourier transform. In the following figures (2.3-2.5), we show an
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Fourier Transform of A in log scale. Phase of A: φ.

Figure 2.3: Example of a correct simulation, for a plane wave solution of wave number
Q = 0. Same parameters as in Fig. 2.2, but with b = 0.6.

Figure 2.4: Example of a correct simulation, for a plane wave solution. Left: amplitude
of the fourier transform in log scale. Right: Real and Imaginary (dashed line) parts of
the field. Same parameters as in Fig. 2.3, but with N = 1024, L = 64 and κ = 2.

example of the equation solved correctly with precision for plane wave solutions and for
the turbulent regime:

Therefore, the simulations showed in this work show that the chimera states reported
by Kuramoto and Battogtokh [6] do not correspond strictly to a smooth numerical in-
tegration of the continuous system (the non local CGLE) that the authors intended to
study, and stem from numerical artifacts (terms with large k above the numerical pre-
cision) in their numerical study of the equation. In this work, we intend to study the
parameter space of the non local CGLE in search of chimera states.
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Figure 2.5: Example of a correct simulation in the turbulent regime. Left: amplitude of
the fourier transform in log scale. Right: Real and Imaginary (dashed line) parts of the
field. Same parameters as in Fig. 2.4, but with b = 1.115.
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Chapter 3

Results

After proving that the simulations in Kuramoto and Battogtokh’s paper were incorrect,
the next step of this work is to make proper and precise simulations of the equations and
find if proper chimera states exist in a well resolved numerical simulation.

As a starting point, we will look for chimera states in the model proposed in the paper,
the CGL equation with an exponential kernel for a non-local interaction:

∂

∂t
A = (α1 + iα2)A− (β1 + iβ2)|A|2A+K(γ1 + iγ2) (Z(x, t)− A(x, t)) , (3.1)

Z(x, t) =

∫
G(x− x′)A(x′, t)dx′. (3.2)

After studying this particular model, we can study more general variations using a
different kernel or other non-linear terms.

3.1 Non-Local CGL with Exponential Kernel

In order to look for chimera states in the CGL with non-local interaction with exponen-
tial kernel, the first thing we made was to find analitically the stability of the plane wave
solutions.

We propose a plane wave solution of the form:

A0 = Fei(Qx−wt+φ), (3.3)

where:

|F |2 =
α1 −Kγ1

Q2

κ2+Q2

β1

(3.4)
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and

w = −α2 + β2F
2 +Kγ2

Q2

κ2 +Q2
. (3.5)

Then, we apply a perturbation δa to this solution with the form:

A =
[
F + δa+e

λt+ikx + δa−e
λ∗t−ikx] ei(Qx−wt) (3.6)

By substitution, we can operate to find an expression for the value of λ, which is the
growth rate of the perturbations. After all the calculations, we find two solutions: λ+ and
λ−. As λ− is always negative, we will focus in λ+, which we will call λ. The complete
calculations can be found in the appendix.

Using the analytical solution, we can find the transition from stability to instability
of the plane wave solutions. In the following figure we plot the growth rate λ for different
values of the control parameter β2 close to that transition:

β2 < βc β2 = βc β2 > βc

Figure 3.1: Growth rate λ+(k) of the perturbations to the plane wave solution Q = 0 in
the CGL with exponential kernel close to βc. Parameters: N = 512, L = 16, α1 = 1,
α2 = 0, β1 = 1, κ = 2, K = 1, γ1 = 1, γ2 = −1. The value of βc for this set of parameters
is βc = 1.

Plane wave solutions with higher wave number become unstable earlier increasing β.
Therefore, the last stable one is the plane wave with Q = 0. The instability of the last
plane wave signals the threshold for the so called Benjamin-Fair (BF) instability. Due to
the form of the growth rate, we can make a Taylor expansion around 0:

λ = λ0 + λ1k + λ2k
2 +O(k3) (3.7)

Finding the zeros in the coefficient λ2, we can find the critical value of the parame-
ters. In particular, we use β2 as the control parameter. Figure 2.2 shows λ2(k) and the
computed values for βc.
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λ(k) for different values of Q Value of βc.

Figure 3.2: Critical value of βc depending on the wave number and the coupling strength
labeled coup in the figure. Same parameters as in Fig. 3.1, but with N = 2048.

Figure 3.3 shows the stability region in parameter space of plane wave solutions with
two different wave numbers. When Q > 0, the region of stability for the plane waves
decreases with the coupling strength and even disappears for large values of the coupling
strenght.

Stability of p.w. sol. with Q = 0 Stability of p.w. sol. with Q = 1

Figure 3.3: Stability diagram of plane wave solutions depending on the parameter β2 and
the coupling strength K. Red: Unstable, Blue: Stable. Same parameters as in Fig. 3.1,
but with K = 0.8.

Once we have this information, we can start running simulations. After checking that
the stability diagram agrees with the results of the simulations, we can start looking at
the transition to see if there is any coexistence.
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To characterize the transition to turbulence, we define an order parameter for the
turbulence: the inverse of the slope of the Fourier transform in log scale ”m”:

Ã(k) ' Ce−pk

m = 1/p
(3.8)

We measured this order parameter in the simulation, and found that the transition is su-
percritical, as shown in Fiigure 3.5. In Figure 3.4 we can see an example of the simulation
in the turbulent regime, where the Fourier transform displays the profile from which we
have measured the slope to compute the order parameter.

Figure 3.4: Simulation in the turbulent regime close to the bifurcation. Left: amplitude
of the fourier transform in log scale. Right: Real and Imaginary (dashed line) parts of
the field. From the slope in the fourier transform, we get the order parameter. Same
parameters as in Fig. 2.5, but with b = 1.01.

We found that chimeras, in the equation proposed by Kuramotto B. [6] do not exist.
The transition from the plane wave solution (coherent state) to the turbulence regime
(incoherent state) is supercritical. Therefore, there is no room for a coexistence of both
solutions, as only one of them is stable at each time.
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Figure 3.5: Order parameter during the supercritical bifurcation in the transition from
the plane wave solution to the turbulent regime obtained from the simulations. Same
parameters as in Fig. 2.5.

3.2 Moment expansion for the kernel

We have shown that chimeras do not exist if we use an exponential kernel, but we could
have used any other kernel. In order to make our study as general as possible, we will
use a moment expansion of the kernel, which allows us to generalize the results to kernels
that can be approximated with an expansion of even powers of the spatial derivatives:

Z(x, t) =

∫
G(x− x′)A(x′, t)dx′ 'M0A+M2∂

2
xA+M4∂

4
xA+ ... (3.9)

If the kernel is normalized, then M0 = 1. The equation now is:

∂tA = αA− β|A|2A+ Γ(M2∂
2
xA+M4∂

4
xA), (3.10)

where we have contracted the complex parameters. The values used are:

α = α1 + iα2 = 1, β = β1 + iβ2 = 1 + iβ2,
Γ = Γ1 + iΓ2 = K(γ1 + iγ2) = K(1− i). (3.11)

This equation also has a plane wave solution:

A0 = Fei(Qx−ωt+φ), (3.12)

where, in this case, we have these values for the amplitude and frequency:

|F |2 = α1+Γ1(−M2Q2+M4Q4)
β1

,

ω = −α2 + β2|F |2 + Γ2M2Q
2 − Γ2M4Q

4.
(3.13)
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To analize the stability of the plane wave solution, we add a perturbation:

A =
[
F + δa+e

λt+ikx + δa−e
λ∗t−ikx] ei(Qx−wt). (3.14)

Then, by substitution in the equation, we can operate in a similar way as the previous
case (the exponential kernel) to obtain the solutions for the growth rate λ. The results
obtained in this case are more complex, as we have 2 new parameters: M2 and M4. Using
the analytical result for the growth rate, we can plot a diagram showing the regions for
which the plane wave solutions are stable or unstable depending on the higher value of
λ(k) for each set of parameters (if there is any positive value, plane wave solutions are
unstable).

The following figure shows the results obtained for the stability diagram. We also plot
the growth rate for each of the quadrants:

Figure 3.6: Left: Stability diagram for the CGL with Moment expansion of the kernel, for
plane wave solutions with Q = 0. Red: Unstable. Blue: Stable. Right: Growth rate for
different values of the parameters in the different quadrants. Parameters used: N = 2048,
L = 64, M4 = −2 and K = 1.2.

Using this diagram as a guide, we ran simulations of the equation in the transitions
from stability to instability and viceversa. The transitions show a similar behavior to the
equation with the exponential kernel: after crossing the analytical line of the transition,
the behavior changes from plane wave to turbulence, or viceversa, without any coexistence
as only one of the solutions is stable at each time. In the fourth quadrant we also
have a new case, where the solution shows pattern formation, but the transition is still
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supercritical.
In Figure 3.7 and Figure 3.8 we can see some examples of the simulation in the turbulent
regime, and in the pattern formation regime. The figures show the amplitude of the
Fourier transform in log-scale (top-left), the modulus of the field |A| (top-right), the
complex argument (bottom-left) and the real and imaginary parts of the field (bottom-
right).

Figure 3.7: Simulation in the turbulent regime. Top left: amplitude of the Fourier Trans-
form in log scale. Top right: |A|. Bottom left: complex argument of A. Bottom right: real
and imaginary (dashed line) parts of A. Parameters used: N = 512, L = 64, β2 = 0.6,
M2 = −1 and M4 = −2.
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Figure 3.8: Simulation in the pattern formation regime. Top left: amplitude of the Fourier
Transform in log scale. Top right: |A|. Bottom left: complex argument of A. Bottom
right: real and imaginary (dashed line) parts of A. Same parameters as in Fig. 3.7, but
with β2 = 1.6 and M2 = −1.5.
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3.3 Moment expansion and Cubic-Quintic terms.

The next variation that we can introduce to the equation is another non-linear term.
We are going to add a quintic term to the equation. We are also keeping the moment
expansion for the kernel. The equation is left as follows:

∂tA = αA+ β|A|2A− c|A|4A+ Γ(M2∂
2
x +M4∂

4
x)A (3.15)

where α, β, c and Γ are complex parameters.
This equations has plane wave solutions:

A0 = Fei(Qx−wt+φ) (3.16)

|F±|2 =
−β1±
√
β2
1+4c1(α1+Γ1(−Q2M2+Q4M4))

−2c1

ω = −α2 − β2|F |2 + c2|F |4 − Γ2(−Q2M2 +Q4M4)
(3.17)

To analize the stability of the plane wave solution, we add a perturbation:

A =
[
F + δa+e

λt+ikx + δa−e
λ∗t−ikx] ei(Qx−wt). (3.18)

And study the growth rate λ, using a similar analysis as the used in the previous
cases.1 The stability diagram obtained from λ is shown in Figure 3.9.

Figure 3.9: Stability of plane wave solutions (Blue: stable, Red: unstable). Parameters
used: N = 2048, L = 32, M4 = −2, α1 = 1, α2 = 0, β1 = 1, γ1 = 1, γ2 = −1, c1 = 1,
c2 = −1 and K = 1.2.

1The complete calculations can be found in the appendix.
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By running simulations, we find that the transitions between the stable and unstable
regime were similar as in the previous cases. The system was either in a plane wave state
or in a turbulent state for each set of parameters, without observing any coexistence.
Therefore, the existence of chimera states in this variation of the CGLE is also discarded.

A snapshot of the simulation in the turbulent regime is shown in Figure 3.10 . A
similar order parameter as the one used in the first section of this chapter could be used
to analyze the transition between the plane wave and the turbulent regimes.

Figure 3.10: Simulation in the turbulent regime. Left: amplitude of the Fourier Transform
of A. Right: real and imaginary (dashed line) parts of the field. Same parameters as in
Fig. 3.9, but with N = 512, β2 = 2.3 and M2 = −2.
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Chapter 4

Conclusions

We have found that the quimera states obtained by Kuramoto et al. were the product
of computational errors, and therefore a spurious result of incorrect calculations. After
doing proper simulations, we have found that chimera states do not exist in the model
of the CGL with non-local interaction proposed by Kuramoto. We have found that the
transition between the coherent (plane waves) and incoherent (turbulence) regimes was
supercritical, leaving no possibility for a chimera state to develop in the transition.

Furthermore, we extended the study to others variations of the model, trying to find
a condition for the chimera states to appear. First, we generalized the kernel using a
moment expansion. From the study of the stability of the plane wave solutions and the
transitions from stability and instability of those solutions, we have also found that there
are no chimera states in the CGL equation with non-local coupling, independently of the
kernel used.

Then, we have made a further step by studying the case of a cubic-quintic nonlinearity,
but, with a similar analysis, we have found that we need some other ingredient in the
equation in order to find chimera states in the CGL.

In summary, we have found that chimera states do not exist in the CGL equation with
non-local coupling in 1D, and the results obtained by Kuramoto and Battogtokh [6] were
not correct for a continuous system. As we have not found chimera states in any of the
variations of the equation that we studied, we have concluded that a further study has to
be made in order to find which kind of terms make the chimera states stable in the CGL
equations in 1D.
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Appendix A

Analysis of the stability of plane
wave solutions.

A.1 Stability of Plane Wave Solutions in the non-

local CGLE with Exponential Kernel

The CGL equation with the non-local interaction is:

∂tA = (α1 + iα2)A− (β1 + iβ2)|A|2A+K(γ1 + iγ2)(Z − A) (A.1)

where Z is the non-local interaction with the kernel G:

Z =
∫
G(x− x′)A(x′, t)dx′

G(x) = κ
2
e−κ|x|

(A.2)

This equation has plane wave solutions:

A0 = Fei(Qx−wt+φ) (A.3)

|F |2 =
α1−Kγ1 Q2

κ2+Q2

β1

w = −α2 + β2F
2 +Kγ2

Q2

κ2+Q2

(A.4)

To study the stability of the plane wave solution, we add a perturbation:

A =
[
F + δa+e

λt+ikx + δa−e
λ∗t−ikx] ei(Qx−wt) (A.5)

We introduce the perturbation in the CGL equation. Let us study each term of the
equation, starting with the temporal derivative:

∂tA = −iwA+ ei(Qx−wt)
[
λδa+e

λt+ikx + λ∗δa−e
λ∗t−ikx]

20



Now, |A|2:

|A|2 = AA∗ = |F |2 + δa+F
∗eλt+ikr + δa−F

∗eλ
∗t−ikr + Fδa∗+e

λ∗t−ikr + Fδa∗−e
λt+ikr +O(δ2)

|A|2A = ei(Qx−wt)
[
|F |2F + δa∗+F

2eλ
∗t−ikx + δa∗−F

2eλt+ikx
]

+
+ei(Qx−wt)

[
2δa+|F |2eλt+ikx + 2δa−|F |2eλ

∗t−ikx]+O(δ2)

For the non-local interaction:

Z =

∫
G(x− x′)A(x′, t)dx′ =

∫
dx′

κ

2
e−κ|x−x

′|ei(Qx
′−wt)

[
F + δa+e

λt+ikx + δa−e
λ∗t−ikx′

]
=

we split the integral for the two different cases of the absolute value:

=
κ

2

∫ x

−∞
dx′e−κ(x−x′)+i(Qx′−wt)A(x′, t) +

κ

2

∫ ∞
x

dx′e+κ(x−x′)+i(Qx′−wt)A(x′, t)

and expand the expression:

Z

κ/2
= F

(
e−κx−iwt

∫ x

−∞
dx′eκx

′+iQx′ + eκx−iwt
∫ ∞
x

dx′e−κx
′+iQx′

)
+

+δa+e
λt−iwt

(
e−κx

∫ x

−∞
dx′eκx

′+iQx′+ikx′ + eκx
∫ ∞
x

dx′e−κx
′+iQx′+ikx′

)
+

+δa−e
λ∗t−iwt

(
e−κx

∫ x

−∞
dx′eκx

′+iQx′−ikx′ + eκx
∫ ∞
x

dx′e−κx
′+iQx′−ikx′

)
=

we integrate the exponentials:

= Fe−κx−iwt
[
ex
′(κ+iQ)

κ+ iQ

]x
−∞

+ Feκx−iwt
[
ex
′(−κ+iQ)

−κ+ iQ

]∞
x

+

+δa+e
λt−iwte−κx

[
ex
′(κ+iQ+ik)

κ+ iQ+ ik

]x
−∞

+ δa+e
λt−iwteκx

[
ex
′(−κ+iQ+ik)

−κ+ iQ+ ik

]∞
x

+

+δa−e
λ∗t−iwte−κx

[
ex
′(κ+iQ−ik)

κ+ iQ− ik

]x
−∞

+ δa−e
λ∗t−iwteκx

[
ex
′(−κ+iQ−ik)

−κ+ iQ− ik

]∞
x

as κ is positive, the exponentials go to zero at ±∞:

= Fe−iwt+iQx
[

1

κ+ iQ
− 1

−κ+ iQ

]
+

+δa+e
iQx−iwt+λt+ikx

[
1

κ+ iQ+ ik
− 1

−κ+ iQ+ ik

]
+
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+δa−e
iQx−iwt+λ∗t−ikx

[
1

κ+ iQ− ik
− 1

−κ+ iQ− ik

]
finally:

Z

κ/2
= F

2κeiQx−iwt

κ2 +Q2
+

2κδa+e
i(Q+k)x+λt+iwt

κ2 + (Q+ k)2
+

2κδa−e
i(Q−k)x+λ∗t−iwt

κ2 + (Q− k)2

we can compute Z − A:

Z − A = ei(Qx−wt)
{
−F Q2

κ2 +Q2
− δa+e

λt+ikx (Q+ k)2

κ2 + (Q+ k)2
− δa−eλ

∗t−ikx (Q− k)2

κ2 + (Q− k)2

}
Now, we can add all the terms. To simplify notation:

∂tA = αA− β|A|2A+ γ(Z − A)

α = α1 + iα2, β = β1 + iβ2, γ = K(γ1 + iγ2)

We can simplify the exponential ei(Qx−wt), as it is in every term. If we also cancel the
terms from the plane wave, which is a solution for the equation:

∂tA0 = αA0 − β|A0|2A0 + γ(Z − A0) (A.6)

that let us with:

0 = δa+e
λt+ikx

(
iw − λ+ α− β|F |22− γ (Q+ k)2

κ2 + (Q+ k)2

)
− βδa∗−eλt+ikx+

+δa−e
λ∗t−ikx

(
iw − λ∗ + α− β|F |22− γ (Q− k)2

κ2 + (Q− k)2

)
− βF 2δa∗+e

λ∗t−ikx +O(δ2)

Now, we split the equation in two new equations, one with the terms with factor
eλt+ikx, and another one with the terms with the factor eλ

∗t−ikx, which are independent:

λδa+ = δa+

(
iw + α− β|F |22− γ (Q+ k)2

κ2 + (Q+ k)2

)
− βF 2δa∗−

λ∗δa− = δa−

(
iw + α− β|F |22− γ (Q− k)2

κ2 + (Q− k)2

)
− βF 2δa∗+

If we take the complex conjugate of the second equation

λδa∗− = δa∗−

(
−iw + α∗ − β∗|F |22− γ∗ (Q− k)2

κ2 + (Q− k)2

)
− β∗(F ∗)2δa+
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that let us with a system of equations which can be written as a matrix:

M =

(
iw + α− β|F |22− γ (Q+k)2

κ2+(Q+k)2
−βF 2

−β∗(F ∗)2 −iw + α∗ − β∗|F |22− γ∗ (Q−k)2

κ2+(Q−k)2

)
(A.7)

λ

(
δa+

δa∗−

)
= M

(
δa+

δa∗−

)
(A.8)

Now, to find the solutions for the values of λ, we have to find the eigenvalues of that
matrix, solving the equation:

λ2 − τλ+ ∆ = 0 (A.9)

where τ is the trace of the matrix, and ∆ the determinant:

τ = α + α∗ − 2(β + β∗)|F |2 − γ (Q+ k)2

κ2 + (Q+ k)2
− γ∗ (Q− k)2

κ2 + (Q− k)2
=

τ = 2α1 − 4β1|F |2 − γ
(Q+ k)2

κ2 + (Q+ k)2
− γ∗ (Q− k)2

κ2 + (Q− k)2
(A.10)

∆ =
(
iw + α− β|F |22− γ (Q+k)2

κ2+(Q+k)2

)(
−iw + α∗ − β∗|F |22− γ∗ (Q−k)2

κ2+(Q−k)2

)
−|β|2|F |4

(A.11)

Therefore, the solutions for the growth rate λ are:

λ± =
τ ±
√
τ 2 − 4∆

2
(A.12)
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A.2 Stability of Plane Wave Solutions in the non-

local CGLE with Moment expansion for the ker-

nel.

The CGL equation with Moment expansion for the non-local interaction has the following
expression:

∂tA = αA− β|A|2A+ Γ(M2∂
2
x +M4∂

4
x)A (A.13)

To find the plane wave solution,

A0 = Fei(Qx−ωt), (A.14)

we substitute in the equation and split real and imaginary parts:

Real : 0 = α1 − β1|F |2 − Γ1M2Q
2 + Γ1M4A0

Imag. : ω = α2 − β2|F |2 − Γ2M2Q
2 + Γ2M4Q

4

}
and we find:

|F |2 = α1+Γ1(−M2Q2+M4Q4)
β1

ω = α2 − β2|F |2 − Γ2M2Q
2 + Γ2M4Q

4
(A.15)

To study the stability of this solution, we add a perturbation:

A =
[
F + δa+e

λt+ikx + δa−e
λ∗t−ikx] ei(Qx−wt), (A.16)

and we introduce it in the CGL equation. For the temporal derivative and the cubic
term, we have the same expression as in the previous case. For the spatial derivatives, we
have:

∂2
xA =

{
−Q2F − δa+(Q+ k)2eλt+ikx − (Q− k)2δa−e

λ∗t−ikx} ei(Qx−ωt)
∂4
xA =

{
+Q4F + δa+(Q+ k)4eλt+ikx + (Q− k)4δa−e

λ∗t−ikx} ei(Qx−ωt)
If we sum all terms, and cancel the factor ei(Qx−ωt) present in every term, we have:

0 = [(iω + α)F − β|F |2F + ΓM2(−Q2)F + ΓM4Q
4F ] +

+δa+ [−λ + iω + α− 2β|F |2 − (Q+ k)2ΓM2 + (Q+ k)4ΓM4] e λ t+ikx+
+δa− [−λ∗ + iω + α− 2β|F |2 − (Q− k)2ΓM2 + (Q− k)4ΓM4] eλ

∗t−ikx+
−βF 2δa∗+e

λ∗t−ikx − βF 2δa∗−e
λt+ikx

The first square bracket is equal to zero, as it is the plane wave solution. We can split
the rest of the equation in 2, as eλt+ikx is orthogonal to eλ

∗t−ikx:
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e λ t+ikx
)

0 = δa+ [−λ + iω + α− 2β|F |2 − (Q+ k)2ΓM2 + (Q+ k)4ΓM4]− βF 2δa∗−
eλ
∗t−ikx) 0 = δa− [−λ∗ + iω + α− 2β|F |2 − (Q− k)2ΓM2 + (Q− k)4ΓM4]− βF 2δa∗+

Now, if we take the complex conjugate of the second equation, we can put the system
in a matricial form:

λ

(
δa+

δa∗−

)
= M

(
δa+

δa∗−

)
(A.17)

where the matrix M is:

M =

(
M1,1 −βF 2

−β∗F ∗2 M2,2

)
(A.18)

where:
M1,1 = iω + α− (Q+ k)2ΓM2 − 2β|F |2 + (Q+ k)4ΓM4

M2,2 = iω + α− (Q− k)2ΓM2 − 2β|F |2 + (Q− k)4ΓM4
(A.19)

We can solve this equation to find the values of λ from the eigenvalues of the matrix
M :

λ2 − τλ+ ∆ = 0 (A.20)

where τ and ∆ are the trace and the determinant of M :

τ = 2α1 − 4|F |2β1 − ΓM2(Q+ k)2 − Γ∗M2(Q− k)2 + ΓM4(Q+ k)4 + Γ∗M∗
4 (Q− k)4

∆ = −|β|2|F |4 +M1,1M2,2

(A.21)
We find that the solutions for λ are:

λ± =
λ±
√
τ 2 − 4∆

2
(A.22)

We can use the computer to plot this expression for each set of parameters, as a
function of k.
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A.3 Stability of Plane Wave Solutions in the CGL

equation with Cubic-Quintic terms and Moment

expansion for the kernel.

The equation in this case is:

∂tA = αA+ β|A|2A− c|A|4A+ Γ(M2∂
2
xA+M4∂

4
xA), (A.23)

where α, β, c and Γ are complex parameters. Again, we introduce the plane wave expres-
sion in the equation to find the solutions for the amplitude and frequency:

A0 = Fei(Qx−ωt) (A.24)

|F |2 =
−β1±
√
β2
1+4c[α1+Γ1(−Q2M2+Q4M4)]

−2c1

ω = −α2 − β2|F |2 + c2|F |4 − Γ2(−Q2M2 +Q4M4)
(A.25)

In this case, we have 2 different solutions for the amplitude of the plane waves. To
find the stability, we add a perturbation to the plane wave of the form:

A =
[
F + δa+e

λt+ikx + δa−e
λ∗t−ikx] ei(Qx−wt), (A.26)

We can introduce this expression in the equation to find the solutions for λ. The
expansion of the quintic term is:

|A|4A =
(
|F |4F + δa+e+3|F |4 + δa−e−3|F |4 + δa∗+e−2|F |2F 2 + δa∗−e+2|F |2F 2

)
e0+O(δ2)

where:
e0 = ei(Qx−ωt), e+ = eλt+ikx, e− = eλ

∗t−ikx.

The rest of the terms have been analyzed in previous sections of the appendix. Now,
we can make the sum:

0 = [(iω + α)F + β|F |2F − c|F |4F + FΓ(−Q2M2 +Q4M4)] +
δa+e+ [−λ+ iω + α + 2β|F |2 − 3c|F |4 + Γ(−(Q+ k)2M2 + (Q+ k)4M4)] +
δa−e− [−λ∗ + iω + α + 2β|F |2 − 3c|F |4 + Γ(−(Q− k)2M2 + (Q− k)4M4)] +
δa∗+e− [βF 2 − 2c|F |2F ] + δa∗−e+ [βF 2 − 2c|F |2F 2]

The first square bracket cancels, as it is the solution of the CGL equation. We can split
the terms with e+ and e− in two different equations, as in the previous cases. Then, if
we take the complex conjugate of the second equation, we can express that system in a
matricial form:

λ

(
δa+

δa∗−

)
= M

(
δa+

δa∗−

)
(A.27)
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with the following matrix M :

M1,1 = iω + α + 2β|F |2 − 3c|F |4 + Γ [(Q+ k)4M4 − (Q+ k)2M2]
M2,2 = −iω + α∗ + 2β∗|F |2 − 3c∗|F |4 + Γ∗ [(Q− k)4M∗

4 − (Q− k)2M∗
2 ]

M1,2 = βF 2 − 2c|F |2F = M∗
2,1

(A.28)

We find the growth rate from the eigenvalues of the matrix M :

λ2 − τλ+ ∆ = 0, (A.29)

where τ is the trace of M and ∆ its determinant:

τ = 2α1 + 4|F |2β1 − 6c1|F |4 + Γ [−M2(Q+ k)2 +M4(Q+ k)4] + Γ∗ [−M∗
2 (Q− k)2 +M∗

4 (Q− k)4]

∆ = − |βF 2 − 2c|F |2F 2|2 +M1,1M2,2

(A.30)
The final solution is:

λ± =
τ ±
√
τ 2 − 4∆

2
(A.31)
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Appendix B

Numerical methods

The time evolution of the complex field A(x,t) subjected to periodic boundary conditions
is obtained numerically from the integration of the CGL in Fourier space. The method,
used as described by [9], is pseudospectral and second-order accurate in time. Each Fourier
mode Ak evolves according to:

δtAk(t) = −αkAk(t) + Φk(t) (B.1)

where αk corresponds to the linear terms, and Φk is the amplitude of mode k of the non-
linear terms in the CGLE. The value of α has the following values for each of the cases
studied in this work:1

∂tA = αA− β|A|2A+ Γ(Z − A) αk = α + Γ (Gk − 1)
∂tA = αA− β|A|2A+ Γ(M2∂

2
x +M4∂

4
x)A αk = α + Γ(−M2k

2 +M4k
4)

∂tA = αA+ β|A|2A− c|A|4A+ Γ(M2∂
2
xA+M4∂

4
xA) αk = α + Γ(−M2k

2 +M4k
4)

The amplitudes Φk are calculated, at any time, by taking the inverse Fourier transform
A(x, t) of Ak, computing the nonlinear term in real space, and then calculating the direct
Fourier transform of this term. A standard fast Fourier transform subroutine is used for
this purpose.

1

For the CGL with non local interactions and exponential kernel, if we go to Fourier space, Z is a
convolution product, so we can write:

Zk(t) = GkAk(t).

Therefore, for the linear part, we have:

αk = α+ Γ(Gk − 1).

28



Equation B.1 is integrated numerically in time by using a method similar to the so-
called two-step method [10]. For convenience in the notation, the time step is defined
here such that the time is increased by 2δt at each iteration.

When a large number of modes k are used, the linear time scales αk can take a wide
range of values. A way of circumventing this stiffness problem is to treat exactly the
linear terms by using a formal solution

Ak(t) = e−αkt
(
Ak(t0)eαkt0 +

∫ t

t0

Φk(s)e
αksds

)
. (B.2)

From this the following relationship is found:

Ak(t+ δt)

e−αkδt
− Ak(t− δt)

eαkδt
= e−αkt

∫ t+δt

t−δt
Φk(s)e

αksds.

The taylor expansion of Φk(s) around s = t for small δt gives an expression for the
right-hand side:

Φk(t)
eαkδt − e−αkδt

αk
+O(δt3).

Substituting this result, we get:

Ak(n+ 1) = e−2αkδtAk(n− 1) +
1− e−2αkδt

αk
Φk(n) +O(δt3), (B.3)

where expressions of the form f(n) are abbreviations for f(t = nδt). Expression B.3
is the so-called salved leapfrog of Frisch et al. [11]. To use this scheme the values of the
field at the first two time stems are required. Nevertheless, this scheme alone is unstable
for the CGL. This is not explicitly stated in the literature and probably a corrective
algorithm is also applied. Obtaining such a correction is straightforward: Following steps
similar to the ones before, one derives the auxiliary expression:

Ak(n) = e−αkδtAk(n− 1) +
1− e−αkδt

αk
Φk(n− 1) +O(δt2). (B.4)

The numerical method we use, which we will refer to as the two-step method [9],
provides the time evolution of the field from a given initial condition by using Eqs. B.3
and B.4 as follows:

1. Φk(n− 1) is calculated from Ak(n− 1) by going to real space,

2. Eq. B.4 is used to obtain an approximation to Ak(n),
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3. the nonlinear term Φk(n) is now calculated from this Ak(n) by going to real space,
and

4. the field at step n+ 1 is calculated from Eq. B.3 by using Ak(n− 1) and Φk(n).

At each iteration, we get Ak(n + 1) from Ak(n− 1) and the time advances by 2δt. Note
that the total error is O(δt3), despite that the error in the intermediate value obtained
with Eq. B.4 is O(δt2).

The number of Fourier modes depends on the space discretization. We have used
a system size of L = 32, with dx = L/N and usually N = 1024 or N = 2048. The
time step used was dt = 2δt = 0.001. The method has been tested by integrating plane
wave solutions for each of the cases, as we have the analytical solution for the expected
amplitude and frequency of the plane waves. A further analysis on the accuracy of the
numerical method can be found in [9].

30



Bibliography
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[9] R. Montagne, E. Hernández-Garćıa, A. Amengual, M. San Miguel, Wound-up phase
turbulence in the complex Ginzburg-Landau equation. Physical Review E 56, 151
(1997).

[10] D. Potter, The construction of discrete orthogonal coordinates, Computational
Physics, 13, 483, (1973).

31



[11] U.Frisch, Z. S. She, and O. Thual, Viscoelastic behaviour of cellular solutions to the
Kuramoto-Sivashinsky model. J. Fluid Mech. 168, 221 (1986).

32


