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Abstract

The so-called fundamental diagram has been a constant in the study of
pedestrian dynamics from its origins to the present day. Yet, there is no
consensus about the particular form of this function and not sufficient
evidence for it to display universality. In this work, a study of the
fundamental diagram in different pedestrian facility sets by means of social
force models is carried out. Results suggest the fundamental diagram
predicted by the social force models used cannot be considered fundamental
or universal since its functional shape crucially depends on the geometry of
the facility.
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1 Introduction

On 24 September 2015, a panic stampede took the life of at least 2.070 people during the
annual Hajj pilgrimage in Mina, Mecca, Saudi Arabia [1]. This event added to the growing
record of catastrophes induced by crowd motion [2]. Now, more than ever, these incidents
are raising awareness in the scientific community regarding the importance of understand-
ing pedestrian dynamics.

The origins of the study of pedestrian dynamics can be traced back to the 1950s when the
first empirical observations were made [3]. A series of models were built during the years
that followed in an attempt to capture the features of these flows. Depending on their ap-
proach, these models can be grouped in several categories [4]. However, in general terms,
two types are distinguished: the macroscopic and the microscopic descriptions. Macro-
scopic modelling is used when a large number of individuals is considered and the focus is
set on variables such as pressure or velocity. On the other hand, a microscopic modelling is
focused on individuals and the interaction among them. It allows to deal with lower num-
ber of pedestrians including particular information of every pedestrian.

The Social Force Model is the most popular in the frame of microscopic modelling. Af-
ter a thorough study of pedestrian flows in analogy to fluids [5], Helbing and his colleges
proposed in 1995 a force model that could reproduce spatiotemporal patterns shown in
pedestrian groups under normal conditions with simple interactions rules for the individ-
uals [6]. In contrast to fluid dynamics, this agent-based approach does not require to have
into account energy or momentum conservation. The only constraint is mass conservation,
introducing thus a great modelling flexibility. In the year 2000 the model was introduced
for tackling panic escaping situations reproducing many of the self organized patterns of
the former model as well as some of panic escaping situations [7]. These models have been
carefully calibrated in several occasions [8, 9.

Over the coming years a great number of modifications have been proposed. However,
their calibration with real data is rare. On the whole, these modifications are subtle and
do not change the original social force concept. The Social Force Model assumes pedestri-
ans behaviour under normal conditions is, for the most part, predictable. Humans would
have developed an automatic response to standard situations. Recent studies on game the-
ory and evolutionary algorithms seem to support this idea [10, 11]. The model describes
pedestrian dynamics by means of a series of newtonian forces of physical as well as psycho-
logical nature. The velocity and position of a pedestrian is updated after computing the
net force acting on each agent, as the sum of all the forces involved.

The Social Force Model can be used to quantify the performance of facilities and shed
light on possible improvements in the infrastructure or evacuation protocols [12, 13]. This
is the reason why many professionals such as safety and risk managers, architects, urban
designers, robotic engineers and transport managers among others are interested in the
outcome of these studies. Of particular importance along these lines is the characteriza-
tion of the so-called fundamental diagram, which informs about the capacity of pedestrian
facilities.

The fundamental diagram establishes the relationship between velocity v (or flow ® = p-v)



and density p of pedestrians and has been a constant in the study of pedestrian dynamics
from its origins to the present day [3, 14, 15, 16]. Apart from the expected inverse rela-
tionship between density and velocity, there is still no consensus about the particular form
of this function. Furthermore, the fundamental property is called to question. Information
collected by different researchers during the years show considerable disagreement suggest-
ing no universality [17, 18]. Several factors have been proposed as an explanation of these
discrepancies including ethnic differences [19, 20], the presence of bidirectional flows [21],
the influence of the psychological state of the pedestrians [22] and the measurement tech-
nique used [23]. The experimental database of the fundamental diagram is large. However,
its comparison with predictions provided by social force models is more difficult to find.
Nevertheless, some studies with this purpose have been published lately [24, 25, 26].

Outlook

This work is aimed at performing a systematic test on the fundamental diagram with a
series of social force models in different pedestrian sets in order to discuss its form and
universality.



2 Methods

This section is aimed at describing the models used in the study of the fundamental dia-
gram and providing the reader with a brief description of the computational implementa-
tion of them.

2.1 Social Force Model (SFM)

In the year 2000, Dirk Helbing, Illés Farkas and Tamés Vicsek published a modified ver-
sion of the original social force model to adapt it to panic escaping situations, in which
greater densities are attained [7]. The basic elements of the model consists of pedestrians
and walls or obstacles. Each of the N pedestrians ¢ is treated as a circle of radius r; and
mass m; that heads towards a target and, meanwhile, can interact with walls W and other
pedestrians j by means of Newtonian forces.

Three kind of forces are considered.

1. A driving force fy that steers pedestrians to their target and makes them adjust to a
velocity in which they feel comfortable.

2. Interaction forces among individuals f;;.
3. Interaction forces with obstacles and walls fjyy .
The equation of motion of each pedestrian ¢ can be expressed as the sum of these contri-
butions:
mi% —f0+Zfij+;fiW. (1)

J#i
The driving force fy takes the form

7 7

v (t)ed(t) — vi(t) ‘

(2)

fo=m;
T
Each individual, with coordinates r;, likes moving with a certain desired velocity v along
the direction e’ towards the position of the target r;, where €} = (r; — r;)/||r; — ;.
When this velocity is exceeded, the individual recovers the desired velocity and direction
of motion in the characteristic time 7;. This time accounts for the reaction time of humans

plus their acceleration time.

The interaction force among pedestrians f;; consist of three terms as follows:

rii—dy;
£y = [Ai e 7+ kg(ry — dig)lng + kg(riy — dig) Avl by, (3)
where A;, B;, k and k are constants that set the importance of each of the terms involved.
The g(z) function is g(x) = z if x > 0 and g(x) = 0 otherwise. r;; = 7; + r; is the sum
of the radii of individuals ¢ and j, and d;; = ||r; — r;|| denotes the distance between the
pedestrians’ centers of mass. The vector nj; = (nj;, n;) = ((r; —r;)/d;;) is the normalized
1) is the tangential vector

vector pointing from the element j to ¢, while t;; = (—n?j, M
perpendicular to n;;. Avl; = (v; — v;)ty; is the tangential velocity difference.
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x=rij—dij

\ g(x) =0 g(x) = x

Figure 1: Two situations are depicted. In the left case r;; < d;j, then g(x) = 0 and the interac-

Tijfdij

tion force takes the form f;; = A; e 5 mnj. On the contrary, in the overlapping case r;; > d;j,
thus g(x) = = and then all of the force terms apply.

All of the terms involved in eq.3 depend on the factor r;; — d,;. The sign of this factor in-
dicates if pedestrians radii are overlapping or, on the other hand, they are separated. The

specific value informs about the extent to which the previous situations take place. When
i —d;i

pedestrians do not overlap, g(r;; — d;;) = 0 and then, only the term A; e L n;; applies.

The first two terms of eq.3 are applied in the direction that joins the pedestrians’ center of

mass n;; and describe the repulsive tendency to separate from each other. The first term

A e . n;; shows an exponential dependence on the distance between pedestrians.
This term decays to zero as pedestrians set apart and it is inspired by the psychological
tendency to be separated from others. The two remaining terms are inspired by granular
media interactions. The second term kg(r;; — d;;) - n;; is the body force. Note it is a spring-
like force of elastic constant k. It decays linearly as pedestrians separate. The effect of this
term is to assist the first term in counteracting body compression when pedestrians inter-
act physically. The third term rg(r;; — dij)AU;@- is the sliding friction force and describes
how difficult is tangential motion when pedestrians are overlapping. This force depends

linearly on the centers of mass separation and relative tangential velocity difference.

The interaction each pedestrian ¢ experiences with the walls W takes the form

ri—d;

fiw = [AieTiW + kg(ri — dw)|niw — kg(ri — diw ) (Vitiw ) taw . (4)
A first glance at eq.4 lets us know interaction with walls are treated analogously to other
pedestrians. However, some differences must be commented. Instead of circles with a char-
acteristic radius and velocity, walls are modeled as point-like static sources. Thus, only
the radius and velocity of pedestrians appear in the previous equation. The sliding fric-
tion force term carries a minus sign instead of the plus sign written in eq.3. This is just a
direct result of the walls having null velocity.

The Social Force Model (SFM) was calibrated to reproduce the distance kept at normal
desired velocities and fit the measured flows through bottlenecks for 1 meter wide doors
when v = 0.8 ms™!. The estimation for the parameters is A; = 2000 N, 7; = 0.5 s,
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B; = 008m,k = 12-10°Kgs 2, k = 24-10° Kgm ! s when m = 80 Kg and
2-7r; € [0.5 m,0.7 m]. In reality, each pedestrian should have a different specification of the
parameters. However, for reasons of simplicity, they were set constant and equal to all the
agents. Only the radius was given certain freedom in order to avoid permanent gridlocks
at exits.

Two extra modifications based on the original form of the model of 1995 [6] can be intro-
duced in the dynamics. These are a maximum possible velocity and a force term account-
ing for fluctuations. Note that no limits in the pedestrians’ velocity are provided by the
Social Force Model (SFM). If two pedestrians place themselves close enough their veloc-
ity can tend to infinity. This situation is seldom found in this model due to the contact
forces. In its original form this scenario was more probable and it was tackled by setting a
maximum achievable velocity. Since high densities are expected to be attained for the pur-
pose of this work, a maximum achievable velocity was set to ensure normal behavior. The
actual velocity v; is a function of the preferred velocity w; and depends on a maximum
velocity vnqz-

dI‘i

Umaz

[will

where

g(

Umaz ) o 1 if ||VVZ||S Umaz
||w;]| tmez - Otherwise

[[will

This tells us that if the modulus of the velocity of a pedestrian derived from computing
the net force acting on it exceeds the maximum velocity, the actual velocity will conserve
the ratio between components but the modulus will equal the maximum achievable.

Motion can be benefited from force fluctuations. These allow pedestrians to find new paths
when they collide with other walkers or remain stuck at exits. A stochastic force term f,
can be introduced in the dynamics leaving them as

dVi
mie :fo—f—;fij—l—;fiw—i—fe. (6)
J7F1

2.1.1 Impatience in counterflows

Counterflows in pedestrians intending to escape can trigger panic situations. Pedestrians
become impatient when they are unable to move in the direction of their target for a long
time. This translates in constant pushes and attempts to move faster. These effects can be
integrated in the model as commented in [7]. A panic parameter fulfilling 0 < p;(¢) < 1
can be measured in order to model the extent to which pushes or velocity increments take
place. The panic parameter obeys

where ¥,(t) is the mean velocity in the direction of the target.



A desired speed increment due to impatience can be described in the next manner:

v (t) = [1 = pi(t)]0] (0) + ps(t)o™ ", (8)
where v?(0) and v are the initial and maximum desired velocities of pedestrian  re-
spectively.

Panic can also trigger an increment in the fluctuations simulating pushes and discontin-
uous motion. This fluctuation term being a gaussian random variable of zero mean and
standard deviation 7;(t) dependent on the level of panic analogously to eq.8:

ni(t) = [1 = pi(t)]; (0) + ps(t) ™", (9)

max

where 7?(0) is the minimum and 7]

M is the maximum fluctuation strengths.

The panic parameter in eq.7 has been said to lie between 0 and 1, giving then meaning to
eq.8 and eq.9. However, eq.7 allows a wider range. Values above 1 and bellow 0 are also
permitted since the mean velocity in the desired direction can eventually be greater than
the desired velocity, and the mean velocity can carry a minus sign. For this reason, when-
ever the panic parameter exceeds these boundaries, it is set to the closest limit.

2.2 Anisotropic Social Force Model (ASFM)

Typically pedestrians show a different reaction depending on the angle of encounter ¢;;
among them. This anisotropy can be integrated in the model by adding a multiplying
prefactor w(¢;;(t)) to the first force term as shown in [2]. The interaction force term turns
into .,
rig—dij

fij = [Anw(ij (1) e B + kg(ry; — dig)|ni; + kg(ri; — dij) Avj;ti;. (10)
The second and third terms are forces of physical nature due to actual collisions, so no
anisotropy is included there. The prefactor reads as follows:

1 + COS(@U)

w(gi () = Xi + (1= X) 5 : (11)

where

vi —(ri—ry)

[|vil] dij

and )\; is a parameter which lies in the range 0 < \; < 1 and calibrates the strength of
encounters from behind. Evolutionary calibration with empirical data suggests A\; ~ 0.1 in
the original social force model of 1995 [2]. Eq.12 measures how much of the pedestrian i’s
velocity is pointing towards pedestrian j. When pedestrian i’s velocity is pointing to the
opposite sense of pedestrian j: cos(¢;;) = —1 and then w(¢;;(t)) = A;. On the contrary,
when pedestrian i’s velocity is directly pointing towards pedestrian j: cos(¢;;) = 1 and
then w(¢;;(t)) = 1.

cos(i;) (12)



W(¢ik(f)) =1

Figure 2: Schematic representation of the two limiting cases for the anisotropic prefactor.

2.3 A Modified Social Force Model (MSFM)

According to Daniel R. Parisi [24] the Social Force Model (SFM) presents large limitations
when describing the main macroscopic observables that characterize normal pedestrian
flow dynamics: the specific flow rate and the fundamental diagram. Parisi and coworkers
mention that this occurs because the Social Force Model (SFM) is always in a competitive
state. A first approach to the Social Force Model (SFM) might suggest that the desired
velocity v is the behavioral control parameter. By turning this parameter from low to
high values, one would change the dynamics of the system from a normal to a panic state.
However, they continue arguing that this does not occur. The Social Force Model (SFM)
does not prevent slowly pedestrians, such as elderly people, from panicking. A continuous
pushing occurs no matter the desired velocity of motion.

The authors propose a self-stopping mechanism to turn the model into a normal flow model
in which people slow down before pushing. This is fulfilled by defining a respect radius
such that if this region is trespassed by another pedestrian, the desired velocity of the for-
mer is immediately set to zero. Note that this does not prevent the pedestrian from mov-
ing, since only v is affected. However, according to eq.2 the instantaneous velocity v;(t)
would eventually drop to zero if the respect radius remains occupied.

Let us define the respect distance of the agent ¢ Dp, as
Dpg, = Rp - 14, (13)

where Rp is the respect factor, defined as a positive real number, and r; is the radius of
pedestrian i. The respect area is the circle of radius Dy, centered at the point CF along
the direction of the desired velocity (see Fig.3). Note that the respect circle always crosses
the center of the pedestrian.



Agent k

Respectregion <

Figure 3: The geometrical aspects of the respect area of particle i are represented. Under the
circumstances depicted in the figure, the desired velocity of particle i is v{ = 0 since particle j is
trespassing particle i’s respect region.

In order to calibrate the value of the respect factor Rp, an investigation of the pedestrian
escaping rate was effectuated in a square room of 20 m of side for different exit widths and
different number of pedestrians. Experimental results from the literature suggest an evac-
uation rate ranging from 1.25 to 2 p/m/s under normal conditions when the door width
changes. A respect factor of Rp = 0.7 m reproduced a range of specific flow rates be-
tween 1.2 and and 2 p/m/s when the mass, diameter and desired velocity of pedestrians
were uniformly distributed within the ranges m € [70 kg, 90 kg], d € [0.50 m,0.58 m] and
vo € [0.9 m/s, 1.5 m/s].

2.4 A Centrifugal-Inspired Social Force Model (CSFM)

Typically, pedestrians react differently to an approaching pedestrian depending on the
velocity at which the pedestrian is approaching them. When a pedestrian is approached

by another at a high velocity he changes its direction to avoid collision, even if the other
pedestrian is still far apart. However, no long-range velocity dependent force term is present
in the Social Force Model (SFM). This leads to unrealistic behaviours in counterflows. In
this work a long-range force term dependent on the relative velocity among pedestrians is
added to the Social Force Model (SFM) to investigate the differences encountered in the
fundamental diagram. This term takes the next form

2
VL.
C )
fij = Cimiw(%(t))d—;nz‘ja (14)
where C; is a constant that weights the interaction. For simplicity C; = 1 although it re-
quires proper calibration. v;; is given by
1

vij = 5[ (vj — vi)ng + [|(v; — vi)ngl] |.



Two possible cases are distinguished for v;;:

(Vj — Vi)l’lij if (Vj — Vi)l’lz‘j >0
Vii =
! 0 Otherwise.

This tells us that, if pedestrians are not approaching, the term v;; vanishes. The dynamics
of the system are described by

dVi C

The new term of eq.14 is based on the Centrifugal Force Model [27]. However, some dif-
ferences between both implementations are worth commenting. In our study the term fg
gives some credit to pedestrians approaching from the back in contrast to the Centrifu-
gal Force Model. In the original model no distance dependent force is combined with the
velocity dependent force. Thus, if two pedestrians happen to move at the same velocity
with almost no separation between them they will continue their motion together without
any interaction at all. Here the psychological tendency to be separated is added according
to the SFM scheme. In the Centrifugal Force Model an algorithmic mechanism is imple-
mented to avoid overlaps. Instead, we include the contact forces of the SFM to prevent
great overlaps, although they remain possible to some extent.



2.5 Numerical implementation

The Social Force Model (SFM) and some modifications have been introduced in the previ-
ous section. Numerical implementations are key to understand their performance. In this
section the numerical approach taken in this work is presented. Pseudocode 1 shows the
basic structure of a program aimed to simulate the motion of pedestrians ruled by the So-
cial Force Model (SFM).

Algorithm 1 SFM pseudocode

1: Initialize Pedestrians and Walls
2: for all TimeStep do

3: for all Pedestrian ¢ do

4: Ej =0

5: Fw =0

6: for all Pedestrian j # i do

7: Calculate f;; > Force effectuated by pedestrian j on @
8: Fi; = Fij + fij > Storage of all pedestrian forces on ¢
9: for all Wall W do

10: Calculate fw > Force effectuated by wall W on i
11: Faw = Fw + fiw > Storage of all wall forces on
12: Calculate fo and f, > Steering force and fluctuations of pedestrian @
13: F, = fo+ Fij + Fw + fe > Force on ¢ is the sum
14: Update i’s velocity

15: Update ¢’s position

In line 1 pedestrians and walls are initialized. Pedestrians are given a radius, mass, de-
sired velocity and initial location. Walls, in turn, are only given static and discrete loca-
tions. Pedestrians must be initialized within the limits of the facilities. A rejection method
is used for this purpose. Pedestrians were first given random coordinates in a larger area.
When the position provided lied outside the desired limits or it was closer than d;; =

0.35 m from other pedestrians it was rejected and new random coordinates were proposed.
The process was repeated until acceptance was reached.

Every time step (line 2), the net force acting on each pedestrian is independently com-
puted for the two coordinates of motion. In line & pedestrian 7 is selected. The force f;;
is computed for every pair of pedestrians ij, ¢ # j by means of eq.3 and the summation
is stored (lines 6-8). Then, the same process is effectuated with the discrete point like
walls (lines 9-11). The interaction force with non overlapping pedestrians and walls decays
exponentially with the distance leading to negligible values rapidly. Therefore, in order
to save computational time, the interaction was restricted to the closest elements. Only
pedestrians and walls lying within a radius of 3 m from the pedestrian evaluated where
taken into account. In the CSFM the maximum distance at which the force is computed
is set in d° = 2 m. In this case, higher values for d° can lead to different dynamics since
the velocity-dependent force term does not decay as fast as the SFM term. Eventually,
the steering force term is calculated in line 12 by means of eq.2. In order to do this, the
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steering normalized vector €? is first updated. When pedestrians were supposed to take
drifts to follow different directions in the facility, different targets were defined. The tar-
get of each pedestrian was set depending on their position in the facility. The net force is
then calculated in line 13 for each dimension independently. The system of second order
coupled equations is solved to update the velocity and position of pedestrian i. The Mil-
shtein algorithm is used to update the velocity in case fluctuations are included. The Euler
scheme is used to update the position of the walkers. Despite its error O(h?), the Euler
method is highly used in the social force community. Under the presence of additive noise,
the Milshtein algorithm turns into the Euler-Maruyama algorithm. Then, the velocity up-

date is effectuated as
h V 2 e)’ h N
v(t+h)=v(t) + E(fo + Fi; + Fw) + %ue + O(h*?),

where 1. is a gaussian random variable of zero mean and variance 1, and o?(f;) is the
variance of the noise term f.. Then, the position update is effectuated within an Euler
scheme:

z(t+ h) = 2(t) + vt + h)h + O(h?).

When the updated velocity was greater than the maximum achievable, it was modified

by means of eq.5. Then, the pedestrian’s position was updated. Under high pressure con-
ditions, pedestrians can actually penetrate walls. In order to avoid this, a numerical re-
striction can be imposed. Whenever the updated position of pedestrian ¢ means passing
through a wall, the position of the pedestrian is placed in the limits of the wall, a distance
d;wv = 0.05 m. If the time step used is sufficiently small, this process is not abrupt.

In order to implement the Modified Social Force Model (MSFM), another circle is initial-
ized in line 1. It has the radius Dp, specified in eq.13 placed along the desired direction

of motion crossing the pedestrian’s center of mass. In the loop defined in line 6 the dis-
tance between the center of mass of pedestrian i’s respect area and pedestrian j’s center of
mass is computed. When, for any of the pairs 47, this distance is less than the sum of the
radii involved the respect area is occupied. Then, if it is occupied, the steering force is cal-
culated by setting the desired velocity to zero in line 12 . Otherwise, the steering force is
calculated as usual. The respect area is updated every time the desired direction of motion
is updated.

Sometimes, periodic boundary conditions are implemented in the simulations. Whenever
the pedestrian’s location reached the exit of the facility, it was placed again nearby the en-
trance. The distance from the entrance being the same as the distance the previous move-
ment separated it from the exit. Pedestrians in the surroundings of the facility limits have
to interact with the pedestrians of the other limits as if they were next to them. In order
to make this possible, pedestrians j in line 6 were sometimes assigned new and temporal
coordinates during the force calculation process. This was effectuated by temporally ap-
plying the periodic boundary conditions commented above. Fig.4 shows a scheme of the
process in a straight corridor. Note 5 different cages are depicted. Due to the explained
procedure, pedestrians in one of the cages only consider pedestrians located in their cage
and the two immediate neighbour cages. The same exact process was effectuated with the
walls.

11



Figure 4: Periodic boundary conditions in a straight corridor. The corridor in blue and pedes-
trians in black are the real elements of the system. Pedestrians in grey are an extension of the
real pedestrians of the opposite side of the real corridor.

12



3 Results

This section is organized in two parts. The first part is aimed at testing the implementa-
tion of the Social Force Model as well as showing relevant phenomena in pedestrian dy-
namics. The second part is devoted to the fundamental diagram in different geometries.

3.1 Social Force Model (SFM) test

In order to check the Social Force Model implementation, several self-organizing phenom-
ena were successfully reproduced. These were: transition to incoordination due to clogging,
the faster is slower effect, lane formation and oscillations at exits. The dynamics of the
Social Force Model implemented in this section is given by eq.1, being the forces described
by eq.2, eq.3 and eq.4. Note that no noise or maximum achievable velocity were consid-
ered.

Figure 5: Pedestrians in a squared room of 15 meters of side that head towards a 1 m width
door at an equal desired speed v = 3.5 ms™!. Agent’s mass and diameter were m = 80 Kg and
2-7;€[0.5m,0.7 m].

Fig.5 shows a simulation of pedestrians in a room that try to exit through a 1 m exit at
the desired velocity v = 3.5 m/s. After having exited, pedestrians were given a constant
and equal velocity, and were left insensitive to further interactions. Thus, the distance
among pedestrians after their exit indicates intermittent escaping times. The time required
for N = 200 pedestrians to leave the room was investigated as a function of the desired
speed in Fig.6a. 10 runs were used for each measurement. In general terms three regimes
are observed. For normal walking v° < 1.5 m/s the escaping time decreases as v° increases.
For v° > 1.5 m/s the evacuation time decreases with growing v°. When a group of pedes-
trians try to move faster, the overall escaping time is greater than when they try to move
slower. This effect is known as the faster is slower effect and is here predicted. A constant
evacuation time could appear for v* 2 7 m/s. However, this range of velocities does not
represent pedestrian dynamics and yet greater desired velocities should be measured to
ensure the presence of this constant rate.

13
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Figure 6: a) Evacuation time of 200 people as a function of the desired velocity when there
were initially 250 pedestrians inside the room shown in fig.5. b) Histogram of the time between
exits as a function of the desired velocity.

The initial number of pedestrians in the room was N = 250, although the number of
pedestrians studied was N = 200. This extra number of pedestrians was required to
avoid permanent gridlocks. When the desired velocities are low, there is a small number of
pedestrians, or both situations simultaneously present, the steering force plus the interac-
tion force experienced by the individuals from behind is unable to overcome the repulsive
forces of the walls in the surroundings of the exit. This situation is not commented in [7]
and suggests that the actual evacuation time predicted by the model depends on the num-
ber of pedestrians in the room. This dependency might be subtle at great velocities, but it
is infinitely large at low velocities.

Fig. 6b shows a normalized histogram of the time between individual exits as a function
of the desired velocity. 100 runs were used for each velocity. Fig.6b in combination with
Fig.5 describe the self-organized phenomenon of Transition to incoordination due to clog-
ging. Pedestrians outflow is regular and coordinated bellow v° < 1.5 m/s, but as the veloc-
ity increases the outflow turns irregular and avalanche-like due to the breaking of arch-like
blockings at the exit.

Despite having been introduced to deal with panic escaping situations, the Social Force
Model (SFM) is also able to reproduce self-organizing phenomena also observed under nor-
mal conditions. Some examples are oscillations at exits and lane formation.

The effect of oscillations at exits is depicted in Fig.7. It shows the case for oppositely head-
ing groups that steer to a 1 m exit. Jamming occurs at the doorway. However, when a
pedestrian is able to pass, it is easily followed by other pedestrians with the same desired
walking direction while the opposed headed group has to wait. When a gap is found in the
doorway it is rapidly used by pedestrians heading in the opposite direction. In order to ob-
serve this effect under the conditions shown in Fig.7, pedestrians were given a wider range

14



of possibilities for their radii, being r; € [0.15 m, 0.35 m].

Figure 7: Crossing oscillations in a 1 m door observed when two opposed heading groups coin-
cide. Pedestrians’ velocity and mass are v° = 3.5 m/s and m = 80 Kg. Their radii are uniformly
distributed in the range r; € [0.15 m, 0.35 m].

Fig.8 shows the lane formation phenomenon. Oppositely heading groups were randomly
initialized in between the two walls of the corridor. After a transient time, lanes are formed.
The number of lanes depends linearly on the width of the corridor [6]. If no noise is added,
a final configuration of lanes remain forever. The presence of large-enough noises or high
pedestrian densities can break lanes. Lane formation minimizes unwanted interactions

with other pedestrians, therefore, maximizing flow. This pattern has been viewed as an
example of a collective intelligent behaviour ruled by simple interaction rules.

Figure 8: Red and black circles are headed in opposite senses in a corridor of 10 meters width
and 50 meters long with periodic boundary conditions at constant desired velocity v* = 1.5 m/s.
Lane formation is observed above a critical density value.



3.2 Fundamental diagram

Typically, in an empirical investigation, the density of pedestrians in the facilities is con-
trolled by setting entrances and exit doors to the facility of variable width for a constant
number of pedestrians. Then, a measurement region is defined in which the density and
velocity of pedestrians is assessed. The measurements are taken in a stationary regime of
density and velocity, avoiding the beginning as well as the last moments of the experiment.
However, in a simulation study a slightly different approach might provide greater benefits.
The facilities are set periodic when possible in order to avoid dealing with an ending tran-
sient. According to [24] the escaping flow rates predicted by the Social Force Model (SFM)
for different door widths do not agree with the empirical data. Thus, difficulties to obtain
the desired densities may arise from simulating entrances and exit doors. For this reason,
the density of pedestrians is controlled by placing different number of pedestrians in the
facility directly. The number of pedestrians required to have a density of 4 m~2 in the fa-
cility is calculated. Then, this number of pedestrians is divided in 14 uniformly distributed
numbers. 14 different simulations are carried out with each of this number of pedestrians.

The parameters used in the simulations that follow are presented in tab.1

Parameters Values Parameters Values
m [70 90] Kg 2.7 [0.5 0.58] m
T 0.5s Ry 0.7
A, 2000 N Umnag 9 ms~!
B; 0.08 m a?(f.) 25
k 1.2-10° Kgs2 A 0.1
K 2.4-10° Kgm~'s! d® 2 m
v° [1.1 1.5] ms™* h 0.001 s

Table 1: Parameters used in the different models for the study of the fundamental diagram

Individuals are headed to the nearest point of the target locations at least 0.2 m separated
from the walls in order to avoid unrealistic steerings. The discretization of the walls is ef-
fectuated every 0.2 m. When k pedestrians are present in the measurement region, the
velocity measured is the mean component of the velocity pointing to the next target. This
is

(v) =

| =

Zvi(zﬁ) -eV(t).
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Figure 9: a) Time series of density and velocity for a funneled corridor of [, = 20 m when

N = 141 pedestrians were present. b) Autocorrelation estimation of the mean velocity in the
stationary regime.

Fig.9a shows the density and mean velocity time series within the limits of the measure-
ment region of [. = 20 m in the funneled corridor (see fig.14) when N = 141 pedestrians
are initialized. An initial transient can be noted up to the first t;.q4,s &~ 10 s of simulation.
Fig.9b presents an estimation of the autocorrelation R according to eq.15 for the mean ve-
locity time series in the stationary regime.

In a discrete process of n measurements v;—; __,, mean velocity v and variance 0?2, the au-
tocorrelation at a time distance k£ can be estimated by the next expression:

=

1

)= e

(v — V) (Vegr — D). (15)

t=1

Correlation is rapidly lost around the first second t.,. = 1 s. The time series of the other
scenarios treated present the same characteristics. For this reason, measurements are taken
every second t.,. = 1 s after the initial transient t;.4,s = 10 s .

Simulations run over t,,.s = 500 s for each of the 14 number of pedestrian sets. During this
time, measurements lead to a cloud of points in the fundamental diagram. An example

is provided in Fig.10. The analysis effectuated consists of averaging over the velocities as
long as the density involved is attained more than 10 times. Velocities registered at densi-
ties not repeated at least 10 times are rejected.
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Figure 10: Cloud of measurements given by the Social Force Model (SFM) registered for the
fundamental diagram in the funneled corridor with I, = 10 m after a measurement time of t,,.s =
500 s.

Different geometries are presented in this section. First, a description of the parameters
that define the facility is made. The Modified Social Force Model (MSFM) is used in the
representation of the facilities in order for the reader to know the desired direction of mo-
tion at every stage of the structure. Then, the particular aspects of the fundamental di-
agram study are commented. A chart of four figures follow with the predictions of the
models: the Social Force Model (SFM), the Anisotropic Social Force Model (ASFM) with
A = 0.1, Modified Social Force Model (MSFM) with Rr = 0.7 and Centrifugal-Inspired
Social Force Model (CSFM) with d© = 2 m and C; = 1. In all cases, noise was introduced
according to eq 6. The noise component being a gaussian random variable of zero mean
and variance o?(f.) = 25.

3.2.1 Straight corridor

The straight corridor is the most simple geometry that can be studied. Fig.11 shows the
periodic corridor of width b, and length /. used in the simulations. The measurement
region is restricted by the distance my. Pedestrians’ desired direction of motion was the
same for all of the individuals. They headed to the right with no perpendicular component

(1) = (1,0).
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cor

Figure 11: Geometry of the simulated corridor for the measurement of the fundamental dia-
gram. The snapshot corresponds to a simulation with mg =5 m, I, = 12 m and b., = 3 m.

The fundamental diagram was evaluated as a function of the width of the corridor b, for
a fixed length [, = 12 m in a region delimited by my; = 5 m. The set of widths studied
was beor = 1,2,3,4,5 m. The results of the simulations are registered in Fig.12. Significant
differences are found for the smallest width b.,, = 1 m in comparison with larger widths
in the SFM, MSFM and CSFM. The SFM and CSFM do not show apparent differences.
These models predict a sudden increase in velocity above the desired velocity around p ~
3.8 m~2 followed by an abrupt drop to (v) = 0 m/s for be, > 2 m. The MSFM predicts
a sooner drop in the fundamental diagram anticipated by a constant velocity regime. This
drop is smoother than the one predicted in SFM and CSFM. Two regimes of decay are
found in the ASFM predicting a vanishing velocity at pg &~ 1.9 m~2.
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Figure 12: Fundamental diagrams of a straight periodic corridor of [, = 12 m as a function
of the width b, Social Force Model (SFM), Anisotropic Social Force Model (ASFM), Modified
Social Force Model (MSFM), Centrifugal-Inspired Social Force Model (CSFM).

The MSFM for b.,, = 1 m and b.,, = 2 m presents a maximum after having reached
(v) = 0 m/s for the first time. This effect is due to the configuration pedestrians achieve
depending on their density. Fig. 13 shows the configuration of pedestrians for b.,, = 1 m
when they reach the densities p ~ 2 m™2 and p ~ 2.5 m~2

wcq&%m (v) ~ 0m/s

5SS ® (v) ~ 0.3 m/s

L 101011‘

Figure 13: Pedestrians’ spacial distribution in a corridor of b.,- = 1 m explaining the behaviour
shown in Fig.12 for the MSFM. When N = 23, pedestrians align in such a way their respect
region is always trespassed impeding motion. When N = 30, the disposition of pedestrians allow
some of them to display unoccupied respect regions, thus pushing the others and allowing some
motion.

The straight corridor has also been addressed experimentally in [23]. Empirical results
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point out significant discrepancies with the predictions of the models. A smoother decay
is shown from the very beginning, with no clear onset of motionless regime in the interval
p<4m2

3.2.2 Funneled corridor

Fig.14 shows a new geometry based on the previous corridor. Three parameters define the
facility: the maximum width of the corridor b1, the minimum width b..o and the length
l.. The measurement region is defined by my and is equally separated from the exit and
the entrance. This kind of geometry is inspired by the results of evolutionary optimization
of a bottleneck [28]. We wondered if a geometry that enhances the outflow of pedestrians
would actually show the same fundamental diagram as the straight corridor.

The fundamental diagram has been investigated as a function of the length of the cor-
ridor [.. for fixed widths b.,,; = 6 m and b.,,o = 2 m. The set of lengths studied was

[ = 10,15,20 m in a measurement region delimited by m; = 3 m. Note the angle of the
escape route changes with /.. Results are registered in Fig.15. Significant differences are
found with respect to the straight corridor. In the SFM, a maximum in velocity is found
at p ~ 3.1 m/s followed by a constant decay rate, apparently regardless the corridor length
l.. No motionless regime is found in the interval p < 4 m~2 The CSFM presents a slightly
different behaviour than the SFM, characterized by a greater decay in the velocity from
p~ 2.6 m? on. No differences in the fundamental diagram with respect to I, can be noted
in the ASFM reaching immobility at p = 2 m™2. In the MSFM, two decay regimes that
finally find immobility at py = 3 m~2 are found.

cor1

Figure 14: Geometry of the simulated funneled corridor for the measurement of the funda-
mental diagram. The snapshot corresponds to a simulation with mg = 3 m, [, = 20 m and
beor1 = 2 m and bepro = 10 m.

21



SFM ASFM
15 ‘ ‘ ‘ ‘ 1.5 : ‘ ‘

e l.,=10m
2egeec0s,, - . lc =15m
2 i-‘;;_.(. lc =20m
— 1 '.‘::.' ooooooooooooo — 1 'l
i) S eceeresseesee = =
i = é -i
— L] — ¢
B . =
05/ - ] 0.5} g‘i .
l.=10m e
l.=15m * ‘s
le :‘20 m ‘ )
% 1 3 4 5 % 1 3 4 5
p [1/m?] p [1/m?]
MSFM CSFM
15 : : 15
P
ssg8eetes,, ¢ e = m Eas8escee,
% le=20m T
_ 1 ..‘f:-.. . 1 .“.:..,.
3 e, =z RN
é .... é oo.‘..“. .
= S ..
0.5} .- 1 0.5} L
. . lc =10 m 'n.!
. ° lc =15m =
‘ ‘ e le=20m ‘ ‘
% 1 2 3 4 5 % 1 2 3 4 5
p [1/m?] p [1/m?]
Figure 15: Fundamental diagrams of a funneled periodic corridor of b.,-1 = 6 m and

beora = 2 as a function of the length [.. Social Force Model (SFM), Anisotropic Social Force
Model (ASFM), Modified Social Force Model (MSFM), Centrifugal-Inspired Social Force Model
(CSFM).

3.2.3 Rectangle

Fig.16 shows a rectangular geometry consisting of two corridors of different lengths [., .o
and widths b.or1, beor2. The measurement area is restricted by the distance my. Pedestrians
were headed counterclockwise to the nearest point of the dashed lines.

The fundamental diagram was studied as a function of b...o for fixed I,; = 7m, l.o = 3 m
and b.,,1 = 3 m. The set of widths studied was b.,,o = 1,2,3,4,5 m. The measurement
region side was mgy = 4 m. Results are registered in Fig.17. Noticeable differences with
respect to the previous configurations sets are found. A change in the curvature of the fun-
damental diagram is encountered in the SFM, MSFM and CSFM for different values of the
parameter b.,o. However, in all cases they find immobility at the same py ~ 4 m~2. The
CSFM slightly modifies the results provided by the SFM by increasing the first decay rate.
The ASFM presents similar results for the different widths of the corridor b...o except for
beoro = 1 m. Inmobility is found at py = 2 m, regardless the geometry. The MSFM predicts
the motionless regime at py ~ 3 m.
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Figure 16: Geometry of the simulated rectangular facility for the measurement of the fun-
damental diagram. The snapshot corresponds to a simulation with myq = 4 m, [,y = 7 m,
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Figure 17: Fundamental diagrams of a rectangular facility of [.; = 7 m, b.or1 = 3 m and

lca = 3 m as a function of the width b.ore. Social Force Model (SFM), Anisotropic Social Force
Model (ASFM), Modified Social Force Model (MSFM), Centrifugal-Inspired Social Force Model
(CSFM).
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3.2.4 Racetrack

Fig.18 shows a racetrack scenario. The parameters that define the structure are the next:
the width of the corridor b.,,, the distance between the two corridors d.,.s and the length
of the corridors [.. The length of the measurement region is given by my. Pedestrians
headed clockwise to the nearest point along the dashed lines. 10 different target locations
were defined throughout the facility.

The fundamental diagram has been investigated as a function of the width of the corri-
dor b, for fixed values [, = 9.92 m and d.,,s = 3.18 m. The set of widths studied was
beor = 1,2,3.5,4 m. The measurement region side was my = 6 m. Results are presented in
Fig.19. The SFM and CSFM present no apparent differences in their predictions display-
ing both py ~ 4 m~2. The ASFM shows slightly different decay rates and py ~ 1.9 m~2
depending on b.,,.. Predictions by the MSFM include different py depending on b.,,.. The
same anomalous behaviour already commented in the straight corridor is found here.

cor

Figure 18: Geometry of the simulated racetrack for the measurement of the fundamental dia-
gram. The snapshot corresponds to a simulation with mg = 6 m, [, = 13 m, b, = 3.5 m and
deors = 3 M.
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Figure 19: Fundamental diagrams of a racetrack of I, = 9.92 m, d.ors = 3.18 m as a function
of the width b, Social Force Model (SFM), Anisotropic Social Force Model (ASFM), Modified
Social Force Model (MSFM), Centrifugal-Inspired Social Force Model (CSFM).

Similar geometries have been addressed by means of both models and experiments [24, 29].
Clear discrepancies with the experimental data are met by the results of the models. A
smoother decay rate is empirically found. In [24] discrepancies with respect to the MSFM
at high densities are said to reduce if a normal distribution of respect factors is imple-
mented. This allow some pedestrians with small respect regions to display them unoccu-
pied even at high densities thus pushing the rest and generating some motion. Along the
lines of the previous reasoning, the ASFM could soften the decay process by providing a
normal distribution for A\. These two scenarios are studied in Fig.20. The decay rate of the
MSFM presents a large dependency on the distribution of Rp in contrast to the ASFM.
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Figure 20: Behaviour of the fundamental diagram of MSFM and ASFM models in a racetrack
configuration of [, = 7 m, deors = 1 m and b.,,, = 2 m when a gaussian distribution of Rr and

A were proposed. Since Rp < 0 and A < 0 or A > 1 lack of physical sense, whenever this values
appeared they were rejected followed by a new proposal.

3.2.5 Circle

Fig.21 shows a circular shaped facility. It can be regarded as a special case of the race-
track geometry when [. = 0 m. Two parameters define the structure: the inner and the
outer radii, ; and 7o respectively. The measurement region is defined by the angle a,eq.
Pedestrians’ sense of motion is clockwise. The desired direction of motion is always tan-
gent to the circumference centered in the center of the facility of radius the distance the
pedestrian keeps from the center. If the reference system is set in the center of the facility:
e(t) = (ri(t)?, —ri(t)")/]|ri(t)|]. Due to inertia effects, pedestrians tend to separate from

the center as shown in Fig.21.

The fundamental diagram has been investigated as a function of one of the radii ry for a
constant 7, = 1 m. The set of radii studied were ry = 2,3,4,5,6 m in a region defined by
an angle a,,.q = 90°. Results are registered in Fig.22. No differences are found between
the SFM and the CSFM predictions. The noticeable differences as a function of r5 in the
predictions of the SFM and CSFM are greatly reduced in the ASFM and MSFM results.
The motionless regime is found at py &~ 2 m™2 and py ~ 3 m~2 for the ASFM and MSFM
respectively. Nevertheless, an important deviation is shown for 7, = 2 m in the MSFM
predictions.

Experimental measurements of pedestrians walking in line in a ring-shaped facility were
taken in [30]. A smoother decay rate is found starting from p ~ 0 m~2. Despite the differ-
ent inner radius, these results would seem unlikely to be found by the models.
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Figure 21: Geometry of the simulated circular facility for the measurement of the fundamental
diagram. The snapshot corresponds to a simulation with 71 =1 m, ro =5 m.
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Figure 22: Fundamental diagrams of a circular facility of r1 = 1 m as a function of the outer
radius r2. Social Force Model (SFM), Anisotropic Social Force Model (ASFM), Modified Social
Force Model (MSFM), Centrifugal-Inspired Social Force Model (CSFM).
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3.2.6 Bidirectional corridor

Fig.23 shows a straight corridor filled by pedestrians moving in the two senses of motion.
The structure of the facility is defined by the width b, and the length [.. The measure-
ment region is the area in grey, characterized by the distance my.

The fundamental diagram was studied as a function of the width b, for a constant length
l. = 15 m and equal number of pedestrians of each group. The set of widths studied was
beor = 5,6,7 m in a region defined by my = 4 m. Results are registered in Fig.24. The
SFM predicts two different regimes. The CSFM acts lifting the velocities up to p ~ 2 m™2,
defining a unique rate of decay from p ~ 1 m~! on. This is attributed to the fact that
the CSFM prevents pedestrians from strong collisions to a greater extent than the SFM

at small densities. Both models predict the onset of immobility at py ~ 2.9 m~2. The
MSFM presents the same qualitative behaviour as the SFM but an earlier py ~ 2.5 m~2

is predicted. The ASFM shows an initial rapid decay with an unpredicted behaviour for
beor = 7 m. Deviations from the apparent trend of the curve in the previous models are
probably due to the break of jams in the surroundings of the measurement area.

Experimental studies of bidireccional flows in corridors were studied in [31, 21]. Most re-
markably, no clear onset of motionless regime is found in the interval p < 4 m?. The vari-
ance in experimental measurements makes it hard to establish a clear trend to compare
with the models.
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Figure 23: Geometry of the simulated bidireccional corridor for the measurement of the fun-
damental diagram. The snapshot corresponds to a simulation with b.,, = 5 m, I, = 15 m and
mg = 4 m.
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Figure 24: Fundamental diagrams of a bidireccional corridor facility of [, = 15 m as a function
of its width beor. Social Force Model (SFM), Anisotropic Social Force Model (ASFM), Modified
Social Force Model (MSFM), Centrifugal-Inspired Social Force Model (CSFM).

3.2.7 Corridor intersection

Fig.25 shows the geometry of two intersecting perpendicular corridors. The structure is de-
fined by the width of the two corridors involved b1, and b..o and the length of the corri-
dors [.. The measurement region is the rectangular area shared by the two corridors. Two
types of pedestrians are represented in the figure. Pedestrians in black steer along corri-
dor 1 while pedestrians in red do it along corridor 2. Periodic boundary conditions have
been set in the limits of the corridors. However, this periodicity only applies to pedestrians
supposed to move in these corridors. Pedestrians in black experience periodic boundary
conditions in corridor 1, but they do not display them when they reach the limits of corri-
dor 2. The same occurs with pedestrians in red placed along the perpendicular corridor to
their natural pace. When high densities are attained, pedestrians of one corridor can shift
pedestrians of the other corridor to their natural corridor. This is a feature depicted in
panic situations. It has been captured in Fig.25. Note that several pedestrians in black lie
along corridor 2. When this is the case, pedestrians are headed to the common region and
from then to their original target. Every time a pedestrian reaches the limit of the corridor
in which it is not intended to move all the pedestrians are initialized again.
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The fundamental diagram was studied as a function of the width of the second corridor
beora for a constant b.,,qy = 3 m and equal number of pedestrians in each corridor. The
set of widths studied was b0 = 2,3,4 m. A comparison between the predictions of the
SFM, ASFM and CSFM as obtained so far and after introducing the effects of impatience
was made. The effects of impatience in bidirectional flows are an increase in the desired
velocity of motion and noise according to eq.8 and eq.9 respectively. The time considered
for pedestrians to evaluate their level of panic was the previous ¢, = 5 5. Only 80% of
pedestrians were prone to get impatient. The rest did not modify their motion conditions
under any circumstances. The maximum velocity attained due to panic was set a function
of the original desired velocity as

V" = (1.5 4+ 1.5 - 1) - v},
where @ is a uniform random variable providing random numbers between 0 and 1. In or-
der for pedestrians to display proportional levels of noise and velocity increments the max-
imum noise reachable was set dependent on the maximum velocity attainable as

v — min (v
,r]imaz — 77? 4 ) — .z . T]maxj
max (V) — min(v**)

where min(v"**) = 1.65 m s~! is the maximum velocity reachable by the slowest pedes-
trian, maz(v™**) = 4.5 m s~! is the maximum velocity attainable by the fastest pedes-

trian, 7Y = 15 and ™ = 90.

Results are presented in Fig.27. Non significant differences are found as a function of the
width of the corridor b...o. Impatience in pedestrians has the effect of lifting slightly the
fundamental diagram to higher values of velocity. Due to the tendency of the ASFM to
generate jams, an additional series of 14 measurement simulations were performed in the
low density regime in order for the fundamental diagram to display results bellow p =

1 m~2, otherwise not found.

The intersection of corridors with two flows as studied here has been experimentally ad-
dressed in [32]. The experimental fundamental diagram present higher values of velocity,
and once more, no onset of immobility in the interval p < 4 m~2. However, differences in
the conditions of the experiment should be taken into account if a detailed comparison was
made.
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Figure 25: Geometry of the simulated intersection of straight corridors facility for the measure-
ment of the fundamental diagram. The snapshot corresponds to a simulation with b.,r1 = 2 m

and bepro = 3 m and [, = 7 m.
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Figure 26: Fundamental diagram of an intersection of corridors of [, = 10 m and be,r1 = 3 m as
a function of b.yro by means of the Modified Social Force Model (MSFM).
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Figure 27: Fundamental diagrams of an intersection of corridors of . = 10 m and b.or1 = 3 m
as a function of b.,-o with and without the introduction of impatience effects. Social Force
Model (SFM), Anisotropic Social Force Model (ASFM), Modified Social Force Model (MSFM),

Centrifugal-Inspired Social Force Model (CSEM).
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4 Conclusions and future work

An investigation of the fundamental diagram predicted by the Social Force Model, Anisotropic
Social Force Model, Modified Social Force Model and Centrifugal-Inspired Social Force

Model as a function of the geometry has been conducted. The geometries evaluated with
unidireccional flows were the straight corridor, the funneled corridor, a rectangular facil-

ity, a racetrack and a circular facility. The geometries analyzed in counterflows were the
straight corridor and an intersection of corridors. In the last one, the effects of impatient

and pushy pedestrians were studied. The fundamental diagram predicted by the social

force models cannot be considered universal. Relevant differences are found depending on

the geometry.

Regarding unidirectional flows, the ASFM (A = 0.1) predicts more stable results than the
other models. In a sense, the Anisotropic Social Force Model is the most fundamental of
them. It predicts an onset of the motionless regime at py ~ 2 m~? regardless the geometry.
The CSFM (d° = 2 m, C; = 1) presents no noticeable effects in the fundamental diagram
with respect to the SFM in the straight corridor, the racetrack and circle. It acts drop-
ping slightly the results encountered by the SFM in the remaining geometries. Its effects
are probably undermined by the small range of desired velocities and masses set in the ex-
periment. The MSFM (Rp = 0.7 m) predicts an onset immobility around py ~ 3 m~2.
An anomalous behaviour was observed for certain geometries due to the configuration of
pedestrians in space at different densities. This effect was disregarded in the original publi-

cation of this model modification and suggests important limitations to the model.

As far as counterflows are concerned, fluctuations in the fundamental diagram are at-
tributed to the presence of jams in the surroundings of the measurement area. The ASFM
presents a remarkable tendency to generate jams. The effects of impatient pedestrians fa-
cilitates motion by lifting the fundamental diagram. In order to minimize the unwanted
effect of jams in the fundamental diagram, the length of the corridor must be largely in-
creased.

Two mechanisms are proposed in order to make the measurement process more efficient.

In this work walls were discretized in the space. The distance between a walker and all the
point like walls was evaluated every time step. Then, only walls within a given distance

were considered to interact. Instead, a different and unique point like wall could be com-
puted for every pedestrian given its location in space without a previous pre-implementation.
This would help save computational time, although this procedure would reduce the force
effectuated by walls. If a large study of a facility as a function of its size where a large
number of pedestrians is to be reached is conducted, the link cell method is proposed to
reduce the computational complexity from O(N?) to O(N), where N is the number of
pedestrians.

A quick look at the experimental data in unidirectional flows let us see models do not
match the smooth decay often registered empirically. However, the same exact calibra-
tion appears to be more appropriate in bidirectional flows. The onset of immobility is
never met by the experimental results, which do not display it in the interval p < 4 m~2.
Regarding future work, a detailed comparison between models and experiments could
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be made in order to unveil how the geometry actually affects the diagram and how the
models adjust to the shape of the function. This would also allow to calibrate the studied
models and/or suggest new modifications to account for the differences encountered.
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