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Thomson rings in a disk
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We discuss the basic principles of self-organization of a finite number of charged particles interacting via the
1/r Coulomb potential in disk geometry. The analysis is based on the cyclic symmetry and periodicity of the
Coulomb interaction between particles located on several rings. As a result, a system of equations is derived,
which allows us readily to determine with high accuracy the equilibrium configurations of a few hundred charged
particles. For n � 200, we predict the formation of a hexagonal core and valence circular rings for the centered
configurations.
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The distribution of charged particles on a two-dimensional
curved surface, considered first by Thomson [1], has attracted
continuous attention for a decade [2]. This problem provides
useful insights into the physics of quantum dots and Bose-
Einstein condensates [3], topological defects [4–6], and col-
loidal systems, where colloidal particles self-assemble at the
interface of two distinct liquids such as particle-stabilized [7]
or charged-stabilized emulsions [8,9].

Considering the electron distribution in a circular harmonic
oscillator classically, Thomson found that interacting electrons
are self-assembled in a family of rings (shells) with a specific
number of electrons due to equilibrium conditions. Thirty
years later, Wigner [10] predicted the formation of an electron
lattice in an infinitely three-dimensional (3D) extended system
at low density. These problems have common roots related to
the dominance of the Coulomb interaction over the kinetic
energy. Both models play a major role in our understanding
of equilibrium configurations of interacting particles in the
case of a soft confinement and in the absence of confinement.
Evidently, however, they are different with respect to the role
played by the number of particles, boundary conditions, and
symmetry. For an infinitely large box, the discrete translation
symmetry is responsible for the ordered structure in the
Wigner crystal. In a circular trap, with a finite number of
electrons, the cyclic symmetry gives rise to the formation
of shells. For finite systems, the role of confinement and
its underlying symmetries are crucial for the formation of
equilibrium configurations [11].

Thanks to modern technology, many ideas and concepts
developed early can be analyzed with high accuracy. Recent
experimental studies of the additional electron energies of
a small number of electrons in a trap over a liquid-helium
film [12] confirm the results obtained by means of clas-
sical Monte Carlo calculations for the harmonic-oscillator
trap [13–15]. The results demonstrate that n point charges
located on a ring create equidistant nodes as predicted by
Thomson [1]. There are hundreds of papers on the self-
organization of charged particles in disk geometry (a hard
confinement) in different fields of physics and chemistry (see,
for example, [3,6]) where various simulation techniques are
used. Although a similar pattern is obtained for a hard-wall
potential for n � 50 (c.f., [16]), the distribution of particles is
very different from the one found for the harmonic-oscillator

confinement. Such a deviation, noticed already a few decades
ago [17], is not understood yet. Indeed, the results of numerical
simulations are rather formal because they are not based on
any well-established model, while neither the Thomson nor the
Wigner model mentioned above is relevant there. In contrast to
the harmonic-oscillator case, a consistent analysis of the shell
pattern obtained by simulation techniques in disk geometry
has been lacking up to now (for a review, see [18]). Among
the latest developments, we could mention the approach based
on a continuum limit [4,5]. Although this approach describes
a general trend of the density distribution in the framework of
elasticity theory, it is unable to provide a detailed description
of the shell structure for a finite number of particles.

In this paper, we present a model that enables one to
describe with high accuracy the ground-state configuration
of charged particles in a disk as a function of particle number.
Although we consider the classical system at zero temperature,
our approach could shed light on the nature of self-organization
of colloidal particles in organic solvents, charged nanoparticles
absorbed at oil-water interfaces, and electrons trapped on the
surface of liquid helium. To address the problem, we consider
particles (electrons) confined in a planar disk and interacting
via the Coulomb interaction. To check the validity of our
theoretical approach, we also perform molecular-dynamics
(MD) calculations similar to the one discussed in [18] and
compare our predictions with the MD results for n � 400
particles.

The MD results indicate that for n � 11, the equilibrium
configuration is defined by all particles equally distributed on
the circle with radius R. In this case, the minimal energy of
the system is

En(R) = α

2 R

n−1∑
i=1

n∑
j=i+1

1

sin π
n

(|i − j |) = αnSn

4 R
, (1)

Sn =
n−1∑
k=1

1

sin π
n
k

. (2)

Here, α = e2/4πε0εr . Below, for the sake of discussion,
we use α = 1, unless stated otherwise. We recall that with
the harmonic-oscillator confinement, already for n = 6 one
obtains one particle at the center (5 + 1) [1,13–15].
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Let us suppose that the system is stable with n particles
located at the circle boundary. If we add a particle, then either
(i) it is placed at the boundary with a total energy En+1, or (ii)
due to circular symmetry it is located at the center, interacting
with the external n charges, and the total energy is En(R) +
n/R. The critical number of charged particles for this transition
is defined by the condition [En(R) + n/R] − En+1(R) � 0,
which yields the following equation:

(n + 1)Sn+1 � nSn + 4n. (3)

The resolution of this equation provides the critical number
n = 11. In other words, 11 charged particles lie on the circle
boundary, while for 12 charged particles there are 11 charged
particles at the boundary and one is located at the center.

For n � 12, the MD calculations show the formation of
several internal rings. In particular, for n � 29 the number of
electrons grows in two rings until two complete shells (23 +
6) are formed. Evidently, the interaction between electrons
from different rings should be included now. To obtain further
insight into the formation of the equilibrium configuration,
we consider the Coulomb interaction between two rings with
radiuses r1, r2, and n and m electrons, respectively, uniformly
distributed on each ring. Thus, we have

Enm(r1,r2,ψ) =
n∑

i=1

m∑
j=1

ε
(
r1,r2,ψ

nm
ij + ψ

)
, (4)

ε(r1,r2,θ ) = (
r2

1 + r2
2 − 2 r1 r2 cos θ

)−1/2
, (5)

where ψnm
ij = 2 π (i/n − j/m) and ψ is the relative angular

offset between the two rings.
It can be shown that the set of n × m angles ψnm

ij is
equivalent, in the interval [0,2π ], to the G-fold set {ψk =
2π/L × k,k = 1, . . . ,L}. Here L ≡ LCM(n,m) and G ≡
GCD(n,m) = n × m/L are the least common multiple and
greatest common divisor of the numbers (n,m), respectively.
As a result, Eq. (4) transforms to

Enm(r1,r2,ψ) = G

L∑
k=1

ε(r1,r2,ψk + ψ), (6)

which can be applied to any 2π periodic function ε(r1,r2,θ ). In
turn, this result shows that these kinds of functions are invariant
under angle transformations corresponding to the cyclic group
of L elements, implying a �nm = 2π/L periodicity

Enm(r1,r2,ψ + �nm) = Enm(r1,r2,ψ). (7)

This is a key result of our approach, which allows us to
simplify drastically the problem of equilibrium configurations
and underlines the importance of cyclic symmetry.

By virtue of the fact that the ring-ring interaction is an even
periodic function in the angle ψ , it can be presented by means
of a Fourier series of cosines,

Enm(r1,r2,ψ) = 〈Enm〉 +
∞∑

	=1

C	nm(r1,r2) cos(	Lψ). (8)

The average value is obtained by integrating in ψ , and using
Eq. (6) we have

〈Enm〉 = 1

2π

∫ 2π

0
dψ Enm(r1,r2,ψ)

= G

2π

L∑
k=1

∫ 2π

0
dψ ε(r1,r2,ψk + ψ). (9)

All terms in the sum Eq. (9) give the same contribution, and
we obtain in terms of the complete elliptic integral of the first
kind [19]

〈Enm〉 = 2nm

πr>(1 + t)
K[4t/(1 + t)2] = 2nm

K(t2)

πr>

. (10)

Here, we introduced the following notations: r> = max(r1,r2),
r< = min(r1,r2), t = r</r>, and we used the symmetry
property K[4t/(1 + t)2] = (1 + t) K(t2). It is noteworthy that
the average value 〈Enm〉 is exactly the interaction energy
between homogeneously distributed n and m charges over the
first and second rings, respectively.

In a similar way, the Fourier coefficients are given by

C	nm(r1,r2) = 1

π

∫ 2π

0
dψ cos(	Lψ)Enm(r1,r2,ψ)

= nm

π

∫ 2π

0
dψ

cos(	Lψ)[
r2

1 + r2
2 − 2r1r2 cos ψ

]1/2 .

(11)

By means of series expansion, it can be shown that

C	nm(t) ≈ nm

r>

d	Lt	L + O(t	L+2), (12)

where dM = 2(2M − 1)!!/(M! 2M ) is a slowly decreasing
coefficient. Evidently, at large L the contribution brought about
by the fluctuations related to the ψ variable in the series (8) is
very small, even for the first harmonic 	 = 1. For illustration,
we consider the fluctuating part of the ring-ring energy,

�Enm(R,r) = 〈Enm〉 − Enm(R,r,ψ = π/L) (13)

for m = 6 in the internal ring with a radius r , and we vary
the electron number 20 � n � 25 in the external ring with a
radius R.

From the numerical analysis (see Fig. 1) it follows that

�Enm(R,r) ∼ cL (r/R)L, (14)

which is fully consistent with the estimation (12). It is evident
that fluctuations hardly play a role in the ring-ring interaction at
large L, for instance when n = 23 (L = 138) or n = 25 (L =
150). Even for the worst case n = 24 (L=24), it amounts to
a small fraction of 〈Enm〉 for ratios r/R < 0.8.

The results for two interacting rings guide us to tackle the
issue of the total energy. The total energy of n charged particles
in a disk of radius R is

Etot(n,r,ϕ) =
p∑

i=1

Eni
(ri) +

p∑
i<j

Eninj
(ri,rj ,ϕi − ϕj ). (15)

Here, n= (n1, . . . ,np) is a partition of the total number n

on p rings with radiuses r= (r1, . . . ,rp) and offset angles
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FIG. 1. (Color online) The fluctuation of ring-ring energy,
Eq. (13), as a function of the ratio x = r/R for m = 6 in the internal
ring and 20 � n � 25 in the external ring.

ϕ= (ϕ1 =0, . . . ,ϕp). We assume R = r1 = 1 > r2 > · · · >

rp. The results for two rings suggest defining the total energy
as Etot(n,r,ϕ) = Eavg(n,r) + δE(n,r,ϕ) with

Eavg(n,r) =
p∑

i=1

ni

Sni

4ri

+ 2

π

p∑
i<j

ni nj

K[(rj /ri)2]

ri

, (16)

and neglecting the dependence on the relative angles ψ =
ϕi − ϕj , i.e., the term δE(n,r,ϕ).

The equilibrium configuration of particles can be obtained
by minimizing the energy [see Eq. (16)] with respect to
(p,n,r), i.e., finding the partition corresponding to the lowest
total energy. For a given partition, the set of equations
ri∂Eavg(n,r)/∂ri = 0 that determines the optimal radiuses
(ri,i = 2, . . . ,p) is

r2
i

p∑
j=i+1

nj E[(rj /ri)2]

rj
2 − r2

i

+ ri

i−1∑
j=1

nj

(
rj E[(ri/rj )2]

r2
j − r2

i

− K[(ri/rj )2]

rj

)
= π

8
Sni

.

(17)

Here, E is the complete elliptic integral of the second kind.
Thus, instead of searching for the optimal arrangement of n

particles by means of simulation techniques, one must seek the
partition n that provides the lowest value of Eavg by solving a
system of a few (p − 1) equations.

Numerical analysis of the system (16) and (17) shows
that, once one electron appears at the center, it gives rise
to a new internal ring (shell) that is progressively filling
with electrons. The list of lowest-energy configurations
with filled shells reads n/Eavg{n} : 11/48.5757{11}; 29/

444.548{23,6}; 55/1792.01{37,13,5}; 90/5115.56{53,20,

12,5}; 135/11995.4{70,29,19,12,5}. The largest number
of electrons lies on the circle boundary and decreases with
sequential access to inner shells 2,3, . . . . The numerical
solution of the system (16) and (17) provides a remarkable

TABLE I. Values for the only seven cases in which optimal
configurations, obtained with the aid of Eq. (17), disagree with the
MD results. The MD results can be found also in [18].

n Eavg(n) δ Configuration

38 805.021 −0.101404 (28,9,1)3
2

61 2237.25 −0.056784 (39,14,7,1)1
3

76 3575.38 −0.176466 (46,17,10,3)1
3

79 3881.59 −0.164677 (48,17,10,4)2
4

88 4878.17 −0.109206 (51,20,12,5)1
3

90 5115.56 −0.155515 (53,20,12,5)5
1

97 5991.62 −0.148982 (55,21,13,7,1)2
4

agreement with the MD calculations for equilibrium
configurations up to n = 105, excluding a few cases (see
Table I). Our MD results agree with those of Ref. [18] up
to n = 160 particles, while we obtain lower energies for
n = 400,500,1000 and also systematically better values for
n > 52 than those implied in Fig. 8 of Ref. [5].

The difference δ = EMD − Eavg provides the error of our
approximation. The rings are counted starting from the external
one, which is the first ring. The notation (28,9,1)3

2 means that
we have to add one particle in the third ring and remove one
particle from the second ring in order to obtain the MD result.
Although the total energy errors are very small, the assump-
tions of our model fail to predict the correct configurations
for the shown total n. The reason for this is twofold. First, as
discussed above, the fluctuating part [see Eqs. (8) and (11)]
diminishes when L is large, while at small L its contribution
may affect the prediction of the optimal configuration. Second,
some MD configurations slightly break circular symmetry,
which is not considered in the present approach. Nevertheless,
we stress that in practical cases considered so far for n � 400,
the solution of our equations (16) and (17) reduces the CPU
time by a considerable factor (about 103 for n ≈ 400) in
comparison with the MD calculations. Moreover, with the aid
of this solution as a guide for the initial MD particle positions,
one reduces drastically the scanning effort to find the exact
ground-state configurations. We recall that systematic studies
of equilibrium configurations in a disk geometry with Monte
Carlo simulation techniques and MD calculations have been
done up to n � 50 [16] and n � 160 [18], respectively.

Starting from n = 106, the predictions based on the energy
Eavg and MD results demonstrate a systematic �n ≈ |2|
disagreement in the partition of charged particles between
available rings. In particular, the particle number, which corre-
sponds to the opening of a new shell (starting from one particle
in the center), can be calculated exactly up to n = 90 with
the aid of the formula n = (2p + 1)(2p + 2) (see also [20]).
It gives n = 132 at p = 5, while the MD results provide
the opening of the sixth shell at n = 134. Our calculations
predict this opening at n = 136. Nevertheless, by means of
this formula one obtains an estimation of the shell number p

associated with a given particle number n > 90: p � √
n/2.

The increase in the particle number gives rise to the onset
of a centered hexagonal lattice (CHL) at the core of the disk
(see also the discussion in [5,16,18]). In fact, for equilibrium
configurations close to the one that opens a new shell, we find

032312-3



M. CERKASKI, R. G. NAZMITDINOV, AND A. PUENTE PHYSICAL REVIEW E 91, 032312 (2015)

FIG. 2. (Color online) (a) Structure of internal (core) rings corre-
sponding to the CHL. Each shell (green) contains a family of circles
with radii Rkl and particle numbers nring = 6p (see the text). Solid dots
and squares correspond to lattice sites with 6- and 12-fold multiplicity,
respectively. (b) Comparison of the numerical solution of Eq. (17)
(rings) with the MD results (dots) for n = 395 particles. The core
(green) region with {1,6,12,18,24} particles exhibits a hexagonal
pattern. The five external valence shells contain 147,65,50,40,32
particles with an almost perfect circular structure for the three outer
rings (pink). There is a small mismatch, involving two particles at the
intermediate region, displayed within the small (yellow) circle.

an increasing sequence of rings, starting from the center, with
nk = 6k particles matching the regular hexagonal pattern. This
is clearly seen in the results for n=92 {1,6,12,20,53}, n=
136 {1,6,12,19,28,70}, n=187 {1,6,12,18,26,37,87}, . . . ,

n=395 {1,6,12,18,24,32,40,50,65,147}. It is worth mention-
ing that the relative error in Eavg = 110 667.6 for n = 395 with
respect to the MD result (=110 665.1) is only 2 × 10−3%. For
even bigger systems, we find the formation of just seven full
shells, n = 1976{1, . . . ,42, . . .}, before the symmetry of the
circular confining geometry takes over.

This fact can be understood by considering the arrangement
of the CHL points, 
xk,	 = k
a1 + 	
a2, given by integers k,	

and the two primitive Bravais lattice vectors 
a1 = a(1,0) and

a2 = a(1/2,

√
3/2), where a is the lattice constant. The np =

6p sites in the pth shell are organized in different circular
rings with radii Rk	 = a

√
k2 + 	2 + k	, where p = k + 	 and

0 � 	 � k, containing either 6 (if 	 = 0,k) or 12 (otherwise)
particles [see Fig. 2(a)]. Up to p = 7, all these radii are well
ordered within and between successive shells, and the model
we presented groups them in a single circular shell nring = 6p.
Beyond the seventh shell, however, rings start to overlap (e.g.,
R7,0 > R4,4), ultimately distorting this sequence as they depart
from the center.

A comparison of the predictions of our model with the MD
results for n = 395 particles is shown in Fig. 2(b). The discrete
equilibrium positions at the core of the structure are nicely lo-
cated over a hexagonal lattice that gets progressively distorted
as one moves toward the boundary, where particles are ar-
ranged in almost perfect circular shells. As discussed above, we
consider the interaction of homogeneously distributed charges
on several rings, neglecting the angular displacement between
them. This zero-order approximation hides the mechanisms
of topological defects [see Fig. 2(b), small (yellow) circle]
discussed, for example, by Mughal and Moore [5] by means of
a continuum model. This model neglects, however, finite-size
fluctuations and is only appropriate for very large systems.

n=92

r/R
0.0 0.2 0.4 0.6 0.8 1.0

n i
n

0

20

40

60

80 n=395

r/R
0.2 0.4 0.6 0.8 1.0

n i
n

0

100

200

300

400

FIG. 3. (Color online) Number of charged particles within a disk
of radius r . The results of MD, our model, and a continuum model [5]
are shown, respectively, by a solid (black), dotted (red), and dashed
(blue) line for n = 92 and 395 charges.

In contrast, our model is able to reproduce the shell pattern
obtained with MD calculations for any finite n remarkably
well [see Table I and Figs. 2(b) and 3]. It is interesting to note
that the number of charges in the outer shell (ring) fitted to
our model data (n � 400) is well reproduced by the formula
nout = 2.795n2/3 − 3.184 and confirms the power-law scaling
obtained also in Refs. [5,18]. Similar scalings can also be
found for subsequent shells as well as for the smooth part of
the total energy. However, these fits should be taken cautiously,
since the coefficients depend strongly on the fitting range and
the quality of the data, which are assumed to correspond to
the lowest-energy configuration. Further refinement of our
method brought about by including the angular dependence
and understanding of phenomenological coefficients requires
a dedicated study and is a subject of a forthcoming paper.

Increasing the particle number at fixed R, one reaches
the situation in which quantum corrections due to electron
zero-point fluctuations, (�r)2, around the equilibrium position
become important. To quantify this effect, we use the de
Boer parameter 
 = (�r)2/a2 [21], with a = R/p � 2R/

√
n

being the mean interparticle separation, far from the boundary.
As a rough estimate for (�r)2, we consider the harmonic
approximation to the potential seen by a particle at the center
(rp = 0) of the structure, which can be expanded as

V (r) = 2α/π

p−1∑
i=1

niK[(r/ri)
2]/ri

= α/R

(
V0 + 1

4
V2 (r/R)2 + · · ·

)
, (18)

with Vk = ∑p−1
i=1 ni/(ri/R)k+1. The coefficients Vk are size-

dependent and may be generally fitted by a series in
√

n. In
particular, considering all equilibrium configurations with one
particle at the center for n � 400, we obtain V2 � A2 n3/2 [1 +
O(1/

√
n)] with A2 ≈ 0.625. In the harmonic approximation,

one then has

mω2R2 = αV2/(2R), (�r)2 = �/mω, (19)

providing the following estimate:


2 = �
2/(mα)

√
πσ/(8A2) (20)

in terms of the particle density σ = n/πR2. Quantum melting
is avoided at 
 � 
0 ∼ 0.2 [21], corresponding to an upper
bound for the density, σ0. As an example, we obtain for
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electrons in GaAs (m = 0.067me,εr ≈ 12.4) and R = 1 μm
the onset of cold melting at n � 410 particles, for which
quantum corrections should be necessary.

In conclusion, we have derived a system of equations that
enables one to analyze the equilibrium formation and filling
of rings with a finite number of particles interacting by means
of Coulomb forces in disk geometry. Our approach is based on
the cyclic symmetry and periodicity of the Coulomb energy
between particles located over different rings. As a result, the
problem of n interacting charged particles is reduced to the
description of p (�n) rings, with homogeneously distributed
integer charges. This picture is good enough to obtain exact
ground-state configurations with correct energies, excluding
a few particular cases, up to n �105. For bigger systems,
the solution of the model equations provides also very good
approximations to the exact ground-state configurations.
Indeed, the energy errors do not exceed a small percentage
fraction of the exact values. For n � 200, our approach predicts

the formation of the hexagonal core and valence circular rings
for the centered configurations. The general evolution of the
shell structure with an increasing number of particles is also
properly described, including finite-size fluctuations. Note
that the basic principles discussed for the disk geometry can
also be applied to parabolic confinement, or any other circular
potential. The computational effort to get global energy
minima is much less than in MD or simulated annealing
calculations. In fact, simulation times in these methods can be
drastically reduced by feeding them with initial configurations
obtained by means of our method. Finally, we have analyzed
and quantified the range of applicability of a pure classical pic-
ture for the description of charged particles under hard circular
confinement.
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program of BLTP and RFBR (Russian Federation), Grant
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