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Abstract

Català Aquesta tesi té com a finalitat contribuir en els àmbits cient́ıfics de la neu-
rociència matemàtica i computacional i del sistemes dinàmics. El principal problema
que es vol tractar és el de l’estimació del curs temporal de les conductàncies sinàptiques
a la qual una neurona està sotmesa, tot i que també tractem diferents qüestions sobre
sistemes dinàmics i altres aspectes purament computacionals. Per tractar el problema
de l’estimació, utilitzem models minimals que descriuen la dinàmica d’una sola neurona,
els quals són estudiats emprant diferents tècniques sobre sistemes “slow-fast”, equacions
diferencials estocàstiques i models no diferenciables.

La quantitat d’informació que una sola neurona rep és rellevant a l’hora d’intentar de-
terminar la connectivitat cerebral. No obstant això, el seu transcurs temporal no es pot
extreure directament dels experiments, per la qual cosa es necessiten mètodes inversos
per a estimar conductàncies a partir d’enregistraments factibles (com ara el potencial de
membrana de la neurona). En la literatura, trobem diferents mètodes basats en processos
d’inferència estocàstica i determinista. Tots els mètodes existents, tant experimentals com
teòrics, presenten algunes deficiències importants: (a) suposicions errònies sobre relacions
lineals entre el corrent d’entrada i el voltatge de sortida, les quals són sovint dedüıdes
després d’aplicar tècniques de filtratge que no poden eliminar completament els efectes
no-lineals presents; i (b) la necessitat d’utilitzar més d’un enregistrament, fet que obliga a
assumir la mateixa connectivitat funcional en dos experiments diferents. Aquests aspectes
converteixen aquest tema en un desafiament no trivial per a la neurociència.

Sovint ignorar aquests obstacles pot portar-nos a grans errors en les estimacions, especial-
ment, tal com s’ha vist en publicacions recents, en les regions de “spikes”. En aquesta
tesi veiem que els problemes derivats dels efectes no-lineals s’estenen també en les zones
de no “spikes” quan es tracta amb traces de voltatges obtigudes sota la presència de cor-
rents iònics actius en aquestes regions. En aquestes condicions, també proporcionem nous
mètodes per a millorar les estimacions de les conductàncies sinàptiques. Els mètodes pro-
posats, des dels punts de vista determinista i estocàstic, depenen de models que descriuen
la dinàmica “subthreshold” i estan basats en no-linealitats. El mètode determinista aprof-
ita la naturalesa “slow-fast” de l’activitat neuronal i proporciona excel·lents estimacions
en experiments in sillico. Per tal de considerar el renou present en les dades experimentals,
el mètode anterior s’ha estès a un mètode estocàstic, en el qual constrüım un estimador
ad hoc de màxima versemblança per al model no-lineal. Finalment, també proporcionem
una prova de concepte d’un mètode d’estimació general determinista per a realitzar esti-
macions en la zona de “spikes”; en aquest cas, aprofitem tècniques dels sistemes lineals a
trossos per a deduir relacions no-lineals d’entrada/sortida, que permeten l’estimació dels
paràmetres sinàptics mitjançant la resolució d’equacions no-lineals.

Els resultats del nucli principal de la tesi es complementen amb dues immersions a dos
aspectes més formatius en el marc cient́ıfic que hem descrit anteriorment. D’una banda, un
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ii Abstract

estudi teòric/anaĺıtic sobre sistemes diferencials lineals a trossos, de dinàmica “slow-fast”
i n-dimensionals, on demostrem un teorema semblant al Teorema de Fenichel i l’existència
i ubicació dels canards maximals. D’altra banda, també implementem una xarxa neu-
ronal complexa que descriu l’alternança d’estats d’alta i baixa activitat observats en el
còrtex visual, la qual utilitzem també com a punt de referència per a obtenir perfils de
conductàncies sinàptiques realistes, en diferents neurones i per a diferents condicions de
plasticitat en la xarxa. Aquestes traces de conductàncies poden ser emprades com a base
de dades in sillico per a comprovar els nostres mètodes d’estimació.

English This thesis aims at contributing in the scientific fields of mathematical and
computational neuroscience and dynamical systems. The main problem we address is the
estimation of the time-course of synaptic conductances impinging on a neuron, but we
also treat different related questions on dynamical systems and computational aspects.
We tackle this estimation problem by using minimal models of single cell dynamics and
studying them by means of different techniques for slow-fast dynamics, stochastic differ-
ential equations and non-smooth models.

The quantity of information that a single neuron is receiving is a relevant aspect when
trying to unveil brain’s connectivity. However, the time course of synaptic conductances
cannot be extracted in a direct way from experiments and, therefore, inverse methods to
estimate them from feasible recordings (like the neuron’s membrane potential) become
necessary. Both methods using stochastic and deterministic inference ideas have been
proposed, but all the approaches provided in the literature, both experimental and the-
oretical, present some main shortcomings: (a) wrong assumptions of linear relationships
between input current and output voltage, often inferred after filtering techniques that do
not get completely rid of nonlinear effects; and, (b) the need of using more than one record-
ing, thus forcing to assume the same functional connectivity in two different experiments.
Thus, it becomes a non-trivial challenge for neuroscience.

Ignoring these obstacles sometimes leads to huge misestimations, specially in spiking
regimes, as it has been shown in recent publications. In this thesis, we also describe the
problems derived from nonlinear effects when dealing even with voltage traces obtained in
the subthreshold regime, and we give new methods to improve the estimations of synaptic
conductances when ionic currents are active in this regime. The methods proposed here,
both deterministic and stochastic, rely on nonlinear basic models for subthreshold activ-
ity. The deterministic method takes advantage of the slow-fast nature of the activity and
provides excellent estimations in in sillico experiments. To account for noise present in
experimental data, we extend the method to a stochastic paradigm in which we build up
an ad hoc maximum likelihood estimation for a nonlinear model. Finally, we also provide
a proof-of-concept of a general deterministic approach to deal with estimations in spiking
regimes; in this case, we take advantage of techniques from piecewise linear systems to de-
rive nonlinear input/output relationships that allow the estimation of synaptic parameters
by solving nonlinear equations.

The results of the main core of the thesis are complemented with two immersions on two
formative aspects within the scientific framework described above. On one hand, a the-
oretical/analytical study of slow-fast n-dimensional piecewise linear differential systems,
where we prove a Fenichel’s like Theorem and the existence and location of maximal
canards. On another hand, we also implement a complex neuronal network describing
up/down states observed in the visual cortex, which we also use as a benchmark to obtain
realistic synaptic conductance profiles for different cell types and diverse plasticity condi-
tions in the network. These conductance traces can be used as in sillico datasets to test

ii
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our methods to estimate conductances.

Español Esta tesis tiene como finalidad contribuir en los ámbito cient́ıficos de la neuro-
ciencia matemática y computacional y de los sistemas dinámicos. El principal problema
al cual queremos dirigirnos es el de la estimación del trasncurso temporal de las conduc-
tancias sinápticas a que una neurona está sometida. También queremos tractar diferentes
cuestiones sobre sistemas dinámicos que modelan el comportamiento de las neuronas y sus
aspectos computacionales. Para tratar dicho problema de estimación, utilizamos mode-
los minimales que describen la dinámica de una sola neurona, y los estudiamos utilizando
diferentes técnicas de los sistemas “slow-fast”, ecuaciones diferenciales estocásticas y mod-
elos no-diferenciables.

La cantidad de información que una sola neurona recibe es relevante cuando se trata de
dar a conocer la conectividad cerebral. No obstante, su transcurso temporal no puede
ser extraido directamente de los experimentos, razón por la cual se necesitan métodos
inversos de estimación de conductancias a partir de registros factibles (como ahora el po-
tencial de membrana de la neurona). En la literatura encontramos diferentes métodos
basados en procesos de inferencia estocástica y determinista. Todos estos métodos ex-
istentes, tanto experimentales como teóricos, presentan algunas deficiencias importantes:
(a) suposiciones erróneas sobre relaciones lineales entre la corriente de entrada y la tensión
de salida, las cuales son a menudo deducidas después de aplicar técnicas de filtrado que
no pueden eliminar completamente los efectos no-lineales presentes; y (b) la necesidad de
utilizar más de un registro, lo cual obliga a asumir la misma conectividad funcional en
dos experimentos diferentes. Por lo tanto, dicho tema se convierte en un desafio no trivial
para la neurociencia.

A menudo, ignorar estos obstaculos puede suponer grandes errores en las estimaciones,
especialmente, tal y como se ha visto en publicaciones recientes, en regiones de “spikes”.
En esta tesis demostramos que los problemas derivados de los efectos no-lineales se extien-
den también a las zonas de no “spikes”, cuando se trata con trazas de voltages obtenidas
bajo la presencia de corrientes iónicas activas en estas regiones. En estas condiciones,
también proporcionamos nuevos métodos para mejorar las estimaciones de conductancias
sinápticas. Los métodos propuestos, desde el punto de vista determinista y estocástico,
dependen de modelos que describen la dinámica “subthreshold” y estan basados en no-
linealidades. El método determinista aprovecha la naturaleza “slow-fast” de la actividad
neuronal proporcionando excelentes estimaciones en los experimentos in sillico. Para tener
en cuenta el ruido presente en los datos experimentales, hemos extendido el método an-
terior a un método estocástico, en el cual construimos un estimador ad hoc de máxima
semejanza para el modelo no-lineal. Finalmente, también proporcionamos una prueba de
concepto de un método de estimación general determinista para realizar estimaciones en
las zonas de “spikes”. En tal caso, aprovechamos técnicas de los sistemes lineales a trozos,
para deducir relaciones no-lineales de entrada/salida que permiten la estimación de los
parámetros sinápticos mediante la resolución de ecuaciones no-lineales.

Los resultados del núcleo principal de la tesis se complementan con dos immersiones en dos
aspectos más formativos en el marco cient́ıfico descrito anteriormente. Por una parte, un
estudio teórico/anaĺıtico sobre sistemas diferenciales lineales a trozos, de dinámica “slow-
fast” y n-dimensionales, donde demostramos un teorema similar al Teorema de Fenichel
y la existencia y ubicación de los canards maximales. Por otra parte, también imple-
mentamos una red neuronal compleja que describe los estados de alta y poca actividad
observados en el córtex visual, la cual utilizaremos también como punto de referencia para
obtener perfiles de conductancias sinápticas realistas desde diferentes tipus de neuronas
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y para diferentes condiciones de plasticidad sobre la red neuronal. Dichas trazas de con-
ductancias pueden ser utilizadas como base de datos in sillico para comprobar nuestros
métodos de estimación.
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Introduction

Along the last years, part of my professional training has been focused on the topics of
mathematics, concretely in dynamical systems, and neuroscience. These two doctrines
constitute the main core of this thesis, which combines them to give a step forward in one
of the most challenging problems in neuroscience: unveil brain’s connectivity.

Neurons are specific cells in the brain having the ability to transmit information between
them as a consequence of sensory stimuli from the environment. Therefore, brain’s con-
nectivity may vary depending on the task being performed. Connections between neurons
can be reinforced or debilitated according to emotions, thoughts, damages on the body,
among others. The information is transmitted through electrical and chemical signals,
which can amplify (excitation) or reduce (inhibition) the activity of the receiving neurons,
and so the activity of the brain. This communication process is called synapse and changes
on its strength are called the synaptic plasticity.

Depending on the animal species, its brain can be formed by thousands to billions of neu-
rons, with a huge amount of total synaptic contacts (between 1014 and 1015, for the human
brain) thus increasing the complexity of the brain. In order to infer brain’s connectivity
and to understand the dynamics of information, processing methods are sought both from
experimental and theoretical perspective.

A “local” simplified situation, despite of its global repercussion, is trying to find out which
signal is receiving a single neuron subjected to a bombardment of synaptic inputs, that
is input signals coming from other neurons, and then discern the temporal contributions
of global excitation from those of global inhibition. This quantitative information is im-
portant for the integrative properties of cortical neurons which are believed to be altered
under high-conductance states, see for instance Destexhe et al (2003). The relationship
between the modulation of excitatory and inhibitory time courses is also important to
get information about the wiring architecture of the cortex since it may help to distin-
guish between phase insensitive cortical coupling or spatial phase selective coupling, see
McLaughlin et al (2000). On the other hand, this joint information is useful to study both
the balance and the concurrence of excitation and inhibition, which are crucial features in
many neuronal problems, see Wehr and Zador (2003) and Lombardi et al (2012) among
others. Moreover, disruption of these features leads to severe disorders, so it is relevant to
obtain precise estimations of the activity arriving to a specific cell.

Due to the multitude and the variety of synaptic contacts, obtaining direct measurements
of the synaptic currents that the neuron is receiving at each moment in time is some-
thing unreachable. Therefore, inverse methods appear as an alternative to estimate the
input (mainly, the conductances) from experimental measures. Experiments that provide
membrane potential time courses from intracellular recordings of cortical cells are relevant
in this regard, and have been carried out for different cell types in different brain areas,
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see Hirsch et al (1998), Anderson et al (2000), Wehr and Zador (2003) and Monier et al
(2008).

Broadly speaking, there are four main obstacles to overcome in order to provide effective
solutions to this inverse problem. On one hand, one needs a mathematical model of the
target neuron in which the synaptic conductances are well identified (generally, as parame-
ters of the system). Aiming at giving methods as general as possible, the variety of neuron
types does not advise to use very specific models, but rather minimal models that capture
essential features of neuronal dynamics. This idea has been extensively used in the existing
literature (see Borg-Graham et al (1998), Anderson et al (2000), Wehr and Zador (2003),
Rudolph et al (2004), Pospischil et al (2009), Bédard et al (2011b), and Berg and Ditlevsen
(2013), among others) assuming that data is following some underlying linear process.

Normally, the previous assumption involves a complementary treatment of the noise
present in the data, which is the second main obstacle. Some experimental papers use
strategies that consist of filtering the data before fitting them to the “minimal model”
(Anderson et al (2000) and Borg-Graham et al (1998), among others). Other theoretical
contributions have been mostly focused on the approach with Fokker-Planck equations to
derive the mean and the variance of the whole temporal course for both the excitatory
and the inhibitory inputs, see for instance Rudolph et al (2004). However, the main short-
coming, both of many experimental papers and the abovementioned theoretical methods,
is the need for recording several membrane potential time courses assuming invariance of
the conductances time courses across trials, which is the third main obstacle. However,
to overcome such problems, the Fokker-Planck approach has been refined to avoid double
recordings by using maximum likelihood estimators, see Pospischil et al (2009).

Recently, new efforts have been devoted to obtain direct estimations of the excitatory and
inhibitory conductances: Bédard et al (2011b) takes advantage of oversampling the mem-
brane potential with respect to the conductances time-scale, whereas other authors, see
Kobayashi et al (2011), Paninski et al (2012), Berg and Ditlevsen (2013), Lankarany et al
(2013a), Lankarany et al (2013b), Ditlevsen and Samson (2014) and Closas (2014), take
advantage of statistical inference methods to extract on-line activity. In all these stochas-
tic approaches, linear regression methods and maximum likelihood estimators are in order
at some point of the procedure.

Despite of some excellent estimations obtained in particular circumstances, special in
purely leaky subthreshold regimes, misestimations derived from the use of linear models
have been reported (see Borg-Graham et al (1998) and Guillamon et al (2006)) in the
spiking regime. Therefore, a fourth challenge, which is related to the type of minimal
models to use, come into play. The problem is how to deal with the inverse estimation
problem when the underlying model is no longer linear.

The basic reason for the misestimations in the spiking regime is that some nonlinear
terms are active, and so even after filtering the membrane potential, the input-output
relation is no longer linear. The problem could be spread also over non-spiking regimes
as well, due to the eventual activity of subthreshold ionic channels, widely described from
the eighties after seminal works as Hotson and Prince (1980). This nonlinear subthreshold
activity cannot be discarded, even in the most careful experimental results on conductance
estimation obtained up-to-date (see for instance Figure 6 in Rudolph et al (2004)). Of
course, pharmacological blocks can reduce the activity of some targeted channels, but still
it is actually difficult to completely reduce the neuron’s activity to a pure passive filter.

Concerning mathematical approaches, models in dynamical systems, and specifically the
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slow-fast ones, are useful to describe neuronal behaviours. The study of different aspects
about these models (such as bifurcation diagrams, phase portraits, dynamics close to in-
variant manifolds, among others), can provide a more detailed knowledge about neuronal
connections from where possible deterministic strategies can be extracted to estimate con-
ductances. On the other hand, to tackle with possible noise from experimental recordings,
the study of stochastic methods comes into play to reproduce, in a more realistic way,
neuronal connections and so, new strategies can also be extracted by exploiting their
resources.

Related to previous and open challenging problems, in this thesis, we basically aim to
answer three main questions:

• Are those misestimations on the spiking regime also presented in the subthreshold
regime under the presence of subthreshold-activated ionic currents?

• If misestimations in the subthreshold regime are relevant, can we provide new strate-
gies to overcome such problem having also into account, as much as possible, the rest
of obstacles of the inverse methods?

• Can we also provide a first strategy to estimate conductances in those regimes where
the target neuron presents an oscillatory behaviour?

The answer to the three previous questions is mainly presented in Chapter 5, which is
supported by chapters 3 and 4. These chapters are preceded by a background chapter
(Chapter 1), devoted to introduce some basic concepts and tools that we are going to use
in the three main chapters; and by a second chapter (the Chapter 2), which is dedicated to
explain different mathematical models and data traces, used in this thesis to understand
the behaviour of the brain and also to estimate conductances.

The three main chapters are entitled as Slow-fast n-dimensional piecewise linear systems
(Chapter 3), Effects of plasticity on synaptic conductances in a network with slow oscilla-
tions (Chapter 4), and Estimation of conductances in single point neurons (Chapter 5),
which is the nucleus of the current thesis, since it answers to the questions posed. Next
we briefly explain each of them and the role they play in this thesis.

In Chapter 3 we deal with slow-fast dynamical piecewise linear differential systems, which
are useful to reproduce neuronal behaviour. In the smooth context, the general frame to
tackle the slow-fast behaviours is the geometric singular perturbation theory (GSPT), see
Fenichel (1979) and Jones (1995). In the piecewise linear (PWL) framework, some elements
of the GSPT can be explicitly obtained, which is an advantage. These elements give a
more detailed knowledge not only of the model itself but also an insight on the smooth
case. In this chapter, we analyse n-dimensional slow-fast systems in a piecewise linear
framework. In particular, we prove a Fenichel’s-like Theorem giving an explicit expression
for the invariant slow manifold, that leads to the proof of existence and location of a special
orbits, called maximal canards, which play an important role in defining thresholds, such
as the spiking threshold (see Izhikevich (2007)). These results are already published in
Prohens et al (2016).

Chapter 4 is intended to obtain information about synaptic conductances in a population
of neurons. Here, we have been implemented a complex biophysical neuronal network,
designed by Compte et al (2003), which describes the slow oscillations observed in the
visual cortex and in which short-term plasticity has been added in order to see which are
their effects in the synaptic conductances. Depression was already added by Benita et al
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(2012) and we have incorporated a facilitation term. Part of the work done in this chapter
has been developed in collaboration with Prof. Paolo Massobrio (DIBRIS at Università
degli studi di Genova). Even though the work done in this chapter is just a numerical
introduction to learn a little about conductances’ changes in different short-term plasticity
conditions, it opens new questions to be further investigated (see future work in Chapter
6).

Chapter 5 covers all procedures to estimate conductances that we have been developed
along the thesis. Although they could be explained in different chapters, for their relevance
in the thesis we decided to join them all inside a main chapter covering the core of the
thesis. We split this chapter in two main sections: Section 5.1, which is dedicated to
the estimation of conductances in the subthreshold regime; and Section 5.2, where the
estimations of conductances are done in the oscillatory regime.

The first section of Chapter 5 is separated into two subsections. In Subsection 5.1.1, we
study the influence of subthreshold activity in the estimation of synaptic conductances.
We take advantage of conductance-based models to test this influence using several repre-
sentative mechanisms to induce ionic subthreshold activity. In all the cases, we show that
the currents activated during subthreshold activity can lead to significant errors when esti-
mating synaptic conductances linearly. Thus, our results in this section add a new warning
message when extracting conductance traces from intracellular recordings and the conclu-
sions concerning neuronal activity that can be drawn from them. Additionally, we present
an alternative method that takes into account the main nonlinear effects of specific ionic
subthreshold currents. This method, based on a deterministic quadratization of the sub-
threshold dynamics, allows us to reduce the relative errors of the estimated conductances
by more than one order of magnitude. This quadratization (see Rotstein (2015)) consists
of a slow-fast system, and so we take advantage of its properties to proceed with the es-
timation procedure. Results in this chapter have been published in Vich and Guillamon
(2015a).

The above deterministic approach accounts for the basic mechanisms but it does not pay
special attention to the noise inherent to the experimental data. Next step was, then, to
test the quadratization-based method in a stochastic environment. In Subsection 5.1.2,
we extend the previous quadratic procedure to estimate synaptic conductances, based on
a quadratization of a stochastic model that captures these nonlinearities in a more real-
istic framework, where noise is considered. In fact, we consider an stochastic version of
the quadratic integrate-and-fire model, whose coefficients depend on the synaptic conduc-
tances. Then, the time course of the model coefficients is estimated by an approximate
maximum likelihood procedure, which allows to estimate the time-varying excitatory and
inhibitory conductances. A previous work in this subject is due to Berg and Ditlevsen
(2013), whose authors have collaborated with us by providing experimental recordings
and deep expertise about stochastic processes. This part of the chapter has been de-
veloped along my stay of research in the group of Statistics and Probability Theory at
Københavns Universitet (Denmark, 2015/16), supervised and guided by Prof. Susanne
Ditlevsen. A preprint of this work is already done to be submitted.

After providing some useful strategies to avoid conductances’ misestimations in the sub-
threshold regime, in the second section of Chapter 5, we aim at giving a first proof-of-
concept to address the estimation of synaptic conductances when a neuron is spiking. Our
approach is based on a simplified model of neuronal activity, namely a piecewise linear ver-
sion of the Fitzhugh-Nagumo model (see model Subsection 2.1.3.1). This simplified model
allows an accurate knowledge of the nonlinear f-I curve by using standard techniques of
nonsmooth dynamical systems. In the regular firing regime of the neuron’s model, we ob-
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tain an approximation of the period which, in addition, improves previous approximations
given in the literature up-to-date. By knowing both this expression of the period and the
current applied to the neuron, and then solving an inverse problem with a unique solution,
we are able to estimate the steady synaptic conductance of the cell’s oscillatory activity
as well as to give good estimations when the synaptic conductance varies slowly in time.
A preprint of this work is already done to be submitted.

General conclusions and future research proposals are provided in Chapter 6.

Figure 1 presents a conceptual diagram of the structure of this thesis and the relationship
among chapters.

(2)Neural models
&

Data treatment

(3)Slow-fast
n-dimensional
piecewise

linear systems

(4)Effects of
plasticity on
synaptic
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(6)Conclusions
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Future work

(5)Estimation of conductances in single point neurons

Subthreshold Regime

(5.1.1) Deterministic
framework
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the spiking regime

(1)Background

(1.1) Brain
connectivity

(1.2)Non-smooth
dynamics &
GSPT

(1.3)Diffusion processes
&

statistical inference

Figure 1: Organization of the different chapters in the thesis. Conceptual diagram ex-
plaining the relationship among the different chapters and how they are distributed. The numbers
in the parentheses indicate the enumeration of chapters and sections. Green boxes represent intro-
ductory chapters whereas blue boxes depict the secondary chapters of results and the red box is
the nucleus chapter of the thesis. The acronym GSPT stands for Geometric Singular Perturbation
Theory.

Along the development of this thesis, I have also been attending the winter schools about
dynamical systems called Recent Trends in Nonlinear Sciences (RTNS) from 2011 to
2013, held by the DANCE network, from who I received different grants to attend the
all the schools; the summer school in computational neuroscience called Advances Course
in Computational Neuroscience (ACCN 2013) at the Mathematical Research and Confer-
ence Centre (MRCC), Bedlewo (Poland), which has been supported by the Departament
de Ciències Matemàtiques i Informàtica. And finally, from the stochastic point of view, I
have also attended the summer school on Foundations and Advances in Stochastic Filter-
ing (FASF) in 2015, which formation has been complemented with my stay of research in
the Københavns Universitet, at the section of Statistics and Probability Theory. A stay of
research has been done in the Università degli studi di Genova to work in the problem of
computational neuronal networks.
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All work presented in the thesis has been presented in some conferences and workshops.
Results in Chapter 3, have been presented in the 10th AIMS Conference on Dynamical
systems, Differential Equations and Applications (2014). At this conference, we have
obtained the recognition of outstanding student research paper quality and originality in
the field of differential equations and dynamical systems given by The American Institute
of Mathematical Sciences (AIMS).

The preliminary results in Chapter 4 have been presented at the annual meeting Com-
putational Neuroscience (CNS 2014), held by the OCNS organization in Québec City. I
received a grant from the organization of the congress to attend this meeting.

Results in Section 5.1.1 have been presented in some conferences and workshops. These
meetings are, in a chronological order, Barcelona Computational and Systems Neuroscience
(BARCSYN 2013), in Barcelona; Computational Neusociences (CNS 2013), in Paŕıs at the
Université Paris Descartes; the 10th AIMS Conference on Dynamical systems, Differential
Equations and Applications (2014), in Madrid; International Workshop on Neurodynam-
ics (Ndy14), in Castro Urdiales at the Centro Internacional de Encuentros Matemáticos
(CIEM); BARCSYN 2014, in Barcelona; and CNS 2014, in Québec city and held by the
OCNS organization. I received a grant from the organization of the congress to attend
this meeting.

Results in Section 5.1.2 have been accepted to be presented in Antibes-Juan Les Pins,
France, at the 2nd International Conference on Mathematical NeuroScience (ICMNS
2016).

Results in Section 5.2 have been presented at the CNS 2015, in Praga; BARCSYN 2015,
in Barcelona; and at the conference Open problemes in nonsmooth dynamics, in Barcelona,
held by the Centre de Recerca Matemàtica (CRM).

Finally, I have been invited to present all work done in Chapter 5 in the 1st Workshop on
Dynamical Systems in the Real Life (RDS 2016) at Castelló, and it has also been accepted
at the 10th European Conference on Mathematical and Theoretical Biology (ECMTB 2016)
held in Nottingham.
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Chapter 1

Background

In this chapter, we introduce background concepts about neuroscience and mathemat-
ics. In particular, we explain basic facts regarding three different topics: connectivity in
the brain, geometric singular perturbation theory and non-smooth dynamics, and, finally,
stochastic processes and statistical inference. Once these topics are combined, they can
explain relevant information about the behaviour of the brain and its working mecha-
nisms. In our case, they also provide us with tools to elaborate inverse methods to make
estimations about unknown parameters.

Despite the large amount of information available about these topics, we will focus on those
concepts and theories directly involved with the aim and the development of our work. In
the first section, we introduce some morphology about the neuron and we explain both
the interaction between neurons, the synapse, and the functionality of a single neuron. An
overview about changes on the strength of connection between neurons is also provided
at the end to introduce the concept of plasticity. For a further detailed explanation on
these topics we refer the reader to Rubin and Terman (2000), Dayan and Abbott (2005),
Izhikevich (2007), and Ermentrout and Terman (2010) for an overview in modelling; and
to Kandel et al (2013) for neurophysiology details.

Next section mainly focuses on two different types of systems that are often used to model
the behaviour of the neurons: slow-fast systems and piecewise systems. The more relevant
models for us are fully described in Chapter 2. In this chapter we only want to provide to
the reader some important theorems, Fenichel’s theorem and Llibre et al (2013) theorem;
the concept of maximal canard orbits; and a brief explanation about piecewise systems
providing the Filippov’s convention to describe the flow on common boundaries. To learn
more about these topics, we address the reader to Fenichel (1979), Filippov (1988), Jones
(1995), Desroches et al (2012), Llibre and Teruel (2013), and Kuehn (2015).

Because the data obtained from experiments contains some noise, stochastic models are
often used to elaborate more realistic neuronal models as well as to estimate parameters
using statistical inference. In the last section of this chapter, we introduce the concept
of stochastic process, given some examples of them; we explain the numerical tools we
are using to solve stochastic differential equations (SDE); and finally the maximum likeli-
hood estimator is described as a tool to estimate parameters in SDE. For further detailed
see Wilkinson (2006), Ditlevsen and Samson (2013), and Berglund and Gentz (2008). In
Chapter 3 of the last reference, N. Berglund and B. Gentz explain a comparison between
stochastic and deterministic slow-fast theory, which we are not going to present here.
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1.1 Brain connectivity

A human brain is formed, on average, by 84-100 billions of neurons. Neurons are impor-
tant cells due to their ability to process and transmit information through electrical and
chemical signals. These signals are called action potentials or, shortly, spikes, which are
propagated over long distances and from one neuron to another.

In 1887, S. Ramón y Cajal proposed the neuron doctrine when, using the Golgi’s method,
he discovered the morphology and the connectivity between cells of the nerve system
(called neurons by H.W.G Waldeyer in 1891). This method consists of using potassium
dichromate and silver nitrate to randomly blemish few neurons that become dark black
coloured, and so, visible for the microscope. In Figure 1.1 we can see a drawing by Ramón

Figure 1.1: The principal type of cells in the cerebral cortex of mammals.. Drawing by
Ramon y Cajal of different type of cells (each one enumerated by a different letter). Arrows repre-
sent the possible direction of the action potentials (also known as nerve impulses). Representation
from Ramon y Cajal (1894)

y Cajal of the principal type of cells in the cerebral cortex of mammals. There, each neuron
is labelled with a letter and the arrows represent a possible flow of the action potentials.

Even though there exists a large number of neurons in the brain and a multiple number
of connections, a single neuron typically has three remarkable parts: the cell body, called
soma, which contains the nucleus of the neuron; the dendrites, which are receptive input
devices since they receive the information that comes from other cells; and the axon, which
is the sending output device since from there the neuron sends information to the others.

Synapse

The transmission of information (activated by action potentials) from one cell to another
receives the name of synapse (coined by C. Sherrington 1897) and it consists of an exchange
of voltage between the transfer neuron, called pre-synaptic neuron, and the receiver neuron,
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1.1. Brain connectivity 9

called post-synaptic neuron. There exist two different types of synapses: the chemical
synapses, where neurotransmitters or other chemicals are released; and the electrical ones,
where ions are transferred. The current that a neuron receives from the others is called
synaptic current.

In the chemical synapse, the action potential comes from the terminal part of the axon
of the pre-synaptic neuron to the dendrite (a part of it called spine) of the post-synaptic
neuron. In this synapse, the two implicated neurons are not in touch; there exists a small
gap between the axon of the pre-synaptic neuron and the dendrite of the post-synaptic
where the synapse occurs, see Figure 1.2.

The terminal axon of a pre-synaptic neuron contains small vesicles that enclose different
kinds of neurotransmitters inside such as Glutamate and GABA1. These neurotransmit-
ters are released to the synaptic gap where they interact with receptors located in the
spines of the dendrites of the post-synaptic neuron. These receptors allow the entrance
of neurotransmitters inside the cell causing either an increase, decrease or non-response
in voltage. There are different types of receptors and they only bind with a specific type
of neurotransmitter. The receptor types for glutamate are called AMPA2 and NMDA3,
whereas the receptors of GABA are called GABAA

4 and GABAB
5 receptors. In order

to distinguish between the glutamate neurotransmitter that blinds to the AMPA or the
NMDA receptor, we will call the neurotransmitter as the corresponding receptor that
it joins. In Figure 1.2, we draw a representation of the chemical synaptic mechanism.
For further details on chemical synapses and both neurotransmitters and receptors, see

Synapse

Pre-synaptic neuron

Post-synaptic neuron

Neurotransmitters
AMPA, GABA, NMDA

Receptors

Figure 1.2: A representation of the chemical synapse. Drawing of a chemical synapse
between two neurons. The grey neuron is considered to be the pre-synaptic neuron and the
white one the post-synaptic neuron. The zoom in the synaptic gap shows the vesicles (while
balls) inside the terminal axon (coloured in dark gray) of the pre-synaptic neuron containing the
neurotransmitters (black dots), which are delivered to the synaptic gap and bound to the receptors
(coloured in light gray) of the post-synaptic neuron.

Kandel et al (2013) Ch.12-15.

1GABA is the acronym of γ-aminobutyric acid. Both glutamate and GABA are the major excitatory
and inhibitory transmitters, respectively, in the brain.

2AMPA is the acronym of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid, which is fast activat-
ing and deactivating.

3NMDA is the acronym of N-methyl-D-aspartate, which activates and deactivates slower than AMPA.
4GABAA produce a relatively fast Cl− entrance.
5GABAB produce a slower and longer lasting K+ entrance.
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In the electrical synapses, the two involved neurons get extremely close and they get linked
together by specific channels that connect the cytoplasm of the two cells. These channels,
also called gap junctions, permit the flow of current directly from one neuron to the other.
Most of the electrical synapses are bi-directional and they represent a minority of all the
synapses. In Figure 1.3, we draw a representation of the electrical synaptic mechanism.

Synapse

ions

Gap junctions

Figure 1.3: A representation of the electrical synapse. Drawing of an electrical synapse
between two neurons. Since most of the times this synapse is bi-directional, we do not distinguish
in the plot between pre-synaptic and post-synaptic neurons. The zoom in the synaptic gap shows
the gap junctions (coloured in light gray), binding the two membranes, where ions (black dots)
move forward or in both directions.

Ionic currents

Along the membrane, neurons contain different integral membrane proteins functioning
as pores, called ion channels. These pores allow the flow of specific ions through the cell
membrane, which can go inward or outward the cell, causing different responses to the
neuron. The most predominant ions are sodium (Na+), potassium (K+), calcium (Ca2+)
and chloride (Cl−).

Ion channels help to establish and control the small voltage gradient across the membrane
of cells. They have a sensor acting as a gate that it is opened or closed in response to the
external and internal voltage changes, regulating in that way the incoming and out-coming
of ions. These gates are modelled by the so called gating variables and the total amount
of current entering to the neuron through the ionic channels is called ionic current.

Depending on the processes involved on the ion channels, they can be open persistently
or transiently. Channels that are persistently opened have only one activation mechanism
(or gate) n to open and close the channel (see Figure 1.4A). When this gate opens, it is
called activation and the closing of this gate is called deactivation. On the other hand,
channels transiently opened are characterized to have a blocker mechanism to inactivate
the entrance of ions; and so they have two different gates (or processes) with opposite
voltage dependences: an opening mechanism m and a blocking mechanism h (see Figure
1.4B). The gate m works in a similar manner to the gate n, in the persistent case, whereas
h (represented as a ball in Figure 1.4B) is inactivated or deinactivated by opposite voltage.
That is, when voltage inside the neuron increases, gate m opens while gate h closes; and
when the voltage decreases, m closes while h opens. As for the n gate, when m opens, it

10



1.1. Brain connectivity 11

is called activation and when it it closes is called deactivation; however, when h is opening
it is called deinactivation while, when it is closing it is called inactivation, to distinguish
between m and h.

A B

Intracellular

Extracellular

m
hIntracellular

Extracellular

n

Figure 1.4: A representation of different ion channels. Drawing of different ion channels
depending on the number of opening and closing mechanisms. Panel A represents a channel with
one gating variable allowing the pass of current through the membrane (right channel) or not (left
channel). Panel B represents a channel with two gating variables, an activation gate (line gate)
and an inactivation gate (ball gate), allowing the pass of current through the membrane (central
channel) or not (left and right channels).

Membrane potential changes

The difference of concentration of ions (voltage) between the interior of the cell and the
exterior is called the membrane potential, which depends on time since the cell is continu-
ously receiving information from other neurons or stimulated by external inputs (such as
an image, a taste, a touch, ...).

When a neuron does not receive current neither from other cells nor from the surrounding
bath, that is under resting conditions mentioned, neuron tends to maintain an equilib-
rium between the voltage that there exists inside the cell and the voltage outside. The
driving source to maintain the equilibrium is called the leak current and, in this case, the
membrane potential of a neuron tends to be approximately −70 mV .

However, despite neurons may tend to an equilibrium state, their membrane potential
varies depending on the type of ions and neurotransmitters that go inward or outward the
cell. When the membrane potential increases is said depolarization and when it decreases
is said hyperpolarization.

According to the ionic currents, the membrane potential is hyperpolarized when positively
charged ions are flowing out the neuron (or negative ones flow in) and so the membrane po-
tential becomes more negative; on the contrary, it is depolarized, when negatively charged
ions leave the neuron (or positive ones enter) which produce the membrane potential to be
more positive. Ion channels are the responsible for maintaining the membrane potential at
the resting state of approximately −70 mV ; consequently, when other currents come from
the environment or from others cells to alter the resting state of the neuron, ion channels
open or close according to the value of the membrane potential and the type of ions that
they allow to flow.

When the neuron is subjected to a synaptic current, and so to bombardments from other
cells, the post-synaptic neuron can respond differently according to the type of the neu-
rotransmitters. For the ones we are interested in, which are AMPA, GABA and NMDA,
we have that both AMPA and NMDA cause an increment of the membrane potential (de-
polarization) of the post-synaptic neuron, that is, the neuron gets excited and so we have
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an excitatory post-synaptic response. However, for the GABA neurotransmitter, the post-
synaptic response leads to a decrement (hyperpolarization) of the membrane potential,
where the neuron is inhibited and so we have an inhibitory post-synaptic response.

As a result of the post-synaptic response, we can split the synaptic current into two parts:
the excitatory synaptic current, which is the current coming from an excitatory pool of
neurons causing depolarizations of the membrane potential of the post-synaptic neuron;
and the inhibitory synaptic current, which is the current coming from an inhibitory pool
of neurons causing hyperpolarizations of the membrane potential of the post-synaptic
neuron.

Sometimes it happens that a neuron is sufficiently depolarized, in such a way that the
membrane potential reaches some threshold level causing a dramatic increment of the
membrane potential, which becomes positive. Right after, a response mechanism is ac-
tivated allowing the entrance of negatively charged ions to hyperpolarize the membrane
potential in order to maintain the equilibrium mentioned before. In this case a spike
(action potential) is generated spanning around 100 mV and lasting for approximately
1 ms.

Although an instantaneous pulse of current can generate a spike, the recent history of
voltage changes is also involved in the generation of spikes. It is possible that a specific
pulse of current is not able to cause any reaction to the neuron; however, after successive
pulses of current, although the neuron tends to return to the resting state, the new pulses
are added to the membrane potential causing possible spikes. Moreover, few milliseconds
right after a spike has been generated, some currents that are incapable to initiate another
spike can be still active under the threshold (that is, in the subthreshold). This interval
of time, where ions remain active, is called the absolute refractory period. In this case,
for a longer interval of time, lasting up to tenths of milliseconds after the spike, neuron is
prevented from spiking again. This period is called the relative refractory period.

Membrane capacitance and reversal potentials

The cell membrane can be seen as an insulator of the membrane potential generated by
the inflow of ions, neurotransmitters or other chemicals. The ability of the neuron to store
charge of ions across the cell membrane is called membrane capacitance. In this work,
we consider the membrane capacitance as a measure of the changes to membrane surface
area, measured by µA/cm2, unless otherwise is stated.

However, as we have seen, even though the membrane acts as a perfect electrical insulator,
the cell membrane contains the ion channels allowing the flow of ions through the mem-
brane. When the concentration of a specific ion is at the equilibrium state, that is when
these ions are neither entering or leaving the neuron, the difference in concentration of
these ions outside and inside the cell is called the Nerst potential or equilibrium potential.
If the membrane potential is lower than this value, the specific gates are opened allowing
the entrance of ions; but if the membrane potential is higher, then ions would flow out of
the cell and so the direction of the flow is reversed. Then the Nerst potential is also called
as reversal potential.
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Conductances

Apart from the membrane capacitance, holding the membrane potential to a different
level from the resting one requires a certain level of current, which is determined by the
membrane resistance. The inverse of the membrane resistance is called the conductance.
We consider three different types of conductances according to the type of current: the
leak conductance, the ionic conductances and the synaptic conductances.

The leak conductance (gL), also called passive conductance, is a value regulating the
membrane resistance at the resting state to match the membrane resistance with the
membrane capacitance. In general, we will take this value as constant.

The ionic conductance (gion(t)) relates to the amount of ions allowed to cross through a
specific ion channel. Ionic conductances are voltage-dependent and they are modelled as

gion(t) = ḡionPion(t),

where Pion(t) is the probability of activation or inactivation of the specific ion channel
and ḡion is the maximal conductances allowed, which is considered to be constant. Unless
otherwise is stated, along the thesis, in the case of ionic currents, we call ionic conductances
to the maximal ones and we denote them by gion instead of ḡion, in order to simplify
notation.

Depending on the opening mechanism, as we have explained for the ion channels, this kind
of conductances are also called persistent or transient ionic conductances. In the persistent
ones only one gating variable n is considered at each channel and so Pion(t) = nk(t), where
k is the number of independent gating events and n(t) describes the opening and closing
of gate n. Similarly, in the transient case, since two processes with opposite voltage
dependences are considered (an opening mechanism m and a non-blocking mechanism h),
then Pion(t) = ma(t)hb(t), where a and b are the number of independent gating events,
and both different from 0. Variables m(t), n(t) and h(t) are considered to be probabilities
such that 0 means that the are completely closed and 1 that they are completely open
(see Section 2.1.2 for more details).

The synaptic conductances (gsyn(t)) describe the amount of information that the neuron is
receiving from other neurons, providing an understanding of the connectivity in the brain.
The estimation of these conductances is the main goal of this thesis.

Focusing only on the chemical synapses, we have seen that, when a synapse occurs, neuro-
transmitters are released to the synaptic gap and they bind to the receptors. This binding
leads to the opening of ion channels to modify the conductance of the post-synaptic neuron
to complete the transmission of the action potential. Hence, the synaptic conductances
can be modelled as the product of a maximal conductance (ḡsyn) and the probability of
the channel to be opened. The open probability depends on the pre- and post-synaptic
neuron, and it can be split as the product of the probability of release (Prel), which is the
probability of a neurotransmitter to be liberated at the synaptic gap, times the synaptic
strength variable (s), which is the probability of the post-synaptic neuron to open the
channel. That is,

gsyn(t) = ḡsyns(t)Prel(t).

Depending on the neurotransmitters and the receptors involved in the synapse, we have
mentioned above that the change of current can be either excitatory or inhibitory, ac-
cording to the post-synaptic response. Consequently, conductances can also be split into

13
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excitatory conductances, when current comes from excitatory neurons causing an excita-
tory post-synaptic potential (EPSP), or inhibitory conductances, when current comes from
inhibitory neurons causing an inhibitory post-synaptic potential (IPSP).

Plasticity

The term plasticity refers to the brain’s ability to change throughout life, underlying mem-
ory and learning. Changes on the brain are related to changes on the synaptic strength.
The effects of activity on the synaptic conductances can be given either for a short or a long
term. Short-term plasticity (STP) refers to changes on the brain lasting from milliseconds
to seconds or even a couple of minutes; on the other hand, the long term plasticity (LTP)
refers to changes on the brain lasting for hours or even more. LTP is usually associated
to the consolidation of the memory.

Depending on the effects on the strength of the synaptic conductances, plasticity can be
either short (long) term depression, STD (LTD), or short (long) term facilitation, STF
(LTF). Depression occurs due to a decrease in the readily releasable pool of vesicles (RRP)
as a result of frequent stimulation, thus weakening the synapse. However, the facilitation is
given by an increment of the probability of neurotransmitter release from the pre-synaptic
membrane caused by the presence of residual Ca2+, which strengthens the synapse (see
the synaptic drive description in Section 2.1.4, for more details about STD, STF and how
they are modelled).

Figure 1.5 shows the effects of the short-term depression (panel A) and short-term facil-
itation (panel B) on the voltage of an excitatory neuron when the full network has been
depressed and facilitated respectively. Comparing these results (red lines) to the control
voltage trace (black line) when neither depression nor facilitation has been added, one can
see the effects of both plasticity mechanisms. Panel A shows that depression causes less
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Figure 1.5: A representation of the effects of the short-term plasticity. Panel A depicts
the effects of the short-term depression whereas panel B depicts the effects of the short-term facil-
itation. The traces represent the voltage of an excitatory neuron coming from the computational
network described in Section 2.1.4. Black lines show the voltage of the neuron when network is
neither depressed nor facilitated, and red lines show the voltage when depression (panel A) and
facilitation (panel B) have been added.

spikes to the membrane potential presenting also a delay on the timing of the first spike
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1.1. Brain connectivity 15

whereas, as it is shown in panel B, facilitation causes an increment of activity displaying
an anticipation of the first spike.

Electrophysiological techniques

In electrophysiology, different techniques have been developed in order to obtain different
measurements from neurons. These measurements involve voltage changes (the membrane
potential) and electric currents through the ion channels.

Classical measurement techniques are based on the insertion of a pipette (whose diameter
is less than one micrometer) into a single cell. This pipette has a hole at the contact
corner with the neuron, which together with the cell membrane make a seal containing
one or more ionic channels in its interior. The pipette also contains an electrode and when
such electrode is in contact with the neuron, it leads the electric current to an amplifier.
Moreover, the pipette is filled by a specific solution (or electrolyte) in accordance to the
ionic composition of the extracellular or intracellular medium. Therefore, an electrode
circuit is created to record the membrane potential or the ionic currents through the
selected ion channels. Depending on the specific technique, different seals are done and
different recordings are extracted. Other techniques, which are applied to the brain and
commonly used in medicine, consist also on electrodes to make the recordings but without
the necessity to insert the electrode inside the neuron such as the electroencephalography
(EEG) or the electrocorticography (ECoG).

However, since we are interested in direct measurements from a single neuron, that is
intracellular recordings, we need to insert the electrode inside the neuron. The patch can
be done without damaging the cell membrane, as the cell-attached technique explained
above, where only a seal is made; or by perforating the cell membrane. A first perforating
variation is the whole-cell patch, where the cell membrane is broken under the seal allowing
that the concentration on the pipette gets in contact to the cytoplasm solution, to finally
replace it. With this kind of seal, the total current through all the ion channels can be
recorded and not only the ones inside the pipette. Another variation is the perforated-cell
patch, which is a version of the whole-cell patch where the hole in the membrane is done by
a pharmacological agent. In this way, one can better control the intracellular medium to
prevent, or at least minimise, possible losses of important components of the intracellular
fluid.

Different techniques to do intracellular recordings are: the voltage clamp, the current
clamp and the patch clamp.

Voltage clamp technique allows to record ionic currents through the membrane while the
voltage is fixed to a certain value, which is chosen by the experimenter. Voltage can be
fixed through the electrode injected to the neuron.

Current clamp technique allows to record the membrane potential by injecting a specific
current into the neuron through the electrode inside the pipette. In this case, voltage
is not fixed by the experimenter and so it is free to vary; and the amplifier records the
membrane potential that the neuron generates on its own as a result of the injected
current. Usually the injected current is considered to be a constant current or pulses
of currents (see experimental recordings in Berg and Ditlevsen (2013)), but one can also
fixed the conductance and compute the current we need to inject according to the output
voltage; in this case, the technique receives the name of dynamic clamp (see experimental
recordings in Bédard et al (2011b)).

15
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Both voltage and current clamp techniques do not usually perforate the cell membrane.

Patch clamp technique can be applied in different ways: using the cell-attached configura-
tion or either the whole-cell or preforated-cell configurations. In any case, the experimenter
can maintain the voltage of the cell membrane to a constant value while changes on the
currents are observed or, they can maintain the current while the membrane potential
changes are observed. This technique allows to study the ionic channels at different lev-
els: single ionic currents (with the cell-attached configuration) or the total ionic channels
activity (with the whole-cell or perforated-cell configurations). Moreover, it also allows to
easy manipulate the extracellular or intracellular fluid of the neuron during the realization,
by changing the fluid of the pipette, since it has contact to the cytoplasm of the cell.

We refer to the reader to Molleman (2003) for more details on these electrophysiological
techniques and, in particular, the patch clamp technique.

In order to record neural signals from a network of neurons, and not only from a single
cell, some devices as the multielectrode arrays (MEAs) as been developed. In the MEAs
case, multiple electrodes are inserted, at the same time, to different neurons and the indi-
vidual membrane potential are recorded, which can then be compared to the information
extracted from others cells directly connected or not.

A remarkable fact of all the existing techniques is that we can extract information about the
time course of the membrane potential and the ionic currents. Moreover, these techniques
allow us to obtain the relationship between the steady-state of the voltage for different
applied currents; that is, the V − I curve. Experimentally, to compute the V − I curve,
neurophysiologists usually consider the mean value of the recorded voltages in a time
interval, in absence of synaptic inputs. On the other hand, when the neuron presents
oscillations, the f − I curve can also be extracted, where f refers to the frequency of
oscillation.

However, as we have mentioned in the introduction, no electrophysiological techniques
are known to record the synaptic conductances. Hence, inverse methods can be used to
estimate them.

1.2 Non-smooth dynamics and Geometric Singular Pertur-
bation theory

Dynamical systems applied to neuroscience allow to describe the behaviour of the neurons
and how they interact. As we have seen in the previous section, neurons contain different
gating variables that regulate the flow of ions, depending on the instantaneous membrane
potential. Both, the gating variables and the membrane potential, depend on time and
they can be modelled by differential equations describing their changes on time (see Chap-
ter 2). The time scales on which these variables are expressed are, usually, very different.
For instance, the gating variables evolve very slowly compared to the membrane potential
evolution. This fact, among others, leads us to model the neurons by using slow-fast dif-
ferential systems. We remark that this kind of systems are useful to describe behaviours
combining variables with different time scales.

On the other hand, piecewise linear systems have been proven to be useful to describe
realistic non-linear behaviours in more manageable way for computations (See Chapter
2).
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1.2. Non-smooth dynamics and Geometric Singular Perturbation theory 17

Focusing on the membrane potential recordings, two main different behaviours are present:
spiking regimes, where the neuron is constantly presenting action potential (that is, a firing
state or tonic) and subthreshold regimes, where neuron does not exhibit any spike (that is,
the silent state). These two different regimes are given in systems allowing, by changing a
bifurcation parameter, the possibility to combine high and low oscillations. This parameter
plays an important role in defining the neuron threshold (see Izhikevich (2007)).

Next we introduce the above mentioned differential systems (the slow-fast and the piece-
wise differential systems) stating, in both cases, the useful properties that they provide us
to develop our results. Moreover, we also introduce special orbits, called maximal canard
orbits, that are involved in defining thresholds.

Geometric Singular Perturbation theory

Slow-fast systems are differential systems evolving on at least two different time scales.
The standard form to present this kind of systems, when two time scales are considered,
is

u̇ =
du

dt
= εg(u,v, ε), v̇ =

dv

dt
= f(u,v, ε), (1.1)

where u ∈ R
s is the slow variable, v ∈ R

q is the fast variable, f and g are sufficiently
smooth functions, and 0 < ε ≪ 1 is a small parameter representing the ratio of time
scales. After reparametrizing the orbits by the slow time τ = tε, system (1.1) can be
rewritten in the differentially equivalent form

u′ =
du

dτ
= g(u,v, ε), εv′ = ε

dv

dτ
= f(u,v, ε). (1.2)

Geometric Singular Perturbation Theory (GSPT) is based on a geometric point of view
to study slow-fast systems, focusing on normal forms for singularities, invariant mani-
folds, and the analysis of their unfoldings (see Fenichel (1979) and Jones (1995), among
others). Fenichel (1979) paper was the pioneer to study the invariant manifolds using
GSPT, reason why it is also called Fenichel’s theory. That is, GSPT theory allows the
analysis of the dynamics of system (1.1), when ε 6= 0, by combining the behaviour of the
corresponding limiting problems given by ε = 0 in (1.1) and (1.2). In particular, under
normal hyperbolicity conditions, this theory ensures the persistence of the critical manifold
S = {(u,v) ∈ R

n : f(u,v, 0) = 0} of the fast subsystem (also called layer problem)

u̇ = 0, v̇ = f(u,v, 0), (1.3)

as a manifold, Sε, locally invariant under the flow of system (1.1). Moreover, the stability
properties of the manifold Sε are inherited from those of the critical manifold S, and the
restriction of the flow of system (1.1) to Sε is a regular perturbation of the reduced flow ;
that is, the flow of the slow subsystem (also called the reduced problem)

u′ = g(u,v, 0), 0 = f(u,v, 0), (1.4)

which is an algebraic differential equation.

From previous considerations and since the time variable in the former system is the
slow one, manifold Sε is called slow manifold ; that is, an invariant manifold such that,
considering the fast scale, the speed of the orbits on this manifold tends to 0 as ε tends
to 0.
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18 Background

The existence and the behaviour of the flow on and surrounding the slow manifold is stated
in next result, the so called Fenichel’s Theorem. The version we present here is extracted
from Desroches et al (2012). See also Kuehn (2015).

Theorem 1.1 (Fenichel’s Theorem, Fenichel (1979)). Suppose Ŝ is a compact normally
hyperbolic submanifold (possibly with boundary) of the critical manifold S of system (1.1)
and that f, g ∈ Cr; r <∞. Then for ǫ > 0 sufficiently small, the following holds:

a) There exists a locally invariant manifold Sǫ diffeomorphic to Ŝ, where local invari-
ance means that Sε can have boundaries through which trajectories enter or leave.

b) Sε has a Hausdorff distance of O(ε) from Ŝ.

c) The flow on Sε converges to the slow flow as ε tends to 0.

d) Sε is Cr-smooth.

e) Sε is normally hyperbolic and it has the same stability properties with respect to the
fast variables as Ŝ, i.e attracting, repelling or saddle type.

f) Sε is usually not unique. In regions that remain at a fixed distance from the boundary
of Sε, all manifolds satisfying (a)-(e) lie at a Hausdorff distance O(e−K/ε) from each
other for some K > 0 with K = O(1).

The normally hyperbolic manifold Ŝ has associated local stable and unstable manifolds

W s
loc(Ŝ) =

⋃

p∈Ŝ

W s
loc(p) and W u

loc(Ŝ) =
⋃

p∈Ŝ

W u
loc(p)

where W s
loc(p) and W u

loc(p) are the local stable and unstable manifolds of p as a hyperbolic
equilibrium of the layer equations, respectively. These manifolds also persist for ε > 0
sufficiently small: there exist local stable and unstable manifolds W s

loc(Ŝ) and W u
loc(Ŝ),

respectively, for which conclusions (a)-(f) hold if we replace Sε and Ŝ by W s
loc(Sε) and

W s
loc(Ŝ) (or, similarly, W u

loc(Sε) and W u
loc(Ŝ)).

Then, Sε is called a Fenichel manifold and, all the possible Fenichel manifolds represent
a subclass of slow manifolds.

Canard orbits

When normal hyperbolicity fails, for instance on the fold manifold (i.e. points where S
folds), the critical manifold can be formed by branches with different stability properties.
Consequently, from Fenichel’s Theorem, different stability branches for the slow manifold
Sε also appear. Therefore, under suitable conditions, there exist orbits closely following
the attracting branch of the slow manifold, then passing close to the fold manifold, and
finally moving close to the repelling branch of the slow manifold. These orbits are called
canard orbits and they play a crucial role in explaining the complex slow-fast dynamics.
See Desroches et al (2012) and references therein, for instance. When these orbits closely
pass from the repelling branch to the attracting one, they receive the name of faux canard
orbits.

In the planar case, canard orbits have been reported as periodic oscillations whose am-
plitude and period grow in a highly nonlinear manner; that is, for a control parameter,
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1.2. Non-smooth dynamics and Geometric Singular Perturbation theory 19

these oscillations vary slowly except for an exponentially small range of values, where
they suddenly grow extremely fast. This abrupt growth is called canard explosion and
it can be observed near to the Hopf bifurcation, see Krupa and Szmolyan (2001) and
Dumortier and Roussarie (1996).

Canard orbits were first reported in Benôıt et al (1981), where authors studied the 2D
relaxation oscillations by using non-standard analysis. We recall that a relaxation oscil-
lation is a limit cycle characterized by two alternating processes on different time scales.
After that, different points of view have been adopted to study the canard behaviour by
using standard techniques such as: matched asymptotic expansions, see Eckhaus (1983),
Benôıt (1996) and Matzinger (2006) among others; invariant manifold theory and pa-
rameter blow-up, see Dumortier and Roussarie (1996), Krupa and Szmolyan (2001), and
Szmolyan and Wechselberger (2001) among others. More recently, canard behaviour has
been reported in piecewise-smooth dynamical systems, see Desroches et al (2013) and
Fernández-Garćıa et al (2015), among others.

Special canard orbits are those lying in the intersection of the two branches of the slow
manifold Sε passing from the attracting to the repelling one or vice versa. Those orbits
are referred as maximal canards and faux maximal canards, respectively. For a characteri-
zation of the existence and number of maximal canards see Desroches et al (2012). In the
piecewise linear context, the existence of a maximal canard, for 3-dimensional systems,
appears in Prohens and Teruel (2013). A complete characterization of maximal canards
has been obtained in Desroches et al (2016a). In the n-dimensional case, some results on
the characterization of maximal canards are presented in Chapter 3.

Non-smooth dynamics. Piecewise systems

Let us consider a family of m pairs, m ∈ N, given by {fi, Gi}mi=1, such that Gi ⊂ R
n,

i = 1, . . . ,m, are pairwise disjoint open sets, and where fi : Gi → R
n is a vector valued

smooth function on Gi, such that it is continuous on the closure of Gi, Gi.

A piecewise differential system on G = ∪mi=1Gi is defined as

ẋ =
dx

dt
= f(x), (1.5)

where f(x) = fi(x), if x belongs to the region Gi.

When the boundaries of two previous regions intersect, that is when Iij = ∂Gi ∩ ∂Gj 6= ∅,
we will assume that Iij is a smooth hypersuface of Rn. In this case, there exists a smooth
function, gij , such that Iij = g−1

ij ({0}). By way of notation, we call switching manifold to
each hypersurface Iij.

The piecewise vector field given by system (1.5) is defined on the open region G. By using
the Filippov convention (see Filippov (1988)), we extend the vector field to the switching
manifolds. Before presenting this convention, let us introduce some previous notation.
Given a pair (fi, Gi) and a sufficiently smooth function g : Gi → R, we consider the
application of the vector field fi to the function g, and denote it by fig, as the function
fig : Gi → R given by fig(x) = ∇g(x)T fi(x). Moreover, we denote by f2

i g the application
of the vector field fi to the function fig.

Convention 1.1 (Filippov’s convention). For each point x ∈ Fij , we consider the vector
∇gij(x). Without lost of generality we can assume that ∇gij(x) points to the interior of
the set Gi.
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a) If figij(x)fjgij(x) > 0, then the vectors fi(x) and fj(x) are transversal, with the
same direction, to the surface Fij at the point x. When figij(x) > 0, both vectors,
fi(x) and fj(x), point to the interior of Gi and the vector field f at x is defined as
f(x) = fi(x). In this way, the orbit trough x can be understood a “passing” orbit
from Gj to Gi, by crossing Fij . Otherwise, when figij(x) < 0, the vector field at
x is defined as f(x) = fj(x) and, in this case, the orbit is considered to pass from
Gi to Gj . These orbits are often called crossing orbits of system (1.5) (see Figure
1.6A) and the subset of Fij containing the points where crossing orbits pass through
is called the sewing region.

b) Let us assume that figij(x)fjgij(x) < 0. Then, the vector field f at x is defined as

f(x) = (1− λ∗)fi(x) + λ∗fj(x),

where

λ∗ =
figij(x)

figij(x)− fjgij(x)

In this case, the extended vector field f turns out to be parallel to the switching
manifold. Hence the orbit trough x remains in Fij and it is called a “sliding” orbit.
We observe that some authors restrict the sliding region to the subset of the switching
manifold where figij(x) < 0, while the subset at where figij(x) > 0 is called escaping
region.

c) Let us now consider that figij(x)fjgij(x) = 0. When fi(x) = 0 or fj(x) = 0, the
point x is an equilibrium point of the vector field fi or of the vector field fj. In this
case, f is defined at x as f(x) = 0. Consider now that fi(x) 6= 0 and fj(x) 6= 0.
When figij(x) 6= 0 (respectively, fjgij(x) 6= 0), the vector fj(x) (respectively, fi(x))
is tangent to the switching manifold at x. Then, f is defined at x as f(x) = fj(x)
(respectively, f(x) = fi(x)) and the point x is called a fold point.

Finally, when figij(x) = 0 and fjgij(x) = 0, that is when both fi(x) and fj(x) are
tangent to the switching manifold, the vector field f at x is defined as f(x) = 0.
In this case x is called a two-fold point and they are classified as: visible-visible,
when f2

i gij(x) > 0 and f2
j gij(x) < 0; invisible-invisible, when f2

i gij(x) < 0 and

f2
j gij(x) > 0; visible-invisible, when f2

i gij(x) > 0 and f2
j gij(x) > 0; and invisible-

visible, when f2
i gij(x) < 0 and f2

j gij(x) < 0.

When no confusion arises, we call piecewise vector field f to the extended one by using
Filippov’s convention. The piecewise vector field, f , to each point x on the switching
manifold Fij , results to be continuous at x when fi(x) = fj(x).

Piecewise linear differential systems

Piecewise linear differential (PWL) systems are piecewise systems, {fi, Gi}mi=1, where the
local vector field fi is given by the linear function fi(x) = Aix + bi, such that Ai is an
n × n matrix, bi is an n-dimensional vector and Gi is an open region. In other words, a
PWL differential is given by

ẋ = f(x), (1.6)

where f(x) = Aix + bi when x ∈ Gi. When system (1.6) is continuous, that is when
Aix + bi = Ajx + bj, for all x lying on the common boundary, Ii,j, of Gi and Gj , the
switching manifold results to be a linear manifold (see Llibre and Teruel (2013)).
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Figure 1.6: Filippov’s convention. Figure depicting the extension of the vector field (1.5), to
the switching manifold, by using Filippov’s convention. Panel A shows the case when the vectors
fi(x) and fj(x) point to the same open region separated by the switching manifold. In this case
the orbit crosses the switching manifold, that is the crossing motion, and f(x) = fi(x). Panel B
shows the case when the vectors fi(x) and fj(x) point to different open regions separated by the
switching manifold. In this case the orbit slides along the switching manifold, that is the sliding
motion.

PWL systems are characterized to reproduce complex behaviour exhibited by nonlin-
ear smooth systems, but in a framework which is more friendly for computation, see
Di Bernardo (2008), Llibre and Teruel (2013), and references therein. In this way, these
systems have been long time used to understand the intrincate behaviour taking place
around a folded singularity in a slow-fast system, such as in Komuro and Saito (1991),
Arima et al (1997), Doi and Kumagai (2004), Desroches et al (2013), Prohens and Teruel
(2013), Prohens et al (2016), and Desroches et al (2016b). Moreover, they have been
widely used to modelize real phenomena, in particular neuronal behaviour, see for instance
Coombes (2001), Tonnelier and Gerstner (2003), Tonnelier (2003), Coombes (2008), and
Fernández-Garćıa et al (2015).

In this work we consider continuous PWL differential systems defined all over Rn, i.e. such
that ∪mi=1Gi = R

n.

We observe that the continuous PWL system (1.6) is globally Lipschitz with Lipschitz
constant L = maxj{||Aj ||}. In fact, given two points xi and xj lying in Gi and Gj ,
respectively, and considering x0 ∈ Ii,j such that xi, x0 and xj are collinear points, then

||(Aixi + bi)− (Ajxj + bj)||
= ||(Aixi + bi)− (Aix0 + bi) + (Ajx0 + bj)− (Ajxj + bj)||
≤ ||Ai(xi − x0) +Aj(x0 − xj)||
≤ ||Ai|| ||(xi − x0)||+ ||Aj || ||(x0 − xj)||
≤ maxi ||Ai||(||xi − x0||+ ||x0 − xj ||)
= maxi ||Ai||(||xi − xj||).

Therefore, the existence and uniqueness of solution is guaranteed for every initial condition
x, and their maximal definition interval is whole R. Locally, the expression of this solution
is explicitly given by

φ(t,x) = etAix+

∫ t

0
e(t−s)Aibi ds , x ∈ Gi. (1.7)

An equilibrium point e ∈ Gi of the PWL system (1.6) satisfies that Aie + bi = 0. The
converse implication is not always true. In fact, a zero of Aix+bi is an equilibrium point
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of PWL system (1.6) if this zero belongs to Gi. Otherwise, this zero is called a virtual
equilibrium.

Despite to have local expressions for each solution, it is not possible to obtain their global
explicit expression. In fact, expression (1.7) is highly nonlinear in t, which implies, in
general, the difficulty of obtaining an explicit expression for the flight time of the orbit to
go from a point x1 to a point x2. Nevertheless, when x1 and x2 are in the same region
Gi, and the piece of the orbit connecting them, γ, is also contained in Gi, we can use an
alternative procedure to compute this flight time, which is explained below.

Let v be an eigenvector of the matrix Ai corresponding with the real eigenvalue λ, < v >
be the span of v, and v⊥ be the vector space ortogonal to v. Since R

n =< v >
⊕

v⊥,
let x̂1 and x̂2 be the projections onto < v > of x1 and x2, respectively. As the system is
locally linear, the flight time to go from x1 to x2 is the same than the time to go from x̂1

to x̂2, which satisfies x̂2 − e = eλt(x̂1 − e). Therefore,

t = ln

(‖x̂1 − e‖
‖x̂2 − e‖

)

. (1.8)

In Section 5.2, we take advantage of this fact to compute, in a different way, the flight
times between points contained in the same region.

Planar continuous PWL differential differential systems with three regions of linearity, i.e.
{Aix + b, Gi}3i=1 with A1 = A3, b1 = −b3 and b2 = 0 are completely studied, from the
qualitative point of view, in Llibre and Teruel (2013). In the case b2 6= 0, that is under
nonsymmetry assumptions, a characterization of the existence and uniqueness of limit
cycles has been done by Llibre et al (2013). In the case of three different regions, when
the system exhibits only one equilibrium point of node or focus type lying in the central
region then, this system can be written in the Liénard form

{

ẋ = F (x)− y,
ẏ = g(x) − δ,

(1.9)

where

F (x) =







tL(x+ 1)− tc if x ≤ −1,
tMx if |x| ≤ 1,
tR(x− 1) + tc if x ≥ 1,

g(x) =







dL(x+ 1)− dc if x ≤ −1,
dMx if |x| ≤ 1,
dR(x− 1) + dc if x ≥ 1,

x, y ∈ R; L, M and R stand for the left, middle and right regions; and tk and dk are
the trace and the determinant of Ak, where k ∈ {L,M,R}. Then the following theorem
characterizes under which conditions this kind of systems exhibit a limit cycle, which is,
in fact, unique.

Theorem 1.2 (Llibre et al (2013)). Consider the differential system (1.9) with only one
equilibrium point in the central zone, i.e. dM > 0, −dM < δ < dM , and dL, dR ≥ 0. If the
external traces satisfy tL, tR < 0, while the central trace is positive, that is tM > 0, then
the equilibrium point is surrounded by a limit cycle which is unique and stable.

1.3 Diffusion processes and statistical inference

As we mentioned above, recording from neurons is a noisy process and so stochastic
differential systems can be taken into account to describe and treat real data. For this
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reason, in this section, we also introduce some basics about stochastic processes and we
depict some examples that are related to neuroscience. The information we explain is
mostly obtained from Ditlevsen and Samson (2013).

In order to extract the membrane potential from stochastic neuronal models, numerical
tools may be necessary if the model is not analytically solvable, as the model we use in
Section 5.1.2. In this section, we only give specifications about the numerical methods that
we use in this thesis. However, adapting the most common numerical tools for solving
deterministic differential systems to the stochastic framework is not trivial. We refer the
reader to Iacus (2008) for further references.

Since stochastic models are also important in other fields such as physics and economics, a
large number of different statistical inference techniques have been developed to estimate
parameters in stochastic models. Some of these techniques are maximum likelihood esti-
mators, Markov Chain Monte Carlo, Kalman filters, particle filters,... (see Chen (2003),
for instance). Here, we focus on the maximum likelihood estimator, which will be used in
Chapter 5.

Stochastic processes

A stochastic process is a random variable which depends on the time, t, and on the result,
w, of an experiment. We denote a stochastic process by X(t, w); the values it takes
are called states. Hereinafter, we denote a stochastic process X(t, w) by X(t), when no
confusion arise. Any stochastic process can be considered as a discrete-time process if
the states are separate, isolated points; or as a continuous-time process if the states are
connected.

For a fixed result of the experiment w, the process can be seen as a function in time, usually
denoted by Xw(t). This function is called a realization, a simple path or a trajectory of
the process X(t, w).

A particular case of an stochastic process is the Markov process, named in honor of Andrey
Markov. This process has the property to present events that do not depend on the past
ones, and so one can imagine these processes as memoryless processes: knowing the present
state of the process, one can not get information about the past to be used to predict future
states. Hence, predictions on the future are only based on the present. Mathematically
written, only the value of X(t) matters for predicting X(t + 1), and so the conditional
probabilities satisfies

P (future | past, present) = P (future | present).

A Markov process with continuous states evolving continuously in time is called diffusion
process.

Another stochastic process is the martingale, where the future movements are unpre-
dictable. That is, given all the past observations, the conditional expected value, E, of the
next one is equal to the last observation. Then, for all n = 1, 2, . . ., X(tn) is a martingale
if

• E[|X(tn)|] <∞,

• E[X(tn+1)|X(t1), . . . X(tn)] = X(tn).
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A process is considered to behave like a martingale if its trajectories display no discernible
trends or periodicities.

A Wiener process, named in honor of Norbert Wiener, and also called as standard Brow-
nian motion, in honor to Robert Brown, is a diffusion process where the random variable
only changes continuously. Sometimes Wiener and Brownian processes are distinguished
by considering that the Brownian process has a normal distribution whereas no assumption
on the distribution of the Wiener process is made, and so it is assumed to be a martingale.
Here, we consider a Wiener process W (t) such that

• W (0) = 0,

• W (t) has independent increments; that is, for 0 ≤ s < t < u < v, W (t)−W (s) and
W (v)−W (u) are independent random variables.

• For all 0 ≤ s < t, W (t)−W (s) ∼ √t− s N (0, 1)

And so, a Wiener process satisfies that changes on the variables, for a short time period
dt, follow a normal distribution function with mean 0 and variance dt (as the Brownian
process).

The realizations of a Wiener process is, as we prove above, nowhere differentiable since it
is everywhere of unbounded variation, because W (t+dt)−W (t) is of order

√
dt instead of

order dt. In general, the total variation of a real-valued function f on an interval [a, b] ⊂ R

is defined as

V b
a (f) = sup

n
∑

k=1

|f(tk)− f(tk−1)|,

where the supreme is taken over all n ∈ N and over all choices of {tk}nk=1 + 1 such that
a = x1 < . . . < xn+1 = b. When V b

a (f) < ∞ and f is right-continuous, then we say that
f is of bounded variation on [a, b] (see Ditlevsen and Samson (2013)). However,

V t
s (W ) = sup

n
∑

k=1

|W (tk)−W (tk−1)|

≥ lim
n→∞

n
∑

k=1

∣

∣

∣

∣

W

(

s+
k

n
(t− s)

)

−W

(

s+
k − 1

n
(t− s)

)∣

∣

∣

∣

≃ lim
n→∞

n
∑

k=1

√

1

n
(t− s) =∞.

Stochastic differential equations

A stochastic differential equation (SDE) is given by a deterministic ordinary differential
equation where a noise term is added to the driving equation; that is

dX(t) = µ(X(t), t)dt + σ(X(t), t)dW (t) (1.10)

where X(t) is an stochastic process and W (t) is a Wiener process, where the differential
dW (t) means dW (t) = ξ(t)dt and ξ(t) is a white noise process; that is, a stochastic
process normally distributed for any fixed time t and uncorrelated, such that E[ξ(t)] = 0
and E[ξ(t)ξ(s)] = 0 if s 6= t. Function µ is called the drift coefficient or deterministic
component, and σ is called the diffusion coefficient or the stochastic component.
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Integrating equation (1.10), we obtain that

X(t) = X(t0) +

∫ t

t0

µ(X(s), s)ds +

∫ t

t0

σ(X(s), s)dW (s),

where the first integral is an ordinary integral, coming from the deterministic coefficient
of the SDE. Since the Wiener process is non-differentiable, the second integral needs to
be defined.

Let us consider an arbitrary function f(t). Then the integral
∫ t
t0
f(s)dW (s) is defined as:

• If f(t) is a constant function, i.e. f(t) = σ, then, since the increments of a Wiener
process have expectation 0, we would also expect a random variable with expectation
0, and so

∫ t

t0

f(s)dW (s) = σ(W (t)−W (t0)).

• If f(t) is a non-random step function such that f(s) = σj on tj ≤ s ≤ tj+1 for
j = 1, . . . , n, t1 = t0 and tn+1 = t, then

∫ t

t0

f(s)dW (s) =
n
∑

j=1

σj(W (tj+1)−W (tj)).

• If f(t) is a random and measurable function with respect to the σ-algebra generated
by the random variables {W (s)}s≤t; that is, the values of f(t) are determined by
the values of W (s), for s ≤ t and E[

∫ t
t0
f(s)2ds] <∞, then

∫ t

t0

f(s)dW (s) = lim
|Πn|→0

n
∑

j=1

f(t∗j)(W (tj+1)−W (tj))

where Πn is a partition {t}n+1
j=1 of the interval [t0, t]; |Πn| is the norm of the partition,

i.e. |Πn| = max{|tj+1 − tj |}nj=1 and f(t) is approximated by f(t∗j) for tj ≤ t < tj+1

and t∗j ∈ [tj , tj+1] (see Ditlevsen and Samson (2013) for more details).

The way how the t∗j are chosen leads to differences in the solution of the integral. For
instance, considering f(t) = W (t), if we choose t∗j = tj (the left end point) then, since the
Wiener process has independent increments with mean 0, the expectation

E





n
∑

j=1

W (tj)(W (tj+1)−W (tj))



 = 0.

However, if we choose t∗j = tj+1 (the right end point), since the Wiener process has mean

0 and so the variance is E[W 2], then the expectation

E





n
∑

j=1

W (tj+1)(W (tj+1)−W (tj))



 = t− t0.

Depending on the choice of t∗j , two different integrals are useful and common: the called Itô
integral, when t∗j is considered to be the end left point, that is t∗j = tj; and the Stratonovich
integral, when t∗j is considered to be the middle point, that is t∗j = (tj + tj+1)/2.
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Solving the SDE by the Itô integral we obtain the so called Itô diffusion if both the drift
and the diffusion coefficients do not depend upon time or Itô process if they do.

Some examples of Itô diffusion used in biology are:

1. The Wiener process given by

dX(t) = µdt+ σdW (t)

which is used, for instance, to describe a particle suspended in water that is bom-
barded by water molecules. It has been also proposed as a simplification model for
the membrane potential evolution in a neuron (see Ditlevsen and Samson (2013))

2. The Geometric Brownian motion given by

dX(t) = µX(t)dt+ σX(t)dW (t)

which is used, for instance, to describe the enzymatic process to breakdown the
effects of a drug supplied as a bolus to the blood.

3. The Ornstein-Uhlenbeck (OU) process given by

dX(t) = −1

τ
(X(t)− α)dt+ σdW (t).

This process is attracted to some constant level α but is continuously perturbed by
noise; having an stationary solution that follows a normal distribution with mean α
and variance σ2τ/2.

That is the case of the membrane potential of a neuron. In fact, the membrane
potential is constantly bombarded by chemical or electrical pulses coming from other
neurons or from the surrounding environment. However, at the same time, it is
attracted to a resting state (see subsection Membrane potential changes in Section
1.1). This process is often used to generate synaptic conductances, as we use in
Section 2.2.2.

4. The Cox-Ingersoll-Ross process given by

dX(t) = −1

τ
(X(t) − α)dt+ σ

√

X(t)dW (t),

where α and X(t) remains positive. This process also admits a stationary solution
and an application of it is given in neuroscience to describe the hyperpolarization of
the membrane potential caused by the inhibitory reversal potential.

When the diffusion term does not depend on the state variable X(t), such as (1) and (3),
we say that the process has additive noise. Otherwise, like processes in (2) and (4), we
say that the process has multiplicative noise.

Monte Carlo Simulations

All the examples of the Itô diffusion above described can be explicitly solved. However,
this is something that usually does not happen. When no explicit solution can be ana-
lytically given, numerical methods need to be used. Hence, we can approximate different
characteristics of the process by simulations. Different methods, such as the Euler method
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(also called Euler-Maruyama method), the Milstein method, and the Shoji-Ozaki method,
among others, can be used to simulate such processes. Since in this thesis we only use the
Euler method, we are going to describe it. However, we refer the reader to Iacus (2008) for
mode details about the different methods, some codes in R, and a comparison (advantages
and disadvantages) along them.

Euler method. Assume we want to approximate a state X(t) being the solution of
the stochastic differential equation (1.10) in some interval [0, t]. Therefore, let the time
discretization given by 0 = t0 < t1 < . . . < tN = t and ∆j = tj+1 − tj be the time steps,
which can be either equidistant or not. Moreover, consider ∆Wj = W (tj+1) −W (tj) be
the increments of the Wiener process such that ∆Wj ∼ N (0,∆j). Therefore,

Xj+1 = Xj + µ(Xj , t)∆j + σ(Xj , t)∆Wj , and X0 = X(t0);

such that Xj+1 = X(tj+1), discretized, and ∆Wj =
√

∆jξj , with ξj being a normal
distribution with mean 0 and variance 1, for all j. In this case, {Xj}Nj=0 weakly converges
with order 1, see Iacus (2008).

The Milstein method is a version of the Euler method consisting of to add a term on
the discretization which depends on the derivative of the noise. This method strongly
converges with order 1, see Iacus (2008). However, when σ(X(t), t) does not depend on
X(t), both methods coincide.

Statistical Inference

Descriptive statistics is solely concerned about properties of the data such as finding the
expectation value, the variance and so on. However, it does not assume that the data can
come from a larger population, as the case of estimating parameters in the connectivity
of the brain, where the population is larger than the observed data set.

Different estimators have been proposed to estimate parameters based on the knowledge of
the transition densities (as the maximum likelihood estimator, which is explained below)
or other such as Monte Carlo methods, the moments’ method, Kalman filter, martingale
estimating functions, Bayesian methods, and so on (see Ditlevsen and Samson (2013) and
Baron (2013) among others). We focus on the maximum likelihood estimator, which will
be used in Chapter 5.

Maximum likelihood estimator. A statistical inference method we will use to esti-
mate parameters is the maximum likelihood estimator (MLE) based on the knowledge of
the transition densities to explicitly formulate the likelihood function.

Let X0, . . . ,XN be discrete observations at times 0 = t0 < t1 < . . . tN = t, respectively, of
an Itô process X(t), satisfying the SDE

dXt = µ(t,X(t); θ)dt + σ(t,X(t); θ)dW (t),

where θ refers to a vector of unknown parameters. Then, the likelihood function of θ, L(θ),
is given by the product of the transition densities; that is,

L(θ) = L(θ, (X0, . . . ,XN )) = p(X0; θ)

N
∏

j=1

p(Xj |Xj−1; θ)
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where p(X0; θ) is the density of the initial value X0, which is considered equal to 1, and
p(X(t)|X(s); θ) for 0 ≤ s < t is the transition density of X(t).

To avoid the product of the transition densities, we consider the log-likelihood given by

logL(θ) =
N
∑

j=1

log p(Xj|Xj−1; θ).

Hence, the score function to compute the maximum of the likelihood is the vector of partial
derivatives with respect to the θ components such as

U(θ) =

N
∑

j=1

∂

∂θ
log p(Xj |Xj−1; θ).

Since the likelihood depends on the transition density function p(·), when it is unknown,
it needs to be approximated. A first approach to the likelihood function is approximating
p(·) by a Gaussian density using the correct expectation and variation. That is,

p(Xj |Xj−1; θ) ≈
1

√

2πφ(δj ,Xj ; θ)
exp

{

−(Xj−1 − F (δj ,Xj ; θ))
2

2φ(δj ,Xj ; θ)

}

where δj = tj+1 − tj, F (δj ,Xj ; θ) = Eθ[Xδj |X0 = Xj ], and φ(δj ,Xj ; θ) = Varθ(Xδj |X0 =
Xj). A second approach can be obtained by computing an approximation of p(·) based
on the Euler-Maruyama method, which is the one we will use, or the Milstein method, by
replacing p(·) by the Gaussian density of the Euler-Maruyama (see Appendix B) or the
Milstein method. Another approach can be given introducing a set of auxiliary data points
between each observations to finally approximate the likelihood via numerical integration.
And finally, an alternative is to generate trajectories using Brownian bridges (that is, a
continuous-time stochastic process B(t) such that it is defined as B(t) := (W (t)|W (1) =
0) for t ∈ [0, 1], and so its probability distribution is considered to be the conditional
probability distribution of a Wiener process W (t) with B(1) = 0. For more details see
Ditlevsen and Samson (2013).
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Chapter 2

Neural models and data treatment

In this chapter we present an evolution of different existing neural models. Although
we focus on the neural models which are of interest to the results of this thesis, we also
briefly explain the origin of them to provide a good reading flow for the reader (see
Dayan and Abbott (2005) and Izhikevich (2007), among other). Moreover, we also present
the synaptic inputs we have considered to generate in sillico data from computational
models.

In the estimation procedures based on stochastic models (see Section 5.1.2), we also use
data that comes from intracellular recordings, in fact in vivo data from a motorneuron
provided by Prof. R. Berg (University of Copenhagen). Hence, at the end of this chapter
we also explain how this data has been recorded in Berg’s lab and the features which are
relevant in this thesis.

In order to facilitate a straightforward reading, specific methods only used in particular
chapters are introduced at the corresponding chapter.

2.1 Mathematical models of neuronal dynamics

In this section, we aim to present different models describing neuron dynamics at different
levels of accuracy. Neural models have been basically developed to describe changes in the
membrane potential of a single neuron, which might or might not interact with other neu-
rons in the brain. The first models we can find in the literature describe the subthreshold
intrinsic activity of an isolated single neuron. However, these models have been improved
to obtain more realistic descriptions not only of the subthreshold activity, but also of the
suprathreshold activity of the neuron and the interactions between different neurons.

We first describe some of these single neural models, emphasizing the ones we are using in
Chapter 5 to estimate conductances. After that, we also present a neural network with a
plasticity mechanism, which we are using in Chapter 4 to study the effects of the plasticity
on the conductances. For a more detailed explanation of the basic neural models we refer
the reader to Izhikevich (2007).
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30 Neural models and data treatment

2.1.1 Integrate-and-Fire (IF) models

One of the earliest models to describe the behaviour of a neuron was first proposed by Louis
Lapicque in 1907 in its paper From frogs to integrate-and-fire (see Brunel and van Rossum
(2007)). In this case, the changes on the membrane potential of a neuron, dV (t)/dt, are
formulated to be directly proportional to the input current, I(t). That is, the membrane
potential obeys the ordinary differential equation

C
dV (t)

dt
= I(t),

where C is the capacitance of the membrane.

This model includes a reset mechanism in such a way that, when the membrane potential,
V (t), reaches a certain threshold value, Vth, where a spike is assumed to occur, then V (t) is
reset to the resting membrane potential, Vrest < Vth, after which the differential equation
applies again. For this reason this neural model is called Integrate-and-Fire (hereinafter
referred to as IF) model.

One of the problems of this model is that it has no time-dependent memory. That is,
if the model receives a pulse of external input current at a specific time, which does
not immediately provoke a spike, then this pulse remains until the neuron fires again,
where a reset on the membrane potential is done. However, this is not a real effect in
neurons, whose membrane potential tends to an equilibrium value, and so mechanisms are
activated in response to this current. Moreover, it also presents the inconvenient that the
initialization shape of the spike is not accurate. In order to solve these two problems, the
IF model has been improved in several ways.

A first improvement was to add a leak term to the membrane potential in order to reflect
the in- and out-come of ions through the membrane, until the interior of the cell reaches
a specific equilibrium value, VL. This model is called the Leaky integrate-and-fire (LIF)
model, which is still a linear model, and it is modelled as

C
dV

dt
= −gL(V (t)− VL) + I(t).

However, this model does not yet capture the dynamics of the membrane potential close
to or during the spikes. Therefore, to describe the activity of the subthreshold regime in a
more accurate way, a quadratic version of the IF model, based in the ideas of the θ-model
presented in Ermentrout and Kopell (1986), was developed. This model is referred to as
the Quadratic integrate-and-fire (QIF) model and it captures the f−I curve accurately for
a broad range of input currents (see Fourcaud-Trocmé et al (2003)), but it still presents
problems capturing the initialization shape of the spike. Consequently, some other adap-
tations have been done using an exponential version to better capture the spike generation
such as the Exponential integrate-and-fire (EIF) model (see Fourcaud-Trocmé et al (2003))
or the adaptive Exponential integrate-and-fire (aEIF) model (see Brette and Gerstner
(2005)). Finally, other generalizations have been recently developed to also consider the
tonic firing and the bursting behaviours (see Coombes et al (2012), Jimenez et al (2013),
and references therein).

Next, we describe in more detail a version of the QIF model, where a noise term has been
added. This model is used in Section 5.1.2 to estimate conductances in the subthreshold
regime under the presence of noise.
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2.1.1.1 Quadratic Integrate-and-Fire (QIF) model

As we have mentioned above, the quadratic integrate-and-fire (QIF) model allows to ac-
curately describe the subthreshold dynamics of the neurons, even under the presence of
activated subthreshold ionic currents; see for instance Ermentrout and Kopell (1986) and
Fourcaud-Trocmé et al (2003). This model is a second order approximation of nonlinear
models.

In our simulations we consider a version of the QIF model, including an external current
and a stochastic term to describe possible noise. This noise can come externally from the
measurements of the data or intrinsically from the neuron. This stochastic version of the
QIF model is given by

C
dV

dt
= α (V (t)− VT )

2 − IT + I(t) + η(t), (2.1)

where V (t) stands for the membrane potential; C is the capacitance; IT is the largest input
current at which the neuron does not spike in the absence of both synaptic input, applied
current and noise, VT denotes the corresponding voltage of the V − I curve at IT , and
α = gL/(2∆T ), where gL is the leak conductance and ∆T is the spike slope factor at IT ,
which corresponds to the inverse of the curvature of the V − I curve at (IT , VT ). Finally,
η(t) is a noise process, with zero mean and σ variance, modelling the random arrivals of
synaptic input.

2.1.2 Hodgkin-Huxley type neural models

In 1952, Hodgkin and Huxley proposed a neural model, referred to as the Hodgkin-Huxley
model (hereinafter as HH model), describing the generation of an action potential in a
squid giant axon. The model explained recent results concerning the gating variables
of ion channels, see Hodgkin and Huxley (1952). In this model, they describe the ionic
mechanisms involved in both the initialization and the propagation of an action potential,
for what, in 1963, they received the Nobel Prize in Physiology or Medicine. This kind
of models take into account how easily the gating variables allow the ions flow through
the membrane, that is, they consider the conductances, as we next explain. We want to
remark that models with this property are referred to as conductance-based models. In the
Hodgkin-Huxley model, the ionic currents are supposed to be sensitive to a single type of
ions.

The HH model is described by the electric circuit in Figure 2.1, which in particular rep-
resents the membrane potential, V (t), of the neuron. The parameter C in the circuit
stands for the capacitance of the neuron’s membrane, whereas gion is the conductance
of a specific ionic channel (where ion ∈ {K,Na} such that K stands for the potassium
and Na for sodium), Iion is the current through the specific ion channel and Vion is its
reversal potential. Moreover, gL and VL are considered to be the leak conductance and
the reversal potential, respectively. On the other hand, IL is the leak current, which is
the intrinsic current of the neuron such that, in absence of other ionic currents, it causes
that the membrane potential reaches an equilibrium state between the inside and outside
potentials (see Section 1.1).

From Ohm’s law and Kirchhoff’s laws, the dynamics of the membrane potential is described
by the differential equation

C
dV

dt
= −INa − IK − IL.
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Outside

INa IK IL

gNa gK gLC

C
dV

dt

VNa VK VL

Inside

Figure 2.1: The equivalent electric circuit of the Hodgkin-Huxley model. Representation
of the electric circuit describing the membrane potential, V (t), of a single neuron with the ionic
channels considered in the Hodgkin-Huxley model.

By using a series of voltage clamp recordings, a technique to record the total amount
of current of the cell by clamping the voltage (see Section 1.1, Electrophysiological tech-
niques), for a different extracellular concentrations of sodium and potassium ions, Hodgkin
and Huxley characterized the ionic currents as

Iion = gion(t)(V (t)− Vion).

However, they also realised that the channels are not always opened. The channels are
activated or inactivated depending on the concentration of the corresponding ion inside and
outside the cell. More concretely, Hodgkin and Huxley considered the ionic conductances
gion(t) as gion(t) = ḡionPion(t), where ḡion is the maximal conductance of the ion channel
and Pion(t) is the portion of open channels in a large population (see Section 1.1). The
portion of open channels in a large population was described, in a sketchy way, as

Pion(t) = mahb,

where m and h are the ratio of activating and inactivating channels, respectively, and a
and b stand for the number of activation or inactivation gates, respectively. Notice that, in
the case that b = 0, then the corresponding current in persistent; otherwise it is transient
(see Section 1.1).

If the channel is completely open we will have thatm = 1, whereasm = 0 if it is completely
closed. However, the channels can also be partially activated having 0 < m < 1. Same
results happen with h but in an inverse order. Therefore, the dynamics of these gating
variables were modelled by Hodgkin and Huxley as

dw

dt
= φw (αw(V )(1 −w) − βw(V )w) = φwdfracw∞(V )−wτw(V ), (2.2)

where φw is a non-dimensional temperature factor, which is different for each w, and w
represents any of the gating variables; in general,

w∞(W ) =
αw(V )

αw(V ) + βw(V )
, τw(V ) =

1

αw(V ) + βw(V )
, (2.3)

for a given functions αw(V ) and βw(V ) which vary depending on the ionic channel.

The classical model of Hodgkin and Huxley was developed considering, as ionic currents,
only sodium and potassium ionic currents, such that INa = gNam

3h(v − VNa) and IK =
gKn4(v−VK). The activation gating variable for IK is referred to as n instead of m, since
it is the usual notation for this specific gating variable in the literature. However, this
model can be modified according to different anatomical and physiological conditions that
different animals and different types of neurons exhibit.
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Next, we present two different variations of the HH model describing different kinds of cells
and considering different types of activated ionic currents. The first model we present is a
pyramidal cell model having a simple spiking mechanism and also some ionic currents active
in the subthreshold regime. The second model is a reduced model for medial entorhinal
cortex stellate cell displaying subthreshold oscillations. A reduction of the stellate model
without the spiking mechanism, is also described.

2.1.2.1 Pyramidal cell model

One of the HH-like models we are going to use next is the one given in Wang (1998).
This model describes the behaviour of a pyramidal neuron that has two compartments,
the dendrite and the soma plus the axonal initial segment. However, in our study we only
consider the somatic compartment and we add a low-threshold Ca2+ current, called ILTS ,
obtained from Destexhe et al (1993). These modifications are done to obtain a model with
minimal complexity endowed with a spiking mechanism and two different current sources
for subthreshold activity. The spiking mechanism is provided by sodium and potassium
currents, INa, IK . The sources for subthreshold activity are a calcium-activated afterhy-
perpolarising potassium current, IAHP , and the low-threshold Ca2+ current, ILTS . These
two currents are chosen to display different ways to induce ionic activity in subthreshold
regimes. On one side, the AHP current is generated by slow currents that turn on right
after the spike; on the other hand, low-threshold currents are usually activated at voltage
values above resting potential but not high enough to evoke spikes.

Following the Hodgkin-Huxley arguments, the dynamics of the membrane potential for
our modified pyramidal model is given by

C
dV

dt
= −IL(t)− INa(t)− IK(t)− ICa(t)− IAHP (t)− ILTS(t) + I(t),

where C is the capacitance, I(t) is the external current, and IL(t) and Iion(t) are the leak
and the respective ion currents which are described by equations

IL(t) = gL(V − VL),

INa(t) = gNam
3
∞(V )h(V − VNa),

IK(t) = gKn4(V − VK),

ICa(t) = gCaml∞(V )(V − VCa),

IAHP (t) = gAHP
c

c+KD
(V − VK),

ILTS(t) = gLTSm
3
LTS,∞(V )hLTS(V − VCa),

where V = V (t); Vion and gion represent the specific ion reversal potentials and maximal
conductances, respectively, c = c(t) is the intracellular calcium concentration [Ca2+] and
KD represents a growth factor of the IAHP (t) current. The variables h = h(t), n = n(t),
and hLTS = hLTS(t) are gating variables governed by first-order kinetics of type (2.2 -2.3).

Them-type variables are considered to be at the steady-state, ml = ml∞(V ), m = m∞(V )
and mLTS = mLTS,∞(V ), because they are assumed to have a faster dynamics than the
membrane potential and the rest of variables. More precisely, the functions describing the

33
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gating dynamics are given by:

αh(V ) = 0.07 exp(−(V + 50)/10),

βh(V ) = 1/(1 + exp(−0.1(V + 20))),

αn(V ) = −0.01 (V + 34)/(exp(−0.1(V + 34)) − 1),

βn(V ) = 0.125 exp(−(V + 44)/25),

αm(V ) = −0.1 (V + 33)/(exp(−0.1(V + 33)) − 1),

βm(V ) = 4 exp(−(V + 58)/12),

ml∞(V ) = 1/(1 + exp(−(V + 20)/5)),

mLTS,∞(V ) = 1/(1 + exp(−(V + 65)/7.8)),

hLTS,∞(V ) = 1/(1 + exp((V + 81)/11)),

τLTS(V ) = hLTS,∞(V ) exp((V + 162.3)/17.8).

Notice that the function hLTS is a sigmoidal function with a low inflection point that
induces the desired low-threshold activation.

The intracellular calcium concentration c = [Ca2+] is assumed to be governed by a leaky-
integrator

dc/dt = −αICa − c/τCa, (2.4)

where τCa is the time constant and α is proportional to the membrane area divided by the
volume below the membrane.

The biophysical parameters considered in this model are:

Conductances (mS/cm2) : gL = 0.1, gNa = 45, gK = 18, gCa = 1.0, gAHP = 5.0,
gLTS = 0.5;

Reversal potentials (mV ) : VL = −65, VNa = 55, VK = −80, VCa = 120.0,
Capacitance (µF/cm2) : C = 1;
Non− dimensional constants : φn = φh = 4, φLTS = 2;
Other constants : α = 0.002µM(msµA)−1cm2, τCa = 80ms, KD = 30.0µM.

2.1.2.2 Stellate cell model

The second model we are going to consider in our simulations is a HH-like model, describing
a medial entorhinal cortex stellate cell (see Rotstein et al (2006)). This model is used in
its complete form and also in its reduced version, which is given in Rotstein (2015). We
first present the full version of the model.

Complete stellate cell model. The stellate cell model is a seven dimensional model
consisting of four different currents, the sodium (Na) and the potassium (K) currents,
which cause spiking regimes; and the persistent sodium (NaP ) current and the h-current,
whose interaction induces subthreshold oscillations independently of the spiking mecha-
nism (see Rotstein (2015)).

Following the Hodgkin-Huxley formalism, the dynamics of the membrane potential for the
stellate cell model is given by

C
dV

dt
= −IL(t)− INa(t)− IK(t)− INaP (t)− Ih(t) + I(t), (2.5)
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2.1. Mathematical models of neuronal dynamics 35

where C is the capacitance, I(t) is the external current, and IL and Iion the leak and the
respective ion currents. The h-current has two components, a fast one, rf , and a slow one,
rs.

The different currents of the model are described by equations

IL = gL(V − VL),

INa = gNam
3h(V − VNa),

IK = gKn4(V − VK),

INaP = gpp(V − VNa),

Ih = gh(0.65rf + 0.35rs)(V − Vh),

where Vion and gion represent the specific ion reversal potentials and maximal conduc-
tances, respectively.

All the gating variables w, which can be either m, h, n, p, rf or rs, follow the type of
kinetics given in (2.2-2.3), with:

αm(V ) = −0.1 (V + 23)/(exp(−0.1(V + 23)) − 1),

βm(V ) = 4 exp(−(V + 48)/18),

αh(V ) = 0.07 exp(−(V + 37)/20),

βh(V ) = 1/(1 + exp(−0.1(V + 7))),

αn(V ) = −0.01 (V + 27)/(exp(−0.1(V + 27)) − 1),

βn(V ) = 0.125 exp(−(V + 37)/80),

αp(V ) = 1/(0.15(1 + exp(−(V + 38)/6.5))),

βp(V ) = exp(−(V + 38)/6.5)/(0.15(1 + exp(−(V + 38)/6.5))),

rf,∞(V ) = 1/(1 + exp((V + 79.2)/9.78)),

τrf (V ) = 0.51/(exp(V − 1.7)/10 + exp(−(V + 340)/52)) + 1,

rs,∞(V ) = 1/(1 + exp((V + 2.83)/15.9))58 ,

τrs(V ) = 5.6/(exp(V − 1.7)/14 + exp(−(V + 260)/43)) + 1.

The biophysical parameters are:

Conductances (mS/cm2) : gL = 0.1, gNa = 52, gK = 11, gp = 0.5, gh = 1.5;
Reversal potentials (mV ) : VL = −65, VNa = 55, VK = −90, Vh = .20,
Capacitance (µF/cm2) : C = 1,
Non− dimensional constants :φm = φh = φn = φp = φrf = φrs = 1.

Reduced stellate cell model - Quadratization of the model. In order to avoid pos-
sible contamination of the spiking regimes during the estimation procedures, in Chapter 5
we consider a reduction of the stellate model by ignoring the spiking mechanism. That is,
we only take into account the persistent sodium current, INaP , and the fast component
of the h-current, Ih, to be active. Both currents are involved in rhythmic subthreshold
oscillations (see Dickson et al (2000), for instance).

Under the presence of both INaP and Ih currents, since Ih is a resonant current6 and INaP

an amplifying7 one, the interaction between them often induces nonlinearities of quadratic

6A resonant current is a current causing oscillations on the membrane potential
7An amplifying current is a current that increases the membrane potential
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36 Neural models and data treatment

type in the voltage response (see Rotstein (2015)). Since these nonlinear effects cannot be
captured by a linearization of the model, a quadratization has been proposed by Rotstein
(2015) to capture the parabolic shape of the voltage nullcline. The general quadratization
is given by

dV

dt
= aV 2 − w + I(t),

dw

dt
= ε(αV − λ− w),

(2.6)

where w is defined attempting to capture the effect of the gating variables. Parameters
a, α, ε and λ are taken as constants, and are defined in terms of the biophysical parameters
of the original model (2.5) mimicking the geometry of the phase-plane. In this sense, a
controls the curvature of the v-nullcline, α controls the slope of the w-nullcline, ε stands
for the time scale separation between V and w, which tends to be small, and λ controls
the relative displacement between the two nullclines.

For the biophysical parameters considered in our model, the constant parameters of the
quadratization turn out to be a = 0.1, α = 0.4, ε = 0.01 and λ = −0.2 (see Rotstein
(2015)).

2.1.3 FitzHugh-Nagumo model

In 1961, FitzHugh-Nagumo (FHN) model (see FitzHugh (1961) and Nagumo et al (1962))
was derived as a two dimensional simplification of the Hodgkin-Huxley model of a spike
generation in squid giant axon. The model is based on a separation of time scales and
exploits similarities and correlations between the currents. This model was also called
Bonhoeffer-van der Pol (BVP) model.

As we said in Section 2.1.2, the initial HH model only considers the leak, the sodium and
the potassium currents, such that INa(t) is modulated by an activating gating variable,
m(t), and an inactivating one, h(t), whereas IK(t) is only modulated by one activating
gating variable, n(t). Based on the dynamics of the gating variables, a first simplification
that FitzHugh did was to suppose the gating variable m(t) to be on its steady state, that
is m(t) = m∞(V (t)), since m(t) shows a faster dynamics than the other variables. On the
other hand, regarding n(t) and h(t), these two gating variables present a similar dynamics,
which are related according to 1− h(t) = an(t).

Considering a new variable w(t) = 1−h(t), which exploits the similarities in the dynamics
between h(t) and n(t), the 4-dimensional HH model was reduced to the 2-dimensional
model

C
dV

dt
= −gNam

3
∞(V )(1 − w)(V − VNa)− gK

(w

a
,
)4

(V − VK)− gL(V − VL) + I(t),

dw

dt
=

w∞(V )− w

τw(V )
,

more commonly written as

C
dV

dt
= F (V,w) + I(t),

dw

dt
= G(V,w),

where F (V,w) = 0 defines a N -shape curve in the phase plane and it describes the mem-
brane potential dynamics, whereas G(V,w) = 0 defines a S-shape curve in the phase plane
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2.1. Mathematical models of neuronal dynamics 37

and it describes the mutually related dynamics of the h and n gating variables. In order to
mimic the dynamical behaviour of this system, FitzHugh and Nagume introduce a cubic
polynomial system. This system can be written in general as

C
dV

dt
= f(V )−w + I(t),

dw

dt
= aV − w + b,

where f(V ) is a cubic polynomial.

Although this model is a reduction of the HH model, it describes the mathematical princi-
ple of an action potential generation and also the subthreshold behaviour. Depending on
a constant value of injected current I, this model can present either different equilibrium
points or a periodic orbit. Then, both a resting state or a repetitive firing state can be
described. In fact, varying I, the model typically presents a Hopf bifurcation point, where
at some finite frequency, the equilibrium point loses the stability (see FitzHugh (1961)).

In this thesis we will also consider a further simplification of the FitzHugh-Nagumo model
consisting of using piecewise linear functions instead of f(V,w) and g(V,w). This system,
called the McKean model, preserves the shape of the membrane potential V (t) and it
allows an exact knowledge of the nonlinear f − I curve by means of standard techniques
of non-smooth dynamical systems (see Coombes (2001)). We use it in Section 5.2, to
estimate conductances in the spiking regime.

2.1.3.1 McKean model

In Section 5.2, we use the McKean model given by the piecewise linear differential system

{

CV̇ = f(V )− w − w0 + I(t),
ẇ = V − γw − V0,

where I(t) is the external current and f(V ) is a piecewise linear caricature of the cubic
FitzHugh-Nagumo function given by

f(V ) =







−V V < a/2,
V − a a/2 ≤ V ≤ (1 + a)/2,
1− V V > (1 + a)/2.

Biologically, the variables of the model are considered to be the membrane potential, V (t),
and the component of the membrane current, w(t). The parameters a, w0, V0, and γ > 0
may be considered as conductance properties and combinations of membrane reversal
potentials. Function f(V ) determines the outward membrane current at V (t). Finally, C
corresponds to the cell membrane capacitance which is assumed to be small and bounded
0 < C ≪ 0.1. See McKean (1970) for more details. The existence of this small parameter
C makes the system to present a slow-fast dynamics, where V is the fast variable and w
is the slow one.

2.1.4 Neuronal network model with short-term plasticity

Even though this thesis is focused on the estimation of conductances, it is also interesting to
see the effects that the plasticity has on the conductances. For instance, how they change
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38 Neural models and data treatment

when the network is depressed or facilitated. For this reason, we have implemented a
complex biophysical network model describing slow oscillations observed in a small part
of the visual cortex (see Compte et al (2003)), where short-term plasticity has been added
according to Dayan and Abbott (2005). The short-term depression (STD) was already
added in Benita et al (2012) reproducing the synaptic depression observed experimentally
by Reig et al (2006), and showing the impact of STD on the network’s behaviour.

The network consists of a population of 320 Hodgkin-Huxley type neurons, where the
80% of them are excitatory pyramidal cells and the 20% are inhibitory interneurons. All
the neurons are equidistantly distributed on a line segment and interconnected through
biologically plausible synaptic dynamics, with 20 random out-coming connections per neu-
ron that are normally distributed by a Gaussian distribution N (0, σ2); that is, neurons
that are closer among them have more probability to be connected than the ones that
are located further. For the excitatory neurons we use σ = 250 µm whereas for the in-
hibitory neurons we use σ = 125 µm (see Compte et al (2003), and references therein).
Moreover, we consider the total length of the network of 5 mm. Figure 2.2) represents
the connectivity matrix between the neurons, where the white points mean that they are
connected.
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Figure 2.2: Connectivity matrix of the population. This plot shows whether two neurons
are connected or not. Each row represents an enumerated pre-synaptic neuron whereas each
column refers to the post-synaptic one. White points mean that the two corresponding neurons
are connected whereas black dots mean that they do not.

Pyramidal neurons (excitatory neurons). The pyramidal neurons are considered
to be two-compartment neurons, the soma and a dendrite. The somatic compartment
is modelled by the spiking currents IK and INa, the leak current IL, and also a fast A-
type K+ current, IA, a non-inactivating slow K+ current, IKS, and a Na+-dependent
K+ current, IKNa. The dendrite contains a high-threshold Ca2+ current, ICa, a Ca2+-
dependent K+ current, a non-inactivating (persistent) Na+ current, INaP , and finally an
inward rectifier (activated by hyperpolarization) non-inactivating K+ current, IAR. The
two compartments are coupled by the parameter gsd.
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2.1. Mathematical models of neuronal dynamics 39

The membrane potential in the soma and in the dendrite of each cell are given by

CAs
dVs

dt
= −As(IL + INa + IK + IA + IKS + IKNa)− Isyn,s − gsd(Vs − Vd),

CAd
dVd

dt
= −As(ICa + IKCa + INaP + IAR)− Isyn,d − gsd(Vd − Vs),

where C is the membrane capacitance; Vs and Vd stand for the membrane potential at
the soma and at the dendrite, respectively; parameters As and Ad refer to the area of the
soma and the dendrite, respectively; Isyn,s is the synaptic current impinging on the soma
and Isyn,d is the synaptic current impinging on the dendrite.

The ionic currents for the excitatory cells follow a Hodgkin-Huxley formalism governed by
the first-order kinetics equation (2.2 -2.3). Hence, the currents and the respective gating
variables are given by

INa = gNam
3
∞h(V − VNa), where

m∞ = αm/(αm + βm); h∞ = αh/(αh + βh);
αm = 0.1(V + 33)/(1 − exp(−(V + 33)/10)); αh = 0.07 exp(−(V + 50)/10);
βm = 4exp(−(V + 53.7)/12); βh = 1/(1 + exp(−(V + 20)/10));

IK = gKn4(V − VK); where
n∞ = αn/(αn + βn);
αn = 0.1(−v + 34)/(1 − exp(−(V + 34)/10));
βn = 0.125 exp(−(V + 44)/25);

IL = gL(V − VL);

IA = gAm
3
A,∞hA(V − VK), where

mA,∞ = 1/(1 + exp(−(V + 50)/20)); hA,∞ = 1/(1 + exp(V + 80)/6);
τhA

= 15 ms;

IKS = gKSmKS(V − VK), where
mKS,∞ = 1/(1 + exp(−(V + 34)/6.5));
τKS = 8/(exp(−(v + 55)/30) + exp((V + 55)/30));

INaP = gNaPm
3
NaP,infty(V − VNa), where

mNaP,∞ = 1/(1 + exp(−(V + 55.7)/7.7));

IAR = gARhAR,infty(V − VK), where
hAR,∞ = 1/(1 + exp((V + 75)/4));

ICa = gCam
2
Ca,infty(V − VCa), where

mCa,∞ = 1/(1 + exp(−(V + 20)/9)); d[Ca2+]/dt = −αCaAdICa − [Ca2+]/τCa;
αCa = 0.005 µM/(nA ·ms); τCa = 150 ms;

IKCa = gKCa[Ca2+]/([Ca2+ +KD])(V − VK);

IKNa = gKNaω∞([Na+])(V − VK), where
ω∞ = 0.37/(1 + (38.7/[Na+])3.5);
d[Na+]/dt = −αNa(AsINa +AdINaP )

−Rpump

{

[Na+]3/([Na+] + 153)− [Na+]3eq/([Na
+]3eq + 153)

}

.

The ionic conductances are gNa = 50 mS/cm2, gK = 10.5 mS/cm2, gL = 0.0667 ±
0.0667 mS/cm2, gA = 1 mS/cm2, gKS = 0.576 mS/cm2, gNaP = 0.0686 mS/cm2, gAR =
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0.0257 mS/cm2, gCa = 0.43 mS/cm2, gKCa = 0.57 mS/cm2, and gKNa = 1.33 mS/cm2.
The ionic reversal potentials are VNa = 55 mV , VK = −100 mV , VL = −60.95 ± 0.3 mV ,
and VCa = 120 mV . The rest of constant values are C = 1 µF/cm2, φ = 1, As =
0.015 mm2, Ad = 0.35 mm2, gsd = 1.75± 0.1 µS, KD = 30 µM , Rpump = 0.018 mM/ms,
and [Na+]eq = 9.5 mM . The standard deviation for the connection probability is σ =
250 µm.

Interneurons (inhibitory neurons). The interneurons are considered as point neu-
rons which only one compartment, the soma, which is driven by the leak, sodium and
potassium currents following Wang and Buzsáki (1996).

The membrane potential of each neuron is given by

CA
dV

dt
= −A(IL + INa + IK)− Isyn,

where V stands for the membrane potential, A is the total neuronal surface area and Isyn
is the synaptic current impinging on the interneuron.

The ionic currents are given by

INa = gNam
3
∞h(V − VNa), where

m∞ = αm/(αm + βm); h∞ = αh/(αh + βh);
αm = 0.5(V + 35)/(1 + exp(−(V + 35)/10)); αh = 0.35 exp(−(V + 58)/20);
βm = 20 exp(−(V + 60)/18); βh = 5/(1 + exp(−(V + 28)/10));

IK = gKn4(V − VK); where
n∞ = αn/(αn + βn);

αn = 0.05(V + 34)/(1 − exp(−(V + 34)/10));
βn = 0.625 exp(−(V + 44)/80).

IL = gL(V − VL).

The ionic conductances for the interneurons are gNa = 35 mS/cm2, gK = 9 mS/cm2,
and gL = 0.1025 ± 0.0025 mS/cm2. The ionic reversal potentials are VNa = 55 mV ,
VK = −90 mV , and VL = −63.8±0.15 mV . The rest of constant values are C = 1 µF/cm2

and A = 0.02 mm2. The standard deviation for the connection probability is σ = 125 µm.

Notice that, both for the inhibitory and the excitatory neurons, the only sources of noise
in the network come from the random connectivity between neurons and the randomly
distributed parameters gL, VL and gsd.

As commented above, these models will be used to simulate a network and study the
outcoming synaptic conductances. We next describe the synaptic rules we impose to
achieve the network dynamics.

Synaptic dynamics. When the j-th presynaptic neuron performs a spike, a group of
neurotransmitters is released causing an activation of the strength of the synapse, sj(t),
and an activation of the synaptic plasticity, that is, the probability of release Prel,j(t).
Therefore, these neurotransmitters bind to the corresponding receptors of the postsynaptic
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neuron causing an inflow of current that is modelled as

Isyn =
∑

i∈P

gsyn,isi(t)Prel,i(t)(V − Vsyn)

where V is the voltage of a postsynaptic neuron, P is the set of all presynaptic neurons
and Vsyn is the synaptic reversal potential. Note that, indeed, si(t) depends on both the
pre-synaptic and the post-synaptic neuron. In this model, we assume that it only depends
on the pre-synaptic cell.

The most common neurotransmitters that mediate the synapse are AMPA, NMDA or
GABA. The first two neurotransmitters cause excitatory synapses whereas the last one
inhibitory synapse, see Section 1.1, Synapse.

The synaptic strengths for the AMPA and GABA follow the differential equation

dsi
dt

= αf(Vpre,i)−
si
τ
; f(Vpre,i) = 1/(1 + exp(−(Vpre,i − 20)/2)),

whereas the synaptic strength for the NMDA follows a second order differential equation
written, in a first order differential system, as

dsi
dt

= αx(1− si)−
si
τ
; and

dx

dt
= αxf(Vpre,i)−

si
τx

,

where Vpre,i stands for the presynaptic voltage.

The parameters involved for the AMPA neurotransmitter are α = 3.48, τ = 2 ms, and
Vsyn,AMPA = 0 mV ; for the NMDA neurotransmitter, they are α = 0.5, τ = 100 ms, αx =
3.48, τx = 2 ms, and Vsyn,NMDA = 0 mV ; and finally, for the GABA neurotransmitter,
they are α = 1, τ = 10 ms, and Vsyn,GABA = −70 mV . Note that, since each type
of neurotransmitters has different a value of τ , their dynamics evolve differently, being
AMPA and GABA faster than NMDA.

The probability of release Prel(t) follows the differential equation

dPrel

dt
= (P0 − Prel)/τrel,

where P0 is the probability of release at the steady state and τrel is the time to go back to
the steady state when a deviation from P0 occurs. In our simulations, we consider P0 = 1
for the depression and P0 = 0.1 for the facilitation.

When a synapse occurs, the probability of release of each neurotransmitter by the pre-
synaptic neuron, changes according to a depression or a facilitation factor, fD and fF
respectively (see Dayan and Abbott (2005)). Namely,

Prel ← fDPrel, when short-term depression is considered; and,

Prel ← Prel + fF (1− Prel), when short-term facilitation is considered.

If the pre-synaptic neuron is excitatory, then only the Prel of the NMDA and AMPA
neurotransmitters is affected, whereas if the pre-synaptic neuron is inhibitory, then the
Prel of GABA is changed. Parameters fD and fF take values between 0 and 1.

To describe the connectivity among different pools of neurons (excitatory and inhibitory),
some rules have been considered in Compte et al (2003) and Benita et al (2012) causing
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that, the final inhibitory (II) and excitatory (IE) currents for each neuron j are given,
respectively, by

II,j(t) = gGABA,j(t)(V − Vsyn,GABA);
IE,j(t) = gAMPA,j(t)(V − Vsyn,AMPA) + gNMDA,j(t)(V − Vsyn,NMDA)

such that the conductances gGABA, gAMPA and gNMDA are given by, being the i and j
the pre- and post-synaptic neuron respectively,

gGABA,j(t) =

{

gIE sGABA,j(t) PrelGABA,j
(t), if i is inhibitory and j is excitatory;

gII sGABA,j(t) PrelGABA,j
(t), if i and j are inhibitory;

gAMPA,j(t) =

{

gAMPA
EE sAMPA,j(t) PrelAMPA,j

(t), if i and j are excitatory;

gAMPA
EI sAMPA,j(t) PrelAMPA,j

(t), if i is excitatory and j is inhibitory;

gNMDA,j(t) =

{

gNMDA
EE sNMDA,j(t) PrelNMDA,j

(t), if i and j are excitatory;

gNMDA
EI sNMDA,j(t) PrelNMDA,j

(t), if i is excitatory and j is inhibitory,

where gIE = 4.15 nS, gII = 0.165 nS, gAMPA
EE = 5.4 nS, gAMPA

EI = 2.25 nS, gNMDA
EE =

0.9 nS , and gNMDA
EI = 0.5 nS.

All synapses are supposed to be chemical, neglecting possible electrical coupling.

This network was initially designed for a population of 1280 neurons by Compte et al
(2003). Even though in our work we only use a network of 320 neurons (in order to reduce
the computational time), no significant differences have been noticed in preliminary runs
with 1280 and 320 neurons, respectively.

For more details on the network see Compte et al (2003) and Benita et al (2012).

2.2 Synaptic drive

The membrane potential traces we use come from the computational models described
previously in this chapter and also from in vivo experiments. In this section we explain
the synaptic current we use in the computational models to generate in sillico data. In
Section 2.2.1 we model the synaptic current and in Section 2.2.2 we depict the synaptic
input we use.

2.2.1 Modelling chemical synapses

In general the external current, I(t), is split into two relevant currents: the applied current,
Iapp, which is often used as a control parameter, and the synaptic current, Isyn, which is
the current that the neuron is receiving from other neurons; that is, I(t) = Iapp − Isyn,
formulation that we are going to consider in the single cell models described in Section
2.1.

Since the pre-synaptic neuron can be either excitatory or inhibitory, depending on the
type of neurotransmitters that the neuron has (see Section 1.1), the synaptic current can
also be split taking into account the amount of excitatory and inhibitory current that the
neuron is receiving. Then, the synaptic current can be given by

Isyn = gE(t)(V (t)− VE) + gI(t)(V (t)− VI),
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where gE(t) and gI(t) are the excitatory and the inhibitory conductances, respectively,
and VE and VI are the excitatory and the inhibitory reversal potentials, respectively.

In all neuronal models we use in Chapter 5, except the McKean model, the synaptic
current is split into the excitatory and the inhibitory parts, being the reversal potentials
given by VE = 0 mV , VI = −80 mV . For the pyramidal model, described in Section
2.1.2.1 with external current given in Section 2.2.1, we take Iapp ∈ [−1, 1]µA/cm2 (see
Appendix B in Guillamon et al (2006) for a justification of this choice), unless otherwise
is stated. For the stellate model, described in Section 2.1.2.2 with external current given
in Section 2.2.1, we will usually take Iapp ∈ [−4,−3]µA/cm2, unless otherwise is stated.
The applied current in the QIF model, described in Section 2.1.1.1 with external current
in Section 2.2.1, is chosen to avoid the neuron from firing, and it depends on the model
we would like to approximate (see Section 5.1.2.1).

In the McKean model, described in Section 2.1.3.1 with external current given in Section
2.2.1, since we are only interested in the synaptic current, we do not split it and we
consider Vsyn, which is considered to lie between the boundaries, a/2 and (1+ a)/2, to be
biologically plausible. In our simulations, we took Vsyn as the central value of this interval;
that is, Vsyn = 1/4 + 1/2a.

2.2.2 Synaptic inputs

In the simulations of the models, we consider different traces of conductances that come
from three different sources: toy traces obtained as sinusoidal functions that combine dif-
ferent frequencies and amplitudes; traces that follow an Ornstein-Uhlenbeck (OU) process,
see Section 1.3, with an added sinusoidal behaviour; and finally traces that are obtained
from a computational network that models layer4 Cα of primary visual cortex. Next, we
explain each of them in a more detailed way.

2.2.2.1 Conductances generated with deterministic sinusoidal shapes

To see the efficiency of the estimation procedure described in Section 5.2, and to compare
whether it is related to the frequency and amplitude of the conductances, we create some
synaptic conductance traces with different frequencies and amplitudes. These traces are
going to be used to simulate membrane potential traces in the McKean model. Since in
this model we do not discern between excitatory and inhibitory conductances, only the
total synaptic conductance is created.

In Figure 2.3 the different synaptic conductance traces that have been generated are
depicted. In Panel A, the conductance trace has only high amplitude oscillations, such that
gsyn(t) = 0.2 sin(2πt/10) + 0.2). The second conductance trace, Panel B, combines small
with big oscillations and it is given by gsyn(t) = 0.2 sin(2πt/30) + 0.2/5 sin(2πt/5) + 0.2.
Finally, in the last trace we consider, Panel C, both frequency and amplitude of the
small oscillations have been changed with respect to the one in Panel B to create a faster
conductance trace that abruptly changes in time. The equation of this conductance trace
is given by gsyn(t) = 0.1 sin(2πt/20) + 0.2 sin(2πt/2) + 0.4.
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Figure 2.3: Toy conductance traces. Complete 50ms time courses of the total synaptic con-
ductances (gsyn(t)) used to drive the activity of the target neuron. The traces have been generated
as: gsyn(t) = 0.2 sin(2πt/10) + 0.2, in Panel A; gsyn(t) = 0.2 sin(2πt/30) + 0.2/5 sin(2πt/5) + 0.2,
in Panel B; and gsyn(t) = 0.1 sin(2πt/20) + 2 · 0.1 sin(2πt/2) + 0.4, in Panel C; in order to obtain
different kinds of oscillations.

2.2.2.2 Conductances following an OU-process

To computationally test the stochastic estimation procedure given in Section 5.1.2, we
consider a trace of conductances that follows an Ornstein-Uhlenbeck (OU) process, where
a sinusoidal behaviour has been added. That is, the conductances follow the stochastic
differential equation

dgx(t) =
1

τx
(x0 + µx cos(wxt)− gx(t)) dt+ σxdW (t), (2.7)

where x denotes either the excitatory (E) or the inhibitory (I) conductances. In the
simulations, we set the constant values τE = 10ms, τI = 5ms, gE0

= 1mS/cm2, gI0 =
0.7mS/cm2, µE = 0.0321mS/cm2, µI = 0.0867mS/cm2, wE = wI = 2π/1000 m−1,
σE = 0.00064 mS/(cm2√ms), and σI = 0.00065 mS/(cm2√ms), where the subscripts E
and I stand for the excitatory and the inhibitory conductances, respectively. These values
have been chosen with the aim of collecting data with amplitude and frequency similar to
the estimated conductance traces in the experimental data in Berg and Ditlevsen (2013).

In Figure 2.4 the time course of excitatory and the inhibitory conductances obtained in
this case is represented.
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Figure 2.4: Conductance trace following an OU-process combined with a sinusoidal
function. Complete (5 s) time courses of the excitatory (gE(t), black trace) and inhibitory (gI(t),
grey trace) conductances used to drive the activity of the target neuron. The conductance traces
have been generated as an OU-process where a sinusoidal function has been added to obtain an
oscillatory behaviour.
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2.2.2.3 Conductances extracted from an in sillico network

As test conductance courses, we will also use conductance traces (with a 1 ms resolution)
obtained from a computational network that models layer 4Cα of primary visual cortex,
see McLaughlin et al (2000) and Tao et al (2004). The complete conductance traces fed
into the pyramidal cell model are shown in Figure 2.5. In the stellate cell model, we have
rescaled these data by a factor of 3 in order to adjust to the amplitude of the input used
in Rotstein (2015).
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Figure 2.5: Conductance traces obtained in sillico from layer 4Cα of primary visual
cortex . Complete (1ms) time courses of the excitatory (gE(t), solid trace) and inhibitory (gI(t),
dashed trace) conductances used to drive the activity of the target neuron. The conductance traces
have been obtained from a computational network that models layer 4Cα of primary visual cortex
(see McLaughlin et al (2000) and Tao et al (2004)).

For the McKean model, we use a 50ms total synaptic conductance trace, which is obtained
as the sum of the excitatory and the inhibitory conductances and rescaled as in the stellate
model (by a factor of 3). The time course of the total synaptic conductance is plotted in
Figure2.6.
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Figure 2.6: Total synaptic conductance trace obtained in sillico from layer 4Cα of pri-
mary visual cortex. Complete (50ms) time courses of the synaptic conductances used to drive
the activity of the target neuron in the McKean model. The conductance trace has been obtained
from a computational network that models layer 4Cα of primary visual cortex (see McLaughlin et al
(2000) and Tao et al (2004)).

2.3 Experimental data

In Chapter 5, we use membrane potential traces obtained also by in vivo experiments as
examples to test the methods of estimation of conductances that we derive. This exper-
imental data has been obtained by Prof. Rune Berg using the current clamp technique,
see Chapter 1, Electrophysiological techniques.
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In the in vivo experiments, we use real data where traces of 25 s of the membrane po-
tential of a motoneuron were measured during different current injections under the same
mechanical stimulation. The trace we use to estimate in vivo conductances is given in
Figure 2.7.
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Figure 2.7: Intracellular recording of spinal motorneuron of read-eared turtles. Com-
plete (20 s) time course of the membrane potential extracted in current-clamp mode of spinal
motorneuron of red-eared turtles.

Briefly, the experiments were performed in an integrated spinal cord-carapace preparation
from an adult red-eared turtle (Trachemys scripta elegans) as in Petersen et al (2014) and
Ves (2015). In the integrated preparation, the spinal cord remains in the spinal canal
with the tactile sensory nerves from the carapace intact. The motor nerves are carefully
transected to avoid muscle movements and dissected out for electroneurogram recordings.
A scratch reflex was activated by mechanical somato-sensory stimulation of selected regions
on the carapace, which induced motor network activity of ∼20 s duration. Intracellular
recordings in current-clamp mode were obtained from a motoneuron in segment D10. Data
were sampled at 20 kHz, i.e. the time step between observations as ∆ = 0.05ms.

In Figure 2.8, we depict the V − I relationship (red dots) obtained by injecting different
levels of current into the neuron in absence of synaptic activity. To compute this curve,
once we have obtained the time course of V (t), we have averaged, for each value of injected
current I, the membrane potential over time. In this Figure we also made a linear fit (grey
line) and a quadratic fit (black line) of the V −I points. The quadratic fit is clearly chosen
above the linear fit using either AIC8 or BIC9 criteria, since differences are both larger than
10 (∆AIC = 14.54, ∆BIC = 13.45). This is the value suggested in Burnham and Anderson
(2002) as the critical value for the less plausible model to have essentially no support in
the data compared with the better model.

The quadratic approximation is given by V (Iapp) = −1.94I2app + 13.09Iapp − 72.14. Since
the last input current for which the neuron did not spike was 0.55 µA/cm2, we set IT =
−0.55 µA/cm2, which corresponds to VT = −79.926 mV from the V − I curve. The
remaining neuron parameters have been computed as VL = −77 mV , VI = −79 mV ,
VE = 0 mV , gL = 0.026 mS/cm2, Iapp = −1.24 µA/cm2, and C = 1 µF/cm2; these values

8AIC is the acronym of Akaike information criterion. It is a statistical measure to estimates the quality
of each mode. It is given as AIC = 2k− 2 ln(L̂), where k is the number of parameters to be estimated and
L̂ the maximum value of the likelihood function

9BIC is the acronym of Bayesian information criterion. It is given as BIC = k ln(n) − 2 ln(L̂), where
k is the number of parameters to be estimated, n is the length of the trace (number of observations), and
L̂ the maximum value of the likelihood function
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Figure 2.8: V-I curve of the measured motoneuron. The red dots are the V − I relations
obtained by applying different current levels to the motoneuron. The black line shows the quadratic
fit to these points, the grey line depicts the linear fit.

have been obtained from the actual data by using the R. Berg code at Berg (2013) (see
also Petersen et al (2014)).

2.4 Numerical methods

Along the thesis we use different numerical methods, mainly to solve ordinary differential
systems but also implicit equations and to treat the data we are obtaining. Depending
on the model we are using and the procedures we follow, in Chapter 4 and also in the
different sections of Chapter 5 we use different mathematical tools, all of them implemented
in Matlabr.

2.4.1 Numerical methods for the neuronal network

The systems of differential equations of the neuronal network in Chapter 4 were integrated
by using the Runge-Kutta 4-5 method with a fixed time step of 0.05 ms, which is the
smallest time step usually used in experimental recordings.

In order to represent the dynamics of the neuron, because of the large amount of neurons
it has, we use two different neural coding schemes, which are the instantaneous firing rate
(IFR) and the raster plot. Following, we explain both of them.

2.4.1.1 Instantaneous firing rate description

To code the activity of the neurons in the network we use the instantaneous firing rate
(IFR) coding. The IFR for each neuron is computed by binning the spike train (we use a
bin width of 100ms) and dividing the number of spikes detected within the bin. That is, for
each window of 100 ms, we average the number of spikes over time. To obtain a smoother
IFR function, the average number of spikes computed within the bin are convoluted with
a Gaussian function with mean µ = 25 ms and standard deviation σ = 5 ms.
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The analysis has been performed by adapting the tool SPYCODE developed in Matlab
by Bologna et al (2010).

By averaging the IFR over all the excitatory neurons we obtain what we call the excitatory
IFR, which corresponds to all the excitatory population. In the same way, if we consider
all inhibitory neurons, then we obtain what we call the inhibitory IFR, see lower subpanels
in Figure 4.1.

2.4.1.2 Coloured raster plot description

Using the IFR coding scheme, we do not have information about the onset time of the
action potentials. To visualize this information we use coloured raster plots where colours
indicate the IFR (the warmer the colour, the highest the IFR) and the axes represent time
and neurons’ position, see upper subpanels in Figure 4.1. Therefore, for each neuron we
distinguish the firing onset when the colour in the corresponding horizontal line changes
from the darkest blue to other color. As a result, we can also visualize the synchrony of
the onset in the entire population.

2.4.2 Numerical methods for the deterministic conductances’ estimation

The systems of differential equations, of both models used in Section 5.1.1, were integrated
using the Runge-Kutta 4-5 method with a fixed time step of 0.05ms. First, we tested that
voltage traces did not change when using lower time steps and higher order variable step
methods, but the fact of needing equispaced values for the filtering process was a key point
for the method’s choice in this case (see Vich (2012)). Moreover, to solve the integral in
Subsection 5.1.1.3, paragraph Quadratization alternative, we have used the trapezoidal rule
with the same time step than for the integration method, 0.05ms. The Matlab code of the
quadratic approach to estimate conductances given in Subsection 5.1.1.2, Quadratization
approach, is available at Vich and Guillamon (2015b).

2.4.3 Numerical methods for the non-deterministic conductances’ esti-
mation

In Section 5.1.2, the stochastic differential equations, both for the synaptic drive and
the neuron models, have been solved using the Euler-Maruyama method with a step size
of ∆ = 0.01 ms. Then, data has been subsampled every 5-th observation to reduce
discretization errors. In this case, we get samples with time step 0.05ms, which is like our
experimental data.

2.4.4 Numerical methods for the conductances’ estimation in the spik-
ing regime

In Section 5.2, to contrast the goodness of the approximated period expression T̂ , the
numerical periodic considered as the real one has been computed using both Newton-
Raphson method and bisection method with a tolerance TOL = 1e − 11 (see Appendix
C.1 for more details of the routine). Same methods have been used to estimate the synaptic
conductance gsyn with tolerance TOL = C2.
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Moreover, to integrate the differential piecewise linear system we have used the Runge-
Kutta 7-8 method with tolerance TOL = 1e − 8 and a maximal step size hmax = 1e − 1.
We have used the edo78 function of Matlabr.

Finally, a cubic spline interpolation has been used to estimate the time-course of the
synaptic conductances. We have used the spline function of Matlabr.
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Chapter 3

Slow-fast n-dimensional piecewise
linear systems

3.1 Introduction and main results

Slow-fast systems are differential systems evolving on two different time scales, described
in Section 1.2, systems (1.1) and (1.2). We will follow the terminology introduced there.

Slow-fast systems are widely used to model complex oscillatory behaviours exhibited by
real systems. In neuroscience, the burst waveform or the mixed-mode oscillations (MMO)
are two examples of such a complex behaviour.

The burst waveform consists of voltage patterns of a neuron characterized by periods of
electrical spikes followed by periods of quiescence during which the neuron is repolarized.
This phenomena involves a physiological slow variable that eventually changes the be-
haviour of the fast subsystem, for instance, going from an oscillatory to an equilibrium
regime, and so forth. An extensive list of slow-fast mechanisms for bursting patterns
appears in Izhikevich (2007), see also the references therein.

On the other hand, the MMO is a periodic behaviour which presents an evident oscilla-
tory structure within each period alternating groups of small and large-amplitude oscil-
lations. MMOs can be observed in several application areas such that chemical reaction
dynamics (see references in Desroches et al (2010) and Desroches et al (2012)), in neuro-
science (see, for instance, Krupa et al (2008), Wechselberger and Weckesser (2009a), and
Wechselberger and Weckesser (2009b)), in mathematical biology (see Akman et al (2005)),
and in population dynamics (see Brøns et al (2013)). Mechanisms for the creation of small
oscillations in slow-fast systems are related to the intricate geometry of multiple-time-scale
dynamical systems. For a recent account on MMO and slow-fast dynamics, we refer the
reader to the interesting survey of Desroches et al (2012).

Under normal hyperbolicity conditions, Fenichel’s geometric theory (Fenichel (1979) and
Jones (1995)), which is also recollected in Theorem 1.1, ensures the persistence of the
critical manifold S = {(u,v) ∈ R

n : f(u,v, 0) = 0} of the fast subsystem (1.3) as the
slow manifold, Sε, which is locally invariant under the flow of system (1.1). Moreover,
the stability properties of the manifold Sε are inherited from those of the critical manifold
S, and the restriction of the flow of system (1.1) to Sε is a regular perturbation of the
reduced flow (1.4).
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When normal hyperbolicity fails, for instance on the fold manifold (i.e. points where S
folds), under suitable conditions, the slow-fast systems present canard orbits. Experimen-
tal observations of canard orbits were early reported (see Itoh and Tomiyasu (1990)) and
slow-fast systems with piecewise linear vector field were considered to prove the existence of
canard orbits (see Komuro and Saito (1991) and Arima et al (1997)). An increasing inter-
est about slow-fast piecewise linear vector fields can be noticed in the number of recent pub-
lications as, for instance, Llibre et al (2002), Nakano et al (2005), Desroches and Jeffrey
(2011), Rotstein et al (2012), and Desroches et al (2013). This interest is also extended to
more general contexts like continuous piecewise smooth vector fields (see Pokrovskii et al
(2011)) or discontinuous piecewise smooth vector fields (see Buzzi et al (2012)).

This chapter is mainly concerned with maximal canard orbits occurring in n-dimensional
piecewise linear slow-fast systems. More precisely, conditions for the existence of maximal
canard orbits and/or faux maximal canard orbits are established in Theorem 3.2. In
Theorem 3.3 we show that these maximal canards perturb from singular orbits (singular
canards) whose order of contact with the fold manifold is greater than or equal to two.

We remark that, in the smooth case, the standard way to study maximal canards is
by analysing the reduced flow around the folded singularities (singular points of the slow
subsystem lying in the fold manifold and appearing after regularization), see Wechselberger
(2012). In our framework, to tackle the study of maximal canards we are following the
approach in Prohens and Teruel (2013); there, the attracting and repelling branches of
the slow manifold, and also their intersection, are explicitly obtained as a consequence of
a Fenichel’s-like Theorem for PWL systems. In the current work we extend this result to
the n-dimensional case as Theorem 3.1. For a version of Fenichel’s Theorem in the smooth
case, see Theorem 1.1, or Desroches et al (2012) and Wechselberger (2012).

Slow manifolds play an important role for singularly perturbed problems and expressions
of them can be obtained, as power series expansion in the singular perturbation param-
eter, for singularly perturbed linear systems, see Kokotović et al (1999, Chapter 2) and
Khorasani (1986, 1989). Even when these results are well known, as far as we know, the
problem of studying the intersections between the attracting and the repelling branches
of the slow manifold, in order to obtain maximal canards, has not been addressed yet in
the study of n-dimensional singularly perturbed piecewise linear systems. In this chapter
we are tackling with this study.

Throughout this chapter, we are considering the n-dimensional singularly perturbed dif-
ferential system (1.1) with n ≥ 2, s = n − 1 slow variables u = (u1, . . . , us), q = 1 fast
variable v, given by

g(u, v, ε) = Au+ av + b and f(u, v, ε) = u1 + |v|,
where A = (aij)1≤i,j≤s is an s × s real matrix and, a = (a1, a2, . . . , as)

T and b =
(b1, b2, . . . , bs)

T are vectors in R
s. In Theorem 3.2, the case n = 2 is treated as an

exception (see Remark 3.1). From now on the superscript T stands for the transposed
object.

Summing up, we are considering the singularly perturbed differential system
{

u̇ = ε(Au+ av + b),
v̇ = u1 + |v|, (3.1)

together with its associated non-perturbed systems, the fast subsystem
{

u̇ = 0,
v̇ = u1 + |v|, (3.2)
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and the slow subsystem
{

u′ = Au+ av + b,
0 = u1 + |v|.

(3.3)

We want to point out that the slow subsystem (3.3) is a linear differential equation defined
on the critical manifold S = {(u, v) ∈ R

n : u1 + |v| = 0} which splits into the two
normally hyperbolic parts S+ = S ∩ {v > 0} and S− = S ∩ {v < 0}, and the manifold
F = S ∩ {v = 0}. As we claim in Lemma 3.1, the vector field defined on each of these
open half-hyperplanes is linear, but it is not defined on F . To overcome this problem, we
consider the Filippov’s convention, described in Convention 1.1 (see also Filippov (1988)).
Then, the reduced flow associated with the slow-fast system (3.1) is generated by the
discontinuous piecewise linear system (3.11) in Section 3.2.

The vector field given by system (3.1) is continuous and nonlinear, since the function
f(u, v, ε) is piecewise linear. Therefore, the behaviour of the flow is set by coupling the
flow of the two linear systems given by f , each one defined on one of the half-spaces which
are splitted by the hyperplane {v = 0}, so called the switching manifold.

Before to state our main results, we introduce the superscript notation + and − referring
the object to the half-space {v ≥ 0} and {v ≤ 0}, respectively, in which this object is
restricted. Therefore, system (3.1) writes as

(

u̇
v̇

)

=























B+
ε

(

u
v

)

+ cε if v ≥ 0,

B−
ε

(

u
v

)

+ cε if v ≤ 0,

(3.4)

where

B+
ε =

(

εA εa
eT1 1

)

, B−
ε =

(

εA εa
eT1 −1

)

, cε =

(

εb
0

)

, (3.5)

and e1 is the first element of the canonical base of Rs.

Given a point q ∈ R
n, we denote the orbit of system (3.4) through q by γq. As long as

the orbit γq remains in {v ≥ 0}, γq is part of the flow of the linear system ẋ = B+
ε x+ cε.

Therefore, its behaviour is determined by the eigenvalues of the matrix B+
ε . As we see

in Section 3.3, the spectrum of the matrix B+
ε decomposes into two parts, one formed by

s eigenvalues (taking into account the multiplicity) of O(ε) and the other one which is a
real eigenvalue of O(1). We denote them by

λ+
k = β+

k ε+O(ε2) for k = 1, . . . , s and λ+
n = 1 +O(ε).

The first s eigenvalues are responsible for the slow dynamics whereas the last one is
responsible for the fast dynamics in {v ≥ 0}. Consequently, for ε small enough, the
slow dynamics is restricted to a half-hyperplane defined by the generalized eigenvectors
associated to the eigenvalues {λ+

k }sk=1. As it is shown in Section 3.3, this half-hyperplane
is the slow manifold in {v ≥ 0} and, it is given by

S+ε =

{

(u, v) ∈ R
n : v ≥ 0, −eT1 (εA− λ+

n I)
−1u+ v =

ε

λ+
n
eT1 (εA− λ+

n I)
−1b

}

.

Similar arguments can be applied as long as the orbit γq lies in {v ≤ 0}. In this case, the
spectrum of the matrix B−

ε decomposes into

λ−
k = β−

k ε+O(ε2) for k = 1, . . . , s, and λ−
n = −1 +O(ε),
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and the slow dynamics takes place on the half-hyperplane (slow manifold in {v ≤ 0}) given
by

S−ε =

{

(u, v) ∈ R
n : v ≤ 0, −eT1 (εA− λ−

n I)
−1u+ v =

ε

λ−
n
eT1 (εA− λ−

n I)
−1b

}

.

Since S+ε and S−ε are slow manifolds, the set Sε = S+ε ∪S−ε is also a slow manifold. In fact,
Sε results to be a Fenichel’s manifold as we show in the following Fenichel’s-like Theorem.

Theorem 3.1. For a sufficiently small and ε > 0, the manifold Sε = S+ε ∪ S−ε satisfies
the following statements.

a) Sε is locally invariant under the flow of system (3.1).

b) The restriction on Sε of the flow of system (3.1) is a regular perturbation of the
reduced flow defined by the slow subsystem (3.3) on the critical manifold S.

c) S+ε is the repelling branch of Sε and S−ε is the attracting branch of Sε.

d) Given a compact subset Ŝ of the critical manifold S, there exists a compact subset Ŝε
of the slow manifold Sε which is diffeomorphic to Ŝ and such that dH(Ŝε, Ŝ) = O(ε),
where dH denotes the Hausdorff distance.

A point pε in S+ε ∩ S−ε , it is said to be a maximal canard (resp. faux maximal canard)
point if the orbit, γpε , through pε is a maximal canard (resp. faux maximal canard) orbit.
From Theorem 3.1, since S+ε (resp. S−ε ) is the repelling (resp. attracting) branch of the
slow manifold, the direction of the flow at every point pε in S+ε ∩ S−ε ⊂ {v = 0} gives
us a criterion to distinguish between maximal canard points (when the flow goes in the
en direction) and faux maximal canard points (when the flow goes in the −en direction).
Here and hereinafter, en stands for the n-th element in the canonical base of Rn. Pay
attention on the fact that e1 has been formerly defined as the first element of the canonical
base of Rs.

The direction of the flow of system (3.1) at a point pε belonging to the switching manifold
{v = 0}, is given by the order of contact of the flow with {v = 0} at pε. In terms of the
vector field written as in equation (3.4), this order of contact is k (with k ∈ N) when

eTn (B
+
ε pε + cε) = eTn (B

−
ε pε + cε) 6= 0, if k = 1,







eTn (B+
ε )

r
(B+

ε pε + cε) = eTn (B−
ε )

r
(B−

ε pε + cε) = 0 for r = 0, . . . , k − 2,

eTn (B+
ε )

k−1
(B+

ε pε + cε) = eTn (B−
ε )

k−1
(B−

ε pε + cε) 6= 0.

if k ≥ 2,

(3.6)
When the order of contact is even, the orbit γpε does not cross the switching manifold, and

it is locally contained in the half-space {v ≥ 0} (when eTn (B+
ε )

k−1
(B+

ε pε + cε) > 0) or in

{v ≤ 0} (when eTn (B+
ε )

k−1
(B+

ε pε+cε) < 0). Otherwise, when the order of contact is odd,
the orbit γpε crosses the switching manifold either transversally (if k = 1) or tangentially (if

k > 1); in both cases, the orbit crosses in the direction of en if eTn (B+
ε )

k−1
(B+

ε pε+cε) > 0

or in the direction of −en, when eTn (B+
ε )

k−1
(B+

ε pε+cε) < 0, see Llibre and Teruel (2004).

Following this approach, in the next theorem we obtain conditions on the coefficients of
system (3.1) to ensure the existence of maximal canard points and, in this case, we provide
the expression of these points.
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Theorem 3.2. For ε > 0 small enough, let us consider system (3.1) where A = (aij)1≤i,j,≤s,
a = (ai)

T
1≤i≤s, and b = (bi)

T
1≤i≤s.

a) Suppose s ≥ 2. If a1j 6= 0 for some j ∈ {2, . . . , s} then, S+ε ∩ S−ε is a linear
manifold of dimension n− 3 such that each point pε in S+ε ∩ S−ε satisfies that pε =
(u1, u2, . . . , us, 0)

T where

u1 = −
ε2

λ+
n λ

−
n

1

a1j











s
∑

k=2

(a1kakjb1 − a1ka1jbk) +

s
∑

k = 2
k 6= j

s
∑

l=2

(a1ka1lalj − a1ja1lalk)uk











+O(ε3),

uj = −
1

a1j











b1 +

s
∑

k = 2
k 6= j

a1kuk











+O(ε).

Moreover,

a.1) If u1 > 0, then pε is a maximal canard point with order of contact one;

a.2) If u1 < 0, then pε is a faux maximal canard point with order of contact one;

a.3) If u1 = 0, then pε is a contact point with order of contact greater than or equal
to two.

b) Suppose that s = 1, or s ≥ 2 and a1j = 0 for all j ∈ {2, . . . , s}.

b.1) If b1 = 0, then S+ε ∩ S−ε is a linear manifold of dimension n− 2. Furthermore,
S+ε ∩ S−ε is invariant under the flow of system (3.1) and so, neither maximal
nor faux maximal canard orbits exist.

b.2) If b1 6= 0, then S+ε ∩ S−ε is empty and so, neither maximal nor faux maximal
canard orbits exist.

Remark 3.1. In the case n = 2, that is when s = 1, only statements (b.1) and (b.2)
of Theorem 3.2 can be applied. Hence, neither maximal nor faux maximal canard orbits
exist.

Remark 3.2. We relate the results obtained in Theorem 3.2 with those in the smooth
context through the paper of Wechselberger (2012). In order to do that, let us consider
system















u̇1 =
1
2µu2 − (1 + µ)v,

u̇2 = 1 + a21u1 + a22u2 + a2v,
u̇j = bj +

∑s
k=1 ajkuk, j = 3, . . . , s

εv̇ = u1 + |v|,
(3.7)

which is obtained by keeping the linear terms of the canonical form (20) in Wechselberger
(2012) and by replacing the quadratic term in the fast equation by an absolute value.

When µ 6= 0, from Theorem 3.2(a) applied to (3.7) and since s = n − 1, there exists
an (s − 2)-dimensional manifold composed by maximal or faux maximal canard points
depending on the sign of

u1 =
ε2

λ+
n λ

−
n

µ

2
+O(ε3).
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In the folded saddle case, i.e. when µ < 0, since u1 > 0, every point in the (s − 2)-
dimensional manifold is a maximal canard. In this case, both the dimension of the manifold
and the character of its points agree with the smooth case stated in Wechselberger (2012,
Theorem 4.1). On the other hand, in the folded node case, i.e. when µ > 0, every point
in the referred manifold is a faux maximal canard. In this case, the dimension of the
manifold also agrees with the stated in Wechselberger (2012, Theorem 4.2), meanwhile the
character of the orbits through this manifold is not.

Maximal canard orbits can be obtained as a perturbation of singular orbits passing through
folded singularities, see Brøns et al (2006) and Wechselberger (2012). These orbits are the
so called singular canards. From Theorem 3.2(a.1) and (a.2), since the expression of pε

is known, by tending ε to zero, we are able to obtain the singular canards which are
the source of the maximal canard orbits having order of contact equal to one with the
switching manifold.

As we claim in the next result, these singular canards flow through contact points - of order
greater than or equal to 2 - of the reduced flow with the hyperplane F . According to the
Filippov’s convention (Filippov (1988)), given in Convention 1.1, only escaping and sliding
open regions can be distinguished on F , see Remark 3.3. Furthermore, tangency points
result to be contact points of order greater than or equal to 2. Usually, contact points of
order 2 are referred as two-fold singularities (two-fold, for short). We use this terminology
for every contact point of even order of contact. Depending on the behaviour of the
surrounding reduced flow, two-folds are classified as visible, invisible or visible/invisible,
see Jeffrey and Colombo (2009) and Jacquemard et al (2013). In Figure 3.1 we depict a
visible two-fold in panel (a) and an invisible two-fold in panel (b), for a 3-dimensional
reduced flow. The visible/invisible case can be generally obtained by taking half picture
of panel (a) and combining it with the other half of panel (b). This case is not considered
in Figure 3.1 because, as we mention in Remark 3.3, visible/invisible two-fold singularities
cannot take place in our framework.

Singular canards in the visible two-fold are the orbits flowing through the contact point,
meanwhile the singular canard in the invisible two-fold reduces to the contact point. The
way in which maximal and faux maximal canards perturb from these singular canards are
illustrated through two examples in Section 3.4, the first in a four dimensional framework
and the other in a three dimensional one.

Theorem 3.3. Consider system (3.1). For ε > 0 small enough next statements hold.

a) Each point pε in S+ε ∩ S−ε lies in the unfolding of a contact point of order greater
than or equal to 2 of the slow subsystem (3.3) with the hyperplane F .

b) If n = 3, then each maximal canard point (resp. faux maximal canard point) of order
1 lies in the unfolding of a visible (resp. invisible) two-fold of the slow subsystem
(3.3).

The rest of this chapter is organized into four sections. In Section 3.2 we describe the
unperturbed dynamics associated to the fast subsystem (3.2) and to the slow one (3.3).
In Section 3.3 we analyze the perturbed dynamics given by system (3.1) and we provide
the proofs of the main results. Concretely, the expression of the locally invariant slow
manifold Sε and the proof of the Theorem 3.1 is presented in Subsection 3.3.1. The
proofs of theorems 3.2 and 3.3 are shown in Subsection 3.3.2. In Section 3.4, we present
two examples to visualize our results. Conclusions are presented in Section 3.5. In the
Appendix A, some matrix properties used in this chapter are given.
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F

(b)

(a)

u3
u2

u1

Figure 3.1: Representation of a 3-dimensional reduced flow surrounding a two-fold on the
manifold F : (a) visible two-fold, (b) invisible two-fold. The grey areas in the neighbour-
hood of the contact point correspond to the sliding regions while the white areas correspond
to the escaping regions. The 2-dimensional case can be easily derived by removing the
u3-dimension.

3.2 Unperturbed dynamics

In this section we discuss the dynamics of the two unperturbed problems associated to the
slow-fast system (3.1); namely, the fast subsystem (3.2), also called the stratified problem,
and the slow subsystem (3.3) also called the reduced problem.

Concerning the dynamical behaviour of system (3.2), given a solution of this system, its s-
first components are constant whereas the last one is changing in time. As a consequence,
each orbit lies in a straight line.

The critical manifold, which is composed by the singular points of the stratified problem,
is defined by the zeros of the second equation in (3.2), that is S = {u1 + |v| = 0}. The
Jacobian matrix of the vector field at every point on S with v 6= 0 is











0 . . . 0
...

. . .
...

0 . . . 0

0

eT1 ±1











where ±1 stands for +1 if v > 0 and −1 if v < 0. In both cases the Jacobian matrix has
exactly s = n − 1 null eigenvalues plus one non-zero. Hence, each point in S with v 6= 0
is a normally hyperbolic singular point. Moreover, since the non-zero eigenvalue has the
same sign as v, we conclude that S+ = {u1 + v = 0; v > 0} is the repelling branch of the
critical manifold S, while S− = {u1 − v = 0; v < 0} is the attracting branch of S. On
the other hand, since the vector field is not differentiable at v = 0, the Jacobian matrix
evaluated at points in F = {u1 = 0, v = 0} is not defined.

Concerning the slow subsystem (3.3), its dynamics takes place on the s-dimensional man-
ifold S. Since equation (3.3) is a differential-algebraic equation, a usual way to analyze
its dynamics is by considering a locally conjugate system. In our case we consider system

ũ′ =

{

P (A− aeT1 )P ũ+ Pb if eT1 ũ > 0,
(A+ aeT1 )ũ+ b if eT1 ũ < 0

(3.8)

defined on R
s \ {eT1 ũ = 0}, where P = I − 2e1e

T
1 and ũ = (v, u2, . . . , us). From now on,

by way of notation, we will refer ũ by u when the slow subsystem is considered. In the
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58 Slow-fast n-dimensional piecewise linear systems

next result we prove that system (3.8) is locally conjugate to the slow subsystem (3.3).
When no confusion arise, we also call slow subsystem to system (3.8).

Lemma 3.1. Slow subsystem (3.3) restricted on S \ F is differentially conjugate to the
discontinuous piecewise linear differential system (3.8) defined on R

s \ {eT1 u = 0}.

Proof. Deriving the algebraic equation in (3.3) with respect to τ when v 6= 0, we obtain
the n-dimensional piecewise linear system







u′ = Au+ av + b,

v′ = −|v|
v
u′1,

(3.9)

which is defined in R
n \ {v = 0} and coincides with (3.3) in S \ F .

Consider the projection π : R
n → R

s given by π(u, v) = u + (v − u1)e1. Note that
π(u, v) = (v, u2, . . . , us)

T . Since each point of S satisfies the expression |v| = −eT1 u, the
restriction of the projection π on S can be written as the piecewise function

ũ = π|S (u, v) =

{

Pu if v ≥ 0,
u if v < 0,

where P is the s × s involutory matrix I − 2e1e
T
1 . To simplify notation, from now on

we use π to denote π|S . Since Pu = u when (u, v) ∈ F , the restricted function π is a
homeomorphism with inverse function given by

π−1(ũ) =

{

(P ũ, eT1 ũ) if eT1 ũ ≥ 0,
(ũ, eT1 ũ) if eT1 ũ < 0.

In fact, π is differentiable in S \ F with Jacobian matrix

Dπ|(u,v) =
{

(P |0) if v > 0,
(I|0) if v < 0,

where (P |0) and (I|0) stand for the augmented matrices by appending a last null column
to the matrices P and I respectively. Therefore, π is a diffeomorphism defined on S \ F
inducing the differential equation on R

s \
{

eT1 ũ = 0
}

given by

ũ′ =

{

P (A− aeT1 )P ũ+ Pb if eT1 ũ > 0,
(A+ aeT1 )ũ+ b if eT1 ũ < 0,

which is differentially conjugate to (3.9) on S \ F and, hence, to the slow subsystem (3.3)
on S \ F .

Since the slow subsystem (3.8) is linear on the half-spaces {eT1 u > 0} and {eT1 u < 0}, the
reduced flow is determined by the eigenvalues of the matrices P (A− aeT1 )P and A+ aeT1 ,
respectively. On the manifold {eT1 u = 0}, the direction of the reduced flow depends on
the order of the contact points. In next lemma, we analyze this order of contact.

Lemma 3.2. Let u be a contact point of the reduced flow defined by the slow subsys-
tem (3.8) with the hyperplane {eT1 u = 0}. The order of contact of u is one if and only if
eT1 (Au+b) 6= 0 and, the order of contact is k ≥ 2, if and only if eT1 A

r(Au+b) = 0 when
r = 0, 1, . . . , k − 2 and eT1 A

k−1(Au+ b) 6= 0.
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Proof. Since P = I − e1e
T
1 , it is satisfied that P = P−1 and eT1 P = −eT1 . Moreover, when

eT1 u = 0, it is also held that Pu = u,

eT1
(

P
(

A− aeT1
)

P
)r (

P (A− aeT1 )Pu+ Pb
)

=− eT1
(

A− aeT1
)r

(Au+ b),

eT1
(

A+ aeT1
)r ((

A+ aeT1
)

u+ b
)

=eT1
(

A+ aeT1
)r

(Au+ b),
(3.10)

for r ≥ 0.

The case k = 1 follows by taking r = 0 in expressions (3.10). If k ≥ 2, under the assump-
tion eT1 A

r(Au+b) = 0 for r = 0, 1, . . . , k−2 and eT1 A
k−1(Au+b) 6= 0, it follows from ex-

pressions (3.10) that eT1
(

A− aeT1
)r

(Au+b) = eT1
(

A+ aeT1
)r

(Au+b) = eT1 A
r(Au+b) =

0 for r = 0, 1, . . . , k − 2 and eT1
(

A− aeT1
)k−1

(Au + b) = eT1
(

A+ aeT1
)k−1

(Au + b) =
eT1 A

k−1(Au+ b) 6= 0. Therefore, in terms of the vector field of subsystem (3.8), it means
that u is a contact point of order k. The reverse implication is obtained by assuming

eT1
(

A− aeT1
)r

(Au + b) = 0 for r = 0, 1, . . . , k − 2, eT1
(

A− aeT1
)k−1

(Au + b) 6= 0 and,
by applying an induction on r.

The slow subsystem (3.8) can be extended, by adopting Filippov’s convention (see Con-
vention 1.1 or Filippov (1988)), to the hyperplane {eT1 u = 0} as

u′ =











P (A− aeT1 )Pu+ Pb eT1 u > 0,
1

2
(P + I)(Au+ b) eT1 u = 0,

(A+ aeT1 )u+ b eT1 u < 0.

(3.11)

Remark 3.3. Since eT1 P = −eT1 , the vector field on {eT1 u = 0} satisfies eT1 (P + I)(Au+
b) = 0, so sewing regions do not exist. Moreover, for contact points u0 of order two
i.e. when r = 1 in equalities (3.10), these expressions write as −eT1A(Au0 + b) 6= 0 and
eT1 A(Au0 + b) 6= 0, since eT1 (Au0 + b) = 0. Hence, visible/invisible two-fold singularities
cannot be.

3.3 Perturbed dynamics

3.3.1 Dynamics around the slow manifold

In this subsection we analyze the dynamics of the perturbed differential system (3.1),
written as system (3.4), through different lemmas which lead us to prove Theorem 3.1.
We present a self-contained proof including: an explicit relation between the eigenvalues
of both the unperturbed and the singularly perturbed systems, and an explicit expression
for the slow manifold.

Since system (3.1) is piecewise linear, first we deal with the spectrum of the associated
matrices B+

ε and B−
ε . After that, by using the generalized eigenvectors associated to the

slow eigenvalues, we give explicit expressions of two locally invariant half-hyperplanes S+ε
and S−ε . Finally we prove that S+ε ∪S−ε is a Fenichel’s slow manifold. That is, Sε = S+ε ∪S−ε .

Lemma 3.3. Let us consider system (3.1) written as system (3.4).

a) The spectrum of the matrix B+
ε is composed by s eigenvalues of O(ε) plus one eigen-

value of O(1). To be precise, the eigenvalues are

λ+
k = β+

k ε+O(ε2) for k = 1, . . . , s and λ+
n = 1 + eT1 a ε+O(ε2)
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60 Slow-fast n-dimensional piecewise linear systems

where each β+
k is an eigenvalue of the associated matrix P (A − aeT1 )P of the slow

subsystem (3.8) defined on {eT1 u > 0}.

b) The spectrum of the matrix B−
ε is composed by

λ−
k = β−

k ε+O(ε2) for k = 1, . . . , s and λ−
n = −1− eT1 a ε+O(ε2)

where each β−
k is an eigenvalue of the associated matrix A+ aeT1 of the slow subsys-

tem (3.8) defined on {eT1 u < 0}.

Proof. Let us consider system (3.4). Let B+
0 and B−

0 be the limits when ε tends to zero
of the matrices B+

ε and B−
ε , respectively. From equation (3.5), it is easy to check that B+

0

(respectively, B−
0 ) has one eigenvalue equal to 0 with multiplicity s and one eigenvalue

equal to 1 (respectively, equal to −1). Therefore, in system (3.4), the eigenvalues of B+
ε

and B−
ε are obtained by adding terms of order 1 and higher in ε to the eigenvalues of B+

0

and B−
0 , respectively.

The remainder of the proof is devoted to compute the coefficient of ε in the development
of λ+

k . Similar arguments can be applied to compute the corresponding coefficient of λ−
k .

Given k such that 1 ≤ k ≤ s, consider the eigenvalue λ+
k of B+

ε . Then, it is satisfied that

0 = det
(

B+
ε − λ+

k I
)

= det

(

εA− λ+
k I εa

eT1 1− λ+
k

)

= εs det

(

A− (β+
k +O(ε))I a
eT1 1− β+

k ε+O(ε2)

)

.

The matrix in the last determinant can be expressed as the sum of one non ε-depending
matrix and another one containing only terms on ε. Therefore, applying Lemma A.2(a)
given in Appendix A, the last expression writes as

0 = det

(

A− β+
k I a

eT1 1

)

+O(ε),

which, by using Lemma A.1 in Appendix A, can be simplified as det
(

A− aeT1 − β+
k I
)

+
O(ε) = 0. Since this equation is satisfied for every ε small enough, we conclude that
det
(

A− aeT1 − β+
k I
)

= 0 and so β+
k is an eigenvalue of the matrix A− aeT1 . On the other

hand, since P is an involutory matrix, the matrices A− aeT1 and P (A− aeT1 )P have the
same eigenvalues. This proves the lemma for the eigenvalues λ+

k with 1 ≤ k ≤ s.

Consider now the eigenvalue λ+
n . A direct consequence of Lemma A.2(b) given in Appendix

A is that

0 = det(B+
ε − λ+

n I) = det

(

εA− λ+
n I εa

eT1 1− λ+
n

)

= det

(

−λ+
n I εa

eT1 1− λ+
n

)

+O(ε2).

The determinant in the last member can be developed in terms of ε, by using the coffactor
expansion along the last row. Hence, the previous equation is written as

0 = (−λ+
n )

s−1
(

(λ+
n )

2 − λ+
n − ε eT1 a

)

+O(ε2).

Therefore, replacing λ+
n by 1+αε+O(ε2) in the previous equation and taking into account

that this equation is satisfied for all ε > 0 small enough, we conclude that α = eT1 a.
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From the expression of the eigenvalues of the matrices B+
ε and B−

ε provided in Lemma 3.3,
we conclude that λ+

n and λ−
n are responsible for the fast dynamics (we call them the fast

eigenvalues) whereas, also considering Lemma 3.1, the remaining eigenvalues {λ+
k }sk=1 and

{λ−
k }sk=1 are responsible for the slow dynamics (we call them the slow eigenvalues). We also

want to remark the relation between the slow eigenvalues and the eigenvalues of the slow
subsystem (3.8), since the second ones appear as the first coefficient in the development
in ε of the first ones. Hence, the slow dynamics takes place on the hyperplanes generated
by the generalized eigenvectors associated with the slow eigenvalues.

Let w+ and w− be eigenvectors associated with the eigenvalues λ+
n and λ−

n of the trans-
posed matrices (B+

ε )
T and (B−

ε )
T , respectively. That is

(w+)TB+
ε = λ+

n (w
+)T and (w−)TB−

ε = λ−
n (w

−)T .

Since λ+
n is different from λ+

k , k = 1, . . . , s (see Lemma 3.3), the eigenvector w+ is or-
thogonal to the generalized eigenvectors associated to the slow eigenvalues. Analogous
arguments apply to the w− eigenvector. Consequently, we define the half-hyperplanes

S+
ε =

{

p = (u, v)T ∈ R
n : v ≥ 0, (w+)Tp =

−(w+)T cε

λ+
n

}

,

(3.12)

S−
ε =

{

p = (u, v)T ∈ R
n : v ≤ 0, (w−)Tp =

−(w−)T cε

λ−
n

}

.

Lemma 3.4. The manifold S+ε ∪ S−ε is locally invariant under the flow of system (3.1)
written, in its matrix form, as system (3.4).

Proof. Let p = (u, v)T ∈ S+ε . Since v ≥ 0 and

(w+)T
(

B+
ε p+ cε

)

= λ+
n (w

+)Tp+ (w+)T cε = 0,

the vector field defined by system (3.4) at p is tangent to the half-hyperplane S+ε at this
point. We conclude that S+ε is locally invariant (S+ε has a boundary at v = 0) under the
flow. The lemma follows by applying similar arguments to S−ε .

By computing expressions of the eigenvectors w+ and w−, in the next result we obtain
explicit expressions of the half-hyperplanes S+ε and S−ε .

Lemma 3.5. Let us consider system (3.1) written in its matrix form as system (3.4). For
ε sufficiently small it follows that

S+ε =

{

(u, v) ∈ R
n : v ≥ 0, −eT1 (εA− λ+

n I)
−1u+ v =

ε

λ+
n
eT1 (εA− λ+

n I)
−1b

}

and

S−ε =

{

(u, v) ∈ R
n : v ≤ 0, −eT1 (εA− λ−

n I)
−1u+ v =

ε

λ−
n
eT1 (εA− λ−

n I)
−1b

}

.

Proof. Consider an eigenvector w+ written as w+ = (w+
1 ,w

+
n )

T . Since (w+)TB+
ε =

λ+
n (w

+)T , from the expression of B+
ε in equation (3.5), it is satisfied that

(w+
1 )

T (εA− λ+
n I) + w+

n e
T
1 = 0,

(w+
1 )

T εa+w+
n (1− λ+

n ) = 0.
(3.13)
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By Lemma A.3(b) given in Appendix A, since ε is small enough, the matrix εA − λ+
n I is

regular. Then, from the first equation in (3.13), w+
1 can be written as a function of w+

n .

By fixing w+
n = 1, we obtain w+ =

(

−eT1 (εA− λ+
n I)

−1, 1
)T

. Hence, the expression of S+ε
is derived from equation (3.12).

The lemma is finally proved by following the same procedure to compute w− and S−ε .

Lemma 3.6. Let us consider system (3.1) written in its matrix form as system (3.4). For
ε > 0 small enough, S+ε is a repellor manifold and S−ε is an attractor one.

Proof. Let v+
n be an eigenvector of the matrix B+

ε associated to the eigenvalue λ+
n , p be

a point in S+ε , and q = p + δv+
n be a point outside the invariant manifold S+ε . Con-

sider xp(t) and xq(t) be the solutions of system (3.4) with initial conditions p and q,
respectively. Since the considered system is locally linear, for |t| small enough, xq(t) =

eB
+
ε tq+

∫ t
0 e

B+
ε (t−s)cε ds = xp(t)+eλ

+
n t δv+

n . In view of S+ε is locally invariant and λ+
n > 0,

for ε sufficiently small, the solution xq(t) moves away from the manifold S+ε with the

exponential ratio eλ
+
n t, implying that S+ε is a repellor manifold.

Similar arguments can be applied to analyze the stability of S−ε , finishing the proof of the
lemma.

In Lemma 3.6, we have described the flow of the perturbed system (3.1) surrounding the
manifold S+ε ∪ S−ε . In the next result, since S+ε ∪ S−ε is locally invariant, we prove that
S+ε ∪ S−ε is the slow manifold Sε of system (3.1) and, we also discuss the behaviour of the
flow on this manifold.

Lemma 3.7. The flow of system (3.4) restricted to the invariant manifold S+ε ∪S−ε ∩{v 6=
0} is a regular perturbation of the reduced flow defined by (3.3) and restricted to S \ F .

Proof. To prove the lemma, we are going to show that the projection by π(u, v) = u +
(v−u1)e1 of the vector field (3.4) defined on (S+ε ∪ S−ε )∩{v 6= 0} is a regular perturbation
of the vector field given by system (3.8).

Let (u, v) ∈ S+ε ∩ {v 6= 0}. By definition of S+ε , see Lemma 3.5, the variable v can be
expressed as a function of the variable u. The component u1 can be also expressed as a
function of variable v and the rest of components of u. Similar arguments can be applied
when (u, v) ∈ S−ε ∩ {v 6= 0}. Hence, we obtain

v =























eT1 (εA− λ+
n I)

−1

(

ε

λ+
n
b+ u

)

if (u, v) ∈ S+ε ,

eT1 (εA− λ−
n I)

−1

(

ε

λ−
n
b+ u

)

if (u, v) ∈ S−ε

and

u1 = U1(û, v) =























1

eT1 (εA− λ+
n I)−1e1

(

v − eT1 (εA− λ+
n I)

−1

(

ε

λ+
n
b+ û

))

if v > 0,

1

eT1 (εA− λ−
n I)−1e1

(

v − eT1 (εA− λ−
n I)

−1

(

ε

λ−
n
b+ û

))

if v < 0,
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where û = (0, u2, . . . , us)
T . Then, the projection π restricted to (S+ε ∪ S−ε ) ∩ {v 6= 0}

satisfies

ũ = π(u, v) =























u+

(

eT1 (εA− λ+
n I)

−1

(

ε

λ+
n
b+ u

)

− u1

)

e1 if (u, v) ∈ S+ε ,

u+

(

eT1 (εA− λ−
n I)

−1

(

ε

λ−
n
b+ u

)

− u1

)

e1 if (u, v) ∈ S−ε

with inverse given by π−1(ũ) = (U1(ũ− ũ1e1, ũ1), ũ2, . . . , ũs, ũ1)
T .

Since the Jacobian matrix of π is

Dπ(u, v) =

{ (

I + e1e
T
1

(

(εA− λ+
n I)

−1 − I
)

|0
)

if v > 0,
(

I + e1e
T
1

(

(εA− λ−
n I)

−1 − I
)

|0
)

if v < 0,

the induced vector field on R
s \ {ũ1 = 0} is given by

˙̃u =

{

Dπ
(

π−1(ũ)
) (

B+
ε π

−1(ũ) + cε
)

if eT1 ũ > 0,
Dπ

(

π−1(ũ)
) (

B−
ε π

−1(ũ) + cε
)

if eT1 ũ < 0.
(3.14)

By parametrizing the time (τ = tε) and taking into account the expressions of the vector
cε and the matrices B+

ε and B−
ε , see equation (3.5), the vector field (3.14) is written as

ũ′ =























































(

I + e1e
T
1

(

(εA− λ+
n I)

−1 − I
))

(

(A|a)π−1(ũ)− ε

λ+
n

eT1 (εA− λ+
n I)

−1b

eT1 (εA− λ+
n I)−1e1

Ae1 + b

)

if eT1 ũ > 0,

(

I + e1e
T
1

(

(εA− λ−
n I)

−1 − I
))

(

(A|a)π−1(ũ)− ε

λ−
n

eT1 (εA− λ−
n I)

−1b

eT1 (εA− λ−
n I)−1e1

Ae1 + b

)

if eT1 ũ < 0.

(3.15)

Considering the fact that

lim
ε→0

(

I + e1e
T
1

(

(εA− λ+
n I)

−1 − I
))

= P, lim
ε→0

(

I + e1e
T
1

(

(εA− λ−
n I)

−1 − I
))

= I

and

lim
ε→0

U1(ũ− ũ1e1, ũ1) =

{

−ũ1 if eT1 ũ > 0,
ũ1 if eT1 ũ < 0,

then the limit

lim
ε→0

π−1(ũ) =

{

P ũ if eT1 ũ > 0,
ũ if eT1 ũ < 0

is derived. Finally, using that eT1 P ũ = −eT1 ũ, we conclude that system (3.15) tends to
the differential system (3.8) as ε tends to zero.

Proof of Theorem 3.1. Statements (a), (b) and (c) are straightforward consequences
of Lemmas 3.4, 3.7 and 3.6, respectively.

To prove statement (d), we proceed as follows. Given a compact subset Ŝ of the critical
manifold S, we split it into the two compact subsets Ŝ+ = Ŝ∩{v ≥ 0} and Ŝ− = Ŝ∩{v ≤ 0}
and, we want to prove the existence of two compact subsets, Ŝ+ε and Ŝ−ε , such that
dH(Ŝ+ε , Ŝ+) = O(ε) and dH(Ŝ−ε , Ŝ−) = O(ε). The proof will finish by setting Ŝε = Ŝ+ε ∪Ŝ−ε .
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Consider ε small enough. Due to the fact that the matrix εA − λ+
n is invertible (see

Lemma A.3(b) given in Appendix A), by isolating v and by adding u1 at both sides of the
expression of S+ε in Lemma 3.5, we obtain

S+ε =

{

(u, v) ∈ R
n : v ≥ 0, u1 + v =

ε

λ+
n
eT1 (εA− λ+

n I)
−1b+ eT1

(

(εA− λ+
n )

−1 + I
)

u

}

.

Let K be the compact set obtained by projecting Ŝ+ on its first s components. By
way of notation we call projRs to this map, i.e. K = projRs(Ŝ+). Therefore, taking
Ŝ+ε = proj−1

Rs (K) ∩ S+ε , we are going to see that dH(Ŝ+ε , Ŝ+) = O(ε).

Using the expansion of (εA − λ+
n I)

−1 provided in Lemma A.3(b) and the fact that λ+
n =

1+O(ε) (see Lemma 3.3), we obtain (εA−λ+
n I)

−1 = −I+O(ε). Whence, Ŝ+ε = {(u, v) ∈
R
n : v ≥ 0, u1 + v = O(ε)}, since u ∈ K. Hence dH(Ŝ+ε , Ŝ+) = O(ε), because Ŝ+ =
{(u, v) ∈ R

n : v ≥ 0, u1 + v = 0}. In a similar way, by taking Ŝ−ε = proj−1
Rs (K) ∩ S−ε , we

obtain dH(Ŝ−ε , Ŝ−) = O(ε).

3.3.2 Existence of maximal canard and faux maximal canard orbits

In this subsection, given the local linear manifolds S+ε and S−ε , we first present conditions
on the coefficients of system (3.1) to obtain maximal and faux maximal canard points.
Second, since these points are located in the intersection S+ε ∩ S−ε , we use their order
of contact with the flow to discuss the existence of solution points of the linear system
defined by this intersection. Finally, as a consequence, we provide the proofs of theorems
3.2 and 3.3.

From Lemma 3.5, a point pε = (u, v) belongs to the intersection S+ε ∩ S−ε if and only
if the coordinate v is zero and the vector u = (u1, u2, . . . , us)

T satisfies the following
two-dimensional linear system with s = n− 1 variables































z+11u1 + z+12u2 + . . .+ z+1sus = −
ε

λ+
n

s
∑

k=1

z+1kbk,

z−11u1 + z−12u2 + . . .+ z−1sus = −
ε

λ−
n

s
∑

k=1

z−1kbk,

(3.16)

where z+ij and z−ij are the (i, j)-th elements of the matrices (εA− λ+
n I)

−1
and (εA− λ−

n I)
−1

,
respectively. Next lemma provides conditions on the coefficients of system (3.1) to ensure
the existence of solutions in system (3.16).

Lemma 3.8. Let us consider system (3.1) with ε > 0 small enough.

a) Suppose s ≥ 2. If a1j 6= 0 for some j ∈ {2, . . . , s} then, S+ε ∩S−ε is a linear manifold
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of dimension n− 3 and every pε = (u1, u2, . . . , us, 0)
T ∈ S+ε ∩ S−ε satisfies

u1 = −
ε2

λ+
n λ

−
n

1

a1j











s
∑

k=2

(a1kakjb1 − a1ka1jbk) +

s
∑

k = 2
k 6= j

s
∑

l=2

(a1ka1lalj − a1ja1lalk)uk











+O(ε3),

uj = −
1

a1j











b1 +

s
∑

k = 2
k 6= j

a1kuk











+O(ε).

b) Suppose that s = 1, or s ≥ 2 and a1j = 0 for all j ∈ {2, . . . , s}.

b.1) If b1 = 0, then S+ε ∩ S−ε is a linear manifold of dimension n− 2. Furthermore,
S+
ε ∩ S−

ε is invariant under the flow of system (3.1) and so, neither maximal
nor faux maximal canard orbits exist.

b.2) If b1 6= 0, then S+ε ∩S−ε is empty and neither maximal nor faux maximal canard
orbits exist.

Proof. Under the assumption of statement (a), let j0 ∈ {2, . . . , s} be a subscript such that
a1j0 6= 0 and consider the squared submatrix formed by the first and the j0-th columns of
the coefficient matrix in system (3.16). For simplicity we call it M . The determinant of
M is computed, by Lemma A.3(b.1), as

detM = z+11z
−
1j0
− z+1j0z

−
11 =

λ+
n − λ−

n

(λ+
n λ

−
n )2

(

εa1j0 + ε2
λ+
n + λ−

n

λ−
n λ

+
n

s
∑

k=1

a1kakj0 +O(ε3)

)

6= 0.

Consequently, the dimension of the linear manifold S+ε ∩S−ε is n− 3 and, the components
u1 and uj0 can be expressed as a function of the rest of components as

(

u1
uj0

)

= M−1





















− ε

λ+
n

s
∑

k=1

z+1kbk −
s
∑

k = 2
k 6= j0

z+1kuk

− ε

λ−
n

s
∑

k=1

z−1kbk −
s
∑

k = 2
k 6= j0

z−1kuk





















.

Statement (a) of this lemma follows straightforward by using the expansion in power series
in ε of z+i,j and z−i,j given in Lemma A.3(b.1) of Appendix A.

Suppose now that a1j = 0 for all j ∈ {2, . . . , s}. From Lemma A.3(b.2) in Appendix A, it
follows that z+1j = 0, z−1j = 0 for j ∈ {2, . . . , s},

z+11 = −
1

λ+
n

(

1 +
∞
∑

k=1

(

εa11

λ+
n

)k
)

6= 0, z−11 = −
1

λ−
n

(

1 +
∞
∑

k=1

(

εa11

λ−
n

)k
)

6= 0.

Therefore, system (3.16) can be recast as u1 = − ε
λ+
n
b1 and u1 = − ε

λ−

n
b1. Since λ+

n λ
−
n < 0,

we conclude that this system is compatible only if b1 = 0. In this case, the linear manifold
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S+ε ∩ S−ε has dimension n− 2. Since, a1j = 0 for all j ∈ {2, . . . , s}, b1 = 0 and u1 = 0, by
one hand, and v = 0 on S+ε ∩ S−ε , on the other; then, S+ε ∩ S−ε is invariant under the flow
of system (3.1). A direct consequence of this invariance is the fact that neither maximal
nor faux maximal canards orbits can exist. This proves statement (b). Assuming that
b1 6= 0, we have that system (3.16) is incompatible and, hence, statement (c) follows.

The analysis of the direction of the vector field of system (3.1) at the intersection points
pε ∈ S+ε ∩S−ε , shown in Lemma 3.8(a), allows us to characterize them as maximal or faux
maximal canard points. We approach this analysis, concerning the order of contact, in
next lemma.

Lemma 3.9. Let k be the order of contact of the flow of system (3.1) with the switching
manifold {v = 0} at a contact point p = (u, 0)T ∈ R

n.

a) k = 1 if and only if eT1 u 6= 0. Moreover, if eT1 u > 0 (resp. eT1 u < 0) the orbit γp
through p crosses {v = 0} in the direction (resp. opposite direction) of the vector
en.

b) k = 2 if and only if eT1 u = 0 and eT1 (Au+ b) 6= 0.

c) k ≥ 3 if and only if eT1 u = 0, eT1 A
r(Au + b) = 0 with r = 0, 1, . . . , k − 3 and

eT1 A
k−2(Au+ b) 6= 0.

Proof. Consider the system (3.1) written in its matrix form (3.4). To prove statement (a),
by straightforward computations, we obtain

eTn
(

B+
ε p+ cε

)

= eTn
(

B−
ε p+ cε

)

= eT1 u. (3.17)

Therefore, from the previous equalities and expressions (3.6), we obtain that the order of
contact at p is k = 1 if and only if eT1 u 6= 0. Moreover, since the vector (B+

ε p+ cε) =
(B−

ε p+ cε) is tangent to the flow at the point p, we conclude statement (a).

To prove statement (b), let us consider Lemma A.4 of Appendix A where the matrix B
is either B+

ε or B−
ε and the vector c is cε, as they are given in expressions (3.5). In this

case, since eT1 u = 0, by considering the equality of Lemma A.4(a) and multiplying both
sides for the last element of the canonical base of Rn, we obtain

eTnB
+
ε

(

B+
ε p+ cε

)

= eTnB
−
ε

(

B−
ε p+ cε

)

= ε eT1 (Au+ b). (3.18)

Then, the proof of statement (b) follows from expressions (3.6), (3.17) and (3.18).

Finally, to prove statement (c), let us assume that k ≥ 3, eT1 u = 0 and eT1A
l (Au+ b) = 0

for all l = 0, . . . , k − 3. Therefore, by Lemma A.4(b) and following the same procedure
than before,

eTn
(

B+
ε

)k−1 (
B+

ε p+ cε
)

= eTn
(

B−
ε

)k−1 (
B−

ε p+ cε
)

= εk−1eT1 A
k−2(Au+ b). (3.19)

Hence, statement (c) is a consequence of expressions (3.6), (3.17), (3.18) and (3.19).

Proof of Theorem 3.2. Statement (a) follows from Lemma 3.8(a), where we have char-
acterized the points pε = (uε, 0)

T in the intersection S+ε ∩ S−ε .

In order to distinguish whether pε is a maximal canard or a faux maximal canard point
and so, to end the proof of statement (a), we recall that in Lemma 3.9(a) we analyze the
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sign of the non-zero equation in (3.6). Therefore, when eT1 uε > 0, the order of contact
of pε is k = 1, and the orbit γpε crosses the switching manifold from S−ε to S+ε implying
that pε is a maximal canard point. This proves statement (a.1). Similarly, if eT1 uε < 0,
the order of contact of pε is also k = 1, the orbit γpε crosses the switching manifold from
S+ε to S−ε , and so pε is a faux maximal canard point. This proves (a.2).

Otherwise, when eT1 uε = 0, the order of contact k is greater than one, proving (a.3). We
note that, in this case, the maximal canard points are those satisfying that k is odd and
eT1 A

k−1(Auε + b) > 0 (see Lemma 3.9(c)) and the faux maximal canard points are those
satisfying that k is also odd but eT1 A

k−1(Auε + b) < 0.

Finally, statements (b.1) and (b.2) follow from Lemma 3.8(b.1) and (b.2), respectively.

Proof of Theorem 3.3. Let pε = (uε, 0)
T be a point in S+ε ∩ S−ε and p0 = (u0, 0)

T be
the limit of pε when ε tends to zero. To prove statement (a) we are going to see that
eT1 u0 = 0 and eT1 (Au0 + b) = 0, i.e. that p0 is a contact point of order greater than or
equal to two of the slow subsystem with the hyperplane F (see Lemma 3.2).

From the expressions of the manifolds S+ε and S−ε in Lemma 3.5, pε satisfies that

eT1 (εA− λ+
n I)

−1

(

uε +
ε

λ+
n
b

)

= 0 and eT1 (εA − λ−
n I)

−1

(

uε +
ε

λ−
n
b

)

= 0.

Moreover, from the development of the matrices (εA−λ+
n I)

−1 and (εA−λ−
n I)

−1 in power
series of ε (see Lemma A.3(b) in Appendix A), these equalities can be rewritten as

eT1 uε +

∞
∑

k=1

(

ε

λ+
n

)k

eT1 A
k−1(Auε + b) = 0,

(3.20)

eT1 uε +

∞
∑

k=1

(

ε

λ−
n

)k

eT1 A
k−1(Auε + b) = 0.

Therefore, considering the limit when ε tends to zero in each one of the above equations,
we conclude that eT1 u0 = limεց0 e

T
1 uε = 0. On the other hand, by subtracting the second

equation in (3.20) to the first one, and removing the common factor ε, we obtain

(

1

λ+
n
− 1

λ−
n

)

eT1 (Auε + b) +
∞
∑

k=1

εk

(

1
(

λ+
n

)k+1
− 1
(

λ−
n

)k+1

)

eT1 A
k(Auε + b) = 0. (3.21)

Since λ+
n and λ−

n are different numbers, taking the limit when ε tends to zero in (3.21),
it follows that eT1 (Au0 + b) = limεց0 e

T
1 (Auε + b) = 0, which ends the proof of state-

ment (a).

In the particular case of n = 3, that is when s = 2, taking pε = (u1, u2, 0)
T be the unique

maximal canard or faux maximal canard point, from Theorem 1.2 in Prohens and Teruel
(2013) it follows that a12 6= 0, u1 = − d3

λ+
n λ−

n
ε2 with d3 = b1a22 − b2a12 and u0 =

(0,−b1/a12)T . Since pε is a contact point of order one, from Lemma 3.9(a) we obtain
that u1 6= 0 and direct computations give eT1 A(Au0 + b) = −d3 6= 0. Therefore, u0 is
a contact point of order two of the reduced flow with F (see Lemma 3.2), which proves
statement (b).
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3.4 Examples

In this section, we illustrate through two examples our results. A 4-dimensional example
allows us to see the coexistence of maximal and faux maximal canards. However, in order
to fully appreciate how a faux maximal canard bifurcates from the perturbation of an
invisible two-fold, we also consider an example in R

3.

3.4.1 A 4-dimensional piecewise linear example

Let us consider the following 4-dimensional piecewise linear version of the canonical form
in the expression (20) in the work of Wechselberger (2012),















u̇1 =
1
2µu2 − (1 + µ)v,

u̇2 = a23u3 + 1,
u̇3 = u3,
εv̇ = u1 + |v|,

(3.22)

where µ and a23 ≥ 0 are fixed real parameters. The parameter a23 has been added so that
the example exhibits the most complete structure of orbits connecting the two branches
of the slow manifold.

The linear systems, defined by system (3.22) at each side of the switching manifold {v = 0},
have eigenvalues given by

λ+
1 = λ−

1 = 0, λ+
2 = λ−

2 = ε,

λ+
3 = −λ−

3 =
1−
√

1−4ε(1+µ)

2 , λ+
4 = −λ−

4 =
1+
√

1−4ε(1+µ)

2 ,

where the fast ones are λ+
4 and λ−

4 . From Theorem 3.1, the slow manifold Sε is given by
the union of the repelling branch

S+
ε =

{

(u, v) ∈ R
4 : v ≥ 0, u1 +

εµ

2λ+
4

u2 −
ε2µa23

2λ+
4 (ε− λ+

4 )
u3 + λ+

4 v = − ε2µ

2(λ+
4 )

2

}

and the attracting one

S−
ε =

{

(u, v) ∈ R
4 : v ≤ 0, u1 +

εµ

2λ−
4

u2 −
ε2µa23

2λ−
4 (ε− λ−

4 )
u3 + λ−

4 v = − ε2µ

2(λ−
4 )

2

}

.

If µ = 0, the intersection of these half-hyperplanes is the plane S+ε ∩S−ε = {u1 = 0, v = 0},
which is invariant under the flow of system (3.22). Therefore, neither maximal nor faux
maximal canards exist. This statement agrees with Theorem 3.2(b.1). Otherwise, if µ 6= 0,
the intersection S+ε ∩ S−ε yields to the locus of either maximal or faux maximal canard
points, and it corresponds to the straight line

S+ε ∩ S−ε =

{

(

ε2µ

2

(

a23

ε2 − (λ+
4 )

2
u3 −

1

(λ+
4 )

2

)

,
ε2a23

ε2 − (λ+
4 )

2
u3, u3, 0

)T

: u3 ∈ R

}

.

Depending on the sign of the first coordinate of each point pε ∈ S+ε ∩ S−ε , from the last
equation in (3.22), pε is a maximal or faux maximal canard point. This declaration agrees
with Theorem 3.2(a). Next we discuss about the coexistence of both maximal and faux
maximal canard orbits, depending on the parameters a23 and µ.
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When a23 = 0, the sign of the first coordenate of pε does not change along S+ε ∩ S−ε .
Therefore, maximal and faux maximal canard points do not coexist on this straight line.
Specifically, only maximal canard points exist when µ < 0 and only faux maximal canard
points exist when µ > 0. Note that this case corresponds to the 4-dimensional piecewise
linear system discussed in Remark 3.2.

On the other hand, if a23 > 0, the first coordinate vanishes when u∗3 =
1

a23

(

(

ε
λ+
4

)2
− 1

)

,

that is at the point

p∗
ε =

(

0,

(

ε

λ+
4

)2

,
1

a23

(

(

ε

λ+
4

)2

− 1

)

, 0

)T

.

Since expression (3.6) holds for k = 2, i. e.

eT4 (B
+
ε p

∗
ε + cε) = eT4 (B

−
ε p

∗
ε + cε) = 0

eT4 B
+
ε (B

+
ε p

∗
ε + cε) = eT4 B

−
ε (B

−
ε p

∗
ε + cε) =

ε3µ

2
(

λ+
4

)2 6= 0,

the flow has second order contact with the switching manifold at point p∗
ε. Then, the orbit

through p∗
ε does not cross the switching manifold; this fact means that the orbit remains

confined in one of the half-hyperplanes, depending on the sign of µ. Therefore, this point
is neither a maximal nor a faux maximal canard point. Nevertheless, p∗

ε is a relevant point
since it separates the half-line formed by the maximal canard points (u3 < u∗3 if µ > 0 or
u3 > u∗3 if µ < 0) from that formed by the faux maximal canard points (u3 > u∗3 if µ > 0
or u3 < u∗3 if µ < 0).

To see the source of maximal and faux maximal canards, take the limiting case when ε
tends to zero of the straight line S+ε ∩ S−ε and p∗

ε; that is

S+0 ∩ S−0 = {(0, 0, u3, 0) : u3 ∈ R} and p∗
0 =

(

0, 0,− 1

a23
, 0

)

,

and consider, from system (3.8), the reduced flow given by














v′ = sgn(v)

(

(1 + µ)v − 1

2
µu2

)

,

u′2 = a23u3 + 1,
u′3 = u3.

Straightforward computations show that each point in the straight line S+0 ∩S−0 is a contact
point of order two, except the p∗

0 point which is a contact point of order three. This result
agrees with Theorem 3.3(a). Moreover, note that p∗

0 separates visible from invisible two-
folds in the way depicted in Figure 3.2. We conclude that maximal canard points and
faux maximal canard points bifurcate from visible and invisible two-fold singularities,
respectively. This fact might indicate that Theorem 3.3(b) is also true for n > 3.

3.4.2 A 3-dimensional piecewise linear example

In order to illustrate how a faux maximal canard orbit bifurcates from the perturbation of
an invisible two-fold singularity, which results to be a singular faux canard, let us consider
the following 3-dimensional piecewise linear system







u̇1 =
1
2µu2 − (1 + µ)v,

u̇2 = 1,
εv̇ = u1 + |v|,

(3.23)
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p∗
0

(b)

u3

u2

(a)

p∗
0 u3

u2

Figure 3.2: Reduced flow defined by the piecewise linear system (3.22) on the fold manifold
{v = 0} (grey areas). The upper half-space corresponds to the repelling branch of the
critical manifold and the bottom half-space corresponds to the attracting one. Each point
in the u3-axis is a two-fold singularity except the point p∗

0 which has order of contact
equal to three. Therefore, p∗

0 separates visible two-folds from invisible two-folds: (a) when
µ > 0 and (b) when µ < 0.

where µ > 0. This system is a piecewise linear version of the canonical form given by the
expression (20) in the work of Wechselberger (2012).

As in previous example, at each side of the switching manifold {v = 0}, system (3.23) has
eigenvalues given by

λ+
1 = λ−

1 = 0, λ+
2 = −λ−

2 =
1−
√

1−4ε(1+µ)

2 , λ+
3 = −λ−

3 =
1+
√

1−4ε(1+µ)

2 ,

where the fast ones are λ+
3 and λ−

3 .

The repelling and attracting branches are respectively

S+ε = {(u1, u2, v) ∈ R
3 : v ≥ 0, 2(λ+

3 )
2u1 + λ+

3 εµu2 + 2(λ+
3 )

3v = −ε2µ},
S−ε = {(u1, u2, v) ∈ R

3 : v ≥ 0, 2(λ−
3 )

2u1 + λ−
3 εµu2 + 2(λ−

3 )
3v = −ε2µ}.

Their intersection takes place at the point

p∗
ε =

( −ε2µ
2(λ+

3 )
2
, 0, 0

)

,

and the intersection of S+ε and S−ε with the u2-axis takes place at the points p+ =
(0,−ε/λ+

3 , 0)
T and p− = (0,−ε/λ−

3 , 0)
T , respectively.

By Theorem 3.2, since the first component of p∗
ε is negative, a faux maximal canard

through this point exists. Moreover, according to expression (3.6), p+ and p− are contact
points of order two, where the non-zero conditions are given by −(ε2µ)/(2λ+

3 ) < 0 and
−(ε2µ)/(2λ−

3 ) > 0, respectively. Therefore, the orbit through p+ is locally contained in
{v ≤ 0} and the orbit through p− is locally contained in {v ≥ 0}, see Figure 3.3, left
bottom panel.

To see the singular orbit from which the faux maximal canard bifurcates, we consider
the limiting case when ε tends to zero. The critical manifold is S = {(u1, u2, v) ∈ R

3 :
u1 + |v| = 0} and, from expression (3.8), the reduced flow is given by







v′ = sgn(v)

(

(1 + µ)v − 1

2
µu2

)

,

u′2 = 1.
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We observe that, the points p∗
ε, p

+ and p− tend to the origin p∗
0 = (0, 0, 0)T as ε goes

to zero. Straightforward computations show that p∗
0 is an invisible two-fold singularity,

which agrees with Lemma 3.2. See Figure 3.3, left upper panel for a three dimensional
representation of the reduced flow.

Figure 3.3: Representation of the 2-dimensional reduced flow of system (3.23). Upper
panel shows the unperturbed case surrounding the invisible two-fold p∗

0. Bottom panel
shows the perturbed flow where the black point p∗

ε stands for the faux maximal canard
point, while the white points p+ and p− are the breaking points of p∗

0. These white points
are invisible two-fold singularities for S+ε and S−ε , respectively. In right panels we depict
the projection, on {v = 0}, of the reduced flow represented in left panels.

Therefore, the point p∗
0 is the singular faux canard since the faux maximal canard through

p∗
ε bifurcates from p∗

0 after perturbing the system.

3.5 Discussion

In this chapter we have done a next step towards a systematic study of slow-fast dynam-
ics in a piecewise linear setting. An explicit expression for the slow manifold have been
derived. This expression allows to find maximal canard orbits just by intersecting the at-
tracting and repelling branches of the slow manifold. By continuation of these intersection
points, as ε tends to zero, we obtain the points from where maximal canard orbits perturb.
These points are contact points of order greater than or equal to two of the reduced flow
with the fold manifold.

In the smooth case, former points are the folded singularities, and the analysis of maximal
canards are done by perturbing them. We remark that in our piecewise linear framework
this analysis goes exactly on the opposite direction; that is by obtaining the maximal
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canard points from the intersection of the slow manifolds and then looking for the singular
canards as the limiting case.

Comparing the theory of canards in the smooth case with our results in the non-smooth
setting, in Remark 3.2 we conclude that in both situations the dimension of the locus in the
switching manifold, corresponding to maximal or faux maximal canard orbits, coincide.
However, regarding the character of canard orbits, whereas in the folded saddle case they
agree, in the folded node case they do not. This disagreement could be triggered by the
fact that, in our context, normal hyperbolicity is not lost as in the smooth case, it is
simply non-defined. To overcome this situation, other piecewise linear structures, having
the possibility to lose normal hyperbolicity, could be proposed. On this way, we mention
the work in progress of Desroches et al (2016b).

Note that the fast equation in system (3.1) is rather general since each system (3.1) with
the fast equation v̇ = dTu + |v|, where d 6= 0, can be transformed into system (3.1) by

the linear change of variables u→
(

dTu, u2, . . . , un
)T

.

We want to observe that the matrix approach used in this paper may be used to analyze
the slow-fast dynamics in a more general context, for instance, by considering the number
of fast variables greater than one.

72



Chapter 4

Effects of plasticity on synaptic
conductances in a network with
slow oscillations

Neurons in the brain are continuously bombarded by thousands of highly fluctuating in-
puts which generate irregular and variable spike trains. The richness of cognitive skills and
adaptive properties of the human brain are matched by the great complexity of its anatomy
and physiology at all levels, from synapses to sensory maps and systems. This is also re-
flected in the heterogeneity of temporal dynamics associated to those levels, spanning
more than ten orders of magnitude, from microseconds to years. The structural features
of cortical networks are clearly linked to aspects of brain function and dynamics, playing a
crucial role in determining which functional patterns (and thus, brain states) can and can-
not occur. Network connectivity contributes to promote highly complex neural activations,
to maximize information transmission and processing, and to drive the network towards
dynamic states characterized by synchronous/asynchronous features (see Diesmann et al
(1999), Parga and Abbott (2007) and Renart et al (2010)). Network dynamics originated
by the interactions of neuronal assemblies has been extensively studied and characterized
in different ways both in vivo and in vitro during resting conditions or spontaneous activity
(see Buzsáki and Draguhn (2004), van Pelt et al (2004) and Eytan and Marom (2006)),
as well as when external stimuli are delivered to the system (see Massobrio et al (2007),
Wagenaar et al (2005), and Marguet and Harris (2011)).

An important aspect of the brain’s connectivity is the plasticity, changes in the brain con-
nections that can last from milliseconds to years, where the synaptic efficacy changes over
time, reflecting the history of the presynaptic activity. When changes take place in a short
period of time, this phenomenon is called the short-term plasticity (STP); and two types
of STP have been experimentally observed: the short-term depression (STD) and the
short-term facilitation (STF) (see Section 1.1). Depending on the cortical areas, plasticity
can be either STD-domatinated, STF-dominated, or presenting both mechanisms at the
same time (see Stevens and Wang (1995), Abbott and Regehr (2004), Zucker and Regehr
(2002), among others). STD has a large impact on network computations. Experimental
results suggest that this kind of plasticity is modulated by cortical activity, increasing
during the silent states and decreasing during activity states of the neuron. On the other
hand, STF is present at synaptic level depicting a longer time scale than STD. The si-
multaneous presence of such two plasticity mechanisms is responsible of the genesis of
particular spiking patterns like bursts, network bursts, up/down states, among others.
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74 Effects of plasticity on synaptic conductances in a network

Although in the last years advancements in the technology helped to unravel hidden mech-
anisms both at cellular and network level, some aspects remain still unclear without the
use of computer simulations. In this chapter, we use a bio-inspired network model made
up of conductance-based neurons (see Section 2.1.4 or Compte et al (2003) for more de-
tails on the network), where short-term synaptic plasticity mechanisms (both facilitation
and depression) have been added. In Benita et al (2012) the effects caused by short-term
depression on this specific neuronal network have already been studied. Their results show
that there exists a mutual interaction between synaptic depression and network activity.
In this chapter, even though we reproduce the raster plots they obtain for depression, we
aim to move a step forward by adding also the facilitation mechanism to the network.
Moreover, we also aim to see, for both mechanisms, possible dynamics between the exci-
tatory and the inhibitory populations of neurons by taking into account their firing rate
dynamics. Finally, we also study the effects on the excitatory (AMPA, NMDA) and in-
hibitory (GABA) synaptic conductances caused by sweeping the levels of facilitation and
depression, when spontaneous activity is only considered; that is, when the network is
not perturbed by any kind of external stimulation. Besides, these goals, we also obtain
“realistic” conductance traces from our simulations that become a excellent source of in
sillico examples to test the methods developed in Chapter 5.

This chapter is structured as follows. In Section 4.1, we briefly explain the neuronal
network and some neuronal coding tools that we use to obtain our results, presented in
Section 4.2. In Subsection 4.2.1 we explain the results obtained when the short-term
depression level is changing, whereas in Subsection 4.2.2 we depict the results obtained by
changing the short-term facilitation level. Finally, in Section 4.3, we give some conclusions.

4.1 Models and data treatment

To develop this chapter, we use the bio-inspired network in Compte et al (2003), where
a short-term plasticity mechanism has been added according to the description presented
in Dayan and Abbott (2005). Briefly explained, the model is made up of a population of
excitatory multi-compartment neurons and inhibitory single-compartment neurons. These
neurons contain different membrane channels that are modelled according to the Hodgkin-
Huxley formalism. In order to emulate the connectivity rule observed in visual cortex,
neurons are supposed to be spatially arranged on a segment line. Moreover, the synaptic
transmission has been mediated by excitatory AMPA and NMDA, and inhibitory GABA
currents, under the presence of short-term depression and facilitation mechanisms.

When no short-term plasticity is added to the network, the activity of the network presents
alternations of UP and DOWN states. The UP states are intervals of time where neurons
are continuously firing. On the other hand, DOWN states are those intervals where all
neurons are, in general, in a silent state (they do not spike); only a reduced number of
neuron might sporadically fire, without altering the silent state of the rest of neurons in
the network. To see more details about the network see Section 2.1.4.

Because of the big amount of neurons considered in the network, we use two different
neural coding schemes to describe their activity. These schemes are the instantaneous
firing rate (IFR), explained in Section 2.4.1.1, and the raster plot, explained in Section
2.4.1.2. Details about the numerical integration of the network are given in Section 2.4.2.
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4.2 Results

In this section we present the computational results obtained by sweeping the depression
and the facilitation levels of plasticity in the neuronal network described in Section 4.1.
In Subsection 4.2.1 we depict the results by only changing the depression level, whereas
in Subsection 4.2.2 we depict the results by only changing the facilitation level.

4.2.1 Effects of the short-term depression

By changing the depression level, a gradual change of the activity of the network is ob-
served. As already shown in Benita et al (2012), raster plots (upper subpanels) in Figure
4.1 depict how the duration of the UP and DOWN states changes. As we decrease the de-
pression factor, and so we increase the synaptic depression, the network response presents
longer UP states until DOWN states are completely removed. There exists a specific value
f∗
D close to 0.84 and 0.85 where neurons stop to present an UP/DOWN behaviour (ob-
served for fD > f∗

D) to present a tonic firing state (for fD < f∗
D). Simulations presented

in Figure 4.1 last 10 s; however, longer simulations (of 20 s) have been done to ensure,
with more certainty, that a second UP state does not occur.

The f∗
D value may change depending on the intrinsic fluctuations of the neuron. In order

to see their effects we have simulated the network several times, keeping the same fD but
using different random fluctuations. In all cases we have tested this value remains between
0.84 and 0.85

In order to move a step forward from results in Benita et al (2012) and see possible dynamic
explanations, we plot the lower subpanels of Figure 4.1, which represent the IFR averaged
over the excitatory population (red line) and over the inhibitory population (grey line).
These plots show that the inhibitory activity is greater than the excitatory one. Moreover,
the inhibitory population also presents longer activity since inhibitory neurons do spikes
for a longer time period. In fact, the tails depicted at the end of the UP state in the
raster plots correspond to inhibitory neurons. When neurons do not stop firing, i.e. when
fD < f∗

D (see panels G-I), both the excitatory and inhibitory IFR present a damped
oscillation around some fixed value, which is different for each fD. This behaviour might
be caused by the presence of an attracting focus, but the complexity of the model does not
allow to ensure this point. This fact would also explain that, when this point is reached,
then there is no possibility to generate a down state.

To gain insight in the joint dynamics, in Figure 4.2, we depict the dynamics of excitatory
IFR versus the inhibitory IFR, where each panel corresponds to a specific depression level.
In these plots, the mathematical mechanism generated to prevent neurons from firing can
be intuited, as well as why a second UP state is generated. For values of fD lower than
f∗
D ≈ 0.85, the trajectory goes from the initial condition to some fixed point, where the
trajectory turns around before remaining there. This point acts as an attractor (seemingly,
a focus) and the intrinsic fluctuations of the network are not able to eject the trajectory
from this point. For this reason, a continuous UP state is presented.

When fD > f∗
D, see panels A-F, the depression level is not enough to reach the attractor

point and so, the activity of the network is driven close to another fixed point, the O =
(0, 0). At this point there is no activity both for excitatory and inhibitory populations.
Hence, a DOWN state occurs and it lasts the same time than the trajectory takes to leave
the vicinity of O. When this happens, the trajectory makes a long excursion to come back
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Figure 4.1: Raster plot and instantaneous firing rate for different values of the de-
pression factor fD. Upper plots in all panels represent, for all neurons in the network, the
coloured raster plot where colours indicate the instantaneous firing rate (IFR), where as warmer
is the colour as higher is the membrane potential. When colour is different from dark blue, means
neurons are spiking (UP state), otherwise, they don’t (DOWN state). Lower plots in all panels
represent the instantaneous firing rate of the excitatory population (red line) and of the inhibitory
population (grey line). The depression level fD = 0.85 is the bifurcation value where the network
switches from presenting UP and DOWN states to only present a continuous UP state.

again to the vicinity of O after some period. Therefore, when fD > f∗
D the dynamics

seems to be close to a homoclinic orbit being O a saddle point.

Figure 4.3, Panel A, represents the duration of the UP (blue line) and the DOWN (red line)
states. This plot shows how the UP states are longer when depression factor decreases,
as it was reported in Benita et al (2012). However, for the duration of the DOWN state,
even though it was reported to be decreasing in Benita et al (2012), in our case behaves
at a nearly constant rate. From different traces of membrane potential extracted from
different simulations maintaining the same fD, we have seen that there are no substantial
differences regarding the duration of the UP and the DOWN state among them, as we can
see in Panel B for fD = 0.88.

The dynamics of the model is given, in part, by the probability of neurotransmitter release,
Prel(t). In Figure 4.4 we depict the first seconds of this function for two different levels of
depression. These levels corresponds to fD = 0.5, where network presents a tonic firing
state, and fD = 0.95, where network presents UP and DOWN states.
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Figure 4.2: Excitatory versus inhibitory instantaneous firing rate dynamics for differ-
ent values of the depression factor fD. All panels depict a phase plot of the exictatory IFR
versus the inhibitory IFR (measured in spikes/s) by sweeping the depression level. Red arrows in
the first and last panels indicate the direction of the flow, which is akin in all panels.
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Figure 4.3: Duration of the UP and the DOWN state for different values of the
depression factor. Panel A represents the time that the UP state (blue line) and the DOWN state
(red line) for different values of fD such that the network presents UP/DOWN state behaviour,
that is fD > f∗

D. Panel B depicts also the time that the UP state (blue line) and the DOWN state
(red line) for different simulations of the model keeping fD = 0.88.
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Figure 4.4: A representation of the probability of release function for the depression
case. Panels show the time course of the probability of release for different levels of depression.
Dynamics of the probability of release has been modelled according to Dayan and Abbott (2005)
(see also Section 2.1.4).

4.2.1.1 Changes in synaptic conductances

For each neuron in the network, we extract the excitatory (AMPA plus NMDA) and the
inhibitory (GABA) conductances. In Figure 4.5, we depict the first second of both the
excitatory (panels A and C) and the inhibitory conductances (panels B and D) for an
excitatory neuron (upper panels) and an inhibitory neuron (lower panels), where a higher
activity on the excitatory conductance can be noticed. These traces correspond to the
case fD = 0.8, where the network presents a “continuous” firing, and each peak on the
conductance trace corresponds to the time where the neuron is spiking. In Figure 4.6, we
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Figure 4.5: Conductances of a single neuron for the depression factor fD = 0.80. Panels
A and B depict the excitatory and the inhibitory conductances, respectively, for an excitatory cell
when a level of depression fD = 0.80 is applied to the network. Panels C and D depict also the
excitatory and the inhibitory conductances, respectively, but for an inhibitory cell when a level of
depression fD = 0.80 is applied to the network.

depict the first 10 seconds also of both the excitatory (panels A and C) and the inhibitory
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conductances (panels B and D) for an excitatory neuron (upper panels) and an inhibitory
neuron (lower panels), but for a depression level of fD = 0.95. In this Figure we also
notice a higher activity on the excitatory conductance. The UP and DOWN states, that
are presented in the network for this depression level, are also reflected on the conductance
traces, which also present higher amount of conductances during the UP state than those
observed during the DOWN state. This high activity corresponds to the black and red
regions in the panels, where, if we do a zoom, we will see a similar pattern to the one
observed in the corresponding panel in Figure 4.5.
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Figure 4.6: Conductances of a single neuron for the depression factor fD = 0.95. Panels
A and B depict the excitatory and the inhibitory conductances, respectively, for an excitatory cell
when a level of depression fD = 0.95 is applied to the network. Panels C and D depict also the
excitatory and the inhibitory conductances, respectively, but for an inhibitory cell when a level of
depression fD = 0.95 is applied to the network.

To study the changes on the synaptic conductances under the depression effects, we only
consider those cases where UP and DOWN states are generated. Then, in order to obtain
a mean value of the conductances in the network per each depression level, we do the
following steps:

1. We first average the conductances over time for each neuron, by considering the full
second UP state.

2. After averaging over time, we average the result over all neurons obtaining a constant
value for each fD.

The data points we obtain after this averaging process, can be exponentially fitted, see
Figure 4.7. The fits done for each type of conductances present a coefficient of determi-
nation R square, R2, close to 1. In fact, they are R2 = 0.90, R2 = 0.80 and R2 = 0.93 for
the AMPA, GABA and NMDA conductances, respectively. Therefore, we can state that
the averaged conductances change exponentially under the effects of the depression, being
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bigger as smaller is the synaptic depression presented on the network (and so, the larger
fD).
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Figure 4.7: Averaged conductances for different values of the depression factor fD.
Panel A depicts for the AMPA conductances changes whereas Panel B is devoted to the GABA
conductances and Panel C to the NMDA conductances. The different dots depict the averaged con-
ductance over neurons and over all the second UP state duration, obtained for different depression
level. Red line shows the exponential fitting of those points.

4.2.2 Effects of the short-term facilitation

When facilitation level changes, behaviours from those observed in the depression arise,
both in the membrane potentials and in the conductances. In this case, according to
Dayan and Abbott (2005) (see also synaptic drive in Section 2.1.4), we changed the initial
conditions of probability of release in the network to suppose the synapse to be weak;
then by increasing the facilitation level, the synapse becomes stronger. For this purpose,
the facilitation factor fF moves from 0 to 1, being the case fF = 1 equivalent to the case
fD = 1 of the previous subsection, where no depression was considered.

Upper subpanels in Figure 4.8 depict that, for low values of the facilitation factor fF ,
the network presents a unique UP state at the beginning of the simulation. However, for
higher values of fF , and so when network is highly facilitated, it presents repetitive UP
and DOWN states. Therefore, there also exists a specific value f∗

F , being close to 0.66,
where network changes its behaviour. Even though longer simulations and more values of
fF have been considered in order to approximate f∗

F , in Figure 4.8 we only present some
of them and in a time window of 10 s.

While fF increases from 0 to f∗
F , in upper and lower panels A-E in Figure 4.8 one can

appreciate that the activity inside the UP state also increases. In this case, some isolated
neurons (around 4 or 5) sporadically fire during the DOWN state. However, these two
increments of activity are not enough to excitate the full neuronal network to generate a
second UP state. On the other hand, when fF > f∗

F , see panels F-I, more neurons are
spiking after the first UP state, being the responsible of generating the second one.

From the excitatory and inhibitory IFRs a possible dynamics on the network is observed.
In Figure 4.9, where both the excitatory and the inhibitory IFRs are plotted, one against
the other, a similar pattern to the depression case is observed for values of fF > f∗

F . In
this case, also an homoclinic orbit seems to appear as a transition between UP and DOWN
states. Moreover, for these fF values, plots in Figure 4.9 depict a trajectory leaving from
a vicinity of the origin O = (0, 0) and coming back to it right after an excursion to higher
IFR values. The dynamics is fast when we are far from O and, on the contrary, it is
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Figure 4.8: Raster plot and instantaneous firing rate for different values of the fa-
cilitation factor fF . Upper subplots in all panels represent, for all neurons in the network, the
coloured raster plot where colours indicate the instantaneous firing rate (IFR), where as warmer
is the colour as higher is the membrane potential. A colour different from dark blue means neu-
rons are spiking (UP state), otherwise, they do not (DOWN state). Lower subplots in all panels
represent the instantaneous firing rate of the excitatory population (red line) and of the inhibitory
population (grey line). The facilitation level fF = 0.66 is the approximate bifurcation value where
the network switches from presenting only one UP state to present repetitive UP and DOWN
states.

slow when we are close to O, causing that the DOWN state duration is higher than the
UP state, see Figure 4.10. When UP and DOWN states are generated, the trajectories
performed for different fF values also present similar patterns in magnitude. This fact
implies that the firing rate presented in the UP states is similar for different facilitation
levels.

On the other hand, when fF < f∗
F , as we can see in Figure 4.9, the trajectory of excitatory

IFR versus the inhibitory IFR ends to O, which acts as an attracting fixed point, from
where the trajectory cannot scape, being the dynamics slow close to this point. Since
trajectories are not jumped out of O, the network remains in a DOWN state. As we
increase fF , trajectories take larger values thus confirming the increment of activity that
we were observing in the raster plots; but they still tend to the origin.

Observing the raster plots in Figure 4.8, one can already appreciate how the DOWN state
is reduced by increasing the facilitation level. However, the UP state duration is not so
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Figure 4.9: Excitatory versus inhibitory instantaneous firing rate dynamics for differ-
ent values of the depression factor fF . All panels depict a phase plot of the excitatory IFR
versus the inhibitory IFR (measured in spikes/s) by sweeping the depression level. Red arrows in
the first and last panels indicate the direction of the flow, which is akin in all panels.

clear. In Figure 4.10 we depict both UP and DOWN durations for those fF values for
which a second UP state is generated, that is fF > f∗

F . Here, we can corroborate that
the DOWN state is slightly shorter as fF increase, while the duration of the UP state is
almost constant when fF changes.

In Figure 4.11, we depict the function in time of the probability of release, Prel(t), obtained
after simulating the neuronal network for three different levels of facilitation: fF = 0.2
and fF = 0.60, where network presents a unique UP state, and fF = 0.7, where network
presents oscillatory UP and DOWN states. Comparing the dynamics of the Prel(t) with
the corresponding raster plots in Figure 4.8, we can appreciate how both UP states and
the probability of release coincide; that is, when the UP states begin, the Prel increase,
and when the UP state ends the Prel have decreased to its initial condition. For the case
fF = 0.20, the Prel(t) only reaches the value 0.5, reason why the UP state shows less intra-
activity (the IFR of each neuron is weaker than for the other cases). On the contrary,
when fF = 0.60, even though the network does not present a second UP state, the Prel(t)
reaches higher values in magnitude (around 0.92), thus increasing the IFR of the neurons.

82



4.2. Results 83

0.7 0.75 0.8 0.85 0.9 0.95 1
0

2

4

6

8

10

fF
tim

e 
(s

)
 

 

Duration of the down state
Duration of the up state

Figure 4.10: Duration of the UP and the DOWN state for different values of the
depression factor. This plot represents the time that the UP state (blue line) and the DOWN
state (red line) for different values of fF such that the network presents UP/DOWN state behaviour,
that is fF > f∗

F .
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Figure 4.11: A representation of the probability of release function for the facilitation
case. Panels show the time course of the probability of release for different levels of facilitation.
Dynamics of the probability of release has been modelled according to Dayan and Abbott (2005)
(see also Section 2.1.4).

4.2.2.1 Changes in synaptic conductances

To see changes on the synaptic conductances under the facilitation effects, we consider the
average of the synaptic conductances over the duration of the UP state and over neurons,
as we did for the depression case. However, in this case, we consider all facilitation levels
since we always obtain at least one UP state. In the case such that only one UP state
exists, we consider this one to average the conductances. Otherwise, we take the second
UP state.

In this case, as we can see in Figure 4.12, a clear bimodal behaviour can be found for the
facilitation case. Below the bifurcation point f∗

F (represented with a vertical line in the
plots), conductances follow a parabolic shape; while above the threshold, the dynamics is
irregular and far to be fitted. Below f∗

F , even though we have also tried to fit the dots
using piecewise linear fittings and also exponential ones, the quadratic fittings provide the
best results, presenting a coefficient of determination R square, R2, close to 1 in all cases.
They are R2 = 0.973, R2 = 0.967 and R2 = 0.974 for the AMPA, GABA and NMDA
conductances, respectively. Therefore, we can state that conductances are well fitted by
a parabolic function, for those facilitation levels smaller than f∗

F . However, above f∗
F we

do not observe a typeable behaviour, in fact the obtained averages are almost identical,
except for a multiplicative factor.
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Figure 4.12: Averaged conductances for different values of the depression factor fF .
Panel A depicts for the AMPA conductances changes whereas Panel B is devoted to the GABA
conductances and Panel C to the NMDA conductances. The different dots depict the averaged con-
ductance over neurons and over all the second UP state duration, obtained for different depression
level. Red line shows the quadratic fitting of those points and the vertical line is fF = f∗

F .

4.3 Discussion

In this chapter we have considered a cortical network with slow oscillation and we have
analysed the effects of both short-term depression and facilitation on the network activity
and also on the conductances. We have seen that the presence of only short-term facili-
tation or depression can modulate the duration of the network UP states. By increasing
the synaptic depression, network presents a smaller IFR but neurons are regularly spiking
along the time. Repetitive simulations of the network, by a fixed depression level, have
shown that intrinsic fluctuations of the neurons perturbs the bifurcation parameter f∗

D

only slightly. Moreover, the duration of the UP and DOWN states do not present high
variations from one simulation to the other.

Under short-term facilitation effects, when network is not facilitated, only one UP state
with low IFR is presented. By increasing the facilitation factor, the IFR becomes higher
and some neurons sporadically fire. Above some specific level, the probability of release
reaches high values close to 1, causing that a higher number of sporadic cells fire, and so
the network is able to recursively oscillate between UP and DOWN states.

Regarding the conductances, both mean excitatory and inhibitory synaptic conductances
follow a nonlinear relationship under the effects of depression and facilitation. As the
depression level decreases, the mean excitatory and inhibitory conductances increase ex-
ponentially. However, for the facilitation case, no global fitting can be provided since
conductances presents a bimodal behaviour. Below the bifurcation point f∗

F , conduc-
tances follow a parabolic shape, while above the threshold, the dynamics is irregular and
difficult to fit to any simple enough function.

Since a mean conductance could be fitted by an exponential function under the depression
effects, one could think of a possible inverse method to predict changes on the conductances
when depression on the network is changing.

These results are a first approach to study further the dynamics of the network. Compu-
tationally we have been able to detect some possible bifurcations, and how the single-cell
slow-fast dynamics arises at the neuronal level. However, a deeper study needs to be
developed in order to analytically corroborate the computational results. To do that, a
rate model can be used (see future work regarding this chapter in Chapter 6). However,
since in this thesis we are interested on estimating synaptic conductances, we think focus
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on the possibility of extracting realistic conductance traces, which can also be used on the
estimations in Section 5.2.
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Chapter 5

Estimation of conductances in
single point neurons

Unveiling the amount of information that a neuron is receiving from other neurons, and
discerning between excitatory and inhibitory inputs, is a current challenge in neuroscience.
In other words, we aim at estimating the time course of the synaptic conductances imping-
ing on a neuron. From an experimental perspective, this becomes a difficult task due to
the diversity of synaptic inputs and, mainly, the impossibility of recording conductances
in a direct way. Therefore, inverse mathematical methods are compulsory to achieve this
goal.

No completely effective solutions to this problem are yet available in the literature. In
general, solutions provided by the literature depart from linear models (see, for instance,
Borg-Graham et al (1998), Anderson et al (2000), Wehr and Zador (2003), Rudolph et al
(2004), Pospischil et al (2009), Bédard et al (2011b), Berg and Ditlevsen (2013)). Noise
has been taken into account through either stochastic linear processes (see Rudolph et al
(2004), Pospischil et al (2009), Paninski et al (2012), and Berg and Ditlevsen (2013), among
others) or sophisticated filtering techniques (Lankarany et al (2013b), Ditlevsen and Samson
(2014), and Closas (2014), among others).

It is known that the use of linear models prevents from obtaining good estimations in
spiking regimes (see Guillamon et al (2006)), so most of the above results are applied only
to data coming from subthreshold activity. However, given that the basic reason for the
misestimations is that some nonlinear terms are active, the problem could be spread also
over non-spiking regimes as well due to the eventual activity of subthreshold ionic chan-
nels, widely described from the eighties after seminal works as Hotson and Prince (1980).
This nonlinear subthreshold activity cannot be discarded, even in the most careful experi-
mental results on conductance estimation obtained up-to-date, see for instance Figure 6 in
Rudolph et al (2004), where this type of channels is explicitly considered. In that paper,
Rudolph et al. already warned about errors caused in the estimations attributed to the
activation of subthreshold voltage-dependent membrane conductances, but they concluded
that these conductances did not seem to have strong effects on the estimates. Of course,
pharmacological blocks can reduce the activity of some targeted channels, but still it is
actually difficult to completely reduce the neuron’s activity to a pure passive filter.

In Section 5.1.1, we aim at showing that misestimations induced by the presence of
subthreshold-activated ionic currents are ubiquitous and independent on the mechanisms
that activate these currents. For this purpose, firstly, we take a conductance-based com-
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putational model of a spiking neuron with two significant types of subthreshold currents, a
calcium-activated potassium afterhyperpolarizing current (AHP ) and a low-threshold cal-
cium current (LTS); secondly, to elude the possible contaminating effects (specially on the
AHP currents) of the spiking activity, we take a conductance-based model of a non-spiking
neuron which currents are a persistent sodium current (NaP ) and an h-current. Both mod-
els are fed with realistic excitatory and inhibitory conductance traces obtained from an in
sillico (noisy) network of visual cortex (see McLaughlin et al (2000) and Tao et al (2004)).
The resulting voltage traces are then used to obtain estimated conductance courses by lin-
ear estimation methods. Finally, the input synaptic drive and the estimated conductance
courses are compared in order to quantify and analyse the estimation errors due to the
presence of the above mentioned subthreshold currents. We also study alternative pro-
cedures to estimate the conductances taking into account the nonlinear effects. On one
hand, we explore the role of ionic channels time scales and, on the other hand, we propose
a method based on a quadratization of the subthreshold dynamics.

However, the method does not incorporate noise and, moreover, it requires the use of
voltage traces from two trials. In fact, variability across trials is an important source
of errors in estimating synaptic conductances. Many existing methods require several
recordings of the membrane potential, although some of the above mentioned contributions
(Pospischil et al (2009), Bédard et al (2011b), Paninski et al (2012), Berg and Ditlevsen
(2013), Lankarany et al (2013b), Ditlevsen and Samson (2014), Closas (2014), Yasar et al
(2016)) apply to single voltage traces, thus avoiding this problem. They usually take
advantage of the time constants and statistical inference tools. In Section 5.1.2, we will
focus on two of them: the oversampling method (see Bédard et al (2011b)), based on
a deterministic approach, and the method from Berg and Ditlevsen (2013) which will
be referred heretofore as the OU-based method, being an stochastic version of the leaky
integrate-and-fire (LIF) model combined with an Ornstein-Uhlenbeck process.

The obstructions above discussed strengthen the challenge of seeking for single-trial stochas-
tic models incorporating nonlinear effects. In Section 5.1.2, we aim at extending the pro-
cedure to estimate synaptic conductances based on a quadratization of a stochastic model.
Our approach is based on a combination of the results from Berg and Ditlevsen (2013) and
the ones obtained in Section 5.1.1 in order to capture both subthreshold nonlinearities and
noise in the experimental data. On one hand, from Section 5.1.1 we know that linear pro-
cedures may distort the estimation of conductances in the subthreshold regime when ionic
currents are active, a problem that can be mitigated by using a (deterministic) quadratic
model. On the other hand, the OU-based method presented in Berg and Ditlevsen (2013)
is very effective in dealing with noise using single trial voltage traces. Thus, we attempt
to improve the results given by the OU-based method (Berg and Ditlevsen (2013)) by
adding a quadratic term to the underlying model; more specifically, by considering a
stochastic version of the quadratic integrate-and-fire (QIF) model. We will call SQIF to
this stochastic version. The QIF is characterized to approximate the subthreshold dy-
namics of the conductance-based models since it captures the f − I curve accurately for
a broad range of input currents. Moreover, under the presence of activated subthreshold
currents, this quadratic approximation is more accurate than that obtained by the LIF
model, see Ermentrout and Kopell (1986) and Fourcaud-Trocmé et al (2003).

Therefore, in Section 5.1.2, we present a new statistical model to estimate conductances
and we apply it to both computational and experimental data. Computational data are
obtained from three different neuron models using prescribed synaptic inputs. Experi-
mental data are intracellular recordings in current-clamp mode of spinal motoneurons of
red-eared turtles, and has been analyzed elsewhere (Berg et al, 2007; Jahn et al, 2011;
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Berg and Ditlevsen, 2013). Given a membrane potential trace, we fit the data into the
reference model (SQIF) and, finally, we estimate the time course of the conductances by
means of an approximated maximum likelihood procedure. In the case of computational
data, we can compare the estimated conductances with the prescribed ones to see the
efficiency of the procedure.

Even though we provide two partial solutions for subthreshold regimes with active (non-
linearly behaving) ionic currents, no solutions for spiking neurons have been yet proposed.
In Section 5.2 we provide a first proof-of-concept to perform estimations of synaptic con-
ductances during spiking activity. We approach this problem by considering the neuronal
firing rate, f , as a function of the input current, I; i.e. the spike frequency f vs. the
input strength current I function, the f − I curve. We have chosen the McKean model,
a simplified piecewise linear model of neuronal activity with regular firing, that can be
derived from the FitzHugh-Nagumo model (see McKean (1970) and Coombes (2001)).
The piecewise linearity of the vector field allows a very precise knowledge of the nonlinear
f − I curve by means of standard techniques of non-smooth dynamical systems. In the
standard McKean model, we put special emphasis on the synaptic current, Isyn.

In this last section of the chapter, we aim at obtaining an approximation of the period
given in a regular firing regime of the neuron model. Therefore, given this expression of the
period, by knowing both the period and the current applied to the neuron, we solve an in-
verse problem to estimate the steady synaptic conductance of the cell’s oscillatory activity.
Finally, we extend the method to estimate the time course of the synaptic conductance.

Summing up, this chapter is divided in two parts containing three capital pieces of work
of this thesis. In Section 5.1, we describe, on one hand, the misestimations of linear
procedures when subthreshold ionic currents are active and, on the other hand, we develop
two different procedures to estimate conductances: Subsection 5.1.1, where a quadratic
deterministic model is presented, and Subsection 5.1.2 in which we present a quadratic
stochastic model. Finally, Section 5.2 is devoted to estimate synaptic conductances in the
spiking regime, where neuron presents an oscillatory behaviour. Finally, in Section 5.3 we
discuss the results obtained.

5.1 Estimation in the silent state under presence of acti-
vated subthreshold ionic currents

This section is devoted to see the influence of ionic currents active in the non-spiking regime
and provide new strategies to estimate conductances under these influences. Therefore,
as we said in the introduction, in Section 5.1.1, we see how linear procedures may distort
the estimation of conductances in the subthreshold regime when ionic currents are active.
In this section we also provide a deterministic strategy to estimate conductances in this
case based on a quadratic model. In Section 5.1.2 we provide an stochastic approach also
based on a quadratic model, in order to take into account possible noise from experimental
recordings.

5.1.1 Deterministic framework

In this subsection, we aim to see the effects that subthreshold activated ionic current
cause on the linear estimation procedures established until now. Moreover we also provide
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a deterministic solution to estimate conductances in this case.

In Subsection 5.1.1.1, we cite the different neuronal models we are considering in this
section and some indications about the synaptic drive and other tools we are going to use.
In Subsection 5.1.1.2 we describe the linear filtering method and we provide two alterna-
tive methods to estimate conductances in the subthreshold regime. Subsection 5.1.1.3 is
devoted to the results which imply that caution has to be applied also in subthreshold
regimes to ensure the absence of nonlinear behaviours. In particular, attention must be
paid to check that Ca2+-dependent K+ currents and other ionic currents responsible for
subthreshold oscillations are inactive before proceeding to linearly estimate the synaptic
conductances from voltage traces. We also analyse how the alternative procedures improve
the linear regression.

5.1.1.1 Models and data treatment

As we have mentioned in the introduction, in this section two different conductance-based
models are considered: a first one where a subthreshold current and a hyperpolarized
current coexist, that is the pyramidal model described in Section 2.1.2.1 with external
current given in Section 2.2.1; and a second one with two currents that jointly induce
subthreshold oscillations. That is, the reduced stellar model described in Section 2.1.2.2
with external current given in Section2.2.1. Details about the numerical integration of the
models are given in Section 2.4.2.

For the pyramidal cell model, we construct an index to discern whether each subthreshold
current is dominant over all the other ionic currents whereas, for the stellate cell model,
we refer to the quadratization procedure described in Rotstein (2015) as a simplification
of the model (see also the mode in Section 2.1.2.2 at the reduced model).

Index of dominance of subthreshold currents. In order to have, for this first ex-
ample, a clear description of the time intervals where the currents IAHP and ILTS prevail
over the rest of the currents, we have defined an index χ(t) as

χ(t) =
−IAHP (t)− ILTS(t)

√

Iion(t)2 + (IAHP (t) + ILTS(t))2
, (5.1)

where Iion(t) = INa(t) + IK(t) + ICa(t).

Note that, because of the respective reversal potentials, when the index χ(t) is greater
than

√
2/2, −ILTS, which is positive, is the dominant current whereas the index χ(t)

being smaller than −
√
2/2 implied that the dominant current is −IAHP , which is negative.

Otherwise, the neuron is spiking and so the other ionic currents prevail over the sum of
ILTS and IAHP . We also point out that the index is not defined when Iion(t)

2+(IAHP (t)+
ILTS(t))

2 = 0; we have included a condition in the code so as to maintain the value of
χ(t−∆t) when Iion(t)

2+(IAHP (t)+ ILTS(t))
2 < TOL, with TOL = 10−12. However, this

only occurs transiently and does not affect any result in this paper.

Synaptic drive. In this section we use prescribed synaptic conductances from an in
sillico described in Section 2.2.2.3.
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5.1.1.2 Estimation procedures

Linear estimation approach

As we mentioned in the Introduction, some experimental studies try to get rid of spikes
and linearise the Iapp − V relationship by filtering the intracellular spiking voltage. Our
aim is to mimic these standard experimental procedures and analyse their pitfalls. Thus,
as in Guillamon et al (2006), we smooth the membrane potential traces V (t) for a fixed
Iapp using a median filter and obtaining a new signal vfilt(t; Iapp). In particular, for each
point p := (t, V (t)) of the voltage trace, we compute the median of the values in window
which includes 2N + 1 points and is centered at p:

Vfilt(t; Iapp) = medianNj=−N{V (t+ j h)},
where h is the integration step (that is, 1/h is the sampling frequency in KHz). In
our computations, we have taken N = 10. We have also explored the possibility that a
repetitive application of the same filter could lead to a better smoothing and thus a better
approximation using linear methods. However, we have proved that the median filter with
an usual recording step does not improve beyond a second successive filtering. Therefore,
after this filtering process we get Vfilt(t; Iapp) for any time value t and any applied current
value Iapp.

Then, for each t independently, we estimate the conductances on the basis of linear regres-
sion assuming that the solutions of the neuron model are close to the steady-state which
implies that the activity of the ionic channels is not significant and, in addition, ˙Vfilt ≈ 0.
We thus estimate the total synaptic conductance gsyn(t) and the effective reversal potential
Veff (t) through

Vfilt(t; Iapp) = Veff (t) +
Iapp

gsyn(t)
, (5.2)

where gsyn(t) = gE(t) + gI(t) + gL and Veff (t) = (gE(t)VE + gI(t)VI + gLVL)/gsyn(t), by
presenting M different values of Iapp for each time t, where M (≥ 2) is the number of
trials each of them with a different value of Iapp.

Once we have estimated gsyn(t) and Veff (t), using (5.2), we can estimate gE(t) and gI(t)
assuming that we know the rest of parameters (namely, gL, VL, VE and VI) by solving, for
each value of t, the linear system:

{

gE(t) + gI(t) = gsyn(t)− gL,
gE(t)VE + gI(t)VI = gsyn(t)Veff (t)− gL VL.

(5.3)

Linearization of the subthreshold ionic currents approach

The linear estimation is based on the fact that the activity of the ionic channels is not
significant, and so the ionic currents are null. However, these currents are activated on
the subthreshold regime independently of the spikes. Its time scale changes according to
the steady state value of the current and so, a better estimation could be done if we could
assume that the ionic channels are in the steady state. Therefore, in the phase where the
subthreshold currents are dominating and the spiking currents are negligible, the I − v
relationship would become

v(t; Iapp) = Veff (t)−
I∞(t)

gsyn(t)
+

Iapp
gsyn(t)

, (5.4)
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where I∞(t) := Iion,∞(V (t; Iapp)) and Iion,∞(V ) is the sum of the ionic currents at the
steady state. Thus, obtaining a relationship v = v(Iapp;Veff , gsyn) from the implicit equa-
tion v = Veff − I∞(v)/gsyn+ Iapp/gsyn, where Veff and gsyn are thought of as parameters,
would allow to have a general formula to estimate Veff (t) and gsyn(t) for each t. Unfor-
tunately, this is not easy to perform but, considering the pyramidal cell model described
in Section 2.1.2.1 with external current given in Section 2.2.1, an interesting observation
is that, in the phase where ILTS is dominating (v ∈ [−75,−60]mv approximately), the
function

ILTS,∞(V ) := gLTS mLTS,∞(V )3 hLTS,∞(V ) (V − VCa)

can be very well fitted by a straight line. In other words, the range of voltage values where
ILTS activates and the other ionic currents are negligible coincides with a straight ramp
of the bell-shaped ILTS,∞ function. This observation provides a new approach consisting
of approximating ILTS(V ) ≈ αLTS V + βLTS , and then, for each t, applying the following
steps:

1. Obtain the slope a and the intercept b from a linear regression of the set of points
{(Iapp,j, V (t; Iapp,j))}Mj=1.

2. Estimate gsyn(t) = 1/a− αLTS and Veff (t) = (b+ a βLTS)/(1 − aαLTS).

3. Estimate gE(t) and gI(t) from equation (5.3).

Observe that taking αLTS = βLTS = 0, we obtain again (5.2).

Quadratization approach

As we have mentioned in the description of the stellate model, in Section 2.1.2.2 with
external current given in Section 2.2.1, when resonant and amplifying currents coexist, it
has been proved (see Rotstein (2015)) that the system presents nonlinearities of quadratic
type in the voltage response. In turn, it is possible to approximate the model by a minimal
model with linear and quadratic terms; this process is also konwn as the quadratization of
the original system. More precisely, the quadratization is given by the differential system
(2.6). We reparameterize the system by the slow time τ = tε thus obtaining

ε
dV

dτ
= aV 2(τ)− w(τ) + I(τ),

dw

dτ
= (αV (τ)− λ− w(τ)).

(5.5)

Since the voltage is a fast variable of system (5.5) and the gating variable w is slow, the
differential system (5.5) can be considered as a slow-fast system where the difference on
the time scales of both variables is given by the parameter ε. When ε tends to zero, the
associated system is known as the slow subsystem and contains the singular dynamics of
the system (5.5). Fenichel’s geometric theory (see Fenichel (1979)) ensures the persistence
of the critical manifold of the slow subsystem when it is perturbed. Therefore, in order to
make an estimation of the total current, one can assume the limiting case ε = 0 to obtain
an approximated expression of the total current. In this case, the second equation of the
system is a linear non-autonomous ordinary differential equation which can be solved as

w(τ) = e−τ

(

w(τ0)e
τ0 +

∫ τ

t0

(αV (s)− λ)ds

)

.
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Moreover, from the first equation of the slow subsystem and the fact that I(τ) = Isyn(τ)+
Iapp, we can reconstruct the total input current from

Isyn(τ) = −aV 2(τ) + e−τ

(

w(τ0)e
τ0 +

∫ τ

t0

(αV (s)− λ)ds

)

− Iapp. (5.6)

To extract the excitatory and the inhibitory conductances, we can take, for instance, two
different injected currents, Iapp,j, j = 1, 2, obtain the respective Isyn,j(t), j = 1, 2, from
(5.6), and finally solve

{

Isyn,1(t) = −gE(t)(V1(t)− VE)− gI(t)(V1(t)− VI),
Isyn,2(t) = −gE(t)(V2(t)− VE)− gI(t)(V2(t)− VI).

(5.7)

It is worth noting that in order to apply (5.6) one has to make a guess of the initial
condition w(τ0) which is not observable as it is V (τ0). However, the method is robust
enough to converge with a wide range of initial conditions.

5.1.1.3 Results

The study made in Guillamon et al (2006) showed the goodness of the linear estimation
when the system is only driven by the synaptic activity, a regime where the equation (5.2)
holds true. However, it was also shown that the estimations fail when the neuron is either
spiking or near to spikes in which case the linear relation between the membrane potential
Vfilt and the applied current Iapp is broken. Here, we explore the influence of subthreshold
ionic activity in the estimation of synaptic conductances, a paradigm that was not taken
into account in that previous work.

The way we proceed is, first, consider the pyramidal cell model described in Section 2.1.2.1
with external current given in Section 2.2.1 to study the possible errors caused by an
afterhyperpolarization current, IAHP , and a subthreshold-activated current, ILTS , both
together and separately. For this purpose and also to avoid the influence of the currents
promoting spikes, we have introduced the χ index defined in (5.1) to discriminate the time
intervals when either IAHP , ILTS or the spiking currents dominate (see also Figure 5.1).
In the first two regimes we detect important relative errors in estimating the synaptic
conductances. For the ILTS-dominated regime, we have come up with an alternative way
to improve the linear estimation based on the method explained in Subection 5.1.1.2, Lin-
earization of the subthreshold ionic currents approach. Even though this example already
illustrates the misestimations in subthreshold regimes, it could be argued, in the case
IAHP -dominated regimes, that these misestimations are an artefact of the misestimations
in the spiking regime. To enhance our warning message on subthreshold misestimations
we have also considered a second model with no spiking mechanisms and two different
subthreshold-activated currents, INaP and Ih, that is the reduced stellar model described
in Section 2.1.2.2 with external current given in 2.2.1. Moreover, in this case we are able
to provide an improvement of the linear estimation based on the quadratization explained
in Subsection 5.1.1.2, Quadratization approach. Next, we develop both cases separately.

Misestimations in the pyramidal cell model with an AHP and an LTS currents

Let us consider the pyramidal model described in Section 2.1.2.1 with external current
given in Section 2.2.1. For the sake of comparison, we perform the estimation both under
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94 Estimation of conductances in single point neurons

the presence of subthreshold-activated ionic channels (AHP and LTS) and without it. The
case with both AHP and LTS off (already studied in Guillamon et al (2006)) is included
for completeness and reference, but we are mainly interested in the experiment with either
IAHP or ILTS on.

In Figure 5.1A, we show the total subthreshold current (IAHP + ILTS) versus the rest of
ionic currents when no applied current was added to the neuron model, that is Iapp = 0.
It can be observed that in the time interval (62, 100)ms the value of the subthreshold
currents dominates over the sum of the other currents. More precisely, in the time interval
(77, 100)ms, the sum of the rest of ionic currents almost vanishes and so the neuron has
only subthreshold activity. These subthreshold-dominant time intervals can be better
appreciated in Figure 5.1B, where the ad hoc index of dominance χ(t) (see equation (5.1))
is shown: index values below −

√
2/2 indicate dominance of AHP currents whereas index

values above
√
2/2 indicate dominance of LTS currents. We recall that, for each time t,

this index is a statistical measure calculated from the currents for all Iapp. In Figure 5.1C
subthreshold-dominant intervals are shaded over the membrane potential for Iapp = 0.
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Figure 5.1: Representation of the subthreshold-activated ionic currents. In panel A, we
compare the sum of the subthreshold currents, −(IAHP + ILTS) (black trace), with the sum of all
other ionic currents, ICa+INa+IK (gray trace) with no applied current, that is Iapp = 0. The solid
trace represents, in each case, the absolute value of the sums, whereas the dotted traces represent
the actual values. We have chopped off the graphs for the sake of clarity. Panel B shows the mean
(solid trace, in black) and the minimum and maximum values (solid traces, in gray) of the index
of dominance of subthreshold currents over the different values of Iapp. The two horizontal dotted
lines (in gray) are the limits between the spiking and the non-spiking regimes and define three
zones: a ILTS-dominated non-spiking regime (upper zone), a spiking regime (middle zone) and
an IAHP -dominated non-spiking regime (lower zone). In panel C, we show the IAHP -dominated
(bluish shadowed) and ILTS-dominated (reddish shadowed) regimes obtained from panel B (mean
across all applied currents) over the voltage course for Iapp = 0.

The representation of index χ in Figure 5.1B is useful to select different situations of
activation of subthreshold currents, see also Figure 5.1C. In particular, we analyse (see
Figure 5.2): a case where the AHP current prevails over the LTS current (we choose
t = 85ms, see Figure 5.1B-C), and a case where the dominating current is LTS (we
choose t = 95ms, see Figure 5.1B-C). Note that in both cases the traces of the currents
lie clearly under the threshold. We have applied the linear estimation procedure explained
in Section 5.1.1.2, Linear estimation approach, both for IAHP -dominance (t = 85ms) and
ILTS-dominance (t = 95ms).

When both IAHP and ILTS are inactivated, the estimation in the subthreshold regime
is very accurate, as we predicted. Indeed, in Figure 5.2A, the actual and the estimated
slopes (corresponding to the estimation of 1/gsyn) and intercepts (corresponding to the
estimation of Veff ) show a substantial agreement.
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Figure 5.2: Comparison of the actual and estimated parameters for the pyramidal cell
model under different dominance regimes. Panel A shows the estimation for time t = 70ms
(silent regime) when both subthreshold currents, IAHP and ILTS , are inactive. Panels B and D
show the estimation for times t = 95ms (ILTS-dominated non-spiking regime) and t = 85ms
(IAHP -dominated non-spiking regime), respectively, when both IAHP and ILTS are active. Panel
C shows a case where ILTS is activated but not the IAHP . In all panels, the solid trace represents
the theoretical regression line whereas the dotted trace is the straight line estimated from the data
(red dots, which indicate the filtered membrane potential for different values of the applied current
Iapp). The relative errors in estimating gsyn, Veff , gE and gI in panels B, C and D are quantified
in rows 1, 2 and 3 of Table 5.1, respectively.

The most interesting differences arise when we estimate the conductances under the pres-
ence of either IAHP or ILTS , as shown in Figure 5.2B-C-D. Whereas both the slope (1/gsyn)
and the intercept (Veff ) are well estimated with this kind of currents off (Figure 5.2A),
the activation of any of them induces a mismatch between the theoretical v − Iapp line
and the estimated one (see Figure 5.2B-C-D), where both the intercept and the slope are
altered.

When the IAHP dominates (see Figure 5.2D), this situation clearly leads to an overesti-
mation of the total synaptic conductance because the slope (1/gsyn) is underestimated;
the effective reversal potential (Veff ) is also overestimated. On the other hand, when
the dominating current is ILTS (see Figure 5.2B-C), the total synaptic conductance is
underestimated whereas the effective reversal potential is overestimated. It is clear, then,
that the solutions of the linear system (5.3) contain errors both in either Veff and gsyn,
thus indicating that the linear relationship hypothesis between vfilt and Iapp can also be
broken in (apparently) silent regimes. Interestingly, this effect was not detected when
subthreshold currents are not considered (see Guillamon et al (2006)).

Using the estimations obtained from Figure 5.2 and applying the equations in (5.3), we
can compute the relative errors in the estimation of synaptic conductances at critical time

95



96 Estimation of conductances in single point neurons

instants both when the dominating current is IAHP and ILTS , see Table 5.1.

relative error
Veff gsyn gE gI

t = 95ms
LTS

dominates
3.42% −20.76% 6.86% −29.32%

t = 95ms
LTS ON
AHP OFF

6.17% −42.18% −16.59% −57.16%

t = 85ms
AHP

dominates
0.74% 11.85% 44.51% 13.29%

Table 5.1: Relative errors in the pyramidal cell model. For three different situations,
ILTS dominance, IAHP dominance and only ILTS activated, we compute the relative error
of the estimated effective reversal potential and the conductances with respect to the
actual ones, that is 100(xestimated − xactual)/|xactual|%, where x stands for Veff , gsyn, gE
and gI . Rows 1, 2 and 3 correspond, respectively, to panels B, C and D of Figure 5.2.
Moreover, row 1 corresponds to time t = 95ms in the panels of Figure 5.3 and row 3 to
time t = 85ms.

As explained above, in Figure 5.2 we have shown, for specific time values, how the acti-
vation of subthreshold ionic currents has an adverse effect on the estimations of synaptic
conductances. However, these values constitute a too punctual examination of the prob-
lem; to show that these misestimations are maintained along a significative time interval,
in Figure 5.3 we plot the actual conductances, the estimated ones and the relative errors
for t ∈ [77.35, 96.6]ms: panels A and B refer to gsyn whereas panels C and D refer to gE
and gI , respectively. From panels B-C in Figure 5.1, we can see that this interval contains
both an IAHP -dominated subinterval (below t = 89.65ms) and a ILTS-dominated subin-
terval (above t = 89.9ms). We discriminate the analysis according to these subintervals in
order to discern the contamination due to the presence of the afterhyperpolarizing current
from the presence of the low-threshold current.

Estimation errors in the IAHP -dominated time interval The explanation for the
influence of this kind of currents in the estimations can be found in the time scale of
activation, namely the long-time scale of [Ca2+]. It turns out that the IAHP has a strong
influence during around 55ms after the spike (since τCa = 80ms and [Ca2+] has an
exponential decay, see equation (2.4) in Appendix A). Then, it may happen that, for
some Iapp, the IAHP current is still influencing while for other Iapp, the IAHP is negligible
at this moment in time. This fact leads to a breaking of the linearity of the Iapp − Vfilt

relationship. Observe (see Figure 5.1A) that spiking regimes finish around t = 53ms so
that the IAHP -dominance interval, t ∈ [77.35, 89.65]ms, is coherent with the time scale of
this calcium-induced potassium channel.

For this time interval, we observe (see Table 5.2) an average error in the total synaptic
conductance around 8.64 ± 6.45%, that is somehow preserved for the inhibitory conduc-
tance (10.12 ± 9.07%) but a notable increase of the excitatory conductance error up to
27.82±35.14%. Our results confirm and quantify the discrepancies between the actual and
estimated histograms of gAMPA and gGABA observed in Figure 6 of Rudolph et al (2004)
under the presence of subthreshold-activated ionic channels. Our quantitative analysis
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Figure 5.3: Relative errors in the IAHP -dominated and ILTS-dominated phases. Panel A
shows the relative error of the synaptic conductance (solid trace) together with the spiking times
(dots, in red) for each Iapp value in {−1,−0.9,−0.8, . . . , 0.8, 0.9, 1} in order to show the influence
of spikes in the misestimations. Panels B, C and D show the relative error (dashed red trace), the
estimated value (dotted black trace) and the actual value (solid black trace) of the total, excitatory
and inhibitory synaptic conductances, respectively, in the subthreshold regime. Vertical lines show
the border between the IAHP - and ILTS-dominance phases, as in Figure 5.1C.
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MEAN IAHP -dominated ILTS-dominated

gsyn 8.6% −11.23%
gE 27.82% −2.85%
gI 10.12% −13.87%

STD IAHP -dominated ILTS-dominated

gsyn 6.45% 9.69%

gE 35.14% 30.48%

gI 9.07% 16.30%

Table 5.2: Statistics of average relative errors for the pyramidal cell model.
Statistics of relative errors in the estimation of total, excitatory and inhibitory synap-
tic conductances. The rows show the averages along time intervals and are computed
100 (xestimated − xactual)/|xactual|%, where x stands for gsyn, gE and gI , respectively. Left
column: averages over the time interval [77.35, 89.65]ms, where IAHP dominates; right
column: averages over the time interval [89.65, 96.6]ms, where ILTS dominates, see also
Figure 5.3 for reference.

shows that these errors cannot be disregarded and that they can lead to wrong conclu-
sions about the reconstruction of gE and gI temporal profiles.

Estimation errors in the ILTS-dominated time interval The IAHP current needs
spiking activity before being activated and it could be argued that the observed errors
are due to this post-influence of the spiking misestimations rather than the presence of
subthreshold ionic channels. To ensure that this is a pure subthreshold effect, we have
chosen another type of subthreshold-activated channel, a low-threshold one which activates
in a range of voltage values still far from the spiking threshold but sufficiently above the
hyperpolarized state.

For this time interval, we observe an average error in the total synaptic conductance
around −11.23 ± 9.69%, that become somehow steady for the inhibitory conductance
(−13.87 ± 16.30%) and a low mean disperse estimation for the excitatory conductance
(−2.85 ± 30.48%).

Considering the IAHP current inactive, Figure 5.4 shows the actual and the estimated
conductances when only the ILTS current is active, that is t ∈ [70, 100]. In this plot we
can appreciate the misestimations of the linear regression even in the subthreshold regime
since, the dots of the scatter plot do not tend to align along the identity line.

Source of misestimations We know by previous studies, see Guillamon et al (2006),
that the mismatches of the estimation in the spiking regime come from the wrong assump-
tion that the different ionic currents vanish. When either AHP or LTS currents are on,
the errors in the estimation spread to the regimes where these currents are active since we
can not suppose that they vanish. Therefore the linear regression (5.2) should be corrected
as

V (t; Iapp) = Veff (t)−
IAHP (t) + ILTS(t)

gsyn(t)
+

Iapp
gsyn(t)

. (5.8)

If we examine the effect of the new term IAHP (t)+ILTS(t) in equation (5.8) on the solution
of the linear regression (5.3), we obtain that the solution is modified by adding an extra
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Figure 5.4: Actual versus estimated conductances for the pyramidal cell model with
only ILTS active. Panels A, B and C represent the scatter plot of the actual versus the estimated
total, excitatory and inhibitory synaptic conductances, respectively, for a time interval where only
the ILTS current is active. The identity line has been added on the scatter plot as a reference to
compare how the estimated conductances agree with the actual ones.

term depending on the subthreshold currents to the gE and gI expressions:

gE =
(gsyn−gL)VI−Veff gsyn+gLVL

VI−VE
− IAHP+ILTS

VI−VE

gI =
−(gsyn−gL)VE+Veff gsyn−gLVL

VI−VE
+ IAHP+ILTS

VI−VE

(5.9)

The cause of the pitfalls of the estimation are thus due to ignore the IAHP (t) + ILTS(t)
term in the linear estimation procedure. Basically three different situations may arise: (a)
if IAHP + ILTS were constant with respect to Iapp, then we would obtain a perfect fit and
estimation of gsyn, whereas Veff would be misestimated; (b) if IAHP + ILTS were to vary
linearly with respect to Iapp, then the fit would remain perfect, but both gsyn and Veff

would be misestimated; (c) otherwise, neither the fit would be good and the estimations
trustable.

In the first two cases ((a) and (b)) one could devise a way to foresee whether Veff and
gsyn are underestimated or overestimated. For instance, in the AHP -dominated regime,
since IAHP + ILTS < 0 (see Figure 5.1B), the (Iapp, V (t; Iapp)) points obtained from the
experiments would be distributed above the line corresponding to the ideal situation where
no ionic currents are active. For case (a), this would lead to an overestimation of Veff and,
for case (b), to an overestimation of Veff and an underestimation (resp., overestimation)
of gsyn if the (IAHP + ILTS) versus Iapp slope is positive (resp., negative). Unfortunately,
the most common case is (c), in which the above predictions can be taken only as an
orientation. Indeed, in Table 5.1 we can observe, for instance, underestimations of Veff

in the AHP -dominate regime. The same analysis can be applied to the estimations of gE
and gI from gsyn and Veff (see equation (5.9)), so we cannot assess a general relationship
between AHP or LTS domination and the sign of the misestimations.

Linearization of the subthreshold ionic currents approach In the case of LTS,
this current is activated on the subthreshold regime independently of the spikes. Its
characteristic time scale τLTS changes according to the steady state value of the current
which is given by equations (2.2 -2.3) with w = hLTS .

As we have mentioned in Subsection 5.1.1.2 Linearization of the subthreshold ionic currents
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100 Estimation of conductances in single point neurons

approach, during the phase where ILTS is dominating, the plot of the function

ILTS,∞(V ) := gLTS mLTS,∞(V )3 hLTS,∞(V ) (V − VCa)

is not far from linear. Then, ILTS,∞(V ) can be linearised for v ≈ [−75,−60]mV and the
estimation described in Subsection 5.1.1.2, Linearization of the subthreshold ionic currents
approach, can be done. However, this approach did not lead to good estimations either,
the reason being the slow approach of the hLTS variable to its steady state hLTS,∞(V )
(see Figure 5.5A). Anyway, we found interesting to show the slight improvement obtained
following this approach. Just as a proof-of-concept, we tried with a 10-times smaller
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Figure 5.5: Behaviour of hLTS and hLTS,∞(V ) Both panels show the voltage of the neuron
(dotted red trace) and the behaviour of hLTS (solid black trace) and of hLTS,∞(V ) (dashed black
trace) over time. In panel A we can see how hLTS and hLTS,∞(V ) do not match when using the
characteristic time scale of the system. Otherwise, in panel B, where the parameter τLTS has been
fixed to be 4.5, we observe that hLTS reaches hLTS,∞(V ) very quickly.

time constant, namely τLTS = 4.5ms, in which case hLTS catches hLTS,∞(V ) up suffi-
ciently fast to be close enough during the ILTS-dominance phase (see Figure 5.5B). Thus
we get that hLTS closer to hLTS,∞(V ) in the interval in which ILTS,∞(V ) is linear and
so ILTS,∞(V ) ≈ ILTS(m,h, V ). Then, the procedure proposed at the end of Subsection
5.1.1.2, Linearization of the subthreshold ionic currents approach, can be applied to im-
prove the linear estimation of the synaptic conductances. Obviously we are certainly
loosing biophysical interest since this would be a valid approach only for putative “fast
low-threshold” channels, which are seldomly reported in the literature, see Carbone et al
(2006). In this case, as we can see in Figure 5.6, the agreement of the estimated data with
the actual data presents an important improvement.

Misestimations in the stellate cell model with NaP- and h- currents

In the previous section we have seen how the subthreshold-activated currents lead the
linear estimation to significant errors. Let us now consider the reduced stellate cell model,
described in Section 2.1.2.2 with external current given in 2.2.1, to stress the misesti-
mations of the linear regression under the presence of currents, which cause oscillatory
activity in the subthreshold regime and nonlinear effects. Finally, we are presenting an
improvement of the linear estimation to take into account this nonlinearities and the fact
that the ionic currents may not reach the steady state, where the alternative presented in
Subsection 5.1.1.3, paragraph Linearization of the subthreshold ionic currents approach,
fails.

In contrast to the pyramidal cell model, the model we are currently considering has no
presence of currents that lead the neuron to fire. For this reason, the goodness of the
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Figure 5.6: Estimation of excitatory and inhibitory conductances using a rectified
linear regression. For fast low-threshold dynamics (τLTS = 4.5ms), panels A and B show the
relative errors of gE and gI , respectively, when the standard linear estimation (using (5.2) and
(5.3)) has been used (solid trace) and when the estimation has been modified using the procedure
proposed at the end of Subsection 5.1.1.2, Linearization of the subthreshold ionic currents approach,
(dashed trace).

estimation can not be affected by the presence of spiking currents, but only for the sub-
threshold ones. In order to proceed with the linear estimation, we check that, for values of
Iapp ∈ [−4,−3], both subthreshold currents are active. Their magnitudes oscillate between
1 and 7 µA/cm2 for the INaP , and with magnitude between 4 and 7 µA/cm2 for the Ih
(see Figure 5.7 for a representation of INaP and Ih when Iapp = −3.5).
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Figure 5.7: Representation of the subthreshold-activated ionic currents in the stellate
cell model. Activity of the two active subthreshold currents in this model, the persistent sodium
current (black trace) and the h-current (gray trace) for a central value of the set of applied currents
used in the estimation, that is, Iapp = −3.5.

Figure 5.8 shows the results of applying the standard linear estimation procedure defined
by formulas (5.2) and (5.3). Upper panels show how the estimated synaptic conductances
(either the total one or both excitatory and inhibitory) clearly diverge from the actual ones
along time. Lower panels of Figure 5.8 contain the scatter plots of the set of paired points
(gactual, gestimated) for the total, excitatory and inhibitory conductances. The arrangement
of the points far from the identity line gives a clear evidence of the non-validity of the
standard linear estimation procedure.
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Figure 5.8: Comparison of the actual and the linearly estimated conductances for
the stellate cell model. Upper panels show the actual time course (solid black traces) and
the estimated time courses (dotted black traces) of the total (panel A), the excitatory (panel B),
and the inhibitory (panel C) synaptic conductances when the linear estimation has been applied
for 21 values of Iapp ∈ [−4,−3], equispaced. Low panels represent the scatter plot of the actual
conductances versus the estimated. The plotted conductances are the synaptic one, the excitatory
one, and the inhibitory one (from left to right). The identity line has been added on the scatter
plot to compare how the estimated conductances disagree with the actual ones.
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Finally, in Figure 5.9, we show the membrane potential computed by using the actual
conductances together with the membrane potential obtained with the estimated conduc-
tances (the reconstructed voltage). Comparing the results obtained in this figure and the
time course of the ionic currents (see Figure 5.7), we can see how the reconstructed voltage
is worse when subthreshold currents present higher activity, as it is also noticeable for the
synaptic conductances.
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Figure 5.9: Voltage dynamics generated by both the actual and the linearly estimated
conductances in the stellate cell model. Solid black trace represents the voltage obtained
with the actual conductances while the dotted black trace represents the reconstructed voltage,
obtained by plugging the estimated conductances into the model. The applied current considered
in both cases is Iapp = −3.5.

Summing up, te results shown for the stellate cell model up to this point, together with
those obtained for the pyramidal cell model with IAHP and ILTS currents, clearly demon-
strate that the standard linear estimation procedure turns out to be inappropriate as well
in subthreshold regimes. For the pyramidal cell model, we have come up with a modified
linear regression which mildly improved the estimations. For the stellate cell model, taking
advantage of the minimal model reduction given in Rotstein (2015), we are able to pro-
pose a promising nonlinear estimation procedure, see Subsection 5.1.1.2, Quadratization
approach, that improves the estimations by more than one order of magnitude.

Quadratization alternative Following the procedure presented in Subsection 5.1.1.2
Quadratization approach, from the total synaptic current, we can discern between ex-
citatory and inhibitory conductances using two trials corresponding to different applied
currents. In this section we want to show the goodness of this new approach.

Having two different voltage traces for different applied currents, from equation (5.6) one
can estimate the total synaptic current for each trial. In Figure 5.10A, we can appreciate
how the estimated synaptic current fits to the actual one along time. The scatter plot
presented in panel B illustrates how the estimated and the actual values are concentrated
in the vicinity of the identity line, which means a good estimation of the synaptic current.

Using two different applied currents, say Iapp,1 and Iapp,2, and the corresponding voltage
traces V1(t) and V2(t), we obtain Isyn,1(t) and Isyn,2(t), respectively, from equation (5.6),
see also Figure 5.10. Then, using (5.7), we obtain an estimation of the time course of the
excitatory and the inhibitory conductances which are shown and compared with the actual
ones in Figure 5.11. In the upper panels of this figure, one can see how the actual and the
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Figure 5.10: Actual synaptic currents compared to those estimated through the
quadratizaton procedure. Panel A shows the time course of the actual synaptic current (solid
black traces) and the estimated one (dotted black traces) when the quadratization approach has
been applied for Iapp = −3.5. Panel B represents the scatter plot of the actual synaptic current
versus the estimated. The identity line has been added on the scatter plot to compare how the
estimated values agree with the actual ones.

estimated traces fit better than in the linear regression case. Moreover, the estimation is
better for the excitatory conductances than for the inhibitory ones, as it can also be seen in
the lower panels, where the scatter plot presents higher concentration on the vicinity of the
identity line for the gE case. In Table 5.3, we give a complete quantitative description of
the errors of the estimation both for the linearization and the quadratization procedures.

MEAN Linearization Quadratization

gsyn 61.73% −0.46%
gE 2335.03% −4.92%
gI 155.68% −1.06%

STD Linearization Quadratization

gsyn 69.79% 4.35%

gE 2507.84% 30.84%

gI 287.09% 20.94%

Table 5.3: Statistics of average relative errors for the stellate cell model.
Statistics of relative errors in the estimation of total, excitatory and inhibitory synap-
tic conductances. The rows show the averages along time intervals and are computed
100 (xestimated − xactual)/|xactual|%, where x stands for gsyn, gE and gI , respectively. Left
column: averages corresponding to the Linearization procedure; right column: averages
corresponding to the Quadratization procedure.

Finally, to study the effect of the errors done in the estimation, we reconstruct the voltage
traces of the neuronal model using the estimated conductances. As we can see in Figure
5.12, both the actual and the reconstructed voltages do not present big changes, contrary
to the case when linear regression is applied.

These results imply that the quadratization approach is a better alternative to estimate
conductances when nonlinear activity coming from subthreshold-activated ionic currents
is present.

104



5.1. Estimation in the silent state 105

A B C

0 100 200 300 400 500
0.5

0.55

0.6

0.65

0.7

0.75

0.8

time (ms)

g sy
n (

m
S

/c
m

2 )

 

 
g

syn

g
syn,estim

0 100 200 300 400 500
−0.02

0

0.02

0.04

0.06

0.08

0.1

time (ms)

g E
 (

m
S

/c
m

2 )

 

 
g

E

g
E,estim

0 100 200 300 400 500
0

0.05

0.1

0.15

0.2

time (ms)

g I (
m

S
/c

m
2 )

 

 
g

I

g
I,estim

D E F

0.5 0.6 0.7 0.8
0.5

0.55

0.6

0.65

0.7

0.75

0.8

g
syn

  (mS/cm2)

g sy
n,

es
tim

  (
m

S
/c

m
2 )

0 0.02 0.04 0.06 0.08 0.1
0

0.02

0.04

0.06

0.08

0.1

g
E
  (mS/cm2)

g E
,e

st
im

  (
m

S
/c

m
2 )

0 0.05 0.1 0.15 0.2
0

0.05

0.1

0.15

0.2

g
I
  (mS/cm2)

g I,e
st

im
  (

m
S

/c
m

2 )

Figure 5.11: Comparison of the actual and estimated conductances using the quadra-
tization approach. Upper panels show the actual time course (solid black traces) and the es-
timated time courses (dotted black traces) of the total (panel A), the excitatory (panel B), and
the inhibitory (panel C) synaptic conductances when the quadratization approach is applied for
Iapp = −4 and Iapp = −3.5. Low panels represent the scatter plot of the actual conductances
versus the estimated ones, showing a good agreement.
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Figure 5.12: Voltage dynamics generated by both the actual and the quadratically
estimated conductances in the stellate cell model. Solid black trace represents the voltage
obtained with the actual conductances while the dotted black trace represents the reconstructed
voltage, obtained by plugging the estimated conductances into the model. The applied current
considered in both cases is Iapp = −3.5.

5.1.2 Non-deterministic framework

After seen the errors in the subthreshold regime caused by the presence of nonlinear terms,
and corroborate that quadratic approximations can be useful to reduce those errors, in
this section we aim to introduce an stochastic quadratic model to estimate conductances
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106 Estimation of conductances in single point neurons

in this case. This procedure also takes into account possible noise from experimental data
and only needs one trial to estimate conductances and discern between the excitatory and
the inhibitory ones.

This section is structured in the following way: in Subsection 5.1.2.1, we indicate those
models, data and mathematical tools we are using along the different subsections. In
Subsection 5.1.2.2, we describe the estimation procedure we develop. In Section 5.1.2.3,
we show the results obtained when the estimation procedure is applied to both the in
silico and in vivo voltage traces. We also compare in Section ?? our estimations to those
obtained by other existing methods based on single-trial recordings.

5.1.2.1 Models and data treatment

To generate membrane potential traces we use three different neuronal models that con-
tain non-linear subthreshold activity, namely: (a) the QIF model with noise and the
appropriate parameters to replicate the pyramidal model; and the Hodgkin-Huxley type
models describing (b) a pyramidal neuron and (c) a stellate neuron. The pyramidal neuron
model is endowed with a spiking mechanism generated by sodium, potassium and calcium
currents, and two different types of subthreshold currents: a calcium-activated potassium
afterhyperpolarizing current (AHP) and a low-threshold calcium current (LTS) (see model
in Section 2.1.2.1 and external current in Section 2.2.1). The stellate neuron model is also
endowed with a spiking mechanism generated by sodium and potassium, and two sub-
threshold currents, the persistent sodium (NaP) current and the h-current (see model in
Section 2.1.2.2 and external current in Section 2.2.1).

Parameters choice. In the estimation procedure, we will be interested in two dis-
tinguished parameters: the largest input current such that the neuron does not present
spikes, IT , and its corresponding membrane potential, VT . To determine the value of
these parameters when dealing with the pyramidal and the stellate neuron models, we
use the V − I bifurcation diagram of both models obtained in the absence of noise and
synaptic currents. Then, we assign to (VT , IT ) the bifurcation values corresponding
to the spike initiation point. For the pyramidal neuron model we have obtained that
IT = −1.359 µA/cm2 and VT = −74.27 mV whereas for the stellate neuron model we
have obtained IT = −1.46 µA/cm2 and VT = −73.499 mV .

Note that, since a noise may drive the voltage over the threshold for lower I values than IT ,
the effective spike initiation point of the stochastic model will advance with respect to the
deterministic one. In practice, we extract the in sillico data from stochastic models, and
so we may expect the value of IT to be lower than the one obtained from the bifurcation
diagram.

This problem does not prevail in the in vivo data, where IT is chosen, by applying different
pulses to the neuron without synaptic inputs, as the minimum input current that induces
spikes.

Synaptic drive. To computationally test our estimation procedure, we consider a trace
of conductances that follows an Ornstein-Uhlenbeck (OU) process with a sinusoidal drift,
which is described in Section 2.2.2.2.
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5.1. Estimation in the silent state 107

Smoothing data Since some of the methods we will apply require smoothing of the
signal, we consider the median filter for the smoothing step, which we following explain.
Let L ms be the duration of the voltage traces, and let a time windows of length l ms,
where l ≪ L. Set the parameters m = [l/∆] and M = [L/∆]. For simplicity and without
loss of generality, we assume that l and L are multiples of ∆, and m and M are even
(integers). Then, the median filter for the smoothing step consists in, for each point
p := (t, xn) of an x signal, computing

x̃n = median
n−m/2≤j≤n+m/2

{xj}. (5.10)

We chose this filter since it is often used by experimentalists to clip spikes, but any filter
can be used. Unless otherwise stated we set L = 5 s and l = 50 ms in the simulations, to
be consistent with the sliding window used for the estimation procedure.

Details about the numerical integration of the models are given in Section 5.1.2.1

Experimental data. As we have mentioned in the introduction, we test the estimation
procedure presented in this subsection using experimental data from intracellular record-
ings in current-clamp mode of spinal motoneurons of red-eared turtles. Details about the
experimental recordings are provided in Section 2.3.

5.1.2.2 Estimation procedure

To capture non-linearities in the subthreshold regime, we use the approximation given by
the QIF model with noise, see model in Section 2.1.1.1 and external current in Section
2.2.1.

Consider the equation (2.1) written as the stochastic differential equation

dV =
(

aV 2 + bV + c
)

dt+ σdWt (5.11)

where
a =

α

C
,

b =
1

C
(−2αVT − gE(t)− gI(t)) ,

c =
1

C

(

αV 2
T + gE(t)VE + gI(t)VI − IT + Iapp

)

.

(5.12)

Notice that coefficients b and c are time dependent, whereas coefficient a is not. Therefore,
to estimate a as a constant and the time course of b and c using only one voltage trace,
we use a recursive method based in the maximum likelihood estimator (MLE).

We discretize the diffusion process in equation (5.11) as

Vn+1 = Vn + (aV 2
n + bnVn + cn)∆ + σ

√
∆ξn+1,

where

bn =
1

C
(−2αVT − gE,n − gI,n) , cn =

1

C

(

αV 2
T + gE,nVE + gI,nVI − IT + Iapp

)

, (5.13)

gE,n = gE(n∆), gI,n = gI(n∆), ∆ = tn+1−tn is the constant time step of the discretization,
and ξn+1 follows a Gaussian distribution with mean 0 and variance 1.
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The discretized process follows (locally) a Gaussian distribution with mean Vn + (aV 2
n +

bnVn+cn)∆ and variance σ2∆. Assuming the conductances to be approximately stationary
for a time window l ms implies that also the parameters b and c are constant in this
window. Thus, in the considered sample window, we compute the estimator θ̂ by maximum
likelihood (see B for more details). We distinguish two situations: (1) when θ = (a, b, c)T ,
i.e., both α and the conductances are unknown, in which case the MLE is given by equation
(B.1); (2) when θ = (b, c)T , i.e., only the conductances are unknown, in which case the
MLE is given by equation (B.2). Then, by moving the sample window, we obtain a
discretized sequence for θ̂(t), providing a discretized time course of α̂(t), ĝE(t) and ĝI(t)
through equations (5.12). The details of this procedure, which constitutes the basic step
of our estimation algorithm, are next explained.

Consider the discretized voltage trace {Vn}Mn=0 and let θ = (a, b, c)T be the vector con-
taining the unknown coefficients of the discretized diffusion process.

Algorithm 5.1. Sliding MLE.

1. Set n = m/2.

2. While n ≤M −m/2, do:

(i) estimate θ̂j by MLE from the subsequence {Vj}n+m/2
j=n−m/2;

(ii) set n = n+ 1.

3. For each n from m/2 to M −m/2, use θ̂n and (5.13) to find ĝE,n and ĝI,n (if only
the conductances are unknown), and α̂n = ânC (if also α is unknown).

When α is assumed unknown, the Sliding MLE algorithm for θ = (a, b, c)T estimates α as
a non-constant value. To amend this disagreement with the model (where α is assumed
to be constant), we suggest a recursive algorithm in which both α and the conductances
are successively refined forcing α to be constant.

Algorithm 5.2. Recursive estimation procedure.

1. Fix a tolerance TOL and a bound Nmax for the maximum number of iterations.

2. Apply the sliding MLE algoritm for θ = (a, b, c)T to find estimates α̂n, ĝE,n and ĝI,n.

3. Put α̂(0) = 1
M−m

∑M−m/2
n=m/2 αn and estimate ĝ

(0)
E,n and ĝ

(0)
I,n using the Sliding MLE

algorithm for θ = (b, c)T .

4. Fix the conductances at ĝ
(0)
E,n and ĝ

(0)
I,n and estimate α̂(1) by equation (B.3).

5. Set i = 1. While |α̂i−1 − α̂i| > TOL and i < Nmax, do

(i) Fix α̂ = α̂(i) and estimate ĝ
(i)
E,n and ĝ

(i)
I,n by the sliding MLE algorithm for

θ = (b, c)T ;

(ii) Fix ĝ
(i)
E,n and ĝ

(i)
I,n and estimate α̂(i+1) by equation (B.3);

(iii) let i = i+ 1.

6. If smoother results are wanted, then apply the median filter given in equation (5.10)
(or any other filter) to the estimated traces.
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Note that since gE(t) and gI(t) depend linearly on α, it is sufficient to consider changes in α
to stop the recursive process. If two consecutive estimated values of α are close, so are the
corresponding estimated traces of gE,n and gI,n. Moreover, when the recursive procedure
is applied, the conductances during the first and the last l/2 ms are not estimated due to
the sliding window.

5.1.2.3 Results

In this section, we present the results obtained using our QIF estimation procedure, which
is described in Subsection 5.1.2.2. We apply the model to simulated (in sillico) and actual
(in vivo) data. For the simulated data, three membrane potential traces are generated
by different neural models: the QIF model, the pyramidal neuron model and the stellate
neuron model, described in Chapter 2, using prescribed synaptic conductances described in
Section 2.2.2.2. The actual data is extracted from a motor neuron as described in Section
2.3. Finally, the results obtained from the estimation procedure on the pyramidal neuron
model as well as from experimental recordings, are compared to both the oversampling
method and the OU-based method.

Results of the estimation in the QIF model.

Figure 5.13 shows the estimation results when the membrane potential is simulated from
the QIF model (see model in Section 2.1.1.1 and external current in Section 2.2.1), setting
α = 0.0067. This value was estimated to α̂ = 0.0077. Panel A depicts the true (dark
blue curve) and the estimated (light blue curve) excitatory conductances, and panel B
shows the true (dark magenta curve) and the estimated (light magenta curve) inhibitory
conductances. The true excitatory trace is well approximated by the estimated trace,
whereas the estimation of the inhibitory conductances only captures the overall shape and
level, and is much more noisy. This is because the membrane potential is close to the
inhibitory reversal potential, whereas it is far from the excitatory reversal potential, and
thus, the synaptic drive is higher for excitation. This was also shown in Berg and Ditlevsen
(2013), where analytic expressions for approximations of the variance of the estimators
were derived from the Fisher Information matrix. Panels D and E show scatter plots of the
true versus the estimated values (for excitation and inhibition, respectively), and higher
concentration in the vicinity of the identity line (red line) indicate better estimation. Panel
C shows the true membrane potential (dark curve) and the reconstructed voltage by using
the estimated conductances (light curve). The reconstructed voltage reproduces the real
one well; this is also corroborated in the scatter plot of the estimated versus true voltage
(Panel F), where the points are concentrated in a small neighbourhood along the identity
line.

Results of the estimation in the pyramidal neuron model.

Another computational neural model considered to estimate conductances is the pyramidal
neuron model (see model in Section 2.1.2.1 and external current in Section 2.2.1. The
results for this neuron model are in Figure 5.14. Panels are as in Figure 5.13. Both
the excitatory and inhibitory conductances are well approximated; however, as in the
QIF model, the estimation for the excitatory conductances is more accurate. It can be
appreciated how well the reconstructed voltage matches the true voltage. The estimated
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Figure 5.13: Estimation of the conductances when data are generated by the QIF
neuron model. A: true (dark line) and estimated (light line) excitatory conductances. B:
true (dark line) and estimated (light line) inhibitory conductances. C: simulated voltage
using the true conductances (dark line) and the estimated conductances (light line). D:
scatter plot of the estimated versus the true excitatory conductances. E: scatter plot of the
estimated versus the true inhibitory conductances. F: scatter plot of the estimated versus
the true voltage. The data have been obtained each dt = 0.05 ms and the MLE is applied
with a l = 50 ms sliding window. The neuron parameters are: C = 1 µF/cm2 gL =
0.1 µS/cm2, VL = −65 mV , VE = 0 mV , VI = −80 mV , α = 0.0067, VT = −74.27 mV ,
IT = −1.359 µA/cm2, and Iapp = −8.7 µA/cm2.

value of α is 0.0067.

Surprisingly, the estimated values for this model are nearly as good as the original QIF
model, and shows robustness of the method. It also indicates that a quadratic approxi-
mation seems to be sufficient to capture the nonlinearities caused by the ionic currents.

Results of the estimation in the stellate neuron model.

Finally, we also estimate the conductances using the complete version of the stellate model
(see model in Section 2.1.2.2 and external current in Section 2.2.1). The results for this
neuron model are depicted in Figure 5.15. Panels are as in Figure 5.13. Conclusions are
similar to the conclusions for the pyramidal model. The estimated value of α is 0.0046.
Again, the results indicate robustness of the estimation procedure.

Results of the estimation in experimental data

In Figure 5.16 we show the results obtained when the presented estimation procedure
has been applied to the experimental data described in 2.3. The magenta line shows the
estimated inhibitory conductances whereas the blue line shows the estimated excitatory
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Figure 5.14: Estimation of the conductances when data is generated by the pyra-
midal cell model. A: true (dark line) and estimated (light line) excitatory conductances.
B: true (dark line) and estimated (light line) inhibitory conductances. C: simulated volt-
age using the true conductances (dark line) and the estimated conductances (light line).
D: scatter plot of the estimated versus the true excitatory conductances. E: scatter plot
of the estimated versus the true inhibitory conductances. F: scatter plot of the estimated
versus the true voltage. The data has been obtained each dt = 0.05 ms and the MLE sam-
ple window was l = 50 ms. The neuron parameters are: C = 1 µF/cm2, VL = −65 mV ,
VE = 0 mV , VI = −80 mV , gL = 0.1 µS/cm2, VT = −74.27 mV , IT = −1.359 µA/cm2,
and Iapp = −8.7 µA/cm2.

conductances. Contrary to the in sillico data, in this case we have no information on the
true input conductances, and so we cannot compare with it.

To further investigate the conclusions drawn from Figure 5.16, we compare them with the
profile of the experimental voltage trace given in 5.17. One can see that both the conduc-
tance traces follow the shape of the membrane potential. Moreover, the QIF method pro-
vided an estimated value of the quadratic coefficient of α ≈ 0.1094. When reconstructing
the membrane potential dynamics using the QIF model with the estimated conductances
as synaptic input, Figure 5.17 shows a strong agreement with the true voltage trace; only a
small underestimation can be identified on the scatter plot (Panel B) of the reconstructed
versus the real membrane potential.

Comparison of our procedure with other existent methods

In this section we aim to compare the QIF method with other existent procedures that
are also able to estimate conductances from a single trace. For this purpose we consider
the stochastic approach presented in Berg and Ditlevsen (2013), which we will call OU
method, and the oversampling method presented in Bédard et al (2011b), which is based
on a deterministic model.
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Figure 5.15: Estimation of the conductances when data is generated by the stel-
late cell model. A: true (dark line) and estimated (light line) excitatory conductances.
B: true (dark line) and estimated (light line) inhibitory conductances. C: simulated volt-
age using the true conductances (dark line) and the estimated conductances (light line).
D: scatter plot of the estimated versus the true excitatory conductances. E: scatter plot
of the estimated versus the true inhibitory conductances. F: scatter plot of the estimated
versus the true voltage. The data has been obtained each dt = 0.05 ms and the MLE sam-
ple window was l = 50 ms. The neuron parameters are: C = 1 µF/cm2, VL = −65 mV ,
VE = 0 mV , VI = −80 mV , gL = 0.1 µS/cm2, VT = −73.499 mV , IT = −1.46 µA/cm2,
and Iapp = −7.2 µA/cm2.

The OU method is based on an stochastic version of the leaky integrate-and-fire that mod-
els the subthreshold activity by means of an Ornstein-Uhlenbeck process. This estimation
procedure assumes, in a given time window, the membrane potential to be stationary.
Then, using the maximum likelihood estimator within each window, the excitatory and
inhibitory conductances are inferred, see Berg and Ditlevsen (2013) for more details on
the method.

On the other hand, the oversampling method assumes the dynamics of the membrane
potential to be free of noise and free of applied and ionic currents. It is based on the model
V̇ = gα(t)V + gβ(t), where gα and gβ are called preconductances and they depend linearly
on the conductances. The differential equations is discretized in such a way that the
sampling frequency of the preconductances is half of that of V . Parameters gα and gβ are
computed and used to finally estimate both excitatory and inhibitory conductances. Along
the process, two thresholds, κα and κβ, need to be defined to avoid possible singularities,
see Bédard et al (2011b) for more details on the method.

The codes of these procedures are published by the authors in a model database, so we
use them to do the estimation. For the OU method we use the code from the database
Berg (2013). In this method we need to fix the sample window, and after testing different
values, we consider the one which provides better results. On the other hand, for the
oversampling method, the code can be found in the database Bédard et al (2011a). In
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Figure 5.16: Estimation of conductances for the experimental data. This figure
depicts the excitatory and inhibitory conductances obtained when the estimation proce-
dure has been applied to the membrane potential obtained from in vivo experiment. The
QIF method has been applied using a sliding window of l = 50 ms. The magenta line
show the estimated inhibitory conductances, the blue line show the estimated excitatory
conductances.
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Figure 5.17: Reconstruction of the in vivo membrane potential recordings for
the QIF method. Panel A shows the membrane potential extracted from in vivo experi-
ments (black line) and reconstructed membrane potential obtained by using the estimated
values of conductance traces and the estimated α parameter (gray line). Panel B shows
the scatter plot of the reconstructed versus the true voltage.

this case, authors recommend that the limit values for the singularity points, that is κα
and κβ , should be close to 0.1 (see Bédard et al (2011b)). However, after estimating the
conductances using different limit values, we have chosen those values which provide better
results.

Both methods have been tested using the neuronal model in which each procedure is
based, and the prescribed conductances given in 2.2.2.2. In order to test the code of
the oversampling method, authors first oversample the membrane potential; that is, each
two consecutive times, ti and ti+1, they split the interval [ti, ti+1] into 3 subintervals by
adding two extra points, ti,1 and ti,2, between the given ones, where they suppose that the
conductance are stationary. Then, they use the prescribed conductance corresponding to
ti to compute the membrane potential at ti,1 and ti,2. Since for the computational data
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we know the actual conductances, we can do the same procedure to corroborate that we
use the code correctly.

Comparison with the OU method in computational data. In Figure 5.18 we
compare the results obtained with our estimation procedure versus the OU method given in
Berg and Ditlevsen (2013), using simulated data from the pyramidal cell model described
in Section 2.1.2.1 with external current in 2.2.1. Panels A and B depict the time course

A B

0 1000 2000 3000 4000 5000
0

0.05

0.1

0.15

0.2

0.25

time (ms)

co
nd

uc
ta

nc
es

 (
m

S
/c

m
2 )

 

 

g
E,OU method

g
E,QIF method

g
E

0 1000 2000 3000 4000 5000
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

time (ms)
in

hi
bi

to
ry

 c
on

du
ct

an
ce

s 
(m

S
/c

m
2 )

 

 

g
I,OU method

g
I,QIF method

g
I

C D

0 0.1 0.2 0.3
0

0.05

0.1

0.15

0.2

0.25

0.3

g
E
  (mS/cm2)

g E
,e

st
im

at
ed

  (
m

S
/c

m
2 )

−0.2 0 0.2 0.4 0.6 0.8
−0.2

0

0.2

0.4

0.6

0.8

g
I
  (mS/cm2)

g I,e
st

im
at

ed
  (

m
S

/c
m

2 )

 

 

Figure 5.18: Comparison between single-trial estimation procedures. panels A
and B show the prescribed and the estimated synaptic input generated from equation
(2.7). Panel A refers to the excitatory conductance trace while Panel B refers to the
inhibitory one. Data are generated by the pyramidal cell model described in Section
2.1.2.1. Panels C and D show the scatter plot of the estimated conductances versus the
true ones, where Panel C refers to the excitatory conductances whereas Panel D refers
to the inhibitory ones. The sample window considered in both methods is l = 50 ms.
The estimated conductances have been filtered, in both cases, by the median filter using
a sample window of 50 ms.

of the conductances, showing the results of the estimation of the excitatory (panel A) and
the inhibitory (panel B) conductances, for both methods. The black lines in both panels
show the true values of the conductances (the prescribed synaptic input) whereas the dark
coloured lines refer to the results of the QIF method and the light coloured lines represent
the results of the OU method.

Panel A revels a slight improvement on the estimation of the excitatory conductances
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when they are estimated by the QIF method instead of the OU method. Note that dark
coloured line in Panel A seems to be closer to the black one than the light coloured
line. However, the improvement obtained with the QIF method is higher when we are
referring to the inhibitory conductances, where the OU method estimates the inhibitory
conductance worse that the QIF method.

To better appreciate the improvements using the QIF method, we depict in panels C and
D the scatter plot of the estimated conductances versus the prescribed ones. The black
and grey dots represent the results of the QIF and the OU methods, respectively. Note
that, even though a concentration of dots along to the identity line (red line) is observed
in both cases, grey dots tend to be more dispersed than the black ones. Consequently, the
QIF method is more precise than the OU method. This fact strengthens results obtained
in Section 5.1.1, where we have seen that the presence of subthreshold ionic currents can
cause misestimations when they are active coming from nonlinearities.

Comparison with the oversampling method in computational data. In Figure
5.19 we depict the results of the oversampling method, also using simulated data from the
pyramidal cell model described in Section 2.1.2.1 with external current in 2.2.1.

When using the oversampling method, two problems may arise. As we said above, the
oversampling method is based on a linear method, which does not consider the applied
current, besides not considering neither ionic currents nor noise. However, in the pyramidal
cell model we consider a constant applied current, which allows us to avoid the neuron
from firing. This problem can be solved by modifying, in an appropriate way, the code.
However, another problem that might arise in this method is the need to oversample
the data. Indeed, in in vivo experiments, since we do not know, a priori, which are the
conductances, the data can not be forced to be oversampled.

In Figure 5.19 we present the results obtained both when the membrane potential is over-
sampled (panels A and B) and when it is not (panels C and D). Moreover, the first column
(panels A and C) corresponds to the case where the applied current is not considered into
the oversampling method whereas the second column (panels B and D) refers to the case
where it is. In all cases, the estimated data does not follow the prescribed one, neither for
the excitatory nor for the inhibitory conductances. These results imply that, even though
we have chosen the best options for κα and κβ , this method is not efficient to estimate
conductances in those situations where noise and ionic currents (having influence in the
subthreshold) are present (see also results in Section 5.1.1 for the ionic currents effects).

Comparison with both methods in experimental data. Finally, we apply the three
procedures we are comparing (that is the oversampling, the OU and the QIF methods) to
estimate the conductances in the experimental data described in Section 2.3. Results are
depicted in Figures 5.20 and 5.21.

In Figure 5.20 we plot the OU method (solid coloured lines) together with the QIF method
(dashed coloured lines). Panel A shows the estimated excitatory conductances for the dif-
ferent methods, and Panel B shows the inhibitory conductances. The results of the over-
sampling method are presented in Figure 5.21, apart from the other traces of conductances
because of the singularities it presents.

The results of the three different methods obtained in Figures 5.20 and 5.21 for the exper-
imental data are very different. Only the excitatory conductances estimated with the OU
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Figure 5.19: Results of the oversampling method for the Pyramidal cell model.
Each panel shows the prescribed (dark traces) and the estimated (light traces) synaptic
input generated from equation (2.7). The excitatory conductance traces correspond to the
blue traces while the inhibitory ones correspond to the red traces. Data are generated by
the pyramidal cell model described in Section 2.1.2.1 and the estimation of conductances
have been done using the oversampling estimation procedure with the optimal values of κα
and κβ considered in the singularities removal procedure. In Panel A and B the membrane
potential has been oversampled with κα = κβ = 0.55 and κα = κβ = 0.6, respectively. In
Panel B, the data has not been oversampled and κα = κβ = 0.5 in both cases.

and our QIF method seem to follow a similar pattern, even though there is a relatively
small vertical shift between the two. However, the oversampling method presents a similar
pattern than the ones obtained in Bédard et al (2011b), Figure 2, where the results before
apply the algorithm to suppress singular points are represented. However, our results are
after this suppression. We have tried for different parameters of κα and κβ in order to
readjust them but without success. Therefore, it seems that this method is not able to
handle this data to give plausible estimations.

Both the oversampling and the OU method assume a linear behaviour of the subthresh-
old activity. In Section 5.1.1, we have seen that under the presence of nonlinear effects
caused by subthreshold ionic currents, these methods can lead to misestimations of the
conductances. However, the V −I curve obtained from experimental recordings (see Figure
2.8) is better fitted by a quadratic regression rather than a linear one, which indicates a
quadratic behaviour, revealing the existence of such nonlinear subthreshold activity. Then,
from these previous observations and because of the results obtained in the comparison of
the OU and the QIF methods in the in silico case, if we add the fact that the inhibitory
conductances trace obtained with the QIF method oscillates (see Figure 5.20.B) as the
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Figure 5.20: Estimated conductances in experimental data obtained using the
OU and the QIF methods. This figure depicts the predicted estimated conductances of
the experimental in vivo data described in Section 2.3, when both the OU (solid lines) and
the QIF (dashed lines) methods have been used. For the OU method, the time window is
considered to be l = 300 ms. For the QIF method, it is fixed to be l = 50 ms. Panel A
depicts the results of the excitatory conductances whereas Panel B depicts the results of
the inhibitory conductances.
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Figure 5.21: Estimated conductances in experimental data obtained using the
oversampling method. Panel A depicts the result obtained for the excitatory conduc-
tances whereas Panel B are those obtained as inhibitory conductances. In the oversampling
method, we set κα = κβ = 0.1

intracellular recorded membrane potential (see results in 5.1.2.3), we are in conditions to
state that the results obtained with the QIF method are closer to the real ones than the
others.

5.2 Estimation in the spiking regime

In previous sections, different estimation procedures has been obtained to estimate conduc-
tances in the subthreshold regime under the presence of nonlinear ionic currents. In this
section we aim at giving a first proof-of-concept to tackle the estimation of the synaptic
conductances in the spiking regime.
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118 Estimation of conductances in single point neurons

We tackle the problem by considering the McKean model, which is described in Section
2.1.3.1, with external current given in Section 2.2.1. This system is the simplified piecewise
linear model of neuronal activity with regular firing given by

{

CV̇ = f(V )− w − w0 + Itotal,
ẇ = V − γw − V0,

(5.14)

where Itotal = I − Isyn(V ), Isyn(V ) = gsyn(V − Vsyn) and

f(V ) =







−V V < a/2,
V − a a/2 ≤ V ≤ (1 + a)/2,
1− V V > (1 + a)/2.

Notice that, in order to reduce the notation, in this section we denote I to the applied
current and Itotal to the external current.

Since we are interested in the synaptic conductances, in the standard McKean model we
pay special attention to the synaptic current Isyn(V ). At a first instance, the synaptic
conductance, gsyn, is considered to be constant, a fact that can be understood as the
synaptic current Isyn(V ) being a representation of the mean field of the synaptic inputs.
Other special parameter we need to take into account is the capacitance C. Since C is
assumed to be small, the variables V and w evolve with very different velocities, and so
system (5.14) can be considered a slow-fast dynamical system, where the variable V is the
fast one whereas the variable w is the slow one.

As it has been reported in some previous studies, being two examples Abbott (1990)
and Tonnelier and Gerstner (2003), system (5.14) presents different neuronal behaviours
depending on the total amount of constant current that the neuron is receiving, Itotal = I.
In particular, authors show that there exist two boundary values I1 and I2 such that,
if Itotal ≤ I1, the system presents low activity and the membrane potential tends to a
silent state, that is, variable V tends to an equilibrium state with low value. Moreover,
when I1 < Itotal < I2, the system exhibits a periodic orbit and so the neuron presents
an oscillatory behaviour corresponding to a regular firing. Otherwise, if Itotal ≥ I2, the
neuron tends to a steady high activity, that is, the variable V tends to an equilibrium
state with high value, corresponding to a nerve block. We remark that, in contrast with
our model, in all these studies the total current, Itotal, was considered constant. In this
work, Itotal is considered to have a linear dependence on the membrane potential since
Itotal = I − Isyn(V ) = I − gsyn(V − Vsyn).

Since we are interested in the estimation of conductance gsyn in spiking regimes, we will
focus in the region of the parameter space where the model presents a unique periodic orbit
crossing the two switching manifolds V = a/2 and V = (1+a)/2. Several approximations
of the period T of the periodic orbit, exhibited by different versions of the McKean model,
have been recently studied. In Coombes (2008), the period T is computed numerically for
different constant inputs Itotal. In other works, such as Abbott (1990), Coombes (2001),
and Tonnelier (2003), the approximation of T has been carried out by considering the
singular limit (C = 0) of the periodic orbit, consisting of segments of orbits from both
subsystems, the slow and the fast one. The approximation is then obtained from the
total amount of flight time on the slow manifold. We note that this value coincides with
the constant term of the power series expansion in C of the period T . More recently,
in Fernández-Garćıa et al (2015), the authors provide an approximate expression of the
period T by taking advantage of the slow invariant manifolds for 0 < C ≪ 1. In this case,
T is approximated by computing the flight time of the periodic orbit in each lateral regime,
i.e. in V < a/2 and V > (1+a)/2, and supposing that the flight time in the central band,
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5.2. Estimation in the spiking regime 119

i.e. in a/2 < V < (1 + a)/2, is negligible. In this section, with the aim of improving the
approximations done so far for T , we consider the central regime as non-negligible. We
remark that this consideration will also allow us to improve the results obtained in the
lateral regimes.

The new approximation of the period function, that we denote by T̂ , depends on the
parameters of the model, and, in particular, on the synaptic conductance gsyn and the
applied current I, i.e. T̂ (gsyn, I). As we prove in this section, the dependence of T̂ on the
synaptic conductance, gsyn, is non-linear but turns out be monotonic for the range of input
current values for which T̂ has sense; that is, for the input currents that drive the neuron
to regularly spiking. Hence, as a consequence of the monotonicity, by knowing T̂ and the
applied current I (i.e. knowing the f − I curve), one would be able to compute gsyn by
solving numerically a non-linear equation having a unique solution; and so, estimate the
steady synaptic conductance of the neuron, which is the goal of this section.

We would like to note that, even though some studies consider the synaptic conductances
as a constant input, in real experiments synaptic conductances change along time thus
causing non-regular spiking. Indeed, we have a non-autonomous system which may have
a very complicated dynamics. If the changes in conductances are relatively slow, then we
may assume to be “riding” on a periodic orbit with a constant conductance during a certain
time window. This fact suggests that each inter-spike interval (ISI), which corresponds to
the time between two consecutive spikes, can be a good approximation of T for a specific
constant value g̃syn provided that gsyn(t) has a slow variation. Hence, for each ISI one can
estimate a different steady conductance and so, obtain a time course estimation of g̃syn,
say ĝsyn(t).

The above explained procedure and the results obtained in this section are distributed in
the following way. In Subsection 5.2.1, we present the model and revise the main features
of its qualitative dynamics, namely the existence and character of equilibrium points, and
the conditions on the parameters that ensure the existence of a unique periodic orbit. In
Subsection 5.2.2, we present the expression T̂ that we obtain as an approximation of the
period T , and show that this approximation T̂ is a monotonically decreasing function of the
synaptic conductance gsyn. In Subsection 5.2.3, we deal with the estimation procedure,
where we are able to infer, in Subsection 5.2.3.2, a steady synaptic conductance from
the cell’s oscillatory activity; and, in Subsection 5.2.3.1, we extend the results to a more
realistic case, where we present a proof-of-concept to estimate the full time course of the
conductances. Details about the numerical integration of the model are given in Section
2.4.4.

5.2.1 Qualitative analysis of the model

Let us consider the modified McKean model given by system (5.14). This system is a non-
symmetric continuous piecewise linear system, and it is defined in three different regions,
namely

{

(V,w) ∈ R
2;V < a/2

}

,
{

(V,w) ∈ R
2; a/2 ≤ V ≤ (1 + a)/2

}

, and
{

(V,w) ∈ R
2;

V > (1 + a)/2}. Observe that system (5.14) is not globally differentiable but piecewise dif-
ferentiable. Moreover, since parameter C is assumed to be small, system (5.14) is endowed
with a slow-fast dynamics, being the membrane potential, V , the fast variable, meanwhile
the auxiliary variable, w, is the slow one. Notice that the dynamics of system (5.14) is
parametrized by the slow time.

The function f(V ) depends piecewise linearly on the parameter V , with three different
slopes according to the three different zones defined by the model. This fact causes that

119



120 Estimation of conductances in single point neurons

the determinant and the trace of the model vary across the different regions. In the
central region, the determinant is given by dM = (γ(gsyn − 1) + 1)/C whereas the trace
is tM = −((gsyn − 1)/C + γ). In the lateral regions, the determinants and traces are
dL = dR = (γ(1+gsyn)+1)/C and tL = tR = −((1+gsyn)/C+γ), respectively, where the
subscript L stands for the left region and R for the right one. As a consequence, different
equilibrium points can coexist on the model and they are located in different regions.
These facts depend on the value of the external input I and the synaptic conductance
gsyn, as it is illustrated in Figure 5.22, where I1 and I2 are defined as

I1 =
(a

2
− Vsyn

)

gsyn +
(γ + 1)a− 2v0 + 2γw0

2γ
,

I2 =

(

a+ 1

2
− Vsyn

)

gsyn +
(γ + 1)a− 2v0 + 2γw0 − γ + 1

2γ
.

(5.15)

In fact, Ij ≡ Ij(gsyn;Vsyn, γ, a, v0, w0), j = 1, 2, but we will omit these dependencies to
simplify the notation. We note that when gsyn < 1 − 1/γ, lines I = I1 and I = I2
corresponds to a subcritical saddle-node-like bifurcations, where two equilibrium points
merge in one and disappears after they collide.

I1

I2

gsyn = 1− 1/γ gsyn(mS/cm2)

I(
m
V
)

Figure 5.22: Location of the equilibrium points. According to expressions in (5.15),
the solid blue line represents I = I2 whereas the solid red line represents I = I1. The dotted
line is gsyn = 1−1/γ. Each box on the figure represents the three different regions of system
(5.14) (left, central and right) separated by vertical segments. The dots are depicted on
the box corresponding to the region where the equilibrium point exists. On the intercept
of I = I1 and I = I2, the line in the central part of the corresponding box indicates
that there exists a full segment of equilibrium points in such region, which corresponds to
the central piece of the V -nullcline. The different locations and configurations of critical
points follow from Proposition 5.1 and from the arguments used in its proof.

In the next proposition, we show necessary and sufficient conditions to ensure existence
and uniqueness of an equilibrium point of system (5.14) located in the central region or
on either of the two switching manifolds. We point out that, from the arguments used in
the proof of this proposition, the rest of possible locations and configurations of critical
points given in Figure 5.22 follows.

Proposition 5.1. Let us consider system (5.14) satisfying that gsyn > 1 − 1/γ. Then,
this system has a unique equilibrium point and it is located

a) in the interior of the central region, if and only if I1 < I < I2;
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5.2. Estimation in the spiking regime 121

b) on the switching manifold V = a/2, if and only if I = I1;

c) on the switching manifold V = (1 + a)/2, if and only if I = I2.

Proof. The equilibrium points of system (5.14) are given by the solutions of

− f(v) + (gsyn +
1

γ
)V =

v0
γ
− w0 + gsynVsyn + I and w =

V − v0
γ

(5.16)

where f(V ) takes its expression according to the corresponding region. Therefore, we
proceed by considering each of the regions separately.

Let us first consider the left region. Since f(V ) = −V , gsyn ≥ 0 and γ > 0, the unique
solution of system (5.16) is given by the point pL = (VL, wL), where

VL =
γ(I − w0 + gsynVsys) + v0

1 + γ(1 + gsyn)
and wL =

I − w0 + gsyn(Vsyn − v0)− v0
1 + γ(1 + gsyn)

.

Therefore, by imposing that VL < a/2, it follows that pL is an equilibrium point in this
region if and only if I < I1

In the central region, where f(V ) = V − a, the unique solution of system (5.16) is the
point pM = (VM , wM ) given by

VM =
γ(I − w0 + gsynVsyn − a) + v0

1− γ(1− gsyn)
and wM =

I − w0 + gsyn(Vsyn − v0) + v0 − a

1− γ(1− gsyn)
.

Hence, by forcing VM to lie in the interval (a/2, (a + 1)/2), it follows that pM is an
equilibrium point if and only if either of the pair of inequalities

gsyn > 1− 1

γ
and I1 ≤ I ≤ I2; or gsyn < 1− 1

γ
and I2 ≤ I ≤ I1,

are held. However, notice that the first component of the equilibrium point is exactly
V = a/2 when I = I1, and so the equilibrium point is located on the left switching
manifold. Similarly, when I = I2, the equilibrium point is located on the right switching
manifold. Otherwise, i.e. when I1 < I < I2, the equilibrium point stays inside the central
region.

We remark that in the case where gsyn = 1 − 1/γ, if I = I1 = I2 all points along the
central part of the V -nullcline are equilibrium points. This fact is caused by the slopes of
V and w nullclines being the same.

Finally, in the right region, i.e. when f(V ) = 1− V ; the unique solution of system (5.16)
is the point pR = (VR, wR) given by

VR =
γ(I − w0 + gsynVsyn + 1) + v0

1 + γ(1 + gsyn)
and wR =

I − w0 + gsyn(Vsyn − v0)− v0 + 1

1 + γ(1 + gsyn)
.

Since gsyn ≥ 0 and γ > 0, by imposing that V > (1 + a)/2, an equilibrium point in this
region exists if and only if I > I2.

To sum up, if 0 < gsyn < 1− 1/γ, when I < I2 or I > I1 only an equilibrium point exists
on the left and right regions, respectively. However, if I2 < I < I1, three equilibrium
points coexist, one in each region. If gsyn > 1 − 1/γ, only one equilibrium point exists
located in either the left, central or right region when I < I1, I1 < I < I2 or I > I2,
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122 Estimation of conductances in single point neurons

respectively. Otherwise, if gsyn = 1 − 1/γ and I = I1 = I2, infinite equilibrium points
coexist in the central region. A representation of these results are shown in Figure 5.22.

Hence, we only have an equilibrium point located in the central region when both condi-
tions gsyn > 1− 1/γ and I1 < I < I2 hold, proving the proposition.

Remark 5.1. By Proposition 5.1, when gsyn > 1 − 1/γ and I1 < I < I2 system (5.14)
has only one equilibrium point which lies in the central region. Let us call such point
as pM = (pV,M , pw,M). When each linear system which is part of the vector field is
considered to be defined on the full plane, thus two more zeros appear: one from the
system described in the left zone, pL = (pV,L, pw,L), and another from the system in the
right zone, pR = (pV,R, pw,R). Under these assumptions, these two points are located in the
central region and, even thinking that they have influence on the global dynamics, they are
not equilibrium points of system (5.14). These points are called virtual equilibrium points.
Finally, note that when I = I1 or I = I2, pM coincides with pL or pR, respectively.

The behaviour of the model is also governed by the eigenvalues associated to the system,
which vary across the three different zones (left, central and right). In each region, there
exist two different eigenvalues: one of O(C), which is the responsible for the slow dynamics;
and another one of O(1), which is the responsible for the fast dynamics. These eigenvalues
are given by

λs,L = λs,R = − 1

2C

(

1 + gsyn + Cγ −
√

(1 + gsyn − Cγ)2 − 4C
)

λq,L = λq,R = − 1

2C

(

1 + gsyn + Cγ +
√

(1 + gsyn − Cγ)2 − 4C
)

λs,M =
1

2C

(

1− gsyn − Cγ −
√

(gsyn − 1− Cγ)2 − 4C
)

λq,M =
1

2C

(

1− gsyn − Cγ +
√

(gsyn − 1− Cγ)2 − 4C
)

where the subscripts L, R and M stand for the eigenvalues in the left, right, and central
regimes, respectively; and the subscripts s and q denote the small and the big eigenvalue,
respectively. These eigenvalues correspond to either focus or node equilibrium points, de-
pending on the values of the parameters gsyn, γ and C. However, for sufficiently small
values of C, one can guarantee that all equilibrium points are nodes since all the discrim-
inants are positive when C = 0. In fact, all the equilibrium points are nodes if and only
if C ≤ C∗ where

C∗ = min

{

2 + γ(gsyn + 1)− 2
√

1 + γ(gsyn + 1)

γ2
,
2 + γ(gsyn − 1)− 2

√

1 + γ(gsyn − 1)

γ2

}

.

In this case, we call vij = (λij + γ, 1) to the eigenvector associated to the eigenvalue λij,
where i ∈ {s, q} and j ∈ {L,R,M}. Notice that the slow manifold of system (5.14) is
piecewise defined, since it depends on the direction of the different eigenvectors. We refer
each piece of the slow manifold as Sj where j ∈ {L,R,M}.

Since the piecewise differential system (5.14) is locally linear, it can be analytically solved
at each region separately, being the local solutions

{

V (t) = (λs,i + γ)K1,ie
λs,it + (λq,i + γ)K2,ie

λq,it + pV,i,
w(t) = K1,ie

λs,it +K2,ie
λq,it + pw,i,

(5.17)

where i represents either L, M or R depending on the region being left, central or right,
respectively; and

K1,i =
V (0) − pV,i − (λq,i + γ)(w(0) − pw,i)

λs,i − λq,i
, K2,i = w(0) −K1,i − pw,i.
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5.2. Estimation in the spiking regime 123

Notice that equation (5.17) only represents a local expression of the solution of system
(5.14). As long as the orbit, given by a fixed initial condition, remains in one region, this
orbit is given by the expression of the solution of the system obtained in this particular
region; however, if the orbit crosses to another region, the orbit is given by the correspond-
ing expression obtained in this new region, which depends on the different eigenvalues and
the initial conditions. Since the vector field defined by system (5.14) is globally non-linear,
depending on the character of the equilibrium points and the eigenvalues, system (5.14)
may exhibit limit cycles. In next proposition we give a sufficient condition so that system
(5.14) can have a unique periodic orbit.

Proposition 5.2. Consider the following assumptions

gsyn > 1− 1/γ, I1 < I < I2, |gsyn +Cγ| < 1 and 0 < C ≤ C∗.

Then:

a) if I1 < I < I2, system (5.14) exhibits a unique limit cycle, this orbit crosses the two
switching manifolds V = a/2 and V = (a+ 1)/2, and it is stable;

b) if I = I1 or I = I2, system (5.14) exhibits a homoclinic orbit to the equilibrium
point pM , this orbit is stable from the exterior and delimits an open region which is
foliated by homoclinic orbits to pM .

Proof. Let us consider system (5.14) written in its Liénard form. To do that, we make
the two different changes of variables. First, we switch to (V, u) through w = C(u+ γV )
and, second, we introduce (x, y) where x = 4v − 2a − 1 and Cy = 4Cu + Cγ(2a + 1) −
4I + 2a − 1 (see Section 2 in Llibre et al (2013)). Then, moving the origin to the point
(0, ((2a + 1− yVsyn)gsyn + 4w0)/C), the Liénard form of system (5.14) is given by

{

ẋ = F (x)− y
ẏ = G(x)− δ

where δ = − 1
C (2a (γ + γgsyn + 1)− γ + γgsyn + 1− 4v0 + 4γ (w0 − I − gsynVsyn)),

F (x) =







tL(x+ 1)− tM x < −1,
tMx −1 ≤ x ≤ 1,
tR(x− 1) + tM x > 1,

and G(x) =







dL(x+ 1)− dM x < −1,
dMx −1 ≤ x ≤ 1,
dR(x− 1) + dM x > 1.

By Proposition 5.1, since gsyn > 1 − 1/γ and I1 < I < I2, only one equilibrium point
exists and it is located in the interior of the central region. Moreover, since gsyn > 1−1/γ
and |gsyn +Cγ| < 1, the parameters of the functions F (x) and G(x) satisfy that dM > 0,
−dM < δ < dM , dL, dR ≥ 0, tL, tR < 0, and tM > 0. Hence, the existence and uniqueness
of a periodic orbit surrounding the equilibrium point is guaranteed by Theorem 1 in
Llibre et al (2013), see also Theorem 1.2.

Finally, since 0 < C ≤ C∗ and tM > 0, the equilibrium point is a repelling node. Con-
sequently, the invariant lines defined by the eigenvectors force the periodic orbit to cross
the three regions, which ends the proof of the statement (a).

In order to prove the statement (b), let us consider the case where I = I1. Then, let
qL = (VL, wL) and qR = (VR, wR) be the intersection points of the left and right pieces
of the slow manifold with the vertical lines V = a/2 and V = (1 + a)/2, respectively;
and let q∗∗

R = (V ∗∗
R , w∗∗

R ) be the intersection point of the w-nullcline with the vertical line
V = (1 + a)/2, see Figure 5.23.
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124 Estimation of conductances in single point neurons

In this case, the equilibrium point, pM (that exists and it is unique from Proposition 5.1),
coincides with the virtual equilibrium point pL of the left region. Since it is contained
in the intersection of SL and SM , which are respectively stable and unstable manifolds,
the equilibrium point is a saddle node and qL = pL. Moreover, taking into account that
I = I1, it follows that

qL =

(

a

2
,
a− 2v0

2γ

)

, qR =

(

1 + a

2
, pw,R +

1

λs,R + γ

(

1 + a

2
− pV,R

))

, and

q∗∗
R =

(

1 + a

2
,
1 + a− 2v0

2γ

)

.

Consider now the closed region delimited by the union of the line segments Li, i = 1 . . . 5,
defined as follows:

i) L1 denotes the line segment bounded by qL and the intersection point of SR with
the line w = wL, which we denote by q∗

1,R;

ii) L2 denotes the segment of SR that is bounded by q∗
1,R and qR;

iii) L3 denotes the vertical line segment bounded by qR and q∗∗
R ;

iv) L4 denotes the line segment bounded by q∗∗
R and the intersection point of SL with

the line w = w∗∗
R , which we denote by q∗

1,L; and, finally,

v) L5 denotes the segment of SL that is bounded by q∗
1,L and qL.

Looking at the direction of the flow, one can see that the w-component of the flow in L1

is given by ẇ = V − a/2, which is positive in the line segment under consideration, and
so the flow positively crosses L1. Similarly, the w-component of the flow on L4 is given
by ẇ = V − (1 + a)/2, which is negative in the line segment under consideration, and so
the flow positively crosses L4. On another hand, segments L2 and L5 are contained in
the pieces SR and SL of the slow manifold, respectively; this fact implies that both line
segments are invariant under the flow. Finally, notice that the flow positively crosses the
line V = (1 + a)/2 if and only if V̇ > 0, and so

w|V=(1+a)/2 > 1− 1 + a

2
− w0 + I − gsyn

(

1 + a

2
− Vsyn

)

.

Straightforward calculations show that, for a sufficiently small C, both wR and w∗∗
R are

greater that w|V=(1+a)/2, and so the flow crosses the line segment L3 positively, showing
that the closed region obtained by these five segments is invariant under the flow of
system (5.14); see Figure 5.23 (left) for a representation of both the invariant region and
the direction of the flow. Therefore, by Poincaré-Bendixson Theorem (see for instance
Perko (1982)) there exists a continuum of homoclinic orbits from the equilibrium point to
itself, being the biggest homoclinic orbit stable.

Similar arguments can be applied to prove the result when I = I2, where in this case
qR = pR. In Figure 5.23 (right), we depict a representation of the invariant region and
the directions of the flow in this case.
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I = I1 I = I2

qL q∗
1,R

qR

q∗∗
Rq∗

1,L

qL
q∗∗
L q∗

2,R

qRq∗
2,L

Figure 5.23: Invariant region and direction of the flow. Representation of the
invariant regions and the direction of the flow when I = I1 (left) and I = I2 (right).
The dashed black lines represent the slow manifold whereas the dotted black line is the
w-nullcline. Vertical dotted grey lines represent the two switching manifolds, V = a/2
(left line in each subplot) and V = (1 + a)/2 (right line in each subplot). The solid red
line represents the boundary of each invariant region and the arrows give us information
about the direction of the flow. See Proposition 5.2(b) for more details.

Corollary 5.1. Under the suitable conditions

gsyn > 1− γ−1, |gsyn + Cγ| < 1, and 0 < C ≤ C∗, (H)

where C∗ is a constant value, the previous three different neural behaviours persist (low-
voltage steady state, regular firing and high-voltage steady-state).

In Figure 5.24, we represent the different phase portraits that we obtain when we change
the value of the capacitance (when C = 0 and 0 < C ≤ C∗) and also the value of the
applied current (when I = I1, I1 < I < I2, and I = I2). Notice that these configurations
are obtained from Proposition 5.2.

I

C

I1 I2

0

C∗

Figure 5.24: Bifurcation diagram. Representation of the bifurcation diagram with the
phase portraits of the periodic orbits for different values of C and I under conditions
gsyn > 1− 1/γ and |gsyn + Cγ| < 1. The phase portraits are obtained with the following
parameter values: a = 0.25, v0 = 0, γ = 0.5, gsyn = 0.2, w0 = 0, and Vsyn = 1/4 + a/2.
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126 Estimation of conductances in single point neurons

5.2.2 An approximation of the period of the periodic orbit

As we have mentioned in the Introduction, related works such as Tonnelier (2003) and
Fernández-Garćıa et al (2015), among others, make approximations of the period T of a
periodic orbit in a piecewise linear systems. In this section, we present a way to improve
the approximations of T done so far and so an expression of it in our particular case (that
is, Isyn(V ) 6≡ 0). This improvement is basically obtained by considering the flight time
on the central region and using a better approximation of the flight time in the lateral
regions.

From now on, let us assume that the hypothesis of Lemma 5.1 is satisfied and that I1 <
I < I2. Hence, by Proposition 5.2(a), the considered model given by system (5.14) has a
unique periodic orbit that intercepts the three different regions; and so, the period of the
periodic orbit can be split into four parts: the first one (TL) corresponds to the time that
the orbit is contained in the left region; the second part (TM,down) is the time taken by the
orbit to cross the central zone from left to right following a counterclockwise movement;
the third (TR) is the sub-period that the orbit lies in the right region; and, finally, the
last part (TM,up) corresponds to the time taken by the orbit to cross the central part from
right to left. The total period is then the sum of these four sub-periods and is analytically
given in the following proposition.

Proposition 5.3. Given system (5.14) under hypothesis of Lemma 5.1,

a) If C = 0, the period of the unique periodic orbit of the system is T0 = T0,L + T0,R

such that

T0,L = B0 ln

(

γ(I − I1)

γ(I − I1) +K0

)

, and T0,R = B0 ln

(

γ(I − I2)

γ(I − I2)−K0

)

where

B0 = −
1 + gsyn

(1 + γ + γgsyn)
; K0 =

(1− gsyn)(1 + γ + γgsyn)

2(1 + gsyn)

b) For a sufficiently small C > 0, the period of the unique periodic orbit of the system
can be analytically approximated by

T̂ =
1

λs,L
ln

(∣

∣

∣

∣

γ(I − I1)Bl

γ(I − I1)Bl −Kl

∣

∣

∣

∣

)

+
1

λq,M
ln

(∣

∣

∣

∣

γ(I − I2)Bm +Km

γ(I − I2)Bm +Km,d

∣

∣

∣

∣

)

+

1

λs,L
ln

(∣

∣

∣

∣

γ(I − I2)Bl

γ(I − I2)Bl +Kl

∣

∣

∣

∣

)

+
1

λq,M
ln

(∣

∣

∣

∣

γ(I − I1)Bm +Km

γ(I − I1)Bm +Km,u

∣

∣

∣

∣

)

,
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where

Bl = λq,L − λs,L,

Bm = (γ + λq,M ) ((gsynγ + 1)(λs,L − λs,M)− γ(λs,L + λs,M)− 2λs,Lλs,M ) ,

Kl =
1
2 (γ + λq,L)(gsynγ + γ + 2λs,L + 1).

Km = 1
2(γ + λs,M)(gsynγ − γ + 1)

((gsynγ + 1)(λs,L − λq,M)− γ(λs,L + λq,M)− 2λs,Lλq,M ) ,

Km,d = 1
2(λq,M − λs,M)
(γ + λq,M )(gsynγ − γ + 1)(gsynγ + γ + 2λs,L + 1),

Km,u = 1
2 (γ + λq,M )(gsynγ − γ + 1)
((gsynγ + 1)(λs,L − λs,M)− γ(λs,L + λs,M )− 2λs,Lλs,M) ,

Proof. Let us consider first the singular case when C = 0. Given the infinite velocity of
system (5.14) in the central region, the central sub-periods can be taken as 0 so that the
periodic orbit spends the whole period on the lateral slow manifolds. Then, the lateral
sub-periods determine the period of the periodic orbit.

Since the left term of the first equation of system (5.14) is 0, V can be isolated and
replaced in the second equation of system (5.14) obtaining the following non-autonomous
linear ordinary differential equations

ẇ = −(1 + γ)w − w0 − v0 + I − Isyn if v < a/2;
ẇ = −(1 + γ)w − w0 − v0 + I − Isyn + 1 if v > (1 + a)/2.

(5.18)

Hence, from this system, the period orbit can be analytically solved by integrating the ẇ
equation at each lateral region separately. From the first differential equation in (5.18),
which corresponds to the left region, integrating from t = 0 to t = T0,L we calculate the
left sub-period T0,L; and, from the second differential equation, which corresponds to the
right region, integrating from t = 0 to t = T0,R, we calculate the right sub-period T0,R.
Then, we obtain that

T0,L = B0 ln

(

γ(I − I1)

γ(I − I1) +K0

)

, and T0,R = B0 ln

(

γ(I − I2)

γ(I − I2)−K0

)

where

B0 =
1 + gsyn

− (1 + γ + γgsyn)
; K0 =

(1− gsyn)(1 + γ + γgsyn)

2(1 + gsyn)
.

Hence, the exact period when C = 0 is given by T0 = T0,L + T0R which proves statement
(a).

Consider now the perturbed case when C > 0. As we can see in Figure 5.24, in this
situation the periodic orbit moves close to the lateral slow manifolds but does not lie on
them. Therefore, techniques different from the ones used when C = 0 are required to
find an approximated period. Since the period can be split into four parts, we need to
approximate these four sub-periods separately. To simplify the notation, we denote the
four approximations of the sub-periods as the actual ones, that is, TL, TM,down, TR, and
TM,up.

Let us first approximate the central sub-periods. For this purpose, let qL and qR be again
the intersection points of the left and right pieces of the slow manifold with the vertical
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128 Estimation of conductances in single point neurons

lines V = a/2 and V = (1+ a)/2, respectively; and let qM,L and qM,R be the intersection
points of the central slow manifold with V = a/2 and V = (1 + a)/2, respectively (see
Figure 5.25 for a representation of these points).

V = a/2 V = (1 + a)/2

TM,down

TM,up

TL TR

q̃L

qL

pL

q̄L

q̃R

qR

pR

q̄R

pM
qM,L

qM,R

v

w

Figure 5.25: Key points when C > 0. Representation of all the elements needed to
find the expression of the period. The vertical dashed black lines represent the boundaries
of the different regions and the rest of dashed black lines illustrate TL, TM,down, TR and
TM,up. The dotted lines represent the slow manifold when C = 0 whereas the red lines
represent the slow manifold when C > 0. See the proof of Proposition 5.3 for more details.

Since system (5.14) is a slow-fast piecewise linear system, the distance between qL and
qM,L is of O(C); and, the distance between qR and qM,R is also of O(C) (see Fenichel
(1979) and Jones (1995)). In fact, the periodic orbit follows the left slow manifold very
close to it and crosses from the left region to the central one at some point between qL

and qM,L, exponentially close to qL. Similarly, the orbit moves very close to the right
slow manifold and crosses from the right region to the central one at some point between
qR and qM,R, also exponentially close to qR (see Figure 5.24). Hence, since C is close to
0, one can assume that the integral curve through qL, which is contained in the central
region, will remain in a neighbourhood of the periodic orbit, and similarly for the integral
curve through qR. Therefore, we consider qL and qR as an approximation of two points
where the periodic orbit passes through.

Then, consider the central solution of the system, which is given in equation (5.17) when
i = M , with qL and qR as initial conditions. In view of the fact that the eigenvalue λs,M

is approximately 0 for a sufficiently small C (since it is of order O(C)), one can suppose
that λs,M = 0 and, consequently, find an expression of the sub-periods TM,down and TM,up.
Indeed, under the previous assumptions on the initial conditions, the sub-period TM,down

corresponds to the piece of orbit that begins at qL and ends on the boundary v = (1+a)/2;
we call this point q̃R. By imposing that V (t) = (1+a)/2 and λs,i = 0 in the first expression
of system (5.17) when i = M , the sub-period TM,down is the result of isolating the time t.
That is,

TM,down =
1

λq,M
ln

(∣

∣

∣

∣

γ(I − I2)Bm +Km

γ(I − I2)Bm +Km,d

∣

∣

∣

∣

)

,

where

Bm = (γ + λq,M ) ((gsynγ + 1)(λs,L − λs,M)− γ(λs,L + λs,M)− 2λs,Lλs,M ) ,
Km = 1

2(γ + λs,M)(gsynγ − γ + 1) ((gsynγ + 1)(λs,L − λq,M )− γ(λs,L + λq,M )− 2λs,Lλq,M) ,
Km,d = 1

2(λq,M − λs,M)(γ + λq,M )(gsynγ − γ + 1)(gsynγ + γ + 2λs,L + 1).
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Similarly, the sub-period TM,up corresponds to the piece of orbit that begins at qR and
ends on the boundary V = a/2; we call this point q̃L. Therefore, following the same
procedure as for TM,down, we obtain that

TM,up =
1

λq,M
ln

(∣

∣

∣

∣

γ(I − I1)Bm +Km

γ(I − I1)Bm +Km,u

∣

∣

∣

∣

)

,

where Bm and Km are described as in TM,down, and

Km,u = 1
2(γ + λq,M)(gsynγ − γ + 1) ((gsynγ + 1)(λs,L − λs,M )− γ(λs,L + λs,M)− 2λs,Lλs,M) .

Notice that both points q̃R and q̃L can be analytically computed using the second equation
in system (5.17), since TM,down and TM,up are known, and the component V of q̃R and q̃L

is V = (1+a)/2 and V = a/2, respectively. Then, the approximated period on the lateral
regions will be the necessary time to travel from q̃L to qL for the left sub-period TL, and
the necessary time to travel from q̃R to qR for the right sub-period TR.

To compute the approximated period on the lateral regions let us consider q̄L and q̄R be
the points that result from projecting q̃L and q̃R along the direction of the fast eigenvector
on the slow manifold defined on the left and the right regions, respectively (see Figure 5.25
for a representation of these two points). See 1.2 for more details about this procedure.

Considering the coordinate system centered to the virtual equilibrium point pL and gen-
erated by the left eigenvectors vs,L and vq,L, the approximation of the left sub-period, TL,
can be computed as

TL =
1

2λs,L
ln
‖q̄L − pL‖2
‖qL − pL‖2

.

Similarly, considering the coordinate system centered on the virtual equilibrium point pR

and generated by the right eigenvectors vs,R and vq,R, the approximation of the right
sub-period, TR, can be computed as

TR =
1

2λs,L
ln
‖q̄R − pR‖2
‖qR − pR‖2

.

Notice that the two former expressions can be written, in terms of the system parameters
as

TL =
1

λs,L
ln

(∣

∣

∣

∣

γ(I − I1)BL

γ(I − I1)BL −KL

∣

∣

∣

∣

)

, TR =
1

λs,L
ln

(∣

∣

∣

∣

γ(I − I2)BL

γ(I − I2)BL +KL

∣

∣

∣

∣

)

where
BL = λq,L − λs,L

KL = 1
2(γ + λq,L)(gsynγ + γ + 2λs,L + 1)

Therefore, an expression to approximate the period of the periodic orbit in system (5.14)
is T̂ = TL + TM,down + TR + TM,up, thus proving statement (b).

Remark 5.2. When C tends to 0, TL −→ T0,L, TM,down −→ 0, TR −→ T0,R, and

TM,up −→ 0. Therefore, T̂ −→ T0. Moreover, both for C = 0 and C > 0, the left
sub-period tends to infinity when I tends to I1. This limit agrees with the fact that, when
I = I1, the equilibrium point lies on the intersection of the central slow manifold with the
vertical line v = a/2; therefore, the orbit reaches the equilibrium point and spends infinite
time to escape. Similar arguments explain why the right sub-period tends to infinity when
I tends to I2.
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130 Estimation of conductances in single point neurons

Remark 5.3. Notice that, Bl, Bm, Kl, Km, Km,d, and Km,u in the expression T̂ of
Proposition 5.3, have a non-linear dependence on gsyn. Moreover, fixing all parameters
in the model but keeping the synaptic conductance, gsyn, the applied current, I, and the
capacitance of the neuron, C, as variable, then the approximated period can be written as
the function

T̂ (C, I, gsyn) = TL(C, I, gsyn) + TM,down(C, I, gsyn) + TR(C, I, gsyn) + TM,up(C, I, gsyn).

5.2.2.1 Goodness of the approximated period function

As we have mentioned in the proof of Proposition 5.3, only two assumptions have been
supposed in order to approximate the period, which are the two initial conditions where
the periodic orbit passes through. We suppose that these points are qL and qR, while the
real ones are exponentially close to them.

To see the global effect that these assumptions cause, and so the goodness of fit, in Figure
5.26, we show the relative error of the approximated period function T̂ (C, I, gsyn), first,
keeping constant de parameter gsyn (panel A); second, keeping constant de capacitance
C (panel B); and, finally, keeping constant de applied current I (panel C). The relative
errors have been plotted, in all panels, considering the numerical solution of the period,
which has been computed using the Newton-Raphson method in each region separately, as
well as the actual one (see Appendix C.1 for details on the routine). In panel A we can see
how the relative error in the proposed approximation function depends more significantly
on the capacitance C than on the applied current I. Moreover, this panel reveals relative
errors around O(C/10). On the other hand, in panel B, one can see that, when parameter
I varies, for a fixed value of gsyn, the error is not qualitatively altered, but for larger values
of gsyn, the relative error significantly increases being, at most, O(C); see also panel C,
where we can better appreciate the errors in gsyn as C changes.

Observe that even though T̂ (C, I, gsyn) is defined for all values of C, gsyn and I, computing
T̂ makes sense only under the hypothesis of Lemma 5.1, that is, when I lies in (I1, I2) and
gsyn ∈ (1−1/γ, 1−Cγ). Figure 5.27 shows the shape of the approximated period function
T̂ (C, I, gsyn) in the corresponding domain. As we have mentioned in Remark 5.2, the
period substantially increases when I is close to I2 and I1, tending to infinity. Moreover,
the V -shape of the function T̂ (C, I, gsyn) is given by the linear dependence that I1 and I2
have on gsyn. That is, as we increase the value of gsyn, the value of I1 is greater whereas
the value of I2 is smaller; consequently, the window where I can move decreases and causes
the V -shaped profile. Remarkably, in Figure 5.27 we can also see that T̂ (C, I, gsyn) seems
to be monotonically decreasing with respect to gsyn. This fact gives us the opportunity
to apply the implicit function theorem and so, for a given value, T ∗, of the period, there
exists a unique value g∗syn such that T̂ (C, I, g∗syn) = T ∗. Even though we would like to

analytically proof the monotonicity of T̂ , because of the multitude of parameters in the
model, we have not been able to show it. However, some relevant properties of the shape
of T , and also some computational evidences, have been obtained on the way. Next we
state all of them.

Evidences of the monotonicity of T̂ . Under the hypothesis of Lemma 5.1, we had
seen some evidences of fact that the approximated period function T̂ (C, I, gsyn) is mono-
tonically decreasing with respect to the synaptic conductance parameter, gsyn.

Note that, at each region of the McKean model, see equation (5.14), the Poincaré return
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Figure 5.26: Goodness of fit of the periodic function T̂ (C, I, gsyn). Panel A shows the
relative error of the period for a fixed synaptic conductance gsyn = 0.2, panel B shows the
relative error of the period when the capacitance is fixed as C = 1e−4, and panel C shows
the relative error of the period when the applied current is fixed as I = (I01+I02 )/2 such that
I01 and I02 are, respectively, the value of I1 and I2 corresponding to gsyn = 0. The relative
error of the numerical value obtained using the Newton-Raphson method with respect to
the approximated one using the expression in Proposition 5.3. The rest of parameters of
the model are fixed as a = 0.25, v0 = 0, w0 = 0, γ = 0.5, and Vsyn = 0.25 + a/2.

map is an analytical function in terms of C. Consequently, its composition is also an
analytical function. Therefore, to prove the monotonicity of T̂ (C, I, gsyn), it is enough to
prove the monotonicity in the limiting case C = 0. For this reason, let us consider the
limit of T̂ (C, I, gsyn) when C tends to 0, which is given by T0 = T0,L + T0,R, as described
in Proposition 5.3(a) under the hypothesis of Lemma 5.1 with C = 0.

Note that T0 is a function of gsyn and it can be rewritten as T0(gsyn) = B0(gsyn)f(gsyn)
where

f(gsyn) = ln

(

γ(I − I1)

γ(I − I1) +K0

)

+ ln

(

γ(I − I2)

γ(I − I2)−K0

)

.

Therefore, to prove that T0(gsyn) is monotone, we need to see that the difference T0(gsyn)−
T0(ggsyn + t), for all t ∈ (0, 1 − gsyn), is always either negative or positive. That is, we
need to evaluate the sign of

B0(gsyn)f(gsyn)−B0(ggsyn + t)f(ggsyn + t), t ∈ (0, 1 − gsyn).
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132 Estimation of conductances in single point neurons

ˆ

Figure 5.27: Shape of the T̂ (C, I, gsyn) function. This figure shows the shape of the
approximated period T̂ versus the applied current I and the synaptic current gsyn. The
capacitance has been fixed as C = 1e − 4. The rest of parameters of the model are fixed
as a = 0.25, v0 = 0, w0 = 0, γ = 0.5, and Vsyn = 0.25 + a/2.

Another way to prove the monotonicity is also by seeing that the derivative of T0(gsyn),
with respect to gsyn, is always negative. That is,

Ṫ (gsyn) = Ḃ0(gsyn)f(gsyn) +B0ḟ(gsyn) < 0

where the dot stands for the derivative respect to gsyn.

From Proposition 5.3(a), B0(gsyn) is a strictly negative function and its derivative, Ḃ0(gsyn) =
−1/(1+γ+γgsyn), is also strictly negative. Consequently, B0(gsyn) is a strictly decreasing
function and so,

B0(ggsyn + t) < B0(ggsyn), t ∈ (0, 1 − gsyn). (5.19)

Moreover, the second derivative of B0(gsyn) is always positive.

On the other hand, K0(gsyn) is a positive function whereas its derivative with respect to
gsyn,

K̇0(gsyn) = −
(1 + gsyn)

2γ + 2

2(1 + gsyn)2
,

is strictly negative. Therefore, K0(gsyn) is a strictly decreasing function. Moreover, the
second derivative of K0(gsyn) is always positive.

Since I ∈ (I1, I2), f(gsyn) results to be a negative function. In fact, since the arguments
of the logarithms in both added terms in function f(gsyn) are smaller than 1, f(gsyn) is a
negative function. By computing the derivative of f(gsyn), we get

ḟ(gsyn) =
−γ
(a

2
− Vsyn

)

K0 − γ (I − I1) K̇0

(γ(I − I1) +K0) γ(I − I1)
+

−γ
(

a+ 1

2
− Vsyn

)

K0 + γ (I − I2) K̇0

(γ(I − I2)−K0) γ(I − I2)
.

Using the above considerations on the sign of B0, K0 and their derivatives together with
the inequalities a/2−Vsyn < 0, (a+1)/2−Vsyn < 0, ḟ(gsyn) results to be strictly positive.
Therefore, f(gsyn) is an strictly increasing function and so

f(gsyn) < f(gsyn + t), t ∈ (0, 1 − gsyn).

However, all these properties on B0(gsyn) and f(gsyn) (neither the ones on K0), are not
enough to show that, for all gsyn and t ∈ (0, 1 − gsyn) neither

B0(gsyn)f(gsyn)−B0(gsyn + t)f(gsyn + t) ≤ 0,
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nor

Ḃ0(gsyn)f(gsyn) +B0ḟ(gsyn) ≤ 0,

hold; and so to prove the monotonicity of T0(gsyn). There is always a positive function
added to a negative one. Hence, we need to know which one is higher for all gsyn values.
However, the logarithm function complicates this calculus, since it cannot be easily fitted
by a useful function working for all possible Iapp.

For the chosen physiological parameter, in Figure 5.28 we represent the function T̂ (gsyn)

(Panel A), the derivative
˙̂
T (gsyn) (Panel B) and the second derivative

¨̂
T (gsyn) (Panel C),

each of them for different values of applied current. Note that, from Panel B, all the

applied currents considered show that
˙̂
T (gsyn) < 0. Therefore, at least for these values

of Iapp, T̂ (gsyn) is monotonically decreasing with respect to gsyn. On the other hand, the
second derivative depicts a change in sign (see Panel C) for some Iapp, thus showing the
existence of an inflection point in T̂ (gsyn) of second order.
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Figure 5.28: Monotonicity of T̂ (C, I, gsyn) function respect to gsyn. This figure
shows different plots representing the approximated period T̂ and its derivatives versus
the synaptic current gsyn for different values of applied current. Panel A represents T̂ (gsyn)
(coloured lines). In Panel B we depict the first derivative dT̂ /dgsyn (coloured lines) and the
line dT̂ /dgsyn = 0 (gray line). In Panel C, both the second derivative d2T̂ /dg2syn (coloured

lines) and the line d2T̂ /dg2syn = 0 (gray line) are represented. The different coloured lines,
in all panels, stand for different applied currents such that each color corresponds to a
specific value of applied currents, which is Iapp ∈ [0.4, 0.5, 0.6, 0.7, 0.8]. The rest of
parameters of the model are fixed as C = 1e − 4, a = 0.25, v0 = 0, w0 = 0, γ = 0.5, and
Vsyn = 0.25 + a/2.

Therefore, we have given computational evidences of the monotonicity of the approximated
function of the period with respect to gsyn.

5.2.3 Estimation of the synaptic conductance

In this section we present a method to estimate the steady synaptic conductance from
the cell’s oscillatory activity. That is, knowing the frequency of the spikes for a fixed
and constant injected current, we want to estimate the constant synaptic current that the
neuron is receiving. The procedure has been then extended to estimate the time-course of
the non-steady synaptic currents.

133



134 Estimation of conductances in single point neurons

5.2.3.1 Estimation of a steady synaptic conductance

In Section 5.2.2, we have presented an analytical function T̂ (C, I, gsyn), which has a non-
linear dependence on gsyn, to approximate the period of the periodic orbit of system (5.14).
However, by the monotonicity of T̂ (C, I, gsyn) with respect to gsyn when I1 < I < I2, there
exists a one-to-one correspondence between T̂ and gsyn. Therefore, applying a specific
applied current, I∗, one can experimentally approximate the corresponding actual period
T ∗ of the membrane potential V . In other words, knowing the rest of parameters of the
model, there exists a unique possible synaptic conductance gsyn that can be estimated by
solving the implicit equation

T̂ (C∗, I∗, gsyn) = T ∗. (5.20)

To solve equation (5.20), one has to take into account that the logarithmic part of the
analytical expression T̂ contains an absolute function and, since I1 and I2 depend on gsyn,
we could get up to three possible gsyn solutions for a fixed I. Fortunately, this dependence
is linear and so only one of the three possible solutions for gsyn satisfies that I1 < I < I2.
Then, (5.20) has to be solved with the additional condition

gsyn > max
(

0, Ī1, Ī2
)

, (5.21)

where

Ī1 =
2γI − (γ + 1)a+ 2v0 − 2γw0

2γ(a2 − Vsyn)
and Ī2 =

2γI − (γ + 1)a+ 2v0 − 2γw0 − γ + 1

2γ(a+1
2 − Vsyn)

.

When we apply the estimation procedure (5.20-5.21) to obtain the estimated synaptic con-
ductance, ĝsyn, we identify two main sources of error: an error coming from the numerical
method used to solve the implicit equation and another error coming from the approxi-
mation of the period function, which is at most O(C) (see Section 5.2.2.1). To visualize
the impact of both error sources and so to test the goodness of the estimation procedure,
we show the relative error of the estimated synaptic conductance ĝsyn with respect to the
actual value of gsyn, both using different values of applied currents (see Figure 5.29(A)),
and using different values of the membrane capacitance (see Figure 5.29(B)). In these plots
we estimate different values of the synaptic conductance (from 0.1 to 0.3, equally spaced),
each one represented by a different colour trace.

In Figure 5.29(A) we can see how the estimation of the conductance improves when the
applied current is close to I1 and I2. The error takes the maximum at I = (I1 + I2)/2.
On the other hand, in Figure 5.29(B) we also observe that the relative error is smaller
when the membrane capacitance, C, is smaller; being this error O(C). Therefore, we can
conclude that the best estimation is done for small values of C and also for values of I close
to I1 or I2. In Figure 5.29(C) we can better appreciate how the error increases for large
values of C and for values of I far from I1 and I2. This panel presents the goodness of
fit of the synaptic conductance when both parameters C and I change, where the relative
error is considered in absolute value.

5.2.3.2 Generalization for non-constant conductance traces: inter-spike esti-
mation.

In this section, we implement the previous methodology in order to estimate conductance
traces that vary along time, that is, when gsyn = gsyn(t). Strictly speaking this leads to
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Figure 5.29: Goodness of fit of the steady synaptic conductance parameter.
Panels A and B show the relative error caused when we estimate the synaptic conductance.
The different traces correspond to different values of gsyn equally spaced from 0.1 to
0.3. Panel A represents the relative error versus the applied current for a fixed value of
C = 10−4, whereas panel B represents the relative error versus the membrane capacitance
for a fixed value of I = I1 + 10−3. Red points in panel A represent the values of I1 (left
points) and I2 (right points) for each gsyn. Panel C shows the relative error in absolute
value for varying values of the membrane capacitance, C, and the applied current, I, being
the actual synaptic conductance gsyn = 0.2. The rest of parameters are fixed as a = 0.25,
v0 = 0, w0 = 0, γ = 0.5, and Vsyn = 0.25 + a/2.

a non-autonomous differential system, and the system may not have a periodic orbit as
for constant gsyn. However, for slow changes in the synaptic conductance, we may assume
that the flow of the system stays close to a periodic orbit between two consecutive spikes.
Given an inter-spike interval [t∗, t∗ + τ ], we propose to apply the associated procedure
(5.20-5.21), that is, solving T̂ (gsyn) = τ to obtain an estimated ĝsyn on [t∗, t∗ + τ ]. We
summarize this idea in the following procedure:

Procedure 5.1. Consider a voltage trace {v(t), t ∈ [0, Tmax]} obtained from the neuron
model (5.14) under an (unknown) synaptic input {gsyn(t), t ∈ [0, Tmax]} and a specific
applied current I∗ leading together to a spiking activity. We assume that V (t) reaches
N + 1 peaks (maxima of the trace) and call {T (k)}Nk=1 the corresponding N inter-spike
intervals. Then, the time-course of the synaptic conductance gsyn(t) can be estimated by
following the next steps:

1. For each T (k), k = 1, . . . , N , solve (5.20-5.21) to estimate the corresponding synaptic

conductance value, g
(k)
syn.

2. Assign at g
(k)
syn the time t(k) corresponding to the (k + 1)-th peak to obtain a set of

points P := {(t(k), g(k)syn)}Nk=1 which are finally interpolated to obtain the full time-
course of gsyn(t).
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136 Estimation of conductances in single point neurons

3. Interpolate the set P (we use the cubic spline method) and call ĝsyn(t) the result of
this interpolation, which will be the estimated conductance trace.

Figure 5.30 shows some test conductance traces which have been created in order to obtain
scenarios with different spiking intensities. The first two rows present conductance traces
with low frequency oscillations: the first one presents high amplitude oscillations (gsyn(t) =
0.2 sin(2πt/10) + 0.2), and the second one combines small with big oscillations (gsyn(t) =
0.2 sin(2πt/30)+0.2/5 sin(2πt/5)+0.2). In both cases we obtain a good estimation of the
conductances, according to the high concentration of points on the vicinity of the identity
line in the scatter plots, see panels in the second column. The reconstruction of membrane
potential obtained using the estimated conductance trace ĝsyn(t) as synaptic input show
an excellent agreement with the original membrane potential trace, see panels in the last
column.

synaptic conductance scatter plot of gsyn reconstructed voltage
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Figure 5.30: Goodness of fit of the synaptic conductance time-course for differ-
ent functions of gsyn. The first column shows the estimated values of the discretization
of gsyn (black dots) and the cubic spline interpolation of them (red solid line). The black
line corresponds to the actual value of the synaptic conductance at each time. The second
column represents the scatter plot of the real versus the estimated synaptic conductance
after the interpolation. The red line is the identity line as a reference to observe the
goodness of the estimation. The third column shows a comparison of the voltages com-
puted using the actual conductances (solid black trace) and the estimated conductances
(dotted red trace). Parameters are a = 0.25, v0 = 0, γ = 0.5, w0 = 0, Vsyn = 0.25 + a/2,
C = 0.001 µF/cm2, I = 0.625 µA/cm2, gsyn(t0) = 0.6278.

In the last row of Figure 5.30, we consider a new conductance’s trace where both frequency
and amplitude of the small oscillations have been changed respect to the results in the
second row (gsyn(t) = 0.1 sin(2πt/20) + 2 · 0.1 sin(2πt/2) + 0.4). In the left panel we can
see that the estimated conductances do not match with the real ones, where the fast
oscillations have not been captured. However, on the reconstruction of the membrane

136



5.2. Estimation in the spiking regime 137

potential (see right panel on the last row), the frequency is captured, the amplitude of the
spikes is not, and a small delay is presented.

From Figure 5.30, we can conclude that for a small changes in time of the synaptic conduc-
tance, the purposed method can estimated the time-course of the synaptic conductances
with small errors, reproducing the same membrane potential. However, if the changes
are abrupt then the method estimates a mean time-course synaptic conductance, which
almost reproduce the membrane potential.
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Figure 5.31: Goodness of fit of the synaptic conductance time-course in Section
2.2.2.3, when we consider the inter-spike interval as the current period. Panel
A shows the estimated values of the discretization of gsyn (black dots) and the cubic spline
interpolation of them (red solid line). The black line corresponds to the real value of the
synaptic conductance at each time. Panel B represents the scatter plot of the real versus
the estimated synaptic conductance after the interpolation. The red line in Panel B is the
identity line as a reference to observe the goodness of the estimation. Panel C shows a
comparison of the voltages computed using the real conductances (solid black trace) and
the estimated conductances (dotted red trace). Parameters are a = 0.25, v0 = 0, γ = 0.5,
w0 = 0, Vsyn = 0.25 + a/2, C = 0.001 µF/cm2, I = 0.625 µA/cm2, gsyn(t0) = 0.6278.

To test the estimation of the conductances’ course in a more realistic case, in Figure 5.31,
we use 1 ms conductance traces obtained from a computational network that models layer
4Cα of primary visual cortex (see Tao et al (2004) and McLaughlin et al (2000)). Panel A
shows how the estimated conductances follow the trace of the actual ones but, as we can
also see in Figure 5.30, the high oscillations are not well captured. We can corroborate
this fact in panel B, where we show that the actual and the estimated conductances are
poorly correlated (the coefficient of correlation is approximated 0.12). However, in order
to display the effects of the misestimations, in panel C we compared the voltage computed
using the actual conductance traces and the estimated ones (after interpolation). One can
appreciate a small time shift of order 0.1 ms that remains almost constant along the time
sequence.
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138 Estimation of conductances in single point neurons

5.2.3.3 Generalization for non-constant conductance traces: estimation based
on the sub-periods

In the previous section we have seen that for highly varying conductances, we cannot
obtain good estimations. This misestimations are partly caused by the fact that we are
assuming the conductances to be stationary in a quite long time window. To reduce the
errors and to better capture the oscillations of the synaptic conductances, in this section we
present a more accurate way to estimate gsyn(t) by taking into account the approximated
expression of each sub-period separately, that is, the time spent in each region.

In the proof of Proposition 5.3(b), we found an approximated expression of each lateral and
central sub-periods separately for a given periodic orbit. We denoted these sub-periods as
TL, TM,upp, TM,down, TR. Similarly, for any monodromic trajectory of system (5.14), not
necessarily periodic, we can split the trajectories in pieces lying only on one region. We
denote by τξ as the time spent in region ξ to go from Vξ,1 to Vξ,2, where ξ stands for L,
M,down, M,up or R, and the crossing points VL,1 = VL,2 = vM,down,1 = VM,upp,2 = a/2,
VR,1 = VR,2 = vM,down,2 = VM,upp,1 = (1 + a)/2. We understand that regions M,up and
M,down are both the central region. With this notation, we present a refined version of
the estimation procedure given in Procedure 5.1.

Procedure 5.2. Consider a voltage trace {V (t), t ∈ [0, Tmax]} obtained from the neuron
model (5.14) under an (unknown) synaptic input {gsyn(t), t ∈ [0, Tmax]} and a specific
applied current I∗ leading together to a spiking activity. We assume that the voltage
trace describes N oscillations in the time interval [0, Tmax]. Then, the time course of the
synaptic conductance gsyn(t) can be estimated by following the next steps:

1. Define {τ (k)ξ }Nk=1 as the time spent to go from V = Vξ,1 to V = Vξ,2 in the k-th
oscillation, where ξ stands for L, M,down, M,upp or R.

2. For each k = 1, . . . , N and ξ ∈ {L; M,down; M,up; R}, solve (5.20-5.21) to es-

timate the time-course with T ∗ = τ
(k)
ξ , and call the solution ĝξ,ksyn. Define the set

P =
{(

tξ,k, ĝξ,ksyn

)

; ξ ∈ {L; M,down; M,up; R}, k = 1, . . . , N
}

, where tξ,k is the

time when the k-th oscillation crosses V = Vξ,2.

3. Interpolate the set P and call ĝsyn(t) the result of this interpolation.

Using Procedure 5.2 we can extract a more accurate discretization of the conductance
traces, as we can see in Figure 5.32 and 5.33. If we compare the results from the ones
obtained by using Procedure 5.1, see Figures 5.32(A) and 5.31(A), respectively, we can
appreciate an improvement of the estimation when using Procedure 5.1. This improvement
is more evident when conductances change abruptly; in this case, using Procedure 5.2 we
can capture more oscillations.

Even though these figures present only slight changes on the scatter plots, see Figures
5.32(B) and 5.31(B), and the reconstructed voltage (panels C), in the sinusoidal trace
case, which has been created to obtain low and high frequency conductances, a considerable
improvement on the estimation and also in the reconstructed voltage has been obtained.
Comparing Figure 5.33 to Figure 5.30 (last row), we observe how all the oscillations of
gsyn(t) are captured with frequency and amplitude; only a small delay in time exists
without causing errors on the reconstructed voltage, which matches with the actual one.
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Figure 5.32: Goodness of fit of the synaptic conductance time-course in Section
2.2.2.3, when we consider the sub-periods separately. Panel A shows the cubic
spline interpolation of the estimated values of the discretization of gsyn(t) (red solid line)
and the actual value of the synaptic conductance (black solid line). Panel B represents the
scatter plot of the actual versus the estimated synaptic conductance after the interpolation.
The red line in Panel B is the identity line as a reference to observe the goodness of
the estimation. Panel C shows a comparison of the voltages computed using the actual
conductances (solid black trace) and the estimated ones (dotted red trace). The other
parameter values are a = 0.25, v0 = 0, γ = 0.5, w0 = 0, Vsyn = 0.25 + a/2, C =
0.001 µF/cm2, I = 0.625 µA/cm2, gsyn(t0) = 0.6278.

Finally, we apply the Method 5.2 to the synaptic conductances extracted from the in sillico
network described in Section 2.1.4. We consider the total amount of synaptic input that
an excitatory neuron is receiving when the level of depression of the network is fD = 0.8.
The results are depicted in Figure 5.34. As we can see in Panel A, the estimated synaptic
conductances (red line) almost follow the shape of the actual ones (black line). However,
the abrupt increment presented on the actual conductances is slightly anticipated by the
estimation, which also causes an anticipation when the voltage is reconstructed (see Panel
C). Moreover, during the decreasing part, the estimated conductance trace shows small
down peaks along the curve, returning to the original curve. This behaviour occurs because
the approximated lateral periods, obtained by the approximated period function T̂ , last
slightly shorter than the real ones. These misestimations cause a delay in the reconstructed
voltage in Panel C.

All the above effects are also shown in Panel B, where the estimated conductances are
plotted versus the actual ones. Almost all the obtained dots lie on the vicinity of the
identity line, showing good approximations. The rest of the dots, which are slightly further
from the identity line, correspond to the estimated values on the abrupt increment.
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Figure 5.33: Goodness of fit of the synaptic conductance time-course for the
combination of low and high frequency conductances. Panel A shows the estimated
values of the discretization of gsyn (black dots) and the cubic spline interpolation of them
(red solid line). The black line corresponds to the actual value of the synaptic conductance
at each time. Panel B represents the scatter plot of the actual versus the estimated
synaptic conductance after the interpolation. The red line is the identity line as a reference
to observe the goodness of the estimation. Panel C shows a comparison of the voltages
computed using the actual conductances (solid black trace) and the estimated ones (dotted
red trace). The other parameter values are a = 0.25, v0 = 0, γ = 0.5, w0 = 0, Vsyn =
0.25 + a/2, C = 0.001 µF/cm2, I = 0.625 µA/cm2, gsyn(t0) = 0.6278.
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Figure 5.34: Goodness of fit of the synaptic conductance time-course obtained
by the network in Section 2.1.4, when we consider the sub-periods separately.
Panel A shows the cubic spline interpolation of the estimated values of the discretization
of gsyn(t) (red solid line) and the actual value of the synaptic conductance (black solid
line). Panel B represents the scatter plot of the actual versus the estimated synaptic
conductance after the interpolation. The red line in Panel B is the identity line as a
reference to observe the goodness of the estimation. Panel C shows a comparison of the
voltages computed using the actual conductances (solid black trace) and the estimated
ones (dotted red trace). The other parameter values are a = 0.25, v0 = 0, γ = 0.5, w0 = 0,
Vsyn = 0.25 + a/2, C = 0.001 µF/cm2, I = 0.625 µA/cm2, gsyn(t0) = 0.2055.

5.3 Discussion

It is well-known that linear estimations of synaptic conductances are not trustable when
data is extracted intracellularly from spiking activity of neurons, see Guillamon et al
(2006). Data from experimental studies in the current literature are generally treated tak-
ing this cautious message into account but the probable presence of subthreshold-activated
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currents confounding the impact of presynaptic activity is yet generally neglected.

Our study in Subsection 5.1.1 entails that estimation of synaptic conductances in the
presence of subthreshold-activated currents, even obtained from periods of apparently
silent activity, may not be accurate. We have explored this feature using first a compu-
tational model with either afterhyperpolarizing or low-threshold activated currents and
both sources of subthreshold activity lead to similar conclusions.

To strengthen the message, a second model has been taken into account, consisting of two
different activated-subthreshold currents, a resonant one (Ih) and a persistent one (INaP ).
In the first computational model, the pyramidal model described in Section 2.1.2.1 with
external current given in Section 2.2.1, we have been able to isolate periods of activity
where either AHP or LTS currents dominate. In the first case, the long-time scale of
[Ca2+] provides an AHP -dominated time window (55ms approximately) after the spiking
activity in which linear estimations of synaptic conductances fail. One might argue that,
since AHP is only present after spiking activity, this failure is a natural extension of
bad estimations in spiking regimes rather than an effect of subthreshold activity. To rule
out this interpretation, we have been considered both examining the periods where LTS
currents dominate, which have no dependence on previous spiking activity, and the second
model, the stellate model described in Section 2.1.2.2, with no mechanisms for spiking, and
external current given in Section 2.2.1. In both cases we observed similar misestimations,
being the main explanation is the loss of linearity in the I − V relationship. Thus, we
conclude that it is an ubiquitous feature in subthreshold-activated currents. Therefore, our
findings add a new warning message for the treatment of data obtained from intracellular
recordings and the conclusions that can be drawn from them, specially those concerning
the balance between excitation and inhibition.

Unfortunately, the use of linear estimation methods to extract synaptic conductance
time courses has been profusely used in experimental studies (for brief illustrations see
Anderson et al (2000), Wehr and Zador (2003) and Bennett et al (2013)) and important
conclusions about brain’s functionality have been drawn from the excitatory-inhibitory
separation of these time courses. Our results imply, at least, that caution has to be ap-
plied in trusting this type of results and, probably, a revision of functionality conclusions
obtained from experimental data should be conducted.

Therefore, we would like to emphasize our message that, in the estimation of conductance
in subthreshold regimes, one should also rule out the presence of ionic currents before
proceeding with linear estimations methods.

In Subsection 5.1.1 we have also considered possible improvements to get more accurate
estimations of the synaptic conductances. In particular, with the quadratization approach
described in Subsection 5.1.1.2, we provide a strategy based on a quadratization of the
neuronal model presented in Rotstein (2015). We think that this finding suggests exper-
imental outcomes. Apart from the obvious alternative of a pharmacological block of all
possible subthreshold-activated channels, which indeed could lead to a too passive integra-
tor, we propose a fitting of the data to a quadratic model that could account for channels
whose underlying dynamics is similar to that of the stellate cell model presented in this
chapter.

This quadratization approach still allows for further improvements. This procedure re-
quires to extract two different voltage traces from the neuron, if one wants to discern be-
tween excitatory and inhibitory conductances. This fact can cause misestimations given by
the variability across trials. Moreover, other misestimations can be given by the noise com-
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ing from the recordings, which are not considered. In Subsection 5.1.2, we have presented
a new strategy to estimate conductances in the subthreshold regime, taking into account
these two possible sources of misestimations. This procedure is based on a second order
approximation to the model taking into account noise coming from the data. Moreover,
only one trace is needed to discern between excitatory and inhibitory conductances.

This stochastic strategy has been applied to both computational and in vivo data. More-
over, we have compared this estimation procedure with other existent procedures that are
also able to estimate conductances from a single trace. For this purpose, we have chosen a
representative deterministic model, the oversampling method (see Bédard et al (2011b),)
and a stochastic procedure similar to the one proposed here (see Berg and Ditlevsen
(2013)). In general, the results obtained from the comparison of the three methods under-
pin the necessity of nonlinear strategies to estimate conductances also in the subthreshold
regime, showing improved results when quadratic terms are considered on the estimation
procedure.

Finally, in Section 5.2, we have presented a proof-of-concept that non-linear estima-
tion methods can be implemented in order to estimate synaptic conductances in spiking
regimes. The method relies on the knowledge of the f − I curve. Two different versions of
a procedure have been performed in order to estimate conductances: one that only allows
to estimate them when they change slowly over time; and second, another procedure which
allows the estimation even when the conductances change fast. The results obtained show
good estimations of the conductances.

The estimation procedure during spiking regimes also allows for further improvements.
The presence of noise on the recordings causes changes on the current boundary conditions,
that is I1 and I2, which expressions in T̂ (C, I, gsyn) might change (see Lee DeVille et al
(2005)).

Other directions to estimate conductances in spiking regimes may be considered. For
instance, one could take advantage of recent papers dealing with the study of firing-
rate responses (mainly in IF-like models) as a function of the input current, I(t) (see,
for instance, Granados and Krupa (2015)). In this case, one could include the synaptic
activity into the firing-rate response function, and see whether the synaptic current can
be extracted from the recorded firing-rate.

To sum up, we have seen that caution needs to be considered under the presence of sub-
threshold activated ionic currents. For this purpose, we have first presented a deterministic
quadratic approach to estimate conductances. This procedure, has been then improved to
take into account noise and the variability across trials. Finally, a proof-of-concept is also
given as a first approach to estimate conductances in the spiking regime.

Despite of the improvements given by these estimation procedures, we have considered
single-compartment neuron models, thus assuming that the voltage does not vary from
the dendrite, where the signal is received by the neuron, to the soma, where we are
focusing on. One could also add other misestimation sources such as those emanated from
the dendro-somatic interaction (see for instance Cox (2004)), which we left as future work
(see Chapter 6).
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Chapter 6

Conclusions and future work

As we have seen in the Introduction, inverse methods are required to estimate conduc-
tances, and so to unveil the connectivity in the brain. In this thesis we have dealt with the
problem of estimation of conductances from different mathematical theories, combining
dynamical systems and stochastic techniques. These multiple approaches have provided us
different tools that can be applied to slow-fast, piecewise linear and stochastic differential
systems.

Chapters 3 and 4 are bridge-chapters in the thesis. Chapter 3 was a training opportunity to
learn about geometric singular perturbation theory in piecewise linear differential systems.
Moreover, at the same time, we found some good results that are useful to understand
some dynamics happening in the smooth framework and that are complicated to prove
in this case. An example of it is the canard phenomenon. Although the model we have
been studying in Chapter 3 is rather general, it only considers a one-dimensional fast
variable. Therefore, an improvement of this theory could be to generalize the model to a
q-dimensional fast variable. Because of the properties of matrices we have used to prove
the different theorems, we have the intuition that similar results can be easily obtained
when the fast variable is described by f(u,v, ε) = B1u+B2v, where B1 and B2 are s× s
and q × q real matrix, respectively, having the property that B2 can be different in each
region, but all of them need to be invertible. By considering higher dimensions of the fast
variable, we could reproduce other neuronal behaviours such as bursting.

To combine the knowledge acquired about stochastic methods and the slow-fast dynam-
ics, next step is to consider stochastic slow-fast systems. In Berglund and Gentz (2008),
Chapter 3 Stochastic dynamics bifurcation and excitability, the authors discuss different
methods that allow to describe quantitatively the effect of noise on slow-fast systems, by
presenting a similar result to the Fenichel’s theorem (see Fenichel (1979)) for the stochas-
tic version. They explain which dynamics is conserved when system is perturbed by noise
and which one is not. The study is done near stable equilibrium branches and in the
vicinity of bifurcation points. Hence, by adding noise to the system presented in Chapter
3 (or similar), this theory could be used to see whether the canard explosion phenomenon
persists.

Chapter 4 has been useful to learn about brain connectivity since we have implemented
a complex neuronal network. By using this network, the effects of the depression and
facilitation have been observed both in the neuronal response (the membrane potential of
different neurons) and in the synaptic conductances. We have seen that these two plasticity
mechanisms cause a different influence on the network, which changes behaviour accord-
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ing to the depression and facilitation level. Synaptic conductances also present specific
changes under the short-term plasticity mechanisms, which can lead to a possible proce-
dure to predict conductances when the full network is subjected to those mechanisms. In
addition, we have also obtained synaptic conductance traces in different plasticity regimes.
In this chapter, only a computational study has been developed, which needs to be cor-
roborated analytically. However, due to the huge amount of variables that the network
contains, we need to reduce the number of equations or consider a rate model describing
the considered network. Therefore, next step would be to implement a rate model, and
adjust its parameters in such a way that it could reproduce the IFR dynamics of this
network. In this case, we could then use the rate model to understand the bifurcations
observed in the simulations in this chapter.

Even though we have only studied the depression and the facilitation mechanisms sep-
arately, as we have mentioned in the introduction of the Chapter 4, these mechanisms
can be given simultaneously. Therefore, next step is to investigate how the coexistence of
these two short-term plasticity mechanisms influences the dynamics of the synaptic con-
ductances. Moreover, results have been obtained by considering the spontaneous activity
of the network (without applying any kind of electrical stimulation). Then, another step
is to reproduce the results performed by taking into account stimulus-evoked activity, i.e.,
when different patterns of electrical stimulation are delivered to one or few neurons of
the network, discerning or not between excitatory and inhibitory sub-populations. These
patterns can be considered of low-frequency or high-frequency. Moreover, these last re-
sults could be supported performing in vitro experiments of neuronal networks coupled
to Micro-Electrode Arrays (MEAs) in collaboration with Prof. Paolo Massobrio at the
NBT lab. They perform experiments using the High-density MEAs, which allow to si-
multaneously record the electrophysiological activity of neuronal populations from 4096
microelectrodes and, at the same time, to deliver electrical stimulation.

Chapter 5 brings together the main results of this thesis, which respond to the three
questions mentioned in the Introduction, and give the title to the thesis. As we have
said in the Introduction, research on the topic of estimation of conductances is well aware
about the misestimations caused in the spiking regime. However, in Section 5.1.1, a new
warning is addressed about the estimations done in the subthreshold regime. We have
shown that, under subthreshold activated ionic currents, linear estimation methods can
substantially misestimate the conductances. Therefore, caution needs to be extended also
in the subthreshold regime if neuron contains ionic channels opened. This fact responds
the first question we made: Are those misestimations on the spiking regime also presented
in the subthreshold regime under the presence of subthreshold-activated ionic currents?
Yes, they are.

To overcome this problem, and so to give answer to the second question, which refers to the
challenge of providing new estimation strategies, in Section 5.1.1 we have also presented
a new estimation procedure based on a quadratic approximation of the dynamics. This
strategy consists of an adjustment of the data to a deterministic quadratic model from
where we extract the synaptic conductances. If two trails are provided, then we are able
to discern between excitatory and inhibitory conductances. Results of this estimation
procedure show a considerable improvement on the estimation when it is compared with
the usual linear procedures. Moreover, when the quadratization is considered, errors
caused in the estimation are not significant (see Figures 5.8 and 5.9).

Even though the quadratic approach, presented in Section 5.1.1, allows good estimations,
the procedure requires two trails in order to discern between excitatory and inhibitory
conductances, which can lead to some possible errors on the estimation because of the
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difficulty of having the same input synaptic conductances in different trials. Moreover,
noise presented in experimental data can also alter the results of the estimation. To over-
come these two possible sources of misestimations, in Section 5.1.2 we have developed an
stochastic approach to estimate conductances. In this new strategy we also do second order
approximations of nonliner models to capture the nonlinearities caused by subthreshold
activated currents adding a Gaussian noise term. Then, we have used a slight version
of the maximum likelihood estimator to unveil the synaptic conductances, discerning be-
tween excitatory and inhibitory conductances and using a single trial. This estimation
procedure shows good results when it is applied to in sillico data. This method has been
compared with other existent estimation procedures that require single trials to estimate
the excitatory and the inhibitory conductances, namely the oversampling method from
Bédard et al (2011b), and the OU method from Berg and Ditlevsen (2013). The in sillico
results obtained with the stochastic quadratization exhibit a significant improvement with
respect to the others (see Figures 5.20A and ??). The method has been also applied to
in vivo recordings, which V − I curve is better fitted by a quadratic function than by a
linear one. Even though actual conductances are unknown, the pattern estimated with
the stochastic quadratization is more coherent that those obtained with the other linear
procedures (see Figure 5.20B).

Hence, in Section 5.1 we provide two useful strategies to solve the estimation problem
when ionic currents are active in the subthreshold, causing nonlinearities in the V − I
curve.

Even though we partially solved part of the estimation errors that linear methods provide
in the subthreshold regime, other sources of misestimations could be taken into account,
specially those originated from the dendro-somatic interaction (see Cox (2004)). As we
have mentioned in Section 1.1, the input current coming from other cells is mainly received
by the neuron in the dendrites. Then, this information flows to the soma where it can be
recorded using different recording techniques. The flux coming from the dendrites to the
soma is given by a partial differential equation (cable theory); we are aware of estimation
techniques that have been developed in the area of image processing and could be used
also in our problem, see Isakov (2006) and Aubert and Kornprobst (2006) among others.

Therefore, using some of these techniques, one could recover the synaptic current lost
from the dendrite to the soma, where conductances can be estimated using one of our
estimation procedures. Combining both methods, conductances in the dendrites might be
estimated.

In order to answer the third equation, can we also provide a first strategy to estimate
conductances in those regimes where the target neuron presents an oscillatory behaviour?,
in Section 5.2 we have presented a procedure which shows good results both when synaptic
current is constant (in its steady state) and when it slowly changes in time. Results
indicate that new strategies can be obtained in this direction in order to successfully
estimate conductances in the spiking regime, where no estimation procedures have been
previously considered. The model considered in the estimation procedure, from where
the periodic approximation is extracted, considers that the conductance is a constant
parameter. An improvement to generalize the procedure is adding a third differential
equation in the model in order to describe the dynamics of the conductances. Although
we have to assume that conductances follow a pattern, they are usually supposed to follow
an OU-process which could be a good candidate, as it is done in Rudolph et al (2004).

Despite of the variety of estimation procedures we have proposed in this thesis, the problem
of conductances’ estimation we think is a very difficult challenge to solve. From our point
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of view, a multidisciplinary attack, including different areas of mathematics, is necessary.
For this reason, in this thesis, we have approached the problem from different techniques in
such a way that all the work done has a research goal, but also part of training purpose. In
our opinion, it is good that a researcher in mathematical and computational neuroscience
possesses an intense background in some mathematical areas, so we have emphasized in
dynamical systems. However, it is also important to be aware of the benefits of using other
mathematical approaches and computational tools. This is why we have introduced some
research on stochastic processes and we have also used different computational methods
along the thesis. Finally, a knowledge about neuroscience, both at cellular level and
network level, is also fundamental, reason why we have also included the Chapter 4 about
neuronal networks.
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Appendix A

Matrix properties

Lemma A.1. Given a block matrix or partitioned matrix

X =

(

A B
C D

)

such that the block D is an invertible matrix, then det(X) = det(D) · det(A−BD−1C).

Proof. Since D is invertible, X can be factorized as

X =

(

I B
0 D

)

·
(

A−BD−1C 0
D−1C I

)

.

Then, the lemma follows by noting that the determinant of both factors are det(D) and
det(A−BD−1C), respectively.

Lemma A.2. Given two matrices A and X, the following statements hold.

a) det(A+ εX) = det(A) +O(ε).

b) If there exists a subscript i such that the i-th column of X is identically zero and the
i-th column of A is of order one in ε, then det(A+ εX) = det(A) +O

(

ε2
)

.

Proof. Let Ai and Xi be the i-th columns of the matrices A and X, respectively. By
multilinearity, the determinant det(A+ εX) can be recast as

det(A+ εX) = det(A) + ε (det(X1, A2 + εX2, . . . , An + εXn)

+

n−1
∑

k=2

det(A1, . . . , Ak−1,Xk, Ak+1 + εXk+1, . . . , An + εXn)

+ det(A1, . . . , An−1,Xn)) ,

which proves statement (a).

Without lost of generality, we assume that the i-th column in statement (b) is the last
one. Therefore, from the above expression of det(A+ εX) it follows that, considering the
term multiplied by ε, the determinant det(A1, . . . , An−1,Xn) is zero whereas the rest of
terms are order one in ε. This implies the proof of statement (b).
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Lemma A.3. Given λ, ε ∈ R with λ 6= 0, and an s× s matrix A, the following statements
hold.

a) The determinant of the matrix εA− λI can be expressed as

det(εA − λI) = (−λ)s
(

1− tr(A)
ε

λ
+

tr(A)2 − tr(A2)

2

( ε

λ

)2
+ . . .+ det(A)

( ε

λ

)s
)

.

b) For |ε| small enough, the matrix εA− λI is regular and

(εA− λI)−1 = − 1

λ

∞
∑

k=0

(

εA

λ

)k

.

Moreover, let aij and zij be the (i, j)-th element of matrices A and (εA − λI)−1,
respectively. Then,

b.1) the element zij satisfies

zij =























− 1

λ

(

1 +
ε

λ
aii +

( ε

λ

)2
∑s

k=1 aikaki +O(ε3)

)

if i = j,

− 1

λ

(

ε

λ
aij +

( ε

λ

)2
∑s

k=1 aikakj +O(ε3)

)

if i 6= j,

b.2) and, when a1j = 0 for all j ∈ {2, . . . , s},

z11 = −
1

λ

(

1 +

∞
∑

k=1

(εa11
λ

)k
)

and z1j = 0 for j ∈ {2, . . . , s}.

Proof. The determinant det(εA−λI) is the characteristic polynomial of matrix εA evalu-
ated at λ. Therefore, statement (a) follows by computing the coefficients of this polynomial
by using the Newton’s identities, see Kalman (2000).

The regularity of matrix εA−λI, for ε small enough, is a direct consequence of statement
(a). On the other hand, since

(εA− λI)

(

I +
m
∑

k=1

(

εA

λ

)k
)

= −λI + (εA)m+1

λm
= −λ

(

I +

(

εA

λ

)m+1
)

,

for every m ≥ 1, we conclude that the series I +
∑m

k=1

(

εA
λ

)k
converges uniformly to

−λ (εA− λI)−1, for ε small enough.

Developing the three first terms of this series we obtain the expression of zij appearing
in (b.1). Suppose now that a1j = 0 for all j ∈ {2, . . . , s}, that is eT1 A = a11e

T
1 . Then

eT1 A
k = ak11e

T
1 for k ≥ 1 and therefore

eT1 (εA− λI)−1 = − 1

λ

∞
∑

k=0

( ε

λ

)k
eT1 A

k = − 1

λ

∞
∑

k=0

(εa11
λ

)k
eT1 ,

which proves statement (b.2).
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Lemma A.4. Given a matrix B and vectors p and c such that

B =

(

εA εa
eT1 d

)

, p =

(

u
0

)

and c =

(

εb
0

)

where A is an s × s real matrix, a, b and u are vectors in R
s, e1 is the first element of

the canonical base of Rs and d is a real constant. Therefore,

a) Assuming that eT1 u = 0, then

B (Bp+ c) =

(

ε2A (Au+ b)
εeT1 (Au+ b)

)

.

b) For a given k ≥ 2 and, assuming that eT1 u = 0 and eT1 A
l (Au+ b) = 0 for all

l = 0, . . . , k − 2, then

Bk (Bp+ c) =

(

εk+1Ak (Au+ b)
εkeT1 A

k−1 (Au+ b)

)

.

Proof. The proof of statement (a) follows by straightforward computations.

To prove statement (b) we use a mathematical induction on the parameter k. Let k = 2
and assume eT1 u = 0 and eT1 (Au+ b) = 0. Then, using the expression in statement (a),
we obtain that

B2 (Bp+ c) =

(

εA εa
eT1 d

)(

ε2A (Au+ b)
0

)

=

(

ε3A2 (Au+ b)
ε2eT1 A (Au+ b)

)

.

Finally, assuming that eT1 u = 0 and eT1 A
l (Au+ b) = 0 for all l = 0, . . . , k − 2 and,

supposing that expression in statement (b) holds for k − 1, we obtain

Bk (Bp+ c) =

(

εA εa
eT1 d

)(

εkAk−1 (Au+ b)
0

)

=

(

εk+1Ak (Au+ b)
εkeT1 A

k−1 (Au+ b)

)

.
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Appendix B

Maximum likelihood method

The Euler discretization of equation (5.11) is locally assumed to follow a Gaussian distri-
bution with mean and variance Vn + (aV 2

n + bVn + c)∆ and σ2∆, respectively. Hence, the
probability density function is given by

p(Vn|Vn−1) =
1√

2πσ2∆
exp

{

−
(

Vn − Vn−1 − (aV 2
n−1 + bVn−1 + c)∆

)2

2σ2∆

}

,

and consequently, the log-likelihood of the diffusion processes is

logL(θ) =
M
∑

n=1

[

log

(

1√
2πσ2∆

)

−
(

Vn − Vn−1 − (aV 2
n−1 + bVn−1 + c)∆

)2

2σ2∆

]

such that θ is the vector of unknown parameters of the stochastic equation.

In the estimation procedure, we consider different cases of unknown parameters: the case
when both α and the conductances are unknown, and so θ = (a, b, c)T ; the case when only
the conductances are supposed unknown, and so θ = (b, c)T since a = α/C is considered
to be known; and finally, the case when the only unknown parameter is α. Notice that in
this last case, since gE and gI are known, b and c only depend on α/C, which is considered
to be a; hence, b and c can be rewritten in terms of a and so θ = (a). Next we compute
the maximum of the log-likelihood in each situation.

• When θ = (a, b, c)T , the maximum of the log-likelihood function is computed by
solving the system given by

{

d logL(θ)
da

= 0,
d logL(θ)

db
= 0,

d logL(θ)
dc

= 0

}

.

The solutions of this system, which are in turn the estimation of parameters a, b
and c, must satisfy the following linear system:






















M
∑

n=1

V 4
n−1∆

M
∑

n=1

V 3
n−1∆

M
∑

n=1

V 2
n−1∆

M
∑

n=1

V 3
n−1∆

M
∑

n=1

V 2
n−1∆

M
∑

n=1

Vn−1∆

M
∑

n=1

V 2
n−1∆

M
∑

n=1

Vn−1∆

M
∑

n=1

∆























·





a
b
c



 =























M
∑

n=1

(VnV
2
n−1 − V 3

n−1)

M
∑

n=1

(VnVn−1 − V 2
n−1)

M
∑

n=1

(Vn − Vn−1)























.

(B.1)
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152 Maximum likelihood method

• When θ = (b, c)T the maximum of the log-likelihood function is computed by solving
the system given by

{

d logL(θ)
db

= 0,
d logL(θ)

dc
= 0

}

,

to obtain an estimation of parameters b and c as solutions of the linear system













M
∑

n=1

V 2
n−1∆

M
∑

n=1

Vn−1∆

M
∑

n=1

Vn−1∆

M
∑

n=1

∆













·
(

b
c

)

=













M
∑

n=1

(VnVn−1 − V 2
n−1)− a

M
∑

n=1

V 3
n−1∆

M
∑

n=1

(Vn − Vn−1)− a

M
∑

n=1

V 2
n−1∆













(B.2)

• Finally, when θ = (a), the maximum of the log-likelihood is computed by solving
the equation

d logL(θ)
da

= 0.

Since parameters b and c depend also on a = α/C, we need to take into account
that b and c are functions of a when we are deriving the log-likelihood respect to a.
Then, the maximum of the log-likelihood is given by

M
∑

n=1

(V 2
n−1−2VTVn−1+V 2

T )
2∆ a =

M
∑

n=1

(Vn−Vn−1−βtVn−1∆−λt∆)(V 2
n−1−2VTVn−1+V 2

T )

(B.3)
where

βt = (−gE,n − gI,n)/C, and λt = (gE,nvE + gI,nvI − IT + Iapp)/C
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Appendix C

Routines for the estimation
procedures in the McKean model

C.1 Routine to compute the numerical period

Consider the solution (5.17) of the model given by the piecewise differential system (5.14).

a) Let x0 = (a2 , w0) = qL, T̄0 = 0 be the initial condition.

1. Let x0 be the initial condition and compute TM,down as a zero of the equation
v(t) − 1+a

2 . Then, knowing t = TM,down, we can compute w1 = w(TM,down),
and so we obtain a new point x1 = (1+a

2 , w1).

2. Let x1 be the initial condition and compute TR as a zero of the equation v(t)−
1+a
2 . Then, knowing t = TR, we can compute w2 = w(TR), and so we obtain a

new point x2 = (1+a
2 , w2).

3. Let x2 be the initial condition and compute TM,up as a zero of the equation
v(t)− a

2 . Then, knowing t = TM,up, we can compute w3 = w(TM,up), and so we
obtain a new point x3 = (1+a

2 , w3).

4. Let x3 be the initial condition and compute TL as a zero of the equation v(t)− a
2 .

Then, knowing t = TL, we can compute w4 = w(TL), and so we obtain a new
point x4 = (a2 , w4).

5. Compute T̄ = TL + TM,down + TR + TM,up

b) If |w0 − w4| <tolerance or |T̄0 − T̄ | <tolerance, DONE: the numerical period is T̄ .
Otherwise, let x0 = x4, T̄0 = T̄ , and repeat steps 1-5.

The considered numerical method to find the zero of the function has been both the
Newton method and the Bisection method, obtaining the same results. Moreover, we have
considered a tolerance 1e − 11 for the period of each regime (steps 1-4) and a tolerance
1e− 10 for the step b).

C.2 Routine to estimate the steady synaptic conductance

Given a neuron that can be modelled by system (5.14), suppose known all its parameters
except the synaptic conductance. Then, for an applied current I, one can compute the
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154 Routines for the estimation procedures in the McKean model

period T of the volatge. Then,

a) Using a numerical method to solve implicit equations, such as the Bisection method
or the Newton method, solve the equation T̂ (C, I, gsyn) = T ∗ to compute gsyn. Then,
for each solution found,

1. If gsyn > max
(

0, Ī1, Ī2
)

such that

Ī1 =
2γI − (γ + 1)a+ 2v0 − 2γw0

2γ(a2 − Vsyn)
and

Ī2 =
2γI − (γ + 1)a+ 2v0 − 2γw0 − γ + 1

2γ(a+1
2 − Vsyn)

then, we accept the value of gsyn as the correct one.

2. Otherwise, we need to find another solution of the implicit equation.
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Borg-Graham L, Monier C, Frégnac Y (1998) Visual input evokes transient and
strong shunting inhibition in visual cortical neurons. Nature 393(6683):369–373,
doi:10.1038/30735, URL http://dx.doi.org/10.1038/30735

Brette R, Gerstner W (2005) Adaptive exponential integrate-and-fire model as an ef-
fective description of neuronal activity. Journal of Neurophysiology 94(5):3637–3642,
doi:10.1152/jn.00686.2005, URL http://jn.physiology.org/content/94/5/3637

Brøns M, Krupa M, Wechselberger M (2006) Mixed Mode Oscillations due to the General-
ized Canard Phenomenon, American Mathematical Society, pp 39–64. Fields Insititute
Communications

Brøns M, Desroches M, Krupa M (2013) Mixed-mode oscillations due to a sin-
gular Hopf bifurcation in a forest pest model. Rapport de recherche, URL
http://hal.inria.fr/hal-00924098

Brunel N, van Rossum M (2007) Lapicque’s 1907 paper: from frogs to integrate-
and-fire. Biological Cybernetics 97(5-6):337–339, doi:10.1007/s00422-007-0190-0, URL
http://dx.doi.org/10.1007/s00422-007-0190-0

Burnham KP, Anderson DR (2002) Model selection and multimodel inference: A practical
information-theoretic approach. Springer
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Destexhe A, Rudolph M, Paré D (2003) The high-conductance state of neocortical neu-
rons in vivo. Nature Reviews Neuroscience 4(9):739–751, doi:10.1038/nrn1198, URL
http://dx.doi.org/10.1038/nrn1198

Di Bernardo M (2008) Piecewise-smooth dynamical systems : theory and
applications. Applied mathematical sciences, Springer, London, URL
http://opac.inria.fr/record=b1122347

Dickson CT, Magistretti J, Shalinsky MH, Fransén E, Hasselmo ME, Alonso A
(2000) Properties and role of I(h) in the pacing of subthreshold oscillations in en-
torhinal cortex layer II neurons. Journal of neurophysiology 83(5):2562–2579, URL
http://view.ncbi.nlm.nih.gov/pubmed/10805658

Diesmann M, Gewaltig MO, Aertsen A (1999) Stable propagation of synchronous spiking
in cortical neural networks. Nature 402:529–533

Ditlevsen S, Samson A (2013) Stochastic Biomathematical Models: with Applications
to Neuronal Modeling, Springer Berlin Heidelberg, Berlin, Heidelberg, chap Introduc-
tion to Stochastic Models in Biology, pp 3–35. doi:10.1007/978-3-642-32157-3 1, URL
http://dx.doi.org/10.1007/978-3-642-32157-3_1

Ditlevsen S, Samson A (2014) Estimation in the partially observed stochas-
tic morris-lecar neuronal model with particle filter and stochastic approxi-
mation methods. Ann Appl Stat 8(2):674–702, doi:10.1214/14-AOAS729, URL
http://dx.doi.org/10.1214/14-AOAS729

Doi S, Kumagai S (2004) Complicated slow oscillations with simple switching dy-
namics in piecewise linear neuronal model. In: Circuits and Systems, 2004. MWS-
CAS ’04. The 2004 47th Midwest Symposium on, vol 2, pp II–609 – II–612 vol.2,
doi:10.1109/MWSCAS.2004.1354232

Dumortier F, Roussarie R (1996) Canard Cycles and Center Mani-
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Fourcaud-Trocmé N, Hansel D, van Vreeswijk C, Brunel N (2003)
How spike generation mechanisms determine the neuronal re-
sponse to fluctuating inputs. J Neurosci 23(37):11,628–11,640, URL
http://www.jneurosci.org/cgi/content/abstract/23/37/11628

Granados A, Krupa M (2015) Firing-rate, symbolic dynamics and frequency depen-
dence in periodically driven spiking models: a piecewise-smooth approach. Nonlinearity
28(5):1163, URL http://stacks.iop.org/0951-7715/28/i=5/a=1163

Guillamon A, McLaughlin DW, Rinzel J (2006) Estimation of synaptic conductances.
Journal of Physiology-Paris 100(1-3):31–42, doi:10.1016/j.jphysparis.2006.09.010, URL
http://dx.doi.org/10.1016/j.jphysparis.2006.09.010

Hirsch JA, Alonso JM, Reid CR, Martinez LM (1998) Synaptic Integration in
Striate Cortical Simple Cells. Journal of Neuroscience 18(22):9517–9528, URL
http://www.jneurosci.org/cgi/content/abstract/18/22/9517

Hodgkin AL, Huxley AF (1952) A quantitative description of membrane cur-
rent and its application to conduction and excitation in nerve. The Jour-
nal of Physiology 117(4):500–544, doi:10.1113/jphysiol.1952.sp004764, URL
http://dx.doi.org/10.1113/jphysiol.1952.sp004764

Hotson JR, Prince DA (1980) A calcium-activated hyperpolarization follows repet-
itive firing in hippocampal neurons. J Neurophysiology 43(2):409–419, URL
http://jn.physiology.org/content/43/2/409.full

Iacus SM (2008) Simulation and Inference for Stochastic Differential Equations: With R
Examples (Springer Series in Statistics), 1st edn. Springer Publishing Company, Incor-
porated

159

http://opac.inria.fr/record=b1130863
http://dx.doi.org/10.1137/0146017
http://dx.doi.org/10.1137/0146017
http://dx.doi.org/10.1523/jneurosci.1627
http://dx.doi.org/10.1523/jneurosci.1627
http://dx.doi.org/10.1137/140984464
http://dx.doi.org/10.1137/140984464
http://dx.doi.org/10.1016/S0006-3495(61)86902-6
http://www.jneurosci.org/cgi/content/abstract/23/37/11628
http://stacks.iop.org/0951-7715/28/i=5/a=1163
http://dx.doi.org/10.1016/j.jphysparis.2006.09.010
http://dx.doi.org/10.1016/j.jphysparis.2006.09.010
http://www.jneurosci.org/cgi/content/ abstract/ 18/22/9517
http://dx.doi.org/10.1113/jphysiol.1952.sp004764
http://dx.doi.org/10.1113/jphysiol.1952.sp004764
http://jn.physiology.org/content/43/2/409.full


160 BIBLIOGRAPHY

Isakov V (2006) Inverse problems for partial differential equations, Applied Mathematical
Sciences, vol 127, 2nd edn. Springer, New York, URL MR2193218.pdf

Itoh M, Tomiyasu R (1990) Experimental study of the missing solutions canards. IEICE
Transactions on Fundamentals of Electronics, Communications and Computer Sciences
73(6):848–854

Izhikevich EM (2007) Dynamical systems in neuroscience: the geometry of excitability
and bursting. Computational Neuroscience, MIT Press, Cambridge, MA

Jacquemard A, Teixeira M, Tonon D (2013) Stability conditions in piece-
wise smooth dynamical systems at a two-fold singularity. Journal of Dy-
namical and Control Systems 19(1):47–67, doi:10.1007/s10883-013-9164-9, URL
http://dx.doi.org/10.1007/s10883-013-9164-9

Jahn P, Berg RW, Hounsgaard J, Ditlevsen S (2011) Motoneuron membrane potentials fol-
low a time inhomogeneous jump diffusion process. JOURNAL OF COMPUTATIONAL
NEUROSCIENCE 31(3):563–579, doi:10.1007/s10827-011-0326-z

Jeffrey M, Colombo A (2009) The two-fold singularity of discontinuous vector fields.
SIAM Journal on Applied Dynamical Systems 8(2):624–640, doi:10.1137/08073113X,
URL http://epubs.siam.org/doi/abs/10.1137/08073113X

Jimenez ND, Mihalas S, Brown R, Niebur E, Rubin J (2013) Lo-
cally contractive dynamics in generalized integrate-and-fire neu-
rons. SIAM J Applied Dynamical Systems 12(3):1474–1514, URL
http://dblp.uni-trier.de/db/journals/siamads/siamads12.html#JimenezMBNR13

Jones C (1995) Geometric singular perturbation theory. In: Dynamical systems, Springer,
pp 44–118

Kalman D (2000) A Matrix Proof of Newton’s Identities. Mathematics Magazine 73(4),
doi:10.2307/2690982, URL http://dx.doi.org/10.2307/2690982

Kandel ER, Schwartz JH, Jessell TM, Mack S (eds) (2013) Principles of neu-
ral science. McGraw-Hill Medical, New York, Chicago, San Francisco, URL
http://opac.inria.fr/record=b1135227

Khorasani K (1986) On linearization of nonlinear singularly perturbed systems. IEEE
Trans Aut Control AC-31:256

Khorasani K (1989) A slow manifold approach to linear equiv-
alents of nonlinear singularly perturbed systems. Automatica
25(2):301–306, doi:http://dx.doi.org/10.1016/0005-1098(89)90085-X, URL
http://www.sciencedirect.com/science/article/pii/000510988990085X

Kobayashi R, Tsubo Y, Lansky P, Shinomoto S (2011) Estimating time-varying input
signals and ion channel states from a single voltage trace of a neuron. Advances in
Neural Information Processing Systems (NIPS) 24:217–225
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linear differential systems in R

n. International Journal of Bifurca-
tion and Chaos 14(08):2843–2851, doi:10.1142/S0218127404010874, URL
http://www.worldscientific.com/doi/abs/10.1142/S0218127404010874

Llibre J, Teruel AE (2013) Introduction to the qualitative theory of differential systems:
planar, symmetric and continuous piecewise linear systems. Springer Science & Business
Media
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