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Abstract

Mesoscale oceanic features, like fronts, meanders, eddies, gyres, are characterized by temporal
and spatial scales that range from a few days to several months and from a few meters to 100 km.
Vertical motions associated with mesoscale motions play a key role in the ocean circulation and
ocean-atmosphere interaction; supplying nutrients, conveying heat, salinity and momentum fluxes.
However, the measurement of these vertical velocities represents a challenge, since they are three
to four orders of magnitude smaller than the horizontal velocities. Traditional observing systems
lack accuracy and resolution to capture the small scale signal of these vertical fields. Vertical mo-
tions are related to the horizontal convergence and divergence as a consequence of the continuity
equation. In this master’s thesis we study the convergence/divergence of a mesoscale eddy using
two different approaches: an analytical model and Lagrangian observations.

We implement and evaluate a code based on an analytical model of baroclinic instability to
generate fields of convergence/divergence. The code is written in Python and is made freely avail-
able through github. The model consists in a two-layer region where the upper layer has a constant
shear flow and the bottom layer has no motion. It assumes quasi-geostrophic equilibrium and
recreates the baroclinic instabilities that can be found in a region such as the Algerian Basin.

The Lagrangian observations used here were obtained by a set of drifters deployed at the south
of Almeria (Western Mediterranean); which eventually got caught inside an eddy formed by a baro-
clinic instability of the Algerian Current. By studying the rate of change of the area of a parcel
formed by a set of drifters, a calculation of the horizontal convergence/divergence is performed.

In order to compare both methods, we simulate an eddy with the properties of an eddy located
at the Algerian Basin such as the sampled by the drifters. To obtain its hydrographical character-
istics we use data from a glider, an autonomous underwater vehicle that sampled the same eddy.
In addition, to corroborate the origin of the eddy as an instability of the Algerian Current, we use
satellite altimetry data to track its origin.

Both results are analyzed and a discussion between the different methods and its value to the
calculation of convergence/divergence zones is provided. Ultimately, we estimate vertical velocities
from the model and compare with those obtained from the glider data set using the omega equation
within the Quasi-geostrophic approximation.
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1 Introduction

1.1 Motivation

Vertical movements of water associated with mesoscale motions, from the surface to the depth
across the base of the mixed layer, play a key role for the transport of properties (like heat and
salinity), gases, biogeochemical tracers, momentum fluxes and fate of drifting particles/ objects
as debris and pollutants. Typical scales of mesoscale features ranging from a few days to several
months and from a few meters to 100 km represent a challenge to their observation and study.
Until recently, meso and submesoscale structures had not received much attention due to the diffi-
culty generated by its observation and modeling (Mahadevan & Tandon, 2006). The measurement
of the vertical velocities represent a challenge, since they are three to four orders of magnitude
smaller than the horizontal velocities. Traditional observing systems lack of enough accuracy and
resolution to capture the small scale signal of these vertical velocity fields. Only vertical velocities
greater than 1000 m day−1 are observable directly with Eulerian measurements. Assuming Quasi-
geostrophic balance (hereafter QG), among other limitations, allow to estimate vertical velocities of
smaller orders down to O(10 m day−1) (Tintoré et al. (1991) and Pascual et al. (2004) for details).
This involves computational derivatives of observed fields which incorporate errors to the results,
due to the distribution of these observations and also the inherited lack of synopticity. The bal-
ance between the number of observations and the synopticity of observations affects the apparent
flow and in particular the diagnosed vertical motion. A combination of effects can typically lead
to errors over 50 % in the estimation of net vertical heat flux (Allen et al., 2001; Gomis et al., 2005).

Taking account of the difficulties exposed, there are critical questions that have not been an-
swered yet, like which are the properties from the surface boundary layer exported to depth, which
coherent pathways enable this exchange or how are these 3D Lagrangian trajectories. In this con-
text, AlborEx and CALYPSO are two multi-disciplinary research experiments aimed at studying
the of meso and submesoscale interactions. Both experiments are located in the Southwest Mediter-
ranean Sea (Alboran Sea), a region characterized by sharp gradients that lead to the formation of
intense gyres with associated intense vertical motions.

Vertical motions associated to mesoscale can be diagnosed from zones of convergence and di-
vergence through the continuity equation. This equation in the form of eq. 1 shows the divergence
term on the left hand side while on the right hand side expresses the vertical variation of the ver-
tical velocity. In this equation x is the distance easward, y the distance northward, z the depth, u
the zonal component of the velocity, v the meridional component and w the vertical velocity. The
obtaining of a good description of the divergence field is crucial in order to estimate the vertical
motions associated to it. The objective of this master’s thesis is to analyze two methods of conver-
gence/divergence calculation, in other words, two different approaches to the same problem.

du

dx
+ dv

dy
= −dw

dz
. (1)

Firstly, we implement and evaluate a code based on one of the two baroclinic instability models
proposed by Tang (1975). This code, written in Python (TangPy, hereafter), resolves analytically
the dynamics of a two-layer fluid with a stratified shear layer over a quiescent stratified layer. This
simplified QG model presents some advantages such its manageability and low computational cost.
The ability of TangPy to produce instantaneous results allows the assessment of the spatio-temporal
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evolution of the fields with different parameters almost with no time cost, a clear advantage in front
of other numerical models like WMOP or CMEMS which take much more time to run. Despite of
its simplicity, Tang’s model has still been used until now with solid results (Gomis et al. (2005);
Flexas et al. (2001); Sammari et al. (1994); ). If an appropriated region is selected, as QG is a valid
approximation in the open water (Buongiorno et al. (2012); Pascual et al. (2015)). The model
presented in Tang (1975) only gives an analytical solution for the stream function and vertical
velocity field, however in this work we have extended the outcome by adding the solutions for the
velocity, divergence and vorticity fields.

Secondly, we study a method proposed firstly by Reed (1971) and later expanded by Molinari
and Kirwan (1975) based on the rate of change of the area of a parcel formed by a cluster of drifters.
By this method, values of convergence/divergence can be calculated by using only Lagrangian ob-
servations. Unfortunately, the literature about the use of this method is not vast and only a few
authors have used it (Molinari and Kirwan (1975); Okubo and Ebbesmeyer (1975); Wang et al.
(1988); Niiler et al. (1989); LaCasce and Ohlman (2003)). Therefore, there are still open ques-
tions. However, recently, part of the oceanographic community has made an effort to answer some
of these open questions (Poje et al. (2014); D’Asaro et al., (2017); project CALYPSO). In this
work we apply this method to a cluster of drifters deployed in the frame of the AlborEx experiment.

The novelty of this master’s thesis is the combination of the two aforementioned approaches
in the study of a mesoscale eddy. The combination of Eulerian and Lagrangian resolution for the
same phenomena is not a common procedure (in general, studies only apply one of the two pro-
cedures). The phenomena studied in this work will be a mesoscale eddy located in the Algerian
Basin (hereafter AB) developed from an instability of the Algerian Current (hereafter AC, see Fig.
1). These structures, also known as Algerian Eddies (hereafter AEs), are almost always present
in the basin and play a key role in its circulation (Testor et al. (2005); Escudier et al. (2016)).
AEs are generated from the AC due to a mixture of both barotropic and baroclinic instabilities
even though the second ones play a main role. As a result, we can apply TangPy to simulate the
main dynamical fields. To estimate the input parameters of the model we will make use of glider
data from a mission that sampled this AE (Cotroneo et al. (2015)) and satellite altimetry. For the
Lagrangian observations we will use, as mentioned before, a cluster of drifters deployed in the Al-
boreEx experiment. Although these drifters were deployed in the Southwest of the Mediterranean
sea, they got inside the AC and eventually drifted until the location of the AE and got inside its
circulation. As there is a time gap between the drifter observations (end of May, beginning of
June) and glider measurements (October) we made use of the altimetry data to confirm that we
are studying the same feature.

This master’s thesis is organized as it follows: First, a brief description of the area of study
and a brief description of the origin of these regions of convergence/divergence is given. Section 2
describes the data used in this work followed by Section 3 where the methods used are exposed. In
Section 4 the results are shown for the Lagrangian observations and for the Tang’ model. A brief
discussion of some interesting points of the results in Section 5. Section 6 and Section 7 summarize
the work done and suggest future work in order to improve the understanding of the results shown.

1.2 A case of study: an Algerian Basin Eddy

As said before, we apply the two methods in an eddy observed in the AB developed from an
instability in the AC. To fully understand the mechanisms that set up this phenomena it is impor-
tant to understand first the mesoscale circulation of the basin.
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The Algerian Basin covers most of the southern part of the Western Mediterranean Sea so in
order to understand its general circulation we have to look up to the full region. The Mediterranean
Sea is a semi enclosed basin as it is a confined region only communicated with the Atlantic Ocean
through the Gibraltar Strait. The unbalance caused by a greater evaporation than precipitation
and river runoff is compensated by the strong inflows of Atlantic waters into the basin. The strong
baroclinic and barotropic instabilities present at the zone studied in this work (Alboran Sea) cause
the inflowing waters to form a sequence of eddies, gyres of high intensities (Allen et al., 2008). As
these waters get out of the Alboran Sea they flow eastward at surface along the Algerian slope
creating the AC. This is the beginning of the Mediterranean circulation in the uppermost part of
the water column , an anti-clockwise circulation due to the Coriolis effect (Fig.1).

Figure 1: Schematic representation of the Western Mediterranean circulation (Escudier et
al. (2016) adapted from Millot and Taupier-Letage (2005)).

When following the Algerian slope, the AC becomes unstable causing the formation of meanders
which eventually can detach from the AC forming AEs (Salas et al. 2001). These eddies can rapidly
grow to up to 50-100 km in diameter and reach vertical extent of several hundreds of meters (Ruiz
et al., 2002). These structures retain much of their core water mass and consequently can last for
numerous weeks, months or even years with few changes to their hydrographical characteristics
(Millot et al., 1999).

1.3 Current instabilities

There is an inherent ability in the midlatitude eastward flows to generate spontaneously wave-
like disturbances that can evolve an eastward stream into a meandering state (Kundu,2008). The
meanders formed on the current frequently can grow, closing onto themselves and form eddies that
separate from the main current. As mentioned before, such a change on the current is the result of
a mixture of barotropic and baroclinic instabilities. Barotropic instabilities withdraw the kinetic
energy from the horizontally sheared flow to feed the meander grow. On the other hand, the baro-
clinic instability is associated with a conversion of available potential energy from the horizontal
density distribution in balance with the thermal wind. Occasionally, beta effect (first order term
of the Coriolis approximation and sets a linear variability with latitude) plays a role too helping
the eddy to detach from the current (Cushman-Roisin, 2011). In this work we will focus on the

7



baroclinic instability as a generation method of AEs.

In thermal-wind balance, geostrophy and hydrostaticity combine to maintain a flow in equi-
librium, although this state is not the state with least energy as we have a system with inclined
density surfaces. According to the thermal-wind relation (eq. 2),

∂v

∂z
= − g

ρ0f

∂ρ

∂x
, (2a)

∂u

∂z
= g

ρ0f

∂ρ

∂y
, (2b)

where u and v are the velocity components, x the distance eastward, y the distance northward, z
the depth, ρ the density, g the gravitational acceleration at surface and f the Coriolis parameter
at a reference latitude. An eastward flow in equilibrium with such a density structure must have
a velocity that increases with height. This system is potentially unstable as it can release the
potential energy stored in the slopes of the density surfaces, reducing the pressure gradient and
therefore the vertical shear of the main flow; thus, transferring this energy into the kinetic energy
of the perturbations.

In thermal-wind balance this energy transfer cannot happen spontaneously so some mechanism
is required: (i) through friction, a state of thermal-wind balance can decay and eventually bring
the system to rest. However this mechanism is too slow. (ii) Vertical stretching and squeezing of
the fluid can help to change positions of parcels of different densities, reducing the slopes of the
density surfaces. Vertical stretching and squeezing, each by itself, generate a vorticity wave, but
only if the mechanisms induce a pattern that reinforces each other (Fig. 2). If this happens, a
partial relaxation of the density surfaces liberates some of the potential energy available while the
two mechanisms create new vorticity. The motions produced by the generation of kinetic energy
increase the amount of vorticity shear enhancing the action of the friction which also contributes
to the reduction of the slopes of the density surfaces. With time, large vortices which eventually
can detach and form an eddy can be generated at expenses of the initial thermal-wind balance.

Figure 2: Interaction of displacement
patterns and vortex tubes in the upper
layer of a two-layer thermal-wind flow
when displacements occur in both lay-
ers. The illustration depicts the case of
a mutually reinforcing pair of patterns,
when the vertical motions of one pat-
tern act to increase the displacements
of the other (Cushman-Roisin, 20011).
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2 Data

2.1 Drifters

The Lagrangian observations used in this study were obtained during the AlborEx campaign,
conducted in the eastern Alboran Sea front in May 2014 (Pascual et al., 2017). The Surface Velocity
Program (hereafter SVP) drifters are the standard design of the Global Drifter Program (Lumpkins
and Pazos, 2007). In particular, the drifters used here are the mini-World Ocean Circulation
Experiment (WOCE) SVP drifters (Fig. 3). The drifter consist of a surface buoy that is attached
to a holey-sock drogue, centered at a depth of 15 m, which holds the drifter almost motionless
with respect to the horizontal layer studied. The drifters were equipped with a thermistor on the
lower part of the buoy to measure SST. The drifters were localized by GPS and transmitted data
through Iridium connection. For more details on the SVP drifters design, see Niiler et al. (1991).

(a) (b)

Figure 3: (a) Drifter preparation on board R/V SOCIB during AlborEx experiment. (b) SVP
drifter scheme.

In the AlborEx experiment, 25 drifter were deployed in the eastern Alboran Sea, far away from
our region of study (Fig. 4b), but as they were deployed in the eastern part of the Almeria-Oran
front, they got advected into the AC. This strong current transported the drifters into our region of
study (AB). At this location, the presence of a strong instability from the AC deviated the drifters
into an anticyclonic eddy, the case studied in the present work.
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Figure 4: (a) Complete drifter trajectories (each color represent a drifter). (b) Drifters position
when the deployment was finished. (c) Drifters derivation after 3 days. (d) Trajectories from
drifters that sampled the eddy.

2.2 Glider data

Gliders are autonomous underwater vehicles that provide high-resolution hydrographic mea-
surements (temperature, salinity, biogeochemichal tracers, etc). Gliders control their buoyancy to
allow vertical motion. Making use of their ability to modify its pitch, together with their fins,
gliders transform part of this vertical motion into horizontal motion, advancing with a horizontal
speed around 25 cm/s (Bouffard et al., 2010). Following a saw-tooth flight path glider sample ocean
down to 1000 m (Fig. 5b).

The glider data used here corresponds to the mission ABACUS2 in the ABACUS framework, a
project carried by the University of Naples “Parthenope” in collaboration with the Balearic Islands
Coastal Observing and Forecasting System (SOCIB) together with the Instituto Mediterráneo
de Estudios Avanzados (IMEDEA CSIC-UIB) (Cotroneo et al., 2015). In October 2014, a glider
SLOCUM G2 sampled two cross-sections of an eddy present in the Algerian Basin that got detached
from the AC (Fig. 5c). ABACUS2 dataset is used to identify the the hydrographic characteristics
of the studied eddy. This information is used to estimate the input variables for the TangPy code
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(see section 3.1.1).

(a) (b)

(c)

Figure 5: (a) Glider waiting for communications before submergence. (b) Typical glider flight
path under water. (c) Glider trajectory through the eddy from 15 September to 20 October 2014
(Cotroneo et al., 2015).
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2.3 Satellite data

Altimetry data over the region of the Algerian Basin is used to confirm the origin of the
mesoscale AE. Satellite altimetry measures the time taken by a radar pulse to travel from the
satellite to the surface and back to the satellite receiver (Fig. 6). Combined with precise satellite
location data, altimetry measurements yield sea-surface heights. The altimeter products used for
this study were produced by Ssalto/Duacs and distributed by Aviso, with support from CNES
(http://www.aviso.altimetry.fr/duacs/). More specifically, daily maps of Absolute Dynamic To-
pography (hereafter ADT) and geostrophic currents from late May 2014 to October 2014 are used.

Figure 6: Scheme of the altimetry detection (https://www.aviso.altimetry.fr/en/).

Fig. 7 shows the distinct phases of the eddy, since its birth until its stabilization at the Southeast
of Mallorca where it is sampled by the glider in early autumn 2014. In late May there is a strong
baroclinic instability and as a result, a the AC deviates into a big meander. During the beginning
of June a small perturbation of this meander is detached, forming a mesoscale eddy.
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Figure 7: ADT plots with geostrophic velocity on top (vector plot).
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3 Methods

3.1 TangPy’s code implementation

TangPy’s code is based in one of the two models exposed in Tang (1975), which are simple
extensions of Eady’s (1949) model considering no beta effect. To do so, we use a linearized version
of the QG wave equation. The starting point are the frictionless Boussinesq QG vorticity equation
(eq. 3a) and the adiabatic equation (eq. 3b),

∂

∂t
∇2ψ + J(ψ,∇2ψ) = f

∂w

∂z
, (3a)

∂

∂t

∂ψ

∂z
+ J(ψ, ∂ψ

∂z
) + N2

f
w = 0, (3b)

where ψ is the stream function, w the vertical velocity, t the time, f the Coriolis parameter at a
reference latitude, N the Brunt-Väisälä frequency, x the distance eastward, y the distance north-
ward and z the distance northward. ∇2 and J are the Laplacian and Jacobian operator respectively.

Assuming a solution of the form

ψ′ = Re[Ψeik(x−ct)] sin(ly), (4a)
w′ = Re[Weik(x−ct)] sin(ly), (4b)

where Re denotes ‘the real part of’, Ψ and W are the complex Fourier coefficients, the wave numbers
k = 2π/L and l = π/D (where L is the wavelength in the x direction and D is the distance between
nodal surfaces) and c is the complex phase speed. Substituting these solutions into a linearized
version of eq. 3 and combining them to eliminate W leads to

∂2Ψ
∂2z
− (Nµ

f
)2Ψ = 0, (5)

where µ2 = k2 + l2.

In Tang (1975), two cases are exposed, herein we use the first one, the 2-layer model with
a stratified shear layer surmounting a quiescent stratified layer (Fig. 8). The upper layer has a
constant shear U/H, where U stands for the basic zonal flow at the top and H for the depth
of the layer, whereas the lower layer has no motion and a depth h. The buoyancy frequency
(Brunt-Väisälä frequency) has a fixed value for each layer.
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Figure 8: Schematic representation of model used: Layer
with constant shear on top of quiescent layer (Tang 1975).

The general solution for introducing a small perturbation (eq. 4), meant to represent a wave of
weak amplitude, in the shear layer is

Ψ = A cosh(ξ) +B sinh(ξ), (6)

where

ξ = kz/H and k = µHN/f. (7)

Considering as boundary conditions that the vertical velocity vanishes at the top and the bottom
boundaries and that the flow is continuous across the interface between the layers, we obtain
equations for the structure of the unstable waves

ψ′ = |Ψ| cos(kX + θ)eνt sin(ly), (8a)
w′ = |W | cos(kX − σ)eνt sin(ly), (8b)

where X and ν (definitions of θ, σ, |Ψ| and |W | can be found on Tang (1975)) are defined as

X = x− crt, (9a)
ν = kci, (9b)

where cr and ci are the real and imaginary phase speeds respectively. For the unstable modes, it
must be fulfilled

c = cr + ici with ci > 0. (10)
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At this point, before adding all the dynamical expressions, we made a quick verification of
the Tang’s model, to ensure that the solution for the two layer system was correctly codified (see
Appendix A).

From eq. 8a, together with the governing equations for a quasi-geostrophic regime, we can de-
velop the equations for the dynamical processes we want to study (divergence, vorticiy and vertical
velocities) on an unstable region. These expressions and their development can be found on the
Appendix B.

3.1.1 TangPy parameter selection

Once the model is correctly implemented, the input parameters must be selected by some cri-
teria in order to reproduce an eddy with the properties of an eddy located at the AB. Glider and
satellite observations is used to obtain an estimation of these inputs. The adjustable parameters
of the model are: the depth of both layers (H and h) (and their corresponding changes in the
Brunt-Väisälä frequencies of the layers), the intensity of the zonal flow at the top (U) and the
wavelength of the signal (λ).

The geostrophic velocity fields generated from glider data in Cotroneo et al. (2015) can be used
to fix the depth of the layers and the zonal flow at the top. These fields (Fig. 9) show that motion
layer extents down to 300 m with a maximum intensity of 25 cm s−1. However, previous works
on glider data have shown the lack of a barotropic component due to the calculation method (a
zero velocity level has to be set as reference). This missing component can be estimated with the
depth-average velocity (hereafter DAV). Post mission, the DAV can be used to provide a reference
velocity for the geostrophic velocity calculation, providing an estimate of absolute geostrophic ve-
locity (Heslop et al. (2018) and Rodŕıguez et al. (2017), Fig. 10). This adjustment show that the
component not captured in structures like AEs can be of the order of 5 cm s−1. Also, this addition
can extent the motion layer down to 500 m. Considering all this, in this work we will use for the
depth layers: H = 500 m, N1 = 5.8 · 10−3 s−1, h = 2000 m, N2 = 2.3 · 10−4 s−1 and U0 = 0.3
m s−1. The depth of the quiescent layer (h) is the depth from the end of the motion layer to the
floor of the basin, so considering a mean depth of the basin of 2500 m and H set to 500 m, the
value of h is already obtained. The Brunt-Väisälä frequencies are calculated are obtained from the
mean Brunt-Väisälä frequency profile (Fig. 11). This profile is generated from the original density
profiles from the glider data through eq. 11,

N2(z) = − g

ρ0

∂ρ(z)
∂z

, (11)

where ρ is the potential density, g is the local acceleration of gravity and z the depth.

The remaining parameter, the wavelength of the signal, can be obtained looking at the spatial
dimensions of the AE in the altimetry. The mean diameter of this structure is in the range 112-130
km (Cotroneo et al., 2015), this can be observed at the altimetry plots in Fig. 7. Considering the
wavelength is twice the diameter of the eddy, we set a value of 250 km.
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Figure 9: Geostrophic velocity (relative to 850 dbar) calculated from glider CTD data
from surface to 300 m depth for the different transects shown (L1, L2 and L3 (d)).
(a) Current speed across section. (b) Zonal component. (c) Meridional component.
(Cotroneo et al., 2015).

Figure 10: Velocity field across the studied eddy from a transect of ABACUS2. (a)
Geostrophic velocity field. (b) DAV adjusted geostrophic velocity field. (Rodŕıguez et
al., 2017)
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Figure 11: (a) Mean Brunt-Väisälä frequency profile computed from the original density
profiles obtained by the glider reaching 900 m. (b) Zoom from (a) in the last 300 m.

3.2 Calculation of divergence using lagrangian observations

The method used here was first introduced by Reed (1971) and studied in Molinari and Kirwan
(1975), where the horizontal divergence is estimated from the change in the area of a parcel formed
by a set of drifters. However, literature is not vast and there are still many open questions that
are being explored in the present (see for example CALYPSO project)

divh
−→u = A−1dA

dt
, (12)

The eq. 12 can be proved considering a parcel of side length ∆x and ∆y, therefore its area will
be A = ∆x∆y. Considering this, it can be shown

A−1∂A

∂t
= 1

∆x∆y

(
d(∆x∆y)

dt

)
= 1

∆x∆y

(
∆xd∆y

dt
+ ∆yd∆x

dt

)
=

= 1
∆x

d∆x
dt

+ 1
∆y

d∆y
dt

= ∂

∂x

dx

dt︸︷︷︸
u

+ ∂

∂y

dy

dt︸︷︷︸
v

= ∂u

∂x
+ ∂v

∂y
= divh

−→u . (13)

A minimum of three drifters is required to apply this method even though Molinari and Kirwan
(1975) and Okubo and Ebbesmeyer (1976) showed that for an enlarged number of drifters the sta-
tistical confidence on the results increases. Despite this, previous studies using triplets of drifters
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(Molinari and Kirwan (1975) and Wang et al. (1988)) have obtained significant and consistent re-
sults. Following these studies, we use the area rate of change method applied to triplets of drifters.

A common fact in the studies mentioned above is that they use groups of 3 drifters, i.e., they
already have the triplets positions. In this work we have a cluster of drifters, therefore we have to
design a method/rule to determine how many triplets we can arrange. A scheme of this method is
shown in Fig.12. For a given drifter, we check all the possible triplets but keep only those whose the
three side distances are lower than a set threshold distance. In this work we have set a threshold
distance of 30 km. Just one side of the triplet being greater than the threshold distance is enough
to discard this triplet. Looking at drifter C in Fig.12 we obtain two possible triplets, ABC and
BCD, but on the second one, the distances BD and CD are greater than the threshold distance.
Hence, the second triplet would not be chosen.

Applying this rule to all the drifters in the cluster we can obtain our triplets of study. It must
be noted that when lopping through all the drifters we obtain repeated combinations of drifters (in
the example above: ABC,ACB,BAC,BCA,CAB,CBA). To avoid it, we design a filter to allow
only one combination of the same drifters.

Figure 12: Schematic representation of the triplets selection process.
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4 Results

4.1 TangPy results

4.1.1 Baroclinic instability simulation

In this subsection we present the results for the simulations performed with the input parame-
ters selected in section 3.2.1 to reproduce the characteristics of an eddy generated in the AB. For
the quoted input parameters, the model gives a propagation speed of 5 km days −1 and a doubling
time of 12 days. These results can be observed in the Appendix D, where the sequence of growth
of the instability for the different dynamical fields is shown. The results shown here correspond
to a depth of 50 m. The plot sequence in Fig. 20 in Appendix D shows the dynamic height field
(deduced from the stream function ψ, dh = ψ · f/g) with the total velocity field on top. It can be
seen how the initial instability grows generating a cyclonic circulation followed by an anticyclonic
one. This pattern moves eastwards as the instability grows reinforcing the circulation in it until day
6, when a full eddy circulation can be observed. In 10 days, the instability generates a maximum
in the dynamic height field of 15 cm and a circulation around of 25 cm/s. This circulation can be
decomposed into its geostrophic and ageostrophic components (Fig. 21). As expected based on
the QG framework of this work, the ageostrophic field is an order of magnitude smaller than the
geostrophic field. Despite this, the ageostrophic field is very relevant in this context as it is the
generator of the divergences which develop into vertical movements.

The generation of the convergence and divergence zones generated by the ageostrophic circu-
lation is shown in Fig. 22. This figure show the generation of a divergence zone in front of the
anticyclonic gyre while convergence zone is generated behind it. The distribution of the conver-
gence and divergence zones matches with the location of vertical motion. Through continuity, the
divergence (convergence) zones develop into ascending (descending) velocities.

Once all the fields of interest are obtained, the next step is to identify at which stage of the
analytical simulation the eddy sampled by the glider and drifters is located. Looking back at Fig.7
we can see that the eddy has a dynamic height anomaly around 10 cm, in our simulation this
anomaly can be appreciated over the sixth day. Fig. 13 shows all the fields of interest for this date.
The model indicates a circulation with velocities around 20 cm/s whose ageostrophic component
(around 1 cm/s) generates a divegence maximum around 2.5 · 10−3 f . This divergence translates
into a vertical velocity maximum of 28 m/day.
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Figure 13: Tang’s model results for day 6. (a) Dynamic height with total velocity on top. (b)
Dynamic height with ageostrophic velocity on top. (c) Divergence with dynamic height on top.
(d) Divergence with dynamic height and ageostrophic velocity on top . (e) Vorticity with dynamic
height on top. (f) Vertical velocity with dynamic height on top.
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4.1.2 Tang’s model sensitivity test

Due to high non-linearity of the expressions inside the TangPy code, it is hard to make an esti-
mation on how each input parameter affects the results. With the objective of gaining perspective
on how the input parameters can affect the model output we proceed to do a sensitivity test for
the different parameters. The different results obtained by varying H, L and U0 separately are
shown in Table 1. The table shows the results for the phase speed, cr, the time required for the
wave to double its amplitude, T = ln2/ν and the maximum values for the vertical velocity, w, the
divergence, div/f and the vorticity, vort/f . All the results are for the 4th day simulation since the
instability began.

The first results shown are those obtained with different values of H. The total depth of the
model remains constant at 2500 m, i.e. if we change H from 500 m to 400 m, h will be 2100 m instead
of 2000 m The variation of H also includes the implicit variation of the Brünt-Väısala frequency as it
depends on the vertical variation of density. Thus, including waters of different depths will modify
this variable. The deepening of this layer produces an intensification of the growth of the signal
and the vertical velocities but the mean circulation in the gyre lowers down. This effect is rep-
resented in an unaltered divergence and a reduced vorticity due to the reduction of the gyre velocity.

The increase in the wavelength results in a reduction of all the magnitudes of the eddy. An
expected result, as the same amount of energy, given by the initial instability, is used in a wider area.

The effect of the changes in the zonal flow at the top affects directly at the instability generated.
With a greater value of U0, the instability increases as a result of a stronger vertical velocity gradient
(vertical shear).

cr (km/days) T (days) Ug (m/s) w (m/day) div/f vort/f

H (m)
400 4.7 13.3 0.230 23 0.003 0.135
600 5.4 9.9 0.191 28 0.003 0.111
800 6.1 7.4 0.186 33 0.003 0.108

L (km)
250 5.1 12.2 0.202 25 0.003 0.118
300 4.6 8.9 0.172 17 0.002 0.082
350 4.1 8.7 0.143 11 0.001 0.055

U0 (m/s)
0,4 6.8 9.2 0.218 36 0.003 0.128
0,6 10.3 6.1 0.253 64 0.006 0.150
0,8 13.7 4.6 0.294 99 0.009 0.176

Table 1: Tang’s model sensibility test results for H, L and U0.
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4.2 Lagrangian observations

In this section we present the results from the calculations using drifter triplets. Firstly, all
the available triplets were considered and we obtained values of divergence around 10−1 f . How-
ever, these results showed large changes from day to day and even frequently changed sign. The
trajectory of the center of mass of the triplets did not make any sudden jump, in fact they were
moving smoothly. To understand these changes, we examined the individual drifter trajectories (see
Appendix C). We saw how although the triplet as a whole moved smoothly, the trajectories of the
drifters around the center of mass suffered sudden changes. Such a disengage from the main current
can be attributed to many factors (small-scale flow and turbulence) and will be discussed later (see
section 5.2). such behavior got accentuated forward in time, even some drifters got advected away,
not only from the eddy but even from the region.

The triangle method used by Molinari and Kirwan (1975) was proven not to get good results
for those triangles where the drifters were too far from the center. Therefore, we decided not to
use the drifters that suffered sudden jumps in their trajectory. After applying this condition, there
were only three drifters which did not suffer sudden changes and remained in the eddy circulation.
This supposes a great limitation to our results, as we only have one triplet available and therefore
any comparison between triplets is discarded. Nevertheless, the application of this condition is
of utmost importance for the proper functioning of the method. The trajectories for the first 20
days of analysis of the three drifters are shown in Fig. 14 together with the ADT of the 25th of
May (when the drifters where at the middle of the trajectory plotted) showing the correspondence
between the drifters trajectory and the eddy circulation.

As we can see in Fig. 14, the movement of the drifters have an important component due to
the inertial oscillation. These characteristic movement due to Coriolis will only add noise to the
evolution of the triplet area; hence we will apply a time filter of 36 h (twice the period of the signal,
which at a latitude of 40o is around 17.5 h) in order to remove this signal.

The divergence results for the filtered trajectories are shown in Fig. 15. In this sequence of plots
we can see the evolution of the triplet together with the value of divergence located at the center
of mass for each time. Fig. 15f shows the divergence estimates at all time. Note that there are two
periods of time where we start to get large values of convergence followed by a sudden change in
sign, obtaining large values of divergence. These high values are caused by the shape of the triangle
as it is no longer isotropic. This happens when the triangle gets too elongated and therefore the
method used, as stated by Molinari and Kirwan (1975) no longer gives correct estimates until the
triangle gets an isotropic shape again. In general terms, we obtain consitent and reasonable values
for a mesoscale eddy around 0.1 f - 0.3 f for a mesoscale eddy.
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Figure 14: Trajectory of the first 20 days of analysis of the drifters which stayed in the eddy
circulation together with the ADT for the 25th of May, when the drifters where at the middle of
the trajectory plotted (filled contour) with the estimated geostrophic velocity field on top (vector
plot).
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Figure 15: Evolution of the triplet of study and the divergence estimate at the center of mass of
the triplet (a)-(e). Divergence estimate at each point of the trajectory (f).
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5 Discussion

5.1 Glider results comparison

In order to analyze the capability of the analytical model of Tang to describe structures such
as the ones studied in this work, we compared the QG vertical velocity (w-QG , hereafter) field
calculated from the model with the velocity field derived from glider data across the eddy (Fig. 16).
Cotroneo et al. (2015) finds out a region of upward motion in the eastern part of the domain while a
region of downward motion is located at the western side of the eddy. This distribution is recreated
by the Tang model for the anicyclonic gyre too (Fig. 16a). Thus there is a match in the location
of the regions of vertical motion between the model and the calculated field from observations
although there is a difference in the magnitudes of both fields. First, the model predicts stronger
vertical velocities than the calculated ones, but this difference possibly comes from the lack of
observations in the calculation of the w-QG. It should be noted that, with the domain considered,
only 2 transects of data across the eddy are available (16b). Therefore it is necessary to carry out a
strong interpolation of the results, which can cause a softening of the original signal and therefore
obtain vertical motions of less intensity than the predicted by the model. Also, it is remarkable
that the model shows a symmetry at both sides of the eddy (same intensity but opposed sign) but
in the calculated field, the downward motions at the west are an order of magnitude bigger than the
upward motions at the east. This could be caused by the spatial distribution of the observations,
missing the region of stronger upward motions. Another explanation for this difference can be due
to the fact that the model is generating the w-QG field only as a product of a baroclinic instability,
hence not taking into account all of the other geophysical factors and small scale flows that can
affect such a circulation.
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Figure 16: (a) Vertical velocity field from Tang’s analytical model. (b) Vertical velocity field derived
from glider data across the eddy (black dots) from Cotroneo et al. (2015).

5.2 Difference between the two methods

From the results of the two methodologies used in this work, the difference in order of mag-
nitude obtained between both methods stands out. We obtain two orders of magnitude between
the Eulerian divergence (calculated from TangPy) and the Lagrangian divergence (calculated from
triplets of drifters). This difference can be explained by the nature of each method. However this
difference also could be emerging from a calculation error. To make sure this is not the origin of
the difference we compared both results with previous studies to check their consistency.

26



The w-QG results from TangPy have already been discussed in the previous section and proven
to reproduce the field correctly. Making use of eq. 1, we can use the w-QG fields from TangPy to
calculate through finite differences the divergence field at the mid level. The divergence field at 50
m depth was calculated using three different depth layers. For the three intervals we obtained a
divergence of the same order of the analytical divergence field maximum. Therefore, this result is
consistent with the w-QG fields.

Regarding the results from the drifters, we have compared them with the Lagrangian diver-
gences obtained in previous studies (Reed, 1971; Molinari and Kirwan, 1975; Wang et al., 1988;
Poulain, 1992; LaCasce and Ohlmann (2003)). Taking into account the variation of the results
as these studies take place in different regions, all of them agree in the magnitude order with our
results, obtaining values between 0.1 f and 0.5 f . Besides this, we can assume that our results may
incorporate variations due to the high distance between drifters.

Therefore, both methods show consistent results. The difference in magnitude between both
methods. TangPy is generating an analytical field taking into account only QG while the drifters
are capturing the whole signal of the velocity at surface (15 m). In the last two decades, a wide
range of studies have focused on the behaviour of the dispersion of drifters (LaCasce and Ohlman,
2003; LaCasce, 2008; Beron and LaCasce, 2016; Berta et al., 2016) and its effect on the Lagrangian
fields (Kalda et al., 2014; Hernandez-Carrasco et al., 2018). These studies show an extremely
complicated relation between the surface velocities and the Lagrangian divergence. Mesoscale and
basin-scale properties of the surface velocities exhibit much lower 3D effects compared with realistic
flows in marine environment (Kalda et al., 2014). LaCasce and Ohlman (2003) dealt with similar
problems and found that the surface Ekman flow and also the effect of windage were factors that
could affect and defflect the drifters from the main current.
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6 Conclusion

In this master’s thesis we have analyzed a mesoscale eddy using two different methods, obtaining
consistent results with previous studies. Firstly, we have been able to develop a Python code based
on Tang’s model to simulate the circulation generated by a baroclinic instability and the dynamic
fields of interest associated to it. Despite being a simplified QG model, the simulations obtained
show a good match with the observations and the calculated fields inferred from glider data ob-
servations. This fact shows the big advantages of running this cheap and fast model in terms of
computational cost against other numerical models commonly used as WMOPS or CMEMS among
others. Secondly, we have implemented the method of triangles to calculate the rate of change of
a triplet of drifters. This method has not shown as good results as the previous one. Nevertheless,
the results are consistent with results from previous studies that have used this method. To obtain
a better description of the divergence field a larger and closer cluster of drifters would have been
needed. Considering this, this is a method with room for improvement that can be useful in the
detection of convergence or divergence zones from the drift of particles on surface.

These results have allowed us the observation of the dependency of the results on the approach
taken to calculate them. Lagrangian results from drifters result in a higher intensity signal than
the Eulerian results from the model, as the first ones capture the whole signal on surface. More-
over, drifters have proven to be an excellent method of observation of mesoscale convergence and
divergence zones. Therefore the development and understanding of the techniques used to ob-
tain estimates of convergence and divergence is crucial. The method used here is not the only one
that exists and the next objective is to study and implement alternative methods (see next section).

Finally, it is worth mentioning the use of observations from different platforms in this work.
Multiplatform observations provide an independent and full description of the structure studied,
allowing the user to make use of the advantages of each platform.
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7 Further work

During this work a set of questions or ideas have arised which, due to time reasons, have not
been answered. These items prescribe a line for future work in order to improve the results obtained
and gain more information about the dynamics of convergence and divergence zones. The principal
subjects to continue working are the following ones.

7.1 Alternative methods for the calculation of divergence zones from Lagrangian
observations

Molinari and Kirwan (1975) study two methods of calculating convergence or divergence zones
from drifters trajectories. In this work we have studied and applied the first one, based on the rate
of change of the area formed by a triplet of drifters. The second one is called the Least Squares
method based on expanding the velocities of the individual drifters in Taylor series about the ve-
locity of the cluster center (eq. 14),

ui = uc + ∂uc
∂x

(xi − xc) + ∂uc
∂y

(yi − yc) + ui′, (14a)

vi = uc + ∂vc
∂x

(xi − xc) + ∂vc
∂y

(yi − yc) + vi′, (14b)

where (xc, yc) and (uc, vc) are the positions and velocities of the cluster center and (xi, yi) and
(ui, vi) are the positions and velocities of the drifters. However, to use this method the cluster has
to be small enough so that the shears are locally linear (as we retain only the first order term of
the Taylor expansion). These equations can be used to estimate the divergence and vorticity using
a least squares formulation. This method allows the estimation of errors for the values if four or
more drifters are used.

Another method has been used in the calculation of divergence zones. D’Asaro et al, (2017)
estimates divergence from the drifter trajectories using a central difference of the positions and
considering an ellipse. The center of the ellipse is set by the mean position of the drifters in the
cluster and the semiaxis are defined as the variance in position of the cluster. By evaluating the
change of the area of the ellipse, an estimation of the divergence can be obtained. These estimates
are more accurate if the drifter cluster is roughly isotropic, as happened with the triangle method.

7.2 Simulation of Lagrangian trajectories over TangPy’s output

It would be interesting to see the results obtained from merging both methods. This possi-
bility appears by using a Lagrangian trajectory model called TracPy based on the TRACMASS
algorithm (Thyng and Hetland, 2014). TracPy can run a simulation of Lagrangian trajectories of
virtual drifters given a velocity field. Thus, by giving as input the velocity fields obtained from
TangPy, we can generate a cluster of virtual drifters and then apply the triangle method. This
would allow us to compare the divergences obtained from the virtual drifters with those obtained
from the model. As these drifters only are influenced by the QG field (they are not influenced by
any small-scale flow or turbulence), both results should match if the method of drifters is consistent.
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7.3 CALYPSO project

CALYPSO (Coherent Lagrangian Pathways from the Surface Ocean to Interior) is a research
iniciative of the Office of Naval Research (ONR) with the participation of international oceano-
graphic research centers as Woods Hole Oceanographic Institution (WHOI), SCRIPPS institution
of oceanography, University of Washington and Instituto Mediterraneo de Estudios Avanzados
(IMEDEA). The aim of this project is to answer some of the question that were stated on the mo-
tivation section of this work: Establish an understanding and predictive ability of the 3D coherent
pathways from surface to the interior, implement observational study to test the current theories
about these pathways and also improve the capability with the models.

This study will take place in the Southwest Mediterranean Sea (Alboran Sea), a region with
strong and unstable fronts between Mediterranean salty waters and the relatively fresh Atlantic
water. Therefore strong zones of convergence and subsidence can be found, which makes it a perfect
place to test all the theories. A pilot mission took place the last May 2018 to get a first contact
with the region. In this pilot mission five different types of surface drifters were deployed (a total
amount of 70 drifters) together with a 3D Lagrangian float (D’Asaro et al., 2017). Meanwhile, the
front was sampled with UCTD and CTD casts combined with three gliders.

Figure 17: Scientific staff from the CALYPSO pilot mission. NRV Alliance on the background.
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Appendix A

Because of the complexity and length of the algorithm that implements the Tang’s model we
proceed to do a verification comparing our results with the results shown in Tang (1975). There,
a simple simulation is performed to obtain baroclinic waves in the ocean (Table 2).

h/H κ L, km cr, cm s−1 ν, 10−6 s−1 T , days

1 1,10* 427 17.6 1.926 4.17
2 1.05* 447 14.4 1.604 5.00
3 1.00* 469 12.9 1.443 5.56
3 0.80 587 11.3 1.353 5.93
3 0.40 1174 8.6 0.798 10.05

Table 2: Parameters and solutions for Baroclinic waves in Ocean. Values of κ with * represent the
most unstable wave.

We will generate the same output variables as Tang’s to check the code developed in this work.
The checked variables are the phase speed, cr, the growth rate, ν and the time required for the
wave to double its amplitude, T = ln2/ν. The parameters considered for this simulation are
f = 0.898 · 10−4s−1 (latitude of 38◦), D = L = 427 km, N1 = 6 · 10−3s−1, N2 = 2 · 10−3s−1,
h = H = 1 km and U0 = 60 cm−1.

The results obtained from the simulation with these parameters match perfecctly with those in
Tang (1975).

cr = 15.2 km/day (17.6 cm/s)
ν = 1.93 · 10−6 s−1

T = 4.17 days
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Appendix B

We will work with the equations of motion with the following assumptions:

• ρ = ρ(z) + rho′(x, y, z, t) |ρ′| � |ρ|

• p = p+ p′(x, y, z, t)

• Beta plane: f = f0 + βy

• No friction

With these assumptions, the horizontal momentum equations will be:

du

dt
− f0v − β0yv = − 1

ρ0

∂p′

∂x
, (15a)

dv

dt
− f0u− β0yu = − 1

ρ0

∂p′

∂y
. (15b)

Where the operator d
dt stands for the substantial derivative:

d

dt
= ∂

∂t
+ u · ∇. (16)

To obtain vertical velocities, we have to include a small ageostrophy correction, this is equivalent
to say we are working on the quasi-geostrophy theory,

u = ug + ua, (17a)
v = vg + va. (17b)

Here, we will try to find an expression in terms of the stream function ψ for the eq. 15 . To do
so, we will substitute the velocities present at eq. 15 for their respective geostrophic expressions,

ug = − 1
f0ρ0

∂p′

∂y
, (18a)

vg = 1
f0ρ0

∂p′

∂x
, (18b)

also, we have to consider the substantial derivative as

dg
dt

= ∂

∂t
+ ug · ∇h. (19)

With all these assumptions, for the x dimension we have,

∂tug + ug · ∂xug + vg∂yug − f0v − β0yvg = − 1
ρ0

∂p′

∂x
, (20)

substituting the expressions from eq. 18,

− 1
ρ0
f0
∂2p′

∂t∂y
+ 1
ρ2

0f
2
0

∂p′

∂y

∂2p′

∂x∂y
− 1
ρ2

0f
2
0

∂p′

∂x

∂2p′

∂2y
− f0v −

β0
ρ0f0

y
∂p′

∂x
= − 1

ρ0

∂p′

∂x
, (21)

where the 2nd and 3rd term can be identified as the result of the Jacobian (eq. 22),
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J(a, b) = ∂a

∂x

∂b

∂y
− ∂a

∂y

∂b

∂x
, (22)

therefore eq. 21 can be rewritten as,

− 1
ρ0
f0
∂2p′

∂t∂y
− 1
ρ2

0f
2
0
J(p′, ∂p

′

∂y
)− f0v −

β0
ρ0f0

y
∂p′

∂x
= − 1

ρ0

∂p′

∂x
. (23)

Identically, the same goes for the y dimension,

1
ρ0
f0
∂2p′

∂t∂x
+ 1
ρ2

0f
2
0
J(p′, ∂p

′

∂x
) + f0u−

β0
ρ0f0

y
∂p′

∂y
= − 1

ρ0

∂p′

∂y
. (24)

From eq. 23 and eq. 24 it is immediate to isolate an expression for both u and v,

u = − 1
ρ0f0

∂p′

∂y
− 1
ρ0f2

0

∂2p′

∂t∂x
− 1
ρ2

0f
3
0
J(p′, ∂p

′

∂x
) + β0

ρ0f2
0
y
∂p′

∂y
, (25a)

v = 1
ρ0f0

∂p′

∂x
− 1
ρ0f2

0

∂2p′

∂t∂y
− 1
ρ2

0f
3
0
J(p′, ∂p

′

∂y
)− β0

ρ0f2
0
y
∂p′

∂x
. (25b)

The velocities from eq. 25 can be related to the stream function ψ thorugh p′ = ρ0f0ψ,

u = −∂ψ
∂y
− 1
f0

∂2ψ

∂t∂x
− 1
f0
J(ψ, ∂ψ

∂x
) + β0

f0
y
∂ψ

∂y
, (26a)

v = ∂ψ

∂x
− 1
f0

∂2ψ

∂t∂y
− 1
f0
J(ψ, ∂ψ

∂y
) + β0

f0
y
∂ψ

∂x
, (26b)

where the first term of both expressions corresponds to the geostrophic velocity and the rest to the
ageostrophic velocity.

Once we have developed the velocity expressions, it is trivial to obtain the horizontal divergence
and vorticty from the expressions in eq. 27 and eq. 28,

D = ∂u

∂x
+ ∂v

∂y
, (27)

ζ = ∂v

∂x
− ∂u

∂y
. (28)
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Appendix C

Trajectory of the whole cluster of drifters
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Figure 18: Trajectory of all the drifters that sampled the eddy

39



Trajectory of the drifters inside the eddy
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Figure 19: Trajectory of the three drifters selected to apply the triangle method.
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Appendix D

Dynamic height field evolution
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Figure 20: Time evolution (in days) of the dynamic height field (filled contour plot) with the
velocity field (vector plot) on top. 42



Geostrophic and ageostrophic velocity field evolution
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Figure 21: Time evolution (in days) of the dynamic height field (filled contour plot) with the
geostrophic ((a)-(c)-(e)) and ageostrophic ((b)-(d)-(f)) velocity fields (vector plot) on top.
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Divergence and vertical velocity field evolution
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Figure 22: Time evolution (in days) of the divergence field (filled contour) with the ageostrophic
velcity on top (vector plot) and dynamic height (contours) ((a)-(c)-(e)) and vertical velocity field
(filled contour) with dynamic height (contours) on top ((b)-(d)-(f)).44
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