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Abstract

It has been shown that the amplitude of gamma oscillations modulates the phase of theta rhythm in the
hippocampus [1]. In this work, we reproduce the single node Neural Mass Model (NMM) proposed in [2] to
study the phase-amplitude coupling and the directionality of the oscillations in the hippocampus. The aim is
to determine a particular condition of the model which can reproduce the experimental results obtained in [1].
In addition, a NMM comprised of a given number of nodes has been developed on the basis of the neural mass
model proposed in [3].
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Chapter 1

Introduction

If one wonders about the earliest recorded reference to the brain, we have to travel to Egypt into
the 17th century BC, where Edwin Smith Papyrus, an ancient Egyptian medical treatise contains the
earliest recorded reference. In Figure 1.1 one can observe the hieroglyph for “brain”, appearing in this
papyrus, which describes the symptoms and diagnosis of two patients who had compound fractures of
the skull [4].

Figure 1.1. Hieroglyph for the word ‘brain’ (c.1700 BC).

From that time on, many have tried to uncover the secrets of the brain throughout history.
Nevertheless, humanity could only produce significant advances at a macroscopic level of the brain
for a long time.

It was not until the 18th century when studies of the brain experienced a significant improvement.
This was due to the use of the microscope and the development of a silver staining method by Camillo
Golgi, which was able to show the structures of single neurons. Almost simultaneously, Santiago
Ramón y Cajal, thanks to Golgi’s studies, developped the neuron doctrine, which states that the
neuron is the functional unit of the brain. Cajal used microscopy to discover many cell types, and
also proposed functions for them, as well as drawing several sketches. An example is provided in
Figure 1.2 [5].

Figure 1.2. Drawings of cells in chick cerebellum by Santiago Ramón y Cajal. From [6].

At the present time of history, neuroscience is multidisciplinary field, in which efforts from
neuroscientists, mathematicians, physicists and other experts are required. These joint work could
lead to achieve new breakthroughs that allow humanity to have a better understanding of how the
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brain functions. Particularly, computational neuroscience is a subfield of neuroscience based on
developing models to integrate complex experimental data. [7].

One of the best known models is the Hodgkin and Huxley model [8], which describes at a
microscopic level how action potentials in neurons are initiated and propagated. Another single-
neuron level model worthwhile to point is the Izhikevich model [9], which reproduces spiking and
bursting behavior of a certain type of cortical neurons, combining the biologically plausibility of
Hodgkin-Huxley model and the computational efficiency of integrate-and-fire neurons.

At a mesoscopic level, we can highlight the models in which the connection between neuronal
ensembles can generate oscillatory activity. This is due to the fact that the firing patterns of a
group of neurons can synchronize. Additionally, the action potentials of each neuron influences the
electric potential, creating a constructive interference. These synchronized firing patterns generate
synchronized input into other cortical areas, which produce amplitude oscillations of the local field
potential [10]. An example of mesoscopic models are the neural mass models (NMMs), which in order
to facilitate the dynamic modeling, present populations consisting of a huge number of neurons with
similar characteristics [11]. These models can be parameterized using experimental recorded data
coming from local field potentials (LFP), electroencephalogram (EEG) or magnetoencephalograms
(MEG) [12], in order to achieve a model as realistic as possible.

In addition, at a macroscopic level, we can mention that oscillatory activity can arise from
interactions between different brain areas coupled through the structural connectome.

In particular, in the present work we are going to focus on the study of neural mass models. The
first developed NMM, called Wilson and Covan model, comprised two units: a pyramidal neuron and
an inhibitory interneuron population (Figure 1.3a) [13]. The model could produce a single activity on
the alpha band 7.5–12.5 Hz).

In Figure 1.3b it can be observed the next step of the NMM development: the Jansen model. It
consists of connecting, with a positive feedback, an excitatory interneuron population to the pyramidal
population of the previous model. This permitted to generate delta (1 − 4 Hz) and theta (4 − 7
Hz) rhythms. This model was the first able to reproduce experimentally observed visual-evoked
potentials [14].

A few years later, Wendling model was proposed. It was based on adding a population of fast
inhibitory interneurons to the Jansen model (Figure 1.3c). This model was able to generate beta
(13− 30 Hz), and gamma (30− 150 Hz) activity [15].

Another improvement consisted of adding a self-feedback to the inhibitory interneuron population
of the Jansen model (Figure 1.3d). This self-feedback is realistic because it is present in real neurons
systems, particularly in populations of fast GABA, which is an inhibitory neurotransmitter and the
main generator of gamma band activity [16].

The first model capable of generating multiple-frequency components was Ursino’s model [17]. It
is based on adding a static self-feedback to the fast inhibitory interneurons of the Wendling model.
This produces a self-inhibition, resulting in gamma oscillations when the neurons are excited with an
extra noise source. The obtained gamma oscillation can coexist with the lower band activity, which is
also driven by a source of independent noise fed to the pyramidal neurons, as we can see in Figure
1.3e.

Finally, Figure 1.3f represents the model in which we are going to focus through this master thesis.
The model has two main features to differentiate from Ursino’s model. First, a modulatory parameter
introduced to the firing frequency of the fast inhibitory population, and then, a dynamic self-feedback
on the same population (replacing the previous static self-feedback) [2].
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Figure 1.3. Evolution of neural mass models. From [2].

Outline

The goal of the present work is to study the usability of a neural mass model to model the
synchronized brain oscillations.

The starting point is the presentation of several basic biological elements, whose understanding is
fundamental to follow the scope of this work. This is follow by the explanation of the methodology
employed to assess the synchronization in oscillations presenting different frequency bands: the
cross-frequency coupling (CFC) and the cross-frequency directionality (CFD).

The next step will be to present two different NMMs. First, the one shown in Figure 1.3f [2]; and
then, a version which connects multiple NMMs like the first model. Both NMMs are referred to as
single node NMM, and multiple node NMM.

Then, we study if by changing the control parameters of the single node NMMs we can reproduce
the experimental results of the scientists from the Instituto de Neurociencias de Alicante [1], whose
main finding is that gamma oscillations modulate the theta rhythms in the hippocampus.

Finally, I represent a NMM comprised of two nodes from Ref. [3], and show the functionality of
the NMM developed for multiple nodes .
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Chapter 2

Theoretical Framework

2.1. Neurons and Synapses

A neuron is an electrically excitable cell that receives, processes, and transmits information through
electrical and chemical signals. They are the primary components of the central nervous system,
comprising the brain, spinal cord and peripheral nervous system.

Figure 2.1. Anatomy of a neuron.

A typical neuron consists of a cell body (soma), which contains the nucleus; dendrites, which
receive the input from presynaptic neurons; and an axon, which transports the electrical signal from
the soma to the axon terminals (Figure 2.1). Along the axon, there are parts which are covered with
Schwann cells, providing the myelin sheath that increase the speed at which the electrical signal
travels. They act as a insulating material and achieve faster jumps of the action potential from gap
to gap. These uncovered gaps are called nodes of Ranvier.

The behavior of the neuron membrane is comparable to a RC circuit, with characteristic differences
of potential, currents, resistances, and capacitances. The electrical signal is the difference in the
potential between the intracellular and the extracellular medium, called membrane potential. The
currents correspond to the flux of ions, mainly Na+, K+ and Cl−. In addition, membranes behave as
parallel resistances to the membrane potential, hampering the charges to diffuse across the membrane.
In addition, the membrane behaves as a set of parallel capacitors, since its both sides are polarized.

Under resting conditions, the inside of the cell is negatively charged with respect to the surrounding
extracellular fluid. The membrane potential is about -70 mV, and the cell is said to be polarized.

Neurons transmit characteristic electrical pulses, called action potential or spikes, in response to
chemical and electrical inputs. In Figure 2.2 we can observe the steps of an action potential.
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Figure 2.2. Dynamics of an action potential. (1) A stimulus rapidly increases the membrane potential. A
threshold should be raised to start the membrane depolarization. (2) During depolarization,
sodium channels open, leading to a large influx of sodium ions. (3) Rapidly, the sodium channel
inactivates and there is a large efflux of potassium ions (resulting from activated potassium
channels) These actions cause the membrane repolarization. (4) Aferwards,the membrane
potential is lowered (hyperpolarization). This is caused by the efflux of potassium ions and the
closing of the potassium channels. (5) The membrane potential returns to the resting state
again. Printed from [18].

Despite the local effect of the action potential, the spike travels via the axon, starting in the
dendrites and ending at the axon terminals, where spike is forwarded to other neurons via a synapse.

Synapses are the structures that permit a neuron to pass a signal to another neuron or to another
target cell. The signal could be electrical (propagation through a small gap) or chemical (release
of neurotransmitters), which are the most common in the brain. In terms of the kind of released
neurotransmitters chemical synapses can be excitatory or inhibitory:

1. Excitatory synapse. The interaction of the neurotransmitters with the receptors of the
postsynaptic neuron opens sodium (Na+) and potassium (K+) channels. The influx of sodium
(from the external side to the postsynaptic neuron) is larger than the efflux of potassium, so the
postsynaptic membrane is depolarized, generating an excitatory postsynaptic potential (EPSP).

2. Inhibitory synapse. The interaction of the neurotransmitters with the receptors of the
postsynaptic neuron open potassium (K+) and chloride (Cl−) channels. The efflux of potassium
and the influx of chloride cause the postsynaptic membrane to be hyperpolarized, generating an
inhibitory postsynaptic potential (IPSP).
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2.2. The Hippocampus

The hippocampus is part of the hippocampal formation, which is located in the temporal lobe. The
hippocampal formation is a group of brain areas consisting of the dentate gyrus (DG), hippocampus,
subiculum (Sub), presubiculum (Pre), parasubiculum (Para), and entorhinal cortex (EC). Particularly,
the hippocampus has three subdivisions: CA3, CA2, and CA1. [19]

The information in the hippocampal circuit spreads mainly unidirectional. The entorhinal cortex is
the first step, since it recibes much of the neocortical input reaching the hippocampal formation. Then,
the second layer cells of the entorhinal cortex give rise to axons that project mainly to the dentate
gyrus through the perforant path, which does not project back to the entorhinal cortex. Likewise,
granule cells of the dentate gyrus give rise to axons connecting with the CA3 hippocampal field, which
do not project back either. CA3 pyramidal cells, in turn, mainly project to the CA1 hippocampal
field. Following the pattern, CA1 does not project back to CA3. CA1 projects unidirectionally to
the subiculum, providing its major excitatory input (again, without projecting back). CA1 also
projects axons to the entorhinal cortex. In turn, subiculum projects to the presubiculum and the
parasubiculum, but its more predominant cortical projection is directed to the entorhinal cortex deep
layers, closing the hippocampal processing loop. Figures 2.3 and 2.4 represent an overview of the
hippocampal connection set.

Figure 2.3. The hippocampal formation. Connections are pointed with solid black lines. Black (white) dots
represent the starting(ending) point of each projection. Image from [19].

Figure 2.4. Projections along the transverse axis of the hippocampal forma- tion; the dentate gyrus is
located proxi- mally and the entorhinal cortex distally. Image from [19].

Furthermore, the hippocampus belongs to the limbic system and it is important to consolidate
information from short-term to long-term memory. It also plays a significant role in the spatial
memory that enables navigation.
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The hippocampus is one of the first areas of the brain to suffer damage in several brain diseases,
such as Alzheimer’s disease [20] or Schizophrenia [21].

2.3. Neural Oscillations

Neural oscillations, also known as brainwaves, are rhythmic or repetitive patterns of neural
activity in the central nervous system. Generally, brainwaves can be characterized by their frequency,
amplitude and phase. There are two main different neural oscillations, depending on whether the
brainwave is caused by a single neuron or a neural ensemble.

At a single neuron level, oscillations can appear in the membrane potential, or as rhythmic patterns
of action potentials, which then produce oscillatory activation of post-synaptic neurons.

On the other hand, interactions between groups of neurons can lead to a synchronized oscillatory
activity, which generally arises from feedback connections between the neurons. This results in
the synchronization of their firing patterns, which can produce macroscopic oscillations, and thus,
observed in an electroencephalogram (EEG). The interaction between neurons can lead to oscillations
at different frequencies than the firing frequency of individual neurons. The frequency bands of
oscillatory activity in groups of neurons are the following: delta (1− 4 Hz), theta (4− 7 Hz), alpha
(7.5− 12.5 Hz), beta (13− 30 Hz), and gamma (30− 150 Hz) [22].

To understand the importance of group neural oscillations, we can highlight some aspects. For
example, different sleep stages are featured by their spectral content, since EEG signals alter during
sleep from faster frequencies to increasingly slower frequencies [23]. Also, neural oscillations have
been linked to the emergence of coherent behaviour and cognition [24], consciousness [25], or even
meditation [26]. Besides, focusing on hippocampus, theta-gamma uncoupling has been proposed as
an early electrophysiological signature of hippocampal network impairment in Alzheimer’s disease [27]
or schizophrenia [28].

2.4. Cross Frequency Coupling (CFC)

The interactions between oscillations at different frequency bands are known as cross-frequency
coupling (CFC). There are many synchronized neuronal assemblies in the brain, each of them
supporting a frequency band of the network rhythm. By studying the relationship between these
frequencies we can understand the interaction between local neural circuits, as well as observing its
intrinsic properties.

There are six types of CFC of interest to electro-physiology: phase-phase, phase-frequency, phase-
amplitude, frequency-frequency, amplitude-amplitude and amplitude-frequency couplings (PPC, PFC,
PAC, FFC, AAC, and AFC, respectively) (Figure 2.5) [29]. Several empirical studies have observed
PPC, PAC, and occasionally AAC. On the contrary, PFC, AFC and FFC have not been empirically
observed [3].

One of the best-known example of this type of CFC occurs in the hippocampus. Some studies
suggest that the theta oscillations (4–7 Hz) phase modulates the gamma oscillation [30–32]. But
other recent studies have also shown that the amplitude of gamma oscillations modulates the phase of
theta [1, 33]. Another example is the case of human neocortex, where the phase of the low-frequency
theta rhythm modulates the power of the high gamma frequency (80 to 150 Hz) [34].
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Figure 2.5. Different types of the cross-frequency coupling. (A) Signal X at a constant frequency
with a fluctuating amplitude over time (red line). (B) AAC: Signal Y1 showing slow amplitude
modulations over time like signal X (red line). (C) PPC: One oscillation period of signal X
corresponds to three periods of signal Y2. (D) PAC: Fast amplitude modulations of signal Y3
are coupled with the phase of the signal X. (E) PFC: Frequency modulations of signal Y4 are
coupled with phase changes of signal X. (F) AFC: Frequency modulations of signal Y5 are
coupled with the slow amplitude modulations of signal X (red line). (G) FFC: Signal Y6 has
slower frequency modulations than in signal Y5. Image from [35].

Particularly, in the present study, we are interested in assessing the phase-amplitude coupling
(PAC). Normally, PAC is evaluated between two signals, at a certain pair of frequencies. One signal
contains the phase modulatory component at a given frequency value, while the other one contains
the amplitude-modulated component at a different frequency. Throughout this master thesis, we will
mainly analyze local PAC, i.e., the same signal is the modulatory and modulated component.

In order to assess the PAC, I have used a Matlab code provided by Víctor López-Madrona [36].
The algorithm follows the method of Kullback-Leibler distance, a function that is used to infer the
distance between two distributions, and calculates how much an empirical amplitude distribution-like
function over phase bins deviates from the uniform distribution [37]. It also includes a statistical
analysis based on block-resampling at single locations [34]. In Appendix A it is found a more in-depth
explanation of the algorithm.
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2.5. Cross Frequency Directionality (CFD)

It is also required to evaluate the directionality of the PAC, i.e., if the phase of the slower oscillations
drives the amplitude of the faster oscillation, or vice versa. To do so, we use the cross-frequency
directionality (CFD). This measure relies on the phase-slope index (PSI) between the phase of slower
oscillations and the amplitude envelope of the faster oscillation [33].

Once more, I have employed Víctor López-Madrona’s Matlab code to analyse the cross-frequency
directionality (CFD) [36]. In Appendix A it is found a more in-depth explanation of the algorithm.
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Chapter 3

The Neural Mass Model (NMM)

3.1. A NMM of 1 node

NMMs are neurologically inspired computational models of brain dynamics at the level of neural
masses, i.e., populations of several thousands to several millions of neurons with similar characteristics
[11]. NMMs are composed of units of a single type population neurons, each of which models the
joint dynamics.

A single unit is shown again in Figure 3.1. The inputs to the unit are the unweighted postsynaptic
potentials from other units vu′ , reflecting the mean excitatory postsynaptic potential (EPSP) or mean
inhibitory postsynaptic potential (IPSP) for units representing excitatory or inhibitory populations,
respectively. Iue(Iui) represents the set of excitatory (inhibitory) inputs of a unit u. Likewise, colored
noise VN is also considered. It represents the unmodeled dynamics of the neighboring cortical regions,
as well as possible uncertainties. In this case, only pyramidal type units are excited by noise. Each
input synaptic potential is weighted by a constant connectivity strength, Cuu′ (u accounts for the
target and u′ accounts for source population), called synaptic gains, which are proportional to the
number of synaptic connections between the populations. Likewise, Ku represents the noise gain.

The weighted sum of inputs plus the noise is the mean membrane potential VMu, which is converted
to the mean firing rate σu(VMu(t)) by means of the sigmoid function. The sigmoid confines the firing
rate to the open interval ]0, νmax[, where νmax is the maximum mean firing rate. Vθ reflects the
expected spiking threshold voltage of the individual neurons in the population. Also, r determines
the slope of the sigmoid, and represents the inverse of the standard deviation of the firing thresholds.

In turn, the mean firing rate enters a second-order differential equation reflecting the evolution
of the unweighted mean postsynaptic potential vu. Gu represents the average dendritic gain of the
population u; and ω−1u is the average time constant of the membrane potential of population u, which
measures the velocity at which a neuron’s voltage level decays to its resting state after it receives an
input signal.

The dynamics of a single unit is defined with the following equations [2]:

VMu(t) =
∑
u′∈Iue

Cuu′vu′(t)−
∑
u′∈Iui

Cuu′vu′(t) +KuVN(t) (3.1)

σu(VMu(t)) =
2νmax

1 + e−r(VMu(t)−Vθ)
(3.2)

d2vu
dt2

= Guωuσu
(
VMu (t)

)
− 2ωu

dvu
dt
− ω2

uvu (t) (3.3)

The Laplacian transform of the differential equation 3.3 is equivalent to the dendritic transfer
function given in Figure 3.1.
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Figure 3.1. Single neural mass unit. vue1(vui1) is an example of an unweighted mean presynaptic potential,
or postsynaptic potential from other units, of the ue1(ui1) excitatory (inhibitory) population,
which unit u has as input. Iue(Iui) is total number of excitatory (inhibitory) input units. nu
represents the colored noise. The mean membrane potential, represented with vmu, is obtained
by weighted summation of the mean presynaptic potentials. The sigmoid function represents
the correspondence between the mean membrane potential and the mean firing rate. The 2nd
order differential equation 3.3 is the Laplacian representation of the dendritic transfer function.
The insets provide the impulse response and amplitude–frequency response of the dendritic
transfer function. Figure from [2].

The mean membrane potential of the pyramidal neuron unit is the output of the NMM, which
represents a mesoscopic recording of the brain activity.

Figure 3.2. NMM proposed in [2]. Blue solid lines represents a static inhibitory synaptic gain, blue dashed
lines represents a dynamic inhibitory synaptic gain, and red line represents a static excitatory
synaptic gain. Figure adapted from [2].

The four different neuron populations which have been considered in this model are pyramidal neu-
rons (p), excitatory interneurons (q), slow inhibitory interneurons (s) and fast inhibitory interneurons
(f).

Generally, pyramidal neurons present a larger somatic diameter and an irregular shape, as compared
with interneurons that have a smaller and more rounded soma. Pyramidal neurons are also excitatory
neurons, but slower that the excitatory interneurons. Excitatory and inhibitory interneurons tend
to generate EPSPs and IPSPs, respectively. Specifically, inhibitory interneurons play an important
role in producing neural ensemble synchrony by generating a narrow window for effective excitation
and rhythmically modulating the firing rate of the excitatory neurons [38]. In the presented model,
the slow inhibitory population is the main source of alpha band activity, whereas the fast inhibitory
population serves as the source of gamma band activity [2].

As one can observe in Figure 3.2, the pyramidal neuron population unit excites the other interneuron
population units. In turn, it receives input from them, as well as a driving input or colored noise,
which represent the average firing rate of neighboring regions not included in the model. Moreover,
the slow inhibitory interneuron population unit inhibits the fast inhibitory interneuron population
unit.
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The fast inhibitory interneuron population has an extra state variable, vff(t), for the dynamic
self-inhibition. It serves as a low pass filter with cut-off frequency fc = 1

2πτf
, i.e., self-inhibition or

self-synaptic gain is weak for larger frequencies than fc.
The parameter Pf accounts for the integration of the mean excitatory influence from other regions

on the mean firing rate of the fast inhibitory unit, i.e., represents the influence of an excitatory
input to the fast inhibitory interneuron population. Particularly, increasing the value of Pf reduces
the mean threshold membrane potential of the fast inhibitory population and the mean membrane
potential of the pyramidal population Vmp.

The effect generated by Pf and the self-inhibition feedback causes the fast inhibitory population
to operate as a source of fast oscillatory activity, producing a limit-cycle behavior in the frequency
range of the slow and fast bands.

Colored noise is generated by passing Gaussian noise (mean νp and variance σ2
p) through the

excitatory dendritic transfer function of the pyramidal neurons, to convert it to a voltage. Furthermore,
it is important to notice that the sigmoid function is the seed for the model nonlinearities.

Figure 3.3. Conections between populations in the proposed NMM [2]. The excitatory (inhibitory) pop-
ulations are in dashed red (blue) boxes. In green one can observe the modulatory parameter
Pf and the first-order dynamics in the self-feedback of the fast inhibitory unit. Figure taken
from [2].
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One can observe a more exhaustive representation of the model in Figure 3.3. The dynamics of
the model is described with the following equations:

Pyramidal neurons

VMp(t) = Cpqvq(t)− Cpsvs(t)− Cpfvf (t) +KpVN (3.4)

σp(VMp(t)) =
νmax

1 + e−r(VMp(t)−Vθ)
(3.5)

d2vp
dt2

= Gpωpσp
(
VMp (t)

)
− 2ωp

dvp
dt
− ω2

pvp (t) (3.6)

Excitatory Interneurons

VMq(t) = Cqpvp(t) (3.7)

σq(VMq(t)) =
νmax

1 + e−r(VMq(t)−Vθ)
(3.8)

d2vq
dt2

= Gqωqσq
(
VMq (t)

)
− 2ωq

dvq
dt
− ω2

qvq (t) (3.9)

Slow Inhibitory Interneurons

VMs(t) = Cspvp(t) (3.10)

σs(VMs(t)) =
νmax

1 + e−r(VMs(t)−Vθ)
(3.11)

d2vs
dt2

= Gsωsσs
(
VMs (t)

)
− 2ωs

dvs
dt
− ω2

svs (t) (3.12)

Fast Inhibitory Interneurons

τf
dvff
dt

= −vff (t) + vf (t) (3.13)

VMf (t) = Cfpvp(t)− Cfs(t)vs(t)− Cffvff (t) (3.14)

σf (VMf (t)) =
νmax

1 + e−r(VMf (t)−Vθ)
− Pf (3.15)

d2vf
dt2

= Gfωfσf
(
VMf (t)

)
− 2ωf

dvf
dt
− ω2

fvf (t) (3.16)

Colored noise (model input)

np(t) = N(µp, σ
2
p) (3.17)

d2VN
dt2

= Gpωpnp(t)− 2ωp
dVN
dt
− ω2

pVN (t) (3.18)
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There are several advantages of the proposed NMM. First, it can produce multiple frequency
components with parameters in the biophysiologically plausible range [15]. In addition, fast activity
can be tuned without shifting the features of the default alpha band activity. Also, since there is a
single source of noise, the activity bands present a stronger phase-amplitude correlation.

3.2. A NMM with N nodes

In this section, I present a proposal for a neural mass model of a specific number of nodes. This
model has been built on the basis of an existing neural mass model for two nodes [3].

All the previously variables and parameters used in the single node NMM from Section 3.1 are
also used in this model. Nevertheless, there are several important differences between both of them,
which will be explained hereunder.

First, we want to highlight that sub index α is used for differentiating between nodes. Thus,
many of the parameters used in this model are the same as in the single node case adding the sub
index α. Additionally, u still accounts for the neuron population, as in the previous model. The
neural populations units are also the same as in the single node case. Table 3.1 shows the connections
between populations.

Table 3.1. Excitatory and inhibitory connections between populations in the multiple nodes NMM. Note
that the subindex for each contribution is pointed.

;

Population Iue Iui
Pyramidal (p) Excitatory (q) Slow inhibitory (s), Fast inhibitory (f)
Excitatory (q) Pyramidal (p) -

Slow inhibitory (s) Pyramidal (p) -
Fast inhibitory (f) Pyramidal (p) Slow inhibitory (s), Self-inhibition (ff)

Another important difference to be pointed out is that the previously used modulatory parameter
Pf in the fast inhibitory interneurons sigmoid function, is replaced by a noise component on the mean
membrane potential of the same population (KαfVNα). Therefore, we use the same sigmoid function
for all the different populations. In addition, an interesting feature of this model is that by tuning
the mean input noise level of each node (Pα), we can obtain five out of the theoretically proposed six
different coupling types which has been presented in Section 2.4.

The dynamics of a single node in a NMM of a certain number of nodes could be described as
follows:

Equations for a given node α

1. General equations for each of the four populations:
(16 equations)

a) Mean firing rate:
σ(VMαu(t)) =

νmax

1 + e−r(VMαu(t)−Vθ)
(3.19)

b) Mean membrane potential:

VMαu(t) =
∑
u′∈Iue

Cαuu′vαu′(t)︸ ︷︷ ︸
Excitatory inputs

−
∑
u′∈Iui

Cαuu′vαu′(t)︸ ︷︷ ︸
Inhibitory inputs

+ KαuVNα(t)︸ ︷︷ ︸
Input noise

+
∑
β∈Iα

Kαβvαβu(t)︸ ︷︷ ︸
Input between nodes

(3.20)
c) Mean post synaptic potential:

d2vαu
dt2

= Gαuωαuσ
(
VMαu (t)

)
− 2ωαu

dvαu
dt
− ω2

αuvαu (t) (3.21)
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2. General equations for the external inputs from the other nodes:
(N − 1 equations, being N the total number of nodes)

d2vαβu
dt2

= Gαβuωαβuσ
(
VMβu (t)

)
− 2ωαβu

dvαβu
dt
− ω2

αβuvαβu (t) (3.22)

(u relates to the type of population which connects each pair of nodes)

3. Rest of equations:
(3 equations)

a) Self-inhibition of the fast inhibitory interneuron population:

ταf
dvαff

dt
= −vαff (t) + vαf (t) (3.23)

b) External input as filtered noise:

d2VNα
dt2

= Gαnωαnnα (t)− 2ωαn
dVNα

dt
− ω2

αnVNα (t) (3.24)

c) White noise:
nα(t) = N(Pα, σ

2
α) (3.25)

Following with the differences between models, equation 3.20 requires a further explanation. The
noise contribution (colored noise VNα) is different for each node, since the mean input noise level Pα
can be tuned. The noise excitation weight Kαu can also differ depending on the population and the
node.

Regarding the input between nodes, Iα represents the set of the nodes which have an information
flow to node α. The parameter Kαβ accounts for the synaptic gain from node β (source) to node α
(target). The variable vαβu represents the input of the mean post synaptic potential coming from
node β to node α. The sub index u here reflects the type of population connecting the two nodes.
The link between nodes employed in this model is the pyramidal neuron population.

Concerning equation 3.22, we compute the mean firing rate of the mean membrane potential of
the node β, in order to include node β influence. Obviously, there are as many equations of this type
for modeling one node, as the other nodes which provide an input to it.

It is also necessary to give the value of the average dendritic gain between node populations
(Gαβu) and the average time constant of the membrane potential between nodes α and β from u
population (ωαβn−1), which can be differently tune for different nodes connections. We remark that
the reason why the two previous parameters are characterized with the sub index u is to permit that
the connection between nodes occurs via any type of neuron population.

Regarding the external input as filtered noise (equation 3.24), the average dendritic gains of the
filtered noise (Gαn) and the average time constant of the filtered noise (ωαn−1) can be modulated, in
contrast to the single node NMM, in which the value of these parameters are fixed to Gp and ω−1p .

To facilitate the comprehension of the parameters, the list of their interpretation for a given node
fixed parameters of the model are shown in Appendix B (Tables B.1 and B.2).
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3.3. Application to the study of hippocampus

As we have seen, the neuron oscillations are a key reference signals for information processing in
neuronal ensembles.

Particularly, a recent empirical study has observed the firing frequency of different areas in the
hippocampus. This study consists in carrying out patchclamp recordings from mature hippocampal
granule cells in vivo in the dentate gyrus of anesthetized and awake rats [39]. It shows two different
coherences between postsynaptic currents and the local field potential (LFP) from the hippocampal
granule cells. First, the inhibitory postsynaptic currents (IPSCs) generated by the interneurons, which
showed coherence mainly in the gamma range (Figure 3.4, left). Then, the excitatory postsynaptic
currents (EPSCs) generated by the entorhinal cortex, whose coherence was principally in the theta
frequency band (Figure 3.4, right).

Figure 3.4. On the left (right), representation of the average coherence between IPSCs (EPSCs) and LFP
of granule cells. Figure from [39].

Nevertheless, the main study in which we want to focus the attention is the last one carried out by
scientists from the group of Santiago Canals from the Instituto de Neurociencias de Alicante. After
having analyzed multiple theta and gamma activities in several hippocampal layers, they found that
theta-gamma CFC is stronger between oscillations originated in the same hippocampal layer. Yet
more interesting was that the CFD analysis pointed out that the amplitude of gamma oscillations
sets the phase of theta rhythm in all layer-specific theta-gamma pairs, as can be seen in Figure 3.5.
This result is contrary to the extended assumption, since the the majority of previous studies suggest
that the fast oscillation amplitude is modulated by the phase of the slow one [30–32].

Throughout this master thesis I will try to reproduce using the neural mass models presented in
Sections 3.1 and 3.2 the following facts:

Modulate the position of the peak frequencies produced by the model to be located in the
relevant frequency-bands of the experimentally recorded data.

Assure the phase-amplitude coupling of the system (PAC) and seek of a cross-frequency
directionality (CFD) that explain the finding that the amplitude of gamma oscillations sets the
phase of theta in the hippocampus.

The procedure will consist on tuning several of the fitting parameters of the models, and then,
analyze the qualitative differences with the model using the default parameters.
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Figure 3.5. We focus on (b) and (c). Sch-IC, Im-IC and PP-IC corresponds to the stimulated pathways
of the hippocampus. (b) represents the average CFC during epochs of high (upper) or low
(lower) synchronization. (c) represents the within-layer CFD analysis. The pairs of theta-
gamma oscillations with the highest CFC (encircled area) present the maximum negative values.
Negative values implies that the phase of the slow oscillation modulates the amplitude of the
fast. Figure from [1].
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Chapter 4

Results and Discussion

In this Chapter, I reproduced the results of the the single node NMM presented in the previous
chapter. Later, I present the results of tunning several control parameters of the model to test the
possibility to modulate the position of the peak of the frequencies, and analyze the changes on the
PAC and CFD.

As previously highlighted in Chapter 3.3, the theta-gamma PAC is stronger between oscillations
originated in the same hippocampal layer. This is the reason why we are going to focus mainly on
the analysis of a single node NMM.

Finally, I also reproduce the results of a NMM consisting in two nodes, in order to study the
usability of the model, by varying the synaptic gains between the two nodes, and analyze the CFD
and PAC. Apart from that, I show that the model can be potentially used for 3 nodes.

4.1. A NMM with 1 node

In Table 4.1 (Appendix B) we include the default values of the parameters used in the model. The
majority of the parameters have been chosen in order to be in the biophysiologically plausible range
proposed in Wendling model [15]. In addition, the parameters related to the noise (νp, σ2

p, and Kp)
have been selected in such a way that the three populations structure of the model, when uncoupled
from the fast inhibitory population, operates in the alpha band region of activity [40].

The model has been simulated in Python 3, using a fourth order Runge-Kutta method. The time
step value is fixed and corresponds to 0.001 seconds. Simulations for each case have been carried
out for 242 seconds (unless otherwise specified), removing the first two seconds to avoid transient
dynamics.

The power spectral density (PSD) is used to measure the relation of the power content of the
voltage signals at a given frequency. In PSD representations, the power is plotted as 10log10(Pxx).

In order to test the computational implementation of the model, we represent in Figure 4.1 the
membrane voltage of the pyramidal population, accompanied by the weighted postsynaptic potentials
of the three interneuron populations obtained with the model. It can be observed that the excitatory
interneuron population is in the saturation regime. Meanwhile, the fast inhibitory interneuron
population generates fast activity due to the self-feedback dynamics.

The results in Figure 4.1 are not sufficient to assure the reliability of our model. Therefore, to
ensure that the model is well represented, we also test if there is an anti-phase synchronization between
the envelope of the fast inhibitory and slow inhibitory interneurons activity, which is the origin of the
in-phase alpha–gamma PAC at the mean membrane potential of the pyramidal population. In Figure
4.2 is shown that we obtain a correct result.

Apart from that, the employed neural mass model has been compared with other models. First, a
model of a single pyramidal population without any connection, and also, with a model composed by
a pyramidal population and a inhibitory interneuron, as in the case of the Wilson and Covan model.
In order to do so, Figure 4.3 represents the PSD of the three cases. As one can see, no frequency peak
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Figure 4.1. Dynamics of the membrane voltage of the pyramidal population and weighted postsynaptic
potentials of the three interneuron populations. Simulations have been performed for 6 seconds,
removing the 2 initial seconds to avoid the transient dynamics. Also, the signals have been
normalized to a zero mean. Results represented from [2].
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Figure 4.3. Representation of the power spectral density (PSD) of the membrane voltage of the pyramidal
population (output of the neural mass model) for 3 different cases: (1) all the synaptic gains
tuned to zero, thus the pyramidal population has no connections; (2) the pyramidal unit is only
connected to the fast inhibitory population with the default values of synaptic gains Cfp and
Cpf , imitating the Wilson and Covan model; and (3) using the default parameters of the model.

is generated with the first model. Conversely, the Wilson and Covan model allows us to generate a
single peak in the beta band, as expected [13].

In Figure 4.4, the PSD of the membrane voltage of the pyramidal population and the weighted
postsynaptic potentials of the three interneuron populations is represented. It can be observed that
the model allows us to generate oscillations mainly in two frequencies: at roughly 10 Hz, in the alpha
band; and at approximately 38 Hz, in the gamma band.

Having the prerequisite of activity in two frequency bands, we can focus on the study of the two
issues presented at the end of Section 3.3. First, whether it is possible to modulate the position of
the peaks of the frequencies by tuning any of the parameters. This could permit to fit the model to
experimentally recorded data. Secondly, the response of the PAC and CFD to the variation of the
parameters, with the particularity of trying to find a cross-frequency directionality from the amplitude
gamma oscillations to the phase of theta activity.

4.1.1. Modulating the position of the frequency peaks

In this subsection, it is studied the response of the model to the variation of some of the fitting
parameters. The parameters which have been selected are Cfp, Cfs, Cpf , ωp, ωs, ωf and τf . Cfp
and Cpf are selected because of their importance in the connection between the pyramidal and the
fast inhibitory population for the phase-amplitude coupling. Furthermore, ωp and ωs are interesting
candidates to modulate the peak of the slow frequency, since the circuit formed by the pyramidal
and the slow inhibitory population is the main source of slow oscillations [2]. Moreover, since the
fast inhibitory population with dynamic feedback is the source of fast oscillations, it is reasonable to
assume that τf and ωf are potential candidates to modulate the position of the high-frequency peak.

Regarding the synaptic gain from pyramidal to fast inhibitory interneurons unit Cfp, we find that
changes in its value leaves unchanged the position of the low-frequency peak, as can be seen in Figure
4.5. This result disagrees with that presented in Ref. [2]. The biologically plausible explanation
for our result is that changes in Cfp have a little influence on the circuit of the pyramidal and slow
inhibitory populations, which is the main source of slow oscillations. When decreasing Cfp with
respect to its reference value 0.3, the position of the high-frequency peak slightly rises, but diminishes
its power. If we continue decreasing until Cfp = 0 the multiple-frequency peaks are maintained (not
shown). This is because removing Cfp still permits the connection between the pyramidal to the fast
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Figure 4.4. Representation of the power spectral density (PSD) of the membrane voltage of the pyramidal
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remarkable that the slow inhibitory population is the main source of alpha activity; whereas
the fast inhibitory, the main for fast activity. Represented from [2].

inhibitory population, through the slow inhibitory unit.
On the other hand, when increasing Cfp with respect to its reference value, the fast frequency

peak shifts to smaller frequency values, as expected. Besides, there is a drop in the amplitude of
the low-frequency peak. If the value of Cfp is increased further, the first peak disappears losing the
multi-frequency feature (not shown). An explanation to account for this particular behavior is that by
enhancing the communication between the pyramidal and the fast inhibitory population, the influence
of the other units reduces, converting their synaptic gains to the pyramidal population in almost
negligible. In order to generate the slow frequency band it is required the joint action of pyramidal
and slow inhibitory population, so if the synaptic gains of these units are small compared to Cfp, the
slow oscillations tend to fade away.
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Figure 4.5. PSD comparison of the output of the model for different values of Cfp. Simulations performed
for 240 seconds. On the left (right), the value of Cfp is slightly decreased (increased) with
respect to the reference value Cfp = 0.3C.
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In relation to the synaptic gain from fast inhibitory to slow inhibitory interneurons Cfs, Figure
4.6 shows that decreasing the value of Cfs barely influences the output of the model. The reason is
that no matters if Cfs is small, the slow inhibitory population will have an influence on the pyramidal
population through the synaptic gain Cps.

Conversely, increasing Cfs leaves unchanged the position of the first peak of the PSD of the
pyramidal membrane potential, but it reduces the power of the second one. Particularly, a value
over two-fold of the default value washes out the fast-frequency peak. This is due to the influence of
the oscillatory activity from the slow to the fast inhibitory population. These two oscillations are
coupled at the input of the sigmoid nonlinearity of the fast inhibitory population. Thus, if Cfs is
increased, the alpha activity of the fast inhibitory unit is enhanced (recall that the slow inhibitory
population is the main source of alpha activity). This implies a depletion of the fast-frequency on the
fast inhibitory unit, which will, in turn, alter the fast frequency of the pyramidal population.
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Figure 4.6. PSD comparison of the output of the model for different values of Cfs. Simulations performed
for 240 seconds. On the left (right), the value of Cfs is slightly decreased (increased) with
respect to the reference value Cfs = 0.08C.

By decreasing the synaptic gain from the fast inhibitory to pyramidal population Cpf , the
modulation on the amplitude of the pyramidal unit coming from the fast activity is weaker, vanishing
for Cpf = 0, as one can see in Figure 4.7. This is expected because Cpf is the unique synaptic gain
connecting the source of fast oscillations (fast inhibitory unit) with the pyramidal unit.

Conversely, larger values of Cpf enhance the fast inhibitory activity, increasing the amplitude of
the fast-oscillation and mitigating the slow activity. When increasing Cpf further, the slow-oscillations
will eventually disappear due to the same reasons stated in the case of Cfp.
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Figure 4.7. PSD comparison of the output of the model for different values of Cpf . Simulations performed
for 240 seconds. On the left (right), the value of Cpf is slightly decreased (increased) with
respect to the reference value Cpf = 0.1C.
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In Figure 4.8, it can be seen that tuning the time constant of the pyramidal population ωp leaves
practically unchanged the position of the fast-frequency peak. Apart from that, by decreasing ωp we
can increase the power of the slow-frequency peak. However, decreasing ωp also implies the formation
of more peaks in different frequencies, which are the harmonics of the main frequencies. On the
other hand, increasing ωp reduces the power of the first peak. In the case of keep increasing ωp the
slow-oscillations will eventually disappear, and thus, lose the multi-frequency which characterizes
the model. This is biologically plausible, since a higher ωp entails a lower time at which the voltage
level of neurons decays to its resting state after receiving a signal, promoting the generation of faster
action potentials.
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Figure 4.8. PSD comparison of the output of the model for different values of ωp. Simulations performed
for 240 seconds. On the left (right), the value of ωp is slightly decreased (increased) with respect
to the reference value ωp = 100 Hz.

In Figure 4.9, it can be observed that slightly decreasing the time constant of the slow inhibitory
interneurons ωs reduces the frequency of the low-frequency peak (orange trace). Nevertheless,
decreasing ωs even more, saturates the system, generating several frequency peaks, such as in the
previous case of ωp. Conversely, increasing the value of the ωs only reduces the power of the low-
frequency peak. Larger values of ωs would wash out the slow-frequency peak, as seen in the previous
case of ωp.
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Figure 4.9. PSD comparison of the output of the model for different values of ωs. Simulations performed
for 240 seconds. On the left (right), the value of ωs is slightly decreased (increased) with respect
to the reference value ωs = 50 Hz.

The test of τf (Figure 4.10) shows that the slow-frequency peak, the position of the high-frequency
peak moves to lower frequencies when increasing tauf , as one can observe in Figure 4.10. Larger values
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of τf increase the fatigue levels of the population, so fast activity cannot emerge, being equivalent to
the time course of GABAergic inhibitory feedback [2].
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Figure 4.10. PSD comparison of the output of the model for different values of τf . Simulations performed
for 240 seconds. On the left (right), the value of τf is slightly decreased (increased) with
respect to the reference value τf = 10.

When ωf is changed, the slow-frequency peak remains fixed. Regarding the high-frequency peak,
the value of ωf affects the position of the high-frequency peak, as one can observe in Figure 4.11. If
one keeps increasing ωf the same situation as in the case of τf is observed.
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Figure 4.11. PSD comparison of the output of the model for different values of ωf . Simulations performed
for 240 seconds. On the left (right), the value of ωf is decreased (increased) with respect to
the reference value ωf = 200 Hz.

Up to now, we have found that the only parameter which slightly shifts the slow-frequency peak
is ωs. While, as predicted in the literature, the parameters that better tune the fast frequency are τf
and ωf .

At this stage, I proceed to present the results of the PAC and CFD analysis.
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4.1.2. Analysis of the PAC and CFD

In this subsection the results of the calculated the cross-frequency correlation (CFC) and cross-
frequency directionality (CFD) are presented.1.

The same parameters, as in the previous section, have been tested (except ωp, changing the
parameter did not present any interesting feature) It is worth mentioning that it only the value of the
parameters which assure the multiple peaks result in the power spectrum have been varied.

According to the main study which is being followed, the strength of PAC should change through
tuning the coupling parameters Cfs and Cfp. In addition, PAC will disappear if the time constant τf
is increased, since fast activity is suppressed [2]. Our results prove these behaviors.

Both cross-frequency coupling (CFC) and cross-frequency directionality analysis have been per-
formed using the same signal as alpha-reference and as gamma amplitude signal. The frequency
sampling rate is 1000 Hz. Regarding the frequency setup, the slow frequency ranges from 5 to 25 Hz,
with a frequency step of 0.5 Hz and a bandwidth of 2 Hz . On the other hand, the fast frequency
ranges from 20 to 70 Hz, with a frequency step of 2 Hz and bandwidth of 20 Hz.

Figure 4.12. Plots of the comodulograms. (1) Modulation index of the CFC. A higher value implies that the
two frequencies are coupled between the amplitude of the fast frequency and the phase of the
slow oscillation. (2) Amplitude vs. Phase of the CFC. On the x-axis is represented the phase of
the slow oscillation. The black trace represents the low-pass filtered signal. On the y-axis, the
amplitude of the fast frequency is again represented. A higher value of the normalized amplitude
indicates that the power of the fast-oscillation at the given frequency is large. (3) Modulation
index of the CFD. A positive modulation index implies that the amplitude of the fast frequency
is modulated by the phase of the slow activity. A negative MI indicates the opposite.

In Figure 4.12, it can be observe that the three comodulograms resulting from using the default
parameters of the model. The first and the second represent the cross-frequency coupling (CFC),
while the last one accounts for the cross-frequency directionality (CFD). We have employed the same
normalized amplitude color map for each representation.

On the left of Figure 4.12 it can be seen that there is a phase-amplitude coupling (PAC) between
the slow (∼ 10 Hz) and fast oscillation (∼ 57 Hz), respectively. It is interest to remark that the fast
frequency of the peak from the PSDs representations (∼ 37 Hz) is not the same as the fast frequency
of the PAC (∼ 57 Hz)

The amplitude vs. phase CFC indicates in which slow-frequency phase is located the larger
amplitude of the gamma oscillations, being the band of 43 to 56 Hz the more powerful. Here it is also
interesting to notice that there is almost in-phase synchronization between the amplitude of the fast
activity and the phase of the slow oscillation (the slow oscillation positive (negative) peak coincides
with the maximum (minimum) of the fast activity amplitude power.

1The MATLAB codes employed to calculate and represent the results of the CFC and the CFD have been provided
by Victor López-Madrona
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With respect to the cross-frequency directionality, it is important to observe that the modulation
index is always positive, indicating that the slow oscillation modulates the fast activity (4.12, right).
In fact, this behavior is maintained when tuning the selected parameters. So, we can confirm that
none of the analyzed parameters can be tuned to achieve a modulation of the fast over the slow
oscillation. In addition, it is interesting to notice that the bands of frequency with highest modulation
index are approximately 10 to 12.5 Hz and 40 to 60 Hz, for the slow and fast oscillation respectively.

Having explained the CFC and CFD plots for the default parameters, we proceed to analyze the
results of tuning the parameters.

With respect to Cfp, Figure 4.13 shows that there is not phase-amplitude coupling if Cfp is reduced
to 0. Conversely, increasing the parameter does not remove the coupling, but the intensity is slightly
weakened. With relation to Figure 4.14, it is worth mentioning that increasing Cfp implies an increase
on the power of the amplitude of the fast oscillation, which also completely synchronizes to be in-phase
with the slow oscillation. In other words, the envelope of the amplitude of the fast oscillations matches
the phase of the slow ones. Regarding the CFD analysis, if there is no synaptic gain from the fast
inhibitory to the pyramidal neurons, there is no synchronization between oscillations (Figure 4.15).
Additionally, an increase of the synaptic gain leads to a broader slow-frequency band with a large
CFD modulation index.

Figure 4.13. Influence of the parameter Cfp on the modulation index of the phase-amplitude correlation
(PAC) of the output of the model.
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Figure 4.14. Influence of the parameter Cfp on the amplitude vs. phase CFC of the output of the model.

Figure 4.15. Influence of the parameter Cfp on the modulation index of the cross-frequency directionality
(CFD) of the model.
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It can be seen in Figure 4.16 that as Cfs is increased, the PAC intensity level rises, as stated
in [2]. Nevertheless, we have also found two behaviors which are not mentioned in that article. First,
Figure 4.17 shows that the changes in Cfs can vary the synchronization between the amplitude of the
fast oscillation and the phase of the slow activity, as in the case of Cfp. Decreasing Cfs facilitates
the in-phase state, while increasing it, promotes an anti-phase synchronization. Moreover, in Figure
4.18 it can be seen that the slow frequency with the higher CFD modulation index suffers a slightly
displacement towards faster frequencies.

Figure 4.16. Influence of the parameter Cfs on the modulation index of the phase-amplitude correlation
(PAC) of the output of the model. This particular representation is also shown in [2].
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Figure 4.17. Influence the parameter Cfs on the amplitude vs. phase CFC on the output of the model.

Figure 4.18. Influence of the parameter Cfs on the modulation index of the cross-frequency directionality
(CFD) of the model.

29



Concerning Cpf , neither the CFC, nor the CFD analysis suffer any significant modification when
tuning the parameter, thus results are not shown.

A change in τf entails an interesting behavior. In Figure 4.19 it can be seen that the value of
the fast frequency coupled to the the phase of the slow activity is higher when τf is increased. To
understand this behavior one should look again into Figure 4.10, where it is appreciable that apart
form the more powerful frequency peaks, there is another less powerful peak, called modulatory
component, ranging from ∼ 45 to ∼ 55 Hz depending on the value of τf . The modulatory component
indicates that the amplitude of the fast-frequency peak is modulated by the slow-frequency peak at
10 Hz (observe in Figure 4.10 that the difference between the position of the fast-frequency peak and
the modulatory component is 10 Hz for all the cases). This modulation frequency is related to the
frequency coupled with the slow activity. Particularly, when τf = 5 ms there is another frequency
(roughly at 35 Hz) with a high CFC modulation index. This maximal value is also related with
the other modulatory component, which is less visible in Figure 4.10 because it is suppressed by
the activity of the other populations and noise. As previously explained, increasing τf results in a
suppression of the fast activity which leads to the disappearance of the phase-amplitude coupling.
This can be observed in Figure 4.20 and Figure 4.21.

Figure 4.19. Influence of the parameter τf on the modulation index of the phase-amplitude correlation
(PAC) of the output of the model.
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Figure 4.20. Influence of the parameter τf on the amplitude vs. phase CFC on the output of the model.

Figure 4.21. Influence of the parameter τf on the modulation index of the cross-frequency directionality
(CFD) of the model.
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Regarding the variation of ωs and ωf , no interesting facts have been found related to the cross-
frequency directionality. In Figure 4.22, it can seen that slightly decreasing ωs can lead to a stronger
phase-amplitude coupling. Concerning ωf , as can be seen in Figure 4.23, PAC is stronger for higher
values.

Figure 4.22. Influence of tuning the parameter ωs on the modulation index of the phase-amplitude correlation
(PAC) of the output of the model.

Figure 4.23. Influence of the parameter ωf on the modulation index of the phase-amplitude correlation
(PAC) of the output of the model.

As predicted by the previous study [2], we have obtained that changing Cfs is sufficient to modulate
the intensity of PAC, with very little modifications on the frequency peaks of the output (see Figure
4.6).

We have also seen that by changes in Cfs and Cfp we can change the synchronization between the
amplitude of the fast oscillation and the phase of the slow activity (Figure 4.14 and Figure 4.17).

Furthermore, it is important to remark that tuning a parameter in order to change a frequency
peak can lead to an undesired variation of the PAC and vice versa. An example of such problem is
the case of increasing τf , or decreasing ωf , in order to reduce the value of the fast frequency peak.
Since this shift also leads to a lost of the PAC of the system.
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4.2. A NMM with N nodes

The model developed for a specific number of nodes has been simulated in Python 3, using a fourth
order Runge-Kutta method, with a time step of 0.0001 seconds. Each simulation is performed for 61
seconds unless otherwise specified, removing the first second to avoid transient dynamics. The signals
are normalized to zero mean. It is worth mentioning that the model considers that the connection
between nodes occurs via pyramidal neurons.

Case of 2 nodes

Although the model provides five out of the theoretically proposed six different coupling, we
have only focus on the PAC. In such a case, the mean input noise level of the nodes are P1 = 0, to
deactivate the fast oscillation in the first node; and P2 = 7, in order to trigger a steady-state gamma
band oscillation [3]. The rest of the values of the parameters used in the model can be found in Table
4.2 (Appendix B).

Once again, the first step consists in testing the developed model to ensure its performance. Figure
4.24 shows the temporal traces of the membrane potential of the pyramidal population of each node.
Phase-phase coupling (PPC) can be observed, but the PAC is not appreciable. In order to solve
this problem, the output of each node has been decomposed into a fast oscillation (FO) and a slow
oscillation (SO), by using a high-pass, filtering frequencies below the cut-off frequency fc = 15 Hz;
or a low-pass, filtering frequencies above fc. A second-order Butterworth filter has been employed
(Figure 4.25). After filtering, local PAC is observed in node 2. It can be visually assessed that the
frequency is constant and the envelope of the amplitude of the FO is in phase with the SO. As a
result, there is a cross node PAC between both nodes.
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Figure 4.24. Temporal traces of the output of each node. Simulations performed for 5 seconds removing
the first second.
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Figure 4.25. Top: Fast Oscillations (FO). Bottom: Slow Oscillations (SO). Representation of the PAC
simulation. Local PAC between the FO and SO of node 1, and cross-node PAC between FO of
node 2 and SO of node 1 are observable. Represented from [3].

Then, it is evaluated the response of the model to varying the synaptic gains between the two
nodes (K12, K21). In order to do so, CFD and PAC have been analyzed. Only four cases have been
assessed: the default case, (K12, K21 = (40, 40); the two cases in which one node is not connected to
the other one, (K12, K21 = (0, 40) and (K12, K21 = (40, 0); and the case in which both connections
are increased, (K12, K21 = (120, 120).

Figure 4.26 shows the PSDs of the outputs from nodes 1 and 2 when tuning K12 and K21. Peaks
appear in ∼ 3 Hz and ∼ 47 Hz bands, which indicate stationary oscillatory activity. If the influence
from node 2 to node 1 is removed (K21 = 0), there would not be any activity in node 1, since at least
one source of input noise is required. For the other three cases, CFC and CFD have been assessed
between the following signals:

The membrane potentials of the pyramidal population (output) of both nodes.

The output of node 1 and the fast inhibitory interneuron postsynaptic potential of the of node
2.

The output of node 2 and the fast inhibitory interneuron postsynaptic potential of the of node
1.

The frequency sampling rate is 10000 Hz. Regarding the frequency setup, the slow frequency
ranges from 2 to 6 Hz, with a frequency step of 0.5 Hz and a bandwidth of 1 Hz . On the other hand,
the fast frequency ranges from 35 to 60 Hz, with a frequency step of 1 Hz and bandwidth of 10 Hz.

In the case (K12, K21 = (0, 40), we do not observe PAC, confirming that in order to obtain
cross-frequency coupling there should be a feedback between the nodes.

As expected, the cross-frequency coupling is larger in the three pairs of signals analyzed when
the connections are increased. Nevertheless, in none of the cases we found a directionality of the
amplitude of the fast oscillation modulating the phase of the slow activity. Thus, since there is no
interesting features reported, we do not show the figures.
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Figure 4.26. Comparison of PSDs for the 4 different cases assessed shifting the between node synaptic gain.

Case of 3 nodes

We also show the results that confirm the usability of the computed NMM for a specific number
of nodes, particularly for three nodes. The three nodes of the model are featured with the same
structural and connectivity parameters as indicated in Table 4.2, except the average time constant of
self-synaptic decay in fast inhibitory interneurons, which are τ1 = 10 ms, τ2 = 5 ms, and τ3 = 20 ms;
and the mean input noise level P = α. We have limited ourselves to two cases of P parameters sets.
First, (P1, P2, P3) = (0, 4.5, 4.5), and then, (P1, P2, P3) = (0, 4.5, 7).

Figure 4.27 and Figure 4.28 show the results, which have been qualitatively evaluated. As in the
case of two nodes, all the slow amplitude phases present phase-phase coupling (PPC). It can be seen
in Figure 4.27 that the frequency of the FO2 (fast oscillation of node 2) remains nearly unchanged.
Whereas its amplitude envelope is in phase with the SO2, and also SO1 and SO3, so there is PAC
between the FO2 and the SOs. This behavior is also observed in the case of 2 nodes. Interesting
behavior occurs in node 3. It is clear that the FO3 frequency is larger when the SO3 reaches its
maximum, and lower in the valleys of the SO3. Also, the amplitude is systematically larger in the
positive phases of the SO3. The amplitude remains almost constant in each slow-cycle, nevertheless,
it changes with an unknown pattern for each SO cycle. In essence, in node 3 we can observe a strong
phase-frequency coupling (PFC) and a weak PAC. Also, there is an amplitude-frequency coupling
(AFC) from FO2 to FO3.

With respect to Figure 4.28, the main difference is that by increasing the value of P3, the PFC
disappears. Instead, the model shows an amplitude-amplitude coupling (AAC) between SO2 and
SO3.
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Figure 4.27. Top: Fast Oscillations (FO). Bottom: Slow Oscillations (SO). Representation of a 3 nodes
simulation using the first set of P parameters.
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Figure 4.28. Top: Fast Oscillations (FO). Bottom: Slow Oscillations (SO). Representation of a 3 nodes
simulation using the second set of P parameters.
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Chapter 5

Conclusion

In this master thesis, I have reproduced the neural mass model of a single node proposed in
Ref. [2], comprised of four different populations: pyramidal neurons, excitatory interneurons, slow
inhibitory interneurons and fast inhibitory interneurons. Furthermore, I have developed a neural mass
model for a given number of nodes, on the basis of the neural mass model for two nodes presented in
Ref. [3].

The key goal of developing these models was to dissect how the hippocampus can carry out its
complex behavior. I order to do so, we tried to replicate these processes in a computational model,
and reproduce the experimentally obtained results. In order to analyze the models, we have varied
some parameters. We also have focus on the limiting cases, to verify that the results of the model
were biologically plausible.

Particularly, concerning the single node NMM, we have studied how to modulate the position
of the frequency peaks produced by the model and the conditions for which the phase-amplitude
coupling (PAC) occurred. Regarding the modulation of the position of the peaks, we have shown that
the more suitable parameters to change are the time constant of the slow inhibitory population (ωs) to
modulate the low-frequency peak position; and the time constant of the dynamics in the self-feedback
(τf ), to modulate the high-frequency peak position. Concerning the PAC, we have mainly found that
changes in Cfs and Cfp lead to changes in the synchronization of the fast frequency amplitude and
the slow frequency phase.

Moreover, cross-frequency directionality (CFD) has been assessed, without finding any set of
parameters to obtain a result in which the amplitude of gamma oscillations modulates the phase
of theta, phenomena that Ref. [1] found to occur in the hippocampus. There are several reasons
why we have not found a way to modulate this behavior. We suspect that it might be due to the
configuration of the connections between the different populations, that could be different from the
real one. Another reason can be the existence of a pacemaker in the CA3, the Septum [41], which mis
not included in the model. Furthermore, it might be that the resonance is not represented with the
the model. Resonance can enhance certain frequencies rhythms in a neuron. For instance, a stronger
gamma resonance would easily activate that frequency, being able to affect the phase of theta.

Concerning the two-nodes NNM, we have analyzed the influence of the gain between nodes, and
test that the model works for more than two nodes.
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Future prospects

This project could have been widely extended, since there are many potential aspects to improve
the study. First of all, more parameter sets can be analyzed. Also, the combination of changes in more
than one parameter can probably lead to behaviors which have not being observed yet. Moreover, it
is worthy mention the possibilities offered by the NMM of a specif number of nodes, which require a
deeper study of all the possible parameters in order to modulate any given inter-node connectivity.

Furthermore, it could be interesting to explore other models, such as the proposed in Ref. [42],
which presents a multiscale model of hippocampal CA3 to study theta-gamma modulation. Likewise,
another computational model that achieved to reproduce the theta-gamma CFC is the presented
in Ref. [43]. It takes into account the current produced by the hyperpolarization-activated cyclic
nucleotide–gated (HCN) channel, which is a voltage-gated ion channel involved in sub-threshold
resonance and regulating neuronal excitability. The study of these and other models could give rise
to new ideas which can be added to the current model to improve its performance.
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Appendix A

CFC and CFD Algorithms

The explanation of both algorithms is based on Ref. [1].

CFC Algorithm

To evaluate the CFC between the phase and the amplitude, modulation index (MI) is employed,
which is based on entropy measurements. Given two signals, xθ(t) and xγ(t), filtered at a slow and a
fast frequency, it can be extracted the phase xθϕ(t) and the amplitude xγA(t) , respectively, using the
Hilbert transform. Next, each whole cycle in xθP (t) is divided in N bins of the same size. We define〈
xγA(t)

〉
ϕ

(j) as the mean amplitude value at the phase bin j. Therefore, the entropy measure H, can
be calculated as:

H = −
N∑
j=1

pj log pj pj =

〈
xγA(t)

〉
ϕ

(j)∑N
j=1

〈
xγA(t)

〉
ϕ

(j)
(A.1)

The value of the MI is obtained normalizing H by the maximum entropy Hmax, which is the case of
the uniform distribution pj = 1/N :

MI =
Hmax −H

H
(A.2)

Low MIs values imply a low phase-amplitude modulation, while larger MI values show a high phase-
amplitude modulation. The statistical significance is assessed by a surrogate analysis, in which
each surrogate is built by random shifts between the phase and the amplitude of both signals. The
series are approximated to a gaussian distribution, which mean value is considered as a significance
threshold.

The values of the slow and fast frequencies have being shifted to cover all values represented in
each comodulogram of MIs. The bandwidth and the step of each of the axis is specific for each case.
It is important to remark that the y-axis bandwidth must be fixed at least two times the frequency
where the maximum theta value is expected.
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CFD Algorithm

The theta phase can modulate the amplitude at gamma frequencies while or vice versa. To
identify who is the driver, the directionality of the coupling can be assessed using the cross-frequency
directionality (CFD) index. It is based on the phase-slope index (PSI), a measurement of causality
between time series. The aim is that, if the oscillation of a signal is modulating another with a
time delay, the phase difference between them changes consistently with the frequency. The slope of
the phase is obtained as a function of the frequency, and the sign indicates who is the driver. The
employed signals are X(t): Fourier transform of the original signal, and Xν

γA: Fourier transform of
the power envelope of the other signal at gamma frequency. The other interesting parameters are:
C(ν, fj): complex coherence, fj : theta frequency under study, S: number of divisions of the signal, β:
bandwidth for which the phase slope is measured, and ∆f : the resolution. Thus, the CFD is defined
as:

ψ(ν, fj) = Im

fj+β/2∑
fj+β/2

C∗(ν, fj)C(ν, fj + ∆f)

 C(ν, fj) =

∑S
s=1X

S(Xν,s
γA)∗√∑S

s=1 |XS|2
∑∣∣∣Xν,s

γA

∣∣∣2 (A.3)

The same steps than in the MI of the CFC have been followed to provide statistical significance.
The result of the CFD can be positive or negative, meaning that the phase of the slow rhythm
modulates the fast oscillation (FO) and vice versa, respectively. Nevertheless, in order to assess
whether our results are significant or not, the value of the CFC MI is required to be high.
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Appendix B

Tables of parameters

Table B.1. Model parameters. Variables for a given node α.

Notation Parameter Interpretation
Cαuu′ Synaptic gain from population u to u′ population
Cαff Synaptic gain of fast inhibitory interneurons self-feedback
ωαu

−1 Average time constant of u population membrane potential
[sec]

ωαβu
−1 Average time constant of between nodes α and β membrane

potential of u population [sec]
ωαn

−1 Average time constant of the filtered noise [sec]
Gαu Average dendritic gains of u population [mV]
Gαβu Average dendritic gains of between node u population [mV]
Gαn Average dendritic gains of the filtered noise [mV]
Kαu Noise excitation weight for u population
Kαβ Synaptic gain from node β to node α
ταf Average time constant of self-synaptic decay in fast inhibitory

interneurons [sec]
Pα Mean input noise level [Hz]
σ2
α Variance of white noise [Hz2]

Table B.2. Model parameters. Fixed values.

Parameter interpretation Notation Value
Expected spiking threshold voltage [mV] Vθ 5

Half-maximum firing rate [Hz] νmax 2.5
Variance of membrane potential over individual neurons in the population [mV −1] r 1.12
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Table B.3. Model parameters of a one node NMM. Fixed values. Values taken from [2]

Parameter interpretation Notation Value
Expected spiking threshold voltage [mV] Vθ 6
Half-maximum firing rate [Hz] νmax 2.5
Variance of membrane potential over individ-
ual neurons in the population [mV −1]

r 0.56

Synaptic gain from excitatory interneurons
unit to pyramidal unit

Cqp C = 135

Synaptic gain from pyramidal unit unit to
excitatory interneurons unit

Cpq 0.8C = 108

Synaptic gain from slow inhibitory interneu-
rons unit to pyramidal unit

Csp 0.25C = 33.75

Synaptic gain from pyramidal unit to slow
inhibitory interneurons unit

Cps 0.25C = 33.75

Synaptic gain from slow inhibitory interneu-
rons unit to pyramidal unit

Cfp 0.3C = 40.5

Synaptic gain from pyramidal unit to fast
inhibitory interneurons unit

Cpf 0.1C = 13.5

Synaptic gain from fast inhibitory interneu-
rons unit to slow inhibitory interneurons unit

Cfs 0.08C = 10.8

Synaptic gain of fast inhibitory interneurons
self-feedback

Cff 0.72C = 97.2

Average time constant of pyramidal popula-
tion membrane potential [sec]

Tp = ω−1p 100−1

Average time constant of excitatory interneu-
rons population membrane potential [sec]

Tq = ω−1q 100−1

Average time constant of fast inhibitory in-
terneurons population membrane potential
[sec]

Tf = ω−1f 200−1

Average time constant of slow inhibitory in-
terneurons population membrane potential
[sec]

Ts = ω−1s 50−1

Average dendritic gains of between pyramidal
population [mV]

Gp 3.2

Average dendritic gains of between excitatory
interneuron population [mV]

Gq 3.2

Average dendritic gains of between fast in-
hibitory population [mV]

Gf 50

Average dendritic gains of between slow in-
hibitory population [mV]

Gs 22

Average time constant of self-synaptic decay
in fast inhibitory interneurons unit [sec]

τf 0.01

Modulatory input of fast inhibitory interneu-
rons unit [Hz]

Pf 1

Mean of white noise [Hz] νp 2.5
Variance of white noise [Hz2] σ2

p 1.65

Noise gain Kp C = 135

42



Table B.4. Model parameters of the NMM for a specific number of nodes. Fixed values. Values taken
from [3]. The average time constant of the self-synaptic decay ταf and the mean input noise
level Pα are specified for each case.

Parameter interpretation Notation Value
Expected spiking threshold voltage [mV] Vθ 5

Half-maximum firing rate [Hz] νmax 2.5

Variance of membrane potential over individual
neurons in the population [mV −1]

r 1.12

Synaptic gain from excitatory interneurons unit
to pyramidal unit

Cαqp C = 135

Synaptic gain from pyramidal unit unit to exci-
tatory interneurons unit

Cαpq 0.8C = 108

Synaptic gain from slow inhibitory interneurons
unit to pyramidal unit

Cαsp 0.25C = 33.75

Synaptic gain from pyramidal unit to slow in-
hibitory interneurons unit

Cαps 0.25C = 33.75

Synaptic gain from slow inhibitory interneurons
unit to pyramidal unit

Cαfp 0.3C = 40.5

Synaptic gain from pyramidal unit to fast in-
hibitory interneurons unit

Cαpf 0.2C = 27

Synaptic gain from fast inhibitory interneurons
unit to slow inhibitory interneurons unit

Cαfs 0.08C = 10.8

Synaptic gain of fast inhibitory interneurons self-
feedback

Cαff C = 135

Average time constant of pyramidal population
membrane potential [sec]

Tp = ω−1αp 10−1

Average time constant of excitatory interneurons
population membrane potential [sec]

Tq = ω−1αq 100−1

Average time constant of fast inhibitory interneu-
rons population membrane potential [sec]

Tf = ω−1αf 200−1

Average time constant of slow inhibitory interneu-
rons population membrane potential [sec]

Ts = ω−1αs 50−1

Average dendritic gains of between pyramidal
population [mV]

Gαp 0.32

Average dendritic gains of between excitatory
interneuron population [mV]

Gαq 3.2

Average dendritic gains of between fast inhibitory
population [mV]

Gαf 50

Average dendritic gains of between slow in-
hibitory population [mV]

Gαs 22

Variance of white noise [Hz2] σ2α 0.5

Noise excitation weight for pyramidal neurons Kαp 40
Noise excitation weight for fast inhibitory neu-
rons

Kαf 108

Average time constant of between nodes α and
β membrane potential of u population [sec]

ωαβu
−1 10−1

Average time constant of the filtered noise [sec] ωαn
−1 10−1

Average dendritic gains of between node u popu-
lation [mV]

Gαβu 0.32

Average dendritic gains of the filtered noise [mV] Gαn 0.32
Synaptic gain from node β to node α Kαβ 40
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