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For a three-parametric family of continuous piecewise linear differential systems introduced
by Arneodo et al. [Arneodo et al., 1981] and considering a situation which is reminiscent of
the Hopf-Zero bifurcation, an analytical proof on the existence of a two–parametric family of
homoclinic orbits is provided. These homoclinic orbits exist both under Shil’nikov (0 < δ < 1)
and non-Shil’nikov assumptions (δ ≥ 1). As it is well known for the case of differentiable
systems, under Shil’nikov assumptions there exist infinitely many periodic orbits accumulating
to the homoclinic loop. We also prove that this behaviour persists at δ = 1. Moreover, for
δ > 1 and suficiently close to 1 we show that these periodic orbits persist but then they do not
accumulate to the homoclinic orbit.
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1. Introduction

It is well known that three dimensional differen-
tial systems can exhibit chaotic dynamics. In some
specific cases, homoclinic loops (invariant closed
curves with exactly one singular point) act as or-
ganizing centers of such complex dynamical behav-
ior. In fact, the celebrated paper of Shil’nikov
[Shil’nikov, 1965] guarantees the existence of in-
finitely many unstable periodic orbits in every
neighborhood of a homoclinic orbit associated to
a saddle–focus equilibrium point under certain hy-
potheses on the eigenvalues of its linearization.
More precisely, if λ and −λδ ± iω are the eigenval-
ues of the saddle–focus point, the Shil’nikov case re-
quires that 0 < δ < 1. The ratio δ is strongly related
to the saddle quantity σ quoted in Shil’nikov’s and
Belyakov’s works, see [Kuznetsov, 2004], [Shil’nikov
et al., 2001], and references therein.

Later on, in [Shil’nikov, 1970] the same author
shows that under the same hypotheses the dynam-
ics associated to the existence of the homoclinic or-
bit is that of a Birkhoff–Morse system (conjugated
to a shift with infinitely many symbols). The rich-
ness of the structure of periodic orbits around a
homoclinic orbit of Shil’nikov type was analyzed by
Belyakov [Belyakov, 1974, 1980, 1984], Glendinning
and Sparrow [Glendinning & Sparrow, 1984] and
Gaspard, Kapral and Nicolis [Gaspard et al., 1984].
In any case, the application of Shil’nikov theorems
needs firstly to show that such homoclinic orbit
does exist, what in general is not a trivial task.

Several authors have paid attention to the
problem of finding concrete systems having ho-
moclinic orbits to a saddle–focus. For in-
stance Arneodo, Coullet and Tresser introduce in
[Arneodo et al., 1981, Coullet et al., 1979] the class
of forced oscillators x′′ + βx′ + x = η (x) , where
β > 0 is a dissipative term and dη/dt = fa,µ (x) is
the two–parametric family of continuous piecewise
linear functions

fa,µ (x) =
{

1 + ax if x ≤ 0,
1− µx if x > 0.

They show the existence of certain parameter val-
ues for which the above system has a Shil’nikov
homoclinic orbit. Their proof is based on con-
tinuity arguments starting from numerical com-
putations. Also Gribov and Krishchenko in

[Gribov & Krishchenko, 2002] require numerical ar-
guments to ensure the existence of homoclinic orbits
in the Chua equations. In [Rodriguez, 1986], Ro-
driguez builds some systems with homoclinic orbits
of saddle–focus type. In all these cases homoclinic
orbits are under the Shil’nikov assumptions.

A natural question is whether the Shil’nikov
condition for the saddle–focus (0 < δ < 1) is
strictly necessary to get such a rich periodic be-
havior around the homoclinic orbit. This ques-
tion has been analized in [Belyakov, 1974, 1984],
always under the hypothesis of persistence of the
homoclinic orbit in some curve of a two–parametric
neighbourhood. Also, taking δ = 1 and im-
posing some extra conditions Pumariño and Ro-
driguez [Pumariño & Rodriguez, 2001] give some
results about the complexity that can be found in
some classes of three dimensional vector fields.

In this paper we will revisit the piecewise lin-
ear differential system introduced by Arneodo et al.
in a concrete region of its parametric space, giving
sufficient conditions for the existence of homoclinic
orbits both in Shil’nikov and non–Shil’nikov cases
(that is, we will work on both sides of δ = 1), and
obtaining information about the involved dynamics
in each case.

Note that the lack of differentiability of these
systems makes that we cannot take advantage of
the generic results included in the previous quoted
papers, where not only the existence of homoclinic
orbits is supposed as the starting point for the anal-
ysis but also smoothness up to certain high order
is assumed. Thus, we are enforced to derive a spe-
cific analysis which does not intend to be generic;
nevertheless, it can be very useful in studying more
general piecewise linear systems.

An equivalent formulation for the three–
parametric family of continuous piecewise linear
differential systems introduced by Arneodo et al.
[Arneodo et al., 1981] is

x′ =
{

A−x + b if x ≤ 0,
A+x + b if x > 0,

(1)

where x = (x, y, z)T ,

A− =




0 1 0
0 0 1
a −1 −β


 , A+ =




0 1 0
0 0 1
−µ −1 −β




and b = (0, 0, 1)T .
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Assuming a > 0 and µ > 0, the piecewise lin-
ear differential system (1) has exactly two singu-
lar points: e+ = (1/µ, 0, 0)T which belongs to the
half–space {x ≥ 0}, and e− = (−1/a, 0, 0)T which
belongs to the half–space {x ≤ 0}.

Consider the change of parameters given by

β = λ (2δ − 1) ,

a = λ
(
1 + 2λ2δ

)
, (2)

µ =
(
1 + 4R2 + 4λδR− 2λR

)
(2R + 2λδ − λ) ,

and defined in the parameter region δ > 0, R > 0
and λ > 0, but taking λ sufficiently small. Note
that the case β ≤ 0 is included, and so β will belong
to a neighbourhood of zero. The above change is
chosen in order to make explicit the eigenvalues of
the matrices A− and A+, namely λ and −λδ ± iω
and −L and R± iΩ, respectively, where

ω2 = 1 + λ2 (2− δ) δ,

L = 2R + λ (2δ − 1) > 0, (3)

Ω2 = 1 + R (4λδ − 2λ + 3R) ,

so that µ = (1 + 2LR)L. Therefore, e− and e+ are
saddle–focus points.

The following two theorems summarize the
main results in this paper and have an asymptotic
character in the sense that they give valuable in-
formation only for λ sufficiently small. In Theorem
1.1 we provide for the class of differential systems
(1) an analytical proof on the existence of a two–
parametric family of homoclinic orbits. This fam-
ily of homoclinic orbits exists under Shil’nikov and
non–Shil’nikov assumptions; its existence could be
also analytically proved for non-small values of λ
by following a different, non-asymptotic approach,
which is out of the scope of this paper.

Theorem 1.1. In the (λ, δ,R)–parameter space
there exists a two–dimensional continuous surface
G such that if (λ, δ,R) ∈ G, then the piecewise lin-
ear differential systems (1) has a homoclinic orbit
Γλ,δ to the singular point e−. Moreover, if λ > 0
is small enough and δ ∈ (0, 1.3] the surface G is
defined by the equation

R (λ, δ) =
√

3
4eθ∗ sin

(√
3θ∗

) 1
λ

+ O (λ) ,

where θ∗ is the unique zero in
(
0, π/

√
3
)

of the func-
tion f(θ) = 2e3θ cos

(√
3θ − π/3

)− 1.

We remark that the first term in the equation
of the surface G given in the above result does not
depend on the eigenvalues real part ratio δ. This
dependence will be explicit in higher order terms.
On the other hand, the maximum allowed value of
δ = 1.3 is a consequence of the method used to
prove the theorem and has not dynamic implica-
tions.

The singular point e− goes to infinity as λ tends
to zero, and consequently the associated homoclinic
orbit Γλ,δ also does so. Thus, we are studying a
family of homoclinic orbits which bifurcate from the
infinity. It must be also noticed that for λ = 0
we have a sort of a piecewise linear version of the
Hopf–Zero bifurcation so that one equilibrium goes
to (or comes from) infinity with one zero plus one
complex pair of pure imaginary eigenvalues. In this
sense Theorem 1.1 represents partial information
regarding the unfolding of such bifurcation point.
Notice that this situation is more degenerate than
the considered one in Belyakov [Belyakov, 1974].

In Theorem 1.2 we show the existence of in-
finitely many periodic orbits in a neighbourhood
of the homoclinic orbit Γλ,δ. The accumulation
of these periodic orbits to the homoclinic orbit is
proved under the Shil’nikov assumptions and in the
boundary of these assumptions. The result is ob-
tained from a carefully study of the Poincaré map
defined on the plane {x = 0} in a vicinity of one of
the two intersection points of the homoclinic orbit
with such plane, namely near its intersection point
with the half-plane {x = 0, y < 0}. Again, it is re-
marked that, due to the lack of differentiability of
piecewise linear systems, such kind of results cannot
be derived from known generic results for smooth
systems, and so a specific analysis is needed.

Theorem 1.2. For (λ, δ,R) ∈ G and λ sufficiently
small, we consider the piecewise linear differential
system (1).

If δ ≤ 1 then the Poincaré map defined in the
intersection of every neighbourhood of the homo-
clinic orbit Γλ,δ with the half-plane {x = 0, y < 0}
has infinitely many shifts of two symbols as a sub-
system. Consequently, there exist infinitely many
periodic orbits accumulating to the homoclinic or-
bit.

Given a neighbourhood U of the homoclinic or-
bit Γλ,δ, there exists a value ε(λ) > 0 such that if
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1 < δ < 1 + ε(λ), then the Poincaré map defined in
U ∩ {x = 0, y < 0} has finitely many shifts of two
symbols as a subsystem.

It must be emphazised that Theorem 1.2 an-
alyzes the richness of periodic behaviour near the
homoclinic orbit Γλ,δ for parameter values on the
biparametric surface G without leaving it, that is,
without breaking the homoclinic orbit by perturba-
tions.

The existence of the infinitely many periodic
orbits is shown by proving the existence of Smale
horseshoes for the Poincaré map defined in the half-
plane {x = 0, y < 0} near the intersection of the
homoclinic orbit. At the end of the paper, we de-
scribe the mechanism which explains why the near-
est horsehoes are destroyed for δ > 1 and conse-
quently how the associated shifts of two symbols
disappear.

The rest of the paper is organized as follows. In
Section 2, we give explicit expressions for the flow of
system (1). In Section 3, we describe the geometry
of the problem. In Section 4, we prove Theorem
1.1, and in Section 5 we prove Theorem 1.2.

2. The flow in {x ≥ 0} and {x ≤ 0}

For any point p = (xp, yp, zp)T we denote by γp the
orbit through p. If p is in the half–space {x ≥ 0},
let x+

p (s) =
(
x+
p (s) , y+

p (s) , z+
p (s)

)T be the solu-
tion of system (1) with initial condition x+

p (0) = p.
While x+

p (s) ≥ 0 we have

x+
p (s) =C1

peRs cos (Ωs) + C2
peRs sin (Ωs)

+ C3
pe−Ls +

1
µ

,

y+
p (s) =

(
C1

pR + C2
pΩ

)
eRs cos (Ωs)

+
(
C2

pR− C1
pΩ

)
eRs sin (Ωs) (4)

− C3
pLe−Ls,

z+
p (s) =

[
C1

p

(
R2 − Ω2

)
+ 2C2

pΩR
]
eRs cos (Ωs)

+
[
C2

p

(
R2 − Ω2

)− 2C1
pΩR

]
eRs sin (Ωs)

+ C3
pL2e−Ls,

where Cp = (C1
p, C2

p, C3
p)T is obtained from

Cp =
1

(L + R)2 + Ω2
M+ (p− e+) ,

and M+ is the following matrix



L (2R + L) 2R −1

−L(R2+RL−Ω2)
Ω

L2−R2+Ω2

Ω
R+L

Ω

R2 + Ω2 −2R 1




. (5)

If xp = 0 and yp > 0, then eT
1 ṗ > 0, where

e1 = (1, 0, 0)T and ṗ is the value of the vec-
tor field associated to system (1) at the point p.
Therefore, the orbit γp through p crosses the plane
{x = 0} from the half–space {x < 0} to the half–
space {x > 0}.

Differential system (1) is linear in the half–
space {x ≥ 0} and the stable and unstable man-
ifolds of the saddle–focus e+ intersect the plane
{x = 0} (see Section 3). Then, if p does not be-
long to the stable manifold of e+, there exists
s+
p > 0 such that x+

p

(
s+
p

)
= 0 and x+

p (s) > 0 for
s ∈ (

0, s+
p

)
.

In short, if xp = 0 and yp > 0, then
we define the Poincaré map Π+ as Π+ (p) =(
0, y+

p

(
s+
p

)
, z+

p

(
s+
p

))T .
For any point p = (xp, yp, zp)T in

the half–space {x ≤ 0}, let x−p (s) =(
x−p (s) , y−p (s) , z−p (s)

)T be the solution of system
(1) with initial condition x−p (0) = p. While
x−p (s) ≤ 0 we have

x−p (s) =D1
pe−λδs cos (ωs) + D2

pe−λδs sin (ωs)

+ D3
peλs − 1

a
,

y−p (s) =
(
D2

pω −D1
pλδ

)
e−λδs cos (ωs)

− (
D1

pω + D2
pλδ

)
e−λδs sin (ωs)

+ D3
pλeλs, (6)

z−p (s) =D1
p

(
λ2δ2 − ω2

)
e−λδs cos (ωs)

− 2D2
pλδωe−λδs cos (ωs)

+ D2
p

(
λ2δ2 − ω2

)
e−λδs sin (ωs)

+ 2D1
pλδωe−λδs sin (ωs)

+ D3
pλ2eλs,

where Dp = (D1
p, D2

p, D3
p)T is obtained from

Dp =
1

λ2 (1 + δ)2 + ω2
M−(p− e−)
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and M− is the following matrix



λ2 (1 + 2δ) −2λδ −1

λ(λ2δ+λ2δ2−ω2)
ω

λ2−λ2δ2+ω2

ω −λ(1+δ)
ω

λ2δ2 + ω2 2λδ 1




.

If xp = 0 and yp < 0, then eT
1 ṗ < 0. There-

fore, the orbit γp through p crosses the plane
{x = 0} from the half–space {x > 0} to the half–
space {x < 0}. Differential system (1) is linear in
the half–space {x ≤ 0} and the stable and unsta-
ble manifolds of the saddle–focus e− intersect the
plane {x = 0}. Then, if p does not belong to the
stable manifold of e−, there exists s−p > 0 such that
x−p

(
s−p

)
= 0 and x−p (s) > 0 for s ∈ (

0, s−p
)
. Thus,

if xp = 0 and yp < 0, then we define the Poincaré
map Π− as Π− (p) =

(
0, y−p

(
s−p

)
, z−p

(
s−p

))T .
If p is on the z–axis; i.e. xp = 0 and

yp = 0, then eT
1 ṗ = 0 and p is called a con-

tact point of the flow of system (1) with the plane
{x = 0}, for more information about contact points
see [Llibre & Teruel, 2004]. For such a point p we
denote by xp (s) the solution of system (1) having
xp (0) = p. Expanding in Taylor series xp (s) at
s = 0 up to fourth order in s, passing the constant
term from the right hand part to the left one, and
taking its first coordinate, we obtain

eT
1 (xp (s)− p) =zp

s2

2
+ (1− βzp)

s3

3!

+ eT
1 x(4)

p (ξ)
s4

4!
.

Hence, if zp < 0, then the orbit γp is locally con-
tained in the half–space {x ≤ 0}; if zp > 0, then γp

is locally contained in the half–space {x ≥ 0}; and
if zp = 0, then γp crosses the plane {x = 0} from
the half–space {x ≤ 0} to the half–space {x ≥ 0} .

3. Stable and unstable manifolds of equilib-
ria

We note that the invariant manifolds of the singular
points e+ and e− are linear manifolds in a neigh-
bourhood of the singular points e+ and e−. Thus,
the unstable manifold W u (e−) of e− contains the
half–line

L− = {x ≤ 0, y = λx +
1

1 + 2λ2δ
, z = λy}

generated by the eigenvector
(
1, λ, λ2

)T associated
to the eigenvalue λ of A−. This half–line intersects
the plane {x = 0} at the point

m− =
(

0,
1

1 + 2λ2δ
,

λ

1 + 2λ2δ

)T

, (7)

see Figure 1.
The stable manifold W s (e−) of e− contains a

piece of the half–plane

P− = {λ (
1 + 2λ2δ

)
x + 2λ2δy + λz = −1 : x ≤ 0}

generated by the eigenvectors associated to the
eigenvalues −λδ ± iω of A−, see the shadowed re-
gion in Figure 1. The intersection of the planes P−
and {x = 0} is the straight line

D− =
{

(0, y, z) ∈ R3 : z = −2λδy − 1
λ

}
. (8)

We emphasize that not every point in D− belongs
to W s (e−).

Fig. 1. Invariants manifolds of e+ and e−.

The stable manifold W s (e+) of e+ contains the
half–line

L+ = {x ≥ 0, y = −Lx +
1

1 + 2LR
, z = −Ly}

generated by the eigenvector
(
1,−L, L2

)T associ-
ated to the eigenvalue −L of A+. This half–line
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reaches the plane {x = 0} at the point

m+ =
(

0,
1

1 + 2LR
,− L

1 + 2LR

)T

. (9)

Finally, the unstable manifold W u (e+) of e+

contains a piece of the half–plane

P+ = {(1 + 2LR)x− 2Ry + z =
1
L

: x ≥ 0}

generated by the eigenvectors associated to the
eigenvalues R ± iΩ of A+. The intersection of the
planes P+ and {x = 0} is the straight line

D+ =
{

(0, y, z) ∈ R3 : z = 2Ry +
1
L

}
. (10)

See in Figure 1 the points m+, m−, the straight
lines D+, D− and the half–planes P+ and P−.

4. Existence of the homoclinic orbit Γλ,δ

In this section we prove Theorem 1.1. We em-
phasize that we only look for homoclinic orbits
with exactly two intersection points with the plane
{x = 0} , namely m− and Π+ (m−). The way to
look for this homoclinic orbit is to follow the orbit
through m− (which belongs to the unstable mani-
fold of e−) and to move the parameters λ, δ and R
so that this orbit intersects the stable manifold of
e−.

Consider the point q = (0, 0,−1/λ)T on the
z–axis. Let S be the segment with endpoints q
and Π−1

− (q), where Π−1
− denotes the inverse of the

Poincaré map Π−, see Figure 1. It is clear that
S ⊂ W s (e−) ∩ D−. Note that the existence of the
homoclinic orbit that we are looking for is charac-
terized by the condition Π+ (m−) ∈ S.

From (6), the solution of system (1) with initial
condition x (0) = q satisfies

x−q (−s) =
1
a

[
esδλ cos (ωs)− λδ

ω
esδλ sin (ωs)− 1

]
,

y−q (−s) =
1

ωλ
esδλ sin (ωs) , (11)

z−q (−s) =− 1
λ

esδλ cos (ωs)− δ

ω
esδλ sin (ωs) .

The change of variables θ = ωs and ρ = λδ/ω
transforms equation x−q (−s) = 0 in expression (11)
into equation cos (θ)− ρ sin (θ) = e−ρθ, which has a

unique zero θ0 in (π, 2π) . Therefore, the flying time
s−
Π−1
− (q)

to go from point Π−1
− (q) to point q satisfies

s−
Π−1
− (q)

= θ0/ω ∈ (π/ω, 2π/ω).

In the following result we give asymptotical ex-
pressions in λ of the flying time s−

Π−1
− (q)

and of the

second coordinate of the point Π−1
− (q), which will

be used later on.

Lemma 4.1. If λ > 0 is sufficiently small and
δ ∈ (0, 1.3], then the flying time sΠ−1

− (q) of the orbit

through Π−1
− (q) to go from Π−1

− (q) to q satisfies

s−
Π−1
− (q)

= 2π − 2
√

πδλ +
2
3

(πδλ)3/2 + O
(
λ2

)
.

Moreover, the second coordinate of the point
Π−1
− (q) is

y−q

(
−s−

Π−1
− (q)

)
= −2

√
πδ

λ
− 2πδ

√
πδλ + O (λ) .

Proof: Thinking about the orbit through the
point q in backward time, we obtain ωs−

Π−1
− (q)

∈
(π, 2π). Since ω = 1 − δ (δ − 2)λ2/2 + O

(
λ4

)
,

see (3), when λ is small enough it follows that
s−
Π−1
− (q)

∈ (π, 2π) . From (11), expanding x−q (−s)

at s = 2π we have x−q (−s) = x0 + x1 (s− 2π) +

x2 (s− 2π)2 + O
(
(s− 2π)3

)
, where

x0 =
1

1 + 2λ2δ

[
− 1

λ
+ e2πλδ cos (2πω)

−e2πλδ δ

ω
sin (2πω)

]
,

x1 =− 1
λω

e2πλδ sin (2πω) ,

x2 =
1
2
e2πλδ

[
1
λ

cos (2πω) +
δ

ω
sin (2πω)

]
.

Solving x0 + x1 (s− 2π) + x2 (s− 2π)2 = 0 for s,
expanding the solution in power series of λ, and
neglecting the terms of order 2 in λ, we obtain the
following approximation to s−

Π−1
− (q)

s̃−
Π−1
− (q)

= 2π − 2
√

πδλ +
2
3

(πδλ)3/2 .

It can be shown that

x−q

(
−s̃−

Π−1
− (q)

+ 10λ2

)
x−q

(
−s̃−

Π−1
− (q)

)

=
4
9

(πδ)2 (πδ2 + 6πδ − 30)λ3 + O
(
λ4

)
,
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where the factor πδ2 + 6πδ − 30 is negative in the
interval 0 < δ ≤ 1.3. Hence, we conclude that
s̃−
Π−1
− (q)

− 10λ2 < s−
Π−1
− (q)

< s̃−
Π−1
− (q)

when λ small

enough, which proves the first part of the lemma.
Now, we compute the second coordinate of the

point Π−1
− (q). From (11) it follows that

y−q

(
−s̃−

Π−1
− (q)

)
= −2

√
πδ

λ
− 2πδ

√
πδλ + O (λ) .

Since dy−q /ds
∣∣
−s

= z−q (−s) < 0, for every s in

the interval
(
−s̃−

Π−1
− (q)

,−s̃−
Π−1
− (q)

+ 10λ2

)
we ob-

tain that∣∣∣∣∣
dy−q
ds

∣∣∣∣∣ <

∣∣∣∣z−q
(
−s̃−

Π−1
− (q)

+ 10λ2

)∣∣∣∣ = O
(
λ−1

)
.

Therefore and by the Mean Value Theorem, the
error in the second component of Π−1

− (q) is O (λ);

that is, y−q

(
−s−

Π−1
− (q)

)
= y−q

(
−s̃−

Π−1
− (q)

)
+ O (λ),

and the lemma follows. ¤

We remark that the hypothesis δ ≤ 1.3 in
Lemma 4.1 is only required to assure the error order
in the approximation of s−

Π−1
− (q)

.

Denote by P∗+ the parallel plane to P+ through
the point m−; i.e.

P∗+ =
{

(1 + 2LR)x− 2Ry + z =
λ− 2R

1 + 2λ2δ

}
.

Let D∗+ be the intersection of P∗+ with the plane
{x = 0} and let B be the region in the half–plane
{x = 0, y < 0} limited by the straight lines D+ and
D∗+, see the shadowed region Figure 2. Using the
projection of the flow of the linear system in the
half–space {x > 0} onto the two invariant mani-
folds of the saddle–focus e+, we get that the or-
bit through m− in {x > 0} remains between the
planes P+ and P∗+, so that Π+ (m−) ∈ B. Since
D+ has positive slope and D− passes through the
point q with negative slope, the straight line D−
splits B into the two regions B1 and B2, being B1

the bounded one, see Figure 2.

Lemma 4.2. If λ is sufficiently small, δ ∈ (0, 1.3]
and

R ≥ 1
4
√

πδλ
+

1− 2δ

2
λ,

then B ∩ D− ⊂ S .

Fig. 2. Region B = B1 ∪ B2 on the plane {x = 0} .

Proof: Denote by q± the intersection point of the
straight lines D+ and D−, see Figure 2; that is

q± =
(

0,
1

Lλ
,
λ− 2R

Lλ

)T

. (12)

If ||q− q±|| ≤
∣∣∣∣q−Π−1

− (q)
∣∣∣∣, then B ∩ D− ⊂

S and the lemma holds. Now we shall prove this
inequality.

Since the point Π−1
− (q) is on the straight

line D− its coordinates are (0, y∗,−2λδy∗ − 1/λ)
for an adequate y∗. Then,

∣∣∣∣q−Π−1
− (q)

∣∣∣∣ =
|y∗|√1 + 4λ2δ2. By Lemma 4.1, if λ is sufficiently
small we have that |y∗| > 2

√
πδ/λ. Therefore, we

obtain that

∣∣∣∣q−Π−1
− (q)

∣∣∣∣ > 2

√
πδ

λ

√
1 + 4λ2δ2.

On the other hand, from (12) we get that

||q− q±|| =
√

1 + 4λ2δ2

λ (2R− λ + 2δλ)
.

The lemma follows by using the condition on R. ¤

From now on, we consider the three–parametric
family in λ, δ and k ∈ R of piecewise linear differ-
ential systems (1) with

R =
1

K∗λ
+ kλ,

where
K∗ =

4√
3
eθ∗ sin

(√
3θ∗

)
,
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and θ∗ is the unique zero of f̃ (θ) = e−2θf (θ) =
eθ cos

(√
3θ

)
+
√

3eθ sin
(√

3θ
)− e−2θ in

(
0, π/

√
3
)
.

This choice for K∗ will be clarified in the light of
next two results, which look for accurate estimates
of the flying time corresponding to certain distin-
guished orbits.

We are going to expand in power series of λ
the coordinates of the point Π+ (m−) in order to
distinguish the values of the parameter k for which
Π+ (m−) ∈ B1 from those for which Π+ (m−) ∈ B2.
First of all we give a result to control the time s+

m−
spent by the orbit γm− to go from m− to Π+ (m−).

Lemma 4.3. If λ > 0 is sufficiently small, δ ∈
(0, 1.3] and R = (K∗λ)−1 +kλ, then the flying time
s+
m− satisfies

s+
m− <

π√
3
K∗λ + O

(
λ3

)
.

Proof: It is clear that m+ = e+ +σ1

(
1,−L,L2

)T

with σ1 = −1/µ. Let m∗
+ = e++σ0

(
1,−L, L2

)T be
the intersection point of the straight line containing
L+ and the plane P∗+, hence

σ0 =
1

L2 + 4LR + 1

(
λ− 2R

1 + 2λ2δ
− 1

L

)
.

Expanding σ1 and σ0 in power series of λ, it fol-
lows that σ1 = −K∗3λ3/8 + O

(
λ5

)
< 0 and

σ0 = −K∗λ/6 + O
(
λ3

)
< 0. Since λ > 0 is suffi-

ciently small |σ1| < |σ0|, and consequently the point
m∗

+ is located in the half–space {x < 0}.
Now, we assume that the linear system x′ =

A+x + b is defined in the whole space R3. Then,
the time sL to go from the point m∗

+ to m+ follow-
ing the stable manifold of e+ satisfies the equation
e−LsLσ0 = σ1. Therefore,

sL = − 1
L

ln
∣∣∣∣
σ1

σ0

∣∣∣∣ = O (λ lnλ) ,

because, from (3), we know that L = O
(
λ−1

)
.

In order to prove s+
m− < π/Ω we assume the

converse: s+
m− ≥ π/Ω. Then, from the definition

of s+
m− the point x+

m− (π/Ω) is in the half–space
{x > 0}. Starting from m−, the orbit γm− spirals
around the stable manifold L+ of e+ in such a way
that, after the time π/Ω, it has completed exactly
a half–turn. In fact, using (4) one can check that
the point x+

m− (π/Ω) belongs to the plane contain-
ing the straight line through L+ and the point m−.

Therefore, the segment with endpoints at m− and
x+

m− (π/Ω) intersects the straight line L+ at one
point m̃. Since the two endpoints of the above seg-
ment are in the half–space {x ≥ 0}, the point m̃
also belongs to this half–space. Next, we arrive to
a contradiction with this last statement.

From (3) and the choice made for R, the
asymptotic expansion of Ω in powers of λ is Ω =√

3/ (K∗λ) + O (λ) , and then π/Ω = O (λ). For
λ > 0 small enough, we have π/Ω < sL. Now, we
note that m∗

+ is the projection of the point m− on
the straight line through L+ following the parallel
plane to the piece of the plane of the unstable man-
ifold of e+. We denote by m∗∗

+ the projection of
the point x+

m− (π/Ω) on the straight line through
L+ following the corresponding parallel plane to
the piece of the plane of the unstable manifold of
e+. Note that the arc of the orbit from m− to
x+

m− (π/Ω) projects on the straight line through L+

into the segment SL+ with endpoints m∗
+ and m∗∗

+ .
Since π/Ω < sL, the segment SL+ is contained in
the half–plane {x < 0}. On the other hand the
segment with endpoints m− and x+

m− (π/Ω) also
projects onto SL+ . Consequently, the point m̃ must
be contained into SL+ , in contradiction with the
fact that this point is contained into the half–space
{x > 0}. We conclude that s+

m− < π/Ω.
Finally, from π/Ω ≤ πK∗λ/

√
3 + O

(
λ3

)
we

get that s+
m− ≤ K∗λπ/

√
3 + O

(
λ3

)
. ¤

Proposition 4.4. If λ > 0 is sufficiently small,
δ ∈ (0, 1.3] and R = (K∗λ)−1 + kλ, the flying time
s+
m− to go from m− to Π+ (m−) is

s+
m− = θ∗K∗λ + O

(
λ3

)
.

Moreover, the coordinates of the point Π+ (m−) are

x+
m−

(
s+
m−

)
=0,

y+
m−

(
s+
m−

)
=

2
3
eθ∗ cos

(√
3θ∗

)
+

1
3
e−2θ∗ + O

(
λ2

)
,

z+
m−

(
s+
m−

)
=− 1

λ
+ [mk + b(δ)]λ + O

(
λ2

)
,

where m < 0 and b(δ) is a linear function in δ.

Proof: Since R = (K∗λ)−1 + kλ, from (3) it
follows that L = 2(K∗λ)−1 − (1 − 2δ + 2k)λ and
Ω =

√
3(K∗λ)−1+

√
3/6(K∗−2+4δ+6k)λ+O (λs) .
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Therefore,

Rs =
s

K∗λ
+ kλs,

eRs =e
s

K∗λ (1 + kλs) + O
(
λ2s2

)
,

Ls =
2s

K∗λ
− (1− 2δ + 2k)λs,

e−Ls =e−
2s

K∗λ [1 + (1− 2δ + 2k)λs] + O
(
λ2s2

)
,

Ωs =
√

3s

K∗λ
+
√

3
6

(K∗ − 2 + 4δ + 6k)λs + O
(
λ2s2

)
.

From Lemma 4.3 it follows that s+
m− = O (λ) .

Hence, for every 0 ≤ s ≤ s+
m− we conclude that

cos (Ωs) = cos

(√
3s

K∗λ

)

−
√

3
6

(K∗ − 2 + 4δ + 6k) sin

(√
3s

K∗λ

)
λs

+ O
(
λ4

)
,

sin (Ωs) = sin

(√
3s

K∗λ

)

+
√

3
6

(K∗ − 2 + 4δ + 6k) cos

(√
3s

K∗λ

)
λs

+ O
(
λ4

)
.

Substituting these expressions in (4), the first
coordinate of the solution with initial condition at
m− is

x+
m− (s) =

K∗λ
6

[
e

s
K∗λ cos

(√
3s

K∗λ

)

+
√

3e
s

K∗λ sin

(√
3s

K∗λ

)
− e−2 s

K∗λ

]

+ O
(
λ3

)
.

Since θ∗ is the unique zero of f̃ (θ) =
e−2θf (θ) = eθ cos

(√
3θ

)
+
√

3eθ sin
(√

3θ
) − e−2θ

in
(
0, π/

√
3
)
, a quite good approximation for s+

m−
is s̃+

m− = θ∗K∗λ. To assess the quality of this ap-
proximation, by the Mean Value Theorem we can
write

s+
m− − s̃+

m− =
x+
m−

(
s+
m−

)
− x+

m−

(
s̃+
m−

)

y+
m− (ξ)

,

with ξ in the interval with endpoints s+
m− and s̃+

m− .
Since

y+
m−

(
s̃+
m−

)
=

2
3
eθ∗ cos

(√
3θ∗

)
+

1
3
e−2θ∗ + O

(
λ2

)
,

the value of y+
m− (ξ) tends to a non–zero constant as

λ tends to zero. Thus, the error order in λ of s+
m−−

s̃+
m− , is equal to the error order of the difference

x+
m−

(
s+
m−

)
− x+

m−

(
s̃+
m−

)
; that is, s+

m− = s̃+
m− +

O
(
λ3

)
.

Once controlled the time error, we study the er-
ror in the coordinates of the point Π+ (m−). Since

z+
m−

(
s̃+
m−

)
= − 1

λ
+ [mk + b(δ)]λ + O

(
λ2

)
,

with m = −4
(
8 θ∗e−2θ∗ + 3K∗) and b(δ) = (2 θ∗ −

1)K∗2 − 2(2 θ∗e−2θ∗ + 3θ∗ + 1)K∗ + 12 e−2θ∗ +
(36 θ∗K∗−8K∗+24)δ, using again the Mean Value
Theorem and

dy+
m−
ds

∣∣∣∣∣
s=es+

m−

=z+
m−

(
s̃+
m−

)
= O

(
λ−1

)
,

dz+
m−
ds

∣∣∣∣∣
s=es+

m−

=− µx+
m−

(
s̃+
m−

)
− y+

m−

(
s̃+
m−

)

− βz+
m−

(
s̃+
m−

)
+ 1 = O

(
λ0

)
,

we conclude that y+
m−

(
s+
m−

)
− y+

m−

(
s̃+
m−

)
=

O
(
λ2

)
and z+

m−

(
s+
m−

)
− z+

m−

(
s̃+
m−

)
= O

(
λ3

)
,

which completes the proof. ¤

From Proposition 4.4 it follows that

2λδy+
m−

(
s+
m−

)
+ z+

m−

(
s+
m−

)
= − 1

λ

+ λ

[
mk + b(δ) +

2δ

3

(
2eθ∗cos(

√
3θ∗) + e−2θ∗

)]

+ O
(
λ2

)
.

Thus, if

k∗ = −b(δ)− 2δ
3

(
2eθ∗cos(

√
3θ∗) + e−2θ∗)

m
,

k1 < k∗, R1 = (K∗λ)−1 + k1λ and λ sufficiently
small, then Π+ (m−) ∈ B1, see (8) for the ex-
pression of D−. Similarly, if k2 > k∗ and R2 =
(K∗λ)−1 + k2λ , then Π+ (m−) ∈ B2. Hence, by
the Continuity Theorem of the solutions of a differ-
ential system with respect to initial conditions and
parameters, we conclude that if λ is small enough
and δ ∈ (0, 1.3], then there exists a value of the pa-
rameter R = R (λ, δ) between R1 and R2 for which
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system (1) has a homoclinic orbit Γλ,δ to the equi-
librium point e−. Therefore,

R (λ, δ) =
√

3
4eθ∗ sin

(√
3θ∗

) 1
λ

+ O (λ) ,

which completes the proof of Theorem 1.1.

5. Existence of horseshoes

In this section we prove Theorem 1.2. Thus, for
the piecewise linear system (1) with parameters
(λ, δ,R) ∈ G we shall see that the Poincaré map
defined in a convenient neighbourhood of the homo-
clinic orbit Γλ,δ has infinitely many periodic points,
and that the homoclinic orbit is an accumulation
point of these periodic points, when δ ≤ 1.

For every 0 < h < 1/λ we consider the point
qh = (0, 0,−1/λ + h)T on the z–axis and the seg-
ment Th = {qh,t = (1− t)qh + tΠ−1

− (qh) : t ∈
[0, 1)}, see Figure 3. By the continuity of the flow,
the image Π− (Th) of the segment Th is homeomor-
phic to S1. Let ΣΠ−(Th) be the bounded region in
the plane {x = 0} limited by Π− (Th) . Since the
segment Th tends to S as h tends to zero, the time
s−qh,t

tends to infinity as h tends to zero, and hence,
if h is small enough, the orbit through qh,t spi-
rals around the unstable manifold of e− as many
times as we want. From this, we conclude that the
point m− is contained in ΣΠ−(Th). Also, the set
Π+Π− (Th) is homeomorphic to S1 and the point
Π+ (m−) is contained in the bounded region lim-
ited by Π+Π− (Th) .

We are looking for conditions on h in order
to conclude that the segment Th and its image
Π+Π− (Th) intersect transversally, see Figure 3.
In Lemmas 5.1 and 5.2 we derive expressions as
power series in h for the coordinates of Π− (Th) and
Π+Π− (Th) , respectively.

Lemma 5.1. Consider a piecewise linear differen-
tial system (1) with parameters λ > 0 small enough,
δ ∈ (0, 1.3] and R = R (λ, δ). If h is sufficiently
small, then the topological circle Π− (Th) is con-
tained in the annular region centered at the point
m− with radii

ρ1 = hδ
(
λδ−1 − 4

√
πδλδ− 1

2 + O
(
λδ

))
,

ρ2 = hδ
(
λδ−1 + 4

√
πδλδ− 1

2 + O
(
λδ

))
.

Fig. 3. Images of the segment Th by the maps Π−
and Π+Π−

Proof: First of all we compute the point
Π−1
− (qh) and the segment Th for any 0 < h <

1/λ. Since the point qh tends to the point q as
h tends to zero, the flying time s−

Π−1
− (qh)

tends to

s0 = s−
Π−1
− (q)

as h tends to zero. Therefore, we can

write s−
Π−1
− (qh)

= s0 + O(h). In Lemma 4.1 we have

already obtained an expression for s0 = s−
Π−1
− (q)

∈
(π/ω, 2π/ω) in power series of λ. However, we
present the following computations in terms of s0

and use the implicit equation x−q (−s0) = 0, or
equivalently

ωes0δλ cos (ωs0)− λδes0δλ sin (ωs0)− ω = 0,

to simplify the obtained expressions.
Expanding x−qh

(−s) as power series of h at the
approximate time s = s̃−

Π−1
− (qh)

= s0 + s1h, we get

x−qh

(
−s̃−

Π−1
− (qh)

)
= x1h + O(h2),

where

x1 =− es0δλ sin (ωs0)
λω

s1

+

(
e−s0λ − 1

)
ω + es0δλ sin (ωs0) λ

ω (λ2 + 4λ2δ + 1)
.

Hence, setting

s1 = λ
ω

(
e−s0λ − 1

)
+ λes0δλ sin (ωs0)

es0δλ sin (ωs0) (λ2 + 4λ2δ + 1)
,
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we obtain x1 = 0. From this, it follows that

x−qh

(
−s̃−

Π−1
− (qh)

)
= O

(
h2

)
,

y−qh

(
−s̃−

Π−1
− (qh)

)
= y0 + y1h + O

(
h2

)
,

z−qh

(
−s̃−

Π−1
− (qh)

)
= z0 + z1h + O

(
h2

)
,

where

y0 =
eλδs0 sin (ωs0)

λω
,

y1 =
1

1 + λ2 + 4λ2δ

[ (
e−λs0 − 1

)
ω

eλδs0 sin (ωs0)
+ λe−λs0

+ 2λδ(e−λs0 − 1)−
(
1 + 2λ2δ

)
eλδs0 sin (ωs0)
ω

]
,

z0 =− 1
λ
− 2λδy0,

z1 =e−λs0 − 2λδy1.

We now study the error order in h in the ap-
proximate time s̃−

Π−1
− (qh)

and consequently in the

coordinates of Π−1
− (qh). From the expansion of

s0 in power series of λ which appears in Lemma

4.1, we have y−qh

(
−s̃−

Π−1
− (qh)

)
= O

(
λ−1/2

)
and

z−qh

(
−s̃−

Π−1
− (qh)

)
= O

(
λ−1

)
. By the Mean Value

Theorem, it follows that s−
Π−1
− (qh)

= s̃−
Π−1
− (qh)

+

O(h2) and the error order in h in the coordinates
of Π−1

− (qh) is O
(
h2

)
. Then,

x−qh

(
−s−

Π−1
− (qh)

)
= 0,

y−qh

(
−s−

Π−1
− (qh)

)
= y0 + y1h + O

(
h2

)
, (13)

z−qh

(
−s−

Π−1
− (qh)

)
= z0 + z1h + O

(
h2

)
.

Therefore, the points qh,t of the segment Th can be
written as

qh,t =




0
ty0 + ty1h + O

(
h2

)
− 1

λ − 2λδty0 + vh + O
(
h2

)


 ,

where v = 1− t + t
(
e−λs0 − 2λδy1

)
and t ∈ [0, 1).

To obtain Π− (Th) , we first compute the flying
time s−qh,t

of the orbit γqh,t
through the point qh,t,

for every t in [0, 1). Since s−qh,t
is the first positive

zero of the following equation

x−qh,t
(s) =e−λδs

[
D1

qh,t
cos (ωs) + D2

qh,t
sin (ωs)

]

+ D3
qh,t

eλs − 1
a
,

see (6), we consider the approximate value s̃−qh,t
=

s̃0(h, t) + s̃1(h, t)hδ to s−qh,t
, where the first term

s̃0(h, t) is chosen to satisfy

D3
qh,t

eλs̃0(h,t) =
1
a
, (14)

and the coefficient s̃1(h, t) in the second term will be
selected appropriately to cancel other terms in the
expression of x−qh,t

(s̃−qh,t
). We note that s̃0(h, t) is

the flying time spent by the orbit γqh,t
to go from

qh,t to the parallel plane to P− passing through
the point m−. Therefore s̃−qh,t

tends to s̃0(h, t) as h
tends to zero. We conclude that if h tends to zero,
then s̃1(h, t)hδ tends to zero. Moreover, we will
prove that it is enough to take s̃1(h, t) = O

(
λδ−1

)
.

Substituting

D3
qh,t

=
1− t + te−λs0

1 + λ2 + 4λ2δ
h + tO

(
h2

)

in (14), we obtain

s̃0(h, t) =
1
λ

ln
(

1 + λ2 + 4λ2δ

hλ(1 + 2λ2δ)(1− t− te−λs0)

)

+ tO(h). (15)

The last term in the above two expressions means
that both are exact for t = 0. To shorten expres-
sions, from now on we write s̃0 instead of s̃0(h, t).

Expanding in Taylor series x−qh,t
(s) at s = s̃0,

it follows that

x−qh,t
(s̃−qh,t

) =x−qh,t
(s̃0) + y−qh,t

(s̃0)s̃1(h, t)hδ

+ O(s̃2
1(h, t)h2δ),

where

x−qh,t
(s̃0) =hδ

[
D1

qh,t
cos (ωs̃0) + D2

qh,t
sin (ωs̃0)

]

×
[
λ(1 + 2λ2δ)(1− t− te−λs0)

1 + λ2 + 4λ2δ

]δ

+ O(h1+δ)

and y−qh,t
(s̃0) tends to the second component of m−

as h tends to zero.
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Hence, if we take

s̃1(h, t) =−
D1

qh,t
cos (ωs̃0) + D2

qh,t
sin (ωs̃0)

y−qh,t(s̃0)

×
[
λ(1 + 2λ2δ)(1− t− te−λs0)

1 + λ2 + 4λ2δ

]δ

the solution at the approximate time s̃−qh,t
satisfies

x−qh,t
(s̃−qh,t

) =O
(
h1+δ

)
,

y−qh,t
(s̃−qh,t

) =hδ
[
−λδ−1 sin (ωs̃0)

−λδ

(
1 +

2t
√

πδ√
λ

)
cos (ωs̃0)

+O
(
λδ+ 1

2

)]
+

λ

a
+ O

(
h1+δ

)
,

z−qh,t
(s̃−qh,t

) =hδ
[
−λδ−1 cos (ωs̃0)

+λδ

(
δ − 2t

√
πδ√
λ

)
sin (ωs̃0)

+O
(
λδ+ 1

2

)]
+

λ2

a
+ O

(
h1+δ

)
.

By the Mean Value Theorem, the error order
in h of s−qh,t

− s̃−qh,t
is equal to the error order of the

difference x−qh,t
(s−qh,t

) − x−qh,t
(s̃−qh,t

); that is, s−qh,t
=

s̃−qh,t
+ O

(
h1+δ

)
. Therefore, we conclude that

x−qh,t
(s−qh,t

) =0,

y−qh,t
(s−qh,t

)− λ

a
=hδ

[
−λδ−1 sin (ωs̃0)

−2t
√

πδλδ− 1
2 cos (ωs̃0) + O

(
λδ

)]

+ O
(
h1+δ

)
,

z−qh,t
(s−qh,t

)− λ2

a
=hδ

[
−λδ−1 cos (ωs̃0)

−2t
√

πδλδ− 1
2 sin (ωs̃0) + O

(
λδ

)]

+ O
(
h1+δ

)
.

From this the lemma follows straightforward.
¤

For every ρ > 0 we consider the circle
Cρ =

{
m− + ρ (0, cos (θ) , sin (θ))T : θ ∈ [0, 2π)

}

centered at the point m− and with radius ρ. In
the next result, we compute the coordinates of the
topological circle Π+ (Cρ) in power series of ρ.

Lemma 5.2. Denote by mρ,θ the points in Cρ.
Then, for the orbits through these points, we have

x+
mρ,θ

(
s+
mρ,θ

)
=0,

y+
mρ,θ

(
s+
mρ,θ

)
=y+

m−

(
s+
m−

)

+ ρ
[
y+
m−

(
s+
m−

)
cos (θ) + O

(
λ2

)]

+ O
(
ρ2

)
,

z+
mρ,θ

(
s+
mρ,θ

)
=z+

m−

(
s+
m−

)

+ ρ
[
z+
m−

(
s+
m−

)
cos (θ) + O

(
λ0

)]

+ O
(
ρ2

)
.

Proof: Note that




C1
mρ,θ

C2
mρ,θ

C3
mρ,θ




=M+




− 1
µ

λ

a
+ ρ cos (θ)

λ2

a
+ ρ sin (θ)




=




C1
m−

C2
m−

C3
m−




+ ρ




C1
θ

C2
θ

C3
θ




,

where M+ is the matrix with parameters L, R and
Ω which appears in (5). With the notation gθ(s) =
C1

θ eRs cos (Ωs)+C2
θ eRs sin (Ωs)+C3

θ e−Ls, it is easy
to see that the flow on the circle Cρ can be written
as follows

x+
mρ,θ

(s) = x+
m− (s) + ρgθ(s),

y+
mρ,θ

(s) = y+
m− (s) + ρg′θ(s),

z+
mρ,θ

(s) = z+
m− (s) + ρg′′θ (s).

For a suitable value ŝθ, it is clear that s̃+
mρ,θ

=
s+
m− + ŝθρ approaches s+

mρ,θ
as ρ tends to zero.
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Moreover, since

x+
mρ,θ

(
s̃+
mρ,θ

)
=ρ

[
gθ

(
s+
m−

)
+ ŝθy

+
m−

(
s+
m−

)]

+ O
(
ρ2

)
,

y+
mρ,θ

(
s̃+
mρ,θ

)
=y+

m−

(
s+
m−

)

+ ρ
[
g′θ

(
s+
m−

)
+ ŝθz

+
m−

(
s+
m−

)]

+ O
(
ρ2

)
,

z+
mρ,θ

(
s̃+
mρ,θ

)
=z+

m−

(
s+
m−

)

+ ρ
[
g′′θ

(
s+
m−

)
+ ŝθ − ŝθy

+
m−

(
s+
m−

)

−ŝθβz+
m−

(
s+
m−

)]
+ O

(
ρ2

)
,

setting ŝθ = −gθ

(
s+
m−

)
/y+

m−

(
s+
m−

)
we have

x+
mρ,θ

(
s̃+
mρ,θ

)
= O

(
ρ2

)
. By the Mean Value

Theorem, it follows that s+
mρ,θ

= s+
m− + ŝθρ +

O
(
ρ2

)
, y+

mρ,θ

(
s+
mρ,θ

)
= y+

mρ,θ

(
s̃+
mρ,θ

)
+O

(
ρ2

)
and

z+
mρ,θ

(
s+
mρ,θ

)
= z+

mρ,θ

(
s̃+
mρ,θ

)
+ O

(
ρ2

)
.

From Proposition 4.4, s+
m− = θ∗K∗λ + O

(
λ3

)
.

Then, taking into account that

C1
θ =

1
6
K∗λ cos(θ)− 1

12
K∗2λ2 sin(θ) + O

(
λ3

)
,

C2
θ =

√
3

6
K∗λ cos(θ) +

√
3

12
K∗2λ2 sin(θ) + O

(
λ3

)
,

C3
θ = −1

6
K∗λ cos(θ) +

1
12

K∗2λ2 sin(θ) + O
(
λ3

)
,

we have

gθ

(
s+
m−

)
=
√

3
6

K∗2eθ∗ sin
(√

3θ∗
)

sin (θ) λ2

+ O
(
λ3

)
,

g′θ
(
s+
m−

)
=

1
3

[
2eθ∗ cos

(√
3θ∗

)
+ e−2θ∗

]
cos (θ)

+ O
(
λ2

)
,

g′′θ
(
s+
m−

)
=− 4eθ∗ sin

(√
3θ∗

)
√

3K∗λ
cos (θ) + O

(
λ0

)

=− 1
λ

cos (θ) + O
(
λ0

)
.

Therefore, ŝθ = O
(
λ2

)
. By using the ex-

pansion in power series of λ of the coordinates
y+
m−

(
s+
m−

)
and z+

m−

(
s+
m−

)
, which appear in

Proposition 4.4, the lemma follows. ¤

Consider now two segments Th and Th′′ ,
where 0 < h′′ < h and h small enough.
The topological circle Π− (Th′′) is contained in
an annular region with center at m− and radii
ρ1 = (h′′)δ

(
λδ−1 − 4

√
πδλδ−1/2 + O(λδ)

)
and ρ2 =

(h′′)δ
(
λδ−1 + 4

√
πδλδ−1/2 + O(λδ)

)
, see Lemma

5.1. Let Cρ1 the inner boundary of such annular re-
gion. The points on the topological circle Π+ (Cρ1)
satisfy

z+
mρ1,θ

(
s+
mρ1,θ

)
+ 2λδy+

mρ1,θ

(
s+
mρ1,θ

)

= − 1
λ

+ρ1

[
− 1

λ
cos (θ) + O

(
λ0

)]
+ O

(
ρ2
1

)
,

see Lemma 5.2. Since z +2λδy = h− 1/λ is the ex-
pression of the straight line parallel to D− through
the point qh, a sufficient condition on h and h′′ in
order to conclude that Th and Π+Π− (Th′′) intersect
transversally is

h <
(
h′′

)δ
[
−λδ−2 cos (θ) + O

(
λδ− 3

2

)]
, (16)

for some θ. Moreover, z + 2λδy = e−λs0h − 1/λ is
the expression of the line parallel to D− through
the point Π−1

− (qh) , see (13). Hence, a sufficient
condition on h and h′′ in order to assure that Th

and Π+Π− (Th′′) do not intersect is

e−λs0h >
(
h′′

)δ
[
−λδ−2 cos (θ) + O

(
λδ− 3

2

)]
, (17)

for every θ.
According to [Robinson, 1999], to prove that

the Poincaré map Π+Π− define a Smale horseshoe
in a neighbourhood of the homoclinic orbit it is
enough to find a rectangle R on the cross section
{x = 0} in such a way that its image Π+Π− (R)
can be obtained by compressing in the y direction,
stretching in the z direction, folding the resulting
rectangle and fitting it back onto the original rect-
angle R.

For h > 0 small enough, we construct a rect-
angle Rh as follows. Consider the point qh. As we
have proved in Lemma 5.1,

Π− (qh)−m−

=hδλδ−1




0
− sin(ωs̃0(h, 0)) + O(λ1/2)
− cos(ωs̃0(h, 0)) + O(λ1/2)


 .
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Therefore, Π− (qh) spirals around m− as h tends
to zero, see (15). Moreover, the angular coordinate
ηh of Π− (qh) with respect to m− satisfies

tan(ηh) = tan(ωs̃0(h, 0)) + O(λ1/2).

Hence ηh = ωs̃0(h, 0) + O(λ1/2).
We define the points qh′ and qh′′ in such a way

that 0 < h′′ < h′ < h and ηh′ = ηh + 2π and
ηh′′ = ηh + 4π, see Figure 4. Therefore, from (15)
it follows that

h

h′
= e

2πλ
ω + O(λ3/2),

h

h′′
= e

4πλ
ω + O(λ3/2).

Define the rectangle Rh with vertices at qh, qh′ ,
Π−1
− (qh′′) and Π−1

− (qh′) .

Fig. 4. Geometric construction of a horseshoe

From (16) a sufficient condition on h in order to
assure that Π+Π− (Rh) and Rh intersect transver-
sally is

h < hδ
[
−e−

4πλδ
ω λδ−2 cos(θ) + O

(
λδ−3/2

)]
(18)

for some θ.

Since ω = O(λ0), see (3), the exponential in
(18) tends to 1 as λ tends to zero. Hence, for a
fixed δ in (0, 1] and θ = π, it easy to see that there
exists h1 > 0 such that inequality (18) holds for
every h ≤ h1. In short, for 0 < δ ≤ 1 we have
proved the existence of horseshoes as close as we
want to the homoclinic orbit, see Figure 5(a). Con-
sequently, the Poincaré map Π+Π− has the shift of
two symbols as a subsystem, see [Robinson, 1999]
for more details.

Since (18) holds for δ = 1 and h = h1, there
exists a function ε(λ) > 0 such that for every δ ∈
(1, 1 + ε(λ)) and h < h1 but close to h1, inequality
(18) holds.

From (17), a sufficient condition on h in order
to conclude that Π+Π− (Rh) and Rh do not inter-
sect is

h > hδeλs0

[
−e−

4πλδ
ω λδ−2 cos (θ) + O

(
λδ−3/2

)]
,

for every θ in [0, 2π] . We note that for θ = π,
the right hand side of the previous inequality takes
its maximum value. Moreover, both exponentials
tends to 1 as λ tends to zero. Therefore, if λ is small
enough, when δ > 1 there exists a value h2 > 0 in
(0, h1) such that for every 0 < h < h2 the inequal-
ity holds for every θ in [0, 2π], which implies that
Π+Π− (Rh) and Rh do not intersect.

In short, for δ ∈ (1, 1 + ε(λ)) and h < h1, but
close to it, Π+Π− (Rh) and Rh intersect transver-
sally. Therefore, some horseshoes persist but far
from the homoclinic orbit. However, if h ∈ (0, h2),
then Π+Π− (Rh) and Rh do not intersect, so
those horseshoes closer to the homoclinic orbit are
destroyed, as Figure 5(b) illustrates. This proves
Theorem 1.2.

Fig. 5. (a) Existence of horseshoes for δ ≤ 1 and
0 < h < h1. (b) For δ ∈ (1, 1 + ε(λ)), persistence of
the horseshoes for h2 ¿ h < h1 and destruction for
h < h2.

(a)

(b)

Rh (0 < h < h1)

Rh (h2 ¿ h < h1)

Rh (0 < h < h2)
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maps in piecewise linear differential systems in
R3,” Int. J. Bifurcations and Chaos 14, 2843–
2851.

Pumariño, A. & Rodriguez, J. A. [2001] “Coexis-
tence and persistence of infinitely many strange
attractors,” Ergod. Th. & Dynam. Sys. 21,
1511–1523.

Rodriguez, J. A. [1986] “Bifurcation to homoclinic
connections of the focus–saddle type,” Arch. Ra-
tional Mech. Anal. 93, 81–90.

Robinson, C. [1999] “Dynamical systems, stability,
symbolic dynamics, and chaos”, second edition,
CRC Press.

Shil’nikov, L. P. [1965] “A case of the existence
of a denumerable set of periodic motions,” Sov.
Math. Dokl. 6, 163–166.

Shil’nikov, L. P. [1970] “A contribution to the prob-
lem of the structure of an extended neighbour-
hood of a rough equilibrium state of saddle–focus
type,” Math. USSR Sbornik 10, 91–102.

Shil’nikov, L. P., Shil’nikov, A., Turaev, D. & Chua,
L. [2001] “Methods of qualitative theory in non-
linear dynamics. Part II, World Sci. Publ.


