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Abstract

The recent detections of gravitational waves performed by the Advanced LIGO and Advanced Virgo
interferometers have established an entirely new channel to probe information from the Universe. In a
complementary fashion to electromagnetic waves, gravitational waves are perturbations of the spacetime,
traveling through the Universe.

So far, the detected gravitational waves were produced as a result of the coalescence of compact objects,
such as black holes or neutron stars. They emit a highly concentrated burst of energy, following a well-
understood propagation mechanism. However, there is more.

It is theoretically described that some compact objects are able to sustain imperfections in its shape for
a long period of time. The most common example is given by a neutron star, the crust of which may
present a small bump which corresponds to a deviation from a perfectly symmetric object. Due to the
persistence in time of such physical mechanisms, the emitted signal presents a remarkable property with
respect with the previous situation: It may last for long periods of time, compared to the extremely short
duration of the coalescence of compact binaries; thus, we label these signals as continuous waves.

The detection of such continuous signals will open a new chapter in gravitational wave astronomy, ex-
tending the field from transient signals to the observation of persistent sources, which can be monitored
with ever increasing precision, over very long periods of time, as is common in traditional electromag-
netic astronomy. Due to the modulation of the signal resulting from the motion of the Earth, it will be
possible to accurately measure both gravitational wave polarizations, and the accurate tracking of the
gravitational wave phase over many years will yield information about the equation of state and possible
transient events like seismic activity in the neutron star crust.

The work presented here further develops the capabilities of the SkyHough pipeline, which is one of
the main tools used by the LIGO and Virgo Collaboration to search for continuous wave signals. This
search algorithm implements the Hough transform, which is a type of pattern recognition algorithm, first
developed to recognize particle tracks in bubble chambers. One of the main advantages of this method
has been its robustness against noise.

As opposed to current searches for transients, like comparable mass compact objects, searches for contin-
uous wave signals are limited by computational resources, and carrying out optimally sensitive searches is
computationally prohibitive. All-sky searches are therefore typically carried out semicoherently: a stream
of data is first split into different time segments, then a suitable quantity measuring significance is as-
signed to each segment. Finally, the results for each segment are combined into a single quantity, which
can be used to state the presence of a signal within the analyzed dataset.

Noise artifacts populate every step of the statistical procedure. Even though one can attempt to construct
an analytical derivation of the noise statistical properties at each step, it is more reliable to work with



numerical approaches, as they take into account the effects measured by the data analysis procedure. A
good representation of the noise distribution is important to state the significance of a certain result.

The main contribution of this work is the development of a new formulation which combines data from
different detectors into a single analysis. This new method relies on a more accurate estimation of the
noise, which replaces the assumption of some prescribed underlying noise distribution, as has been used
in previous versions of the SkyHough pipeline. This noise estimation is based on the introduction of
an efficient random sampling procedure in the large parameter space of signals. Working with this new
accurate estimate of the background noise distribution, one is able to increase the sensitivity of the
searches, as a better understanding of the background behavior translates to a better identification of
signals in terms of its statistical significance.

In addition, I have started to explore further improvements to the SkyHough pipeline: the use of the
universal statistics approach of [26], the use of artificial neural networks for candidate classification, and
the utilization of a method developed by [19] to deal with spectral leakage. These investigations are not
yet concluded, but allow us to explore the directions in which data analysis pipelines for continuous wave
searches may evolve in the near future.

Together with the continuously increasing sensitivity of our detectors, it is expected that these improve-
ments will contribute to keep the SkyHough pipeline at the forefront of data analysis of continuous waves,
pointing us towards the correct way to a first detection.

The document is structured as follows: Chapter 1 introduces the basic theory on gravitational waves and
interferometric detectors; chapter 2 introduces neutron stars, discussing their relevance within the field of
continuous gravitational waves; chapter 3 describes the SkyHough pipeline for the detection of continuous
gravitational waves; chapter 4 introduces the S6 Mock Data Challenge, which is the data set that we used
to test our improvements against previous implementations of the SkyHough pipeline; chapter 5 discusses
the main results, implementing the sampling procedure to properly take into account the contribution of
noise fluctuations into the data analysis pipeline; chapter 6 describes some minor developments, still on
an experimental stage, which could yield relevant contributions to the data analysis procedure; chapter 7
concludes the work, summarizing the main results.
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Chapter 1
Introduction to Gravitational Waves

1.1 General Relativity: Linearized Theory

Einstein’s general theory of relativity introduces a geometric approach to the description of gravity,
unifying the classical conceptions of space and time into a single object, the spacetime. As a result,
gravity and intertia are sewed together as a pure manifestation of the spacetime geometry.

The actual interaction between matter and geometry is given in terms of the Einstein Field Equa-
tions

Gab = 8πTab , (1.1)

a tensorial equation which involves the Einstein tensor Gab and the stress-energy tensor Tab. The former
describes the spacetime geometry, while the latter describes the way in which matter flows within it; in
some sense, matter tells spacetime how to curve, and spacetime tells matter how to flow. The equation
is written using natural units: The speed of light is set to c = 1, as well as the gravitational constant
G = 1, allowing length, time and mass to be described using the same units.

The Einstein tensor is described in terms of a more fundamental object, the metric tensor gab, due to
which spacetime is endowed with a geometry. However, the functional relation between Gab and gab is
highly non-linear, difficulting the task of finding analytical solutions.

Nevertheless, one may try to develop a linearized version of the theory, working on perturbations over a
background metric. For instance, we could choose to set a flat, empty background, where free particles
move following straight lines; such a space would be described by the Minkowski metric ηab and a null
stress-energy tensor, Tab = 0. Introducing this considerations into (1.1) and expanding up to linear order
in the perturbation one ends up with a wave equation

�hTTab = 0 , (1.2)

where � represents the D’Alembertian operator and the label TT denotes the choice of a specific gauge
condition. This wave-like perturbations are called Gravitational Waves (GW).

Being a general covariance theory, general relativity allows a free choice of coordinates to describe the
ongoing physics. For instance, the aforementioned Transverse Traceless (TT) gauge is well suited to
describe traveling waves, since they become pure spacetime deformations perpendicular to the direction
of propagation. Choosing a Cartesian frame of reference (t, x, y, z), the amplitude of a GW traveling

11



Chapter 1. Introduction to Gravitational Waves

Figure 1.1: Effect of the different polarizations of a gravitational wave traveling across a ring of test
masses along the normal direction. They produce perturbations towards perpendicular directions in an
alternated fashion. Both polarizations differ by a rotation of 45◦, hence its names. Source: [78]

towards +z would be given by

hTTµν =


0 0 0 0
0 h+ h× 0
0 h× −h+ 0
0 0 0 0

 , (1.3)

where h+,× stand for the two allowed polarizations of a gravitational wave. We refer to [53] for a de-
tailed derivation of this fact. Figure 1.1 illustrates the behavior of both polarizations on a ring of test
masses.

The choice of the TT gauge implies a particular frame of reference: The coordinate curves are trajectories
of free falling, test masses. That leads to the following result: A pair of test masses initially at rest with
respect to each other before the transient of a GW will still be at rest even after the transient, since their
coordinates, given by its own trajectories, will remain unchanged. However, if we were to compute the
actual distance between the same pair of masses, we would realize a variation due to the gravitational
wave transient, since the spacetime metric is perturbed. Hence, from the TT frame, gravitational waves
deform spacetime.

There exist a second option to model the effects of gravitational waves, more suited to the experimental
measurements: Regard its effects as classical, tidal forces. This can be done by constructing a coordinate
system using rigid rods1, actually encapsulating the effect of gravitational waves into the displacement
between test masses, which are pushed and pulled by a fictitious force. Such a displacement is currently
measured by means of laser interferometry, as we will discuss during the following sections.

1.2 Emission of Gravitational Waves

So far, we have described the traveling process of gravitational waves. If we attempt to describe its
emission, we will inevitably face a major issue, since our linearized theory turns out invalid in the strong
regime that dominates such a process.

1Given a rod with length L, the deformation imprinted by the transit of a GW with frequency ω is given by ∆L ∼
(
ω
ω0

)2

,

where ω0 ∼ L−1 is the fundamental frequency of the rod. Hence, the assumption on rigid rods is valid as long as we consider
them to be as short as needed.

12



1.2. Emission of Gravitational Waves

In order to circumvent this problem, we will grasp the production of gravitational waves through a direct
comparison with electromagnetic theory. Thanks to the similarities between Newton’s and Coulomb’s
descriptions, taking e2 → −m2 will suffice this purpose. This duality among classical field theories can
be used to identify further variables and impose further constraints into possible emission mechanisms
through the use of conservation laws.

First, as does electrical charge, mass satisfies conservation principle, which forbids any form of monopolar
radiation. As for the dipole radiations, we could attempt to write analogous to the electric and magnetic
dipole radiations: The first one relies on linearly accelerating charges, which translate into accelerating
bodies through the previously stated duality; due to global lineal momentum conservation, this emis-
sion channel becomes forbidden. As for the second one, it can be described in terms of current loops,
which becomes related to the total angular momentum of a system; again, conservation of global angular
momentum vetoes this mechanism. Hence, there is no dipolar gravitational radiation.

We need to reach quadrupolar radiation order achieve a feasible mechanism of gravitational waves emis-
sion. Defining Jab as the mass quadrupole moment, completely analogous to its electromagnetic version,
the metric perturbation in TT gauge for a mass distribution will be given by

hTTab (t, ~r) =
1

r

2G

c4
J̈ab(t− r/c) , (1.4)

where ~r represents the position from the source and time differentiation is represented by dots.

The rate of energy emitted through quadrupolar radiation can be expressed as the gravitational luminosity
LGW in terms of third temporal derivatives on the quadrupolar mass tensor

LGW =
1

5

G

c5
〈
...
J ab

...
J ab〉 . (1.5)

Simply stated, any non-axisymmetric mass distribution can potentially emit gravitational waves.

Let us consider particular case of an isolated, quasi-spherical, spinning object with mass M and radius R.
Quasi-sphericity will be achieved by breaking the degeneracy on the three principal moments of inertia
I1, I2, I3, using the equatorial ellipticity as an adimensional quantity of such a magnitude

ε =
I1 − I2
I3

, (1.6)

being ε = 0 the case of an axisymmetric object. Its gravitational luminosity will be given by (1.5)

LGW ∼
G

c5
ε2I23ν

6 , (1.7)

where ν stands for the spinning frequency of the object. In order to express the order of magnitude in a
useful manner, we will refer distances to the Schwarschild radius Rs = 2GMc−2 and rewrite frequencies
in terms of the spinning velocity of the body v = 2πRν. All along, we obtain

LGW ∼
c5

G
ε2
(
Rs
R

)2 (v
c

)6
, (1.8)

which clearly indicates that the most suitable gravitational wave sources are compact objects (i.e. R ∼ Rs)
rotating at high velocities (i.e. v ∼ c) with a sustained ellipticity ε. Being c5/G ∼ 1052W , even small
departures from axisymmetry will imply a significant flow of energy.

The related amplitude of the gravitational wave can be derived from (1.4)

h0 ∼ 3 · 10−25
( ε

10−6

)( I3
1038kgm2

)( ν

100Hz

)2(100pc

r

)
, (1.9)

where the scales are taken in a compatible fashion with nearby neutron stars in our galaxy. It becomes
clear that gravitational waves represent a major trial on experimental physics, due to the extremely small
effects over terrestrial objects.
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Chapter 1. Introduction to Gravitational Waves

Figure 1.2: Schematic view of an interferometric gravitational wave detector. Source: [63]

−150◦−120◦−90◦−60◦−30◦ 0◦ 30◦ 60◦ 90◦ 120◦ 150◦

−75◦
−60◦

−45◦
−30◦
−15◦

0◦
15◦

30◦
45◦

60◦
75◦

Antenna Beam Pattern ψ = 2 · π3

−0.75 −0.50 −0.25 0.00 0.25 0.50 0.75
F+(ψ + π

4) = F×(ψ)

−150◦−120◦−90◦−60◦−30◦ 0◦ 30◦ 60◦ 90◦ 120◦ 150◦

−75◦
−60◦

−45◦
−30◦
−15◦

0◦
15◦

30◦
45◦

60◦
75◦

Antenna Beam Pattern ψ = 5 · π3

−0.75 −0.50 −0.25 0.00 0.25 0.50 0.75
F+(ψ + π

4) = F×(ψ)

Figure 1.3: Molweide projection of the Antenna Beam Pattern of an interferometric detector, showing
the response to gravitational waves coming from sources with two particular polarizations. Values close
to ±1 indicate that the gravitational wave produces a differential motion over the two arms, while null
values correspond to a gravitational wave which creates a consonant perturbation over both arms.

1.3 Detection of Gravitational Waves

Nowadays, the detection of gravitational waves is performed using interferometric detectors. The idea is
to set up the mirrors that conform the interferometer as free falling masses; that way, a laser beam can
be used to measure spacetime perturbations following the spirit of previous section.

The actual measurement is performed by taking into account the alternated perturbation of mirrors
located at both interferometers. As discussed in figure 1.1, gravitational waves will disturb the position of
free falling masses in a alternated fashion, according to its two polarizations h+,×. Taking the separation
between the beam splitter and the end mirrors to be L, the perturbation due to a gravitational wave can
be expressed in terms of the length variation ∆L as the strain

h(t) ≡ ∆L(t)

L
= F+(~n, ψ; t)h+(t) + F×(~n, ψ; t)h×(t) . (1.10)

F+,× are the antenna beam pattern functions, which represent the response of the detector to a particular
wave polarization coming from the sky position ~n with the main axis of its + polarization twisted by

14



1.3. Detection of Gravitational Waves

Figure 1.4: Interferometric gravitational wave detectors. Left and Center: LIGO Livingston and LIGO
Hanford observatories, located in the United States of America. Right: Virgo observatory, located in
Italy. Source: [50, 85].

an angle of ψ. Figure 1.3 shows the detector response to a certain polarization as a function of the sky
position. The exact form of F+ and F× can be found in [41].

By principle, interferometric detectors are omnidirectional, as opposed to telescopes, which must be
pointed towards a certain sky position: They act alike microphones. This is advantageous, since almost
every single sky position is covered at once, being the exception the points in which the antenna pattern
response is low,

Although it is an omnidirectional instrument, sky locations can be easily determined using the suitable
startegy: For the case of a continuous signal (i.e. a persistent signal in time), the sky position can be
tracked down using the Doppler effect introduced by the Earth’s movement and the anisotropic detector
response; as for the case of a transient signal, multiple detectors can be used to infer the position of the
source.

Nowadays, there are four operative interferometric detectors around the world, managed by three scientific
collaborations: The LIGO Scientific Collaboration, which runs two interferometers located in the United
States of America; the GEO Collaboration, which runs a 600 meter interferometer located in Hannover,
Germany, and the Virgo Scientific Collaboration, which runs an interferometer located in Italy. LIGO
and Virgo posses the most sensitive instruments, as they are an enhanced version of the initial facilities;
regarding GEO, it is mainly use to prototype and test new features which may become useful for future
generations of gravitational wave observatories.

Such an amount of observatories allows for a substantial amount of measurements to be performed: If
we talk about transient signals, a triple interferometer detection could yield a precise definition of the
sky position, as well as accurate measurements of the gravitational wave polarizations; as for continuous
signal, it would yield a confident check on its persistence, as well as a confident measurement of its sky
location.

1.3.1 Power Spectral Density of a Detector

Interferometric detectors are continuously affected by noise. As we discussed in section 1.2, the expected
gravitational wave amplitudes are located at the bleeding edge of current technology; hence, understanding
the response of the detector to undesired external perturbations is an important task, both to mitigate
them and to prevent spurious results to be treated as detections.

Noise is usually characterized via its power spectral density (PSD); that is,the Fourier transform of the
autocorrelation of an ensemble of measurements n(t). It is customary to use the single sided power
spectral density, which is spanned over the positive frequency region of the spectrum, since any performed
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Chapter 1. Introduction to Gravitational Waves

Figure 1.5: Amplitude Spectral Density of the LIGO Livingston (left) and Hanford (right) interferometers
during the last observation runs, O1 and O2. Source: [22].

measurement is going to be a real quantity:

Sn(f) = 2

∫ ∞
−∞
〈n(t)n(0)〉e−2πiftdt . (1.11)

〈·〉 denotes ensemble average. The actual estimation of power spectral density depends on the kind of
analysis performed, as one has to take into account the presence of real signals within the data: Some
pipelines rely on robust estimations based on the statistical median, while others plead for auto-regressive
estimations. Equivalently, one could quote the amplitude spectral density (ASD), defined as the square
root of the PSD.

Different interferometers will differ on its PSD, either by construction or due to environmental distur-
bances. As so, a new magnitude is introduced to quote the actual sensitivity to a gravitational wave in a
noise-independent fashion. For a gravitational wave with amplitude h0, we define its sensitivity depth as
the ratio between the ASD and the amplitude of the gravitational wave

D(f) =

√
Sn(f)

h0
. (1.12)

The weaker the signal is with respect to the noise, the deeper it is burdened into the noise.

Figure 1.5 shows the noise amplitude spectral density of the LIGO detectors during the last observation
runs. Multiple effects can cause noise at different frequency ranges. For instance, seismic or instrumental
vibrations couple to the low frequency band of the detector, up to 20Hz, while thermal fluctuations on the
mirrors or quantum fluctuations coming from the laser beam dominate at higher frequencies. In addition,
there is a vast population of transient noise sources related to the environment of the detector, such as
adverse meteorological conditions, interactions with the local fauna or human activity.

Searches for transient signals must worry about that kind of noise, since its appearance in the detector
resembles the shape of a gravitational wave, due to the general trend followed by transient events, ringing
and decaying as a bell would do. However, if we were targeting a persistent signal, our concerns would be
focused on the ensemble of spikes or lines shown in figure 1.5, which correspond to persistent sources of
noise. Some of them are widely know, such as the harmonics of 60Hz, which correspond to the frequency
of A.C. in the US; others, such as the comb of lines presented in both detectors, are poorly understood
and require a further analysis. An study on this subject for the last observation runs can be found in
[22].
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1.3. Detection of Gravitational Waves

Figure 1.6: Noise contributions for the Livingston observatory during the O2 observing run. Source: [79].

1.3.2 General Noise Contributions

We proceed to expose the main sources of noise in an interferometric gravitational wave detector. Figure
1.6 shows the main contributions at each frequency for the LIGO Livingston interferometer during the
O2 observing run.

Below 40Hz, the main noise contribution is given by the seismic noise; that is, vibrations. Any nearby
vibration can potentially reach the detector and couple to the subjection wires of the mirrors. This
is not limited to telluric motion, as there are contributions from the surrounding environment, such as
gravitational gradients, or direct effects on the interferometers, such as human activity,

The central region of the spectra is dominated by thermal noise: Mirrors have finite temperature, which
implies certain vibration of its components. The use of different materials and components can low this
contribution. From a more extreme point of view, it is feasible to work under cryogenic temperatures, as
its done by the KAGRA interferometer, located in Japan [39].

Finally, above 200Hz the dominant noise comes from the laser, called shot noise. Measurements are
performed on a photodiode, using the interference of laser. Due to the quantum effects that get into play,
there exists an intrinsic uncertainty into such a measurement. Nowadays, the use of squeezed vacuum is
being proposed as a solution to this particular contribution.

As interferometers progress, so do their sensitivities. Figure 1.7 represents the sensitivity curves of four
interferometric detectors. Comparing to the sensitivity of GEO600, the improvement on the Advanced
LIGO and Advanced Virgo detectors is clear.
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Figure 1.7: Amplitude spectral density of different gravitational wave interferometers using ∼ 1 day of
data during the O3 observing run. GPS time is shown in the top label. Vertical axis represents ASD
and horizontal axis represents frequency, both in logarithmic scale. Each color represents a different
interferometric detector. Source: [79].

1.3.3 Persistent Spectral Disturbances: Lines

An important contribution on the noise spectral for the search of continuous gravitational waves are lines.
They represent persistent spectral disturbances, which appear as highly concentrated amount of power
into the power spectral density of a detector. Figures 1.5, 1.6 and 1.7 show a sample of them.

There are several types of lines: Calibration lines are located at certain frequencies on purpose, in order
to gauge the behavior of the detector. Power lines are a direct consequence of the AC electricity in the
United States; they are located at the harmonics of 60Hz, and can be clearly seen in figure 1.7. Violin
modes are due to the mechanical suspensions of the mirrors. Combs are sets of lines the nature of which
is not clearly understood; they were prominent in O1 data, but they seem to be fainted away during the
O2 observing run, as clearly seen in figure 1.5.

Summarizing, interferometric detectors are affected by a wide variety of noise artifacts, even though
technological improvements are being continuously made in order to suppress its contribution to the
search for gravitational waves.

18



Chapter 2
Neutron Stars as Gravitational Wave Sources

The following chapter will be devoted to the description of Neutron Stars as continuous gravitational
wave sources. The first section will expose such objects from the physical point of view, giving a brief
insight into the information they could provide. The second one will describe the continuous signal
yielded by neutron stars, as measured from an Earthbound detector. During the third section, we will
overview the main data analysis strategies for the detection of such signals. Finally, the fourth section will
expose the current state of continuous gravitational wave searches within the LIGO and Virgo scientific
Collaboration.

2.1 Physics of a Neutron Star

The first appearance of a neutron star (NS) into Physic’s literature was due to Bade and Zwicky [86],
who proposed them as the product of a certain kind of supernova processes. Due to the lack of plausible
candidates, they befalled into the oblivion until a few decades later, when a team guided by Anthony
Hewish detected a regular, stable radio signal comming from a certain sky position [34]. After an initial
speculation on extraterrestrial live, the consistency of such a signal with a spinning neutron star pointing
one of its material jets towards the Earth in a periodic motion was proven [32]. Such sources, which
produced pulsations in the radio frequency band, where called pulsars.

Neutron stars are one of the most compact objects in the Universe, condensing a around 1−2 solar masses
(M�) into a radius of 20 − 30km. Its main channel of formation is due to the collapse of certain stars
with masses above 8M� [20].

Its internal structure is a nowadays matter of discussion, since it represents one of the most extreme
conditions in which matter can be found in the Universe. Current models agree in the existence of an
external crust made of metals, which encloses an internal, highly degenerated matter region. The density
of the internal fluid is such to produce a high number of electronic capture processes, creating neutrons
that can not decay via β-processes due to the degeneracy of the surrounding electrons. This causes
a neutron drip, which, close to the internal region of the star, becomes a superfluid of neutrons. In
addition, nuclei are effectively dismantled, not only allowing protons and electrons to wander around, but
also producing an effective proton-proton pairing that yields a superconducting fluid. As for the innermost
region, some models predict a solid nucleus of quarkonic matter [48].

The pulsating mechanisms by which the first pulsars were observed is also under current discussion. Its
existence can be justified in terms of the freezed magnetic field within the superconducting fluid of the
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neutron star: Due to the rapid rotation of the neutron star, an electric field is induced in its vicinity, which
ends up forming a magnetosphere of particles being dragged and ejected as its velocity is increased.

Glitches are another observed process into pulsars. They consist in an abrupt decrease of the rotation
period of the body. Its underlying mechanism is not currently well understood, but it could be related to
instabilities into the internal structure.

Being such an extreme case of degenerated matter, any information probes into neutron stars could lead
to major improvements on the current understanding of quantum chromodynamics (QCD). However,
electromagnetic technologies are only able to detect a certain type of neutron stars: those ones whose jet
points towards the Earth; otherwise, no light comes to us. For this precise reason, we aim to describe the
possible gravitational wave emission mechanisms of neutron stars, in order to detect its physical paw into
the spacetime curvature.

2.1.1 Emission Mechanisms

We proceed to describe the gravitational wave emission mechanisms of isolated, rapidly spinning neutron
stars. Such celestial bodies can be found in multiple astrophysical situations, such as is binary systems
with a companion star, with another neutron star or even with a black hole. Each of those systems
presents its own emission mechanisms, which will not be discussed in detail in this work. We will focus on
continuous emission mechanisms; that is, gravitational wave emissions which persist during long periods
of time.

There are three plausible emission mechanisms within the LIGO frequency band. Each of them relies on
the sustain of a deviation from axisymmetry into the structure of the spinning neutron star, producing
an overall time-dependent quadrupolar moment.

• Crustal deviations from axysimmetry

The first mechanism was already exemplified during section 1.2. It consist in the sustain of a bump into
the outermost layer (the crust) of the neutron star. As mentioned before, such a deformation is quantified
in terms of the equatorial ellipticity ε, given by (1.6), leading to an characteristic amplitude given by (1.9).
The frequency of this gravitational waves would be twice the spinning frequency of the neutron star; that
is, f0 = 2ν using the previously established notation.

In order to fully understand the magnitude of such deformations, one recurs to numerical descriptions
of the crust, using a wide variety of hypothesis regarding its structure and composition. For a standard
Neutron Star, maximal ellipticity values are given by ε ∼ O(10−6), although lower values are equally
likely due to the high uncertainty on the actual crust composition. Ellipticity can grow until ε ∼ O(10−3)
if we include quark matter into the equation of state [37, 42].

• Non-axysimmetric fluid instabilities

A second mechanism relies on internal structure of neutrons stars: Coriolis force could lead to the ex-
citation of toroidal r-modes into the internal fluid, leading to sustained, non-axisymmetric instabilities.
This particular mechanism relies on young neutron stars, or even neutron stars in an accreting ambient,
to satisfy the suitable conditions into the surrounding fluid.

Nevertheless, the nature of r-modes tends to be futile, lasting for too short periods of time as to be
considered into continuous gravitational wave searches [54].

• Free precession

The dynamics of a neutron star present a phenomenon of precession when the angular momentum of the
star is not aligned with its symmetry axis. This situation could be given by several mechanisms: a glitch
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2.1. Physics of a Neutron Star

Figure 2.1: Population of known pulsars in terms of its rotation period and its first derivative. Pulsars in
a binary system are highlighted by open circles. Lines of constant magnetic field (dashed), characteristic
age (dot-dashed) and spin-down energy loss are also shown. The vertical green line marks the neutron
stars within the LIGO frequency band. Source: [51].

process undergoing into the celestial body, a nearby encounter with another neutron star, or even the
presence of a crustal imperfection.

The amplitude of the resulting gravitational wave is described in terms of the wobble angle of the precession
θw as

h0 ∼ 10−27
(
θw
0.1

)(
1kpc

d

)( ν

500Hz

)2
, (2.1)

where d represents the distance to the source and ν the rotation frequency of the star.

The possibility of detecting this type of signal was discussed by [44], leading to rather pessimistic results
due to the damping mechanisms which affect the wobble angle.

2.1.2 Population of Neutron Stars

Estimations on the neutron star population of the galaxy yield close to 108 neutron stars in the Milky
Way, taking into account the rate of stars going supernova in our galaxy [51]. The actual estimation
breaks this number into 105 pulsars (with only ∼ 2700 discovered) and 107 unseen neutron stars, either
because its faintness or the absence of electromagnetic jet pointing towards the Earth.

Figure 2.1 shows the current known distribution of neutron stars in terms of its rotation period and its
first derivative1. The decrease in the rotation period of a neutron star is a natural consequence of its

1[35] maintains a census of known neutron stars, as well as its current values of rotating frequency and spin-down.
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behavior, since electromagnetic waves are continuously expelled due the strongly varying electromagnetic
fields, as well as possibly gravitational waves, as stated before. For later convenience, we will equivalently
use the rotation frequency of the star ν and its first temporal derivative ν̇, called spin-down, in terms of
the rotation period.

The period distribution suggest the existence of, at least, two great groups of pulsars; namely, the ones
with periods between 0.25s and 2s and the ones with periods around milliseconds.

The most well-known pulsars, Vela (PSR B0833-45) and the Crab (PSR B0531+21), belong to the first
group. They established a solid, positive evidence in favor to the relation between pulsars and super-
novas.

As for the second group, the fact that they predominantly belong to binary systems, together with its
high rotation frequencies, suggests that they are in fact recycled neutron stars, spun up by the accretion
of matter [55]. The accretion process could produced sustained quadrupole deformations which may yield
an emission of gravitational waves [83]. It is observed that this sub-family of pulsars rotates at a low
frequency, compared to the maximum imposed by centrifugal break-down. A proposed mechanism which
allows this kind of behavior is the emission of continuous gravitational waves, which compensates the
acretion spin-up.

A further pulsar characterization can be made in terms of the braking index n, which characterizes the
main source of energy loss of the neutron star by means of the relation between its frequency and its
spin-down

ν̇ = −kνn , (2.2)

where k is a structural constant of the star. Differentiating with respect to time, we obtain a measurement
for n

n =
νν̈

ν̇2
. (2.3)

A braking index of n = 3 corresponds to a pure magnetic brake by means of dipolar radiation; pure
gravitational brake due to sustained quadrupole deformations are characterized by n = 5, while saturated
r-mode emission implies n = 7. Values below n = 3 can be justified in terms of time dependent magnetic
dipolar orientations or outflowing particles.

This kind of information is useful to constraint the amount of gravitational waves radiated by neutron
stars. Currently, only nine pulsars have measured braking indexes due to multiple effects disturbing a
clear measurement of ν̈, ranging from n = 0.9± 0.2 to n = 3.15± 0.03 [52].

A second characterization can be made in terms of the maximum amount of energy released as gravi-
tational waves by a neutron star, imposing the current spin-down of the star to depend entirely on its
gravitational wave emission. Let us work out the case for a neutron star with a crustal deformation
characterized by a certain equatorial ellipticity ε. As stated during section 1.2, the gravitational wave
luminosity of such a physical system is given as

LGW =
1

10

G

c5
(πν)2 I23 ε

2 , (2.4)

where ν is measured in Hertz, hence the π factors. As for the rotational kinetic energy of the neutron
star it is given by [57]

Krot =
1

2
I3(2πν)2 . (2.5)

At this point, it suffices to set LGW = −K̇rot in order to set upper bounds on the desired magnitude. If we
assume İ3 = 0, which corresponds to a stable neutron star, we obtain an upper bound on the equatorial
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ellipticity given by

εsd =

√
5c5

512π4GI3

|ν̇|
ν5

. (2.6)

Following (1.9), the corresponding gravitational wave amplitude is given by

hsd0 =
1

r

√
5GI3
2c3
|ν̇|
ν5

. (2.7)

Section 2.4 will shows the utility of this magnitude during: Even though no gravitational wave signals
have been detected so far, the analysis of multiple pulsars can set upper bounds in the actual amplitude
of gravitational wave emissions. Comparing this upper bounds with the corresponding spin-down limit of
each pulsar yields valuable information about the physics governing that particular neutron star, as well
as about the current state of gravitational wave detectors and search algorithms.

2.2 Signal from an Isolated Neutron Star

Independently of the multiple mechanisms which could sustain a continuous gravitational wave emission
from a neutron star, the main features of the signal will be completely identical: A quasi-monochromatic
emission, slowly damped due to the multiple radiation channels of the astrophysical body. It is worth
noting that the neutron star could be surrounded by an accreting disk of matter which, effectively, spins
it up, producing a net increase in its rotation frequency.

The description of a continuous gravitational wave signal depends on the referential frame being used,
either the proper frame of the source, the solar system baricenter (SSB) or the detector’s frame. We will
start from the frame of the source, explicitly describing the propagation of the signal until its arrival to
the interferometric detector as stated by [41].

2.2.1 Phase and Frequency: From the Source to the Detector

The phase of a gravitational wave signal from the referential frame of the source is described, in terms of
its proper time τ , as

ΦNS(τ) = φ0 + 2π

s∑
n=0

fNS
n

(n+ 1)!
τn+1 ; (2.8)

consequently, the instantaneous frequency of the gravitational wave signal is given by its time deriva-
tive

fNS(τ) =
1

2π

dΦNS(τ)

dτ
=

s∑
n=0

fNS
n

n!
τn , (2.9)

which clarifies the meaning of the expansion coefficients: fNS
0 represents the initial frequency of the signal

at certain τ = 0, whereas fNS
n>0 model the spin-down of the signal using a set of s polynomial terms.

The propagation of this signal into the detector’s frame will be done in two steps: The first one will put
the signal into the SSB, and the second one will push it forward to the detector. Doing so allows for
a separation between two families of effects, namely The ones related to the propagation of the signal
from the source, and the ones related to the proper movements of the Earth around the SSB and its own
axis.

We start by assuming an isolated neutron star moving in a uniform way with respect to the SSB, although
one could drop this assumption at the price of taking further parameters into account. Defining tSSB as
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the time coordinate of the solar system baricenter, the condition which links the phase measured by both
referential systems is given by

ΦSSB(tSSB) = ΦNS(τ(tSSB)) , (2.10)

which takes into account the propagation time of the signal as well as the relativistic corrections to change
between time coordinates in relative motion. Applying the previous assumption on the proper movement
of the star, on ends up with a power expansion analogous to (2.8) for the phase into the SSB

ΦSSB(tSSB) = Φ0 + 2π

s∑
n=0

fn
(n+ 1)!

t
(n+1)
SSB , (2.11)

where the exact form of tSSB = tSSB(τ) has been kept implicit. It is important to note that the spin-down
coefficients described in the solar system baricenter do not have to be equal to the ones in the proper
frame of the source, fNS

n 6= fn. Consequently, the frequency observed from the SSB will be given by

fSSB(tSSB) =
1

2π

dΦSSB

dtSSB
=

s∑
n=0

fn
n!
tnSSB . (2.12)

Last, we need to push the signal forward to the detector frame. In order to do so, let us define ~v as the
velocity vector of the detector in the SSB frame, ~n as the sky position of the source with respect to the
detector, and ∆~r = ~r− ~r0 as the displacement of the detector in the SSB frame with respect to a fiducial
initial position ~r0.

We define t as the time coordinate of the detector frame. This new time can be related to tSSB by taking
into account several effects in its relativistic formulation, such as the Shapiro effect [66], which is due to
the deflection of null geodesics in the presence of matter, and the Doppler effect, which is produced by
relative motion among wave emitters and receptors.

For the former, it can be shown that its effects become unobservable for the matters of continuous
gravitational waves [41]; as for the later, the characteristic speed of rotation and translation of the
Earth are at most 10−4c and 10−6c respectively, hence relativistic corrections can be dropped from the
expansion.

Therefore, the frequency of the gravitational wave signal at the detector frame is expressed as

f(t) = fSSB(t)

(
1 +

~v(t) · ~n(t)

c

)
, (2.13)

where the detector’s time t is related to tSSB accordingly with the stated simplifications

tSSB = t− t0 +
∆r(t) · ~n(t)

c
, (2.14)

being t0 a fiducial initial time.

2.2.2 Amplitude of the Gravitational Wave

The response of an interferometric detector to a passing gravitational wave was already discussed in
section 1.3: The measured strain depends on the antenna response functions of the detector and the
gravitational wave polarizations of the signal, which depend on the actual source being studied.

For the case of a continuous wave signal, they can be stated in terms of the signal phase Φ(τ) and two
amplitude functions A+,× as

h+(τ) = A+(τ) cos Φ(τ) , (2.15)
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h×(τ) = A×(τ) sin Φ(τ) , (2.16)

where the notation is consistent with the one of the previous section. For a source like the deformed
neutron star described in (1.9), such functions are

A+ =
1

2
h0
(
1 + cos2 ι

)
, (2.17)

A× = h0 cos ι , (2.18)

where ι represents the angle between the neutron star’s axis of rotation and the direction of ~n. ι = 0, π cor-
responds to a circularly polarized wave, while ι = π/2 corresponds to a linearly polarized wave. As clearly
seen from the previous expression, they represent the best and worst cases of a signal, respectively.

2.3 Data Analysis for a Continuous Gravitational Waves

As discussed during section 1.2, continuous gravitational waves represent a technological challenge due to
its faintness, in comparison with other forms of gravitational waves emission. Even taking into account
the increasing sensitivity of the current LIGO and Virgo detectors, one needs to come up with the suitable
data analysis strategy in order to recover a signal buried into the noise. To do so, several frameworks have
been developed, depending on the characteristics of the source being searched, and the way information
is treated during the process:

• Targeted Searches

As suggested by its name, this type of search deals with sources whose parameters are already restricted
to a tight region of the parameter space thanks to a complementary information channel. For instance,
we could dispose the sky position of a pulsar via electromagnetic observations, or even describe its actual
phase evolution taking into account glitches and any observed transient effect. This situation eases the
use of highly significant methods under controlled computational budgets with respect to other kinds of
searches.

• Blind Searches

On the contrary, this searches look for a priori unknown continuous wave sources. The strategy is quite
different with respect to the previous case, since the lack of constraints forces us to perform wide analysis
on the parameter space. As a consequence, it is not affordable to attempt the most sensible strategies due
to its high computational cost. Hence, the sensitivity is lower with respect to targeted searches.

• Directed Searches

In some cases, there are certain sky regions in which neutron stars are more likely to be found, even when
no electromagnetic counterpart has been detected. Such is the case for supernovae remnants, which can
be well located in the sky. This searches focus on the frequency and spin-down parameters of the source,
conforming an intermediate step between targeted and blind searches.

This division already introduces the need for different data analysis strategies: On the one hand, we
require powerful methods, able to analyze specific regions of the parameter space with a high sensitivity;
on the other, it will be useful to dispose of less powerful strategies in order to swap wide domains of the
parameter space and spot interesting regions.

We will describe the two main lines of analysis of gravitational wave signals, coherent and semicoherent
methods. Its difference relies on the way they treat the data, with direct implications on its computational
costs.
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2.3.1 Coherent Methods

The basic data analysis procedure consist of a direct comparison between data and signals; such an
algorithm is called matched filtering, and its derivation can be statistically formulated in terms of a
maximum likelihood estimator. The performance of this algorithm relies on the capability to produce
templates of continuous wave signals for different combinations of parameters, being the dependency of
such templates with respect to its parameters the key feature on the computational costs of a search.

From an operational point of view, it is said that this algorithm takes into account the phase of a signal,
which provides more information than its frequency. Hence it is labeled as a coherent method.

Let us consider a parameter space of templates described by four parameters ~λ = (f0, ~n, f1), where f0
stands for the frequency of a signal, f1 for one the spin-down parameter and ~n for the sky position. Given
that we need to compare multiple templates in order to unveil the presence of a signal into the data, it is
natural to ask how many templates should one take into account for this purpose.

As described by [61], the answer depends on the frequency of the template, due to the Doppler modulation
suffered by the signal. If we consider a small volume of the parameter space, say d~λ, the amount of
templates within that volume will be given by

dN c
t ∝ T 5

obsf
2d~λ , (2.19)

where Tobs stands for the temporal duration of the data. Moreover, each templated has to be integrated
by the matched filtering procedure during the whole span of the data; hence, the computational cost for
an amount of dNt templates is going to be

dCc = TobsdN
c
t ∝ T 6

obsf
2d~λ . (2.20)

As described in [46], this analysis easily overcomes the computational costs affordable by current com-
puters for wide searches of the parameter space. However, it is well suited for targeted searches, due to
the reduced amount of templates to take into account.

2.3.2 Semicoherent methods

Semicoherent methods constitute the second major family of data analysis algorithms. Opposed to the
previous one, the main source of information is not the phase of a signal, but its frequency. The main
strategy consists in the split the whole data, with a duration of Tobs, into smaller segments, with a duration
Tcoh < Tobs. Each segment is analyzed using the previously mentioned coherent method, and the results
are added up following a statistical prescription which takes into account the frequency evolution of the
signal, hence incoherently. As a result, the amount of templates to be taken into account is given by
[61]

dN s
t ∝ TobsT 4

cohf
2d~λ , (2.21)

while the computational costs scales as

dCs = TobsdN
s
t ∝ T 2

obsT
4
cohf

2d~λ . (2.22)

Comparing this result with that of a coherent method (2.20), it turns out that

dCs

dCc
∝
(
Tcoh
Tobs

)4

. (2.23)

For a typical segment length Tcoh = 1800s and 30 days of observation time, the computational cost
reduction achieved by a semicoherent method is O(10−13) with respect to a coherent one.
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As a result, the main strategy followed by the LIGO and Virgo collaboration is that of a hierarchy: Inter-
esting candidates yielded by semicoherent methods are further studied under the lens of a coherent method,
thanks to the reduction of the interesting parameter space region yielded by the first method.

2.4 State of the Art on Continuous Wave Searches

We proceed to end this chapter with a brief review on the latest results given by the last observing run,
O2, performed by the LIGO and Virgo interferometers.

Given that no continuous gravitational waves have been detected so far, the results are quoted in terms
of upper limits on the gravitational wave amplitude h0 for a certain confidence level, the exact meaning
of which depends entirely on the statistical prescription used by the search. Moreover, upper limits can
be translated to another quantities, such as the ellipticity ε, by accepting a certain emission mechanism.
Finally, searches for known pulsars can also benefit from the previously discussed spin-down limit (2.7),
which will ease the task of describing the energy budget of a star.

2.4.1 All Sky Search

The all sky search is devoted to the detection of continuous gravitational waves coming from unknown
sources. It is composed by three semicoherent pipelines: Time-Domain F-Statistic, SkyHough and Fre-
quencyHough [9]; the first one is based in a semi-coherent implementation of the F-statistic, which is the
optimal test for the detection of continuous gravitational waves using a coherent analysis; the later ones
are different implementations of the Hough Transform, to be discussed during the following chapter.

Its results are given in terms of frequentist upper limits on the amplitude h0. Its construction is based
in the generation of a random ensemble of continuous wave signals. Then, the ensemble is added to the
detector noise, in order to be looked for such. The amount of detected signals yields an estimation on the
minimal strength for a signal to be detected under the current configuration of the searches.

The upper plot in figure 2.2 shows the 95% confidence upper limits for the three pipelines. In addition,
the lower left and lower right panels propagate the amplitude upper limit to the ellipticity and the first
spin-down parameter for different distances. The diverse morphology of each curve is due to the details
in the upper limit computation of each pipeline.

These values are useful in the sense that they provide astrophysical information on the nature of neutron
stars. For instance, the upper limits on ellipticity are below the maximum ellipticity expected for a neutron
star using a standard equation of state [42], whilst the upper limits on spin-down are to be compared
with the expected energy emission of the sources.

2.4.2 Targeted Search

The targeted search looks for gravitational wave emission from 222 known pulsar using three different
search methods, namely a Bayesian parameter inference using time-domain data, a coherent F-statistic
and the 5n-vector method [76].

The pipelines benefit from optical observations of the pulsars to restrict the parameter space and legitimate
a coherent approach to the data analysis. The construction of upper limits is different for each pipeline,
since their statistical development is based in different paradigmata. The results are shown in figure
2.3
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Figure 2.2: Results of the All Sky search performed over O2 data. Upper: 95% confidence frequentist
upper limits on the gravitational wave amplitude for the three pipelines involved in the search. Lower
Left: Upper limits propagated to equatorial ellipticity using equation (1.9) for the canonical value I3 =
1038kg ·m2 and different distances. Lower Right: Upper limits propagated to the maximum allowed
spin-down value for a spinning neutron star assuming a pure gravitational wave emission. Dashed lines
represent regions of constant source ellipticity. Source: [9].
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Figure 2.3: Results of the Targeted Search after the O2 observing run. Upper: Amplitude upper limits
for the known pulsars, compared to its spin-down limit. Lower: Propagation of the upper limits to the
maximum allowed ellipticity for the known pulsars, as well as a measurement on its quadrupole mass
moment. The conversion to ellipticity is alike to the one made in figure 2.2. Source: [76].
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Figure 2.4: 95% frequentist upper limits on the gravitational wave amplitude coming from a set of 33
pulsars with known sky position. Pulsars that glitched during the observing run got assigned two upper
limits: one before the glitch (BG), and one after the glitch (AG). For comparison, spin-down limits are
quoted with 1σ error bar on the distance uncertainty. Source: [75].

Dealing with known sources eases the comparison of results with the spin-down limits derived during
previous sections, imposing tight restrictions on the energy budget of each neutron star.

In this case, the spin-down limit is beaten for several pulsars, being Vela and the Crab, long-run signif-
icant targets of this type of searches, among them. Respectively, the energy budget obtained by their
upper limits places the gravitational wave emission below the 0.017% and 0.18% of the overall energy
emission.

Under the light of this results, is expected for the O3 observing run to yield measurements bellow the spin-
down limit for millisecond pulsars, which represent another prominent target on the search for continuous
gravitational waves.

2.4.3 Narrow Band Search

The narrow band search enters the domain of targeted searches, as it is designed to look for gravita-
tional wave signals coming from neutron stars whose position is well known via a third-party procedure,
usually an electromagnetic measurement. However, it uses a coherent method which allows for a certain
mismatch between the signal model an the phase measured by electromagnetic observations, the 5-vector
NarrowBand pipeline [75]. This phenomenon can be produced by multiple factors, such as electromagnetic
torques, free precession, or inaccurate sky position measurements due to gravitational interaction

Figure 2.4 shows the 95% frequentists upper limits on amplitude given by the search after the O2 analysis.
The mechanism to generate upper limits follows the philosophy of all sky searches, although it has to
be accommodated to the particular gimmicks of the narrow band analysis. Those neutron stars which
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Figure 2.5: Results of the Directed Search for one of the sky position of Fomalhaut b after the O1 observing
run. The horizontal line represents a first guess on the upper limit using energy conservation arguments.
Each point represents an upper limit on a 1Hz frequency band. Wide and deep refer to the best and
worst case scenarios for the energy conservation argument. Points located in an upper line represent 1Hz
bands where data quality allowed no upper limit to be set. Source: [10]

undergone through a glitch process during the observing run were analyzed twice: before and after the
glitch.

The minimum bound on gravitational wave energy loss imposed by the upper limits is 0.8%, while the
maximum ellipticity is ε ∼ O(10−5). It is worth mentioning that the upper limits over pulsars undergoing
a glitch process are worse than the ones obtained by the O1 analysis due to the separated analysis between
before-glitch data and after -glitch data.

2.4.4 Directed Search

Directed searches select a certain number of interesting sky regions where a neutron star could be located.
During the last directed search [10], sixteen candidates where selected: fifteen supernova remnants and
Fomalhaut b, a directly image extrasolar candidate which could turn out to be an old neutron star
[36].

The search is performed using the multi-interferometer F-statistic, which is the optimal statistic for
the search of continuous gravitational waves [41]. It looks for three parameters, namely frequency and
two spin-down parameters. As already commented, sky locations are obtained by other means, such as
electromagnetic observations.

Upper limits for the Fomalhaut b search are shown in figure 2.5. They are set in a similar manner to
the one used for all sky searches. Equivalently, the maximum allowed ellipticity is ε ∼ O(10−9) for the
high frequency range. The object is too old to sustain an r-mode emission. The same celestial body was
looked for by the Chandra X-ray telescope, although its emission was not detected [68]. All in all, the
true nature of Fomalhaut b is unclear, yet the possibility of being a nearby old neutron star is not ruled
out by any of the available channels of information.

2.5 Summary

Continuous gravitational waves have not been detected so far. Yet, its physical implications contribute to
the actual neutron star physics by setting experimental bounds on the theoretical, physical values, which
present a high degree of dependency on the available equations of state.
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Chapter 2. Neutron Stars as Gravitational Wave Sources

The continuously increasing sensitivity of the detectors allows for the establishment of more stringent
upper limits on the multiple searches. In particular, targeted searches towards millisecond pulsars are
close to beat its spin-down limit, the first milestone towards the characterization of the energy budget of
a pulsar. It is expected that future science runs will deliver the required sensitivity to do so.

As detectors improve, so do data analysis pipelines. Pipelines are in continuous motion, improving multiple
steps both in terms of sensitivity and computational efficiency. Different ways of dealing with signal model
imperfections or background fluctuations are the main key difference; understanding the their effects on
each particular statistic will ease the development of vetoes and follow up strategies, refining the search
capabilities towards a first detection. Moreover, the use of Machine Learning algorithms [16, 28], firstly
implemented for the recognition of noise artifacts and transient signals, can be extended to the search for
continuous gravitational waves. Their pattern recognition capabilities could be useful to neglect spurious
artifacts according to its shape into the parameter space. In addition, significant efforts are being put
into the implementation of effective computational subroutines like, for instance, the use of Graphical
Processing Units (GPU) to optimize particular search loops over the parameter space [23].

Finally, we focused on rapidly-spinning isolated neutron stars as continuous gravitational wave sources;
many other celestial structures are able to gravitational waves in a sustained fashion. As shown in figure
2.1, rapidly-spinning neutron stars can be in a binary system, introducing yet another Doppler modulation
into the signal. Several search pipelines have been proposed to cover such sources [31], although no
gravitational waves have been detected so far.
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Chapter 3
The Hough Transform for Continuous
Gravitational Waves Searches

The Hough transform conforms the computational core of one of the current pipelines on the hunt for
continuous gravitational waves within the LIGO Collaboration: The SkyHough pipeline. Although its
origins can be trace back to a pattern recognition algorithm for particle traces in bubble chambers [38],
further developments increased its range of applicability into the image recognition world [27], allowing
for the detection of arbitrary shapes.

Within the field of gravitational wave astronomy, the Hough method started its path during the second
science run of the initial LIGO detectors (S2) [4], targeting isolated, rapidly-spinning neutron stars, and
it kept working through the S4, S5 and S6 science runs [71, 1, 77]. It has been currently used to analyze
the observation runs of the advanced detectors, O1 and O2 [6, 8, 9], yielding competitive results with
respect to other pipelines.

The modern SkyHough pipeline is built on top of an initial implementation of the Hough transform for the
detection of continuous gravitational waves [46], which has been further modified in order to improve its
sensitivity. Following its example, several other pipelines were implemented on the same basis, targeting
different ideas: The FrequencyHough pipeline [13], focusing on continuous waves from isolated sources as
well; the Adaptative Transient Hough method [59], conceived as an implementation to search for long-
duration gravitational wave emission from post-merger remnants; and the Binary SkyHough pipeline
[23], intended to detect continuous gravitational waves from rapidly-spinning neutron stars in binary
systems.

Nowadays, the pipeline has a hierarchical structure [25], which allows for a re-analysis of interesting
portions of the parameter space using different tools, such as a χ2 veto procedure [24]; as a second step,
candidates to gravitational wave signals are compared among different detectors; surviving candidates, if
they exist, are clustered together, yielding a portion of the parameter space to be followed up using more
powerful methods [8, 9].

Such strategies were tested against several other pipelines using a Mock Data Challenge over S6 data [80],
which yielded the SkyHough pipeline as the most robust one against noise disturbances.

This chapter will be structured as follows: Section 3.1 introduces the core procedure of the SkyHough
pipeline; section 3.2 describes the actual implementation of the search, regarding the choice of technical
parameters; section 3.3 exposes the statistics of the search, which are fundamental to understand the
delivered results; section 3.4 shows the coincidence and clustering post processing steps.
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Example of a Coherent Step

Figure 3.1: Example of a coherent step for a continuous monochromatic signal surrounded by noise. The
horizontal axis represents the time of measurement in units of Tcoh, which is equivalent to time stamp
indexes starting from a = 0. The vertical axis represents the frequency components of the signal in
units of frequency resolution δf = T−1coh. Left: Power spectra of each coherent segment of data. Center:
Normalized power of each coherent segment of data. Right: Binary map after applying a certain threshold
to the normalized power.

3.1 Overview of the Standard SkyHough

The SkyHough pipeline performs a search for continuous gravitational waves using a semi-coherent strat-
egy. We will devote the current section to give an overview of its main formulation, as well as to introduce
the internal degrees of freedom of the algorithm in order to focus on the statistical arguments during forth-
coming sections.

The method here described attempts to find a continuous gravitational wave signal from an isolated
neutron whose frequency evolution matches the pattern produced by the Doppler shift and the spin-down
as stated in (2.12) and (2.13); hence, we will focus our attention to the parameters involved in such effects,
namely

~λ ≡ (f0, {fs}, ~n) ∈ R+ × Rs × S2 . (3.1)

Each set ~λ will be referred to as template, being the parameter space the set of all possible templates
according to (3.1).

The initial step, so called coherent, splits the data in multiple time segments with a certain duration
Tcoh. Then, data is processed using the optimal statistic according to the Neyman-Pearson criterion:
For a general case, it is given by the F-statistic [41], which demodulates data, removing frequency drifts
due to the Doppler shift and spin-down of the source; alternatively, if we restrict Tcoh to confine the
frequency drift of a signal within a certain range, power spectral density becomes optimal statistic in the
Neyman-Pearson sense as well. The actual condition over Tcoh will be discussed during section 3.2.

The second step, labeled as incoherent, implements the Hough transform to recognize the trace of a signal
within the computed statistic. Thanks to the positional dependency of the Doppler shift, each trace can
be related to a certain template, effectively conforming a map from data to the parameter space.

3.1.1 Coherent Step

Consider the discrete time-series yielded by a detector x[j], where j labels the j-th measurement. We start
by splitting the data into N different segments, starting each one of them at time ta, a = 0, . . . , (N − 1).
The start time of each segment will be referred to as the time stamp, and each segment will cover a
time span of Tcoh or, equivalently, M measurements, being tj = ta + j∆t for each data segment, with
∆t = Tcoh/M .
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3.1. Overview of the Standard SkyHough

The coherent step will treat each segment separately, computing its Discrete Fourier Transform as

x̃[k] = ∆t

M−1∑
j=0

x[j]e−2πijk/M . (3.2)

Due to the discrete sampling performed by the measurement process, resolvable frequencies are quantized
as fk = kδf with k = 0, . . . , bM/2c and δf = T−1coh, while negative frequencies components are easily related
to the positive ones thanks to the fact that the Fourier transform of a real function is Hermitian.

For each segment, we compute its power density |x̃[k]|2 and normalize it to the background noise power,
defining the normalized power

ρ[k] =
|x̃[k]|2

〈|ñ[k]|2〉
, (3.3)

where 〈·〉 represent an ensemble average over multiple realizations of the noise. As previously stated, the
noise power spectra 〈|ñk|2〉 can be related to the single-sided power spectral density Sn(f), yielding

ρ[k] ' 2 |x̃[k]|2
TcohSn(fk)

. (3.4)

The estimation of Sn(f) depends on the implementation of the pipeline. SkyHough uses a running-
median estimation, which prevents major effects due outliers; on the other hand, the FrequencyHough
implementation [13] uses an autoregressive algorithm.

Then, we digitize the power spectra into a binary map consisting of ones and zeros using power threshold
ρth: Everything above the threshold will get assigned a one, while everything below will get assigned a
zero. The definition of such a threshold will be explicitly stated in a further section, using statistical
arguments.

The result of this step is a discretized time-frequency plane, where the time domain is discretized according
to the data segments and the frequency domain is discretized according to the minimal resolvable frequency
of the discrete Fourier transform. To fix the notation, let us label each time segment as a and each
frequency bin as k; then, each pixel (a, k) within the time-frequency plane gets assigned a binary value
given by

na[k] =

{
1, ρa[k] > ρth
0, ρa[k] < ρth

, (3.5)

where ρa[k] refers to the normalized power within the k-th frequency component of the a-th data seg-
ment.

Figure 3.1 shows qualitatively the construction of a binary map for a continuous monochromatic signal
under the presence of noise. Such a signal could be caused by a continuous wave source located at one of the
equatorial poles, where the Doppler shift is practically negligible. Even though the monochromatic signal is
recovered as a horizontal strip along the binary map, certain power bins produced by noise fluctuations also
survive the thresholding procedure. We will expose how the SkyHough pipeline automatically deals with
such undesired artifacts during the forthcoming explanation of the incoherent step of the algorithm.

3.1.2 Incoherent Step

The strategy is to rank the parameter space templates according to its prominence as normalized power
tracks in the data. Each template ~λ will get assigned a number count n(~λ) by counting the amount of
bins above the power threshold in the binary map. More formally, let us define T (~λ) as the frequency
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evolution track yielded by the template ~λ onto the binary map; then, the number count n(~λ) is defined
as

n(~λ) =
∑

(a,k)∈T (~λ)

na[k] . (3.6)

We can use figure 3.1 to illustrate this ranking procedure: For instance, if we were to take the template
corresponding to the monochromatic signal at frequency 6 · (δf), we would end up with a number count
of 11, since the whole horizontal track is filled with power above the threshold; on the other hand, a
spinning-down signal starting at the top left corner of the binary map and ending at the bottom right
corner would get assigned a number count of 2.

This description of the number count treats every time-frequency bin in the same manner; however, as
discussed in chapters 1 and 2, neither the detector’s response is isotropic, nor its noise is white. Thus, it is
natural to ask for a different definition of the number count, in order to properly treat both features.

To do so, a weighted number count was introduced [47]; that is, rather than equally contributing to the
total count, each bin (a, k) within a track T (~λ) will be weighted by a quantity wa[k], which will take into
account the noise floor of the detector and the amplitude modulation suffered by the signal due to the
antenna pattern functions

n(~λ) =
∑

(a,k)∈T (~λ)

wa[k]na[k] . (3.7)

The choice of wa[k] was discussed in [60] and [47]. The argument describes the sensitivity of the search
in terms of the spectral power of a signal measured by an interferometric detector (1.10), averaging over
parameters which directly affect its amplitude. Detector noise enters as the power spectral density Sn;
antenna pattern functions F+,× enter as polarization averaged functions 〈F 2

+,×(~n; t)〉ψ. For a power bin
(a, k), the corresponding weight is given by

wa[k] = N 〈F
2
+a[k]〉ψ + 〈F 2

×a[k]〉ψ
Sna[k]

, (3.8)

where N represents an arbitrary normalization constant and the notation fa[k] refers to the evaluation
of f using the parameters which correspond to the k-th frequency bin of the a-th data segment. Reading
its definition, it is clear that wa[k] increases the contribution of those bins with low floor noise and good
orientation with respect to the interferometric detector.

The statistical significance of this results has to be further discussed, since any measurement is poisoned by
different kinds of noise, which may trigger power bins above the first threshold, or even build a significant
number count, as certain spectral disturbances do. We will devote section 3.3 to do so, describing the
number count statistics, as well as the optimal choice of thresholds to discriminate among noise and
signal.

3.2 Implementation

After the description of the main algorithm, we need to tackle two issues in order to describe the whole
picture. The first one, here discussed, deals with the actual implementation of the method from a
computational point of view; the second one, with its own section, will deal with the appropriate choice
of thresholds from a statistical point of view.

We will describe the operational choices that were made to implement the SkyHough pipeline as described
by [46]. The actual implementation can be found within the LIGO Algorithm Library (LAL) [73].
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3.2.1 Lengh of Coherent Segments

The first issue to address concerns the time length choice of the coherently analyzed data segments Tcoh,
described in section 3.1.1. We recall that this parameter effectively defines the grid step of the time-
frequency plane, since the resolution of both subspaces fulfills an inversely proportional relationship;
hence, its choice will directly affect the way we see signals in the binary maps.

The main argument goes as follows: The frequency evolution of a signal will be mainly affected by two
modulations, namely the natural spin-down of the source and the Doppler shift due to Earth’s movement
in the SSB frame If such modulations spread the main components of the signal across several frequency
bins, the thresholding procedure will not be able to distinguish its significance against the noise; hence,
we will choose a coherent time length Tcoh such that the frequency modulations are kept within a single
frequency bin at each data segment. We impose this condition constraining the maximum frequency shift
to one half of a frequency bin.

Let us abstract the maximum frequency shift as ˙|f |max, whichever its origin and sign (Doppler modulation,
Spin-down/up of the source, . . .). The aforementioned constraint can be expressed as

˙|f |max Tcoh <
1

2
δf , (3.9)

which directly translates to

Tcoh <

√
1

2 ˙|f |max

. (3.10)

We will consider the Doppler shift as the main source of frequency modulation1. Start by differentiating
in equation (2.13) with a fixed f̂(t) = f̂ (we neglect the spin-down effect against the Doppler Shift):

df

dt
' f̂

c

d~v

dt
· ~n ≤ f̂

c

∣∣∣∣d~vdt
∣∣∣∣ ≡ ˙|f |max . (3.11)

The main contribution to the Doppler shift comes from the daily rotation of Earth around its own axis,
which means that we have to take into account the centripetal acceleration of a detector onto the surface
of Earth as ∣∣∣∣d~vdt

∣∣∣∣ =
v2⊕
R⊕

=
4π2R⊕
T 2
⊕

, (3.12)

where v⊕ stands for the magnitude of the velocity of the surface of Earth around its axis, T⊕ is the
duration of a day and R⊕ the radius of Earth.

Substituting numerical values in (3.12) and arranging (3.11) into (3.10) to get a meaningful constraint,
we obtain

Tcoh < 50min×
√

500Hz

f̂
. (3.13)

A typically used value is Tcoh = 1800s, although one may combine several coherent time lengths to cover
different regions of the parameter space.

1This fact will have consequences on the allowed spin-down parameters to search for {fs}, as we will briefly discuss in
section 3.2.3
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3.2.2 Discretization of the Parameter Space

The computational implementation of an algorithm curses numbers to live in a finitely-resolved, discrete,
space. This forces us to carefully review the parameter space introduced in by (3.1), since the difference
between two adjacent templates will not be arbitrarily small; rather, there will exist a resolution step

δ~λ ≡ (δf, {δfs}, δθ) , (3.14)

where δf = T−1coh as already stated, δfs represents the resolution of the spin-down parameter’s subspace
and δθ represents the resolution onto the celestial sphere, which is taken equal for both degrees of freedom
of S2.

The resolution of spin-down parameters can be easily derived from an operational point of view. Since
they enter into the game as coefficients of a Taylor expansion, we will take the resolution of the s-th
spin-down coefficient δfs as the minimum value that would produce a minimal distinguishable change in
frequency δf by itself during the whole time of measurement Tobs; that is,

δf =
T sobs
s!

δfs → δfs =
s!

T sobs
δf . (3.15)

As for the sky resolution, we need to understand the way in which the sky position of a source affects its
frequency modulation. Take the Doppler shift as expressed in (2.13). At a certain time t, the locus of sky
positions ~n ∈ S2 consistent with a certain frequency observation f(t) is given by

cos θ =
~v · ~n
v

=
c

v

f(t)− f̂(t)

f̂(t)
, (3.16)

where θ represents the angle between the sky position of the source ~n and the velocity vector of the
detector ~v, and the lack of arrow denotes the modulus of the vector. This simple equation reveals the
actual structure of the Doppler shift: Sky positions consistent with a certain frequency f are located onto
rings of the celestial sphere with its center located at the tip of the velocity vector of the detector. However,
the finite frequency resolution dilates rings into annuli, since all the frequencies within a frequency bin
δf are effectively indistinguishable by the algorithm. The thickness of such annuli can be easily derived
from (3.16), yielding

δθ ' c

v

δf

f̂ sin θ
. (3.17)

It is clear that the thickness of the annuli reaches a minimum at θ = π
2 , and grows monotonically as we

get parallel to the velocity vector; hence, we will choose a fraction of the minimum thickness to tessellate
the celestial sphere

δθ ≡ 1

p

c

v

δf

f̂
, (3.18)

where the pixel factor p can be tuned to increase the sky resolution according to the available compu-
tational capabilities. This resolution will be used to set up a grid of sky patches onto the sphere. The
relation between annuli and sky patches can be set up through the sky patch center: A sky patch belongs
to a particular annulus if its center is located into such annulus. This relation ensures a well representation
of the Doppler shift on the discretized version of the sphere.

3.2.3 Spin Down ranges

The amount and range of spin-down parameters {fs} need to be considered in order to understand what
physics are representable under a certain choice of such. It will become clear that the main physical
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concern when constraining the spin-down parameters is related to the age of the source; that is, the
amount of time the spin-down could modulate the source frequency.

We start by restricting the amount of spin-down parameters to be considered on our searches: The same
argument that led us to define the spin-down resolution can serve us to put a constraint on the maximum
value allowed for a spin-down parameter fs. If we accept the description of the frequency evolution as a
Taylor series, the maximum allowed value for the s-th spin-down parameter is given in terms of the age
of the source τ as

fmax
s = s!

f̂max

τ s
. (3.19)

Source’s age τ is defined as the amount of time required by the source to achieve the current frequency
f0 assuming a continuous energy emission solely by gravitational waves.

Now, typical astrophysical continuous wave sources are older than the affordable observation times Tobs �
τ . This implies that the maximum allowed spin-down value decreases faster than the spin-down resolution
(3.15) as s increases; hence, there will exist a maximum number smax for which spin-down parameters
are resolvable, establishing a meaningful way to limit the number of spin-down parameters in terms of
the age of the targeted sources. Equivalently, one could fix the value smax according to the affordable
computational capabilities, obtaining a minimal detectable source age in exchange.

Regarding previous considerations on the main source of modulation during section 3.2.1, we can easily
relate the constraint of less than half bin of modulation to the s-th spin-down parameter as

fmax
s T scoh < s!

δf

2
(3.20)

which, in combination with (3.19), yields the corresponding constraint on the age of the source

τ >

(
2f̂maxT

s+1
coh

s!

)1/s

. (3.21)

Summarizing, the number of spin-down values is related to the age of the sources through its resolution,
meaning that one can choose either to fix a source age in order to target a particular kind of physics,
or to constraint the amount of parameters to construct an affordable, wide-spread search. Alternatively,
one could choose to disregard the spin-down contribution in favor of the Doppler shift, automatically
obtaining the corresponding constraint over the age of the source (3.21).

The SkyHough pipeline takes the latter approach with only one spin down parameter, implying

τ > 103yr× f̂max

1000Hz

(
Tcoh

1800s

)2

. (3.22)

As discussed in [80], this choice allows for a certain range of higher order spin-down values to be taken
into account, namely those which would not shift the frequency of the signal more than half of a frequency
bin during a coherent time Tcoh.

3.2.4 Partial Hough Maps

We will devote a last section to comment on the actual way the Hough Transform is implemented within
the SkyHough pipeline.

It was already discussed during section 3.1.2 that each template ~λ can be related to a certain power track
on the time-frequency plane T (~λ). Although one could run blindly along the parameter space to compute
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Figure 3.2: The driving effect on the frequency evolution of the signal is given by the spin-down pa-
rameters, which enter into the frequency modulation as polynomial terms: No spin-down implies a con-
stant frequency; one spin-down parameter implies a linear evolution; two spin-down parameters imply a
parabolic evolution. Image Source: [46]

the number count of each template, the sky annuli disposition given by (3.16) suggests a more efficient
way to do so.

Consider a certain frequency to look for f0 at a certain time stamp a. We already showed that the
compatible sky positions are located at thick rings onto the celestial sphere; however, one could argue
that his structure is just a histogram on the (α, δ) plane of equatorial sky positions, where the compatible
bins are suitably labeled; let us refer to this structure as Partial Hough Map (PHM).

Hence, the number count computation can be automatically done for each sky patch, since everything
one has to do is to compute and add the corresponding PHMs for different time stamps according to
the frequency evolution of the signal, obtaining the Total Hough Map (THM) for each set of values of
frequency and spin-down parameters (f0, {fs}). Figure 3.2 shows the path of PHMs to be summed,
depending on the spin-down parameters taken into account.

Partial Hough Maps can be re-used by several frequency bins, since the sky annuli structure is highly
insensible to frequency changes thanks to the monotonicity of its thickness. A formal explanation of this
fact can be found in [46]. Therefore, instead of recomputing the set of PHM for each set of (f0, {fs}), we
will store them inside look up tables (LUT), lowering the computational load of the search.

This reduces the number count computation to a sum of re-used PHM for each set of (f0, {fs}). As a
result, the histogram on the parameter space will be described as a set of Total Hough Maps.

Other implementations of the Hough method differ in this step, performing the construction over frequency
and spin-down for a fixed sky position [13].

3.3 Statistics

We are left with the suitable choice of ρth and a discussion on the statistical significance of the number
count (3.7). We will introduce the appropriate statistical machinery to distinguish between actual signals
and spurious noise fluctuations: First, we will study the way in which noise will enter our searches via the
statistical properties of the number count; then, we will use such information to construct the appropriate

40



3.3. Statistics

thresholds, which will be able to state the significance of a certain template in terms of probabilities.

3.3.1 Normalized Power distribution

Consider an additive, stationary, zero-mean, white Gaussian noise n[j]. Following the exposed algorithm,
we can express the noise normalized power as

2ρ[k] = zR[k]2 + zI[k]2 (3.23)

where

zR[k] =

√
2R(x̃[k])√
〈|ñ[k]|2〉

, zI[k] =

√
2I(x̃[k])√
〈|ñ[k]|2〉

, (3.24)

R(·) and I(·) represent the real and imaginary part functions, respectively, and the notation has been
kept consistent with the one used during section 3.1.

Being n[j] Gaussian, it is clear that R[ñ[k]] and I[ñ[k]] are also Gaussian, since they can be described as
a convolution of Gaussian random variables. Moreover, its whiteness justifies the fact that both of them
have the same variance, which is given by 〈|ñ[k]|2〉/2; hence, zR[k] and zI[k] are both Gaussian random
variables with unit variance.

This implies that 2ρk is a sum of two squared Gaussian variables, i.e. a χ2 distributed variable with two
degrees of freedom and non-centrality parameter given by

λ[k] = 〈zR[k]〉2 + 〈zI[k]〉2 =
4
∣∣∣h̃[k]

∣∣∣2
TcohSn[k]

. (3.25)

The non-centrality parameter describes the significance of a signal proportional to its normalized power,
raising the mean power value over the zero mean noise. Thus, the distribution of ρ[k] under the presence
of a signal described by a non-centrality parameter λ[k] is given by

p(ρ[k]|λ[k]) = 2χ2(2ρ[k]|2, λ[k])

= exp

(
−ρ[k]− λ[k]

2

)
I0

(√
2λ[k]ρ[k]

)
, (3.26)

where I0(·) is the modified Bessel function of zeroth order. As the signal fades into the noise, the
distribution approaches an exponential shape. Hereafter we shall drop the discrete index [k] in order to
keep a clear notation, understanding that ρ and λ refer to one of the Fourier frequency bins.

Given a threshold ρth to construct binary maps, the probability of selecting a frequency bin containing a
signal with non-centrality parameter λ is given by

η(ρth|λ) =

∫ ∞
ρth

p(ρ|λ)dρ , (3.27)

i.e. the probability of ρ triggering above the specified threshold due to the effect of an underlying
signal.

Alas, one needs special care when a hard threshold is set: It could happen (and, certainly, it will happen)
that a spurious noise fluctuation triggers above the threshold; even worse, we could be completely missing
a weak signal whose power is not enough to surpass the established threshold.
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The former effect will be treated in terms of the false alarm probability

α(ρth) =

∫ ∞
ρth

p(ρ|0)dρ = e−ρth , (3.28)

which computes the probability of selecting a power bin made out of pure noise; the latter effect will be
represented by the false dismissal probability

β(ρth|λ) = 1− η(ρth|λ) =

∫ ρth

0
p(ρ|λ)dρ , (3.29)

which encloses the probability of missing a frequency bin containing a signal.

We will close this set of definitions by connecting the peak selection probability η with the false alarm
probability α. First, it is clear by definition that η(ρth|0) = α(ρth), since the peak selection probability
in the absence of signal relies entirely on the noise. Moreover, continuous wave signals tend to be weaker
than the surrounding noise, allowing for a weak signal approximation [19]; that is, the spectral intensity
of a signal is small against the surrounding noise power. In our terms, λ � 1, and η can be easily given
in a closed form as

η(ρth|λ) = α(ρth)
{

1 +
ρth
2
λ+O(λ2)

}
. (3.30)

3.3.2 Number Count Distribution

The number count statistic can be easily derived once normalized power is understood. We will derive
the probability distribution of measuring a number count n(~λ) in a particular pixel ~λ of the Total Hough
Map. We recall that the number count of a template is constructed as a sum of selected normalize power
bins along the time-frequency path yielded by such template, as expressed in (3.6).

Consider a binary map constructed using N coherent segments. The probability of obtaining a number
count n out of a certain time-frequency path can be described using a set of N Bernouilli trials: Each of the
coherent segments will yield a increase the number count if the its frequency bin surpasses the specified
threshold, being η the probability of doing so. Thus, the probability distribution of measuring a number
count n in a particular pixel for a certain signal intensity λ is given by the binomial distribution

p(n|ρth, λ) =

(
N

n

)
ηn(1− η)N−n . (3.31)

Let us define ~w = (w1, . . . , wN ) as the set of weights involved in the number count computation. The
mean value µ and variance σ2 are given by

µ = Aη, σ2 = ||~w||2 η(1− η) , (3.32)

where

A =
N∑
i=1

wi, ||~w||2 =
N∑
i=1

w2
i . (3.33)

For the case of unitary equal weights wi = 1, ∀i, both quantities reduced to N . In the absence of a
signal, we recover the same expressions with η = α. This latter case will be referred to as the noise
statistics.

Although we have not given actual values to A, ||w||2 and α yet, it will become clear during the following
section that their typical ranges allow for the use of the Central Limit Theorem, describing the binomial
distribution using a Gaussian approximation

p(n|ρth, λ) =
1√

2πσ2
e−

(n−µ)2

2σ2 , (3.34)
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where the mean and standard deviation are consistent with those of the binomial distribution 3.32.

The final step of the algorithm sets a threshold nth on the number count. As before, such a choice will
breed a false alarm and false dismissal probabilities in a completely analogous way as that of the previous
section. Thanks to the Gaussian approximation, we are able to quote both the false alarm αH and false
dismissal βH probabilities as

αH(ρth, N, nth) =

∫ ∞
nth

p(n|ρth, 0)dn =
1

2
erfc

(
nth −Nα√
2Nα(1− α)

)
, (3.35)

βH(ρth, N, nth, λ) =

∫ nth

0
p(n|ρth, λ)dn =

1

2
erfc

(
Nη − nth√
2Nη(1− η)

)
, (3.36)

where erfc represents the complementary error function and the expressions for the mean and standard
deviation have been made explicit in terms of the peak selection probabilities.

Let us explicitly distinguish between α, β and αH , βH : The former are related to the selection of normalized
power bins according to the power threshold ρth; the latter are related to the selection of templates in
the parameter space, according to the number count threshold nth.

3.3.3 Optimal Choice of thresholds

Two ways can be taken in order to set appropriate values to the aforementioned thresholds ρth and nth:
Either rely on a well-known statistical result, the Neyman-Pearson criterion, or explicitly maximize the
effectiveness of the search by a suitable choice of ρth. We will use the latter for convenience, although
both methods yield completely equivalent results within the weak signal regime.

So far, we have implicitly referred our statistical measurements, such as the number count n, to an
arbitrary null value; that is, neither we know how significant is a certain number count, nor we are able to
compare it to another value solely by itself. This lack of information can be emended with a new variable,
the critical ratio

Ψ(n) =
n− µ
σ

=
n−Aα√

||w||2 α(1− α)
, (3.37)

where µ and σ are taken to be the ones corresponding to noise. Essentially, it computes how far is a
number count n with respect to the average noise in units of its standard deviation.

Given that higher critical ratios imply more significant candidates, we will choose a threshold ρth which
maximizes the typical critical ratio. That is, take its average value, according to the number count
statistic

〈Ψ〉 =
Nη −Nα√
Nα(1− α)

, (3.38)

and maximize with respect to ρth, taking into account the linear expansion of the peak selection probability
(3.30) and the definition of false alarm peak selection probability (3.28):

∂ 〈Ψ〉
∂ρth

= 0→ logα = 2(α− 1) . (3.39)

This transcendental equation can be numerically solved to yield ρth ' 1.6 or α ' 0.2. It is worth
mentioning the independence of this result on the normalization of the weights given in (3.8): Any
transformation ωi → Nωi,∀i will be factored out from (3.37); hence, we can freely choose the value of A,
according to our needs. For instance, A = N yields n ≤ N .
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As for the number count threshold nth, it can be set by establishing a false alarm probability αH and
inverting (3.35). This choice has to be carefully made: A low false alarm rises the threshold, diminishing
the number of candidates to be followed up; in exchange, false dismissal probability increases, potentially
punishing the sensitivity of the search. The actual line of reasoning behind the theoretical sensitivity of
a search, which goes beyond the scope of the present work, can be found in [46]. Further sections will
expose the actual method we used to quantize the sensitivity of a search.

3.4 Post Processing

The first result of a search in a region of the parameter space is given in terms of a toplist, which stores
the best candidates in terms of its critical ratio. One could either set a minimal threshold to enter
in the toplist or specify a certain amount of candidates to be stored in order to fulfill computational
requirements.

Anyway, the result is a cloud of significant points in the parameter space, the origin of which could be
either a noise disturbance or an actual astrophysical signal. We proceed to describe the post processing
steps used to further discriminate both candidates. There are two steps involved:

The first one explodes the existence of multiple interferometric detectors with similar sensibilities. If a
continuous gravitational wave signal reaches the Earth, the response of every detector has to be consistent;
in another way, the parameters corresponding to a particular signal have to be present in every considered
toplist. Such a coincidence has to be done using a common epoch; that is, source parameters yielded by
two detectors, have to be taken at the same GPS reference time. To do so, frequencies are shifted using
its corresponding spin-down and the shift between reference times.

Given that parameter space is discretized, a continuous wave signal can be triggered by several templates,
since none of them actually represents its exact parameters. Hence, the second step intends to cluster
surviving templates from the previous step into a single region of the parameter space.

Clusters due to a signal are expected to trigger more than one candidate of the parameter space; hence,
any single-candidate cluster can be disregarded as a spurious noise fluctuation. This imposition is referred
to as population veto.

Alternatively, one could recompute the significance of a cluster using other, more significant statistics.
For instance, O2 analysis used the F-statistic to discard noisy clusters, re-computing its significance with
different coherent lengths.

3.4.1 Parameter Space Distance

A distance function is introduced to construct template coincidences in the parameter space. Let ~λa and
~λb be two templates in the parameter spaced (3.1). The SkyHough distance is defined as

dH

(
~λa, ~λb

)
=

√(
∆f

δf

)2

+

(
∆f1
δf1

)2

+

(
∆θ

δθ

)2

, (3.40)

where ∆f represents the distance in the frequency subspace, ∆f1 represents the distance in the spin-down
subspace and ∆θ represents the distance in the sky subspace. Each contribution is expressed in terms of
bins in the corresponding subspace δf , δf1, δθ, the expression of which was shown in section 3.2.

The frequency and spin-down contributions are taken as the absolute difference between both tem-
plates

∆f =
∣∣∣fa0 − f b0∣∣∣ , ∆f1 =

∣∣∣fa1 − f b1∣∣∣ . (3.41)
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As for the sky contribution ∆θ, two prescriptions have been proposed so far.

During the O1 data analysis [8], ∆θ was taken as the geodesic distance over the celestial sphere between
the two candidates

∆θ = arctan

∣∣~na × ~nb∣∣
~na · ~nb . (3.42)

The drawback comes from the structure of the Doppler modulation of the signal. As already discussed,
the Doppler shift is the main source of sky location of a continuous wave signal. According to the annuli
discussion in section 3.2.2, the loci formed by sky locations parallel to the velocity vector of the detector
is composed by the thickest annuli, spreading candidates along wider regions. This region corresponds to
the vicinity of the ecliptic plane.

The proposed solution during the O2 data analysis [9] was another prescription of ∆θ. Instead of a
geodesic distance over the sphere, candidates were projected to the ecliptic plane, taking ∆θ as the
euclidean distance onto such plane.

For an arbitrary sky position expressed in equatorial coordinates ~n(α, δ), the corresponding cartesian
coordinates onto the celestial sphere (ξ, η, ζ) are defined as

ξ = cos δ cosα
η = cos δ sinα
ζ = sin δ

. (3.43)

The conversion to cartesian coordinates with respect to the ecliptic plane is given by a rotation around
the ξ axis according the obliquity of the ecliptic ϕxy

z

 =

1 0 0
0 cosϕ sinϕ
0 − sinϕ cosϕ

ξη
ζ

 . (3.44)

Then, the sky contribution to the parameter space distance between two candidates is given by

∆θ =
√

(xa − xb)2 + (ya − yb)2 . (3.45)

This projection lets the region of the poles almost untouched; however, signals near the ecliptic plane are
located closer, since the main source of delocalization, given by the z component in (3.44), is completely
disregarded.

3.4.2 Coincidence and Clustering

The first step of the post processing uses two toplists coming from two different detectors. During the
last scientific runs, those where the L1 and H1 LIGO interferometers located at Livingston and Hanford
respectively. Each candidate in one of the toplits, say ~λH , was compared to every candidate in the other

toplist ~λL. If the distance between a pair of candidates fulfilled dH

(
~λH , ~λL

)
≤ rc, a new candidate was

computed as the weighted average of ~λL and ~λH according to its critical ratio. The result of this step is
a new toplist of coincident candidates among both detectors. We recall that any pair of candidates can
produce a coincidence; that is, a candidate from one toplist could produce a coincidence with every single
candidate in the other toplist.

Let us define Λc = {~λc1, . . . , ~λcM} as the obtained toplist of coincident candidates. The second step intends
to cluster them into bigger sets. To do so, candidates are selected pairwise; for any pair i, j ∈ [1,M ], i 6= j
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we compute its parameter space distance. If they are located closer than a certain window rcl, i.e.

dH

(
~λci ,

~λcj

)
≤ rcl, both candidates are included into the same cluster in a transitive fashion.

So far, the suitable choice of rc and rcl has been manually calibrated for each analysis. During the O1
analysis, using the geodesic sky distance (3.42), the choice was rc = rcl =

√
14 in units of parameter space

discrete bins. For the O2 analysis, where the projected sky distance was introduced (3.45), the choice
was rc = 3 and rcl =

√
14. The use of a lower rc reduces the chance of random fluctuations to coincide,

while a higher rcl groups candidates from a common origin.

In the end, this procedure lows the false alarm probability of a search by using extensively the properties
of a gravitational waves measurement. Any surviving cluster becomes a region to be followed up by deeper
methods in order to refine its main properties.
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Chapter 4
The sixth LIGO scientific run and its Continuous
Wave Mock Data Challenge

We expose the Mock Data Challenge performed during the sixth LIGO scientific run by the continuous
wave pipelines. In addition to being a clear comparison between different search strategies, it will be
useful to compare the behavior of further improvements into the SkyHough pipeline.

4.1 LIGO S6 Data

The sixth LIGO scientific run (S6) [3] was the last measurement period of the LIGO detectors before its
major upgrades to the current Advanced LIGO detectors. Its spanned along fifteen months, from 8th
July 2009 (GPS 931035615) to 17th October 2010 (GPS 971622015), although the useful time is much
shorter due to commissioning periods undergoing in the detectors. The dataset is freely available under
the Gravitational Wave Open Science Center (GWOSC) [79], maintained by the LIGO and Virgo scientific
collaboration.

The run was divided in four segments, labeled as A-D, according to changes in the detector performance
due to multiple reasons. Segment A run approximately for two months, stopping for a commission break.
As for segment B, it ended the rest of the year, ending with a commission break as well. Regarding epochs
C and D, they spanned a continuous nine month period of operation, being the division marked by the
inclusion of the Virgo detector into the search.

Data quality, understood as a measure of instrumental stability of the detector, was measured in terms of
the duty factor, the fraction of the total run time which is useful for scientific purposes. Each continuous

Segment Median duration (mins) Longest duration (hours) Total live time (days) Duty factor (%)

S6A 54.0/39.3 13.4/11.8 27.5/25.6 49.1/45.7
S6B 75.2/17.3 19.0/21.3 59.2/40.0 54.3/38.0
S6C 82.0/67.5 17.0/21.4 82.8/82.3 51.4/51.1
S6D 123.4/58.2 35.2/32.6 74.7/75.2 63.9/64.3

Table 4.1: Characteristics of the S6 run for the H1/L1 LIGO interferometers, located at the LIGO Hanford
Observatory and LIGO Livingston Observatory, respectively.
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Figure 4.1: Amplitude Spectral Density of the LIGO detectors during S6. The black line shows the
predicted design sensitivity for the instruments [21], while the green and red lines show the actual,
measured ASD. Source: [3].

period of operation under nominal detector conditions is called science segment. Its duration is submitted
to the detector, ending when the noise levels of the instrument surpass the electronically controlled region.
Alternatively, science segments can be manually ended to perform maintenance tasks.

Table 4.1 summarizes the results delivered by both LIGO detectors after the scientific run. The overall
tendency points to an increase in the duty factor for both detectors as the run progressed. The same
tendency can be observed on the duration of the science runs. The short duration science segments during
the early days are mostly due to the significantly poor detector stability suffered by L1, especially during
the B segment of the run. Increasing instrumental stability shows the deeper understanding achieve by
the LIGO collaboration regarding noise sources of the detector, as well as an improvement in the control
systems used to maintain the optimal working point of the instrument.

As for the sensitivity to gravitational waves, the usual measurement is the strain amplitude spectral
density of detector output, which we called simply amplitude spectral density (ASD), shown in figure 4.1.
As already discussed during section chapter 1, the lower region of the spectra is due to seismic noise and
its coupling to the mechanical suspensions of the mirror; the substantial gap among L1 and H1 can be
related to the prototype isolation installed in the former. Higher region of the spectra can be related to
thermal noise or quantum fluctuations of the laser’s properties; however, there were some structures the
origin of which was never fully understood.

Regarding continuous wave searches, the most critical feature is related to the existence of narrow-band
line structures into the spectra, which correspond to persistent noise disturbances with a specific frequency.
Many of such disturbances are a direct consequence of the design and operation of the interferometers: The
60Hz line is due to the alternating current power line used in the U.S.; instrumental suspensions produce
a prominent line around 350Hz; calibration lines are located on purpose to study the response function
of the detector; harmonics of noise lines are also into play, such as the 120Hz power line harmonic,
clearly seen in figure 4.1. There were another sets of undesired lines, the origin of which was poorly
understood; some of them poisoned both instruments, some of them just one. In particular, two sets
of 2Hz and 16Hz harmonics appeared coherently in both observatories, disturbing the searches for long
duration gravitational wave signals.
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Figure 4.2: Efficiency curves for the Mock Data Challenge performed over the LIGO S6 science run.
Different pipelines are represented by different colors. The shaded region around each line represents the
statistical uncertainty on the detection efficiency measured for the search implementation and the data
used in the MDC. Left: Efficiency curve using injections which did not overlap with a known noise line.
Right: Efficiency curve using injections which did overlap with a known noise line. Source: [80].

Continuous wave pipelines chose to analyze the final seven months of the S6 data set due to the spectral
contamination during the initial periods of the run [77]. Moreover, frequency bins which where clearly
contaminated by noise disturbances were removed from the analysis. In all, the S6 analysis was able to
yield better results than the previous S5 analysis, even though an explanation for the increasing number
of lines remained pending.

4.2 The S6 Mock Data Challenge

Mock Data Challenges (MDCs) are a way to test the performance of a pipeline using real (or close to
real) conditions. In this case [80], a set of artificial continuous gravitational wave signals were generated
and introduced (injected) into the S6 data set. The challenge was to find such signals using the different
pipelines involved in continuous wave searches. After the challenge, one is able to understand the perfor-
mance of each pipeline with respect to others regarding sensitivity, robustness against noise disturbances
and computational costs.

3110 signals consistent with an isolated, spinning neutron star were injected into real S6 data, from GPS
931035615 to GPS 971622272. Injections were placed in frequency bands at 0.5Hz intervals. Sky position
was taken as a random variable isotropically distributed over the celestial sphere, while spin down was
drawn from a uniform distribution in log space within [−1×10−9,−1×10−18]Hz/s for a 95% of the signals
and [1× 10−18, 1× 10−13]Hz/s for the remaining 5%. A 25% of the signals got assigned a braking index
n ∈ [5, 7], which was reflected in non-null second and third frequency derivatives. Such brake indexes can
be related to neutron stars with gravitational waves as the main emission channel. The amplitude of the
signals h0 was described in terms of the signal-to-noise ration of a coherent search, drawing its values
from a uniform distribution. The effective noise amplitude spectral density

√
Sn was computed using

an inverse-variance-weighted harmonic average between both detectors. As for the nuisance parameters
ψ, φ0 and cos ι, they were randomly drawn from uniform distribution with ranges [−π/4, π/4], [0, 2π] and
[−1, 1], respectively.

The signals were generated and injected into S6 data using lalapps sw inj frames, available under the
LALSuite software package [73]. The actual data was stored as SFTs according to the standard SFT v2
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description [70]. Using a duration of 1800s, 9124 and 10124 SFTs were generated from the data collected
by the L1 and H1 interferometers, respectively.

The full S6 MDC was performed by five pipelines: Powerflux, SkyHough, FrequencyHough, Einstein@Home
and Time Domain F-Statistic. Each pipeline established a different tradeoff between robustness and sen-
sitivity, employing different strategies to deal with noise disturbances. Also, different computational
capabilities dictate the way in which the parameter space could be treated. The computational imple-
mentation of each pipeline can be freely accessed under the LALSuite software package [73].

Figure 4.2 shows a part of the obtained results. For instance, Einsten@Home, being a world-wide collab-
orative project, is able to employ longer coherent times, reaching the deepest sensitivity of all searches;
however, its treatment of noise disturbances, which replaces known lines by realizations of Gaussian
noise, prevented any detection of signals overlapping with known lines. On the other hand, the Sky-
Hough pipeline uses a much shorter coherent time, as already exposed during chapter 3; consequently, it
is less sensitive than Einsten@Home on the set of known injections. However, its implementation does
not remove narrow lines; rather, their effects are mitigated by imposing a common threshold over the
normalized power. As a result, it achieves a significant efficiency with respect to other pipelines when the
search is performed on parameter space regions overlapping with known lines.

4.2.1 The Mock Data Challenge as a Test Dataset

SkyHough results on the Mock Data Challenge serve as a snapshot of the operational state of the pipeline.
As so, they can be used to quantify the effectiveness of new data analysis strategies introduced in the
pipeline by targeting multiple injections and comparing its results. To do so, we prepared a set of 176
known injections of the challenge, shown in figure 4.3.

The sample of injections is significant in the sense that the whole parameter space of interest (the one
which produces frequency modulations) is uniformly covered; that is, frequency presents a uniform distri-
bution, spin-down presents a logarithmic uniform distribution, right ascensions is uniformly distributed
and declination is sinusoidaly distributed to ensure a uniform coverage of the celestial sphere. The fraction
of spin-up signals is consistent with the one used during the MDC. As for the sensitivity depth, a wide
range, beyond the one achieved by the SkyHough pipeline, is covered.
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Figure 4.3: Distribution of the employed subset of injections along the parameter space. The injections are
uniformly distributed in frequency, spin-down and the celestial sphere. The amount of spin-up injections
represents a small fraction of the whole, resembling the intended Mock Data Challenge distribution.
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Chapter 5
A Noise Robust Statistic for the SkyHough
Pipeline

This chapter presents a novel development on the SkyHough pipeline, which we label as the Robust
Statistic. The main idea is to randomly sample the parameter space in order to probe the underlying
noise distribution; then, a new robust critical ratio can be constructed. That way, candidates’ significance
will be quoted with respect to the actual noise distribution, automatically taking into account variations
on the number count noise floor, which nowadays have to be treated ad hoc using veto procedures.

Moreover, the suppression of noise contributions into the number count statistic allows for the construction
of a combined, multi-interferometer statistic. This idea is applied to the robust critical ratio, and increases
the sensitivity of the search to signals which were not detected by both detectors using the former,
Gaussian, critical ratio.

A subset of signals produced for the S6 Mock Data Challenge were used to test the new implementation.
Data was stored as 1800s SFT v2 files [70] in the California Institute of Technology’s supercomputing
cluster (CIT) [40]. The Hanford interferometer (H1) yielded 10124 SFTs, while the Livingstone inter-
ferometer (L1) yielded 9124 SFTs. Its use was motivated by the availability of previous results of the
SkyHough pipeline, which would ease the evaluation on improvements.

5.1 The Robust Statistic

The former exposition on the SkyHough pipeline described the number count statistic for the case of pure
noise, yielding as a result a Gaussian distribution. The proof relies in two steps: First, we described
the noise number count as a sum of identical independent Bernouilli variables with a certain success
probability given by the false alarm probability α; that is, a Binomial distribution. Then, we invoked
the Central Limit Theorem to approximate such a distribution by a Gaussian distribution, the mean and
variance of which was directly derived from the previously stated false alarm probability.

The derivation of α in terms of a power threshold assumed a zero-mean, stationary Gaussian noise. That
is, noise was modeled as stationary fluctuations over a null-power floor. However, we already discussed
during section 4.1 showed the variety of structures which could be generated by noise. In particular,
spectral disturbances (such as lines) substantially drift away from the proposed assumptions, directly
affecting the number count of a wide region of the parameter space. As a result, the true number count
statistic differs from the Gaussian prescription given by (3.34).
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The formal treatment of the Robust statistic goes as follows: Consider the time-frequency track assigned
to a particular template T (~λ). Instead of an overall, homogeneous probability α, each bin (a, k) ∈ T (~λ)
has a certain selection probability αak due to the non-homogenity of the noise. That is, different frequency
components are affected by different types of noise at different times. Therefore, the number count due
to noise fluctuations can be approximated by a sum of non-identical, independent Bernouilli random
variables.

Such a description results in a Poisson-Binomial distributed variable. The amount of Bernouilli trials
involved in the number count computation is given by the track length, which is related to the number
of SFT in used. Depending on the observing run, O(103−4) are involved in the analysis. As for the
success probability of the trials, it is given by the false alarm probability, which is never close to 1 or 0.
Hence, from an analytical point of view, it can be shown that the Poisson-Binomial distribution is well
represented by a Poisson distribution with the suitable event rate parameter [49]. Moreover, the typical
values of the Poisson’s event rate parameter, which are related to the average number count noise value,
lead the Poisson distribution to the regime in which the Central Limit Theorem becomes useful; hence,
the Gaussian assumption on the number count noise distribution is still valid under this new formulation
of its statistics, yet the mean value and variance differ from the ones quoted in (3.34).

This argument is intended to justify the validity of the statistical arguments developed in [46]. Never-
theless, such conditions do not have to be met during a real data analysis; hence, the underlying noise
statistic will not be derived from this procedure; rather, we will probe the number count noise distribution
by means of a parameter space sampling.

Figure 5.1 exemplifies the idea behind the parameter space sampling. Two number count distributions
were generated using a Gaussian distribution. The first one corresponded to a noise number count, while
the second one corresponded to a noise distribution under the presence of an astrophysical signal.

As explained during chapter 3, astrophysical signals rise the number count distribution according to a
non-centrality parameter λ. If we focus on an ideal situation, shown in upper figure 5.1, noise number
count fluctuates around the null value, while the presence of a signal increases the mean value of the
number count distribution according to the non-centrality parameter λs 6= 0.

However, this situation can be easily broken by spectral disturbances. For instance, we could be working
under the presence of a line. Lines, as sustained disturbances, can be described in terms of an associated
non-centrality parameter λn 6= 0 which rises the average number count fluctuation, as shown in lower
figure 5.1. The use of a Gaussian number count statistic, which assumes λn = 0, yields disastrous results,
as the significance of a pure noise sample is actually overestimated.

On the other hand, the estimation of noise statistics using sampled values probes the actual statistic
of that particular region of the parameter space. As a result, noise and signal significance are properly
stated. It is worth mentioning that this procedure is compatible with the previous statistical prescription,
as the sample statistic coincides in an ideal case. This is shown in upper 5.1 as well.

Summarizing, we will use a sampling procedure to probe the actual noise number count statistic. The
result will be a sample mean µr and a sample standard deviation σr for a certain region of the parameter
space. Then, templates within that region of the parameter space will get assigned a robust critical
ratio Ψr according to its number count n in a consistent manner with the previous definition of critical
ratio

Ψr =
n− µr
σr

. (5.1)
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Figure 5.1: Histogram of the Gaussian and robust statistics for a simulated set of number counts un-
der different noise conditions. Blue histograms represent the number count distribution produced by
background noise; yellow histograms represent the number count distribution in the presence of a signal.
Noise’s characteristics are stated in terms of the non-centrality parameter (3.25), as explained in the
main text. Upper: Number count simulation using zero-mean Gaussian noise. Lower: Number count
simulation in the presence of a persistent spectral disturbance, modeled by a non-zero λn.

5.2 The Multi-Interferometer Statistic

Gravitational wave searches are performed with multiple interferometers (IFOs) at once. Hence, it is
natural to consider ways of combining single-interferometer statistics into a multi-interferometer statis-
tic. Developments in this matter can be traced back to [41] for the case of coherent analysis. We will
extend those ideas towards a multi-interferometer critical ratio, the antecedents of which can be found in
[59].

The inclusion of multiple interferometers into the analysis potentially increases the significance of gravita-
tional wave candidates, given that statistical significance is jointly added; however, spurious noise fluctua-
tions could also become more significant, increasing the false alarm probability of the search. Through the
use of the robust statistic, we expect to suppress noise artifacts present in our data, effectively countering
the increase of false alarm in our multi-interferometer statistic.

We will combine the robust critical ratio from different interferometers; that is, each interferometer will
compute its own robust statistic, delivering a robust critical ratio for each template. Then, critical ratios
will be mixed using the suitable measure data quality measurement of each detector.

An initial choice was made in [59], where weights (3.8) were taken to measure the data quality of a detector
as they explicitly take into account the main data degradation processes: Noise floor and detector response.
Let us define IFO = {I1, . . . , IM} as the set of interferometers to work with. Each interferometer I ∈ IFO
holds a set of weights ~wI according to chapter 3. Then, the exact data quality measurement for the I-th
interferometer was taken to be

rI =

√
||~wI ||2√∑

J∈IFO ||~wJ ||2
, (5.2)
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which can be re-expressed in terms of the single-interferometer number count standard deviation as

rI =
σI√∑
J∈IFO σ

2
J

. (5.3)

Thus, we will describe the multi-interferometer critical ratio as follows: For a particular template, each
interferometer I ∈ IFO will deliver a number count nI , which will get associated a mean value µI and a
standard deviation σI using the parameter space sampling. Assuming null inter-interferometer correlation,
the multi-interferometer number count nm and its corresponding statistics will be defined as

nm =
∑
I∈IFO

nI ; (5.4a)

µm =
∑
I∈IFO

µI ; (5.4b)

σ2m =
∑
I∈IFO

σ2I . (5.4c)

As a result, the multi-interferometer critical ratio is given by

Ψm =
nm − µm
σm

=
∑
I∈IFO

ΨrI
σI
σm

, (5.5)

where ΨrI represents the robust critical ratio associated to the I−th interferometer and the multi-
interferometer weights are consistent with 5.3.

[59] obtained information on the detector state using a prescribed quantity, namely the weights; we
supply such information in terms of a parameter space sampling, taking into account the actual noise
distribution.

5.3 Implementation of the Robust Statistic

Both procedures were added to the DriveHoughMulti.c code, which encodes the computational core of
the SkyHough pipeline. We proceed to explain the way in which they were implemented. It is important
to recall that previous functionalities are by no means overridden by new implementations; that is, we
are still capable of performing data analysis according to former prescriptions.

Codes are publicly available under the LIGO Algorithm Library LALSuite [73]. The implementation
made use of the GNU Scientific Library (GSL) [30]. Valgrind [58] was used as a debugging tool during
the development and test processes.

5.3.1 Parameter Space Sampling

The SkyHough pipeline segments the parameter space in a particular fashion: Chosen a frequency band,
gravitational wave signals are looked for in different sky locations (sky patches) for a certain range of
spin-down parameters. Hence, we decided to perform a parameter space sampling for each sky patch, for
each frequency band, in order to compute the corresponding statistic. This procedure is done for each
interferometer, allowing us to compute the multi-interferometer statistic at the same time.
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The implementation of the sampling procedure benefits from a previous code, intended to calibrate the
number count χ2 statistic [24]. From an operational point of view, independent samples are drawn for
each of the four parameters within the established parameter space limits. That is, a random frequency
is selected within the considered frequency band; a random sky position is selected within the studied sky
patch; a random spin-down value is selected from the given spin-down range. Then, the number count
associated to the randomly selected template is computed, taking the suitable weights into account.

The effects of a continuous wave signal into the parameter space sampling can be argued as follows:
Astrophysical signals, opposed to wide spectral disturbances, are expected to affect a much more confined
region of the parameter space; hence, they are less likely to affect the noise estimation performed by a
random number count sampling.

5.3.2 Estimation of Sample Statistics

The result of a sample was used to estimate the mean value and standard deviation of the underlying
number count noise distribution. However, the usual computational recipes to estimate the standard
deviation of a sample can be easily affected by catastrophic cancellations, since they involve the subtraction
of floating point numbers way bigger than the final value. Moreover, if we intended to implement another
strategy, such as re-sampling method to ensure a good representation of the parameter space, we would
need to deal with a significant amount of numbers held in memory at once.

Both issues can be overcome with the use of Welford’s Algorithm [81]. It is described as an online
algorithm, which means that the estimation is performed as samples are taken; i.e. there is no need to
keep every single sample in memory to perform the statistical estimation. Moreover, it allows the variance
computation to be written in a way such that catastrophic cancellation is avoided.

Given a set of n samples {ξ1, . . . , ξn}, the algorithm describes the estimation of the mean µ and standard
deviation σ as a recursive relation for m = 1, . . . , n:

µm = µm−1 +
ξm − µm−1

m
, (5.6)

Mm = Mm−1 + (ξm − µm−1)(ξm − µm) , (5.7)

where the sample mean is given by µ = µn and the sample variance is given by σ = Mn/(n − 1). As
clearly seen from both expressions, the subtractions are always performed among numbers of the same
order, reducing the precision loss with respect to a brute force approach.

The combination of this algorithm with the previous sampling procedure yields an effective code which
practically does not increase the computational load with respect to the previous version, as there is no
need to spend significant amounts of memory to store new parameters.

5.3.3 Multi-Interferometer Number Count

The final modification with respect to the previous code regards the computation of number counts. The
new prescription for the multi-interferometer number count statistic 5.5 requires to individually compute
every single-interferometer critical ratio. To do so, the internal data management of the code had to
be modified, as the interferometer information from a multi-interferometer data set was lost due to the
procedure implemented in the previous code.

After our modification, every set of SFTs coming from a different interferometer is stored as a block with
a certain order. The initial and final SFT’s indexes of each block is kept in memory in order to track every
single-interferometer data set during the number count computation process. As a result, we are able to
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Figure 5.2: Critical ratio comparison on the 60Hz and 120Hz harmonic of the detector’s AC power
supply during the S6 science run. The analysis kept the best 1000 candidates according to its multi-
interferometer statistic. Left: Single and multi-interferometer statistics constructed using the Gaussian
SkyHough Critical Ratio. Right: Single and multi-interferometer statistics constructed using the Robust
Critical Ratio.

separately compute single-interferometer number counts and combine them according to 5.5, which can
be considered as an enhancement with respect to the previous version of the code.

5.4 Performance of the Robust Statistic

We used the novel robust, multi-interferometer statistic over two situations in order to study its behavior
and capabilities regarding the suppression of noise artifacts and the detection of continuous gravitational
waves. The former item was tested by pointing the algorithm towards parameter space regions populated
by known spectral disturbances; the later used a subset of injections from the S6 Mock Data Challenge
to compare its sensitivity with respect to the previous implementation of the SkyHough pipeline.

Computational jobs were executed in the supercomputer held at the California Institute of Technology
(CIT) [40], using HTCondor [69] as the job manager.

5.4.1 Analysis of Known Lines

We performed a search for continuous gravitational wave searches on regions of the parameter space that
were known to be affected by spectral disturbances. We pointed the sky location towards the polar region,
which is where Doppler shift is less severe. This implies that lines yield similar patterns to those of a
signal, as they do not suffer a frequency modulation either.

Figure 5.2 shows the critical ratio obtained after searching over the frequency band poisoned by the 60Hz
and 120Hz lines. These lines arise from the very functional core of the interferometer, since they are
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Figure 5.3: Critical ratio comparison for a violin mode present in the H1 interferometer during the S6
science run. The analysis kept the best 1000 candidates according to its multi-interferometer statistic.
Left: Single and multi-interferometer statistics constructed using the Gaussian SkyHough Critical Ratio.
Right: Single and multi-interferometer statistics constructed using the Robust Critical Ratio.
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Figure 5.4: Critical ratio comparison for a narrow line feature present in the L1 interferometer during the
S6 science run. The analysis kept the best 1000 candidates according to its multi-interferometer statistic.
Left: Single and multi-interferometer statistics constructed using the Gaussian SkyHough Critical Ratio.
Right: Single and multi-interferometer statistics constructed using the Robust Critical Ratio.

related to the AC power supply frequency used in the U.S. As we can see, the robust statistic suppresses
the influence of such artifacts to a lower value; this is precisely the expected behavior, as the virtual
significance of the candidates given by the Gaussian statistics is due to the increased value of the mean
noise number count.

Figure 5.3 shows an equivalent result for a different line. In this case, we took a violin mode which was
specially prominent in the LIGO Hanford interferometer (H1). Such modes arise from the vibrations
of mechanical suspensions of the interferometer mirrors. They pose a bigger challenge than the 60Hz
harmonics, as their monitoring is inherently more difficult. Nevertheless, the probing strategy of the
robust statistic is able to suppress its influence for the very same reason as before.

So far, the highlighted spectral disturbances span across relatively wide regions of the parameter space;
this is the desirable setup for the application of the robust statistic and, as already shown, performs in a
competent way against the previously prescribed Gaussian statistic.

For the sake of completeness, we performed a last search over a narrow line feature on the LIGO Livingston
detector (L1). The performance of the robust statistic over this particularly narrow line delivers us
valuable information on the effects of the robust statistic over gravitational wave signals: As previously
commented, gravitational wave signals affect a relatively small region of the parameter space, and produce
indistinguishable traces compare to that of persistent noise disturbances when a search is performed close
to the polar regions.
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Figure 5.5: Results of the continuous wave search on two injections of the Mock Data Challenge S6.
The 1000 most significant candidates were kept, according to its multi-interferometer critical ratio. The
vertical red line represents the injection point; the vertical purple line represents the recovered parameter
by the SkyHough pipeline during the Mock Data Challenge. Upper: Injection recovered by the SkyHough
pipeline and the multi-interferometer robust statistic. Lower: Injection not recovered by the SkyHough
pipeline during the Mock Data Challenge S6, but recovered by the multi-interferometer robust statistic
according to the preliminary post processing.

The results are shown in figure 5.4. Significance mitigation is present, as the noise number count floor has
been raised due to the use of a parameter space sampling; however, the suppression is significantly lower
than in the previous cases. This fact does not discard the robust statistic for continuous gravitational
wave searches, as the significance of a small regions of the parameter space stands still. In fact, one could
attempt to construct a veto procedure to discriminate between astrophysical signals and spurious noise
fluctuations according to its critical ratio mitigation.

Summing up, we tested the basic feature of the robust statistic: Noise contributions are suppressed
thanks to the use of accurate background statistics, obtained by means of parameter space samplings;
regarding narrow perturbations, its mitigation is significantly lower, allowing us to use this idea to search
for continuous gravitational waves.

5.4.2 S6 Mock Data Challenge: Overview

After understanding the main traits of the new robust multi-interferometer statistic, we used the already
introduced Mock Data Challenge to directly compare the results with the previous formulation of the
SkyHough pipeline. The subset of the data set, as well as its fairness in terms of signal distribution in the
parameter space, were already introduced during chapter 4.

Regarding parameter space resolution, coherent time was Tcoh = 1800s, while total observation time was
Tobs ' 4 · 107s, as quoted during chapter 4. Hence, the resulting parameter space resolutions where

δf ' 5 · 10−4Hz ,
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δf1 ' 1 · 10−11Hz/s .

As for the sky resolution, which depends on the frequency according to (3.18), a pixel factor p = 2 was
taken.

The searches were performed around the injection points of the parameter space. That is, the analysis
focused on a 0.1Hz frequency band centered around the injection point, pointing towards the sky position
of the injection. For each injection, we selected the 1000 most significant candidates according to the multi-
interferometer robust statistic. Then, we imposed a critical ratio threshold Ψth = 5, disregarding any
candidate with a lower critical ratio. The final estimation of signal parameters was done using a weighted
average among the surviving candidates within each frequency band, using its multi-interferometer robust
critical ratio as weights. This post processing step is meant to obtain a preliminary result on the sensitivity
of this new statistical approach; future studies on the subject of multi-interferometer shall improve it in
terms of new prescriptions and veto procedures in order to diminish the false alarm of a search, as current
post processing steps based in coincidences do.

The fairness of the preliminary post processing step is shown in figure 5.5, where two particular injections
are shown. The first one was recovered by the both procedure, the SkyHough pipeline and the multi-ifo
robust statistic using the preliminary post processing step. As for the second one, only the new statistic
is able to recover it.

This detection can be related to the combined action of both interferometers into the search, as opposed to
the strategy employed during the Mock Data Challenge, which combined the information of each detector
after the execution of the Hough transform. This, in turn, is made possible by the use of the robust
statistic, which mitigates the combined noise distribution introduced by both detectors, as clearly seen
in both figures 5.5, where the surrounding background critical ratio is consistently kept below the 4σ
value.

As for the results, an outlook is shown in figure 5.6, which includes the injections detected by both
implementations of the pipeline, namely the one used during the Mock Data Challenge and the robust
multi-interferometer statistic with a preliminary post-processing. 127 out of 176 injections were success-
fully recovered; 11 of those injections were not recovered by the previous formulation of the SkyHough
pipeline.

Every injection detected during the Mock Data Challenge S6 was recovered by the new implementation
as well. This fact is consistent with our arguments, given that the robust statistic gauges the noise contri-
bution: If an injection was already significant with respect to the background before the implementation
of the robust statistic, It will be still significant after its implementation.

Newly detected injections are well distributed along the parameter space, with no particular preference
for a particular sky position or frequency band. This ensures that the parameter space sampling is
representative. For instance, if the recovered injections were located at the polar regions, it would imply
that the robust statistic is not suitable to treat with the effects of the Doppler shift. However, the number
count computation already takes such effect into account; hence, the use of parameter space samplings
abstracts the Doppler shift out of the robust statistic.

Looking into the depth distribution, we clearly see how the robust statistic is able to recover injection
further into the depth distribution. That is, there is no apparent depth gap between the originally
recovered injections and the newly recovered ones. Following the previous argument, this is the expected
behavior, since the robust statistic treats every region on the parameter space in the same manner.

In brief, the results delivered by the robust statistic are consistent. Every injection recovered by the
previous formulation is recovered by the robust statistic; this fact can be related with the argument given
to figure 5.1: The robust statistic refers the significance to the actual noise distribution; hence, those

63



Chapter 5. A Noise Robust Statistic for the SkyHough Pipeline

100 200 300 400
Frequency [Hz]

10−17

10−15

10−13

10−11

10−9

N
eg

at
iv

e
S

p
in

D
ow

n
[H

z/
s]

50 100 150 200 250 300
Frequency [Hz]

10−18

10−17

10−16

10−15

10−14

P
os

it
iv

e
S

p
in

D
ow

n
[H

z/
s]

Mock Data Challenge

MDCS6 Detections

Robust Statisic Detections

0
π
6

π
3

π
2

2π
3

5π
6 π

Right Ascension [rad]

−π
2

−π
3

−π
6

0

π
6

π
3

π
2

D
ec

lin
at

io
n

[r
ad

]

Mock Data Challenge

MDCS6 Detections

Robust Statisic Detections

102

10−25

10−24

10−23

10−22

S
tr

ai
n

A
m

p
lit

u
d

e
h

0

102

10−22

E
ff

ec
ti

ve
A

S
D

Mock Data Challenge

MDCS6 Detections

Robust Statistic Detections

102

Frequency [Hz]

100

101

102

E
ff

ec
ti

ve
D

ep
th
D

Figure 5.6: Direct comparison of Mock Data Challenge signal detections between both formulations
of the SkyHough pipeline. Stars represent injections of the S6 Mock Data Challenge. Crosses mark
those injections which were recovered by the previous formulation of the SkyHough pipeline. Circles
mark injections recovered by the multi-interferometer robust statistic according to the preliminary post
processing. This plot is equivalent to figure 4.3, found in chapter 4.
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multi-interferometer robust strategy with the preliminary post-processing. The vertical axis represents
binary values for (non-)detected injections and the frequentist detection probability for the sigmoid fit.
The horizontal axis represents the log inverse depth log10D−1.

injections which are prominent enough over the noise stand still after the use of the robust statistic.
As for the newly recovered injections, they are due to the use of the multi-interferometer statistic. As
previously discussed, we are able to use this particular strategy thanks to the characterization of the
background noise and ensuing mitigation of noise artifacts performed by the robust statistic.

5.4.3 Efficiency and Parameter Recovery

We proceed to compare the efficiency of both approaches using a standard metric within the continuous
wave searches: The 95% detection probability depth [8, 9]. It corresponds to the sensitivity depth at
which 95% of signals are expected to be recovered in a frequentist sense. The use of that magnitude
instead of a gravitational wave amplitude h0 abstracts the dependency on the surrounding amplitude
spectral density, easing the computation of other derived quantities, such as upper limits.

Usually, several signals are injected at different sensitivity depths in order to estimate the detection
probability. Then, a sigmoid function is used to interpolate the obtained probabilities for a certain range
of depths. If the procedure is properly done, the depth corresponding to a 95% detection probability D95%

will be obtained as a result; then, one can propagate other physical properties converting the sensitivity
depth to an upper limit over h0 using (1.12). It is worth to note that the sigmoid fit is performed over
the sensitivity depth (or the characteristic amplitude h0) using a logarithmic scale [8, 9].

However, the idiosyncrasy of our analysis prevents the existence of a significant number of injections at
the same sensitivity depth, as they were produced with a different purpose in mind [80]. Hence, we will
use the sigmoid function approach in terms of a decision boundary, interpolating such boundary after the
labeling of injections as detected/not detected.

To do so, we compute the sensitivity depth D of each injection using (1.12) with the effective noise
amplitude spectral density, as defined in chapter 4. Then, each injection is labeled as detected (1) if it
survives to the preliminary post processing step, being otherwise labeled as not detected (0). Finally, a
sigmoid function is fitted to the data, using the logarithm of the inverse depth for that purpose. For a
desired detection probability c, the fit is inverted to yield the corresponding sensitivity depth Dc.
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The sigmoid function is defined as

f(x; a, b) =
1

1 + e−(ax+b)
. (5.8)

The fit is performed using SciPy library’s curve fit function [45]. As for the statistical uncertainty, we
compute the 1σ envelope of the fit in terms of its covariance matrix C as

σf = ±
√(

∂f

∂a

)2

Caa +

(
∂f

∂b

)2

Cbb + 2

(
∂f

∂a

)(
∂f

∂b

)
Cab , (5.9)

where the subindex on C represent the elements of the covariance matrix corresponding to each pair of
parameters and the dependencies of f are kept implicit.

We used the logarithm of the inverse depth log10D−1 to perform the fit, which is proportional to the
logarithm of the gravitational wave amplitude log10 h0; that is, the more negative the depth inverse
logarithm, the fainter the signal with respect to the surrounding noise.

The result of this procedure, which is done for both the Mock Data Challenge results and the new statistic
in the same manner, is shown in upper figure 5.7. The fitted parameters were{

aMDCS6 = 6± 1
bMDCS6 = 20± 4

(5.10)

for the formulation of the SkyHough pipeline used during the S6 Mock Data Challenge, while the new
formulation obtained {

ar = 6± 1
br = 22± 3

. (5.11)

This results are propagated to the estimation of the 95% detection probability depthD95%, obtaining

D90%
MDCS6 = 18.2± 0.5 (5.12)

for the initial implementation of the SkyHough pipeline and

D90%
r = 21.6± 0.4 (5.13)
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for the new statistical formulation.

We obtain an increase ∼ 20% of the sensitivity depth by using the novel multi-interferometer robust
statistic with a preliminary post processing. This result acts in favor of this new approach, as it rep-
resents a significant increase in sensitivity at a very low computational cost, as argued during previous
section.

But, we need to deal with a last issue in order to clarify this new development as a valid approach to
detect continuous waves: The parameters related to the detected injections need to be close enough to
be useful for the forthcoming follow-up steps. To quantify the accuracy of the recovered parameters,
we compute its parameter space distance to the injection point using the projected prescription (3.45),
introduced during chapter 3.

Figure 5.8 shows the distance to the injection point delivered by both prescriptions of the SkyHough
pipeline. We represent the total distance in terms of parameter space bins. Common injections are
recovered at a similar deviation, in a consistent manner with the previous discussion. Newly recovered
injections present a consistent deviation from the injection point with respect to previously detected
injections.

This result confirms the effectiveness of the robust multi-interferometer statistic, as every injection recov-
ered by the initial formulation of the SkyHough pipeline is recovered with a similar deviation by the new
statistic and the deviation yielded by the injections solely detected by the new statistic are consistent
with the common bulk of signals.

Summarizing, the novel statistical formulation of the SkyHough pipeline has proven to be a feasible
improvement towards the detection of continuous gravitational waves. The use of a parameter space
sampling allows us to combine multiple detectors in a consistent manner, lowering the appearance of
noise artifacts thanks to the properly gauge background contributions.

We recall that this results are preliminary, as they conform a subset of injections over which a simplified
post-processing has been applied. An extended analysis to legitimate this approach could use state-of-
the-art data to study the appearance and distribution of outliers or a re-computation of upper limits to
gauge the actual improvement on sensitivity.

67



Chapter 5. A Noise Robust Statistic for the SkyHough Pipeline

68



Chapter 6
Future Work

During the development of the present work, several tools were tempted as interesting strategies to be
ported to the SkyHough pipeline. Although they are still inm a very early stage of experimentation, it is
worth mentioning them, as they influenced some of the basic ideas described in this work.

This chapter will expose three different data analysis techniques that target different stages of the detection
pipeline. Each of them could represent a significant improvement in the way data is analyzed during a
search for continuous gravitational wave searches. The first section will expose the tau statistic, an
alternative formulation of the coherent step of a semicoherent search; section two will address the issue of
upper limits, using the universal statistic to estimate them using the statistical properties of a sample of
data; section three will briefly comment a reformulation of the post processing step in terms of a machine
learning algorithm to ease the calibration process.

6.1 Tau Statistic

The tau (τ) statistic [19] corresponds to a generalized formulation of the coherent step presented during
section 3.1.1. We proceed to review such step in order to point out its problems and the way the τ -statistic
addresses them.

Consider a set ofN samples from a sinusoidal signal with frequency f , taken at different times tj ∈ [0, Tcoh],
where tj = t0+j∆t for a suitable ∆t in order to fulfill the Shannon-Nyquist sampling condition. A sample
taken at time tj will be labeled as x[j]; thus,

x[j] ∼ cos (2πftj + φ) , (6.1)

where irrelevant amplitude constants haven been omitted.

Following the coherent step, we compute the discrete Fourier transform of our samples, given by x̃[k].
As stated during chapter 3, [k] refers to the k−th frequency component, which is discretized in units of
T−1coh.

So far, nothing differs from the previously specified coherent step. However, let us explicitly write the
discrete Fourier transform of the sampled sinusoidal. Expressing the signals’ frequency in terms of the
discretization f = lT−1coh, we obtain

x̃[k] ∼ eiφDN (k − l) + e−iφDN (k + l) , (6.2)
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where DN represents the Dirichlet kernel, given by

DN (z) = eiπz(1−
1
N ) sin(πz)

N sin(πzN )
. (6.3)

This function is peaked at z = 0. For z ∈ Z, it can be proven that DN (z) = δ0z, where δij represents the
Kronecker delta, which returns one for i = j and zero for i 6= j; otherwise, the Dirichlet kernel falls off as
a power law ∼ z−1.
For this reason, we can impose a simplification into (6.2) given by DN(k+ l)� DN(k− l). Moreover, the
usual number of samples involved in a search is big enough to consider N−1 � 1. Finally, the rapid fall off
allows us to only consider nearby frequency bins; this conditions be stated in terms of a Taylor expansion
of the sinusoidal function N sin

(
πz
N

)
∼ πz. Hence, the Fourier transform of a sampled sinusoidal with

intrinsic frequency f = lT−1coh can be expressed as

x̃[k] ∼ ei(φ+π(k−l))sinc(k − l) , (6.4)

where sinc states for the cardinal sine function. Here resides the critical step: If we consider l ∈ N, that
is, f is one of the resolved frequencies of the discrete Fourier transform, the signal is entirely contained
within a frequency bin and, as a result, |x̃[k]|2 represents the optimal statistic to detect the presence of
a signal, according to the Neyman-Pearson criterion. This approach is the one taken by the SkyHough
pipeline, as shown during chapter 3.

However, if f is not one of the resolved frequencies, i.e. f /∈ N (we consider f > 0 without loss of
generality), the sinusoidal signal gets spread across several frequency bins1. Hence, the optimal statistic
to detect the presence of a signal is not simply the power density of a certain component; rather, one has
to reconstruct the spread power to obtain such a statistic.

Even though the signal gets spread across the whole frequency spectrum, it can be proven that the
neighborhood of a particular bin is enough to recover a significant result. Let us consider a particular
frequency bin k and its P nearest neighbors at each side; that is,

x̃[k]P =


x̃[k − P ]

...
x̃[k]

...
x̃[k + P ]

 . (6.5)

Then, the optimal statistic, which is reconstructed from the data, can be defined for a particular frequency
component k as the following bilinear form

τ [k] = x̃[k]†P MP x̃[k]P , (6.6)

where MP represents a symmetric P × P matrix, defined in terms of the zeroth order spherical Bessel
function j0 as

MP rs = (−1)r−s
∫ 1/2

−1/2
dδj0 [π(r + δ)] j0 [π(s+ δ)] , (6.7)

where r, s = −P, . . . , 0, . . . , P label the matrix components.

The use of this new statistic implies the establishment of the corresponding threshold τth either in terms
of the Neyman-Pearson criterion or maximizing the critical ratio, as done during chapter 3. Note that
τth = τth(P ), as the reconstructed power depends explicitly on the amount of neighbor frequency bins
taken into account. Following an eigenvalue analysis on MP , it is clear that taking P further than 3 or 4
frequency bins adds irrelevant contributions to the τ−statistic.

1This phenomenon is sometimes referred to as spectral leakage.
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6.1.1 Implementation

We implemented a computation for the τ−statistic as an enhancement of the ConvertToSFTv2.c code of
the LIGO Algorithm Library [73]. The initial version of the code is used to extract particular frequency
bands from SFT files in order to reduce the amount of irrelevant information during certain kinds of
searches. After our modification, the τ−statistic can be automatically computed on any set of SFTs as
they are being extracted.

The code is being tested and debugged in order to ensured the proper implementation of the statistical
procedure.

6.2 Universal Statistic

The universal statistic procedure [26] is an algorithm to state conservative frequentist upper limits on a
given set of samples. It has been used by the Powerflux pipeline to establish upper limits on the all sky
search of the S6 and O1 observing runs [77, 8].

The algorithm uses statistical information from data in itself to construct the suitable quantile of the
underlying noise distribution. Once this quantile is constructed, the upper limit can be quoted in terms
of the most significant outlier.

Given a sample of measurements {ξ1, . . . , ξn}, the 1−ε confidence upper limit can be constructed as

UL1−ε = max
i
ξi − ξε , (6.8)

where ξε stands for the ε-quantile of the distribution underlying our samples. However, the estimation
of ξε turns out to be computationally difficult, as it requires a sorting algorithm. Moreover, the actual
estimation could be biased, leading to a non-significant upper limit.

To solve both problems, a new conservative quantile is constructed using the Markov inequality

P(|ξ| ≥ a) ≤ 〈|ξ|〉
a

, (6.9)

where ξ is a random variable, a ∈ R and P represents the probability function. This inequality holds for
any positive random variable; hence, it is completely licit to express it in terms of a positive function
|ξ| → f(ξ). This kind of transformation allows us to engineer an effective quantile using the mean value
and standard deviation of the available data. The actual construction uses the Markov inequality to probe
the gaussianity of the distribution’s tails: If the tail of the sample distribution can be overwhelmed by
that of a Gaussian distribution, the use of a Gaussian quantile suffices our purposes; if, on the contrary,
the amount of samples located within the tail region surpasses the expected amount for a Gaussian
distribution, we would use f in conjunction with the constraint imposed by 6.9 to push the Gaussian
quantile further until it encloses the required amount of data.

The contribution of this algorithm lies in the use of data samples to construct an upper limit, rather
than requiring the actual estimation of the detection rate in terms of a set of Monte Carlo injections.
Nevertheless Powerflux posses a particular advantage to apply this method: As opposed to the Hough
Method, the Powerflux statistic can be analytically related to the amplitude of a gravitational wave.
That is, once an upper limit has been set to the power samples, it can be automatically transported to
the gravitational wave amplitude.

Nevertheless, during the last observing run [9], the SkyHough pipeline has experimented with the use
of different statistics in each of the hierarchical steps. During the first step, candidates were ranked in
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Figure 6.1: Example of the characteristic structures generated by continuous wave signal. Horizontal axis
represent the parameter space region being evaluated; vertical axis represents the statistical significance
of each template. Blue dots represent the obtained results during a first search over cleaned data; orange
stars represent the obtained results after injecting a signal over the previously analyzed data.

terms of its critical ratio, as explained during chapter 3. This ensured a proper treatment of spectral
disturbances, as the Hough method is one of the most robust strategy to deal with spectral disturbances.
During the second step, once interesting regions of the parameter space have been identified, the analysis
is performed using the Powerflux approach, which results in a more significant analysis thanks to the
extra amount of information taken into account.

Hence, the universal statistic procedure could be implemented into the second hierarchical step of the
SkyHough pipeline: Once the most significant candidate of a particular region has been identified, a
parameter space sampling, completely analogous to the one presented in chapter 5, could be implemented
to estimate the surrounding statistic. Then, the prescription given by [26] would be used to construct a
conservative quantile and, in the end, a power upper limit would be set using (6.8). Finally, the upper
limit could be propagated to any interesting quantity, such as h0 or ε.

This formulation would join the inherent robustness of the SkyHough pipeline with an efficient way of
computing upper limits, yielding a significant reduction of the computational cost of a continuous wave
search.

6.3 Post Processing Reformulation

Finally, the last interesting improvement concerns the formulation of the post processing stage of the
current pipeline. Nowadays, the coincidence and clustering windows have to be manually calibrated.
Even though it yields a significant result, a different approach can be taken in order to cluster candidates
in the parameter space.

Figure 6.1 represents the statistical imprint of an injection in the parameter space, as well as that of pure
background noise. As clearly seen, the significance is not concentrated on a single template; rather, it
forms a characteristic structure around the injection point.

The recognition of this kind of structures is a well-known problem which has lead to the development
of interesting solutions within the framework of Machine Learning [29]. In particular, the classification
of candidates into two classes (e.g. noise and signal) can be suitably done with the use of an Artificial
Neural Network (ANN).
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This type of algorithms use examples to characterize the role of different data features into the classification
process. The calibration process, usually referred to as training, employs actual data samples to fit a set
of free parameters of the model. Once the calibration is done, the classification process can be performed
in a very efficient way thanks to the computational architecture of the algorithm.

The training of our model can be done by using several injections such as the ones shown in figure 6.1.
The first step would be to label the candidates, depending on weather they are due to noise or a signal.
To do so, we can construct a criterion by comparing the critical ratio of each template before and after
injecting a signal into the data. Then, several neural network architectures would be trained, in order to
look for the most accurate choice.

The algorithm is computationally feasible. It represents an improvement in the sense that the post
processing would be calibrated using the information provided by the data itself, rather than manually
choosing the coincidence and clustering windows. Moreover, once the training is done, the evaluation of
an ANN is computationally inexpensive.

6.4 Summary

We presented three different works under development that may become a relevant contribution to the
SkyHough pipeline after an initial development stage.

The τ−statistic is the most mature of them, as its coding is being tested and debugged to ensure its
statistical correctness. It will improve the coherent step of the current pipeline, enhancing the detection
of signals in a higher sensitivity depth. Its application will not produce a significant computational cost,
as the procedure has to be done only once for each interesting frequency band into the set of SFTs.

The universal statistic will provide a an accurate estimation of the sensitivity of the search almost au-
tomatically after the determination of the most significant candidate. As a result, it could be used as a
measurement on the good behavior of particular parameter space regions, easing the selection of useful
segments if a further estimation of population based upper limits is needed.

Finally, the proposed reformulation of the post processing step in terms of an artificial neural network
will introduce the machine learning techniques into the SkyHough pipeline, using the own structure of the
parameter space to properly identify interesting candidates of an analysis.

The implementation of this developments will likely lead to a significant improvement of the SkyHough
pipeline, further increasing the information extracted from the data.
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Chapter 7
Conclusion

The present work discusses the current state of continuous gravitational wave searches in terms of the
current understanding of neutron stars as gravitational wave sources and the corresponding data analysis
algorithms. Even though no continuous gravitational waves have been detected so far, the increasing
sensitivity of the current interferometer detectors, together with the longer observing runs, leads the way
towards a first detection. A direct implication of this fact is the establishment of more constraining upper
limits as more observing runs become available.

Regarding computational capabilities, we discussed the main data analysis approaches, which are based on
the segmentation of wide searches using semicoherent methods in order to identify interesting candidates
which may be managed with a more powerful, coherent algorithm. The fact that there exists a wide
variety of such algorithms eases the understanding of computational challenges and ensures an accurate
coverage of any possible continuous wave source.

Among such algorithms, we find the SkyHough pipeline, one of the most noise-robust algorithms in the
hunt for continuous waves. Its formulation mitigates the contribution of noisy sources into the analysis,
preventing it to drift away due to a non-astrophysical measurement of the detector. The method is
being continuously improved in order to keep its position at the forefront continuous gravitational wave
searches.

We put the main focus on the statistical formulation of the pipeline. As discussed in chapter 5, we
introduced two improvements into SkyHough:

Foremost, we implemented a sampling procedure to estimate the statistical properties of the background
noise statistic. This is intended to take into account the actual background statistic, rather than an
approximation which could overestimate the importance of a random fluctuation of the noise. The result
was already shown during section 5.4 of the same chapter, obtaining a mitigation on the noise statistic
with respect to the one used of a prescribed distribution.

Second, we used the achieved mitigation of noise contributions to combine data from multiple detectors
into a single statistical measurement. Had we not implemented the parameter space sampling, this step
would not be useful, as the noisy contributions from different detectors would increase the number of false
candidates. The effectiveness of this new formulation was tested using the S6 Mock Data Challenge data
set, which was introduced in chapter 4. We achieved to detect a greater number of signals with respect
to the previous formulation of the SkyHough pipeline, obtaining an objective increase in the sensitivity of
the new statistical formulation, as more signals with a weaker prominence with respect to the background
were detected. The results were discussed during sections 5.4.2 and 5.4.2 of chapter 5.
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Moreover, we experimented with the capabilities of a set of data analysis strategies in order to improve
certain aspects of the current pipeline.

First, we developed a code to take into account spectral leakage in our searches using the τ -statistic. The
code is being tested and debugged to ensure its proper behavior. A discussion on the statistical foundation
of the algorithm was presented in section 6.1. It is expected that this idea refines the performance of the
coherent step of the SkyHough pipeline, introduced in section 3.1.

Second, an alternative upper limit procedure, the universal statistic, was explored in terms of its porta-
bility to the SkyHough pipeline. Although it can not be directly applied to the standard Hough method,
further improvements developed during the second observing run O2 could ease their application to the
second hierarchical step of the pipeline. A qualitative discussion on this statement was presented during
section 6.2. The computational implementation was already discussed by [26]. This procedure could yield
preliminary results on the actual sensitivity of a search at the same time it is being performed. If we were
to set upper limits by injecting an ensemble of signals, as exposed during section 2.4, we could use those
results to evaluate the more suitable regions to perform subsequent analysis.

Third, we are developing a machine learning procedure to calibrate the post processing step in terms of
the information provided by data. We expect this new formulation to be computationally inexpensive, as
it will make use of an artificial neural network. Regarding its training process, it will be done by means
of software injections of simulated continuous wave signals. We refer to section 6.3 to the corresponding
discussion.

Every proposed improvement follows a simple idea: To obtain as much information as possible from the
available data. The consistent use of this approach may result in the development of a well-behaved
pipeline against noise disturbances, as the background behavior will be intrinsically taken into account
by the data analysis procedure in itself.

Summarizing, we explored an interesting set of data analysis strategies to be applied into the SkyHough
pipeline for the search of continuous gravitational waves. We expect to further develop these strategies
in order to apply them to the forthcoming continuous wave data analysis within the LIGO and Virgo
Scientific Collaboration.

As our pipelines are able to detect signals under more adverse conditions, so do improve the capabilities of
gravitational wave interferometers, hopefully leading us towards a successful first detection of a continuous
gravitational wave signal.

76



Bibliography

[1] J. Aasi et al. Application of a Hough search for continuous gravitational waves on data from the fifth
LIGO science run. Class. Quantum Gravity, 31(8), 2014.

[2] J. Abadie et al. All-sky search for periodic gravitational waves in the full S5 LIGO data. Phys. Rev.
D, 85(2):022001, 2012.

[3] J. Abadie et al. Sensitivity Achieved by the LIGO and Virgo Gravitational Wave Detectors during
LIGO’s Sixth and Virgo’s Second and Third Science Runs. arXiv:1203.2674, pages 1–11, 2012.

[4] B. Abbott et al. First all-sky upper limits from LIGO on the strength of periodic gravitational waves
using the Hough transform. Phys. Rev. D, 72(10):1–22, 2005.

[5] B. P. Abbott et al. All-Sky LIGO Search for Periodic Gravitational Waves in the Early Fifth-Science-
Run Data. Phys. Rev. Lett., 102(March):111102, 2009.

[6] B. P. Abbott et al. All-sky search for periodic gravitational waves in the O1 LIGO data. Phys. Rev.
D, 96(6):1–35, 2017.

[7] B. P. Abbott et al. First narrow-band search for continuous gravitational waves from known pulsars
in advanced detector data. Phys. Rev. D, 96(12):1–20, 2017.

[8] B. P. Abbott et al. Full Band All-sky Search for Periodic Gravitational Waves in the O1 LIGO Data.
Phys. Rev. D, 97:102003, 2018.

[9] B. P. Abbott et al. All-sky search for continuous gravitational waves from isolated neutron stars
using Advanced LIGO O2 data. arXiv:1903.01901v2, pages 1–26, 2019.

[10] B. P. Abbott et al. Searches for Continuous Gravitational Waves from 15 Supernova Remnants and
Fomalhaut b with Advanced LIGO. Astrophys. Journa, 875(2):122, 2019.

[11] N. Andersson. Gravitational waves from neutron stars. Proc. Int. Astron. Union, 5(H15):137–140,
2009.

[12] G. Ashton. Neutron stars as continuous gravitational wave emitters. In LIGO P1700388-v3 Neutron
Stars Futur. Res., Bonn, 2017.

[13] P. Astone, A. Colla, S. D’Antonio, S. Frasca, and C. Palomba. Method for all-sky searches of
continuous gravitational wave signals using the frequency-Hough transform. Phys. Rev. D - Part.
Fields, Gravit. Cosmol., 90(4):1–24, 2014.

[14] P. Astone, S. D’Antonio, S. Frasca, and C. Palomba. A method for detection of known sources of
continuous gravitational wave signals in non-stationary data. Class. Quantum Gravity, 27(19), 2010.

77



Bibliography

[15] G. S. Bisnovatyi-Kogan. The Neutron Star Population in the Galaxy. In B. Barbuy and A. Renzini,
editors, Proc. 149th Symp. Int. Astron. Union, number December, page 379, Dordrecht, 1992. Kluwer
Academic Publishers.

[16] R. Biswas et al. Application of machine learning algorithms to the study of noise artifacts in
gravitational-wave data. arXiv:1303.6984v1, pages 1–21, 2013.

[17] R. D. Blandford and R. W. Romani. On the interpretation of pulsar braking indices. Mon. Not. R.
astr. Soc., 234:57–60, 1988.

[18] P. R. Brady, T. Creighton, C. Cutler, and B. F. Schutz. Searching for periodic sources with LIGO.
Phys. Rev. D, 57(4):2101–2116, 1998.

[19] A. Bruce, M. A. Papa, and B. F. Schutz. Optimal strategies for sinusoidal signal detection. Phys.
Rev. D, 66(10):1–18, 2002.

[20] B. W. Carroll and D. A. Ostile. An Introduction to Modern Stellar Astrphysics. Pearson Addison
Wesley, San Francisco, CA, 2nd edition, 2007.

[21] T. L. S. Collaboration. LIGO : The Laser Interferometer Gravitational-Wave Observatory.
arXiv:0711.3041v2, 2009.

[22] P. B. Covas et al. Identification and mitigation of narrow spectral artifacts that degrade searches
for persistent gravitational waves in the first two observing runs of Advanced LIGO. Phys. Rev. D,
97(8):1–21, 2018.

[23] P. B. Covas and A. M. Sintes. BinarySkyHough: a new method to search for continuous gravitational
waves from unknown neutron stars in binary systems. arXiv:1904.04873v1, pages 1–18, 2019.

[24] L. S. De La Jordana and A. M. Sintes. A chi2 veto for continuous gravitational wave searches. Class.
Quantum Gravity, 25(18), 2008.

[25] L. S. De La Jordana and The LIGO Scientific Collaboration and the Virgo Collaboration. Hierarchical
Hough all-sky search for periodic gravitational waves in LIGO S5 data Hierarchical Hough all-sky
search for periodic gravitational waves in LIGO S5 data. J. Phys. Conf. Ser., 228:012004, 2010.

[26] V. Dergachev. Novel universal statistic for computing upper limits in an ill-behaved background.
Phys. Rev. D - Part. Fields, Gravit. Cosmol., 87(6), 2013.

[27] R. O. Duda and P. E. Hart. Use of the Hough transformation to detect lines and curves in pictures.
Commun. ACM, 15(1):11–15, 1972.

[28] T. D. Gebhard, N. Kilbertus, and I. Harry. Convolutional neural networks: a magic bullet for
gravitational-wave detection? arXiv:1904.08693v1, pages 1–19, 2019.

[29] A. Geron. Hands-On Machine Learning with Scikit-Learn and TensorFlow. O’REILLY, 2017.

[30] GNU. GSL - GNU Scientific Library. GNU Sci. Libr. - Free Softw. Found., 2019.

[31] E. Goetz and K. Riles. An all-sky search algorithm for continuous gravitational waves from spinning
neutron stars in binary systems. Class. Quantum Gravity, 28(215006), 2011.

[32] T. Gold. Rotating Neutron Stars as the Origin of the Pulsating Radio Sources. Nature, 218(5143),
1968.

[33] P. E. Hart. How the Hough Transform Was Invented. IEEE Signal Process. Mag., 26
(6)(November):18–22, 2009.

78



Bibliography

[34] A. Hewsih, S. J. Bell, J. D. H. Pilkington, P. F. Scott, and R. A. Collins. Observation of Rapidly
Pulsating Radio Source. Nature, 217:709–713, 1968.

[35] G. Hobbs, R. N. . Manchester, and L. Toomey. ATNF Pulsar Cataloguee.

[36] M. M. Hohle, C. Ginski, J. G. Schmidt, and T. O. B. Schmidt. The companion candidate near
Fomalhaut - a background neutron star? Mon. Not. R. Astr. Soc., 448(1):376–389, 2015.

[37] C. J. Horowitz and K. Kadau. Breaking strain of neutron star crust and gravitational waves. Phys.
Rev. Lett., 102(19):1–4, 2009.

[38] P. V. C. Hough. Method and means for recognizing complex patterns. US Pat. 3,069,654, 21:225–231,
1962.

[39] Https://gwcenter.icrr.u-tokyo.ac.jp. KAGRA.

[40] https://www.caltech.edu/. California Institute of Technology - LIGO.

[41] P. Jaranowski, A. Królak, and B. F. Schutz. Data analysis of gravitational-wave signals from spinning
neutron stars: The signal and its detection. Phys. Rev. D, 58(6):063001, 1998.

[42] N. K. Johnson-Mcdaniel and B. J. Owen. Maximum elastic deformations of relativistic stars. Phys.
Rev., 88(4):1–20, 2013.

[43] D. I. Jones and N. Andersson. Gravitational waves from freely precessing neutron stars. Mon. Not.
R. Astron. Soc, 331:103–2002, 2002.

[44] D. I. P. Jones and N. Andersson. Gravitational waves from freely precessing neutron stars. Mon.
Not. R. Astron. Soc, 331:203–220, 2002.

[45] E. Jones, T. Oliphant, P. Peterson, and E. Al. SciPy: Open Source Scientific Tools for Python. Open
Source, 2001.

[46] B. Krishnan et al. Hough transform search for continuous gravitational waves. Phys. Rev. D, 70(8):1–
22, 2004.

[47] B. Krishnan and A. M. Sintes. Hough search with improved sensitivity. LIGO Doc. Control Cent.,
LIGO-T0701, 2007.

[48] J. M. Lattimer. The Nuclear Equation of State and Neutron Star Masses. Annu. Rev. Nucl. Part.
Sci., 62:458–515, 2012.

[49] L. Le Cam. An Approximation Theorem for the Poisson Binomial Distributino. Pacific J. Math.,
10(4):1181–1198, 1959.

[50] Ligo.org. LIGO Scientific Collaboration.

[51] D. R. Lorimer. Binary and Millisecond Pulsars Imprint. Living Rev. Relativ., 8(11), 2008.

[52] A. G. Lyne, C. A. Jordan, C. M. Espinoza, B. W. Stappers, and P. Weltevrede. 45 years of rotation
of the Crab pulsar. Mon. Not. R. Astron. Soc, 446:857–864, 2015.

[53] M. Maggiore. Gravitational waves. Volume 1: theory and experiments, volume 1. Oxford University
Press Inc., New York, first edition, 2008.

[54] S. Mahmoodifar and T. Strohmayer. Upper bounds on r -mode amplitudes from observations of
low-mass x-ray binary neutron stars. Astrophys. J., 773(2):140, 2013.

[55] R. N. Manchester. Millisecond Pulsars, their Evolution and Applications. J. Astrophys. Astron.,
38(3):1–18, 2017.

79



Bibliography

[56] R. N. Manchester, G. B. Hobbs, A. Teoh, and M. Hobbs. The Australia Telescope National Facility
Pulsar Catalogue. Astron. J., 129(4):1993–2006, 2005.

[57] C. Misner, K. S. Thorne, and J. A. Wheeler. Gravitation. W. H. Freeman and Company, San
Francisco, 1st edition, 1973.

[58] N. Nethercote and J. Seward. Valgrind : A Framework for Heavyweight Dynamic Binary Instrumen-
tation. ACM SIGPLAN Not. - Proc. 2007 PLDI Conf., 42(6):89–100, 2007.

[59] M. Oliver, D. Keitel, and A. M. Sintes. The Adaptive Transient Hough method for long-duration
gravitational wave transients. Phys. Rev. D, 99:104067, 2019.

[60] C. Palomba, P. Astone, and S. Frasca. Adaptive Hough transform for the search of periodic sources.
Class. Quantum Gravity, 22(18), 2005.

[61] R. Prix. Gravitational waves from neutron stars. In W. Becjker, editor, Neutron Stars Pulsars, pages
137–140. Springer-Verlag, 2009.

[62] R. Prix. Continuous Gravitational Waves from Spinning Neutron Stars. In LIGO G1702407-v3
DPG-Frühjahrstagung, 2018.

[63] K. Riles. Recent searches for continuous gravitational waves. Mod. Phys. Lett. A, 32(39), 2017.

[64] P. R. Saulson. Fundamentals of interferometric gravitational wave detectors. World Scientific, River
Edge, NJ, 1st edition, 1994.

[65] P. R. Saulson. If light waves are stretched by gravitational waves, how can we use light as a ruler to
detect gravitational waves? Am. J. Phys., 65(6):501–505, 1997.

[66] I. I. Shapiro. Fourth Test of General Relativity. Phys. Rev. Lett., 13(26):789, 1964.

[67] A. M. Sintes and B. Krishnan. Improved Hough search for gravitational wave pulsars. J. Phys. Conf.
Ser., 32(1):206–211, 2006.

[68] S. J. A. Test, S. Hypothesis, K. Poppenhaeger, K. Auchettl, and S. J. Wolk. A Test of the Neutron
Star Hypothesis for Fomalhaut b A Test of the Neutron Star Hypothesis for Fomalhaut b. Mon. Not.
R. Astron. Soc, pages 4018–4024, 2017.

[69] D. Thain, T. Tannenbaum, and M. Livny. Distributed Computing in Practice : The Condor Expe-
rience. Comput. Sci. Dep. Univ. Wisconsin-Madison, (John Wiley & Sons, Ltd.), 2004.

[70] The Continuous Waves Search Group. SFT Data Format Version 2 Specification. LIGO-DCC,
(T040164-01-Z), 2004.

[71] The LIGO Scientific and the Virgo Collaboration. All-sky search for periodic gravitational waves in
LIGO S4 data. Phys. Rev. D, 77:1–38, 2009.

[72] The LIGO Scientific Collaboration. Advanced LIGO. Class. Quantum Gravity, 32(7):74001, 2015.

[73] The LIGO Scientific Collaboration. LIGO Algorithm Library - LALSuite
https://lscsoft.docs.ligo.org/lalsuite/, 2018.

[74] The LIGO Scientific Collaboration and the Virgo Collaboration. First search for gravitational waves
from known pulsars with Advanced LIGO. Astrophys. J., 839(12), 2017.

[75] The LIGO Scientific Collaboration and the Virgo Collaboration. Narrow-band search for gravitational
waves from known pulsars using the second LIGO observing run. arXiv:1902.08442 [gr-qc], pages
1–20, 2019.

80



Bibliography

[76] The LIGO Scientific Collaboration, the Virgo Collaboration, and A. Authors. Searches for Gravita-
tional Waves from Known Pulsars at Two Harmonics in 2015-2017 LIGO Data. arXiv:1902.08507,
2019.

[77] The LIGO Scientific Collaboration and the Virgo Collaboration. Comprehensive all-sky search for
periodic gravitational waves in the sixth science run LIGO data. Phys. Rev. D, 94:042002, 2016.

[78] M. Trias Cornellana. Gravitational wave observation of compact binaries. PhD thesis, University of
Balearic Islands, 2010.

[79] M. Vallisneri, J. Kanner, R. Williams, A. Weinstein, and B. Stephens. The LIGO Open Science
Center, 2015.

[80] S. Walsh, M. Pitkin, M. Oliver, S. D. Antonio, V. Dergachev, A. Królak, P. Astone, and M. Bejger.
Comparison of methods for the detection of gravitational waves from unknown neutron stars. Phys.
Rev. D, 94(124010), 2016.

[81] D. H. D. West. Updating Mean and Variance Estimates : An Improved Method. Commun. ACMS,
22(9), 1979.

[82] D. R. Williams. Earth Fact Sheet, 2017.

[83] G. Woan, M. D. Pitkin, B. Haskell, D. I. Jones, and P. D. Lasky. Evidence for a minimum ellipticity
in millisecond pulsars. Astrophys. J. Lett., 863(2):L40, 2018.

[84] Www.geo600.org/. GEO.

[85] Www.virgo-gw.eu/. Virgo Scientific Collaboration.

[86] F. Zwicky and W. Baade. Cosmic Rays from Super-Novae. Proc. Natl. Acad. Sci., 20(5):259–264,
1934.

81


