Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

Strong convergence in fuzzy metric spaces

Valentín Gregoria, Juan-José Miñana

^aInstituto Universitario de Matemática Pura y Aplicada, Universitat Politècnica de València, Camino de Vera s/n 46022 Valencia (SPAIN).

Abstract. In this paper we introduce and study the concept of strong convergence in fuzzy metric spaces (X, M, *) in the sense of George and Veeramani. This concept is related with the condition $\bigwedge_{t>0} M(x, y, t) > 0$, which frequently is required or missing in this context. Among other results we characterize the class of *s*-fuzzy metrics by the strong convergence defined here and we solve partially the question of finding explicitly a *compatible* metric with a given fuzzy metric.

1. Introduction

I. Kramosil and J. Michalek [10] defined the concept of fuzzy metric space which could be considered a reformulation of the concept of Menger space in fuzzy setting. This concept was modified by Grabiec in [2]. Later, George and Veeramani modified this last concept and gave a concept of fuzzy metric space (X, M, *). Many concepts and results can be stated for all the above fuzzy metric spaces mentioned. In particular, if M is any of these fuzzy metrics on X then a topology τ_M deduced from M is defined on X. A sequence $\{x_n\}$ in X is convergent to x_0 if and only if $\lim_n M(x_n, x_0, t) = 1$ for each t > 0.

A significant difference between a classical metric and a fuzzy metric is that this last one includes in its definition a parameter t. This fact has been successfully used in engineering applications such as colour image filtering [15–17] and perceptual colour differences [5, 14]. From the mathematical point of view this parameter t allows to define novel well-motivated fuzzy metric concepts which have no sense in the classical case. So, several concepts of Cauchyness and convergence have appeared in the literature (see [2, 3, 6, 12, 18]). Nevertheless, in some cases the natural concepts introduced are non-appropriate. A discussion of this assertion can be found in [4].

From now on by a fuzzy metric space we mean a fuzzy metric space in the sense of George and Veeramani.

Given $x, y \in X$ the real function $M_{xy}(t):]0, \infty[\rightarrow]0, 1]$ defined by $M_{xy}(t) = M(x, y, t)$ is continuous in a fuzzy metric space. Notice that M_{xy} is not defined at t = 0. Then, the behaviour of M for values close to 0 turns of interest. For instance, recently, for obtaining fixed point theorems for a self-mapping T on X D. Wardowski [20] and D. Mihet [13] have demanded conditions on M involving T for values of t close to 0.

2010 Mathematics Subject Classification. Primary 54A40; Secondary 54D35, 54E50

Keywords. (Fuzzy metric space; s-fuzzy metric space; s-convergence

Received: dd Month yyyy; Accepted: dd Month yyyy

Communicated by (name of the Editor, mandatory)

Valentín Gregori acknowledges the support of Spanish Ministry of Education and Science under Grant MTM 2012-37894-C02-01. Juan José Miñana acknowledges the support of Conselleria de Educación, Formación y Empleo (Programa Vali+d para investigadores en formación) of Generalitat Valenciana, Spain.

 $\textit{Email addresses:} \ \texttt{vgregori@mat.upv.es} \ (Valent\'in\ Gregori), \ \texttt{juamiapr@upvnet.upv.es} \ (Juan-Jos\'e\ Mi\~nana)$

In particular, the Mihet's condition ([13, Theorem 2.4]) can be written $\bigwedge_{t>0} M(x, T(x), t) > 0$ for some $x \in X$. This condition is related with the condition $\bigwedge_{t>0} M(x, y, t) > 0$ for all $x, y \in X$, which has been studied in [6] and the obtained results are summarized in the next paragraph.

A sequence $\{x_n\}$ is called *s*-convergent to x_0 if $\lim_n M(x_n, x_0, \frac{1}{n}) = 1$. This is a (strictly) stronger concept than convergence and it is given by a limit, which, as in the classical case, only depends on n. A fuzzy metric space in which every convergent sequence is *s*-convergent is called *s*-fuzzy metric space. In a similar way to the class of principal fuzzy metric spaces [3], the class of *s*-fuzzy metric spaces admits the following characterization by means of a special local base [6]: (X, M, *) is an *s*-fuzzy metric space if and only if the family $\{\bigcap_{t>0} B(x, r, t) : r \in]0, 1[\}$ is a local base at x, for each $x \in X$. On the other hand, if N is a mapping on $X \times X$ given by $N(x, y) = \bigwedge_{t>0} M(x, y, t)$, then (X, N, *) is a stationary fuzzy metric space if and only if N(x, y) > 0 for all $x, y \in X$. In a such case, in [6] it is proved that $\tau_N = \tau_M$ if and only if M is an *s*-fuzzy metric. However, a drawback of the concept of *s*-convergence, as in the case of standard Cauchy (see [4]), is that it has not a natural Cauchyness compatible pair.

The aim of this paper is to go in depth the understanding of the behaviour of a fuzzy metric M when the parameter t takes values close to 0. Then, motivated by the above works, we study the behaviour of the sequential convergence when simultaneously the parameter t tends to 0. For it, we introduce a stronger concept than convergence called strong convergence, briefly st-convergence. This new concept reminds the classical concept of convergence when it is defined by the role of ϵ and n_0 . So, we will say that a sequence $\{x_n\}$ is st-convergence to x_0 if given $\epsilon \in]0,1[$ there exists n_0 , depending on ϵ such that $M(x_n,x_0,t)>1-\epsilon$ for all $n\geq n_0$ and all t>0. Our first achievement is that (X,M,*) is an s-fuzzy metric space if and only if every convergent sequence is st-convergent. Then, in Remark 3.11 we observe that for a subclass of s-fuzzy metrics M is possible to find a compatible metric deduced explicitly from M. The second achievement is that the natural concept of st-Cauchy sequence (Definition 4.1) deduced from st-convergence is a compatible pair, in the sense of [4] (Definition 4). This new concept fulfils also the following nice properties:

- 1. *st*-convergence implies *s*-convergence, and the converse is false, in general.
- 2. Every subsequence of a *st*-convergent sequence is *st*-convergent. A significant difference with respect to *s*-convergence is:
- 3. There exist convergent sequences without *st*-convergent subsequences. Also:
- 4. In an *s*-fuzzy metric space Cauchy sequences are not *st*-Cauchy, in general.

The structure of the paper is as follows. In Section 3, after the preliminary section, we introduce and study the notion of *st*-convergence. In Section 4 we introduce the corresponding natural concept of *st*-Cauchyness and we show that it is compatible with *st*-convergence. At the end, a question related to the obtained results is proposed.

2. Preliminaries

Definition 2.1. (George and Veeramani [1].) A fuzzy metric space is an ordered triple (X, M, *) such that X is a (non-empty) set, * is a continuous t-norm and M is a fuzzy set on $X \times X \times]0$, $\infty[$ satisfying the following conditions, for all $x, y, z \in X$, s, t > 0:

```
(GV1) M(x, y, t) > 0;

(GV2) M(x, y, t) = 1 if and only if x = y;

(GV3) M(x, y, t) = M(y, x, t);

(GV4) M(x, y, t) * M(y, z, s) \le M(x, z, t + s);

(GV5) M(x, y, \bot) : ]0, \infty[ \to ]0, 1] is continuous.
```

The continuous *t*-norms used in this paper are the usual product, denoted by \cdot , and the Lukasievicz *t*-norm, denoted by $\mathfrak{L}(x\mathfrak{L}y = \max\{0, x+y-1\})$, which satisfy that $\cdot \geq \mathfrak{L}$.

Note that if (X, M, *) is a fuzzy metric space and \diamond is a continuous t-norm satisfying $\diamond \leq *$, then (X, M, \diamond) is a fuzzy metric space.

If (X, M, *) is a fuzzy metric space, we will say that (M, *), or simply M, is a fuzzy metric on X. This terminology will be also extended along the paper in other concepts, as usual, without explicit mention.

George and Veeramani proved in [1] that every fuzzy metric M on X generates a topology τ_M on X which has as a base the family of open sets of the form $\{B_M(x,\epsilon,t): x \in X, 0 < \epsilon < 1, t > 0\}$, where $B_M(x,\epsilon,t) = \{y \in X: M(x,y,t) > 1 - \epsilon\}$ for all $x \in X$, $\epsilon \in]0,1[$ and t > 0. If confusion is not possible, as usual, we write simply B instead of B_M .

Let (X, d) be a metric space and let M_d a function on $X \times X \times]0, \infty[$ defined by

$$M_d(x, y, t) = \frac{t}{t + d(x, y)}$$

Then (X, M_d, \cdot) is a fuzzy metric space, [1], and M_d is called the *standard fuzzy metric* induced by d. The topology τ_{M_d} coincides with the topology $\tau(d)$ on X deduced from d.

Definition 2.2. (Gregori and Romaguera [9].) A fuzzy metric M on X is said to be stationary if M does not depend on t, i.e. if for each $x, y \in X$, the function $M_{x,y}(t) = M(x, y, t)$ is constant. In this case we write M(x, y) instead of M(x, y, t).

Proposition 2.3. (George and Veeramani [1]). Let (X, M, *) a fuzzy metric space. A sequence $\{x_n\}$ in X converges to x if and only if $\lim_n M(x_n, x, t) = 1$, for all t > 0.

Definition 2.4. (George and Veeramani [1]), Schweizer and Sklar [19].) A sequence $\{x_n\}$ in a fuzzy metric space (X, M, *) is said to be M-Cauchy, or simply Cauchy, if for each $\epsilon \in]0,1[$ and each t>0 there is $n_0 \in \mathbb{N}$ such that $M(x_n, x_m, t) > 1 - \epsilon$ for all $n, m \ge n_0$. Equivalently, $\{x_n\}$ is M-Cauchy if $\lim_{n,m} M(x_n, x_m, t) = 1$ for all t>0.

As in the classical case convergent sequences are Cauchy.

Definition 2.5. (Gregori and Miñana [4].) Suppose it is given a stronger concept than convergence, say A-convergence. A concept of Cauchyness, say A-Cauchyness, is said to be compatible with A-convergence, and vice-versa, if the diagram of implications below is fulfilled

$$\begin{array}{ccc} A-convergence & \to & convergence \\ \downarrow & & \downarrow \\ A-Cauchy & \to & Cauchy \end{array}$$

and there is not any other implication, in general, among these concepts.

From now on (X, M, *), or simply X if confusion is not possible, is a fuzzy metric space.

3. Strong convergence

The condition of convergence in a fuzzy metric space can be rewritten as follows.

A sequence $\{x_n\}$ converges to x_0 if and only if for all t > 0 and for all $\epsilon \in]0,1[$ there exists $n_{\epsilon,t} \in \mathbb{N}$, depending on ϵ and t, such that

$$M(x_n, x_0, t) > 1 - \epsilon$$
, for all $n \ge n_{\epsilon,t}$.

Then we can give a stronger concept than convergence strengthening in a natural way the imposition on *t* as follows.

Definition 3.1. A sequence $\{x_n\}$ in (X, M, *) is strong convergent, briefly st-convergent, to $x_0 \in X$ if given $\epsilon \in]0,1[$ there exists n_{ϵ} , depending on ϵ , such that

$$M(x_n, x_0, t) > 1 - \epsilon$$
, for all $n \ge n_{\epsilon}$ and for all $t > 0$.

Equivalently, $\{x_n\}$ is st-convergent to $x_0 \in X$ if given $\epsilon \in]0,1[$ there exists $n_{\epsilon} \in \mathbb{N}$ such that

$$x_n \in B(x, \epsilon, t)$$
, for all $n \ge n_{\epsilon}$ and for all $t > 0$.

Clearly, a *st*-convergent sequence to x_0 is convergent to x_0 .

Next, we will give a characterization of st-convergent sequences by means of (double) limits.

Proposition 3.2. A sequence $\{x_n\}$ in (X, M, *) is st-convergent to x_0 if and only if $\lim_{n,m} M(x_n, x_0, \frac{1}{m}) = 1$

Proof Suppose $\{x_n\}$ is st-convergent to x_0 . Let $\epsilon \in]0,1[$. Then we can find n_{ϵ} such that $M(x_n,x_0,t)>1-\epsilon$ for all $n \geq n_{\epsilon}$ and for all t > 0. In particular $M(x_n,x_0,\frac{1}{m})>1-\epsilon$ for all $n \geq n_{\epsilon}$ and for all $m \in \mathbb{N}$, i.e., $\lim_{n,m} M(x_n,x_0,\frac{1}{m})=1$.

Conversely, suppose $\lim_{n,m} M(x_n, x_0, \frac{1}{m}) = 1$. Let $\epsilon \in]0,1[$. Then we can find $n_{\epsilon} \in \mathbb{N}$ such that $M(x_n, x_0, \frac{1}{m}) > 1 - \epsilon$ for all $n, m \geq n_{\epsilon}$. Take t > 0. Then we can find $m_t \geq n_{\epsilon}$ such that $\frac{1}{m_t} < t$ and so $M(x_n, x_0, t) \geq M(x_n, x_0, \frac{1}{m_t}) > 1 - \epsilon$ for all $n \geq n_{\epsilon}$, so $\{x_n\}$ is st-convergent to x_0 . \square The next corollary is immediate.

Corollary 3.3. *Each st-convergent sequence is s-convergent.*

Now we will see that the converse of the last corollary is not true, in general.

Example 3.4. Let (X, M_d, \cdot) be the standard fuzzy metric, where $X = \mathbb{R}$ and d is the usual metric on \mathbb{R} . Consider the sequence $\{x_n\}$, where $x_n = \frac{1}{n^2}$ for all $n \in \mathbb{N}$. The sequence $\{x_n\}$ is s-convergent to 0, since

$$\lim_{n} M_d(x_n, 0, \frac{1}{n}) = \lim_{n} \frac{\frac{1}{n}}{\frac{1}{n} + \frac{1}{n^2}} = 1.$$

Now, we will see that $\{x_n\}$ *is not st-convergent to* 0.

Suppose that $\{x_n\}$ is st-convergent to 0. Then for each $\epsilon \in]0,1[$ there exists $n_{\epsilon} \in \mathbb{N}$ such that $M_d(x_n,0,t)=\frac{t}{t+\frac{1}{n^2}}>1-\epsilon$ for all t>0 and for all $n\geq n_{\epsilon}$. Therefore, $\frac{1}{n_{\epsilon}^2}<\frac{t\epsilon}{1-\epsilon}$ for all t>0, a contradiction.

Under the above terminology the following assertions are immediate:

Proposition 3.5.

- 1. Constant sequences are st-convergent.
- 2. *If M is stationary then convergent sequences are st-convergent.*

Proposition 3.6. Each subsequence of a st-convergent sequence in X is st-convergent.

Proof It is straightforward.

Remark 3.7. *In* [6] *the authors proved that in a fuzzy metric space each convergent sequence admits an s-convergent subsequence. This affirmation is not true for st-convergent sequences as we will show in the the next example.*

Example 3.8. Consider the standard fuzzy metric space (X, M_d, \cdot) of Example 3.4 and let $\{x_n\}$ be the sequence defined by $x_n = \frac{1}{n}$. Clearly, $\{x_n\}$ converges to 0. Suppose that $\{x_{n_k}\}$ is a subsequence of $\{x_n\}$ which is st-convergent to 0. Then for each $\epsilon \in]0,1[$ there exists $k_\epsilon \in \mathbb{N}$ such that $M_d(x_{n_k},0,t) = \frac{t}{t+\frac{1}{n_k}} > 1-\epsilon$ for all t>0 and for all $k \geq k_\epsilon$. Therefore $\frac{1}{n_{k_\epsilon}} < \frac{t\epsilon}{1-\epsilon}$ for all t>0, a contradiction.

Theorem 3.9. Every convergent sequence in (X, M, *) is st-convergent if and only if every convergent sequence in X is s-convergent.

Proof If every convergent sequence in *X* is *st*-convergent then by Corollary 3.3 every convergent sequence in *X* is *s*-convergent.

Conversely, suppose that every convergent sequence in X is s-convergent and suppose that there exists a convergent sequence $\{x_n\}$ to x_0 in X which is not st-convergent. Then there exists $\delta \in]0,1[$ such that for each $k \in \mathbb{N}$ there exists $n(k) \geq k$ such that $M(x_{n(k)}, x_0, t(k)) \leq 1 - \delta$, for some t(k) > 0.

Next we will construct a convergent sequence $\{y_j\}$ which is not *s*-convergent.

Take $1 \in \mathbb{N}$, then there exists $n(1) \ge 1$ such that $M(x_{n(1)}, x_0, t(1)) \le 1 - \delta$. Let $n_1 \in \mathbb{N}$ such that $n_1 \ge \max\{\frac{1}{t(1)}, n(1)\}$ and we define

$$y_1 = y_2 = \cdots = y_{n_1} = x_{n(1)}$$
.

Now, for $n_1 \in \mathbb{N}$, there exists $n(n_1) \ge n_1$ such that $M(x_{n(n_1)}, x_0, t(n_1)) \le 1 - \delta$. Let $n_2 \in \mathbb{N}$ such that $n_2 \ge \max\{\frac{1}{t(n_1)}, n(n_1)\}$. Clearly, $n_2 \ge n_1$. So we define

$$y_{n_1+1}=y_{n_1+2}=\cdots=y_{n_2}=x_{n(n_1)}.$$

By induction on $k \in \mathbb{N}$, for $n_{k-1} \in \mathbb{N}$, there exists $n(n_{k-1}) \ge n_{k-1}$ such that $M(x_{n(n_{k-1})}, x_0, t(n_{k-1})) \le 1 - \delta$. Let $n_k \in \mathbb{N}$ such that $n_k \ge \max\{\frac{1}{t(n_{k-1})}, n(n_{k-1})\}$. Clearly, $n_k \ge n_{k-1}$. So we define

$$y_{n_{k-1}+1} = y_{n_{k-1}+2} = \cdots = y_{n_k} = x_{n(n_{k-1})}.$$

The constructed sequence $\{y_j\}$ is convergent. Indeed, since $\{x_n\}$ converges to x_0 we have that for each $\epsilon \in]0,1[$ and t>0 there exists $n_0 \in \mathbb{N}$ such that $M(x_n,x_0,t)>1-\epsilon$ for all $n\geq n_0$. If we take $k_0\in \mathbb{N}$ such that $n_{k_0}\geq n_0$ and consider $j_0=n_{k_0}$, then for each $j\geq j_0$, $y_j=x_{n(n_k)}$, where $n_k\geq n_{k_0}$, and so by construction of $\{y_j\}$ we have that $M(y_j,x_0,t)>1-\epsilon$.

Now, we will see that $\{y_j\}$ is not *s*-convergent to x_0 . By construction of $\{y_j\}$ we have that for all $k \in \mathbb{N}$, $M(y_{n_k}, x_0, \frac{1}{n_k}) \le 1 - \delta$. Therefore there exists $\delta \in]0, 1[$ such that for each $j \in \mathbb{N}$ we can find $k(j) \in \mathbb{N}$ such that $n_{k(j)} \ge j$ and so $M(y_{n_k(j)}, x_0, \frac{1}{n_{k(j)}}) \le 1 - \delta$. Thus $\{y_j\}$ is not *s*-convergent, a contradiction.

An example of *s*-fuzzy metric is (]0, ∞ [, M, ·) where $M(x, y, t) = \frac{\min\{x, y\} + t}{\max\{x, y\} + t}$. On the other hand, the standard fuzzy metric space (X, M_d , ·) is *s*-fuzzy metric if and only if $\tau(d)$ is the discrete topology [6].

The next corollary is obvious taking into account the last theorem and Corollary 3.10 of [6].

Corollary 3.10. *They are equivalent:*

- (i) M is an s-fuzzy metric.
- (ii) $\bigcap_{t>0} B(x,r,t)$ is a neighborhood of x for all $x \in X$, and for all $r \in]0,1[$.
- (iii) $\{\bigcap_{t>0} B(x,r,t) : r \in]0,1[\}$ is a local base at x, for each $x \in X$.
- (iv) Every convergent sequence is st-convergent.

Notice that in an *s*-fuzzy metric convergence can be defined with a simple limit and that one can find a local base at x for each $x \in X$ depending only on the radius, which reminds the case of classical metrics. This observation is related with the next remark.

Remark 3.11. (*Metric deduced explicitly from a fuzzy metric.*)

We will say that a metric d and a fuzzy metric M, both on X, are compatible if the topologies deduced from d and M coincide, i.e. $\tau(d) = \tau_M$. Recall that a topological space is metrizable if and only if it is fuzzy metrizable [7]. Now, the topological study of a (fuzzy) metrizable space is easier thought a metric or even thought a stationary fuzzy metric because in both cases it does not appear the parameter t.

The reader knows that for a given metric d on X one can find many compatible fuzzy metrics (see [1]) deduced explicitly from d. The converse, up to we know, is an unsolved question. To approach this question, in the next paragraph, we recall some known results.

Given a metric d on X it is easy to find stationary fuzzy metrics compatible with d. For instance, for a fixed K > 0, if we define $N_K = \frac{K}{K + d(x,y)}$ for each $x, y \in X$ then (N_K, \cdot) is a stationary fuzzy metric and $\tau(d) = \tau_{N_K}$. Conversely, if (N, \mathfrak{L}) is a stationary fuzzy metric on X then d(x, y) = 1 - N(x, y), for each $x, y \in X$, is a metric on X and $\tau(d) = \tau_N$.

Now, let $* \ge \mathfrak{L}$ and suppose that (M,*) is a fuzzy metric on X satisfying $N(x,y) = \bigwedge_{t>0} M(x,y,t) > 0$ for each $x,y \in X$. Then (N,*) is a fuzzy metric on X and $\tau_N = \tau_M$ if and only if M is an s-fuzzy metric (see [6, Theorem 4.2]). Consequently, in this case $d(x,y) = 1 - \bigwedge_{t>0} M(x,y,t)$ is a metric on X with $\tau(d) = \tau_M$ and so d is a compatible metric with M. Clearly, d is deduced explicitly from M.

4. Strong Cauchy sequences

Next, we will give a concept of strong Cauchy sequence according to Definition 3.1.

Definition 4.1. A sequence $\{x_n\}$ in X is strong Cauchy, briefly st-Cauchy, if given $\epsilon \in]0,1[$ there exists n_ϵ , depending on ϵ , such that

$$M(x_n, x_m, t) > 1 - \epsilon$$
, for all $n, m \ge n_{\epsilon}$ and for all $t > 0$.

Clearly, st-Cauchy sequences are Cauchy.

In a similar way to the case of *st*-convergence, we give the next characterization of *st*-Cauchyness by means of (triple) limit.

Proposition 4.2. $\{x_n\}$ is st-Cauchy if and only if $\lim_{n,m,k} M(x_n, x_m, \frac{1}{k}) = 1$

Proof The proof is similar to the proof of Proposition 3.2.

We will see that the concept of *st*-Cauchyness is compatible with the concept of *st*-convergence. First, we will see that the next diagram

$$\begin{array}{ccc} st-convergence & \rightarrow & convergence \\ \downarrow & & \downarrow \\ st-Cauchy & \rightarrow & Cauchy \end{array}$$

is fulfilled. For it, we start showing the next proposition.

Proposition 4.3. Every st-convergent sequence is st-Cauchy.

Proof Let $\{x_n\}$ be a st-convergent sequence in a fuzzy metric space (X, M, *). Take $\epsilon \in]0, 1[$. By continuity of *, we can find $r \in]0, 1[$ such that $(1-r)*(1-r)>1-\epsilon$. Since $\{x_n\}$ is st-convergent, there exists $x_0 \in X$ and $n_0 \in \mathbb{N}$ such that $M(x_n, x_0, t) > 1 - r$ for all $n \ge n_0$ and all t > 0. Therefore, for each $n, m \ge n_0$ and each t > 0 we have that

$$M(x_n, x_m, t) \ge M(x_n, x_0, t/2) * M(x_0, x_m, t/2) > (1 - r) * (1 - r) > (1 - \epsilon.)$$

And thus, $\{x_n\}$ is st-Cauchy.

Now, we will see that the implications of the above diagram cannot be reverted in general.

Example 3.4 shows an *s*-convergent sequence, and so convergent, which is not *st*-convergent. It is easy to verify that it is also an example of convergent (Cauchy) sequence which is not *st*-Cauchy.

The next example shows an *st-*Cauchy sequence, which is not (*st-*)convergent.

Example 4.4. Let (X, M, *) be the stationary fuzzy metric space, where $X =]1, +\infty[$, $M(x, y) = \frac{\min\{x, y\}}{\max\{x, y\}}$ and * is the usual product. It is easy to verify that the sequence $\{x_n\}$, where $x_n = 1 + \frac{1}{n}$ is a st-Cauchy sequence in X, which is not (st-)convergent.

Therefore, the concepts of st-Cauchyness and st-convergence are compatible.

Finally, we will see that in an s-fuzzy metric space Cauchy sequences are not st-Cauchy, in general.

Example 4.5. Consider (X, M, *), where $X =]0, \infty[$, * is the usual product and $M(x, y, t) = \frac{\min\{x, y\} + t}{\max\{x, y\} + t}$ for each $x, y \in X$ and each t > 0. In [6] it is proved that it is an s-fuzzy metric space.

Now, if we consider the sequence $\{x_n\}$ *in X, where* $x_n = \frac{1}{n}$ *for each* $n \in \mathbb{N}$ *, it is a Cauchy sequence in X. Indeed,*

$$\lim_{n,m} M(x_n, x_n, t) = \lim_{n,m} \frac{\min\{\frac{1}{n}, \frac{1}{m}\} + t}{\max\{\frac{1}{n}, \frac{1}{m}\} + t} = 1.$$

On the other hand, $\{x_n\}$ is not st-Cauchy. Indeed, tacking $\epsilon = \frac{1}{2}$, then for each $n \in \mathbb{N}$ we can find m > n and t > 0 such that $M(x_n, x_m, t) < \frac{1}{2}$. For instance, given $n \in \mathbb{N}$, if we consider m = 3n and $t \in]0, \frac{1}{3n}[$ we have that

$$M(x_n, x_m, t) = \frac{\frac{1}{3n} + t}{\frac{1}{n} + t} < \frac{\frac{1}{3n} + \frac{1}{3n}}{\frac{1}{n} + \frac{1}{3n}} = \frac{1}{2}.$$

A question concerning our above study is the next.

Problem 4.6. Characterize those fuzzy metric spaces in which Cauchy sequences are st-Cauchy.

References

- [1] A. George, P. Veeramani, On some results in fuzzy metric spaces, Fuzzy Sets and Systems 64 (1994) 395-399.
- [2] M. Grabiec, Fixed points in fuzzy metric spaces, Fuzzy Sets and Systems 27 (1989) 385-389.
- [3] V. Gregori, A. López-Crevillén, Ś. Morillas, A. Sapena, *On convergence in fuzzy metric spaces*, Topology and its Applications 156 (2009) 3002-3006.
- [4] V. Gregori, J.J. Miñana, std-convergence in fuzzy metric spaces, Fuzzy Sets and Systems 267 (2015) 140-143.
- [5] V. Gregori, J.J. Miñana, S. Morillas, Some questions in fuzzy metric spaces, Fuzzy Sets and Systems (2012) 204 (2012) 71-85.
- [6] V. Gregori, J. J. Miñana, S. Morillas, A note on convergence in fuzzy metric spaces, Iranian Journal of Fuzzy Systems 11 (4) (2014) 89-99.
- [7] V. Gregori, S. Romaguera, Some properties of fuzzy metric spaces, Fuzzy Sets and Systems 115 (2000) 485-489.
- [8] V. Gregori, S. Romaguera, On completion of fuzzy metric spaces, Fuzzy Sets and Systems 130 (2002) 399-404.
- [9] V. Gregori, S. Romaguera, Characterizing completable fuzzy metric spaces, Fuzzy Sets and Systems 144 (2004) 411-420.
- [10] I. Kramosil, J. Michalek, Fuzzy metrics and statistical metric spaces, Kybernetika 11 (1975) 326-334.
- [11] K. Menger, Statistical metrics, Proceedings of the National Academy of Sciences of the United States of America 28 (1942) 535-537.
- [12] D. Mihet, On fuzzy contractive mappings in fuzzy metric spaces, Fuzzy Sets and Systems 158 (2007) 915-921.
- [13] D. Mihet, A note on fuzzy contractive mappings in fuzzy metric spaces, Fuzzy Sets and Systems 251 (2014) 83-91.
- [14] S. Morillas, L. Gomez-Robledo, R. Huertas, M. Melgosa, Fuzzy analysis for detection of inconsistent data in experimental datasets employed at the development of the CIEDE2000 colour-difference formula, Journal Of Modern Optics 56 (13) (2009) 1447-1456.
- [15] S. Morillas, V. Gregori, A. Hervás, Fuzzy peer groups for reducing mixed gaussian impulse noise from color images, IEEE Transactions on Image Processing 18 (7) (2009) 1452-1466.
- [16] S. Morillas, V. Gregori, G. Peris-Fajarnés, New adaptative vector filter using fuzzy metrics, J. Electron. Imaging 16 (3) (2007) 033007:1-15.
- [17] S. Morillas, V. Gregori, G. Peris-Fajarnés, P. Latorre, A fast impulsive noise color image filter using fuzzy metrics, Real-Time Imaging 11 5-6 (2005) 417-428.
- [18] L. A. Ricarte, S. Romaguera, A domain-theoretic approach to fuzzy metric spaces, Topology and its Applications 163 (2014) 149-159.
- [19] B. Schweizer, A. Sklar, Probabilistic metric spaces, North Holland Series in Probability and Applied Mathematics, New York, Amsterdam, Oxford, 1983.
- [20] D. Wardowski, Fuzzy contractive mappings and fixed points in fuzzy metric spaces, Fuzzy Sets and Systems 222 (2013) 108-114.