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Strong convergence in fuzzy metric spaces
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Abstract. In this paper we introduce and study the concept of strong convergence in fuzzy metric spaces
(X, M, ») in the sense of George and Veeramani. This concept is related with the condition A ., M(x, y,t) > 0,
which frequently is required or missing in this context. Among other results we characterize the class
of s-fuzzy metrics by the strong convergence defined here and we solve partially the question of finding
explicitly a compatible metric with a given fuzzy metric.

1. Introduction

I. Kramosil and J. Michalek [10] defined the concept of fuzzy metric space which could be considered a
reformulation of the concept of Menger space in fuzzy setting. This concept was modified by Grabiec in [2].
Later, George and Veeramani modified this last concept and gave a concept of fuzzy metric space (X, M, *).
Many concepts and results can be stated for all the above fuzzy metric spaces mentioned. In particular, if
M is any of these fuzzy metrics on X then a topology 7y deduced from M is defined on X. A sequence {x;}
in X is convergent to xo if and only if lim, M(x,, xo,t) = 1 for each t > 0.

A significant difference between a classical metric and a fuzzy metric is that this last one includes in its
definition a parameter f. This fact has been successfully used in engineering applications such as colour
image filtering [15-17] and perceptual colour differences [5, 14]. From the mathematical point of view
this parameter t allows to define novel well-motivated fuzzy metric concepts which have no sense in the
classical case. So, several concepts of Cauchyness and convergence have appeared in the literature (see
[2, 3, 6,12, 18]). Nevertheless, in some cases the natural concepts introduced are non-appropriate. A
discussion of this assertion can be found in [4].

From now on by a fuzzy metric space we mean a fuzzy metric space in the sense of George and
Veeramani.

Given x,y € X the real function M,,(t) :]0, [—]0, 1] defined by M,,(t) = M(x,y,t) is continuous in a
fuzzy metric space. Notice that M,, is not defined at t = 0. Then, the behaviour of M for values close to
0 turns of interest. For instance, recently, for obtaining fixed point theorems for a self-mapping T on X D.
Wardowski [20] and D. Mihet [13] have demanded conditions on M involving T for values of f close to 0.
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In particular, the Mihet’s condition ([13, Theorem 2.4]) can be written A, M(x, T(x),t) > 0 for some x € X.
This condition is related with the condition A, M(x, y,t) > 0 for all x, y € X, which has been studied in [6]
and the obtained results are summarized in the next paragraph.

A sequence {x,} is called s-convergent to xq if lim, M(x,, Xo, 1) = 1. This is a (strictly) stronger concept
than convergence and it is given by a limit, which, as in the classical case, only depends on n. A fuzzy
metric space in which every convergent sequence is s-convergent is called s-fuzzy metric space. In a similar
way to the class of principal fuzzy metric spaces [3], the class of s-fuzzy metric spaces admits the following
characterization by means of a special local base [6]: (X, M, #) is an s-fuzzy metric space if and only if the
family {(;.o B(x, 1, t) : r €]0,1[} is a local base at x, for each x € X. On the other hand, if N is a mapping
on X x X given by N(x,y) = Ao M(x, y,t), then (X, N, +) is a stationary fuzzy metric space if and only if
N(x,y) > 0 for all x,y € X. In a such case, in [6] it is proved that 5 = 7y if and only if M is an s-fuzzy
metric. However, a drawback of the concept of s-convergence, as in the case of standard Cauchy (see [4]),
is that it has not a natural Cauchyness compatible pair.

The aim of this paper is to go in depth the understanding of the behaviour of a fuzzy metric M when
the parameter ¢ takes values close to 0. Then, motivated by the above works, we study the behaviour of
the sequential convergence when simultaneously the parameter ¢ tends to 0. For it, we introduce a stronger
concept than convergence called strong convergence, briefly st-convergence. This new concept reminds the
classical concept of convergence when it is defined by the role of € and . So, we will say that a sequence
{xn} is st-convergence to xy if given € €]0, 1 there exists 19, depending on € such that M(x,, xo,t) > 1 —€
forall n > np and all t > 0. Our first achievement is that (X, M, *) is an s-fuzzy metric space if and only if
every convergent sequence is st-convergent. Then, in Remark 3.11 we observe that for a subclass of s-fuzzy
metrics M is possible to find a compatible metric deduced explicitly from M. The second achievement is
that the natural concept of st-Cauchy sequence (Definition 4.1) deduced from st-convergence is a compatible
pair, in the sense of [4] (Definition 4). This new concept fulfils also the following nice properties:

1. st-convergence implies s-convergence, and the converse is false, in general.
2. Every subsequence of a st-convergent sequence is st-convergent.

A significant difference with respect to s-convergence is:
3. There exist convergent sequences without st-convergent subsequences. Also:
4. In an s-fuzzy metric space Cauchy sequences are not st-Cauchy, in general.

The structure of the paper is as follows. In Section 3, after the preliminary section, we introduce and
study the notion of st-convergence. In Section 4 we introduce the corresponding natural concept of st-
Cauchyness and we show that it is compatible with st-convergence. At the end, a question related to the
obtained results is proposed.

2. Preliminaries

Definition 2.1. (George and Veeramani [1].) A fuzzy metric space is an ordered triple (X, M, *) such that X is a
(non-empty) set, + is a continuous t-norm and M is a fuzzy set on X x Xx]0, co[ satisfying the following conditions,
forallx,y,z€ X,s,t > 0:

(GV1) M(x,y,t)>0;

(GV2) M(x,y,t)=1ifand only if x = y;
(GV3) M(x,y,t) = M(y, x, t);

(GV4) M(x,y,t)*M(y,z,5) < M(x,z,t +5);

(GV5) M(x,y, ) :]0, c0o[—]0, 1] is continuous.
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The continuous t-norms used in this paper are the usual product, denoted by -, and the Lukasievicz
t-norm, denoted by £ (x2y = max{0, x + y — 1}), which satisfy that - > £.

Note that if (X, M, #) is a fuzzy metric space and ¢ is a continuous ¢-norm satisfying ¢ < #, then (X, M, ¢)
is a fuzzy metric space.

If (X, M, *) is a fuzzy metric space, we will say that (M, *), or simply M, is a fuzzy metric on X. This
terminology will be also extended along the paper in other concepts, as usual, without explicit mention.

George and Veeramani proved in [1] that every fuzzy metric M on X generates a topology tp on X
which has as a base the family of open sets of the form {By(x,€,t) : x € X,0 < € < 1, > 0}, where
Bu(x,e,t) ={y € X: M(x,y,t) > 1 —¢€} forall x € X, € €]0,1[ and ¢t > 0. If confusion is not possible, as usual,
we write simply B instead of By.

Let (X, d) be a metric space and let M; a function on X x XX]0, o[ defined by

t
My(x,y,t) = Fdy)

Then (X, My, -) is a fuzzy metric space, [1], and M, is called the standard fuzzy metric induced by d. The
topology Ta, coincides with the topology 7(d) on X deduced from d.

Definition 2.2. (Gregori and Romaguera [9].) A fuzzy metric M on X is said to be stationary if M does not depend
on t, i.e. if for each x,y € X, the function M, ,(t) = M(x, y, t) is constant. In this case we write M(x, y) instead of
M(x, y, t).

Proposition 2.3. (George and Veeramani [1]). Let (X, M, *) a fuzzy metric space. A sequence {x,} in X converges to
x if and only if lim, M(x,, x,t) = 1, for all t > 0.

Definition 2.4. (George and Veeramani [1]), Schweizer and Sklar [19].) A sequence {x,} in a fuzzy metric space
(X, M, ») is said to be M-Cauchy, or simply Cauchy, if for each € €]0, 1] and each t > O there is ng € IN such that
M(xy, Xy, t) > 1 — € for all n,m > ngy. Equivalently, {x,} is M-Cauchy if lim,, ,, M(x, X, t) = 1 for all t > 0.

As in the classical case convergent sequences are Cauchy.

Definition 2.5. (Gregori and Mifiana [4].) Suppose it is given a stronger concept than convergence, say A-
convergence. A concept of Cauchyness, say A-Cauchyness, is said to be compatible with A-convergence, and
vice-versa, if the diagram of implications below is fulfilled

A—convergence — convergence

8 3
A-Cauchy  — Cauchy

and there is not any other implication, in general, among these concepts.

From now on (X, M, *), or simply X if confusion is not possible, is a fuzzy metric space.

3. Strong convergence

The condition of convergence in a fuzzy metric space can be rewritten as follows.
A sequence {x,} converges to xp if and only if for all ¢+ > 0 and for all € €]0, 1] there exists n.; € IN,
depending on € and ¢, such that
M(xy,, x0,t) > 1 —¢, foralln > ng;.

Then we can give a stronger concept than convergence strengthening in a natural way the imposition
on t as follows.
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Definition 3.1. A sequence {x,} in (X, M, *) is strong convergent, briefly st-convergent, to xq € X if given € €]0, 1]
there exists n., depending on €, such that

M(xy, x0,t) > 1 —¢, foralln > ne and for all t > 0.
Equivalently, {x,} is st-convergent to xo € X if given € €]0, 1] there exists n. € IN such that
Xy € B(x,€,t), forall n > ne and for all t > 0.

Clearly, a st-convergent sequence to X is convergent to x.
Next, we will give a characterization of sf-convergent sequences by means of (double) limits.

Proposition 3.2. A sequence {x,} in (X, M, *) is st-convergent to xq if and only if lim,, ,, M(x,, xo, %) =1

Proof Suppose {x,} is st-convergent to x¢. Let € €]0, 1[. Then we can find #, such that M(x,, xo,t) > 1—¢€
for all n > n. and for all ¢+ > 0. In particular M(x,, xo, %) >1—¢forall n > n. and for all m € N, i.e.,
lim,, ,, M(x, X0, %) =1

Conversely, suppose lim, M(xn,xo,%) = 1. Let € €]0,1[. Then we can find n. € IN such that
M(xy, xo, %) >1—¢forall num > n.. Take t > 0. Then we can find m; > n. such that m% < t and so
M(xy, x9,t) = M(xy, Xo, m%) >1—eforalln > n, so {x,} is st-convergent to xo. |

The next corollary is immediate.

Corollary 3.3. Each st-convergent sequence is s-convergent.
Now we will see that the converse of the last corollary is not true, in general.

Example 3.4. Let (X, My, -) be the standard fuzzy metric, where X = R and d is the usual metric on R.
Consider the sequence {x,}, where x,, = n—lz forall n € IN. The sequence {x,} is s-convergent to 0, since

1
lim M;(x,,,0, =) = lim
n n n

Now, we will see that {x,} is not st-convergent to 0.
Suppose that {x,} is st-convergent to 0. Then for each € €]0, 1] there exists ne € IN such that My(x,,0,t) = - >

1 —e€forall t > 0and for all n > n.. Therefore, % < {£ for all t > 0, a contradiction.

Under the above terminology the following assertions are immediate:

Proposition 3.5.
1. Constant sequences are st-convergent.
2. If M is stationary then convergent sequences are st-convergent.

Proposition 3.6. Each subsequence of a st-convergent sequence in X is st-convergent.
Proof It is straightforward. ]

Remark 3.7. In [6] the authors proved that in a fuzzy metric space each convergent sequence admits an s-convergent
subsequence. This affirmation is not true for st-convergent sequences as we will show in the the next example.

Example 3.8. Consider the standard fuzzy metric space (X, My, -) of Example 3.4 and let {x,} be the sequence defined
by x, = 2. Clearly, {x,} converges to 0. Suppose that {x,,} is a subsequence of {x,} which is st-convergent to 0. Then
for each € €]0, 1] there exists ke € IN such that My(x,,,0,t) = t_ >1—e€forallt > 0and forall k > k.. Therefore

T
t+ m

1

nkg

< = forall t > 0, a contradiction.
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Theorem 3.9. Every convergent sequence in (X, M, =) is st-convergent if and only if every convergent sequence in X
is s-convergent.

Proof If every convergent sequence in X is st-convergent then by Corollary 3.3 every convergent
sequence in X is s-convergent.

Conversely, suppose that every convergent sequence in X is s-convergent and suppose that there exists
a convergent sequence {x,} to xo in X which is not st-convergent. Then there exists o €]0, 1[ such that for
each k € IN there exists n(k) > k such that M(x,), xo, t(k)) < 1 -6, for some t(k) > 0.

Next we will construct a convergent sequence {y;} which is not s-convergent.

Take 1 € N, then there exists n(1) > 1 such that M(x,a), x0,t(1)) < 1 — 0. Let n; € IN such that

1

n > max{m, n(1)} and we define

Yi=Y2 =0 = Yy = X))
Now, for n; € IN, there exists n(n1) > ny such that M(xy(,), X0, t(n1)) < 1 —6. Let ny € IN such that
ny > max{ﬁ,n(m)}. Clearly, n, > ny. So we define

Y+l = Ym+2 = = Yny = Xn(ny)-

By induction on k € IN, for 1,1 € IN, there exists n(nx-1) > n—1 such that M(x,, ,), X0, H(1x-1)) < 1 =0.

Let 1, € N such that n; > max{m, n(ng-1)}. Clearly, nx > nx_1. So we define

Yo+l = Y42 = 0 = Y = Xn(yy)-

The constructed sequence {y;} is convergent. Indeed, since {x,} converges to xo we have that for each
€ €]0,1[ and t > 0 there exists 1y € IN such that M(x,, xo,t) > 1 — € for all n > ny. If we take ky € IN such that
1y, = no and consider jo = ny,, then for each j > jo, ¥; = x,,,), where 1y > 1y, and so by construction of {y;}
we have that M(y;, xo,t) > 1 — €.

Now, we will see that {y;} is not s-convergent to xp. By construction of {y;} we have that for all k € IN,
M(yy,, xo, nlk) < 1 - 6. Therefore there exists 6 €]0, 1] such that for each j € IN we can find k(j) € IN such that

1x(j) = j and so M(Yy,j), Xo, %m) <1 - 6. Thus {y,} is not s-convergent, a contradiction. |
An example of s-fuzzy metric is (]0, oo[, M, -) where M(x, y,t) = z;tl{z ; ]]:tt . On the other hand, the standard

fuzzy metric space (X, My, -) is s-fuzzy metric if and only if 7(d) is the discrete topology [6].
The next corollary is obvious taking into account the last theorem and Corollary 3.10 of [6].

Corollary 3.10. They are equivalent:

(i) M is an s-fuzzy metric.

(ii) (N0 B(x, 1, t) is a neighborhood of x for all x € X, and for all r €]0, 1[.
(iii) {Mis0 B(x, 1, t) : 7 €]0, 1[} is a local base at x, for each x € X.
(iv) Every convergent sequence is st-convergent.

Notice that in an s-fuzzy metric convergence can be defined with a simple limit and that one can find
a local base at x for each x € X depending only on the radius, which reminds the case of classical metrics.
This observation is related with the next remark.

Remark 3.11. (Metric deduced explicitly from a fuzzy metric.)

We will say that a metric d and a fuzzy metric M, both on X, are compatible if the topologies deduced from d and
M coincide, i.e. ©(d) = tpm. Recall that a topological space is metrizable if and only if it is fuzzy metrizable [7]. Now,
the topological study of a (fuzzy) metrizable space is easier thought a metric or even thought a stationary fuzzy metric
because in both cases it does not appear the parameter t.

The reader knows that for a given metric d on X one can find many compatible fuzzy metrics (see [1]) deduced
explicitly from d. The converse, up to we know, is an unsolved question. To approach this question, in the next
paragraph, we recall some known results.
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Given a metric d on X it is easy to find stationary fuzzy metrics compatible with d. For instance, for a fixed K > 0,
if we define Nx = m for each x,y € X then (N, ) is a stationary fuzzy metric and t(d) = tn,. Conversely, if
(N, R) is a stationary fuzzy metric on X then d(x, y) = 1 — N(x, y), for each x, y € X, is a metric on X and ©(d) = tn.

Now, let + > & and suppose that (M, =) is a fuzzy metric on X satisfying N(x,y) = Ao M(x, y,t) > 0 for each
x,y € X. Then (N, *) is a fuzzy metric on X and tn = ta if and only if M is an s-fuzzy metric (see [6, Theorem 4.2]).
Consequently, in this case d(x,y) = 1 — Ao M(x, y, t) is a metric on X with ©(d) = Ty and so d is a compatible
metric with M. Clearly, d is deduced explicitly from M.

4. Strong Cauchy sequences
Next, we will give a concept of strong Cauchy sequence according to Definition 3.1.

Definition 4.1. A sequence {x,} in X is strong Cauchy, briefly st-Cauchy;, if given € €]0, 1[ there exists n., depending
on €, such that
M(xy, X, t) > 1 — €, forall n,m > ne and for all t > 0.

Clearly, st-Cauchy sequences are Cauchy.
In a similar way to the case of st-convergence, we give the next characterization of st-Cauchyness by
means of (triple) limit.

Proposition 4.2. {x,} is st-Cauchy if and only if imy,  x M(xu, X, §) = 1

Proof The proof is similar to the proof of Proposition 3.2. o
We will see that the concept of st-Cauchyness is compatible with the concept of st-convergence. First,
we will see that the next diagram

st—convergence — convergence

{ l
st —Cauchy  —  Cauchy

is fulfilled. For it, we start showing the next proposition.
Proposition 4.3. Every st-convergent sequence is st-Cauchy.

Proof Let {x,} be a st-convergent sequence in a fuzzy metric space (X, M, *). Take € €]0, 1[. By continuity
of +, we can find r €]0, 1] such that (1 —r) * (1 —r) > 1 — €. Since {x,} is st-convergent, there exists xy € X and
no € IN such that M(x,,, xo,t) > 1 — r for all n > ng and all t > 0. Therefore, for each n,m > ny and each t > 0
we have that

M(xy, X, t) = M(xn, X0, 1/2) * M(x0, X, t/2) > 1 =1)+ (1 —7) > (1 —€.)

And thus, {x,} is st-Cauchy. O
Now, we will see that the implications of the above diagram cannot be reverted in general.
Example 3.4 shows an s-convergent sequence, and so convergent, which is not st-convergent. It is easy
to verify that it is also an example of convergent (Cauchy) sequence which is not st-Cauchy.
The next example shows an st-Cauchy sequence, which is not (st-)convergent.

min{x,y}

maxiy] and = is the

Example 4.4. Let (X, M, *) be the stationary fuzzy metric space, where X =]1, +oo[, M(x, y) =

usual product. It is easy to verify that the sequence {x,}, where x, = 1+ L is a st-Cauchy sequence in X, which is not
(st-)convergent.

Therefore, the concepts of st-Cauchyness and st-convergence are compatible.
Finally, we will see that in an s-fuzzy metric space Cauchy sequences are not st-Cauchy, in general.
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min{x,y}+t
maxx g1 E foreachx,y e X

Example 4.5. Consider (X, M, *), where X =]0, oo[, * is the usual product and M(x, y, t) =

and each t > 0. In [6] it is proved that it is an s-fuzzy metric space.
Now, if we consider the sequence {x,} in X, where x, = % foreach n € IN, it is a Cauchy sequence in X. Indeed,

. __ min|
lim M(x,,, xp,, t) = lim
n,m n,m max{

S| =

1
’m _
T =1
m

7

On the other hand, {x,} is not st-Cauchy. Indeed, tacking € = %, then for each n € N we can find m > nand t > 0
such that M(x,,, X, t) < % For instance, given n € IN, if we consider m = 3n and t €]0, 3%1[ we have that

1

=+t =+ 1
3n 3n 3n

M(xy, X, t) = 1 <T— =5
Lyt 14l 2
n n 3n

A question concerning our above study is the next.

Problem 4.6. Characterize those fuzzy metric spaces in which Cauchy sequences are st-Cauchy.
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