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Abstract

The interest in gravitational waves has greatly increased since the first detection in
2015 [1]. This has given extra momentum to the development of new detectors, which
will extend the accessible frequency range, while also improving the sensitivity com-
pared to current detectors. Two of these detectors are studied here and they are the
Einstein Telescope (ET) and the Laser Interferometer Space Antenna (LISA). The ET
will probe the same frequency range as current detectors, though the band will be
widened (to about 1 to 104 Hz) and the sensitivity will be much better. LISA will
be an observatory in space and it will look for sources in an entirely new frequency
range at about 10−4 to 1 Hz. A wide variety of sources is expected to be found by
these detectors. Furthermore, they will have a much higher signal-to-noise ratio, which
means that they can find out more information about the sources.
These new detectors will have sensitivity curves that are different from current detec-
tors such as the Laser Interferometer Gravitational-Wave Observatory (LIGO), which
means that their response to gravitational waves will be different. Some approxima-
tions were used for the LISA sensitivity curve and the consequence is that only the
lower part of the LISA frequency range was considered in this work. A comparison
was made between LISA, the ET and LIGO and it was found that LISA puts more
emphasis on the merger, whereas the ET emphasizes the inspiral instead.
These different sensitivity curves could mean that the performance of waveform models
is different. There are various methods for modelling gravitational waves from binary
black holes. The three main families of waveform models that are used in parame-
ter estimation (which means that they need to have a low computational cost) are
compared. These are the phenomenological models IMRPhenomXHM [53] and IMR-
PhenomHM [52], the effective one-body reduced order model SEOBNRv4HM ROM
[54] and the hybrid surrogate model NRHybSur3dq8 [55]. All of these models use
higher modes of the multipole expansion and are non-precessing.
The highest similarities were found between IMRPhenomXHM and NRHybSur3dq8.
The overall performance for LIGO and the ET was similar, whereas the results for
LISA were not as good. This depends on the choice of how to scale the mass between
LIGO and LISA. The other results suggest that the matches for LISA might be better
when the full response can be used to include higher frequencies. For both LISA and
the ET it is found that the current models would induce systematic errors in parameter
estimation.
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Chapter 1
General introduction

The theory of general relativity, published by Albert Einstein in 1915, uses geometry
to describe gravity. In general relativity the relationship between matter and the
geometry of spacetime is described by the Einstein field equations:

Gµν =
8πG

c4
Tµν . (1.1)

The Gµν on the left-hand side of this equation is the Einstein tensor that describes the
curvature of spacetime, whereas the Tµν on the right-hand side describes the distribu-
tion of matter. Matter bends the spacetime according to equation 1.1. Free particles,
i.e. free from all non-gravitational forces, will move along paths called geodesics. These
are the straightest possible lines through this curved space. The curvature of these
paths is what is perceived as gravity.

A year after publishing the theory of general relativity Einstein made the predic-
tion that accelerated masses can create ripples in the fabric of spacetime that can
travel as waves at the speed of light. This is what we know as gravitational waves.
Almost a hundred years later the first direct detection of a gravitational wave [1] was
made by the instruments at the Hanford and Livingston sites (in the United States) of
the Laser Interferometer Gravitational-Wave Observatory (LIGO). Both of these sites
have interferometers with 4 km long arms separated by a 90◦ angle. The waves created
by the merger of a binary black hole caused very small changes in the arm lengths of
these detectors on the 14th of September 2015. These changes were detected and it
was concluded that they were caused by a gravitational wave. The event was named
GW150914 after the date of its detection.

GW150914 ushered in a new era of astronomy. Until then almost all astronomical
information came from electromagnetic radiation, so an entirely new window for ob-
serving the Universe had been opened. Astronomy using electromagnetic radiation
began by only using the visible part of the electromagnetic spectrum. Later on other
parts of the spectrum were added, such as X-ray or radio wavelengths. Very different
types of sources can be observed in different parts of the electromagnetic spectrum.
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Figure 1.1: Gravitational wave spectrum, showing sources and detectors for different
frequencies. Source: [3].

Similar things can be expected for gravitational wave astronomy.

Current ground-based gravitational wave detectors operate in the frequency range of
about 101 - 103 Hz, but many interesting sources are found in lower frequency ranges.
Figure 1.1 gives an overview of several types of sources and detectors along the grav-
itational wave spectrum. The frequency range below that of ground-based detectors
can be probed using space-based detectors. There are several several proposals for
space-based detectors, of which the Laser Interferometer Space Antenna (LISA) is in
an advanced stage; scheduled to be launched in 2034.

LISA will consist of three spacecraft in an equilateral triangle with sides of 2.5 million
km. LISA will cover the frequency range of below 10−4 Hz till about 1 Hz [2]. Many
interesting sources are expected to be found in this range and these are described in
section 5.1.

Besides this new frequency window that will be opened by LISA there are also plans to
improve the observations at frequencies accessible to current ground-based detectors.
This can be achieved by building bigger detectors and one proposal to do this is the
Einstein Telescope (ET). The ET has a triangular shape (contrary to the L-shapes
in current usage) and has 10 km arms. It will have much better sensitivity at all
frequencies and the frequency range it can cover is also bigger than those of current
detectors.

For analysing the data of LISA and the ET (or gravitational wave detectors in gen-
eral) theoretical waveform models play an important role. First the detector data
is compared to waveforms in a template bank. This is a collection of many (a few
100.000 in the case of LIGO) waveforms with varying parameters (e.g. component
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masses and spins in a binary coalescence). A good match between a template wave-
form and the data is an indication of a gravitational wave detection with parameters
similar to those of the template. Once this happens the parameter space around the
values of the template is explored stochastically to see which parameter values best fit
the signal. In this process a large number of waveforms are produced and compared
to the signal. A Bayesian posterior probability distribution is then produced for the
parameters. Because one needs to produce a large amount (typically more than 107)
of waveforms one will need an efficient method of producing these. Here we consider
waveform models for binary black holes. There are several techniques for producing
these, which are described in section 3.4. For LISA the requirements on these tech-
niques are different than for ground-based detectors like LIGO, mostly because of the
much higher signal-to-noise ratios (SNR) that are expected for LISA, which leads to
higher requirements on the accuracy of the waveforms. In this work it is tested how
well current techniques of efficiently producing waveforms work for LISA and the ET.

First a general introduction to gravitational waves is given in chapter 2. It discusses
how the wave equation is derived, along with the two polarizations. Then it describes
what kind of sources can produce gravitational waves that we could detect. Chapter 3
explains the principles of gravitational wave detectors and how their data is analyzed.
The introduction is concluded with the chapters 4 and 5, which describe the LISA and
ET gravitational wave detectors.

The results will consist of an analysis of how LIGO, LISA and the ET respond to
different phases of gravitational waves, which are commonly divided into three phases
(inspiral, merger and ringdown) as described in section 6.2. Chapter 6 describes these
results. Finally a comparison is made of how the three main families of waveform
models perform for each of the detectors. These results are given in chapter 7, after
which the conclusions are summarized in chapter 8.
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Chapter 2
Introduction to Gravitational Waves

The Einstein field equations (equation 1.1) constitute a set of 16 coupled, non-linear
differential equations (of which only 10 are independent, because of symmetry). Find-
ing analytical solutions is very difficult and only few exist. The trivial solution is the
one for flat space. This solution is the Minkowski metric, denoted here as ηµν . The
Minkowski metric is the solution of special relativity, where there is no gravitational
field, and, in matrix-form and Cartesian initial coordinates, it is equal to

ηµν =


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 . (2.1)

In this case there is no curvature and because of that it is commonly called flat space.
A gravitational wave can be described as a perturbation on this flat space.

2.1 Linearized Gravity

Linearized gravity can be used to greatly simplify the Einstein field equations in the
case of a weak gravitational field. In this case space will be close to flat and thus the
metric gµν can be written as the Minkowski metric with a small perturbation hµν :

gµν = ηµν + hµν , |hµν | � 1. (2.2)

To linearize the Einstein field equations, equation 2.2 is plugged in and all terms that
are not linear in gµν are dropped. First the Christoffel symbols are linearized, which
are defined as

Γαβγ =
1

2
gαµ(∂γgµβ + ∂βgµγ − ∂µgγβ).

Plugging in equation 2.2 then gives:

Γαβγ =
1

2
(ηαµ + hαµ)(∂γ(ηµβ + hµβ) + ∂β(ηµγ + hµγ)− ∂µ(ηγβ + hγβ)).
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Now, noting that the derivatives of the flat metric vanish and omitting the terms that
are quadratic in h (so removing the h in first parentheses and the ηs in the second
parentheses), we get

Γαβγ =
1

2
ηαµ(∂γhµβ + ∂βhµγ − ∂µhγβ).

This can now be used to linearize the Riemann tensor, defined as

Rα
βγδ = ∂γΓ

α
δβ − ∂δΓαγβ + ΓαγµΓµδβ − ΓαδµΓµγβ.

The last two terms can be dropped immediately, because the Christoffel symbols are
linear in h, so these terms are quadratic. This results in

Rα
βγδ = ∂γ

1

2
ηαµ(∂βhµδ + ∂δhµβ − ∂µhβδ)− ∂δ

1

2
ηαµ(∂βhµγ + ∂γhµβ − ∂µhβγ),

Rα
βγδ =

1

2
ηαµ(∂γ∂βhµδ − ∂δ∂βhµγ − ∂γ∂µhβδ + ∂δ∂µhβγ).

To get Rαβγδ we simply lower the index with ηµα, which just removes the ηµα in Rα
βγδ,

so (immediately renaming µ back to α):

Rαβγδ =
1

2
(∂γ∂βhαδ − ∂δ∂βhαγ − ∂γ∂αhβδ + ∂δ∂αhβγ).

To obtain the Ricci tensor Rβδ, the Riemann tensor has to be contracted as such:
Rβδ = ηαγRαβγδ. In the first term we raise the α, in the others the γ:

ηαγRαβγδ =
1

2
(∂γ∂βh

γ
δ − ∂δ∂βh

α
α − ∂α∂αhβδ + ∂δ∂αh

α
β).

Renaming the indices α and γ to µ, renaming β to α and δ to β and writing h = hµµ
and � ≡ ∂µ∂µ we have

Rαβ =
1

2
(∂µ∂αh

µ
β − ∂β∂αh−�hαβ + ∂β∂µh

µ
α).

Then, to get the Ricci scalar, this is contracted with ηαβ:

R = ηαβRαβ =
1

2
(∂µ∂αh

µα − ∂α∂αh−�hαα + ∂β∂µh
µβ),

where the β is raised in the first three terms and the α in the last. Renaming µ to β
in first term and µ to α in the last, we get

R = ∂α∂βh
αβ −�h.

The Einstein tensor Gαβ is defined as
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Gαβ = Rαβ −
1

2
gαβR.

Combining all this, the Einstein field equations (equation 1.1) can be written as

∂µ∂αh
µ
β − ∂β∂αh−�hαβ + ∂β∂µh

µ
α − ηαβ(∂µ∂νh

µν −�h) =
16π

c4
Tαβ,

which can be simplified by using the trace reversed of hµν , denoted h̄µν :

h̄µν = hµν −
1

2
ηµνh. (2.3)

Then the Einstein field equations can be written as

�h̄µν + ηµν∂
ρ∂σh̄µν − ∂ρ∂ν h̄µρ − ∂ρ∂µh̄νρ = −16π

c4
Tµν . (2.4)

This equation can be simplified using gauge freedom. Considering a small coordinate
transformation

x′µ = xµ + ξµ(x),

where ξµ(x) varies slowly, i.e. |∂αξβ| � 1, the transformation between x′ and x is (to
first order)

∂xµ

∂x′α
= δµα −

∂ξα

∂xµ
.

Plugging this into

g′αβ =
∂xµ

∂xα′

∂xν

∂xβ′ gµν

yields:
ηαβ + h′αβ = (δµα − ∂αξµ)(δνβ − ∂βξν)(ηµν + hµν).

From this equation we only keep the terms up to first order (so only terms containing
one or less factors of {hµν , ∂αξµ, ∂βξν}. This yields

ηαβ + h′αβ = −δµα∂βξνηµν − ∂αξµδνβηµν + δµαδ
ν
βηµν + δµαδ

ν
βhµν .

This is easily simplified to

h′αβ = hαβ − ∂αξβ − ∂βξα. (2.5)

Since |∂αξβ| � 1 this new h′αβ again satisfies equation 2.2, we know that h and h′

describe the same system when they are related as in equation 2.5. Thus we try to
choose h′ in such a way that it simplifies equation 2.4. Clearly equation 2.4 would be
greatly simplified if

∂ν h̄µν = 0. (2.6)
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Fortunately it turns out that this can be achieved by choosing the right gauge. Let’s
first get an expression for h̄µν . Equations 2.3 and 2.5 can be combined to write

h̄′µν = hµν − ∂µξν − ∂νξµ −
1

2
ηµνη

αβ(hαβ − ∂αξβ − ∂βξα)

= h̄µν − ∂µξν − ∂νξµ −
1

2
ηµνη

αβ(∂αξβ − ∂βξα)

= h̄µν − ∂µξν − ∂νξµ −
1

2
ηµν(−∂βξβ − ∂αξα)

= h̄µν − ∂µξν − ∂νξµ + ηµν∂
βξβ.

Then ∂ν h̄µν can be expressed as:

∂ν h̄µν = ∂ν h̄µν − ∂ν∂µξν − ∂ν∂νξµ + ∂νηµν∂
βξβ

= ∂ν h̄µν − ∂ν∂µξν − ∂ν∂νξµ + ∂µ∂
βξβ

= ∂ν h̄µν − ∂ν∂νξµ + ∂µ∂
βξβ − ∂µ∂νξν

= ∂ν h̄µν − ∂ν∂νξµ.

So to get ∂ν h̄µν = 0 it is required that �ξµ = ∂ν h̄µν , where � ≡ ∂ν∂ν . The equation
�f = g always has a solution for well behaved g, so we can always choose coordinates
in which ∂ν h̄µν = 0. Plugging this into equation 2.4 simply leaves

�h̄µν = −16π

c4
Tµν . (2.7)

To study the propagation of gravitational waves we shall look at this equation in the
absence of matter, i.e. where Tµν = 0, so equation 2.7 simply becomes

�h̄µν = 0. (2.8)

Since � = −(1/c2)∂2/∂t2 +∇2, this is the equation of a wave traveling at speed c:

∂h̄(t, x)

∂t
= −c2∇2h̄(t, x).

A set of solutions to this equation is

h̄µν = Aµν exp(ikνx
ν). (2.9)

Plugging this into equation 2.8 gives

kαk
α = 0.

When k is written as k = (ω, k1, k2, k3) this means that ω2 = (k1)2 + (k2)2 + (k3)2.
Using the Lorentz gauge condition means that:

∂ν h̄µν = 0 → Aµνk
ν = 0. (2.10)
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These impose four conditions on Aµν and so its 10 independent components have been
reduced to 6. Now after imposing the Lorentz condition there is still some freedom
left in the choice of coordinates. A further coordinate change

x′µ = xµ + ξµ(x)

will still satisfy the gauge condition if �ξµ = 0. We can choose a similar set of solutions
for this:

ξµ = Bµ exp(ikσx
σ), (2.11)

using
h̄′µν = h̄µν − ∂µξν − ∂νξµ + ηµν∂

βξβ (2.12)

again. Using equation 2.12, 2.9 and 2.11 and dividing by the exponent gives

A′µν = Aµν − ikµBν − ikνBµ + iηµνB
βkβ. (2.13)

Now we want to impose what is called the transverse-traceless (TT) gauge, in which

A0ν = 0 (transverse), (2.14)

Aµµ = 0 (traceless). (2.15)

To get condition 2.15, first 2.13 is contracted with ηµν to get

A′µµ = Aµµ − ikµBµ − ikµBµ + iηµµB
βkβ. (2.16)

Now kµBµ = ηαµkαBµ = kαB
α and ηµµ = 4, so combining 2.16 and 2.15 gives

A′µµ = 0 = Aµµ + 2iBβkβ → Bβkβ =
i

2
Aµµ. (2.17)

Now first condition 2.14 is solved for ν = 0, using 2.17:

A′00 = 0 = A00 − ik0B0 + iη00B
βkβ

0 = A00 − 2ikoB0 +
1

2
Aµµ

B0 = − i

2k0
(A00 +

1

2
Aµµ).

Next Bj is solved for j = 1,2,3 (using η0j = 0):

0 = A0j − ik0Bj − ikjB0 + η0jB
βkβ

= A0j − ik0Bj − ikj(−
i

2k0
(A00 +

1

2
Aµµ))

Bj = −iA0j

k0
+

i

2k20
(A00 +

1

2
Aµµ).
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So by choosing B like this the conditions 2.15 and 2.14 are satisfied. We can now choose
the wave vector kµ so that it’s traveling in the z-direction, meaning: k = (ω, 0, 0, ω).
We know that Aµνk

µ = 0 (equation 2.10), so

A0νk
0 + A1νk

1 + A2νk
2 + A3νk

3.

We also know that A0ν = 0 (equation 2.6), k1 = k2 = 0 and k3 6= 0, so therefore
A3ν = 0. Since A is also traceless (equation 2.15) and symmetric this means that

A =


0 0 0 0
0 A+ A× 0
0 A× −A+ 0
0 0 0 0

 .

Plugging this into equation 2.9, taking the real part and noting that h̄µν = hµν when
traceless gives

hµν =


0 0 0 0
0 h+ h× 0
0 h× −h+ 0
0 0 0 0

 cos(ω(t− z

c
)),

with h+ and h× constants.

2.2 Polarizations

To see how a gravitational wave will affect test particles we shall use the geodesic
deviation equation:

d2

dτ 2
Sµ = Rµ

νρσU
νUρSσ.

This is used to describe the relative motion of nearby particles. Sµ is the separation
between the particles, R the Riemann tensor and U the four-velocity of the particles.
For slowly moving particles U will be equal to (1,0,0,0) plus corrections of the order
of hµν . Since the Riemann tensor already is of order hµν these corrections will be of
higher order and will be ignored. So taking U = (1, 0, 0, 0) we only need to consider
ν = ρ = 0. Then the linearized Riemann tensor will be

Rµ00σ =
1

2
(∂0∂0hµσ + ∂σ∂µh00 − ∂σ∂0hµ0 − ∂µ∂0hσ0),

but hµ0 = h0µ = 0 so only the first term is left. Also, for slowly moving particles t = τ
to lowest order, so we are left with

∂2

∂t2
Sµ =

1

2
Sσ

∂2

∂t2
hµσ. (2.18)
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Taking the xy-plane and a gravitational wave traveling in the z-direction:

h =


0 0 0 0
0 h+ h× 0
0 h× −h+ 0
0 0 0 0

 sin(ωt). (2.19)

Now we first take h× = 0. The separation should be an equilibrium position plus a
perturbation from this equilibrium: S = (x0 + δx(t), y0 + δy(t)). Using 2.18 and 2.19
this gives the equations

∂2

∂t2
δx(t) = −ω

2

2
h+(x0 + δx(t)) sin(ωt),

∂2

∂t2
δy(t) =

ω2

2
h+(y0 + δy(t)) sin(ωt),

which can be solved to give

δx(t) =
h+
2
x0 sin(ωt), (2.20)

δy(t) = −h+
2
x0 sin(ωt). (2.21)

In an analogous manner the expressions for the h× component are found to be

δx(t) =
h×
2
y0 sin(ωt), (2.22)

δy(t) =
h×
2
x0 sin(ωt). (2.23)

2.3 Sources of gravitational waves

Gravitational radiation has similarities to electromagnetic radiation. Electromagnetic
waves are emitted by accelerating charges, whereas gravitational radiation comes from
accelerating masses. Both types of radiation travel at the speed of light and there
might be a particle associated with both of them (the photon with electromagnetic
radiation and the hypothetical graviton for gravitational radiation). An important
distinction is that gravity is always attractive (there is only one type of “charge”),
whereas electromagnetic forces can be attractive or repulsive (there are two types of
charge).
One can express the radiation in a multipole expansion and conclude that the first
term will come from the quadrupole in the case of gravitational waves. The reasoning
here follows [34]. When ρ(r) represents the charge or mass-energy density then the
monopole moment is equal to

∫
ρ(r)dr3. This quantity does not vary because of

the conservation of charge and mass-energy. Next is the “electric” dipole moment∫
ρ(r)rdr3, which can vary and produce radiation in the electromagnetic case. For
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Figure 2.1: Positions of test masses for several values of ωt, using equations 2.20, 2.21,
2.22, 2.23. Top row: plus-polarized wave, bottom row: cross-polarized wave.

gravitational radiation this quantity is equal to the center of mass. This may vary
in general, but it will be constant in the center of mass frame, so there won’t be
any radiation in that frame. Since the existence of radiation doesn’t depend on the
frame there won’t be radiation in any frame. Then there is the “magnetic” dipole
moment

∫
ρ(r)r × v(r)dr3, which again may vary for the electromagnetic case. For

the gravitational case this is just the angular momentum, a conserved quantity. One
then arrives at the quadrupole Iij =

∫
ρ(r)rirjdr

3. Here there is no conservation law
for the gravitational case so quadrupole radiation is permitted. This leading term in
gravitational radiation was first derived by Albert Einstein in 1918 and reads

hTTij (t, r) =
2G

c4r
Ïij(t− r/c), (2.24)

where an overdot denotes differentiating with respect to time. The complete multipole
expansion can be written as

h+ − ih× =
∑
l≥2

l∑
m=−l

−2Ylm(θ, φ) hlm, (2.25)

where −2Ylm(θ, φ) is the (l,m) mode of the -2 spin-weighted spherical harmonic for
polar angle θ and azimuthal angle φ. The quadrupole term corresponds to the (2,2)
and (2,-2) mode and it is the dominant term in the expansion. The significance of the
higher modes depends on the parameters of the system, as described in section 3.4.3.

Any object with a varying mass quadrupole moment (or higher terms in the expansion)
will emit gravitational waves. This means gravitational waves are created all the time
all around us on Earth, it appears however that these are all far too faint to detect. In
fact, the only sources that have caused detectable gravitational waves so far are some
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of the most violent events in the Universe: mergers of black holes and/or neutron stars.
These are large masses that are very compact and because of that they can orbit each
other rapidly at a small separation, where energy loss through gravitational radiation
will cause them merge eventually. Under all of these circumstances the system has a
large and rapidly varying quadrupole moment, causing the emission of gravitational
waves that can be strong enough to detect on Earth.

2.3.1 Binary star origin

There are several ways in which these binary black hole systems can be formed. Stellar
black holes are formed in the gravitational collapse of a star and have a mass range of
about 5 M� up to several tens of M�. The first way in which a binary stellar black
hole could be formed is from a binary system of two high mass stars, as described
in [35]. Gravitational radiation gets weak at large separations and, after the stars
have collapsed, the black holes would have to be at a distance of a few solar radii in
order to merge within a Hubble time. Massive stars can however get a size of up to
a few thousands of solar radii near the end of their lifetime, so the separation will
have to be larger initially. When one starts out with two massive main sequence stars
at a sufficiently (so they won’t merge prematurely when one turns into a giant) large
separation, one of them will be the first to collapse and form a black hole. At some
point after that the other will turn into a giant that will overflow its Roche lobe (where
the outer layers will no longer be gravitationally bound to the star and mass transfer
will occur) and this will lead to a common envelope of gas. The gas does not rotate at
the same rate as the binary system constituents and thus the black hole and star core
will be slowed down by drag, reducing their separation. This drag will transfer energy
to the envelope, which might be ejected as a result of this energy. If the envelope is
ejected the core can collapse to a black hole and the resulting black hole binary can
merge (due to gravitational radiation) within a Hubble time. If the envelope is not
ejected the two objects will merge prematurely and won’t produce gravitational waves
that can be (reasonably) measured. There is some uncertainty about the dynamics
of these common envelopes and some alternative hypotheses have been proposed. A
schematic overview of the process can be seen in figure 2.2.

2.3.2 Dynamical exchange

Another way in which binary black holes can be formed is through dynamical exchange
[35], which can occur in dense regions. Star clusters are among the densest regions
in the Universe and there are several types of them. Globular clusters [36] are found
outside the thin disk of galaxies and orbit its center. Nuclear star clusters [37] are
found near the center of most galaxies and open clusters [38] are the least massive but
they are an important source of massive stars which could form a black hole [39].
The high density and low velocity dispersion in these regions mean that orbits in
these regions are constantly being perturbed by dynamical encounters with other stars
from the cluster. Encounters can occur between a binary star and a single star in
which the single star replaces one of the constituents of the binary system; a process
called dynamical exchange. Black holes are efficient in acquiring companions in this
process [40, 41]. When a binary black hole is formed that is tightly bound has an
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Figure 2.2: Binary black hole formation through massive binary system (left) and
dynamical exchange, source: [35].

encounter with a third object it will exchange part of its internal energy with the third
object. This can reduce the separation in the binary system which can bring them
close enough to make energy loss through gravitational radiation efficient. Figure 2.2
gives a schematic view of this process.

2.3.3 Supermassive black hole binaries

Another potential source for measurable gravitational waves is a binary system of
supermassive black holes. It is known that many galaxies have a supermassive black
hole at their center and when galaxies merge these can form a binary system. When
the galaxies merge the central supermassive black holes will move to central regions
as a result of being slowed down by dynamical friction. At some point dynamical
friction becomes inefficient, but interactions with surrounding stars and black holes
can further decrease the separation. If these interactions can bring the system to a
sufficiently small separation, energy loss due to the gravitational radiation can become
significant, which lets the orbits decay further, finally leading to a merger.
Supermassive black hole binaries have been observed at a projected separation of
about 7 pc [43] and a triple system has been observed with the smallest separation
being about 140 pc [44]. For gravitational wave emission to get efficient enough to
let the binary merge withing a Hubble time, the separation would have to decrease
to roughly 0.01 pc. It is not exactly known how the separation can decrease this far.
This problem has been called the “final parsec problem” [45] and several solutions
have been proposed, e.g. [46, 47].
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2.3.4 Other sources

So far all observed gravitational waves have come from merging neutron stars and/or
black holes, but several other sources might be observed in the future. Examples
are gravitational waves from supernova explosions or continuous waves from binary
systems. These are discussed in sections 4.1 and 5.1.
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Chapter 3
Observation and data analysis

The first attempt to build a gravitational wave detector came from Joseph Weber. He
used an aluminum cylinder of a few meters that had a resonance frequency of about
1600 Hz. The idea was that a continuous gravitational wave signal at the right fre-
quency would cause the cylinder to resonate, allowing the measurement of a varying
length of the device. Weber first claimed to have detected gravitational waves in 1969
[60], but attempts to duplicate these results were unsuccessful. Through time some
more Weber-type detectors have been constructed but none of these have ever been
able to measure a gravitational wave.
Later on the focus shifted towards building L-shaped Michelson interferometers. These
are often grouped into different generations. The so-called first generation was mostly
for testing the technologies that would later be used by more sensitive detectors. It
consists of the TAMA 300 with 300 m arms and CLIO with 100 m arms, which were
both constructed in Japan to do research for a future larger interferometer. Then
there is the German GEO600 (600 m arms) and also the initial versions (with lower
sensitivity, which was later upgraded) of LIGO (4 km arms) and Virgo (3 km arms).

The second generation started out with Advanced LIGO and Advanced Virgo, which to
date are the only observatories that have been used in a detection. These detectors are
very similar, with Virgo having a smaller arm length (at 3 km, compared to LIGO’s 4
km). Figure 3.1 shows the LIGO site at Hanford. The Japanese KAGRA has recently
been completed and has now joined them in the search for gravitational waves. This
interferometer has 3 km arms and is the first to be constructed underground and to use
cryogenic mirrors to reduce noise. In a few years this network will be further improved
by the addition of LIGO India, with 4 km arms like the other LIGO sites.
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Figure 3.1: LIGO site at Hanford, source: [27].

Figure 3.2 shows a schematic layout of an L-shaped interferometer. The laser is emit-
ting light, of which half is directed into each arm by the beam splitter. There are
two mirrors in the arm, one at the end and one near the beam splitter. The light
bounces back and forth many times between these mirrors before being recombined at
the beam splitter and continuing to the photodetector. The beam that is reflected by
the beam splitter towards the photodetector gets a phase change of π, so the light will
be exactly out of phase when the arm lengths are exactly equal. This means that there
will be total destructive interference so the photodetector will not measure any power.
When the arm lengths change there is no longer complete destructive interference and
this will be measured by the photodetector.

The power measured at the photodetector is thus related to the strain (relative length
change ∆L/L, where L is the arm length). The sensitivity of the detector to gravita-
tional waves depends on the direction and orientation of the source.

Figure 3.2: Schematic layout of L-shaped interferometer detector source: [28].
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3.1 Antenna Pattern

Michelson interferometers measure the strain that is caused by a passing gravitational
wave. From section 2.1 it is known what the metric perturbation of a gravitational
wave looks like in a frame in which it is traveling along the z-axis and the plus polar-
ization in the direction of the x-axis. We also know what effect a gravitational wave
has on matter from section 2.2. By combining this an expression can be found for the
signal from a gravitational wave coming at a detector from an arbitrary direction. The
derivation here follows that of [23].
First we need to find a rotation matrix between the detector frame and the wave frame.
For the detector we shall use an orthogonal reference frame in which the arms lie in
the xy-plane and the angle between x and one arm is equal to the angle between y and
the other arm. This angle shall be called ζ. We use a right-handed coordinate system
such that the z-axis points up.

Now we imagine a gravitational wave (frame {x′, y′, z′}) coming in from an arbitrary
direction n towards the detector (frame {x, y, z}). So the positive z’ axis will lie in the
direction of −n. The angle between n and z shall be named θ, so the angle between z
and z’ is equal to π − θ. Then we still need an angle to describe the direction of the
x’ axis. Let k be a vector perpendicular to z’ and lying in the z’z-plane. This gives
two possibilities and we shall take the one in the positive z direction. Then we name
the angle between x’ and k ψ. Finally the angle between the projection of n on the
xy-plane and the x-axis shall be named φ.

The rotation matrix to take frame {x′, y′, z′} into frame {x, y, z} will be constructed
with 3 Euler rotation matrices. First a rotation along the z-axis with an angle of −φ,
this will align the projection of n on the xy-plane with the x-axis. Then a rotation
along the y-axis of π − θ. Now the z’-axis is aligned with the z-axis. Finally another
rotation along the z-axis, now with an angle ψ will align all axes. The matrix will be:

M = Rz(−φ)Ry(π − θ)Rz(ψ),

M =

 cosφ sinφ 0
− sinφ cosφ 0

0 0 1

− cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ

 cosψ sinψ 0
− sinψ cosψ 0

0 0 1

 ,

M =

− cosφ cos θ cosψ + sinφ sinψ sinφ cosψ + cosφ cos θ sinψ cosφ sin θ
sinφ cos θ cosψ + cosφ sinψ cosφ cosψ − sinφ cos θ sinψ − sinφ sin θ

− sin θ cosψ sin θ sinψ − cos θ

 .

(3.1)

Now the response of a gravitational wave detector in the long wavelength approxima-
tion is equal to

∆L(t)

L
=

1

2
n̂T1Hn̂1 −

1

2
n̂T2Hn̂2. (3.2)

where L is the length of the detector and n̂1,2 are the unit vectors pointing along the
detectors arms. H is the gravitational wave tensor. Now the inverse of M is equal to
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MT , so for the gravitational wave tensor in the different frames we can write

H = MH ′MT . (3.3)

The unit vectors can be written in the detector frame as:

n̂1 =

cos(π
4
− ζ

2
)

sin(π
4
− ζ

2
)

0

 , n̂2 =

sin(π
4
− ζ

2
)

cos(π
4
− ζ

2
)

0

 . (3.4)

Combining this leads to

∆L((t; θ, φ, ψ))

L
= F+(t; θ, φ, ψ)h+ + F×(t; θ, φ, ψ)h×, (3.5)

where F+(t; θ, φ, ψ) and F×(t; θ, φ, ψ) are the detector pattern functions, given by

F+(t; θ, φ, ψ) = sin ζ[1/2(1 + cos2 θ) cos(2φ) cos(2ψ)− cos θ sin(2φ) sin(2ψ)],

F×(t; θ, φ, ψ) = − sin ζ[1/2(1 + cos2 θ) cos(2φ) cos(2ψ)− cos θ sin(2φ) sin(2ψ)].

3.2 Matched filtering

The strain measured by a detector when a gravitational wave passes is a time series
that can be written as

s(t) = n(t) + h(t), (3.6)

where s(t) is the measured signal, n(t) is the noise and h(t) is the signal from the
gravitational wave. One will have to figure out if the measured signal contains a signal
as in equation 3.6 or if it only consists of noise. The optimal technique of doing this,
in the case of Gaussian stationary noise, is called matched filtering.
One will have to know the noise characteristics and a way to express this is through
the Power Spectral Density. To define this we first introduce the Fourier transform
convention used here. For a time series x(t) the Fourier transform x̃(f) is defined as

x̃(f) =

∫ ∞
−∞

x(t)e−2iπftdt (3.7)

and its inverse as

x(t) =

∫ ∞
−∞

x̃(f)e2iπftdf. (3.8)

Now according to Parseval’s theorem the total energy E of the signal is equal to

E =

∫ ∞
−∞
|x(t)|2dt =

∫ ∞
−∞
|x̃(f)|2df. (3.9)

The quantity |x̃(f)|2 gives the contribution to the total energy per unit frequency at
the frequency f and is called the energy spectral density. This energy spectral density
is only well-defined for a finite signal. Usually one will want to work with the power

22



spectral density S instead. This gives the contribution to the total power per unit
frequency for a given frequency for a signal of infinite time T and can thus be written
as

S(f) = lim
T→∞

∣∣∣∣∣
∫ T/2

−T/2
x(t)e−2iπftdt

∣∣∣∣∣
2

. (3.10)

For a real signal (as is the case for the strain in gravitational wave astronomy)
x̃(f) = x̃(−f)∗, where ∗ denotes complex conjugation, so S(f) = S(−f) and all
information is contained in the positive frequencies. This allows us to use the one-
sided power spectral density (referred to as PSD hereafter), where only the positive
values are used and they are multiplied by 2, so that the integral over all frequencies
still gives the total power. The noise of a detector over a long period has a certain
PSD, which shall be denoted as Sn(f).

Using this the inner product (a|b) between the signals a and b is defined as

(a|b) ≡ 2

∫ ∞
0

ã∗(f )̃b(f) + ã(f )̃b∗(f)

Sn(f)
df = 4

∫ ∞
0

ã∗(f )̃b(f)

Sn(f)
df. (3.11)

Similar to common definitions of the inner product between functions, but with the
contributions weighted by the noise. Now the best SNR ρ that can be achieved for a
signal h is

ρ2 = (h|h) = 4

∫ ∞
0

|̃h(f)|2

Sn(f)
df, (3.12)

integrating the ratio between the signal PSD and noise PSD over all frequencies. In
matched filter the signal of the detector is compared to a template waveform. A bank
with a few 100.000 templates with different parameters is compared to to signal. When
there is a certain threshold similarity between the template and the signal this could
indicate the detection of a gravitational wave. The overlap O is used to quantify the
similarity between a signal h and a template u(θ), where θ is a parameter vector. The
overlap is defined as

O(θ) =
(h|u(θ))√

(h|h)(u(θ)|u(θ))
. (3.13)

Its absolute value can be between 0 and 1, where 1 means h and u are equal (with
the exception of multiplication by a constant). After finding a match, i.e. an overlap
between template and signal above a certain threshold, the parameters of the template
can be tuned to find what fits best in a procedure called parameter estimation.

3.3 Parameter Estimation

When there is a candidate gravitational wave event the parameters of its source are
estimated through a method using Bayesian inference. Examples of these parameters
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are the component masses and spins in the case of a binary coalescence. A probability
distribution is computed which describes how likely certain parameter values are.

3.3.1 Probability

Probability describes the likelihood of some event to occur or how likely some statement
is true. There are various interpretations on what probability would exactly mean and
the most important of these are the frequentist and the Bayesian interpretation.

Frequentist

In the frequentist approach one can consider an experiment that can have various
outcomes. The probability of each outcome is then the ratio at which this event occurs
when repeating the experiment many times. When talking about hypotheses, e.g. if
a certain political party will win an election, it wouldn’t make sense for a frequentist
to talk about a probability that this will occur, because the party will either win this
particular election or it won’t; this is not an experiment that can be repeated many
times. Instead frequentists use confidence intervals to test hypotheses. A value that is
often used it the 95% confidence interval, which means that one has a 95% confidence
level (that is emphatically not a 95% probability) that the true value of the parameter
is in this interval. What it means is that when a frequentist has computed many 95%
confidence intervals for all kinds of different things, then 95% of these intervals will
contain the true parameter value. The frequentist may accept or decline a hypothesis
(that the parameter is equal to, or bigger/smaller than some value) with a certain
significance, based on whether or not this value lies within a confidence interval of a
certain size.

Bayesian

In the Bayesian approach probability is often described as the more subjective degree
of belief. In the example of the political party one could have some information of
polls and some personal ideas about the reliability of these polls and, in the Bayesian
approach, one could use this to compute a probability of a certain party winning the
election. The fundamental equation in Bayesian inference is Bayes’ theorem. The
general way to write this is

P (A|B) =
P (B|A)P (A)

P (B)
. (3.14)

Where P (A) is the probability of event A and P (A|B) is the probability of event A
given that event B has occurred. Some fundamental quantities in Bayesian inference
are the posterior, likelihood, prior and evidence. If θ is a parameter vector and d the
observed data then the prior π(θ) is a probability distribution that indicates some prior
belief about the parameter values θ. This prior can be more or less subjective and can,
for example, be based on previous research. The likelihood is the quantity L(d|θ), so
the interpretation of this is that it is the probability of getting the observed data given
parameter values θ. Now the posterior distribution p(θ|d) (the probability distribution
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of parameter values given the data) is the primary result of Bayesian inference and is
given by

p(θ|d) =
L(d|θ)π(θ)

Z
. (3.15)

Now Z is the normalization constant called the evidence and is thus given by

Z ≡
∫
L(d|θ)π(θ)dθ. (3.16)

In Bayesian inference one talks about credible intervals instead of the frequentist’s
confidence intervals. A 95% credible interval [A,B] means that there is a 95% probability
(a frequentist wouldn’t use this word for a parameter value) that the parameter value
is in this interval. So ∫ B

A

p(θ|d)dθ = 0.95. (3.17)

3.3.2 Bayesian inference in gravitational wave astronomy

The description of Bayesian inference here largely follows [32]. The expression for the
likelihood function depends on the noise model. In gravitational wave astronomy we
typically assume Gaussian noise and this leads to a likelihood similar to the following
expression:

L(d|θ) =
1

2πσ2
exp

(
−1

2

|d− µ(θ)|2

σ2

)
, (3.18)

with the normalization constant for a 2-dimensional Gaussian because the data is
typically complex. Here µ(θ) denotes the value of a gravitational wave template with
certain parameters θ and σ is the standard deviation of the detector noise.
The prior π(θ) gives some prior belief about the parameter values θ and there is
freedom in choosing this. What choice to make will depend on the situation. In the
case of neutron stars, for example, we have some beliefs about their possible range of
masses. When not much is known about a parameter this can be expressed by using
a uniform prior, giving equal probability to all values.
In gravitational wave astronomy we often only want to look at one or two parameters
at a time, for example the component masses. In this case the parameters we are not
interested in are called nuisance parameters. The process of eliminating the nuisance
parameters is called marginalization and it is done by integrating over them. This
results in the marginalized posterior:

p(θi|d) =

∫ (∏
k 6=i

θk

)
p(θ|d). (3.19)

This can be described as taking weighted results over all values of the nuisance param-
eters with weights proportional to the posterior probability of the nuisance parameter
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Figure 3.3: Posterior distribution for the component masses of GW150914 by using
Phenom or EOBNR waveforms. Source [33].

values. Equation 3.19 can also be expressed as

p(θi|d) =
L(d|θi)π(θi)

Z
, (3.20)

where L(d|θi) is called the marginalized likelihood and is given by

L(d|θi) =

∫ (∏
k 6=i

dθk

)
π(θk)L(d|θ). (3.21)

Figure 3.3 shows the posterior distribution of the component masses of GW150914
after marginalizing over other parameters. It also shows contours of 50% and 90%
credible intervals.

This posterior probability can be written as

P (θ|s) = Aπ(θ) exp

(
1

2
(h(θ)|s)− 1

4
(h(θ)|h(θ))

)
, (3.22)

as derived in [48]. Here (...|...) denotes the inner product as in equation 3.11 and h(θ)
is the waveform for parameters θ. The signal measured by the detector is denoted as
s and A is a normalization constant.
For a given signal one could thus produce many waveforms h(θ) for varying values of
θ to produce the posterior probability distribution. After Marginalizing over nuisance
parameters images like figure 3.3 can be produced. The problem is that the parameter
space is very large. When considering the 15 parameters to describe a binary black
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hole, even taking a very coarse grid of 10 points per parameter will already require
producing 1015 waveforms, which is not practically feasible. This problem is addressed
by appropriate stochastic sampling methods like Markov chain Monte Carlo.

3.3.3 Markov chain Monte Carlo

Markov chain Monte Carlo [49, 50] methods can be used to draw samples from a
probability distribution. An arbitrary point, also called walker, in the parameter
space is taken and then this makes a stochastic walk through the parameter space.
When the walker is at a point x, a nearby point x′ will be selected according to the
proposal distribution g(x′|x). Then this nearby point, the proposal, is accepted with
a probability A(x′|x) that has to satisfy the equation

A(x′|x)

A(x|x′)
=
P (x′)g(x|x′)
P (x)g(x′|x)

. (3.23)

Here P (x) needs to be proportional to the probability at at point x, which means it
is not necessary to evaluate the normalization constant. This is important because
evaluating the normalization constant can often be too computationally expensive to
be feasible. A common choice for A(x′|x) is the Metropolis choice:

A(x′|x) = min

(
1,
P (x′)g(x|x′)
P (x)g(x′|x)

)
. (3.24)

When the proposal is accepted the walker will move to the new point in the parameter
space and the new point is added to the list of drawn samples. If the point is not
accepted the walker stays at the same point, which is also again added to the list of
samples. Obviously successive points drawn will be correlated as they will be close to
each other in the parameter space. If the algorithm is run for a sufficient amount of
time however, the drawn samples will be distributed as as the distribution P (x).

This method can be used to make the distribution of P (θ|s) from equation 3.22, with-
out evaluating the normalization constant A. For each unique point that is sampled
in the parameter space a waveform h(θ) will have to be computed. To produce the
distribution one will typically still need a very large amount of points, on the scale
of 107 or higher. For this to be practically possible it is essential to have an efficient
method of producing waveforms.

3.4 Waveform models

Because there is no analytical solution to the 2-body problem in general relativity, one
will have to use numerical methods to create waveform models for binary black holes.
There are various techniques for creating the waveforms that are used in gravitational
wave data analysis. The choice of which technique to use depends on the purpose
and on the parameters of the system. This work focuses on similar mass (i.e. no
extreme mass ratio inspirals, discussed in section 5.1.3) binaries and this section gives
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an overview of the most important methods for the computation of waveforms for
these systems.

3.4.1 Numerical Relativity

The most obvious way of creating waveforms is by solving the Einstein field equations
numerically for a given system. This is indeed the most accurate method of acquiring
waveforms, but the big drawback is its enormous computational cost on the scale of
105 to 106 core hours for a single waveform. Because of the computational cost the
number of available numerical relativity waveforms is very limited and this also limits
its practical applications. An important purpose of them is the testing and calibration
of other, more efficient techniques of producing waveforms.
Numerical relativity waveforms typically cover only the last ∼ 20 orbits, so those at
the highest frequency. Extending the waveforms to lower frequencies means getting a
lot more orbits and this drastically increases the computational cost. This all means
that there are very few numerical relativity waveforms available and that they are
very short, which makes the use of them impractical for procedures such as parameter
estimation. Fortunately various methods have been developed to produce waveforms
more efficiently. Producing these waveforms is generally challenging, but it can become
increasingly difficult for certain parameters. Larger mass ratios, larger spins (also
depending on their direction) and larger inclination (where 0 means face-on) make
effective waveform production more difficult. The total mass is only a scale factor and
doesn’t influence the shape of the waveform.

3.4.2 Alternative strategies

The waveforms used in parameter estimation mostly come from three different families,
which are all studied in this work. All of the studied models are non-precessing and
contain higher modes (beyond (2,2)).

Hybrid surrogate models

Only a few thousand numerical relativity waveforms have been produced and so they
cover only a small portion of the very large parameter space. A way to be able to
cover a larger portion of the parameter space is to interpolate between the available
numerical relativity waveforms. The result is known as a surrogate waveform. A prob-
lem with such a surrogate waveform is that it can only have a short length, because it
cannot be longer than the numerical relativity waveforms that are used for the inter-
polation. This can be solved by hybridizing the waveform, which means that different
methods are used for different parts of the waveform. The final part, i.e. the part
where the field is strongest, comes from interpolated numerical relativity waveforms.
The part of the wave before that comes from other approximate methods. Fortunately
the field is weaker for the earlier inspiral and in this case approximate methods are
more accurate. These approximate methods can be a post-Newtonian expansion or
the use of an effective one-body formalism. In post-Newtonian methods an expansion
is made in velocity v/c that expresses the deviation from Newtonian physics. This is
mostly effective when deviations from Newtonian physics are small, i.e. in the earlier
inspiral phase. The effective one-body formalism [51] aims to analytically describe
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the two-body problem as a single particle moving in an effective metric. This can be
more accurate than post-Newtonian waveforms, but it is still quite computationally
expensive.
This work analyses the newest generation of hybrid surrogate waveforms, namely
NRHybSur3dq8 [55]. It uses a combination of post-Newtonian and effective one-body
methods to hybridize the waveforms and produces the (5,5) mode and all modes with
l ≤ 4 except (4,0) and (4,1). It is 3-dimensional (using varying mass ratio and with
spins only in the z-direction) and it has been calibrated against waveforms up to mass
ratio q = 8. It is a time domain waveform (so it needs to be Fourier transformed for
parameter estimation) and the waveforms have a finite length. This finite length is
because the computational cost of post-Newtonian waveforms increases rapidly when
lowering the start frequency.

Effective one-body reduced order models

Contrary to post-Newtonian methods, the effective one-body formalism can be used
to describe all phases of the waveform. A model from the newest generation that
employs these methods is SEOBNRv4HM [54]. It uses the higher modes (3,3), (4,4),
(5,5) and (2,1) and it can be used to accurately produce complete waveforms, but its
computational cost is high.
Reduced-order Models (ROM) can be used to produce effective one-body waveforms
more efficiently. They have a lower order of accuracy (though the loss of accuracy is
very limited), but they are produced much faster.
Along with SEOBNRv4HM a ROM was also presented. This model is much more
efficient and it is produced in the frequency domain. It is named SEOBNRv4HM ROM
and unlike the original model it is fast enough to be practical for usage in parameter
estimation.

Phenomenological models

An entirely different strategy is the use of phenomenological models. These are models
that are made in the frequency domain using analytical expressions, which depend on
the parameters of the system. These expressions are found by making a phenomeno-
logical ansatz, which is then calibrated against numerical relativity waveforms. The
analytical expressions can be quickly evaluated and, again, because the waveforms are
already produced in the frequency domain they don’t need to be Fourier transformed
before using them in parameter estimation.
The used model IMRPhenomXHM [53] is an installment from the most recent gener-
ation and the previous generation IMRPhenomHM [52] has also been added for extra
reference. IMRPhenomHM was the first model for spinning black holes to include
higher modes of the multipole expansion (equation 2.25). Instead of just the dominant
(2,2) mode it also contains the higher (3,3), (4,4), (2,1), (3,2) and (4,3) modes. IM-
RPhenomXHM is from the new PhenomX family of phenomenological models, which
also contains the dominant mode-only PhenomXAS [56] and the precessing PhenomXP
(only (2,2)) and PhenomXPHM (higher modes) [57]. IMRPhenomXHM is an improved
version of IMRPhenomHM, so its performance is expected to be better.
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3.4.3 Higher modes

All models used here include higher modes. The relative importance of higher modes
changes with the inclination of the system, the total mass and the mass ratio, as de-
scribed in [48]. Equation 2.25, giving the gravitational wave as a multipole expansion,
is repeated here:

h+ − ih× =
∑
l≥2

l∑
m=−l

−2Ylm(θ, φ) hlm. (3.25)

The hlm modes do not have any angular dependence here. Instead, the angular de-
pendence is described by the spin-weighted spherical harmonics −2Ylm(θ, φ). Figure
3.4 shows the angular dependence of these functions. There is equatorial symmetry
between m > 0 and m < 0 and the part above/below the equator shows the functions
for positive/negative m. The h22 mode has the largest value and its spherical harmonic
is at its maximum for face-on systems, where most of the other spherical harmonics
are equal to zero. So the dominance of the (2,2) is especially large for face-on systems.
When the inclination changes the other modes become more important, as −2Y22 de-
creases and (most) other spherical harmonics increase. Thus the strength of different
modes strongly depends on the inclination of the system.
Another thing that influences the relative importance of modes is the total mass of
the system, as shall be confirmed in the results. This is not because of intrinsic prop-
erties of the wave, but because of detector sensitivity. As mentioned before the total
mass only sets a scale for waveforms; it doesn’t change its shape and so it doesn’t
change how the different modes are related. It does change the frequency emitted by
the system and because the detector sensitivity depends on frequency this means that
the detector can put extra emphasis on particular phases of the waveform. Since the
relative importance of the different modes changes with the different phases of the
waveform this means that higher modes might become more important when changing
the total mass of the system.
Finally for a symmetric system there will only be emission from the symmetric modes
(even m), so all modes with odd m will be zero. When mass ratio is changed (or to
a lesser extent, when asymmetry in spin is introduced) the symmetric modes cannot
describe the system completely anymore and modes with odd m will be necessary.
This effect becomes stronger as the asymmetry increases.
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Figure 3.4: The spin-weighted spherical harmonics −2Ylm for the most important
modes. Source: [48].
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Chapter 4
Einstein Telescope

The Einstein Telescope is a planned ground-based gravitational wave observatory,
that is planned to be constructed near Maastricht in the Netherlands or on the Italian
island Sardinia and it can be operational in the 2030s. Contrary to current ground-
based detectors it will have a triangular shape, which will allow it to effectively work
as three interferometers with 60◦ angles between the arms. This will make its antenna
pattern more isotropic than it is for L-shaped detectors, which have some blind or
weak directions in their patterns. The telescope will be built a few hundred meters
underground, which will reduce gravity gradient and seismic noise [25]. These are the
dominant noise sources at low frequencies so building in underground will improve
the lower frequency limit compared to current detectors. At 10 km the arms are also
significantly longer than current detectors, which will greatly increase its sensitivity.
Figure 4.1 shows an artist’s impression of what the ET will look like.

The sensitivity is further improved by using mirrors at cryogenic temperatures of about
20 K, which greatly reduces Brownian noise. The sensitivity curve is shown in figure
4.2, which also shows that the ET’s sensitivity is a lot better than those of LIGO and
Virgo.

4.1 Sources

The compact binary coalescences - the only source of detected gravitational waves so
far - that have been observed by LIGO and Virgo can be seen at a much higher SNR
by the ET, giving a lot of extra information about the physical nature of these events.
Furthermore, the ET could detect these events at a much larger distance as figure 4.3
shows. The extra sensitivity could also enable the ET to observe new types of sources
which have not yet been detected by LIGO or Virgo. The various sources discussed
here are those in the paper about the science case for the ET [25].
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Figure 4.1: Artist’s impression of the ET. Image courtesy of Nikhef
.

4.1.1 Black hole binaries

The ET will be capable of detecting the full population of stellar mass and intermediate
mass binary black hole coalescences in the Universe. Information about these events
will allow us to answer several questions about their nature. It will give us new data
about the earliest population of stars that is not accessible in any other way, which
will teach us new things about the history of star formation. Mergers at a smaller
distance can be measured at a very high SNR, which will help us to understand the
origin and evolution of these systems.
The ET could provide evidence for the existence of primordial black holes, which are
black holes that do not have a stellar origin. It is hypothesized that this type of black
hole might have formed in the early Universe, where some regions might have been
dense enough to undergo gravitational collapse and form a black hole. The ET is
expected to detect very large numbers of black hole mergers, which gives great pos-
sibilities for statistical analyses. Data on the correlation between star formation and
merger rates in the history of the Universe should allow us to disentangle contributions
from black holes of stellar origin and primordial origin. Also, the black hole mergers
are expected to be found in galaxies, while the distribution of primordial black holes
should be related to the distribution of dark matter. Locations of the mergers can
be compared to large scale structures in the Universe, which can then teach us about
the origin of the black holes. Showing that even a small portion of the black holes
has a primordial origin would be very interesting for both astronomy and fundamental
physics.
The origin of the supermassive black holes we observe in galactic centers are unknown.
There are several hypothesis about their origin and a population of their seeds is ex-
pected to exist somewhere in the mass range 102 - 105 M�. The ET should be able to
detect them in a mass range of 102 - 103 M�. If these will be detected or not will give
new information about the seeds.
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Figure 4.2: Sensitivity curve of the ET compared to several stages of LIGO and Virgo.
Image source: [24].

The ET could detect black hole binaries at redshifts z ≈ 10 − 20. This is before the
time where a star could have formed a black hole and thus it would necessarily mean
a non-stellar origin. With its frequency range the detector could also observe black
holes with sub-solar mass, which would also point to a non-stellar origin. Observing
even a single one of such black holes with a non-stellar origin is uncertain but it would
be very meaningful.

4.1.2 Neutron stars

The ET should be able to detect neutron star coalescences up to about z = 3 at a rate
of around 105 events per year. Because this also covers the peak star formation rate
at about z = 2 this means that the vast majority of neutron star binaries is within the
detectable range. The high frequency sensitivity of the ET makes it possible to get very
accurate measurements of the merger phase of these events. The internal structure
of neutron stars remains unknown and these mergers can help us understand them
better. This can also greatly help the theoretical field of quantum chromodynamics,
which studies the kind of fundamental physics that goes on in neutron stars.
Detecting these neutron star binaries is guaranteed, but there is also a possibility
that gravitational waves from a single neutron stars might be observed. If a neutron
star has any asymmetries around its rotational axis then they should emit gravitational
waves. Data from LIGO and Virgo is already begin used to search for these continuous
gravitational waves, but they have not been found yet. Detecting these can give
information about the inner structure, formation and evolution of neutron stars.
Besides the continuous waves there is also a chance of detecting transient burst signals
from single neutron stars. This could for example come from pulsar glitches, which
are small increases in the rotational frequency of a neutron star, which are thought to
be caused by interior structure changes. There are more transient events in neutron
stars, such as giant magnetar flares. Not much is known about the details of these
processes and the emission of detectable gravitational waves is uncertain.

34



Figure 4.3: Distance of detectable sources as a function of total mass for the ET,
Cosmic Explorer (another planned ground-based detector, with an L-shape and 40 km
arms) and Advanced LIGO. Image source: [26].

4.1.3 Tests of general relativity

The loudest mergers of neutron stars and black holes can be measured by the ET with
a very high SNR. This can provide new tests of general relativity. Comparing the
signals of these events to the waveforms that are expected can confirm (or perhaps
question) that these objects indeed behave as is predicted by general relativity.

4.1.4 New gravitational wave sources

Other possible sources are supernova explosions. These are not well modelled, which
it more challenging to find them, but it is expected that the ET should be able to
detect these events within the galactic neighbourhood. The event rate is such that
observing them seems realistic, but it is not guaranteed [25]. Similar to the cosmic
microwave background for electromagnetic radiation there could be a stochastic back-
ground of gravitational waves. The ET could detect this background which will give
new knowledge about the early Universe. Finally there is the possibility of detecting
entirely new, unexpected sources, as has happened many times before in astronomy
when a new window to observe the Universe was opened.

4.2 Noise sources and sensitivity

Over the years several different estimates have been made for the sensitivity curve of
the ET. The estimate that currently is in common usage by the community comes from
[29]. In that same paper this estimate is referred to as ET-D, whereas previous ones
are named ET-B [30] and ET-C [31]. ET-B was the first estimate and it was based on
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Figure 4.4: Noise budgets for the low frequency (left) and high frequency interferom-
eters of the ET. Source: [29].

a single interferometer in a frequency range of about 1 Hz to 10 kHz. A new estimate
took various more realistic technological aspects into account and was based on a new
type of design, which was called the xylophone-design. In the xylophone design the
detector is composed of two separate interferometer. One uses low laser power and
cryogenic mirrors, which makes it best suitable for the low frequencies. The other uses
high power and room-temperature mirrors. This channel is used for the high frequency
part of the spectrum. The resulting sensitivity curve was named ET-C. Further im-
provement on ET-C was made by adding new noise sources and making improvements
on the noise sources that were already included. This resulted in the ET-D sensitivity
curve which shall be used throughout this work.

The main noise sources in ET-D are seismic and gravity gradient noise, quantum
noise and thermal noise.

4.2.1 Seismic noise and gravity gradient noise

Seismic effects are the dominant noise sources at low frequencies. They cause noise
through two different processes. Seismic waves can move the suspension systems and
this is referred to as seismic noise. The seismic waves will also cause fluctuations in
density around the detector, which causes perturbations in the gravitational forces
acting on the systems. The noise caused by this is called gravity gradient noise. The
seismic noise can be reduced by using seismic isolation systems. The gravity gradient
noise can only be reduced by placing the detector in a more quiet environment, which
is why the ET is proposed to be built underground.

4.2.2 Quantum noise

The quantum noise is composed of photon shot noise at high frequencies and photon
radiation pressure at low frequencies. Shot noise is a consequence of the discrete nature
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Figure 4.5: Total noise from the different ET sensitivity studies. Source: [29].

of photons, which means that their arrivals can be described as a Poisson process and
are subject to its associated noise. Photon radiation pressure noise is noise that is
caused by the momentum of the photons coming from the laser, which causes slight
movement of the mirrors.
Now the shot noise can be reduced by increasing the laser power, whereas the photon
radiation pressure noise can be reduced by decreasing the laser power (and vice versa
of course). Since these two types of noise occur at the different ends of the frequency
spectrum this led to the idea of the xylophone-design of ET-C, which uses two different
interferometers. One of them uses cryogenic mirrors and low power and this one
probes the low frequencies, since it reduces the radiation pressure which occurs at
lower frequencies. The other uses room temperature mirrors and high power, which
reduces the shot noise and because of that this interferometer can be used for the
higher frequencies. The noise budgets for both interferometers can be seen in figure
4.4.

4.2.3 Thermal noise

Brownian motion causes noise, because of movement of the test mass itself and of its
suspension. At high frequencies the noise does not play a significant role, but at 1 Hz
to 10 Hz it is significant, with suspension noise being the main contributor. It can be
significantly reduced by using a cryogenic mirror, as is already being done at KAGRA
and this will also be used in the low frequency channel (for the higher frequencies it’s
not necessary because the thermal noise is less important there) of the ET. Even with
the cryogenic mirrors the thermal noise is still important as can be seen in figure 4.4.

Finally figure 4.5 shows the total noise budgets for different studies of the ET sen-
sitivity.
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Chapter 5
LISA

All gravitational waves that have been observed to date have been detected using
ground-based interferometers. The observatories used that have been used in detec-
tions so far are Virgo and the two sites of LIGO. The recently completed KAGRA
interferometer in Japan is expected to join this list in the near future. These kind
of detectors are designed to observe in the range of about 10 Hz to a few kHz [5],
where the lower limit is caused by terrestrial gravity noise. There are some concepts
for terrestrial detectors in the range 0.1 Hz-10 Hz, but these still face many technical
challenges to overcome [6].

The only way of opening the frequency window of about 10−4 to 1 Hz seems to be a
space-based interferometer, where the terrestrial gravity noise will of course play no
role. There are many interesting sources in this frequency range (discussed in sec-
tion 5.1), and so there are various projects for an observatory in space. The Laser
Interferometer Space Antenna (LISA) is planned to be launched in 2034 was the first
gravitational wave detector to be proposed [7]. It is an interferometer with 2.5 million
km arms, with sensitivity in the frequency range of below 10−4 Hz till about 1 Hz.
There are some other projects that aim for a launch in the 2030s, though LISA is in
the most advanced stage. Examples of other projects are the Chinese Taiji [7], which
is similar to LISA at an arm length of about 3 million km, the also Chinese TianQin
[9], which will explore about the same frequency range at arm lengths of 105 km, and
the Japanese DECIGO [8], which will fill in the gap between ground- and other space-
based detectors by probing the frequency range between 0.1 Hz and 10 Hz, using arms
of 100 km.

LISA will be a constellation of three spacecraft in an equilateral triangle with sides
of 2.5 million km. It will trail the orbit of the Earth around the sun by about 20◦,
with an inclination of 60◦ to the ecliptic plane, as seen in figure 5.1.

The goal of LISA is to measure changes in the distance between the spacecraft that
are caused by gravitational waves, so it is important to avoid any accelerations caused
by other effects such as solar wind. To do this LISA will use so-called drag-free space-
craft, which consist of an outer spacecraft and a test mass which flies freely inside of
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Figure 5.1: Depiction of LISA orbit. Source: [2].

it. The aim is to have the test mass follow a geodesic path (only affected by gravity).
The outer spacecraft will float around it and it will be influenced by other forces such
as solar wind, which will cause it to move relative to the test mass. This relative
motion is monitored and the outer spacecraft will use thrusters to adjust its position
if necessary, so that the test mass can continue its geodesic path.

The techniques used to keep the test mass drag-free and several other technologies
used in LISA where tested with the LISA pathfinder mission. The LISA pathfinder
was a spacecraft that was launched in 2015. It uses instruments that are similar to
those used by LISA, but it uses a 38 cm arm [10], with two test masses inside a single
spacecraft, instead of the 2.5 million km arms of LISA. The relative motion, caused by
unwanted accelerations, of the test masses was measured during the operational part
of the mission, which lasted from March 1, 2016 until June 30, 2017 [11]. Many tech-
nologies used in LISA could be tested in this way and the results of the mission were
far better than the requirements, meaning the LISA mission is feasible [11]. Results
can be seen in figure 5.2.

In 2017, after the first detection and when it was clear that LISA Pathfinder had
met its requirements, the current LISA proposal [2] was accepted.

5.1 Sources

LISA will open up a new frequency window in gravitational wave astronomy. Many
interesting sources to which ground-based observatories are not sensitive can be de-
tected by LISA. This section gives an overview of these sources as described in the
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Figure 5.2: Results of the LISA Pathfinder mission. The blue line is the amplitude
spectral density of the noise measured by LISA Pathfinder in April 2016 [12], the red
line is the noise measured in February 2017. The results in 2017 are better because of
residual gas being vented into space and better understanding of other noise sources
[11]. The image also shows the mission requirements, which were far exceeded. Image
source: [11].

LISA proposal [2]. Figure 5.3 shows an overview of the predicted signals from some of
these sources.

5.1.1 Galactic binaries

A large fraction of stars in the galaxy are part of a binary system, in which relatively
close stars orbit around their center of mass. Binary systems of dense, compact compo-
nents (white dwarfs, neutron stars and stellar mass black holes) can interact strongly
enough to emit gravitational waves that can be detected by LISA. The frequency of
the gravitational waves emitted are twice the orbital frequency of the system. Systems
that are more massive and with a smaller separation will thus have a lower frequency
and will be louder as measured by LISA. Some systems that should be detectable for
LISA have already been discovered through electromagnetic radiation ; these are called
verification binaries. At least around 15 have already been discovered that should have
a good SNR for a four year LISA mission [13], and this number could still increase
before LISA’s launch. Some of them are also shown in figure 5.3.

The number of low frequency binaries is actually expected to be so high that indi-
vidual systems cannot be resolved and can be considered as a noise source. These can
also be seen in figure 5.3. It is estimated that LISA can resolve approximately 25.000
individual binaries [2], which will give a lot of new knowledge about the mass, spatial
and period distributions of these systems.

5.1.2 Massive black holes

Many large galaxies have a massive black hole in their centre with masses ranging
from about 105 M� up to 109 M�. The formation process of these black holes is still
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Figure 5.3: LISA sensitivity curve compared with several sources as described in sec-
tion 5.1. Source: [2].

unknown. Several possibilities for their seeds are presented in [14]. It discusses three
categories for the seeds: light seeds formed in the very young Universe (MBH ≈ 100−
600 M�, z ≈ 20−50), intermediate seeds at a later time (MBH ≈ 103 M�, z ≈ 10−15
or heavy seeds, formed later again MBH ≈ 104 − 106 M�, z ≈ 5 − 10. All growing
through different physical processes, involving accretion and mergers. Gravitational
waves give information about mass, distance and spin of the black holes involved. The
spin is influenced in different ways by mergers and accretion so this will give some
information about the growing process. Combined with the mass and distance LISA
should be able to teach us a lot about the origin of massive black holes.
Figure 5.4 shows the SNRs for different parameters of black hole mergers, along with
some points showing mission requirements from the LISA proposal [2]. Several of these
requirements are related to massive black hole mergers. The point marked MR2.1 in
the figure is related to the objective to be able to detect mergers for masses between
the scale of 103 M� and 105 M�, with redshift z ≈ 10− 15. The measurement of mass
and luminosity distance needs to have a fractional error of about 20% to be able to
distinguish between different models of massive black hole formation.
MR2.2 concerns the study of the growth mechanism of massive black holes since the
time of the earliest quasars (extremely luminous objects, consisting of a massive black
hole with an accretion disk at the center of a galaxy). The strongest requirement set
for the LISA mission to study these objects is to be able to accurately (error better
than 0.1 for the dimensionless spin) measure the spin of the largest black hole of a
system of total mass 105 M�, mass ratio of q = 0.2 at a distance of z = 3. To measure
this a large SNR of about 200 is necessary.
Another goal of LISA is to allow the observation of electromagnetic counterparts of a
massive black hole merger. The requirement set for this is shown by the point MR2.3
and concerns mergers of massive black holes similar to the one in the Milky-Way, at
about 106 M� to 107 M�, at the epoch of highest star formation at z ≈ 2. The SNR
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Figure 5.4: SNR for black hole mergers of different mass and distance. The x-axis
shows total mass, with a mass ratio of q = 0.2. The image is taken from the LISA
proposal [2] and also shows some points related to LISA mission requirements. The
points shown are discussed in section 5.1.

required is very high because a very precise sky location is necessary to properly
conduct the electromagnetic follow-up observation.
MR2.4 is about testing the existence of intermediate mass black holes, which have a
mass in the range of 102 M� to 105 M�, between the range of black holes of stellar
origin and the supermassive black holes that we have seen in the centres of galaxies.
Recently the first direct detection of such an object was made [62], on the lower end
of spectrum at about M = 150 M�. The existence of intermediate mass black holes in
the rest of the mass range is still debated and so far there are only candidates through
indirect observation [15]. Point MR2.4 consists of two parts, MR2.4a concerns the
detection of nearly equal massive mergers at a total source-frame mass of about 600
M� to 104M� at z < 1, measuring the component masses at a 30% accuracy, requiring
a SNR of about 20. The second requirement, MR2.4b is about detecting a merger of
total source-frame mass 104 M� to 106 M�, of which the lighter has an intermediate
mass, at z < 3. The aim is to measure the component masses at an accuracy of 10%,
which will again require a signal to noise ratio of 20.

5.1.3 Extreme mass ratio inspirals

An extreme mass ratio inspiral (EMRI) is a merger of a massive black hole (about 105

M� to 106 M�) at a galaxy centre with a stellar mass (a few tens M�). These events
can give a lot of interesting information, as discussed in [16]. EMRIs can be used to
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test general relativity in the strong field. The light object can be seen as a test-body
in the space-time created by the more massive object. By analysing the gravitational
waves emitted one can test whether this massive object is indeed a Kerr black hole
acting as predicted by general relativity.

The gravitational waves emitted by an EMRI can contain a lot of information about
the parameters of the massive black hole that would be very difficult to obtain oth-
erwise. These parameters can give new astrophysical information. The spin of the
massive black hole would, for example, give new knowledge about its formation. High
spin could indicate an origin in a gas accretion disc, low spin could mean a sequence
of mergers with lighter objects coming from random directions.

5.1.4 Stellar Origin Black Holes

Stellar Origin Black Hole (SOBH) inspirals are expected to be the first sources for
multi-band gravitational wave astronomy. The observation rate of SOBHs from ground-
based detectors indicates that we could observe up to a few hundred of these events
during the LISA lifetime [17]. Some of these will enter the LIGO band several weeks
later. LISA could thus predict the mergers a few weeks in advance and could determine
the time and location with uncertainties below 10 s and 1 deg2. This allows the point-
ing of telescopes at the event, so that it could be observed both through gravitational
waves with ground-based detectors and through electromagnetic waves.

5.1.5 Nature of gravity and black holes

Massive black hole binaries and EMRIs with a very high SNR can be used to study
general relativity in the strong field regime. The waveform of a massive black hole
binary can be used to study if they indeed behave as predicted by general relativity.
Sensitivity requirements for studying this are shown as MR5.1 in figure 5.4.
Waves from EMRIs with high SNR can be used to study the multipolar structure
of MBHs. It should be possible for LISA to get very accurate measurements of the
parameters of EMRIs which can be used to study the deviation from a Kerr black hole
quadrupole moment. LISA can also test the presence of dipole radiation, which would
be beyond general relativity.
Propagation properties of gravitational waves can be inferred from EMRIS and MB-
HBs. These can be used to study the dispersion relation of gravitational waves, to find
an upper limit for the mass of the graviton (the hypothesized quantum of the gravi-
tational field, like the photon is for the electromagnetic field) and possible violations
of Lorentz invariance.
Measurements of MBHBs can be used to constrain masses of certain particles or fields
predicted by dark matter models. The inspiral of a solar mass object into an interme-
diate mass black hole (mass below a few M� can be investigated to analyse possible
deviations that are caused by the presence of dark matter.
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5.1.6 Measure the rate of expansion of the Universe

Gravitational waves can be used to measure the value of the Hubble parameter. Stan-
dard sirens, objects for which the absolute distance can be known from the strength
of the gravitational wave signal (similar to the so-called standard candles in electro-
magnetic astronomy) be used for this. The redshift may be measured through an
electromagnetic counterpart, as in GW170817 [19], but may also be determined from
gravitational wave data only [18].

5.1.7 Stochastic gravitational wave background

There are two types of stochastic gravitational wave background radiation. The first
comes from compact binaries, which are expected to be very numerous. LISA aims
to characterise the spectrum of this stochastic background. Then there is also back-
ground radiation from the very early Universe, analogous to the cosmic microwave
background of electromagnetic radiation. The gravitational wave background will al-
low us to look even further back however, since the Universe only became transparent
to electromagnetic radiation after about 400.000 years. Looking back further than that
will be very valuable for testing competing theoretical models of fundamental physics
and cosmology.

5.1.8 Gravitational wave bursts and unforeseen sources

LISA will open up a new window to the Universe and there might be new, perhaps
unexpected sources to discover. A potential new discovery would be the cosmic string.
Cosmic strings are predicted by various theories of the early Universe. Cusps and
kinks in these objects could create gravitational wave bursts, which LISA might be
able to detect [20]. This would be of large importance to theoretical physics. Various
other unexpected or perhaps even completely unknown sources could be detected.

5.2 Time Delay Interferometery

Ground-based interferometers like LIGO and VIRGO have arms that are of very pre-
cisely equal length. This allows them to measure with a precision far higher than
frequency noise in the laser would normally allow them to. This is because the fre-
quency noise is exactly the same in both arms and the noise cancels out. For LISA
however the arm lengths only stay equal to about 1% and this noise will no longer
be automatically cancelled. This noise is much larger than all other noise sources and
would completely overwhelm the signal if not cancelled somehow.
Fortunately the noise can still be removed through some particular linear combinations
of time-shifted Doppler observables in a procedure called Time-Delay-Interferometry
(TDI), first introduced in [21]. The three LISA spacecraft are numbered 1,2 and 3 and
then the Doppler observable is denoted as ysr, with s for sending and r for receiving.
The expression for ysr was first derived in [58] and can be written as

ysr =
1

2

nl ⊗ nl
1− k · nl

: [H(t− L− k · ps)−H(t− k · pr] . (5.1)
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Here nl is the unit vector pointing from the sending to the receiving spacecraft, k is the
wave propagation vector and pr, ps are the position vectors of the spacecraft. A : B
denotes AijBij. So y31 is the observable from the laser that was sent from spacecraft
3 to spacecraft 1. For time-delayed observables the notation is ysr,nL = ysr(t − nL),
where L is the distance between spacecraft, so it is delayed by the travel time between
two spacecraft (with c = 1).
The laser frequency noise at spacecraft i is denoted as Ci(t). For the observable ysr
the laser noise from the sending spacecraft will be measured a time L later, whereas
the noise from the receiving spacecraft will be immediately registered. So the noise
for ysr is equal to

ylasersr = Cs(t− L)− Cr(t). (5.2)

So the total signal will be equal a combination of the gravitational wave signal, the
laser noise and other noise sources:

ysr(t) = yGWsr (t) + ylasersr + yothersr . (5.3)

Now a combination is sought that eliminates the laser noise while keeping the gravi-
tational wave signal. There are many possibilities for achieving this. In this case the
observables X,Y and Z as in [21] are used:

X = y31 + y13,L + (y21 + y12,L),2L − (y21 + y12,L)− (y31 + y13,L),2L, (5.4)

where Y and Z can be obtained by cyclic permutation 1→ 2→ 3→ 1. These are the
so-called first generation TDI observables and they assume a rigid LISA constellation.
Refinements have been made in further TDI generations, which only marginally affect
the response to gravitational waves and they shall not be used here. In this case, using
equations 5.2 and 5.4, the laser noise for X is explicitly equal to

X laser = C3(t− L)− C1(t)

+C1(t− 2L)− C3(t− L)

+C2(t− 3L)− C1(t− 2L)

+C1(t− 4L)− C2(t− 3L)

−C2(t− L) + C1(t)

−C1(t− 2L) + C2(t− L)

−C3(t− 3L) + C1(t− 2L)

−C1(t− 4L) + C3(t− 3L)

= 0.

A linear combination of X, Y and Z will still cancel the laser noise. As derived in
[22], optimal sensitivity to gravitational waves is acquired by the combinations
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A =
1√
2

(Z −X), (5.5)

E =
1√
6

(X − 2Y + Z), (5.6)

T =
1√
3

(X + Y + Z). (5.7)

Which shall be used in next section for the LISA response.

5.3 LISA response

When computing the detector response for a compact binary coalescence, there are
several difficulties for the case of LISA when compared to ground-based detectors.
The signals of LISA will last a lot longer (up to years), so its orientation will change
significantly over this time. Also, LISA will be able to measure wavelengths that are
shorter than its arm length, which gives some additional challenges when compared to
ground-based detectors (for which the arm lengths are much shorter than the measured
wavelengths). This discussion of expressions for the LISA response largely follows [4].

First some formalism is introduced. The equation for the multipole expansion (equa-
tion 2.25) is repeated here again:

h+ − ih× =
∑
l≥2

l∑
m=−l

−2Ylm(θ, φ) hlm. (5.8)

This equation can be split into the real and imaginary parts:

h+ =
1

2

∑
l≥2

l∑
m=−l

−2Ylm(θ, φ) hlm +−2 Y
∗
lm(θ, φ) h∗lm, (5.9)

h× =
1

2

∑
l≥2

l∑
m=−l

−2Ylm(θ, φ) hlm −−2 Y ∗lm(θ, φ) h∗lm. (5.10)

This allows h+,× to be written in the Fourier domain as

h̃+,× =
∑
l≥2

∑
m>0

K+,×
lm h̃lm, (5.11)

where

K+
lm =

1

2

(
−2Ylm(θ, φ) + (−1)l−2Y

∗
l,−m(θ, φ)

)
, (5.12)

K×lm =
1

2

(
−2Ylm(θ, φ)− (−1)l−2Y

∗
l,−m(θ, φ)

)
. (5.13)
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Here the following symmetry relation for the non-precessing case (which is studied in
this work) is used:

hl,−m = (−1)lh∗lm. (5.14)

Using the notation
Plm = P+K

+
lmf + P×K

×
lm, (5.15)

where P+,× are the polarization tensors. In matrix form P+ is equal to the diagonal ma-
trix with entries {0, 1,−1, 0} and P× the anti-diagonal matrix with entries {0, 1, 1, 0}.
The complete signal can now be written as

H =
∑
l≥2

∑
m>0

Plmhlm. (5.16)

The response to a gravitational wave (equation 5.1) can be split into response for the
individual modes, with a transfer function for each term. In the Fourier domain this
can be written as

ỹsr =
∑
l≥2

l∑
m=−l

T lmsr (f)h̃lm. (5.17)

This formalism was used in [59] and the transfer function is, in leading order of ap-
proximation, equal to:

T lmsr (f) = Glm
sr (f, tlmf ), (5.18)

where

Glm
sr (f, tlmf ) =

iπfL

2
sinc(πfL(1− k · nl)) exp(iπf(L+ k · (pr + ps)) nl · Plm · nl, (5.19)

Plm is defined as in equation 5.15 and

tlmf = − 1

2π

dΨlm

df
, (5.20)

with Ψlm being the phase of hlm.

The time-delay interferometry observables as defined in equations 5.5, 5.6 and 5.7
can, in the Fourier domain, be written as

ã = (1 + z)(ỹ31 + ỹ13)− ỹ23 − zỹ32 − ỹ21 − zỹ12, (5.21)

ẽ =
1√
3

[(1− z)(ỹ13 − ỹ31) + (2 + z)(ỹ12 − ỹ32 + (1 + 2z)(ỹ21 − ỹ23)] , (5.22)

t̃ =

√
2√
3

[ỹ21 − ỹ12 + ỹ32 − ỹ23 + ỹ13 − ỹ31] . (5.23)
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Here a factor z is used for a time delay L, i.e. z ≡ exp 2iπfL. The variables have been
rescaled according to

ã, ẽ =
exp(−2iπfL)

i
√

2 sin(2πfL)
× Ã, Ẽ, (5.24)

t̃ =
exp(−3iπfL)

2
√

2 sin(πfL) sin(2πfL)
× T̃ . (5.25)

The PSDs for these channels can be written as

San = Sen = 2(3 + 2 cos(2πfL) + cos(4πfL))Spm(f) + (2 + cos(2πfL))Sop(f), (5.26)

Stn = 4 sin2(2πfL)Spm(f) + SOP (f). (5.27)

Finally a strain-like noise PSD for these TDI observables is defined as

Sa,e,th (f) =
Sa,e,tn (f)

(6πfL)2
. (5.28)

This was done assuming a rigid constellation and perfect noise cancellation. Some local
differences in sensitivity are expected for a more realistic model. A further assumption
is to use the low-frequency limit, where the wavelength is much smaller than the arm
length. This means that the delay z ≈ 1 and since the travel time of a wave along a
link no longer needs to be considered there will be link reversal symmetry: yij = yji.
Plugging this into equations 5.21, 5.22 and 5.23 yields

ã ≈ 4ỹ31 − 2ỹ23 − 2ỹ12, (5.29)

ẽ ≈ 2
√

3[ỹ12 − ỹ23], (5.30)

t̃ ≈ 0, (5.31)

So t̃ doesn’t have to be considered in this case and in equation 5.28 only the cases for
ã and ẽ need to be taken into account.

Using this treatment with the assumptions that were mentioned LISA can be treated
as two LIGO-type detectors that are rotated by π/4. The response to ha,e is then
similar to the LIGO response to h+,×, but using the effective PSD from equation 5.28.
The approximations mean that it can only be used for frequency up to about 10−2 Hz.
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Part II

Results
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Chapter 6
Comparison of inspiral, merger and
ringdown sensitivities

Different detectors have different sensitivity curves and thus they may emphasize dif-
ferent parts of the waveform. Figure 6.1 shows the sensitivity curves for the detectors
used in this work and waveforms of some systems with a typical mass they could
detect (IMRPhenomXHM, (2,2) mode waveforms). One detector might have a rela-
tively better sensitivity in the frequency range where, for example, the merger occurs.
To make a comparison between the detectors a procedure called whitening is used.
Furthermore, LISA operates in a different frequency and mass range, so to make a
comparison between LISA and the ground-based detectors one will have to use some
kind of scaling factor. The choice was made to use the ratio between the characteristic
frequencies (the frequency where the noise PSD is at its minimum) of aLIGO and
LISA as the scaling factor, giving a value of 3.1 × 104. It is emphasized that this is
somewhat arbitrary so the scaled masses cannot be strictly considered as equivalents.

6.1 Whitening

Parts of the waveform where a detector has good sensitivity will be emphasized by
that detector. To see what a certain waveform would look like (in terms of SNR) for a
given detector one can divide, in the frequency domain, the strain of the waveform by
the strain of the detector, which is the square root of the PSD. The whitened waveform
W(f) for the polarizations h+,× can be expressed as

W(f) =
h+,×(f)√
Sn(f)

, (6.1)

where Sn(f) is the PSD (equation 5.28 is used for the case of LISA). So the waveform
will be weighted at each frequency according to how good the sensitivity is at that
frequency. The resulting weighted waveform will then be in units of SNR/Hz, so that
integrating it over all frequencies yields the total SNR. The image on the left in figure
6.2 shows IMRPhenomXHM (2,2) mode waveforms, one whitened with aLIGO sen-
sitivity and one whitened with LISA sensitivity, using the scaling factor of 3.1 × 104
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Figure 6.1: Sensitivity curves, also showing waveforms for typical detectable mass.

to convert between aLIGO and LISA. It shows, for example, that for LISA the lower
frequencies are reduced more by the whitening, meaning that for LISA the lower fre-
quencies, i.e. the inspiral, are less important than they are for LIGO.

This can also be seen in the time domain plots (image on the right in figure 6.2), where
the inspiral is clearly more prominent for LIGO than it is for LISA. This of course also
means that the merger and ringdown are more important for LISA than they are for
LIGO. This relative importance will vary with the parameters for the waveform.

6.2 Inspiral, merger and ringdown

The first phase of a binary coalescence is the inspiral, which starts at a large sepa-
ration where the system is slowly losing energy through gravitational radiation. This
gradually reduces the separation, so that the binary constituents are spiraling towards
each other. The merger is usually said to begin around the time of the innermost
stable circular orbit, i.e. the last fully completed orbit. In the merger the black holes
plummet into each other. Once they start to overlap the resulting single black hole
will finally stabilize in what’s called the ringdown.
To compare how much of the total SNR is contained in each of these phases they will
have to be distinguished somehow. There are various ways to do this. In this case the
transition from merger to ringdown is taken to occur when the waveform is at its peak
amplitude. As mentioned before a change in mass does not change the shape of the
waveform but only its scale. The time for a waveform can be rescaled to express it in
units of mass. This makes it mass independent and this conversion can be made by
using

t(M) =
t(s)c3

GMtot

, (6.2)
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Figure 6.2: Waveform whitened for LIGO (Mtot = 100 M�) and LISA (Mtot = 3.01×106

M�), showing the frequency domain (left) and the time domain.

where G is the gravitational constant. The inspiral is then taken to occur a time
150 M before the end of the merger. This is a simple, uniform way of distinguishing
between inspiral, merger and ringdown. It can be used to give a good impression of
how different detectors emphasize different parts of the waveform and how this varies
with the mass and spins.

6.3 Results

The results have been produced for three different spin combinations. The spins are
taken to be aligned and in the z-direction. The first case is spinless: χ1

z = χ2
z = 0. Then

large aligned spins are taken at χ1
z = χ2

z = 0.9 and finally large antiparallel spins with
χ1
z = 0.9 and χ2

z = −0.9. Aligned spins cause repulsion between the masses, increasing
the duration of the inspiral, whereas antiparallel spins cause additional attraction,
making the inspiral shorter but stronger.

Spinless

Figure 6.3 shows the SNR ratio of inspiral/merger for different modes and varying
mass for the spinless case. This ratio is at its maximum for the low masses for each
detector, which could be expected because the inspiral will cover (almost) the entire
range of frequencies where the detector has good sensitivity. As the mass is increased
the frequencies of the waveform are reduced, so the inspiral phase becomes shorter,
whereas the merger moves towards better sensitivities. This causes the ratio between
inspiral and merger to decrease. The difference between LIGO and LISA stays within

one order of magnitude as the ratio decreases, but for LISA the ratio is generally
smaller (though it should be noted that this comparison depends on the choice for
the scaling factor between LISA and ground-based detectors). The ratio for the ET
mostly stays around an order of magnitude larger than the others. For the ET the
frequency range with relatively good sensitivity is wider than for the other detectors.
The inspiral covers a wide frequency range and so the ET will, for a larger range of
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masses, get more of its SNR from the inspiral when compared to the other detectors.
For some of the modes we can see that ratios sweep up a bit again for the highest
masses. This is most pronounced for the (2,1) and (3,2) modes. These modes have a
more complicated structure and, especially when the inspiral is very short, some small
movement of the peak can have a large effect on the inspiral/merger ratio.

Figure 6.4 shows the SNR ratios between the merger and ringdown phases of the
waveform. For LISA and LIGO we can see steadily (albeit a bit noisy at the at the
lowest masses) decreasing curves again. In figure 6.3 the ratio also decreases with
increasing mass. Some similarities could have been expected since the inspiral, merger
and ringdown phase radiate, in that order, at increasing frequency. For the ET the
curves in figure 6.4 look a bit more complicated. The ET sensitivity curve has more
structure than the others and since the merger and ringdown only cover a small fre-
quency range this structure gives some clearly visible effects.
This just showed the relative importance of the different phases, but the absolute
values of the SNR also vary significantly with the mass and modes.

This can be seen in figure 6.5. It shows the detection horizon, which is the maximum
distance at which the source can be detected when requiring a minimum SNR of 8
to confirm this detection. The image makes it clear that LISA and the ET cover the
entire observable Universe (with a radius of about 14 Gpc) at high SNR for most of
their frequency range. To compare the order of magnitude for each mode, the choice
was made to show the distance for each mode at the optimal inclination corresponding
to this mode, with the exception of the (2,2) mode, which is shown at both the optimal
(face-on) and worst (edge-on) inclination. This image would thus be different for a
specific inclination; each mode will be multiplied by a constant corresponding to the
spherical harmonic for the inclination. For all detectors the face-on (2,2) mode clearly
dominates, but when taking it edge-on it can become more comparable, or even smaller,
than the (3,3) mode at ideal inclination. The curves look very similar for each of the
detectors, when taking into account that the LISA range is a lot wider compared to
the width of the peak.
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Figure 6.3: SNR ratios of inspiral/merger for spinless case.



Figure 6.4: SNR ratios of merger/ringdown for spinless case.



Figure 6.5: Detection horizons for spinless case, assuming a minimum SNR of 8.

Large aligned spins

Figures 6.7, 6.8 and 6.9 show the same results for χ1
z = χ2

z = 0.9. The inspiral/merger
plots look very similar between both spin cases, but for the merger and ringdown some
differences can be seen. The ET curve looks significantly noisier for the (2,2), (3,3)
and (4,4) modes. In various cases the curves also make a visible jump. The waveform
model is not expected to be as accurate for large spin and higher modes. Artifacts
from the Fourier transform can also cause problems. Figure 6.6 shows a time series of
the ET around the mass where a jump occurs. As explained before, the end of merger
is taken to be at the highest peak in amplitude. Two separate peaks can be seen, with
the first being slightly higher. The jump occurs when the second peak becomes bigger
and a substantial part of the SNR switches from ringdown to merger. The jump and
noise are not too large compared to the absolute values and this plot can still give a
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Figure 6.6: Time series for h+ (left) and amplitude for the ET. Spins χ1
z = χ2

z = 0.9,
mode (4,4) and M= 130 M�.

good impression of how this ratio evolves with changing mass.
The plot with horizon distances, figure 6.9, looks largely similar. The SNRs/distances
have increased and the (3,2) mode has also become relatively more important.
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Figure 6.7: SNR ratios of inspiral/merger for large aligned spins.



Figure 6.8: SNR ratios of merger/ringdown large aligned spins.



Figure 6.9: Detection horizons for large aligned spins.

Large antiparallel spins

Figures 6.10, 6.11 and 6.12 give the results for large antiparallel spins (χ1
z = 0.9 and

χ2
z = −0.9). Again very little difference can be seen for the inspiral/merger plots. The

merger/ringdown ratios also look more or less the same as for the spinless case, but a
jump occurs again for the (4,4) modes for the ground-based detectors. For the SNRs
and distances the most significant difference is again that the (3,2) mode is a lot more
prominent, as was seen for aligned spins.

These ratios don’t seem to depend very strongly on the spin. A notable difference
is that the merger/ringdown ratios look a lot noisier for the cases with spin. A pos-
sible explanation could be that the quality of the waveforms is not at its best for the
higher modes at large spin.
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Figure 6.10: SNR ratios of inspiral/merger for large antiparallel spins.



Figure 6.11: SNR ratios of merger/ringdown for large antiparallel spins.



Figure 6.12: Detection horizons for large antiparallel spins.
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Chapter 7
Model comparison

A comparison is now made of the performance of the waveform models that were
described in section 3.4. To see how they perform across the parameter space, one
can vary the parameters and how similar the resulting waveforms are, which can be
quantified by the overlap (equation 3.13). Instead of the overlap the mismatch M is
used here, which is related to the overlap O(θ) for parameters θ as

M(θ) = 1−O(θ) = 1− (h1(θ)|h2(θ))√
(h1(θ)|h1(θ))(h2(θ))|h2(θ))

, (7.1)

where h1,2(θ) denote the strains of the models that are being compared. This means
the mismatch can have a value between 0 and 1, where a value close to 0 signifies good
agreement between the waveforms. When the SNR is low enough, a small difference
between models doesn’t have to be a problem when the difference is small compared
to the noise. When increasing the SNR the difference between the waveforms will
become significant at some point. The range the models are indistinguishable can be
approximated by [61]

M <
D

ρ2
, (7.2)

where M is the mismatch, D the number of parameters describing the system and ρ
the SNR.

Figure 7.1 shows a grid that demonstrates how the mismatch varies with changing spin
for LIGO. These mismatches have been converted to the maximum SNR at which the
waveforms are indistinguishable by using equation 7.2. This makes it clear that the
mismatch heavily depends on the spin and that the results are very different for differ-
ent sets of models. Unfortunately this kind of plots cannot be used to comprehensively
describe the performance of the different models. A problem is that the parameter
space is very large; the mass ratio, total mass, spins and inclination can be varied for
each of the modes, for each set of waveform models and for each detector. In order to
be able to give a good impression of the model performance across the full parameter
space a stochastic exploration is used.
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Figure 7.1: Grid of maximum SNR satisfying the indistinguishability criterion (equation 7.2)
for varying spins. It shows the (2,2) mode for LIGO, using mass ratio q = 2 and total mass M
= 100 M�.



7.1 Monte Carlo simulation

A Monte Carlo simulation is used to explore the parameter space. Random points are
sampled from the parameter space and for each of these a mismatch is computed.

In the simulation the mass ratio q is randomly select from a uniform distribution
between 1 and 8. The spins are selected from a uniform distribution between -0.8 and
0.8 and finally the orientation is also randomly selected, with every orientation having
equal probability. A histogram of the mismatches is made for each combination of the
four models and for each of the detectors. For the ground-based detectors this is done
separately for three different masses: 15 M�, 80 M� and 400 M�. For LISA the same
scale factor as in the previous chapter is used (3.1 × 104), but the smallest mass is
omitted because this falls outside the range of LISA where the approximations apply.
This means that the used masses for LISA are 2.5 × 106 M� and 1.2 × 107 M�. For
each of the models all of the available modes are used. A set of 2000 samples was used
for each combination of mass, detector and set of models.

7.2 Results

A histogram was made for the logarithm of the mismatches and these are shown in
figures 7.2, 7.3 and 7.4. It can be seen that the mismatches cover a large range of
magnitudes, with the logarithms varying from -0.5 to about -5.

The histograms in figure 7.2 compare IMRPhenomXHM and IMRPhenomHM to NRHyb-
Sur3dq8. It shows that the matches typically become better with decreasing mass.
The differences between the ET and LIGO are quite small. For LISA the smaller mass
looks more or less similar to the others, but for the larger mass the mismatches are
not quite as good. The results for IMRPhenomXHM are clearly better than those for
IMRPhenomHM, as was to be expected.
Figure 7.3 again shows mismatches for IMRPhenomXHM and IMRPhenomHM, this
time against SEOBNRv4HM ROM. It can be seen again that the matches become a
bit worse as the mass increases, though not as clearly as in figure 7.2. The results for
LISA are again similar for the medium mass, but clearly worse for the largest mass.
Overall the results for NRHybSur3dq8 were a bit better, though one also has to con-
sider that the frequency range is a bit shorter for NRHybSur3dq8.

Finally the phenomenological models are compared to each other in figure 7.4, which
also shows mismatches between SEOBNRv4HM ROM and NRHybSur3dq8. For the
phenomenological models we can see again that the matches get better as the mass
decreases. The ET and LIGO look largely similar, except for the results for the small
mass, which has a wider distribution for the ET. LISA results are worse again, mostly
for the large mass.
Comparing NRHybSur3dq8 to SEOBNRv4HM ROM shows smaller dependence on
the mass for the ET and LIGO. For LISA we see again that the performance is not as
good for the large mass, but this time the medium mass actually shows better matches.

Overall the best matches were seen between IMRPhenomXHM and NRHybSur3dq8,
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but as mentioned before there are more things to consider, such as the smaller length
of NRHybSur3dq8. It can be confirmed that IMRPhenomXHM gives better results
than its predecessor IMRPhenomHM. In many cases the matches are better for the
lower masses, where the inspiral is more pronounced, as concluded in chapter 6. The
ET and LIGO showed largely similar behaviour, whereas the performance for LISA
was generally not as good. The large mass for LISA showed the worst results overall.
It needs to be repeated that this does depend on the choice for the scaling factor for
LISA. When using the full LISA response the range can be extended to lower masses
and the other results suggest that this might lead to better matches for LISA.
Since LISA will have SNRs of up to a few 1000 the current waveform models will lead
to significant systematic errors in parameter estimation. Even an SNR of 100 will
already require a mismatch of roughly 10−4 (only very few mismatches were found to
be this small) to avoid systematic errors according to the approximation of equation
7.2. The same conclusion can be drawn with regard to the ET, for which the SNR can
also be over 100 [25].
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Figure 7.2: Mismatches for IMRPhenomXHM and IMRPhenomHM against NRHybSur3dq8.



Figure 7.3: Mismatches for IMRPhenomXHM and IMRPhenomHM against SEOBNRv4HM ROM.



Figure 7.4: Mismatches for IMRPhenomXHM vs IMRPhenomHM and SEOBNRv4HM ROM vs NRHyb-
Sur3dq8.



Chapter 8
Conclusions

In this work an analysis and comparison was made of the characteristics of the LIGO,
Einstein Telescope and LISA gravitational wave detectors. Doing this can help us to
understand how data analysis will be different for the future LISA and ET detectors,
when compared to the LIGO-type detectors that are currently used. The differences in
their sensitivity curves cause them to have different responses to the same (or properly
scaled) source. This also influences the performance of waveform models.

It was found that the ET puts more emphasis on the inspiral, whereas the merger
is more pronounced for LISA. The relative importance of the merger and ringdown are
more on the same scale for each of the detectors. All of this does not strongly depend
on the spins. The fact that the detectors emphasize different parts of the waveform
means that the performance of waveform models may also be different.

The three most important families of waveform models that are used in parameter
estimation were compared to each other for each of the detectors. The used models
where the phenomenological models IMRPhenomXHM [53] and IMRPhenomHM [52],
the effective one-body reduced order model SEOBNRv4HM ROM [54] and the hy-
brid surrogate model NRHybSur3dq8 [55]. All of these models contain higher modes
and are non-precessing. The best matches were found between IMRPhenomXHM and
NRHybSur3dq8. The performance for LIGO and the ET were roughly similar, whereas
the results for LISA were, mostly for the larger mass, not as good. This is influenced
by the choice for the scaling factor between ground-based detectors and LISA and
these results could be better when extending the LISA range to lower masses. Current
values for the mismatches between the waveform models would mean that systematic
errors would occur in parameter estimation for LISA and the ET. This means that,
with the current models, they won’t be able to make optimal use of their very high
SNR values.

For further research it would be interesting in the first place to use the full LISA re-
sponse so that the considered range can be extended to lower masses, which perhaps
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will lead to better results for the matches. Furthermore it could be interesting to try to
find out more about the processes underlying the mismatch distributions. One could,
for example, try to find out how it is influenced by spin and mass ratio, or split the
mismatches into parts caused by the inspiral, merger and ringdown. Similar analyses
can be made for precessing waveform models.

In summary the future LISA and Einstein Telescope gravitational wave detectors will
bring up many new challenges in data analysis, but surely the results will be very
exciting.
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[45] Milosavljević and Merritt, The Final Parsec Problem , AIP Conf. Proc. 686-1,
201-210, 2003

[46] Ryu et al., Interactions between multiple supermassive black holes in galactic nu-
clei: a solution to the final parsec problem, MNRAS 473, pp. 3410–3433, 2018

[47] Ryu et al., Collisionless loss-cone refilling: there is no final parsec problem, MN-
RAS 464-2, pp. 2301–2310, 2017
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