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Abstract

In 2016 the presence of the bacterium Xylella fastidiosa was detected in Majorcan almond trees
and was regarded as the causal pathogen agent of the mortality of these trees over the last fifteen
years. Xylella fastidiosa, being endemic of the Americas, is an insect-transmitted bacterium which
is considered one of the major threats to plants worldwide for its large number of hosts, strains
and potential vectors. By 2017 the reported incidence of the bacterium over Majorcan almond
trees was 79.5% ± 2.0, presenting a great danger to one of the historical crops of the Balearic
Islands. then, the aim of this project is to develop a first step on the study of this epidemic by
means of a deterministic compartmental (mean-field) model. In particular, we present a model
for the vector assisted transmission of the pathogen, performing an analytical and computational
analysis. The model incorporates the specific biological and epidemiological considerations of the
bacterium Xylella fastidiosa and its interactions with insects and hosts in Majorca Island. In our
work the vector (insect) population varies with time, mimicking the field observations. One of the
conclusions is that, in general, this temporal variation hinders the theoretical characterization of
epidemic thresholds. We show that only in the case that the vector population is all the time in its
stationary value, the epidemic threshold can be calculated using the standard techniques, and we
numerically characterize the value of this threshold.

Resum

El passat 2016 es va detectar la presència del bacteri Xylella fastidiosa als ametllers de les Illes
Balears, i es determinà com la causa de la mortaldat en aquests arbres dels darrers quinze anys.
Aquest bacteri, que es transmet per via d’insectes, és endèmic del continent Americà, i és considerat
un dels patògens que major risc representa per a les plantes a escala global, a causa del seu
gran nombre d’hostes, ceps i vectors potencials. En data de 2017, es reportà una incidència del
bacteri d’un 79.5%± 2.0 en els ametllers mallorquins, posant en greu risc un dels cultius històrics
de les Balears. L’objectiu d’aquest projecte és doncs presentar una primera base per estudiar
aquesta epidèmia mitjançant models compartimentals deterministes (de camp mitjà). Concretament,
presentam un model matemàtic per a la transmissió de l’epidèmia, que analitzem anaĺıticament
i computacionalment, on incorporam els trets biològics i epidemiològics caracteŕıstics del bacteri
Xylella fastidiosa i la seva interacció amb insectes i hostes a l’illa de Mallorca. En el nostre model
la població del vector (insecte) varia amb el temps, imitant les observacions de camp. Un dels
resultats d’aquest treball és que aquesta variació temporal obstaculitza la caracterització teòrica
dels llindars d’epidèmia. Demostram que només en el cas que la població de vectors estigui tot el
temps en el seu valor estacionari, el llindar de l’epidèmia es pot calcular utilitzant les tècniques
estàndard, i caracteritzam numèricament el valor d’aquest llindar.
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Abbreviations

ALSD almond leaf scorch disease

Xf Xylella fastidiosa

DFE Disease-Free Equilibrium

NGM Next Generation Matrix
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1 INTRODUCTION

1 Introduction

Over the last 15 years, almond trees in Majorca have experienced severe decline and mortality.
The almond tree disease was preliminary associated with a complex of fungal trunk pathogens and
their interactions with prolonged drought and tree aging, among other disease-predisposing factors.
Nevertheless, this early diagnosis, was challenged in 2016 by the detection of the bacterium Xylella
fastidiosa, Xf, in Majorcan almond trees [1]. In a plant infected with Xf, the bacteria multiply
within its xylem vessels and a biofilm1 is formed. The presence of this biofilm occludes the vessels,
generating clots, thus, the flux of water is inhibited which eventually can block the nutrition of the
plant [3]. This hydraulic stress can result in death of the infected plant which, in general, is worst
for rain fed crops than irrigated ones.

In 2013 Xf was detected for the first time in Europe, associated with a severe disease of olive trees
in southern Italy [4]. In spite of this, diseases caused by Xf had been known for more than a
century [5] affecting a wide a range of crops and trees, some of economic importance. The pathogen
is considered to be endemic of the Americas, and it was first reported in California in the beginning
of the XX century [6]. Xf is one of the most important threats to plants worldwide, given its large
host range [4]. Some examples of the different diseases known to be caused by it are Pierce’s disease
of grapes in California, citrus variegated chlorosis in Brazil, bacterial leaf scorch in shaded trees in
North America, oleander leaf scorch in California and olive diseases in Europe [7].

Xf is an insect-transmitted plant disease, the key feature of the diseases caused by it is that its
development in nature2 on a host population is completely dependent on plant-to-plant transmis-
sion by xylem-feeding insect vectors. The complexity around Xf related diseases resides in the
considerable diversity of host plants, bacteria and vectors. The bacterium has multiple strains,
each capable of infecting distinct hosts [8]. The vectors are many, and depend on the geographic
region; the main vectors in Europe being Philaenus spumarius, and in experimental conditions,
Neophilaenus campestris and Philaenus italosignus are also confirmed to be capable of transmitting
the bacteria; nevertheless, all xylem fluid-feeding insects are considered to be potential vectors [9].
As per the host range, being more than 500 plant species including both economic crops and plants
in natural communities, is one of the widest for any plant pathogen [1].

In almond trees, the bacterium Xf causes the almond leaf scorch disease, ALSD. Infected trees
show shoot and branch diebacks and/or general decline with frequent death over the following
14 years [1]. In Majorca, this disease it is transmitted mostly by meadow spittlebugs, Philaenus
spumarius [1]. Prior to the introduction of Xf, Philaenus spumarius had never been considered an
agricultural pest in Europe [10]. These insects are xylem feeders; they have sucking mouthparts
with a characteristic shape, known as stylets, that allow them to reach the xylem of the host plant
from where they ingest the sap [9]. It is considered that it is during the feeding process when the Xf
cells present in the foregut of the insect are inoculated to the host’s xylem vessel through egestion
[11].

Philaenus spumarius has a one-year seasonal life cycle, which is schematically represented in Fig. 1.
The average life of an adult spanning from April to December being in October-November the
oviposition, which continues until the female dies naturally or is killed by severe frost. In Majorca
the eggs hatch, typically, around March-April when the spittlebug is born as a nymph. They feed
on green plants until late spring, when green plants are dry moment in which they migrate to the
trees and, by then, their stylet is sufficiently developed to penetrate harder tissues [10].

This insect, Philaenus spumarius, has the potential to live under different environmental conditions,
from moist to relatively dry, as long as the host plants it feeds on are actively growing and not
subject to water stress. As for their movement, it has been recorded in Italy seasonal movement
from herbaceous vegetation to the canopy of evergreen trees/shrubs on late spring-early summer.
At the end of summer-beginning of autumn adults, mostly females, recolonize herbaceous vegetation
looking for suitable sites for oviposition [10]. Philaenus spumarius has been reported to have a

1A biofilm is defined as structured communities of fixed microbial aggregates, confined in a self-produced polymeric
matrix [2].

2Human intervention can also cause the disease to spread via grafting infected scions onto local rootstocks or via
plant trade [1].
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1 INTRODUCTION

Figure 1: One-year biological cycle of Philaenus spumarius.

great flight performance, with a mean flight duration of 500 m in half an hour of flight and a
maximum distance traveled of 5.5 km in a single 5.4 h continuous flight [12]. Moreover, there also
exists passive dispersal of the insect over great distances is mediated by wind and human activities,
for example due to transportation by cars [10].

The lethal outbreak of the disease affecting olive trees in Apulia, Italy, in 2013 put the Mediterranean
region on the spotlight and raised alarms about the threat it posed to the Mediterranean agriculture.
Since then, various Xf genotipes have been detected and/or introduced in Europe [1]. In the
Americas, the increase of Xf ’s threat in the last century was a consequence of an invasive and
efficient exotic vector acquiring an endemic pathogen. On the other hand, in Europe, up to now,
the threat arises from an endemic vector acquiring an exotic pathogen [5].

Regarding the Xf invasion in Majorca, the first abnormal clusters of dying almond trees were
noted in Son Carrió, around 2003 and were primarily regarded as a fungal infection. Latter studies
revealed the presence of Xf in the island and, in the study presented by Moralejo et al. in [1], it
was determined that by 2017 the incidence of the ALSD disease over almond trees was 79.5%± 2.0.
This high incidence, spread all across the island, suggested an old introduction of the Xf pathogen
which had went undetected, its symptoms, leaf scorch and progressive decline, confused for the ones
caused by fungal trunk infections propitiated by drought periods. Then, the presence of the fungal
pathogens in ALSD infected trees, is a consequence of the stress induced by the presence of Xf on
the tree, which wakens it, activating the pathogenic phase of the endophytic fungi. In the same
study, [1], Moralejo et al. conclude that the most likely date for the arrival of Xf in Majorca was
1993 through material infected from California, meaning that the pathogen had went unnoticed for
over 20 years in the island.

Given the high incidence of Xf, it is essential a better understanding of the disease in order to be able
of developing informed containment measures. To this aim, our approach is to use the mathematical
scheme provided by the so-called compartmental models. In such models, the population under
study is divided into a finite set of non-intersecting classes where the individuals are allowed to
move from one class to the other according to some rules. Each class represents the state of a
sub-population of individuals and the transfer rules and connectivity between compartments are
inferred depending on the specific problem that is being modeled. Thus, the main assumptions
when working with compartmental models are: the nature and amount of compartments needed
to represent the specific epidemiological problem under study and the transfer rules between
such compartments. Compartmental models are valuable as a first approach when dealing with
an epidemiological situation, nevertheless it is worth noting that they account for a mean-field
description of the system, and thus, the interaction of the sub-populations in each compartment is
treated as a whole, not taking into account spatial distribution of the individuals.

The mathematical framework that encompasses compartmental models has two main approaches:
the deterministic, described by ODEs, and the stochastic, usually described by master equations
or agent based models. In the work presented here we are going to focus on the deterministic
approach in order to develop a model for the Xf disease in Majorca. We are going to work under
the assumption that the size of the population, and thus the different compartments, is large enough
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1 INTRODUCTION

so that the mixing of the different states is homogeneous (well-mixed assumption). In the case of
small populations the stochastic approach would be needed.

Figure 2: Graphical scheme for the SIR model.

The quintessential compartmental model in epidemic modeling is the well-known SIR model,
represented schematically in Fig. 2. It is one of the first epidemic models and it was proposed by
Kermack and McKendrick in 1927 in [13]. This model supposes that the disease is such that the
three classes in which the population can be divided is the following: The susceptible, S, are the
ones who can become infected by the disease; the infectives, I, standing for the ones who already
have the disease and can transmit it; and the removed/recovered class, R, being the individuals
who have had the disease and are removed/recovered.

Other compartmental models have been proposed such as the SEIR model, which adds the exposed
class, E, accounting for a compartment where the disease in the individuals is latent, so they are
not yet infective; and the SI model, where the infective do not become removed. Other possibilities
include SIRS models, with temporary immunity on recovery from infection; SEIS models, with an
exposed period between being infected and becoming infective; or SIS which describes a disease
with no immunity against reinfection.

Not all infectious diseases are transmitted in the same fashion, so they can be classified and
modeled accordingly [14]. Individual-to-individual transmitted diseases, including direct contact,
touching or sexual, and indirect contact, like fluid exchange, are the ones where the pathogen is
transmitted from one infected individual to another. This situations are usually described as contact
processes using the SIR or SIR-like models. Airborne diseases, such as influenza or COVID-19, are
also usually modeled as a contact process. Vector-borne or vector transmitted diseases, these
are the ones which the pathogenic microorganism is transmitted from infected individual, host,
to another individual via a living carrier, vector ; these carriers are usually arthropods, they are
thought to not get ill from the disease and, in general, once infected they remain infectious until
the end of their lives. Finally, the last two ways of transmission are vertical-transmission, when
the disease is transmitted from mother to child before birth, and environmental transmission
where the pathogen is present in contaminated food or water.

The first studies of the dynamics of vector born diseases were done for malaria, at the beginning
of the 20th century by Ronald Ross [15]. The mathematical modeling including dynamics of the
vectors alongside the dynamics of the hosts. Since these first studies, the framework of vector borne
diseases has been also used to study other types of infections in humans like Zika virus in humans
[16] and in plants, the diseases caused by Xf among others.

In many epidemiological models there exists a threshold behavior: under a certain conditions a
disease spreads into the population causing an epidemic, whereas in other cases it does not. Note
that this is not always the case, for example a SI model (susceptible-infected model with a constant
population) or the SIS model do not present a threshold, as the disease always spreads into the
population. Then, one of the key questions to answer in any epidemic situation is whether or
not the infection will proliferate. A widely used parameter to tackle this question is the basic
reproduction number R0 . It has been regarded ”the most important quantity in infectious disease
epidemiology” [17]. R0 represents the number of secondary infections produced by one infectious
individual in a population consisting on susceptible individuals only.

The work in this thesis is structured as follows: First, we present a theoretical introduction in
Section 2 where we discuss in depth the SIR model, as a basis of our future analysis, and present a
brief discussion on R0 . In Section 3 we propose and analytically discuss a deterministic model to
tackle this epidemiological situation. Next, in Section 4 we perform a numerical study to validate
and contrast the analytical analysis of the previous section. Finally, the conclusions and outlook
are presented in Section 5.
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2 EPIDEMIOLOGICAL MODELING

2 Epidemiological modeling

2.1 The SIR model

Given the similarities that the SIR model has with the model discussed in this thesis, an in-depth
discussion is presented following [18], [19] and [14]. Let S(t), I(t) and R(t) represent the number of
individuals in the susceptible, infective and removed class respectively and N be the total number
of individuals. The assumptions about the transmission of the infection are the following:

1. An average member of the population makes contact sufficient to transmit infection with βN
others per unit time, being β > 0 a constant parameter.

2. The time spent in the infectious state is 1/γ, with γ > 0 a constant parameter, thus the
infectives leave the infected class at a rate γI.

3. The incubation period is negligible. Thus, a susceptible in contact with an infective will be
infective right away.

4. The only way to enter or leave an state is through the processes listed above. No death or birth
is taken into account, and thus, the total population remains constant: S(t) + I(t) +R(t) = N .
This hypothesis holds when the time scales of the disease are much faster than the demographic
time scales.

From Item 1 above, and under the assumption that the size of the different compartments is large
enough so that the mixing of the different states is homogeneous (well mixed assumption), it
follows that the number of new infections per unit of time per infective is (βN)(S/N) since the
probability that a random contact by an infective is with a susceptible is S/N , giving a rate of new
infections (βN)(S/N)I = βSI. Another way of understanding the infection process is focusing on
the contacts of a susceptible, which with probability I/N will be with an infective, then, the rate
of new infections per susceptible is given by (βN)(I/N), therefore the rate of new infections is
(βN)(I/N)S = βSI. Even if both approaches give rise to the same infection rate, it is worth noting
that the underlying interpretations are different, and, depending on the situation, one point of view
would be more suitable than the other. Then, the SIR model is represented with the following
system of ODEs: 

Ṡ = −βSI
İ = βSI − γI
Ṙ = γI

(2.1)

and the set of initial conditions S(0) = S0, I(0) = I0 and R(0) = R0, in most approaches R0 = 0.
In general, this model does not have an analytical solution, nevertheless a great deal of information
can be obtained following a qualitative approach. First, note that S(t), I(t) and R(t) are positive
functions bounded by N as they represent a population. Then, it is straightforward to see that
Ṡ < 0 ∀t always, thus S(t) is a monotonically decreasing positive function and so:

lim
t→∞

S(t) = S∞, S∞ ∈ (0, S0] (2.2)

In the same way, Ṙ > 0 ∀t always too, so R(t) also has a monotone behavior, in this case it is a
monotonically increasing positive function. The number of removed individuals is bounded by the
total size of the population, thus:

lim
t→∞

R(t) = R∞, R∞ ∈ [R0, N ] (2.3)

The behavior of the infective class is not so straightforward. Rewriting the equation for İ as
İ = I(βS − γ) one can see that I(t) can have either a monotonically decreasing behavior or a non
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2 EPIDEMIOLOGICAL MODELING

monotonic one, by first increasing to some maximum and then decreasing, depending on the sign of
(βS − γ). Moreover, as S(t) is a monotonically decreasing positive function, the initial condition
fully determines whether or not there will be an increase of the number of infective individuals,
then:

dI

dt

∣∣∣∣
t=0

= I0(βS0 − γ) =⇒


dI
dt

∣∣∣∣
t=0

> 0 iif S0 >
γ
β

dI
dt

∣∣∣∣
t=0

< 0 iif S0 <
γ
β

(2.4)

Eq. (2.4) answers the question whether a disease will spread or not into the population, key in
epidemic modeling. So, the SIR model gives rise to a threshold phenomenon. If S0 > Sc = γ/β
there is an epidemic3, while if S0 < Sc = γ/β there is not. This threshold defines the so-called
basic reproduction number R0 :

R0 =
βS0

γ
(2.5)

R0 defines whether there is an epidemic or not. The infection spreads if R0 > 1, while if R0 < 1 it
dies out. Another important analytical result that can be derived form this model are the phase
plane trajectories in the (S, I) and (S,R) space. The trajectories in the (S, I) can be found dividing
the equation for İ and Ṡ from Eq. (2.1):

dI

dS
= −1 +

ρ

S
, ρ =

γ

β
, (I 6= 0) (2.6)

Integrating, the phase plane trajectories are:

I + S − ρ lnS = I0 + S0 − ρ lnS0 (2.7)

In the usual case that R0 = 0 then N = I0 + S0 and Eq. (2.7) can be rewritten to:

I + S − ρ lnS = N − ρ lnS0 ⇐⇒ N = I + S − ρ ln

(
S

S0

)
(2.8)

Thus, clearly I + S < N if t > 0. From Eq. (2.8) the maxim number of infected can be obtained.
The peak occurs when İ = 0, thus from Eq. (2.4), when S = γ

β = ρ:

N = Imax + ρ− ρ ln

(
ρ

S0

)
⇐⇒ Imax = N − ρ+ ρ ln

(
ρ

S0

)
(2.9)

Finally, the phase plane trajectories in the (S,R) space are found by dividing Ṡ and Ṙ from
Eq. (2.1):

dS

dR
= −β

γ
S = −S

ρ
=⇒ S = Soe

−Rρ ≥ Soe−
N
ρ > 0 (2.10)

Therefore, Eq. (2.10) implies that S∞ > 0. This result is important as it means that the epidemic
does not die out because all susceptible have been infected, there will always be some individuals
that escape the disease. Then, the epidemic dies out because of the lack of infective, meaning that
limt→∞ I(t) = I∞ = 0. This result can be shown by integrating the equation for Ṡ in Eq. (2.1):

3An epidemic is said to occur if the number of infected individuals increases with time at some point of the
dynamical evolution of the system.
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2 EPIDEMIOLOGICAL MODELING

∫ ∞
0

Ṡdt =− β
∫ ∞
0

S(t)I(t)dt,

S0 − S∞ =β

∫ ∞
0

S(t)I(t)dt,

S0 − S∞ ≥βS∞
∫ ∞
0

I(t)dt

(2.11)

The last inequality in Eq. (2.11) implies that I(t) is integrable on [0,∞). Hence, limt→∞ I(t) = 0.
One final remark is that, in this section, we have presented the SIR model under the mass-action
formulation used in the early epidemic models following [18], [19] and [14]. This approach supposes
a rate of contacts per infective proportional to the population size (the first of the assumptions
listed above). An alternative, more realistic formulation, is via the standard incidence, which
describes a situation where the number of contacts per infective does not depend on the population
size. This alternative formulation leads to the following system of ODEs

Ṡ = −βS I
N

İ = βS I
N − γI

Ṙ = γI

(2.12)

The standard incidence approach is the one which is going to be used along this work.

2.2 The basic reproduction number R0

In Section 2.1 the concept of R0 has been introduced as the threshold parameter controlling whether
or not an epidemic is expected. Mathematically, R0 is a threshold parameter, if R0 > 1 the infection
spreads, while if R0 < 1 it dies out. Epidemiologically, R0 gives the number of secondary infections
produced by one infectious individual in a population consisting on susceptible individuals only. To
see this interpretation from Eq. (2.5), one has to notice that the number of new cases per unit of
time produced by all infective individuals is βSI. If one single infective individual is considered
I = 1 in a population consisting of S0 individuals the number of secondary cases produced by it,
per generation, will be βS0. Since one infective individual remains infectious for a period 1/γ, the
number of secondary cases it will produce will be βS0/γ which is the expression derived for R0 in
Eq. (2.5) [14].

It has been shown that the basic reproduction number is mathematically characterized by considering
the transmission of a disease as a demographic process, where producing an offspring is not seen as
giving birth in the demographic sense, but as causing a new infection. This leads to viewing the
epidemiological process in terms of consecutive generations of infected individuals [17]. In some
models, like the SIR, the computation of R0 is unambiguous and straightforward, however this is
not always the case. The main reason being that there is a certain ambiguity on what is considered
as causing a new infection and what is a transition between an individual state to another [20].
As an example, in vector-borne diseases, the infection from host-vector-host can be seen as a one
generation process or a two generation process [16], which will result in different expressions of R0 .
However, the predicted threshold is going to be the same independently of the choice [20].

The most widely used methods to analytically determine R0 are the linear stability analysis of the
disease free equilibrium, or the next generation matrix, NGM, approach presented by Diekmann
and Heesterbeek in [21]. It has to be noted that for the computation of R0 via the NGM that some
assumptions need to be fulfilled, in particular, the existence of a disease free equilibrium, DFE. For
further details on the assumptions and the construction of NGM the method see Appendix A.
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3 MODELING VECTOR-BORNE DISEASES CAUSED BY XYLELLA FASTIDIOSA

3 Modeling vector-borne diseases caused by Xylella fastid-
iosa

3.1 Preliminary considerations

As discussed in the previous sections, when posing any compartmental model, we have to make
assumptions of the nature of the sub-populations and the interactions among them. In the particular
case of diseases caused by Xf, these classes have to account not only for the population of hosts,
trees, but also for the population of the vectors, insects.

Regarding the main vector in Majorca, Philaenus spumarius, it is considered that newborn nymphs
do not have the Xf bacterium in their organism even if the parents had it; that is, there is no
vertical transmission of the pathogen [22]. Then, the only way for a vector of becoming infected by
Xf is via direct contact with an infected host while feeding. Additionally, it is also considered that
the transmission rates between infected host to non infected vector are different than from infected
vector to non infected host [11]. Moreover, we will also deem an infected vector to remain infective
for all its lifetime and in addition, that the presence of the pathogen does not affect it, so there is
no difference between an infected and a non infected one in terms of death rates [22]. Finally, it
has been seen that a vector which has been infected with the pathogen is already infectious after
a short period of time, a few hours, so a latent period is negligible compared to the rest of the
timescales of the model [23].

On the other hand, as per the host population, only death by the infection is considered but not
natural death. This simplification is based on the consideration that the characteristic timescale of
the natural death of hosts, around 50 years in the case of almond trees, is negligible in front of
both the timescale of death by the infection and the lifetime of the vectors, which is one year at
most [10] (less if we consider predators and human pest control). Moreover, we do not consider
recovery of infected hosts, so the only transition allowed for an infected host is to the removed,
dead, compartment.

The focus of this work is to perform a preliminary analysis of a model that, in a future work, could
be then integrated into a more sophisticated framework accounting for the seasonality of the vector,
alongside climate effects. To this aim we start by considering a model in which the vectors are
born and die at constant rates, which are going to be different, in general. This approach is less
restrictive than what is usually considered in the literature, where both rates are normally imposed
to be equal [19]. Nevertheless, the consideration of constant birth and death rates is a strong
simplification of the one-year cycle of Philaenus spumarius presented in Fig. 1. This simplification
is made under the assumption that the particular life cycle of the vector can be neglected given the
difference in scales of the lifetime of trees and vectors. Finally, a more suitable model to include
the vector seasonality will be in the limit of the birth rate going to zero. For a zero birth rate, the
model presented here accounts for an annual cycle with an initial population of vectors, that die
during that year, and then, the model may be iterated to account for longer periods of time.

3.2 The model

The compartmental model that we propose to tackle this problem, describing both host and
vector populations is schematized in Fig. 3. It is inspired by the models presented by Brauer and
Castillo-Chavez [16], with some variations. In our approach, we consider that the population is
fully mixed and that it is large enough to neglect fluctuations. The model,

ṠH = −βIv SHNH
İH = βIv

SH
NH
− γIH

ṘH = γIH

Ṡv = −αSv IHNH − µSv + δNo
v

İv = αSv
IH
NH
− µIv

(3.1)
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3 MODELING VECTOR-BORNE DISEASES CAUSED BY XYLELLA FASTIDIOSA

Figure 3: Graphical scheme for the 5-D model.

describes infection of susceptible hosts, SH , at a rate β through theirinteraction with infected
vectors, Iv, while susceptible vectors, Sv, infect at a rate α through interaction with infected hosts
IH . Infected hosts, IH , move (because they die) to the RH compartment at a rate γ, while infected
vectors stay infected the rest of their life time, mimicking empirical observations (they are not
afected negatively by Xf ). We do not consider natural death of the hosts, as the typical time
development of the disease, 1/γ, is much faster than natural death, while vectors die at a rate µ,
with a characteristic time 1/µ that is shorter than 1/γ, and we further assume that dead trees
are not usually removed from the field, as it happens typically in the Balearic Islands, and thus
NH(t) = NH(0) = SH + IH +RH .

At difference with the model in [16], we do not consider a Exposed compartment, according to
empirical observations, as mentioned above. In addition, the constant vector population assumed in
[16] is not realistic in our case, as the vector population varies seasonally, and, thus, we introduce a
source term for the susceptible vector population, Sv, that is not balanced with the death term
as in [16].This term is of the form δNo

v , where No
v defines the scale of the stationary total vector

population, what can be seen by adding the last 2 equations in Eq. (3.1),

Ṅv = δNo
v − µNv (3.2)

where Nv = Sv + Iv, so that Nv has a stationary solution (a fixed point) given by Nv(∞) = δ/µNo
v .

The case δ = µ is bit special, as one should use No
v = Nv(0) to be in agreement with the standard

view [16] that the total vector population is identical to the initial condition (as happens also for
the hosts). We notice that using the ansatz δNv in a direct generalization of [16] would lead to
exponential growth, Ṅv = (δ − µ)Nv, with asymptotic values Nv(∞) of 0 or ∞, depending on the
sign of δ − µ, what would not be suitable in our study. On the other hand, in the particular case
of δ = µ defining an asymptotic value Nv(∞) of No

v is meaningless if No
v 6= Nv(0) because being

equal the birth and death rates, δ and µ, respectively, this implies that Nv is constant along the
dynamics (i.e. a conserved quantity). It is also important to recall that the rates of infection for
hosts and vectors, β and α will be different, in general. If the biting rate of the vectors and the
transmission probability are known experimentally, it could be useful to relate α and β through a
balance relation [16].

The model Eq. (3.1) considers that the hosts are trees, so they are fixed on the ground, the moving
agents of this system are the vectors, the number of new infected hosts per unit of time will be
given by:

βIv
SH
NH

(3.3)

8



3 MODELING VECTOR-BORNE DISEASES CAUSED BY XYLELLA FASTIDIOSA

The transmission rate from vectors to hosts being β. Following an analogous reasoning, the number
of new infected vectors per unit of time is:

αSv
IH
NH

(3.4)

The conservation of NH enables an straightforward reduction from this 5-D system to a 4-D one, as
one of the equations for the hosts is redundant. In the following sections we are going to disregard
the differential equation for ṘH and we are going to consider the following 4D system:


ṠH = −βIv SHNH
İH = βIv

SH
NH
− γIH

Ṡv = −αSv IHNH − µSv + δNo
v

İv = αSv
IH
NH
− µIv

(3.5)

being RH = NH − SH − IH . Whereas NH is a conserved quantity of the system, Nv is time
dependent in general, as seen in Eq. (3.2). The explicit time dependence being

Nv(t) = No
v

δ

µ
+

(
Nv(0)−No

v

δ

µ

)
e−µt (3.6)

For the analysis of the model it is important to recall that the parameters α, β, γ, µ, and δ are
non negative. In fact, we will consider α, β, µ and γ ∈ (0,∞) as α = β = 0 would mean that the
disease does not spread by means of this vector, and a µ = 0, apart from being biologically non
realistic, we have verified that it would yield in a non-threshold model where the disease spreads
inevitably into the population, contrary of what is used in the literature [5]; finally γ = 0 would
mean that the hosts do not die from the infection, which is also not realistic. For δ we consider
it to be δ ∈ [0,∞) and we are going to discuss the cases in which δ > 0 and δ = 0. Regarding
SH , IH , RH , Sv and Iv, as represent populations, they are positive, bounded upwards by NH in the
case of the hosts. Regarding the vectors they fulfill that Nv(t) = Iv + Sv and, as µ is a positive
non-zero parameter, it follows that Nv(t) ∈ [Nv(0), No

v δ/µ].

A preliminary qualitative analysis, inspired by the one done in Section 2 for the SIR model, can be
made for this case. Through all this work, we are going to consider that initially RH(0) = Iv(0) = 0
while the initial population of infected hosts is small but non zero, because we study the case of
the introduction of the disease via infected hosts, but not via infected vectors (as in Majorca it is
thought that the disease was introduced through hosts [1]). Then, regardless of the value of the
parameters, when t = 0

dIH
dt

∣∣∣∣
t=0

= −γIH(0) < 0

dIv
dt

∣∣∣∣
t=0

= αSv(0)
IH(0)

NH
> 0

(3.7)

So, initially, the number of infected hosts is always a decreasing function of time while the number
of infected vectors is an increasing one, at the beginning of the dynamics. Then, as the number of
infected vectors will always increase from its initial value, two distinct situations may happen for
IH :

1. İH = (βIv
SH
NH
− γIH) < 0 ∀t the term γIH is always bigger than the term βIv

SH
NH

. In this
case, the number of infected hosts always decreases and no epidemic occurs.

2. İH = (βIv
SH
NH
− γIH) > 0 t ∈ [t1, t2]. In this case, there is an interval of times so that

βIv
SH
NH

> γIH . This is the case when there is an epidemic.

9



3 MODELING VECTOR-BORNE DISEASES CAUSED BY XYLELLA FASTIDIOSA

Note that, contrary of what happens for the SIR model, the condition that determines if an epidemic
takes place, İH > 0, is not at t = 0. Thus, it may happen that the peak value of ImaxH < IH(0), but
we still consider that an epidemic has taken place in this situation, as we define the threshold for
epidemic the change in behavior of IH , form a monotonically decreasing function İH < 0 ∀t, to a
non monotonical one, ∃ t : İH > 0. This is going to be the criterion used in Section 4 to determine
whether or not an epidemic has occurred. As per the case of the infected vectors, note that there
will always be an initial increase. We do not consider this behavior in order to define the epidemic
as we are interested in the state of the hosts.

3.2.1 Fixed points

When dealing with any dynamical system, one of the first questions is to find its fixed points and
their stability. The nullclines for this system are:



ṠH = −βIv SHNH = 0⇒

{
Iv = 0

SH = 0

İH = βIv
SH
NH
− γIH = 0⇒


Iv, IH = 0

SH , IH = 0

IH = β
γ Iv

SH
NH

Ṡv = −αSv IHNH − µSv + δ = 0⇒ Sv =
Nov δ

α
IH
NH

+µ

İv = αSv
IH
NH
− µIv = 0⇒


Sv, Iv = 0

IH , Iv = 0

IH = µ
αIv

NH
SH

(3.8)

From the analysis of the nullclines one can determine the fixed points of the system, by finding
their intersection. From the nullclines of SH and IH it is straightforward to see that in the fixed
point IH = 0 and therefore from İv = 0 it implies that Iv = 0. So the fixed point of the system is:

(SH = S∗H , IH = 0, Sv = No
v

δ

µ
, Iv = 0) (3.9)

From Eq. (3.9) we see that in the host subspace, the line (SH , IH = 0) is a line of non-isolated
fixed points, as there is no constrain for the value of S∗H . In the following sections we would be
interested primarily in the point when SH = NH , that is, the pre-epidemic stage. We are going to
focus in two cases depending on the values of δ. The first scenario when δ > 0 while in the second
one we analyze the extreme case in which δ = 0.

3.3 General case, δ > 0:

3.3.1 Linear stability analysis

The goal of this analysis is to determine the conditions for which the epidemic model exhibits a
threshold. This is customary done for a Disease Free Equilibrium (DFE) before the epidemic starts
(i.e. pre-epidemic) where there are no infected individuals in the system, Iv = IH = 0 . However,
one can easily notice that any pre-epidemic state is not, in general, an equilibrium (fixed point) of
the model Eq. (3.5). We can easily see this from the expression of Ṅv Eq. (3.2). Ṅv = 0 at t = 0
only if Nv(0) = Sv(0) = No

v δ/µ, where the identity at t = 0 of Nv and Sv results from the initial
condition Iv(0) = 0. This means that in this system one can only deduce the position of the epidemic
threshold if the initial condition is chosen exactly as Sv(0) = No

v δ/µ, that is, if the vector population
is in its stationary state [24]. Then the DFE is defined by (SH = NH , IH = 0, Sv = No

v δ/µ, Iv = 0).
Notice that this discussion has a parallel to the one we are going to present in Section 3.3.2 on the
application of the NGM method to this model, as the NGM is nothing more that a (clever) method
to obtain R0 directly from the analysis of the DFE, so, we stress that a linear stability analysis

10



3 MODELING VECTOR-BORNE DISEASES CAUSED BY XYLELLA FASTIDIOSA

of the DFE (and also the obtention of R0 from the NGM in Sec. Section 3.3.2) is only possible
for the particular initial condition Nv(0) = δ/µNo

v . For the linear stability analysis, the Jacobian
matrix of the system is computed

J =


−β Iv

NH
0 0 −β SHNH

β Iv
NH

−γ 0 β SHNH
0 −α Sv

NH
−α IH

NH
− µ 0

0 α Sv
NH

α IH
NH

−µ

 (3.10)

Which, evaluated at the DFE:

J |DFE =


0 0 0 −β
0 −γ 0 β

0 −α Nov
NH

δ
µ −µ 0

0 α
Nov
NH

δ
µ 0 −µ

 (3.11)

so that the eigenvalues of this matrix are:

det(J |DFE − λI) = −λ
[
− (µ+ λ)2(γ + λ) + (µ+ λ)βα

No
v

NH

δ

µ

]
= 0⇒

λ0 = 0

λµ = −µ

λ± = − (γ + µ)

2
± 1

2

√
(γ − µ)2 + 4βα

No
v

NH

δ

µ

(3.12)

It is straightforward to see that all eigenvalues are real, as all parameters are positive, then, we
need to determine whether they are positive or negative reals. λµ = −µ < 0 as µ is defined positive,
so in order to discuss the stability of this fixed point, we need to study the λ± eigenvalues. λ− is
always negative, but λ+ changes sign depending on the values of the parameters. The threshold
condition λ+ = 0 leads to:

λ+ = 0 ⇒ βα

γµ

No
v

NH

δ

µ
= 1 (3.13)

So, for βα
γµ

Nov
NH

δ
µ < 1 ⇒ λ+ < 0 the fixed point is stable and for βα

γµ
Nov
NH

δ
µ > 1 ⇒ λ+ > 0 a

perturbation will grow in the direction of the eigenvector associated to λ+. In Section 3.3.2 we
are going to show that this threshold retrieved by means of a linear stability analysis is in fact the
basic reproduction number R0 .

3.3.2 Basic reproduction number

As we have discussed on previous sections, the computation of R0 is key when dealing with an
epidemiological situation. For the case of vector transmitted diseases, the definition of R0 being the
number of secondary infections caused by introducing a single infected individual into a susceptible
population is ambiguous. The spread from host to vector to host can be understood as a two
step process, or it can be considered as one generation. In our case, following [16], we consider
the spread from host to vector to host as being one generation. This choice is motivated by the
fact that we understand the vector as a means of transmitting the disease, but the main object
of interest are the hosts. An analysis of the case when the spread from host to vector to host is
understood as a two step process is done in Appendix B.

11



3 MODELING VECTOR-BORNE DISEASES CAUSED BY XYLELLA FASTIDIOSA

In this section we present the determination of R0 using the next generation matrix approach. This
method is connected to the linear stability analysis of the system as presented in Section 3.3.1, as
it relays on the linearization of the system about the DFE. For the construction of the NGM, the
linearized infection subsystem is used, that is, the subset of equations describing the production of
new infected and changes in the states of already existing infected, in this case, the equations for
İH and İv from Eq. (3.5). These equations are taken linearized by the DFE state, which has to
be an equilibrium state of the system with no presence of infected. Again, the pre-epidemic state
has to be considered, SH = NH for the hosts, and the stationary value for the susceptible vectors,
Sv(0) = No

v
δ
µ , as discussed in the previous section. From these linearized equations, all epidemic

events that lead to new infections are incorporated in the transmission matrix F , which includes
the production of new infections (Fij : being the rate at which individuals in infected state j give
raise to individuals in infected state i). All the other events are included in the transition part via
the V matrix, which describes changes in state. The NGM K is then K ≡ FV −1 (see Appendix A
for a more in depth analysis on the construction of the NGM). The NGM for this system is:

K = FV −1 =

βα
γµ

Nov
NH

δ
µ

β
µ

0 0

 (3.14)

With:

F =

0 βNHNH
0 0

 V =

 γ 0

−α Nov
NH

δ
µ µ

 ⇒ V −1 =

 1
γ 0

α
γµ

Nov
NH

δ
µ

1
µ

 (3.15)

The basic reproduction number R0 is the spectral radius of this matrix, so:

det(K − σI) = 0 =⇒

∣∣∣∣∣∣
βα
γµ

Nov
NH

δ
µ − σ

β
µ

0 −σ

∣∣∣∣∣∣ = (−σ)

(
βα

γµ

No
v

NH

δ

µ
− σ

)
= 0 =⇒

σ =
βα

γµ

No
v

NH
; σ = 0 (3.16)

Therefore, the basic reproduction number R0 :

R0 =
βα

γµ

No
v

NH

δ

µ
(3.17)

We then recover the same threshold than in Eq. (3.13), for βα
γµ

Nov
NH

δ
µ > 1 there will be initial

exponential growth, and for βα
γµ

Nov
NH

δ
µ < 1 the epidemic will die out. It is worth noting that for

δ = 0 Eq. (3.17) does not make sense, even if it is formally valid, as the population of vectors,
at the stationary state is identically zero. Had we considered a more general case instead of the
pre-epidemic state, for a generic SH(0), i.e. if SH(0) 6= NH , the basic reproduction number would
have been:

R
′

0 =
βα

γµ

No
v

NH

δ

µ

SH(0)

NH
(3.18)

This expression of R0 would be more suitable than Eq. (3.17) in the eventuality that there are
already some removed hosts in the pre-epidemic state. Nevertheless, as the usual procedure is to
consider all population susceptible before the epidemic, the expression of R0 that we are going to
use during this thesis is Eq. (3.17).
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3.3.3 Fast-slow approximation

In general, 4-D systems as the one in Eq. (3.5) are difficult to analyze, for the high dimensionality
of their phase space. Then, in this section a reduction from 4-D to 3-D considering a separation of
time scales is proposed. In the fast-slow reduction we consider that the death rate of the vectors, µ,
is a large parameter. In biological terms, it makes sense as an adult vector dies from natural death
in less than half a year, and dies even faster if predators, human intervention or adverse climate
conditions are taken into account. Then, from İv of Eq. (3.5) one can write:

εİv =
α

µ
Sv

IH
NH
− Iv (3.19)

Being ε = 1/µ→ 0 an small parameter. Then, in the case in which ε can be disregarded in front of
the other parameters, and so while α/µ remains finite one gets

Iv ≈
α

µ
Sv

IH
NH

(3.20)

Which leads to the following expression for the 3-D system:


ṠH = −β αµSv

IH
NH

SH
NH

İH = β αµSv
IH
NH

SH
NH
− γIH

Ṡv = −αSv IHNH − µSv + δNo
v

(3.21)

It is worth noting that now, with the equations written as in Eq. (3.21) one can analyze İH at t = 0
like in the SIR model, as done in Section 2:

dIH
dt

∣∣∣∣
t=0

= IH(0)

(
β
α

µ

Sv(0)

NH

SH(0)

NH
− γ
)

(3.22)

It is straightforward to see that when the system is at the DFE at t = 0 we recover the expression
for R0 in Eq. (3.17). For the approximated system then, the condition for an epidemic outbreak
is given at the beginning of the dynamics not after some time t1 as discussed for the complete
model. So, at the beginning of the dynamics, there will always be some discrepancy between the
approximation and the complete system. This is so because, when performing this reduction we
have substituted a differential equation for an algebraic expression of one of the variables. Now,
the ODEs are also known as problems of initial values, then when we have done the approximation
Eq. (3.20) we have lost one of the initial conditions of the system. In fact, we may notice that
this expression for Iv does not allow for the initial condition Iv(0) = 0, as Eq. (3.20) needs either
Sv(0) = 0 or IH(0) = 0. Then, we conclude that we can expect the approximation to be good after
an initial transient of the dynamics.

Eq. (3.21) can be further reduced to a 2-D system via the explicit expression for Nv(t) Eq. (3.6),
leading to equations only for hosts. From an experimental point of view this reduction is quite
useful as the epidemiological state of the vectors is not easy to obtain. So writing Sv in terms of
Nv(t) and Iv one arrives to{

ṠH = −β αNv(t)
µNH+αIH

SH
IH
NH

= −ζ(t)SH
IH
NH

İH = β αNv(t)
µNH+αIH

SH
IH
NH
− γIH = ζ(t)SH

IH
NH
− γIH

(3.23)

with the explicit expressions for Sv and Iv being

Sv = Nv(t)
µNH

αIH + µNH
, Iv = Nv(t)

αIH
αIH + µNH

(3.24)
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The expression in Eq. Eq. (3.23) is quite remarkable as it resembles of the equations for an standard
SIR model, for the host population, but with a coefficient ζ(t) ≡ βαNv(t)/(µNH + αIH) that
depends on time via Nv(t) and IH(t). A SIR model with time-dependent coefficients has been
discussed in [25], where the authors indicate how to obtain the epidemic thresholds, i.e, how to
define the right R0 that predicts them. In the particular case that the initial number of vectors is
already the stationary value of Nv(t): Nv(0) = No

v
δ
µ the explicit time dependence disappears and

Eq. Eq. (3.23) is then an autonomous system, and the ”usual techniques” can be applied. It is
clear that this fact mirrors our discussions in Section 3.3.1 in which we discussed that the epidemic
thresholds can only be obtained from the pre-epidemic DFE, i.e. if the initial condition for the
vectors is already in the steady state, Sv(0) = No

v
δ
µ , and in Section 3.3.2 when we discussed that

the NGM can only be applied in this very same situation, for which [25] become the standard,
autonomous, SIR method, in which R0 can be obtained in the usual way. This calls [25] for a
generalization of the NGM method, obtained by solving a functional equation, instead of the usual
NGM matrix method of Appendix A if one wishes to study generic initial conditions Sv(0). Thus,
we can state that R0 will capture the threshold behavior of the system when the initial population
of vectors is equal o close its stationary state. For other initial conditions it is not guaranteed that
R0 , as expressed in Eq. (3.23) captures the behavior of the system. In Section 4 we further discuss
this point, with numerical simulations.

3.4 Particular case δ = 0

The case in which δ = 0 is an special case of this model, as in the fixed point the population of
vectors is zero (SH = S∗H , IH = 0, Sv = 0, Iv = 0). Via the usual methods of computing R0 with
the NGM approach at an equilibrium pre-epidemic state, or via a linear stability analysis, one gets
that this situation is a non-threshold phenomenon where the disease cannot spread. This is so as,
in the equilibrium state of the system, the number of vectors is zero and so there is no way for
the disease to spread. Nevertheless, numerically we see that this analysis of the fixed point is not
sufficient to determine whether or not an epidemic will occur, as we find situations in which there
is an outbreak. The usual NGM approach as presented in Appendix A fails in this case because it
assumes a pre-epidemic disease-free state to be an stable equilibrium state of the system, which, in
the case of δ = 0, it can only be the state with no vectors. Then, other tools different form the
ones presented in this work are needed in order to study this case.

Even if R0 could not be determined analytically by means of the NGM method used in Section 3.3.2,
the analysis of this particular case is also interesting. For the case δ = 0 the system has a non
trivial conserved quantity, which can be derived from Eq. (3.5) starting from the equation for Ṡv
and the relation between Ṡv and İv:{

Ṡv = −αSv IHNH − µSv =⇒ IH = −NH Ṡv
αSv
−NH µ

α

İv + Ṡv = −µ(Iv + Sv) =⇒ −µ = İv+Ṡv
Iv+Sv

= d
dt (ln(Sv + Iv))

Now if we sum the equations for ˙IH and ˙SH :

ṠH + İH = −γIH =
γ

α
NH

Ṡv
Sv

+
µ

α
γNH =

γ

α
NH

Ṡv
Sv
− γ

α
NH

İv + Ṡv
Iv + Sv

=⇒

ṠH + İH −
γ

α
NH

d

dt
(ln(Sv)) +

γ

α
NH

d

dt
(ln(Sv + Iv)) = 0 =⇒

d

dt

(
SH + IH +

γ

α
NH ln

(
1 +

Iv
Sv

))
= 0 =⇒

SH + IH +
γ

α
NH ln

(
1 +

Iv
Sv

)
= SH(0) + IH(0) +

γ

α
NH ln

(
1 +

Iv(0)

Sv(0)

)
We will name this conserved quantity as C:
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C ≡ SH + IH +
γ

α
NH ln

(
1 +

Iv
Sv

)
(3.25)

For the usual initial conditions used in this thesis, SH(0) = NH and IH(0) = Iv(0) = 0, one can
relate C to RH :

NH = SH + IH +RH

C = SH(0) + IH(0) + γ
αNH ln

(
1 + Iv(0)

Sv(0)

)
= NH ⇒ NH = SH + IH + γ

αNH ln

(
1 + Iv

Sv

)
⇒ RH =

γ

α
NH ln

(
1 +

Iv
Sv

)
(3.26)

Now, the presence of this extra conserved quantity enables for an exact reduction of the dimension-
ality of the system. From the expression of C one can write:

1 +
Iv
Sv

= e
α

γNH
(C−SH−IH) ⇒ Iv = Sv

(
e

α
γNH

(C−SH−IH) − 1
)

(3.27)

Thus,


ṠH = −β SHNH Sv

(
e

α
γNH

(C−SH−IH) − 1
)

İH = β SHNH Sv
(
e

α
γNH

(C−SH−IH) − 1
)
− γIH

Ṡv = −αSv IHNH − µSv
(3.28)

One could use again the expression for Nv(t) Eq. (3.6) in order to further reduce the system, to a
2-D non-autonomous one:

{
ṠH = −βSH Nv(0)e

−µt

NH

(
1− e−

α
γNH

(C−SH−IH))
İH = βSH

Nv(0)e
−µt

NH

(
1− e−

α
γNH

(C−SH−IH))− γIH (3.29)

with

Iv = Nv(0)e−µt
(
1− e−

α
γNH

(C−SH−IH))
, Sv = Nv(0)e−µte

− α
γNH

(C−SH−IH)
(3.30)

Note that this exact reduction is only valid when δ = 0 as the conserved quantity C is not exact
for the general case δ 6= 0. Thus, for the case δ = 0 the system allows for two reductions, one
exact using the conserved quantity C and the other via the fast-slow approximation presented in
Section 3.3.3. Particularizing Eq. (3.23) for δ = 0:

{
ṠH = −β αNv(0)e

−µt

µNH+αIH
SH

IH
NH

İH = β αNv(0)e
−µt

µNH+αIH
SH

IH
NH
− γIH

(3.31)

Comparing Eq. (3.29) and Eq. (3.31) one sees that, for δ = 0 and in the regime where the fast slow
approximation is valid, the following relation must be fulfilled

(
1− e−

α
γNH

(C−SH−IH))
=

αIH
µNH + αIH

(3.32)
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4 NUMERICAL STUDY OF THE MODEL

4 Numerical study of the model

4.1 General case δ > 0

We start the numerical analysis by illustrating the validity of the threshold value found analitically
by means of numerically solving the system of differential equations of Eq. (3.5). We expect
an outbreak of the epidemic when R0 > 1, that is the existence of a peak value of IH , and a
nonexistence of epidemic for R0 < 1, IH showing a monotonically decreasing behavior. In order to
illustrate this phenomenon, the following parameters and initial conditions are used:

NH = 100, No
v = 1000 Sv(0) = No

v

δ

µ
, IH(0) = 0.001NH , Iv(0) = RH(0) = 0, µ = 4,

γ = 0.7, α = 0.75µ and δ = µ

(4.1)

Then, β = 0.233, β = 0.07 so that R0 = 2.5, R0 = 0.75 respectively. Note that these initial
conditions refer to the stationary state of the vector population.

(a) (b)

Figure 4: Different realizations of the model. The parameters used are NH = 100, No
v =

1000, µ = 4, γ = 0.7, α = 0.75µ and δ = µ and the initial conditions Sv(0) = No
v δ/µ, IH(0) =

0.001NH , Iv(0) = RH(0) = 0. (a) above the threshold with β = 0.233 so that R0 = 2.5; (b) below
the threshold with β = 0.07 so that R0 = 0.75.

Fig. 4 illustrates the theoretical results for the threshold value. In Section 3 we have characterized
the threshold by the change in the evolution of IH , below it IH has a monotonically decreasing
behavior Fig. 4(b), while above threshold, there is an initial decrease followed by an increase of
the infected host population Fig. 4(a). We have checked that both panels in Fig. 4 yield the same
results if δ > µ and δ < µ for the same values of R0 (β was varied acordingly). Next, in order to
give a more quantitative approach for the threshold validation of the system, we study the behavior
of the system by varying every parameter independently. In order to do so, from the expression of
R0 in Eq. (3.17) we derive an expression of each of the parameters at the critical value R0 = 1:

αc =
γµ2

βδ

NH
No
v

, βc =
γµ2

αδ

NH
No
v

, γc =
αβδ

µ2

No
v

NH
, µc =

√
αβδ

γ

Nv
NH

, δc =
γµ2

βα

NH
No
v

(4.2)

Then, setting NH = No
v = 100 and α = β = γ = µ = δ = 1 the critical parameters become

αc = βc = γc = µc = δc = 1. The strategy followed to numerically validate the critical parameters is
to focus at one parameter at the time and vary it, and check if ImaxH exists. Then, the first parameter
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4 NUMERICAL STUDY OF THE MODEL

value for which ImaxH = 0 is considered the critical value of such parameter. A consideration to
bear in mind when doing this analysis is that the initial population of vectors needs to be near its
stationary value Nv = No

v δ/µ for R0 to be meaningful, as discussed previously in Section 3 and
as we are going to show later in this section. For this reason, when either δ of µ are varied the
initial condition Nv(0) will vary accordingly to start in the stationary value of Nv(∞) = No

v δ/µ.
The results of this analysis are presented in Fig. 5. We see that the numerical results obtained for
each parameter are in good agreement with the theoretical result expected, each with a relative
error of 0.5%.

(a) (b)

(c) (d)

(e)

Figure 5: Numerical determination of the critical parameters. For NH = No
v = 100 and α = β =

γ = µ = δ = 1 so that the critical parameters become αc = βc = γc = µc = δc = 1. The initial
conditions used being IH(0) = 0.001NH , Iv(0) = RH(0) = 0 and Sv(0) = No

v δ/µ.
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4 NUMERICAL STUDY OF THE MODEL

As a part of this parameter analysis, we analyze explicitly the effect of having distinct values for µ
and δ. To this aim, we present a validation of R0 , using the similar strategy than we did in Fig. 5.
We fix all parameters but β and δ. For every value of δ, we vary β and compute the time evolution
of the system. Then, we check whether or not IH is monotonically decreasing, and, for the first β
that there is a change in behavior, we compute the R0 associated to it. We repeat this procedure
for three distinct values of µ. The values used for this computation are γ = α = 1, NH = No

v = 100.
From the three first panels of Fig. 6 we see that the results are consistent for the different values
of µ and that the R0 obtained is in good agreement with the theoretical one Eq. (3.17), with a
relative error of less than 1% for every panel.

(a) (b)

(c) (d)

Figure 6: Numerical check of the threshold for δ 6= µ where β is varied and γ = α = 1, NH = No
v =

100 and the initial conditions used being IH(0) = 0.001NH , Iv(0) = RH(0) = 0 and Sv(0) = No
v δ/µ.

(a), (b) and (c) are different realizations for µ = 0.4, 1 and 2 respectively. (d) represents the value
of βc of the previous figures.

Along Section 3 we have stressed the importance of the DFE for the computation of R0 . So,
next, we are going to numerically check the relevance of the initial condition of hosts and vectors.
We start by repeating Fig. 4 for a non negligible population of infected hosts IH(0) = 0.1NH as
initial condition. From Fig. 7 one may note that for this case, where IH(0) = 0.1NH , there is a
non negligible number of removed individuals even if R0 < 1, so there is a quantitative difference
between both cases, IH(0) = 0.001NH and IH(0) = 0.1NH . However, the qualitative behavior of
IH during the time evolution is the same, monotonically decreasing below the threshold, and a peak
above it. For larger values of IH(0) the qualitative behavior of IH , and thus the threshold behavior
of the system, may not longer be well represented by R0 as computed in Eq. (3.17). This is so
because the basic reproduction number has been computed linearizing by the DFE, at which the
number of infected infected hosts is zero. Therefore, when increasing IH(0), one is getting farther
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4 NUMERICAL STUDY OF THE MODEL

from such equilibrium and so, the linearization may no longer be valid. As an example, for the case
IH(0) = 0.5NH , which is displayed in Fig. 8(a), it can be seen that no peak appears for IH even if
R0 > 1 (it has been numerically checked that there is not a peak that the figure resolution could
be hiding).

(a) (b)

Figure 7: Different realizations of the model for IH(0) = 0.1NH and the rest of the parameters and
initial conditions used are the same than Fig. 4. (a) above the threshold with β = 0.233 so that
R0 = 2.5; (b) below the threshold with β = 0.07 so that R0 = 0.75.

(a) (b)

(c)

Figure 8: Effect of the initial condition IH(0). All parameters used are the same than for Fig. 4
unless the contrary is specified. (a) realizations of the model for IH(0) = 0.5NH with β = 0.233 so
that R0 = 2.5; (b) log-lin plot of the effective R0 vs IH(0), where β has been varied to obtain the
different values of R0 . (c) log-lin plot of the effective R′0 vs IH(0), where β has been varied to
obtain the different values of R′0 as defined in Eq. (3.17).
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4 NUMERICAL STUDY OF THE MODEL

In order to illustrate the previous statement we have done realizations of the model for IH(0) ∈
[0.001, 0.5]NH and we have computed the value of R0 as it is expressed in Eq. (3.17) that is needed
to see an actual outbreak for the epidemic, the results are presented in Fig. 8(b). We see that, as IH
increases the effective R0 needed for an outbreak increases. This phenomenon can be understood
taking into account that İH = βIv

SH
NH
− γIH , and that Iv(0) = 0 so, if IH(0) is big, a greater value

of β is needed to match the decreasing term −γIH and be able to change the decreasing behavior
of IH . One may argue that, as the number of initial infected hosts is increased then the number of
susceptible hosts at t = 0 deviates from being NH and, thus, the expression Eq. (3.18) would be
more suitable. In fact, we have also checked that with the general expression for R0 Eq. (3.18) the
threshold behavior deviates from R′0 = 1 when IH(0) is large. Therefore, we conclude that is the
distance from the disease free equilibrium that causes the deviation, and not the value of SH(0).

A more interesting situation is for the case in which the initial population of vectors, considered all
susceptible at t = 0, is different from its stationary value No

v δ/µ. This analysis accounts for an
scenario in which the vector population has not reached the equilibrium at the beginning of the
dynamics, which in fact, is a biologically relevant situation, as the population of vectors may not
be in the stationary state in general.

(a) (b)

Figure 9: Effect of the initial condition Nv(0). The parameters used are NH = 100, No
v = 1000, µ =

1, γ = 0.7, and α = 3 and the initial conditions IH(0) = 0.001NH , Iv(0) = RH(0) = 0, β has been
varied to obtain each R0 .(a) for δ = 0.5 so βc = 7/150, (b) for δ = 2 so βc = 7/600.

Fig. 9 discusses the effect on the epidemic threshold of the initial condition of the vector population,
Nv(0) = Sv(0), as we assume that they are not infected vectors initially. The quantity R0 that
is plotted represents the ”apparent” value of R0 , because the non-stationary vector population
is altering the location of the threshold. One could write that the real threshold is R∗0 = R0p,
where R0 is calculated using Eq. (3.17) and p is a correction factor accounting for a constant vector
population that the NGM is not accounting properly. With the proper quantity the threshold
should be defined by R∗0 = 1, implying that the apparent R0 is different than 1 if the correction
factor p 6= 1. One can see that the numerically determined threshold, the apparent R0 , coincides
with the theoretical value given by Eq. (3.17) for Nv(0)/Nv(∞) . 1 while it clearly diverges for
large values of this ratio, and this does not change much for the two values of δ/µ represented in
Fig. 9. We can understand better this behavior by looking at the time evolution of the model for
small and large values of Nv(0)/Nv(∞). In turn, Fig. 10, plots the population of the compartments
versus time, for the parameters of Fig. 10 and 2 initial conditions for each of the 2 ratios δ/µ
studied in Fig. 9. For Nv(0) < Nv(∞), Nv(0)/Nv(∞) = 0.5, and for both values of δ/µ we can see
in Fig. 10(a) and Fig. 10(c) that the the population of susceptible vectors starts below and then
converges to the asymptotic value, No

v δ/µ . The fact that the apparent R0 in Fig. 9 is 1 can only
be interpreted recognizing that the location of the threshold is determined by the largest value of
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Nv(t), namely the asymptotic value δ/µNo
v , that is the largest value that Sv(t) can take, and R0 = 1

(cf. Fig. 9). Then, the epidemic threshold is determined by the asymptotic value, that enters in
Eq. (3.17), that is the largest possible value that Sv can take. In turn, the situation is different
in the case that No

v /Nv(∞) is large enough. From Fig. 10(b) and Fig. 10(d), Nv(0)/Nv(∞) = 4,
we can see for a substantial time, Sv is larger than the asymptotic value. This implies that the
epidemic threshold can no longer be determined by δ/µNo

v as it appears in Eq. (3.17). However, R∗o
appears not be determined by the largest value, Sv(0), that is 4 times the asymptotic value in these
examples, as the observed value at the threshold is R0 ≈ 0.52, what implies that the correction
factor p ≈ 1/0.52 = 1.92, not 4 that is the ratio of Sv(0) to the asymptotic value. So, it appears
that p is determined by a suitable average of Sv(t) for Nv(0)/Nv(∞) & 1. The lack of a suitable
theoretical approach to the determination of the epidemic threshold of the time-varying vector
population does not allow a full understanding of the observed asymmetry in these 2 cases. We
remark that the transition between these 2 observed behaviors, the apparent value of R0 = 1 for
Nv(0)/Nv(∞) small and large, does not occur when this ratio is 1, but between 1 and 2, and this
cannot be explained because we lack a proper theoretical analysis of the epidemic threshold.

(a) (b)

(c) (d)

Figure 10: Effect of the initial condition Nv(0). The parameters used are the same than Fig. 9
with β = 0.23. (a) for δ/µ = 2, Nv(0)/Nv(∞) = 0.5. (b) for δ/µ = 2, Nv(0)/Nv(∞) = 4. (c) for
δ/µ = 0.5, Nv(0)/Nv(∞) = 0.5. (d) for δ/µ = 0.5, Nv(0)/Nv(∞) = 4.

By means of the previous discussion we have studied the validity region of R0 with respect of the
initial conditions of the system. We have seen that the basic reproduction number obtained via the
traditional methods of the NGM is not sufficient in all epidemiological situations. Specifically we
have seen that for initial conditions far for the stationary state of the system R0 fails to predict the
threshold behavior. This results are in line with the discussion presenting in Section 3.3.3, following
[25], stating that a generalization of the method to compute R0 is needed for the cases in which
the vector population is not in the stationary state for t = 0.

21



4 NUMERICAL STUDY OF THE MODEL

Finally, we present an analysis of the time scale approximation done in Eq. (3.23) to reduce the
dimensionality of the system. To do so, we perform a comparative analysis between the results
obtained by numerically solving the complete system Eq. (3.5) and the approximated one for
distinct values of µ. We perform this analysis for two values of R0 = 2.5, 0.75, above and below
threshold respectively, and for different values of δ/µ.

As it can be seen in both Fig. 11 and Fig. 13 the approximated and the exact system give very
similar results, both above and below the threshold, in the region of validity of the approximation,
i. e. when 1/µ→ 0 . In Fig. 12 we verify that these results are consistent for different ratios of
δ/mu: δ = 100 = µ and δ = 150 > µ for µ = 100.

Moreover, from Fig. 13 one can see that for cases below threshold the approximation also works
quite well even for smaller values of µ, so 1/µ→ 0 is not quite fulfilled. However, in this case, as
the system is below threshold, what happens is that İv ≈ 0 and thus, the relation Eq. (3.20) is
still fulfilled. Another result that can be seen in figures Fig. 11, Fig. 12 and Fig. 13 is that the
approximation works better for larger values of t than at the beginning of the dynamics. This is an
expected result, as discussed in Section 3.3.3, where we have argued that an initial condition of
the system is lost in the approximation and, so, that we expect an initial transient in which the
approximation and the exact system differ.

(a) (b)

(c) (d)

Figure 11: Numerical check of the approximated model reduction for R0 = 2.5, the parameters
used are NH = 100, No

v = 1000, δ = 5, γ = 0.7, α = 0.75µ and the initial conditions Sv(0) =
1000δ/µ, IH(0) = 0.001NH , Iv(0) = RH(0) = 0. (a), (b) and (c) are for µ = 0.4, 10 and 100 thus
β = 0.01867, 0.4667 and 4.667 respectively. The solid line represents the exact model and the dashed
line represents the approximated 2-D model. In (d) the mean error between the approximate and
exact solutions for increasing µ.
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(a) (b)

Figure 12: Numerical check of the approximated model reduction for R0 = 2.5 and µ = 100, the
rest of the parameters are the same than the ones used in Fig. 11 unless the contrary is specified.
(a) for δ = 100 = µ and β = 0.233. (b) for δ = 150 > µ and β = 0.1556.

(a) (b)

(c) (d)

Figure 13: Numerical check of the approximated model reduction for R0 = 0.75, the parameters used
are δ = 5, γ = 0.7, α = 0.75µ and the initial conditions Sv(0) = 1000δ/µ, IH(0) = 0.001NH , Iv(0) =
RH(0) = 0. (a), (b) and (c) are for µ = 0.4, 10 and 100 thus β = 0.0056, 0.14, and 1.4 respectively.
The solid line represents the exact model and the dashed line represents the approximated 2-D
model. In (d) the mean error between the approximate and exact solutions for increasing µ.
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4.2 Particular case δ = 0

The case δ = 0 is an special case as the stationary population of vectors is zero. As we have
discussed in Section 3.4, the computation of R0 , via usual NGM method, does not make sense in
this case, as in the stationary state there is no vector population and the disease cannot spread.
In fact, if we try to apply the expression for the basic reproduction number we obtained for the
general case, Eq. (3.17) it yields that R0 = 0, so there is not threshold for the epidemic. It is so
because, as we have discussed, the disease cannot propagate in the stationary state of the system.
As a consequence, the methods used in this work, based on linear stability analysis with respect
to the the disease free equilibrium state, are not informative of an epidemic outbreak, and other
techniques should be used to analyze this case. In Fig. 14 we present two different realizations of
the model, one with an outbreak and another one without, illustrating the fact that, there can be
epidemic outbreaks in this case. The parameter values used being:

NH = 100, Sv(0) = 1000, IH(0) = 0.001NH , Iv(0) = RH(0) = 0, µ = 4,

γ = 0.7, α = 0.75µ and δ = 0
(4.3)

with β = 0.15, 5 respectively.

(a) (b)

Figure 14: Different realizations for the case in which δ = 0. The insets focus on the initial evolution
of the IH and Iv compartment. The parameters used are: NH = 100, No

v = 1000, IH(0) =
0.001NH , Iv(0) = RH(0) = 0, Sv(0) = No

v , µ = 4, γ = 0.7, α = 0.75µ and δ = 0.

For the case δ = 0 it has been also derived an exact reduction to a 2D model Eq. (3.29). In Fig. 15
different realizations are presented, for the same values of β than Fig. 14 . We see that there is
good agreement between the complete system and the reduced one. The good agreement between
the curves computed with the exact system and the ones computed with the reduced one implies
the conservation of the quantity C, so Fig. 15 is also a validation of this conserved quantity.
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(a) (b)

Figure 15: Different realizations for the numerical check of the exact 2-D reduction the case in
which δ = 0. The solid line represents the exact model and the dashed line represents the reduced
exact 2-D model. The parameters used are the same than in Fig. 14.
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5 CONCLUSIONS

5 Conclusions

In this work, we aimed to study the disease caused by the bacterium Xylella fastidiosa in the
almond trees of Majorca. The analysis has been done by means of the mathematical framework of
compartmental models, and a model has been proposed and analyzed, both from an analytical and
computational point of view.

We have presented a five dimensional model of differential equations, coupling hosts and vectors.
We have considered that the hosts could be susceptible, infective and removed, while for the vectors
two states have been considered, susceptible and infective. Moreover, the host population has been
taken as constant while birth and death of vectors has been assumed. For this model, the basic
reproduction number has been computed. We have argued that the validity of this expression only
near the disease free equilibrium of the system, when the number of hosts has reached its stationary
value. We have discussed that the presented methods to compute R0 suppose an existence of
an stable disease free equilibrium, DFE, and the proximity of the system to such state. Yet,
the assumption of the existence of such equilibrium to determine the stability properties of any
epidemiological situation may not be sufficient in all scenarios, as noted in [26]. In particular, in
vector-borne diseases with seasonal population of vectors, a generalization of R0 is needed to tackle
the problem, as the vector population is not in equilibrium even in the disease free state [27].

Next, we have discussed reductions of the dimensionality of the system to a reduced model accounting
only for the hosts. This reductions have been done via a fast-slow approximation for the general
case, and through a conserved quantity, that has been derived and used for the reduction, in the
particular case in which δ = 0. Remarkably, this reduced model resembles a SIR model for the
hosts with time dependent coefficients. This reduction is experimentally relevant because in it only
appears the epidemiological state of the hosts. Then, having a reduced system for the hosts, would
enable an easier comparison with experimental data, as typically the state of the vectors is more
difficult to access.

Finally, we have performed a numerical analysis of the model presented, and we have seen that the
results are in agreement with the ones expected from the analytical analysis. Moreover, we have
also showed numerically the limitation of R0 when dealing with epidemiological situations that
are not near the DFE. In particular, we have seen that an initial population of vectors larger than
the stationary value No

v δ/µ leads to an smaller value of R0 and finally, for the case δ = 0, we have
numerically seen that there can be outbreak even if the basic reproduction number does not predict
it.

A more in depth future analysis may incorporate the vector seasonality via repetitions of one year
annual cycle. For this model climatic effects need to be also incorporated in such model as the
population of vectors at the beginning of those cycles depends on it. Moreover, as we have discussed
along this work, a generalization of a method to compute R0 will be needed to tackle this situation,
as by definition of the model, the vector population would not be in a stationary state, and so
the standard NGM method does not provide the framework to predict the threshold behavior of
the system in those cases. The generalization of the method to compute R0 would also provide a
basis to compare with experimental data, as given the seasonal characteristics of the vector, the
population in the field is not in a stationary state.
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A Next-Generation Matrix Method

We introduce the method of the NGM following Chapter 5.3 of [14] that allows to study the cases
in which a DFE can be defined. Given a compartmental model for a disease transmission, assume
that there are n infected compartments and m non infected compartments, being n+m the total
number of independent variables. Let x ∈ Rn be the vector of infected variables and y ∈ Rm be the
vector of variables in the non infected compartments. Lets arrange the equations in the original
system so that the first n compartments of the ODE correspond to the infected compartments,
then: {

ẋi = fi(x, y), i = 1, · · · , n
ẏj = gj(x, y), j = 1, · · · ,m

(A.1)

Next, assume that the right hand side in the infected compartments can be split in the following
way: {

ẋi = Fi(x, y)−Vi(x, y), i = 1, · · · , n
ẏj = gj(x, y), j = 1, · · · ,m

(A.2)

where Fi(x, y) is the rate of appearance of new infections in compartment i and Vi(x, y) incorporates
the remaining transitional terms, such as births, deaths, disease progression, and recovery. Note
that the decomposition into infected and non infected compartments and the splitting into F and
V may not be unique, as it depends on the interpretation of the disease process of the model.
This gives rise to different expressions for the NGM and therefore, different expressions of R0 as
discussed in Section 2.2. Nevertheless, all decompositions must satisfy the following properties:

� Fi(0, y) = 0 and Vi(0, y) = 0 for y ≥ 0 and i = 1, · · · , n. The first condition imposes that
all new infections are secondary infections arising from infected hosts. The second condition
states that there is no immigration of susceptible individuals into the disease compartments.

� Fi(x, y) ≥ 0 ∀x, y ≥ 0.

� vi(x, y) ≤ 0 ∀xi = 0, i = 1, · · · , n. When the compartment is empty the net flow in the
compartment needs to be inflow.

�

∑n
i=1 vi(x, y) ≥ 0 ∀x, y ≥ 0. The total outflowof all infected compartments is positive.

Lets assume that the disease-free system:

ẏj = gj(0, y) (A.3)

has an unique DFE E0 = (0, y0) which is a local asymptotically stable solution for initial conditions
of the form (0, y), which approach (0, y0) as t→∞. Then, define the matrices F and V as:

F =

[
∂Fi(0, y0)

∂xj

]
and V =

[
∂Vi(0, y0)

∂xj

]
(A.4)

Both matrices F and V appear from the linearization of the system around the DFE. The linearizated
system for the infected compartments is then:

ẋj = (F − V )x (A.5)

Finally the NGM is defined as:

K = FV −1 (A.6)

being the basic reproduction number R0 its spectral radius.
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HOST-VECTOR-HOST AS A TWO STEP PROCESS

B Computation of R0 considering the transmission from
host-vector-host as a two step process

Along this work we have considered the transmission from host-vector-host to be a one step process
following [16]. In Section 2.2 we have state that in the case of considering the transmission from
host-vector-host as a two step process, the expression for R0 will be different, however the threshold
value would be the same. Here we illustrate the case in which a two step process is considered. In
this case, the transmission matrix F is:

F =

 0 β

α
Nov
NH

δ
µ 0

 (B.1)

and the transition part V :

V =

γ 0

0 µ

 (B.2)

Thus:

V −1 =

 1
γ 0

0 1
µ

 (B.3)

Therefore, the next generation matrix:

K ≡ FV −1 =

 0 β

α
γ
Nov
NH

δ
µ 0

 (B.4)

The with its spectral radius being:

det(K − σI) = 0 =⇒

 −σ β
µ

α
γ
Nov
NH

δ
µ −σ

 = σ2 − βα

γµ

No
v

NH

δ

µ
= 0 =⇒

σ = ±

√
βα

γµ

No
v

NH

δ

µ
(B.5)

R0 =

√
βα

γµ

No
v

NH

δ

µ
(B.6)

Then, as expected, the expression for R0 is different because a different interpretation of the
disease process has been used, but regardless the same threshold than Eq. (3.17) is recovered. For
βα
γµ

Nov
NH

δ
µ > 1 there will be initial exponential growth, and for βα

γµ
Nov
NH

δ
µ < 1 the epidemic will die

out. However, the value of the theoretical growth rate, R0 , depends on whether one considers
the spread from host to vector to host a one or two step process. Interestingly, in this approach
one can interpret the two nonzero entries of the NGM K as the host transmission reproduction

number RH = β
µ and the vector transmission reproduction number Rv = α

γ
Nov
NH

δ
µ . The first, RH ,

accounting for the number of secondary infections of vectors when placing one infected host in an
population of susceptible vectors, and similarly the second, Rv, accounting for the infected hosts
produced by placing an infected vector in a population of susceptible hosts.

28



REFERENCES

References

[1] E. Moralejo et al., “Phylogenetic inference enables reconstruction of a long-overlooked outbreak
of almond leaf scorch disease (Xylella fastidiosa) in Europe,” Communications Biology, vol. 3,
no. 1, p. 560, 2020.

[2] L. L. R. Marques, H. Ceri, G. P. Manfio, D. M. Reid, and M. E. Olson, “Characterization of
biofilm formation by Xylella fastidiosa in vitro,” Plant Disease, vol. 86, no. 6, pp. 633–638,
2002.

[3] M. Brunetti, V. Capasso, M. Montagna, and E. Venturino, “A mathematical model for Xylella
fastidiosa epidemics in the mediterranean regions. promoting good agronomic practices for
their effective control.,” Ecological Modelling, vol. 432, p. 109204, 2020.

[4] R. P. P. Almeida, L. De La Fuente, R. Koebnik, J. R. S. Lopes, S. Parnell, and H. Scherm,
“Addressing the new global threat of Xylella fastidiosa,” Phytopathology, vol. 109, no. 2,
pp. 172–174, 2019.

[5] M. Jeger and C. Bragard, “The epidemiology of Xylella fastidiosa; a perspective on current
knowledge and framework to investigate plant host–vector–pathogen interactions,” Phytopathol-
ogy, vol. 109, no. 2, pp. 200–209, 2019.

[6] M. Nicoletti, Insect-Borne Diseases in the 21st Century, ch. Three scenarios in insect-borne
diseases, pp. 99–251. Academic Press, 2020.

[7] EFSA, “Update of the Xylella spp. host plant database,” EFSA Journal, vol. 16, no. 9,
p. e05408, 2018.

[8] P. Baldi and N. La Porta, “Xylella fastidiosa: Host range and advance in molecular identification
techniques,” Frontiers in Plant Science, vol. 8, p. 944, 2017.

[9] EFSA, “Update of the scientific opinion on the risks to plant health posed by Xylella fastidiosa
in the EU territory,” EFSA Journal, vol. 17, no. 5, p. e05665, 2019.

[10] D. Cornara, D. Bosco, and A. Fereres, “Philaenus spumarius: when an old acquaintance
becomes a new threat to European agriculture,” Journal of Pest Science, vol. 91, no. 3,
pp. 957–972, 2018.

[11] D. Cornara, M. Marra, M. Morente, E. Garzo, A. Moreno, M. Saponari, and A. Fereres,
“Feeding behavior in relation to spittlebug transmission of Xylella fastidiosa,” Journal of Pest
Science, vol. 93, no. 4, pp. 1197–1213, 2020.

[12] C. Lago, E. Garzo, A. Moreno, L. Barrios, A. Mart́ı-Campoy, F. Rodŕıguez-Ballester, and
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