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A B S T R A C T

We present a new term-structure model for commodity futures prices based on Trolle and Schwartz (2009),
which we extend by incorporating multiple jump processes. Our work explores the valuation of plain vanilla
options on futures prices when the spot price follows a log-normal process, the forward cost of carry curve and
the volatility are stochastic variables, and the spot price and the forward cost of carry allow for time-dampening
jumps. We obtain an analytical representation of the characteristic function of the futures prices and, hence,
also for plain vanilla option prices using the fast Fourier transform methodology. We price options on WTI
crude oil futures contracts using our model and extant models. We obtain higher accuracy than earlier models
and save significantly in computing time.
1. Introduction

To obtain accurate estimates of the convenience yield of each
commodity, it is crucial to adopt a futures pricing model that is capable
of matching the different shapes of the term-structure of commodity
futures and can explain a large part of their fluctuations.

There are two major approaches to describe the futures price dy-
namics for pricing options on commodities, spot models and term-
structure models. The spot-based approach relies on specifying the
dynamics of a limited set of state variables and deriving futures prices
endogenously. According to Schwartz (1997), a single-factor model is
not suitable for accurately explaining the variations in futures prices
(see, e.g., Brennan and Schwartz (1985)). The inclusion of a sec-
ond state variable (the convenience yield) substantially enhances the
model performance and the model is capable of better describing the
forward curve. Typically, two-factor models (see, e.g., Gibson and
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1 Endogenous conditions are imposed on the drift of the futures price process so that it matches the forward curve.

Schwartz (1990), Brennan (1991) and Schwartz (1997)) let the price
of a futures contract depend on the specific dynamics of the spot price
and the convenience yield, but they typically assume constant inter-
est rates. Several authors suggest the inclusion of stochastic interest
rates as a third state variable. Such three-factor models are discussed
in Schwartz (1997), Hilliard and Reis (1998), Miltersen and Schwartz
(1998), Cortázar and Schwartz (2003), Nielsen and Schwartz (2004)
and Casassus and Collin-Dufresne (2005), among others. Richter and
Sørensen (2002), in a model focused on agricultural products, explicitly
allow for stochastic volatility. Yan (2002) presents a four-factor model
which also allows for stochastic volatility, additionally it allows for
jumps in the spot price returns and in the volatility.

The term-structure approach relies on specifying the evolution of
the futures curve directly, taking the current market futures prices
as given. The futures price is the risk-neutral expectation, conditional
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on the information of the future spot price available at a given time.
Within this approach, models have been focused mostly on determin-
istic volatility functions, but with a major drawback: they produce flat
implied volatility surfaces with respect to strike and time to maturity
while we observe smile- and skew-shaped surfaces in the market. The
inclusion of stochastic volatility allows us to calibrate the model to
option volatility smiles and skews, typically seen in option markets.
Models that assume deterministic volatilities are discussed in Reisman
(1991), Cortázar and Schwartz (1994), Amin et al. (1995), Hilliard and
Reis (1998), Miltersen and Schwartz (1998), Clewlow and Strickland
(1999b,a), Miltersen (2003) and Crosby (2008), among others. Ander-
sen (2010) considers a multi-factor diffusion model based on the Heath
et al. (1992) (HJM hereafter) framework,1 paying careful attention to
the specification of volatility and to issues of seasonality.

There have been two important extensions in the term-structure
literature so far: the inclusion of jumps in the futures dynamics, as
in Crosby (2008), and the adaptation of the volatility to be stochastic,
as in Trolle and Schwartz (2009) and Trolle (2014). Trolle and Schwartz
(2009) is specified under the risk-neutral probability measure and it
is based on the HJM framework. Commodity futures prices are driven
by two stochastic factors, the spot price and the forward cost of
carry curve. They are original in presenting a new stochastic volatility
HJM-type model for pricing commodity options. In their three-factor
formulation SV1, the volatility of the spot price and that of the cost of
carry curve may depend on one volatility factor, whereas in their four-
factor general formulation SV2gen, option prices are driven by a short-
and a long-term volatility. The advantage of working in an HJM setting
is that, as Trolle and Schwartz (2009) point out, unspanned stochastic
volatility (USV hereafter) arises naturally. An analytical representation
of the characteristic function of the futures price is derived for the
computation of standard European options using Fourier transforms.
They compute options numerically.

Jumps in the spot price abound in the literature (see, e.g., Merton
(1976), Bates (1996) and Trolle (2014)), as do models that present
jumps in the variance process (e.g., Duffie et al. (2000) proposes the
SVJJ model which extends Bates (1996) by the addition of exponential
jumps in the variance). In the scope of commodity models, however,
jumps in the cost of carry have scarcely (if ever) been up to date in the
literature. Implicitly, they exist in Crosby (2008).2

In this work we present a novel term-structure commodity model
which is based on the model of Trolle and Schwartz (2009)-SV1. It
presents jumps in those factors that affect the futures price, that is,
the spot price and the forward cost of carry curve; this idea is inspired
by Crosby (2008). We derive an analytical representation of the char-
acteristic function of futures prices, and compute standard European
options analytically using the fast Fourier transform algorithm.

The remainder of this article is structured as follows: in Section 2
we present a new three-factor model specification that allows for jumps
and describe how to price plain vanilla options on futures contracts; in
Section 3 we present an alternative characterisation of the parameters
or set-up of our model; in Section 4 we describe the market data set we
use and the estimation method; in Section 5 we discuss the values of
the calibrated parameters and the pricing performance; and in Section 6
we present our conclusions and ideas for further research.

2. A new three-factor model for futures prices on commodities

Let 𝑆𝑡 denote the time-𝑡 spot price of the commodity, and let 𝑦(𝑡, 𝑇 )
denote the time-𝑡 instantaneous forward cost of carry that matures at
time 𝑇 , with 𝑦(𝑡, 𝑡) = 𝑦𝑡 the time-𝑡 instantaneous spot cost of carry.

2 Jumps enter the specification in equal number as futures contracts are
onsidered. Jumps do not enter directly into the spot or cost of carry dy-
amics, but in the futures dynamics. This model is of the HJM-type but with
eterministic volatility.
2

We model the evolution of the entire futures curve by specifying one
process for 𝑆𝑡 and another for 𝑦(𝑡, 𝑇 ). Also, let 𝑣𝑡 denote the instanta-
neous variance, which follows a mean-reverting process as in Cox et al.
(1985).

Trolle and Schwartz (2009) extends the existing framework to ac-
commodate USV, which we also incorporate in our model. In this work,
we introduce simultaneous jumps in 𝑆𝑡 returns and in 𝑦(𝑡, 𝑇 ), which are
uncorrelated with any standard Wiener process present in the equations
that describe the factors dynamics.

2.1. The model under the risk-neutral measure Q

Consider the following three-factor model. Let (𝛺,  , Q) be a
robability space on which three Brownian motion processes, 𝑊 𝑆

𝑡 ,𝑊
𝑦
𝑡

nd 𝑊 𝑣
𝑡 , are defined for all 0 ≤ 𝑡 ≤ 𝑇 . On the same probability

pace, a Poisson process, 𝑁𝑡, is also defined for all 0 ≤ 𝑡 ≤ 𝑇 , with
constant intensity parameter 𝜆 > 0. Furthermore, we know that 𝑁𝑡 is

ndependent of all Brownian motion processes, 𝑊 𝑆
𝑡 ,𝑊

𝑦
𝑡 and 𝑊 𝑣

𝑡 . Let 
e the filtration generated by these Brownian motions. We also define
wo random variables, 𝐽𝑆 and 𝐽𝑦(𝑡, 𝑇 ), which represent the jump sizes
f the Poisson processes in each factor.

The absence of arbitrage implies the existence of a risk-neutral
robability Q under which the drift-adjusted processes followed by
𝑡, 𝑦(𝑡, 𝑇 ) and 𝑣𝑡 are governed by the following dynamics
𝑑𝑆𝑡
𝑆𝑡

=
(

𝑦𝑡 − 𝜆E
Q
𝑡
[

𝑒𝐽𝑆 − 1
]

)

𝑑𝑡 + 𝜎𝑆
√

𝑣𝑡 𝑑𝑊
𝑆
𝑡 +

(

𝑒𝐽𝑆 − 1
)

𝑑𝑁𝑡, (2.1)

𝑦(𝑡, 𝑇 ) =
(

𝜇𝑦(𝑡, 𝑇 ) − 𝜆E
Q
𝑡
[

𝐽𝑦(𝑡, 𝑇 )
]

)

𝑑𝑡

+ 𝜎𝑦(𝑡, 𝑇 )
√

𝑣𝑡 𝑑𝑊
𝑦
𝑡 + 𝐽𝑦(𝑡, 𝑇 ) 𝑑𝑁𝑡, (2.2)

𝑑𝑣𝑡 = 𝜅
(

𝜃 − 𝑣𝑡
)

𝑑𝑡 + 𝜎𝑣
√

𝑣𝑡 𝑑𝑊
𝑣
𝑡 , (2.3)

llowing 𝑊 𝑆
𝑡 ,𝑊

𝑦
𝑡 and 𝑊 𝑣

𝑡 to be correlated with 𝜌𝑆𝑦, 𝜌𝑆𝑣 and 𝜌𝑦𝑣, which
enote pairwise correlations. The dynamics in (2.1)–(2.3) can also be
xpressed in an array form

⎛

⎜

⎜

⎜

⎝

𝑆𝑡
𝑦(𝑡, 𝑇 )

𝑣𝑡

⎞

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎝

(

𝑦𝑡 − 𝜆E
Q
𝑡
[

𝑒𝐽𝑆 − 1
]

)

𝑆𝑡

𝜇𝑦(𝑡, 𝑇 ) − 𝜆E
Q
𝑡
[

𝐽𝑦(𝑡, 𝑇 )
]

𝜅(𝜃 − 𝑣𝑡)

⎞

⎟

⎟

⎟

⎠

𝑑𝑡

+
√

𝑣𝑡

⎛

⎜

⎜

⎜

⎝

𝜎𝑆𝑆𝑡 0 0

0 𝜎𝑦(𝑡, 𝑇 ) 0

0 0 𝜎𝑣

⎞

⎟

⎟

⎟

⎠

𝑑

⎛

⎜

⎜

⎜

⎝

𝑊 𝑆
𝑡

𝑊 𝑦
𝑡

𝑊 𝑣
𝑡

⎞

⎟

⎟

⎟

⎠

+

⎛

⎜

⎜

⎜

⎝

(

𝑒𝐽𝑆 − 1
)

𝑆𝑡
𝐽𝑦(𝑡, 𝑇 )

0

⎞

⎟

⎟

⎟

⎠

𝑑𝑁𝑡.

The forward cost of carry is defined by the difference between
the forward interest rate and the forward convenience yield. Our
model could be extended with separate processes. Notwithstanding,
and as Trolle and Schwartz (2009) indicate, ‘‘for pricing most com-
modity futures contracts, this extension is of minor importance. Fur-
thermore, for pricing short-term or medium-term options on most
commodity futures, the pricing error that arises from not explicitly
modelling stochastic interest rates is negligible — since the volatility
of interest rates is typically orders of magnitudes smaller than the
volatility of futures returns, and the correlation between interest rates
and futures returns tends to be very low.’’

Intuitively, the long-term forward cost of carry rates should be
less volatile than the short-term ones. Following Trolle and Schwartz
(2009), this requirement is satisfied using the following exponentially-
dampened specification for the volatility of the forward cost of carry
curve3

𝜎𝑦(𝑡, 𝑇 ) ≡ 𝛼𝑒−𝛾(𝑇−𝑡), with 𝛼, 𝛾 > 0. (2.4)

3 With this specification, the parameters 𝜎𝑆 , 𝛼, 𝜃 and 𝜎𝑣 are not simultane-
usly identified. Trolle and Schwartz (2009) normalise 𝜂 = 𝜅𝜃 to one to achieve

identification whereas we, seeking the same objective and inspired by Heston
(1993) and Bates (1996), decide to set 𝜎 to one instead.
𝑆
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The specification followed by the dynamics of the variance 𝑣𝑡 guar-
antees the positiveness of the volatility factor at all times only if the
Feller condition is met.4

2.1.1. Jump specifications
The jump component will affect mainly the tails of the distribution

of futures returns. We assume that the intensity of the jumps 𝜆 is
constant. We consider the following cases to specify the nature of jump
sizes:

• Jumps in 𝑆𝑡 are as in Merton (1976)
Jump assumption (𝑎1): We assume that 𝐽𝑆 ∼  (𝜇𝐽𝑆 , 𝜎

2
𝐽𝑆
)

with 𝜎𝐽𝑆 ≥ 0, that is, jumps in 𝑆𝑡 are i.i.d. random variables over
time.

Jump assumption (𝑎2): Jumps in 𝑆𝑡 are constant in mag-
nitude, 𝐽𝑆 ≡ 𝜇𝐽𝑆 , which is equivalent to imposing 𝜎𝐽𝑆 = 0 in
jump assumption (𝑎1). This can be seen as an special case of jump
assumption (𝑏2).

• Jumps in 𝑦(𝑡, 𝑇 ) are as in Crosby (2008)

𝐽𝑦(𝑡, 𝑇 ) ≡ 𝑎𝑒−𝑏(𝑇−𝑡), (2.5)

Jump assumption (𝑏1): We assume that jumps in 𝑦(𝑡, 𝑇 ) are
as in Merton (1976). The jump amplitude parameter 𝑎 is assumed
to be an i.i.d. random variable over time, the distribution of which
is defined with respect to Q, satisfying −∞ < 𝑎 < ∞, all of
which are independent of the Brownian motions and the Poisson
processes. With this, we allow the mean jump to be positive or
negative. In this case, the jump-decay parameter 𝑏 is assumed
to be identically equal to zero (i.e., 𝑏 ≡ 0). We assume that
𝐽𝑦(𝑡, 𝑇 ) ∼  (𝜇𝐽𝑌 , 𝜎

2
𝐽𝑌
) with 𝜎𝐽𝑌 ≥ 0.

Jump assumption (𝑏2): We assume that jumps in 𝑦(𝑡, 𝑇 )
present an exponentially-dampened functional form. The jump
amplitude parameter 𝑎 is assumed to be a finite constant and
the jump-decay parameter 𝑏 is assumed to be any non-negative
number. 𝑎 determines the size of the jump conditional on a jump
in 𝑁𝑡, whereas 𝑏 controls, when jumps occur, how much less
long-dated futures contracts jump relative to short-dated futures
contracts.

• There can also be a combination of the jumps presented above
occurring simultaneously, with the parameters and conditions as
previously described (we do not consider mixed jump types):

Jump assumption (1): We assume i.i.d. jumps in 𝑆𝑡 and in
𝑦(𝑡, 𝑇 ).

Jump assumption (2): We assume jumps of constant mag-
nitude in 𝑆𝑡 and an exponentially-dampened functional form for
jumps in 𝑦(𝑡, 𝑇 ).

heir corresponding expressions for expected values and transforms are
epresented in Table 5.

.1.2. Futures dynamics
Let 𝐹 (𝑡, 𝑇 ) denote the time-𝑡 price of a futures contract that matures

at time 𝑇 . By definition, we have

𝐹 (𝑡, 𝑇 ) ≡ 𝑆𝑡𝑒
∫ 𝑇𝑡 𝑦(𝑡,𝑢)𝑑𝑢 = 𝑆𝑡𝑒

𝑌 (𝑡,𝑇 ). (2.6)

In the absence of arbitrage opportunities, the process followed by
𝐹 (𝑡, 𝑇 ) must be a martingale5 under Q, Duffie (2001). As such, we
obtain the following condition for the drift of the forward cost of carry
process:

4 In Heston (1993), the parameters obey that 2𝜅𝜃 > 𝜎𝑣, which is when the
alues of 𝑣𝑡 are strictly positive. We also consider this restriction is met in Bates
1996), Trolle and Schwartz (2009), Trolle (2014) and in our model.

5 In this paper, we assume that stochastic processes with zero drift are true
artingales and are not merely local martingales. Our assumptions concerning

umps pose no additional issues, in this regard, since we assume that jumps
izes are constant or normally distributed (as in Merton (1976)). There are
3

otential issues concerning our use of Heston (1993) stochastic volatility — s
roposition 1. The absence of arbitrage implies that the drift term in Eq.
2.2) is given by

𝑦(𝑡, 𝑇 ) = −𝑣𝑡𝜎𝑦(𝑡, 𝑇 )
(

𝜎𝑌 (𝑡, 𝑇 ) + 𝜎𝑆𝜌𝑆𝑦
)

+ 𝜆EQ
𝑡

[

(

𝑒𝐽𝑆 + 𝐽𝑦(𝑡, 𝑇 ) − 1
)

−
(

𝑒𝐽𝑆+𝐽𝑦(𝑡,𝑇 ) − 1
)

]

, (2.7)

here

𝑌 (𝑡, 𝑇 ) ≡ ∫

𝑇

𝑡
𝜎𝑦(𝑡, 𝑢)𝑑𝑢 =

𝛼
𝛾
(

1 − 𝑒−𝛾(𝑇−𝑡)
)

. (2.8)

Proof. See Appendix A.1 for proof. ■

Despite the existence of jumps, this condition is analogous to the
drift condition in forward interest rate term-structure models such
as Heath et al. (1992).

From applying Itô’s Lemma for jump diffusion processes (see Cont
and Tankov (2003, Sec. 8.3.2)) to (2.6), given (2.7) and setting the drift
to zero, it follows that the dynamics of 𝐹 (𝑡, 𝑇 ) are given by
𝑑𝐹 (𝑡, 𝑇 )
𝐹 (𝑡, 𝑇 )

=
√

𝑣𝑡
(

𝜎𝑆𝑑𝑊
𝑆
𝑡 + 𝜎𝑌 (𝑡, 𝑇 )𝑑𝑊

𝑦
𝑡

)

− 𝜆EQ
𝑡
[

𝑒𝐽𝑆+𝐽𝑌 (𝑡,𝑇 ) − 1
]

𝑑𝑡

+
(

𝑒𝐽𝑆+𝐽𝑌 (𝑡,𝑇 ) − 1
)

𝑑𝑁𝑡, (2.9)

here

𝑌 (𝑡, 𝑇 ) ≡ ∫

𝑇

𝑡
𝐽𝑦(𝑡, 𝑢)𝑑𝑢 =

𝑎
𝑏
(

1 − 𝑒−𝑏(𝑇−𝑡)
)

. (2.10)

The volatility of the futures prices depends on 𝑣𝑡, a factor driven by
𝑊 𝑣
𝑡 which does not appear in the expression followed by the futures

dynamics (2.9). The volatility risk and the options on futures contracts
cannot be completely hedged by trading in futures contracts alone,
for which reason the model features USV. To the extent that 𝑊 𝑣

𝑡 is
orrelated with 𝑊 𝑆

𝑡 and 𝑊 𝑦
𝑡 , the variance factor contains a spanned

omponent and volatility risk is partly hedgeable. As special cases, if
his correlation is 0, the volatility risk is completely unhedgeable, and
f this correlation is ±1, the volatility risk is completely hedgeable.

In the following proposition, we show that the cost of carry rates
re affine jump–diffusion functions of two state variables, namely 𝜒𝑡
nd 𝜙𝑡, plus the jump-related terms; the log-futures prices 𝑓 (𝑡, 𝑇 ) ≡
n𝐹 (𝑡, 𝑇 ) are also affine jump–diffusion functions of the same variables
nd terms, plus the log-spot prices 𝑠𝑡 ≡ ln𝑆𝑡:

roposition 2. The forward and the instantaneous cost of carry rates and
og-futures prices are given by

𝑦(𝑡, 𝑇 ) = 𝑦(0, 𝑇 ) − 𝜆∫

𝑡

0
𝐸Q
𝑢
[

𝐽𝑦(𝑢, 𝑇 )
]

𝑑𝑢 + ∫

𝑡

0
𝐽𝑦(𝑢, 𝑇 )𝑑𝑁𝑢 + 𝜎𝑦(𝑡, 𝑇 )𝜒𝑡

+
𝜎2𝑦 (𝑡, 𝑇 )

𝛼
𝜙𝑡, (2.11)

𝑦𝑡 = 𝑦(0, 𝑡) − 𝜆∫

𝑡

0
𝐸Q
𝑢
[

𝐽𝑦(𝑢, 𝑡)
]

𝑑𝑢 + ∫

𝑡

0
𝐽𝑦(𝑢, 𝑡)𝑑𝑁𝑢 + 𝛼

(

𝜒𝑡 + 𝜙𝑡
)

.

(2.12)

(𝑡, 𝑇 ) = 𝑠𝑡 + 𝑓 (0, 𝑇 ) − 𝑓 (0, 𝑡) + 𝜎𝑌 (𝑡, 𝑇 )𝜒𝑡 +
𝜎̂𝑌 (𝑡, 𝑇 )

𝛼
𝜙𝑡

+ ∫

𝑡

0

(

𝑦𝑢 −
𝜎2𝑆
2
𝑣𝑢
)

𝑑𝑢 + 𝜎𝑆 ∫

𝑡

0

√

𝑣𝑢𝑑𝑊
𝑆
𝑢

− 𝜆∫

𝑡

0
𝐸Q
𝑢
[

𝑒𝐽𝑆 + 𝐽𝑌 (𝑢, 𝑇 ) − 1
]

𝑑𝑢 + ∫

𝑡

0

(

𝐽𝑆 + 𝐽𝑌 (𝑢, 𝑇 )
)

𝑑𝑁𝑢.

(2.13)

ith 𝜎̂𝑌 (𝑡, 𝑇 ) as in (A.19), the dynamics for 𝑓 (𝑡, 𝑇 ), 𝜒𝑡 and 𝜙𝑡 as in
A.8),(A.13) and (A.14).

issues that are also present in Trolle and Schwartz (2009). For the regularity
conditions required for the futures price to be a (true) martingale, under Q,
ee Theorems 3.5 and 3.6 of Wong and Heyde (2006).
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Proof. See Appendix A.2 for proof. ■

In the following proposition we present the expressions followed by
he futures and spot prices:

roposition 3. With 𝑦𝑢 as in (2.12), the expressions followed by the spot
and futures prices are given by

𝐹 (𝑡, 𝑇 ) = 𝐹 (0, 𝑇 ) exp
{

∫

𝑡

0

(

√

𝑣𝑢
(

𝜎𝑆𝑑𝑊
𝑆
𝑢 + 𝜎𝑌 (𝑢, 𝑇 )𝑑𝑊 𝑦

𝑢

)

−
𝑣𝑢
2

(

𝜎𝑆𝑑𝑊
𝑆
𝑢 + 𝜎𝑌 (𝑢, 𝑇 )𝑑𝑊 𝑦

𝑢

)2
)}

exp
{

−𝜆∫

𝑡

0
𝐸Q
𝑢
[

𝑒𝐽𝑆 + 𝐽𝑌 (𝑢, 𝑇 ) − 1
]

𝑑𝑢

+∫

𝑡

0

(

𝑒𝐽𝑆+𝐽𝑌 (𝑢,𝑇 ) − 1
)

𝑑𝑁𝑢

}

, (2.14)

𝑆𝑡 = 𝑆0 exp

{

∫

𝑡

0

(

𝑦𝑢 −
𝜎2𝑆
2
𝑣𝑢 − 𝜆𝐸Q

𝑢
[

𝑒𝐽𝑆 − 1
]

)

𝑑𝑢

+𝜎𝑆 ∫

𝑡

0

√

𝑣𝑢𝑑𝑊
𝑆
𝑢 + 𝐽𝑆 ∫

𝑡

0
𝑑𝑁𝑢

}

, (2.15)

Proof. See Appendix A.3 for proof. ■

2.2. Deriving the characteristic function

As with most exchange-traded products, options on oil expire (𝑇𝑂𝑝𝑡)
lightly before the expiration date of the underlying futures contract
𝑇 ). The Fourier transform for the time-𝑡 standard European option
rice can be expressed in terms of the characteristic function (hereafter
F) 𝜓(𝑖𝑢, 𝑡, 𝑇𝑂𝑝𝑡, 𝑇 ), so it can be obtained by applying the Fourier

nversion theorem. We define 𝜏 ≡ 𝑇𝑂𝑝𝑡 − 𝑡 and the process 𝑓 (𝑇𝑂𝑝𝑡, 𝑇 ) ≡
n𝐹 (𝑇𝑂𝑝𝑡, 𝑇 ) with dynamics as in (A.8). To price options on futures, we
ntroduce the transform

𝑡(𝑖𝑢, 𝑡, 𝑇𝑂𝑝𝑡, 𝑇 ) ≡ EQ
𝑡 [𝑒

𝑖𝑢𝑓 (𝑇𝑂𝑝𝑡 ,𝑇 )], (2.16)

hich has an exponential affine solution as demonstrated in the follow-
ng proposition:

roposition 4. The transform in (2.16) is given by

𝑡(𝑖𝑢, 𝑡, 𝑇𝑂𝑝𝑡, 𝑇 ) = 𝑒𝐴(𝜏)+𝐵(𝜏)𝑣𝑡+𝐶(𝜏)𝜆+𝑖𝑢𝑓 (𝑡,𝑇 ), (2.17)

ith 𝐶(𝜏) the new term connected with the jumps. 𝐴(𝜏), 𝐵(𝜏) and 𝐶(𝜏) solve
he following system of ODEs
𝜕𝐴(𝜏)
𝜕𝜏

= 𝜅𝜃𝐵(𝜏), (2.18)

𝜕𝐵(𝜏)
𝜕𝜏

= 𝑏0 + 𝑏1𝐵(𝜏) + 𝑏2𝐵2(𝜏), (2.19)

𝜕𝐶(𝜏)
𝜕𝜏

= 𝑛𝑎𝑗𝑏𝑗 (𝜏) − 𝑖𝑢 𝑚𝑎𝑗𝑏𝑗 (𝜏), (2.20)

with

𝑏0 = −1
2
(𝑢2 + 𝑖𝑢)

(

𝜎2𝑆 + 𝜎2𝑌 (𝑡, 𝑇 ) + 2𝜌𝑆𝑦𝜎𝑆𝜎𝑌 (𝑡, 𝑇 )
)

,

𝑏1 = −𝜅 + 𝑖𝑢𝜎𝑣
(

𝜌𝑆𝑣𝜎𝑆 + 𝜌𝑦𝑣𝜎𝑌 (𝑡, 𝑇 )
)

,

𝑏2 =
𝜎2𝑣
2
,

(2.21)

subject to the initial conditions 𝐴(0) = 𝐵(0) = 𝐶(0) = 0, for 𝑗 = 1, 2 and
following the jump assumptions in Section 2.1.1. The analytical expressions
followed by the expectation terms (𝑚𝑎1𝑏1 , 𝑚𝑎2𝑏2) and the transform terms
(𝑛𝑎1𝑏1 , 𝑛𝑎2𝑏2) are represented in Table 5.

roof. See Appendix A.4 for proof. ■

The terms 𝐴(𝜏) and 𝐵(𝜏) are defined in Trolle and Schwartz (2009).
4

n a recent work, Sitzia (2018) derives an analytical representation V
ollowed by the transform of the futures prices 𝐹 (𝑡, 𝑇 ) for Trolle and
Schwartz (2009)-SV1 and Trolle (2014). Eqs. (2.18) and (2.19) have
analytical solutions which are given by

𝐴(𝜏) = 2𝜅𝜃
𝜎2𝑣

(

𝛽𝛾𝜏 − 𝜇𝑧 − ln 𝑔(𝑧)
)

+ 𝑘3, (2.22)

(𝜏) =
2𝛾
𝜎2𝑣

(

𝛽 + 𝜇𝑧 + 𝑧
𝑔′(𝑧)
𝑔(𝑧)

)

, (2.23)

here 𝑔(𝑧) is a linear combination of Kummer’s (M) and Tricomi’s (U)
ypergeometric functions. The expressions followed by 𝑔(𝑧), 𝑔′(𝑧), 𝛽, 𝜇
nd 𝑧 can be found in Eqs. (B.4)–(B.7) in Appendix B.1. To match the
nitial condition 𝐴(0) = 0, we have that

3 =
2𝜅𝜃𝜇
𝜎2𝑣𝜔

. (2.24)

The following proposition provides the analytic expression followed
by the term 𝐶(𝜏) in Eq. (2.17):

Proposition 5. Eq. (2.20) has an analytical solution which is given by

𝐶(𝜏) = 𝑛𝐴𝑗𝐵𝑗 (𝜏) − 𝑖𝑢 𝑚𝐴𝑗𝐵𝑗 (𝜏), (2.25)

ubject to the initial condition 𝐶(0) = 0, for 𝑗 = 1, 2 and following the jump
assumptions in Section 2.1.1. The analytical expressions followed by the
expectation terms (𝑚𝐴1𝐵1

, 𝑚𝐴2𝐵2
) and the transform terms (𝑛𝐴1𝐵1

, 𝑛𝐴2𝐵2
)

are represented in Table 5.

The inclusion of jumps in the model does not have any impact on
the computation of the hypergeometric functions, which are part of the
expressions followed by 𝐴(𝜏) and 𝐵(𝜏).

2.2.1. Model sub-specifications
We denote our model by SYSVJ.6 We consider six model sub-

specifications to which we refer with an identifier based on the jump
assumption made, as described in Section 2.1.1:

• SYSVJ𝑎1 : i.i.d. jumps in 𝑆𝑡 — equivalent to Trolle (2014)
• SYSVJ𝑏1 : i.i.d. jumps in 𝑦(𝑡, 𝑇 )
• SYSVJ1: i.i.d. jumps in 𝑆𝑡 and in 𝑦(𝑡, 𝑇 )
• SYSVJ𝑎2 : jumps of constant magnitude in 𝑆𝑡
• SYSVJ𝑏2 : exponentially-dampened jumps in 𝑦(𝑡, 𝑇 )
• SYSVJ2: jumps of constant magnitude in 𝑆𝑡 and exponentially-

dampened jumps in 𝑦(𝑡, 𝑇 )

2.2.2. Nested models
Modelling the futures dynamics using jumps and stochastic volatility

causes the futures prices to have non-Gaussian returns — a stylised fact
in the energy markets. In Table 3 we present the values for the first four
moments of the distribution and we perform the Jarque–Bera normality
test: Table 3a refers to monthly observations, whereas Table 3b refers to
daily observations. We reject the null hypothesis of normality in returns
for each of the labelled contracts M2–Q2, and all the contracts taken
together. This implies that jumps and stochastic volatility are required,
providing skewness and kurtosis to the distribution of returns. Earlier
models did not include dynamics of both kinds.

We consider one-, two- and three-factor models, a mix of spot-
based models such as Merton (1976), Heston (1993) and Bates (1996),
and term-structure models such as Trolle and Schwartz (2009)-SV1
and Trolle (2014). By setting 𝑚𝐵1

, 𝑚𝐵2
, 𝑛𝐵1

and 𝑛𝐵2
to zero in the jump

term 𝐶(𝜏) in (2.25), Trolle (2014) is replicated; by setting the jump
term 𝐶(𝜏) to zero, Trolle and Schwartz (2009)-SV1 is replicated. Further
modifications to 𝐴(𝜏), 𝐵(𝜏) and 𝐶(𝜏) need to be put in place to replicate
he nested models we present.

6 SYSVJ is the acronym for Stochastic cost of carry 𝑌 (𝑡, 𝑇 ), Stochastic
olatility 𝑣 and Jumps.
𝑡
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Table 1
Models dynamics. x
Model Dynamics

Mer76 𝑑𝑆𝑡
𝑆𝑡

=
(

𝑦𝑡 − 𝜆E
Q
𝑡
[

𝑒𝐽𝑆 − 1
])

𝑑𝑡 + 𝜎𝑆𝑑𝑊 𝑆
𝑡 +

(

𝑒𝐽𝑆 − 1
)

𝑑𝑁𝑡

𝑑𝐹 (𝑡,𝑇 )
𝐹 (𝑡,𝑇 ) = −𝜆EQ

𝑡
[

𝑒𝐽𝑆 − 1
]

𝑑𝑡 + 𝜎𝑆𝑑𝑊 𝑆
𝑡 +

(

𝑒𝐽𝑆 − 1
)

𝑑𝑁𝑡

Hes93 𝑑𝑆𝑡
𝑆𝑡

= 𝑦𝑡𝑑𝑡 +
√

𝑣𝑡𝑑𝑊 𝑆
𝑡

𝑑𝑣𝑡 = 𝜅
(

𝜃 − 𝑣𝑡
)

𝑑𝑡 + 𝜎𝑣
√

𝑣𝑡𝑑𝑊 𝑣
𝑡

𝑑𝐹 (𝑡,𝑇 )
𝐹 (𝑡,𝑇 ) =

√

𝑣𝑡𝑑𝑊 𝑆
𝑡

Bat96 𝑑𝑆𝑡
𝑆𝑡

=
(

𝑦𝑡 − 𝜆E
Q
𝑡
[

𝑒𝐽𝑆 − 1
])

𝑑𝑡 +
√

𝑣𝑡𝑑𝑊 𝑆
𝑡 +

(

𝑒𝐽𝑆 − 1
)

𝑑𝑁𝑡

𝑑𝑣𝑡 = 𝜅
(

𝜃 − 𝑣𝑡
)

𝑑𝑡 + 𝜎𝑣
√

𝑣𝑡𝑑𝑊 𝑣
𝑡

𝑑𝐹 (𝑡,𝑇 )
𝐹 (𝑡,𝑇 ) = −𝜆EQ

𝑡
[

𝑒𝐽𝑆 − 1
]

𝑑𝑡 +
√

𝑣𝑡𝑑𝑊 𝑆
𝑡 +

(

𝑒𝐽𝑆 − 1
)

𝑑𝑁𝑡

TS09-SV1 𝑑𝑆𝑡
𝑆𝑡

= 𝑦𝑡𝑑𝑡 + 𝜎𝑆
√

𝑣𝑡𝑑𝑊 𝑆
𝑡

𝑑𝑦(𝑡, 𝑇 ) = 𝜇𝑦(𝑡, 𝑇 )𝑑𝑡 + 𝜎𝑦(𝑡, 𝑇 )
√

𝑣𝑡𝑑𝑊
𝑦
𝑡

𝑑𝑣𝑡 = 𝜅
(

𝜃 − 𝑣𝑡
)

𝑑𝑡 + 𝜎𝑣
√

𝑣𝑡𝑑𝑊 𝑣
𝑡

𝑑𝐹 (𝑡,𝑇 )
𝐹 (𝑡,𝑇 ) =

√

𝑣𝑡
(

𝜎𝑆𝑑𝑊 𝑆
𝑡 + 𝜎𝑌 (𝑡, 𝑇 )𝑑𝑊

𝑦
𝑡
)

TS09-SV1⋆ 𝑑𝐹 (𝑡,𝑇 )
𝐹 (𝑡,𝑇 ) =

√

𝑣𝑡𝜎𝐹 (𝑡, 𝑇 )𝑑𝑊 𝐹
𝑡

Tro14 𝑑𝑆𝑡
𝑆𝑡

=
(

𝑦𝑡 − 𝜆E
Q
𝑡
[

𝑒𝐽𝑆 − 1
])

𝑑𝑡 + 𝜎𝑆
√

𝑣𝑡𝑑𝑊 𝑆
𝑡 +

(

𝑒𝐽𝑆 − 1
)

𝑑𝑁𝑡

𝑑𝑦(𝑡, 𝑇 ) = 𝜇𝑦(𝑡, 𝑇 )𝑑𝑡 + 𝜎𝑦(𝑡, 𝑇 )
√

𝑣𝑡𝑑𝑊
𝑦
𝑡

𝑑𝑣𝑡 = 𝜅
(

𝜃 − 𝑣𝑡
)

𝑑𝑡 + 𝜎𝑣
√

𝑣𝑡𝑑𝑊 𝑣
𝑡

𝑑𝐹 (𝑡,𝑇 )
𝐹 (𝑡,𝑇 ) = −𝜆EQ

𝑡
[

𝑒𝐽𝑆 − 1
]

𝑑𝑡 +
√

𝑣𝑡
(

𝜎𝑆𝑑𝑊 𝑆
𝑡 + 𝜎𝑌 (𝑡, 𝑇 )𝑑𝑊

𝑦
𝑡
)

+
(

𝑒𝐽𝑆 − 1
)

𝑑𝑁𝑡

Tro14⋆ 𝑑𝐹 (𝑡,𝑇 )
𝐹 (𝑡,𝑇 ) = −𝜆EQ

𝑡
[

𝑒𝐽𝑆 − 1
]

𝑑𝑡 +
√

𝑣𝑡𝜎𝐹 (𝑡, 𝑇 )𝑑𝑊 𝐹
𝑡 +

(

𝑒𝐽𝑆 − 1
)

𝑑𝑁𝑡

SYSVJ 𝑑𝑆𝑡
𝑆𝑡

=
(

𝑦𝑡 − 𝜆E
Q
𝑡
[

𝑒𝐽𝑆 − 1
])

𝑑𝑡 + 𝜎𝑆
√

𝑣𝑡 𝑑𝑊 𝑆
𝑡 +

(

𝑒𝐽𝑆 − 1
)

𝑑𝑁𝑡

𝑑𝑦(𝑡, 𝑇 ) =
(

𝜇𝑦(𝑡, 𝑇 ) − 𝜆E
Q
𝑡
[

𝐽𝑦(𝑡, 𝑇 )
])

𝑑𝑡 + 𝜎𝑦(𝑡, 𝑇 )
√

𝑣𝑡 𝑑𝑊
𝑦
𝑡 + 𝐽𝑦(𝑡, 𝑇 ) 𝑑𝑁𝑡

𝑑𝑣𝑡 = 𝜅
(

𝜃 − 𝑣𝑡
)

𝑑𝑡 + 𝜎𝑣
√

𝑣𝑡 𝑑𝑊 𝑣
𝑡

𝑑𝐹 (𝑡,𝑇 )
𝐹 (𝑡,𝑇 ) = −𝜆EQ

𝑡
[

𝑒𝐽𝑆+𝐽𝑌 (𝑡,𝑇 ) − 1
]

𝑑𝑡 +
√

𝑣𝑡
(

𝜎𝑆𝑑𝑊 𝑆
𝑡 + 𝜎𝑌 (𝑡, 𝑇 )𝑑𝑊

𝑦
𝑡
)

+
(

𝑒𝐽𝑆+𝐽𝑌 (𝑡,𝑇 ) − 1
)

𝑑𝑁𝑡

SYSVJ⋆ 𝑑𝐹 (𝑡,𝑇 )
𝐹 (𝑡,𝑇 ) = −𝜆EQ

𝑡
[

𝑒𝐽𝐹 (𝑡,𝑇 ) − 1
]

𝑑𝑡 +
√

𝑣𝑡𝜎𝐹 (𝑡, 𝑇 )𝑑𝑊 𝐹
𝑡 +

(

𝑒𝐽𝐹 (𝑡,𝑇 ) − 1
)

𝑑𝑁𝑡

Notes: This table presents each model dynamics, the last equation refers to its corresponding futures price
dynamics. Those models presenting an alternative characterisation of the parameters (i.e., TS09-SV1, Tro14
and SYSVJ) appear with the superscript ⋆.
To compare different models from a commodity perspective, we
transform the original spot-based specifications and get the corre-
sponding futures prices dynamics. These models were not originally
meant for commodities but rather for equities or exchange rates and
they do not consider a stochastic cost of carry rate. We adapt their
specifications to commodity assets accordingly. We will hereafter refer
to their equivalent term-structure models, though naming them under
the original form. Given (2.16), we present the corresponding Fourier
transforms to the extant models considered:

i/ Merton (1976) or Mer76 hereafter:

𝐴(𝜏)+𝐶(𝜏)𝜆+𝑖𝑢𝑓 (𝑡,𝑇 )
5

𝜓𝑡(𝑖𝑢, 𝑡, 𝑇𝑂𝑝𝑡, 𝑇 ) = 𝑒 . (2.26)
This model extends Black and Scholes (1973) incorporating
jumps in the spot price 𝑆𝑡, where the constant term 𝐴(𝜏) in both
models coincides. The jump-related term 𝐶(𝜏) corresponds to our
jump assumption (𝑎1) in Section 2.1.1.

ii/ Heston (1993) or Hes93 hereafter:

𝜓𝑡(𝑖𝑢, 𝑡, 𝑇𝑂𝑝𝑡, 𝑇 ) = 𝑒𝐴(𝜏)+𝐵(𝜏)𝑣𝑡+𝑖𝑢𝑓 (𝑡,𝑇 ). (2.27)

In this case, a volatility term 𝐵(𝜏) is necessary as this model ex-
tends Black and Scholes (1973) incorporating stochastic volatil-
ity 𝑣𝑡; the independent term 𝐴(𝜏) in both models coincides.
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f
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t

Table 2
Factors and parameter count per model. x
Model Stochastic factors Jumps Parameter Analytic Charact.

𝑆𝑡 𝑦(𝑡, 𝑇 ) 𝐹 (𝑡, 𝑇 ) 𝑣𝑡 𝑆𝑡 𝑦(𝑡, 𝑇 ) 𝐹 (𝑡, 𝑇 ) count solution function
Mer76 � � 4 �
Hes93 � � 4 � �
Bat96 � � � 7 � �
TS09-SV1 � � ⋆ � 9(6) � �
SYSVJ𝑎1 � � � � 12 � �
SYSVJ𝑏1 � � � � 12 � �
SYSVJ1 � � ⋆ � � � ⋆ 14(9) � �
SYSVJ𝑎2 � � � � 11 � �
SYSVJ𝑏2 � � � � 12 � �
SYSVJ2 � � ⋆ � � � ⋆ 13(9) � �

Notes: For each model, this table indicates the factors and jumps considered, the parameter count and if the model allows for an analytical solution
or standard European option pricing. In those models presenting alternative set-up, 𝐹 (𝑡, 𝑇 ) replaces 𝑆𝑡 and 𝑦(𝑡, 𝑇 ); this is indicated with the symbols

(alternative set-up) and �(original set-up). The parameter count for the alternative set-up is shown in brackets. SYSVJ(𝑎1) corresponds to Trolle
2014).
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iii/ Bates (1996) or Bat96 hereafter:

𝜓𝑡(𝑖𝑢, 𝑡, 𝑇𝑂𝑝𝑡, 𝑇 ) = 𝑒𝐴(𝜏)+𝐵(𝜏)𝑣𝑡+𝐶(𝜏)𝜆+𝑖𝑢𝑓 (𝑡,𝑇 ). (2.28)

This model is a combination of Heston (1993) and Merton
(1976). 𝐴(𝜏) and 𝐵(𝜏) are as in Heston (1993), and the jump
term 𝐶(𝜏) is as in Merton (1976).

iv/ Trolle and Schwartz (2009)-SV1 or TS09-SV1 hereafter:

𝜓𝑡(𝑖𝑢, 𝑡, 𝑇𝑂𝑝𝑡, 𝑇 ) = 𝑒𝐴(𝜏)+𝐵(𝜏)𝑣𝑡+𝑖𝑢𝑓 (𝑡,𝑇 ). (2.29)

This model consists of the extension of Heston (1993) with a
stochastic forward cost of carry curve 𝑦(𝑡, 𝑇 ), where 𝐴(𝜏) and
𝐵(𝜏) follow (2.22) and (2.23), respectively.

v/ Trolle (2014) or Tro14 hereafter:

𝜓𝑡(𝑖𝑢, 𝑡, 𝑇𝑂𝑝𝑡, 𝑇 ) = 𝑒𝐴(𝜏)+𝐵(𝜏)𝑣𝑡+𝐶(𝜏)𝜆+𝑖𝑢𝑓 (𝑡,𝑇 ). (2.30)

This model consists of the extension of Trolle and Schwartz
(2009)-SV1 with i.i.d. jumps in the spot price 𝑆𝑡. 𝐴(𝜏) and 𝐵(𝜏)
are as in Trolle and Schwartz (2009); 𝐶(𝜏) is as in Merton (1976).
This theoretical model has yet to be subjected to an empirical
application.

In Table 1 we present the dynamics followed by the models pre-
sented in this list together with our model, providing both the spot
and the futures price dynamics. Table 2 shows a classification based
on the factors and jumps considered. The expressions followed by the
ODEs and the solution to the terms in (2.26)–(2.30) and in our model in
(2.17) can be found in Tables 4a and 4b, respectively. Table 5 presents
the jump assumptions described in Section 2.1.1, their corresponding
expressions for expected values and jump transforms. Given that Trolle
(2014) is equivalent to our model sub-specification (𝑎1), it does not
explicitly appear in Tables 2, 4 and 6.

Key advantages of the most recent models (Trolle and Schwartz
(2009)-SV1, Trolle (2014) and our model) include improved approxi-
mation to the real price behaviour and better description of the implied
volatility surface. In our case, adding up to five jump parameters pro-
vides even more flexibility to replicate the market implied volatilities,
allowing for a wider range of possible shapes (e.g., long-dated contracts
jump more than those closer to maturity — a stylised fact in the energy
markets). Its implementation is not especially difficult, requiring only
the addition of one new term 𝐶(𝜏) to the CF in Trolle and Schwartz
(2009)-SV1.7

7 Observe that this new term can present six different forms, as many as
he number of model sub-specifications.
6

o

2.3. Pricing of standard European options

Let (𝑡, 𝑇𝑂𝑝𝑡, 𝑇 , 𝐾) and (𝑡, 𝑇𝑂𝑝𝑡, 𝑇 , 𝐾) denote the time-𝑡 prices of a
tandard European call (hereafter, call) option and a standard European
ut (hereafter, put) option that expires at time 𝑇𝑂𝑝𝑡 with strike 𝐾

on a futures contract that expires at time 𝑇 , and let 𝑃 (𝑇𝑂𝑝𝑡, 𝑡) denote
he time-𝑡 price of a zero-coupon bond that matures at time 𝑇𝑂𝑝𝑡.
his option can be priced quasi-analytically within the framework we
escribe in this section. In our empirical work, we follow the fast
ourier transform (FFT hereafter) methodology.

We use the Carr and Madan (1999) approach for pricing options
hich permits the use of the computationally efficient FFT algorithm.

ts popularity stems from its remarkable speed: while a naive compu-
ation needs 𝑁2 operations, the FFT requires only 𝑁 ln(𝑁) steps. In the
ollowing proposition we present the expression followed by a call and
put option price:

roposition 6. The time-𝑡 price of a call and a put option that expires at
ime 𝑇𝑂𝑝𝑡 with strike 𝐾 on a futures contract that expires at 𝑇 is given by

(𝑡, 𝑇𝑂𝑝𝑡, 𝑇 , 𝐾) = 𝑃 (𝑡, 𝑇𝑂𝑝𝑡)
𝑒−𝛼 ln(𝐾)

𝜋

× ∫

∞

0
ℜ

[

𝑒−𝑖𝑢 ln(𝐾)𝜓𝑡(𝑢 − 𝑖(1 + 𝛼), 𝑡, 𝑇𝑂𝑝𝑡, 𝑇 )

𝛼(𝛼 + 1) − 𝑢2 + 𝑖𝑢(1 + 2𝛼)

]

𝑑𝑢,

(2.31)

(𝑡, 𝑇𝑂𝑝𝑡, 𝑇 , 𝐾) = 𝑃 (𝑡, 𝑇𝑂𝑝𝑡)
𝑒−𝛼 ln(𝐾)

𝜋

× ∫

∞

0
ℜ

[

𝑒−𝑖𝑢 ln(𝐾)𝜓𝑡(𝑢 − 𝑖(1 − 𝛼), 𝑡, 𝑇𝑂𝑝𝑡, 𝑇 )

𝛼(𝛼 − 1) − 𝑢2 + 𝑖𝑢(1 − 2𝛼)

]

𝑑𝑢,

(2.32)

here 𝛼 is the control parameter.8

roof. The proof is in Carr and Madan (1999). ■

This approach presents two advantages: firstly, it permits the use of
he computationally efficient FFT; secondly, it requires the evaluation

8 𝛼 has to be chosen to ensure that it makes the modified option price
quare-integrable and to obtain good numerical accuracy — a sufficient
ondition for the Fourier transform to exist. This parameter has to be wisely
hosen as it might produce very oscillatory arguments of the integral if too big,
r it might approach a point mass around 0 if too small. This parameter is often
et to 0.75, seeming to achieve very good numerical results on practically all

ccasions. We also set it to 0.75.
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Table 3
Futures returns: moments and Jarque–Bera test. x
(a) Monthly observations
Contract Maximum Minimum Mean Std. Dev. Skewness Kurtosis JB Stat. p-Value Test
M2 0.4949 −0.6062 −0.0050 0.1092 −0.7948 12.2654 9.3739 0.0182 R
M3 0.3957 −0.4878 −0.0050 0.0986 −0.7081 8.4547 10.0370 0.0158 R
M4 0.3232 −0.4176 −0.0050 0.0918 −0.7223 6.4928 10.4806 0.0144 R
M5 0.2816 −0.3766 −0.0051 0.0874 −0.7326 5.6324 10.7459 0.0136 R
M6 0.2516 −0.3486 −0.0051 0.0839 −0.7536 5.1792 10.9373 0.0131 R
Q1 0.2014 −0.2887 −0.0050 0.0764 −0.7752 4.5381 11.2291 0.0123 R
Q2 0.1647 −0.2585 −0.0050 0.0680 −0.8589 4.4968 11.5409 0.0116 R
ALL 0.4949 −0.6062 −0.0050 0.0887 −0.7789 8.7694 2343.644 0.0010 R
(b) Daily observations
Contract Maximum Minimum Mean Std. Dev. Skewness Kurtosis JB Stat. p-Value Test
M2 0.5812 −0.5686 −0.0002 0.0289 −0.3230 130.9346 194.4978 0.0010 R
M3 0.2400 −0.3408 −0.0002 0.0240 −1.3885 35.7670 208.6014 0.0010 R
M4 0.1858 −0.2771 −0.0002 0.0225 −1.2731 26.5330 217.2025 0.0010 R
M5 0.1714 −0.2478 −0.0002 0.0215 −1.1976 22.4633 222.6880 0.0010 R
M6 0.1564 −0.2365 −0.0002 0.0207 −1.1427 20.0304 226.8677 0.0010 R
Q1 0.1432 −0.2257 −0.0002 0.0196 −1.0530 17.5825 223.3093 0.0010 R
Q2 0.1129 −0.1968 −0.0002 0.0180 −1.0021 14.5854 240.9477 0.0010 R
ALL 0.5812 −0.5686 −0.0002 0.0224 −1.9807 69.5524 42,831.8384 0.0010 R

Notes: JB accounts for the Jarque–Bera normality test. The null hypothesis refers to the normal distribution of futures returns. The statistic critical
value related to a significance level of 0.05 is 5.991. Colum Std.Dev. refers to the standard deviations of the returns. The JB Test being R means
that we can reject the null hypothesis at 95%, A means that we cannot reject it at 95%. The data sample is May 27th, 2010 to September 30th,
2020 (in-sample period).
𝐽
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of only one integral, as opposed to the two integrals required when
using earlier methods such as in Heston (1993) or Duffie et al. (2000),
among others.

3. Alternative characterisation

We have reinterpreted some parameters presented in this work for
the sake of model simplicity. In fact, it consists of an equivalent way
of understanding the nature of the volatilities and the jumps of the
spot price 𝑆𝑡 and the forward cost of carry curve 𝑦(𝑡, 𝑇 ) and, as a
result, the futures dynamics too. The option prices are equivalent no
matter whether we use this alternative parameter characterisation or
the original set.

3.1. Futures dynamics

In this sub-section we present the alternative expressions for the
volatility functions, jump expressions and the futures dynamics. The
idea beyond this modification consists of considering a single expres-
sion for the volatilities of the factors that affect futures prices 𝐹 (𝑡, 𝑇 ).
t is based in the fact that the spot price 𝑆𝑡 does not have a maturity
hereas the forward cost of carry curve 𝑦(𝑡, 𝑇 ) does. As such, when
= 𝑇 , we have that 𝜎𝑦(𝑡, 𝑡) = 𝛼, and by matching the parameters 𝜎𝑆 = 0
e allow a single expression to hold for the volatilities of both factors.
e do the same with the jumps. Next, we present the new expressions
e refer to and their integrals. We denote the volatility of 𝐹 (𝑡, 𝑇 ) by
𝑓 (𝑡, 𝑇 ) and the jumps in 𝐹 (𝑡, 𝑇 ) by 𝐽𝑓 (𝑡, 𝑇 ).

lternative volatility functions We consider that 𝜎𝑓 (𝑡, 𝑇 ) follows an
xponentially-dampened functional form, with (2.4) and (2.8) becom-
ng

𝜎𝑓 (𝑡, 𝑇 ) ≡ 𝛼0 + 𝛼𝑒−𝛾(𝑇−𝑡), (3.1)

𝐹 (𝑡, 𝑇 ) ≡ ∫

𝑇

𝑡
𝜎𝑓 (𝑡, 𝑢)𝑑𝑢 = 𝛼0(𝑇 − 𝑡) + 𝛼

𝛾
(

1 − 𝑒−𝛾(𝑇−𝑡)
)

. (3.2)
7

Observe that in Section 2.1 we imposed 𝜎𝑆 = 1 given that the parame-
ters 𝜎𝑆 , 𝛼, 𝜃 and 𝜎𝑣 were not simultaneously identified. This implies that
the calibrated values for 𝛼0 and 𝛼 in the alternative set-up will necessar-
ily differ from the values for 𝜎𝑆 and 𝛼 in the original characterisation
of the models.

Alternative jump specifications We consider the jumps in 𝐹 (𝑡, 𝑇 ) as
in Crosby (2008), with expressions (2.5) and (2.10) becoming

𝐽𝑓 (𝑡, 𝑇 ) ≡ 𝑎𝑒−𝑏(𝑇−𝑡), (3.3)

𝐹 (𝑡, 𝑇 ) ≡ ∫

𝑇

𝑡
𝐽𝑓 (𝑡, 𝑢)𝑑𝑢 =

𝑎
𝑏
(

1 − 𝑒−𝑏(𝑇−𝑡)
)

, (3.4)

or which we contemplate two alternatives:
Jump assumption (1): Jumps as in Merton (1976), i.e., 𝐽𝑓 (𝑡,
𝑇 ) ∼  (𝜇𝐽𝐹 , 𝜎

2
𝐽𝐹

) with 𝜎𝐽𝐹 ≥ 0. The jump amplitude
parameter 𝑎 is assumed to be an i.i.d. random variable over
time, the distribution of which is defined with respect to Q.
The jump-decay parameter 𝑏 is assumed to be zero.

Jump assumption (2): Jumps with an exponentially-
dampened functional form, where the jump amplitude pa-
rameter 𝑎 is assumed to be a finite constant and the jump-
decay parameter 𝑏 is assumed to be any non-negative num-
ber.

lternative futures dynamics and model sub-specifications As a result, Eq.
2.9) becomes

𝑑𝐹 (𝑡, 𝑇 )
𝐹 (𝑡, 𝑇 )

=
√

𝑣𝑡𝜎𝐹 (𝑡, 𝑇 )𝑑𝑊 𝐹
𝑡 − 𝜆EQ

𝑡
[

𝑒𝐽𝐹 (𝑡,𝑇 ) − 1
]

𝑑𝑡 +
(

𝑒𝐽𝐹 (𝑡,𝑇 ) − 1
)

𝑑𝑁𝑡.

(3.5)

n this set-up we consider two model sub-specifications:

• SYSVJ1: i.i.d. jumps in 𝐹 (𝑡, 𝑇 )
• SYSVJ2: exponentially-dampened jumps in 𝐹 (𝑡, 𝑇 )
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Table 4
Fourier transforms per model — ODEs and solutions. x
(a) ODEs
Model 𝜕𝐴(𝜏)∕𝜕𝜏 𝜕𝐵(𝜏)∕𝜕𝜏 𝜕𝐶(𝜏)∕𝜕𝜏

Mer76 −
𝜎2𝑆
2 (𝑢2 + 𝑖𝑢) − 𝑛𝑎1 − 𝑖𝑢𝑚𝑎1

Hes93 𝐵(𝜏)𝜅𝜃 − 1
2 (𝑢

2 + 𝑖𝑢) + 𝐵(𝜏)
(

−𝜅 + 𝑖𝑢𝜎𝑣𝜌𝑆𝑣
)

+ 𝐵2(𝜏) 𝜎
2
𝑣
2 –

Bat96 𝐵(𝜏)𝜅𝜃 − 1
2 (𝑢

2 + 𝑖𝑢) + 𝐵(𝜏)
(

−𝜅 + 𝑖𝑢𝜎𝑣𝜌𝑆𝑣
)

+ 𝐵2(𝜏) 𝜎
2
𝑣
2 𝑛𝑎1 − 𝑖𝑢𝑚𝑎1

TS09-SV1(⋆) 𝐵(𝜏)𝜅𝜃
𝜎2𝑆
2 𝑏0 + 𝑏1𝐵(𝜏) + 𝑏2𝐵2(𝜏) –

SYSVJ 𝐵(𝜏)𝜅𝜃
𝜎2𝑆
2 𝑏0 + 𝑏1𝐵(𝜏) + 𝑏2𝐵2(𝜏) 𝑛𝑎𝑗𝑏𝑗 − 𝑖𝑢𝑚𝑎𝑗𝑏𝑗

SYSVJ⋆ 𝐵(𝜏)𝜅𝜃
𝜎2𝑆
2 𝑏0 + 𝑏1𝐵(𝜏) + 𝑏2𝐵2(𝜏) 𝑛𝑓𝑗 − 𝑖𝑢𝑚𝑓𝑗

(b) Solution to ODEs
Model 𝐴(𝜏) 𝐵(𝜏) 𝐶(𝜏)

Mer76 −
𝜎2𝑆
2 (𝑢2 + 𝑖𝑢)𝜏 − 𝑛𝐴1

− 𝑖𝑢𝑚𝐴1

Hes93 𝜅𝜃
𝜎2𝑣

(

(𝜅 − 𝑖𝑢𝜎𝑣𝜌𝑆𝑣 + 𝑑)𝜏 − 2 ln 1−𝑔𝑒𝑑𝜏
1−𝑔

) 𝜅−𝑖𝑢𝜌𝑆𝑣𝜎𝑣+𝑑
𝜎2𝑣

( 1−𝑒𝑑𝜏
1−𝑔𝑒𝑑𝜏

)

–

Bat96 𝜅𝜃
𝜎2𝑣

(

(𝜅 − 𝑖𝑢𝜎𝑣𝜌𝑆𝑣 + 𝑑)𝜏 − 2 ln 1−𝑔𝑒𝑑𝜏
1−𝑔

) 𝜅−𝑖𝑢𝜌𝑆𝑣𝜎𝑣+𝑑
𝜎2𝑣

( 1−𝑒𝑑𝜏
1−𝑔𝑒𝑑𝜏

)

𝑛𝐴1
− 𝑖𝑢𝑚𝐴1

TS09-SV1(⋆) 2𝜅𝜃
𝜎2𝑣

(

𝛽𝛾𝜏 − 𝜇𝑧 − ln 𝑔(𝑧)
)

+ 𝑘3
2𝛾
𝜎2𝑣

(

𝛽 + 𝜇𝑧 + 𝑧 𝑔
′(𝑧)
𝑔(𝑧)

)

–

SYSVJ 2𝜅𝜃
𝜎2𝑣

(

𝛽𝛾𝜏 − 𝜇𝑧 − ln 𝑔(𝑧)
)

+ 𝑘3
2𝛾
𝜎2𝑣

(

𝛽 + 𝜇𝑧 + 𝑧 𝑔
′(𝑧)
𝑔(𝑧)

)

𝑛𝐴𝑗𝐵𝑗 − 𝑖𝑢𝑚𝐴𝑗𝐵𝑗

SYSVJ⋆ 2𝜅𝜃
𝜎2𝑣

(

𝛽𝛾𝜏 − 𝜇𝑧 − ln 𝑔(𝑧)
)

+ 𝑘3
2𝛾
𝜎2𝑣

(

𝛽 + 𝜇𝑧 + 𝑧 𝑔
′(𝑧)
𝑔(𝑧)

)

𝑛𝐹𝑗 − 𝑖𝑢𝑚𝐹𝑗

Notes: This table presents the expressions followed by each of the ODEs and their solutions as they can be found in the literature. As per our
model, these expressions correspond to Eqs. (2.18)–(2.20). The terms 𝑚𝑎1 , 𝑚𝑎2 , 𝑚𝑏1 , 𝑚𝑏2 , 𝑚𝑎1𝑏1 , 𝑚𝑎2𝑏2 , 𝑚𝑓1 , 𝑚𝑓2 , 𝑛𝑎1 , 𝑛𝑎2 , 𝑛𝑏1 , 𝑛𝑏2 , 𝑛𝑎1𝑏1 , 𝑛𝑎2𝑏2 , 𝑛𝑓1 and 𝑛𝑓2
can be found in Eq. (2.20); their expressions are in Table 5. The terms 𝑚𝐴1

, 𝑚𝐴2
, 𝑚𝐵1

, 𝑚𝐵2
, 𝑚𝐴1𝐵1

, 𝑚𝐴2𝐵2
, 𝑚𝐹1 , 𝑚𝐹2 , 𝑛𝐴1

, 𝑛𝐴2
, 𝑛𝐵1

, 𝑛𝐵2
, 𝑛𝐴1𝐵1

, 𝑛𝐴2𝐵2
𝑛𝐹1

and 𝑛𝐹2 can be found in Eq. (2.25); their expressions are in Table 5. 𝑚∙ is the expected value at time 𝑡 under Q of the jump assuming the jump
assumption ∙; 𝑛∙ is the transform of the jump assuming the jump assumption ∙. For Trolle and Schwartz (2009)-SV1 and our model SYSVJ, the values
for 𝑘3, 𝑔(𝑧), 𝑔′(𝑧), 𝛽 and 𝜇 are shown in Eqs. (2.24) and (B.4)–(B.6). In each Sub-table, the superscript ⋆ after the model refers to the alternative
characterisation of the parameters. Trolle (2014) corresponds to SYSVJ(𝑎1). For Heston (1993) and Bates (1996), we have that
𝑔 = 𝜅−𝑖𝑢𝜎𝑣𝜌𝑆𝑣+𝑑

𝜅−𝑖𝑢𝜎𝑣𝜌𝑆𝑣−𝑑
, 𝑑 =

√

(𝜅 − 𝑖𝑢𝜎𝑣𝜌𝑆𝑣)2 + 𝜎2𝑣 (𝑢2 + 𝑖𝑢). (7.1) .
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3.2. Characteristic function

The coefficients in the dynamics of 𝐵(𝜏) in Eq. (2.19) result in the
new expressions

𝑏0 = −1
2
(𝑢2 + 𝑖𝑢)𝜎2𝐹 (𝑡, 𝑇 ),

1 = −𝜅 + 𝑖𝑢𝜎𝑣𝜌𝐹𝑣𝜎𝐹 (𝑡, 𝑇 ),

2 =
𝜎2𝑣
2
,

(3.6)

whereas the expressions followed by 𝐴(𝜏) and 𝐵(𝜏) in (2.22) and (2.23)
remain the same. Their coefficients can be found in Appendices B.1
and B.2. Subject to the initial condition 𝐶(0) = 0, for 𝑗 = 1, 2 and the
jump assumptions presented above, the alternative jump-related term
dynamics and solution are
𝜕𝐶(𝜏)
𝜕𝜏

= 𝑛𝑓𝑗 (𝜏) − 𝑖𝑢𝑚𝑓𝑗 (𝜏), (3.7)

𝐶(𝜏) = 𝑛𝐹𝑗 (𝜏) − 𝑖𝑢𝑚𝐹𝑗 (𝜏). (3.8)

The analytical expressions followed by the expectation terms (𝑚𝑓1 , 𝑚𝑓2 ,
𝐹1 and 𝑚𝐹2 ) and the transform terms (𝑛𝑓1 , 𝑛𝑓2 , 𝑛𝐹1 and 𝑛𝐹2 ) are repre-

ented in Table 5.

. Model estimation

We directly define our model dynamics under Q and, therefore,
the parameter estimation is performed under this measure. We use the
least-square fit to calibrate our parameters. This section describes the
8

p

arket data we use for this analysis and the calibration method we
ollow.

We consider West Texas Intermediate (WTI) light sweet crude oil
ata listed on the New York Mercantile Exchange (NYMEX), which we
btain from Refinitive Eikon (formerly Thomson-Reuters Datastream).
he data set consists of observations of closing prices (quoted in
SD) and open interest for futures prices, and market implied (Black)
olatilities for the corresponding options.

The period considered spans from May 27th, 2010 to March 2nd,
022 and is at monthly and daily frequency, making it 142 monthly
nd 2984 daily observations, respectively. Only ATM and OTM options
re utilised. We select ATM options plus those 15 OTM closer to the
TM level, which we label as ATM±0.5, 1,… , 7, 7.5 USD, with ATM the

utures price. This makes 32 options per contract and observation.
The trading of futures contracts terminates three business days

rior to the 25th calendar day of the month prior to the contract
onth (i.e., delivery month). Futures contracts that mature on those

ermination dates exist for a wide variety of maturities. In deciding
hich maturity futures contracts to use, we select contracts based
n higher open interest, as detailed in Trolle and Schwartz (2009,
. 5,6). This procedure leaves seven generic futures contracts out of
he first 60 available nominal ones: the second- to the sixth-month
ontracts (M2–M6) and the following two with expiration in either
arch, June, September or December (Q1–Q2). This represents 868

utures contracts in total. The trading of standard European options
erminates six business days prior to the 25th calendar day of the month
rior to the contract month.
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Table 5
Jump assumptions, corresponding expected values and jump transforms. x
Jump Set-up Expected Value Transform

(𝑎1) �𝑒
𝑢2
2 𝑚𝑎1 ≡ EQ

𝑡
[

𝑒𝐽𝑆 − 1
]

= 𝑒
𝜇𝐽𝑆 + 1

2 𝜎
2
𝐽𝑆 − 1 𝑛𝑎1 ≡ 𝑒

𝑖𝑢𝜇𝐽𝑆 − 𝑢2
2 𝜎

2
𝐽𝑆 − 1

𝑒
𝑢2
2 𝑚𝐴1

≡ EQ
𝑡

[

∫ 𝑇𝑡 (𝑒𝐽𝑆 − 1) 𝑑𝑢
]

= (𝑇 − 𝑡)
(

𝑒
𝜇𝐽𝑆 + 1

2 𝜎
2
𝐽𝑆 − 1

)

= (𝑇 − 𝑡)𝑚𝑎1 𝑛𝐴1
≡ (𝑇 − 𝑡)

(

𝑒
𝑖𝑢𝜇𝐽𝑆 − 𝑢2

2 𝜎
2
𝐽𝑆 − 1

)

= (𝑇 − 𝑡)𝑛𝑎1

(𝑏1) �𝑒
𝑢2
2 𝑚𝑏1 ≡ EQ

𝑡

[

𝑒𝐽𝑦(𝑡,𝑇 ) − 1
]

= 𝑒
𝜇𝐽𝑌 + 1

2 𝜎
2
𝐽𝑌 − 1 𝑛𝑏1 ≡ 𝑒

𝑖𝑢𝜇𝐽𝑌 − 𝑢2
2 𝜎

2
𝐽𝑌 − 1

𝑒
𝑢2
2 𝑚𝐵1

≡ EQ
𝑡

[

∫ 𝑇𝑡 (𝑒𝐽𝑦(𝑡,𝑇 ) − 1) 𝑑𝑢
]

= (𝑇 − 𝑡)
(

𝑒
𝜇𝐽𝑌 + 1

2 𝜎
2
𝐽𝑌 − 1

)

= (𝑇 − 𝑡)𝑚𝑏1 𝑛𝐵1
≡ (𝑇 − 𝑡)

(

𝑒
𝑖𝑢𝜇𝐽𝑌 − 𝑢2

2 𝜎
2
𝐽𝑌 − 1

)

= (𝑇 − 𝑡)𝑛𝑏1

(1) �𝑒
𝑢2
2 𝑚𝑎1𝑏1 ≡ EQ

𝑡

[

𝑒𝐽𝑆+𝐽𝑦(𝑡,𝑇 ) − 1
]

= (𝑚𝑎1 + 1)(𝑚𝑏1 + 1) − 1 𝑛𝑎1𝑏1 ≡ (𝑛𝑎1 + 1)(𝑛𝑏1 + 1) − 1

𝑒
𝑢2
2 𝑚𝐴1𝐵1

≡ EQ
𝑡

[

∫ 𝑇𝑡 (𝑒𝐽𝑆+𝐽𝑦(𝑡,𝑇 ) − 1) 𝑑𝑢
]

= (𝑇 − 𝑡)𝑚𝑎1𝑏1 𝑛𝐴1𝐵1
≡ (𝑇 − 𝑡)𝑛𝑎1𝑏1

(1) ⋆ 𝑒
𝑢2
2 𝑚𝑓1 ≡ EQ

𝑡

[

𝑒𝐽𝑓 (𝑡,𝑇 ) − 1
]

= 𝑒
𝜇𝐽𝐹 + 1

2 𝜎
2
𝐽𝐹 − 1 𝑛𝑓1 ≡ 𝑒

𝑖𝑢𝜇𝐽𝐹 − 𝑢2
2 𝜎

2
𝐽𝐹 − 1

𝑒
𝑢2
2 𝑚𝐹1 ≡ EQ

𝑡

[

∫ 𝑇𝑡 (𝑒𝐽𝑓 (𝑡,𝑇 ) − 1) 𝑑𝑢
]

= (𝑇 − 𝑡)
(

𝑒
𝜇𝐽𝐹 + 1

2 𝜎
2
𝐽𝐹 − 1

)

= (𝑇 − 𝑡)𝑚𝑓1 𝑛𝐹1 ≡ (𝑇 − 𝑡)
(

𝑒
𝑖𝑢𝜇𝐽𝑓 −

𝑢2
2 𝜎

2
𝐽𝑓 − 1

)

= (𝑇 − 𝑡)𝑛𝑓1

(𝑎2) �𝑒
𝑢2
2 𝑚𝑎2 ≡ EQ

𝑡
[

𝑒𝐽𝑆 − 1
]

= 𝑒𝜇𝐽𝑆 − 1 𝑛𝑎2 ≡ 𝑒𝑖𝑢𝜇𝐽𝑆 − 1

𝑒
𝑢2
2 𝑚𝐴2

≡ EQ
𝑡

[

∫ 𝑇𝑡 (𝑒𝐽𝑆 − 1) 𝑑𝑢
]

= (𝑇 − 𝑡)
(

𝑒𝜇𝐽𝑆 − 1
)

= (𝑇 − 𝑡)𝑚𝑎2 𝑛𝐴2
≡ (𝑇 − 𝑡)

(

𝑒𝑖𝑢𝜇𝐽𝑆 − 1
)

= (𝑇 − 𝑡)𝑛𝑎2

(𝑏2) �𝑒
𝑢2
2 𝑚𝑏2 ≡ EQ

𝑡

[

𝑒𝐽𝑦(𝑡,𝑇 ) − 1
]

= 𝑒𝑎𝑒−𝑏(𝑇−𝑡) − 1 𝑛𝑏2 ≡ 𝑒𝑖𝑢𝑎𝑒−𝑖𝑢𝑏(𝑇−𝑡) − 1

𝑒
𝑢2
2 𝑚𝐵2

≡ EQ
𝑡

[

∫ 𝑇𝑡 (𝑒𝐽𝑦(𝑡,𝑇 ) − 1) 𝑑𝑢
]

= 𝑒
𝑎
𝑏
(

1−𝑒−𝑏(𝑇−𝑡)
)

− (𝑇 − 𝑡) 𝑛𝐵2
≡ 𝑒𝑖𝑢

𝑎
𝑏
(

1−𝑒−𝑖𝑢𝑏(𝑇−𝑡)
)

− (𝑇 − 𝑡)

(2) �𝑒
𝑢2
2 𝑚𝑎2𝑏2 ≡ EQ

𝑡

[

𝑒𝐽𝑆+𝐽𝑦(𝑡,𝑇 ) − 1
]

= (𝑚𝑎2 + 1)(𝑚𝑏2 + 1) − 1 𝑛𝑎2𝑏2 ≡ (𝑛𝑎2 + 1)(𝑛𝑏2 + 1) − 1

𝑒
𝑢2
2 𝑚𝐴2𝐵2

≡ EQ
𝑡

[

∫ 𝑇𝑡 (𝑒𝐽𝑆+𝐽𝑦(𝑡,𝑇 ) − 1) 𝑑𝑢
]

= (𝑇 − 𝑡)𝑚𝑎2𝑏2 𝑛𝐴2𝐵2
≡ (𝑇 − 𝑡)𝑛𝑎2𝑏2

(2) ⋆ 𝑒
𝑢2
2 𝑚𝑓2 ≡ EQ

𝑡

[

𝑒𝐽𝑓 (𝑡,𝑇 ) − 1
]

= 𝑒𝑎𝑒−𝑏(𝑇−𝑡) − 1 𝑛𝑓2 ≡ 𝑒𝑖𝑢𝑎𝑒−𝑖𝑢𝑏(𝑇−𝑡) − 1

𝑒
𝑢2
2 𝑚𝐹2 ≡ EQ

𝑡

[

∫ 𝑇𝑡 (𝑒𝐽𝑓 (𝑡,𝑇 ) − 1) 𝑑𝑢
]

= 𝑒
𝑎
𝑏
(

1−𝑒−𝑏(𝑇−𝑡)
)

− (𝑇 − 𝑡) 𝑛𝐹2 ≡ 𝑒𝑖𝑢
𝑎
𝑏
(

1−𝑒−𝑖𝑢𝑏(𝑇−𝑡)
)

− (𝑇 − 𝑡)

Notes: The expressions followed by 𝐽𝑦(𝑡, 𝑇 ) and 𝐽𝑌 (𝑡, 𝑇 ) can be found in (2.5) and (2.10), respectively. The expressions followed by 𝐽𝑓 (𝑡, 𝑇 ) and
𝐽𝐹 (𝑡, 𝑇 ) can be found in (3.3) and (3.4), respectively. The terms 𝑚𝑎1 , 𝑚𝑎2 , 𝑚𝑏1 , 𝑚𝑏2 , 𝑚𝑎1𝑏1 , 𝑚𝑎2𝑏2 , 𝑚𝑓1 , 𝑚𝑓2 , 𝑛𝑎1 , 𝑛𝑎2 , 𝑛𝑏1 , 𝑛𝑏2 , 𝑛𝑎1𝑏1 , 𝑛𝑎2𝑏2 , 𝑛𝑓1 and 𝑛𝑓2 can
be found in (2.20). The terms 𝑚𝐴1

, 𝑚𝐴2
, 𝑚𝐵1

, 𝑚𝐵2
, 𝑚𝐴1𝐵1

, 𝑚𝐴2𝐵2
, 𝑚𝐹1 , 𝑚𝐹2 , 𝑛𝐴1

, 𝑛𝐴2
, 𝑛𝐵1

, 𝑛𝐵2
, 𝑛𝐴1𝐵1

, 𝑛𝐴2𝐵2 ,𝑛𝐹1 and 𝑛𝐹2 can be found in (2.25). The term
𝑚∙ is the expected value at time 𝑡 under Q of the jump in ∙. The term 𝑛∙ is the transform of the jump in ∙. When ∙ is a capital letter, it accounts for
the integral from 𝑡 to 𝑇 of the jump in the corresponding assumption. The different jump assumptions can be found in column Jump. The symbol
⋆ in the column Set-up accounts for the alternative characterisation of the parameters whereas the symbol �refers to the original set-up. Trolle
(2014) corresponds to SYSVJ(𝑎1).
(
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The inputs to the calibration algorithm are the underlying futures
prices, the option strikes and the discount factors. Additionally, as
a proxy for the instantaneous variance, we use the square of ATM
volatilities that corresponds to the shorter maturity contract (in our
case, the contract labelled M2) — that is, a unique volatility value 𝑣0
per observation date. We use a least-squares fitting with the objective
of minimising the mean absolute error in option volatilities MAE(𝜎)9

and the root mean squared error in volatilities RMSE(𝜎).10 We apply
Feller’s condition to all models with stochastic volatility, that is, all
models considered except Merton (1976). Heston (1993) and Bates

9 MAE(𝜎) represents the absolute mean of differences between the volatili-
ies predicted by the model 𝜎̂𝑡 and the implied market values 𝜎𝑡, with variables
bserved from 𝑡 = 1,… , 𝑁 : MAE(𝜎) =

∑𝑁
𝑡=1|𝜎̂𝑡−𝜎𝑡|
𝑁

.
10 RMSE(𝜎) represents the square root of the quadratic mean of differences
etween the volatilities predicted by the model 𝜎̂𝑡 and the implied market

alues 𝜎 , with variables observed from 𝑡 = 1,… , 𝑁 : RMSE(𝜎) =
√

∑𝑁
𝑡=1(𝜎̂𝑡−𝜎𝑡)2 .
9

𝑡 𝑁 l
1996) assume that 𝜎𝑆 = 1. Following this assumption, we also assume
hat 𝜎𝑆 = 1 in Trolle and Schwartz (2009)-SV1, Trolle (2014) and
ur model in the original set-up, 𝜎𝑆 = 0 in the alternative set-up. We
alibrate the parameters for the models listed in Section 2.2.2 and for
ur model.

Following Carr and Madan (1999), the integral in the pricing func-
ions (2.31)–(2.32) is numerically computed using Simpson’s rule (us-
ng Matlab’s built-in function 𝑠𝑖𝑚𝑝𝑠). We compare the performance of
ther integration methods and we find Simpson’s rule to be the best.
or the sake of brevity, we do not present this analysis in this work,
ut the results are available upon request. We have carried out an
quivalent analysis to choose the optimal value of 𝛼 to be used in
qs. (2.31)–(2.32). When performing a numerical calibration, we use
standard fourth order Runge–Kutta algorithm to solve the system

f ODEs (2.18)–(2.20) (using Matlab’s built-in function 𝑜𝑑𝑒45). We
onsider an integral step of 1∕10 and an upper bound of 60, which
mplies 600 evaluation points. Experiments are implemented on an HP
aptop computer on a CPU Intel Core i7 2.60 GHz 16.0 GB RAM SSD
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Table 6
Estimated parameters, errors and computation time.

x
(a) Monthly observations

Model SYSVJ TS09-SV1 Bat96 Hes93 Mer76

Jump 2 𝑏2 𝑎2 1 𝑏1 𝑎1
𝜎𝑆 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 − − 0.2209

(0.2011,0.2375)
𝛼 0.7209 0.1087 0.5418 0.4854 0.7692 0.5373 0.4516 − − −

(0.1624,0.9997) (0.1548,1.0000) (0.2648,1.0000) (0.2688,1.0000) (0.2937,1.0000) (0.2999,1.0000) (0.1165,0.6241)
𝛾 2.0851 0.4586 1.0796 0.9962 2.0267 2.0065 0.0882 − − −

(0.0903,2.5000) (0.1032,2.5000) (0.0545,2.5000) (0.0528,2.5000) (0.0580,2.4998) (0.0577,2.3299) (0.0775,0.4037)

𝜅 1.9029 2.7236 1.9105 1.9478 1.5101 1.0283 0.9387 2.9585 2.2115 −
(0.9707,4.3141) (0.7190,3.8870) (0.2907,2.9677) (0.2942,3.1439) (0.2327,3.2720) (0.1921,3.1356) (0.5025,2.3494) (1.4222,4.2549) (0.6611,3.8921)

𝜃 0.0060 0.0070 0.0076 0.0085 0.0074 0.0062 0.1618 0.0028 0.0676 −
(0.0022,0.0359) (0.0034,0.0662) (0.0026,0.0383) (0.0024,0.0380) (0.0030,0.0406) (0.0033,0.0399) (0.0845,0.1739) (0.0001,0.0099) (0.0596,0.0803)

𝜎𝑣 0.1048 0.1869 0.1013 0.1059 0.1037 0.1115 0.2859 0.1209 0.2782 −
(0.0668,0.4824) (0.0506,0.5088) (0.0320,0.2043) (0.0288,0.2139) (0.0439,0.3033) (0.0346,0.2233) (0.2441,0.3980) (0.0096,0.1471) (0.2366,0.3450)

𝜌𝑆𝑦 –0.7697 –0.6356 –0.8325 –0.8746 –0.9386 –0.7363 –0.9916 − − −
(–1.0000,0.1104) (–1.0000,–0.0524) (–1.0000,–0.5090) (–1.0000,–0.4554) (–1.0000,–0.6443) (–1.0000,–0.5179) (–1.0000,–0.3672)

𝜌𝑆𝑣 0.9999 0.6595 1.0000 0.9778 0.9851 1.0000 –0.7435 1.0000 –1.0000 −
(–0.4455,1.0000) (–0.9773,1.0000) (–0.9984,1.0000) (–0.8956,1.0000) (–0.8011,1.0000) (–0.9779,1.0000) (–0.8838,–0.5475) (–1.0000,1.0000) (–1.0000,–1.0000)

𝜌𝑦𝑣 0.9714 –0.0492 0.8520 0.9540 0.3150 0.9847 –0.5937 − − −
(–0.2796,1.0000) (–0.3872,1.0000) (–0.5755,1.0000) (–0.1622,0.9999) (–0.7327,0.9997) (–0.9968,1.0000) (–0.8471,–0.2511)

𝜆 0.0919 0.0843 0.0875 0.0879 0.0914 0.0896 − 0.1021 − 0.4592
(0.0270,0.1125) (0.0380,0.1119) (0.0339,0.1106) (0.0367,0.1058) (0.0408,0.1110) (0.0398,0.1077) (0.0471,0.1328) (0.0938,1.0000)

𝜇𝐽𝑆 –0.8664 − –1.8480 –0.9041 − –1.8256 − –1.3045 − –0.2698
(–4.7521,–0.6749) (–12.4688,–1.0101) (–11.3296,–0.6038) (–2.5000,–1.2328) (–2.5000,–1.0299) (–0.8439,–0.1911)

𝜎𝐽𝑆 − − − 0.0002 − 0.0002 − 0.0000 − 0.0061
(0.0000,0.1495) (0.0000,0.1479) (0.0000,0.0033) (0.0000,0.2500)

𝜇𝐽𝑌 − − − –0.9787 –1.7286 − − − − −
(–10.9504,–0.6038) (–2.5000,–1.2581)

𝜎𝐽𝑌 − − − 0.0000 0.0000 − − − − −
(0.0000,0.1631) (0.0000,0.1108)

𝑎𝑌 –0.8664 –1.8608 − − − − − − − −
(–4.6192,–0.0950) (–9.7908,–1.0613)

𝑏𝑌 0.0000 0.0000 − − − − − − − −
(0.0000,0.0689) (0.0000,0.0716)

Count 13 12 11 14 12 12 9 7 4 4
MAE𝐼 (𝜎) 0.0278 0.0279 0.0280 0.0280 0.0278 0.0280 0.0295 0.0277 0.0306 0.0805
RMSE𝐼 (𝜎) 0.0547 0.0550 0.0549 0.0548 0.0548 0.0549 0.0590 0.0543 0.0606 0.1262
ACT 0.3926 0.2369 0.2445 0.1873 0.4383 0.2050 0.3266 0.0981 0.0459 0.0941
MAE𝑂(𝜎) 0.0262 0.0267 0.0263 0.0265 0.0263 0.0265 0.0306 0.0286 0.0339 0.1019
RMSE𝑂(𝜎) 0.0343 0.0347 0.0343 0.0346 0.0343 0.0345 0.0384 0.0359 0.0405 0.1210
Notes: MAE(𝜎) represents the mean absolute pricing error in option volatilities, RMSE(𝜎) represents the square root of the quadratic mean of errors in option volatilities. For the error statistics, the superscript 𝐼 refers to the in-sample
analysis, whereas the superscript 𝑂 refers to the out-of-sample analysis. The pricing errors are defined as the differences between fitted volatilities 𝜎𝑡 and market implied (Black) volatilities 𝜎𝑡; they are expressed in parts per unit (e.g., 0.0805
means 8.05%). ACT refers to the computation time using the analytical solutions to the models displayed in Table 4b; the values are expressed in hours. Trolle (2014) corresponds to SYSVJ(𝑎1). Below each estimated parameter value and in
brackets we present the confidence interval associated to a percentile of 95%. We have additional analysis available from the authors on request (i.e., CI(97.5%), CI(99%) and plots with the distribution of the estimates’ values for different CIs).

(continued on next page)
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Table 6 (continued).
(b) Daily observations

Model SYSVJ TS09-SV1 Bat96 Hes93 Mer76

Jump 2 𝑏2 𝑎2 1 𝑏1 𝑎1
𝜎𝑆 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 – – 0.2180
𝛼 0.3742 0.3707 0.7727 0.8002 0.9693 0.8935 0.3745 – – –
𝛾 0.6933 0.8335 0.1047 0.1137 0.1180 0.0995 0.1365 – – –

𝜅 2.2080 2.3895 0.6158 0.5724 0.3381 0.4455 0.9943 2.7686 1.9003 –
𝜃 0.0243 0.0269 0.0265 0.0223 0.0333 0.0292 0.1414 0.0023 0.0683 –
𝜎𝑣 0.3228 0.3565 0.1246 0.1275 0.1248 0.1059 0.2775 0.1131 0.2731 –

𝜌𝑆𝑦 −0.4214 −0.2987 −0.9961 −0.9949 −0.9991 −0.9991 −0.9096 – – –
𝜌𝑆𝑣 0.0579 0.0653 0.3030 0.4882 0.5686 0.5657 −0.6657 1.0000 −1.0000 –
𝜌𝑦𝑣 0.1075 0.0183 0.3505 0.1346 0.6384 0.6391 −0.7219 – – –

𝜆 0.0705 0.0795 0.1000 0.1005 0.1037 0.0997 – 0.0960 – 0.6502
𝜇𝐽𝑆 −0.9069 – −1.2891 −0.6762 – −1.4818 – −1.3793 – −0.2263
𝜎𝐽𝑆 – – – 0.0256 – 0.1480 – 0.0000 – 0.0001
𝜇𝐽𝑌 – – – −0.6762 −1.4677 – – – – –
𝜎𝐽𝑌 – – – 0.0256 0.0802 – – – – –
𝑎𝑌 −0.7358 −1.2668 – – – – – – – –
𝑏𝑌 0.0680 0.0668 – – – – – – – –

Count 13 12 11 14 12 12 9 7 4 4

MAE𝐼 (𝜎) 0.0318 0.0321 0.0301 0.0300 0.0297 0.0298 0.0363 0.0250 0.0280 0.0803
RMSE𝐼 (𝜎) 0.0542 0.0540 0.0526 0.0526 0.0519 0.0521 0.0601 0.0489 0.0539 0.1228

ACT 5.1864 3.0470 3.2148 5.2096 6.1521 4.3336 4.2462 8.2889 1.3871 5.4152

MAE𝑂(𝜎) 0.0278 0.0291 0.0281 0.0277 0.0279 0.0285 0.0284 0.0289 0.0341 0.0964
RMSE𝑂(𝜎) 0.0363 0.0381 0.0371 0.0366 0.0385 0.0375 0.0392 0.0364 0.0411 0.1117

Notes: MAE(𝜎) represents the mean absolute pricing error in option volatilities, RMSE(𝜎) represents the square root of the quadratic mean of errors in option volatilities. For the
error statistics, the superscript 𝐼 refers to the in-sample analysis, whereas the superscript 𝑂 refers to the out-of-sample analysis. The pricing errors are defined as the differences
between fitted volatilities 𝜎̂𝑡 and market implied (Black) volatilities 𝜎𝑡; they are expressed in parts per unit (e.g., 0.0805 means 8.05%). ACT refers to the computation time using
he analytical solutions to the models displayed in Sub-Table 4b; the values are expressed in hours. Trolle (2014) corresponds to SYSVJ(𝑎1).
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ard drive machine, running on Windows 10 64 bits, with Matlab
ersion R2020b and Microsoft Office 64 bits.

.1. In-sample analysis

The period considered spans from May 27th, 2010 to September
0th, 2020 and is at monthly and daily frequency, making it 125
onthly and 2618 daily observations, respectively.

.1.1. Monthly observations
The observation period considered makes 125 end of month ob-

ervations, which are taken on the last business day of the month
n the period considered. As a result, we consider the seven futures
ontracts and their 32 corresponding ATM and OTM options for each
bservation, which represent 28,000 options. Because of data issues,
570 options are discarded, making it a final number of 24,430 options
87.25% of the total number).

Fig. 1 focuses on the period May 2010 to February 2022, with a
ertical line separating the in-sample from the out-of-sample period;
t considers the contracts labelled M2, Q1, Q2 only. Fig. 1a shows
he evolution of futures prices per contracts, Fig. 1b shows futures
eturns, Fig. 1c shows Black volatilities for ATM call options, and
ig. 1d presents a histogram of futures returns compared with those
ormally-distributed (the histogram refers to the in-sample period).
n the histogram, the presence of skewness and kurtosis (fat tails) is
vident. In Fig. 1c, we also observe that volatility is stochastic. In the
eriod considered, the jump in 2011 corresponds to the Arab spring; the
iggest downward jump occurring in 2014 corresponds to the territorial
ains made by ISIS in Iraq and Syria, the surprising growth of US
hale oil production (fracking) and the decision taken by the OPEC
o maintain output. Futures prices plummeted in March 2020, which
orresponds to the beginning of the Covid-19 pandemic.

A Jarque–Bera normality test demonstrates that futures returns are
ot Gaussian. Table 3a presents the results of the test, contract by
ontract and for all contracts taken together. The values of the skewness
nd kurtosis signal the returns not to have a normal distribution, which
11

upports the inclusion of stochastic variance as well as jumps. n
.1.2. Daily observations
The observation period considered makes 2618 daily observations.

s a result, we consider the seven futures contracts and their 32
orresponding options for each observation, which represent 586,432
ptions. Because of data issues similar to the monthly observations,
4,194 options are discarded, making it a final number of 512,238
ptions (87.35% of the total number).

We omit plotting futures prices and returns, and options volatilities
n daily observations to reduce clutter on the graphs. Again, a Jarque–
era normality test demonstrates that futures returns are not Gaussian.
able 3b presents the results.

.2. Out-of-sample analysis

We perform an out-of-sample analysis using data October 1st, 2020
o March 2nd, 2022. It is at monthly and daily frequency. We consider
he seven futures contracts and their 32 corresponding ATM and OTM
ptions for each observation.

.2.1. Monthly observations
The observation period considered has 17 monthly observations,

hich represent 3808 options. Because of data issues, 107 options are
iscarded, resulting in 3701 options (97.19% of the total number).

In Fig. 1, in particular Sub-figures (a), (b) and (c), the period after
he vertical line corresponds to this out-of-sample period. It is a period
ith upward jumps in prices since the start of Covid-19 pandemic and
p to the end of the sample, which coincides with the Russian invasion
f Ukraine (February 24th, 2022).

.2.2. Daily observations
The observation period considered has 366 daily observations,

hich represent 81,984 options. Because of data issues, 2408 options
re discarded, the final number is 79,576 options (97.06% of the total

umber).
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Fig. 1. Futures prices and returns, ATM call options implied volatilities — monthly data.

Notes: This figure presents values that correspond to the futures contracts labelled M2, Q1, Q2 for the period May 2010 to March 2022; the vertical line separates the in-sample
with the out-of-sample period. Sub-figure (a) presents futures prices, Sub-figure (b) presents futures returns, Sub-figure (c) presents implied volatilities for ATM call options, and
Sub-figure (d) presents a histogram for aggregated futures returns. The data sample for the histogram is May 2010 to September 2020 (only the in-sample period).
5. Results

In this section we discuss the empirical pricing performance of our
novel model presented in Section 2.1 and each of the extant models
listed in Section 2.2.2. Black (1976) is the market model for pricing
standard European options on futures prices. In fact, there is one equiv-
alent Black volatility per quoted option; therefore, there is no benefit in
calibrating this single-parameter model. Our benchmark model is Trolle
and Schwartz (2009)-SV1 (TS09-SV1), which is deployed as a special
case of ours, and our sub-specification SVSYJ𝑎1 corresponds to Trolle
(2014).

We perform an initial calibration using the in-sample market data
set described in Section 4.1, leaving out of the estimation a subset of
quoted options with the objective of studying which model(s) perform
the best in fitting the prices of the left-out options. Therefore, we
calculate a first set of error estimates using only the in-sample data set
described in Section 4.2 to see which model performs best in-sample.
12
We finally carry out a pricing exercise of those options left-out with
the original parameters’ estimates and calculate the error statistics to
compare the out-of-sample goodness-of-fit.

5.1. In-sample

We compute the fair value of standard European call and put options
contracts on different maturities and strike prices over a period of
slightly over 10 years. Numerical results (estimated parameters values,
pricing errors and computation time) are reported in Table 6. Table 6a
refers to monthly data and Table 6b refers to daily data of futures and
option prices. For monthly observations, we additionally present the
confidence intervals at a percentile of 95% of each of the parameters
estimates. To construct them, we perform a bootstrapping (sample with
replacement) exercise which consists of 100 iterations from which we
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compute the 95% confidence intervals.11 Errors are expressed in terms
of MAE(𝜎) and RMSE(𝜎), and computation time in hours.

We want to determine whether the addition of different types of
jumps brings any benefit to the pricing performance of our model
compared with our benchmark. In this Section we will focus on re-
sults generated from daily observations; if results differ between one
granularity and the other, we will explicitly discuss it.

Originally, Trolle and Schwartz (2009) was calibrated numerically
applying the Fourier inversion theorem as in Duffie et al. (2000). This
is the first empirical work in the literature we are aware of which prices
plain vanilla options using the analytical solutions in Sitzia (2018).
This innovation enables a much faster calibration of TS09-SV1 and our
model. The alternative characterisation of the parameters is another
novel feature, which reduces calibration time by approximately 50%.12

Our model presents the highest performance results (that is, the
lowest values in terms of MAE(𝜎) and RSME(𝜎)) but also the longest
computation times, as it contains the highest number of parameters.
There is one exception on monthly (daily) data, where neither the
benchmark nor our model can beat Bates (1996) (and Heston (1993))
in terms or errors.13 So that computational time and calibrated values
are comparable, we use the same initial set of (common) parameter
values throughout all of our model sub-specifications as well as for our
TS09-SV1. We tried many different sets of initial parameter values until
we reached the best possible local optimum. In all cases we beat the
benchmark; this result is more evident using daily data where, on av-
erage, the outperformance reaches 0.57% in terms of MAE(𝜎) (0.0363
to 0.0306) and 0.72% in terms of RMSE(𝜎) (0.0601 to 0.0529). These
results represent a noteworthy improvement in model performance.
Considered along with the reduction in computation time through the
analytical solution for the CF and the use of the FFT for option pricing,
these improvements provide a significant benefit for practitioners.

In order to compare models and identify superior performance,
we analyse the distribution of the errors which can be observed in
Tables 7 to 10. These tables present the distribution of MAE(𝜎) along
two dimensions, namely the 32 moneyness levels and the maturity of
the seven futures contracts, considered individually and taken together.
When the observations are taken monthly (daily), Tables 7 and 8 (9
and 10) present the performances obtained by our benchmark and our
model. The first table refers to our i.i.d. sub-specification (1) and the
latter to our more advanced model with time-dampening jumps (2). In
ub-tables (a) we present the benchmark errors, Sub-tables (b) present
ur model errors, and Sub-tables (c) represent how good or bad our
odel is compared with the benchmark. Where the inclusion of jumps

mproves the pricing accuracy of our model, the values in Sub-tables
c) are positive.

We subsequently study in detail the information displayed in Ta-
les 9 and 10, which are based on the daily data set. Examining
ub-tables (a) and (b), the first insight is that contracts that report
reater errors are found in the shorter maturity contracts (darker
ed cells). In terms of moneyness, we find that the worst-performing
ontracts are the ones more distant from the ATM level; the worst
f all correspond to options with lower strike level (that is, put op-
ions). For larger strike levels, the errors increase again for call options
ore distant from the ATM level. Furthermore, we observe that error
erformances are not symmetric. Examining Sub-tables (c) we observe
hat, on average, our model outperform the benchmark in nearly all
ontracts — all but one for SYSVJ1, all but two for SYSVJ2 (all being
2 × 7 = 224). The biggest improvements (darker blue) can be found
n shorter contracts with lower strike levels and in OTM call options
ore distant from the ATM level. Improvements are not symmetric in

11 Because of the significant computational burden, we limited ourselves to
00 iterations.
12 These values are available upon request.
13
13

This particular fact is under current review. p
this case, either. For SYSVJ1, the model improvement reaches 2.28%
and 2.22% for SYSVJ2, which is noteworthy. The improvement in the
aforementioned option contracts is consistent with the inclusion of
jumps in the model. A priori, one would expected a positive effect in the
short-term goodness of fit given that jumps (as opposed to volatilities)
affect prices immediately; this effect is more clear in those contracts
closer to maturity — a stylised fact in commodity markets.

In Table 6 it can be observed that in jump models, the jump
amplitude 𝜇𝐽 is negative, an empirical fact which can be observed
in the heavier left tail in Fig. 1d. Excluding Merton (1976), jump
amplitudes (taken together in the case of jump assumptions (1) or (2))
re always higher in magnitude than −1. Their intensity rates are small,
mplying one jump every 10–12 years (depending on sub-specification
nd frequency). This results mainly from considering stochastic volatil-
ty within the models, which is the main driver of the non-Gaussian
eturns. Considering models with no jumps such as Heston (1993) and
S09-SV1, the correlation between the spot price and the volatility 𝜌𝑆𝑣

s negative, whereas it is positive in all others. In models that allow
or stochastic cost of carry, correlations between the cost of carry and
he volatility 𝜌𝑦𝑣 are positive in most cases. Correlations between the
pot price and the cost of carry (convenience yield) 𝜌𝑆𝑦 are negative
positive) in all cases; this goes in line with the results obtained in prior
esearch.

The introduction of jumps complicates the calibration as parameters
alues are somewhat unstable; this fact can be observed in Table 6
n either frequency considered. In our model and for monthly data,
e observe that with i.i.d jumps, jump volatilities 𝜎𝐽𝑆 and 𝜎𝐽𝑌 are

ero in all sub-specifications — they can all be considered as constant
umps providing similar performance no matter the jump type con-
idered. Something similar occurs with time-dampening jumps, where
he dampening factor 𝑏𝑌 hits zero in all sub-specifications (observe
hat jump assumption (𝑎2) is equivalent to (2) with 𝑏𝑌 = 0). Any
ype of jump outperforms our benchmark by 0.15%. For daily data
nd unlike the situation previously described, we can observe that
ump parameters do not present null values: jump volatilities in i.i.d.
umps are clearly different from zero although small in magnitude, the
ump-decay parameter in time-dependent jumps take reasonable values.

The extant jump models perform in an opposite way to our novel
ump model. For monthly observations, the models of Bates (1996)
nd Merton (1976) have non-zero but quite small jump volatility val-
es. On the contrary, these volatilities are zero for daily observations.
n both frequencies, these findings lead us to think that jumps may not
recisely be i.i.d.

In terms of model performance, MAE(𝜎) values are practically in-
istinguishable between the two sets of sub-specifications: those corre-
ponding to i.i.d. jumps together with (𝑎2) hit 3.00%; those of (𝑎2) and
2) stay around 3.20%. Both values clearly outperform our benchmark.
n insight discernible only in daily data is that sub-specifications that
resent time-dampening jumps do not perform better than those related
o i.i.d. jumps. Although the time-dependency in jumps is an important
tylised fact in commodity markets, we think it relevant to consider
umps variable rather than constant; a mixture of both types might
eliver even better results. We conclude that our jump model performs
etter than our benchmark, especially for short maturity contracts and
way from the ATM level.

We now deepen our analysis of model comparisons by computing
he MAE and its 95% confidence intervals, splitting the options into
5 buckets. To construct them, we perform a bootstrapping exercise
hich consists of 100 iterations from which we compute the 95% con-

idence intervals.11 These values are calculated subject to the following
uckets: deep OTM puts, OTM puts, ATMs, OTM calls and deep OTM
alls for moneyness; short, mid, and long for maturities. We present
hese intervals in Table 11 below the error value in each bucket, which
alues correspond only to monthly observations.

In Table 12 and following this new granularity, we present models’

erformances, which are measured as the error difference between
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Table 7
Model performance of SYSVJ1 — monthly observations.

(a) TS09-SV1 (b) SYSVJ1 (c) Diff. SYSVJ1 – TS09-SV1

MAE(𝜎) M2 M3 M4 M5 M6 Q1 Q2 ALL
. p – 7.5 . 0.0426 0.0265 0.0289 0.0321 0.0328 0.0428 0.0420 0.0354

. p – 7 . 0.0392 0.0253 0.0285 0.0317 0.0335 0.0422 0.0411 0.0345

. p – 6.5 . 0.0362 0.0238 0.0274 0.0310 0.0336 0.0422 0.0418 0.0337

. p – 6 . 0.0333 0.0229 0.0273 0.0301 0.0330 0.0425 0.0425 0.0331

. p – 5.5 . 0.0307 0.0220 0.0271 0.0307 0.0328 0.0422 0.0411 0.0324

. p – 5 . 0.0281 0.0217 0.0262 0.0301 0.0334 0.0419 0.0416 0.0319

. p – 4.5 . 0.0264 0.0210 0.0254 0.0305 0.0326 0.0413 0.0417 0.0313

. p – 4 . 0.0235 0.0204 0.0251 0.0295 0.0325 0.0414 0.0424 0.0307

. p – 3.5 . 0.0214 0.0197 0.0247 0.0291 0.0322 0.0410 0.0419 0.0300

. p – 3 . 0.0195 0.0187 0.0246 0.0286 0.0320 0.0421 0.0425 0.0297

. p – 2.5 . 0.0185 0.0186 0.0242 0.0284 0.0323 0.0420 0.0421 0.0294

. p – 2 . 0.0164 0.0182 0.0244 0.0287 0.0314 0.0412 0.0412 0.0288

. p – 1.5 . 0.0156 0.0178 0.0243 0.0284 0.0316 0.0399 0.0410 0.0284

. p – 1 . 0.0138 0.0174 0.0237 0.0281 0.0313 0.0414 0.0425 0.0283

. p – 0.5 . 0.0127 0.0172 0.0238 0.0284 0.0313 0.0405 0.0410 0.0278

. p . 0.0120 0.0166 0.0235 0.0281 0.0312 0.0409 0.0420 0.0277

. c . 0.0120 0.0169 0.0237 0.0281 0.0313 0.0408 0.0414 0.0277

. c + 0.5 . 0.0112 0.0167 0.0237 0.0282 0.0315 0.0392 0.0416 0.0274

. c + 1 . 0.0109 0.0170 0.0233 0.0280 0.0308 0.0407 0.0417 0.0275

. c + 1.5 . 0.0107 0.0170 0.0241 0.0281 0.0309 0.0389 0.0410 0.0272

. c + 2 . 0.0112 0.0171 0.0234 0.0277 0.0306 0.0395 0.0420 0.0274

. c + 2.5 . 0.0119 0.0176 0.0240 0.0281 0.0312 0.0393 0.0412 0.0276

. c + 3 . 0.0125 0.0175 0.0241 0.0279 0.0310 0.0388 0.0411 0.0276

. c + 3.5 . 0.0133 0.0184 0.0242 0.0284 0.0318 0.0395 0.0406 0.0280

. c + 4 . 0.0138 0.0184 0.0246 0.0282 0.0311 0.0388 0.0410 0.0280

. c + 4.5 . 0.0141 0.0190 0.0246 0.0286 0.0313 0.0389 0.0411 0.0282

. c + 5 . 0.0150 0.0190 0.0251 0.0283 0.0310 0.0400 0.0413 0.0285

. c + 5.5 . 0.0154 0.0195 0.0254 0.0288 0.0315 0.0387 0.0405 0.0285

. c + 6 . 0.0159 0.0199 0.0253 0.0288 0.0322 0.0394 0.0420 0.0291

. c + 6.5 . 0.0166 0.0200 0.0256 0.0294 0.0326 0.0406 0.0418 0.0295

. c + 7 . 0.0173 0.0208 0.0258 0.0295 0.0324 0.0399 0.0417 0.0296

. c + 7.5 . 0.0192 0.0219 0.0264 0.0303 0.0335 0.0402 0.0416 0.0304

. ALL . 0.0191 0.0195 0.0251 0.0291 0.0319 0.0406 0.0416 0.0295

M2 M3 M4 M5 M6 Q1 Q2 ALL
0.0464 0.0307 0.0306 0.0322 0.0339 0.0371 0.0406 0.0359

0.0416 0.0278 0.0291 0.0307 0.0328 0.0364 0.0376 0.0337

0.0378 0.0249 0.0271 0.0290 0.0318 0.0364 0.0371 0.0320

0.0344 0.0226 0.0260 0.0276 0.0308 0.0376 0.0382 0.0310
0.0312 0.0209 0.0252 0.0280 0.0307 0.0377 0.0379 0.0302

0.0286 0.0201 0.0237 0.0277 0.0311 0.0383 0.0390 0.0298

0.0268 0.0192 0.0228 0.0278 0.0302 0.0382 0.0384 0.0290

0.0237 0.0184 0.0226 0.0270 0.0304 0.0386 0.0388 0.0285
0.0217 0.0176 0.0223 0.0267 0.0300 0.0387 0.0385 0.0279

0.0199 0.0165 0.0221 0.0262 0.0300 0.0403 0.0401 0.0279

0.0187 0.0164 0.0218 0.0261 0.0302 0.0405 0.0407 0.0278
0.0167 0.0159 0.0218 0.0263 0.0296 0.0399 0.0406 0.0272

0.0160 0.0156 0.0216 0.0206 0.0295 0.0390 0.0397 0.0268

0.0146 0.0154 0.0210 0.0256 0.0293 0.0403 0.0407 0.0267

0.0140 0.0152 0.0211 0.0257 0.0292 0.0396 0.0390 0.0262

0.0136 0.0147 0.0208 0.0253 0.0290 0.0400 0.0402 0.0262

0.0136 0.0152 0.0210 0.0253 0.0291 0.0400 0.0398 0.0263

0.0136 0.0149 0.0209 0.0254 0.0290 0.0381 0.0406 0.0261

0.0137 0.0153 0.0204 0.0250 0.0284 0.0398 0.0409 0.0262

0.0142 0.0156 0.0210 0.0248 0.0280 0.0378 0.0401 0.0259

0.0151 0.0162 0.0208 0.0242 0.0278 0.0380 0.0398 0.0260

0.0163 0.0169 0.0212 0.0245 0.0278 0.0374 0.0386 0.0261

0.0176 0.0171 0.0216 0.0242 0.0276 0.0366 0.0380 0.0261
0.0189 0.0180 0.0218 0.0246 0.0278 0.0370 0.0376 0.0265

0.0200 0.0187 0.0221 0.0244 0.0277 0.0357 0.0380 0.0266
0.0209 0.0193 0.0222 0.0248 0.0274 0.0354 0.0380 0.0268

0.0218 0.0201 0.0230 0.0243 0.0271 0.0359 0.0383 0.0272

0.0225 0.0208 0.0236 0.0251 0.0273 0.0343 0.0366 0.0272
0.0229 0.0215 0.0234 0.0250 0.0281 0.0344 0.0372 0.0275

0.0233 0.0219 0.0239 0.0257 0.0285 0.0352 0.0360 0.0278

0.0233 0.0228 0.0242 0.0256 0.0280 0.0340 0.0355 0.0276
0.0235 0.0238 0.0256 0.0264 0.0291 0.0339 0.0351 0.0282

0.0221 0.0191 0.0230 0.0262 0.0293 0.0376 0.0387 0.0280

M2 M3 M4 M5 M6 Q1 Q2 ALL
−0.0038 −0.0042 −0.0017 −0.0001 −0.0011 0.0056 0.0015 −0.0005
−0.0024 −0.0024 −0.0006 0.0010 0.0007 0.0058 0.0036 0.0008
−0.0017 −0.0011 0.0003 0.0020 0.0018 0.0058 0.0047 0.0017
−0.0010 0.0002 0.0013 0.0025 0.0022 0.0049 0.0043 0.0021

−0.0006 0.0011 0.0019 0.0026 0.0021 0.0044 0.0031 0.0021

−0.0005 0.0016 0.0025 0.0024 0.0023 0.0037 0.0026 0.0021
−0.0004 0.0019 0.0026 0.0026 0.0023 0.0031 0.0033 0.0022

−0.0002 0.0020 0.0025 0.0025 0.0021 0.0028 0.0036 0.0022
−0.0003 0.0021 0.0024 0.0024 0.0022 0.0022 0.0034 0.0021
−0.0003 0.0022 0.0025 0.0024 0.0020 0.0019 0.0024 0.0019

−0.0003 0.0023 0.0024 0.0024 0.0021 0.0015 0.0014 0.0017
−0.0003 0.0023 0.0026 0.0024 0.0019 0.0013 0.0006 0.0015

−0.0004 0.0022 0.0027 0.0025 0.0021 0.0009 0.0012 0.0016

−0.0008 0.0020 0.0027 0.0025 0.0020 0.0010 0.0018 0.0016
−0.0013 0.0020 0.0027 0.0027 0.0021 0.0010 0.0020 0.0016
−0.0017 0.0018 0.0027 0.0028 0.0021 0.0008 0.0018 0.0015
−0.0017 0.0018 0.0028 0.0027 0.0022 0.0008 0.0015 0.0014
−0.0023 0.0018 0.0028 0.0028 0.0025 0.0010 0.0009 0.0014

−0.0029 0.0017 0.0028 0.0030 0.0024 0.0008 0.0008 0.0012

−0.0035 0.0014 0.0031 0.0033 0.0029 0.0011 0.0009 0.0013

−0.0039 0.0010 0.0026 0.0034 0.0028 0.0015 0.0022 0.0014

−0.0045 0.0008 0.0028 0.0036 0.0034 0.0019 0.0026 0.0015

−0.0052 0.0004 0.0024 0.0037 0.0035 0.0023 0.0031 0.0015
−0.0056 0.0005 0.0024 0.0038 0.0040 0.0025 0.0030 0.0015
−0.0062 −0.0003 0.0024 0.0038 0.0034 0.0031 0.0030 0.0013
−0.0068 −0.0002 0.0024 0.0038 0.0039 0.0035 0.0031 0.0014

−0.0068 −0.0012 0.0021 0.0039 0.0039 0.0041 0.0030 0.0013

−0.0070 −0.0014 0.0018 0.0037 0.0041 0.0044 0.0038 0.0013
−0.0071 −0.0016 0.0018 0.0039 0.0042 0.0050 0.0048 0.0016

−0.0067 −0.0019 0.0016 0.0037 0.0042 0.0054 0.0058 0.0017

−0.0060 −0.0020 0.0016 0.0038 0.0044 0.0059 0.0063 0.0020

−0.0043 −0.0019 0.0008 0.0039 0.0043 0.0063 0.0065 0.0022

−0.0030 0.0005 0.0021 0.0029 0.0027 0.0030 0.0029 0.0016

Notes: This table reports model accuracy in terms of MAE(𝜎) within each moneyness-maturity category; the estimations performed on the monthly data set. p – (c +) 𝑖 refers to put (call)
options with strike equal to the ATM strike minus (plus) 𝑖 USD – the strikes are, therefore, increasing. Only the central rows display ATM options, all others display OTM options. Sub-table
(a) refers to TS09-SV1, Sub-table (b) refers to SYSVJ1 (both models follow the original characterisation of the parameters); observe that the darker the colour of the cell (red), the worse
the model performance. Sub-table (c) displays the difference between both models (compares models accuracy), that is, TS09-SV1 – SYSVJ1; observe that the darker the colour of the cell
(blue), the more accurate our model is (the better the performance of our model).
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Table 8
Model performance of SYSVJ2 — monthly observations.

(a) TS09-SV1 (b) SYSVJ2 (c) Diff. SYSVJ2 – TS09-SV1

MAE(𝜎) M2 M3 M4 M5 M6 Q1 Q2 ALL
. p – 7.5 . 0.0426 0.0265 0.0289 0.0321 0.0328 0.0428 0.0420 0.0354

. p – 7 . 0.0392 0.0253 0.0285 0.0317 0.0335 0.0422 0.0411 0.0345

. p – 6.5 . 0.0362 0.0238 0.0274 0.0310 0.0336 0.0422 0.0418 0.0337

. p – 6 . 0.0333 0.0229 0.0273 0.0301 0.0330 0.0425 0.0425 0.0331

. p – 5.5 . 0.0307 0.0220 0.0271 0.0307 0.0328 0.0422 0.0411 0.0324

. p – 5 . 0.0281 0.0217 0.0262 0.0301 0.0334 0.0419 0.0416 0.0319

. p – 4.5 . 0.0264 0.0210 0.0254 0.0305 0.0326 0.0413 0.0417 0.0313

. p – 4 . 0.0235 0.0204 0.0251 0.0295 0.0325 0.0414 0.0424 0.0307

. p – 3.5 . 0.0214 0.0197 0.0247 0.0291 0.0322 0.0410 0.0419 0.0300

. p – 3 . 0.0195 0.0187 0.0246 0.0286 0.0320 0.0421 0.0425 0.0297

. p – 2.5 . 0.0185 0.0186 0.0242 0.0284 0.0323 0.0420 0.0421 0.0294

. p – 2 . 0.0164 0.0182 0.0244 0.0287 0.0314 0.0412 0.0412 0.0288

. p – 1.5 . 0.0156 0.0178 0.0243 0.0284 0.0316 0.0399 0.0410 0.0284

. p – 1 . 0.0138 0.0174 0.0237 0.0281 0.0313 0.0414 0.0425 0.0283

. p – 0.5 . 0.0127 0.0172 0.0238 0.0284 0.0313 0.0405 0.0410 0.0278

. p . 0.0120 0.0166 0.0235 0.0281 0.0312 0.0409 0.0420 0.0277

. c . 0.0120 0.0169 0.0237 0.0281 0.0313 0.0408 0.0414 0.0277

. c + 0.5 . 0.0112 0.0167 0.0237 0.0282 0.0315 0.0392 0.0416 0.0274

. c + 1 . 0.0109 0.0170 0.0233 0.0280 0.0308 0.0407 0.0417 0.0275

. c + 1.5 . 0.0107 0.0170 0.0241 0.0281 0.0309 0.0389 0.0410 0.0272

. c + 2 . 0.0112 0.0171 0.0234 0.0277 0.0306 0.0395 0.0420 0.0274

. c + 2.5 . 0.0119 0.0176 0.0240 0.0281 0.0312 0.0393 0.0412 0.0276

. c + 3 . 0.0125 0.0175 0.0241 0.0279 0.0310 0.0388 0.0411 0.0276

. c + 3.5 . 0.0133 0.0184 0.0242 0.0284 0.0318 0.0395 0.0406 0.0280

. c + 4 . 0.0138 0.0184 0.0246 0.0282 0.0311 0.0388 0.0410 0.0280

. c + 4.5 . 0.0141 0.0190 0.0246 0.0286 0.0313 0.0389 0.0411 0.0282

. c + 5 . 0.0150 0.0190 0.0251 0.0283 0.0310 0.0400 0.0413 0.0285

. c + 5.5 . 0.0154 0.0195 0.0254 0.0288 0.0315 0.0387 0.0405 0.0285

. c + 6 . 0.0159 0.0199 0.0253 0.0288 0.0322 0.0394 0.0420 0.0291

. c + 6.5 . 0.0166 0.0200 0.0256 0.0294 0.0326 0.0406 0.0418 0.0295

. c + 7 . 0.0173 0.0208 0.0258 0.0295 0.0324 0.0399 0.0417 0.0296

. c + 7.5 . 0.0192 0.0219 0.0264 0.0303 0.0335 0.0402 0.0416 0.0304

. ALL . 0.0191 0.0195 0.0251 0.0291 0.0319 0.0406 0.0416 0.0295

M2 M3 M4 M5 M6 Q1 Q2 ALL
0.0475 0.0315 0.0311 0.0326 0.0343 0.0374 0.0417 0.0366
0.0425 0.0285 0.0294 0.0310 0.0331 0.0365 0.0384 0.0342

0.0386 0.0256 0.0273 0.0292 0.0319 0.0364 0.0373 0.0323

0.0350 0.0233 0.0262 0.0278 0.0308 0.0376 0.0381 0.0313
0.0318 0.0213 0.0253 0.0282 0.0307 0.0376 0.0376 0.0303
0.0291 0.0204 0.0239 0.0278 0.0311 0.0382 0.0386 0.0299

0.0271 0.0194 0.0229 0.0280 0.0302 0.0380 0.0380 0.0291

0.0240 0.0186 0.0227 0.0272 0.0304 0.0385 0.0384 0.0286
0.0219 0.0177 0.0224 0.0269 0.0299 0.0387 0.0381 0.0280

0.0200 0.0166 0.0222 0.0264 0.0300 0.0402 0.0395 0.0279

0.0188 0.0164 0.0218 0.0262 0.0302 0.0405 0.0399 0.0277

0.0167 0.0159 0.0219 0.0264 0.0296 0.0399 0.0396 0.0271

0.0159 0.0156 0.0217 0.0261 0.0295 0.0390 0.0388 0.0267

0.0144 0.0152 0.0211 0.0257 0.0293 0.0403 0.0399 0.0266

0.0137 0.0149 0.0211 0.0258 0.0292 0.0395 0.0383 0.0261

0.0132 0.0144 0.0208 0.0254 0.0290 0.0400 0.0397 0.0261

0.0132 0.0148 0.0209 0.0254 0.0291 0.0400 0.0392 0.0261

0.0130 0.0145 0.0208 0.0254 0.0289 0.0381 0.0401 0.0258

0.0132 0.0149 0.0203 0.0251 0.0283 0.0398 0.0404 0.0260

0.0135 0.0152 0.0208 0.0248 0.0279 0.0378 0.0394 0.0256

0.0143 0.0156 0.0205 0.0243 0.0277 0.0379 0.0391 0.0256

0.0154 0.0163 0.0209 0.0244 0.0276 0.0373 0.0379 0.0257

0.0168 0.0165 0.0214 0.0242 0.0274 0.0365 0.0375 0.0257
0.0181 0.0174 0.0215 0.0245 0.0275 0.0369 0.0370 0.0261

0.0192 0.0179 0.0217 0.0242 0.0276 0.0355 0.0373 0.0262

0.0202 0.0186 0.0218 0.0246 0.0272 0.0352 0.0373 0.0264
0.0212 0.0194 0.0226 0.0241 0.0269 0.0357 0.0379 0.0268

0.0219 0.0201 0.0232 0.0248 0.0271 0.0341 0.0360 0.0267

0.0224 0.0208 0.0230 0.0247 0.0279 0.0342 0.0366 0.0271

0.0228 0.0212 0.0236 0.0254 0.0282 0.0349 0.0355 0.0274

0.0229 0.0221 0.0237 0.0254 0.0278 0.0337 0.0349 0.0272

0.0232 0.0231 0.0251 0.0261 0.0289 0.0336 0.0346 0.0278

0.0219 0.0189 0.0229 0.0262 0.0292 0.0375 0.0382 0.0278

M2 M3 M4 M5 M6 Q1 Q2 ALL
−0.0049 −0.0050 −0.0022 −0.0004 −0.0015 0.0054 0.0003 −0.0012

−0.0033 −0.0032 −0.0009 0.0008 0.0004 0.0057 0.0027 0.0003

−0.0024 −0.0017 0.0001 0.0017 0.0016 0.0058 0.0045 0.0014
−0.0016 −0.0004 0.0011 0.0023 0.0022 0.0049 0.0044 0.0018

−0.0011 0.0007 0.0018 0.0025 0.0022 0.0046 0.0035 0.0020
−0.0010 0.0013 0.0024 0.0023 0.0023 0.0038 0.0030 0.0020
−0.0007 0.0016 0.0024 0.0025 0.0024 0.0032 0.0037 0.0021
−0.0005 0.0018 0.0024 0.0023 0.0021 0.0029 0.0040 0.0021

−0.0005 0.0020 0.0023 0.0022 0.0022 0.0022 0.0039 0.0020

−0.0005 0.0021 0.0024 0.0022 0.0020 0.0019 0.0030 0.0019

−0.0003 0.0022 0.0023 0.0022 0.0021 0.0015 0.0021 0.0017
−0.0003 0.0023 0.0025 0.0022 0.0018 0.0013 0.0016 0.0016
−0.0003 0.0023 0.0026 0.0023 0.0021 0.0008 0.0022 0.0017
−0.0007 0.0022 0.0026 0.0024 0.0020 0.0011 0.0026 0.0017
−0.0010 0.0023 0.0027 0.0026 0.0020 0.0010 0.0027 0.0017
−0.0012 0.0022 0.0028 0.0027 0.0022 0.0008 0.0023 0.0017
−0.0012 0.0021 0.0028 0.0027 0.0022 0.0008 0.0022 0.0017
−0.0018 0.0022 0.0029 0.0028 0.0026 0.0010 0.0015 0.0016

−0.0023 0.0021 0.0030 0.0030 0.0025 0.0008 0.0013 0.0015
−0.0029 0.0018 0.0033 0.0032 0.0030 0.0010 0.0016 0.0016

−0.0030 0.0015 0.0029 0.0034 0.0029 0.0016 0.0029 0.0017

−0.0036 0.0013 0.0031 0.0037 0.0036 0.0020 0.0033 0.0019

−0.0043 0.0010 0.0027 0.0037 0.0037 0.0023 0.0037 0.0018
−0.0048 0.0010 0.0027 0.0040 0.0043 0.0026 0.0036 0.0019

−0.0054 0.0004 0.0028 0.0040 0.0036 0.0033 0.0036 0.0018
−0.0060 0.0005 0.0028 0.0040 0.0041 0.0036 0.0037 0.0018
−0.0062 −0.0004 0.0025 0.0042 0.0041 0.0043 0.0034 0.0017
−0.0065 −0.0006 0.0022 0.0040 0.0044 0.0046 0.0044 0.0018
−0.0065 −0.0009 0.0022 0.0041 0.0044 0.0052 0.0054 0.0020

−0.0062 −0.0012 0.0020 0.0040 0.0044 0.0057 0.0063 0.0021
−0.0056 −0.0014 0.0020 0.0041 0.0046 0.0062 0.0068 0.0024
−0.0040 −0.0013 0.0013 0.0042 0.0046 0.0066 0.0069 0.0026

−0.0028 0.0007 0.0021 0.0029 0.0027 0.0031 0.0033 0.0017
XXX

Notes: This table reports model accuracy in terms of MAE(𝜎) within each moneyness-maturity category; the estimations performed on the monthly data set. p – (c +) 𝑖 refers to put (call)
options with strike equal to the ATM strike minus (plus) 𝑖 USD – the strikes are, therefore, increasing. Only the central rows display ATM options, all others display OTM options. Sub-table
(a) refers to TS09-SV1, Sub-table (b) refers to our more advanced model SYSVJ2 (both models follow the original characterisation of the parameters); observe that the darker the colour
of the cell (red), the worse the model performance. Sub-table (c) displays the difference between both models (compares models accuracy), that is, TS09-SV1 – SYSVJ2; observe that the
darker the colour of the cell (blue), the more accurate our model is (the better the performance of our model).
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Table 9
Model performance of SYSVJ1 — daily observations.

(a) TS09-SV1 (b) SYSVJ1 (c) Diff. SYSVJ1 – TS09-SV1

MAE(𝜎) M2 M3 M4 M5 M6 Q1 Q2 ALL
. p – 7.5 . 0.0770 0.0524 0.0411 0.0372 0.0370 0.0373 0.0392 0.0459

. p – 7 . 0.0732 0.0509 0.0403 0.0367 0.0370 0.0371 0.0390 0.0449

. p – 6.5 . 0.0701 0.0492 0.0394 0.0362 0.0370 0.0365 0.0392 0.0440

. p – 6 . 0.0672 0.0473 0.0385 0.0354 0.0366 0.0365 0.0393 0.0430

. p – 5.5 . 0.0644 0.0457 0.0378 0.0353 0.0364 0.0361 0.0394 0.0422

. p – 5 . 0.0618 0.0441 0.0371 0.0345 0.0363 0.0361 0.0391 0.0413

. p – 4.5 . 0.0594 0.0425 0.0364 0.0339 0.0357 0.0360 0.0397 0.0405

. p – 4 . 0.0569 0.0410 0.0358 0.0332 0.0353 0.0359 0.0398 0.0397

. p – 3.5 . 0.0546 0.0397 0.0350 0.0327 0.0349 0.0356 0.0398 0.0389

. p – 3 . 0.0524 0.0385 0.0342 0.0321 0.0346 0.0359 0.0397 0.0382

. p – 2.5 . 0.0503 0.0373 0.0335 0.0317 0.0339 0.0359 0.0402 0.0375

. p – 2 . 0.0483 0.0362 0.0329 0.0313 0.0335 0.0359 0.0396 0.0368

. p – 1.5 . 0.0465 0.0352 0.0323 0.0310 0.0330 0.0354 0.0398 0.0362

. p – 1 . 0.0447 0.0341 0.0316 0.0305 0.0325 0.0357 0.0397 0.0355

. p – 0.5 . 0.0431 0.0333 0.0309 0.0303 0.0321 0.0353 0.0396 0.0349

. p . 0.0417 0.0324 0.0304 0.0301 0.0320 0.0349 0.0402 0.0345

. c . 0.0416 0.0323 0.0304 0.0300 0.0320 0.0352 0.0394 0.0344

. c + 0.5 . 0.0405 0.0317 0.0298 0.0298 0.0316 0.0351 0.0398 0.0340

. c + 1 . 0.0394 0.0311 0.0294 0.0295 0.0314 0.0348 0.0395 0.0336

. c + 1.5 . 0.0387 0.0305 0.0290 0.0294 0.0311 0.0344 0.0392 0.0332

. c + 2 . 0.0380 0.0301 0.0287 0.0292 0.0311 0.0344 0.0391 0.0329

. c + 2.5 . 0.0375 0.0297 0.0284 0.0291 0.0310 0.0342 0.0387 0.0327

. c + 3 . 0.0372 0.0294 0.0282 0.0290 0.0308 0.0340 0.0385 0.0324

. c + 3.5 . 0.0371 0.0293 0.0280 0.0288 0.0309 0.0340 0.0388 0.0324

. c + 4 . 0.0372 0.0293 0.0278 0.0286 0.0308 0.0338 0.0387 0.0323

. c + 4.5 . 0.0375 0.0294 0.0278 0.0285 0.0311 0.0337 0.0385 0.0324

. c + 5 . 0.0380 0.0297 0.0277 0.0285 0.0309 0.0337 0.0384 0.0324

. c + 5.5 . 0.0386 0.0300 0.0278 0.0286 0.0311 0.0336 0.0387 0.0326

. c + 6 . 0.0394 0.0305 0.0280 0.0284 0.0310 0.0336 0.0388 0.0328

. c + 6.5 . 0.0405 0.0310 0.0282 0.0287 0.0312 0.0337 0.0390 0.0332

. c + 7 . 0.0418 0.0317 0.0284 0.0285 0.0314 0.0337 0.0389 0.0335

. c + 7.5 . 0.0437 0.0325 0.0288 0.0287 0.0314 0.0342 0.0393 0.0341

. ALL . 0.0481 0.0359 0.0320 0.0311 0.0330 0.0351 0.0393 0.0363

M2 M3 M4 M5 M6 Q1 Q2 ALL
0.0542 0.0348 0.0289 0.0291 0.0303 0.0351 0.0400 0.0361

0.0519 0.0336 0.0280 0.0282 0.0298 0.0345 0.0386 0.0350

0.0502 0.0324 0.0273 0.0276 0.0296 0.0338 0.0379 0.0341

0.0489 0.0314 0.0268 0.0271 0.0291 0.0337 0.0374 0.0335

0.0476 0.0307 0.0266 0.0272 0.0293 0.0334 0.0370 0.0331

0.0466 0.0301 0.0264 0.0270 0.0294 0.0334 0.0366 0.0328

0.0456 0.0294 0.0262 0.0269 0.0292 0.0334 0.0370 0.0325

0.0445 0.0287 0.0261 0.0267 0.0292 0.0333 0.0370 0.0322

0.0434 0.0281 0.0257 0.0266 0.0293 0.0331 0.0369 0.0319

0.0424 0.0276 0.0255 0.0264 0.0294 0.0334 0.0369 0.0317

0.0413 0.0271 0.0252 0.0263 0.0292 0.0334 0.0372 0.0314

0.0401 0.0265 0.0251 0.0262 0.0291 0.0334 0.0370 0.0311

0.0390 0.0260 0.0248 0.0260 0.0291 0.0329 0.0373 0.0307

0.0378 0.0254 0.0245 0.0257 0.0288 0.0331 0.0373 0.0304
0.0366 0.0249 0.0241 0.0256 0.0286 0.0327 0.0374 0.0300

0.0355 0.0244 0.0238 0.0253 0.0285 0.0324 0.0377 0.0297

0.0354 0.0243 0.0238 0.0253 0.0286 0.0326 0.0374 0.0297

0.0346 0.0240 0.0234 0.0252 0.0282 0.0326 0.0375 0.0293

0.0337 0.0236 0.0231 0.0248 0.0281 0.0323 0.0374 0.0290

0.0329 0.0232 0.0228 0.0247 0.0277 0.0319 0.0371 0.0286

0.0322 0.0228 0.0225 0.0244 0.0276 0.0318 0.0370 0.0283
0.0317 0.0225 0.0222 0.0244 0.0274 0.0317 0.0365 0.0280
0.0312 0.0222 0.0221 0.0242 0.0269 0.0316 0.0361 0.0278

0.0308 0.0221 0.0220 0.0240 0.0267 0.0315 0.0362 0.0276
0.0307 0.0219 0.0219 0.0239 0.0266 0.0313 0.0359 0.0275

0.0306 0.0219 0.0219 0.0238 0.0265 0.0311 0.0355 0.0273

0.0306 0.0219 0.0219 0.0237 0.0262 0.0311 0.0351 0.0272

0.0307 0.0220 0.0219 0.0241 0.0262 0.0309 0.0351 0.0273

0.0310 0.0221 0.0221 0.0238 0.0261 0.0308 0.0349 0.0272

0.0314 0.0222 0.0222 0.0241 0.0261 0.0307 0.0346 0.0273
0.0320 0.0224 0.0223 0.0240 0.0263 0.0305 0.0345 0.0274
0.0328 0.0227 0.0225 0.0243 0.0262 0.0307 0.0343 0.0277

0.0381 0.0257 0.0242 0.0255 0.0281 0.0324 0.0367 0.0300

M2 M3 M4 M5 M6 Q1 Q2 ALL
0.0228 0.0176 0.0122 0.0081 0.0067 0.0022 −0.0008 0.0098

0.0213 0.0173 0.0123 0.0085 0.0072 0.0026 0.0004 0.0099

0.0199 0.0167 0.0121 0.0086 0.0074 0.0027 0.0013 0.0098

0.0183 0.0159 0.0117 0.0083 0.0075 0.0028 0.0019 0.0095

0.0168 0.0150 0.0112 0.0080 0.0072 0.0028 0.0023 0.0090

0.0153 0.0141 0.0107 0.0075 0.0069 0.0027 0.0025 0.0085

0.0138 0.0131 0.0102 0.0070 0.0065 0.0026 0.0027 0.0080
0.0124 0.0123 0.0097 0.0065 0.0061 0.0026 0.0028 0.0075

0.0112 0.0115 0.0092 0.0061 0.0056 0.0025 0.0029 0.0070

0.0100 0.0108 0.0087 0.0057 0.0052 0.0025 0.0028 0.0065
0.0091 0.0102 0.0082 0.0054 0.0047 0.0025 0.0030 0.0061

0.0082 0.0097 0.0078 0.0051 0.0043 0.0025 0.0026 0.0058

0.0075 0.0092 0.0075 0.0050 0.0040 0.0025 0.0025 0.0054

0.0069 0.0087 0.0071 0.0048 0.0037 0.0026 0.0023 0.0052

0.0065 0.0083 0.0068 0.0047 0.0035 0.0026 0.0023 0.0050
0.0061 0.0080 0.0066 0.0047 0.0034 0.0025 0.0025 0.0048
0.0062 0.0080 0.0066 0.0047 0.0034 0.0026 0.0019 0.0048

0.0059 0.0077 0.0064 0.0046 0.0034 0.0025 0.0023 0.0047

0.0058 0.0075 0.0063 0.0047 0.0034 0.0025 0.0022 0.0046
0.0057 0.0074 0.0062 0.0047 0.0034 0.0025 0.0021 0.0046
0.0058 0.0073 0.0062 0.0048 0.0035 0.0026 0.0021 0.0046
0.0058 0.0072 0.0061 0.0047 0.0037 0.0025 0.0022 0.0046
0.0060 0.0072 0.0061 0.0048 0.0039 0.0024 0.0024 0.0047

0.0063 0.0072 0.0060 0.0048 0.0041 0.0025 0.0025 0.0048
0.0066 0.0073 0.0059 0.0047 0.0042 0.0025 0.0028 0.0049

0.0069 0.0075 0.0058 0.0047 0.0046 0.0025 0.0030 0.0050

0.0074 0.0077 0.0058 0.0047 0.0047 0.0027 0.0032 0.0052
0.0078 0.0081 0.0058 0.0046 0.0048 0.0027 0.0036 0.0054
0.0084 0.0084 0.0059 0.0046 0.0049 0.0028 0.0039 0.0056

0.0091 0.0088 0.0060 0.0046 0.0051 0.0030 0.0044 0.0058

0.0098 0.0093 0.0061 0.0045 0.0051 0.0032 0.0044 0.0061

0.0109 0.0099 0.0062 0.0044 0.0051 0.0035 0.0050 0.0064

0.0100 0.0102 0.0078 0.0056 0.0049 0.0026 0.0026 0.0063
XXX

Notes: This table reports model accuracy in terms of MAE(𝜎) within each moneyness-maturity category; the estimations performed on the daily data set. p – (c +) 𝑖 refers to put (call)
options with strike equal to the ATM strike minus (plus) 𝑖 USD – the strikes are, therefore, increasing. Only the central rows display ATM options, all others display OTM options. Sub-table
(a) refers to TS09-SV1, Sub-table (b) refers to SYSVJ1 (both models follow the original characterisation of the parameters); observe that the darker the colour of the cell (red), the worse
the model performance. Sub-table (c) displays the difference between both models (compares models accuracy), that is, TS09-SV1 – SYSVJ1; observe that the darker the colour of the cell
(blue), the more accurate our model is (the better the performance of our model).
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Table 10
Model performance of SYSVJ2 — daily observations.

(a) TS09-SV1 (b) SYSVJ2 (c) Diff. SYSVJ2 – TS09-SV1

MAE(𝜎) M2 M3 M4 M5 M6 Q1 Q2 ALL
. p – 7.5 . 0.0770 0.0524 0.0411 0.0372 0.0370 0.0373 0.0392 0.0459

. p – 7 . 0.0732 0.0509 0.0403 0.0367 0.0370 0.0371 0.0390 0.0449

. p – 6.5 . 0.0701 0.0492 0.0394 0.0362 0.0370 0.0365 0.0392 0.0440

. p – 6 . 0.0672 0.0473 0.0385 0.0354 0.0366 0.0365 0.0393 0.0430

. p – 5.5 . 0.0644 0.0457 0.0378 0.0353 0.0364 0.0361 0.0394 0.0422

. p – 5 . 0.0618 0.0441 0.0371 0.0345 0.0363 0.0361 0.0391 0.0413

. p – 4.5 . 0.0594 0.0425 0.0364 0.0339 0.0357 0.0360 0.0397 0.0405

. p – 4 . 0.0569 0.0410 0.0358 0.0332 0.0353 0.0359 0.0398 0.0397

. p – 3.5 . 0.0546 0.0397 0.0350 0.0327 0.0349 0.0356 0.0398 0.0389

. p – 3 . 0.0524 0.0385 0.0342 0.0321 0.0346 0.0359 0.0397 0.0382

. p – 2.5 . 0.0503 0.0373 0.0335 0.0317 0.0339 0.0359 0.0402 0.0375

. p – 2 . 0.0483 0.0362 0.0329 0.0313 0.0335 0.0359 0.0396 0.0368

. p – 1.5 . 0.0465 0.0352 0.0323 0.0310 0.0330 0.0354 0.0398 0.0362

. p – 1 . 0.0447 0.0341 0.0316 0.0305 0.0325 0.0357 0.0397 0.0355

. p – 0.5 . 0.0431 0.0333 0.0309 0.0303 0.0321 0.0353 0.0396 0.0349

. p . 0.0417 0.0324 0.0304 0.0301 0.0320 0.0349 0.0402 0.0345

. c . 0.0416 0.0323 0.0304 0.0300 0.0320 0.0352 0.0394 0.0344

. c + 0.5 . 0.0405 0.0317 0.0298 0.0298 0.0316 0.0351 0.0398 0.0340

. c + 1 . 0.0394 0.0311 0.0294 0.0295 0.0314 0.0348 0.0395 0.0336

. c + 1.5 . 0.0387 0.0305 0.0290 0.0294 0.0311 0.0344 0.0392 0.0332

. c + 2 . 0.0380 0.0301 0.0287 0.0292 0.0311 0.0344 0.0391 0.0329

. c + 2.5 . 0.0375 0.0297 0.0284 0.0291 0.0310 0.0342 0.0387 0.0327

. c + 3 . 0.0372 0.0294 0.0282 0.0290 0.0308 0.0340 0.0385 0.0324

. c + 3.5 . 0.0371 0.0293 0.0280 0.0288 0.0309 0.0340 0.0388 0.0324

. c + 4 . 0.0372 0.0293 0.0278 0.0286 0.0308 0.0338 0.0387 0.0323

. c + 4.5 . 0.0375 0.0294 0.0278 0.0285 0.0311 0.0337 0.0385 0.0324

. c + 5 . 0.0380 0.0297 0.0277 0.0285 0.0309 0.0337 0.0384 0.0324

. c + 5.5 . 0.0386 0.0300 0.0278 0.0286 0.0311 0.0336 0.0387 0.0326

. c + 6 . 0.0394 0.0305 0.0280 0.0284 0.0310 0.0336 0.0388 0.0328

. c + 6.5 . 0.0405 0.0310 0.0282 0.0287 0.0312 0.0337 0.0390 0.0332

. c + 7 . 0.0418 0.0317 0.0284 0.0285 0.0314 0.0337 0.0389 0.0335

. c + 7.5 . 0.0437 0.0325 0.0288 0.0287 0.0314 0.0342 0.0393 0.0341

. ALL . 0.0481 0.0359 0.0320 0.0311 0.0330 0.0351 0.0393 0.0363

M2 M3 M4 M5 M6 Q1 Q2 ALL
0.0548 0.0359 0.0295 0.0290 0.0302 0.0344 0.0404 0.0363

0.0533 0.0356 0.0294 0.0288 0.0304 0.0342 0.0394 0.0359

0.0523 0.0351 0.0292 0.0288 0.0306 0.0338 0.0390 0.0355

0.0513 0.0344 0.0291 0.0287 0.0305 0.0339 0.0386 0.0352

0.0503 0.0340 0.0292 0.0291 0.0308 0.0338 0.0384 0.0351

0.0494 0.0336 0.0293 0.0290 0.0311 0.0339 0.0379 0.0349

0.0485 0.0331 0.0292 0.0291 0.0311 0.0340 0.0382 0.0347

0.0475 0.0325 0.0293 0.0291 0.0311 0.0340 0.0380 0.0345

0.0463 0.0319 0.0290 0.0290 0.0313 0.0338 0.0377 0.0342

0.0452 0.0313 0.0288 0.0288 0.0314 0.0341 0.0375 0.0339

0.0440 0.0308 0.0285 0.0288 0.0312 0.0341 0.0379 0.0336

0.0427 0.0301 0.0284 0.0287 0.0312 0.0341 0.0373 0.0332
0.0415 0.0295 0.0281 0.0285 0.0310 0.0336 0.0375 0.0328

0.0402 0.0288 0.0277 0.0282 0.0307 0.0338 0.0374 0.0324
0.0389 0.0282 0.0272 0.0280 0.0306 0.0334 0.0374 0.0320

0.0377 0.0275 0.0269 0.0278 0.0305 0.0330 0.0381 0.0316

0.0377 0.0275 0.0269 0.0277 0.0305 0.0333 0.0373 0.0316

0.0367 0.0270 0.0264 0.0275 0.0301 0.0333 0.0378 0.0312
0.0356 0.0265 0.0260 0.0271 0.0300 0.0329 0.0377 0.0308

0.0348 0.0259 0.0256 0.0269 0.0295 0.0326 0.0376 0.0304

0.0340 0.0254 0.0252 0.0264 0.0294 0.0325 0.0375 0.0301

0.0334 0.0249 0.0247 0.0263 0.0291 0.0324 0.0371 0.0297

0.0328 0.0245 0.0244 0.0260 0.0286 0.0323 0.0368 0.0294

0.0324 0.0242 0.0241 0.0257 0.0284 0.0323 0.0370 0.0291

0.0322 0.0239 0.0238 0.0254 0.0281 0.0320 0.0368 0.0289

0.0320 0.0238 0.0236 0.0253 0.0281 0.0319 0.0366 0.0288

0.0321 0.0237 0.0235 0.0251 0.0276 0.0319 0.0363 0.0286

0.0321 0.0236 0.0233 0.0252 0.0275 0.0317 0.0365 0.0286
0.0323 0.0236 0.0233 0.0249 0.0274 0.0316 0.0364 0.0285

0.0327 0.0236 0.0233 0.0251 0.0273 0.0315 0.0363 0.0286
0.0333 0.0238 0.0233 0.0249 0.0274 0.0314 0.0361 0.0286

0.0340 0.0240 0.0233 0.0251 0.0272 0.0316 0.0363 0.0288

0.0401 0.0284 0.0265 0.0273 0.0297 0.0330 0.0375 0.0318

M2 M3 M4 M5 M6 Q1 Q2 ALL
0.0222 0.0164 0.0116 0.0082 0.0068 0.0029 −0.0012 0.0095

0.0199 0.0153 0.0109 0.0079 0.0066 0.0029 −0.0004 0.0090

0.0179 0.0141 0.0102 0.0075 0.0063 0.0027 0.0002 0.0084

0.0159 0.0129 0.0094 0.0068 0.0061 0.0025 0.0007 0.0077

0.0141 0.0117 0.0086 0.0062 0.0056 0.0023 0.0010 0.0071
0.0124 0.0105 0.0078 0.0054 0.0052 0.0021 0.0013 0.0064
0.0109 0.0094 0.0072 0.0048 0.0047 0.0020 0.0015 0.0058

0.0094 0.0085 0.0065 0.0042 0.0042 0.0019 0.0018 0.0052

0.0083 0.0077 0.0059 0.0037 0.0036 0.0018 0.0021 0.0047

0.0072 0.0071 0.0054 0.0032 0.0032 0.0018 0.0022 0.0043
0.0063 0.0066 0.0049 0.0029 0.0027 0.0018 0.0023 0.0039

0.0056 0.0061 0.0045 0.0026 0.0023 0.0018 0.0023 0.0036
0.0050 0.0057 0.0042 0.0025 0.0020 0.0018 0.0022 0.0033
0.0045 0.0053 0.0039 0.0023 0.0017 0.0018 0.0023 0.0031

0.0042 0.0051 0.0037 0.0023 0.0016 0.0019 0.0022 0.0030

0.0039 0.0049 0.0036 0.0023 0.0015 0.0019 0.0021 0.0029

0.0039 0.0049 0.0035 0.0023 0.0015 0.0019 0.0021 0.0029

0.0038 0.0047 0.0035 0.0023 0.0014 0.0019 0.0020 0.0028

0.0038 0.0046 0.0034 0.0024 0.0015 0.0019 0.0018 0.0028

0.0039 0.0046 0.0035 0.0026 0.0016 0.0019 0.0017 0.0028

0.0040 0.0047 0.0035 0.0027 0.0017 0.0018 0.0016 0.0029

0.0041 0.0047 0.0036 0.0028 0.0019 0.0018 0.0016 0.0030

0.0044 0.0049 0.0037 0.0030 0.0022 0.0017 0.0017 0.0031

0.0047 0.0051 0.0039 0.0031 0.0025 0.0017 0.0018 0.0032

0.0050 0.0053 0.0040 0.0032 0.0027 0.0017 0.0019 0.0034

0.0054 0.0056 0.0041 0.0033 0.0030 0.0018 0.0019 0.0036

0.0059 0.0060 0.0043 0.0034 0.0033 0.0018 0.0020 0.0038

0.0064 0.0064 0.0045 0.0034 0.0035 0.0019 0.0022 0.0041

0.0070 0.0069 0.0047 0.0035 0.0037 0.0020 0.0024 0.0043

0.0078 0.0073 0.0049 0.0035 0.0039 0.0022 0.0027 0.0046

0.0086 0.0079 0.0052 0.0036 0.0040 0.0023 0.0028 0.0049

0.0097 0.0086 0.0055 0.0036 0.0042 0.0026 0.0029 0.0053

0.0080 0.0075 0.0054 0.0038 0.0033 0.0020 0.0017 0.0045
XXX

Notes: This table reports model accuracy in terms of MAE(𝜎) within each moneyness-maturity category; the estimations performed on the daily data set. p – (c +) 𝑖 refers to put (call) options
with strike equal to the ATM strike minus (plus) 𝑖 USD – the strikes are, therefore, increasing. Only the central rows display ATM options, all others display OTM options. Sub-table (a)
refers to TS09-SV1, Sub-table (b) refers to our more advanced model SYSVJ2 (both models follow the original characterisation of the parameters); observe that the darker the colour of the
cell (red), the worse the model performance. Sub-table (c) displays the difference between both models (compares models accuracy), that is, TS09-SV1 – SYSVJ2; observe that the darker
the colour of the cell (blue), the more accurate our model is (the better the performance of our model).
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Table 11
MAE(𝜎) per bucket of contracts and of moneyness levels — monthly values.

(a) Merton (1976) ✓ (b) Heston (1993) ✓ (c) Bates (1996) ✓

x
MAE(𝜎) short mid long
+OTM p 0.1007 0.0855 0.0722

(0.0812,0.1241) (0.0747,0.0979) (0.0630,0.0812)
OTM p 0.0981 0.0818 0.0692

(0.0804,0.1253) (0.0724,0.0948) (0.0609,0.0783)
ATM 0.0949 0.0785 0.0655

(0.0779,0.1177) (0.0700,0.0905) (0.0580,0.0744)
OTM c 0.0919 0.0767 0.0639

(0.0769,0.1102) (0.0686,0.0873) (0.0567,0.0722)
+OTM c 0.0906 0.0756 0.0638

(0.0769,0.1061) (0.0675,0.0853) (0.0569,0.0722)

short mid long
0.0332 0.0336 0.0402

(0.0243,0.0474) (0.0226,0.0436) (0.0277,0.0519)
0.0235 0.0315 0.0394

(0.0146,0.0334) (0.0199,0.0427) (0.0273,0.0517)
0.0158 0.0298 0.0388

(0.0079,0.0254) (0.0177,0.0418) (0.0263,0.0515)
0.0156 0.0295 0.0380

(0.0099,0.0232) (0.0182,0.0424) (0.0258,0.0508)
0.0215 0.0309 0.0383

(0.0161,0.0290) (0.0203,0.0435) (0.0265,0.0512)

short mid long
0.0315 0.0297 0.0371

(0.0211,0.0468) (0.0204,0.0380) (0.0254,0.0464)
0.0195 0.0277 0.0365

(0.0128,0.0300) (0.0186,0.0381) (0.0257,0.0456)
0.0127 0.0260 0.0369

(0.0087,0.0200) (0.0171,0.0380) (0.0251,0.0472)
0.0155 0.0247 0.0349

(0.0115,0.0181) (0.0166,0.0366) (0.0241,0.0459)
0.0193 0.0251 0.0337

(0.0142,0.0202) (0.0172,0.0361) (0.0238,0.0452)

(d) TS09-SV1 ✓

MAE(𝜎) short mid long
+OTM p 0.0319 0.0309 0.0423

(0.0213,0.0498) (0.0207,0.0435) (0.0297,0.0506)
OTM p 0.0211 0.0290 0.0418

(0.0132,0.0333) (0.0187,0.0418) (0.255,0.0503)
ATM 0.0152 0.0278 0.0411

(0.0081,0.0231) (0.0174,0.0397) (0.0281,0.0498)
OTM c 0.0168 0.0281 0.0404

(0.0098,0.0209) (0.0179,0.0390) (0.0272,0.0493)
+OTM c 0.0191 0.0293 0.0410

(0.0135,0.0252) (0.0192,0.0400) (0.0270,0.0505)

(0.0121,0.0204) (0.0155,0.0336) (0.0251,0.0483) (0.0121,0.0204) (0.0155,0.0336) (0.0251,0.0483)

(e) SYSVJ𝑎1 ✓ (f) SYSVJ𝑏1 ✓ (g) SYSVJ1

MAE(𝜎) short mid long
+OTM p 0.0313 0.0298 0.0379

(0.0173,0.0442) (0.0187,0.0374) (0.0272,0.0474)
OTM p 0.0195 0.0268 0.0393

(0.0119,0.0270) (0.0166,0.0352) (0.0279,0.0483)
ATM 0.0143 0.0253 0.0398

(0.0093,0.0186) (0.0159,0.0343) (0.0265,0.0498)
OTM c 0.0179 0.0249 0.0376

(0.0121,0.0210) (0.0160,0.0342) (0.0252,0.0484)
+OTM c 0.0216 0.0260 0.0358

(0.0134,0.0252) (0.0169,0.0348) (0.0248,0.0468)

short mid long
0.0324 0.0299 0.0378

(0.0188,0.0408) (0.0199,0.0365) (0.0288,0.0461)
0.0196 0.0264 0.0392

(0.0125,0.0267) (0.0180,0.0350) (0.0291,0.0480)
0.0146 0.0249 0.0396

(0.0101,0.0181) (0.0165,0.0355) (0.0282,0.0502)
0.0188 0.0245 0.0371

(0.0127,0.0204) (0.0167,0.0356) (0.0266,0.0485)
0.0227 0.0259 0.0350

(0.0144,0.0245) (0.0177,0.0357) (0.0260,0.0464)

short mid long
0.0323 0.0298 0.0377

(0.0197,0.0438) (0.0203,0.0374) (0.0272,0.0456)
0.0195 0.0263 0.0391

(0.0127,0.0278) (0.0190,0.0360) (0.0281,0.0472)
0.0143 0.0248 0.0395

(0.0100,0.0190) (0.0171,0.0360) (0.0273,0.0491)
0.0182 0.0245 0.0372

(0.0124,0.0208) (0.0171,0.0358) (0.0260,0.0482)
0.0220 0.0256 0.0352

(0.0153,0.0255) (0.0181,0.0362) (0.0253,0.0468)

(h) SYSVJ𝑎2 ✓ (i) SYSVJ𝑏2 ✓ (j) SYSVJ2

MAE(𝜎) short mid long
+OTM p 0.0323 0.0298 0.0411

(0.0173,0.0428) (0.0193,0.0371) (0.0270,0.0464)
OTM p 0.0195 0.0264 0.0391

(0.0116,0.0259) (0.0171,0.0346) (0.0270,0.0477)
ATM 0.0144 0.0248 0.0395

(0.0096,0.0184) (0.0155,0.0341) (0.0259,0.0493)
OTM c 0.0184 0.0245 0.0372

(0.0121,0.0204) (0.0155,0.0336) (0.0251,0.0483)
+OTM c 0.0222 0.0254 0.0351

(0.0135,0.0249) (0.0163,0.0338) (0.0249,0.0468)

short mid long
0.0325 0.0299 0.0381

(0.0195,0.0448) (0.0205,0.0383) (0.0290,0.0476)
0.0195 0.0263 0.0390

(0.0128,0.0296) (0.0182,0.0379) (0.0291,0.0490)
0.0146 0.0247 0.0394

(0.0092,0.0201) (0.0167,0.0372) (0.0275,0.0500)
0.0192 0.0244 0.0369

(0.0108,0.0232) (0.0169,0.0370) (0.0259,0.0500)
0.0236 0.0260 0.0346

(0.0132,0.0276) (0.0173,0.0385) (0.0257,0.0501)

short mid long
0.0322 0.0298 0.0378

(0.0210,0.0418) (0.0213,0.0379) (0.0288,0.0466)
0.0194 0.0263 0.0392

(0.0138,0.0298) (0.0193,0.0381) (0.0294,0.0478)
0.0148 0.0247 0.0396

(0.0092,0.0200) (0.0177,0.0371) (0.0284,0.0498)
0.0195 0.0245 0.0370

(0.0114,0.0213) (0.0170,0.0352) (0.0274,0.0477)
0.0238 0.0261 0.0348

(0.0133,0.0262) (0.0177,0.0362) (0.0270,0.0461)
XXX

otes: The new contracts/maturities are three: short refers to M2 and M3; mid refers to M4 to M6; long refers to Q1 and Q2. The moneyness
evels are five: +OTM p refers to those more OTM put options with strikes between the ATM level −7.5 and −5.5; OTM p refers to those OTM put
ptions with strikes between the ATM level −5.0 and −1.5; ATM refers to those call and put options with strikes between the ATM level ± 1.0;
TM c refers to those OTM call options with strikes between the ATM level +1.5 and +5.0; +OTM c refers to those more OTM call options with

trikes between the ATM level +5.5 and +7.5.
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ach model and our benchmark TS09: the deeper blue (red) the cells
re, the best (worst) the goodness-of-fit compared to our benchmark.
he values displayed correspond only to monthly observations. Merton
1976) is the worst performing model, especially for short-term con-
racts. Heston (1993) outperforms the benchmark for longer maturity
ontracts only, but on average does worse that the benchmark. Bates
1996) does on average as well as our model SYSVJ (considering all its
ub-specifications). Each of our model sub-specifications outperforms
S09, especially for longer maturities and deeper OTM options; also,
or mid-term options (except deeper OTM puts).
18

o

.2. Out-of-sample

We compute the fair value of standard European call and put options
ontracts on different maturities and strike prices over a period of 17
onths using the parameters’ estimates calculated in-sample. Pricing

rrors labelled MAE𝑂(𝜎) and RMSE𝑂(𝜎) are also reported in Table 6.
We highlight that out-of-sample MAE(𝜎) values are better (that is,

maller) than the equivalent in-sample ones for each of our model sub-
pecifications, both for monthly and daily observations. The average
alue for our model is 2.64% for monthly observations, and we outper-
orm TS09 by 0.42%. For daily observations, the average error value for

ur model is 2.82%, just marginally better than for TS09. In terms of
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Table 12
Model performance per bucket of contracts and of moneyness levels — monthly values.

(a) Merton (1976) ✓ (b) Heston (1993) ✓ (c) Bates (1996) ✓

MAE(𝜎) short mid xxlongxx
. +OTM p . −0.0688 −0.0546 −0.0299
. OTM p . −0.0770 −0.0528 −0.0274
. ATM . −0.0797 −0.0507 −0.0244

. OTM c . −0.0751 −0.0486 −0.0235
. +OTM c . −0.0715 −0.0463 −0.0228

short xmidx x.longx.
−0.0013 −0.0027 0.0021
−0.0024 −0.0025 0.0024
−0.0006 −0.0020 0.0023
0.0012 −0.0014 0.0024
−0.0024 −0.0016 0.0027

short xxmidxx xxlongxx
0.0004 0.0012 0.0052
0.0016 0.0013 0.0053
0.0025 0.0018 0.0042
0.0013 0.0034 0.0055
−0.0002 0.0042 0.0073

(e) SYSVJ𝑎1 ✓ (f) SYSVJ𝑏1 ✓ (g) SYSVJ1

MAE(𝜎) short xxmidxx xxlongxx
. +OTM p . 0.0006 0.0011 0.0044
. OTM p . 0.0016 0.0022 0.0025
. ATM . 0.0009 0.0025 0.0013

. OTM c . −0.0011 0.0032 0.0028
. +OTM c . −0.0025 0.0033 0.0052

short xxmidxx xxlongxx
−0.0005 0.0010 0.0045
0.0015 0.0026 0.0026
0.0006 0.0029 0.0015
−0.0020 0.0036 0.0033
−0.0036 0.0034 0.0060

short xxmidxx xxlongxx
−0.0004 0.0011 0.0046
0.0016 0.0027 0.0027
0.0009 0.0030 0.0016
−0.0014 0.0036 0.0032
−0.0029 0.0037 0.0058

x
(h) SYSVJ𝑎2 ✓ (i) SYSVJ𝑏2 ✓ (j) SYSVJ2

MAE(𝜎) short xxmidxx xxlongxx
. +OTM p . −0.0004 0.0011 0.0045
. OTM p . 0.0016 0.0026 0.0027
. ATM . 0.0008 0.0030 0.0016

. OTM c . −0.0016 0.0036 0.0032
. +OTM c . −0.0031 0.0036 0.0059

short xxmidxx xxlongxx
−0.0006 0.0010 0.0042
0.0016 0.0027 0.0028
0.0006 0.0031 0.0017
−0.0024 0.0037 0.0035
−0.0045 0.0033 0.0064

short xxmidxx xxlongxx
−0.0003 0.0011 0.0045
0.0017 0.0027 0.0026
0.0004 0.0031 0.0015
−0.0027 0.0036 0.0034
−0.0047 0.0032 0.0062

XXX
Notes: We define the model performance as the difference between the error statistics associated to our benchmark model TS09 minus those for
each model. If the value is negative, TS09 outperforms the model; if the value is positive, the model outperforms the benchmark. The correspondent
error statistics we refer to are those displayed in Table 11. Observe that the darker the blue (red) of the cell, the more (less) accurate the model
is compared to TS09. The new contracts/maturities are three: short refers to M2 and M3; mid refers to M4 to M6; long refers to Q1 and Q2. The
moneyness levels are five: +OTM p refers to those more OTM put options with strikes between the ATM level −7.5 and −5.5; OTM p refers to
hose OTM put options with strikes between the ATM level −5.0 and −1.5; ATM refers to those call and put options with strikes between the ATM
evel ± 1.0; OTM c refers to those OTM call options with strikes between the ATM level +1.5 and +5.0; +OTM c refers to those more OTM call
ptions with strikes between the ATM level +5.5 and +7.5.
w
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ut-of-sample RMSE(𝜎) values, these are better than the equivalent in-
ample ones for our model and for each observation frequency. For our
odel, the average value is 3.44% for monthly observations and 3.74%

or daily observations; we outperform TS09 by 0.40% and 0.21%.
From this analysis, we provide evidence that the inclusion of jumps

rings a benefit to the goodness-of-fit of our model compared with
ur benchmark. From Fig. 1a we can clearly observe that there are
pward jumps in the out-of-sample period. We think that the better
erformance of our model comes from the fact that upward jumps were
lready implicit in the calibrated values of the jump parameters.

. Conclusions and further research

We have developed a novel term-structure model for commodity
utures prices which presents stochastic spot prices, forward cost of
arry curves and variance. The novel feature in our model is the
resence of simultaneous jumps in the spot prices and the cost or carry,
ither i.i.d. or following a time-dampening form. We model futures
ynamics under Q, compute the CF and price plain vanilla option using
he FFT algorithm with an analytic expression. We calibrate parameters
or five extant models (Merton (1976), Heston (1993), Bates (1996),
rolle and Schwartz (2009)-SV1 and Trolle (2014)) plus the six sub-
pecifications of our model SYSVJ, with the objective of analysing
19

ricing performances, both in-sample and out-of sample. o
This is the first empirical work in the literature which prices options
ith Trolle and Schwartz (2009)-SV1 using analytical expressions. We
rove that our model produces better results (that is, lower error
alues in terms of MAE(𝜎) and RSME(𝜎)) than our benchmark model
S09-SV1, specially for short maturity contracts and away from the
TM level. In-sample, our model outperforms the benchmark by 0.57%

n terms of MAE(𝜎) and 0.72% in terms of RMSE(𝜎). Out-of-sample
AE(𝜎) values are better than the equivalent in-sample ones for each of

ur model sub-specifications, specially for monthly observations where
e outperform TS09 by 0.42%. Considered along with the reduction in

omputation time due to (i) the analytical solution for the CF, (ii) and
he use of the FFT for option pricing and (iii) the alternative set-up,
hese improvements provide a significant benefit for practitioners.

Contrary to results from prior research, we find that jumps in the
TI crude oil futures market on average tend to be downwards.

Future lines of research will include, firstly, the extension of Trolle
nd Schwartz (2009)-SV1 to capture the dynamics of seasonal energy
ssets (e.g. natural gas) in the variance. Secondly, we also aim to price
alendar spread options on WTI using a joint CF for the two futures
ontracts involved in each option, within the framework of the model
resented in this work. We expect to also obtain analytical solutions
or the new transforms, and analytical expressions to price both types
f options.
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Appendix A. Appendix for proofs

A.1. Proof of Proposition 1

From applying Itô’s Lemma for jump diffusion processes to 𝐹 (𝑡, 𝑇 )
n (2.6) we have that

𝑑𝐹 (𝑡, 𝑇 )
𝐹 (𝑡, 𝑇 )

=
(

∫

𝑇

𝑡
𝜇𝑦(𝑡, 𝑢)𝑑𝑢 + 𝑣𝑡

(𝜎2𝑌 (𝑡, 𝑇 )
2

+ 𝜎𝑆𝜎𝑌 (𝑡, 𝑇 )𝜌𝑆𝑦
)

− 𝜆EQ
𝑡
[

𝑒𝐽𝑆 + 𝐽𝑌 (𝑡, 𝑇 ) − 1
]

)

𝑑𝑡

+
√

𝑣𝑡
(

𝜎𝑆𝑑𝑊
𝑆
𝑡 + 𝜎𝑌 (𝑡, 𝑇 )𝑑𝑊

𝑦
𝑡
)

+
(

𝑒𝐽𝑆+𝐽𝑌 (𝑡,𝑇 ) − 1
)

𝑑𝑁𝑡. (A.1)

n an arbitrage-free framework and given that, by definition, futures
rices are martingales, the drift term in Eq. (A.1) must equal zero.
herefore we group together

(i) those terms whose expected value equals zero
√

𝑣𝑡
(

𝜎𝑆𝑑𝑊
𝑆
𝑡 + 𝜎𝑌 (𝑡, 𝑇 )𝑑𝑊

𝑦
𝑡
)

+
(

𝑒𝐽𝑆+𝐽𝑌 (𝑡,𝑇 ) − 1
)

𝑑𝑁𝑡

− 𝜆EQ
𝑡
[

𝑒𝐽𝑆+𝐽𝑌 (𝑡,𝑇 ) − 1
]

𝑑𝑡,

(ii) the remaining terms whose expected value, therefore, also equals
zero
(

∫

𝑇

𝑡
𝜇𝑦(𝑡, 𝑢)𝑑𝑢 + 𝑣𝑡

(𝜎2𝑌 (𝑡, 𝑇 )
2

+ 𝜎𝑆𝜎𝑌 (𝑡, 𝑇 )𝜌𝑆𝑦
)

− 𝜆EQ
𝑡
[

𝑒𝐽𝑆 + 𝐽𝑌 (𝑡, 𝑇 ) − 1
]

+ 𝜆EQ
𝑡
[

𝑒𝐽𝑆+𝐽𝑌 (𝑡,𝑇 ) − 1
]

)

𝑑𝑡.

Observe that we had to artificially retrieve a new drift correction term
in (i) so that the expected value of the jump terms offset one another.
The very same term had to be incorporated in (ii).

For Eq. (A.1) to be a martingale, it must hold that

1
𝑑𝑡

EQ
𝑡

[

𝑑𝐹 (𝑡, 𝑇 )
𝐹 (𝑡, 𝑇 )

]

= ∫

𝑇

𝑡
𝜇𝑦(𝑡, 𝑢)𝑑𝑢 + 𝑣𝑡

(𝜎2𝑌 (𝑡, 𝑇 )
2

+ 𝜎𝑆𝜎𝑌 (𝑡, 𝑇 )𝜌𝑆𝑦
)

− 𝜆EQ
𝑡
[

𝑒𝐽𝑆 + 𝐽𝑌 (𝑡, 𝑇 ) − 1
]

+ 𝜆EQ
𝑡
[

𝑒𝐽𝑆+𝐽𝑌 (𝑡,𝑇 ) − 1
]

= 0. (A.2)

Setting those terms in (ii) to zero and differentiating with respect to 𝑇
lets us obtain the expression followed by the drift of 𝑦(𝑡, 𝑇 ) in (2.2)

𝜇𝑦(𝑡, 𝑇 ) = −𝑣𝑡𝜎𝑦(𝑡, 𝑇 )
(

𝜎𝑌 (𝑡, 𝑇 ) + 𝜎𝑆𝜌𝑆𝑦
)

+ 𝜆EQ
𝑡
[(

𝑒𝐽𝑆 + 𝐽𝑦(𝑡, 𝑇 ) − 1
)

−
(

𝑒𝐽𝑆+𝐽𝑦(𝑡,𝑇 ) − 1
)

]

. (A.3)

Thus, the dynamics of the futures under the martingale condition
becomes
𝑑𝐹 (𝑡, 𝑇 )
𝐹 (𝑡, 𝑇 )

=
√

𝑣𝑡
(

𝜎𝑆𝑑𝑊
𝑆
𝑡 + 𝜎𝑌 (𝑡, 𝑇 )𝑑𝑊

𝑦
𝑡
)

− 𝜆EQ
𝑡
[

𝑒𝐽𝑆+𝐽𝑌 (𝑡,𝑇 ) − 1
]

𝑑𝑡

+
(

𝑒𝐽𝑆+𝐽𝑌 (𝑡,𝑇 ) − 1
)

𝑑𝑁𝑡. (A.4)

From Eq. (A.4), if one were to momentarily assume that there is
only one jump in 𝑆𝑡 but no jump in 𝑦(𝑡, 𝑇 ), 𝐹 (𝑡, 𝑇 ) would change by
𝐹 (𝑡, 𝑇 )(𝑒𝐽𝑆 −1); with one jump only in 𝑦(𝑡, 𝑇 ) but no jump in 𝑆 , 𝐹 (𝑡, 𝑇 )
20

𝑡

would change by 𝐹 (𝑡, 𝑇 )(𝑒𝐽𝑌 (𝑡,𝑇 ) − 1); with one jump in both 𝑆𝑡 and
𝑦(𝑡, 𝑇 ), 𝐹 (𝑡, 𝑇 ) would change by 𝐹 (𝑡, 𝑇 )(𝑒𝐽𝑆+𝐽𝑌 (𝑡,𝑇 ) − 1).

We define the processes 𝑠𝑡 ≡ ln𝑆𝑡 and 𝑓 (𝑡, 𝑇 ) ≡ ln𝐹 (𝑡, 𝑇 ). Therefore,
we have

𝑑𝑓 (𝑡, 𝑇 ) = 𝑑𝑠𝑡 + 𝑑𝑌 (𝑡, 𝑇 ). (A.5)

From applying Itô’s Lemma for jump diffusion processes to 𝑠𝑡 and
Leibniz’s rule to Eq. (2.2), we have

𝑑𝑠𝑡 =
𝜕𝑠𝑡
𝜕𝑆𝑡

𝑑𝑆𝑡 +
1
2
𝜕2𝑠𝑡
𝜕𝑆2

𝑡
𝑑𝑆2

𝑡 + 𝐽𝑆𝑑𝑁𝑡

=
(

𝑦𝑡 −
𝜎2𝑆
2
𝑣𝑡 − 𝜆EQ

𝑡
[

𝑒𝐽𝑆 − 1
])

𝑑𝑡 + 𝜎𝑆
√

𝑣𝑡𝑑𝑊
𝑆
𝑡 + 𝐽𝑆𝑑𝑁𝑡,

(A.6)

𝑌 (𝑡, 𝑇 ) =
(

∫

𝑇

𝑡
𝜇𝑦(𝑡, 𝑢)𝑑𝑢 − 𝜆E

Q
𝑡
[

𝐽𝑌 (𝑡, 𝑇 )
]

− 𝑦𝑡

)

𝑑𝑡

+ 𝜎𝑌 (𝑡, 𝑇 )
√

𝑣𝑡𝑑𝑊
𝑦
𝑡 + 𝐽𝑌 (𝑡, 𝑇 )𝑑𝑁𝑡, (A.7)

ith 𝜎𝑌 (𝑇 , 𝑡) and 𝐽𝑌 (𝑡, 𝑇 ) as in (2.8) and (2.10), respectively. By sub-
tituting (A.6) and (A.7) into (A.5) we have

𝑓 (𝑡, 𝑇 ) =
(

∫

𝑇

𝑡
𝜇𝑦(𝑡, 𝑢)𝑑𝑢 −

𝜎2𝑆
2
𝑣𝑡 − 𝜆E

Q
𝑡
[

𝑒𝐽𝑆 + 𝐽𝑌 (𝑡, 𝑇 ) − 1
]

)

𝑑𝑡

+
√

𝑣𝑡
(

𝜎𝑆𝑑𝑊
𝑆
𝑡 + 𝜎𝑌 (𝑡, 𝑇 )𝑑𝑊

𝑦
𝑡
)

+
(

𝐽𝑆 + 𝐽𝑌 (𝑡, 𝑇 )
)

𝑑𝑁𝑡. (A.8)

.2. Proof of Proposition 2

Integrating (2.2) over 𝑡 between 𝑡 and 0, we obtain the expression
ollowed by 𝑦(𝑡, 𝑇 )

(𝑡, 𝑇 ) = 𝑦(0, 𝑇 ) + ∫

𝑡

0
𝜇𝑦(𝑢, 𝑇 )𝑑𝑢 + ∫

𝑡

0

√

𝑣𝑢𝜎𝑦(𝑢, 𝑇 )𝑑𝑊 𝑦
𝑢

− 𝜆∫

𝑡

0
𝐸Q
𝑢
[

𝐽𝑦(𝑢, 𝑇 )
]

𝑑𝑢 + ∫

𝑡

0
𝐽𝑦(𝑢, 𝑇 )𝑑𝑁𝑢, (A.9)

nd substituting 𝑇 for 𝑡 into (A.9) yields the expression followed by 𝑦𝑡

𝑡 = 𝑦(0, 𝑡) + ∫

𝑡

0
𝜇𝑦(𝑢, 𝑡)𝑑𝑢 + ∫

𝑡

0

√

𝑣𝑢𝜎𝑦(𝑢, 𝑡)𝑑𝑊 𝑦
𝑢 − 𝜆∫

𝑡

0
𝐸Q
𝑢
[

𝐽𝑦(𝑢, 𝑡)
]

𝑑𝑢

+ ∫

𝑡

0
𝐽𝑦(𝑢, 𝑡)𝑑𝑁𝑢. (A.10)

or all 0 ≤ 𝑠 ≤ 𝑡, we consider the following state variables 𝜒𝑡 and 𝜙𝑡

𝜒𝑡 = 𝑒−𝛾(𝑡−𝑠)𝜒𝑠 − ∫

𝑡

𝑠
𝑣𝑢

(

𝛼
𝛾
+ 𝜎𝑆𝜌𝑆𝑦

)

𝑒−𝛾(𝑡−𝑢)𝑑𝑢 + ∫

𝑡

𝑠

√

𝑣𝑢𝑒
−𝛾(𝑡−𝑢)𝑑𝑊 𝑦

𝑢 ,

(A.11)

𝑡 = 𝑒−2𝛾(𝑡−𝑠)𝜙𝑠 + ∫

𝑡

𝑠
𝑣𝑢
𝛼
𝛾
𝑒−2𝛾(𝑡−𝑢)𝑑𝑢, (A.12)

hich dynamics are obtained by applying Itô’s Lemma to (A.11) and
A.12) and subject to 𝜙0 = 𝜒0 = 0

𝜒 𝑡 = −
(

𝛾𝜒𝑡 + 𝑣𝑡

(

𝜎𝑆𝜌𝑆𝑦 +
𝛼
𝛾

))

𝑑𝑡 +
√

𝑣𝑡𝑑𝑊
𝑦
𝑡 , (A.13)

𝑑𝜙𝑡 =
(

𝑣𝑡
𝛼
𝛾
− 2𝛾𝜙𝑡

)

𝑑𝑡. (A.14)

hen, (A.9) and (A.10) are then affine jump–diffusion functions of 𝜒𝑡, 𝜙𝑡
nd the jump-related terms

(𝑡, 𝑇 ) = 𝑦(0, 𝑇 ) + 𝜎𝑦(𝑡, 𝑇 )𝜒𝑡 +
𝜎2𝑦 (𝑡, 𝑇 )

𝛼
𝜙𝑡 − 𝜆∫

𝑡

0
𝐸Q
𝑢

[

𝐽𝑦(𝑢, 𝑇 )
]

𝑑𝑢

+ ∫

𝑡

0
𝐽𝑦(𝑢, 𝑇 )𝑑𝑁𝑢, (A.15)

𝑦𝑡 = 𝑦(0, 𝑡) + 𝛼(𝜒𝑡 + 𝜙𝑡) − 𝜆∫

𝑡

0
𝐸Q
𝑢

[

𝐽𝑦(𝑢, 𝑡)
]

𝑑𝑢 + ∫

𝑡

0
𝐽𝑦(𝑢, 𝑡)𝑑𝑁𝑢.
(A.16)
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A.3. Proof of Proposition 3

Integrating the expression followed by 𝑑𝑠𝑡 in Eq. (A.6) and after
pplying exponentials, we have

𝑡 = 𝑆0 exp

{

∫

𝑡

0

(

𝑦𝑢 −
𝜎2𝑆
2
𝑣𝑢 − 𝜆𝐸Q

𝑢
[

𝑒𝐽𝑆 − 1
]

)

𝑑𝑢

+𝜎𝑆 ∫

𝑡

0

√

𝑣𝑢𝑑𝑊
𝑆
𝑢 + 𝐽𝑆 ∫

𝑡

0
𝑑𝑁𝑢

}

. (A.17)

From Eqs. (2.6), (2.11) and (2.15), we have that the futures price 𝐹 (𝑡, 𝑇 )
s given by

(𝑡, 𝑇 ) = 𝑆𝑡 exp

{

∫

𝑇

𝑡

(

𝑦(0, 𝑢) + 𝜎𝑦(𝑡, 𝑢)𝜒𝑡 +
𝜎2𝑦 (𝑡, 𝑢)

𝛼
𝜙𝑡

−𝜆∫

𝑡

0
𝐸Q
𝑠
[

𝐽𝑦(𝑠, 𝑢)
]

𝑑𝑠 + ∫

𝑡

0
𝐽𝑦(𝑠, 𝑢)𝑑𝑁𝑠

)

𝑑𝑢
}

= 𝑆𝑡
𝐹 (0, 𝑇 )
𝐹 (0, 𝑡)

exp
{

𝜎𝑌 (𝑡, 𝑇 )𝜒𝑡 +
𝜎̂𝑌 (𝑡, 𝑇 )

𝛼
𝜙𝑡

−𝜆∫

𝑡

0
𝐸Q
𝑢
[

𝐽𝑌 (𝑢, 𝑇 )
]

𝑑𝑢 + ∫

𝑡

0
𝐽𝑌 (𝑢, 𝑇 )𝑑𝑁𝑢

}

= 𝑆0
𝐹 (0, 𝑇 )
𝐹 (0, 𝑡)

exp
{

𝜎𝑌 (𝑡, 𝑇 )𝜒𝑡 +
𝜎̂𝑌 (𝑡, 𝑇 )

𝛼
𝜙𝑡

+∫

𝑡

0

(

𝑦𝑢 −
𝜎2𝑆
2
𝑣𝑢
)

𝑑𝑢 + 𝜎𝑆 ∫

𝑡

0

√

𝑣𝑢𝑑𝑊
𝑆
𝑢

}

exp
{

−𝜆∫

𝑡

0
𝐸Q
𝑢

[

𝑒𝐽𝑆 + 𝐽𝑌 (𝑢, 𝑇 ) − 1
]

𝑑𝑢

+∫

𝑡

0

(

𝐽𝑆 + 𝐽𝑌 (𝑢, 𝑇 )
)

𝑑𝑁𝑢

}

, (A.18)

with

𝜎̂𝑌 (𝑡, 𝑇 ) ≡ ∫

𝑇

𝑡
𝜎2𝑦 (𝑡, 𝑢)𝑑𝑢 =

𝛼2

2𝛾
(

1 − 𝑒−2𝛾(𝑇−𝑡)
)

. (A.19)

It is convenient to use 𝑠𝑡 ≡ ln𝑆𝑡 instead of 𝑆𝑡 as a state variable.
n this case, futures log-prices 𝑓 (𝑡, 𝑇 ) ≡ ln𝐹 (𝑡, 𝑇 ) are an affine jump–

diffusion function of the following for state variables — 𝜒𝑡, 𝜙𝑡, 𝑠𝑡 and
the jump-related terms

𝑓 (𝑡, 𝑇 ) = 𝑠𝑡 + 𝑓 (0, 𝑇 ) − 𝑓 (0, 𝑡) + 𝜎𝑌 (𝑡, 𝑇 )𝜒𝑡 +
𝜎̂𝑌 (𝑡, 𝑇 )

𝛼
𝜙𝑡

+ ∫

𝑡

0

(

𝑦𝑢 −
𝜎2𝑆
2
𝑣𝑢
)

𝑑𝑢 + 𝜎𝑆 ∫

𝑡

0

√

𝑣𝑢𝑑𝑊
𝑆
𝑢

− 𝜆∫

𝑡

0
𝐸Q
𝑢

[

𝑒𝐽𝑆 + 𝐽𝑌 (𝑢, 𝑇 ) − 1
]

𝑑𝑢 + ∫

𝑡

0

(

𝐽𝑆 + 𝐽𝑌 (𝑢, 𝑇 )
)

𝑑𝑁𝑢.

(A.20)

Rewriting Eq. (A.20) in its integral form lets us see the evolution of the
price of a futures contract

𝐹 (𝑡, 𝑇 ) = 𝐹 (0, 𝑇 ) exp
{

∫

𝑡

0

(

√

𝑣𝑢
(

𝜎𝑆𝑑𝑊
𝑆
𝑢 + 𝜎𝑌 (𝑢, 𝑇 )𝑑𝑊 𝑦

𝑢

)

−
𝑣𝑢
2

(

𝜎𝑆𝑑𝑊
𝑆
𝑢 + 𝜎𝑌 (𝑢, 𝑇 )𝑑𝑊 𝑦

𝑢

)2
)}

exp
{

−𝜆∫

𝑡

0
𝐸Q
𝑢

[

𝑒𝐽𝑆 + 𝐽𝑌 (𝑢, 𝑇 ) − 1
]

𝑑𝑢

+∫

𝑡

0

(

𝑒𝐽𝑆+𝐽𝑌 (𝑢,𝑇 ) − 1
)

𝑑𝑁𝑢

}

, (A.21)

which shows that 𝐹 (𝑡, 𝑇 ) and 𝐹 (𝑡, 𝑡) ≡ 𝑆𝑡 are Markov in a finite number
of state variables.
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A.4. Proof of Proposition 4

We find the expressions followed by the terms 𝐴(𝜏), 𝐵(𝜏) and 𝐶(𝜏)
imilarly to Duffie et al. (2000). The proof consists of showing that
he CF 𝜓(𝑡) ≡ 𝜓(𝑖𝑢, 𝑡, 𝑇𝑂𝑝𝑡, 𝑇 ) is a martingale under Q. To this end, we
onjecture that 𝜓(𝑖𝑢, 𝑡, 𝑇𝑂𝑝𝑡, 𝑇 ) is of the form in expression (2.17).

From applying Itô’s Lemma for jump diffusion processes to 𝜓(𝑡), we
btain the following PIDE

𝑑𝜓(𝑡)
𝜓(𝑡)

=
(

−
𝜕𝐴(𝜏)
𝜕𝜏

−
𝜕𝐵(𝜏)
𝜕𝜏

𝑣𝑡 −
𝜕𝐶(𝜏)
𝜕𝜏

𝜆
)

𝑑𝑡

+ 𝐵(𝜏)𝑑𝑣𝑡 + 𝑖𝑢
𝑑𝐹 (𝑡, 𝑇 )
𝐹 (𝑡, 𝑇 )

+
𝐵2(𝜏)
2

𝑑𝑣2𝑡 −
𝑢2 + 𝑖𝑢

2

(

𝑑𝐹 (𝑡, 𝑇 )
𝐹 (𝑡, 𝑇 )

)2

+ 𝑖𝑢𝐵(𝜏)𝑑𝑣𝑡
𝑑𝐹 (𝑡, 𝑇 )
𝐹 (𝑡, 𝑇 )

+ 𝜆∫

+∞

−∞
[𝜓(𝑡, 𝐽 ) − 𝜓(𝑡)]𝜛(𝐽 ) 𝑑𝑁𝑡, (A.22)

here 𝜏 ≡ 𝑇𝑂𝑝𝑡 − 𝑡, 𝐽 ≡ 𝐽𝑆 + 𝐽𝑦(𝑡, 𝑇 ) is the jump size, 𝜛(𝐽 ) is the
istribution function of the random variable 𝐽 , and 𝜆 > 0 is the constant
ntensity parameter of the Poisson process 𝑁𝑡.

Based on the fact that the jump size 𝐽 is independent of 𝑓 (𝑡, 𝑇 ), we
onsider the jump integral term in (A.22)
+∞

−∞
[𝜓(𝑡, 𝐽 ) − 𝜓(𝑡)] 𝜛(𝐽 ) 𝑑𝑁𝑡 = ∫

+∞

−∞

(

EQ
𝑡 [𝑒

𝑖𝑢(𝑓 (𝑡,𝑇 )+𝐽 )]

−EQ
𝑡 [𝑒

𝑖𝑢𝑓 (𝑡,𝑇 )]
)

𝜛(𝐽 ) 𝑑𝑁𝑡

= ∫

+∞

−∞
EQ
𝑡 [𝑒

𝑖𝑢𝑓 (𝑡,𝑇 )]EQ
𝑡 [𝑒

𝑖𝑢𝐽 − 1]

× 𝜛(𝐽 ) 𝑑𝑁𝑡

= 𝑛𝑎𝑗𝑏𝑗 (𝜏) − 𝑖𝑢 𝑚𝑎𝑗𝑏𝑗 (𝜏). (A.23)

or 𝜓(𝑡) to be a martingale, it must hold that

1
𝑑𝑡

EQ
𝑡

[

𝑑𝜓𝑡
𝜓𝑡

]

=
(

−
𝜕𝐴(𝜏)
𝜕𝜏

+ 𝐵(𝜏)𝜅𝜃
)

+
(

−
𝜕𝐶(𝜏)
𝜕𝜏

+ 𝑛𝑎𝑗𝑏𝑗 (𝜏) − 𝑖𝑢 𝑚𝑎𝑗𝑏𝑗 (𝜏)
)

𝜆

+
(

−
𝜕𝐵(𝜏)
𝜕𝜏

+ 𝑏0 + 𝐵(𝜏)𝑏1 + 𝐵2(𝜏)𝑏2

)

𝑣𝑡 = 0, (A.24)

ith 𝑏0, 𝑏1 and 𝑏2 as in (2.21) and subject to the initial conditions
(0) = 𝐵(0) = 𝐶(0) = 0. Since Eq. (A.24) holds for all 𝑡, 𝑓 (𝑡, 𝑇 ), 𝑣𝑡 and 𝜆,

hen the terms in each parentheses must vanish, reducing the problem
o solving three much simpler ODEs

𝜕𝐴(𝜏)
𝜕𝜏

= 𝐵(𝜏)𝜅𝜃, (A.25)

𝜕𝐵(𝜏)
𝜕𝜏

= 𝑏0 + 𝐵(𝜏)𝑏1 + 𝐵2(𝜏)𝑏2, (A.26)

𝜕𝐶(𝜏)
𝜕𝜏

= 𝑛𝑎𝑗𝑏𝑗 (𝜏) − 𝑖𝑢 𝑚𝑎𝑗𝑏𝑗 (𝜏), (A.27)

or 𝑗 = 1, 2 and following the jump assumptions listed in Section 2.1.1.
he expressions followed by the terms 𝑛𝑎1𝑏1 , 𝑛𝑎2𝑏2 , 𝑚𝑎1𝑏1 and 𝑚𝑎2𝑏2 are

in Table 5.

Appendix B. Appendix for analytic expressions

B.1. Analytic expression for 𝐵(𝜏)

We apply the following change of variable 𝐵(𝜏) = − 𝑦′(𝜏)
𝑦(𝜏)𝑏2(𝜏)

to Eq.
(2.19) so that it becomes
(

−
𝑦′(𝜏) )′

= 𝑏0(𝜏) + 𝑏1(𝜏)
(

−
𝑦′(𝜏) )

+ 𝑏2
(

−
𝑦′(𝜏) )2

. (B.1)

𝑦(𝜏)𝑏2 𝑦(𝜏)𝑏2 𝑦(𝜏)𝑏2



Energy Economics 114 (2022) 106302J. Crosby and C. Frau

h

𝑦

𝜔

T

B

c

u

Given that 𝑏2 is constant, it simplifies and we get to the following
omogeneous second order ODE

′′(𝜏) −
(

𝑐0(𝜏) + 𝑐1(𝜏)𝑒−𝛾𝜏
)

𝑦′(𝜏) +
(

𝑑0(𝜏) + 𝑑1(𝜏)𝑒−𝛾𝜏 + 𝑑2(𝜏)𝑒−2𝛾𝜏
)

𝑦(𝜏) = 0.

(B.2)

Eq. (2.19) has an analytical solution which is given by

𝐵(𝜏) =
2𝛾
𝜎2𝑣

(

𝛽 + 𝜇𝑧 + 𝑧
𝑔′(𝑧)
𝑔(𝑧)

)

, (B.3)

where the function 𝑔(𝑧) is a linear combination of Kummer’s (M) and
Tricomi’s (U) hypergeometric functions

𝑔(𝑧) = 𝑘1𝑀(𝑎, 𝑏, 𝑧) + 𝑘2𝑈 (𝑎, 𝑏, 𝑧), (B.4)

𝑔′(𝑧) = 𝑎
𝑏
𝑘1𝑀(𝑎 + 1, 𝑏 + 1, 𝑧) − 𝑎𝑘2𝑈 (𝑎 + 1, 𝑏 + 1, 𝑧), (B.5)

with coefficients

𝑎 = −𝜇𝑏 − 𝛽𝑐1
𝜔
𝛾
− 𝑑1

𝜔
𝛾2
, 𝑏 = 1 + 2𝛽 +

𝑐0
𝛾
,

𝜇 = −1
2

(

1 +
𝑐1𝜔
𝛾

)

, 𝛽 =
−𝑐0 ±

√

𝑐20 − 4𝑑0
2𝛾

,

= ±
𝛾

√

𝑐21 − 4𝑑2
, 𝑧 = 𝑒−𝛾𝜏

𝜔
,

(B.6)

𝑐0 = −𝜅 + 𝑖𝑢𝜎𝑣

(

𝜌𝑆𝑣𝜎𝑆 + 𝜌𝑦𝑣
𝛼
𝛾

)

, 𝑑0 = −
𝜎2𝑣 (𝑢

2 + 𝑖𝑢)
4

(

𝜎2𝑆 + 𝛼2

𝛾2
+ 2𝜎𝑆𝜌𝑆𝑦

𝛼
𝛾

)

,

𝑐1 = −𝑖𝑢𝜎𝑣𝜌𝑦𝑣
𝛼
𝛾
𝑒−𝛾(𝑇−𝑇𝑂𝑝𝑡 ), 𝑑1 = +

𝜎2𝑣 (𝑢
2 + 𝑖𝑢)
2

𝛼
𝛾

(

𝛼
𝛾
+ 𝜌𝑆𝑦𝜎𝑆

)

𝑒−𝛾(𝑇−𝑇𝑂𝑝𝑡 ),

𝑑2 = −
𝜎2𝑣 (𝑢

2 + 𝑖𝑢)
4

𝛼2

𝛾2
𝑒−2𝛾(𝑇−𝑇𝑂𝑝𝑡 ).

(B.7)

In particular, if the initial condition is 𝐵(0) = 0, we have

𝑘1 =
−𝛽𝜔 − 𝜇 + 𝑎

𝑈 (𝑎+1,𝑏+1, 1𝜔 )

𝑈 (𝑎,𝑏, 1𝜔 )

𝑎
𝑏
𝑀(𝑎 + 1, 𝑏 + 1, 1

𝜔
) + 𝑎𝑀(𝑎, 𝑏, 1

𝜔
)
𝑈 (𝑎+1,𝑏+1, 1𝜔 )

𝑈 (𝑎,𝑏, 1𝜔 )

, 𝑘2 =
1 − 𝑘1𝑀(𝑎, 𝑏, 1

𝜔
)

𝑈 (𝑎, 𝑏, 1
𝜔
)

.

(B.8)

he proof is in Sitzia (2018).

.2. Analytic expression for the alternative 𝐵(𝜏)

Given that 𝜎𝑆 = 0 and 𝜌𝑦𝑣 = 𝜌𝐹𝑣 and alternatively to (B.7), the
oefficients in 𝐵(𝜏), 𝑔(𝑧) and 𝑔′(𝑧) become14

𝑐0 = −𝜅 + 𝑖𝑢𝜎𝑣𝜌𝐹𝑣
𝛼
𝛾
, 𝑑0 = −

𝜎2𝑣 (𝑢
2 + 𝑖𝑢)
4

𝛼2

𝛾2
,

𝑐1 = −𝑖𝑢𝜎𝑣𝜌𝐹𝑣
𝛼
𝛾
𝑒−𝛾(𝑇−𝑇𝑂𝑝𝑡), 𝑑1 = +

𝜎2𝑣 (𝑢
2 + 𝑖𝑢)
2

𝛼2

𝛾2
𝑒−𝛾(𝑇−𝑇𝑂𝑝𝑡),

𝑑2 = −
𝜎2𝑣 (𝑢

2 + 𝑖𝑢)
4

𝛼2

𝛾2
𝑒−2𝛾(𝑇−𝑇𝑂𝑝𝑡).

(B.9)

Appendix C. Supplementary data

Supplementary material related to this article can be found online
at https://doi.org/10.1016/j.eneco.2022.106302.

14 The expressions followed by 𝑎, 𝑏, 𝜇, 𝛽, 𝜔 and 𝑧 remain the same as in (B.6)
nder the original set-up.
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