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1. Introduction

Categorical Perception (CP) is a ubiquitous phenomenon in nature (Eimas et al., 1971;

Goldstone and Hendrickson, 2010). Discreteness is a prominent feature of human language

(Hockett, 1960). In this paper, we propose that CP could have played a foundational role

for discreteness of language in evolution. We firstly approach discreteness from a domain

general perspective and highlight how it is salient in language. Then by reviewing CP of

sounds in non-human animals, we argue that CP has its phylogenetic roots in terms of

evolution. Following this, we explain how CP could have been the basis for discreteness

with neurological evidence focusing on the auditory cortex, (pre)motor cortex and the

basal ganglia. At last, we suggest that clinical linguistics provides revealing insights on

the role of CP in language. The current work discusses the role of perception in language

evolution, which provides a new avenue to explore the evolution of human language from

the sensory-motor system.

2. Discreteness

Discreteness is an essential concept in quantum physics, chemistry, mathematics,

and human cognition (Abler, 1989). Discrete and compositional language differs from

continuous and holistic non-human animal communication signals, which is one of the

design features of human language (Hockett, 1960), in the sense that phonemes of a language

are contrastive. For example, in English, “pin” and “bin” differ only on the voice onset

time of the initial plosives of the words that changing the onset of a syllable alters the

meaning of the words. In other words, phonemes of syllables can be reused for new syllable

composition. This is in contrast to non-human animal signals, which are fixed combinations

of sounds. What Hockett has emphasized is discreteness observed in the phonological

structure of language, namely syllables are made up of separate vowels and consonants. This

is directly linked to duality of patterning, another of Hockett’s language features, according

to which phonemes are combined in order to codify meaning, being the morphemes the

result of such a codifying process. It has been observed that discreteness is a prerequisite for

coding, and that, during evolution, duality of patterning would have been favored as soon
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as (proto)language was a discrete system (Fortuny, 2010).

Discreteness is also observed at syntactic levels. Lexical elements

are discretely dispersed and organized into grammatical phrases or

sentences based on the rules.

3. Categorical perception and
categorical learning

Categorical perception (CP) is a psychophysical process in

which continuous inputs are perceived discretely across modalities

(Harnad, 1987). The interactions between low-level perception and

high-level cognition are revealed by this implicit segmentation of

continuous physical inputs (Goldstone and Hendrickson, 2010).

The phenomenon of CP was initially identified in human speech

sounds (Liberman, 1957). Listeners were inclined to perceive the

b-d-g continuum into three distinct groups. Zhang et al. (2021)

argued that CP is a combination of nature and nurture. Research

on infants has revealed that they appear to be endowed with the

ability to discriminate different sounds in all languages (which

is the nature part), but as they have more contact with one

(or more for multilinguals) ambient language(s), they tend to

group sounds that are not contrastive in their native language(s)

(Werker and Tees, 1984; Kuhl et al., 2006). By postnatal categorical

learning (Livingston et al., 1998), the between-and within-category

boundaries will be acquired and change corresponding to the

environment (Pérez-Gay et al., 2017; Pérez-Gay Juárez et al., 2019).

4. Categorical perception and
discreteness: comparative evidence

It is worth emphasizing that CP is a phenomenon across

domains and modalities (Burns and Ward, 1978; Goldstone and

Hendrickson, 2010). If our hypothesis that discreteness arises

from CP is correct, the discovery of CP in non-human animals

shows that discreteness of language may have been derived from

a preserved trait, namely CP. Comparative studies in non-human

animals reveal that CP is phylogenetically anchored in early

invertebrates, which could be the evolutionary origin of the nature

part of CP (Zhang et al., 2021). In this section, we present examples

of CP in the sound modality in non-human animals.

Crickets have been observed to be able to distinguish between

communication calls and predator ultrasounds at a sharp border

when it comes to naturally produced noises (Wyttenbach et al.,

1996). Female túngara frogs respond to mating sounds in a

categorical manner (Baugh et al., 2008). Non-human primates were

shown to be able to discriminate both consonants and vowels

(e.g., Sinnott and Mosteller, 2001). In birds, it was discovered

as early in the 1980’s that budgerigars not only had a low

discrimination frequency corresponding to their contact calls, but

also had a similar range of voice onset time to humans in the

perceptual change of bilabial, alveolar, and velar continua (Dooling

et al., 1987). The budgerigars used the same cues as humans to

distinguish between vowel groups (Dooling and Brown, 1990).

These data suggest that CP probably has its phylogenetic origin

from early invertebrates.

Returning to our hypothesis that CP prepared the basis for

discreteness, it has been shown that the discreteness of sounds

and the discreteness of words are inextricably intertwined. When

it comes to CP of speech sounds, or how to discriminate and

categorize speech sounds in a given language, it appears that

sequential statistics manifested in words (Transitional Probability),

rather than acoustic features of the sounds, drive discrimination

and categorization of the speech sounds (Saffran et al., 1996).

Furthermore, in written language, CP has been shown to have

effects in Chinese character perception (Yang and Wang, 2018).

Data in infants suggest that perceptual statistical learning also

plays a key role in word segmentation from speech streams

(Romberg and Saffran, 2010). In this sense, the key of discreteness

offered at the phoneme level appears to be influenced by how

sound sequences in words are organized (Bidelman and Lee,

2015). Moreover, it has been shown that category learning and

word learning are closely related. If labels are given to new

categories, they will be easier to learn (Zettersten and Lupyan,

2020). These indicate that discreteness may have been founded on

categorical perception.

5. Categorical perception and
discreteness: neurocognitive
considerations

Neurobiological studies on CP and discreteness of language

also support our proposal. In birds, HVCx [HVC (a letter-

based term) projects to AreaX (striatal area x)] cells in swamp

sparrows have been demonstrated to respond robustly to auditory

categorical changes in note duration (Prather et al., 2009). HVC

is a premotor nucleus analogous to Broca’s area in humans and

serves sensory-motor functions (Prather et al., 2017). HVCx could

be analogous to the premotor-striatal connection, which has been

linked to beat perception in humans (Grahn and Rowe, 2009).

In European Starlings, the auditory nuclei field L projecting to

CLM (caudolateral mesopallium) and NCM (the caudal part of

the medial nidopallium), both projecting to CMM (the caudal part

of the medial mesopallium), present an analogous hierarchy to

humans in which physical information is processed at the lower

level while abstract concepts are encoded at the higher level (Jeanne

et al., 2011). NCM and CMM are similar to the human auditory

cortex for auditory memory (Bolhuis and Gahr, 2006). NCM and

CMM in zebra finches are more responsive to rhythmic than

arrhythmic songs (Lampen et al., 2017), indicating that both are

involved in auditory detection and discrimination.

The auditory cortex is also involved in CP of speech sounds

in primates. Spiking activity from the superior temporal gyrus

(STG) in rhesus monkeys were recorded (Tsunada et al., 2011).

In humans, CP of sounds was mediated by the STG and superior

temporal sulcus (STS) in the tasks of phonemic and non-

phonemic discrimination (Harinen and Rinne, 2013). In addtion,

Premotor cortex (PMC) is activated in phoneme categorization

tasks (Chevillet et al., 2013) while primary motor cortex is found

to be involved in the study of CP of speech sound (Möttönen and

Watkins, 2009). The dorsal language stream connects the STG with

the premotor cortex, responsible for sensorimotor transformation
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in speech output (Hickok and Poeppel, 2004). Both STG and

premotor cortex were reported to be where CP takes place. If CP

is the basis for discreteness, such dorsal connection could have

played a role in discreteness. The dorsal pathway has been shown

to be necessary for vocal imitation, which seems one of the key

factors for word emergence (Edmiston et al., 2018). Structurally,

such connection between STG and PMC (dorsal pathway I) serves

as the basis for dorsal pathway II for complex syntactic processing

during development (Brauer et al., 2011). In this sense, discreteness

seems to rely on CP at the phonological level (phonemes) which in

turn lays the foundation for CP at the syntactic level (words).

Beyond cortex, recent evidence has shown that the basal ganglia

also relate to perceptual categorization (Seger, 2008). Basal ganglia-

mediating category learning and speech perception and learning

have provided great potential in bridging efforts to understand

speech perception and learning with general cognitive neuroscience

approaches and neurobiological models of Learning (Lim et al.,

2014). The basal ganglia (i.e., the striatum) take part in category

training of non-native speech categories (Tricomi et al., 2006).

These results suggest that the basal ganglia learning system are

involved in promoting adult speech category learning. This is also

in parallel with the finding in swamp sparrowmentioned above that

Area X is also involved in CP of note duration.

6. Categorical learning: from clinical
linguistic perspective

Ashby and Ell (2001) point out that category-learning tasks can

be either rule-based (for example, by means of the Wisconsin Card

Sorting Test), or based on information-integration, or prototype-

distortion tasks. Individuals suffering from a disease in the basal

ganglia (e.g., Huntington’s (HD) or Parkinson’s disease have

impaired the basal ganglia and seem to have more problems in rule-

based tasks and information-integration tasks (Knowlton et al.,

1996). Rao et al. (1997) in their work on rule-based tasks provided

fMRI data showing the participation of the cerebral cortex, basal

ganglia, thalamus, and cerebellum in conceptual reasoning tasks.

Cope et al. (2014) put to the test three groups of participants, the

two first affected byMultiple SystemAtrophy, and the third affected

by HD in tasks of perceptual timing and stimuli were pure tones of

different duration. Results showed that HD participants had more

severe impairments, leading to the conclusion that basal ganglia are

a “mandatory component for absolute, duration-based as well as

relative, beat-based timing.”

While classic works on Williams Syndromes and cognition

initially suggested a relatively spared–perhaps even modular–

language capability (Bellugi et al., 1994; Pinker, 1995), other

scholars have suggested that a perspective of ontogenetic

development does not seem to support such a modular view

(Stojanovik et al., 2004; D’Souza and Karmiloff-Smith, 2011). The

integration of semantic information into sentence comprehension

(Tyler et al., 1997), and the semantic organization of concepts seems

not typical (Jarrold et al., 2000). Moreover, WS speakers seem to

produce more errors in semantic categorization tasks (Purser et al.,

2011). If we consider the mechanism underlying the connection

between language and other domains, the impairment of CP and

categorical learning in this group of patients could give rise to

discreteness related symptoms. Children with WS have difficulty in

segmenting the speech stream (Brock, 2007), and have an atypical

sensitivity toward subtle acoustic variations during speech and

non-speech auditory analysis (Majerus et al., 2011). At the neural

level, WS patients have basal ganglia atrophy (Faria et al., 2012),

and disproportional reductions occur in the putamen and nucleus

accumbens which can predict WS status (Fan et al., 2017). While

fMRI analyses point out abnormalities characterized by a reduction

of gray matter volume in cortical areas (Osório et al., 2014) and

the basal ganglia –including the caudate nucleus, basal ganglia and

thalamus—(Campbell et al., 2009; Jackowski et al., 2009; Meda

et al., 2012; Hanson et al., 2018).

In the autism spectrum disorder (ASD), problems in the

connections between basal ganglia, cerebral cortex and the

cerebellum may give rise to problems in various motor and

cognitive processes (Subramanian et al., 2017). It has been assumed

that language impairment in autistic children could serve as a

good indicator of their inability to categorically perceive speaking

sounds (Rong et al., 2022). Furthermore, language proficiency in

Mandarin-speaking ASD was positively associated with a greater

degree of CP of lexical tones (Chen and Peng, 2021).

Evidence reviewed in this section is consistent with the

discussion of the involvement of the basal ganglia in CP and

categorical learning. We suggest that clinical linguistics could shed

light on the relation between language and other cognitive domains.

7. Conclusion

In this paper, we come up with the hypothesis that categorical

perception (CP) could have laid the foundation for discreteness,

one of the design features of language. By reviewing comparative

studies on CP in non-human animals and humans, we found that

CP has a phylogenetic root dating back to invertebrates which is

closely related to reproduction and survival, and seems to be a

combination of innateness and experience. The result of category

learning creates or changes CP in experience. In addition, by

reviewing neurobiological studies, we show that tasks of CP activate

cortical and subcortical areas including auditory and (pre)motor

cortex as well as the basal ganglia, the connection between which

could be insightful for locating domain general discreteness. We

also point out that there are CP and category learning related

problems in several clinical conditions. The current work provides

additional evidence for the important role of the sensory-motor

system in language evolution.
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