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Abstract

In the present work we discuss the dependency of the phase-transition between a superfluid and a su-
persolid of a dipolar Bose-Einstein condensate confined to a tubular geometry on temperature employing
beyond mean-field corrections. For that matter we consider quantum as well as thermal fluctuations. We
employ a simplified variational approximation in order to obtain the energy functional which yields phase
diagrams approximately. Qualitatively consistent with [28, 30], we find that one might expect melting
into a crystal or supersolid.

Abstract

En el presente trabajo discutimos la dependencia de la transición de fase entre superfluido y super-
sólido de un condensado de Bose-Einstein dipolar con la temperatura en una geometría cilíndrica bajo
correccions más allá del campo medio. Para ello, se introducen fluctuaciones cuánticas junto a correc-
ciones térmicas. Utilizamos una aproximación variacional simplificada con el fin de obtener el funcional
de energía que posibilita estudiar el diagrama de fase. Cualitativamente de acuerdo con [28, 30], un
aumento de la temperatura conduce a una cristalización del sistema o a un supersólido.

Abstract

En el present treball discutim la dependència de la transició de fase entre superfluid i supersòlid d'un
condensat de Bose-Einstein dipolar amb la temperatura dins una geometria cilíndrica amb correccions
més enllà del camp mitjà. Per a aquest fi, introduim fluctuacions quàntiques juntament amb correccions
tèrmiques. Empram una aproximació variacional simplificada per obtenir el funcional d'energia que pos-
sibilita estudiar el diagrama de fase. Qualitativament d’acord amb [28, 30], es troba que un augment en
la temperatura condueix a la cristalització del sistema o a un supersòlid.
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Chapter 1
Introduction

1.1 Historical Background
The prediction of Bose-Einstein condensation (BEC) in 1924 is attributed to Satyendra Nath Bose and
Albert Einstein [29][1]. They discussed the Bose gas1 from a quantum-statistical framework.

When cooling an N -particle dilute system, the wave-nature of particles becomes relevant, as expressed
by the thermal de Broglie wavelength λdB which scales like λdB ∝ 1√

T
. Therefore, upon cooling to

sufficiently low temperature such that the mean particle distance becomes comparable to the de Broglie
wavelength, matter-wave start overlapping and forming a coherent single matter-wave. The situation is
sketched in Fig. 1.1. Pauli’s exclusion principle2 does not inhibit populating the ground state, as we
consider Bosons (with integer spin number).

v
a b c d

BEC

Figure 1.1: The basic idea of condensation. (a) At high temperatures the atoms behave completely
particle-like, akin to billiard balls. (b) Upon lowering temperature, the wave-nature becomes more
appreciable and the particles more delocalised. (c) When reaching the critical temperature Tcr, where
the mean particle distance becomes comparable to the de Broglie wavelength, the associated matter-
waves start overlapping and subsequently Bose-Einstein condensation occurs. (d) At a sufficiently low
temperature (T < Tcr), the atoms loose their individual identity and form a single coherent giant matter
wave. It is an exciting phenomenon, as it permits to see the quantum wave function on a macroscopic
scale with your bare eye. Source: adapted from [17, 32].

Wieman, Ketterle and Cornell were awarded the Nobel Prize in 2001 for "for the achievement of Bose-
Einstein condensation in dilute gases of alkali atoms". Since then, Bose-Einstein condensation has been
realised in other species of atoms (chromium in 2005 [11], dysprosium in 2011 [23] and erbium in 2012 [2]).

1A gas made of particles which possess integer spin (e.g. photons) or a composite particle containing an even number of
fermions (which the latter possesses half-odd-integer spin).

2Fermions (e.g. electrons) cannot share the same quantum state due to this principle.
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The delay between the theoretical prediction in 1924 and its realisation was due to the inherent difficulty
to reach the extremely low temperatures required to realise this new form of matter. Laser cooling and
evaporative cooling represent essential experimental advances that rendered the observation of Bose-
Einstein condensation possible. Claude Cohen-Tannoudji, Steven Chu, and William Daniel Phillips were
awarded the Nobel Prize "for development of methods to cool and trap atoms with laser light" in 1997.

Figure 1.2: Velocity distribution for three different temperatures (400 nK, 200 nK, 50 nK) for a gas of 87Rb
atoms, confirming the discovery of a new state of matter, a Bose-Einstein condensate, by researchers from
NIST/JILA/CU-Boulder. The initial figure at 400 nK shows a thermal distribution that upon further
cooling qualitatively changes its shape indicating the formation of a BEC. Source: [9]

BEC offers a unique window to visualize quantum phenomena to the macroscopic scale. Recently,
practical applications on quantum computing have been developed [19] as one of the fundamental dif-
ficulties with quantum computing is that quantum states are very sensitive to their surroundings. A
theoretical framework of coding information via BEC was investigated in 2012 [8] by suggestion of the
implementation of two component BECs. For that matter, BECs can be put in an arbitrary superposition
of two states, as qubits. Therefore, the possibility of producing quantum entanglement via BEC opens
up several directions for investigating this surprising behaviour. As suggested in [7], two coherent BEC
in quantum entanglement may offer an alternative to standard quantum computation beyond standard
qubit schemes.

An interesting aspect of Bose-Einstein condensates is the fact that they can feature superfluidity. A
superfluid is a fluid with zero viscosity, that is a complete absence of friction between the different layers.
Roughly fifty years ago speculations were made whether solids can also be superfluid [21]. At first sight,
that appears to be completely absurd in that we think that a solid should display shear or resistance to
deformation, as the atoms usually maintain their position at the given lattice site.

Dipolar Bose-Einstein condensates were thought to not be suitable candidates for the realisation
of supersolidity, as on the mean-field level collapse of the condensate is its ultimated predicted faith.
However, a pioneering work in 2016 reported the observation of the Rosenzweig instability in dipolar
BECs [16], which experimentally established that in fact beyond mean-field effects where at play. Later
a theoretical framework to describe these beyond mean-field effects was found.

These beyond mean-field effects in fact made the realisation of supersolids in dipolar BECs possible
due to a subtle interplay between inter-atomic interactions and quantum-fluctuations. In the typical
description temperature is assumed to be negligible. However, a recent experimental work [30] appears
to suggest another surprise: raising the temperature slightly, such that coherence still remains, can

8



promote the formation of a supersolid. This appears to be counter-intuitive, as heating usually leads
to additional motion that should be thought to inhibit crystallisation. A recent work [28] showed that
this curious behaviour can indeed be predicted by an extended model [3, 28]. In this paper we want to
see whether a simple variational approximation the phase diagram leads to similar results and at least
qualitatively predicts behaviour that is consistent with [30, 28].
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Chapter 2
Theoretical fundamentals

In this section we first employ the mean-field approximation to obtain the Gross-Pitaevskii equation.
We extend our derivations for the zero-temperature regime by introducing the Hartee-Fock-Bogoliubov
formalism, where quantum fluctuations are at play. Employing the Local Density Approximation, we
introduce the Lee-Huang-Yang corrections describing quantum fluctuations. These derivations yield the
energy functional which captures the physics of BEC. In the Supplementary information appendix we
provide further details on the mathematical derivations shown in the following chapter.

2.1 Gross-Pitaevskii equation
Here, the mean-field theory at T = 0 is employed to describe the N -interacting particles system. Upon
the previous theoretical framework, the many-body Hammiltonian (described by the bosonic field oper-
ator Ψ(r) in the second-quantization framework) for N interacting bosons of mass m under a confining
potential Vext(r) [18] is given by

Ĥ0 =
∫
d3rΨ̂†(r)H0(r)Ψ̂(r) + 1

2

∫ ∫
d3r d3r'Ψ̂†(r)Ψ̂†(r')Vint(r − r')Ψ̂(r')Ψ̂(r) (2.1)

where H0 is the single particle Hamiltonian H0 = − h̄2

2m ∇2 + Vext(r) which accounts for the kinetic
energy and the external potential. Vint is the two-body interaction potential (for a dilute gas, three and
further-body interactions are neglected). Within the dilute gas approximation, the interaction potential
is described by

Vint(r) = g

[
δ(r) + 3ϵdd

4π|r|3

(
1 − 3 z

2

|r|2

)]
(2.2)

where g denotes the short-range repulsion coupling constant g = 4πh̄2as

m dependent of the scattering
length as. Experimentally, g can be manually tuned by applying external magnetic fields [24]. Moreover,
ϵdd = add

as
where add captures the dipole length. From (2.2), one finds that the interaction potential is

in the form of a sum of a short-range interaction by a delta function plus a dipole-dipole long range
interaction [3] (dipoles are chosen to be aligned in the y-direction). Note that a dilute Bose-gas with a
condensed number of atoms N satisfies N ′ −N ≪ N ′ where N 'is the total number of atoms.
In this way, the beyond mean-field approximates the field operator as a sum of a classical mean field plus
fluctuations Ψ̂(r, t) = ⟨Ψ̂(r, t)⟩ + Φ̂(r, t) (⟨...⟩ represents the thermal average of the field operator, where
it satisfies ⟨ ˆΦ(r, t)⟩ = 0). Also, note that the first term (called Ψ(r) from now on) is constrained to the
conservation of the total number of condensed particles such that N =

∫
|Ψ(r, t)|2dr. In order to obtain
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the Gross-Pitaevskii equation, the Heisenberg equation ih̄(∂Ψ̂/∂t) = [Ψ̂, Ĥ0] applied on the field operator
yields

ih̄
∂

∂t
Ψ̂(r, t) =

[
− h̄2

2m∇2 + Vext(r) +
∫
dr'Ψ̂†(r', t)Vint(r − r')Ψ̂(r', t)

]
Ψ̂(r, t) (2.3)

By neglecting terms of beyond zeroth order such that the operator Ψ̂(r, t) is replaced by the classical field
Ψ(r, t) upon the mean-field approximation, (2.3) yields the GP equation

ih̄
∂

∂t
Ψ(r, t) =

[
− h̄2

2m∇2 + Vext(r) +
∫
dr'Ψ∗(r', t)Vint(r − r')Ψ(r', t)

]
Ψ(r, t) (2.4)

From (2.4), the GP equation takes the form of a nonlinear Schrödinger equation (due to the proportion-
ality with |Ψ|2 of the last term, where if removed by setting the coupling constant g to zero we recover
the Schrödinger single particle equation under a trapping potential). Note that (2.4) is modified from
[18] since we include the chemical potential.
GP equation was deduced by Gross [12] and Pitaevskii [25] in 1961, and it well describes the wavefunction
of a weakly interacting BEC. However, it is limited to the weakly interacting regime. In the next section,
we include beyond mean-field perturbations employing the so-called Hartee-Fock-Bogoliubov formalism.

2.2 Hartee-Fock-Bogoliubov formalism
We apply the prescription of splitting the field operator by a thermal average plus a fluctuation term
in (2.3) and consider the interaction potential in the most general case where short and long range
dipole-dipole interactions are at play. In the stationary regime, the wavefunction is described as Ψ(r) =
Ψ0(r) exp(−iµ

h̄ t) where µ denotes the chemical potential. Therefore, the time dependence in (2.4) yields
µ.

Thus it is written out in the form [3]

LΨ(r) +
∫
d3r'Vint(r − r')ñ(r', r)Ψ(r') +

∫
d3r'Vint(r − r')m̃(r', r)Ψ∗(r') = 0 (2.5)

where ñ(r', r) = ⟨Φ̂†(r')Φ̂(r)⟩ is the non-condensed density and m̃(r', r) = ⟨Φ̂(r')Φ̂(r)⟩ is the anomalous
density. L is given by

L = − h̄2

2m∇2 − µ+ Vext(r) +
∫
d3r'Vint(r − r')|Ψ(r')|2 +

∫
d3r'Vint(r − r')ñ(r') (2.6)

A detailed derivation of (2.5) is displayed in the Supplementary information appendix.
We diagonalize (2.6) by employing the Bogoliubov transformation over the fluctuation operators

Φ̂(r, t) =
∑

ν

uν(r)α̂νe
− iEν t

h̄ − v∗
ν(r)α̂†

νe
iEν t

h̄

Φ̂†(r, t) =
∑

ν

u∗
ν(r)α̂†

νe
iEν t

h̄ − vν(r)α̂νe
− iEν t

h̄

(2.7)

where α̂j are the quasiparticle operators which satisfy [α̂j , α̂k] = [α̂†
j , α̂

†
k] = 0, and uν and vν denote

the Bogoliubov quasiparticle and quasihole amplitudes, respectively. We choose to describe the time
dependency by employing a flat phase (independent of the space) introducing Eν , which corresponds
to the energy of the quasi-particle excitation. It is worth remarking that this expansion represents a
canonical transformation if it satisfies∫

d3r
[
u∗

j (r)uk(r) − v∗
j (r)vk(r)

]
= δjk (2.8)
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and ∫
d3r [uj(r)vk(r) − uk(r)vj(r)] = 0 (2.9)

as we impose [22].
As a result, the non-condensed and anomalous densities are written in the form

ñ(r) =
∑

ν

[(
|uν(r)|2 + |vν(r)|2

)
⟨â†

ν âν⟩ + |vν(r)|2
]

m̃(r) =
∑

ν

[
2uν(r)v∗

ν(r)⟨âν â
†
ν⟩ + uν(r)v∗

ν(r)
]

ñ(r', r) =
∑

ν

[
(u∗

ν(r')uν(r) + v∗
ν(r)vν(r')) ⟨â†

ν âν⟩ + v∗
ν(r)vν(r')

]
m̃(r', r) = −

∑
ν

[
(uν(r')v∗

ν(r) + uν(r)v∗
ν(r')) ⟨âν â

†
ν⟩ + uν(r)v∗

ν(r')
]

(2.10)

See the Supplementary information appendix for further details. Introducing Bose statistics, temperature
effects are at play since

⟨α̂†
jα̂k⟩ = δjkNB(Ej) = 1

exp
[

Ej

kB ·T

]
− 1

(2.11)

where NB and kB are the Boltzmann distribution and constant, respectively. Consequently, thermal
effects are purely introduced in (2.5) by not neglecting the non-condensed and anomalous densities
(Bogoliubov-Popov approximation suggests the opposite in [10]).

Inserting (2.7) in (2.5) it yields two coupled equations for the quasiparticle and quasihole amplitudes
[3]

L0uν(r) +
∫
d3r'Vint(r − r')Ψ∗(r', t)Ψ(r, t)uν(r') −

∫
d3r'Vint(r − r')Ψ(r', t)Ψ(r, t)vν(r') = Eνuν(r)

L0vν(r) +
∫
d3r'Vint(r − r')Ψ(r', t)Ψ∗(r, t)vν(r') −

∫
d3r'Vint(r − r')Ψ∗(r', t)Ψ∗(r, t)uν(r') = −Eνvν(r)

(2.12)
where L0 = − h̄2

2m ∇2 − µ + Vext(r) +
∫
d3r'Vint(r − r')|Ψ(r', t)|2. They are the so-called Bogoliubov-de

Gennes equations, which provide the energy spectrum.

Thermal effects which arise from the non-condensed and anomalous densities are interpreted as a
perturbation ∆µ to the chemical potential µ . For the later analysis of (2.5), we call

Λ(r) =
∫
d3r'Vint(r − r')(|Ψ(r')|2 + ñ(r'))

∆µ(r)Ψ(r) = (Ωn(r) + Ωm(r)) Ψ(r)

=
∫
d3r'Vint(r − r')ñ(r', r)Ψ(r') +

∫
d3r'Vint(r − r')m̃(r', r)Ψ∗(r')

(2.13)

Therefore, by considering thermal effects, (2.5) is rewritten in the form[
− h̄2

2m∇2 − µ+ Vext(r) + Λ(r) + ∆µ(r)
]

Ψ(r) = 0 (2.14)

It is noticeable that long range interactions depicted by a dipole-dipole exchange term in Vint present a sig-
nificant challenge: equation (2.14) is an integro-differential equation. Neglecting the thermal fluctuation
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and setting the non-condensed density to 0 as [26] suggests the resolution by iterative methods becomes
affordable as thermal interactions are typically much more dilute than the condensed density. However,
alternatively the non-condensed density is not neglected by introducing the Local Density Approximation
(LDA) [22].

2.3 Local Density Approximation
Upon the assumption that the condensate density and external potential are slowly varying, we introduce
the LDA presented below

uj(r) → u(r, k)eik·r ; Ej → E(r, k) ;
∑
k

→
∫

d3k
(2π)3 (2.15)

where the prefactor 1
(2π)3 is included by means of normalization in the Fourier space. Due to the trans-

lation invariance, momentum is a good quantum number, then states are labeled with the wavevector
k [22]. Therefore, Bogoliubov amplitudes now include a complex phase dependent of k as we introduce
u(r, k) = uke

ik·r and v(r, k) = vke
ik·r where uk and vk are constant amplitudes. Furthermore, Vint → Ṽint,

this is, we take the Fourier transform of Vint since we move from the real to the complex space. However,
it is worth remarking that the LDA fails if the condensed density varies with a length scale larger than
the interaction range. Therefore, the thermal terms of (2.13) become

Ωn(r) =
∫
d3k(2π)3Ṽint(k)

{
|v(r, k)|2 +NB(E(r, k))

[
|u(r, k)|2 + |v(r, k)|2

]}
Ωm(r) =

∫
d3k

(2π)3 Ṽint(k) {−u(r, k)v∗(r, k) − 2NB(E(r, k))u(r, k)v∗(r, k)}
(2.16)

The Fourier transform of the interaction potential is written out in the form

Ṽint(k) = g
[
1 + ϵdd(3 cos2(ϑ(k)) − 1)

]
= g

[
1 + ϵdd

(
3

k2
y

k2
r + k2

y

− 1
)]

(2.17)

A full derivation of (2.17) is found in [4]. Here, ϑ accounts for the angle between the polarization
direction of the dipole and the k vector. It is considered dipoles are aligned in the y-direction, such that
the k-dependency is captured by the transverse modes kr and the longitudinal modes ky. We do not
demonstrate (2.17) since it is not the aim of the present work. Therefore, upon LDA (2.12) becomes
algebraic [3]

ϵku(r, k) + n0(r)Ṽint(k)u(r, k) − n0(r)Ṽint(k)v(r, k) = E(r, k)u(r, k)
ϵkv(r, k) + n0(r)Ṽint(k)v(r, k) − n0(r)Ṽint(k)u(r, k) = −E(r, k)v(r, k)

(2.18)

where we have employed L0u(r, k) = ϵku(r, k) and L0v(r, k) = ϵkv(r, k), where ϵk = h̄2|k|2

2m . Here, ϵk
represents the excitation energy of mode k of the Bogoliubov quasiparticle/quasihole. An analytical
solution of the Bogoliubov-de Gennes is accessible depending on the form of the interaction potential.
For the case upon consideration, (2.18) directly yields

E(r, k) =
√
ϵk(ϵk + 2n0(r)Ṽint(k)) (2.19)

which is the spectrum energy. Under suitable algebraic manipulations [3], the amplitudes take the form

|v(r, k)|2 = (ϵk + n0(r)Ṽint(k) − E(r, k)) 1
2E(r, k)

u(r, k)v∗(r, k) = n0(r)Ṽint(k) 1
2E(r, k)

(2.20)
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Consequently, from (2.19) we can study low-momenta features of the system. For instance, we obtain
the speed of sound by taking the limit k → 0 of the spectrum [24]. Note that in the high-energy or large
momentum regime (kξ >> 1), the spectrum takes the form of the dispersion relation ϵk, this is, as free
particles.
Furthermore, depending on the shape of the energy spectrum the system can feature supersolidity by
which localized density patterns are formed [33].

So far we have established a mathematical framework to describe the generalized correction terms
Ωm and Ωn. The aim of the section below is to provide analytical expressions of these components and
discuss their role on BEC.

2.4 Thermal and quantum fluctuations
First, we discuss the easiest case which corresponds to the zero-temperature system. In this regime,
the Boltzmann distribution NB(E) tends to zero, therefore every term multiplied by NB(E) of (2.16)
vanishes [3]

Ωn(r)Ψ(r) ≈ Ψ(r)
∫

d3k
(2π)3 Ṽint(k)|v(r, k)|2 = 8

3gn0(r)
√
a3

sn0(r)
π

Q5Ψ(r)

Ωm(r)Ψ(r) ≈ −Ψ(r)
∫

d3k
(2π)3 Ṽint(k)u(r, k)v∗(r, k) = 8gn0(r)

√
a3

sn0(r)
π

Q5Ψ(r)
(2.21)

where Q5 takes the form Q5(ϵdd) =
∫ 1

0 du[1 + ϵdd(3u2 − 1)] 5
2 after introducing the variable change

u = cos(ϑ) and noticing it is symmetrical on u (see the Supplementary information appendix). As a
result, the generalised Gross-Pitaevskii equation from (2.14) reads [22][

− h̄2

2m∇2 + Vext(r) − µ+
∫
d3r'Vint(r − r')(|Ψ(r')|2 + ñ(r')) + 32

3 g
√
a3

s

π
Q5(ϵdd)|Ψ(r)|3

]
Ψ(r) = 0

(2.22)
The last term corresponds to the Lee-Huang-Yang first order correction. These quantum fluctuations
were firstly introduced by Lee-Huang-Yang [20] which depend only on the two-body scattering length
as. Moreover, it shifts the ground state of the condensate as it increases the chemical potential. Fur-
thermore, it has been revealed that it arrests the dipolar collapse [15] providing an extra repulsive term
(it is proportional to n0(r) 3

2 ). As a result, a balance between attractive and repulsive interaction may
be reached, forming stable quantum droplets by which the density takes a localized profile (they feature
liquid-like properties).
Note that further repulsive components such as three-body repulsive interactions can avoid the collapse
of the condensate and produce a self-bound droplet as well [14].

As introduced before, Ωn and Ωm may be generalized to the finite temperature case. In this way,
let’s focus firstly on the thermal corrections (components multiplied by NB(E) as it is dependent on the
temperature) in (2.16)

∆µTH =
∫
d3kNB(E(r, k))

[
|u(r, k)|2 + |v(r, k)|2

]
− 2NB(E(r, k))u(r, k)v∗(r, k) (2.23)

where ∆µTH captures the thermal correction of the chemical potential. Note that as we increase the
temperature, more particles leave the condensate, which affects on the stability of droplets. Hence,
∆µTH is fundamental in the correct description of the finite temperature case even though the total
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depleted density is small compared to the condensate.
Therefore, we insert (2.20) in (2.16) to obtain the finite temperature corrections [3]

Ωn(r) =
∫

d3k
(2π)3 Ṽint(k)

{
ϵk + n0(r)Ṽint(k) − E(r, k)

2E(r, k)) +NB(E(r, k))ϵk + n0(r)Ṽint(k)
2E(r, k)

}
Ωm(r) =

∫
d3k

(2π)3 Ṽint(k)
{

−n0(r)Ṽint(k)
2E(r, k) + n0(r)Ṽint(k)

2ϵk
−NB(E(r, k))n0(r)Ṽint(k)

E(r, k)

} (2.24)

where we have employed the orthogonality condition on the amplitudes which reads |u(r, k)|2−|v(r, k)|2 =
1. Thus, the sum of the fluctuation components becomes

∆µ(r) = Ωn(r) + Ωm(r) =
∫

d3k
(2π)3 Ṽint(k)

{
ϵk

2E(r, k) + n0(r)Ṽint(k)
2ϵk

− 1
2 +NB(E(r, k)) ϵk

E(r, k)

}
(2.25)

We aim to express the previous equation in a reescaled form by using a characteristic length of the system.
Thus, we define the healing length as ξ = h̄√

2mgn0
, which is obtained by equalling the following terms (1)

h̄2

2m∇2Ψ(r) = gn0Ψ(r) → h̄2

2m
1
ξ2 = gn0 → ξ = h̄√

2mgn0
(2.26)

Note that since n0(r) = |Ψ(r)|2, the healing length is proportional to 1
|Ψ(r)| . Moreover, as [3] suggests, it

is introduced by means of a spherical cutoff of radius kc in the k-space in the k-integrals discussed (see
Fig. 2.1).

As we expect, the previous cutoff removes the condensate instability for low momenta values where
the integrand becomes imaginary, such that the system will only support excitations of wave vectors
which exceed the cutoff (finiteness of the system is considered). Note that these instabilities arise from
the limitations of our approximations and do not correspond to real physical situation. As a result, by
an adequate cutoff long wavelengths are no longer supported. Alternatively, a simple rectangular cutoff
[28] provides similar results by taking kr ∈ [0.012, 0.05]/ξ and ky ∈ [0.007, 0.009]/ξ, where we set ξ to
ξ = 1.43as. In Fig. 2.2 we can visualize the cutoff region in comparison with the regimes where the
divergence is produced.
Other cutoffs have appeared in the current literature [5][27] which provide quantitatively similar results.

Moreover, we introduce k = q
ξ , cos(ϑ) = u, f(u) = 1 + ϵdd(3u2 − 1) and t(r) = kBT

gn0(r) as the normalized
temperature. Thus, the fluctuation term is rewritten in the form [3]

∆µ(r) = g

4π2ξ3

∫ 1

−1
du

∫ ∞

qc

q2dqf(u)

×

{
q2

2
√
q2(q2 + 2f(u))

+ f(u)
2q2 − 1

2 + 1
exp[

√
q2(q2 + 2f(u))/t(r)] − 1

× q2√
q2(q2 + 2f(u))

} (2.27)

We provide further details on the derivation in the Supplementary information appendix. After manip-
ulating and inserting ξ = h̄√

2mgn0
= h̄√

2mg
1

|Ψ| in the previous equation, the chemical fluctuation becomes
(see also the Supplementary information appendix)

∆µ(r) = 32
3 g
√
a3

s

π
[Q5(ϵdd) + R(ϵdd, t(r))]|Ψ(r)|3 = Hqu(Q5) +Hth(R) (2.28)

1Note that since n0 depends on r, ξ shall be a function of r as well. However, it is used in the current literature as a
length unit, therefore we will write ξ instead of ξ(r).
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Figure 2.1: Spherical k cutoff. Black area represents the collapsing modes, where the dispersion relation
becomes imaginary. For the calculations we set as = 82.7a0, ϵdd = 1.5 and n0 = 6 × 106µm−3.

Figure 2.2: Rectangular k cutoff. The overlayed grey shaded areas indicate the momentum-space regions
where ϵk becomes imaginary for a range of values of n0. The black shaded area is the cutoff employed in
the present work.
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where

Q5(ϵdd; qc) = 1
4
√

2

∫ 1

0
duf(u)

[
(4f(u) − q2

c )
√

2f(u) + q2
c − 3f(u)qc + q3

c

]
R(ϵdd, t; qc) = 3

4
√

2

∫ 1

0
du

∫ ∞

q2
c

dQ
Qf(u)√
Q+ 2f(u)

1
exp[

√
Q(Q+ 2f(u))/t] − 1

(2.29)

Here, qc = kcξ and kc = π
2ξ , which captures the inverse coherent length of the condensate [3]. One can

easily find that it yields qc = π
2 .

So far, we have obtained the fluctuation correction after inserting Bogoliubov amplitudes upon LDA
in (2.24). We proceed to insert now the amplitudes obtained in (2.20) into the depleted density ñ(r) of
(2.10) within the same LDA. It yields

ñ(r) =
∫

d3k
(2π)3 (|v(r, k)|2 +NB(E(r, k))[|u(r, k)|2 + |v(r, k)|2]) (2.30)

Using the Bogoliubov amplitudes relations found in (2.20), the depleted density is written out in the form

ñ(r) = 8
3g
√
a3

s

π
(Q3(ϵdd) + P(ϵdd, t(r)))|Ψ(r)|3 (2.31)

where

Q3(ϵdd; qc) = 1√
2

∫ 1

0
duf(u)[(f(u) − q2

c )
√

2f(u) + q2
c + q3

c ]

P(ϵdd, t; qc) = 3√
2

∫ 1

0
du

∫ ∞

q2
c

dQ
Q+ f(u)√
Q+ 2f(u)

1
exp[Q

√
Q(Q+ 2f(u))/t] − 1

(2.32)

By setting t = 0, the fluctuation component becomes purely quantum and it matches what was obtained
in (2.22), reobtaining the zero temperature result (see the Supplementary information appendix).
We plot ñ as function of the reduced temperature t in Fig. 2.3. One finds that as we increase the tem-
perature more particles leave the condensate. Moreover, at very low temperatures ñ is constant until
thermal fluctuations become relevant. This component remains small and according to Popov approx-
imation it can be neglected since the condensed density is much larger (even though ñ is proportional
to n

3
2
0 , the conservation of the total density n (n = n0 + ñ) is still satisfied). We gain further insights

by visualizing the chemical potential fluctuation along the quantum (Q3) and thermal (R) fluctuation
components depicted in Fig. 2.4.

As we observe in Fig. 2.4, the quantum perturbation remains constant while the thermal correction
reaches a minimum at t = 1 and raises as the temperature increases (see panel (b)). This minimum yields
a chemical potential correction smaller than if only quantum fluctuations were considered. In fact, at t = 1
thermal energy matches the energy from repulsive interaction between particles (t = 1 → kBT = gn0).
We can investigate the temperature where this occurs: by setting as = 87.2a0 and n0 = 6 µm−3 the
previous phenomenon is observed at T = 103.036 nK.
Given the role of fluctuations as functions dependent of the temperature, we also find that the quantum
correction is proportional to n

3
2 (|Ψ(r)|3), while the thermal scales like n

3
2 times a component R which

decreases as n raises.

This phenomenon supports the formation of roton quasiparticles as [28] suggests. They were in-
troduced by Landau [13] as elementary vortices to describe superfluidity in 4He. They induce pattern
formation by which particles tend to gather in spots. Surprisingly, raising the temperature leads to a
phase-transition in which particles are distributed in a periodic lattice, which is counter intuitive since
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Figure 2.3: Depleted density as a function of the reduced temperature t. For the plot we have set m to
the mass of Dy, as = 87.2a0, and ϵdd = 1.5.

raising the temperature enhances the thermal motion of particles [28].

As discussed before, the depleted density is typically much smaller than the condensed density, there-
fore we insert (2.28) in (2.22) and neglect the component multiplied by ñ, such that the local chemical
fluctuation, which encompasses quantum and thermal corrections, becomes[

h0 +
∫
d3rVint(r − r')|Ψ(r')|2 + ∆µ(r)

]
Ψ(r) = 0 (2.33)

where ∆µ corresponds to (2.28) and h0 = − h̄2

2m ∇2 + Vext(r) − µ, which captures the free energy particle
contribution (kinetic energy plus a confining potential).
From Fig. 2.4 we observe R scales proportional to t2, therefore we approach the thermal fluctuation
component as a function S(ϵdd) × t2. This choice is supported in [3], where it is observed that a tn

curve with n > 2.5 produces a divergence when the reduced temperature is high. Moreover, the t2

approximation well describes the thermal fluctuation for the range 0 < t < 10, which results in a finite
correction. In order to obtain S(ϵdd), we plot S as a function of ϵdd and fit it to a polynomial of 2th order.
The optimal fit is S(ϵdd) = −0.158985ϵ2dd + 0.324529ϵdd − 0.0158037. In this way, (2.34) is rewritten in a
compact form[

− h̄2

2m∇2 + Vext(r) +
∫
d3r'Vint(r − r')|Ψ(r')|2 + γ|Ψ(r)|3 + ΘT 2 1

|Ψ(r)| − µ

]
Ψ(r) = 0 (2.34)

where γ = 32
3 g
√

a3
s

π Q5(ϵdd) and Θ = 32
3 g
√

a3
s

π
k2

B

g2 S(ϵdd). Note that in the thermal component we have
employed t = kBT

gn0
and n0(r) = |Ψ(r)|2. Finally, in order to obtain the energy functional E[Ψ] from
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Figure 2.4: (a) Thermal and quantum corrections by the R(ϵdd, t) and Q5(ϵdd) unitless functions. (b)
Local chemical potential fluctuation. Inset of panel (b) shows the behaviour of the chemical potential
fluctuation at t = 1 in comparison with the t2 fit. For the calculations we fixed values ϵdd = 1.5 and
add = 130.8a0.

which we can extract the phase diagram, we use that E[Ψ] is minimal in equilibrium, therefore it satisfies
δE[Ψ]
δΨ∗ = 0 where δ

δΨ∗ is the functional derivative. Hence, we must find E[Ψ] such that yields (2.34). One
finds that E[Ψ] is expressed in the form (see the Supplementary information appendix) [3]

E[Ψ] =
∫
d3rΨ∗(r)

[
− h̄2

2m∇2 + Vext(r)
]

Ψ(r) + 1
2

∫
d3r
∫
d3r'|Ψ(r)|2Vext(r − r')|Ψ(r')|2

+ 2
5

∫
d3rγ|Ψ(r)|5 + 2

∫
d3rΘT 2|Ψ(r)|

(2.35)

where first term comprises the free particle motion under a trapping potential Vext, the second yields the
interaction between particles which encompasses s-wave scattering as well as long ranged dipolar inter-
actions, the third features quantum fluctuations (independent of the temperature) and the last captures
the thermal fluctuations due to finite temperatures. The previous equation opens the door for explor-
ing the thermodynamics of the dipolar BEC: it provides the energy of the condensed particle given a
wavefunction Ψ(r). Employing a simple variational approximation, we are now able to study the phase
diagram from which we can visualize the superfluidity phenomenon as we modify the interaction length
and the particle density. We will also provide insights on the realization of insulated droplets.

In the next chapter we aim to provide further details on the geometry of the system upon consider-
ation, as well as stochastic methods by which we can approach the minimization of (2.35) choosing an
adequate wavefunction Ψ(r) which captures the physics of the condensate.
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Chapter 3
Methods

We consider a dipolar Bose-gas confined in a cylinder geometry along the z-axis such that dipoles are
aligned in the y-direction by an external field [6] (see Fig. 3.1).

Figure 3.1: Schematic sketch of the geometry upon consideration. The dipoles are aligned in the y-
direction, the density confined in the x and y-direction. The depcited surfaces illustrate isodensity
surfaces of the density |Ψ|2.

They are trapped in a transverse harmonic potential with freedom of movement along the z-direction.
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Hence, the external potential Vext, as a function of the spatial transverse variables, becomes

Vext = 1
2m

(
ωxx

2 + ωyy
2) (3.1)

where ωx and ωy are the angular frequencies of the confinement. We set ωx,y = 2π × 150 Hz, as used
in the experiments [6, 31] (1). Following [6], we split the wavefunction Ψ as Ψ(r) = χ(x, y)ψ(z), where
the condensate wavefunction is decomposed into an axial field (ψ(z)) and a transverse part (χ(x, y)).
For the latter, we employ the Gaussian approximation by which χ(x, y) is described variationally as
χ(x, y) = 1√

πl
exp

[
−(ηx2 + y2/η)/2l2

]
, where l and η capture its mean and anisotropy, respectively.

For the longitudinal part, we shall discuss an ansatz which properly describes the axial wavefunction.
As [6] underlines, at low densities the system can undergo a discontinuous and continuous transition
between the insulating droplet and the unmodulated density state. At higher densities continuity on the
superfluid-supersolid transition may be accessible [33]. In the present work, we focus on the latter for
which a cosine-like ansatz is reasonable (2). Therefore, the axial wavefunction is described as [6]

ψ(z) =
√
nz

(
cos θ +

√
2 sin θ cos 2πz

L

)
(3.2)

where nz is the axial density. In (3.2), θ and L are treated as variational parameters, where the first
denotes the amplitude of the density modulation and the latter captures the wavelength of the modu-
lation. With the variational parameter L, ψ(z) is defined on a unit cell of length − L

2 ≤ z < L
2 subject

to the normalization constraint
∫

uc
dz|ψ(z)|2 = nzL, where uc stands for unit cell. Note the system is

not confined in the z-direction. Moreover, θ is restricted to the range θ ∈ [0, cot−1(
√

2)]. We also define
the density contrast C as C = |Ψ|2

max−|Ψ|2
min

|Ψ|2
max+|Ψ|2

min
where |Ψ|max and |Ψ|min are the maximum and minimum

of |Ψ|. Note that C is strictly an increasing function of θ in the range employed. Moreover, θ is con-
strained such that C is defined in the range [0, 1]. By substituting the axial and transverse wavefunctions
discussed previously, we find θ describes the density contrast as C = 2

√
2 sin(2θ)

3−cos(2θ) . Hence, when C = 0
the system is in the unmodulated phase, where the ground state is uniform, while for C = 1 the system
features a completely modulated axial density. By inserting the previously described wavefunction in
(2.35) and numerically minimizing the energy functional for the variational parameters {l, η, θ, L} we
obtain the phase diagram from which we can discern the transition between the density modulated and
unmodulated states, analyzing the striking role of temperature. We will analyze the transition regime
for nz ∈ [0.165, 8.6] × 103µm−1 and as ∈ [80, 94] × a0.
For the minimization we employ the Basin-hopping algorithm provided by the Python library sicpy.optimize.

Furthermore, the boundaries of the variational parameters are initially set to

η ∈ [2.6, 7.4] ; l ∈ [0.7, 1.5] µm ; L ∈ [0.6, 3.0] µm ; θ ∈ [0, cot−1(
√

2)] (3.3)

such that the initial guess is chosen to be the center value of the previous ranges. This choice pro-
vides qualitatively good results which are in agreement with [6] for T = 0. However, as we raise the
temperature, we observed the numerical method gets stuck in local minima. For that matter, we used
the minimized parameters obtained in the previous iteration as the initial guess of the next. Further-
more, we constrain the boundaries of the next iteration to a certain range centered in the minimized
parameters yielded by the previous (these boundaries are not constant, and we have modified them for
different regions of the phase diagram which proved to provide better results). After a row loop, bound-
aries are set back to (3.3). This calculation is extended to all rows and columns of a 100×100 points grid.

1The choice of the confinement frequencies is not trivial: having tighter confinement along a specific direction can induce
an additional discontinuous transition as [6] suggests.

2This ansatz is not always reasonable, in particular when the transition is of first order.
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In the next chapter we provide numerically the phase diagrams obtained from the t2 approximation for
a range of different temperatures and discuss the physical phenomena at play. Furthermore, we compare
the quantum and thermal fluctuations from (2.28).
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Chapter 4
Results and discussions

We obtain the phase diagram by variationally minimizing the energy functional for a range of temperatures
T = {0, 25, 50, 75, 100} nK to illustrate the underlying physical effect of introducing finite temperatures.
We also obtain numerically the quantum and thermal corrections as functions of the density.

4.1 Zero-temperature phase diagram
First, we discuss the zero-temperature case which is depicted in Fig. 4.1. In this regime, only quantum
fluctuations due to the depleted density are taken in account [30].

Figure 4.1: Phase diagram for the zero-temperature case displaying the contrast C as a function of nz

and as. Parameters are fixed to m = mDy and add = 130.8a0.

We can visualize the phase diagram splits into three regions depending on C: unmodulated density
(C ≈ 0), modulated density (0 < C ≪ 1) and insulated droplets (C ≈ 1).
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In the first region, it is satisfied C = 0 (θ = 0), therefore the axial wavefunction along the z-axis
becomes ψ(z) = √

nz. Consequently, the axial wavefunction profile is purely independent of the z vari-
able, and the axial density |Ψ|2 is constant along the z-axis. This yields a unmodulated density profile.
Furthermore, we observe that as we decrease the axial density (for nz < 2 × 103µm−1) the system enters
the unmodulated states for a larger number of scattering lengths.

In the third region, we observe C ≈ 1 (θ ≈ cot−1(
√

2)), therefore from the definition of C one finds
|Ψ|2min = 0. Consequently, bosons tend to gather in localized insulated droplets and particles can not move
along the z-axis, this is, superfluidity is not accessible. The formation of isolated droplets is produced
by the quantum fluctuations introduced by LHY components. Note that this region is not accessible if
quantum fluctuations are not considered [33], where the system collapses .

Finally, in the second region C satisfies 0 < C ≪ 1. As an intermediate state between the unmodulated
superfluid and isolated droplets, it features supersolidity in which fluid (unmodulated density) and solid
(supersolid) properties are present simultaneously, where the discrete translational symmetry occurs. In
this regime, the axial density develops a weakly modulated cosine like behavior as we increase C and
enters the modulated density regime. We also observe that only a limited number of values nz and as

produce supersolidity: this arises from the balance between long-range and short-range interactions.

Moreover, we identify a discontinuous transition between the unmodulated superfluid and isolated
droplets for small and large density values (1st order transition, from a qualitative look at the sharp
gradient of colors in the splitting border of the phase diagram). In these regimes, the density modulation
is sensible to variations of nz (for low densities) and as (for large densities). However, supersolidity
is featured at a certain range of values nz and as in which the unmodulated phase evolves to weakly
modulated states smoothly (2nd order transition, from a qualitative look at the smooth gradient of colors
in the splitting border of the phase diagram). Analytically, we can derive the condition by which a con-
tinuous transition is produced from analyzing the stationary points of the minimized energy functional
for small θ [6]. Hence, we obtained that the regime of supersolidity can be expected to be close to the
region where the phase transition is of 2nd order. This region can be well described by a roton excitation
ansatz for a critical scattering length arot. This is sometimes referred to as Turing instability in other
contexts. Consequently, the roton-softening is observed to occur at arot = 91.6a0, which matches the
regime in which supersolidity evolves to unmodulated superfluid, consistent with [6]. As [30] suggests,
the roton formation marks the instability of the unmodulated density region and thus characterises the
phase diagram, such that a pattern in the density distribution can be realized.

In the next section we aim to analyze the finite temperature phase diagrams (for T = {25, 50, 75, 100}
nK) by inserting thermal fluctuations in the energy functional. We also provide numerics on the calcu-
lations of the thermal and quantum fluctuations at finite temperatures.

4.2 Finite temperature phase diagram
The phase diagrams obtained for T ∈ {25, 50, 75, 100} nK are displayed in Fig. 4.2.

Upon increasing the temperature, a discernible shift of the separating border between modulated
states and superfluid towards higher scattering lengths and lower densities is observed (see Fig. 4.3).
Therefore, a higher degree of modulation is produced as temperature raises, facilitating the formation
of a supersolid state accessible for finite temperatures (see Fig. 4.4). This behavior is surprising since
raising the temperature is expected to melt the supersolid state. In this work, we observe the opposite:
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Figure 4.2: Phase diagrams displaying the contrast C as a function of as and nz for a range of finite
temperatures. a) T = 25 nK, b) T = 50 nK, c) T = 75 nK, d) T = 100 nK. Parameters are fixed to
m = mDy and add = 130.8a0.

heating the system drives a phase transition from a fluid into a solid phase.
Also, the superfluid region evolves towards higher as values and lower densities nz as temperature in-
creases.

We also investigate the axial density modulation as we raise the temperature. For that matter, we
plot |Ψ(z)|2 setting nz = 2.245 × 103 µm−1 and as = 91.03a0 for the comparison between the T = 0 and
T = 50 nK phase diagrams. For the comparison between the T = 50 nK and T = 100 nK, we investigate
nz = 1.985 × 103 µm−1 and as = 91.03a0. These points in the phase diagram are located close to the
separating border between modulated states and superfluid, where the density modulation evolves as we
increase the temperature. In Fig. 4.4 we depict our findings.

As expected, a phase transition is induced from modifying the temperature of the system. As we
increase the temperature, the density profile becomes modulated, leading to the localization of the density
in isolated droplets.
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Figure 4.3: Qualitative comparison of the phase diagrams as temperature raises between (a) T = 0 nK
and T = 50 nK and (b) T = 50 nK and T = 100 nK. A shift of the separating border is observed as
temperature increases towards higher as and lower nz. The red cross indicates the parameters employed
in Fig. 4.4.

This shift in the phase diagram can be traced back to the interplay between quantum and thermal
corrections as functions of the condensed density n0. In Fig. 4.5 we depict the quantum and thermal
fluctuations for the range of temperatures discussed.
Note that this result is independent of the geometry upon consideration. In Fig. 4.5, we visualize that as

temperature raises, thermal corrections become more relevant as expected. However, one finds quantum
fluctuations suppress large densities, such that collapse is not accessible. In contrast, as temperature is
turned on, the thermal component becomes relevant and favours higher densities. In this way, the balance
between these two contributions leads to the crystallization of BEC, consistent with [28]. Furthermore,
thermal corrections become more important for low values of density.
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Figure 4.4: Axial density modulation along the z-axis for the droplet state due to an increase in temper-
ature, for points localized close to the splitting border between unmodulated and modulated superfluid.
We set (a) nz = 2.245 × 103 µm−1 and as = 91.03a0 and (b) nz = 1.985 × 103 µm−1 and as = 91.03a0.
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Figure 4.5: Thermal and quantum fluctuations as functions of the condensed density (equation (2.28)).
As we increase the latter, the thermal fluctuation decreases while the quantum raises. Temperature is
also at play, which reduces the contribution of the thermal. The fluctuation energy has been reescaled in
units of ϵd = h̄2

(12π)2ma2
d

. For the calculations we employed as = 88.9a0 = 0.7ad and ϵdd = 1.46.
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Chapter 5
Conclusions

In the present work we have discussed and analyzed BEC upon the introduction of thermal fluctuations.
For that matter, we have considered the general Gross-Pitaevskii equation for a dipolar BEC under a
short-range (scattering) and long-range (dipole-dipole) interaction potential. Through the introduction
of the Bogoliubov prescription, we find that thermal and quantum fluctuations affect the formation of
localized density profiles dramatically. Therefore, the crystallization of the system is traced back to the
interplay between an increasing quantum component dependent of the density and a decreasing thermal
contribution, supporting the formation of regular density modulations. Consistent with [3], we approx-
imate the temperature dependency of the corrections to a parabolic function proportional to T 2. The
energy functional is therefore obtained and by introducing a simplified variational ansatz the phase di-
agrams for zero and finite temperatures are investigated. We find that for the zero temperature case
supersolidity is accessible, consistent with [28]. We also find that, from a qualitative analysis, the order
of the transition from the unmodulated density region to the quantum droplets is determined by the
particle density and the scattering length, consistent with [3].
We also investigate the finite temperature phase diagrams, and find that increasing the temperature can
drive a phase transition to the supersolid state. Moreover, we find this phenomenon is induced by the
interplay between the beyond mean-field (quantum and thermal fluctuations) and the mean-field. Here,
the quantum fluctuation opposes to higher densities while the temperature fluctuation disfavours lower
densities. As a result, a balance between these two components may drive the system to the realization
of BEC crystallization.

However, it should be noted that the approximations we used are coarse. For instance, we assumed
that the transverse profile is Gaussian and only used a single-mode approximation in the z-direction.
Furthermore, the parabolic approximation employed in the T 2 approximation for the temperature might
not be sufficient for all temperatures considered. Therefore, a full numerical calculation is certainly re-
quired if one wants a quantitative precise comparison.
As an outlook one might consider employing a similar model using more than a single mode, a more
appropriate transverse profile and avoid using the parabolic approximation for the temperature depen-
dence. It is also desirable to compare the results with full numerics without approximating the thermal
component upon the T 2 approximation. That could help to gain further intuition on the peculiar and
fascinating physics of ultracold dipolar quantum gases.
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Chapter 6
Appendix: Supplementary information

6.1 Hartree-Fock-Bogoliubov theory

We employ the Hartree-Fock-Bogoliubov factorization over (2.3) in the most general case. Consequently,
it generates on the second term

[∫
d3r'Ψ̂†(r', t)Vint(r' − r)Ψ̂(r', t)

]
Ψ̂(r, t) =[∫

d3r'(Ψ∗(r') + Φ̂†(r', t))Vint(r − r')(Ψ(r') + Φ̂(r', t))
]

(Ψ(r) + Φ̂(r, t)) =∫
d3rΨ∗(r')Vint(r − r')Ψ(r')Ψ(r) +

∫
d3rΦ̂†(r', t)Vint(r − r')Φ̂(r', t)Ψ(r)+∫

d3rΦ̂†(r', t)Vint(r − r')Ψ(r')Ψ(r) +
∫
d3rΨ∗(r')Vint(r − r')Φ̂(r', t)Ψ(r)+∫

d3rΨ∗(r')Vint(r − r')Ψ(r')Φ̂(r, t) +
∫
d3rΦ̂†(r', t)Vint(r − r')Φ̂(r', t)Φ̂(r, t)+∫

d3rΦ̂†(r', t)Vint(r − r')Ψ(r')Φ̂(r, t) +
∫
d3rΨ∗(r')Vint(r − r')Φ̂(r', t)Φ̂(r, t)

(6.1)

We then take the average over the previous equation. By neglecting terms of the third order, only four
terms do not vanish

〈[∫
d3r'Ψ̂†(r', t)Vint(r − r')Ψ̂(r', t)

]
Ψ̂(r, t)

〉
=∫

d3rVint(r − r')|Ψ(r')|2Ψ(r) +
∫
d3rVint(r − r')ñ(r')Ψ(r)+∫

d3rVint(r − r')ñ(r', r)Ψ(r') +
∫
d3rVint(r − r')m̃(r', r)Ψ∗(r')

(6.2)

Equation (??) has been employed to express the result in terms of ñ and m̃. First two terms are included
in the definition of L in (2.6), and the last two are found in (2.5).
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Furthermore, equations displayed in (2.12) has been obtained from

ñ(r) = ⟨Φ̂†(r, t)Φ̂(r, t)⟩

= ⟨
∑

ν

u∗
ν(r)â†

νuν(r)âν + v∗
ν(r)âνvν(r)â†

ν + uν(r)vν(r)âν âνe
2iEν t

h̄ + u∗
ν(r)v∗

ν(r)â†
ν â

†
νe

−2iEν t
h̄ ⟩

=
∑

ν

|uν(r)|2⟨â†
ν âν⟩ + |vν(r)|2⟨âν â

†
ν⟩ + uν(r)vν(r)⟨âν âν⟩e

2iEν t
h̄ + u∗

ν(r)v∗
ν(r)⟨â†

ν â
†
ν⟩e

−2iEν t
h̄

=
∑

ν

[(
|uν(r)|2 + |vν(r)|2

)
⟨â†

ν âν⟩ + |vν(r)|2
]

(6.3)

where in the last step it is employed ⟨âν â
†
ν⟩ = 1 + ⟨â†

ν âν⟩ and ⟨âν âν⟩ = ⟨â†
ν â

†
ν⟩ = 0.

ñ(r', r) = ⟨Φ̂†(r', t)Φ̂(r', t)⟩

= ⟨
∑

ν

u∗
ν(r')(r)â†

νuν(r)âν + vν(r)âνvν(r')â†
ν + uν(r)vν(r')âν âνe

2iEν t
h̄ + u∗

ν(r')v∗
ν(r)â†

ν â
†
νe

−2iEν t
h̄ ⟩

=
∑

ν

u∗
ν(r')uν(r)⟨â†

ν âν⟩ + v∗
ν(r)v∗

ν(r')⟨âν â
†
ν⟩ + uν(r)vν(r')⟨âν âν⟩e

2iEν t
h̄ + u∗

ν(r')v∗
ν(r)⟨â†

ν â
†
ν⟩e

−2iEν t
h̄

=
∑

ν

[
(u∗

ν(r')uν(r) + v∗
ν(r)vν(r')) ⟨â†

ν âν⟩ + v∗
ν(r)vν(r')

]
For the anomalous density, we obtain

m̃(r) = ⟨Φ̂(r, t)Φ̂(r, t)⟩

= ⟨
∑

ν

uν(r)2âν âνe
2iEν t

h̄ + (v∗
ν(r))2â†

ν â
†
νe

−2iEν t
h̄ + uν(r)v∗

ν(r)âν â
†
ν + uν(r)v∗

ν(r)â†
ν âν⟩

=
∑

ν

uν(r)2e
2iEν t

h̄ + (v∗
ν(r))2⟨â†

ν â
†
ν⟩e

−2iEν t
h̄ + uν(r)v∗

ν(r)⟨âν â
†
ν⟩ + uν(r)v∗

ν(r)⟨â†
ν âν⟩

=
∑

ν

[
2uν(r)v∗

ν(r)⟨âν â
†
ν⟩ + uν(r)v∗

ν(r)
]

(6.4)

m̃(r', r) = ⟨Φ̂(r', t)Φ̂(r, t)⟩

= ⟨
∑

ν

uν(r')uν(r)âν âνe
2iEν t

h̄ + v∗
ν(r')v∗

ν(r)â†
ν â

†
νe

−2iEν t
h̄ + uν(r')v∗

ν(r)âν â
†
ν + uν(r)v∗

ν(r')â†
ν âν⟩

= −
∑

ν

uν(r')uν(r)⟨âν âν⟩e
2iEν t

h̄ + v∗
ν(r')v∗

ν(r)⟨â†
ν â

†
ν⟩e

−2iEν t
h̄ + uν(r')v∗

ν(r)⟨âν â
†
ν⟩ + uν(r)v∗

ν(r')⟨â†
ν âν⟩

= −
∑

ν

[
(uν(r')v∗

ν(r) + uν(r)v∗
ν(r')) ⟨âν â

†
ν⟩ + uν(r)v∗

ν(r')
]

(6.5)

6.2 Thermal and quantum corrections

We aim to derive (2.27) from (2.25) by employing d3k = k2sin(ϑ)dkdϑdϕ in spherical coordinates.
Also, equations displayed in (2.16) are obtained from (2.16) by using the ansatz discussed below. ϕ
is constrained to [0, 2π], thus the ϕ integral yields 2π (no dependency with ϕ). Moreover, by using
u = cos(ϑ) it is generated du = − sin(ϑ)dϑ, such that d3k = −dkdu. Note that ϑ is constrained to [0, π],
hence u ∈ [−1, 1]. In addition, we employ the variable change k = qξ and therefore dk = dq

ξ . Moreover,
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terms of (2.25) are rewritten as

ϵ(k) = h̄2k2

2m = h̄2q2

2mξ2

Ṽint = g
[
1 + ϵdd(3 cos2(ϑ) − 1)

]
= g

[
1 + ϵdd(3u2 − 1)

]
E(r) =

√
ϵk(ϵk + 2n0(r)Ṽint) =

√
h̄2q2

2mξ2 (h̄2q22mξ2 + 2n0(r)f(u)) = gn0(r)
√
q2(q2 + 2f(u))

(6.6)

where we have used ξ = h̄√
2gmn0

and f(u) = 1 + ϵdd(3u2 − 1). Therefore, NB(E) becomes

NB(E(r)) = 1

e
E(r)
kB T − 1

= 1
exp

[
gn0(r)
kBT

√
q2(q2 + 2f(u))

]
− 1

= 1

exp
[√

q2(q2+2f(u))
t(r)

]
− 1

(6.7)

Hence, we insert the previous calculations in (2.25) and consider the cutoff q ∈ [qc,∞], which yields

∆µ(r) =
∫ 1

−1
du

∫ ∞

qc

q2dq

(2π)2ξ3 gf(u) ×


h̄2q2

2mξ2

2gn0(r)
√
q2(q2 + 2f(u))

+ n0(r)gf(u)
2 h̄2q2

2mξ2

−1
2 + 1

exp
[√

q2(q2+2f(u))
t(r)

]
− 1

h̄2q2

2mξ2

gn0(r)
√
q2(q2 + 2f(u))


= g

4π2ξ3

∫ 1

−1
du

∫ ∞

qc

dqf(u) ×


q2

2
√
q2(q2 + 2f(u))

+ f(u)
2q2 − 1

2 + 1

exp
[√

q2(q2+2f(u))
t(r)

]
− 1

× q2√
q2(q2 + 2f(u))

}

(6.8)

which is the result obtained in (2.27). Note that the r-dependency is captured by t and ξ.
In order to describe the chemical fluctuation in a more compact form, we split (2.28) into the temperature-
dependent (∆µ(T H)(r)) and non-temperature dependent (∆µ(QU)(r)) components

∆µ(T H)(r) = g

4π2ξ3

∫ 1

−1
du

∫ ∞

qc

q2dqf(u)


1

exp
[√

q2(q2+2f(u))
t(r)

]
− 1

× q2√
q2(q2 + 2f(u))


∆µ(QU)(r) = g

4π2ξ3

∫ 1

−1
du

∫ ∞

qc

q2dqf(u)
{

q2

2
√
q2(q2 + 2f(u))

+ f(u)
2q2 − 1

2

} (6.9)

Let’s focus on the first. We note that it is symmetrical on u. Moreover, we apply the variable change
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q2 ≡ Q such that dQ = 2qdq = 2
√
Qdq and Q ∈ [q2

c ,∞]. Therefore

∆µ(T H)(r) = 2 g

4π2ξ3

∫ 1

0
du

∫ ∞

q2
c

Q
dQ

2
√
Q
f(u)


1

exp
[√

Q(Q+2f(u))
t(r)

]
− 1

× Q√
Q(Q+ 2f(u))


= g

4π2
(

h̄√
2mgn0

)3

∫ 1

0
du

∫ ∞

q2
c

dQf(u)


1

exp
[√

Q(Q+2f(u))
t(r)

]
− 1

× Q√
Q+ 2f(u)


=
(

32
3 g
√
a3

s

π

)
3

4
√

2

∫ 1

0
du

∫ ∞

q2
c

dQf(u)


1

exp
[√

Q(Q+2f(u))
t(r)

]
− 1

× Q√
Q+ 2f(u)

 |Ψ(r)|3

(6.10)

which is the equation showed in (2.27), where in the last step we have employed g = 4πh̄2as

m and n0(r) =
|Ψ(r)|2.
For the quantum component of the local chemical potential correction, we find it is symmetrical on u

as well. Therefore, we integrate over q

∆µ(QU)(r) = 2 g

4π2ξ3

∫ 1

0
du
f(u)

(√
8f(u) + 4q2

c (16f(u) − 4q2
c ) − 24qcf(u) + 8q3

c

)
48 (6.11)

Manipulating (6.11) it produces

∆µ(QU)(r) = 2 g

4π2ξ3

∫ 1

0
duf(u)

√
2f(u) + q2

c (4f(u) − q2
c ) − 3f(u)qc + q3

c

6

= 2 g

4π2ξ3

∫ 1

0
duf(u)

√
2f(u) + q2

c (4f(u) − q2
c ) − 3f(u)qc + q3

c

6

=
(

32
3 g
√
a3

s

π

)
1

4
√

2

∫ 1

0
duf(u)

[
(4f(u) − q2

c )
√

2f(u) + q2
c − 3f(u)qc + q3

c

]
|Ψ(r)|3

(6.12)

as obtained in (2.28).

For the derivation of (2.30) and (2.31) we shall follow analog steps as the realized in the previous
calculation of ∆µ.

Finally, in order to demonstrate (2.35), let’s take the functional derivative over the previous equation.
If the first is well written, we expect to obtain (2.34). In this way, we calculate the functional derivative
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of each term of (2.35)

δ

δΨ∗(r)

[∫
d3rΨ∗(r)

[
− h̄2

2m∇2 + Vext(r)
]

Ψ(r)
]

=
[
− h̄2

2m∇2 + Vint(r)
]

Ψ(r)

δ

δΨ∗(r)

[
1
2

∫
d3r
∫
d3r'[Ψ∗(r)Ψ(r)]Vint(r − r')|Ψ(r')|2

]
=
∫
d3r'Vext(r − r')|Ψ(r')|2Ψ(r)

δ

δΨ∗(r)

[
2
5

∫
d3rγ[Ψ∗(r)Ψ(r)] 5

2

]
= γΨ(r) 5

2 Ψ∗(r) 3
2 = γ|Ψ(r)|3Ψ(r)

δ

δΨ∗(r)

[
2
∫
d3rΘT 2

√
Ψ∗(r)Ψ(r)

]
= ΘT 2

√
Ψ(r)√
Ψ∗(r)

= ΘT 2 Ψ(r)
|Ψ(r)|

δ

δΨ∗(r) [Nµ] = µΨ(r)

(6.13)

which are the terms displayed in (2.34).
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