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Partially ionized plasmas (PIP) are essential constituents of many astrophysical
environments, including the solar atmosphere, the interstellar medium, molecular
clouds, accretion disks, planet ionospheres, cometary tails, etc., where the ionization
degree may vary from very weak ionization to almost full ionization. The dynamics of PIP is
heavily affected by the interactions between the various charged and neutral species that
compose the plasma. It has been shown that partial ionization effects influence the
triggering and development of fluid instabilities as, e.g., Kelvin-Helmholtz, Rayleigh-
Taylor, thermal, and magneto-rotational instabilities, among others. Here we review the
theory of some classic fluid instabilities that are present in PIP and highlight the unique
effects introduced by partial ionization. The main emphasis of the review is put on
instabilities in the partially ionized solar atmospheric plasma, although other
astrophysical applications are also mentioned. We focus on the mathematical and
theoretical investigation of the onset and exponential growth of the instabilities. Results
of the nonlinear evolution obtained from full numerical simulations are also discussed.
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INTRODUCTION

The study of partially ionized plasmas (PIP) in the astrophysical context has received a tremendous
boost in the recent years. A rich variety of astrophysical environments are made of PIP with an
ionization degree that may vary from very weak ionization to almost full ionization. For instance, PIP
can be found in molecular clouds, accretion disks, cometary tails, planet ionospheres, and the
atmosphere of the Sun and other stars, just to give a few examples. Effects driven by partial ionization
play a fundamental role in the physics of those plasmas. A recent summary on PIP dynamics in
astrophysics can be found in Ballester et al. (2018) and references therein.

Fluid instabilities of different kind commonly occur in astrophysical plasmas, including those that
are partially ionized. In many cases, the instabilities are essential to understand the dynamics of the
plasmas and have a dramatic impact on their evolution. Thus, partial ionization effects need to be
taken into account in the studies of instabilities in astrophysical PIP that aim to describe their
relevant physics in detail. In this regard, the analytical and numerical studies of fluid instabilities in
astrophysical plasmas have traditionally been made within the theoretical framework of ideal
magnetohydrodynamics (MHD) (see, e.g., Goedbloed et al., 2019). Ideal MHD applies to situations
where the temporal and spatial scales are much larger than the corresponding scales of the
interactions between the different species that compose the plasma. The applicability of ideal
MHD in the case of PIP is more limited because, typically, the collisions with neutral species
introduce scales that are significantly larger than those in fully ionized plasmas. Theories beyond
ideal MHD are required to fully describe the physics of instabilities in PIP when the temporal and
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spatial scales of the instabilities approach those of collisions with
neutrals (see, e.g., Khomenko et al., 2014a).

The purpose of this review paper is to give a general discussion
about the effects and modifications caused by partial ionization
on some classic fluid instabilities that frequently appear in
astrophysical plasmas. We do not aim to perform an
exhaustive account of all the works that have investigated fluid
instabilities. That would be far beyond the scope of this paper. For
the interested reader, there are many books with a more general
account of instabilities than this paper aims to provide (e.g.,
Chandrasekhar, 1961b; Bateman, 1978; Drazin and Reid, 1981;
Melrose, 1989; Goedbloed et al., 2019). Instead, we shall focus on
discussing the unique effects driven by partial ionization. To this
end, for every considered instability we shall first summarize their
basic physics. Then, we shall explore how the presence of neutrals
affects the triggering, growth, and nonlinear evolution of the
instabilities, providing references to the original works where
these relevant studies have been made. The case of the solar
atmosphere will receive predominant attention throughout the
paper. The reason is that some of the instabilities discussed here
have actually been observed in PIP of the solar atmosphere as,
e.g., solar prominences, so that some of the theoretical results
discussed here have direct applications in the solar case. Because
of its proximity, the solar plasma offers a unique opportunity to
test theory and simulations against observations. Thus, the
present review emphasizes the solar application.

This paper is organized as follows. Section 2 discuses the
single-fluid and two-fluid mathematical models that are
frequently used to investigate instabilities in PIP, including
some hints of their numerical implementation. Then, the
following sections are devoted to the discussion of several
major instabilities: the Kelvin-Helmholtz instability (Section
3), the Rayleigh-Taylor instability (Section 4), the thermal or
condensational instability (Section 5), the Farley-Buneman
instability (Section 6), the magneto-rotational instability
(Section 7), and the Jeans instability (Section 8). Finally, a
general discussion and some concluding remarks are given in
Section 9.

FLUID MODELS FOR PARTIALLY IONIZED
SOLAR PLASMAS

In this section, we briefly summarize the two different but
complementary strategies beyond ideal MHD that are typically
used to investigate PIP dynamics in the solar atmosphere: the
single-fluid and two-fluid models. General derivations of these
equations can be found in, e.g., Lehnert (1959), Braginskii
(1965), Draine (1986), Helander et al. (1994), Zaqarashvili
et al. (2011), Meier and Shumlak (2012), Leake et al. (2014),
Khomenko et al. (2014a), and Ballester et al. (2018).
Modifications of these equations applicable to other
astrophysical PIP are also discussed in Ballester et al.
(2018). Although not strictly applicable to the case of
partially ionized collisional plasmas, the recent works by
Hunana et al. (2019b,a) explore in detail the link between
kinetic theory and collisionless fluid models.

Single-Fluid Approximation
In the single-fluid MHD approximation, the distinction between
the different species that compose the plasma, namely ions,
electrons, and neutrals, is lost. The governing equations are
written in terms of total or averaged quantities that represent
the plasma as a whole (see, e.g., Goedbloed et al., 2019).
Therefore, the single-fluid approximation is applicable to
situations in which the temporal and spatial scales of interest
are much larger than the corresponding scales of the interactions
between the individual plasma components. In the case of PIP,
the relevant temporal scale is the ion-neutral (or neutral-ion)
collision time, i.e., the average time required for an ion (neutral)
to encounter a neutral (ion). The corresponding length scale is the
ion-neutral (neutral-ion) collision length, i.e., the average
distance that an ion (neutral) needs to travel to encounter a
neutral (ion). Although the details of the ion-neutral interactions
are lost in the single-fluid approximation, effective remnants of
those interactions remain in the form of nonideal terms in the
MHD equations. Thus, the usual expressions of the single-fluid
MHD equations for a PIP are

Dρ
Dt

� −ρ∇ · v, (1)

ρ
Dv
Dt

� −∇p + 1
μ

∇ × B( ) × B + ρg − ∇ · π̂, (2)

zB
zt

� ∇× v×B( )−∇× η∇×B( )+∇× ηA ∇×B( )×B[ ]×B{ }
−∇× ηH ∇×B( )×B[ ], (3)

Dp
Dt

� −cp∇ · v + c − 1( )L, (4)

p � ρR
T

~μ
. (5)

In these equations, D/Dt � z/zt + v ·∇ is the total or Lagrangian
derivative, ρ is the plasma total density, p is the plasma total gas
pressure, v is the center-of-mass velocity,B is the magnetic field, μ
is the magnetic permeability, g is the acceleration of gravity, π̂ is
the viscosity tensor, η is Ohm’s diffusion coefficient, ηA is the
ambipolar diffusion coefficient, ηH is Hall’s coefficient, c is the
adiabatic coefficient, L is the total heat-loss function of the
plasma, R is the ideal gas constant, T is the plasma common
temperature, and ~μ is the mean molecular weight. Expressions of
the coefficients that appear in these equations are not given here
for the sake of simplicity and can be found elsewhere (see, e.g.,
Khomenko et al., 2014a; Ballester et al., 2018)

Eq. 1 is the usual continuity equation for the whole fluid. Eq. 2
is the momentum equation, which includes the pressure force,
Lorentz’s force, gravity, and viscosity. The full viscosity tensor, π̂,
should include contributions from ion, electron, and neutral
viscosities. The full treatment of viscosity in a collisional
partially ionized plasma is rather cumbersome (see Vranjes,
2014). A common approximation is considering the classic
Braginskii (1965) viscosity for ions and electrons, together
with an isotropic viscosity for neutrals (see, e.g., Leake et al.,
2012; Soler et al., 2015a). In the lower solar atmosphere, neutral
viscosity is several orders of magnitude larger than ion viscosity
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(see Soler et al., 2015b). Eq. 3 is the induction equation, which
includes the ideal inductive term followed by several nonideal terms:
Ohm’s diffusion term, ambipolar diffusion term, and Hall’s term.
Ohm’s diffusion is generally caused by collisions between charge-
carriers and neutrals. In the solar atmosphere, Ohm’s diffusion is
essentially caused by electron-ion collisions and is greatly enhanced
by electron-neutral collisions in the weakly ionized solar
chromosphere (see, e.g., Soler et al., 2019). Ambipolar difussion is
caused by ion-neutral collisions and typically is the dominant
dissipation mechanism in a PIP with strong magnetic fields
(Zweibel, 2015). Hall’s term is not a dissipative but a dispersive
term that arises because of the imperfect magnetization of ions. In a
PIP, ion-neutral collisions enhance this mechanism by further
decoupling ions from the magnetic field (see Pandey and Wardle,
2008). The importance of Ohm’s, ambipolar, and Hall’s terms in the
lower solar atmosphere was explored by Khomenko and Collados
(2012, see their Figure 1), who showed that Ohm’s and Hall’s terms
are relevant at lower heights, while the importance of the ambipolar
term grows with height and becomes the dominant term in the
middle and higher chromosphere. Other terms that could be
included in the induction equation are the diamagnetic current
term and Biermann’s battery term, which couple pressure gradients
with the magnetic field (see, e.g., Khomenko et al., 2014a; Ballester
et al., 2018). These terms are omitted here because they are generally
less relevant than the included terms (see also a discussion in
Cowling, 1956).

On the other hand, Eq. 4 is the internal energy equation, which
is written here as an equation for the pressure. All sources and
sinks of energy are enclosed within the heat-loss function, namely

L � ∇ · κ̂ · ∇T( ) − Λ + J · E* − π̂: ∇v +Hother, (6)

where the various terms, in order from left to right, represent
thermal conduction, radiative cooling, Joule heating (with J and

E* the current density and the effective electric field, respectively),
viscous heating, and other unspecified sources of heating. In Eq.
6, κ̂ is the thermal conductivity tensor that, as happens for the
viscosity tensor, should include contributions from ion, electron,
and neutral thermal conductivities. Again, a common
approximation is considering the classic Braginskii (1965)
thermal conductivity for electrons (ion thermal conductivity is
usually negligible), but a simple isotropic thermal conductivity for
neutrals (see, e.g., Leake et al., 2012; Soler et al., 2015a). As in the
case of viscosity, neutral thermal conductivity is also larger than
electron thermal conductivity in the lower solar atmosphere (see
Soler et al., 2015b). The cooling function,Λ, accounts for radiative
losses. Assuming optically-thin plasma, several parametrizations
of the cooling function are available for solar atmospheric
plasmas (see, e.g., Hildner, 1974; Athay, 1986; Klimchuk and
Cargill, 2001; Schure et al., 2009; Soler et al., 2012a). The Joule
heating can be split in the following way

J · E* � μη J‖
∣∣∣∣ ∣∣∣∣2 + μηC J⊥| |2, (7)

where ηC � η + |B|2ηA is the so-called Cowling’s total coefficient
(Cowling, 1956) and J‖ and J⊥ denote the components of the
current density parallel and perpendicular to the magnetic field
direction. Thus, in a PIP the dissipation of perpendicular currents
is more efficient than that of parallel currents because of the effect
of ambipolar diffusion (see also Cowling, 1956; Khomenko and
Collados, 2012). Finally, the ideal gas law is considered as
equation of state (Eq. 5) to close the system, where the mean
molecular weight, ~μ, depends on the ionization degree. In a pure
hydrogen plasma, it varies from ~μ � 0.5 for a fully ionized plasma
to ~μ � 1 for a neutral gas.

Two-Fluid Approximation
The single-fluid MHD approximation breaks down when the
spatial and temporal scales of interest approach the characteristic
ion-neutral or neutral-ion scales. In that scenario, the plasma
cannot longer be treated as a single fluid and a multi-fluid
treatment is needed (see, e.g., Martínez-Gómez et al., 2016,
2017). A specific version of the multi-fluid theory is the two-
fluid approximation, in which neutrals are treated as a separate
fluid while ions and electrons are still assumed to remain strongly
coupled and to form another fluid (see, e.g., Zaqarashvili et al.,
2011; Leake et al., 2012; Maneva et al., 2017; Popescu Braileanu
et al., 2019). The neutral fluid and the ion-electron fluid interact
with each other by means of ion-neutral and electron-neutral
collisions, along with ionization and recombination. The two-
fluid model is justified by the fact that the frequency of collisions
between ions and electrons is typically much higher than the
frequency of collisions between ions and neutrals. This is the
realistic situation in many astrophysical plasmas, including the
solar atmosphere (see, e.g., Figure 11 of Ballester et al., 2018). The
basic equations in the two-fluid approximation are

Dρc
Dt

� −ρc∇ · vc − S, (8)

Dρn
Dt

� −ρn∇ · vn + S, (9)

FIGURE 1 | KHi growth rate in normalized units as a function of the
dimensionless shear flow velocity in a fully ionized plasma interface. The
dashed line corresponds to the incompressible case. The various solid lines
correspond to the compressible case for different values of the ratio of
the perpendicular, ky, to the longitudinal, kz, components of the wavevector
(indicated within the figure). Compressibility can entirely suppress the KHi for a
sufficiently small value of the ratio ky/kz. Adapted from Soler et al. (2012b).
© AAS. Reproduced with permission.
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ρc
Dvc
Dt

� −∇pc + 1
μ

∇ × B( ) × B + ρcg − ∇ · π̂c − R, (10)

ρn
Dvn
Dt

� −∇pn + ρng − ∇ · π̂n + R, (11)

zB
zt

� ∇ × vc × B( ) − ∇ × η∇ × B( )
−∇ × ηH ∇ × B( ) × B[ ]− ∇ × χ vc − vn( )[ ], (12)

Dpc

Dt
� −cpc∇ · vc + c − 1( )Lc, (13)

Dpn

Dt
� −cpn∇ · vn + c − 1( )Ln, (14)

pc � nckBTc, (15)

pn � nnkBTn, (16)

where all symbols have the same meaning as before, with the
subscripts “c” and “n” explicitly denoting quantities related to the
charged (ion-electron) fluid and the neutral fluid, respectively.
Quantities that have not been defined before are the number
densities of charges and neutrals, namely nc and nn, and
Boltzmann’s constant, kB. We note that because of the small
electron mass, ρc ≈ ρi, with ρi the ion density.

There are some terms in the two-fluid equations that were
absent from the equivalent single-fluid equations. The term S in
the two continuity equations (Eqs 8, 9) represents ionization/
recombination, namely

S � ρcΓrec − ρnΓion, (17)

with Γion/rec the ionization/recombination rates. Explicit
expressions for these rates in terms of the plasma
properties can be found in, e.g., Meier and Shumlak
(2012); Leake et al. (2012); Maneva et al. (2017); Popescu
Braileanu et al. (2019) and references therein. The term R in
the two momentum equations (Eqs. 10, 11) represents
collisional momentum transfer and can be cast as

R � αcn vc − vn( ) + ρcΓrecvc − ρnΓionvn, (18)

where the first term is the momentum transfer due to collisions
(that may include both elastic collisions and charge exchange
collisions) and the last two terms are associated to the loss or gain
of momentum during ionization/recombination processes. We
note that Eq. 18 assumes that the velocity drift, vc − vn, is much
smaller than the thermal speed (Draine, 1986). In Eq. 18, αcn is
the total friction coefficient, which is computed as the sum of the
friction coefficients for ion-neutral, αin, and electron-neutral, αen,
collisions, namely

αcn � αin + αen. (19)

For simplicity, expressions for the friction coefficients are not
given here and can be found elsewhere (see, e.g., Braginskii, 1965;
Draine, 1986, among others). The collision frequency of two
species β and β′ is computed from the corresponding friction
coefficient as

]ββ′ �
αββ′

ρβ
, (20)

where ρβ is the mass density of species β. Although the friction
coefficients are symmetric, i.e., αββ′ � αβ′β, in general ]ββ′ ≠ ]β′β
because of the different densities that the two colliding species
may have. These collision frequencies introduce the relevant time
scales for the interactions between fluids.

The frictional term (Eq. 18) is one of the major forces behind
the district dynamics that a PIP displays compared to a fully
ionized plasma. In the two-fluid formalism, the frictional term
appears explicitly in the momentum equations of charges and
neutrals, while in the single-fluid equations this frictional effect
was hidden behind the ambipolar diffusion term. Many effects
that are caused by ambipolar diffusion of the magnetic field in
the single-fluid approximation become more physically
transparent in the two-fluid case, where the coupling between
charges and neutrals is mediated by a more plain frictional force.
For instance, the damping of MHD waves that propagate in a
PIP is caused by this friction (see, e.g., Kulsrud and Pearce, 1969;
Balsara, 1996; Soler et al., 2013a,b), while such a damping is
attributed to ambipolar diffusion of the magnetic field
perturbations in the single-fluid model. An analysis of the
differences between the two-fluid and single-fluid models
using analytical results of MHD waves was performed by
Zaqarashvili et al. (2011). The ion-neutral friction is also
fundamental to understand the properties of shocks in
astrophysical PIP like molecular clouds. In this regard, the
formation of C-shocks in which all hydrodynamic variables
are continuous is a good example (see, e.g., Draine, 1980; Draine
et al., 1983). In connection to the topic on this review, the reader
should not be surprised that the frictional term is also relevant
for the development of instabilities.

To summarize, the two-fluid induction equation (Eq. 12)
contains three differences with respect to its single-fluid
equivalent (Eq. 13). Firstly, in the ideal term the whole fluid
centre-of-mass velocity, v, is replaced by the velocity of charges,
vc. Secondly, as a consequence of the previous difference, the
ambipolar term is absent from the two-fluid induction equation,
but this does not mean that the physical effect of ambipolar
diffusion is missing form the equations. Indeed, as explained
before, the effect of ambipolar difusion consistently remains in
the form of the collisional terms in the two momentum equations
(Eqs 10, 11). Thirdly, a new term that accounts for electron-
neutral collisions is present. This term depends on the coefficient
χ given in Ballester et al. (2018) and is equivalent to the coefficient
ηD given in Popescu Braileanu et al. (2019). However, this
additional term is usually negligible. We note again that some
terms that couple pressure gradients with the magnetic field
evolution have been omitted from the induction equation
because of their minor importance (see, e.g., Popescu
Braileanu et al., 2019, for the full expression of the induction
equation).

The two energy equations (Eqs 13, 14) now contain separate
heat-loss functions for charges and for neutrals, namely

Lc � Qc, n
c + ∇ · κ̂c · ∇Tc( ) − Λc + μη J| |2 − π̂c: ∇vc +Hc, other,

(21)

Ln � Qn, c
n + ∇ · κ̂n · ∇Tn( ) − Λn − π̂n: ∇vn +Hn, other, (22)
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where the meaning of the symbols is the same as in Eq. 6.
Importantly, we see that the Joule heating term is only included in
the charges heat-loss function (see the fourth term on the right-
hand side of Eq. 21), and this term is now isotropic because of
Ohm’s diffusion. In addition, both Lc and Ln contain an
additional term that accounts for heating and heat exchange
due to the interactions with the other fluid, i.e., collisions and
ionization/recombination. These terms can be cast as (see, e.g.,
Martínez-Gómez et al., 2016, 2017; Popescu Braileanu et al.,
2019)

Qc,n
c � 2αcn

mi+mn

1
2
mn vn−vc( )2+ 1

c−1kB Tn−Tc( )[ ]
+1
2
ρnΓion vn−vc( )2 + 1

c−1
2kB

mi+mn
ρnTnΓion−ρcTcΓrec( ), (23)

Qn, c
n � 2αcn

mi +mn

1
2
mi vc − vn( )2 + 1

c − 1
kB Tc − Tn( )[ ]

+ 1
2
ρcΓrec vc − vn( )2 + 1

c − 1
2kB

mi +mn
ρcTcΓrec − ρnTnΓion( ), (24)

wheremi andmn are the masses of ions and neutrals, respectively.
The terms proportional to αcn in Eqs 23, 24 are related with
collisions, while the terms proportional to Γion/rec are related with
ionization/recombination. Among these terms, those involving
the temperatures, Tc and Tn, represent heat exchange between the
fluids and their role is to equalize both temperatures, whereas
those involving the square of the velocity drift, (vn − vc)2,
produce a net heating of the two fluids and so a global
increase of the temperature. In particular, the terms
proportional to both αcn and (vn − vc)2 are the two-fluid
version of the ambipolar heating term, μ|B|2ηA|J⊥|2, that
appears in the single-fluid approximation. We again note that
Eqs 23, 24 are obtained in the limit that the velocity drift is much
smaller than the thermal speed (Draine, 1986).

Numerical Implementation
The numerical implementation of the PIP equations is a
challenging task because of the presence of diffusive
(parabolic) terms and the dispersive (hyperbolic) Hall’s term,
which impose extremely small time steps if the temporal
evolution is done with standard explicit schemes. For this
reason, different strategies are adopted to allow high-
resolution numerical simulations to be practical. For instance,
a convenient strategy is that of operator splitting, in which the
ideal and nonideal terms are evolved separately. Ideal terms can
be evolved with regular explicit schemes as in ideal MHD
simulations, in which the time step is essentially determined
by the largest value of the Alfvén/sound velocity in a low-β/high-β
plasma. Then, different methods are used to deal with the
nonideal terms.

On the other hand, diffusive terms can be advanced with the
super time stepping technique (Alexiades et al., 1996; O’Sullivan
and Downes, 2006, 2007), which is able to accelerate the explicit
computations by using a mixture of large (unstable) time steps
and short (stable) time steps that are determined by Chebyshev
polynomials. Globally, the super time stepping scheme remains
stable. Alternatively, the super time stepping method can also be

implemented with Legendre polynomials, which might offer
better stability properties (see Meyer et al., 2014). Other
methods to deal with diffusive terms are, e.g., the heavy ion
approximation (e.g., Li et al., 2006; McKee et al., 2010; Li et al.,
2012) and the use of implicit or mixed implicit-explicit schemes
(e.g., Falle, 2003).

Concerning the dispersive Hall’s term, the treatment of this
term is even more problematic. The Hall term imposes explicit
time steps that tend to zero in situations where it is dominant over
diffusive terms (Falle, 2003). To solve this problem, the hyper-
diffusivity method (see, e.g., Tóth et al., 2008) introduces a sort of
artificial diffusion (or hyper-diffusion) with the aim of stabilizing
the Hall term, which is advanced with standard explicit schemes.
On the contrary, O’Sullivan and Downes (2006, 2007) proposed
the Hall diffusion scheme, in which no arbitrary hyper-diffusivity
is required. The Hall diffusion scheme relies on the fact that,
because of Hall’s term, the instantaneous rate of change of any
one component of the magnetic field depends only on the spatial
gradients of the other two components. With this in mind, one
can advance one component of the magnetic field explicitly,
followed by an implicit-like discretization of the other
components. However, if the different magnetic field
components are updated in a particular order, then the
difference equations are explicit in the sense that no matrix
inversions, or approximations of matrix inversions, are
required. The Hall diffusion scheme is does not lead to
instability unless the Courant condition is not satisfied.

Readers interested in the benefits and limitations of these
strategies and methods are referred to Section 3 of Ballester et al.
(2018) and references therein for detailed explanations.

KELVIN-HELMHOLTZ INSTABILITY

The Kelvin–Helmholtz instability (KHi), named after Thomson
(1871) and von Helmholtz (1868), is a classic instability that
arises at the interface between two fluids in relative motion. Well-
known textbooks where the basics of the KHi are discussed in
detail are, e.g., Chandrasekhar (1961b) and Drazin and Reid
(1981). The KHi is important in many astrophysical plasmas
where unstable velocity shears result in the formation of vortices,
mixing of plasmas with different densities, and generation of
turbulence (see, e.g., Keppens et al., 1999; Ryu et al., 2000;
Matsumoto and Hoshino, 2004; Hillier, 2019). The literature
abounds in studies of the KHi in different astrophysical contexts
such as, e.g., the magnetopause (e.g., Nagano, 1979; Hasegawa
et al., 2006; Masson and Nykyri, 2018), planetary magnetospheres
(e.g., Miura, 1984; Johnson et al., 2014), Earth’s aurora (e.g.,
Farrugia et al., 1994), cometary tails (e.g., Ershkovich et al., 1986),
protoplanetary disks (e.g., Gómez and Ostriker, 2005), jets and
outflows (e.g., Keppens et al., 1999; Baty and Keppens, 2006),
molecular clouds (Berné et al., 2010), among many other
environments. The case of the KHi in the solar atmosphere is
of special relevance because recent observations have confirmed
the ubiquitous presence of this instability. For instance, the KHi
has been observed in the solar coronal plasma (Foullon et al.,
2011; Ofman and Thompson, 2011; Möstl et al., 2013; Yuan et al.,
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2019), solar prominences (Berger et al., 2008, 2010; Ryutova et al.,
2010; Berger et al., 2017; Hillier and Polito, 2018; Yang et al.,
2018), coronal streamers (Feng et al., 2013), blowout jets (Li X.
et al., 2018), and the solar wind (Kieokaew et al., 2021). The
importance of the KHi in the solar plasma motivated a very rich
theoretical literature on the topic, even before the instability was
first observed (see, e.g. Zhelyazkov, 2015). The confirmed
presence of the KHi in solar prominences is of special
relevance for the present work because the plasma in
prominences is only partially ionized (see, e.g., Labrosse et al.,
2010).

Onset of the KHi in a Fully Ionized Plasma
In the spirit of the classic treatment of Chandrasekhar (1961b),
the simplest situation in which the onset of the KHi can be
studied corresponds to the case of two fully ionized unbounded
plasmas with uniform densities ρ1 and ρ2 and separated by an
abrupt interface. Both plasmas are permeated by a straight and
constant magnetic field, which is orientated parallel to the
interface. The magnetic field strength at the two sides of the
interface is denoted by B1 and B2, respectively. In addition, the
two plasmas are assumed to be in relative motion, with v1 and v2
the constant flow velocities at the two sides of the interface. The
flow is assumed to be along the background magnetic field
direction and the velocity shear across the interface is
Δv � |v1 − v2|. We note that this set-up composed of an
infinitely thin shear layer is ill-defined from a numerical point
of view, but it is very convenient from an analytic perspective. A
stability analysis of the interface can be done using the linearized
single-fluid ideal MHD equations. Considering incompressible
perturbations, a temporal dependence of the form exp(−iωt),
where ω is the frequency, and a Fourier-analysis in space, the
following dispersion relation of the surface waves propagating on
the plasma interface can be derived, namely

ρ1 ω − k‖v1( )2 + ρ2 ω − k‖v2( )2 − k2‖
B2
1 + B2

2

μ
� 0, (25)

where k‖ is the component of the wavevector parallel to the
magnetic field and the flow. The analytic solution for the
frequency is

ω � ρ1v1 + ρ2v2
ρ1 + ρ2

k‖ ± B2
1 + B2

2

μ ρ1 + ρ2( ) − Δv( )2 ρ1ρ2
ρ1 + ρ2( )2[ ]1/2

k‖. (26)

The + and − signs in Eq. 26 correspond to parallel propagating
(forward) waves and anti-parallel propagating (backward) waves,
respectively, with respect to the magnetic field direction. There is
a critical velocity shear, Δvcrit., denoted by

Δvcrit. � ρ1 + ρ2
ρ1ρ2

B2
1 + B2

2

μ
( )1/2

, (27)

which determines the stability of the wave modes. When Δv <
Δvcrit. the frequency is real and the modes are stable regardless of
the presence of the velocity shear. This is so because of the
stabilizing influence of magnetic tension. However, when Δv >
Δvcrit. magnetic tension is not able to stabilize the shear flow any
more. The physical reason is that the kinetic energy associated

with the shear flow becomes larger than the backgroundmagnetic
energy. Then, the frequency becomes complex. The imaginary
part of the frequency of the mode with the + sign is positive and,
according to the prescribed dependence exp(−iωt), the amplitude
of this mode grows with time. This corresponds to the onset and
exponential growth of the KHi. The growth rate of the instability
is given by

cKHi � k‖

ρ1ρ2

√
ρ1 + ρ2

Δv( )2 − Δvcrit.( )2[ ]1/2. (28)

The growth rate is proportional to k‖, which means that small
scales grow faster than large scales. In addition, for Δv≫Δvcrit. the
growth rate is approximately linear in the velocity shear. Eq. 27
can be rewritten as

Δvcrit. � ρ1 + ρ2
ρ1ρ2

ρ1v
2
A,1 + ρ2v

2
A,2( )[ ]1/2

, (29)

where vA � B/

μρ

√
is the Alfvén velocity. Eq. 29 evidences that

the critical shear flow is a sort of root-mean-square average of the
Alfvén velocities at the two sides of the interface. This points out
that the shear flow velocities needed for the onset of the KHi are
necessarily super-Alfvénic. We note that the condition that the
densities at the two sides of the interface are different is not
actually needed for the triggering of the KHi; only a shear flow is
needed. We also note that if the fluid is unmagnetized so that B1 �
B2 � 0, this results in Δvcrit. � 0. In other words, there is no shear
flow threshold for the triggering of the KHi in the absence of the
stabilizing effect of the magnetic field. It would be the case of a
fluid exclusively composed of neutrals. As seen later, this has a
very important implication in the case of PIP, where only the
charges are directly affected by the magnetic field.

The simple configuration explored above suffices for our later
purpose to illustrate the effect of partial ionization. Additional
ingredients in the background configuration as, e.g.,
compressibility, dissipation, flows not strictly parallel to the
magnetic field, time-dependent flows, nonplanar geometry, a
smooth transition, etc., cause refinements to the theory
described above at the expense of a more involved
mathematical analysis. It is not our goal to analyze all these
additional effects, whose discussion can be found elsewhere. For
instance, the effect of dissipation has been discussed in, e.g.,
Ryutova (2015); Ballai et al. (2015). The effect of replacing the
abrupt interface by a smooth transition of thickness δ was
explored in, e.g., Miura and Pritchett (1982); Berlok and
Pfrommer (2019), who found that modes with k‖δ ≳ 2 become
stable because of the presence of the inhomogeneity. The KHi
driven by time-dependent flow patterns was investigated in, e.g.,
Browning and Priest (1984). The role of compressibility is worth
to mention in more detail because of its relevant influence on the
stability of the shear flow. For a flow parallel to the magnetic field,
compressibility has a destabilizing effect when the velocity shear
is small and the ratio of densities is large, but a strong stabilizing
influence for large velocity shear, so that the KHi can even be
completely suppressed for sufficiently large Δv (see, e.g., Fejer,
1964; Sen, 1964; Gerwin, 1968; Miura and Pritchett, 1982; Ferrari
and Trussoni, 1983; Rae, 1983; Soler et al., 2012b). Importantly,
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Δvcrit. is not affected by compressibility, so that Eq. 27 obtained in
the incompressible limit remains valid. The value of Δv needed
for the compressible stabilization depends upon the plasma β and
the orientation of the wavevector with respect to the magnetic
field direction, with the most stable situation being that of a low-β
plasma with the wavevector parallel to the magnetic field (Miura
and Pritchett, 1982; Soler et al., 2012b). In that case, compressible
stabilization may happen for a velocity shear smaller than Δvcrit.,
so that the KHi cannot grow. However, a small perpendicular
component of the wavevector is enough to allow the development
of the KHi for a restricted range of shear flow velocities between
Δvcrit. and the value for the compressible stabilization (see
Figure 1). More details about the effect of compressibility can
be checked in, e.g., Miura and Pritchett (1982); Soler et al.
(2012b).

Onset of the KHi in a Partially Ionized
Plasma
The stability of a shear flow in the case of a magnetized plasma
composed by a mixture of charges and neutrals poses a
fundamental problem. Considering again the same simple
scenario discussed in the previous section, we anticipate that
charges and neutrals would have different stability properties.
On the one hand, charges are subjected to the stabilizing effect
of the magnetic field, so that the KHi would only be possible for
super-Alfvénic shear flow velocities larger than Δvcrit.. On the
other hand, neutrals do not feel the magnetic force, so that there
should not be a threshold velocity shear for the KHi. In the
paradigmatic case that charges and neutrals do not interact, a
sub-Alfvénic velocity shear may be unstable for the neutrals but
stable for the charges. Therefore, the KHi may be triggered in
the plasma for a sub-Alfvénic shear because of the presence of a
neutral component. However, in a real PIP charges and neutrals
interact through collisions. Then, the question arises: Do
neutrals remain unstable for Δv < Δvcrit. even when they are
collisionally coupled with charges? What is the effect of
collisions between charges and neutrals on the onset of
the KHi?

The question of whether the KHi can be triggered in a PIP for
sub-Alfvénic shear is not only relevant from the theoretical point
of view, but it also has important observational implications.
Again we restrict ourselves to the solar context. Observations of
turbulent flow and vortex structures in solar prominences (see
Berger et al., 2008, 2010; Ryutova et al., 2010; Berger et al., 2017)
already suggested the presence of the KHi, which was confirmed
by recent direct observations (Li D. et al., 2018; Hillier and Polito,
2018; Yang et al., 2018). The typical flow velocities measured in
quiescent prominences are in the range 10–70 km s−1 (see
Mackay et al., 2010), which are typically sub-Alfvénic. The
value of the Alfvén velocity for typical values of the magnetic
field strength, ∼ 10 G, and the mass density, ∼ 5 × 10−11 kg m−3,
in quiescent prominences is ∼ 126 km s−1. Assuming that the
flows are along the magnetic field direction, the observed flow
velocities should be stable according to the classic theory for a
fully ionized plasma. It has been proposed that partial ionization
effects are responsible for the development of the KHi in solar

prominence conditions when slow flows are present (Soler et al.,
2012b; Martínez-Gómez et al., 2015).

The onset and initial exponential growth of the KHi in a PIP
has theoretically been investigated in a number of different
astrophysical contexts by, e.g., Hans (1968); Ershkovich et al.
(1986); Prialnik et al. (1986); Chhajlani and Vyas (1990); Birk and
Wiechen (2002); Watson et al. (2004); Michikoshi and Inutsuka
(2006); Shadmehri and Downes (2007, 2008); Kunz (2008); Soler
et al. (2012b); Martínez-Gómez et al. (2015). For this problem, the
two-fluid approximation offers a more transparent physical
picture because the different stability properties of charges and
neutrals can be better described than with the single-fluid model.
In particular, the work by Watson et al. (2004) is relevant for our
present discussion because the case of field-aligned shear flows at
a sharp interface is explored. See, e.g., Kunz (2008) for a detailed
study in the single-fluid case. In the analysis of Watson et al.
(2004), collisions between charges and neutrals are considered in
the two-fluid momentum equations, but ionization and
recombination are neglected. Also, diffusion mechanisms other
than collisions are omitted. In the incompressible limit, Watson
et al. (2004) derived a dispersion relation in the two-fluid
approximation, which was reobtained by Soler et al. (2012b)
with a slightly different notation. The dispersion relation was also
recovered in some limits by Shadmehri and Downes (2007) and
Martínez-Gómez et al. (2015), who considered a plasma layer and
a cylindrical tube, respectively. In the notation of Soler et al.
(2012b), the dispersion relation can conveniently be cast as

DcDn +D2
cn � 0, (30)

with

Dc � ρc, 1 ω − k‖v1( ) ω − k‖v1 + i]cn, 1( ) + ρc, 2 ω − k‖v2( ) ω − k‖v2 + i]cn, 2( )
−k2‖

B2
1 + B2

2

μ
(31)

Dn � ρn, 1 ω − k‖v1( ) ω − k‖v1 + i]nc, 1( ) + ρn, 2 ω − k‖v2( ) ω − k‖v2 + i]nc, 2( )
(32)

Dcn � ρn, 1 ω − k‖v1( )]nc, 1 + ρn, 2 ω − k‖v2( )]nc, 2. (33)

Here,Dc is the dispersion relation associated with the charged
fluid (see Eq. 25), which is modified by collisions between charges
and neutrals through the terms with ]cn, 1 and ]cn, 2. In turn,Dn is
the dispersion relation associated with the neutral fluid (note the
absence of the magnetic field term), which is modified by
collisions between neutrals and charges through the terms
with ]nc, 1 and ]nc, 2. Finally, Dcn is a coupling term. Eq. 30 is
a forth-order polynomial, so it has four different solutions: two
associated with the charges and other two with the neutrals. The
role of the coupling term Dcn is to entangle the modes associated
with charges and neutrals, so that they become global modes of
the whole PIP. Numerical investigation of the solutions of Eq. 30
reveals that collisions are not able to completely stabilize the
neutral fluid unstable mode for sub-Alfvénic shear (Watson et al.,
2004; Soler et al., 2012b; Martínez-Gómez et al., 2015). Collisions
reduce the growth rate compared with the collisionless case but a
instability is always present for small, sub-Alfvénic shear. Under
the approximation of immobile charges and in the case that the
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densities at the two sides of the interface are the same, Watson
et al. (2004) found an approximate dependence of the neutral
unstable mode growth rate with the shear flow velocity as
∼ (Δv)2 instead of a linear dependence with Δv as in the
hydrodynamic collisionless case that would result from Eq. 28
with Δvcrit. � 0. Martínez-Gómez et al. (2015) obtained a similar
quadratic dependence of the growth rate with the flow velocity by
considering a perturbation analysis in the full Eq. 30 and the
particular cases of v2 � 0, v1 ≪ vA,1, and a strong coupling. The
approximate growth rate derived by Martínez-Gómez et al.
(2015) is

cKHi ≈
2ρn, 1ρn, 2
ρn, 1 + ρn, 2

k2‖v
2
1

ρn, 1]nc, 1 + ρn, 2]nc, 2
. (34)

In addition to the quadratic dependence with the flow
velocity already found by Watson et al. (2004), Eq. 34 also
evidences that the growth rate is inversely proportional to the
neutral-charge collision frequencies. Collisions tend to
stabilize the KHi in the neutral fluid, but they never
manage to suppress it completely. A general investigation
for arbitrary coupling strength, showing the transition from
the linear dependence to the quadratic dependence in the
velocity shear, can be checked in Soler et al. (2012b);
Martínez-Gómez et al. (2015), but still in the
incompressible case. Martínez-Gómez et al. (2015) applied
Eq. 34 to the case of thin threads in solar prominences and
computed KHi growth rates compatible with the observations
(see Figure 2).

The derivation of a dispersion relation in the partially ionized
case becomes much more cumbersome when compressibility is
taken into account. A simple, approximate expression for the
growth rate is no longer easy to obtain. Soler et al. (2012b)
obtained a dispersion relation in the compressible case, whose
solutions were numerically investigated. Soler et al. (2012b) found

that the domain of instability becomes strongly dependent on the
plasma parameters, especially the values of the collision
frequencies and the density jump across the interface (see
their Figures 6, 7). Soler et al. (2012b) found that, in general,
compressibility tends to stabilize the neutral component of the
plasma. If charges and neutrals are strongly coupled and the
density jump is large, the results from Soler et al. (2012b) suggest
that the threshold velocity slightly increases when the density
jump increases (see their Figure 7B). For realistic physical
properties in solar prominences, the threshold velocity shear

FIGURE 2 | KHi growth rate in a solar prominence thread as a function of the shear flow velocity at the thread boundary for two values of the longitudinal wavelength:
100 km (left panel) and 1,000 km (right panel). In both panels, the red dashed lines correspond to the case of a fully ionized plasma, the blue crosses to a partially ionized
case, and the black diamonds to a weakly ionized case. The solid lines are the analytical approximation ofEq. 34. The shaded zone denotes the region of flow velocity values
that have been frequently measured in solar prominences. Credit: Martínez-Gómez et al. (2015), A&A 578, A104, reproduced with permission © ESO.

FIGURE 3 | KHi growth rate in normalized units as a function of the
dimensionless ion-neutral collision frequency for a sub-Alfvénic value of the
shear flow velocity so that Δv < Δvcrit.. The dashed line corresponds to the
incompressible case in which cKHi > 0 even for large values of the
collision frequency. The other lines correspond to the compressible case for
various values of the ratio of the perpendicular, ky, to the longitudinal, kz,
components of the wavevector (indicated within the figure). Perturbations with
a sufficiently large value of the ratio ky/kz can trigger the KHi even in the
compressible case. Adapted from Soler et al. (2012b). © AAS. Reproduced
with permission.
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for the onset of the KHi remains sub-Alfvénic under certain
conditions. In particular, modes with a wavevector forming a
sufficiently oblique angle with the magnetic field remain unstable
and behave, approximately, as in the incompressible limit (see
Figure 3).

Compressible effects in the presence of partial ionization
were previously investigated by Ershkovich et al. (1986) and
Prialnik et al. (1986), but in both studies the flow of neutrals
was assumed to be perpendicular to the interface and not
parallel to it as in our exemplary configuration. In their
case, compressibility was also found to have either a
stabilizing or destabilizing effect on the KHi growth rate
depending on the parameters considered.

The case investigated by Watson et al. (2004) and Soler
et al. (2012b) neglects all nonideal terms in the induction
equation. Pandey (2018) and Pandey and Vladimirov (2019)
have explored the triggering of the KHi in the presence of
Hall’s term in the induction equation using the single-fluid
equations. In the case of fully ionized plasmas, the effect of
Hall’s term has been explored by, e.g., Zhelyazkov et al.
(2020). Pandey (2018) showed that Hall’s effect opens up a
new way through which the fluid can become
Kelvin–Helmholtz unstable sub-Alfvénic flows. Pandey
(2018) have explored the applicability of this mechanism in
different astrophysical contexts, including the solar
atmosphere, protoplanetary discs, molecular clouds, and
Earth’s ionosphere. As Hall’s effect is enhanced by the
presence of neutrals (Pandey and Wardle, 2008), this
alternative mechanism may be of relevance in PIP. Readers
are referred to Pandey (2018) for details. Recently, Martínez-
Gómez et al. (2021) have numerically studied the KHi
evolution due to shear flow in an initially unmagnetized
plasma including the Biermann battery term in the
induction equation. The presence of this term does not
seem to strongly affect the linear growth of the KHi
because similar growth rates than those predicted by the
ideal theory are found in the simulations of Martínez-
Gómez et al. (2021). However, the Biermann battery term
heavily impacts on the nonlinear evolution by generating a
magnetic field (see more details in Section 3.3).

Nonlinear Evolution Through Numerical
Simulations
While linear theory is very useful to understand the onset of
the KHi, full nonlinear numerical simulations are requiered to
study its later evolution. In fully ionized astrophysical plasmas,
the nonlinear phase of the KHi has been investigated in detail
in both 2D and 3D simulations (see, e.g., Frank et al., 1996;
Malagoli et al., 1996; Keppens et al., 1999; Keppens and Tóth,
1999; Ryu et al., 2000; Baty et al., 2003; Baty and Keppens,
2006; Matsumoto and Hoshino, 2004; Matsumoto and Seki,
2010, just to name a few representative papers among many
other works). Important results obtained from the simulations
are that the nonlinear development of the KHi leads to the
formation of vortices, mixing of plasmas, and eventual
generation of turbulence. Particularly important is the

transition from the laminar to the turbulent regime
associated with the later evolution of the plasma mixing
(Matsumoto and Hoshino, 2004; Matsumoto and Seki,
2010) and its implications concerning the energy cascade
towards the dissipative scales. The magnetic field plays an
important role in this process. For moderate shear flow
velocities, the magnetic field can nonlinearly inhibit the
formation of vortices, thus making the system nonlinearly
stable although being linearly unstable (Ryu et al., 2000;
Hillier, 2019). During the vortex formation, the winding of
the magnetic field can cause field amplification, formation of
current sheets, and field line reconnection. Another common
feature of the KHi nonlinear evolution obtained from
simulations is the formation of magnetic islands (see, e.g.,
Keppens et al., 1999; Nakamura et al., 2008). Readers are
referred to the papers cited above, and references therein,
for further details.

Considering nonlinear simulations of the KHi in multi-fluid
plasmas, the effects of the interactions between the various species
have been explored in the last decade in a relatively small number
of publications. Most of the studies (see, e.g., Birk and Wiechen,
2002; Johansen et al., 2006; Wiechen, 2006; Barranco, 2009;
Hendrix and Keppens, 2014) deal with the case of partially
ionized dusty plasmas and focus on analyzing the effect of
dust. Typically, the dust grains are treated as particles with a
certain mass and charge (they may be neutral) that collide with
ions, electrons, and neutrals that may also be present in the
plasma. As in the single-fluid fully ionized simulations, these
works show that once unstable modes are excited they evolve
relatively quickly nonlinearly and result in the formation of
vortices, current sheets, and turbulence. Wiechen (2006)
concludes that the mass and charge of the dust particles affect
the stability, so that a higher mass of the dust grains has a
stabilizing effect, while a higher charge number of the dust has a
destabilizing effect. With hydrodynamic simulations, Hendrix
and Keppens (2014) also found a stabilizing effect of dust when
the dust-to-gas ratio is high. Also, Hendrix and Keppens (2014)
showed that during the formation of vortices, filamentary high
density dust structures can be formed, which may be relevant in
molecular clouds. However, none of these studies analyse in detail
the role to collisions between charges and neutrals.

The works by Jones and Downes (2011, 2012) are more related
with the present discussion. Jones and Downes (2011) performed
2.5D simulations of the KHi in weakly ionized plasmas composed
of ions, electrons, and neutrals. The governing equations solved
by Jones and Downes (2011) consider the neutral fluid velocity as
the centre-of-mass velocity, neglect the inertia of charges, and use
a generalized Ohm’s law. Jones and Downes (2011) investigated
the ambipolar-dominated and Hall-dominated regimes. They
find in their simulations that partial ionization effects do not
significantly influence the growth rate of the instability in the
linear phase, which seem to be in contradiction with the linear
results of the two-fluid model of Watson et al. (2004) and may be
a consequence of the different models used by Watson et al.
(2004) and Jones and Downes (2011). On the other hand, Jones
and Downes (2011) obtain that ambipolar diffusion, which is
caused by charge-neutral collisions, significantly decreases the
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growth of magnetic energy during the nonlinear phase of the
instability compared with the evolution in ideal simulations,
while the Hall effect, when dominant, causes the system to fail
to settle to a quasi-steady state after saturation of the instability.
Subsequently, Jones and Downes (2012) performed a specific
application to molecular cloud conditions and also added the
presence of dust. As in their previous paper, ambipolar diffusion
leads to less amplification of the magnetic energy as the instability
develops and, therefore, a stronger wind-up of the neutral fluid is
possible during vortex formation. However, in molecular cloud
conditions Hall’s term does not appear to have an important
effect. As explained by Jones and Downes (2012), ambipolar
diffusion largely suppresses the influence of Hall’s term. While
the simulations of Jones and Downes (2011, 2012) are relevant in
molecular clouds, their results cannot easily translated to the case
of the partially ionized solar plasma, as solar prominences, where
the weakly-ionized version of the governing equations is not
applicable.

A thoughtful 2D numerical study of the nonlinear evolution
of the KHi in a partially ionized medium has been performed by
Hillier (2019). The considered configuration was the classic set-
up: a sharp interface with a velocity shear between two partially
ionized plasmas with different densities. A straight magnetic
field was assumed parallel to the interface. A white noise
perturbation was imposed initially. Hillier (2019) evolved in
time the nonlinear two-fluid equations, explicitly solving the
dynamics of both charges (ions) and neutrals, which were
collisionaly coupled in the equations. By using a very high
resolution, Hillier (2019) was able to study the different
scales where the strength of the ion-neutral coupling varies.
Hillier (2019) finds that at the small scales where neutrals are
decoupled from ions, fully formed neutral vortices are present,
whereas the ion velocity remains laminar in nature. However,
and despite the very different velocity patters, similar density
structures are found in both neutral and ion fluids because of the

role of frictional heating and heat transfer between fluids (see
Figure 4). At larger scales, neutrals become coupled with ions
and the magnetic field, although secondary, smaller vortices can
remain decoupled. The effect of the magnetic field may cause the
nonlinear suppression of the instability even when the shear
flow is linearly unstable (the same effect but in ideal MHD
simulations was already discussed by Ryu et al., 2000). Hillier
(2019) concludes that the turbulent energy cascade should
probably show a transition from MHD turbulence at the
coupled scales to neutral fluid HD turbulence at the smallest
scales. This should be confirmed by future 2D and 3D high-
resolution simulations.

Recently, 2D numerical simulations of the KHi in a partially
ionized two-fluid plasma have been presented by Martínez-
Gómez et al. (2021). These authors considered an initially
unmagnetized medium composed of a dense partially ionized
plasma slab embedded in a lighter environment. A constant flow
longitudinal to the slab was assumed, with different flow
velocities inside and outside the slab and a continuous
transition between the two regions. The Biermann battery
term was included in the Ohm’s Law. The simulations
showed that the KHi grows after applying a small
perturbation on the slab boundaries. During the KHi
nonlinear development, the collisional interaction between
the charges and neutrals drives the generation of a magnetic
field through the Biermann battery mechanism (see, e.g.,
Kulsrud et al., 1997). The magnetic field is predominantly
generated in the direction perpendicular to the flow, so it has
no important influence on the development of the KHi. It is
found that the strength of the generated magnetic field increases
when the ionisation degree of the plasma decreases. Variations
in the charges temperature are produced because of collisions
with the neutrals. This increases the charges baroclinic term and
enhances the Biermann battery effect (see detailed explainations
in Martínez-Gómez et al., 2021). The results of the numerical

FIGURE4 |Neutrals (left) and charges (right) density structures in a small-scale KHi vortex. The white arrows are the corresponding velocity fields. The neutral fluid
shows a clear vortex pattern in velocity that is not seen in the charged fluid. However, the density distributions are similar in the two fluids because of thermal coupling.
Reprinted from Hillier (2019), with the permission of AIP Publishing.
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experiments by Martínez-Gómez et al. (2021) are a good
example of how interesting physical effects are driven by
partial ionization.

RAYLEIGH-TAYLOR INSTABILITY

The Rayleigh-Taylor instability (RTi), named after Strutt (1882)
and Taylor (1950), is another of the most classic fluid instabilities
that are present in astrophysical plasmas. The RTi generally
occurs at an interface between two fluids of different densities
when the lighter fluid is pushing (accelerating into) the heavier
fluid. The typical example for the occurrence of this instability is
when, in the presence of gravity, a heavier fluid is put on top of a
lighter fluid. Such configuration is unstable to perturbations of
the interface and, eventually, the system evolves developing
“plumes” of the lighter fluid that flow upwards and “fingers”
of the heavier fluid that fall downwards. The Richtmyer–Meshkov
instability, named after Richtmyer (1960) and Meshkov (1969), is
a sister instability to the RTi that occurs when the two fluids are
impulsively accelerated by, e.g., a shock wave. Interested readers
are referred to the recent review by Zhou et al. (2021) where the
similarities between the RTi and the Richtmyer–Meshkov
instability are discussed.

The solar atmosphere and, in particular, solar prominences
where the plasma is partially ionized, again represent a
paradigmatic case in which the RTi has been observed in
detail (see Berger et al., 2008; Ryutova et al., 2010; Berger
et al., 2010, 2011, 2017). A comprehensive review of the RTi
in solar prominences, including both observations and theoretical
efforts, can be checked in Hillier (2018). Beyond the solar context,
other well-known astrophysical environments where the RTi is
believed to occur are, e.g., supernovae (see, e.g., Hachisu et al.,
1992; Hester et al., 1996; Jun et al., 1996; Porth et al., 2014),
accretion disks (see, e.g., Wang and Nepveu, 1983; Kulkarni and
Romanova, 2008), relativistic jets (e.g., Matsumoto and Masada,
2013), hydrogen clouds in the local bubble (e.g., Breitschwerdt
et al., 2000), envelopes of red giants (e.g., Eggleton et al., 2006),
among other examples found in a vast literature.

Onset of the RTi in a Fully Ionized Plasma
Chandrasekhar (1961b) presents the simplest configuration in
which the onset of the RTi can be studied (see also Sharp,
1984). Let us consider the case of two fully ionized unbounded
plasmas with uniform densities laying one above the other in
the presence of gravity. The two plasmas are separated by an
abrupt interface and the plasma with density ρ1 is on top of the
plasma with density ρ2, with ρ1 > ρ2. A straight and constant
magnetic field that is orientated parallel to the interface, i.e., in
the horizontal direction, permeates both plasmas. The
direction of the magnetic field is assumed to be the same at
both sides of the interface. The magnetic field strength at the
two sides of the interface is denoted by B1 and B2, respectively.
Using the linearized single-fluid ideal MHD equations and
incompressible perturbations, we can perform a stability
analysis of the interface by assuming a temporal dependence
of the form exp( − iωt), where ω is the frequency, and a

Fourier-analysis in space. A dispersion relation for the surface
waves propagating on the interface can be derived, whose
analytic solution for the square of frequency yields,

ω2 � B2
1 + B2

2

μ ρ1 + ρ2( )k2‖ − ρ1 − ρ2
ρ1 + ρ2

gk, (35)

where k‖ is the component of the wavevector along the
background magnetic field, k is the modulus of the
wavevector, g is the acceleration of gravity, and the factor (ρ1 −
ρ2)/(ρ1 + ρ2) is the Atwood number. Eq. 35 neglects fluid surface
tension. The first term on the right-hand side of Eq. 35 is the
square of the frequency of the incompressible surface Alfvén
wave. The second term contains the effect of gravity and is related
to the so-called interchange mode (see, e.g., Hillier, 2016). The
RTi appears when ω2 < 0. This is always the case in the absence of
a magnetic field, i.e., the HD case, so that for B1 � B2 � 0 the first
term on the right-hand side of Eq. 35 vanishes. However, in the
presence of a magnetic field, magnetic tension plays a stabilizing
influence on the interface through the presence of a surface
Alfvén wave, which is also called the undular mode in the
literature. Perturbations whose wavevector is mostly parallel to
the direction of the magnetic field are stable. Conversely,
perturbations propagating with a sufficiently oblique angle
remain unstable. The critical longitudinal wavenumber for
stabilization due to magnetic tension is

k‖,crit. �

μ ρ1 − ρ2( )
B2
1 + B2

2

gk

√
. (36)

We note that Eq. 36 depends on the modulus of the full
wavenumber, k, so that the perpendicular lengthscale of the
perturbations also influence the longitudinal lengthscales that are
stable or unstable, making the stability properties of the interface to
be rather complex. Readers are referred to Hillier (2016), who
provides a more detailed account of the properties of the ideal RTi
in its linear regime beyond the simple discussion provided here.

Terradas et al. (2012) investigated the triggering of the RTi in a
model where the interface was replaced by a slab with a finite
thickness (see Figure 5). The slab was meant to represent a thin
thread of a solar prominence. They found that two different
modes appear in the slab configuration, owing the presence of two
separate interfaces. One mode is always stable and its character
varies from being localised at the upper interface of the slab when
the magnetic field is weak, to having a global nature and
resembling the transverse kink mode of the whole slab when
the magnetic field is strong. On the other hand, there is another
mode that is unstable and localised at the lower interface when
the magnetic field is weak, but it becomes a stable sausage
magnetic mode when the magnetic field is increased. The
criterion to know whether the magnetic field is weak or strong
comes, again, from the comparison of the gravity force with the
magnetic tension force. Ruderman et al. (2014) investigated the
RTi in the presence of a sheared magnetic field (see also Hillier,
2016). They considered both the interface and slab scenarios.
They showed that magnetic shear can have a strong effect on the
growth rates of the instability. For small shear angles the RTi
growth rate is linearly proportional to the shear angle, while in the
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limit of large angles the growth rate becomes independent of the
shear angle.

As in the case of the KHi, the effect of compressibility on the
onset of the RTi has been long under debate in both HD and
MHD (see. e.g., Vandervoort, 1961; Shivamoggi, 1982; Bernstein
and Book, 1983; Ribeyre et al., 2004; Livescu, 2004; Liberatore and
Bouquet, 2008, among others). The complexity of the dispersion
relation in the compressible case makes it necessary to resort to
numerical solutions unless some heavy simplifications are made
(see, e.g., Shivamoggi, 2012). Studies by, e.g., Ribeyre et al. (2004);
Livescu (2004); Liberatore et al. (2009); Díaz et al. (2012);
Ruderman (2017) point out that compressibility has a complex
influence, so that the linear growing rates in the compressible case
are smaller or larger than those obtained in incompressible
approximation depending on the wavenumber range and the
plasma β. However, the critical longitudinal wavenumber for
magnetic tension stabilization (Eq. 36) appears to be unaltered by
compressibility. Detailed studies of the RTi triggering and
evolution in more realistic configurations necessarily require
the use of numerical simulations (see Section 4.3).

Onset of the RTi in a Partially Ionized
Plasma
As in the case of the KHi, the presence of a neutral species may
have a relevant effect on the RTi. Neutrals are not affected by the
stabilizing influence of magnetic tension. Therefore, a PIP
composed of both charges and neutrals should be, in principle,
more unstable regarding the RTi than a fully ionized plasma. Of
course, ion-neutral collisions couple neutrals and charges, so that
neutrals do feel the magnetic field influence in an indirect way.
Again, the relevant question is whether collisions are able to fully
stabilize the neutral fluid when the classic stability threshold is
verified (Eq. 36) or, on the contrary, neutrals remain unstable.

The work by Hans (1968) is probably the first study of the role
of ion-neutral collisions on the onset of the RTi in a PIP. Hans
(1968) considered the classic setup of a denser fluid located on top
of a lighter fluid and separated by an abrupt interface in the

presence of a horizontal magnetic field. Both fluids are partially
ionized. This author considered an incompressible two-fluid
model that included collisions between charges and neutrals
and finite Larmor radius effects expressed through a gyro-
viscosity term for the charges. However, the gas pressure term
was absent from the neutrals momentum equation and the
induction equation only contained the ideal term. After
performing a linear stability analysis, Hans (1968) concludes
that the resulting dispersion relation has always an unstable
root, whose growth rate decreases as the collision frequency
increases. Ogbonna and Bhatia (1984) revisited the same
configuration of Hans (1968) but performed a more in-depth
paramenter study. In agreement with the previous results,
Ogbonna and Bhatia (1984) conclude that friction between
charges and neutrals decrease the growth rate of the RTi
compared to the purely HD case, but an instability always
remains. The problem was explored once again by Chhajlani
and Vaghela (1989), who also included surface tension in their
analysis (see Chandrasekhar, 1961b). They found that the
conditions for the occurrence of the RTi, i.e., the instability
threshold because of surface tension, remain unaffected by the
presence of neutrals, but the growth rate is reduced by collisions.

All the works cited in the above paragraph ignored the role of
neutral gas pressure and only included the ion-neutral coupling
term in the neutrals momentum equation. Such a simplification
forces the dynamics of neutrals to be entirely dependent to that of
charges. The first study where the dynamics of neutrals was
consistently described was done by Díaz et al. (2012). They
considered a two-fluid model with collisions between charges
and neutrals and included the gas pressure term in the neutrals
momentum equation, but neglected all nonideal terms in the
induction equation for simplicity. Again, the simple interface
configuration was adopted. Díaz et al. (2012) considered both the
incompressible and compressible cases. Shadmehri et al. (2013)
performed a similar study to that of Díaz et al. (2012) but only in
the incompressible limit. The dispersion relation derived in the
incompressible case (Eq. 47 of Díaz et al. (2012) and Eq. 23 of
Shadmehri et al. (2013)) can be written with a similar structure to
that of the KHi dispersion relation (see Eq. 30), i.e., a dispersion
relation associated with the neutral fluid multiplied by a
dispersion relation associated with the charges, plus an
additional term that couples both relations. The coupling term
owes its existence to collisions. Unfortunately, unlike in the KHi
case, the full dispersion relation is a rather complicated
expression even in the incompressible limit, so that no simple
analytic approximation for the growth rate was obtained by Díaz
et al. (2012) and a numerical study of the solutions was necessary.
Díaz et al. (2012) found two unstable modes that are related to the
RTi in the neutral and charged fluids separately, with the neutral
unstable mode having a larger growth rate. Díaz et al. (2012)
computed their results as function of their parameter Y � ]inL/cs,
where ]in is ion-neutral collision frequency, L is a length scale,
and cs is the sound speed. Hence, large values of Y correspond to
strong coupling. Díaz et al. (2012) found that collisions between
ions and neutrals decrease the growth rates as Y increases (see
Figure 6). The charges unstable mode can be stabilized by
magnetic tension for a sufficiently large longitudinal

FIGURE 5 | Sketch of the slab model used by Terradas et al. (2012). The
grey zone denotes the prominece slab of width 2z0, length L, and density ρp
embedded in a coronal plasma of density ρc, with ρp > ρc. A uniform magnetic
field, B0, is assumed in the horizontal direction. Gravity, g, acts towards
the negative vertical direction. Credit: Terradas et al. (2012), A&A 541, A102,
reproduced with permission © ESO.
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wavenumber that is independent from the collision frequency
(Eq. 36). However, the neutrals-related solution remains always
unstable for finiteY. So, the results of the more complete model of
Díaz et al. (2012) confirmed the previous tentative conclusions
obtained in more simplified works (Hans, 1968; Ogbonna and
Bhatia, 1984; Chhajlani and Vaghela, 1989): collisional coupling
with the charges is not able to fully suppress the RTi of the neutral
fluid even when the longitudinal wavenumber is larger than the
critical one.

Díaz et al. (2012) extended their results to the compressible
case and showed that the stability thresholds are not modified by
compressibility: the mode related with the neutral fluid is always
unstable. Compressibility appears to have a largely stabilizing
effect, since smaller growth rates are obtained in the compressible
case compared to those in the incompressible limit. However, the
exact influence of compressibility depends upon the values of
some parameters as, e.g., the density contrast and the ratio of the
perpendicular to longitudinal wavenumbers. Therefore, although
compressibility does not seem to have a relevant influence on the
actual triggering of the RTi, it may be relevant for the subsequent
growth of the perturbations towards the nonlinear development
of the instability.

Díaz et al. (2014) revisited the same problem studied in Díaz
et al. (2012) but considering the single-fluid approximation
instead of the two-fluid approach. In the single-fluid model,
the role of the ion-neutral collisions remains in the form of the
ambipolar diffusion term of the induction equation. Regarding
the properties of the RTi, the results of the single-fluid model
consistently agreed to those previously obtained in the two-
fluid formalism. The main difference between the single-fluid
and two-fluid cases is that in the single-fluid case it is not
possible to disentangle the nature of the two unstable modes,

since the single-fluid approximation already assumes a strong
coupling between charges and neutrals, so that only one
unstable “global” mode is found. Díaz et al. (2014) also
considered other nonideal terms in the induction equation
as Ohm’s diffusion, Hall’s term, and the battery term that were
ignored in Díaz et al. (2012). However, for typical conditions of
solar prominences, Díaz et al. (2014) found that the ambipolar
term is by far the dominant term in the induction equation,
while the other terms are largely negligible, thus confirming
the appropriateness of the ideal induction equation used in the
two-fluid model of Díaz et al. (2012). Later, Ruderman et al.
(2018) expanded the work of Díaz et al. (2014) and performed
a detailed mathematical study of the effect of magnetic shear.
Ruderman et al. (2018) found that the larger the shear angle,
the smaller the maximum RTi growth rate. In addition,
Ruderman et al. (2018) concluded that ambipolar diffusion
only affects the growth rate when the plasma β is small.

Astrophysical applications of the linear theory discussed above
include solar prominences and local clouds. Díaz et al. (2012)
argue that the obtained growth rates for physical conditions in
partially ionized prominences may explain the existence of fine
structures with lifetimes of the order of 30 min, while the
timescales derived from the classical theory for fully ionized
plasma are about one order of magnitude shorter and
incompatible with the observed lifetimes. In addition, Díaz
et al. (2014) conclude that their partially ionized model
provides an instability timescale comparable to observed
lifetimes of RTi plumes in prominences. On the other hand,
Shadmehri et al. (2013) explained that, owing to two-fluid effects,
the RTi may operate less effectively in local clouds than
previously though according to classical theory.

Nonlinear Evolution Through Numerical
Simulations
Valuable but limited information is provided by the analysis of
the linear regime of the RTi. The linear theoretical analysis must
necessarily be complemented with nonlinear numerical
simulations to understand the later evolution of the instability.
An extensive literature on the nonlinear evolution of the RTi
exists. Here we only discuss a few representative works.

Early attempts to simulate with low resolutions the
development of the RTi in ideal MHD include, e.g., the works
by Wang and Robertson (1985) and Jun et al. (1995), among
other relevant papers. Wang and Robertson (1985) considered 2D
compressible simulations with the goal to study the mixing
process occurring at later stages of the instability. Their
simulations show how the interface is deformed by the
formation of mushroom-like structures (fingers and plumes)
that ultimately lead to the presence of swirling motions and
plasma mixing. An energy cascade towards small scales occurs
during the nonlinear phase. An inverse cascade towards large
scales is found later in the evolution owing to the merging of
smaller structures. Jun et al. (1995) performed quasi-
incompressible simulations in 2D and 3D. The quasi-
incompressible regime was achieved by considering a high gas
pressure. They found that turbulence associated with the

FIGURE 6 | RTi growth rate as a function of the dimensionless
gravitational acceration obtained from the two-fluid linear analysis of Díaz et al.
(2012) in the incompressible case. Two unstable modes are present, with the
one related with the neutral fluid being present in whole range and having
a larger growth rate. The dashed lines correspond to the colisionless limit,
while the different solid lines denote different degrees of ion-neutral coupling
indicated through the parameter Y (defined in the text). Adapted from Díaz
et al. (2012). © AAS. Reproduced with permission.
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nonlinear evolution of the RTi amplifies the magnetic field,
preferentially on small scales. This effect is more important in
3D than in 2D. The growth of fingers and plumes display the
generation of vortex structures associated with secondary KHi.
The fully developed structures appear to be sensitive to the initial
magnetic field strength and orientation. The growth of
instabilities across the magnetic field is more prominent, a
result already anticipated by the theoretical linear analysis.

Subsequent 3D simulations with higher resolutions provided
more in-depth information of the small-scale evolution of the
perturbations. Isobe et al. (2005) performed 3D simulations of
magnetic flux emergence in the solar atmosphere in which the
RTi is shown to develop. The instability leads to the formation of
filamentary structure and small-scale current sheets. Dissipation
of the current sheets produces plasma heating, which may me
relevant in the solar corona. The simulations also indicate that
magnetic reconnection is initiated locally by the RTi, while in
turn the reconnection process affects the growth of the instability,
resulting in a spatially intermittent reconnection. Thus, the
simulations of Isobe et al. (2005) clearly show that
reconnection is an essential ingredient of the nonlinear
evolution of the RTi.

Stone and Gardiner (2007) performed a rather general
numerical study of the RTi in 3D by considering different
initial configurations for the magnetic field. They show that
uniform magnetic fields cannot suppress the instability in 3D.
As linear theory predicts, interchange modes perpendicular to the
field can grow at the same rate as in HD, while the magnetic field
only stabilizes modes with large longitudinal wavenumbers. In
the nonlinear simulations, this results in a highly anisotropic
structure as the RTi evolves, as already anticipated by, e.g., Jun
et al. (1995). The magnetic tension can inhibit secondary
instabilities and reduce the growth of small scales and the
mixing of plasmas. As a consequence of the restrained
turbulent mixing, the fingers and plumes associated with the
primary RTi can grow faster. However, a sheared magnetic field
can significantly delay the instability and modify the structures
that are formed in the full nonlinear regime. Later results by
Ruderman et al. (2014) in the linear regime seem to support the
importance of magnetic shear for the RTi growth rate. Stone and
Gardiner (2007) used their results to explain the morphology of
the optical filaments observed in the Crab nebula. However, more
recent adaptive mesh refinement simulations by Porth et al.
(2014) indicate that with very high resolutions, the filamentary
structure driven by the RTi becomes less similar to the one
observed in the Crab nebula.

Due to its observational importance (see Berger et al., 2008;
Ryutova et al., 2010; Berger et al., 2010, 2011, 2017), the nonlinear
development of the RTi in solar prominences has been intensely
studied in the last decade. Also in the solar context, Moschou et al.
(2015) showed indications of the RTi or interchange instability
during numerical simulations or coronal rain formation and
downfall. From here on, we shall put the focus of our
discussion to the case of simulations in solar prominences.
Again, we refer readers to Hillier (2018) for a comprehensive
review on RTi simulations in prominences. What follows is a brief
summary of some relevant results.

Hillier et al. (2011) performed the first attempt to simulate the
RTi in a quiescent prominence. They considered a modification
of the classic Kippenhahn-Schlüter model (Kippenhahn and
Schlüter, 1957) in which a high-temperature, low-density tube
was placed in the center of the model. The RTi drives upflows that
interact with each other and create larger plumes through an
inverse cascade process. The upflows advect the magnetic field
lines through the structure, but the field line curvature is not
heavily affected. The dynamics of the simulations compares
qualitatively well with the observations, but the obtained
upflow velocities in the model are lower than those observed.

Hillier et al. (2012a,b) revisited the same Kippenhahn-Schlüter
configuration and performed an improved analysis of the
simulations. Hillier et al. (2012a) carried out a detailed
parameter study. They showed that the instability creates low-
density filaments inside the prominence that are aligned with the
direction of the magnetic field. This implies that a 3D RTi mode,
i.e., a mode with both parallel and perpendicular components of
the wavenumber, grows inside the prominence. For some range of
parameters and initial conditions, the velocity and width of the
simulated upflows can match the observed values. Subsequently,
Hillier et al. (2012b) investigated a particular aspect of the
simulations related to the process of magnetic reconnection.
The RTi fingers and plumes and their associated shear flows
resulted in the formation of current sheets that can reconnect.
This reconnection allows the formation of downflowing blobs
that may be related to the observed knots in prominences (see,
e.g., Chae, 2010).

The Kippenhahn-Schlüter model used in Hillier et al. (2011,
2012a,b) can be understood as a local model of the prominence.
Other works have studied the RTi in prominences considering
more global models. Using a 3D arcade model for the prominence
magnetic field, Terradas et al. (2015a) showed that the RTi can
also grow in fully detached prominences suspended above the
photosphere. The chromosphere was not included in the model.
The magnetic field structure was anchored at the photosphere by
means of the line-tying condition. The downflows developed in
the model of Terradas et al. (2015a) may or may not reach the
photosphere depending on the strength of the magnetic field in
the prominence. For sufficiently intense magnetic fields, an
oscillatory behavior of the flow is obtained, suggesting that the
magnetic field is nonlinearly suppressing the RTi. The
photospheric line-tying may also play a role. Magnetic shear is
able to reduce or even to suppress the RTi completely for the
considered spatial resolution. Indeed, further simulations by
Terradas et al. (2016) using a twisted flux rope model display
a much more stable behaviour than the arcade model regarding
the RTi.

The development of the RTi in a whole-prominence model
was also explored in the numerical simualtions by Keppens et al.
(2015). They performed ideal MHD simulations at high
resolution with an adaptive mesh refinement code. A
horizontal background magnetic field nonuniform in the
vertical direction was assumed, which introduces a local
magnetic shear inside the prominence. The considered vertical
profiles for the density and temperature aimed to represent a
suspended prominence mass above the photosphere and
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chromosphere. The simulations show the quick generation of
nonlinear magnetoconvective motions. The downflows associated
with the RTi impact and reflect on the chromosphere, so that
chromospheric plasma gets mixed with the prominence plasma
suspended high in the corona. The results of Keppens et al. (2015)
suggest that the nonlinear RTi may be intimately involved in the
mass cycle of prominences and the interchange of material between
prominences and the chromosphere.

An extension of the work by Keppens et al. (2015) was done in
Xia and Keppens (2016). The main difference with the previous
work was that the prominence was assumed to be formed by two
parallel slab-like layers instead of a single monolitic mass. The
simulations show that the two layers of the prominence evolve
coherently due to their magnetic connectivity, since the mainly
horizontal magnetic field transversely crosses both slabs. The RTi
similarly evolves in the two layers following an equivalent
dynamics to that discussed in Keppens et al. (2015). A detail
of the strongly nonlinear evolution can be seen in Figure 7.
Interestingly, the vertical density structures formed during the
nonlinear evolution of the RTi may appear as horizontal thread-
like structures when seen from the top of the prominence, which
may explain the different structures observed in prominences
above the solar limb and filaments on the solar disk.

All the papers cited above performed MHD simulations and none
considered the effect of partial ionization. Hillier et al. (2010)
investigated the evolution of the Kippenhahn-Schlüter prominence
model under the presence of Cowling’s diffusion. However, they were
only concerned with the diffusion of the magnetic field and their
simplified model neglected all coupling with the plasma dynamics. A
pioneering work where the role of partial ionization effects on RTi
simulations was explored was done by Khomenko et al. (2014b), who
considered the single-fluid equations for a PIP including the

ambipolar diffusion term. Khomenko et al. (2014b) performed
2.5D simulations of the RTi initiated at the corona–prominence
interface with a constant magnetic field perpendicular or almost
perpendicular to the plane. They found that the configuration is
always unstable, which agrees with the expected behavior based on
linear theory (Díaz et al., 2012; Díaz et al., 2014). The growth rate of
the small-scale modes in the non-linear regime is up to 50% larger
than that obtained in equivalent ideal MHD simulations. Significant
ion-neutral drift occurs at the corona–prominence interface (drift
differences between ions and neutrals have been detected in
prominences, see Khomenko et al., 2016). A faster downward
motion of the neutral component with respect to the ionized
component is obtained (see also Terradas et al., 2015b). The
differences in temperature of the RTi bubbles between the ideal
and ambipolar cases can be as large as 30% because of the
additional heating associated with the dissipation of perpendicular
currents by ambipolar diffusion (see Figure 8). The results of
Khomenko et al. (2014b) clearly show that partial ionization effects
have a measurable influence of the RTi onset and evolution in
prominences, particularly in the small scales.

Recently, Popescu Braileanu et al. (2021a), Popescu Braileanu
et al. (2021b) have extended the single-fluid simulations of
Khomenko et al. (2014b) to the two-fluid case. Although their
simulations remained 2.5D as in Khomenko et al. (2014b), the
background model was improved by considering a smooth
interface instead of a sharp transition and by including
magnetic shear. The two-fluid simulations took into account
viscosity, thermal conduction, ionization/recombination, and
energy and momentum transfer through collisions between
neutrals and charges. In Popescu Braileanu et al. (2021a) the
study focused on assessing the effects of a smooth interface and
magnetic shear. They showed that magnetic shear reduces or even
suppresses the instability growth rate, as previous theoretical
studies in the single-fluid approximation already anticipated
(see, e.g., Ruderman et al., 2014). In turn, the inclusion of a
continuous transition affects the length scales of the perturbations
that develop due to the RTi, especially for wavelengths
comparable to the density gradient length scale. In Popescu
Braileanu et al. (2021b) the emphasis was put in investigating
the effects of collisions within the framework of the two-fluid
model. For prominence conditions, ionization and
recombination do not significantly influence the development
of the RTi main structures. Secondary structures formed during
the later nonlinear development and mixing seem to be more
affected by ionization and recombination processes. Ion-neutral
collisions play a role in determining the evolution and dissipation
of small structures during the nonlinear stage of the RTi. Ion-
neutral decoupling affects smaller scales than viscosity. The
nonlinear development of the RTi drives decoupling between
neutrals and charges. The decoupling is more pronounced on
small spatial scales and at locations of strong gradients in density
and/or magnetic field. The ion-neutral flow decoupling is more
pronounced in the horizontal direction. So, compared with the
single-fluid simulations of Khomenko et al. (2014b), the two-fluid
simulations of Popescu Braileanu et al. (2021a), Popescu
Braileanu et al. (2021b) display a more complex and rich
behaviour at small scales, where two-fluid effects become of

FIGURE 7 | A 3D view of a snapshot of the simulations by Xia and
Keppens (2016) on the RTi development in a two-layer prominence. The
snapshot shows a later stage of the evolution deep into the nonlinear regime of
the instability. Adapted from Xia and Keppens (2016). © AAS.
Reproduced with permission
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relevance and the ion-neutral decoupling takes place (see
Figure 9). Another important difference between the models
of Khomenko et al. (2014b) and Popescu Braileanu et al. (2021a),
Popescu Braileanu et al. (2021b) is that the latter papers
considered a sheared magnetic configuration. For sufficiently
large shear, the cutoff in the linear growth rate disappears, so
that the dissipative effect of the collisions can be better observed
at small scales.

THERMAL INSTABILITY

The first study of thermal instability in an infinite homogeneous
medium goes back to the paper by Parker (1953). Starting from a

balance between a temperature-independent heating and a
temperature-dependent radiative losses, the instability appears
when radiative losses increase as temperature decreases. The
consequence is that in regions which are cooler than the
surroundings, the temperature drops rapidly below the
equilibrium temperature in a catastrophic way, giving place to
a cool condensation. Zanstra (1955a,b) argued that in order to
have a pressure equilibrium, cool regions are compressed while
hot ones are expanded, which leads to the formation of cool
condensations, obtaining instability criterion different from
Parker’s criterion. However, Field (1965) pointed out the
incorrectness of the criteria obtained by those authors due to
incompleteness of both studies. Weymann (1960) seems to have
been the first to give the correct criterion when studying
chromospheric heating due to shock waves. Unfortunately,
and such as it is mentioned by Field (1965), the importance of
this paper was not fully appreciated.

Field (1965) studied the stability of a gas in mechanical and
thermodynamical equilibrium in an infinite, uniform and static
medium with a fixed density and temperature. In absence of
gravity and assuming a generalized heat-loss function, L, which
balances heating and cooling, Field’s well-known isochoric,
isobaric, and isentropic criteria were introduced, namely

zL
zT

( )
ρ

< 0, (37)

for an isochoric process, which is equivalent to Parker’s criterion,

zL
zT

( )
p

� zL
zT

( )
ρ

− ρ0
T0

zL
zρ

( )
T

< 0, (38)

for an isobaric process that governs condensation modes, and

zL
zT

( )
S

� zL
zT

( )
ρ

+ 1
c − 1

ρ0
T0

zL
zρ

( )
T

< 0, (39)

for an isentropic process. In these expressions, ρ0 and T0 are the
equilibrium density and temperature, and c is the adiabatic
coefficient. In all the cases above mentioned, only

FIGURE 8 | Difference between the temperature variations in a RTi simulation including ambipolar diffusion and an equivalent ideal simulation. The time elapsed is
given at the bottom of each panel. Red/blue colors mean hotter/cooler plasma in the simulations with ambipolar diffusion. Credit: Khomenko et al. (2014b), A&A 565,
A45, reproduced with permission © ESO.

FIGURE 9 | Snapshots of the ion-neutral decoupling in horizontal and
vertical velocities from a two-fluid simulation of RTi. The image displays a
close-up view of a well-developed ascending plume. The back lines are
isocontours of the magnetic potential. Credit: Popescu Braileanu et al.
(2021b), A&A 565, A45, reproduced with permission © ESO.

Frontiers in Astronomy and Space Sciences | www.frontiersin.org May 2022 | Volume 9 | Article 78908316

Soler and Ballester Instabilities in Partially Ionized Plasmas

https://www.frontiersin.org/journals/astronomy-and-space-sciences
www.frontiersin.org
https://www.frontiersin.org/journals/astronomy-and-space-sciences#articles


hydrodynamic equations in infinite and fully ionized plasmas
were considered. In a further extension of this study, Field (1965)
considered the inclusion of a magnetic field, which modifies the
momentum equation, and thermal conduction. The linear
analysis leads to a fifth-order dispersion relation, since two
additional wave modes, which correspond to Alfvén waves,
appear in addition to the magnetoacoustic and thermal modes.
Field (1965) pointed out that under a wide range of conditions
thermal equilibrium is unstable and, for instance, can lead to the
formation of condensations of higher density and lower
temperature than the surrounding medium. These results were
applied to the solar chromosphere and corona, planetary nebulae,
the galactic halo, and galaxy formation, which evidences that,
apart from solar plasmas, thermal instability is also of great
interest for astrophysical plasmas. Heyvaerts (1974) extended
Field’s study by including Joule dissipation in the energy equation
and a magnetized medium, which led to consider the anisotropy
of the transport coefficients and to take into account the effect of
Joule heating in the energy balance. An in-depth study of all the
involved modes was performed and applied to chromospheric
and coronal conditions.

Thermal Instability in Fully Ionized Plasmas
In the solar context, and related with prominences, thermal
modes were studied in detail in non-homogeneous and fully
ionized plasmas (e.g., van der Linden and Goossens, 1991b,a;
van der Linden, 1993; Ireland et al., 1995; Carbonell et al., 2004;
Soler et al., 2011, 2012a, and references therein). Furthermore,
Hildner (1974); Oran et al. (1982); Dahlburg and Mariska
(1988); Karpen et al. (1989b,a); Cargill and Hood (1989);
Carbonell et al. (2004) investigated both linear and nonlinear
thermal instabilities since this instability represents a key guide
to understand the formation of prominences and coronal rain in
the solar corona. Effects like thermal conduction across
magnetic field lines and resistivity, could play an important
role in the development of prominence fine structure (van der
Linden, 1993; Ireland et al., 1998). Field’s analysis has been
recently revised in a thorough study made by Waters and Proga
(2019) who, together with a discussion about the stability of
acoustic and condensation modes between the two wavelengths
corresponding to isobaric and isochoric instabilities, included a
numerical analysis of the non-linear evolution of condensation
modes with applications to active galactic nuclei (AGNs) and
giant molecular clouds (GCM). In solar corona conditions,
Claes and Keppens (2019) have also revisited Field’s
treatment and have combined it with numerical simulations
in order to check the predicted growth rates and to study the
non-linear regime. Claes et al. (2020) have investigated the
formation of threads by non-linear thermal instability,
obtaining that the threads are misaligned with the underlying
magnetic structure. This study reveals intricate
multidimensional processes that occur through in situ
condensations in a low plasma β regime representative of the
coronal medium. Falle et al. (2020) have also done another re-
analysis of Field’s results using a new approach based on
Whitham’s theory of wave hierarchies (Whitham, 1974),
which simplifies calculations and establishes relationships

between dispersion relations and the involved physical
processes. On the other hand, nonlinear thermal instabilities
in magnetized solar plasmas have also been studied by Dahlburg
et al. (1987); Karpen et al. (1988, 1989b) and the nonlinear
dynamics of radiative condensations in the case of optically thin
plasmas was reviewed by Meerson (1996). Readers are referred
to the cited papers for details on the physics of the instability.

In the case of fully ionized astrophysical plasmas beyond the
solar case, there is an extense literature about the role of thermal
instability in the interstellar medium and star formation. As a
matter of example (Gomez-Pelaez and Moreno-Insertis, 2002),
considered the linear thermal stability of an expanding and
cooling medium with thermal conduction and self-gravity
included, and the obtained results were applied to the case of
a hot optically thin interstellar medium such as supernova
remnants. Wareing et al. (2016); Ji et al. (2018); Fragile et al.
(2018); Choi and Stone (2012) showed that the thermal instability
mechanism can be responsible for the formation of molecular
loops in the galactic central region, the appearance of higher-
density filaments in star-forming clouds, the cold gas found in
galactic haloes, the vertical collapse of the accretion disk around
stellar-mass black holes, and that, together with anisotropic
thermal conduction, thermal instability can significantly affect
the shapes and sizes of cold clouds of the interstellar medium. For
a thorough review on thermal instability in the interstellar
medium, see Inutsuka et al. (2005) and references therein.
These examples point out the relevance of the thermal
instability in the astrophysical context. The importance of all
these studies rests in the fact that thermal instability can explain
the formation of dense and cool localized structures in
astrophysical and laboratory plasmas, when their masses are
less than those required for gravitational contraction i.e.
smaller than the Jean’s mass. (See Section 8).

Thermal Instability in Partially Ionized
Plasmas
The study of thermal instability in partially ionized plasmas is a
topic of great interest in astrophysics, however, the first studies
were performed with laboratory plasmas. The first demonstration
of thermal instability in fluids giving place to thermal convection
was done by Benard (1900). The theoretical interpretation was
made by Rayleigh who established that for any Rayleigh number,
R, greater than a critical one, Rc, thermal instability sets in.
Chandrasekhar (1961a) studied the thermal instability of a
layer of fluid in which an adverse temperature gradient is
maintained by heating the layer from below, and different
situations such as the Bénard problem, the presence of
rotation and/or magnetic field were considered. Following the
approach by Chandrasekhar (1961a), Sharma (1976) studied the
collisional effects between ions and neutrals on the thermal
instability of a horizontal layer of finite thickness made of a
partially ionized plasma, assumed incompressible, and permeated
by a vertical magnetic field. This layer is heated from below in
such a way that a steady temperature gradient is maintained. The
boundaries of the layer were assumed to be free and the limiting
fluid was considered non-conducting. After linearizing a
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simplified version of the two-fluid equations, including thermal
conduction, viscosity, resistivity, gravity, and collisions between
neutrals and charges, a dispersion relation was obtained that was
expressed in terms of the Rayleigh number. For stationary
convection, it was shown that collisions do not have any effect
on thermal instability. The possibility that the instability
appeared as an overstability was examined and conditions for
the non-existence of overstability were obtained. Furthermore,
the effect of the magnetic field on the thermal instability was
studied by considering the variation of the Rayleigh number with
the Chandrasekhar number, which includes the magnetic field. It
was found that the magnetic field has an stabilizing effect on
thermal instability. Later, Sharma and Sharma (1978), Sharma
and Sharma (1985) extended the previous study to the case in
which the fluid is rotating and arrived at the same conclusions for
the case of stationary convection. Regarding overstability, they
studied the variation of the Rayleigh number with respect to the
Taylor number, which includes rotation, and with respect to the
Chandrasekhar number, finding that rotation and magnetic field
have an stabilizing effect on thermal instability. Next, rotation
was removed and the Hall term was taken into account in the
calculations. As before, for stationary convection collisions have
no effect on thermal instability in a partially ionized Hall plasma,
however, they found that the Hall currents have a destabilizing
effect on thermal hydromagnetic instability when the variation of
the Rayleigh number with respect to the Hall parameter was
studied. In summary, the obtained results are similar to those of
Chandrasekhar (1961a) since collisions between ions and neutrals
do not have any influence on stationary convection. Finally,
Sharma and Misra (1986) considered the same configuration
as before but assuming that the fluid is compressible, and studied
the effect of compressibility on thermal instability. Following a
linear analysis, they found that the main effect of compressibility
is to delay the onset of the instability, therefore, compressibility
has an stabilizing influence.

On the other hand, observations have pointed out that small-
scale structures pervade the interstellar medium (ISM). In order
to understand the formation of these small-scale structures in the
weakly ionized cold HI and molecular clouds of the ISM, Fukue
and Kamaya (2007) made a thorough study of thermal instability
in amagnetized and weakly ionized plasma, based on the idea that
thermal instability could be a mechanism for further
fragmentation in molecular clouds. The reason is that even in
systems stable against gravitational instability, the systems can
become thermally unstable because the critical wavelength for
thermal instability is smaller than that for gravitational (Jeans)
instability, which means that the size of the critical length is
smaller than Jean’s length. Using the two-fluid approach (see
Subsection 2.2), Fukue and Kamaya (2007) studied the effect of
ion-neutral friction on the growth of thermal instability, focusing
in the condensation mode rather than in the oscillatory modes.
After linearizing the two-fluid equations, a sixth order dispersion
relation was obtained, which describes two sets of three modes:
one of the modes in each set is the condensation mode and the
other two are oscillatory modes. From the dispersion relation it
can be seen that the critical wavelength for the condensation
mode, which is obtained by setting the growth rate equal to zero,

is not affected by ion-neutral friction. In order to study the
importance of the condensation mode for structure formation,
it is necessary to solve numerically the full dispersion relation,
and this was done for different values of the strength of magnetic
field and friction. In absence of magnetic field and friction, two
independent pure modes for ion and neutrals are present [see thin
curves in Figure 2 of Fukue and Kamaya (2007)], however, when
friction is allowed pure ion or neutral modes do not exist and, for
both components, the growth rate at larger scales decreases
because friction is more efficient at these scales [see thick
curves in Figure 2 of Fukue and Kamaya (2007)]. This figure
also shows that, when friction is allowed, the curves representing
the behaviour of the modes originate from the curves
corresponding to the case in which magnetic field and friction
are not considered [see thin curves in Figure 2 of Fukue and
Kamaya (2007)]. When magnetic field is taken into account, the
critical wavelength for the ion mode is enlarged, as the criterion
for thermal instability in a fully ionized magnetized plasma
indicates. However, the critical wavelength for the neutral
mode is not affected [see Figure 3 of Fukue and Kamaya
(2007)]. When the strength of the magnetic field is strongly
increased, the magnetic field completely stabilizes the ion mode,
and only the neutral mode appears in the thermal instability
diagram [see Figure 5 of Fukue and Kamaya (2007)]. When the
strength of ion-neutral friction increases, ion mode remains
stabilized for sufficiently intense magnetic fields, while the
neutral mode remains unstable but with a reduced growth rate
[see Figure 6 of Fukue and Kamaya (2007)]. Baruah et al. (2010)
investigated thermal instability in a weakly ionized plasma with
ionization and recombination such as in the envelopes of
planetary nebulae that surround red giant stars. The presence
of ionization and recombination affects the instability behaviour
and limits the size of the small structures which can be formed by
this instability.

As it is well-known, instability of thermal modes play an
important role in the solar context, in particular in solar
prominences or coronal rain, since it provides a mechanism
for plasma condensation in the solar corona. Following the
instability criteria introduced by Field (1965), it is
straightforward to conclude that the radiative loss function is
of great importance to determine the stability of thermal modes.
However, an accurate description of radiative losses in cool
plasmas, like prominences, is not an easy task because
solutions of the radiative transfer problem in non-local
thermodynamic equilibrium are needed. Taking into account
partial ionization effects, Soler et al. (2012a) studied the
stability of thermal modes in unbounded and uniform plasmas
with physical properties akin to those of solar prominences. The
single-fluid approximation was used. They considered three
different parametrizations for the radiative loss function: the
function proposed by Hildner (1974), the Raymond-Klimchuk
function (Klimchuk and Cargill, 2001), and a radiative loss
function derived from the CHIANTI atomic database (Parenti
et al., 2006; Parenti and Vial, 2007). Starting from single-fluid
equations (see Subsection 2.1) with ambipolar diffusion and
non-adiabatic terms included, a linear analysis was performed in
order to obtain a dispersion relation that describes two damped
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slow modes, two damped fast modes, and one thermal mode.
From the full dispersion relation, and after performing a first-
order expansion for a low-β plasma, an approximate dispersion
relation for slow and thermal modes can be obtained. Since for
the thermal mode in a static plasma the real part of the frequency
is equal to zero, we can write ω � is, therefore, due to the temporal
dependence exp( − iωt) assumed by Soler et al. (2012a), thermal
mode perturbations are proportional to exp(is), where s is the
growth rate. An approximate growth rate was obtained, which
depends on the non-adiabatic terms and Cowling’s diffusion.
When Cowling’s diffusion is set to zero, the growth rate of the
thermal mode in the case of a fully ionized plasma is recovered.
Next, the full dispersion relation was solved numerically.
Figure 10 shows a plot of the growth rate versus wavelength
for the case of fully and partially ionized plasma and different
temperatures and ionization degrees. In both plots, the
approximate and the full numerical solution of the dispersion
relation are compared. For the considered temperatures, it is
found that the approximate and full numerical solutions are in
good agreement which points out that magnetic diffusion plays a
negligible role in the value of the growth rate. On the other hand,
Figure 10 also shows that for fully or partially ionized plasma the
thermal mode is stabilized at short wavelengths which is due to
the fact that thermal conduction is stronger for short
wavelengths. On the opposite, for long wavelengths the growth
rate saturates becoming independent from the wavelength.
Furthermore, the growth rate decreases with the temperature.
When Cowling’s diffusion and thermal conduction by neutrals
are taken into account together, we can observe that the growth
rate increases when the ionization degree decreases. This is due to
an increase of the effective density of the plasma because, in the
constant pressure calculations of Soler et al. (2012a), the number
density of neutrals is increased when the ionization degree
decreases. In addition, when the ionization degree decreases
the critical wavelength increases due to the effect of thermal
conduction by neutrals. As in the case of fully ionized plasma, the
effect of magnetic diffusion on the growth rate is negligible.

Finally, the effect of thermal instability on the onset of the
gravitational or Jeans instability, described in subsect 8, has been
also considered.

FARLEY-BUNEMAN INSTABILITY

The Farley-Buneman instability (FBi), named after Farley (1963)
and Buneman (1963), and also called type I electrojet instability
(see Rogister and D’Angelo, 1970), is a low-frequency cross-field
two-stream instability that is of much relevance in the E region of
the ionosphere. The energy source of the instability resides in the
relative motions of ions and electrons in the direction
perpendicular to the ambient magnetic field. A strong enough
electric field, E, perpendicular to the background magnetic field,
B0, can drive a cross-field drift of particles, E × B0. The FBi in the
ionospheric E region is basically electrostatic, and the presence of
neutrals plays a fundamental role in setting the conditions for the
instability to be possible. In the ionospheric E region, the electron
gyrofrequency is much larger than the electron-neutral collision

frequency, while the ion gyrofrequency is much smaller than the
ion-neutral collision frequency. This means that electrons are
strongly magnetized while ions are very weakly magnetized
because of their frequent collisions with neutrals. In addition,
electron-ion collisions are negligible in the E region. The different
Hall mobility of ions and electrons produces a net current and, in
the lowest-order approximation, the FBi is triggered when the
drift velocity, U, exceeds the ion acoustic velocity, namely (see,
e.g., Fejer et al., 1984; Dimant and Milikh, 2003)

U≳ cs 1 + ψ⊥( ), (40)

where cs �

kB(Ti + Te)/mi

√
is the ion acoustic speed, and ψ⊥ �

]en]in/ΩeΩi is a parameter related with the electron and ion
magnetization, withΩe, i the electron/ion cyclotron frequencies. If
ion magnetization is taken into account, an additional
requirement for the instability is that Ωi/]in < 1, i.e., weak ion
magnetization (see Fejer et al., 1984). Predominantly, the
ionospheric FBi gives rise to field-aligned (type I) irregularities
that were first detected with radar techniques (see references in
Kelley, 2009) and was also observed in plasma laboratory
experiments (John and Saxena, 1975).

There is an abundant literature on ionospheric FBi. Owing to
the low-frequency nature of the instability, it can be studied using
multi-fluid or kinetic models describing the dynamics of ions and
electrons, but a single-fluid approach is not adequate because the
origin of the instability fundamentally resides in the different
response of ions and electrons. Most of the works, while assuming
the presence of neutrals, do not explicitly solve their dynamics.
Detailed studies of the triggering, linear stage, and nonlinear
saturation of the FBi in ionospheric conditions can be checked in,
e.g., Sudan et al. (1973); Keskinen (1981); Fejer et al. (1984);
Dimant and Sudan (1995); Oppenheim et al. (1996); Otani and
Oppenheim (1998); Rosenberg and Chow (1998); Volokitin and
Atamaniuk (2010); Litt et al. (2016); Young et al. (2020), among
many other papers.

Although most of the work on the FBi has been done in the
ionospheric context, the instability has also been proposed to play
a role in the lower solar atmosphere, where the conditions of
electron and ion magnetization are analogous to those in the
ionospheric E region (see Leake et al., 2014). Research on the FBi
in the solar chromosphere has experienced a recent boost because
of its alleged relevance for plasma heating. Liperovsky et al. (2000)
first explored the prospects of the FBi excitation in the solar
chromosphere and discussed that, contrary to the case of the
ionosphere, electron-ion collisions may be important in the solar
chromosphere. Fontenla (2005) further discussed the importance
of the FBi in the chromosphere and explained that upward-
propagating fast MHDwaves could trigger the FBi in regions with
horizontal magnetic fields. Following this idea, a mechanism to
generate a cross-field ion-electron drift that would drive the FBi
in the chromosphere has been proposed by Fontenla et al. (2008).
This is based on the presence of a stream of neutrals across the
magnetic field that would drag the partially magnetized ions,
while electrons would remain tight to the magnetic field lines. So,
a cross-field ion-electron drift would also be generated. A similar
neutral-flow driving mechanism has been discussed by, e.g.,
Petrović et al. (2007) and Pandey et al. (2012). A neutral flow
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velocity larger than the ion acoustic speed is required for the onset
of the FBi. Fontenla et al. (2008) suggest that convective over-
shoot motions may provide the necessary neutral flows. Fontenla
et al. (2008) explain that the nonlinear saturation of the FBi would
drive turbulence that would greatly enhance the dissipation in the
chromosphere.

Another environment in the solar atmosphere where a
cross-field flow of neutrals takes place is in solar
prominences (see Gilbert et al., 2002; Terradas et al.,
2015b). The magnetic structure of prominences, formed by
quasi-horizontal dips, holds ions and electrons against gravity,
whereas neutrals continuously fall towards the solar surface.
Ion-neutral collisions slow down the neutral drainage, but a
net downward neutral flow remains. The inferred neutral flow
velocities are, in principle, much lower than the required
velocities for the onset of the FBi and the condition of weak
ion magnetization would not be applicable in prominences.
Nevertheless, the prospects of the FBi occurrence in
prominences have not been explored in detail.

Again in the chromosphere, Gogoberidze et al. (2009) explored
the physics of the FBi onset by including the finite magnetization of
the ions and Coulomb (ion-electron) collisions. Importantly, they
showed that owing to the effect of Coulomb collisions, the FBi can
be triggered in the chromophere even in regions where Ωi/]in > 1,
so that the ion magnetization is not negligible (see also Liperovsky
et al., 2000). However, contrary to the conclusions of Fontenla et al.
(2008), Gogoberidze et al. (2009) claim that plasma heating
associated with the FBi would be minor in the chromosphere.
Later, Gogoberidze et al. (2014) expanded the previous work by
including ion and electron thermal effects. They conclude that
destabilization by ion thermal effects is not important because it
is effectively suppressed by Coulomb collisions. However,
electron thermal effects are able to reduce the threshold
velocity drift for the FBi in the middle and high
chromosphere. Gogoberidze et al. (2014) conclude that the
FBi may produce density irregularities in the chromosphere,
but its role in chromospheric heating is less clear.

Madsen et al. (2014) further expanded the theory of
chromospheric FBi by considering a multi-ion approach, but
ion magnetization and Coulomb collisions were ignored. They
consider a chromospheric model including all abundant ion
species from hydrogen to zinc. Their multi-ion model predicts
that the FBi may be triggered by velocities as low as 4 km s−1,
lower than the neutral acoustic speed (see Figure 11), so that
neutral flows rising from the photosphere may easily make the
FBi common in the chromosphere. The effect of ion
magnetization in the multi-ion chromospheric model was
discussed by Fletcher et al. (2018), who find that ion
magnetization reduces that extent of the FB-unstable regions
in the chromosphere. Depending on the magnetic field strength,
the minimum trigger speed can occur near the temperature
minimum.

The papers on chromospheric FBi cited above mostly rely on
linearized theory, but the nonlinear evolution of the FBi has not
been explored in detail. Recently, Oppenheim et al. (2020) have
performed fully kinetic simulations in chromospheric conditions.
They show that a new kind of instabilities, called “thermal
instabilities” by Oppenheim et al. (2020), can easily generate
small-scale turbulence and heating in the plasma. We note that,
despite of having the same name, the thermal instabilities of
Oppenheim et al. (2020) have a different physical nature than
those discussed in Section 5. The mechanism underlying this new
thermal instability is closely related to the FBi, but has distinctly
different characteristics from the usual FBi, since electron and ion
thermal effects dominate the instability growth. The physical
picture of this FB-related thermal instability is explained in detail
by Oppenheim et al. (2020). As electrons drift across the magnetic
field, they collide with neutrals, becoming hotter. If an acoustic-
like compressional wave develops mostly in the plane
perpendicular to the magnetic field, it will cause a local wave-
induced electric field. This field will modify the electron drift
speed and, as a consequence, the amount of electron heating.
Heating would either increase if the new electron drift speed is
faster than the initial one, or heating would decrease otherwise. If

FIGURE 10 | (A) Numerically computed thermal instability growth rate (solid) and approximate value (dashed) vs wavelength for the CHIANTI-based loss function
and different values of the temperature in the case of a fully ionized plasma, i.e., ξ i � 1. (B) Same as panel a) for T � 16,000 K but in the partially ionized case with different
values of ξ i. Credit: Soler et al. (2012a), A&A 540, A7, reproduced with permission © ESO.
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the heating is reduced on the wave crests, then the pressure
gradient will push plasma into regions of already high density and
the perturbations amplitude will grow exponentially. The
threshold neutral flow to drive the usual FBi is considerably
higher than that required for this FB-related thermal instability.
Then Oppenheim et al. (2020) conclude that the thermal
instability grows first and dominates the wave growth and
ultimately, the nonlinear behavior of the plasma, although the
FBi can still be present. The results of Oppenheim et al. (2020)
indicate that nonlinear simulations are needed to fully
understand the nature of the FBi and related instabilities in
the chromosphere. Hence, future works should go in this
direction.

MAGNETOROTATIONAL INSTABILITY

One of the most important processes in astrophysics is accretion,
in which a fluid element describing orbits in a central field of force
loses angular momentum and spirals inwards. In order to take
place, an efficient mechanism to extract angular momentum is
needed. Hoyle (1960) suggested that only a MHD model could
explain the needed outward transport of angular momentum.
Many different physical mechanisms have been proposed (see
Julien and Knobloch, 2010, for a complete set of references), but
except one of them, the magnetorotational instability (MRi), the
rest of mechanisms do not provide an efficient extraction of the
angular momentum. However, it is also worth to point out that
magneto-centrifugally launched jets from accretion disks around
central objects like YSOs (Young Stellar Objects) or supermassive
black holes (SMBH) in galactic nucleus can be another
mechanism to remove energy and angular momentum,
although it is not an instability. The MRi is a fluid instability
known since, e.g., Velikhov (1959) and Chandrasekhar (1960).
Balbus and Hawley (1991) were the first to provide a simple
physical explanation for the process in the case of a fully ionized,
ideal MHD medium, in which magnetic field and matter are well
coupled. Essentially, it occurs when the angular velocity of a
conducting fluid in a weak poloidal magnetic field decreases
outwards. The MRi is fundamentally axisymmetric, grows on a
dynamical timescale τ ∼ (Ω)−1, is local, and its occurrence is
independent of field strength and orientation. The strength of the
magnetic field simply establishes the length of the fastest growing
mode (Balbus and Hawley, 1991).

Following Balbus (2003), the MRi instability can be described
as an spring-like instability. The simplest fluid system displaying
this spring-like instability is an axisymmetric gas disk in the
presence of a weak vertical magnetic field and the disk
equilibrium is due to a balance of gravitational and rotational
forces. If a fluid element is displaced in the orbital plane by an
amount ξ with a spatial dependence exp(ikz), where z is the
magnetic field direction, the ideal induction equation gives

δB � ikBξ, (41)

where δB denotes the variation of the magnetic field, and the
tension force is given by

ikB

μ
δB � −k2v2Aξ, (42)

where vA denotes the Alfvén velocity vector, vA � B/

μρ

√
, and k is

the wavenumber vector. Eq. 42 is the form of a spring-like force,
linearly proportional to the displacement ξ. The oscillatory
frequency, ω, for small displacements in the plane of rotation
of a disk with a uniform vertical magnetic field satisfies a
dispersion relation such as

ω4 − ω2 κ2 + 2k2v2A( ) + k2v2A k2v2A + R
dΩ2

dR
( ) � 0, (43)

where κ is the epicyclic frequency, which is the rate at which a
point of mass disturbed in the plane of its orbit would oscillate
about its average radial location,Ω is the angular velocity, and R is
the radius. If dΩ2

dR < 0, there is an exponentially growing root
(instability) for wavenumbers k which satisfy the instability
criterion given by

k2v2A < − R
dΩ2

dR
. (44)

The maximum unstable growth rate of the instability is,

|ω| � 1
2

dΩ
d lnR

∣∣∣∣∣∣∣ ∣∣∣∣∣∣∣, (45)

and the maximun growth rate occurs for wavenumbers such as

k2v2A( )max �
1
4
+ κ2

16Ω2( ) dΩ2

d lnR
. (46)

From Eq. 43 we can observe that the magnetic field appears
enclosed within the terms proportional to k2v2A, thus, even if B is
very small, and so vA is small, for very large wavenumbers the

FIGURE 11 | FBi trigger velocity in the solar chromosphere for several
magnetic field strengths. The plot is limited to pressures near the temperature
minimum. The trigger velocity decreases near the temperature minimum,
reaching speeds as low as 4 km s−1. The neutral acoustic speed is
plotted with a dashed line for reference. Adapted from Madsen et al. (2014).
© AAS. Reproduced with permission.
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magnetic tension can be important. This is the reason why the
MRi is very sensitive to very weakmagnetic fields since their effect
is amplified once multiplied by the wavenumber, k. The MRi
mechanism has deserved a lot of attention and has been
extensively studied in the context of astrophysical fluid
dynamics since differentially rotating systems with magnetic
fields are abundant in the Universe. Because of the extensive
literature on the MRi, here we have limited ourselves to review
only a few representative papers describing the research done on
MRi in some astrophysical topics. We shall put our focus on those
works that explored partial ionization effects.

As stated before, Balbus and Hawley (1991) considered the
case of a fully ionized, ideal MHD medium, in which magnetic
field and matter were well coupled. However, often other effects
such as Ohm’s and ambipolar diffusion and Hall’s dispersion can
be of importance. In addition, in some astrophysical
environments where the MRi can occur, plasmas are partially
ionized. In the case of weak ionization, charges can slip through
magnetic field due to collisions with neutral particles (Mestel and
Spitzer, 1956). Therefore, the MRi theory was generalized to
weakly ionized disks (Blaes and Balbus, 1994). From a purely
theoretical point of view without any specific astrophysical
application, most studies of the instability have used in the
single-fluid model, which is accurate enough at low
frequencies and in the long wavelength limit. However, to
account for high frequencies and short wavelengths, the study
of the MRi with the two-fluid model is necessary and the first
attempt to do so was preformed by Blaes and Balbus (1994).

More recently, Ren et al. (2011) investigated the MRi using a
two-fluid model in a rotating plasma permeated by a magnetic
field following an analytical approach. They derived a linear
dispersion relation for axisymmetric MRi in collisionless and
inviscid plasma, while non-ideal dissipation effects were
neglected. From the obtained dispersion relation, two different
cases were considered, non-magnetized case and weakly
magnetized case, and instability criteria were derived. The
results showed that the instability criteria in the non-
magnetized and weakly magnetized cases remarkably differ
from those predicted by the single-fluid model. Later, Ren
et al. (2012) considered the dynamical behaviour of a three-
component weakly ionized plasma in order to examine the effect
of collisions between charged species and neutrals on the MRi.
They considered a background magnetic field and a differential
rotation in the azimuthal direction. After linearizing the set of
equations and performing a normal mode analysis, a highly
complex dispersion relation was obtained which was analyzed
in different limits: no collisions, the MHD limit, and high-
frequency modes. For instance, in the limit of no collisions,
the dispersion relation can be greatly simplified and the results
show that collisions are indeed very important for the instability
criterion. On the contrary, when collisions are allowed and the
MHD limit is considered, the MRi behaviour is the same as for a
fully ionized plasma, as expected.

Astrophysical environments where the MRi is of great
importance range from protoplanetary and protostellar disks
to supernovae, neutron stars, and black holes. Related with
these astrophysical objects, an extensive research, considering

ideal and non-ideal effects, like Ohm’s diffusion (Mikhailovskii
et al., 1999), has been developed. However, of these astrophysical
scenarios only protoplanetary or protostellar disks can be
considered as partially ionized plasmas. Regarding
protoplanetary disks (PPDs), the MRi in weakly ionized and
uniformly magnetized accretion disks was studied by Sano and
Miyama (1999). They started from the MHD equations including
magnetic diffusivity in the induction equation and magnetic
dissipation in the energy equation. They considered an
axisymmetric equilibrium disk rotating with a Keplerian
angular velocity profile. Along the vertical direction they
assumed an isothermal disk in hydrostatic equilibrium with
constant sound speed, and a constant magnetic field with
azimuthal and vertical components. They performed a normal
mode analysis searching for axisymmetric modes with growth
rate, ω. Assuming that magnetic diffusivity and density are
spatially uniform, and in order to ponder the effect of Ohmic
dissipation, they performed a local analysis considering
axisymmetric perturbations proportional to kr and kz,
corresponding to the radial and vertical wavenumbers,
respectively. The obtained dispersion relation for this case was
analyzed in two different limits: incompressible (cs → ∞) and
compressible. In the incompressible limit, the corresponding
dispersion relation was solved and Figure 12 shows the
growth rate of the unstable mode versus the vertical
wavenumber, for different values of the magnetic Reynolds
number (Rm) when kr � 0. It can be observed that the MRi
growth rate is inversely proportional to the magnetic diffusivity,
therefore, an increase of the magnetic diffusivity stabilizes small-
scale perturbations. In the compressible case, the general
dispersion relation depends on three parameters: the magnetic
Reynolds number, the plasma beta, and the direction of the
magnetic field. Figure 13 shows the behaviour of the growth
rate in the compressible case versus the radial and vertical
wavenumbers for a particular set of parameters. For all the
parameters, the maximum growth rate exists on the axis
where kr � 0. When the strength of the azimuthal component
of the magnetic field is increased, the effect is to suppress the
unstable growth. According to Sano and Miyama (1999), the
effect of plasma beta is negligible. The results of the linear analysis
were applied to PPDs like the solar nebula. Sano and Miyama
(1999) concluded that the MRi happens in a region with a radius
greater than 15 AU, but it is suppressed inside this critical radius
owing to the effect of magnetic dissipation.

Later, Sano et al. (2000) showed how the unstable region is
modified for a variety of models of PPDs, taking into account
recombination of ions and electrons at grain surfaces. The stable
region shrinks as the grain size increases or the sedimentation
proceeds. Therefore, in the late evolutionary stages, PPDs can be
magnetorotationally unstable even in the inner regions.
Following with the consideration of different effects, Wardle
(1999); Balbus and Terquem (2001) investigated how the
inclusion of the Hall effect influences the stability of
protostellar disks, and they found that the maximum growth
rate and the characteristic wavelength of the MRi are both
strongly modified by the Hall effect. For instance, Balbus and
Terquem (2001) considered Hall-modified Alfvén waves in a
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uniformly rotating disk threaded by a vertical magnetic field and
plane wave perturbations with z-dependence. After linearizing,
azimuthal and radial equations for velocity and magnetic field
perturbations can be obtained and the dispersion relation is,

ω2 ± 2Ωω 1 − k2v2H
4Ω2( ) − k2 v2A + c2s( ) � 0, (47)

where cs is the sound velocity, vH is the Hall velocity (see
Balbus and Terquem, 2001), and the rest of parameters have
the same meaning as before. In Eq. 47, the plus sign
corresponds to left-hand polarization with respect to the
magnetic field direction, and the minus sign to right-hand
polarization. From the above dispersion relation it can be
concluded that there are no instabilities in a uniformly
rotating disk. Balbus and Terquem (2001) also considered
differential rotation in a disk threaded by a vertical
magnetic field, including resistivity and the Hall effect.
Assuming the same type of disturbances as in the previous
case, azimuthal and radial equations for velocity and magnetic
field perturbations can also be obtained. The transition
between stability and instability proceeds when ω � 0.
Imposing this condition in the perturbed equations, an
stability criterion can be derived, namely

k2v2A 1 + v2H
v2A

( ) 1 +
κ2

v2H
v2
A

4Ω2
⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠ + κ2η2

v4A

⎡⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎦< − 1 +
κ2

v2H
v2
A

4Ω2
⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠⎡⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎦ dΩ2

d lnR
.

(48)

When vH → 0 and η → 0 in Eq. 48, the standard criterion for
the MRi is recovered (Eq. 44). It is found that the Hall effect
allows that disks with either decreasingly outward or increasingly
outward angular velocity profiles become unstable while, on the
contrary, the standard ideal MRi affects only those disks with a
decreasingly outward profile.

Sano and Stone (2002) investigated the nonlinear evolution of
the MRi using 3D non-ideal MHD simulations for different initial
magnetic field geometries. They found that the accretion rate
depends on how efficient Hall’s and Ohmic’s terms are. Also,
they found that when themagnetic Reynolds number is larger than
a critical value, the MRi develops into MHD turbulence. When the
opposite happens, Ohmic dissipation suppresses the MRi. The
critical value for the magnetic Reynolds number depends on the
initial field configuration and is unaffected by theHall effect.When
PPD conditions are considered, the obtained results suggest that
the outer regions of the disk, with a radius greater than a critical
one, are unstable to the MRi and can become turbulent with an
efficient transport of angular momentum. However, for values of
the radius smaller than the critical one the MRi is suppressed by
Ohmic dissipation. This critical radius is of the order of few AU
while the typical size of PPDs is about 100 AU.

Pandey and Wardle (2012) made an exhaustive analysis of the
stability of a partially ionized, differentially rotating, diffusive disk
permeated by azimuthal and vertical magnetic fields including
Ohm, Hall and ambipolar terms. They used the single-fluid
model and the main obtained conclusions were: diffusive disks
are unstable to radial fluctuations, the upper and middle layers of
PPDs are susceptible to MRi and diffusive MRi, the MRi works
closer to the midplane of PPDs when the magnetic field is not
vertical, and a vertical magnetic field together with transverse
fluctuations are fundamental for the MRi in a disk dominated by
Hall’s and Ohm’s effects.

Simon et al. (2013b) used the single-fluid equations to perform
numerical simulations with the ATHENA code exploring the
effect of ambipolar diffusion on the MRi in the outer region of
PPDs, including vertical stratification and assuming a zero
vertical magnetic flux. In the case of idealized stratified
simulations with a spatially constant ambipolar Elsässer
number, turbulence induced by the MRi is similar to that in
the case without stratification and becomes stronger when the
effect of ambipolar diffusion is decreased. Also, the effect of
ambipolar diffusion on disk accretion was considered including a
vertical profile for the ambipolar Elsässer number. They found

FIGURE 12 |MRi growth rate as a function of the vertical wavenumber.
The modes shown in this figure are on the unstable branch for the case of kr �
0. The result of the ideal MHD case is shown as a solid curve. Other curves are
diffusive cases that have different values of the magnetic Reynolds
number. Adapted from Sano and Miyama (1999). © AAS. Reproduced with
permission

FIGURE 13 | Surface plot of the MRi growth rate in the compressible
case in the kr − kz plane with Rm � 1 and a particular set of parameters.
Adapted from Sano and Miyama (1999). © AAS. Reproduced with permission
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that the levels of surface turbulence were strong while the
accretion rates did not agree with those observed in T Tauri
stars. This discrepancy was attributed to the lack of a vertical
magnetic field. Later, Simon et al. (2013a) included ambipolar
diffusion together with a vertical magnetic field in the
simulations. The results suggested that there is a strong and
direct dependence of the accretion rates on the strength of the
vertical magnetic field, and that the MRi disappears for a certain
field strength. O’Keeffe and Downes (2014) carried out three-
fluid simulations of a weakly ionized disk examining the linear
and non-linear development of the MRi with and without flux.
They also explored the importance of its orientation with respect
to the net angular momentum vector. They used the multifluid
MHD code HYDRA suitable for weakly ionized plasmas and
studied the role of non-ideal effects, like ohmic dissipation,
ambipolar diffusion and the Hall effect, on the non-linear
development of the MRi in the region of the disk where the
Hall effect is dominant over the rest of non-ideal effects. The
results point out that the angular momentum transport is
significantly enhanced by the inclusion of all the non-ideal
effects, and that the Hall effect seems to be responsible for
the enhancement of the MRi where a net field (with appropriate
orientation) is present. Furthermore, when Ω · B is negative, the
MRi is suppressed and lower rates of angular momentum
transport are found. Regarding the same problem, Rodgers-
Lee et al. (2016) performed multifluid simulations including
ohmic dissipation, ambipolar diffusion and the Hall effect, and
focused on the turbulence arising from the non-linear
development of the MRi in radially stratified PPDs. They
also used the multifluid MHD code HYDRA and compared
the obtained results with those of ideal and non-ideal single-
fluid simulations. The main conclusion was that the obtained
results from the multifluid simulations were similar to those
obtained using single-fluid non-ideal simulations. On the other
hand, Béthune et al. (2016) have focused on the study of the
organised structures observed in PPDs, searching an
explanation based on the MRi. They investigated the
behaviour of global MRi-unstable disc models that are
dominated by the Hall effect. Using the PLUTO code, they
carried 3D unstratified Hall-MHD simulations of Keplerian
discs with Hall, Ohmic, and ambipolar Elsässer numbers.
The results show that when the strength of the Hall effect is
increased, a transition from a turbulent to a organised state
develops and magnetised vortices are formed, which means that
self-organisation by the Hall effect could explain the observed
structures in PPDs. Finally, Bai and Stone (2017) have done
two-dimensional simulations including the Hall effect and
ambipolar diffusion using the ATHENA++ code. These
simulations show that when a large-scale poloidal field is
aligned with the rotation axis of the disk, the Hall effect
drags magnetic flux inward at the midplane region, while
flux is pushed outward above and below the midplane. On
the opposite, for anti-aligned field polarity, the Hall effect
transports magnetic flux outward and produces a large
vertical field configuration in the midplane region. In this
case, the net rate of outward flux transport is two times
faster than in the aligned case.

Nonideal effects on the MRi development have been
studied also in the context of massive stars and
supernovae. If the core collapse supernovae contains a
weak magnetic field and has differential rotation, the MRi
instability should also be present. Kotake et al. (2004)
performed two-dimensional hydrodynamic simulations of
the magnetorotational collapse of a supernova core and
found that, once combined with anisotropic neutrino
radiation, the growth of the instability may enhance the
heating near the axis, which suggests that the formation of
extreme neutron stars like magnetars can be accompanied by
jet-like explosions. On the other hand, Wheeler et al. (2015)
used an stellar evolution code to study the magnetic effects of
the MRi and the Spruit-Tayler instability in models of rotating
massive stars which naturally develop very strong shear at
composition boundaries, a necessary condition for the MRi.
An interesting feature of this study is that the MRi can play a
key role in the mixing of internal layers, an effect that is not
pointed out by models neglecting MRi. In the final stages of
stellar evolution, Masada et al. (2007) studied how the
neutrino radiation affects the MRi in proto-neutron stars
since neutrino radiation plays an important role in the
momentum, heat, and lepton transports in proto–neutron
stars. These diffusive processes affect the growth rate of the
MRi. The study was performed using linear perturbation
theory and the results indicated that, even in these
conditions, the MRi can grow and when the toroidal
magnetic component dominates over the poloidal one,
nonaxisymmetric MRi modes grow much faster than
axisymmetric modes. Therefore, a complete understanding
of the three-dimensional nonlinear evolution of the MRi is
needed in order to understand the explosion mechanism of
core-collapse supernovae leading to the formation of neutron
stars (see Rembiasz et al., 2017, for a review).

The MRi is also relevant in black holes, since the gas orbiting
black holes looses angular momentum via MRi. As in any viscous
fluid, the transport of angular momentum by the MRi must be
accompanied by dissipative heating and the outward transport of
energy through the gas. If the gas is able to radiate away the
dissipated energy, it will settle into a geometrically thin Keplerian
accretion disk. Gas in such a disk spirals inward gradually through
a sequence of nearly circular orbits until it reaches the innermost
stable circular orbit. Once inside, gas can fall into the black hole
without any further loss of angular momentum. Therefore, MRi
also plays an important role in accretion disks around stellar and
supermassive black holes (Begelman, 2003)

TheMRi instability is highly relevant in different astrophysical
situations. However, in the solar context only a few studies have
been performed and none is related with partially ionized
plasmas. From here on, we focus on those works that
considered the solar case. Menou et al. (2004) studied the
local stability of stratified, differentially rotating fluids, to
axisymmetric perturbations in the presence of a weak
magnetic field and several nonideal effects, generalizing a
previous double diffusive case. As usual, they started from the
single-fluid MHD equations including gravity, resistivity,
viscosity, and thermal conduction. Using the Boussinesq
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approximation and after linearization, a fifth-order dispersion
relation was obtained. The complexity of the dispersion relation
prevents general necessary and sufficient conditions for stability
to be derived. In order to simplify the study, they considered two
separate limits, namely a perfectly conducting plasma and
inviscid plasma. Then, imposing that the five coefficients of
the dispersion relation be greater than zero, some inequalities
can be obtained and a condition for stability can be derived from
each inequality. Finally, the dispersion relation was solved
numerically assuming a standard model of the Sun (Bahcall
et al., 2001). The results show that in the case of a triple-
diffusive situation, the weakest diffusion process can
sometimes play a stabilizing role. In a specific numerical
application to the Sun upper radiative zone, which is
seismologically known to nearly rotate as a solid body, it was
found that moderate to strong levels of differential rotation would
indeed be unstable. This suggests that magnetized and
multidiffusive modes may have played an important role in
establishing the current solar internal rotation.

Also in the case of the Sun, Parfrey and Menou (2007)
considered, for the first time, the stability of the solar tachocline
with respect to the diffusive MRi for general field geometry. To
investigate whether instability exists for physically reasonable scales
and fields, and to confirm that theMRi is not stabilized by a realistic
entropy stratification, the triple-diffusive dispersion relation
(Menou et al., 2004) was numerically solved for axisymmetric
modes. For each considered magnetic configuration, the fastest
growing mode was considered (see Figure 14). From the results of
Parfrey and Menou (2007) it can be inferred that the solar
tachocline is magnetorotationally unstable for latitutes such that
θ ≤ 53° and stable close to the equator.

The role MHD turbulence driven by the MRi was studied by
Masada (2011) assuming a solar rotation profile obtained from
helioseismic data and a standard solar model. Using linear theory,
the location where the MRi should be active in the convective
zone and tachocline was determined. It was found that the MRi is
confined to the higher latitude tachocline and lower latitude near-
surface shear layer. Considering an axisymmetric WKB plane
wave perturbation in the Boussinesq approximation, the stability
of the system to the MRI is governed by a local dispersion
equation similar to that investigated by Menou et al. (2004).
By numerically solving the linear dispersion equation, the most
rapidly growingMRi mode at an arbitrary meridian point (r, θ) in
the solar interior was searched for. Potential locations for theMRi
development are shown in the colour map in Figure 15. The
colour scale represents the maximum growth rate of the MRi at
each local meridian point. The vertical and horizontal axes denote
polar and equatorial radii normalized by the solar radius. The
rotation profile adopted in this analysis is overplotted on the MRi
map with solid contours which increase from 330 to 480 nHz by
steps of 15 nHz. The MRi location is not drastically changed due
to the field strength and structure as long as a weak, vertical
component of the magnetic field is present. In this study, the
destabilizing effect arising from the unstable internal gravity wave
was eliminated to focus better on the destabilizing effect of the
MRi modes. In contrast, the stabilizing effect due to the density
stratification was consistently introduced in the analysis.

Finally, Kagan and Wheeler (2014) made a comprehensive
study of the MRi in the Sun. A dispersion relation for
nonaxisymmetric instability including the effects of shear,
convective buoyancy, and three diffusivities (thermal
conductivity, resistivity, and viscosity) was obtained. In order
to determine the unstable modes present at each location in the
Sun and the associated growth rates, a solar model was evolved
with the stellar evolution code MESA and angular velocity
profiles determined by GONG helioseismology. The
comparison with previous studies (Masada et al., 2007; Parfrey
and Menou, 2007; Masada, 2011) pointed out that the obtained
results were equivalent to those of Masada et al. (2007) for proto-
neutron stars with the difference that in the considered outer
convective region, the nonaxisymmetric MRi modes always grow
much faster than axisymmetric modes, in particular when
poloidal fields are very large or very small.

JEANS INSTABILITY

In the astrophysical context, the Jeans instability is of great
importance since it plays a relevant role in gravitational collapse
and fragmentation of gaseous structures. The gravitational
instability of an infinite homogeneous medium was initially
studied by Jeans (1902), who gave a criterion for this instability
based on a critical length, or Jean’s length. A thorough study of this
problem was made by Chandrasekhar (1961a) showing that Jean’s
criterion was neither affected by uniform rotation nor by a uniform
magnetic field. Later, many studies have investigated whether
Jeans’s criterion is affected by different physical effects in non-
rotating and rotating plasmas. Among others, the effects considered
have been: the Hall effect, viscosity and thermal conductivity, finite
resistivity, finite Larmor radius (FLR), porosity, and radiative heat-
loss function, considering either each effect separately or several of
them together (e.g., Kalra and Talwar, 1964; Sharma, 1974a;
Sharma, 1974b; Sharma and Prakash, 1974; Vyas and Chhajlani,
1989; Kaothekar and Chhajlani, 2012; Kaothekar et al., 2016;
Kaothekar, 2020). In all these studies, the approach was similar:
start from MHD equations including the considered physical
effects, linearize these equations, and assume that perturbations
behave as plane waves to obtain a dispersion relation. The
dispersion relation was then analyzed with the aim to
discriminate the influence of the different physical effects on
Jean’s criterion. In most of these studies, the main conclusion
was that Jean’s criterion was very robust in the sense that it
remained unaffected by the different physical effects considered.
Only in some particular cases, like that explored by Kaothekar and
Chhajlani (2012), it was found that radiative losses and thermal
conduction modify Jean’s criterion for gravitational instability.

The aim of most of these studies was to understand the
formation of astrophysical objects through gravitational
collapse, but in all these studies the considered astrophysical
plasmas were assumed to be fully ionized. However, it is well
known that, for instance, molecular clouds, HI regions and the
ISM are weakly ionized media made of a mixture of neutrals and
ionized species interacting through mutual collisions. Therefore,
it became of great interest to study the behaviour of gravitational
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instability in partially ionized plasmas, containing ions and
neutrals, and considering different physical situations. First of
all, the presence of magnetic fields was taken into account by
different authors. For instance, Mestel and Spitzer (1956)
analyzed star formation in clouds containing magnetic fields,
and the derived stability criterion was written in terms of Jean’s
length. In this case, ion-neutral collisions provide the coupling of
magnetic field to the neutrals. Also, the stability of interstellar
clouds against gravitational collapse and fragmentation in the
presence of magnetic fields was studied by Langer (1978) showing
that magnetic pressure provides with additional support against
collapse in the case of strong coupling between ions and neutrals.
As a consequence, the collapse of the gas is retarded. In the
magnetic support model for molecular clouds, a fundamental
quantity is the ratio between the self-gravitational and the
magnetic energies of a certain parcel of the fluid. When the
self-gravity of the cloud does not dominate the magnetic support,
the cloud is magnetically subcritical. When the opposite happens,
the clouds are supercritical. In the magnetic-support model,
clouds are assumed to be globally magnetically subcritical, and
thus absolutely supported against their self-gravity as long as the
ideal MHD regime is applicable. If some fraction of the mass has
to undergo gravitational collapse, material needs to loose
magnetic support. This can be accomplished through
ambipolar diffusion and, then, a dynamical collapse can take
place. Furthermore, the heating released by the friction between
ions and neutrals can contribute to heat clouds cores. The
description of the standard single-fluid approximation of this
process can be found in a review by Shu et al. (1987). See also
Ballester et al. (2018).

Apart of including a magnetic field, other physical effects were
also considered. In general, to perform these studies a similar
procedure as for the case of fully ionized plasmas was used,
starting from linearized perturbed two-fluid equations and
assuming that perturbations behave as plane waves, a general
dispersion relation was derived. Once obtained, the behaviour of
its roots were thoroughly analyzed allowing to determine the
influence of the different considered physical effect on the
instability. Following this approach, the same physical effects
as in the case of fully ionized plasmas were considered: finite
Larmor radius (FLR) introduced through a pressure tensor, finite
conductivity, Hall current, and frictional effects with neutrals,
inclusion of an oblique instead of a horizontal or vertical
magnetic field, rotating plasma carrying a uniform magnetic
field with Hall effect, oblique magnetic field and ion viscosity,
large scale magnetic field, non-Boltzmann distribution for
electrons and ions, radiation and thermal conduction, and
porosity (Bhatia, 1969, 1972; Kumar and Srivastava, 1990; Ali
and Bhatia, 1992b,a; Kumar et al., 1993; Bhatia and Rajib
Hazarika, 1995; Jacobs and Shukla, 2005; Borah and Sen, 2007;
Kaothekar and Chhajlani, 2012). As before, the general
conclusion was the same: no modification of Jean’s criterion.
However, Kaothekar et al. (2016) considered viscosity, thermal
conduction, radiative effects, porosity, magnetic field, and FLR,
and found that some of these physical effects affect the
gravitational mode in the transverse and longitudinal
directions of wave propagation, thus modifying Jean’s
condition in those directions. These results were similar to
those obtained by Prajapati et al. (2010). Finally, it is worth to
remark that while all these studies are of relevance in the

FIGURE 14 | Results of the MRi in the solar tachocline. Growth rate of
the fastest growing mode in units of the rotation rate as a function of the co-
latitude angle for radial (Br; black solid curve), latitudinal (Bθ; dashed curve),
and both radial and latitudinal (Br + Bθ; dot-dashed curve) magnetic
fields. The hatching indicates the maximally unstable region, as determined by
the Balbus stability criterion. The arrows above the plot delimit the areas
potentially subject to Tayler instability for radial and latitudinal fields. Active
regions are found to the right of the vertical long-dashed line. Adapted from
Parfrey and Menou (2007). © AAS. Reproduced with permission.

FIGURE 15 | Maximum growth rate of the MRi, cmax, is shown by the
colour map. The normalization is the local angular velocity Ω. The region with
the positive growth rate is the promising MRI location. The rotation profile is
overplotted by the solid contour lines. They increase by 15 nHz from 330
to 480 nHz. Note that the region with zero growth rate of the MRI is filled with
white. Reproduced from Masada (2011) by permission of Oxford University
Press.
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astrophysical context in general, when we focus on the solar case
these studies are not applicable.

DISCUSSION AND CONCLUDING
REMARKS

The purpose of this paper has been to give a general overview of
the role of partial ionization effects on some major fluid
instabilities that frequently appear in astrophysical plasmas.
The field of plasma instabilities in astrophysics is so vast and
the literature is so extensive that we can only aim to offer readers a
shallow grasp of this topic. Interested readers should resort to the
original works cited throughout the paper, where more detailed
explanations of the relevant results briefly discussed here can
be found.

The results included in the increasingly large body of literature
about partially ionization effects on instabilities, which has mostly
been developed during the last decade, allows us to summarize
some basic and common features:

• Partial ionization effects are relevant at sufficiently small
scales where the decoupling between charges and neutrals
can be effective.

• At those small scales, the different responses of charges and
neutrals to the influence of the magnetic field is what
fundamentally determines the distinct dynamics that a
PIP displays compared to a fully ionized plasma.

• The linear stage of the instabilities in a PIP is
characterized by a combination of the properties of
the equivalent instabilities in the MHD case (for the
charged species) and the HD case (for the neutral
species). In this regard, the presence of critical
thresholds, owing to the magnetic field, for the
triggering of the instabilities only appear in the
charged components. At small scales, the neutral
components remain largely unaffected and only feel
the magnetic field indirectly through collisions with
the charges. Thus, a PIP is generally more prone to be
unstable than a fully ionized plasma.

• The instabilities growth rate in a PIP are typically reduced
compared with the growth rates obtained in pure MHD or
HD cases. The reason is that collisions between charges and
neutrals, besides coupling both components, also act as a
dissipation mechanism.

• During the nonlinear development of the instabilities,
partial ionization effects that originally show up at small
scales, can have a measurable influence on the large-scale
evolution. Therefore, partial ionization can indeed affect the
large scales when the instabilities enter deeply into the
nonlinear regime.

• Dissipation mechanisms already present in fully ionized
plasmas as, e.g., Ohmic diffusion and viscosity, are typically
enhanced by the collisions between neutrals and charges. As
a consequence of this, the plasma heating during the
nonlinear evolution of the instabilities may be more
important in the presence of partial ionization. Non-

dissipative effects as, e.g., Hall’s effect, are also enhanced
by collisions.

• The single-fluid model with a generalized Ohm’s law,
although very useful and informative, misses part of the
rich dynamics of the instabilities at small scales, which are
more accurately described by the multi-fluid models. This is
especially relevant during the nonlinear evolution of the
instabilities.

Thanks to the extensive analytical and numerical research,
the triggering and linear stage of the instabilities can be
considered as well understood in most cases. Recently,
nonlinear numerical simulations including partial ionization
effects have also been undertaken in the research of some
instabilities. However, due to the computational complexity
and cost of the simulations, they are still mostly restricted to
simplified 2D or 2.5D set-ups, while large-scale 3D simulations
remain a challenge. Thus, the research in the following years
should focus on 3D simulations with the goal of understanding
the later evolution of the instabilities and their impact on the
plasma dynamics and energetics. In this regard, in most cases
the evolution of the instabilities leads to the generation of
turbulence and enhanced energy dissipation. Understanding
the processes of turbulence generation, exploring the form of
the turbulence spectra, and determining the dissipation rates
in a PIP are issues of great importance not only in astrophysics
but in plasma physics in general.

Only a selected number of classic fluid instabilities is discussed
here. In addition, the main emphasis of the review has been put
on solar physics. However, we are aware that many other types of
instabilities are also relevant in astrophysical plasmas and may be
affected by partial ionization effects. Readers may find more
information elsewhere. This paper aimed to be an
introductory and general guide to this topic with the goal of
helping interested readers to navigate through the huge literature
available.
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