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ABSTRACT

Context. During heating or cooling processes in prominences, the plasma microscopic parameters are modified due to the change of
temperature and ionization degree. Furthermore, if waves are excited on this non-stationary plasma, the changing physical conditions
of the plasma also affect wave dynamics.
Aims. Our aim is to study how temporal variation of temperature and microscopic plasma parameters modify the behaviour of
magnetohydrodynamic (MHD) waves excited in a prominence-like hydrogen plasma.
Methods. Assuming optically thin radiation, a constant external heating, the full expression of specific internal energy, and a suitable
energy equation, we have derived the profiles for the temporal variation of the background temperature. We have computed the
variation of the ionization degree using a Saha equation, and have linearized the single-fluid MHD equations to study the temporal
behaviour of MHD waves.
Results. For all the MHD waves considered, the period and damping time become time dependent. In the case of Alfvén waves, the
cut-off wavenumbers also become time dependent and the attenuation rate is completely different in a cooling or heating process. In
the case of slow waves, while it is difficult to distinguish the slow wave properties in a cooling partially ionized plasma from those in
an almost fully ionized plasma, the period and damping time of these waves in both plasmas are completely different when the plasma
is heated. The temporal behaviour of the Alfvén and fast wave is very similar in the cooling case, but in the heating case, an important
difference appears that is related with the time damping.
Conclusions. Our results point out important differences in the behaviour of MHD waves when the plasma is heated or cooled, and
show that a correct interpretation of the observed prominence oscillations is very important in order to put accurate constraints on the
physical situation of the prominence plasma under study, that is, to perform prominence seismology.
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1. Introduction

Observations of prominences/filaments suggest that they are
very dynamic plasma structures (Berger et al. 2008) embedded
in the solar corona and heated by coronal and chromospheric ra-
diation, while, at the same time, they cool by radiation, and their
physical properties, such as temperature, density, pressure, and
so on, quickly change with time. Impulsive releases of energy
that heat and disturb prominences, exciting waves and oscilla-
tions, come from energetic events such as jets, subflares, small
eruptions, and so on, happening in the neighbourhood surround-
ing prominences. Of course, once the prominence plasma has
been heated, increasing its temperature, and excited, triggering
oscillations, we must expect a cooling of prominence plasma as
well as a damping of the induced oscillations.

Heating processes leading to the disappearance of the promi-
nence in Hα, while it becomes visible in hotter spectral lines,
as well as cooling processes leading to the reappearance of the
prominence in Hα, have long since been the subject of obser-
vational and theoretical studies. The hypothesis of thermal dis-
appearances of prominences was suggested by Mouradian et al.
(1980, 1986) and Mouradian & Soru-Escaut (1989), to explain
why a prominence disappears in Hα, becoming visible in UV
lines (McAllister et al. 1992; Watanabe et al. 1992) while, af-
ter a few days, it reappears in the same place becoming again

visible in Hα. This phenomenon was called a sudden reappear-
ance (Malherbe 1989). These kinds of disappearances are tem-
porary (Soru-Escaut & Mouradian 1990) and do not lead to a
complete demise of the prominence, and from observations of
thermal disappearances these authors concluded that one of the
causes of the disappearance in Hα is hydrogen ionization, and
that the heating of the prominence is a rapid process while cool-
ing proceeds more slowly. Further studies about these phenom-
ena have been made by Mouradian et al. (1995), Taliashvili et al.
(2009). Different mechanisms such as flares (Malherbe & Forbes
1986), neighbouring hot coronal arches (Schmahl et al. 1982;
Mouradian et al. 1986), resonant absorption of Alfvén waves
(Ofman & Mouradian 1996), coronal mass ejections, and neigh-
bouring coronal holes (Taliashvili et al. 2009) have been sug-
gested as potential heating mechanisms producing an increase of
prominence temperature and leading to a thermal disappearance.

On the other hand, in many studies there is a tendency
to consider prominence plasma as fully ionized. However, al-
though in prominences the exact ionization degree, which de-
pends on physical conditions, is not well known, following
Patsourakos & Vial (2002), the ratio of electron density to neu-
tral hydrogen density seems to vary between 0.1 and 10, that is,
from almost neutral to almost fully ionized plasma. In this sense,
any imbalance between prominence heating and cooling pro-
cesses produces a temporal variation of prominence temperature,
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and when prominence plasma is heated, ionization takes place
and the degree of ionization increases. On the contrary, when
the prominence plasma cools down, recombination takes place
decreasing the ionization degree. As a consequence, the tempo-
ral variation of temperature and ionization degree modify mi-
croscopic plasma parameters such as mean atomic weight, re-
sistivities, viscosity, thermal conduction coefficients, and so on.
Therefore, if we excite waves in a plasma undergoing heating
or cooling processes, wave properties like velocity perturba-
tion, period, damping time, and so on must be affected by the
change of plasma physical conditions leading to a behaviour
completely different from the case of wave propagation in a sta-
tionary background plasma with constant temperature. In addi-
tion, since the aim of solar atmospheric seismology is to try
to determine difficult-to-measure physical parameters, one key
piece of information to perform seismology comes from ob-
servations of oscillations in coronal structures and, in particu-
lar, in solar prominences (regarding prominence seismology see
Arregui et al. 2012). The analysis of these observed oscillations
could provide us with useful information for the determination
of the physical conditions of the plasma under study and help us
to try to infer the numerical values of the microscopic plasma
parameters.

Until now, all of the studies of small-amplitude prominence
oscillations have interpreted these oscillations in terms of linear
magnetohydrodynamic (MHD) waves. Furthermore, these stud-
ies have been made by exciting small perturbations on a back-
ground equilibrium whose physical properties, akin to those of
solar prominences, do not change with time (see Arregui et al.
2012). A first attempt to understand how a temperature increase
or decrease modifies the properties of slow waves in a fully
ionized prominence-like plasma was made by Ballester et al.
(2016). In order to make further progress, our main aim here is to
study how the temporal variation of temperature, produced by an
imbalance between heating and optically thin radiation, and the
microscopic plasma parameters modify the temporal behaviour
of MHD waves excited in an unbounded hydrogen prominence-
like plasma. In the heating process, we start from an almost
neutral plasma which eventually becomes almost fully ionized,
while during the cooling process, the plasma goes from almost
fully ionized to almost neutral. Therefore, in our calculations we
must consider the full expression for the specific internal energy
able to describe the behaviour of the plasma in those different
situations. On the other hand, observations of solar prominences,
have been carried out in order to detect drift velocities between
ionized and neutral species (Khomenko et al. 2016; Anan et al.
2017) with contradictory results, therefore, we have used single-
fluid MHD equations (Ballester 2015) for the description of pro-
cesses taking place in our prominence-like plasma, and we have
sought analytical or numerical solutions to the linear MHD wave
equations.

Finally, for our calculations, the single-fluid approximation
has been used. This approximation assumes that there is a strong
coupling between all the components of the plasma, and it is
appropriate when the periods of the MHD waves are greater than
the relaxation time computed as the inverse of the sum of the ion-
neutral and neutral-ion collisional frequencies.

Summarizing, this is the first attempt to study the behaviour
of MHD waves in a plasma in which the temporal variation of
temperature, of the ionization degree, and of microscopic plasma
parameters, as well as the effect of several damping mecha-
nisms, are taken into account, since earlier studies of MHD
waves in a partially ionized prominence plasma always assumed

a stationary background equilibrium with constant temperature
and ionization degree.

2. Governing equations

As background configuration, we consider a homogeneous hy-
drogen plasma, with physical properties akin to those of solar
quiescent prominences, in which the temperature changes as a
function of time. The plasma is infinite in all directions and
threaded by a uniform and horizontal magnetic field B = B0 î.

The general single-fluid MHD equations (Ballester 2015) de-
scribing the considered background plasma, with gravity, viscos-
ity, and the Hall term neglected, are,

Dρ
Dt

= −ρ∇ · u, (1)

ρ
Du
Dt

= −∇p +
1
µ

(∇ × B) × B, (2)

∂B
∂t

= ∇ × (u × B) − ∇ × (η∇ × B)

+∇ ×

{
ηC − η

|B|2
[(∇ × B) × B] × B

}
− ∇ ×

[
Ξ̃G × B

]
, (3)

ρ
De
Dt
−

p
ρ

Dρ
Dt

= −L, (4)

p = ρR
T
µ̃
, (5)

∇ · B = 0, (6)

with u being the velocity, B the magnetic field, µ0 the mag-
netic permeability of free space, R the gas constant, µ̃ the mean
atomic weight, T the temperature, ρ the plasma density, and p the
plasma pressure. Since we deal with a partially ionized plasma,
we have introduced the relative densities of neutrals and ions de-
fined (Forteza et al. 2007, 2008) as

ξi =
ρi

ρ
, ξn =

ρn

ρ
, (7)

where ρi and ρn are the mass densities of ions and neutrals, re-
spectively. The degree of plasma ionization is characterized by
the ionization fraction, µ̃, defined as the mean atomic weight (the
average mass per particle in units of mp), then,

µ̃ =
1

1 + ξi
, (8)

which implies that µ̃ = 0.5 for fully ionized plasma and µ̃ = 1
for a neutral gas. In the induction equation (Eq. (3)), η and ηC
are the Ohm and Cowling resistivities (Soler 2010), respectively,
which in MKS units are given by,

η = 5.2 × 107T−1.5(30.5 − 1.15 log ne + 3.45 log T ), (9)

ηC = η +
ξ2

n B2
0

µ0αn
, (10)

where ne is the electronic number density, and αn is the neutral
friction coefficient given by,

αn = 0.5ξn(1 − ξn)
ρ2

mn

√
16kT
πmi

Σin, (11)

with Σin being the ion neutral collisional cross-section, and Ξ̃ the
diamagnetic current coefficient given by,

Ξ̃ =
ξn

αn
, (12)
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and G is a pressure function defined as,

G = 2ξn∇pi − ξi∇pn, (13)

where pi and pn correspond to ions and neutrals pressure.

3. Energy equation

Since the considered hydrogen prominence-like plasma becomes
partially ionized during the heating or cooling processes, in the
energy equation (Eq. (4)), the specific internal energy, e, for
a partially ionized hydrogen plasma containing ions, neutrals,
and electrons is composed of two terms. The first is the stan-
dard internal energy while the second represents the available
ionization potential energy (Prialnik 2000; Hansen et al. 2004;
Leake & Arber 2006),

e =
3p
2ρ

+
χ

H
ξi, (14)

where χ is the hydrogen ionization potential and H is the atomic
mass unit. In a fully neutral hydrogen gas (ξi = 0), the specific
internal energy is given by the first term in Eq. (14). When this
plasma is heated, part of the supplied energy is invested in ion-
izing hydrogen, while the rest is invested in increasing the tem-
perature. Then, because of the energy invested in ionization, the
temperature increase proceeds at a slower pace than when no
ionization takes place. When the plasma becomes fully ionized,
ξi = 1, pumping more energy to the plasma only leads to an in-
crease in temperature. Conversely, when a fully ionized plasma
is cooled, recombination in the hydrogen plasma starts to take
place and the energy released by this recombination goes to the
plasma, slowing the decrease of the temperature until the plasma
becomes fully neutral.

On the other hand, the right-hand-side term, L, in the energy
equation is given by,

L = ∇ · q + ρL − j · E − Qν, (15)

where q is the heat flux due to particle thermal conduction, L is
the heat-loss function which balances radiative losses with an ar-
bitrary external heating input, j · E is the generalized Joule heat-
ing, and Qν is the viscous heating. The conductive heat vector is
expressed as,

q = −κ∇T, (16)

where κ is the thermal conductivity tensor. The divergence of the
heat flux can be split into the components parallel and perpen-
dicular to the magnetic field lines as,

−∇ · q = ∇‖ · (κ‖∇‖T ) + ∇⊥ · (κ⊥∇⊥T ), (17)

where κ‖ and κ⊥ are the scalar components of the thermal con-
ductivity tensor parallel and perpendicular to the magnetic field,
respectively. In the case of a partially ionized plasma, and be-
cause of its isotropy, neutral contribution, κn, must be added to
parallel thermal conduction, κ‖e, which is dominated by elec-
trons, and to perpendicular thermal conduction, κ⊥i, dominated
by ions. Thus,

κ‖ = κ‖e + κn, (18)
κ⊥ = κ⊥i + κn. (19)

In terms of plasma parameters, the expression for the parallel
conductivity of electrons is,

κ‖e = 1.8 × 10−10 ξiT 5/2

ln Λ
W m−1 K−1, (20)

the perpendicular conductivity due to ions is,

κ⊥i = 1.48 × 10−42 ln Λξ3
i ρ

2

m2
i |B|2T 1/2

W m−1 K−1, (21)

while the conductivity of neutrals is given by,

κn = 2.44 × 10−2ξnT 1/2 W m−1 K−1. (22)

The heat-loss function, L, depends on the local plasma parame-
ters, and is written as the difference between optically thin radia-
tive losses (Hildner 1974) and a heating term. Then, our heat-loss
function can be expressed as,

L(ρ,T ) = ρχ∗Tα − hρaT b, (23)

with χ∗ and α being piecewise functions depending on the tem-
perature (Hildner 1974). For an optically thin plasma, radiative
cooling may not be fully justified in prominence conditions, or
at least for its most internal regions, because they tend to be op-
tically thick. In this case, radiative losses are greatly reduced
which can be represented by changing the exponent α in the
cooling function, for temperatures T ≤ 104 K, as well as by
changing χ∗ accordingly (Milne et al. 1979; Rosner et al. 1978;
Carbonell et al. 2004). The last term in Eq. (23) represents an
arbitrary heating function which can be modified by taking dif-
ferent values for the exponents a and b.

Finally, the general expression for the viscous heating in
terms of the viscosity tensor (Braginskii 1965) is,

Qν =
∑
m,n

Πmn
∂vm

∂xn
, (24)

where vm is the mth component of the velocity vector, and xn is
the nth coordinate, while the components of Πmn are expressed
in terms of the components of the stress tensor Wαβ.

4. Background plasma

The background state can be described as follows:

T0 = T0(t), p0 = p0(t), ρ0 = const., B0 = const., v0 = 0, (25)

where T0, p0, ρ0, B0, and v0 are the background temperature,
plasma pressure, density, magnetic field and velocity, respec-
tively, and we assume a constant density and no background
flow. Then, Eqs. (1)–(5) become:

ρ0 = const., u0 = 0, ∇p0 = 0, p0 =
ρ0RT0

µ̃
,

ρ0

[
R

(
1
µ̃

∂T0

∂t
+ T0

∂

∂t

(
1
µ̃

))
+

2
3
χ

H
∂

∂t

(
1
µ̃
− 1

)]
= −

2
3
L, (26)

where L = ρL = ρ
(
χ∗ρTα

0 − HρaT b
0

)
since j0 = 0, and ther-

mal conduction is absent because temperature is time-dependent
only, and we have neglected viscous heating. In the energy equa-
tion (Eq. (26)), the interplay between optically thin radiation,
heating, and temporal evolution of the mean atomic weight µ̃,
due ionization or recombination processes taking place in the
plasma, determines how the background temperature evolves
with time.

Although the assumption of LTE is not fully realistic for
prominence conditions, for the sake of simplicity, we compute
the temporal variation of the mean atomic mass, µ̃, by means of
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the Saha equation which for a hydrogen plasma can be written
as (Hansen et al. 2004),

n2
i (t)

nn(t)
=

(
2πmekBT0(t)

h2

)3/2

exp
[
−

χ

kBT0(t)

]
, (27)

where ni(t) and nn(t) are the time-dependent ion and neutral-
number densities, me is the electron mass, kB is the Boltzmann’s
constant, h is the Planck’s constant, and χ = 13.6 eV is the hy-
drogen ionization potential. From Eq. (27), we compute ξi and
ξn as functions of density and temperature as,

ξi(t) =
1
2

M(t)


√

1 +
4

M(t)
− 1

 , (28)

ξn(t) = 1 −
1
2

M(t)


√

1 +
4

M(t)
− 1

 , (29)

where

M(t) = 4 × 10−6ρ−1
0 T0(t)3/2 exp (−T ∗/T0(t)) , (30)

with

T ∗ = 1.578 × 105 K. (31)

Then, using Eqs. (8) and (28), the mean atomic weight can be
expressed as,

µ̃(t) =
1

1 + 1
2 M(t)

(√
1 + 4

M(t) − 1
) · (32)

Another parameter, which also varies with time, is the electron
number density whose expression can be obtained from the Saha
equation, and is given by

ne(t) =
ξn(t)
ξi(t)

(
2πmekBT0(t)

h2

)3/2

exp
[
−

χ

kBT0(t)

]
· (33)

To obtain the temporal variation of the temperature when the
plasma is heated or cooled, we substitute Eq. (32) in (26), and
we start from a background equilibrium with constant tempera-
ture. Next, we produce an imbalance between the radiative and
heating terms giving a value to the constant h. This value for
h is determined in the following way: in the case of heating,
we assume the initial temperature to be 4000 K, at which the
plasma is almost neutral (ξi ∼ 0.0004), and we impose a final
temperature of 9000 K, at which the plasma is almost fully ion-
ized (ξi ∼ 0.9994); while in the case of cooling, temperature
varies from 9000 K to 4000 K. Next, since radiation increases
or decreases with the temperature, when the plasma attains the
assumed final temperature, radiative and heating terms become
equal and setting the heat-loss function equal to zero, the con-
stant h can be obtained from

h =
χT (α−b)

f

ρ(a−1)
0

, (34)

where Tf is the final temperature and, for our calculations, it has
been assumed that a = b = 0, corresponding to a constant heat-
ing per unit volume. Other values for a and b do not introduce
significant differences in the computed temperature profiles.

Following the procedure described above, and once Eq. (32)
has been substituted in Eq. (26), we numerically solve Eq. (26) to

0 5000 10000 15000 20000 25000 30000

4000

5000

6000

7000

8000

9000

time (s)

T
e
m
p
e
ra
tu
re

(K
)

Fig. 1. Temperature vs. time for the cooling (red line) and heating (blue
line) processes. In all the plots, the initial temperature for the heating
process is 4000 K and the final temperature is 9000 K, while in the cool-
ing process, the initial and final temperatures are 9000 K and 4000 K,
respectively. Furthermore, from now on, in all the plots optically thin ra-
diation has been considered as well as the same constant density value,
ρ = 5 × 10−11 kg m−3.

obtain the temporal variation of the temperature when the promi-
nence plasma is cooled from 9000 K to 4000 K or heated from
4000 K to 9000 K. During the previously described processes,
we consider that all the energy supplied to or removed from
the plasma is invested into producing more ions (ionization pro-
cess) or neutrals (recombination process), while the excitations
of atoms are neglected.

Figure 1 displays the temporal behaviour of the temperature
profile when the plasma is cooled or heated and optically thin
radiation is considered. In this figure, and as we have explained
before, we observe that, initially, when the plasma is heated, the
slope of the temperature increase is very steep; later, while the
ionization degree changes, that is, when part of the energy in-
jected into the plasma is invested in increasing the ionization
degree, this slope becomes less steep and, once the plasma be-
comes almost fully ionized, the slope of the temperature increase
becomes steeper until the final temperature is attained. When the
plasma is cooled, the slope of the temperature decrease is, ini-
tially, very steep, however, when recombination processes start,
energy is poured into the plasma and the effect is that the slope
of the temperature decrease becomes less steep until the plasma
becomes almost neutral and the final temperature is reached. As
can also be observed in Fig. 1, the time needed to heat the plasma
up to its final temperature is much shorter than for the cooling
process in agreement with the observational results obtained by
Soru-Escaut & Mouradian (1990). The presence of the ioniza-
tion potential energy term in the specific internal energy helps
to properly describe the physical processes taking place in the
plasma since the temporal evolution of this term, involving the
ionization degree, represents an extra energy sink or source for
the plasma.

For the cooling and heating processes, and in the case of op-
tically thin radiation, Fig. 2 displays the temporal behaviour of
the two terms involved in the specific internal energy as well as
of the total specific internal energy. It shows that for a plasma
whose physical conditions are akin to those of a prominence
plasma, the term corresponding to the ionization potential en-
ergy cannot be neglected at all since when the plasma tempera-
ture evolves with time, and the ionization degree changes, this
term represents a strong contribution to the total specific in-
ternal energy. Furthermore, we can observe that in the cooling
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Fig. 2. Specific internal energy, e, vs. time for the cooling (left panel) and heating (right panel) processes. Internal energy is represented by red
lines, ionization potential energy by blue lines, and both terms together by black lines.
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Fig. 3. Relative density of ions, ξi (left panel) and neutrals, ξn (right panel) vs. time, for cooling (red lines) and heating (blue lines) processes.
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Fig. 4. Logarithms of Spitzer’s resistivity, η (left panel), and of Cowling’s resistivity, ηC (right panel) vs. time, for cooling (red lines) and heating
(blue lines) processes.

process, this term almost goes to zero, and the specific internal
energy becomes constant when the plasma becomes almost neu-
tral, while in the heating process this term starts from almost zero
and the specific internal energy becomes almost constant when
the plasma becomes almost fully ionized. Therefore, taking into
account the term of ionization potential energy in the specific in-
ternal energy (Eq. (14)), which has sometimes been disregarded
(Leake & Arber 2006), could be extremely important depend-
ing on the temporal evolution of the ionization degree and the
physical properties of the considered plasma. Finally, Figs. 3
and 4 show the temporal variation of microscopic plasma pa-
rameters such as the relative densities of ions and neutrals and

the Cowling’s and Spitzer’s resistivities, respectively, when the
plasma is heated or cooled, and for the case of optically thin radi-
ation. As can be seen in Fig. 4, Cowling’s resistivity, dominated
by ion-neutrals collisions, is much greater than Spitzer’s resis-
tivity, due to ion-electron collisions, and its temporal behaviour,
during heating or cooling processes, can be understood from
Eq. (10). During the cooling process, the first term in Eq. (10),
which describes Spitzer’s resistivity, increases, while the second
term also increases because of the interplay between the rela-
tive density of neutrals, ξn, and the neutral friction coefficient,
αn. The opposite happens during the heating process. When
the efficiency of radiative losses is reduced ad hoc in order to
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approximately represent optically thick radiation, the behaviour
of the temperature profile as well as of the different plasma pa-
rameters is similar, with the only difference being that a longer
time is needed to reach the final constant value.

5. Linear wave equations

Next, we impose small perturbations on the background state
and we describe the temporal and spatial behaviour of these
perturbations as f1(x, z, t) = f1(t)eikx xeikzz with f1(t) being
the time dependent amplitude of the perturbations, and kx,
kz the wavenumbers in the direction parallel and perpendicular to
the magnetic field. Then, the time dependent linear wave equa-
tions for coupled slow and fast MHD waves are,

∂ρ1

∂t
= −iρ0(kxvx + kzvz), (35)

∂vx

∂t
= −i

kx p1

ρ0
, (36)

∂vz

∂t
= −i

kz p1

ρ0
− i

B0

µoρ0
(kzBx − kxBz), (37)

∂Bx

∂t
= −Bx(k2

xη + k2
zηC) − (η − ηC)kxkzBz

−B0kzivz, (38)
∂Bz

∂t
= −Bz(k2

xηC + k2
zη) − (η − ηC)kxkzBx

−B0kxivz, (39)
kxBx + kzBz = 0, (40)

p1 =
R
µ̃

(ρ0T1 + T0ρ1), (41)

ρ0

(
1
µ̃

∂T1

∂t
+ T1

∂

∂t

(
1
µ̃

))
+ ρ1

(
1
µ̃

∂T0

∂t
+ T0

∂

∂t

(
1
µ̃

))
+
ρ0T0

µ̃

2
3

(ikzvz + ikxvx) + ρ1
2
3
χ

RH
∂

∂t

(
1
µ̃
− 1

)
= −

2
3R

((
κek2

x +κn

(
k2

x +k2
z

)
+ρ0LT

)
T1+

(
L+ρ0Lρ

)
ρ1

)
, (42)

while for Alfvén waves we obtain,
∂By
∂t

= iB0kxvy − (k2
xηC + k2

zη)By (43)

∂vy

∂t
=

B0

µρ0
ikxBy (44)

where ρ1, T1, p1, Bx, By, Bz, vx, and vy vz represent density, tem-
perature, pressure, magnetic field, and velocity perturbations, re-
spectively. The last two equations can be combined to give,

∂2vy

∂t2 + (k2
xηC(t) + k2

zη(t))
∂vy

∂t
+ v2

Ak2
xvy = 0, (45)

which describes the temporal behaviour of the perturbed velocity
amplitude of the Alfvén wave. In this equation, v2

A is the squared
Alfvén speed given by,

v2
A =

B2
0

µρ0
, (46)

which is constant in time, while η and ηC are time-dependent
functions.

Since our main interest is to describe the temporal behaviour
of MHD waves in a plasma whose temperature changes with
time, we are going to consider Alfvén, slow, and fast waves
separately.

6. Alfvén waves

Let us consider only parallel propagation (kx , 0, kz = 0) to the
magnetic field, In this case, and as can be obtained from Eq. (45),
the equation to be solved is,

∂2vy

∂t2 + k2
xηC(t)

∂vy

∂t
+ v2

Ak2
xvy = 0, (47)

where dissipation is only due to the time dependent Cowling’s
resistivity. We use the WKB method (Bender & Orszag 1978)
to seek an approximate analytical solution to Eq. (47). To this
end, we define a dimensionless time t′ = t/τ, where τ can be
related to the cooling or heating time. Then, we assume that the
perturbed velocity can be written as,

vy(t′) ∼ A(t′)eiτΦ(t′), (48)

where A(t′) is the amplitude. The condition of applicability of
the WKB approximation is that P/τ � 1, where P is the period
of the wave. After performing the corresponding substitutions in
Eq. (47) and considering only terms of order τ0 and τ−1, we are
left with the following equations,

Φ′2 − ik2
xηCΦ′ − k2

xv
2
A = 0, (49)

2iΦ′A′ + iAΦ′′ + k2
xηCA′ = 0, (50)

where ′ means the temporal derivative. Once solved, these equa-
tions provide solutions for the functions Φ and A, which ex-
pressed in terms of the original temporal variable, t, are,

Φ(t) =
1
2

[
ik2

x

∫
ηC(t)dt ±

∫ √(
4k2

xv
2
A − k4

xηC(t)2
)
dt

]
, (51)

A(t) = C exp

−∫ Φ′′(t)
(
Φ′(t) + iηC(t)k2

x

)
4Φ′2(t)(t) + k4

xη
2
C(t)

dt

 , (52)

with C being a constant, and the perturbed velocity being given
by,

vy(t) = A(t) exp [iΦ(t)] . (53)

When ηC = 0, that is, a fully ionized non-resistive plasma, we
are left with

Φ(t) = ±kxvAt, (54)
A(t) = C, (55)

which describes a propagating undamped Alfvén wave whose
velocity perturbation is given by vy(t) = C exp [ikxvAt]. When
ηC = const., that is, a partially ionized plasma with constant tem-
perature, we obtain

Φ(t) =
1
2

[
ik2

xηC ±

√(
4k2

xv
2
A − k4

xη
2
C

)]
t, (56)

and the perturbed velocity is given by,

vy(t) = C exp
[
−

1
2

k2
xηCt

]
exp

[
±

i
2

√(
4k2

xv
2
A − k4

xη
2
C

)
t
]
, (57)

describing, in principle, a damped propagating Alfvén wave.
However, previous studies about the propagation of Alfvén
waves in partially ionized plasmas using the single-fluid ap-
proximation have pointed out the presence of cut-off wavenum-
bers (Forteza et al. 2008; Zaqarashvili et al. 2012). The presence
of a cut-off wavenumber means that waves with a wavenum-
ber higher than the cut-off wavenumber are evanescent, that
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Fig. 5. Temporal behaviour of the cut-off wavenumber during cooling
(red line) and heating (blue line) processes.

is, the frequency becomes imaginary. A physical interpretation
of the presence of these cut-off wavenumbers was provided by
Soler et al. (2013) in terms of the tension and friction forces,
and when both forces are balanced the velocity perturbation be-
comes evanescent. In the case of Alfvén waves, and for a con-
stant temperature, the expression for the cut-off wavenumber is
(Forteza et al. 2008),

kx = ±
2vA cos θ

ηC cos2 θ + η sin2 θ
, (58)

where the + and – signs refer to parallel and anti-parallel prop-
agation with respect to the magnetic field direction, and θ is the
propagation angle with respect to the magnetic field. Therefore,
when only parallel propagation is considered, the above expres-
sion becomes,

kx = ±
2vA

ηC
, (59)

which can obtained from Eq. (57) by making the expression in
the parenthesis inside the bracket of the second exponential fac-
tor equal to zero. In our case, since the temperature changes with
time, Eq. (59) could not be suitable and would need to be mod-
ified. Then, we could follow a similar approach by making the
parenthesis inside the second integral of Eq. (51) equal to zero
to obtain an approximation to the cut-off wavenumber such as,

kx(t) = ±
2vA

ηC(t)
, (60)

whose only difference with Eq. (59) is the temporal dependence
of Cowling’s resistivity. Equation (60) points out that in this
case the cut-off wavenumber is not constant but time depen-
dent because of the temporal dependence of Cowling’s resis-
tivity. For instance, during the cooling process the value of the
cut-off wavenumber decreases because Cowling’s resistivity in-
creases while, inversely, during the heating process its value in-
creases because Cowling’s resistivity decreases, and both tem-
poral behaviours are shown in Fig. 5. Up to now, the observed
wavenumbers in small-amplitude prominence oscillations are in
the range 10−6−10−7 m−1 (see Arregui et al. 2012), which means
that they are always smaller than the cut-off wavenumbers for
Alfvén waves shown in Fig. 5.

In the case of a cooling process, Fig. 6 shows the effect of
the cut-off wavenumber. In the left panel, the term ηC(t)kx is al-
ways greater than twice the constant Alfvén speed, vA, because

of the chosen wavenumber, therefore, the frequency is always
imaginary, such as can be derived from Eq. (51), and the Alfvén
wave once excited becomes evanescent immediately, as seen in
Fig. 6 (right panel). The evanescent behaviour of the perturba-
tions excited at t = 0 with wavenumbers greater than the cut-
off wavenumber means that these perturbations cannot propa-
gate away from the place of the excitation in the form of trav-
elling waves. However, all the energy stored in the perturbation
is immediately dissipated, heating the plasma. This behaviour of
the Alfvén velocity amplitude has been obtained by numerically
solving Eq. (47) with kx = 5 m−1, kz = 0 together with the initial
conditions vy(0) = 1, v′y(0) = 0. On the contrary, in Fig. 7 (left
panel) twice the Alfvén speed and the term ηC(t)kx become equal
for a time t ∼ 23 000 s, at which the frequency becomes imag-
inary and the Alfvén wave would become evanescent. Figure 7
(right panel) shows the temporal behaviour of the real part of the
approximate frequency which becomes zero at the above men-
tioned time. In the case of a heating process, the left panel of
Fig. 8 shows the case in which the term ηC(t)kx is initially greater
than twice the constant Alfvén speed, vA, because of the cho-
sen wavenumber, therefore, the frequency is imaginary and the
Alfvén wave once excited becomes evanescent immediately, as
can be seen in Fig. 8 (right panel). For t > 5 s, ηC(t)kx becomes
smaller than twice the constant Alfvén speed, vA, and the fre-
quency becomes real. However, despite the frequency becoming
real, the wave needs to be re-excited in order to propagate. The
temporal behaviour of the real part of the approximate frequency
is shown in Fig. 9 which points out that the frequency starts to
be real close to t ∼ 5 s. Finally, in the heating case it is not possi-
ble to have ηC(t)kx always greater than twice the constant Alfvén
speed, vA, because, as can be seen in Fig. 4, Cowling’s resistiv-
ity decreases very rapidly and we would need an extremely large
and completely unphysical value for the wavenumber. These re-
sults confirm our previous analysis about the presence of cut-off
wavenumbers based on the WKB approximation.

On the other hand, from Eq. (51) we can also obtain further
information about the damping time and the oscillatory period
of the Alfvén wave. From the first exponential in Eq. (57), and
since we have a time-dependent Cowling’s resistivity, the damp-
ing time, τD, could be approximated by,

τD(t) =
2

k2
xηC(t)

, (61)

which implies a time dependent damping time because of
Cowling’s resistivity. Furthermore, from the second exponential
in Eq. (57), the approximated expression for the oscillatory pe-
riod, P, would be,

P(t) =
4π√

(4k2
xv

2
a − k4

xηC(t)2)
, (62)

which is also time dependent because of Cowling’s resistivity.
Next, and considering only parallel propagation to the mag-

netic field (kx = 10−6 m−1, kz = 0), we numerically solved
Eq. (47) together with the initial conditions vy(0) = 1, v′y(0) =
0. The chosen value for the parallel wavenumber corresponds
to a typical observed wavelength in prominence oscillations.
Figure 10 (left panel) displays a comparison of the Alfvén ve-
locity amplitude for the cooling and heating cases, showing
the different behaviour of the damping, which is determined by
the temporal behaviour of Cowling’s resistivity. In the cooling
case (red line), and for the wavenumber considered, the Alfvén
wave suffers an initial weak attenuation. However, this attenu-
ation increases with time, because of the temporal behaviour
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Fig. 6. Cooling case. Left panel: logarithms of twice the Alfvén speed, 2va, (blue line) and ηCkx (red line) vs. time. Right panel: evanescent
behaviour of the Alfvén velocity amplitude (kx = 5 m−1). The velocity amplitude has been normalized.
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Fig. 7. Cooling case. Left panel: logarithms of twice the Alfvén speed, 2va, (blue line) and ηCkx (red line) vs. time. Right panel: real part of the
frequency vs. time (kx = 10−6 m−1).
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Fig. 8. Heating case. Left panel: logarithms of twice the Alfvén speed, 2va, (blue line) and ηCkx (red line) vs. time. Right panel: evanescent
behaviour of the Alfvén velocity amplitude (kx = 5 × 10−6 m−1). The velocity amplitude has been normalized.

of Cowling’s resistivity, and the wave is almost completely at-
tenuated around t ∼ 15 000 s. From a physical point of view,
at the beginning of the cooling process, the neutrals density
is very small, which implies a very long damping time (see
Fig. 12 right panel), but, as time goes by, neutrals density in-
creases and the damping time slowly decreases. It is worth men-
tioning here that in Fig. 7 (left panel) at t ∼ 23 000 s, and

taking into account Eq. (58), the horizontal wavenumber be-
comes kx = 10−6 m−1, that is, the cut-off wavenumber coincides
with the parallel wavenumber used in our computations and,
therefore, the Alfvén wave should become evanescent. How-
ever, as stated before, around t ∼ 15 000 s the wave has been
completely attenuated and, consequently, the cut-off wavenum-
ber does not play any role in this case.
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Fig. 9. Heating case: real part of the frequency vs. time (kx = 5 ×
10−6 m−1).
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Fig. 10. Comparison of the Alfvén wave velocity amplitude vs. time for
the cooling (red line) and heating (blue line) processes. kx = 10−6 m−1.
The velocity amplitude has been normalized.

On the contrary, for the heating case (blue line), and as is
shown in Fig. 10 (left panel), the velocity amplitude is initially
strongly attenuated because Cowling’s resistivity at the initial
temperature has a very high value, but it decreases rapidly and
when the plasma becomes almost fully ionized at the final tem-
perature, this resistivity attains a constant and much smaller
value than at the initial temperature. Then, the second term in
Eq. (47) becomes very small and the Alfvén wave becomes al-
most undamped. In order to have a more strong damping, we
would need to increase the wavenumber up to a very unphysi-
cal value. In this case, initially, we have a very high density of
neutrals, which explains the strong damping; however, due to
the fast increase of the temperature, neutrals density quickly de-
creases and damping time becomes longer. This quite different
behaviour between the heating and cooling cases is produced by
the different profile of the increase/decrease of Cowling’s resis-
tivity which depends on the temporal behaviour of several pa-
rameters, as shown in Eq. (10), although the numerical value of
the horizontal wavenumber is also important because of its pres-
ence in the second term of Eq. (47).

Next, we performed a comparison of the Alfvén wave veloc-
ity amplitudes for three different cases: a plasma which is heated
or cooled with T0(t); an almost neutral plasma with T0 = 5000 K
and ξi = 0.02, and an almost fully ionized plasma with T0 =
8000 K and ξi = 0.99. The main effect influencing the behaviour
of Alfvén wave velocity amplitude is the temporal behaviour of

Cowling’s resistivity. Since for T = 8000 K, the numerical value
of Cowling’s resistivity is, in general, much smaller than in the
other two cases, in both panels of Fig. 11 we have only plotted
the cases corresponding to T0(t) and T0 = 5000 K. This com-
parison points out that the Alfvén wave velocity amplitude is
strongly attenuated in the case of an almost neutral plasma, as
should be expected, because its Cowling’s resistivity is much
greater, at least during the major part of the time interval con-
sidered, than for the plasma undergoing heating or cooling.

Finally, in Fig. 12 we have plotted, for a fixed wavenum-
ber, the temporal behaviour of the logarithm of the approximated
damping time (see Eq. (61)). We observe that in the cooling case,
initially, the damping time is very long, because Cowling’s re-
sistivity is small, and therefore the damping is weak, but later
on, Cowling’s resistivity increases and the damping time de-
creases becoming constant when Cowling’s resistivity becomes
constant, and therefore the attenuation becomes stronger. In the
heating case, the opposite happens; the damping time is very
short at the beginning, since Cowling’s resistivity is high, and
therefore the wave is initially strongly attenuated, but later on
the damping time increases, becoming constant, and the atten-
uation is very weak, as can be seen in Fig. 10. Regarding the
period, in the cooling case, initially, and since Cowling’s resis-
tivity is small, the period is basically coincident with that of an
ideal Alfvén wave, P = 2π

kxva
. Later on, the period starts to in-

crease rapidly, since, due to the increase of Cowling’s resistivity,
the denominator becomes smaller. In the heating case, Cowling’s
resistivity is initially very high, and therefore, from Eq. (62), the
period is longer than for the cooling case, but later, and since
the resistivity decreases rapidly, becoming constant, the period
also becomes constant and coincident with that of a pure Alfvén
wave.

In summary, the approximated expressions for the damping
time and period derived from the WKB approximation are in full
agreement with the numerical results obtained for the temporal
behaviour of the Alfvén velocity amplitude. On the other hand,
from Eq. (47), and assuming that the velocity amplitude behaves
like vy ∼ eiωt, an approximated expression for a modified Alfvén
speed can be obtained, which is given by,

Γa(t) =

√(
v2

a + iωηC(t)
)
, (63)

which is a time-dependent complex Alfvén speed. Using this
modified Alfvén speed, we could write a dispersion relation for
Alfvén waves such as,

ω2(t) − Γ2
a(t)k2

x = 0, (64)

and from it, the expressions for the damping time and period are
fully coincident with Eqs. (61) and (62) derived from the WKB
approximation. Furthermore, using Γa = Γr + iΓi, with Γr and
Γi, the real and imaginary parts of the modified Alfvén speed,
respectively, we could also write the velocity perturbation such
as,

vy ∼ eiΓateikx x = ei(Γr+iΓi)teikx x = ei(Γrkxt+kx x)e−Γikxt, (65)

which suggests that we could write an expression such as τD =
1

Γikx
representing a damping timescale. Comparing this expres-

sion with Eq. (57), we would conclude that Γi ∼
1

kxηC
.

7. Slow waves

In this Section, we study the temporal behaviour of slow waves
in a background plasma whose temperature changes with time.
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Fig. 11. Alfvén wave velocity amplitude vs. time. Left panel: plasma cooled from T0(t) = 9000 K to 4000 K (red line); partially ionized plasma
with T0 = 5000 K and ξi = 0.02 (blue line). Right panel: plasma heated from T0(t) = 4000 K to 9000 K (red line); partially ionized plasma with
T0 = 5000 K and ξi = 0.02 (blue line; kx = 10−6 m−1). The velocity amplitude has been normalized.
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Fig. 12. Temporal behaviour of the logarithm of damping time for the
Alfvén wave in the cooling (red line) and heating (blue line) processes
(kx = 10−6 m−1).

In the case of parallel propagation, from Eqs. (35), (36), (41),
and (42), we can derive a single differential equation for the per-
turbed velocity amplitude, vx, which is,

∂2vx

∂t2 + k2
xc2

s vx =
2
3

[
ρ1χ

ρ0H
∂

∂t

(
1
µ̃
− 1

)]
ikx

+
2
3


(
κek2

x + κnk2
x + ρ0LT

)
T1

ρ0

 ikx

+
2
3


(
L + ρ0Lρ

)
ρ1

ρ0

 ikx, (66)

which points out that the damping of slow waves is not affected
by resistivities, but only by thermal effects. From Eq. (66), an
analytical solution for the perturbed velocity, vx, cannot be ob-
tained. Therefore, we have numerically solved Eqs. (35)–(42)
with the initial conditions: vx(0) = 1, vz(0) = ρ1(0) = T1(0) =
Bx(0) = Bz(0) = 0, together with kx = 10−6 m−1, kz = 0, and we
have studied the effect of heating and cooling processes on the
temporal behaviour of the velocity amplitude of slow waves.

Figure 13 shows a comparison between three different sit-
uations: A plasma which is cooled or heated between 4000 K
and 9000 K; an almost fully ionized plasma with constant

temperature T0 = 8000 K and ξi = 0.99, and an almost neutral
plasma with constant temperature T0 = 5000 K and ξi = 0.02. In
the cooling case (Fig. 13, left panel), the damping time and the
period of the slow wave in the almost fully ionized plasma with
constant temperature and of the damping time and the period of
the plasma suffering the cooling process are very similar. For the
almost neutral plasma with constant temperature, however, the
period is longer and the attenuation weaker. In the heating case
(Fig. 13, right panel), the period of the slow wave is different
in the three considered plasmas while attenuation is stronger for
the almost fully ionized plasma than for the heated plasma, and
is weaker for the almost neutral plasma.

In order to have a quantitative understanding of the above
described features, from Eqs. (41) and (42), and assuming that
the perturbed pressure and density behave like p1, ρ1 ∼ eiωt, we
can obtain an approximate expression for the nonadiabatic sound
speed, Λs, which is given by,

Λ2
s (t) =

iωc2
s (t) +

T0(t)
ρ0

A − D − χ
H

∂
∂t (

1
µ̃
− 1)

iω + A T0(t)
p0

, (67)

with,

A = (γ − 1)
(
κe(t)k2

x + κn(t)k2
x + ρ0LT (t)

)
, (68)

D = (γ − 1)
(
L(t) + ρ0Lρ(t)

)
, (69)

which means that we have a complex and time-dependent nona-
diabatic sound speed. This expression is different from that cor-
responding to the nonadiabatic sound speed in a fully or partially
ionized plasma with constant temperature (Forteza et al. 2008;
Soler et al. 2008; Carbonell et al. 2009) because of the presence
of the fourth member in the numerator, which accounts for the
temporal variation of the mean atomic weight due to ioniza-
tion/recombination processes, together with the time-dependent
thermal terms. In the adiabatic case and for constant tempera-
ture, Eq. (67) becomes the adiabatic sound speed, c2

s . Using this
expression for Λs, we can write an approximate WKB-like dis-
persion relation for slow waves given by,

ω2(t) − Λ2
s (t)k2

x = 0, (70)

then, solving this equation, we obtain two complex solutions cor-
responding to slow waves and a purely imaginary solution cor-
responding to a thermal or entropy wave. From the complex so-
lutions for ω, we can obtain the wave period given by P = 2π

ωr(t)
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Fig. 13. Slow-wave velocity amplitude vs. time. Left panel: plasma cooled from T0(t) = 9000 K to 4000 K (red line); almost fully ionized plasma
with T0 = 8000 K and ξi = 0.99 (blue line); almost neutral plasma with T0 = 5000 K and ξi = 0.02 (black line). Right panel: plasma heated
from T0(t) = 4000 K to 9000 K (red line); almost fully ionized plasma with T0 = 8000 K and ξi = 0.99 (blue line); almost neutral plasma with
T0 = 5000 K and ξi = 0.02 (black line; kx = 10−6 m−1). The velocity amplitude has been normalized.
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Fig. 14. Left panel: slow-wave period vs. time for plasma cooled from T0(t) = 9000 K to 4000 K (red line); almost fully ionized plasma with
T0 = 8000 K and ξi = 0.99 (blue line); almost neutral plasma with T0 = 5000 K and ξi = 0.02 (black line). Right panel: slow-wave damping time
vs. time for plasma cooled from T0(t) = 9000 K to 4000 K (red line); almost fully ionized plasma with T0 = 8000 K and ξi = 0.99 (blue line);
almost neutral plasma with T0 = 5000 K and ξi = 0.02 (black line; kx = 10−6 m−1).

and the damping time given by τD = 1
ωi(t)

, where ωr(t) and ωi(t)
are the real and imaginary parts of ω(t), respectively. As in the
case of Alfvén waves, using Λa = Λr + iΛi, with Λr and Λi,
the real and imaginary parts of the nonadiabatic sound speed, re-
spectively, we could also write the velocity perturbation such as,

vx ∼ eiΛateikx x = ei(Λr+iΛi)teikx x = ei(Λrkxt+kx x)e−Λikxt, (71)

which suggests that we could write an expression such as τD =
1

Λikx
representing the same damping timescale as before, written

in terms of the imaginary part of the nonadiabatic sound speed.
Figure 14 (left panel) shows, for the cooling case, a compar-

ison between the periods of the slow waves in a cooled plasma,
in an almost fully ionized plasma, and in an almost neutral
plasma. The periods for the almost fully ionized plasma and al-
most neutral plasma are obtained from the nonadiabatic sound
speed with constant temperature and are constant, as must be ex-
pected; however, for the cooled plasma, the period varies with
time, showing an initial decrease, although after a short time it
starts to increase approaching the value of the period for the al-
most fully ionized plasma at T0 = 8000. Furthermore, from this
plot we can see why, in Fig. 13 (left panel) and during the time
interval considered, the slow wave has a similar period in the
cooled plasma and in the almost fully ionized plasma, while the

period is much longer in an almost neutral plasma. Figure 14
(right panel) shows a similar comparison but for damping times
and it can be seen that the damping times for the cooled plasma
and the almost fully ionized plasma are very similar, at least
during the time interval considered, which explains the more
or less simultaneous damping of the oscillation in both plas-
mas observed in Fig. 13 (left panel), while for an almost neutral
plasma the damping time is much longer, as shown in Fig. 14
(right panel). Following the same procedure, the behaviour of
the slow-wave period and damping time in the heated plasma,
as compared with that of almost neutral and fully ionized plas-
mas, can be understood. At the beginning, the slow-wave period
in the heated plasma is greater than in the almost fully ionized
plasma, as observed in Fig. 13 (right panel), but after a short
time it starts to decrease, approaching the value of the slow-
wave period in the almost fully ionized plasma. Regarding the
damping time, initially it is greater than for an almost fully ion-
ized plasma, but later on it decreases attaining a value similar to
that of the almost fully ionized plasma; this behaviour can also
be observed in Fig. 13 (right panel). Next, Fig. 15 shows, for a
heated/cooled plasma, a comparison of the slow-wave velocity
amplitude, which highlights the difference in period and damp-
ing time between both cases.

A6, page 11 of 17

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201731567&pdf_id=13
http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201731567&pdf_id=14


A&A 609, A6 (2018)

0 500 1000 1500 2000 2500 3000
-1.0

-0.5

0.0

0.5

1.0

time (s)

V
e
lo
c
it
y
a
m
p
li
tu
d
e

Fig. 15. Comparison of the slow-wave velocity amplitude vs. time for
the cooling (red line) and heating (blue line) processes (kx = 10−6 m−1).
The velocity amplitude has been normalized.

Ballester et al. (2016) analyzed the temporal behaviour of
slow waves in a fully ionized plasma undergoing heating or
cooling processes. In this analysis, the temporal variation of the
temperature profile was computed from the energy equation, in
which it was assumed that radiative losses were proportional to
the temperature, obtaining exponentially increasing or decreas-
ing temperature profiles. In the case of the studied slow waves,
the most important differences with respect to the results re-
ported here are related with the nonadiabatic sound speed, pe-
riod, and damping time. In our case, the nonadiabatic sound
speed involves thermal terms such as optically thin radiation,
thermal conduction by electrons and neutrals, and the tempo-
ral variation of the ionization degree; therefore, its expression is
completely different, and more realistic, than in Ballester et al.
(2016). Using the nonadiabatic sound speed, the temporal varia-
tion of the period and damping time can be obtained, and they are
very different from those in Ballester et al. (2016). In particular,
the damping time is much shorter in the case of the heated/cooled
partially ionized plasma, because radiative losses and thermal
conduction are more efficient than in the case of a heated/cooled
fully ionized plasma, and the period does not behave as an expo-
nentially increasing or decreasing function as in a heated/cooled
fully ionized plasma.

In the case of slow and fast waves in prominence and coro-
nal conditions, wave and thermal instabilities can be followed
using two instability criteria (Field 1965; Carbonell et al. 2004),
which, applied to our case, can be written as:

LT(t) −
ρ0

2
3 T0(t)

Lρ(t) < 0, (72)

for the isentropic criterion describing wave instability, and

LT(t) −
ρ0

T0(t)
Lρ(t) < 0, (73)

for the isobaric criterion describing thermal instability. Using our
results for slow waves, none of these criteria are satisfied, and
therefore neither wave nor thermal instabilities are present.

8. Fast waves

In this section we study the temporal behaviour of fast waves
when the plasma is heated or cooled. From Eqs. (35), (37)–(39),
(41), and (42), and in the case of perpendicular propagation,
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Fig. 16. Comparison of the fast wave velocity amplitude vs. time for
the cooling (red line) and heating (blue line) processes (kz = 10−6 m−1).
The velocity amplitude has been normalized.

(kx = 0, kz , 0), we can derive a single differential equation
for the perturbed velocity amplitude, vz, which is,

∂2vz

∂t2 + k2
z

(
c2

s + v2
a

)
vz =

2
3

[
ρ1χ

ρ0H
∂

∂t

(
1
µ̃
− 1

)]
ikz

+
2
3


(
κnk2

z + ρ0LT

)
T1

ρ0

 ikz

+
2
3


(
L + ρ0Lρ

)
ρ1

ρ0

 ikz + iv2
rma

Bx

B0
ηCk2

z . (74)

From the above equation we can infer that the damping of fast
waves is produced by Cowling’s resistivity together with thermal
effects. Since we cannot obtain an analytical solution for the ve-
locity amplitude vz, we have numerically solved Eqs. (35)–(42)
with the initial conditions: vz(0) = 1, vx(0) = ρ1(0) = T1(0) =
Bx(0) = Bz(0) = 0, together with kx = 0 and kz = 10−6 m−1.
Figure 16 displays, for the cooling and heating processes, the
temporal behaviour of the fast wave velocity amplitude show-
ing that, in principle, its behaviour seems to be similar to that of
Alfvén waves. However, comparing Fig. 16 to Fig. 10 (left panel)
we can observe that for the cooling process the behaviour of the
velocity amplitude for both waves is very similar because the
damping is dominated by the increase of Cowling’s resistivity,
while thermal effects do not play a significant role. Conversely,
in the case of the heating process, the behaviour of both velocity
amplitudes is very different since when Cowling’s resistivity de-
creases, the last term in the right-hand side of Eq. (74) becomes
negligible and thermal effects, coming from the second and third
terms, become dominant and are responsible for the final atten-
uation observed in Fig. 16. The reason is that when the final
temperature is attained and plasma becomes almost fully ion-
ized, Cowling’s resistivity becomes small again (see Eq. (10)),
and therefore its attenuation effect also becomes small and the
damping starts to be dominated by thermal effects. Furthermore,
Fig. 17 shows a comparison between the behaviour of the ve-
locity amplitude for a heated or cooled plasma and for an al-
most neutral plasma with a constant temperature T0 = 5000 K
and ξi = 0.02. In both cases, the damping is stronger for the
almost neutral plasma since the constant Cowling’s resistivity is
much greater than for the heated/cooled plasma during the major
part of the time interval in which the cooling/heating processes
are taking place. Therefore, the fast wave velocity amplitude in
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Fig. 17. Fast wave velocity amplitude vs. time. Left panel: plasma cooled from 9000 K to 4000 K (red line); almost neutral plasma with T = 5000 K
and ξi = 0.02 (blue line). Right panel: plasma heated from 4000 K to 9000 K (red line); almost neutral plasma with T = 5000 K and ξi = 0.02
(blue line; kz = 10−6 m−1). The velocity amplitude has been normalized.

the almost neutral plasma displays a strong attenuation. When
the same comparison is performed considering an almost fully
ionized plasma at T0 = 8000 K, the small value of Cowling’s re-
sistivity implies that the damping of the fast wave velocity ampli-
tude is very weak and takes place over a very long time. In sum-
mary, in the case of perpendicular propagation, the behaviour of
the fast wave velocity amplitude is quite similar to that of Alfvén
waves when the plasma is cooled, but it behaves in quite a dif-
ferent way when the plasma is heated because of the additional
damping due to thermal effects, which become dominant when
Cowling’s resistivity attains a small value. On the other hand,
using the same criteria for instabilities as for slow waves, fast
waves are stable and thermal instabilities are also absent.

9. Energy considerations

The total energy density, Ws, of slow waves propagating along
the magnetic field is obtained by adding kinetic and thermal en-
ergy densities, and is given by

Ws =
1
2
ρ0v

2
x +

p2
1

2ρ0c2
s
· (75)

For fast waves propagating perpendicular to the magnetic field,
this energy comes from the addition of kinetic, thermal and mag-
netic energy densities, and is given by

Wf =
1
2
ρ0v

2
z +

p2
1

2ρ0c2
s

+
(B2

x + B2
z )

2µ0
, (76)

while for Alfvén waves propagating along the magnetic field, it
is obtained by adding kinetic and magnetic energy densities, and
is given by

Wa =
1
2
ρ0v

2
y +

B2
y

2µ0
· (77)

To understand the temporal behaviour of the slow-wave total
energy density, we could start from the linearized continuity,

momentum, and energy equations to obtain, after some straight-
forward manipulations, the following expression:

∂
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+
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2
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dt
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2ρ0
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(
1
c2

s

)
−

2
3

p1

ρ0c2
s

[(
κek2

x + κnk2
x + ρ0LT

)
T1

]
−

2
3

p1

ρ0c2
s

[(
L + ρ0Lρ

)
ρ1

]
, (78)

in which the terms on the left-hand side provide the tempo-
ral variation of the wave, total energy density, and the diver-
gence of the wave energy density flux; on the right-hand side,
the first term accounts for the temporal variation of the mean
atomic weight, the second term comes from the temporal varia-
tion of the sound speed, and the third and fourth terms account
for radiative and conductive losses, respectively. These terms on
the right-hand side represent a source/sink, which account for
the generation or removal of the wave energy density per unit
time (Goedbloed & Poedts 2004). Therefore, when the right-
hand side is positive, the wave energy density increases with time
while, when it is negative, the opposite happens. When plasma
temperature is kept constant and thermal losses are neglected,
the right-hand side member is zero, then, Eq. (78) has the form
of a conservation equation, such as ∂W

∂t + ∇·Π = 0, with Π being
the energy flux, and the wave energy density remains constant in
time. On the other hand, while radiative and conductive losses
are always sinks of energy, the temporal behaviour of the first
and second terms on the right-hand side changes when a heat-
ing or cooling process is considered. For instance, the temporal
behaviour of the inverse of the squared sound speed, which de-
pends on a time-dependent temperature and mean atomic weight,
is positive in a cooling process but becomes negative during a
heating process, and the same happens in a fully ionized plasma
in which the mean atomic weight is kept constant while temper-
ature changes with time (Ballester et al. 2016).

Then, altogether, the temporal behaviour of the four terms
on the right-hand side of Eq. (78) determines the decrease rate
of slow-wave energy density, and Fig. 18 (left panel) shows, for
heating and cooling processes, the temporal behaviour of the
slow-wave total energy density characterized by a rapid decrease
due to the dominance of radiation and thermal conduction losses.
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Fig. 18. Left panel: temporal behaviour of the slow-wave total energy density vs. time in the cooling (red line) and heating (blue line) processes.
Right panel: temporal behaviour of the Alfvén wave total energy density vs. time in the cooling (red line) and heating (blue line) processes. In
both cases, the total energy density has been normalized with respect to its initial value (kx = 10−6 m−1).

Next, to understand the temporal behaviour of the Alfvén
wave total energy density shown in Fig. 18 (right panel), we
could start from the linearized momentum and induction equa-
tions to obtain the following expression,

∂

∂t

(
1
2
ρ0v

2
y +

1
2µ0

B2
y

)
−

B0

µ0

∂

∂x
(vyBy) = −(k2

xηC + k2
zη)

B2
y

µ0
· (79)

In this case, it is clearly seen that the sink term comes
from Cowling’s and Spitzer’s resistivities. Since in our case,
Cowling’s resistivity is, in general, much greater than Spitzer’s
resistivity, we can understand the temporal behaviour of the
Alfvén wave total energy density in terms of the dissipation pro-
duced by Cowling’s resistivity. In the cooling case, this resistiv-
ity increases with time attaining a very high value which pro-
duces a strong decrease in the total energy density as observed
in Fig. 18 (right panel). However, in the heating case, Cowling’s
resistivity is initially very high but decreases very rapidly with
time, therefore, a strong decrease of the total energy density is
initially seen in Fig. 18 (right panel). After a short time, when
the plasma becomes almost fully ionized at the final tempera-
ture, Cowling’s resistivity attains a very small and constant value
and the temporal variation of the total energy density is, conse-
quently with Eq. (79), quite small, as can be seen in Fig. 18 (right
panel).

In order to understand the temporal behaviour of the fast-
wave total energy density, we can also start from the lin-
earized continuity, momentum, induction, and energy equations,
to obtain,
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, (80)

in which the terms on the right-hand side account for the tempo-
ral variation of the mean atomic weight, the temporal variation of
the sound speed, and radiative, conductive, and resistive losses.
In this case, apart from Cowling’s and Spitzer’s resistivities,
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Fig. 19. Temporal behaviour of the fast-wave total energy density vs.
time in the cooling (red line) and heating (blue line) processes. Total
energy density has been normalized with respect to its initial value (kz =
10−6 m−1).

radiative and conductive losses are also responsible for the dissi-
pation of fast-wave total energy density. Figure19 shows the tem-
poral behaviour of the total energy density and while in the cool-
ing case the temporal behaviour is similar to that of the Alfvén
wave, in the heating case we can observe quite a different be-
haviour with respect to Alfvén waves because of the additional
dissipation due to radiative and conductive losses. In this case,
Fig. 19 shows how the temporal behaviour of the fast wave en-
ergy density changes around a time t = 1000 s, corresponding
to the time at which the plasma becomes almost fully ionized at
the final temperature, when resistivities attain their lowest value,
then, from this time on, thermal losses become dominant and the
total energy density decreases towards zero.

Finally, it is worth highlighting the presence, in the equa-
tions describing the temporal variation of total energy density
for slow and fast waves, of the terms describing the temporal
variation of the mean atomic weight and of the inverse of the
squared sound speed, which appear because of the processes
taking place in the plasma. The first term is due to recombina-
tion/ionization taking place during the cooling/heating processes
while the second appears because of the temperature and mean-
atomic-weight time dependence.
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10. Conclusions

Until now, all the studies of small-amplitude prominence oscilla-
tions have interpreted these oscillations in terms of linear MHD
waves. Furthermore, all these studies have been made by ex-
citing small perturbations on a background equilibrium whose
physical properties, akin to those of solar prominences, do not
change with time (Arregui et al. 2012). However, prominence
observations suggest that they are very dynamic plasma struc-
tures whose physical properties, such as temperature, density,
pressure, and so on, quickly change with time. The first attempt
to understand how a temperature increase or decrease modifies
the properties of slow waves in a fully ionized prominence-like
plasma was made by Ballester et al. (2016). However, promi-
nences are not always fully ionized plasmas, and therefore any
increase or decrease of the temperature changes the plasma ion-
ization degree, and these changes also modify the behaviour of
plasma microscopic parameters which, at the same time, mod-
ify the behaviour of MHD waves. Therefore, here we have made
the first attempt to study these effects on MHD waves excited
in a hydrogen plasma with physical properties akin to those of
prominences. During cooling or heating processes, the ioniza-
tion degree, and consequently the mean atomic weight, change
with time, therefore in the equation describing the specific in-
ternal energy, the second term accounting for the ionization po-
tential energy, which depends on the ionization degree, becomes
of paramount importance since it has a strong influence on the
profile of the temperature’s increase or decrease. However, the
effect of this term has sometimes been neglected in studies in
which temperature changes due, for instance, to reconnection
processes.

First of all, and once an imbalance between radiation and
heating has been imposed, in order to mimic cooling/heating
processes, we numerically solved the energy equation (see
Eq. (26)) suitable for our case, and obtained the time-dependent
temperature profiles. From these profiles, we can observe how
the ionization or recombination processes taking place affect the
temporal behaviour of the temperature. In the heating case, when
ionization processes start to take place, the rise of the tempera-
ture slows down until the plasma becomes fully ionized. In the
cooling case, when recombination processes take place, energy
is poured into the plasma and the decrease of the temperature is
also slowed down in such a way that it takes quite a long time
to reach the final temperature at which the plasma becomes neu-
tral. Once these profiles have been obtained, the temporal be-
haviour of the different microscopic parameters, such as resis-
tivities, conductivities, electronic, neutral and ion densities, and
so on, have also been computed.

Next, we studied the temporal behaviour of Alfvén, slow,
and fast waves separately and our conclusions are summarized
in the following paragraphs. Alfvén waves propagating parallel
to the magnetic field are described by means of Eq. (47), and
we observe that its damping is due to the dissipative effect of
Cowling’s resistivity. In order to obtain an analytical solution
for the perturbed velocity we applied the WKB method and the
obtained results have allowed us to make comparisons with the
numerical solution. Our results point out important differences
with respect to the behaviour of Alfvén waves in a plasma hav-
ing constant temperature and constant microscopic parameters.
When the plasma suffers cooling/heating processes, the tempo-
ral variation of resistivities modifies the oscillatory behaviour of
Alfvén waves, its period and damping time become time depen-
dent and are no longer constant, the cut-off wavenumbers also
become time dependent, and the attenuation rate of the wave is

completely different in a cooling or heating process because of
the different temporal behaviour of Cowling’s resistivity. These
results point out the large number of different situations that
can be found in observed prominence oscillations, which cor-
respond to different physical properties as well as to other pro-
cesses taking place in the plasma. A correct interpretation of the
oscillations observed in prominences would be of great impor-
tance in order to know with accuracy the physical situation of the
prominence plasma under study, that is, to perform prominence
seismology.

Slow waves propagating parallel to the magnetic field are
described by means of Eq. (66), and their damping is produced
by optically thin radiation and by the anisotropic and isotropic
thermal conduction of electrons and neutrals, respectively, while
resistivities do not play any role. Also, it is worth mentioning
the presence in the differential equation of a term describing the
temporal variation of the mean atomic weight. We have solved
numerically the system of differential equations describing these
waves and in order to interpret the obtained results we have com-
puted an approximated expression for the non-adiabatic sound
speed and, using this, we have written a dispersion relation for
slow waves in a plasma undergoing cooling/heating processes.
By numerically solving this dispersion relation, we have ob-
tained the temporal dependence of the period and damping time
of slow waves when the plasma is heated or cooled, which has
helped us to interpret our numerical results. Again, these results
point out that in plasmas suffering heating/cooling processes,
wave parameters such as period and damping time display quite
different temporal behaviours. For instance, by comparing the
behaviour of slow waves in almost neutral or fully ionized plas-
mas at constant temperature, we have shown how easy it would
be to confuse the slow-wave propagation in a cooled plasma
with that in an almost fully ionized plasma. Conversely, when
the plasma is heated, the period and damping time of slow
waves in the heated or in the almost fully ionized plasma are
completely different. While in the heated/cooled plasma the pe-
riod and damping time are time dependent, for the almost fully
ionized plasma with constant temperature, these parameters are
constant.

Fast waves propagating perpendicular to the magnetic field
are described by means of Eq. (74), and we observe that in this
case their damping is produced by the joint effect of Cowling’s
resistivity and thermal effects, but again it is worth mentioning
the presence in the differential equation of the term describing
the temporal variation of the mean atomic weight. Although the
temporal behaviour of the perturbed velocity corresponding to
Alfvén and fast waves is very similar in the cooling case, when
the heating case is considered, an important difference appears.
While in this case the final attenuation of the Alfvén wave is
very weak and takes a long time, for the fast wave, the attenu-
ation is stronger and proceeds more rapidly due to thermal ef-
fects. Again, the comparison of the temporal behaviour of the
fast-wave perturbed velocity in a heated/cooled plasma with that
in an almost neutral plasma with constant temperature, a high
value of Cowling’s resistivity and a fixed ionization degree, helps
us to understand how the different physical situations influence
this behaviour.

Next, for each MHD wave, we analyzed the temporal be-
haviour of the total energy density. The temporal variation of the
total energy density can be written in the form of an equation
which on the right-hand-side member includes the sources/sinks
of energy. It is instructive to enumerate those terms which, for
each wave, always play the role of sinks of energy. In the case of
Alfvén waves, the sink term is given by Cowling‘s and Spitzer’s
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resistivity, however, in the case of slow waves, the sink term
corresponds to radiative and conductive losses. For fast waves,
the sinks terms are resistivities and thermal losses together. On
the other hand, apart from those terms, two other terms appear on
the right-hand-side member of the temporal variation of the total
energy density for slow and fast waves. These terms come from
the temporal variation of the mean atomic weight and sound
speed, and, depending on the process considered, they can be
sources or sinks of energy. Figures 18 and 19 display the tem-
poral variation of total energy density for slow, Alfvén, and fast
waves, and we can observe the good agreement between these
plots and the conclusions raised from our analysis of the velocity
perturbation corresponding to each wave. For the slow wave, the
total energy density decreases more rapidly for the cooling pro-
cess than for the heating process, which means that attenuation
is more efficient in the cooling case, as we found for the velocity
perturbation. The same happens for Alfvén and fast waves; the
temporal behaviour of total energy densities fully agrees with
the temporal behaviour of the velocity perturbations. In particu-
lar, if we consider the fast wave and the heating process, we can
observe that, after some time, thermal effects dominate and the
total energy density decreases towards zero, as we found when
the corresponding velocity perturbation was analyzed.

Finally, it is worth mentioning that the obtained periods for
the different MHD waves under study satisfy the condition to be
greater than the relaxation time by several orders of magnitude,
which justifies the use of the single-fluid approximation.

Solar atmospheric seismology aims to determine physical
parameters that are difficult to measure by direct means in mag-
netic and plasma structures. It is a remote diagnostics method
that combines observations of oscillations and waves in mag-
netic structures, together with theoretical results from the anal-
ysis of oscillatory properties of given theoretical modes. In the
case of prominences (see Arregui et al. 2012), and in order to
make meaningful comparisons between observations and the-
oretical models, it is of key importance to develop, step by
step, more complete theoretical models taking into account ef-
fects which have not yet been considered. The final aim would
be to make available a database of templates of the oscillatory
behaviour of the key perturbed variables corresponding to dif-
ferent refined theoretical models. In this sense, this study is a
first step to describe the oscillatory behaviour of a partially ion-
ized prominence plasma undergoing heating and cooling pro-
cesses. Therefore, and from an observational point of view, the
described features of perturbed velocities, periods, and damping
times obtained from our study are of great interest for the future
analysis of prominence oscillation. For instance, in many cases,
the usual way to represent the observed damped oscillations is by
fitting the time signal with a time-decreasing exponential with
a characteristic damping time together with a harmonic func-
tion with constant period. Taking into account our results, this fit
could lead to incorrect conclusions, since in the case of Alfvén
or fast waves the damping of the velocity amplitude does not be-
have as an exponential function, and therefore we would obtain
an incorrect estimation of the period and damping time. Regard-
ing slow waves, our results point out that its velocity amplitude
behaves quite differently when heating or cooling processes take
place, and this behaviour is also different in a plasma with con-
stant temperature, which again points out how important is to
properly recognize the observed oscillation in order to perform
meaningful seismological studies. However, we could still think
of a worse scenario, since due to the intrinsic inhomogeneity of
the prominence medium, we could expect to have different phys-
ical situations in different prominence locations. For instance, in

some prominence regions, temperature could be rising, while in
others it is declining, which produces opposed variations of the
microscopic plasma parameters, while at the same time, waves
can be excited on this dynamic background. Furthermore, an-
other point of interest is the temporal behaviour of other per-
turbed variables, such as density, temperature, pressure, and so
on, which do not behave in the same way as the velocity per-
turbation. Therefore, while Doppler velocity information would
show some temporal behaviour for the velocity perturbation,
spectral line parameters such as intensity, line width, and so on,
which could be related to pressure or temperature perturbations
(Heinzel et al. 2014; Zapiór et al. 2016), could suggest quite a
different behaviour for other perturbed variables. Therefore, for-
ward modeling of the spectral line indicators would be necessary
to establish the relation between the variation of plasma pertur-
bations and the temporal evolution of spectral line parameters.
At the same time, these considerations point out, again, the in-
herent difficulty in interpreting the prominence oscillations ow-
ing to the many different effects that can be involved.

Finally, in this study, several simplifying assumptions have
been considered: among others, we have assumed a constant
density; local thermodynamic equilibrium in order to use a Saha
equation; and hydrogen plasma. Furthermore, and for the sake of
simplicity, a structureless medium has also been considered. Fu-
ture developments of this research could be to consider a multi-
species plasma, which would mean that we would have, simulta-
neously, a mixture of ionized and neutral species because of the
different ionization potentials; at 9000 K, for example, helium is
still neutral. Another extension could be to consider a structured
medium such as, for example, a cylindrical filament thread, al-
though we would expect that, in spite of the change of geometry,
the physical conclusions about the temporal behaviour of MHD
waves obtained in this study would remain.
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