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Abstract

This paper presents the first comprehensive review of the Mediterranean and Black
Sea meteorological tsunamis or meteotsunamis (atmospherically induced destructive long
ocean waves in the tsunami frequency band) based on the available literature, tools and
services. The Mediterranean and Black Seas are micro-tidal basins; therefore, rapid sea level
changes in the tsunami frequency band may strongly affect coastal regions and infrastructures
and endanger human lives. The review also includes a succinct bibliography of Mediterranean
and Black Sea meteotsunami papers and evaluates their structure in respect to geographical
extent, the type of tools used (observations versus modelling), and source processes in the
atmosphere versus ocean manifestations. This review continues with a presentation of major
meteotsunami events and a discussion about their sources, the resonant transfer of energy
towards the sea, their propagation towards shore and their interactions with bathymetry.
Meteotsunami monitoring and forecasting systems are overviewed with respect to available
observations, deterministic and stochastic modelling tools and operational early warning
networks. This review includes an important assessment of operational and research gaps and
ideas for improving research tools and understanding of various aspects of meteotsunamis.
The authors believe and hope that this review will help researchers and services to increase
or improve their capacities and skills for conducting better research on meteotsunamis, not
just in the Mediterranean and Black Seas, but in all ocean basins around the world affected by

this destructive and dangerous phenomenon.
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1. Introduction

Since ancient times, meteorological tsunamis or meteotsunamis — atmospherically
induced destructive long ocean waves in the tsunami frequency band — have been known to
impact coastal communities (Monserrat et al. 2006; Pattiaratchi and Wijeratne 2015; Vilibi¢
et al. 2016; Rabinovich 2020). In several cases, memorable events even gave birth to local
legends, for example, that of Vrboska Bay (Hvar Island, Adriatic Sea). There, after a procession
was hit by a meteotsunami (Sepi¢ and Orli¢ 2020), the coastal communities united. The Arabs
landed in Mazarra del Vallo (southwestern Sicily coast) in the 9™ century and named the local
river Mazaro (“possessed”) due to the propagation of a meteotsunami bore (Sepi¢ et al.
2018a). Since then, impacts by meteotsunamis have been recorded in a large number of
coastal communities in all continents of the world except Antarctica. In addition, a variety of
local names have been used for the phenomenon: rissaga in the Balearic Islands (Ramis and
Jansa 1983; Monserrat et al. 1991a 1991b), marrobbio (marrubbio) in the Strait of Sicily
(Colucci and Michelato 1976; Candela et al. 1999), milghuba in the Maltese Islands (Drago
2009), s¢iga (Stiga) in the Adriatic Sea (Hodzi¢ 1979/1980, Orli¢, 1980), abiki in Japan (Honda
et al. 1908; Nakano and Unoki 1962; Hibiya and Kajiura 1982), and Seebdir in the Baltic Sea
(Defant 1961; Metzner et al. 2000; Pellikka et al. 2014). In addition to locations with existing
local names for meteotsunamis, which presumably reflect the destructiveness of the past
meteotsunami events, there are a great number of additional places where severe
meteotsunami events occurred: the English Channel and UK coast (Proudman 1929; Haslett
et al. 2009; Williams et al. 2019), the Great Lakes (Ewing et al. 1954; Bechle et al. 2016), the
East US Coast, from Florida to Maine (Churchill et al. 1995; Sepi¢ and Rabinovich 2014; Vilibi¢
et al. 2014c; Wertman et al. 2014), the US and Canadian West Coast (Thomson et al. 2009),
the Patagonian Shelf (Dragani et al. 2014), the South African coast (Okal et al. 2014), the
Australian shelf (Pattiaratchi and Wijeratne 2014) and many other locations.

Occasionally, meteotsunamis are characterized by sea level oscillations of several
metres with periods from several minutes to an hour. Furthermore, meteotsunami events can
cause human losses and injuries (e.g., the 1954 and 2003 events in the Great Lakes — Ewing et
al. 1954; Linares et al. 2019; the 1979 Nagasaki Bay abiki — Hibiya and Kajiura 1982; the 2017
Dayyer meteotsunami in the Persian Gulf — Salaree et al. 2018; and the 2014 Odessa

meteotsunami — Sepié et al. 2018b) in addition to frequent, and sometime substantial, coastal
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infrastructure damage (Pattiaratchi and Wijeratne 2015). Still, the destruction and property
damage caused by meteotsunamis has been restricted to certain hot spots (harbours, bays,
beaches) and is much lower than that resulting from destructive seismic tsunamis due to the
smaller wave heights and spatial extent of meteotsunamis as compared to largest tsunamis.
In addition, human casualties from meteotsunamis are rare and occur during the most
extreme meteotsunami events, while such casualties can be substantial during strong seismic
tsunamis, in particular in those generating ocean-wide impacts (Gusiakov et al. 2019).

Because of the destructive nature of meteotsunamis, which can occur without warning
even during ‘calm’ weather, researchers have studied the physics of such events and their
generation and propagation/growth towards the shore. The most intriguing question, related
to how energy is transferred from the atmosphere to the meteotsunami waves, was explained
in 1929 as a resonance mechanism: the so-called Proudman resonance (Proudman 1929).
Namely, atmospheric disturbances with high-frequency (from minutes to hours) energy,
which can sometime be seen on old barogram records, may travel over shelf areas at the
speed of tsunami waves (i.e., U = (gH)"/?, where U is the speed of the atmospheric disturbance,
H is the water depth and g is gravity). If such conditions persist, the amplification of the wave
that is generated is multiplied (Rabinovich 2009). However, in real shelf areas, the varying
bathymetry, tides and currents are known to affect the strength of the resonance (Williams et
al. 2020), which can differ from the theoretical conditions described for flat bathymetries.
Travelling atmospheric disturbances may generate edge waves on sloping bathymetries near
a shore (so-called Greenspan resonance, Greenspan 1956) or may generate shelf waves
directly on shelves of limited size (Rabinovich 1993). Compared to tsunami waves,
meteotsunami waves are constantly modified by the force of the atmosphere during their
travel towards the shoreline (e.g., Hibiya and Kajiura 1982), while the bathymetry
simultaneously changes their properties. The waves can reach destructive levels along open
sea beaches, such as was observed during the Daytona Beach meteotsunami of 3 July 1992,
when wave heights reached 3 m above tide (Churchill et al. 1995). If the waves impact bays or
harbours, they can be further amplified through the harbour resonance (Wilson 1972;
Rabinovich 2009) and reach heights of up to 6 m, such as occurred during the Great Vela Luka
flood of 21 June 1978 (Vuceti¢ et al. 2009; Orli¢ et al. 2010).

Specific atmospheric conditions that lead to intense, long-lived and fast atmospheric

disturbances have also been investigated as mechanism of generating meteotsunami events.
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Physical mechanisms responsible for keeping energy near the sea surface over hundreds or
more kilometres are needed to reach a substantial amplification of the meteotsunami waves.
There are several atmospheric processes found to satisfy these conditions. Wave ducting of
internal gravity waves appears to commonly accompany meteotsunamis in the Mediterranean
and other mid-latitude locations (Monserrat and Thorpe 1996; Tanaka 2010; Sepi¢ et al.
2015a). Other processes in the world oceans include wave-CISK (Convective Instability of the
Second Kind, Belusi¢ et al. 2007), squall lines and derechos (Ewing et al. 1954; Churchill et al.
1995; Paxton and Sobien 1998; Sepi¢ and Rabinovich 2014), mesoscale convective storms
(Linares et al. 2019; Williams et al. 2020), and rain bands in tropical cyclones (Shi et al. 2020).
However, the capacity to reproduce the generation and propagation of meteotsunamigenic
atmospheric instabilities, including their interaction with orography, are at the edge of the
state-of-the-art atmospheric numerical model capacities (Renault et al. 2011; Horvath and
Vilibi¢ 2014; Denamiel et al. 2019a) due to both the physics implemented and the coarse
resolution.

In recent decades, through the increased availability of high-frequency (1 min) sea level
and meteorological data and the development of numerical tools accompanied by the
increase in high-performance computing resources, the physics of meteotsunami waves and
their atmospheric sources have been increasingly researched (Vilibi¢ et al. 2016).

Meteotsunamis are a worldwide phenomenon; however, literature reviews show that
they have been traditionally studied much more in the Mediterranean than in the rest of the
world. This can be explained by the micro-tidal nature of the Mediterranean Sea where tidal
amplitudes (a few tens of centimetres except in the Gulf of Gabes and the northern Adriatic
Sea, Tsimplis et al. 1995; Medvedev et al 2020) are an order of magnitude smaller than the
amplitudes of meteotsunamis. In consequence, coastal infrastructure along the
Mediterranean coast is generally not adapted to accommodate rapid sea level changes,
resulting in much greater damage and flooding during meteotsunami events than what occurs
along macro-tidal coasts of the world (Fig. 1).

The first theoretical explanation for Mediterranean meteotsunamis was provided at
the beginning of the 20" century for the Balearic/Catalan region where Fontseré (1934)
noticed the coincidence between rapid changes in the air pressure and seiches in the
Barcelona harbour. Almost simultaneously, Caloi (1938) investigated air pressure and sea level

records in the northern Adriatic and associated the recorded seiches with propagating
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atmospheric disturbances. Subsequently, in late 1970s and early 1980s, research on rissaga
(i.e., meteotsunami) events occurring in Ciutadella (Balearic Islands) demonstrated their
relationship with specific synoptic conditions (Ramis and Jansa 1983). These observations
were the basis for the subsequent rissaga synoptic forecasting system, which tracked (i)
ground and low (below 850 hPa) level atmosphere conditions in which a weak cyclone was
present during rissaga events, (ii) south-westerly flow of dry and warm African air at levels
corresponding to approximately 850 hPa, which are situated over a relatively cold surface air
and give rise to a characteristic temperature inversion, (iii) the strong south-westerly air flow
over the Western Mediterranean that occurs at 500 hPa, and (iv) a jet stream between the
Balearic Islands and the Iberian Peninsula, which occurs at 300 hPa.

In the Adriatic Sea, the Great Flood of Vela Luka on 21 June 1978 (Vucetic¢ et al. 2009)
triggered extensive research on the origin of this event. Several active theories to explain the
observed waves were developed: (i) a tsunami triggered by the 6.4 Mw Aegean earthquake,
which took place the day before (Zore-Armanda, 1979; however, no correspondence between
the observed and theoretical arrival times of tsunami waves has been found, and the distance
between the epicentre and Vela Luka is far too large; (ii) a tsunami triggered by a landslide
along the Italian side of the Middle Adriatic Pit (Bedosti 1980); however, no waves were
reported close to the source, which would be expected for landslide tsunamis; (iii) cyclonic-
waves generated by a cyclone in the open sea that propagated as free waves toward the
affected bays (Hodzi¢ 1979/1980); however, no energy transfer mechanism has been
proposed; and (iv) a resonant transfer of energy from intense air pressure disturbances that
propagated north-eastward at a speed of 22 m/s in addition to long ocean waves generated
through the Proudman resonance (Orli¢ 1980); the latter was confirmed by recent
investigations (Orli¢ et al. 2010), although a mismatch concerning the speed of the air
disturbance and the effect of the Proudman resonance versus other effects driven by
bathymetry, was found.

Since these early studies, the science of the Mediterranean meteotsunamis has
substantially progressed; this progress was initiated by major meteotsunami events for which
observations were available: those that occurred in the 1980s and 1990s in the Balearic Islands
(Tintoré et al. 1988) and in the 2000s in the Adriatic Sea (Vilibi¢ and Sepi¢ 2009). An extensive
application of numerical modelling tools followed these observations, peaking in the 2010s

with the development of high-performing computing facilities (Orli¢ et al. 2010; Renault et al.
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2011). Investigations of atmospheric sources, energy transfer towards the sea, and the
propagation and amplification of meteotsunami waves have been the main topics of these
investigations. A comprehensive and systematic overview of the knowledge acquired in these
papers is the primary motivation for this study, which is the first such study dedicated to the
Mediterranean Sea (including the Black Sea). Section 2 introduces the topic through an
overview of the media coverage and societal behaviour that occurred after major
meteotsunami events, including the reaction of society, which is different in various countries.
Section 3 contains a basic map of the Mediterranean and Black Sea meteotsunami papers cited
by the Web of Science database, which includes the geographical coverage, tools used in the
research and the atmosphere or ocean meteotsunami source. Section 4 gives and overview of
meteotsunami research, from that pertaining to the mechanism of atmospheric generation to
the genesis and amplification of meteotsunami waves in coastal regions. Existing
meteotsunami monitoring and forecast systems in the Mediterranean and Black Seas,
including observations, deterministic models, stochastic approaches, and hazard assessments
are presented in Section 5. Section 6 describes the major bottlenecks that exist in
Mediterranean and Black Sea meteotsunami research, followed by perspectives on future

research and research directions and conclusions described in Section 7.

2. Description, media coverage and societal behaviour after major meteotsunami events

In recent decades, major meteotsunami events associated with structural damage in
coastal regions that have impacted local populations have often attracted local and national
media attention. In this section, three examples of media coverage and societal behaviour

during and after Mediterranean and Black Sea meteotsunamis will be briefly overviewed.

2.1. The Great Vela Luka Flood of 21 June 1978

This event, characterized by wave heights up to 6-m in the city of Vela Luka (Korcula
Island, Croatia), impacted the whole middle Adriatic from the Italian to the Croatian coasts
and is often referred to in the literature as the most devastating and memorable
meteotsunami in the Adriatic. The Vela Luka Bay is funnel shaped and has been known by local

inhabitants to have persistent eigen oscillations that normally reach less than a metre or two
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in height and can be easily handled by the city harbour without suffering inundation or
structural damage (Orli¢ 2015). This destructive event was described in detail by Vuceti¢ et al.
(2009), while a collection of newspaper articles and other relevant material was documented
by Vuceti¢ and Barcot (2008). The event attracted a large amount of media attention, while
scientists tried to explain the physical mechanisms.

The first meteotsunami waves were observed in the early morning, on 21 June 1978 at
4:15 UTC (local time 5:15), overtopping the piers and quays and flooding houses at the
waterfront. Intuitively, the electricity service switched off the power for the whole city to
prevent any human losses and damage caused by electric shocks. Telephone connections
were also disabled during and after the event. The sea oscillated every 15-20 min, peaking at
7:00 UTC, when a 6-m wave was observed at the top of the harbour (in fact, several media
sources reported wave heights of 8 to 11 m, as no data were available to quantify the trough
of the meteotsunami wave that emptied the harbour). The sea returned to calm at
approximately 10:00 UTC, leaving a great amount of household goods floating within the bay,
between sunk boats and ships, with heavy furniture (e.g., refrigerators) removed from several
houses and a health centre destroyed at the top of the bay.

The media reported the event the very first day, providing basic facts and impact
assessments (Vuceti¢ and Barcot 2008): “Life in Vela Luka is paralyzed. People were not on
their jobs today. All of Vela Luka is on its feet this morning from five o'clock. The Vis ferry did
not dock at all, but carried forward towards Split. The city was run out of food and telephone
connections. The gasoline station was also destroyed. It is unknown at this time how many
boats, ships and cars were damaged. The level of destruction is enormous and it is impossible
to talk about it now ... Military units from the island area also came to the rescue, and police
is having a great trouble regulating traffic that is completely paralyzed.”

Simultaneously, after the first impact, the local authorities started to organize cleaning
of the bay and announced rules of behaviour via a public proclamation on the day after the
event (Fig. 2). These rules, designed to mitigate damage and prevent uncontrolled behaviour
of the population, included: (i) the treatment of water, in particular the potable water, (ii) the
treatment of the food stored in houses, (iii) the treatment of vegetables in gardens, (iv) the
recovery of flooded basements and houses, (v) the control of personal hygiene and the
management of pre-existing health conditions, and (vi) rules for bathing and swimming. Three

days later, the authorities engaged local populations in voluntary sanitation and cleaning of
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the Vela Luka area, after which the city become safe for living and working. At that time, the
final estimation of the damage caused by the meteotsunami was approximately 7 million US
dollars, which was approximately a quarter of the annual income of the whole Korcula Island.

In the following month, several researchers, such as Tonko Tabain, who is quoted
hereafter, were interviewed by the media to provide a theoretical background of the event to
the general public: “...the second hypothesis, by which sea pressure waves are the causative
cause of $¢iga (0.a. meteotsunami), provides an answer to the questions asked ... sea pressure
waves are generated by atmospheric pressure waves, and these arise when two air masses of
different density (temperature) move at different speeds relative to each other.” After the first
interviews, more research was carried out and papers on the event by Hodzi¢ (1979/1980)
and Orli¢ (1980) were published. Unfortunately, a comprehensive research program
developed in the following two years by the Academy of Science and Arts in Zagreb, which
consisted of the installation of a monitoring network and a meteotsunami hazard assessment
via numerical models in the Vela Luka area, was never implemented. Interestingly, during this
event, reflected waves were far less destructive than those that hit the Croatian coastline,
which were also observed with a few hour time lag along the Italian coast (Orli¢ et al. 2010).
As the two shorelines were part of the different political systems (socialism in Yugoslavia
versus capitalism in Italy), the explanation for the observed waves was dramatically different:
Bedosti (1980) hypothesized that the waves were the result of a submarine landslide along
the western flank of the Middle Adriatic Pit. Indeed, such a hypothesis did not include any of
the observations available along the Croatian coastline, presumably due to a lack of
information available to the Italian researchers. More than 30 years were thus needed to
gather all available Italian and Croatian observations and provide reasonable explanations and

quantifications of the physical mechanism of the event (Vucetic¢ et al. 2009; Orli¢ et al. 2010).

2.2. The destructive rissaga event of 21 June 1984

Meteotsunamis in the Balearic Islands are historically known by the local name of
rissaga. The first references of the hazardous effects of rissaga events in Ciutadella (the
eastern coast of Menorca island) are found in documents dating to the XV century. The
phenomenon is also described in detail by Riudavets as early as 1885 in his book: History of

Menorca Island. From then on, many references in local newspapers exist but there are only

9



277
278
279
280
281
282
283
284
285
286
287
288
289
290
201
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307

308

very few mentions in the scientific literature (Fontseré 1934). Rissaga was not extensively
considered by the scientific community until the early eighties, when several works were
published in Spanish by Agusti Jansa and Clemente Ramis (Ramis and Jansa 1983; Jansa 1986
1987). Several of the pioneering publications were motivated by the extreme event observed
in 1984.

On 21 June 1984, a singular rissaga event struck Ciutadella harbour. Local eyewitnesses
reported that several minutes after four o’clock in the morning (local time) the harbour,
located at the end of Ciutadella inlet, suddenly became dry. Shortly after, when water re-
entered the inlet, it washed up towards the harbour end most of the boats that previously had
broken their mooring ropes, hit each other and caused great damage (Fig. 3). After the initial
“big wave”, large sea level oscillations (of more than one metre), with a period coinciding with
an inlet seiche (approximately 10 min), remained for several hours. Total damage was
tremendous: of the 117 boats moored at the port at that time, 81 were affected and 35 were
sunk. Most of the local fishing float became inoperative during the following months.
Fortunately, no personal injuries were reported, but economic damage was quantified to be
over two and a half million euros.

Abnormal sea level oscillations, although of much less of a consideration than in
Ciutadella, were also observed in other Menorca inlets, such as adjacent Platja Gran. Similar
large amplitude sea level oscillations that caused moderate damage were also reported in
other harbours on the nearby Mallorca island, such as those in Porto Colom or Porto Cristo.

The next day, local newspapers related several witness accounts of how a sudden blow
of wind woke them up in the middle of the night. When a short time later they looked towards
the port, they were surprised to find the port empty of water. Then, a great wave entered the
port and washed away everything in its path. Although rissaga were not a rare phenomenon
in Ciutadella, everyone agreed this particular event was one of the more destructive ever
experienced at this location.

No sea level records were available at the time, but the largest oscillations in Ciutadella
were estimated to reach more than 4 m of through-to-crest amplitude. A detailed analysis of
this event, including the examination of the atmospheric synoptic situation, vertical structure
of the wind and pressure and the available records of surface winds and atmospheric pressure
at several stations were provided by Jansa (1986). Most of the generation mechanisms

suggested in that work remain valid to this day.
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2.3. The Odessa meteotsunami of 27 June 2014

This destructive event has been documented as a chain of meteotsunamis that hit the
coasts of the Mediterranean and Black Seas and was described in detail and investigated by
Sepi¢ et al. (2018b). To summarize, sudden tsunami waves with wave heights of more than 1
m (up to 2.5 m as claimed by several eyewitnesses) hit two beaches near Odessa (Ukraine),
which were inundated to a distance of 50 m, and resulted in 15 people injured. This extreme
event was unprecedented as it occurred during calm weather in a region located far from
major earthquake zones (Yalginer et al. 2004) where seismic tsunamis are not frequent.

In addition to the injuries, the meteotsunami generated a wave of panic within the
local population, amplified by the unstable political situation during the Ukrainian crisis

(https://en.wikipedia.org/wiki/2014 Odessa clashes), which, less than two months before,

left 48 people dead (the highest toll since The Great War) during clashes in Odessa. In this
context of terror, several maladaptive hypotheses to explain the generation of such extreme
waves circulated among the population and were even promoted by the media (e.g.,

https://dumskaya.net/news/nevedomaya-hujnya-037089): “Meanwhile, scientists continue

to put forward more and more versions of what happened. Most adhere to a version of the
anthropogenic or technogenic nature of what happened, they assume that the wave appeared
as a result of human activity ... At the same time, eyewitnesses refute the assumption that a
large vessel (at least 50 thousand tons displacement) could travel at high speed (more than 30
knots) in the immediate vicinity of the coast, which could only cause such a wave. Also unlikely
are the versions that the wave was the result of dredging, although today, indeed, a dredger
was seen near the Black Sea. Another hypothesis was put forward by the hydrologist Anatoly
Petrachenko. He suggested that the cause could be, for example, the explosion of a small boat
with ammunition that sank during the Great Patriotic War near Lustdorf ... Firstly, such an
explosion would undoubtedly be recorded by seismologists, whose station is 15 km from
Chernomorka. Secondly, there were no stunned fish and victims of water hammer at the scene,
which puts an end to all the "explosive" versions ... In turn, the inhabitants of Chernomorka
argue that such large waves in these places occur every few years and are the result of a
complex interaction of warm and cold currents. This time, such a wave was stronger than

usual.”

11



341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371

372

To prove that the observed waves were indeed meteotsunamis, Sepi¢ et al. (2018b)
collected all available observations and carried out several numerical experiments. Although
the magnitudes of the waves were underestimated, presumably due to insufficient resolution
of the atmospheric forcing and the bathymetry at the shelf edge and in coastal regions used
in the study, the authors reproduced the spatial extent of the event and indicated that it was
caused by remote generation of long ocean waves that are topographically directed towards

the affected beaches.

3. Succinct analysis of the Mediterranean meteotsunami bibliography

The bibliography of the Mediterranean and Black Sea meteotsunamis (presented in
Fig. 4a) is composed of 55 research papers, as archived by the Web of Science (WoS) database
from 1955 to 2019. The bibliography encompasses both well-researched hot spots for
meteotsunamis for which many papers have been published, such as the Balearic Islands or
the Adriatic Sea, as well as sites that contain a single meteotsunami observation, such as the
Black Sea sites. The first article on the list, by Tintoré et al. (1988), was preceded by a great
number of non-WoS papers that mostly described different aspects of the Balearic and
Adriatic meteotsunamis (Fontseré 1934; Caloi 1938; Colucci and Michelato 1976; Hodzi¢
1979/1980; Orli¢ 1980; Ramis and Jansa 1983; Jansa 1986 1987).

The number of WoS meteotsunami papers per year increased from 0 to 2 in the late
1980s and early 1990s to more than 2 per year after the mid-2000s (except 2013, Fig. 4b).
Interestingly, the peak of the papers was largely connected to special issues of several
journals: (i) Physics and Chemistry of the Earth in 2009 (Rabinovich et al. 2009) included 8
meteotsunami papers, and (ii) Pure and Applied Geophysics in 2018 (Vilibi¢ et al. 2018a)
included 5 meteotsunami papers, while (iii) the third special issue on meteotsunamis, in
journal Natural Hazards in 2014 (Vilibi¢ et al. 2014b), was driven by an US project and
therefore containing just one paper covering Mediterranean and Black Sea meteotsunamis.
While the first special issue in 2009 was dedicated to only meteotsunami research, the second
in 2018 covered a variety of Mediterranean and Black Sea meteorology and climatology topics,
including meteotsunamis. In total, 10 papers were published between 1990 and 1999, 20
between 2000 and 2009 and 24 between 2010 and 2019. Most of these papers have been

geographically limited to the Balearic (22) and Adriatic (21) regions (Fig. 5a), while other
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meteotsunami hot spots (e.g., Strait of Sicily and Maltese Islands) have been only sporadically
researched. In addition, 5 papers covered more than one Mediterranean and Black Sea sub-
basin or even the whole Mediterranean and/or Black Sea and include research on
meteotsunami teleconnections, multi-meteotsunami events or an analysis of high-frequency
sea level data. Additionally, all but one paper published prior to 2000 focused on Balearic
meteotsunamis, while 11 of the 24 papers between 2000 and 2019 document Adriatic
meteotsunamis and the 13 remaining papers cover all regions known for meteotsunami
occurrence.

Approximately half of the meteotsunami research papers in the Mediterranean and
Black Seas are exclusively based on oceanic and atmospheric observations; 10 papers only rely
on numerical models, while another 10 papers combine observations and numerical
investigations (Fig. 5b). The use of numerical models in Mediterranean and Black Sea
meteotsunami research started in 1999, while half of the meteotsunami articles published
between 2010 and 2019 included numerical modelling. Eight standalone or combined
observation and numerical experiment papers contain analytical solutions used to
theoretically derive various meteotsunami processes, particularly for the Balearic Islands.
Most of papers investigated both atmospheric and oceanic aspects of meteotsunamis (Fig.
5c), with oceanographic studies more concentrated in the Balearic region in which several
observational campaigns have been carried out (e.g., LAST-97 experiment, Monserrat et al.

1998; Liu et al. 2002).

4. Meteotsunami properties

4.1. The source processes and meteotsunamigenic disturbances

Several aspects related to the source of meteotsunamis are presented: (i) the
resemblance of synoptic patterns related to meteotsunami occurrences and high-frequency
sea level oscillations in general, (ii) the mesoscale processes responsible for generation and
maintenance of meteotsunamigenic disturbances, and (iii) the manifestation of atmospheric

disturbances as high-frequency air pressure or wind oscillations.

4.1.1. Synoptic patterns connected to meteotsunamis

13



405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435

436

Atmospheric gravity waves, probably the most frequent source of meteotsunamigenic
disturbances, are generated by intense mesoscale processes (such as jets, fronts, convection)
related to specific synoptic conditions (Plougonven and Zhang 2014). The relationship
between specific synoptic conditions and Balearic meteotsunamis was established in the early
1980s (Ramis and Jansa 1983) and has been confirmed in subsequent studies that were mostly
focused on specific meteotsunami events (Tintoré et al. 1988; Monserrat et al. 1991a 1991b;
Jansa et al. 2007). Sepi¢ et al. (2009a) further analysed this relation and documented that 23
out of 32 meteotsunamis (i.e., 72%) in Ciutadella (Balearic Islands) were associated with
specific synoptic conditions including: (i) inflow of warm and dry air masses from North Africa
at low levels of approximately 850 hPa, (ii) strong winds in the mid-troposphere, higher than
20 m/s between 3 and 8 km, and (iii) an instable layer in the mid-troposphere with a
Richardson number lower than 0.25. They found that the correspondence between synoptic
conditions and meteotsunami events increased to 88% for the strongest meteotsunamis. The
connection between Ciutadella meteotsunamis and specific meteotsunamigenic synoptic
patterns has been formally quantified by Sepi¢ et al. (2016a), who constructed a synoptic
atmospheric index that increases as the synoptic conditions better match the ideal suggested
framework. This research has shown that there exists a threshold below which intense
meteotsunami never occur. Still, favourable synoptic conditions for meteotsunamis (high
index) are necessary but insufficient, as the exceedance of the threshold is associated with
only a 20% probability for meteotsunamis.

The connection between synoptic patterns and meteotsunamis in the Balearic Islands
preceded the research on Adriatic meteotsunamis, which — aside from early papers — was
initiated in mid-2000s and was systematically established for Adriatic events occurring in the
2000s and 2010s. The first indication of a similar link between meteotsunamis and synoptic
patterns in the Adriatic Sea was derived from the analysis of extreme Bakar Bay seiches (Sepi¢
et al. 2008), which revealed that extreme events are associated with strong south-westerly
flow at 700 hPa. Later, several studies documented conducive synoptic conditions observed
during the meteotsunami events occurring on 22 August 2007 in Ist, on 15 August 2008 in Mali
LoSinj and, retrospectively, on 21 June 1978 in Vela Luka (BelusSi¢ and Strelec Mahovi¢ 2009;
Vilibi¢ and Sepi¢ 2009). However, the middle Adriatic meteotsunami of 27 June 2003 was an

exception for which the west-north-western flow was present in most of the atmosphere
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(Belusi¢ et al. 2007). Systematic investigations of the northern Adriatic meteotsunamis (Sepi¢
et al. 2012) mapped the following favourable synoptic conditions for 16 meteotsunami events
observed at the Rovinj tide gauge between 1955 and 2010: (i) a cyclone associated with an
approximately 10 hPa drop of air pressure in its centre compared to the climatological mean
and stretching north-west from the affected area; (ii) a sharp thermal front at 850 hPa
stretching from Algiers over Corsica to the northern Adriatic in the WSW-ENE direction and
associated with temperature anomalies of up to 5°C and -4°C southeast and northwest from
the front, respectively; and (iii) an anomalously strong mid-troposphere jet at 500 hPa with up
to 15 m/s higher velocities than climatological means in the northern Adriatic and northern
Italy, just over the affected area and WSW from it.

Links to synoptic conditions exist in other parts of the Mediterranean. For example,
the events of 27 June 2014 in Odessa (Sepi¢ et al. 2018b) and of 25 June 2014 in Sicily (Sepi¢
et al. 2018a) were studied; these events occurred, along with the Adriatic multi-events (Sepi¢
et al. 2016b), as a sequence of meteotsunamis that hit the Mediterranean and Black Seas,
from the Balearic Islands to the northern Black Sea. A systematic investigation of high-
frequency sea level events that were measured at 29 tide gauge stations located mostly in the
Western and Central Mediterranean was provided by Sepié et al. (2015c), who documented
36 events with strong high-frequency sea level oscillations. The events observed at the
Balearic Islands, southern Sardinia, Strait of Sicily and southwestern Greece were mostly
linked to the same meteotsunamigenic synoptic patterns as those documented for destructive

Adriatic and Balearic meteotsunamis (Fig. 6).

4.1.2. Meteotsunamigenic mesoscale atmospheric processes

Although specific synoptic atmospheric patterns are definitely associated with
meteotsunami events in the Mediterranean and Black Seas, mesoscale processes are key to
the generation and propagation of long-lived meteotsunamigenic disturbances. Monserrat et
al. (1991a) and Monserrat and Thorpe (1992), first for the Balearic Islands, observed these
disturbances in a set of microbarograph measurements and suggested an initial theoretical
background based on the wave-duct theory introduced by Lindzen and Tung (1976). Later,
Monserrat and Thorpe (1996) fully applied the theory and found that the observed vertical

structures of wind and temperature in the lower atmosphere resemble those that allow
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theoretical modes to propagate long distances in the lower troposphere without a significant
loss of energy. These conditions include an unstable layer in the mid or upper troposphere
that overtops stable conditions, which are maintained by a dry and warm air. An important
prerequisite for wave ducting over long distances is a quasi-linear increase in the wind speed
from the ground to the unstable layer, which is normally placed in the mid-troposphere. This
unstable layer acts as a reflecting wall that is able to keep the energy related to the
atmospheric disturbance in the lower atmosphere. The theory also establishes the
relationship between the wind speed at the reflectance mid-troposphere layer with the
propagation speed of the atmospheric disturbances (i.e., existence of a critical level within the
unstable layer at which these two speeds should be equal).

Similar to synoptic patterns, the mesoscale properties of the Adriatic meteotsunamis
were found to be associated with the same physical mechanisms as the Balearic events.
Several observational studies reproduced the atmospheric conditions favourable for wave
ducting, related to the 2007 Ist meteotsunami (Sepi¢ et al. 2009b) and the 2014 middle
Adriatic meteotsunami (Horvath et al. 2018), although the latter has also been associated with
another mechanism of maintenance and propagation of atmospheric disturbances: the so-
called wave-CISK (Conditional Instability of the Second Kind, Powers and Reed 1993). The
wave-CISK is characterized by a coupling between a gravity wave and convection, in which
convergence associated with the gravity wave forces moist convection, while convective
heating provides the energy for the wave. The wave-CISK has been observed and modelled for
the 2003 middle Adriatic meteotsunami (Belusic et al. 2007; Fig. 7), in which the atmospheric
disturbance was maintained by an anomalously warm Adriatic Sea over ca. 800 km, after its
generation over the Alps.

Comprehensive investigations of atmospheric mesoscale source processes have not
been carried out for other regions, although they have been sometimes attempted, e.g., for
the Sicily meteotsunamis (Candela et al. 1999). Still, the data used in the analyses were not
appropriate to properly document the mesoscale characteristics of the source; therefore,
surface data were restricted to 6-h resolution from a reanalysis. Conditions for wave ducting
have also been documented for Black Sea meteotsunamis (Vilibi¢ et al. 2010; Sepi¢ et al.
2018b), without applying atmospheric numerical modelling to quantify the processes. In
addition, these mechanisms have been proven only for selected meteotsunami events, which

normally occur during summer, while a great range of meteotsunamis — including
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meteotsunamis that occur during winter — have not been researched at all in the

Mediterranean.

4.1.3. Surface manifestation of meteotsunamigenic disturbances

The first evidence of a relationship between rapid changes in air pressure and
meteotsunami waves was suggested rather early, by Fontsere (1934) and Caloi (1938), who
analysed a set of events in the Catalan coast and the Balearic Islands, and the northernmost
part of the Adriatic Sea, respectively. The relationship was strongly supported by the
identification of abnormal rapid oscillations in atmospheric pressure in the operative chart-
type barograms that occurred simultaneously with several significant events in the 1970s and
1980s in the Balearic Islands (Ramis and Jansa 1983). The first digital atmospheric pressure
data with a high enough temporal resolution to identify the properties of atmospheric
pressure were not available until the early 1990s (Monserrat et al. 1991a 1991b); however,
these observations were sparse and not capable of documenting the spatial characteristics of
the air pressure disturbances. The first study that used a triangle of microbarographs
(Monserrat and Thorpe 1992) found that the atmospheric disturbances connected with
meteotsunamis behave as nondispersive waves, i.e., have no significant variations in their
speed with frequency. These data, together with microbarograph data collected during
subsequent experiments, have been used to map the spectral characteristics of the
atmospheric disturbances (Garcies et al. 1996; Rabinovich and Monserrat 1996; Monserrat et
al. 1998) to force an ocean numerical model (Vilibi¢ et al. 2008) and to document severe
meteotsunami events (Jansa et al. 2007).

In the Adriatic Sea, the microbarograph network was not initially sensitive enough to
measure rapid air pressure oscillations. Therefore, no clear records of short period oscillations
were derived from measurements for the 1978 Vela Luka meteotsunami. However, the
network provided enough information to estimate the speed and propagation direction of the
enveloping longest period atmospheric disturbance and to allow the Proudman resonance to
be hypothesised as the mechanism responsible for generating meteotsunami waves (Orli¢
1980). The synchrony between air pressure and sea level observations has been documented
from data collected by the newly installed tide gauge in Split (Vilibi¢ and Mihanovi¢ 2003). This

study preceded the 2003 middle Adriatic meteotsunami for which several operational
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microbarographs were available to compute the direction and propagation of air pressure
disturbances (Fig. 8), which were later used for numerical modelling of the meteotsunami
waves (Vilibi¢ et al. 2004). The shape of the air pressure versus the corresponding energy
distribution over frequencies was investigated by Vilibi¢ et al. (2005); the results of this study
indicated that higher energies are reached below 2 h for cosine versus box-car disturbances.
Subsequently, numerous Adriatic meteotsunami studies mapped air pressure disturbances
associated with meteotsunamis, including these coming from a triangle of precise
microbarographs installed in the middle Adriatic (Vilibi¢ et al. 2014a). They found that, over a
great number of strong high-frequency air pressure observations, the atmospheric
disturbances were dispersive and therefore had no potential to generate meteotsunamis.
Mapping of the spatial and temporal distribution of the intensity, speed and propagation
direction of the meteotsunamigenic atmospheric disturbances has been recently improved by
an amateur network of lower accuracy but much higher density observations (Sepi¢ et al.
2016b).

To prove that the multi-meteotsunami events, which occurred in a number of
Mediterranean and Black Sea locations, are related to each other, Sepi¢ et al. (2015a) used
intense air pressure oscillations collected by different observing networks, which have
become standard in recent decades. For other regions, measurements of high-frequency air
pressure observations have also been used to investigate meteotsunamis, such as in the Black
Sea (Vilibi¢ et al. 2010; Sepi¢ et al. 2018b), south-western Sicily, the Maltese Islands (Drago
2009; Sepié et al. 2018a) and the Gulf of Genoa (Pico et al. 2019).

4.2. Generation and amplification of meteotsunami waves

4.2.1. Open ocean resonant generation

Following the concurrent observations of intense air pressure oscillations and
meteotsunami waves and acknowledging pioneer theoretical work by Proudman in 1929
(Proudman 1929), an open ocean resonant mechanism was early assumed to be responsible
for the generation of meteotsunami waves. This assumption was particularly applied to the
strong seiche events in the Gulf of Trieste (Caloi 1938), which were possibly generated by

Proudman resonance. Such a hypothesis has been further proposed by Orli¢ (1980) for the
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1978 Vela Luka meteotsunami, who noted the similarity between the speed of the
atmospheric disturbance derived from microbarograph observations (~22 m/s) and the
predominant speed of long ocean waves off Vela Luka. However, a further study of this event
provided by Orli¢ et al. (2010) revealed a much higher speed of the atmospheric disturbance
(34-36 m/s) as the most efficient method for energy transfer towards the sea.

Based on reproduction of the 2014 middle Adriatic meteotsunami, Sepic et al. (2016b)
introduced the so-called “Proudman length”, i.e., the percentage of the total length over
which a disturbance travelled and for which 0.95<Fr<1.05 is valid, where Fr=U/(gH)"? is the
Froude number, U is the atmospheric disturbance speed, H is the water depth and g is gravity.
However, the Proudman length was much shorter than necessary to claim that the Proudman
resonance is responsible for open-ocean generation of meteotsunami waves (Fig. 9),
indicating that some other mechanism might also be important in complex regions of the open
middle Adriatic. Indeed, no flat regions are present off the middle Adriatic, creating favourable
conditions for maintaining Fr in the short range in which meteotsunamis are efficiently
generated (Williams et al. 2020). However, variable bathymetry may generate scattering and
reflection of meteotsunami waves, forming and amplifying wave packages at different
frequencies as they approach coastal regions (Garrett 1970; Vennell 2007). Reflection is also
responsible for the few hours lagged occurrence of meteotsunami waves at the Italian
coastline during the 1978 Vela Luka meteotsunami, as these waves travelled back over the
Adriatic after impacting the eastern coastline (Orli¢ et al. 2010).

Still, the Proudman resonance has been documented as the major meteotsunami
generating force in the relatively flat northern Adriatic (Sepi¢ et al. 2015b) and coastal middle
Adriatic waters (Vilibi¢ et al. 2004). Furthermore, Sepi¢ et al. (2015b) note that a small change
in the disturbance speed of ca. 10%, which reflects a change in Fr of 10%, may change the
open ocean resonance by two or more times. Convincingly, topographic effects play a
substantial role even in relatively flat environments, as even a gentle slope was found to
substantially decrease the amplification of meteotsunami waves (Williams et al. 2020).

For Ciutadella and the Balearic Islands, the idea of resonance was first suggested by
Ramis and Jansa (1983), although atmospheric forcing was assumed to resonantly excite the
harbour normal modes directly (so-called Chrystal resonance, Bubalo et al. 2018). The first
comprehensive theoretical study on processes responsible for generating meteotsunami

waves in the Balearic Islands was carried out by Tintoré et al. (1988), who developed an
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analytical model and suggested resonant generation of coastally trapped edge waves by
atmospheric gravity waves, peaking in energy at the same frequencies previously found for
their resonant amplification inside the harbour. Gomis et al. (1993), using the first
simultaneous sea level and atmospheric pressure observations over the region, demonstrated
that an external oceanic wave was necessary as an intermediate mechanism between the
atmospheric forcing and sea level oscillations inside the harbour, but suggested that no
substantial amplification was expected to occur outside the inlet. The need for intermediate
open ocean resonant amplification was also suggested by Rabinovich and Monserrat (1998).
They proposed the eventual generation of long ocean waves on the shelf, between Mallorca
and Menorca Island, through the Proudman resonance, following the analysis provided for
Japanese meteotsunamis (Hibiya and Kajiura 1982). The importance of the Proudman
resonance occurring over the shelf off Menorca was later quantified with a numerical model
(Vilibi¢ et al. 2008), which found that the resonance definitively plays an initial role in the
generation of meteotsunami waves in Ciutadella, although the energy is definitively later
amplified by the coastal slope topography and harbour oscillations (Fig. 10). An ocean
numerical model forced by synthetic air pressure oscillations was also used by Licer et al.
(2017), who noted that - in any sensitivity scenario - more than 75% of the meteotsunami
wave heights reproduced in Ciutadella are formed on the shelf between Mallorca and
Menorca, and not on other parts of the shelf.

The study by Candela et al. (1999) used observations and simplified barotropic
momentum and continuity equations to numerically quantify the ocean gravity modes that
are coherently occurring in the Strait of Sicily, which they hypothesize are responsible for
generating the southwestern Sicily meteotsunamis. They also emphasize the relevance of the
propagating air pressure versus wind disturbances, the latter of which is an order of
magnitude lower than the former. The high-precision air pressure and sea level measurements
conducted in 2007 and an assessment of bathymetry off the most affected city, Mazara del
Vallo, revealed the possible existence of Proudman resonance, associated with edge waves
that might occur around the circular outer shelf at the observed frequencies (Zemunik et al.
2020). The role of wind disturbances in generating meteotsunami waves has also been
quantified by Vilibi¢ et al. (2005), who found their contribution was not more than 30% in the
middle Adriatic, where the speed of long ocean waves is between 20 and 30 m/s. However,

for shallow regions, such as the coastal northern Adriatic, wind disturbances might be more
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important, as has been found for other shallow parts of the world ocean (e.g., de Jong and
Battjes 2004; Sepi¢ and Rabinovich 2014). The coastal barotropic ocean model forced by
measured high-frequency air pressure disturbances travelling with the speed and direction of
the wind at 500-hPa reproduced the most observed high-frequency sea level oscillations but
also created several false events (Vilibi¢ and Beg Paklar 2006). Air pressure disturbances also
have been found to be relevant in the generation of the 2014 Odessa meteotsunami, yet
occurred far from the source and were amplified by the Black Sea shelf break almost 200 km
off the affected beach. Indeed, for all Mediterranean meteotsunami events that occurred
between 23 and 27 June 2014, Sepi¢ et al. (2015a) indicated that suitable resonance
conditions (i.e., Fr between 0.9 and 1.1) were present off the affected coastlines, indicating
the existence of conditions favourable for occurrence of the Proudman resonance during all
these events.

In summary, despite several initial investigations that suggest a direct atmospheric
forcing on the inlets in several regions, some open ocean resonance amplification of the
atmospheric forcing that acts as an intermediate mechanism is necessary to explain the
phenomenon. Several processes have been suggested, of which the Proudman resonance is

the more plausible open ocean resonant amplification in most of the meteotsunami hot spots.

4.2.2. Coastal amplification and topographical effects

Once generated, meteotsunami waves propagate towards the coastline and strongly
interact with coastal bathymetry. In fact, the coastal amplification of meteotsunami waves
was the first process investigated by researchers, regardless of the open ocean generation
mechanism (Airy 1878; Fontseré 1934; Colucci and Michelato 1976; Hodzi¢ 1979/1980; Orli¢
1980; Ramis and Jansa 1983; Jansa 1986). The theory of seiches and harbour oscillations,
worldwide and in the Mediterranean, dates back more than a century (Sterneck 1914; Wilson
1972), including the effects of harbour shape on amplification factors (Miles and Munk 1961;
Rabinovich 2009). In addition, the exact mechanism of amplification was established rather
early. A proper quantification of the amplification was carried out by implementing numerical
models, which estimated the quality factor Q for some hot spots, such as Ciutadella (Q = 10,
Rabinovich et al. 1999), Vela Luka (Q = 28, Denamiel et al. 2018) and other locations.

Interestingly, the quality factor may substantially change with interventions that change the
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inlet geometry, even when these interventions are restricted to the inner parts of the bay. For
example, dredging or building new piers and marinas may substantially change the quality
factor (Denamiel et al. 2018). There are a great number of studies that have investigated
different aspects of harbour resonance during Mediterranean meteotsunamis (Gomis et al.
1993; Garcies et al. 1996; Rabinovich and Monserrat 1996 1998; Vilibi¢ and Mihanovi¢ 2003;
Vilibi¢ et al. 2004; Drago 2008 2009; Orfila et al. 2011), emphasizing the role of resonance in
creating extreme sea level oscillations at harbour heads.

Harbour resonance may also be modulated by second order effects that may influence
the way energy is amplified inside the harbour. For example, the Balearic Islands hot spot —
the Ciutadella inlet - is topographically associated with the similar but smaller Platja Gran inlet,
forming what would resemble a set of two pendula joined by a string. Liu et al. (2003)
documented their resonant coupling through observations and a simple analytical model and
found that the coupling is proportional to the distance between the inlets. Further research
by Marcos et al. (2004) indicated that these coupling effects may change the amplification
factors of each inlet. While such a system was found to slightly decrease oscillations in
Ciutadella Harbour, it was found to increase oscillations in Platja Gran.

The inclusion of flooding (and drying) of coastal regions into ocean numerical models
also has been found to modulate meteotsunami wave heights. This approach is standard in
tsunami run-up numerical modelling estimates (e.g., Titov and Synolakis 1998), but not in
meteotsunami research. Using the ADCIRC unstructured model, Bubalo et al. (2019) found
that the maximum wave height increased 35% at the top of Vela Luka Bay in comparison with
the model simulations in which no coastal flooding was included. This might be quite relevant
for assessing the associated risk when the meteotsunami waves are several metres high and
there is substantial drying or flooding of the coastal region, such as was witnessed during the
1978 Vela Luka meteotsunami.

A quite unique phenomenon has been observed in the Mazaro River on the southwest
coast of Sicily, where a bore propagating upstream has been observed during extreme
meteotsunami events (Colucci and Michelato 1976; Candela et al. 1999). It appears that the
bore was driven by incoming meteotsunami waves which, due to the shallow and narrowing
waterway and its relatively wide V-shaped mouth, met conditions that enabled the bore to
form a half kilometre upstream of the mouth (Sepi¢ et al. 2018a, Fig. 11). There, the bore may

rise to a metre or more and propagate upstream a few kilometres, damaging small and fishing
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boats along its way. It should be emphasized that the incoming open ocean waves are
additionally amplified by the Mazara del Vallo harbour, before entering the river at the top of
the harbour.

In addition to harbour resonance, meteotsunami waves have been found to be
affected by coastal topography in different ways. Off the southwestern Sicily, a few kilometres
wide channel that separates the inner (coastal) and outer (open sea) shelf may affect the
meteotsunami waves that arrive at Mazara del Vallo (Sepi¢ et al. 2018a). Off Ciutadella, a
shoaling affects the amplification of the incoming meteotsunami waves, by more than 4 times
over just a few kilometres (Vilibi¢ et al. 2008; Fig. 12). Similar amplifications occur in other
coastal regions off meteotsunami hot spots (e.g., Vela Luka, Orli¢ et al. 2010; Sepi¢ et al.
2016b), yet these effects have not been quantified by numerical modelling exercises. When
meteotsunami waves last for several hours and occur over hundreds of kilometres, as
occurred during the Odessa 2014 meteotsunami, the waves may be channelized by
underwater canyons and propagate as rays towards the exact beaches impacted by waves
(Sepi¢ et al. 2018b). Such propagation characteristics further resembles the similarities
between propagation of meteotsunami and tsunami waves, which are known to be directed
by underwater ridges and canyons (Okal and Synolakis 2008; Iglesias et al. 2014).

A better knowledge of the role of coastal amplification of meteotsunami may be
obtained by separating the effects of the forcing mechanism from those of the coastal
amplification in the energy spectra observed at coastal locations. A pioneering study was
carried out by Monserrat et al. (1998), who modified the existing algorithm to separate the
source and topography previously used for seismic tsunamis by Rabinovich (1997). For a given
event, those similarities observed at different but nearby locations should be related to the
forcing and differences due to the coastal amplification. However, for different events
measured at a given location, similarities should be related to the coastal amplification at this
point and differences in the forcing. When they computed the spectral ratios
(event/background) measured at different locations during the same event, the effect of the
coastal amplification was removed and the ratios became very similar, elucidating the forcing
characteristics for this event (Fig. 13). They also showed that by computing the forcing
characteristics of different events and dividing by the observed atmospheric energy during
each event, the energy contents should show how the atmospheric energy is transferred to

the ocean. These spectral contents were very similar, suggesting that the atmospheric energy
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during different meteotsunami events was transferred into the ocean in a similar manner (Fig.
13c). These similarities have been used to analyse oscillations at Ciutadella and Cala Ratjada
(Menorca Island) where oscillations normally occur first, indicating that sea level
measurements at Cala Ratjada could be used to forecast destructive events in Ciutadella

(Marcos et al. 2009).

4.3. Teleconnections between different regions in the Mediterranean

Meteotsunamis are normally local phenomena, associated with several specific
mesoscale features that rapidly change in time and space, affecting a few nearby locations.
However, these mesoscale features are always linked to several specific atmospheric synoptic
pattern which may affect large regions and/or last long enough to travel large distances. This
implies that meteotsunami events may be simultaneously observed in different sites located
relatively far away as the synoptic situation favourable to their generation affect a large area
or if the synoptic pattern evolves and travels long distances.

These teleconnections between meteotsunamis observed in distant regions were first
suggested by Sepi¢ et al. (2009a) for the Mediterranean Sea. By analysing a set of 32 events
reported in the Balearic Islands for the period 1975-1998, the authors found that a significant
number (approximately 50%) were also observed, in a 48-h time window, in the Adriatic Sea.
When concurrent or subsequent meteotsunamis were observed in both regions, the events
were always associated with a specific synoptic pattern, which either simultaneously affected
both areas or propagated from one region to the other.

These teleconnections became even more apparent after analysing the 23-27 June
2014 meteotsunamis, during which an atmospheric synoptic pattern propagated eastward
over the Mediterranean and generated a chain of destructive meteotsunami events that
affected several countries from Spain to Ukraine (Fig. 14, Sepi¢ et al. 2015a). The synoptic
conditions favourable to the generation of meteotsunamis, as described in the previous
section, were first observed over the Balearic Islands on 23 June, then propagated to the east,
over the Adriatic and Tyrrhenian seas (25-26 June) and finally reached the Black Sea on 27
June. The greatest sea level oscillations were observed in each region at the time of the most
intense atmospheric instability and when a completely developed mid-troposphere jet stream

was located over the given area.
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This reported chain of events revealed that meteotsunamis should not be only
considered as local phenomena but as a potentially dangerous regional risk that can affect

large areas, within distances of thousands of kilometres.

5. Meteotsunami monitoring and forecasting systems

Meteotsunami detection systems rely on four different components used either
separately or in combination (Vilibi¢ et al. 2016): (i) identification of tsunamigenic atmospheric
synoptic conditions, (ii) real-time high-frequency air pressure and sea level measurements,
(iii) high-resolution atmospheric and ocean deterministic forecast, and (iv) stochastic
meteotsunami hazard assessments. Due to their cost, these systems are evolving with the
available technology and are still underdeveloped in the Mediterranean Sea where the
meteotsunami hazard is often overlooked by coastal managers. In fact, at this time, only two
research products have been fully tested and published: the Balearic Rlssaga Forecasting
System (BRIFS; Renault et al. 2011) and the Adriatic Sea and Coast (AdriSC) system (Denamiel
et al. 2019a 2019b) (Fig. 15).

5.1. Observational networks

In the Balearic Islands, 1-min real-time sea level and air pressure records are available
at 6 tide gauge locations (Andratx, Colonia de Sant Pere, Pollensa, Porto Cristo, Sa Rapita and
Sant Antoni) and 20 air pressure sensor locations operated by SOCIB (Balearic Islands Coastal
Observing and Forecasting system) and are displayed at

http://www.socib.es/index.php?seccion=observingFacilities&facility=mooring (Fig. 15, Tintoré et al.

2013, Heslop et al. 2019). Based on these Balearic tide gauge measurements, a detection
algorithm analysing intermittent sea level oscillations and identifying meteotsunami events -
via wavelet analysis and more precisely averaged power spectral densities - was developed by
André et al. (2013).

In the Adriatic Sea, a pilot microbarograph network of three air pressure sensors with
a sampling rate of 1 min, used for real-time detection of intense air pressure disturbances,
was first developed by Sepi¢ and Vilibi¢ (2011). Within this system, the air pressure rate of

change is determined every 5-min and, when a meteotsunamigenic disturbance is identified,
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its intensity, period, speed and direction of propagation are automatically calculated. Similar
to the procedure developed by Tinti et al. (2012) for seismic tsunamis, the parameters
measured are then compared with the meteotsunami warning matrix estimated from
historical events. The Adriatic microbarograph network was extended in 2017 to the whole
middle Adriatic region by the MESSI project (“Meteotsunamis, destructive long ocean waves
in the tsunami frequency band: from observations and simulations towards a warning

system”, http://www.izor.hr/messi). Presently, the network encompasses nine air pressure

sensors located in (1) the eastern Adriatic meteotsunami hot spots of Vela Luka, Stari Grad,
and Vrboska, (2) the middle Adriatic islands of Vis, Svetac and Palagruza, to quantify the spatial
changes in atmospheric disturbances over the regions in which resonance is expected to
occur, and (3) Ancona, Ortona, and Vieste, located on the Italian coast, providing the
parameters needed for the early warning system at coastlines where the atmospheric
disturbance is expected to occur over the Adriatic Sea. The network also includes three tide
gauges located in Vela Luka, Stari Grad and Sobra (Fig. 15). In addition to being used for
meteotsunami detection, these measurements are also invaluable for the evaluation of the
modelling tools used in the Adriatic Sea (Denamiel et al. 2019a 2019b).

In addition, the meteotsunami community has been collaterally benefiting from large
investments made in a real-time 1-min sea level worldwide network developed for tsunami
research and managed by the Intergovernmental Oceanographic Commission (lOC,

http://www.ioc-sealevelmonitoring.org/map.php). In the Mediterranean and Black Seas, this

network encompasses more than 120 stations operational in real-time or near-real-time,
principally used to support verification of new tsunami forecasts (Angove et al. 2019);
however, this network still has an insufficient spatial coverage to properly identify

meteotsunamis with scales of a few tens of kilometres or less (Vilibi¢ et al. 2016).

5.2. Deterministic modelling tools

Both meteotsunami detection systems developed in the Mediterranean Sea are based
on the same state-of-the-art numerical models: the Weather Research and Forecasting model
(WRF, Skamarock et al. 2005) for the atmosphere and the Regional Ocean Modelling System
(ROMS, Shchepetkin and McWilliams 2005 2009) for the ocean, although the modelling

strategy implemented in each is quite different.
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In BRIFS (Renault et al. 2011), the WRF and ROMS models are coupled off-line, which
means that the two grids of the WRF model, which cover the Western Mediterranean basin
with a resolution of 20-km and the area around the Balearic Islands with a 4-km resolution,
are run for a 12-h spin-up and 24-h forecast period (as described in Fig. 15). Then, the 2-min
sea level pressure is extracted from the WRF 4-km results and used to force the two ROMS
grids for the 24-h forecast period, covering the Balearic Islands with a resolution of 1 km and
the Ciutadella harbour with a resolution of 10 m. The WRF model is set up with 97 vertical
levels, refined near the surface to properly resolve the inversion layer associated with rissaga,
and initialized/forced at the boundaries with the FNL/GFS analysis/forecast from the National
Centers for Environmental Prediction (NCEP). The ROMS model, however, is not forced by any
density stratification at the boundaries.

In the AdriSC system (Denamiel et al. 2019a), the WRF and ROMS models are coupled
on-line every minute within the Coupled Ocean-Atmosphere-Wave-Sediment-Transport
(COAWST) modelling system developed by Warner et al. (2010). The WRF domains over the
central Mediterranean basin have a resolution of 15 km while those over the entire Adriatic
and lonian Seas have a 3 km resolution. The ROMS domains also cover the Adriatic and lonian
Sea with a 3 km resolution and the Adriatic Sea with a 1 km resolution. Terrain-following
coordinates are used for vertical discretization in both ocean and atmosphere models,
containing 58 vertical levels in WRF refined in the surface layer (Laprise 1992) and 35 vertical
levels in ROMS refined near both the sea surface and bottom floor for the ocean (Shchepetkin
and McWilliams 2009). The initial state and boundary conditions are taken from the European
Centre for Medium-Range Weather Forecasts (ECMWF) Atmospheric Model high resolution
10-day forecast (HRES — Lalaurette 2002; Petroliagis and Pinson 2012; Zs6tér 2006; Zsétér et
al. 2014) and the Mediterranean Forecasting System (MFS) high resolution 10-day MEDSEA
forecast (Pinardi et al. 2003; Pinardi and Coppini 2010; Tonani et al. 2014).

In addition to the COAWST model which is run for a 48-h spin-up and 24-h forecast
period, an even more refined WRF domain covering the Adriatic Sea with a 1.5-km resolution
is coupled off-line with the unstructured ADvanced CIRCulation ocean model (ADCIRC,
Luettich et al. 1991) for a 12-h spin-up and 24-h forecast period covering the last 36-h of the
COAWST model run (as described in Fig. 15). The ADCIRC mesh is specifically designed to
provide extreme sea level hazard assessments in Croatia, covering the entire Adriatic Sea with

a minimum resolution of 100 m along the Croatian coastline and up to 10 m in the harbours
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of interest (e.g., Vela Luka, Stari Grad, Vrboska, etc.). The ADCIRC model is forced with 1-min
high-resolution air pressure and wind stress.

In terms of modelling strategy inter-comparison, BRIFS, which is less computationally
expensive, is most probably faster but only provides next day forecasts with atmospheric
forcing at a 4-km resolution. This resolution is known to be too coarse to properly represent
meteotsunamigenic disturbances in the Mediterranean Sea (Horvath et al. 2018). The AdriSC
system can be used to detect air pressure disturbances at 1.5-km resolution at least 30-h in
advance. In addition, as the WRF wind fields are also used to force the ocean models (ROMS
and ADCIRC), the AdriSC system, which includes a wave component, can forecast
atmospherically driven extreme sea level events other than meteotsunamis. However, due to
the lack of computational resources and the numerical cost of the modelling suite, the AdriSC
system is currently not operational, while BRIFS has run without interruption over the last

decade in the Balearic Islands.

5.3. Stochastic hazard assessment

Due to the challenges posed by deterministic forecasting of the meteotsunamigenic
atmospheric disturbances in the Mediterranean Sea, it is of prime importance to assess how
sensitive meteotsunami hazards are to their direction, intensity, period and speed at hot spot
locations. In the Balearic Islands, several sensitivity studies have assessed the meteotsunami
hazards in Ciutadella (Marcos et al. 2003; Vilibi¢ et al. 2008; Orfila et al. 2011) for individual
events. Licer et al. (2017) generalized this approach and used 160 numerically generated
synthetic atmospheric gravity waves to stochastically investigate the meteotsunami
amplification and propagation inside and outside Ciutadella harbour. The study followed
previously documented conclusions and found that, given the shape of the Balearic
bathymetry, a wide range of gravity wave speeds (between 23 and 36 m/s) and angles of
propagation (between 210° and 250°) can lead to substantial meteotsunami amplification (Fig.
16). Furthermore, they found that amplification mainly occurs in the Menorca Channel
(described as a focusing lens). The findings of this study thus demonstrate the difficulty in
providing timely meteotsunami warning in Ciutadella when the pressure disturbances are

locally generated in the Menorca Channel.
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In the Adriatic Sea, a similar approach was used by Orli¢ et al. (2010) and Sepi¢ et al.
(2016b), who based sensitivity studies on simplified synthetic disturbances following
observations from the 1978 Vela Luka and the 2014 middle Adriatic meteotsunamis,
respectively. They found a disturbance speed of 28-36 m/s, which depended on the
meteotsunami hot spot affected, i.e., Vela Luka Bay, Stari Grad Bay and Rijeka dubrovacka
Bay, and the propagation direction of the disturbance. For the latter, the disturbances that
generate the maximum meteotsunami waves were found to travel from 200-240°, 260-300°
and 260-290° for Vela Luka, Stari Grad and Rijeka dubrovacka, respectively. For the northern
Adriatic meteotsunami sites at Siroka Bay (Ist Island) and Mali Losinj Bay, the greatest
resonant transfer of energy towards the sea is reached at smaller propagation velocities due
to the decreasing ocean depth encountered towards the northwest (Sepi¢ et al. 2015b). As
the ocean is quasi-flat in the northern Adriatic, this sensitivity study suggests that the
Proudman resonance is the dominant resonance mechanism in that location.

With the same approach, Sepi¢ et al. (2018b) showed that the most efficient
generation of meteotsunami waves during the 2014 Odessa meteotsunami occurred on the
shelf break, where the disturbance travelled in parallel to the shelf break, while the
meteotsunami waves generated were topographically directed towards the north and the
affected beaches.

Denamiel et al. (2018) improved the methodology and assessed the impact of
geomorphological changes (i.e., deepening of the bay, dredging the harbour, removing an
island, adding a pier or a marina) to the Vela Luka harbour resonance during all potential
meteotsunami events. The meteotsunami impacts were assessed for a set of 6401 synthetic
air pressure fields used to derive robust statistics. In contradiction to the values obtained with
the traditional quality factor derived from the peak frequency of the sea level spectrum, the
most substantial increase in meteotsunami amplification was obtained when the Vela Luka
harbour was dredged to 5 m depth. New values of the quality and amplification factors were
thus re-calculated by integrating the forcing energy content over the full frequency range and
were found to be in good agreement with the results of the statistical analysis in Vela Luka
Bay (Fig. 17).

Finally, in the Adriatic Sea, a meteotsunami surrogate model based on the generalized
Polynomial Chaos Expansion (gPCE; Soize and Ghanem 2004; Xiu and Karniadakis 2002) was

developed by Denamiel et al. (2019b 2020). The model uses polynomial expansions to project
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the probability distribution of the maximum meteotsunami elevation and estimates the
meteotsunami maximum elevation distributions at meteotsunami hot spots by propagating
the uncertainty in the atmospheric forcing to ocean simulations. With this approach, the
sensitivity to the atmospheric disturbance parameters (start location, direction, speed, period,
amplitude, and width of the disturbance) may be quantified. The surrogate model, which can
use either deterministic forecast results or measurements from air pressure sensors as input
parameters, is designed to assess the potential hazard of any meteotsunami event in the
middle Adriatic region in only a few minutes (practically at no computational cost) and for a
large number of samples. In addition, the gPCE formulation allows for the analytical
computation of Sobol’ indices (Sobol’ 2001; Saltelli et al. 2008; Sudret 2008) used to
systematically derive, in the Adriatic Sea, the meteotsunami sensitivity to the six chosen
stochastic parameters of the atmospheric disturbance without any additional computations.
Not surprisingly, this sensitivity analysis revealed that, for all hot spot locations in the Adriatic
Sea, the speed or the period of the atmospheric disturbance is the most critical parameter for
meteotsunami harbour amplification, while the effects of the amplitude are of secondary
importance.

While stochastic approaches have only been recently successfully implemented in the
Balearic and Adriatic regions, they certainly provide important insights concerning
meteotsunami amplification linked to atmospheric forcing. This approach must be further
developed in both theoretical and operational studies to compensate for the lack of accuracy
in the deterministic atmospheric models and to better quantify the uncertainty associated

with meteotsunami forecasting.

5.4. Meteotsunami early warning systems

As fully preventing meteotsunami impacts is, for now, close to impossible (Vilibi¢ et al.
2016), the principal goal of meteotsunami early warning systems is to enable the local
communities to better prepare for these destructive events (e.g., set up temporary
protections against flooding and waves, avoid swimming, etc.) to minimize losses. Such a
warning system can be based on different observational and modelling tools: (i)
meteotsunamigenic synoptic patterns, (ii) in situ high-frequency observations, and (iii)

deterministic and/or stochastic numerical modelling, or a combination of these (Sepi¢ et al.

30



948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978

979

2017). For the Balearic Islands, the “rissaga warning” is operational up to two days before
potential meteotsunamis; however, it is based on qualitative (by a human eye) assessment of
forecasted operational synoptic patterns (Jansa et al. 2007). The warning system has been
found to fairly forecast moderate meteotsunami events (75-150 cm of wave height in
Ciutadella), with a correct forecast in approximately 75% of such events between 2003 and
2006 (Jansa and Ramis 2020). Still, the strongest meteotsunamis (>150 cm of wave height in
Ciutadella) are mostly underestimated (in 85% of cases), indicating the existence of specific
atmospheric conditions not attainable from synoptic patterns.

The quantification of the connections between synoptic patterns and multi-year sea
level observations was also improved by Sepic et al. (2016a) with the definition of the so-called
synoptic meteotsunamiindex (Section 4.1.1), which can also be used to assess meteotsunami
changes in the future climate. The latter has been conducted by Vilibi¢ et al. (2018b), who
found that meteotsunami occurrences will increase by 1/3 in Ciutadella for the RCP8.5
scenario during the 2071-2100 period. Until now, no such operative tool was developed in
other Mediterranean basins - e.g., the Adriatic Sea - although favourable meteotsunamigenic
synoptic conditions have been documented. In addition, despite the known propagation of
meteotsunamigenic synoptic patterns from the Western to the Eastern Mediterranean and
the Black Sea, a large scale meteotsunami early warning based on synoptic conditions has not
been developed.

Romero et al. (2019) modified the modelling approach in an meteotsunami early
warning system to reproduce key atmospheric and ocean processes, such as (i) the generation
of high amplitude atmospheric gravity waves upstream from the Balearic Islands and travelling
in the SW—-NE direction; (ii) the oceanic response to the respective pressure fluctuations along
the Menorca channel; (iii) shelf amplification, which doubles the wave amplitude; and (iv) the
harbour resonance within Ciutadella inlet. They tested the simplified warning system on 126
meteotsunamis between 1981 and 2018 and found the best performance for weak
meteotsunamis (<20 cm of wave height in Ciutadella), while for intense (100-200 cm of wave
height in Ciutadella) and extreme (>200 cm of wave height in Ciutadella) meteotsunamis the
proper reproduction (in the same intensity category) was achieved for 43 and 33% of
meteotsunamis, respectively.

However, an advanced prototype of a meteotsunami early warning system (Fig. 18)

was developed and successfully evaluated in the Adriatic Sea (Sepi¢ et al. 2017, Denamiel et
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al. 2019b), but it is unfortunately not operational due to a lack of computational resources.
This early warning system receives two different type of data: high-resolution atmospheric
and ocean model results provided by the AdriSC system and 1-min measurements from the
MESSI observational network. Both are used as input to the meteotsunami stochastic
surrogate model (presented in Section 5.3) to provide extreme sea level hazard assessment at
hot spot locations along the Croatian coastline. In the daily operational mode (Fig. 18), the
high-pass filtered sea level pressure is automatically extracted from the WRF 1.5-km results at
least 24 h before any potential meteotsunami event. If a pressure disturbance is detected, the
meteotsunami maximum elevation distributions (i.e., the probability of the expected
maximum elevation) are computed at different locations of interest by the stochastic
surrogate model. The maximum elevation probability distributions are revised 2 h before the
forecasted meteotsunami event, by analysing the 1-min air pressure measurements from
Ancona, Ortona, Vieste, Svetac, and Vis, and imposing the extracted disturbance parameters
as constant input values in the model. The final meteotsunami warning is then ready to be
published and accessible to users. This system was tested on five meteotsunami events that
occurred between 2014 and 2018 and yielded a fair forecast but overestimated several

episodes (Denamiel et al. 2019b).

6. Research gaps and emerging research topics

As presented in this review, meteotsunami research has a long tradition in the
Mediterranean and Black Seas, where extreme events strongly impact shores, cities and
coastal infrastructures. However, in the last decade, it has substantially developed all over the
world due to the net increase in available high-frequency sea level and meteorological
observations. Observational networks have indeed expanded globally (e.g., IOC Sea Level

Station Monitoring Facility network (http://www.ioc-sealevelmonitoring.org/) or regionally

(e.g., NOAA Tides and Currents, https://tidesandcurrents.noaa.gov), enabling for mapping of

high-frequency sea level oscillations and meteotsunamis in all continents (Rabinovich 2020).
In recent years, a great number of meteotsunami studies have been carried out around the
world based on observations, modelling and analysis of source processes and in relation to
geographical location and local processes (Pellikka et al. 2014; Linares et al. 2016 2019;
Sheremet et al. 2016; Olabarrieta et al. 2017; Dusek et al. 2019; Kim et al. 2019; Williams et
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al. 2019; Heidarzadeh et al. 2020; Shi et al. 2019 2020), which can produce meteotsunamis of
different origins than those in the Mediterranean (e.g., frontal zones, hurricanes).

The idea of this chapter is to present research gaps and ideas for future research
considering specific Mediterranean and Black Sea meteotsunami issues, but that are also
relevant to global meteotsunami research in addition to regional considerations. We classified
these ideas into two major categories: (i) improvement of research tools and (ii)

meteotsunami research topics themselves:

A. Tools for meteotsunami research

A.1. Extension of high-frequency sea level observations over the whole basin. To properly

quantify spatial properties of high-frequency oscillations, the extension of available sea level
networks over the entire Mediterranean and Black Sea shores is necessary. Presently, most of
these stations are located along the northern shores of the Mediterranean, while the Black
Sea and the North Africa coastlines are sparsely populated with high-frequency sea level
observations. A unification of such a network (e.g., through a regional Global Ocean Observing

System, MonGOOS, www.mongoos.eu) might be adequate to tackle eventual political or

funding problems that generally prevent such developments.

A.2. Extension of conjoint high-frequency sea level and meteorological observations. The

current standard in meteorological measurements, temporal resolutions of 10 minto 1 h, is
not appropriate for observations of meteotsunamigenic disturbances. Presently, only the
SOCIB and MESSI networks have a potentially appropriate spatial resolution for meteotsunami
research in the Mediterranean region. Efforts to upgrade existing networks (e.g., those
presented in the 10C Sea Level Station Monitoring Facility network) and influence national
meteorological services to distribute data with at least 1-min resolution should be undertaken.
As the technology is mostly ready at actual measuring stations, this should not require large

investments.

A.3. Improvement and better usage of amateur meteorological networks and citizen science.

Aside from official and standardized meteorological observations, many amateur

meteorological networks (e.g., Crometeo in the eastern Adriatic Sea, www.pljusak.com, or
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global Wunderground network, https://www.wunderground.com, also active in the

Mediterranean and Black Seas, or Balearsmeteo in the Balearic Islands,

http://balearsmeteo.com) can be used by the research community. These networks do not

follow all official meteorological standards and might not be properly calibrated, yet they may
provide extremely valuable information on high-frequency air pressure and wind data (e.g.,
Sepi¢ et al. 2016b) with very good spatial resolution. In addition, school meteorological
networks might also be used in research, for example, the School-Based Weather Station

Network on the Vancouver Island (http://www.islandweather.ca, Rabinovich et al. 2020).

Thus, extending and improving such networks through a citizen science approach (Garcia-Soto
et al. 2017) would probably help in quantification of spatial and temporal properties of

meteotsunamigenic disturbances.

A.4. Development and installation of state-of-the-art observing platforms adapted to

meteotsunami research. As measuring both meteotsunami waves and meteotsunamigenic

disturbances requires quite different standards than the ones used by the current
observational networks, standards used in new platforms should be adapted to the
meteotsunami research. As an example, high-frequency radars, when used in burst mode (Lipa
et al. 2014), have been found to be useful for detecting meteotsunami waves off the
Mediterranean and Black Sea coastlines (Roarty et al. 2019). At hot spot locations, the
automatic extraction of the speed, propagation direction and intensity of meteotsunamigenic
disturbances can be developed from well calibrated and verified high-frequency weather
radar observations (e.g., following the concept developed for minute weather forecast by

AccuWeather; https://www.accuweather.com/en/press/49568860). In addition, the future

advancement in technology may also allow for the development of efficient and cheap
solutions (e.g., Marques et al. 2019), such as self-communicating autonomous networks of

sensors measuring meteorological parameters at high frequencies.

A.5. Availability of precise coastal bathymetry at meteotsunami hot spot locations. As is used

for other ocean processes, proper bathymetry at high resolution is necessary to accurately
reproduce meteotsunamis in numerical studies. This particularly applies to all Mediterranean
and Black Sea hot spots, for which only old charts are available and where a small change in

bathymetry may multiply or reduce the estimated meteotsunami wave heights (e.g., Denamiel
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et al. 2018). Thus, meteotsunami hot spots such as Vela Luka, Ciutadella and other locations
should have priority for hydrographic surveys performed with modern mapping technologies

(e.g., lidar, Brock and Purkis 2009).

A.6. Development of ocean models with high-resolution bathymetry. Recent studies show that

processes occurring nearshore, such as rip currents, may be associated with meteotsunamis.
In addition, meteotsunami models still rarely consider coastal flooding effects on the
amplification and run-up of meteotsunami waves. To numerically capture such processes, a
few metres horizontal resolution is necessary (Linares et al. 2019). Similarly, for complex
topography such as in the Mediterranean, models with unstructured grids with down to a
metre resolution in the coastal regions (both in sea and at land) are necessary to properly
quantify the bathymetric effects on the development and amplification of meteotsunami
waves (e.g., Vilibi¢ et al. 2008; Denamiel et al. 2018). For the open sea, the bathymetry should
also be of high enough resolution to reproduce scattering of meteotsunami waves, particularly

in regions with a complex and changeable bathymetry.

A.7. Development of ultra-high-resolution mesoscale atmospheric models reproducing

meteotsunamigenic disturbances and processes. Even with the right set-up, ocean models

may misrepresent meteotsunami waves due to the difficulty in properly reproducing
meteotsunamigenic disturbances within mesoscale atmospheric models. Several bottlenecks
that affect the reliability of mesoscale atmospheric simulations have been identified (e.g.,
Horvath and Vilibi¢ 2014): proper initialisation, reliable lateral boundary conditions, choice of
parameterizations as well as horizontal and vertical resolutions used in the models. As
meteotsunamigenic disturbances occur at a kilometre spatial scale, the horizontal model
resolution needed is a few hundreds of metres, since mesoscale atmospheric models
underestimate processes at scales lower than 7 times the horizontal resolution (Skaramock,
2004). However, the physics of state-of-the-art atmospheric models may not be adaptable to
run at these resolutions. Therefore, new approaches in mesoscale modelling should be
developed, and tested specifically for meteotsunamis, in collaboration with leading
atmospheric model developers (such as National Centres for Atmospheric Research, NCAR).
This issue is foreseen as critical in proper deterministic reproduction of meteotsunamis,

including the application of operational forecasting and early warning systems.
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A.8. Availability of high-performance computing (HPC) facilities for ultra-high-resolution

numerical modelling. Following issues raised in A.7, access to HPC facilities is a prerequisite to

carry out such a research. For meteotsunami coupled atmosphere-ocean systems, the three
dimensional atmospheric part requires the most computational resources and including ultra-

high resolutions will increase demand by one to two orders of magnitude.

A.9. Development of stochastic methods in meteotsunami research. As noted above,

deterministic reproduction of meteotsunamis and meteotsunamigenic disturbances are not
reliable enough to be solely used in forecast and early warning systems. The recent attempts
at applying stochastic methods in meteotsunami research are encouraging and have resulted
in better assessments of meteotsunami hazards than the deterministic approaches, while
demanding much less computational resources. Such approaches also allow for quantification
of uncertainties of the meteotsunami forecast, for which deterministic models have no
capacity (except if run as ensemble forecast, which would then be extremely costly in terms
of numerical resources). In general, stochastic methods are not widely used in ocean research
and their applications in meteotsunami research might thus be encouraging for wider hazard

assessments of atmospherically driven extreme sea levels.

A.10. A framework for collaborations, research, operational issues and definition of standards

in meteotsunami research. All the tools listed above could potentially improve meteotsunami

research and would be developed much more efficiently within multidisciplinary
collaborations encompassing research groups with expertise in all quoted issues using
common resources. For example, a WRF model of 15-km resolution may be set-up for the
entire Mediterranean and Black Seas and provide everyday hourly forecast results that could
be downscaled (up to 1-km resolution) directly in hot spot areas. Further, the meteotsunami
community should take advantage of the already developed tsunami infrastructures, which
have teams of operators monitoring seismic activity 24/7 that could be trained to also monitor
meteotsunamis. Such a collaborative effort is a priority to better use the limited resources
allocated to research and to provide services (i.e., meteotsunami warning) to the society. The
Mediterranean and Black Sea meteotsunami collaborations could be part of global formal

collaborations, in addition to being dedicated to the specific issues in the region. The recently

36



1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170

1171

held First World Conference on Meteotsunamis (www.izor.hr/mts2019) established new

collaborations and the enthusiasm should be used to progress in a direction of collaboration.

B. Meteotsunami research topics

B.1. Analysing basin-wide high-frequency sea level events, including their statistics,

climatology and probabilistic recurrence functions. Once gaining multi-year or multi-decadal

high-frequency sea level dataset, i.e., from the I0C Sea Level Station Monitoring Facility portal
or through national networks (e.g., Croatian tide gauges are collecting sea level data with 1-
min resolution since 2003), an objective mapping of meteotsunamis and high-frequency
oscillations might be carried out, such as was documented for the U.S. East Coast (Dusek et al.
2019). This might also include different statistical aspects such as seasonality, outreach,
connection with synoptic patterns, teleconnections, all of which have already been initially
analysed in several studies (e.g., Sepi¢ et al. 2009a; 2015c); additional studies could be based
on more comprehensive datasets and generalized. For several sites with particularly long

measurements, the return periods for meteotsunami events might even be estimated.

B.2. Quantifying relations between meteotsunamis and synoptic patterns. Although the link

between meteotsunamis and synoptic patterns has been documented for several
Mediterranean and Black Sea hot spots, the only study that quantifies these relations is for
the Balearic Islands (Sepi¢ et al. 2016b). Therefore, this approach may be extended to other
hot spots to understand which patterns, if any, are relevant for meteotsunamis at those
locations. If such a mapping provides reliable results at the basin level, this might be used for
proxy-based assessment of meteotsunami characteristics, as atmospheric reanalysis fields

cover longer periods than high-frequency sea level measurements.

B.3. Investigating wintertime Mediterranean and Black Sea meteotsunamis and other source

mechanisms. Most of the investigated Mediterranean and Black Sea meteotsunamis, i.e., the
most destructive events, occurred during warm part of the year, between April and October.
However, moderate meteotsunami events may occur during wintertime and may be related
to generation mechanisms different than those observed in summertime, i.e., to wind

pulsations during storms or other, as high-frequency air pressure disturbance are of lower
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intensity in winter (Vilibi¢ et al. 2014a). Furthermore, different generation mechanisms for
meteotsunamis have been documented for events occurring in higher latitudes (de Jong and
Battjes 2004; Wertman et al. 2014; Bechle et al. 2016), including the squall line of 1929 upon
which Proudman developed his resonance theory (Proudman 1929). The existence of these
additional generation mechanisms, other than wave-duct or wave-CISK, in the Mediterranean

and Black Seas is worth investigating.

B.4. Importance of orography in generating meteotsunamigenic disturbances. One important

question is to understand how significantly meteotsunamigenic disturbances are affected by
high orography such as the Apennines and Alps located ca. 200-400 km from the
meteotsunami hot spots in the Adriatic Sea (e.g., Belusi¢ et al. 2007) or the Atlas Mountains
(north Africa) close to the Balearic Islands. The quantification of the orography influence can
be accessed via process-oriented numerical modelling studies that alter and/or remove the
orography from the model and compare the physics of meteotsunamigenic disturbances

reproduced with and without orography included.

B.5. Assessing meteotsunami potential in the future climate. Climate models are not capable

to reproduce temporal and spatial scales of meteotsunamigenic disturbances; thus, they
cannot be used for assessment of meteotsunamis in the future climate. However, there are
indirect methods that might be used, such as using synoptic proxies (as done first for
Ciutadella, Vilibi¢ et al. 2018b) or using surrogate short-time simulations, where boundary
conditions are changed to future climate scenarios by the so-called pseudo-global warming
(PGW) methodology (Schar et al. 1996). The first method may be applied for meteotsunami
hot spots where correlation is high between meteotsunamis and synoptic patterns, while the
second approach is feasible for any meteotsunami hot sport, with reliability of results

equivalent to the reliability of the regional climate model used.

B.6. Estimation of meteotsunami hazard and risk at hot spots. Meteotsunami hazard has been

assessed for the Adriatic and Balearic sites (e.g., Vilibi¢ et al. 2008; Orli¢ et al. 2010; Sepi¢ et
al. 2016a; Licer et al. 2017; Denamiel et al. 2020), but not for other regions, such as
southwestern Sicily coast and the Maltese Islands. Additionally, risk assessment has not been

carried out for any of the Mediterranean and Black Sea hot spots, even for those which are
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known to regularly suffer from meteotsunami damage (Vuceti¢ and Barcot, 2008; Vucetic¢ et
al. 2009). In addition, the risk to coastal infrastructure, goods, houses and other items is highly
variable from one destructive meteotsunami event to the other. For example, in Vela Luka,
which has become a highly touristic place in recent decades, the highest risk should be
assessed by defining how much damage would be produced if an event similar to the
meteotsunami of 21 June 1978 occurred today. This type of risk assessments should be

developed at all locations where destructive meteotsunamis are known to occur.

B.7. Reducing meteotsunami hazard at hot spots. It is of highest importance to assess any

interventions in coastal line and bathymetry at meteotsunami hot spots, as even small
interventions and extensions may strongly change amplification characteristics and eigen
oscillations of the bay or harbour (e.g., Marcos et al. 2005; Denamiel et al. 2018). Several
solutions such as radial piers in a bay (Rabinovich 1992) may reduce the amplification factor
and therefore the maximum wave height at the harbour head. However, such eventual
interventions should be first assessed by targeted numerical modelling, as construction that
narrows the entrance in a harbour or bay may even increase the amplification (Miles and

Munk 1961; Rabinovich 2009).

B.8. Development and verification of meteotsunami early warning systems. Currently, only

two meteotsunami early warning systems are available for the Mediterranean and Black Seas:
in the middle Adriatic and the Balearic Islands. Simultaneously, the research is providing new
and cost-effective methodologies that might be used to improve meteotsunami forecast,
focusing exclusively on important meteotsunamigenic parameters (Romero et al. 2019). All
these concepts might be used to improve the present meteotsunami early warning systems
and their extension to other meteotsunami hot spots. Naturally, a catalogue of meteotsunami
events or long-term high-frequency sea level measurements should be available at these sites

first.

B.9. Assessing socio-economic aspects of meteotsunamis. The impact of meteotsunamis to

coastal communities, including their reactions to the hazard, awareness of the hazards,
development of societal services, mitigation and adaptation measures, at the level of the

community as well as on the level of individuals, has not been researched in the
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Mediterranean and Black seas. Such research could be carried out for all meteotsunami hot
spots and then the societal parameters could be intercompared and used to improve the

related societal services.

7. Concluding remarks

This review is the first attempt to present meteotsunami research in the
Mediterranean and Black Seas, a region in which these extreme events have traditionally been
studied over the last 40 years. All meteotsunami aspects are presented, including several of
ideas for future developments that may help researchers not only in this region but also
worldwide. In addition, an initial bibliographical review has been performed, which will
hopefully be extended globally in more comprehensive future studies.

It should be emphasized here that observational networks are crucial in geosciences
and should be further developed in the Mediterranean Sea to better understand, quantify and
detect the hazards posed by meteotsunami events, which are likely to increase in frequency
and intensity under climate change (Vilibi¢ et al. 2018b). However, because of the cost of such
systems (particularly the long-term cost of maintenance and repair) and the lack of funding
dedicated to the sustainability of oceanographic observational networks, there is doubt about
how research institutes will be able to maintain and further develop these networks. A way
forward may be building up targeted networks with cheaper sensors, which will become
available with future technological developments, while fulfilling the specific standard
(resolution, precision, long-term stability) for measuring meteotsunamis. Aside from
measurements, the growing application of numerical models at high resolutions in
meteotsunami research is a great opportunity for model developments, which are generally
based on finding new solutions to reproduce non-standard processes (i.e., processes at the
edge of reproducibility). Hopefully, future development of meteotsunami tools and the
research in the Mediterranean and Black Seas will follow these directions.

This review is intended primarily for oceanographers, atmospheric scientists and ocean
engineers, but meteotsunami research is a comprehensive subject that requires much wider
competences, i.e., of mathematicians, statisticians, coastal managers, economists, policy

makers, and more. The societal benefits of this research should be properly acknowledged in
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the future, as a gap between research and societal needs still exists. We expect that this

review will eventually help to better connect research with society.
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Figure 1. Locations (red circles) and photos of the most prominent meteotsunami events in
the Mediterranean Sea: (a) the Balearic meteotsunami of the 21 June 1984 and (b) 15 June
2006, (c) the middle Adriatic meteotsunami of 21 June 1978, (d) the Mali LoSinj
meteotsunami of 15 August 2008, (e) the Mazara del Vallo meteotsunami of 25 June 2014,
and (f) the Odessa meteotsunami of 27 June 2014.
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Figure 2. Announcement of public works provided by local authorities the day after the 21

June 1978 Vela Luka meteotsunami (reproduced from Vuceti¢ and Barcot, 2008).
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Figure 3. Ciutadella harbour view taken during the 215t June 1984 rissaga event (courtesy of

Josep Gornes).
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1922 Figure 5. Number of meteotsunami papers published in Web of Science categorized by (a)
1923 region of interest (Mediterranean stands for papers examining at least two regions or the
1924 whole basin), (b) studied process —atmospheric (ATM), ocean (OCE) or ocean-atmosphere
1925 (ATM/OCE) and (c) type of investigation — observational (OBS), numerical modelling (NUM),
1926 analytical modelling (THEOR) or combinations (NUM/OBS/THEOR).
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Figure 6. Common synoptic patterns conducive for the observed Mediterranean high-
frequency sea level oscillations: mean sea level pressure (MSLP) anomaly, temperature at
850 hPa anomaly, and wind anomaly at 500 hPa averaged over selected events measured at
(a) Palma de Mallorca, (b) Cagliari, (c) Porto Empedocle and (d) Katakolo tide gauge stations.
Twelve high-frequency sea level oscillation events, 6 in each season (May—October,
November—April), are selected per quoted station between 2008 and 2014, with the full info
on events listed by Sepié et al. (2015c). The anomaly has been computed as the difference
between the actual synoptic field and the climatological synoptic field for the month in
which the event occurred. The figure is reproduced from Sepié et al. (2015c).
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Figure 7. Results of the numerical modelling exercise in reproduction of the 2003 middle
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Adriatic meteotsunami event: (a) mean sea level pressure and (b) vertical cross-section of
potential temperature, cloud water/ice mixing ratio (shaded above 0.005 g/kg) and vertical

velocity (contours of 10, 60 and 110 dPa/s, negative values standing for updrafts and are
dashed), and (c) zoomed potential temperature (solid lines, interval 2 K), pressure
perturbation (dashed lines, interval 1 hPa), and vertical velocity (shaded above 5 cm/s,

contour interval 10 cm/s), all on 27 June 2003 at 02 UTC. The figures are taken from Belusic¢

et al. (2007).
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Figure 8. Air pressure series measured at microbarograph stations (a) during the 15 June

2006 Balearic meteotsunami (after Monserrat et al. 2006), and (b) during the 27 June 2003
Adriatic meteotsunami (after Vilibi¢ et al. 2004). PM, M, SP, KO, HV, MA, LA, PL and DU stand
for Palma de Mallorca, Mahon, Split, Komiza, Hvar, Makarska, Lastovo, Ploce and Dubrovnik,

respectively.
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Figure 9. Sensitivity modelling study of the 25 June 2014 Adriatic meteotsunami: (a)
maximum wave heights obtained for the tops of Vela Luka, Stari Grad and Rijeka dubrovacka
bays for a set of experiments forced by a box-car air pressure disturbance. (b) Proudman
length at the tops of Vela Luka, Stari Grad and Rijeka dubrovacka bays, defined as a
percentage of total length over which a disturbance travelled, and for which 0.95<Fr<1.05 is
valid, where Fris Froude number defined as ratio between the speed of atmospheric
disturbance and long ocean waves. Red plus signs mark maximum wave height and
Proudman length as obtained in experiment forced by a disturbance propagating with speed
and direction estimated from measurements (u = 40 m/s, c = 270°). The figure is reproduced
from Sepié et al. (2016b).
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Figure 12. Approximate profiles of the Mazaro River (a) width and (b) depth; (c) estimated
meteobore heights. Light blue circles denote data available on the river bathymetry and
from video footages (the latter are indicated by vertical dashed red lines). Black and red solid
lines indicate meteobore heights estimated by the model with and without incoming open-
sea wave height (ho), respectively (after Sepic¢ et al. 2018b).
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Figure 13. (a) Sea level spectra at Ciutadella (Menorca Island) computed during the
meteotsunami of 22-25 July 1997 (solid line) and during a background period (dashed line),
(b) event-vs-background spectral ratio for the same meteotsunami event computed at two
points in Ciutadella (M_0 and M_2), in nearby inlet Platja Gran (M_1) and over the external

platform (MW3) , and (c) atmosphere-ocean transfer function for three different

meteotsunami events observed during summer 1997 (after Monserrat et al. 1998).
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Figure 15. Existing meteotsunami monitoring and forecasting systems in the Mediterranean
Sea: BRIFS (in red) associated with the SOCIB observational network in the Balearic Islands
and AdriSC forecast system (in black) associated with the MESSI observational network in

the Adriatic Sea.
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Figure 16. Dependence of the maximum generated sea surface anomaly (m) on the forcing
gravity wave incident angle 6 and speed U (a) outside and (b) inside Ciutadella Harbour
(after Licer et al. 2017).
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Figure 17. Variation of the re-calculated amplification factor (I) along the Vela Luka Bay (with
Po located at the entrance of the bay and P4 to Pe inside of the harbour) for different
geomorphologies (after Denamiel et al. 2018).
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