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Abstract

It has been shown in simple neuronal systems, conformed by two excitatory neurons unidirec-

tionally (sender-receiver) connected, that the receiver neuron can anticipate the sender spiking

if an inhibitory neuron is connected bidirectionally to the receiver. Later, the same behavior

was reproduced using neural networks although was computationally very costly. In this work

we study synchronization in the Neural Mass model proposed by M. Breakspear, 2003 and

observe that, under certain conditions, it does also display anticipated synchronization while

being computationally more efficient than neural networks simulations.
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Chapter 1

Introduction

1.1 Motivation and State of the Art

Unveiling the dynamics and functions of the brain is a goal for neuroscientists, physicists and

mathematicians among many other scientists. Nowadays, computational neuroscience is in its

most active moment thanks to the large amount of data we are able to record and analyze. This

enables us to develop, rectify and discard models but, while we can describe a single neuron

well enough, understanding a large group of them interacting is still a very challenging problem.

One can start studying a group of neurons from an structural point of view [1][2], and end up

describing the physical connections of the brain using graphs and complex networks theory [3].

Or from a functional point of view, analyze the rich activity they display such as synchronization

[4][5], neuronal avalanches [6] and learning [7][8] within the theoretical framework of dynamical

systems and statistical physics.

These phenomena, although believed to be very important in the brain, are common in a

variety of systems, for example in lasers [9][10], sand-piles [11] and adaptive systems [12] and

can be described by a growing field of physics called complex systems. Complex systems

provide mathematical and computational tools to understand emergent phenomena arising

from interactions and the dynamics of the constituents.
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2 Chapter 1. Introduction

Although there is no clear delimitation for what complex systems can or cannot describe, the

brain is probably one of the most complex systems we can imagine. It is conformed with billions

of neurons in the microscopic level, following electric and chemical rules that no one is directing

and although they can resemble very chaotic from outside, it is believed they end up giving rise

to reasoning and consciousness, phenomena of completely different nature. We are indeed, very

far from answering which is the link between cognitive performance and the brain components

but we can focus in understanding isolated behaviors first.

An example of these isolated behaviors is the synchronization between different regions of

the brain. This phenomena is related to information processing [13] and has been proposed

as a mechanism for justifying the high velocity of the brain when identifying images [16].

Other studies also proved that synchronization in the brain is related to attention [14][15] and

short-term memory. The speed of brain’s information processing seems to rely then, in some

mechanism we cannot understand solely by transmission of pulses and diffusion of chemicals,

but as a result of the interaction of neurons.

Not only that but recently [17] it as experimentally shown that the brain can exhibit also

anticipated synchronization (AS).

AS is a counterintuitive phenomena. Regular synchronization between two systems occurs in

a way that the information goes from the master or sender to the slave or the receiver. The

master is excited first and the excitation is propagated due to some coupling term until it reaches

the slave system that with the perturbation gets also excited. Then talking of neurons, the

Master one fires first and the Slave fires afterwards. However this is not the only case, although

information always flows from Master to Slave, in AS regime the Slave system advances the

sender and fires first.

AS has been studied previously in lasers [18][19] and in neural systems where simulations where

carried out using individual neurons in [20] or neural networks [17]. However, this is not the

only approach we can give to this problem. Other methods have been proposed to simulate

the activity of a group of neurons that, we believe, also reproduce this data with much less

computational cost.
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The activity of the neurons we want to reproduce corresponds to data recorded during elec-

troencephalogram (EEG) experiment, and thus are measures of the evoked potential in the

scalp. The evoked potential recorded is then caused by a whole cortical column which is a

much larger system than a neural network of a hundreds of elements. This amount of neurons

are hardly difficult to simulate from a microscopic point of view and then, one is forced to take

some kind of considerations and approximations in order to find a realistic description for this

phenomenon.

We can describe those cortical columns as previously done in [21] with Neural Mass (NM)

models. This allows us to consider each of this brain columns as a NM that is in general

traits, a system with a common potential shared for all the constituents, sometimes interpreted

as a huge neuron. Neural Mass Models are then very useful because they reduce largely the

dimensionality of the system while still displaying a behavior very similar to the one obtained

in the experiments and showing a very rich activity. Further investigations in this direction

have been published recently as for example [22][23].

Following this direction, it is interesting to continue testing NM models to see how realistic they

are and if they can exhibit also the same behavior found in more detailed simulations as for

example the ones using neural networks. By doing so we can understand better these models

and prove them to be a meaningful and useful representation of a cortical column or otherwise

be aware of which limitations they have and review with more detail the simplifications made

to derive them.

It is a good step forward to understand what kind of mechanisms we are able to describe

using NM models as those are computationally efficient and can help simulate experiments and

conceive new problems we would not be able to afford otherwise. Some of the open questions in

this field, that could be approached by following this direction of study are in creating new and

more involved activity models with spatial structure and large physical connections or searching

for more sophisticated phenomena as the reproduction of the activity in different regions of the

brain or either short or long term memory.



4 Chapter 1. Introduction

1.2 Outline

Our objective will be to simulate a NM using a model proposed by Larter and Breakspear based

in Morris-Lecar [24] equations to describe the evolution in time of the membrane potential of a

cortical column. Next, we will study the NM dynamics by itself and couple it with another NM

of similar characteristics reproducing the synchronized behavior previously founded in [25].

Finally, we will try to find anticipated synchronization, a phenomena shown also in neural

networks simulations and in experiments.



Chapter 2

Background Theory

To better understand what a NM model consist of, let us first introduce the biological phe-

nomenon we try to reproduce. Starting from the microscopic level, we will explain the relevant

mechanisms that allow neurons to pulsate.

2.1 Biological Description

The brain is the main organ of the nervous system and it is conformed by a network of neurons

supported by glial cells. It is believed that the dominant role in processing all the information

is done by neurons and that glia cells are in charge of protecting neurons and ensure they are

isolated and well provided of nutrients and oxygen. Recent studies found that glia cells could

be also participants in some more involved tasks, for example: creating connections between

neurons and breathing. However, his behavior is still limited and disregarded when considering

electric circuits and modeling neurons activity.

Focusing on neurons, when they are in the resting state, it exists a characteristic difference of

potential between the cell and the environment, Vrest ≈ −70mV , and the membrane is said

to be polarized. This is due to the existence of ions such as Na+, K+ and Ca2+ and Cl−,

that are distributed as seen in Fig 2.1 creating electrochemical gradients in the membrane.

5



6 Chapter 2. Background Theory

Then, one can find in the surface of the neuron an accumulation of positive charge, due to the

concentration of Cl− and Na+, while K+ and negative proteins are accumulated on the inside

reproducing the scheme of a typical capacitor.

Figure 2.1: Graphical description of the ion concentration in the cellular medium.

Those electrochemical gradients are maintained by Sodium-Potassium pumps, but the neuron

also has other gates to allow ions cross the membrane under different circumstances in order

to generate spikes. We can find voltage-gated channels, that allow ions to cross the membrane

when the neuron reaches an specific membrane potential. Neurons also have, ligand-gated

channels, that open when a specific neurotransmitter attaches to its receptor and the less

common, mechanically-gated channels that open in response to the physical stretching of the

membrane.

If a neuron is perturbed but its potential is not larger than Vth ≈ −55mV the neuron decays to

its resting state again. However if the perturbation goes beyond the Vth the neuron produces a

spike and then returns to the resting state.

The process of spiking is the following, see Fig 2.2. When a local part of the neurons is

sufficiently perturbed, (0) the neuron excites and an electrical change occurs, (1) sodium and

calcium channels open and the ions enter inside the neuron, this changes the potential of the

cell making it positive and the neuron is depolarized. Before reaching the maximum potential

(2), potassium channels open, allowing K+ to flow outside the neuron. This process is called

repolarization and reverts the effect of the perturbation decreasing the neuron potential again.

Once in (3) the voltage keeps decreasing until Sodium-Potassium pumps recover the Vrest.

Other ions have a less important role and are considered part of the leakage current.
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Figure 2.2: Graphical description of the action potential of the neuron.

This spike is local but it is transmitted all along the axon of the neuron. The membrane of the

neuron is full of those ion channels, and once a region changes polarization the ones nearby are

affected and also change polarization, this ends up in a cascade effect propagating the spike

through the neuron and to other neurons at the end.

The way neurons transmit the signal to other neurons is by a process called synapses. There

are two types of synapses, electrical and chemical. Electrical synapses are less common and are

bidirectional, they are much faster than chemical synapses because they can pass ion currents

directly from one neuron to the other through a gap junction. However, although electrical

synapses are fast and useful are not the most common because they excite directly every neuron.

This could be useful for specific situations, such as heart beats but they could be dangerous

and end up saturating regions of the brain if more common. Chemical synapses instead, do not

transmit the impulse directly but with the help of neurotransmitters, this makes them more

precise and selective and help in not saturating the brain. This kind of synapses are slower and

unidirectional.

The mechanism underlying chemical synapses is the following. When the impulse arrives at the

tip of the axon, near the synaptic cleft, the presynaptic neuron releases the neurotransmitters.

These neurotransmitters are captured by the ligand-gated channels of the postsynaptic neuron

and open them allowing the flux of ion currents in the following neuron.
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There are different types of neurons with different functions associated to each one. The ones

we will focus on are:

• Excitatory neurons, those neurons are typically of Pyramidal type and can have long

range connections. They release neurotransmitters such as glutamate or dopamine that

attach to ligand-gated channels of NMDA and AMPA type. They produce a positive

change of voltage to the neuron they are connected to.

• Inhibitory neurons, in contrast to excitatory ones come in a variety of shapes and mor-

phologies as discovered by Ramon y Cajal. They release GABA neurotransmitters that

attach to ion channels GABAA and GABAB, that allow Cl− and K+ ion currents to pass

through them. Those neurons produce a negative change of potential to the ones they

are connected.

• Interneurons represent 20-30% of the neurons and are in charge of connecting neurons

of different type. They can be divided in two groups, local and relay ones. The local

ones have short range connections and process small amounts of information while the

relay ones have long range connections in order to link different regions of the brain.

Interneurons can be either excitatory or inhibitory although are mainly inhibitory.

Other types of neurons show excitatory and inhibitory behavior as they release both types of

neurotransmitters. There are hundreds of different types of neurons that can be categorized

depending on its structure or functionality.

2.2 Microscopic Description

From a mathematical point of view, neurons are dynamical systems and several models have

been proposed for characterizing its behavior. Starting from the simplest integrate and fire

model [26], where the evolution of the membrane potential of a neuron is described by a circuit

composed of a capacitor and a resistance in parallel, to more elaborated ones such as Hodgkin

and Huxley [27] or FitzHugh-Nagumo [28].
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In this project we are going to focus in one in particular, the Morris-Lecar [24]. This model

is a combination of the last two mentioned and is based on a biological description of the

ionic currents that take place in the neuron. In order to arrive to its final expression, the

model takes into account the characteristic slow scale of the potassium current and neglects

the sodium current. The model does not considers lag between the potential of the membrane

and the opening/closure of ion gates. The voltage then varies as

dV

dt
= −g

Ca
m∞(V − V

Ca
)− g

K
w(V − V

K
)− g

L
(V − V

L
) + Iext

dW

dt
= φ

w∞ − w
τ∞

(2.1)

where V is the membrane potential and W is the recovery variable that describes the relaxation

process of protein channels between conducting and non-conducting states. The probabilities

of having calcium and potassium channels open, m∞ and w∞ are given by,

m∞(V ) = 0.5

[
1 + tanh

(
V − V1
V2

)]
w∞(V ) = 0.5

[
1 + tanh

(
V − V3
V4

)] (2.2)

and are derived from the assumption that, in equilibrium, are partitioned according to a Boltz-

mann distribution.

The time constant for the K+ channel relaxation is given by

τ∞ = τ0sech

(
V − V3

2V4

)
(2.3)

where τ0 is the time scale of the recovery process. This parameter can widely vary as a function

of the cell and the temperature. Description for the resting parameters can be found in the

appendix, Table 1. Parameters are adimensional, a derivation of the nondimensionalisation of

those equations can be found in [29]

Neurons are dynamical systems that are quiescent or active as a function of the applied external
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intensity, as an excitable system. In the case of the Morris-Lecar equations, neurons start to

fire for sufficiently large values of the intensity, and as a function of the values of the parameters

its threshold intensity varies. Not only that but the way the neurons start spiking also varies

as a function of the parameter values. Then one can differentiate between two categories.

The first one is called Class-I excitability and is related to Homoclinic and Saddle Node on

Invariant Circle (SNIC) bifurcations. When the system undergoes one of these bifurcations,

it starts to fire, at the intensity threshold, at an arbitrary low frequency. In the case of the

Homoclinic bifurcation, this is due to a logarithmic divergence of the period, ∼ ln(I), while in

the case of the SNIC bifurcation the period grows like ∼ I−1/2.

The case of the Class-II excitability is different. The system starts to activate at a given

frequency. In general, this is due to a Hopf bifurcation, where the amplitude of the oscillations

grows like ∼ I−1/2, if more specifically, the bifurcation is a Subcritical Hopf, one may observe

a fold of cycles that leads to some bistable behavior.

Usual values for the parameters are shown in the appendix, Table 1. The model can display

different behavior as it can reproduce both Class-I and Class-II excitability by changing the

parameters (see also Table 2 in the appendix). Examples of both cases and the corresponding

traces are plotted in Fig 2.3.

The Morris-Lecar model assumes that the dynamics of a neuron can be expressed with a two

dimensional system. Although this model is not able to reproduce some behaviors such as

bursting oscillations and chaos, that can only be seen in 3-dimensional systems, reproduces

quite well other behaviors associated to neurons.

In order to simulate a whole network of neurons, in the range of hundreds to thousands com-

ponents, one has to assign a proportion of each type of neuron as well as the percentage of

connections between neurons. This depends on the region of the brain one wants to model. In

the cortex is usually assumed that excitatory neurons are 80% of the total and the inhibitory

ones represent the 20%. They are randomly connected, with a probability of connection around

10-20%.
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Figure 2.3: Plots of the frequency displayed by the Morris-Lecar model versus the intensity
applied for Class-I and Class-II excitability parameters. We can differentiate in (a) and (b) a
continuous tendency to zero for the frequency and a divergence of the period. While, one can
observe a very sharp discontinuity for the Class-II excitability around I ≈ 0.14341 for (c) and
(d). Example of trajectories displayed by the model for Class-I excitable system in (e) and
Class-II in (f)

Connections between neurons should be mediated by synapsis. As we have discussed in the

previous section, synapsis can be fast or slow and are simulated by first order differential

equation. This would be characterized by the probability, Ppre, of releasing the neurotransmitter
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of the presynaptic neuron and the probability, Ppost, of capturing the neurotransmitter at the

postsynaptic neuron, so the total probability of the process is P = PprePpost. This can be

written in the following way

dP (t)

dt
= α(1− P (t))− βP (t) (2.4)

Here, P , is the fraction of open receptors. α is the opening rate of the channel and β determines

the closing rate of the channel. Usually, α, is assumed to depend on the concentration of

neurotransmitters as seen in [30] but β is considered constant.

Overall this is computationally very costly. As there are five equations describing the state

of each neuron, and two more accounting for each synapse in the network. The number of

operations escalates quickly and the size of the network due to our computational resources

could be hardly larger than 10000 neurons. This is still far from representative of our brain.

This is why other approximations have been proposed in the literature in order to overcome

this problem. Those are mesoscopic models that are based on mean-field and Laplacian ap-

proximations and reproduce a region of the brain using a reduced number of variables.

2.3 Mesoscopic Description

One can find two types of mesoscopic representations of a group of neurons. Convolution

models that are mathematically based models [31] and conductance-based models, that describe

biological meaningful mechanisms [25].

Anatomically, a NM represents a cortical column. When talking about a NM we will refer to

cylindrical cortical columns that are in the scale of 10−3−10−2m and that contains thousands of

neurons. These columns have six different layers occupied each by a different type of neurons,

as shown in sketch of Fig. 2.4. The first layer, the external one, is the molecular layer which

is conformed only by input axons and contains low density of neurons. Second and third
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layers are more dense and mainly consist of excitatory pyramidal neurons. The fourth layer

is where the inputs of the thalamus arrives, and then has a higher concentration of inhibitory

interneurons. Layer five and six are again mainly conformed by excitatory pyramidal neurons.

Inhibitory interneurons connect with other layers of the cortex, that are also linked between

them creating complex loops. A simplification of these connections is usually modeled as a

dynamical system conformed with excitatory pyramidal cells and inhibitory cells, where these

last ones provide a feedback loop to the first [32].

Figure 2.4: Picture of a cortical column using different methodologies. Golgi captures a small
percentage of neurons, Nissl reveals the shape of the cell body and Weigert stains the myelinated
axons. Picture is taken from Clark (1959) The Anatomy of the nervous System. Its function
and development. in [33].

The activity of pyramidal cells is what is measured in Electroencephalogram (EEG) experiments

[34]. This is because pyramidal cells have longer axons and are perpendicular to the scalp.

However, interneurons, both inhibitory and excitatory, do not have a prominent role in the

signal recorded.

The model proposed by M. Breakspear et al in [25] was based in previous neuronal model of

Morris-Lecar [24] extended by R. Larter et al in [35] in order to simulate epileptic seizures in

the hippocampus.

Each NM is conformed by a large number of neurons, each described in our case by a Morris-

Lecar system of equations (2.1), so each neuron has three variables characterizing its state,
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x = {V,W, I} ∈ RN . To solve this in a computational efficient way, it has been proposed in

[36], [37] and [38] to describe the dynamics of each neuron using a Langevin equation where

f(x) stands for the Morris-Lecar equations describing the dynamics of the neurons plus some

random fluctuations following stochastic differential equations such as,

dx = f(x)dt+ σdw (2.5)

where σ controls the amplitude of the fluctuations and w(t) is a standard Wiener process. With

this we obtain a set of equations that can be integrated to obtain the dynamics of the ensemble

of neurons. All neurons would populate the phase-space with a density q(x, t) that would evolve

in time until reaching an equilibrium or stationary state. The dynamics of the density of states

can be described by a Fokker-Planck equation,

q̇ = −∇fq +∇D∇q = −
N∑
i=1

∂(fiq)

∂xi
+

N∑
i,j=1

(
∂

∂xi
Di,j

∂

∂xj

)
q (2.6)

where D(σ) = σ2/2 is a diffusion tensor. Here, one has to assume a statistical description

of the population given by the distribution of neuronal states. An important approximation

involved in this representation of a group of neurons is that intensity inputs to each neuron are

considered uncorrelated and the individual spiking rate is substituted with an ensemble average

time-dependent population activity.

However, the problem of large dimensionality still remains, as this method does not specify how

the ensemble density of states, q(x, t), should be integrated. This can be handled binning phase-

space, but doing this could make our system again too complicated to solve it computationally.

One can overcome this problem assuming a fixed form of the density, the simplest form is taking

a delta-function or point mass, this is when we obtain a NM model.
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2.3.1 Mean-Field Interaction Between Excitatory and Inhibitory

Neurons

If we consider each type of neuron to be independent, in our case the excitatory pyramidal cells

and the inhibitory interneurons, then m = 2 as is the number of different populations in the

neural mass and the ensemble density becomes,

q(x) ≈ Πm=2
i=1 q(xi). (2.7)

This assumption is rather strong, as implies that there are no correlations between the dynamics

of different type of neurons. With the aim of solving this statement, it has been proposed that

only the mean activity of one ensemble, µ, impairs an effect on the other one and vice-versa,

so the dynamics are now described by, f(x, µ), where µj = µ(q(xi)). This is still a severe

assumption, but not as strong as the last one, because now we are only disregarding the effects

of fluctuations between different sorts of neurons.

The strength with which the mean activity influences the different type of neurons, can be

understood as the coupling between them or the effective connectivity. So we obtain that the

mean membrane potential of all pyramidal excitatory neurons behave following the equation in

(2.1) as

dV (t)

dt
=− {g

Ca
+ r

NMDA
aeeQV

(t)}m
Ca

(V (t)− V
Ca

)

− {g
Na
m

Na
+ aeeQV

(t)}(V (t)− V
Na

)

− g
K
W (t)(V (t)− V

K
)− gL(V (t)− VL)

− a
ie
Z(t)Q

Z
(t) + aneIext

(2.8)

where other important variables are the fraction of active potassium ion channels W and the

fraction of open channels of other ions that are involved in the process m
ion

. Q
V

and Q
Z

are

the mean firing rate of the neural mass and are described by the following equations
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dW (t)

dt
=
φ(m

K
−W (t))

τ
W

m
ion

= 0.5

[
1 + tanh

(
V ()− T

ion

δ
ion

)]
Q

V
(t) = 0.5

[
1 + tanh

(
V (t)− VT

δV

)]
Q

Z
(t) = 0.5

[
1 + tanh

(
Z(t)− ZT

δZ

)]
(2.9)

The parameters value and its description can be found in the appendix, Table 3.

Population of inhibitory neurons has been proposed to be modeled in [25] as,

dZ(t)

dt
= b(a

ni
I0
ext

+ a
ei
V (t)Q

V
(t)) (2.10)

In order to find a realistic description of the biological system we also assume, in the same

way we did for the Morris-Lecar model, that m
ion

obeys a sigmoid like function, equation (2.9).

The probability of having the ion channel open is supposed to be more or less instantaneous

depending on the δ
ion

parameter. The same happens for the mean firing rate of the NM

that introduces some variability in the firing threshold and is described with the same type of

function.

This model is biophysically meaningful and the parameters correspond to biological quantities.

This represents a great advantage as models of synchronized systems are sometimes done with

simple coupled oscillators that are not realistic enough, in the sense that it is hard to know

if the regime one is checking corresponds directly to some physically meaningful state of the

brain.
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Exploring Larter-Breakspear’s Model

The Larter-Breakspear model has a wide variety of regimes. Here we report some of them

found for different sets of parameters. Values for those parameters are fixed following Table 3

in the appendix and varied as described next. In Fig 3.1 and 3.2 we show some examples of

the mentioned regimes.

As in the case of the Morris-Lecar, we have used dimensionless set of parameters in the simula-

tions. The equations were integrated without noise, using the Euler Method and an integration

step of h = 10−5. We started all computations with uniformly distributed random initial

conditions.

For values of δv < 0.55 the system has one stable fixed point. So from the initial conditions,

the NM depolarizes and settles onto a resting state. This behavior corresponds to Fig 3.1 (a)

and (b).

If we fix 0.55 < δv < 0.59, the system goes through period-doubling bifurcations exhibiting

some characteristic behaviors. For example the limit cycle attractor shown in Fig 3.1 (c) and

(d) and a period-9 orbit as shown in Fig 3.2 (a) and (b). This could be understood, biologically

speaking, as burstings.

17
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Figure 3.1: This figure shows different behaviors of the Larter-Breakspear’s Model correspond-
ing to different parameters mentioned in this section. In Fig. (a), (c) and (d) we can see the a
3D representation of the trajectories. The space is defined by the three variables of the model
V , W and Z. In Fig (b), (d) and (e) we have plotted traces of excitatory neurons measured
over time, V (t).
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Figure 3.2: For values of δ
V

near 0.6 and aee = 0.5, a
ie

= 0.5, g
Na

= 0.0, Iext = 0.165, a
ni

= 0.1,
V

T
= 0.5 the system shows a 9-period limit cycle attractor.

Those previously mentioned period-doubling bifurcations can result in a chaotic behavior for

δ
V
> 0.59. An example is shown in Fig 3.1 (e) and (f), with δ

V
= 0.65. Although reported to

be chaotic, this system is highly structured [25]. This allows us, in the absence of noise, to find

meaningful measures for certain characteristic magnitudes.

To determine the type of excitability for the parameters of Table 3 and δ
V

= 0.65, we computed

the frequency versus intensity plot, shown in Fig 3.3. The result obtained has a discontinuity

in the frequency for values of I above a threshold and recalls a Class-II excitability. However,

one must be cautious before assuming this, as a small discontinuity in the frequency could be

due to numerical errors or approximations. The amplitude dependence with the intensity is

shown in Fig 3.3 (c) where it jumps from zero to a fixed value. There is an interesting regime

near the discontinuity where one can see that the model may go to a fixed point or to a limit

cycle, depending on the initial conditions. Thus, displaying bistable behavior.

Now, instead of using random initial conditions for each measure we make a continuation plot,

with one curve starting from large values of Iext and another from low ones. This will help us to

see more clearly the bistable region of the diagram responsible of hysteresis, Fig 3.3 (d), which

is a characteristic of a Subcritical Hopf Bifurcation. Is the fact that the bistable region is small

that makes the system display this Class-II excitability.
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Figure 3.3: Plots of the frequency displayed by the model versus intensity applied for g
Ca

= 1.1,
in (a).The linear regression is plotted in (b) and the dependence of the amplitude in (c). The
histeresis typical of a Subcritical Hopf bifurcation is shown in (d). Averages are made over
10 trials. I− corresponds to the continuation plot starting from low values and I+ to the
continuation plot starting from high values of the Iext.

We fitted the parameters of the linear regression of the mean frequency vs. the injected current,

y = mx + b. For the case of g
Ca

= 1.1, a good linear dependence of the frequency with the

intensity is found.

m = −2.14± 0.06 b = 0.71± 0.02 r = 0.991,

If we increase the calcium conductance and fix it to g
Ca

= 2.1, as done for the simple Morris-

Lecar model, one can see a clear Class-I excitable system, Fig 3.4. We found a logarithmic

dependence, characteristic of a Homoclinic Bifurcation, the parameters of the fitted linear

regression in this case take values
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m = 235.6± 0.3 b = −254± 1 r = 0.999.
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Figure 3.4: Plots of the frequency versus intensity applied using g
Ca

= 2.1 in (a) and its linear
regression in (b). Averages are realized over 10 trials.

Q
V

(t) explicitly depends only on the voltage of the excitatory neurons and the parameters δ
V

and V
T
. So it is also interesting to see how the firing frequency of the NM varies as a function

of other parameters of the model. Here, in order to understand better the behavior of the

equations we vary the strength of the internal connections between different type of neurons.

The results obtained for different values of the connectivity constants can be seen in Fig 3.5

and 3.6 and are the result of 50 averaged measures in equidistant values of the parameters

aee , aei
, a

ie
, ane and a

ni
.
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Figure 3.5: Average frequency corresponding to NM traces for different values of the internal
connectivity constants. Other parameters were fixed corresponding to the Class-II excitability
regime. Values were calculated over 50 trials for equidistant values of the control variable.
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Figure 3.6: Average frequency corresponding to NM traces for different values of the internal
connectivity constants. Other parameters were fixed corresponding to the Homoclinic bifurca-
tion. Values were calculated over 50 trials for equidistant values of the control variable.
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Synchronization

The study of synchronization goes back to the 17th century, where Huygens gave a descrip-

tion for two weakly coupled pendulum clocks. Since the studies of Huygens, synchronization

has been reported in systems of diverse nature, applauses, fireflies and even cardiorespiratory

rhythms. But one must be careful in what is or is not synchronization. Specially, should not

be mistaken for resonant effects. When we talk about synchronization we will consider it as

a complex dynamical process that depends on the ability of each system to adapt. Meaning

that there is not enough information in a solely measure of the system given one set of initial

conditions but we need to check the behavior it has for different initial conditions to see if

synchronization is a property of the system or just a fortuity.

In order to talk about synchronization one should have two oscillating systems, not necessarily

periodic and neither with the same characteristic frequency. The systems should be weakly

coupled and as a consequence, accommodate one to each other. Even if the oscillators have

their own rhythms at the beginning, they adjust and end up sharing the same frequency after

the coupling. The keymark, in order to find synchronization is to obtain a constant phase shift

between the two coupled systems. Mathematically this condition can be written as |tM−tS| = K

where, in our neuronal example, tM is the time the master neuron spikes and tS is the time

the slave neuron spikes. If this condition is fulfilled we can say the system is in a phase-locking

regime.

24
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Huygens studied, as a function of the initial conditions of the pendulum, different regimes ob-

taining in-phase synchronization or anti-phase synchronization. Nowadays, a lot of different

casuistics have been found to cause different types of synchronization as for example: complete

synchronization, generalized synchronization, lag synchronization or anticipated synchroniza-

tion and more recent studies aim to develop a general theory for all these concepts [39].

Specifically, some neurons behave as relaxation oscillators and do not usually describe sinusoidal

waveforms. They use to show an accumulate-and-fire behavior. For example in the case a pulse

of current is injected into the cell, if this is sufficiently large the neuron reaches the potential

threshold and depolarizes quickly. In the case that the input of current is constant the spikes

are usually generated at a constant rate.

It is our aim in this section to find synchronization for different parameter values of the NM.

Starting from the simplest unidirectionally coupled system. In this kind of systems the pulse is

transmitted from the master NM to the slave NM, as seen in Fig. 4.1. More involved examples

could incorporate bidirectional coupling and delayed coupling; they will be also studied later.

Figure 4.1: Scheme of a unidirectional excitatory coupling between two different NM. M stands
for the Master and S for the slave NM.

4.1 Synchronization in Larter & Breakspear Model

To couple N NMs we used a unidirectionally link based in competitive excitatory synapses

between pyramidal cells, with a constant C = ΣjCji as shown in [25] that can take values in

the range between C = [0, 1].
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dV i(t)

dt
=− (g

Ca
+ (1− C)r

NMDA
aeeQ
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+ a
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V (t)Qi
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(4.1)

Where i = 1, .., N is the index associated to one NM and 〈Qj
V
〉 is the average firing rate of

the NM coupled to i. The other two equations corresponding to inhibitory neurons, Z and

potassium channels, W , remain the same as in [25]. This is because the coupling does not

affect directly inhibitory neurons; it has been reported in [40] that long-range connections are

mainly excitatory.

Considering now the configuration presented in Fig. 4.1, when i = 1, C = C21 = 0 and when

i = 2, C = C12. We will refer from now to the master NM as i = 1 and the slave NM as i = 2.

Long-range coupling, between NM is more sparse or weak than between neurons in the same

NM so we considered C < aee and C < aie.

An example of synchronization in NM is shown in Fig. 4.2 (a) and (b). The period between

spikes as a function of the coupling strength C is depicted in Fig 4.2 (c). The results show that

the system displays synchronized behavior for values of the coupling between 0.1 < C < 0.2.

One can see a centered distribution for C > 0.1. For C ≥ 0.2 the average value of the period

does not change. The parameters used in these cases are the ones near the Class-II excitability.

Until now, we have shown synchronization between identical NMs but this is not a necessary

condition in order to observe this phenomenon. One can couple columns with small variations

in the parameters. Staying near the Class-II excitable regime, we still observe that NMs end,

after a transient, in the phase-locking regime. Thus, we have shown that synchronization is

robust against small changes in δ
V

and also to internal connectivity constants.
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Figure 4.2: Results of synchronized NMs using Class-II excitability parameter values. Traces
of synchronized NMs are shown in (a) for C = 0.13. The voltages of the Master and the Slave
NMs are plotted in (b) where after a transient, V1 and V2 are correlated with C12 = 0.13. As
said before, V1 stands for the master membrane potential and V2 stands for the slave membrane
potential. Synchronization is indicated by a line of 45o. In (c) we shown the time distribution
between spikes for different values of the coupling strength C.

We next check if synchronization is stable for parameter values near the Homoclinic Bifurcation.

However, this is not the case as one can see in the histogram representation of the interspike

time distribution shown in Fig. 4.3 (a) and (b).

For C < 0.2 the system does not display a centered distribution, an example for C = 0.1

displaying phase drift is shown in Fig 4.3 (c). In the case of a larger coupling strength, 0.2 <

C < 0.3 the system is in a phase locked regime, however, the receiver system produces two

spikes for each one sended by the master. 4.3 (d). For C > 0.5, the system reproduces a very

sparse histogram corresponding again to non phase-locking between traces. An example of a

characteristic trace for a value of C in this range is plotted in Fig 4.3 (d). Not even with a

high coupling strength, C ∼ 0.9, synchronization seems to be stable, leading after a transient
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to unstable trajectories.
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Figure 4.3: Results obtained using Class-I excitability parameter values. In (a) and (b) one can
see the time distribution between spikes for different values of the coupling strength. Traces
displaying phase-drift are shown in (c) for C = 0.1 and in (d) for C = 0.6.

4.2 Discussion

Previous studies in neural networks have approached synchronization relating it with the ex-

citability class of the system. However the complete understanding of the mechanisms that

allow synchronization is still a debate today.

Measuring the Phase Response Curve (PRC) has been proposed as a useful tool for approaching

this problem. PRC relates individual dynamics with the dynamics of a coupled system. This

is done by analyzing the effect that an external small current pulse applied to the neuron has

on it.
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After perturbing a periodic neuron, with period T , its next spike moves forward, firing at

T − ∆t, or backward in time, T + ∆t. As a function of the moment we perturb it delay or

anticipation happens. So one can plot PRC(t) = tfreespike − t
perturbed
spike . Where tfreespike is the time at

which the neuron fires without perturbation and tperturbedspike is the time at which fires after being

perturbed.

The PRC is assumed to be positive if the spike after the perturbation is advanced and negative

if it is delayed. According to the PRC, neurons can be of Type-I or Type-II. Type-I PRC

neurons only have positive PRC while Type-II PRC neurons have positive and negative PRC.

As shown in Fig. 4.4, Morris-Lecar neurons can have Type-I or Type-II PRC.
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Figure 4.4: PRC calculated using Morris-Lecar equations descriving a single neuron. With
Class-I excitability parameters in (a) and Class-II excitability parameters in (b).

This categorization has been proved by Ermentrout to be closely related with the excitability

class of the neuron. In [41] is shown that Class-I excitable systems are associated with Type-I

PRC and that Class-II excitable systems are associated with Type-II PRC.
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Following this direction, theoretical results [41],[42] suggest that Type-II excitable membranes

are more likely to synchronize than Type-I membranes. However, it is unknown how many

shapes of PRCs can be found and if they have similar effects. Here, we calculate the PRC for

the Neural Mass model, and shown the results in Fig. 4.5.
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Figure 4.5: PRC calculated using Larter Breakspear equations describing a single neuron. Using
Class-I excitability parameters in (a) and Class-II excitability parameters in (b).

Similar results for Homoclinic bifurcation were shown in [43]. Interestingly, our results agree

with [42] as the case of the Subcritical Hopf bifurcation displaying Class-II excitability does

indeed synchronize. However, we cannot disregard the large difference between both Class-II

excitability PRCs between the Morris-Lecar and the Larter-Breakspear model. In Fig 4.4 (b)

one can see a large enough region of negative PRC while in Fig 4.5 (b) this region is relatively

small and may resemble more to a Type-I PRC.

The synchronization between two NMs simulated using Larter-Breakspear model is justified

as the system has a negative transverse Lyapunov exponent. This was reported to depend

on the coupling strength, C. It is when the coupling becames too weak, that the transverse

Lyapunov exponent changes from negative to positive, and the coupled system displays then

chaotic behavior [25].



Chapter 5

Finding Anticipated Synchronization

More than a decade ago, Voss reported a new scheme of synchronization [44] that he called

Anticipated Synchronization (AS). He studied two unidirectionally coupled identical systems

such as in Fig. 5.1, where the receiver or slave (S) was subject to a negative delayed self-feedback

loop.

Figure 5.1: Scheme of a unidirectional excitatory coupling between two different NMs. M
stands for the Master and S for the slave NM. Slave NM has now an inhibitory self-feedback
loop.

In [20], an inhibitory interneuron has been proposed as a biological mechanism for this feedback

loop. Following the same way of thinking we can use the Larter-Breakspear model. However,

we need to consider now that each NM already has its negative self-feedback loop provided

by the inhibitory neurons. So when we couple two of them we will vary the strength of the

coupling with the inhibitory interneurons, a
ie

in order to search the AS regime.

In Fig 5.2 (a) and (b) we plot the histogram of the time distribution between two consecutive

spikes for different values of a
ie

. There we see that for 2.0 < aie < 2.6 AS is stable. We can
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observe in the traces presented a clear transition from DS to AS, Fig. 5.2 (c),(d) and (e). A

longer trace of time of the membrane potential is shown in Fig 5.2 (d).
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Figure 5.2: Histograms of the time distribution, computed in 20 different trials starting with
random initial conditions, for different values of a

ie
is plotted in (a): we can see direct synchro-

nization and in (b) the transition to AS. Traces corresponding to different values of the internal
connectivity strength a

ie
= 1.6, a

ie
= 2.3 and a

ie
= 2.6 are shown in this order in (c),(d) and

(e) with C12 = 0.2. An example of a long trajectory with a
ie

= 2.3 and C12 = 0.2 is shown in
(f).

We also studied the case where the NMs had a slightly different variance for the excitatory

threshold, δ
V

. Results were robust against this change and one can still observe the same

phenomenon. The average value of the time between spikes versus the internal connectivity a
ie

is plotted in Fig 5.4 (a).
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In the brain, most connections are bidirectional, implying that the case studied previously could

be too simple to actually justify any observed process.

Thus, we proceed analyzing the case with bidirectional coupling, drawn scheme in Fig. 5.3 (a).

In this case, we could also observe AS. However, the maximum anticipated time observed be-

tween the slave and the master diminishes compared to unidirectional coupling. The histogram

of the time distribution between spikes is plotted in Fig. 5.4 (a) and (b), in Fig. 5.5 (b) one

can find the dependence of the average time between spikes with the internal connectivity a
ie

.

Figure 5.3: Scheme of a bidirectional excitatory coupling between two different NM. M stands
for the Master and S for the slave NM.
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Figure 5.4: Histogram of the time distribution, computed in 20 different trials starting with
random initial conditions, for different values of a

ie
considering the scheme of bidirectional

coupling with C12 = C21 = 0.2 is plotted in (a), where we can see direct synchronization.
Distributions for 1.7 < a

ie
< 1.9 are centered in the same bin. In (b) the transition to AS.

We did not observe for the moment that variations in frequency or other internal connectivity

strengths could lead to the same AS behavior. We do analyze also if the change in the external

intensity input could have some implications in how the master and slave system synchronize.

This also gives a regime of AS although only for a very narrow range of values. Fig 5.5 (c)

shows how the average value of time between spikes depending on the intensity applied in the

slave NM.
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Figure 5.5: Comparison of the average time between master and slave spikes in the different
situations considered. A transition from DS to AS varying a

ie
for directional coupling between

NMs is shown in (a) and the one with bidirectional coupling in (b). Transition due to the
variation of the external intensity applied to the slave NM is shown in (c). Value for the coupling
constant between NMs in (a) and (c) is C12 = 0.2 and C21 = 0.0, in (b) C12 = C21 = 0.2



Chapter 6

Conclusion

6.1 Summary of Thesis Achievements

In this master thesis we reproduced some results previously presented in literature concerning

synchronization in Larter-Breakspear model. We have continued testing further the model to

understand what kind of behaviors can display and arrived to some remarkable results.

We have also studied the AS regime and found that it is stable for some parameter values.

This has helped us gain insight into the mechanisms that could lead to this behavior reported

in previous experiments and to understand the importance of feedback-loops, circuitry and

complex dynamics in the brain.

Although, different variations in the model parameters make the system display AS, we are

still not sure if there are more possible situations that could lead to the same behavior. We

also do not know if it is only a change in the inhibitory conductance or the intensity applied

that are causing AS in the brain or it is a combination of these or more mechanisms that ends

up displaying this behavior. In order to solve all those new questions that arise further work is

needed.
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6.2 Future Work

Natural lines to extend this project could go through the addition of noise in order to test the

robustness of the model. Also, comparison with real data to see if this mechanism is enough to

justify the behavior observed in the brain could consolidate the mechanisms proposed.

On the other hand, obtaining the bifurcation diagram in order to study how the model behaves

near other type of bifurcations could be interesting. For example close to a SNIC, it would be

interesting to see if the system has a stable regime of synchronization. This is related to the

following point, where a better understanding of PRC functions and how they can be related

with synchronization and excitability is needed. Maybe taking into account different shapes or

trying to verify those experimentally. This direction has been followed by other groups in [45].

Trying to reproduce a more complex spatial mapping of some regions of the scalp could be an

interesting point. In order to see if the topology underneath or the heterogeneity of other NM

could disseminate the synchronization observed. Similar results have been found in literature

when studying neural networks analyzed in [46].

Other direction could be trying to build a less simplistic connectivity scheme for a NM. Trying

to implement a more involved circuitry reported in the cortical column as has been studied for

example in [47]. It would be interesting also to understand the implications that AS could have

concerning Hebbian rules and learning processes in the brain.



Appendix

Table 1: Parameter values and its description for the Morris-Lecar.

Parameter Description Value

v
Ca

Calcium equilibrium potential 1
v
K

Potassium equilibrium potential -0.7
v
L

Leak equilibrium potential -0.5
g
K

Potassium ionic conductance 2
g
L

Leak ionic conductance 0.5
φ Potassium rate constant 1/3
V1 Calcium activation potential -0.01
V2 Calcium reciprocal slope 0.15
V3 Potassium activation potential 0.1
V4 Potassium reciprocal slope 0.145
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Table 2: Parameter values and its description for the Morris-Lecar model for the case of Class-II
excitability and Class-I exctiability.

Parameter Description Type I value Type II value

g
Ca

Calcium ionic conductance 1 0.5
Iext Applied current 0.09 0.15

Table 3: Parameter values and it description for the Larter Breakspear model [30]

Parameter Description Value

T
Ca

Threshold value for Ca −0.01
δ
Ca

Variance of Ca channel threshold 0.15
g
Ca

Conductance of population of Ca channels 1.1
V

Ca
Ca Nernst potential 1.0

T
K

Threshold value for K 0.0
δ
K

Variance of K channel threshold 0.3
g
K

Conductance of population of K channels 2.0
V

K
K Nernst potential −0.7

T
Na

Threshold value for Na 0.3
δ
Na

Variance of Na channel threshold 0.15
g
Na

Conductance of population of Na channels 6.7
V

Na
Na Nernst potential 0.53

g
L

Conductance of population of leak channels −0.5
V

L
Nernst potential of Leak channels 0.5

V
T

Threshold potential for excitatory neurons 0.0
δV Variance of excitatory threshold Varied
Z

T
Threshold potential for inhibitory neurons 0.0

δZ Variance of inhibitory threshold 0.7
Iext Subcortical input strength 0.3
aee Excitatory-to-excitatory synaptic strength 0.4
a

ei
Excitatory-to-inhibitory synaptic strength 2.0

a
ie

Inhibitory-to-excitatory synaptic strength 2.0
ane Non-specific-to-excitatory synaptic strength 1.0
a

ni
Non-specific-to-inhibitory synaptic strength 0.4

b Time constant scaling factor 0.1
φ Time constant scaling factor 0.7
τ Temperature scaling factor 1.0

r
NMDA

Time constant for K scaling factor 0.25
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