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Summary

In this thesis, we study emergent structures in spatially extended systems. We
restrict our attention to systems that are internally dissipative and externally
driven, also referred to as systems out of thermodynamical equilibrium. We
investigate a particular type of emergent structures, called localized structures
(LSs). As their name indicates, LSs are confined in time and/or space. LSs can
develop instabilities that make them move, deform or oscillate. Oscillations can
also lie at the origin of a dynamical, neuron-like phenomenon called "excitability".

Although LSs, and their various instabilities, can be observed in a wide range
of physical systems, we focus on the field of optics, where LSs can be observed
in nonlinear optical cavities. In this context, LSs are also called cavity solitons.
To study this type of cavities we use the Lugiato-Lefever (LL) model, a partial
differential equation first proposed in 1987 to describe transversal electric field
in a passive optical cavity filled with a nonlinear medium. In the last decade this
model has sparked new interest as it was found to also describe the formation
and dynamics of Kerr frequency combs in microresonators. A frequency comb
consists in a broad optical spectrum of sharp comb lines with an equidistant
frequency spacing that can be used to perform ultra-precise measurements of
optical frequencies, and has numerous other applications in spectroscopy, optical
clocks and waveform synthesis. The interesting and essential point here is that
such coherent frequency combs correspond to the frequency spectrum of cavity
solitons and patterns circulating inside the cavity. Therefore, by studying LSs
in the LL model we obtain crucial information about the dynamics and stability
of Kerr frequency combs.
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CHAPTER 0. SUMMARY

In the first chapters of the thesis we provide a detailed study of LSs in the LL
model in its two main regimes of operation, namely the region with anomalous
group velocity dispersion (GVD) and the one with normal GVD. For anoma-
lous GVD, we focus on patterned solutions and bright solitons and characterize
their bifurcation structure and instabilities leading to oscillations in time and/or
space. In contrast, in the normal GVD regime, we show that the main LSs are
dark solitons, which have a very different origin and bifurcation structure, but
undergo similar instabilities. Next, we focus on how higher order dispersion ef-
fects modify the soliton dynamics in both regimes, showing that a various LSs
can be stabilized by the higher order dispersion. Another question that we ad-
dress is how bound states of solitons can form, where interaction between solitons
is largely determined by the oscillatory tails in the soliton’s profile. Finally, we
focus on how defects and advection can modify the dynamics of LSs, showing
the combination of defects and advection can induce excitability.
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Resumen

En esta tesis estudiamos estructuras emergentes en sistemas extendidos. Re-
stringimos nuestra atencién a sistemas con disipacién interna, es decir, con pér-
didas, y que son forzados externamente, también conocidos como sistemas fuera
del equilibrio termodindmico. Investigamos un tipo particular de estructuras
emergentes denominadas estructuras localizadas (LSs es su acrénimo en inglés).
Como su nombre indica, estas estructuras estdn confinadas espacial y/o tempo-
ralmente. Las LSs pueden desarrollar inestabilidades que induzcan movimiento,
deformacion, u oscilaciones en las mismas. Las oscilaciones pueden ser el origen
en un fenémeno tipicamente asociado a la dindmica de neuronas denominado
"excitabilidad".

Aunque las LSs, y sus diferentes inestabilidades, pueden observarse en un gran
nimero de sistemas fisicos, en esta tesis nos concentraremos en el dominio de la
Optica, donde las LSs aparecen en cavidades épticas no lineales. En este con-
texto, las LSs son también denominadas solitones de cavidad. Para estudiar este
tipo de cavidades utilizamos el modelo de Lugiato-Lefever (LL), una ecuacién
en derivadas parciales propuesto por primera vez en 1987 para describir la com-
ponente transversal del campo eléctrico en una cavidad éptica pasiva con un
medio no lineal. En la dltima década este modelo ha despertado nuevo interés
al descubrirse que también puede describir la formaciéon y dindmica de peines
de frecuencia tipo Kerr en microcavidades. Un peine de frecuencia consiste en
un espectro éptico extenso formado por lineas de frecuencia equiespaciadas que
puede ser utilizado para realizar medidas de frecuencias 6pticas ultra precisas,
las cuales tienen un gran niimero de aplicaciones en espectroscopia, relojes 6p-
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ticos y sintesis de formas de onda. El punto maés interesante y esencial es que
estos peines de frecuencia coherentes corresponden al espectro de frecuencias de
solitons de cavidad y patrones circulando en el interior de la cavidad. Por tanto,
estudiando las LSs en el modelo de LL se obtiene informacién crucial sobre la
dindmica y estabilidad de estos peines de frecuencia.

En los primeros capitulos de la tesis presentamos un detallado estudio de las
LSs en el modelo de LL en sus dos principales regimenes de operacién: disper-
sién anémala de la velocidad de grupo de las ondas (GVD, segiin su acrénimo
en inglés) y GVD normal. Para el caso de GVD andémalo, nos concentramos
en el estudio de soluciones tipo patrén y soluciones tipo solitén "brillante", y
caracterizamos su estructura de bifurcacién y las inestabilidades que dan ori-
gen a oscilaciones espaciales y/o temporales. Por el contrario, en el régimen
de GVD normal, mostramos que las LSs principales son solitones "oscuros", los
cuales tienen un origen y una estructura de bifurcaciéon diferente, aunque las
inestabilidades son similares. A continuacién nos centramos en investigar como
efectos dispersivos a 6rdenes superiores modifican la dindmica de los solitones
en ambos regimenes, mostrando que varias LSs pueden ser estabilizadas por los
mismos. Otra cuestién que abordamos es como pueden formarse estados ligados
de solitones, donde la interaccién entre solitones es determinada por las colas
oscilantes presentes en el perfil del soliton. Para finalizar, estudiamos como de-
fectos y adveccién pueden modificar la dindmica de las LSs, demostrando que
la combinacién de ambos elementos puede inducir comportamientos complejos
y excitabilidad.



Samenvatting

In deze thesis bestuderen we spontaan opkomende structuren in ruimtelijk uit-
gestrekte systemen. We beperken onze aandacht tot systemen die intern dissi-
patief zijn en extern aangedreven. Zulke systemen zijn niet in thermodynamisch
evenwicht. We onderzoeken een bepaalde soort van deze spontane structuren,
genaamd gelokaliseerde structuren (LS). Zoals de naam reeds aangeeft, zijn LS
begrensd in de tijd en/of ruimte. LS kunnen destabiliseren zodat ze bewegen,
vervormen, of oscilleren. Zulke oscillaties kunnen aan de basis liggen van een
dynamisch, neuron-achtig fenomeen, genaamd "exciteerbaarheid"

Ook al kunnen LS geobserveerd worden in een brede waaier van fysische syste-
men, werken we in het domein van de optica, waar LS kunnen waargenomen
worden in niet-lineaire optische caviteiten. In deze context worden LS ook
caviteitssolitonen genoemd. Om dit type van optische caviteiten te bestuderen,
gebruiken we het Lugiato-Lefever (LL) model, een partiéle differentiaalvergeli-
jking die het eerst werd voorgesteld in 1987 om het transversale elektrische
veld in passieve optische caviteiten met een niet-lineair medium te beschrijven.
Gedurende de laatste jaren heeft dit model opnieuw interesse opgewekt wanneer
er werd gevonden dat dezelfde vergelijking kan gebruikt worden om de vorm-
ing en dynamiek van Kerr frequentiekammen in microresonatoren te beschrijven.
Een frequentiekam bestaat uit een breed optisch spectrum van scherpe lijnen met
een gelijke frequentiespreiding, en kan gebruikt worden om heel precieze metin-
gen van optische frequentie uit te voeren, en wordt ook gebruikt in tal van andere
toepassingen in spectroscopie, optische klokken, en het maken van golfvormen.
Het interessante en essentiele punt is hier dat zulke coherente frequentiekammen
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overeenstemmen met het frequentiespectrum van caviteitssolitonen en andere
patronen die circuleren in de caviteit. M.a.w., door het bestuderen van LS in
het LL model kunnen we cruciale informatie bekomen over de dynamiek en sta-
biliteit van Kerr frequentiekammen.

In de eerste hoofdstukken van de thesis bestuderen we in detail LS in het LL
model in de twee grote werkingsregimes, namelijk het regime met abnormale
groepssnelheidsdispersie (GSD), en één met normale GSD. Voor abnormale GSD
concentreren we ons op patronen en heldere solitonen, and karakteriseren we
hun bifurcatiestructuur en instabiliteiten die leiden tot oscillaties in de tijd en/of
ruimte. In tegenstelling, in het normale GSD regime, tonen we dat de voornaam-
ste LS donkere solitonen zijn, dewelke een erg verschillende oorsprong en bifur-
catiestructuur hebben, maar toch gelijkaardige instabiliteit ondergaan. Daarna
bestuderen we hoe hogere order dispersie de solitondynamiek kan veranderen in
beide regimes. We tonen dat verschillende LS gestabiliseerd worden door zulke
hogere order dispersie. Een andere vraag die we aanpakken is hoe gebonden toe-
standen van verschillende solitonen kunnen vormen, waar de interactie tussen
deze verschillende LS grotendeels bepaald wordt door de oscillerende staarten
in het profiel van een enkel soliton. Tenslotte bestuderen we hoe defecten en
advectie de dynamiek van LS veranderen, en we tonen dat de combinatie van
beide zaken kan leiden tot exciteerbaarheid.
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Resum

En aquesta tesi estudiem estructures emergents en sistemes estesos. Restringim
la nostra atencié a sistemes amb dissipacié interna, és a dir, amb perdues, i
que son forcats externament, també coneguts com a sistemes fora de 1’equilibri
termodinamic. Investigam un tipus particular d’estructures emergents denom-
inades estructures localitzades (LSs és el seu acronim en anglés). Com el seu
nom indica, aquestes estructures estan confinades espacial i/o temporalment.
Les LSs poden desenvolupar inestabilitats que indueixen moviment, deformacié,
o oscil-lacions en les mateixes. Les oscil-lacions poden ser 'origen d’un fenomen
tipicament associat a la dindmica de neurones denominat "excitabilitat".

Tot i que les LSs, i les seves diferents inestabilitats, poden observar-se en un
gran numero de sistemes fisics, en aquesta tesi ens concentrarem en el domini
de la optica, on les LSs apareixen en cavitats optiques no lineals. En aquest
context, les LSs son també denominades solitons de cavitat. Per estudiar aquest
tipus de cavitats utilitzem el model de Lugiato-Lefever (LL), una equacié en
derivades parcials proposada per primera vegada al 1987 per descriure la compo-
nent transversal del camp eléctric en una cavitat optica passiva amb un mitja no
lineal. A I'altima deécada aquest model ha despertat un nou interés en descobrir-
se que també pot descriure la formacié i dinamica de "pintes de freqiiéncia" tipus
Kerr en microcavitats. Una "pinta de freqiiéncia" consisteix en un espectre optic
extens format per linies de freqiiéncia equiespaiades que poden ser utilitzades
per a realitzar mesures de freqiiencies optiques ultra precises, les quals tenen un
gran numero d’aplicacions en espectroscopia, rellotges optics i sintesi de formes
d’ona. El punt més interessant i essencial és que aquestes "pintes de freqiiéncia’
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coherents corresponen a l’espectre de freqiiéncies de solitons de cavitat i patrons
circulant a l’interior d’una cavitat. Per tant, estudiant les LSs en el model de
LL s’obté informaci6 crucial sobre la dinamica i estabilitat d’aquests "pintes de
freqiiéncia".

En els primers capitols de la tesi presentem un detallat estudi de les LSs en el
model de LL en els seus dos principals régims d’operacié: dispersié anomala de
la velocitat de grup de les ones (GVD, segons el seu acronim en angles) i GVD
normal. Per al cas de GVD anomala, ens concentrem en ’estudi de solucions
tipus patré i solucions tipus solité "brillant", i caracteritzem les seves estructures
de bifurcacié i les inestabilitats que donen origen a oscil-lacions espacials i/o
temporals. Per contra, al regim de GVD normal, mostrem que les LSs principals
son solitons "foscos", els quals tenen un origen i una estructura de bifurcacié
diferent, encara que les inestabilitats sén similars. Tot seguit ens centrem en
investigar com efectes dispersius a ordres superiors modifiquen la dinamica dels
solitons en ambdéds régims, mostrant que diverses LSs poden ser estabilitzades
pels mateixos. Una altra qiiestié que abordem és com es poden formar estats
lligats de solitons, on la interaccié entre solitons és determinada per les cues
oscil-lants presents en el perfil del solité. Per acabar, estudiem com defectes i
adveccié poden modificar la dinamica de les LSs, demostrant que la combinacié
dels dos elements pot induir comportaments complexos i excitabilitat.
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CHAPTER 0. LIST OF ABBREVIATIONS

BD

CE
CM
CS
CW
DC
DS
DW
EC
FC
FC
FCGL
FOD
Fw
FWH
GG
GL
GVD

HH
HOD
HSS
Kdv
KFC
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List of abbreviations

Beliakov-Devaney (transition)

Cusp (local bifurcation)

Canard explosion

Coupled mode (equations)

Cavity soliton

Continuous wave

Double-center (global bifurcation)
Dissipative soliton

Dispersive wave

Eckhaus (instability)

Frequency comb

Fold of cycles

Forced complex Ginzburg-Landau (equation)
Fourth order dispersion
Finite-wavelength (instability)
Finite-wavelength-Hopf (instability)
Gravilov-Guckenheimer (local bifurcation)
Ginzburg-Landau (equation)

Group velocity dispersion

Hopf (local bifurcation)
Hamiltonian-Hopf (local bifurcation)
Heigh order dispersion
Homogeneous steady state
Korteweg de Vries (equation)

Kerr frequency comb



LL
LS
Lw
MF
MI
NLS
ODE
OPO

PorP
PD
PDE
QZ

rhs
RTB
RTBH

SC
SF
SH
SL
SN
SNIC
SO
SRi1:2
SVE
SW

TB
TOD
VCSEL
WGM
WI

Lugiato-Lefever (equation)

Localized structure

Long-wavelength (instability)

Mean field

Modulational instability

Nonlinear Schrodinger (equation)
Ordinary differential equation

Optical parametric oscillator

Pitchfork (local bifurcation)

Pattern (solution)

Period doubling (bifurcation)

Partial differential equation
Quadruple-zero (local bifurcation)

right hand side

Reversible Takens-Bodganov (bifurcation)
Reversible Takens-Bodganov-Hopf (bifurcation)
Saddle

Saddle-center (global bifurcation)
Saddle-focus

Swift-Hohenberg (equation)

Saddle-Loop (global bifurcation)
Saddle-node (local bifurcation)
Saddle-node on the invariant circle (bifurcation)
Spatial oscillation

Spatial resonance at 1:2 with O(2) symmetry
Slowly varying envelope

Switching wave

Transcritical (local bifurcation)
Takens-Bodganov (bifurcation)

Third order dispersion

Vertical Cavity Surface Emitting Laser
Whispering gallery mode

Wave instability
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Chapter 1

Introduction

In this thesis we focus on emergent structures in spatially extended systems.
Emergence is a particular property of complex systems EL and consists in the
appearance of a behavior that cannot be anticipated from the behavior of one
of the constituents of the system alone. In particular in complex systems, this
behavior appears through what is known as self—orgamzatiorﬂ This type of
behavior is related to nonlinearity, in the sense that the superposition principle
can not been applied. A rich variety of real-life physical problems, which are
still poorly understood, are of a nonlinear nature. Examples include turbulence,
weather forecasting, granular flows, detonations and flame propagation, fracture
dynamics, and a wealth of new biological and chemical phenomena which are
being discovered.

Here we restrict our attention to emergent structures in spatially extended sys-
tems out of the thermodynamical equilibrium, i.e. systems that are internally
dissipative and externally driven. These systems are also called dissipative sys-
tems. From a thermodynamical point of view a dissipative system is an open
system in which there is an exchange of matter and energy with the surrounding
medium. In this context emergent structures are patterns that appear sponta-
neously due to the interaction of each part with its immediate surrounding in
space. They will not arise if the various parts are just coexisting, but it is essen-
tial that there is spatial interaction. Spontaneous pattern formation can arise in

L A complex system can be defined as large aggregations of many smaller interacting parts
and that secludes the last one from systems that are merely complicated.

2There is no external entity engineering the appearance of emergent features, but these
appear spontaneously.
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Figure 1.1: Examples of emergent structures in nature. From left to right and from top to
bottom: spots in guepard coat [4]; spirals in plants [5]; spiral Galaxy N51 (European Space
Agency) [6]; stripes on the coat of the zebras [7]; Belousov-Zhabotinsky reaction [8]; ripple
patterns in a sand dune (Royce Blair) [9]; Giant’s Causeway in Northern Ireland [10]; frog eggs
[I1]; and a vortex in the turbines at the Barrage de la Rance electric power generating station
in France create a whirlpool in the Rance River. (Photo by James A. Sugar) [12]

hydrodynamical systems, as the Rayleigh-Bénard convection in a layer of viscous
fluid heated from below or Faraday surface wave on the surface of a vertically
shaken liquid; granular media where one can find also Faraday’s waves and oscil-
lons, oscillatory chemical reactions, like for example the Belousov-Zhabotinsky
reaction, biological and ecology systems, and nonlinear optics [IH3]. In Figure
we can see different emergent structures that can be easily found in nature, such
as for example, spots in a leopard coat, spirals in plants and in galaxies, stripes
on the coat of the zebras, chemical reactions, ripple patterns in a sand dune,
hexagon patterns in the basalt columns of the Giant’s Causeway in Northern
Ireland or frog eggs, and a vortex in a turbine in an electric power generat-
ing station. Despite the different natural context, the previous structures share
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morphological similarities, which show us that they are not dependent on the
details of the systems but they can be understood from the underlying symme-
tries [3]. This is an interesting and particular feature of the emergent structures
in spatially extended systems called universality.

Because of this universality, it is possible, combining methods of nonlinear dy-
namics and bifurcation theory EL to derive generic models such as amplitude
equations or phase equations describing the dynamical behavior of those struc-
tures close to bifurcation points or far from them respectively [TH3].

A special type of these emergent structures are spatially localized structures
(LSs), which can be seen as one state "embedded" in a background of a different
state. In non-equilibrium systems they are also referred to as dissipative localized
structures.

In this thesis, using principles from dynamical systems and bifurcation theory,
we will study these last type of structures in a particular class of dissipative
systems: driven nonlinear optical cavities.

1.1 Dissipative localized structures

The term dissipative structure was proposed in 1967 by the Belgian chemist Ilya
Prigogine to describe the spontaneous appearance of ordered structures in the
nonlinear domain, far from equilibrium [2I]. A dissipative structure is charac-
terized by the spontaneous appearance of symmetry breaking (anisotropy) and
the formation of complex, sometimes chaotic, structures. When these dissipative
structures are spatially localized, so a single peak, they are also called dissipa-
tive solitons (DSs) [22H26]. Then along this thesis we will use LSs to refer to
any localized dissipative structure, and DSs or simply soliton to those structures
formed by a single localized element as a single peak.

DSs are different from the well known conservative solitons arising in Hamil-
tonian systems (see Figure . In the last case they are formed due to the
balance between two opposite effects: spatial coupling (diffusion, diffraction or
dispersion) and nonlinearity, and they form usually a one-parameter family of
solutions [27]. These solitons are characterized by the fact that they remain
unchanged during interactions, apart from a phase shift. Moreover, they arise
in integrable systems, i.e. described by partial differential equations (PDEs) for
which a closed exact analytical solution can be found by means of inverse scat-

3A summary of the main concepts in dynamical systems and bifurcation theory is pre-
sented in Appendix E The analytical and numerical methods used in this thesis are found in

Appendix @
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Hamiltonian system Dissipative system

spatial coupling spatial coupling

losses

N

[ ]
gain /

nonlinearity nonlinearity

Figure 1.2: Qualitative difference in the formation of soliton solutions in Hamiltonian and
dissipative systems. This Figure is inspired in Figure 1 of Ref.[27]. While the formation of
a conservative soliton requires a single balance between spatial coupling and nonlinearity, the
formation of a DS needs a double balance: spatial coupling/nonlinearity and losses/gain.

tering methods [28, 29]. Some examples of equations supporting these kind of
states are: the nonlinear Schrodinger (NLS) equation, the Korteweg de Vries
(KdV) equation or the sine-Gordon equation [30].

In contrast, in dissipative systems, the losses must be compensated by including
gain in the system, so the formation of DSs requires a double balance between
nonlinearity and spatial coupling, and driving and dissipation. This situation
is illustrated in Figure These structures can display a variety of dynamical
regimes such as periodic oscillations [I3} [32] B3}, [107], chaos [33] [34], or excitabil-
ity [35, [36]. DSs are unique once the system parameters are fixed, and they
can coexist with other DSs in the same region of parameters, and therefore they
exhibit multistability. DSs or LSs are common and have been shown to arise
in a wide variety of physical systems such as chemical reactions [32] [37, [38],
neural systems [39] [40], granular media [I3| [41], binary fluid convection [42} [43],
ferrofluid driven by an homogeneous magnetic field [I5], vegetation patterns
[44, [45] and nonlinear optics [I8, 46H52]. In particular when they appear in
optical cavities they are commonly refereed to as cavity solitons (CSs).

Figure shows observations of LSs or DSs in nature or in experimental setups
in six different systems. We discuss them shortly from left to right and from
top to bottom. The first one shows a localized oscillation in a layer of sand,
normally called oscillon, which alternately takes the shape of a peak and crater
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Figure 1.3: Examples of DSs in nature. From left to right and top to bottom we have: An
oscillon in a vibrated layer of sand [13]; the fairy circles of Namibia desert (photo by Stephan
Getzin and Thorsten Wiegand) [14]; isolated peaks on the surface of a ferrofluid driven by a
homogeneous magnetic field [15]; spatially localized patterns in a Faraday waves experiment
on the surface of a vertically vibrated container of fluid using a container that is very thin in
one direction [16]; A Morning Glory cloud formation between Burketown and Normanton [I7],
Australia; spatial CS in an active (amplifier) semiconductor system in a cavity [18]

as the sand is vibrated vertically [I3]. The second photo shows the presence
of localized circular patches, called Fairy circles, in the Namibia desert. They
consist in land barren of plants, varying between 2 and 15 meters in diameter,
often encircled by a ring of stimulated growth of grass. The third image depicts
the formation of isolated or clusters of peaks formed in the surface of ferrofluid
when a spatially homogeneous, time-independent, vertical magnetic field is ap-
plied [I5]. The fourth picture shows a spatially localized pattern generated on
the surface of a vertically vibrated container of fluid when one of its dimensions is
very thin in comparison with the other one [16]. The fifth photo shows a Morn-
ing Glory cloud formation, a rare meteorological phenomenon consisting of a
low-level atmospheric solitary wave and associated cloud, occasionally observed
in different locations around the world. The wave often occurs as an amplitude-
ordered series of waves forming bands of roll clouds. Finally the last picture
represents CSs in an active (amplifier) semiconductor system in a Fabry-Perot
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Figure 1.4: Sketch of two different scenarios for LSs formation. (a),(b) Pattern element: a
connection between the low intensity homogeneous solution A and the periodic pattern B. (c)
The fronts F; and F,, connecting the low A and high B intensity homogeneous solutions form
a stable connection.

cavity [18].

The existence of LSs is directly related to the presence of bistability between
two states, let us say A and B in the system under consideration. A LS is then
interpreted as a pair of bound fronts between both states. These two fronts
typically interact with each other through the interior of the LS. Let us briefly
discus the three main mechanism, related with the nature of states A and B i.e.
if they are homogeneous or pattern solutions.

1. LSs can form when A is a homogeneous state and B is a pattern. In systems
where a homogeneous stable solution is destabilized in a modulational (or
Turing) instability, patterns can be created subcritically. In many cases,
a a piece of a pattern (one or more peaks) embedded in the homogeneous
background can be stable, creating LSs or solitons. Here we refer to them
as a pattern element-LSs. We illustrate these type of LSs in Figures a)
and (b).

2. LSs can form when A and B are two different homogeneous solutions or
domains, both of them stable. Bistable systems leading to the coexistence
of two equivalent homogeneous solutions represent a second large group of
systems that possibly allow the formation of LSs. The regions occupied
by different homogeneous states are also called domains, and the fronts
between the different domains are called domain walls. The formation
and stability properties of this kind of LSs is thus intimately related to
the general problem of front propagation or domain wall motion. Here we
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refer to them as a locked fronts-LSs. Figures c¢) and (d) illustrate the
formation of this type of structure.

3. Bistability between two different patterns A and B. In some cases a portion
of one pattern embedded in another pattern can be stable as well. We will
not consider this case in this thesis.

In two extended dimensions the curvature of the fronts connecting two homoge-
neous states can also generate the formations of LSs as shown in Refs. [19, 20].

1.2 Optical cavities and the Lugiato-Lefever model

In an optical cavity or resonator light can be confined within continuous reflec-
tion in the material. When these cavities exhibits a nonlinear Kerr eﬁecﬁ and
are externally driven by a homogeneous beam of light, the dynamics of the the
electromagnetic wave £ in the cavity can be described by the Lugiato-Lefever
(LL) model.

The Kerr effect consist in that the optical response of these materials is char-
acterized by a polarization with the nonlinear susceptibility x®) term, P =
cox®|E|?E. Therefore, the refractive index n of the medium depends linearly
on the local light intensity I = |£]? as

n(w) = no(w) + nal. (1.1)

The LL model was originally derived in 1987 to describe a ring cavity (or a
Fabry-Perot resonator) with a transverse spatial extension, partially filled with
a nonlinear Kerr medium and driven with an homogeneous beam of light [72].
Figure [I.5] shows an example of such a cavity. In these cavities localized bright
light spots embedded in a background of a homogeneous light distribution were
found to exist at the output of the resonator [I8]. These light spots are also
known as spatial CSs. Here the spatial coupling is introduced by the diffraction
in the system. Later, in 1992 this model was also used in single-mode fiber cav-
ities [74]. In this case, the spatial coordinate in the LL equation for a spatially
extended cavity with diffraction is replaced by a time coordinate to model chro-
matic dispersion of light in the longitudinal (temporal) direction. The LSs found
here are localized in time, and hence refereed as temporal CS. In the following
one will refer to these cavities as temporal cavities.

4Within all this thesis we will consider that this effect is instantaneous.
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Figure 1.5: Example of a spatial nonlinear optical cavity. Ring-cavity resonator partially
filled with a nonlinear medium, typically a gas, is depicted. The presence of the mirrors
introduces losses in the system that must be balance by injecting a driving field E;,. This
Figure has been taken from Ref. [73] with the permission of the authors.

Silica Crystalline

Figure 1.6: Examples of microcavities where FCs have been generated (from left to right):
chip-based silicon nitride (SiN) ring resonators and waveguides, ultrahigh Q toroidal microres-
onators on a silicon chip, and ultrahigh Q millimeter-scale crystalline resonators. This Figure
has been adapted from Figure 3 in Ref. [77]. See references therein.

Microresonators, as those shown in Figure[I.6] consist in another type of tempo-
ral cavities that can be also described by the LL equation. When dealing with
this last type of cavities, two approaches are widely used in literature to describe
the intra-cavity optical field evolution. One is using time as evolution variable
and relies on the approximation of the modal dispersion through the expansion
of the frequency into series in the modal number (propagation constant) [75],
and the other one is using the distance along the cavity length as an evolution
variable and thus is based on the expansion of the modal number as a function
of the frequency [76]. This last approach will be the one adopted within this
thesis. The study of microresonator has overcome recently a lot of interest due
to the potential application for the generation of frequency combs (FCs) in a
high finesse cavity [77].
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The goal of this section is to describe the functioning of temporal cavities. Fiber
cavities and mircroresonators, in contrast to spatial ones which have two trans-
verse dimensions, are guided-wave cavities, and therefore can be described by
the one-dimensional LL equation which will be derived here following Ref. [74].
In order to do that we first show how a pulse of light propagates in a Kerr type
of nonlinear wave-guided material. After that, we present the description of a
temporal cavity and its feedback mechanism. Later on, we analyze the behavior
of the cavity step by step when adding the effects of absorption, nonlinearity and
chromatic dispersion one by one. And finally, we will show that, high finesse
cavities are described by the mean-field LL equation. Within this section we
follow closely Refs. [74],[78],[79] and [80].

1.2.1 Propagation of a pulse within a Kerr nonlinear medium

In this thesis we will focus on guide-wave cavities like those shown in Figure
that are made of a material with a Kerr type of nonlinearity. Therefore, before
describing the cavity it is necessary to understand how light behaves within such
type of material.

Here we will derive a nonlinear Schrodinger equation describing the propagation
of an electric field £(z, vy, 2,t) through a guiding structure that limits the power
to the (x,y)—plane. If one assumes that the field is quasi-monochromatic, prop-
agating towards z with a phase constant 8y, and angular frequency wg, and that
maintains its linear polarization along the material, it can be written as:

E(,y,2,t) = E(z,1) f (x, y)e'Poz 0t (1.2)

where F is the envelope, the exponent is the carrier wave and f(x,y) represents
the shape of the field on the (z,y)—plane (transverse direction), and it does
not change during propagation because we assumed that the field is guided.
Equation corresponds to a wave-packet centered at the carrier frequency
wo whose Fourier transform reads

E(Z,yvz,wfwo):/E(x,y,z,t)e’i(“’“"))tdt:E(w,Z)f(w,y)eiBOZ' (1.3)
R

Inserting (??) into the Maxwell equations one obtains the Helmholtz equation
in the frequency domain
V2 4+ i (w)ks€ = 0, (1.4)

with
n(w) = n(w) + 22—]%, (1.5)
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being the the complex refractive index, ky the wavenumber associated to the
carrier wave, and «; the linear losses, or absorption, in the material.

The propagation constant can be written as:

fl(w)ko = ﬂ(w) - 6lin(w) + Bnonlin + Blosses; (16)

with Sin(w) being the linear contribution depending on w, Buontin = konaz|E|?
the nonlinear contribution, and Biesses = icv;/2 the losses, that we consider non
depending on w.

Due to the quasi-monochromaticity of the optical field, Si,(w) can be expanded
in a Taylor series about the carrier frequency wq:

Binw) = > %(w ) n

§=0
with the dispersion coefficient

. djﬂlin
51'* dwd @wor (1'8)

In general one truncates the series at up to second order in j
1
Brin(w) = Bo + B1(w — wo) + 552(60 —wo)® + O(3), (1.9)

where ;! is the group velocity of light in the material i.e. the speed of the pulse
envelope, and (s is the second order group velocity dispersion (GVD) coefficient.

With this, one can write,

ﬁ(LU) = 60 + Z %(W - WO)j + 5non1in + ﬁlosses = ﬂO + AB(“); (110)

Jj=1

and assume that AS is a small perturbation i.e. |Bg| > |[AB(w)|, which is
equivalent to consider that the nonlinearity is a small perturbation.

Inserting Eq. in Eq., and considering the slowly varying envelope (SVE)
approximation i.e. |02E| < |8p0.E | we get that the field envelope is described
by

OF

ZEJrAB(w)E:O. (1.11)

5F(w, z) varies slowly with z and therefore one can neglect high-order derivatives.

10
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wo

Figure 1.7: Nonlinear temporal optical cavities with Kerr-type of nonlinearity. It can be
either a all-fiber ring cavity or a ring-microcavity. Here L is the length of the cavity, R and T’
are the reflexion and transmission coefficients of the coupler respectively and the injected field
is a CW with envelope E;j,.

Taking the inverse Fourier transform one finally get that

OE _ _oip 0B 5y (ﬁ) B+in|EI2E, (1.12)

9z 2 ‘9 Br2 gt \Uor

j=3

HOD

where 7 = t — 31z describes the electromagnetic field envelope in the reference
frame moving at the group velocity /5, L

The Eq. is a (generalized) NLS equation that governs the propagation of
an optical signal through one round-trip of an optical cavity with losses and Kerr
nonlinearity. Here v = nowp/caes is the nonlinearity coefficient due to the Kerr
effect in the resonator, with acg the effective modal area of the resonator mode

f(z,y).

Regarding the linear part contribution By, to the propagation constant, 8y van-
ishes at a given wavelength, depending on each material, that is called the zero
dispersion wavelength \.4. For wavelengths A\g such that A\g < .4, B2 > 0 and
the material is said to exhibit normal dispersion. In contrast, the opposite oc-
curs in the anomalous dispersion regime in which S < 0. Around A4 high-order
dispersion (HOD) effects, as for instance the third order dispersion (TOD) B3
must be taking into account. In general we will consider the HOD effects are
not present and then 3; =0, for 57 > 0

1.2.2 Temporal cavity description

Figure shows an example of a temporal cavity (guided wave cavity) that can
be either a microresonator or a fiber cavity. Light is injected in the cavity by

11
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means of the input coupler. It propagates along the cavity where it suffers the
effects of the chromatic dispersion and the Kerr nonlinearity of the material, as
described by Eq.. At each round-trip in the cavity the light wave undergoes
losses due to coupler and the material absorption, and at each pass, the external
pump or driving field is added coherently to the intra-cavity field. This coherent
superposition constitutes the feedback mechanism of the cavity, that can be
mathematically expressed by the map

Epi1(0,7) = VTEs, + VRE,, (L, 7)e%, (1.13)

where E,,,11(0,7) is the envelope of the intra cavity field at the beginning of the
(m+1)¢, round trip and E,,11(L, 7) is the field at the end of the my), round-trip.
Here L is the round-trip length of the cavity, and tz = 1L is the cavity round-
trip time i.e. the time necessary for the intra-cavity field to complete one cavity
round-trip. Ej, is the envelope of the driving field injected into the cavity at the
coupler, which a priory, can have any temporal structure, although here we will
consider that it consists in a continuous wave (CW), unless otherwise stated. T
and R are the intensity transmission and reflection coefficients of the couplers,
satisfying R+71 = 1. Finally, ¢ is the linear cavity round-trip phase shift, i.e. the
linear phase acquired by the intra-cavity field after propagation over one cavity
round-trip, which for a monochromatic pump, is given by ¢¢9 = SoL = wonL/ec,
where n is the linear index of the material. This parameter controls the way
the intra-cavity and driving field interfere in the coupler, and is one of the main
parameters of the cavity dynamics. This phase contribution must be included
in Eq. because Eq. is an envelope equation that therefore does not
take into account the carrier of the light pulses. The Eq. combined with
boundary conditions Eq. form an infinite-dimensional map that describes
completely the dynamics of the cavity. This map is known as Ikeda map [81].

1.2.3 The linear cavity resonances

We begin our study of the temporal cavity by neglecting chromatic dispersion,
nonlinearity, as well as absorption in the material. In this configuration, the
only physical effect in presence is the cavity feedback, and we simply have
E.(L) = Ep(0). Therefore the cavity boundary conditions reduce to a simple
two-dimensional map whose fixed points provides the Airy function of optical

resonators
\/TE in

Em(o) = 1— Reid)o’

(1.14)
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Figure 1.8: Resonances of the linear cavity with T equals to 0.7 in (a), 0.4 in (b), and 0.1 in
(c). The cavity finesse § is respectively ~ 4.5, ~ 8 and ~ 30. This Figure has been adapted
from Figure 2.2 in Ref. [78].

which in terms of beams intensities I = |E,,|? and I, = |E;,|?* becomes

i S (1.15)
Ii T(1+FSIH (¢0/2))
with F = 4R/(1 — R)2. This last equation exhibit resonances at ¢g = 27l
with [ € N, where the intra-cavity field intensity exhibits its maximum value
Imaz = Iin/T. This intensity is greater than the one of the injected beam and
therefore the cavity behaves as an energy accumulator.

When ¢ is a multiple of 27, the intra-cavity field is in phase with the incident
driving field at the coupler, and therefore both waves interfere constructively
and energy is accumulated inside the cavity. This quantity can be controlled
for example by changing the frequency of the injected driving field f = wq/27
according to the proportionality relation between ¢y and wg, namely Agy =
27 for Af = ¢/(nL). Then the position and width of the resonances can be
characterized either in terms of phase or in terms of driving field frequency.

Figure shows the Airy function for several values of the transmitted
coefficient of the coupler T, that is, the cavity losses. One can see that the reso-
nance peaks get thinner when the cavity losses are decreased. This sharpness is
characterized by the cavity finesse parameter § which is a dimensionless number
equal to the ratio of the separation between two resonances at the full width at
half-maximum of the resonance peaks, which in our case reduces to

i
§e o (1.16)

Another parameter which characterizes the way a resonator confines energy is
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Figure 1.9: Resonances of the nonlinear cavity with 7 = 0.35 (§ ~ 9) and vLI;, =
0.01,0.2,0.5,1. Dotted lines indicate unstable states. This Figure has been adapted from
Figure 2.3 in Ref. [78].

the quality factor, @—factor, typically used in the context of an herzian resonator
(RLC circuit, RF oscillator, maser, laser, etc). The energetic definition of the
Q—factor reads

Estored

Q=2n (1.17)

Edissipatcd ’
where Eiored is the energy stored by the resonator, and Fqissipated 1S the energy
dissipated during a cavity round-trip time tr. With this definition, the finesse
of the cavity is exactly equivalent to quality factor @Q—factor. Indeed, Q =
2rl/(2T1) =7n/T = §.

The separation between two adjacent resonances is given by the free spectral
range (FSR) equal to ¢/(nL), and the spectral width of the resonances is deter-
mined by

FSR

AQS() ~ S'

(1.18)

1.2.4 Influence of the Kerr nonlinearity

It is easy to take into account the effect of the Kerr nonlinearity on the response
of the cavity (we still neglect the chromatic dispersion and the absorption of
the material). The Kerr nonlinearity enters into play through an additional
intensity-dependent phase shift vL|E,,|* acquired by the intra-cavity field over
the cavity length L. This phenomenon is known as self-phase modulation (SFM)
and it is a direct consequence of Eq.. Therefore, due to the SFM the cavity
round-trip phase shift becomes ¢ = ¢g + ¢n, with ¢n;, = LI, which once

14



1.2. OPTICAL CAVITIES AND THE LUGIATO-LEFEVER MODEL

substituted in Eq.(1.15]) gives the transcendent equation describing the nonlinear
resonances of the cavity

I 1
Lin T (1 + Fsin? <W>)

(1.19)
2

Due to the presence of the intensity in the phase term of the previous equation,
the resonance peaks will be displaced proportionally to the input intensity. This
displacement occurs only at the peaks, and for the other points of the resonances
the displacement is proportional to the intra-cavity intensity, which is lower than
I;»/T. In the wings of the resonances, the intra-cavity intensity is low and the
displacement is negligible. From here one can understand that the nonlinear
resonances are peaks that are tilted proportionally to the input power. When
the maximum phase displacement —vLI;,, /T becomes larger than the resonance
width A¢ = 27/F, the response function becomes multi-valued and exhibit
bistability. Therefore, a nonlinear cavity is a bistable system like many others
with positive feedback [82,[83]. Optical bistability can not be derived analytically
form Eq. because it is transcendent, and it will be discussed in Chapter

1.2.5 Influence of the chromatic dispersion

So far we have focused on the basic characteristics of a ring cavity resulting when
considering losses and nonlinearity, but neglecting the contribution of chromatic
dispersion. This last ingredient introduces spatial coupling between different
points in space allowing the emergence of complex behavior non appearing pre-
viously. To consider the effect of chromatic dispersion, we need to deal with the
infinite-dimensional Tkeda map made up of the nonlinear Schrodinger equation

(1.12) and the boundary conditions (|1.13]).

In the context of high-§ cavities the Ikeda map can be reduced, under cer-
tain approximations, to a mean-field model which is formally equivalent to the
Lugiato-Lefever equation derived in the context of spatial systems [72]. Our aim
here is to show step by step how to perform such simplification, and for that we
will follow closely Ref. [74].

In the limit of high finesse § > 1, or equivalently for 7' < 1 (low losses), one can
apply an approximation based on the fact that the intra-cavity field envelope
varies slightly round-trip after round-trip due to the small cavity losses. In
this situation, the resonances are narrow, and therefore the intra-cavity field is
non zero only when the round-trip phase is close to a multiple of 27. In this
context one defines the cavity detuning as a small quantity of the first order
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0o = 2wl — ¢g < 1, where [ designates the nearest resonance of the cavity. As it
was done for the resonances, this parameter can be quantified also in terms of
the frequency of the driving field. In the same way the nonlinear phase shift ¢,
must also be limited to a quantity of the first order so as to stay in the vicinity
of the resonance peak at high pump power.

With all the previous approximations, one can consider that
. T 52 T
V1= Te 0 = <1—2+-~-) <1—z‘50—2°+--~> z1—§_z'50, (1.20)
and hence, the boundary condition equation (1.13|) can be written as
T
Epi1(0,7) =VTEy, + (11— 5 ~ 10 | Em(L,7). (1.21)

Together with the mean field approximation it is also necessary to assume that
the dispersion length Lp = A72|3s|, with A7? the initial pulse width, is larger
than the cavity length L i.e. Lp > L.

Under these conditions, the solution of Eq.(1.12)) is approximated as

OLZ‘L
E.(L,T)— En0,7)=— 5

Enm(0,7)+
L[ 2\
iy 5J— i— | Epn(0,7) +iyL|Ep(0,7) 2B (0,7), (1.22)
: 4! or
j=>2
where the terms on the right hand side are all assumed to be small quantities.

By inserting E,, (L, ), calculated from Eq.(1.22)), into the Eq.(1.21)), and while
keeping only first order terms, one obtains an equation describing the electric
field at z = 0, namely

Epmi1(0,7) = VTE;, + Ep(0,7) — ( 5

—+ 250) E"L (O, T)

DI (aa) En(0,7) + LI B (0,7) 2B (0,7). (1.23)

j>2

Finally introducing slow variable t through the relation

E(t =mtr,7) = En(z=0,7), (1.24)
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1.2. OPTICAL CAVITIES AND THE LUGIATO-LEFEVER MODEL

and thinking on ¢ as a continuous variable one can write

OE(t = mtg,T) - Eni1(z=0,7) —Em(Z:()ﬂ'). (1.25)
ot tr

Using this last equation one can write Eq.(1.23)) as the generalized-LL equation

[74, [76],

E L J
tRi =—(a+id)E+iy ﬁj— 2\ E +iyL|E[*E + VTE;,, (1.26)
ot = gt \or

with E = E(t,7). Here 7 is the fast time describing the temporal structure of
the nonlinear waves while the slow time t corresponds to the evolution time scale
over many round-trips. We should note that 7 is only defined on a finite interval
with the duration of the round-trip time, tg, and that ¢ only has a rigorous
meaning whenever it is an integer multiple of tz. The evolution of the field
on the physical axis, and at a fixed position, can then be found by assembling
snapshots of the field E(¢,7) at intervals that are separated by tg.

Although the approximations applied in the derivation of the mean field model
(T.28) may appear rather restrictive, comparison with the Ikeda map defined by
Egs. (1.12) and (1.13)), agrees for a large number of practical situations. However,
at large cavity detunings the cavity could switch to the so-called "period-2"
regime for which the LL model no longer holds. In this regime a mean field
model has been also developed [84].

Within this thesis we will work with the adimensional version of Eq.(1.26), that
following the normalization used in Ref. [85] reads:

Az, t") = E(t,7)\/7L/«

t'=at/tr

z=T7/2a/(L|B])

p = By /yLT /a3 (1.27)

0 =do/

d_:ﬂjL( 20 )”2
77 jla \|B|L
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can be written as,

0A; = —(L+i0)A+ivd2A+iY d; (i0,)’ A+i|APA+p, (1.28)
j=3

where we have dropped (’). Here 6 and p are the normalized frequency detuning
of the cavity and the amplitude of the driven field, » = £1 with (+) for anoma-
lous GVD regime and (—) for the normal one, and d; are the HOD normalized
coefficients. The equation is set to the self-focusing regime. In following and un-
less stated otherwise we will focus on the study of the LL equation considering
dispersion effects up to second-order.

1.2.6  Comparison between temporal and spatial cavities

The LL equation was originally obtained through a mean-field approximation,
describing the dynamics of the slowly varying amplitude of the electromagnetic
field £(z,y,t) in the paraxial limit, inside a ring-cavity [72] like the one shown in
Figure [L.5] filled with a Kerr nonlinear medium and driven by an external field
E;,, to balance the losses generated by the mirrors, where (x,y) are the spatial
coordinates transverse to the propagation direction. In this type of system the
LL equation, once normalized reads,

A =—(1+i0)A+iaViA+iB|A?A +p, (1.29)

with A(z,y,t) the scaled slowly varying amplitude of the field. The first term in
the rhs of Eq. corresponds to the losses, p the input field used as a reference
frequency, 6 the frequency detuning, 8 = +1 determining whether the nonlinear-
ity is of the focusing (+) or defocussing (—) type, V3 = 07 + 92 the transverse
Laplacian modeling diffraction and « its strength. Comparing Eq. with
d;j =0 for j > 3 and Eq. one can see that there is an immediate correspon-
dence between temporal phenomena arising in the longitudinal profiles of pulses
circulating in a fiber cavity under the influence of chromatic dispersion and spa-
tial phenomena arising in the transverse profile of s CW beam propagating in a
self-defocussing na < 0 (self-focusing, no > 0) Kerr cavity under the influence of
diffraction

1.3 Temporal structures and frequency combs in microres-
onators

In the recent years, the LL equation has gained a renewed interest as it has been
re-derived to describe the formation and dynamics of Kerr frequency combs
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(KFC) in high—@Q microresonators [77, [86, 87]. A frequency comb consists in
a broad optical spectrum of sharp spectral lines with an equidistant frequency
spacing [88] that can be used to perform ultraprecise measurements of optical
frequencies, and which have numerous others applications to spectroscopy, op-
tical clocks and waveform synthesis [89, [90]. In the type of Kerr cavities that
we study, combs are formed due to a parametric frequency conversion via a
four wave mizing process. Although these effects are well known in nonlinear
optics, such processes have been demonstrated only recently in microresonators
[(7]. The advantage of mircroresonators, together with the small size, is that
the threshold for the initiation of parametric oscillations can be strongly reduced
(because the threshold scales with the inverse Q—factor squared,) implying that
high-@Q can give a dramatic reduction in required optical power.

The interesting and essential point here is that these FCs correspond to the
frequency spectrum, i.e. the Fourier transform, of temporal structures (CSs and
patterns) circulating inside the cavity. Therefore, studying these structures one
can obtain information about the dynamics and stability of the combs [9T] [92].

Together with the LL equation which focuses on a time domain picture, one
can also study the FCs by using the coupled mode (CM) equations [93]. These
equations consist in a system of ODEs describing each ! component (mode) of
the FC i.e. they describe the dynamics of each of the coefficients of the Fourier
expansion of the temporal structure. The CM equations can be derived from
the LL equation by assuming the simple modal expansion

N
E(t,7) =Y Al(t)e ™, (1.30)
l

and projecting (|1.28)) onto each [ component, where N is the number of modes
considered and §2; its frequency.

Instead of using the two time scale approach, usually adopted in the context
of nonlinear fiber ring cavities, it is possible to use the equivalent LL equation
written in terms of time and the azimuthal angle ¢, which follows the viewpoint
of cavity nonlinear optics [75]. This angle is related with the fast time 7 by the
relation ¢ = 277 /tR.

Although both the CM equations and the LL equation are equivalent when de-
scribing the formation of FCs. Despite of that, the CM equations approach is
not computationally efficient when considering a large number of modes, as the
time of computations is o« N3. In contrast, the LL model approach allows the
description of the temporal dynamics using a PDE, that is faster to simulate
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and easier for analytical investigations. This computational efficiency can be
achieved using the split-step numerical integration algorithm with fast Fourier
transforms. Moreover stationary combs (i.e. stationary CSs) can be calculated
by using a multidimensional Newton-Raphson solver, providing results in a mat-
ter of seconds. The Newton method also provides information about dynamical
instabilities of Kerr combs through an eigenvalue analysis of the Jacobian of the
system, which is obtained at no extra cost.

The bulk of KFC studies so far deals with microresonators exhibiting anomalous
second-order GVD at the pump wavelength. However, due to the difficulty in
obtaining anomalous GVD in some spectral ranges, generation of KFCs from
normal GVD microresonators is now also being sought and has recently been
achieved experimentally by several groups [94H96]. In the next sub-sections we
discuss the duality between temporal structures and their corresponding FCs. In
the rest of the thesis, when studying the LL equation describing these cavities,
we will focus on just in the temporal structures, and we refer to this Section to
remind the reader of their close relation with FCs. The results shown here have
been published in Refs.[92] 97, 9§].

1.3.1 Temporal structures and frequency combs in the anomalous regime

In the regime of anomalous GVD, the typical temporal structures that form
are patterns and temporal bright solitons, which can be considered as a pattern
element. Some of these structures and their corresponding KFCs are shown in
Figure The LSs shown in panel (i) corresponds to a time-localized pulse
circulating in the cavity, and in the same way such a light pulse corresponds to a
stable smooth frequency comb in the corresponding frequency domain, as shown
in the panel on the right hand side. The distance between all frequency modes
is given by the free-spectral range FSR = 1/L, where L is the cavity length,
while the exact shape of the frequency comb envelope is determined by the
Fourier transform of the profile of the LS itself. This equivalence has also been
studied in Refs.[75] [76]. A solution with five peaks is plotted in Figure ii),
with its corresponding frequency comb. It can be seen that the effect of adding
extra peaks is to introduce an extra modulation of the frequency comb. The
multiple peaks of LSs can only coexist at well-defined separation distances d
between them, determined by the typical wavelength of the oscillatory tails of the
individual peaks [I00]. This separation distance d therefore also determines the
modulation distance 1/d observed in the frequency comb. The modulation depth
becomes more pronounced as more and more peaks are added to the solution.

An example of a patterned solution with 19 peaks is shown in Figure iii). All
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Figure 1.10: Temporal profiles [left; Re(E) in blue, |E| in red] and spectral intensities
(right, in dB) of symmetric bright solitons in the anomalous GVD regime. Here § = 1.5 and
o= 1.11445.
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Figure 1.11: Single LS and its KFC for § = 2.2, p = 1.5.

frequency modes present in the corresponding frequency comb are now separated
by 1/d (or equivalently 19 FSR units). Although we have used the same distance
d to denote the separation between various peaks in the pattern, we remark that
this should not necessarily be the case, as this might vary a bit depending on the
exact cavity length. We note also that CSs with L/d—1 peaks can be interpreted
as one missing cell, or hole, in a periodic pattern.

In Figure a single soliton for § = 2.2 and its corresponding FC are plotted.
Comparing this state with the one shown in panel (i) of Figure one can
appreciate that, when increasing the value of the detuning, oscillatory tails of
the solitons are damped and that the LSs becomes sharper. These changes in
the temporal structure can also be observed in the their corresponding FC. CSs
are the preferred solution for FCs because, in comparison with pattern ones,
they are stable over a wider parameter range and they lead broader spectral
bandwidth [I0I]. In other parameter regions, mainly at higher values of the
detuning, temporal instabilities such as oscillations and chaos have been found
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[33, 92]. Oscillatory solitons or breathers were experimentally first observed
in all-fiber ring cavities [33]. Recently breathers have been also observed in
microresonators [102]. In this case the FCs oscillate in time with the same
period as its corresponding breather soliton.
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Figure 1.12: Temporal profiles [left; Re(A) in blue, |A] in red] and spectral intensities (right,
in dB) of symmetric dark solitons in the normal regime. Here 6 = 4.

1.3.2 Temporal structures and frequency combs in the normal regime

In the last years, due to the difficulty in obtaining anomalous GVD in some spec-
tral ranges, generation of KFCs from normal GVD microresonators is now also
being sought and has recently been achieved experimentally by several groups
[04H96]. In this regime, the typical temporal structures arising are dark solitons,
formed by the locking of two fronts or switching waves between the stable HSS
solutions of the LL model. Some examples of this type of LSs are shown in
Figure [[.12] Panel (i) shows the profile of a dark soliton with a single spatial
oscillation and on the right its corresponding FC. Panels (ii)-(iii) correspond
to dark solitons with two and five spatial oscillations. Looking at the frequency
spectrum of these structures one can see how the FCs acquires extra modulations
depending on the number of spatial oscillations present in the temporal profile.
For a particular region in parameter space there is multistability between a large
number of these dark states, and as in the anomalous regime, for large values of
detuning, oscillatory and chaotic dynamics exist [97), [08].
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EQUATION

1.4 Variational formulation for the Lugiato-Lefever equa-
tion

In this section we make overview of the variational formulation for dissipative
systems [I03HIO6] in the context of the Lugiato-Lefever (LL) equation that is,
by nature, dissipative.

1.4.1 Main definitions for Lagrangian and Hamiltonian formalism

For a dissipative system, the action functional is defined by

Sz/emL[A,ﬁ]dt:/th/E[A,A]dxdt, (1.31)
R R R

where L is the Lagrangian density,
L= / L[A, Aldz, (1.32)
R

is the Lagrangian and et is the factor modeling the losses.

For the LL equation the Lagrangian density was proposed in Ref.[I07] and is
given by

L= 3 (A0 A~ ADA) — 0,40, 4 —ip (A~ A) — 0AA+ 4747, (133)

N =

where

K= (A0, A — A9, A) (1.34)

NN

is its kinetic term.

The canonical momentum related with that Lagrangian are

m(x,t) = 668% =iA/2, 7z, t)

4L
50, A

= —iA/2, (1.35)

0A

1)
where — is the functional derivativeH

6We define the functional derivative in the following way: let us consider the integral
functional

Flu(@)] :/F[U(w)]d%
R
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The Hamiltonian density of this system is given by the Legendre transform:
H=n0,A+ 70, A— L, (1.36)
and therefore
M= 0,40, A+ ip (A~ A) +0AA— L A4, (137)
From here we can define the interaction Hamiltonian density by
Hr = %AQA?, (1.38)

that couples non linearly the field A with A.

The corresponding Hamiltonian function is given by

Hz/RH[A,A]dz. (1.39)

From calculus of variations we can get the LL equation by just calculating the
critical points (extremals) of the action functional S with respect first order
variation of the field A or A, that is, solving the equation:

d

5aS(A) = o

| _S(A+€A) =0, (1.40)
where A is the variation of A and e a small parameter 0 < € < 1.

1.4.2 Euler-Lagrange equation

In the Lagrangian formalism the LL equation corresponds to the Euler-Lagrange

equation derived from ([1.40)).

. d . d _
5aS(A) = | _(S(A+ed) = alszo/ﬂgdt/ﬂgdertﬁ(A—&—eA) =0. (1.41)

the first order variation or variational derivative of F is defined, as
d

dyF(u) = —

(@) de

where €@ is the first order variation of u. From there we call functional derivative of F to 8, F
defined by the relation:

6:0.7:(u + €ii),

d 1)
— F(u+ew) = iﬁdm.
de 'e=0 - ou
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In terms of € we can expand the Lagrangian as
L=eL0 L + L7+ 0(Y), (1.42)

After inserting Eq.(1.42)) into Eq.(1.41)), taking derivative respect to € and eval-
uating at e = 0 we obtain that

5AS(A / tht/dosﬁ (A, A)

/ dt / o2 [Zlatfl ~ LADA - v0,40,A +ipA ~ 0AA+ |A|2AA} _
R

/ 2tdt/dm [—iA — i, A+ vIZA+ip— 0A+ |APA] A+
/ Qtdtl//a Aa A] dx—/dx/@t 2tAA . (1.43)

The last two terms represent the boundary terms of the problem and are both
zero at the boundaries. To obtain those term we have integrated by parts in

E

If A is a extremal of the action (1.31)) then §4,S(A) = 0 and therefore the Euler-
Lagrange equation corresponding to the Lagrangian (|1.33)) reads:

—iA — i A+ vO2A+ip—0A+ |APA=0. (1.46)

Multiplying by ¢ and taking the complex conjugate of Eq.(1.46])) one obtain the
LL equation.

1.4.3 Hamiltonian equations

In the Hamiltonian formalism the action reads,

S[A,A,Tl’,ﬁ'] = /e2tdt/d.’11 [WatA-i-ﬁatA—H] . (147)
R R
7"We have used the identities:
0, A0, A = 0, [A0, A] — A02A, (1.44)
and o . s .
e A, A = 0y [e* AA] — 26" AA — &0, AA. (1.45)

The loses term —iA comes from the second term in the rhs of the equality (1.45) and therefore
from the exponent e2*.
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Setting the variational derivative of (1.47]) respect to A and 7 to zero, one obtains
the Hamiltonian equations for the LL model:

0H 0H
87514 = g 8757'(' = _ﬂ — 27. (148)

From Egs. (|1.48)) one can derive the fundamental property of dissipative systems:
the Hamiltonian is not a conserved quantity and decreases in time.

To see this we need just to derive H respect to t and use Eqgs. ([1.48):

dH 0A O0H Or
and inserting Eqgs. (1.48]) one obtain
H
o = —anlH (1.50)

o

1.5 Other generic models for dissipative localized structures

In this Section, we will shortly present two important model equations admitting
DS solutions that will be used in subsequent Chapters: the Swift-Hohenberg
(SH) equation and the Ginzburg-Landau (GL) equation. Both the SH equation
and the GL equation are generic amplitude equations that describe the universal
behavior near a bifurcation point.

1.5.1 The Swift-Hohenberg equation

The real Swift-Hohenberg equation has proved to be an invaluable model equa-
tion for systems undergoing a bifurcation to time-independent structured states
with a finite wavenumber at onset [53]. The equation was originally suggested
as a model of infinite Prandtl number convection [54] but finds application in its
simplest form in the theory of buckling [55], phase transitions [56] and nonlinear
optics [57, [58]. The equation is particularly useful for understanding DSs that
are commonly found in systems exhibiting bistability between two states, one of
which is homogeneous in space (the trivial state) and the other heterogeneous
or structured [53]. In this case the equation for a real field u in one spatial
dimension z takes the following form,

Oru = —(8i+k§)2u+ru+f[u] ) (1.51)

where flu] denotes the nonlinear terms. Among the most common cases are,
f = fo3 = au® —gu® B9, f = f35 = au® — gu® [60], with ¢ > 0 to avoid
divergences. The case f = fo = au® was also studied in Ref. [61].
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Of particular interest for our purposes is that the SH equation is variational (for
periodic boundary conditions), or in other words the dynamics follows a gradient
[62]. This implies that the rhs of Eq.(L.5I)) can be written as the (functional)
derivative of a certain functional, namely

ou (5]'-51{
== — 1.52
ot ou (1.52)
with
L 1 5 1 9 o\ 1\ 2
Fan= [ da (—2ru ez +V[u]), (1.53)
0
with the previous cases V = Vo3 = —fau®+ fgu* and V = V35 = —Sau* + Lgu®,

such that f = §,V. The dynamics in the SH equation are such that Fgsy
decreases in time until it reaches a local minimum, i.e. a steady state that
minimizes Fsy. As a consequence, the SH equation cannot exhibit dynamical
regimes different from stationary states (i.e. this excludes oscillations and chaos).

1.5.2 The Ginzburg-Landau equation

The Ginzburg-Landau-type of equations are amplitude equations that arise as
universal model equations near a bifurcation point [I},[63], and their form depends
only on the nature of the bifurcation, but not on other details of the system.
This type of equations owe their name to a similar equation appearing in the
Ginzburg-Landau theory of superconductivity, although in the last case it does
not deal with dynamics [64]. Nevertheless, apart from providing a theory for
superconductivity, a large number of pattern forming systems can be described
using these type of equations. They describe slow modulations in space and
time of a simple basic pattern that can be determined from the linear stability
analysis of the equation governing the system.

In this thesis we focus on the real GL equation of the form
Opu = pu + 0*u + flul, (1.54)

with u being a real scalar field, x4 the gain parameter with and f[u] the nonlin-
earity.

If flu] = f3 = —u?, Eq. is commonly called cubic real GL equation [IJ,
which can be considered as a prototypical model describing a spatially extended
system with two equivalent steady state solutions +,/u. This equation arises
naturally near any supercritical pitchfork bifurcation when the system is trans-
lationally invariant and spatially reversible i.e. invariant under transformations
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(r — —x), such as for example as for example in Rayleigh-Bénard convection
and Taylor-Couette flow [65].

When flu] = fs[u] = u® — u®, Eq.(1.54) is called quintic real GL equation and
it arises near any stationary subcritical bifurcation [1], with the homogeneous
steady state solutions © = 0 and the bifurcating states,

Y L P Y N . (1.55)
YT T VA T 2 TVHET Y '

Both cubic and quintic real GL equations have a Lyapunov functional,

1
Forlu] = / (2 (@) + vm) , (1.56)
with Vu] = Va[u] = —pu?/2 — u*/4 and V[u] = Vs[u] = —pu?/2 + u/4 — u®/6
being the potential. Therefore, Eq.(|1.54) can be written as

du _ dFgL
ot du

(1.57)

The homogeneous steady state (HSS) solutitons minimizes Fgy, and therefore
also Vu].

When the instability leads to traveling waves, that is, the pattern emerging is
time-dependent, the resulting amplitude equation generalizes to the complex GL
equation, that with the cubic nonlinearity reads

NA = pA + (1 +i0)02A — (1 +iB)|A]?A, (1.58)

where A is complex scalar field, u measures the distance from the oscillatory
instability threshold, and « and (3 represents the linear and nonlinear dispersion.
This equation, arises for example, in Rayleigh-Bénard convection, hydrothermal
waves, and various optical systems, such as lasers, parametric amplifiers, Fabry-
Perot cavities filled with nonlinear material, and optical transmission lines [I,
63, [65].
Finally we also mention the forced complex GL (FCGL) equation,

A= (u+i0)A+ (1 +ia)02A — (1 +iB)|APA + pA™t, (1.59)

which is the amplitude equation describing the dynamics of an extended sys-
tem near the bifurcation to spatially homogeneous oscillations with natural fre-
quency w in the presence of spatially homogeneous forcing with frequency €2. In
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Eq. 1 represents the distance from onset of the oscillatory instability, 6 is
the detuning from the unforced frequency, and «, S and p > 0 represent dis-
persion, nonlinear frequency correction and forcing amplitude, respectively. We
distinguish two regimes, p < 0 in which spatially homogeneous oscillations decay
in the absence of forcing and p > 0 in which they grow. We refer to the former as
the damped regime and the latter as the self-exciting regime [66]. Particularly
interesting is the behavior near strong resonances of the form Q : w =n: 1,
where n =1, 2.

In the case n = 2 (2:1 resonance), the system is forced at twice the natural fre-
quency [67] and Eq. has been used to describe a light sensitive form of the
Belousov-Zhabotinsky reaction [68], and finds applications in the optical vec-
torial Kerr resonator [69, [70] and the degenerate Optical Parametric Oscillator
(OPO) [70, [71].

The case n = 1, provides a universal description (or normal form) of 1:1 reso-
nantly forced Hopf bifurcations in spatially extended systems. In particular the
LL equation [72] is a specific case of Eq.(L.59) in the damped regime (4 = —1)
when the coefficients in the dispersion and nonlinearity terms are purely imagi-
nary, with « = v and g = 1.

1.6 An overview of methods

The models that we study in this thesis, such as the LL equation, the SH equation
and the GL equation, are evolution equations of the form

Owu(z,t) = Flu(z,t),0u; ), (1.60)

with € R, t € RT, u a scalar field, real or complex, belonging to an infinite
dimensional functional spactﬂ, and F' a nonlinear functional acting on that space.
This type of equations can be understood as a dynamical system defined in a
infinite dimensional phase space. Thus, one can study such type of systems using
techniques from dynamical system theory (see Appendix [A)).

The nonlinear functional is usually defined by
Flu(x, 1), 8ju; ] = ao(p)ul@, t) + Y a;()ddu(z,t) + Nu(z,t); g, (1.61)
jz1

where we have separated the linear part from the nonlinear one Nu(zx,t); p.
Here the coeflicients ag and a; do not dependent on the variables x and t but
do depend on the set of parameters p = (1, ..., ttp) € RP.

8Within the thesis we normally use u for a real scalar field and A for a complex one
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The equations here considered are all invariant under translations x — x + a,
where a € R, and reversible in space E| (see Section . Because of the re-
versibility the solutions of these equations are symmetric respect the transfor-
mation  — —x (they are left/right symmetric).

The presence of the set of parameters p in the equation makes possible that
when modifying one of them, qualitative changes in the solution of Eq. can
occur. This may involve, the creation or destruction of solutions, change in their
stability or in their behaviour, as or for example a stationary state that leads
to a oscillatory one, among others. The point at which this type of transitions
occur is called bifurcation, and is related with the breaking of a given symmetry
of system. The bifurcations are called global when they depend on the nonlocal
behaviour of solutions. In contrast, local bifurcations can be analyzed entirely
in terms of the local behavior of the solutions near a steady state or periodic
orbit. In this case, the center manifold reduction and normal form theory can
be applied for their study. In Section [AZ6] we present a detailed review of these
techniques and the main bifurcations appearing within this thesis.

The type of equations described here are non integrable, and direct numerical
integration is needed. Thinking in Eq. as being equivalent to finite sets
of coupled ordinary differential equations (ODEs) brings powerful mathematical
concepts to help on the analysis of their solutions. The most efficient algorithms
to numerically solve this type of equations on a periodic domain are known as
spectral methods. To apply such methods, we perform a spatial Fourier transform
on the Eq. and convert it into a system of ODEs. This ODE system can
then be split into a linear part and a nonlinear part, the latter of which can be
evaluated by first transforming the current solution to physical space, computing
the nonlinear terms at the mesh points, and then transforming back to Fourier
space. A detailed review of this method is presented in Section [B:2] This will
be the main tool when dealing with non stationary solutions, such as oscillatory
or chaotic states. However these numerical simulations are very time consuming
and, by themselves, do not allow for a complete understanding of the dynamics
of a system.

In this work we are particularly interested in stationary dissipative structures
described by solutions wus of Eq. satisfying 0;u = 0 i.e. solutions of the
ODE

Flus(x),du; 1] = 0. (1.62)

If us is homogeneous i.e. does not depend on z, Eq.(1.62]) sometimes can be

9The LL has this property when odd high-order dispersion terms are excluded from
Eq.(1.28)). Otherwise the x—reversibility is broken.
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solve analytically. However, in general when spatial dependence is present, a
Newton-Raphson method can be used to find numerically stationary solutions
with arbitrary precision (see Section , and continuation techniques to track
them as the parameters are varied (see Section [B.4). In this way one can build
the bifurcation diagrams which help to understand the bifurcation structure and
the organization of the different solutions of the system.

To determine the stability of these solution one can proceed in the same way
that for finite dimensional dynamical systems (see Appendix , and study the
linearization of Eq.(1.60]) around those states, which is equivalent to characterize
the dynamics of E arbitrary close to us(x), and therefore of the form
u(x,t) = us(z) + €€(z, t). After introducing this anzats in Eq.(L.60) one arrives
to a linear PDE for &(z,t) whose solution is given by

§(.t) = 3 A (@), (1.63)

where A; are the amplitudes of the eigenmodes v, and A its associated and
eigenvalues obtained by solving linear eigenvalue problem

Llus(2); ple(x) = Mp)i(x), (1.64)

where L is the linearized operator associated to F'. The eigenvalues comprise
the spectrum of the linear operator L[us(x); 1] and this spectrum consists of two
sets depending on the symmetry of the eigenmodes, namely amplitude modes
when they are even functions (symmetric), and phase modes when they are odd
(anty-symmetric). In translationally invariant systems, like those studied here,
there is always one neutrally stable (i.e. with eigenvalue A = 0) phase mode,
the Goldstone mode G, which can be identified as the first derivative of ug with
respect to the spatial coordinate z, i.e. G(z) = O,us(x).

For the numerical solutions us obtained with the Newton-Raphson method,
Eq. can also being solved numerically. In this framework the linear op-
erator Llus(z); p] corresponds to the Jacobian matrix associated with the finite
set of coupled ODEs describing Eq.. Thus, the eigenvalues of this Jaco-
bian determine the stability of the solutions against perturbations that lie on
the same phase subspace. The extension of the stability analysis to arbitrary
perturbations in the whole infinite phase space is not a trivial point. Finite
wavelength instabilities of patterns are examples of bifurcations that occur in
directions of the phase space not parallel to the subspace where the solution
belongs to (see Section .
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S N e i U

x x

Figure 1.13: Correspondence between LSs and orbits in spatial dynamics. In (a) we show
a front connecting states 0 and U (bottom) and its corresponding heteroclinic orbit (top). If
another front connects back U with 0, and both states have the same energy, a heteroclic cycle
is formed. This cycle corresponds to two fronts connected back-to-back with the HSS 0. Even
when the energies are different homoclinic orbits can bifurcate from the previous heteroclinic
cycle. This is the situation shown in (b) and these homoclinic orbits correspond to the pulse
shown in the bottom panel. This Figure has been adapted from Figure 3 of Ref. [109].

Another approach, that will be used within this manuscript, consists in deriving
a set of equations for the spatial evolution (spatial dynamics) of the solutions of
Eq.. These equations form a special kind of dynamical system in which
space plays the role usually played by time. Then, defining a set of intermediate
variables yo = u, and y; = diu, for i = 1,...,n — 1, where n is such that the
higher order spatial derivative in F' is of order n, one obtains the following
n—dimensional spatial dynamical system

dzyo = y1
dyyi = Yi+1, 1=1n—1 (1.65)
F(yhy?ayl’n ~-~7yn—27dxyn—1;,u) = 0.

The last equation is an implicit equation for d,y,_1. In all the cases studied
within this thesis the higher order derivative in F’ appears in a additive way, and
therefore the last equation can be written in a explicit form.

In this framework several correspondences between the stationary solutions of
Eq. and solutions of this particular dynamical system can be established.
For example, the fixed point of the dynamical system corresponds to
solutions of Eq.(.62) which do not have any dependence on z, namely the HSS
solutions, and a pattern with a wavelength Ap to a periodic orbit with spatial
period Ap. In the same fashion, a front or domain wall connecting two different
states, let us say 0 and U, corresponds to a heteroclinic orbit like the one shown
in Figure a), and a LS byasymptotic to the same HSS soltuion, in this case
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0, when z — +o00 can be understood as a homoclinic orbit to such fixed point

as depicted in Figure by

This approach allows to use the theory homoclinic and heteroclinic orbits to
study the formation of LSs (see these definitions in Section . Analyzing
the linearization of the dynamical system about a given HSS solution one will
first identify the bifurcations that such point undergoes, and second, apply the
well known results of normal form theory (see Section to predict for which
values of the control parameter LSs or patterns can arise.

Arbitrary close to such bifurcations a weakly nonlinear analytical approximation
for the stationary solutions of Eq. can be found by using perturbation
theory (see Section . Performing an asymptotic expansion of the stationary
solution in the form

u = uge® + urel +uge -, (1.66)

with 0 < € < 1, related with the onset of the bifurcation, and solving Eq.
order by order in € one obtains, truncating at first order, the desired solution.
Here, the coefficients u; at each order in € can be functions of multiple spatial
scales x, X1, X5 ---. This analytical approximation can be used as an initial
guess in a continuation algorithm in such a way that one can track those states
to values of the parameters far from the bifurcations.

1.7 A brief summary of the various chapters

1. In Chapter 2, we analyze the necessary conditions for the existence of
LSs or DSs biasymptotic to the HSS solution in the LL equation. The
stationary LL equation is recast to a four-dimensional reversible dynamical
system. In this context LSs correspond to reversible homoclinic orbits
to a fixed point, i.e. the HSS solution. In this framework we perform
a linear stability analysis of that fixed point and we classify the different
bifurcations that it undergoes as a function of the parameters of the system.
The normal form theory shows that, in the neighborhood of some of these
bifurcations LSs exist. We discus in detail the anomalous and normal GVD
regimes, establishing a solid base on which we will build in the following
chapters.

2. In Chapter 3, we study the pattern solutions in the anomalous GVD
regime. To start we perform a linear stability analysis of the HSSs. After

- 10T his type of homoclinic orbit bifurcates from a heteroclinic cycle, connecting first 0 with
U, and then back U with 0. For more information see definitions in Section
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that we apply asymptotic perturbation methods to calculate a first order
approximation for the pattern solution, only valid in the neighborhood of
a modulation instability. This solution is the starting point to build up the
complete skeleton for the different patterns coexisting in the model. We
show that for certain values of detuning, patterns of a given wavelength are
connected with patterns with half of that frequency. The connection takes
place through a secondary bifurcation of one of the patterns. Moreover
there are many other such bifurcations where the pattern becomes unstable
to different wavelengths or where they start to oscillate.

. In Chapter 4, we expand previous studies on the bifurcation structure and

stability of bright soliton solutions in the anomalous regime. We show that
there are two regimes depending on the frequency detuning parameter for
which the origin and bifurcation structure of such states differ. We apply
asymptotic techniques to obtain approximated solutions for those LSs in
both regimes. For low values of detuning (6 < 2), LSs can be formed due
to the bistability between the background field and a pattern state within
a range of parameters around the Maxwell point of the system known
as pinning region. Those states are organized in a snakes-and-ladders
structure. For high values of detuning (6 > 2), we find that the bifurcation
structure of the LSs differs from the one in previous situation. In this
regime, LSs undergo oscillatory instabilities that make solitons oscillates
in amplitude with a single period. Varying the control parameters we
find that those oscillations undergo period doubling bifurcations starting a
route to temporal chaos. Moreover the system also presents spatiotemporal
chaos.

. In Chapter 5, we study the LL equation in the normal GVD regime. In

this regime the bistability of two homogeneous states allows the formation
of fronts connecting them. In a region close to the Maxwell point, two
fronts with different polarities lock and form a dark LS. The asymptotic
analysis performed here is the same as the one done in the anomalous
regime for 6 > 2. In this case, dark solitons are organized in a structure
known as collapsed snaking. This implies the presence of a region in pa-
rameter space with a finite multiplicity of dark solitons. For high values
of detuning dark solitons undergo oscillatory instabilities where they start
to oscillate in amplitude. The oscillatory states do also undergo a period
doubling bifurcation and start a route to temporal chaos. We characterize
in parameter space how the bifurcation structure is modified as a function
of the parameters of the system.
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5. In Chapter 6, we focus on how high-order dispersion effects, in particular
third order effects, modify the bifurcation structure and stability of the LSs
for both the anomalous and normal dispersion regimes. In both regimes
a common feature of including third order dispersion is that the LSs, now
asymmetric, drift with a constant velocity that depends on the control
parameters. We study how the bifurcation structure in both the anomalous
and normal GVD regimes is modified when considering this term. The
drift is also responsible for the suppression of the oscillatory and chaotic
dynamics, and for the stabilization of both bright and dark solitons in the
anomalous and normal regimes, respectively. In the last one, we also find
that third-order dispersion allows the formation of bright solitons due to
the modification of the tails of the fronts.

6. In Chapter 7, we investigate the formation of bound states of bright
solitons in the anomalous GVD regime. Due to the presence of oscilla-
tory tails, solitons can lock at different separation distances, which are
determined by the wavelength of the tails. We derive effective potentials
describing the interaction and we relate their shape and periodicity with
the spatial eigenvalues of the system. In this way we can predict, given an
initial separation, all the stable and unstable separation distances allowed
for the bound states. We study the bifurcation structure for these new
states and discuss their existence as function of the control parameters.
After that we apply the same techniques to the study of the formation of
bound states in the presence of higher order dispersion effects, in particular
third and fourth order dispersion effects. In these two cases we also study
how a noisy background can effect the stability of the new structures, and
we calculate the basins of attraction of the system.

7. In Chapter 8, we study how the presence of inhomogeneities (or defects)
and drift modify the dynamics of LSs in the LL equation. Without loss
of generality we focus on the dynamics of a single bright soliton in the
anomalous regime, although the results can be extrapolated to the case of
dark solitons or even for configurations of several LSs. We show that the
competition between the defect, which pins the LSs, and the drift which
pulls it out leads to very rich dynamics such as oscillations and excitabil-
ity. In order to better understand the system we calculate the bifurcation
diagrams and identify the bifurcation involved in the appearance of previ-
ous dynamics. We perform this analysis considering both absorbing and
periodic boundary conditions.

8. In Chapter 9, we analyze in detail the mechanism introduced in Chapter
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10.

9 in a simpler model, the Swift-Hohenberg equation. We show that the
appearance of excitability (Type I and Type II) and oscillatory regimes
(localized small oscillations and train of solitons) for solitons when defects
and drift are present is generic and not just a feature of the LL model. We
find that all the dynamics of the system unfold from two codimension-two
Takens-Bodganov bifurcations that organize the complete scenario. The
study presented in this Chapter is mainly focused on the case where the
defect is injected (as in Chapter 8). However, we also show that the same
type of dynamics appears when it is added to the gain. In this last case
the scenario is much more complex than in the previous one.

In Chapter 10, we introduce a new mechanism leading to excitability
based on just two ingredients: bistability between two HSSs solutions and
spatial coupling. We show the existence of a threshold such that, while
sitting on one homogeneous state, sub-threshold perturbations decay fast
whereas super-threshold perturbations induce a long excursion mediated
by the emergence of a structure formed by two back-to-back fronts that
join the two homogeneous states. Furthermore, while in typical excitability
the trajectory follows the remnants of a limit cycle, here reinjection is
provided by front interaction, so that fronts slowly approach each other
until eventually annihilating. This front-mediated mechanism shows that
excitability can exist in extended systems with no oscillatory regimes. We
perform this analysis when the HSSs are equivalent, as is the case in the
prototypical GL equation with cubic nonlinearity, and when they are not
equivalent as in the real quintic GL equation. We also find that this last
situation also exists in the LL equation in the normal dispersion regime.

In Chapter 11, we briefly revisit the obtained results withing the previous
Chapters.
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Chapter 2
Homoclinic orbits to homogeneous
steady state solutions: Localized
structures

2.1 Introduction

Within this thesis we focus on the study of localized structures (LSs) arising in
temporal cavities both the anomalous and normal GVD regimes. In Chapter
we have seen that in one extended dimension there are three main mechanism
behind the formation of LSs, and all of them related with the coexistence between
two different states. In terms of spatial dynamics one can understand a LSs as a
homoclinic orbit to the equilibrium HSSs (see Section . Figure shows an
example of a pattern-element LS (a) and its associated homoclinic orbit (b). This
particular LS is equivalent to a homoclinic orbit consisting in a trajectory leaving
the HSS here 0, rolling several times around the pattern (here the cycle in red),
and returning back to the same HSS. Due to this correspondence it is possible,
using the theory of dynamical systems, to predict the parameter regions where
LSs can be expected, identify the bifurcations undergone by the HSS, from where
they arise, and obtain an approximate solution for them in a neighborhood of
these points. Hence, the goal of this chapter is to analyze the spatial dynamics of
the LL equation. In Section[2.2]we discuss briefly the homogeneous steady state
solution of the system. In Section [2.3|we derive the dynamical system associated
with the stationary LL equation and we study linearization around the HSSs for
both the normal and anomalous dispersion regimes. In this way we classify all
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Figure 2.1: Correspondence between a pattern-element LS and homoclinic orbit in the con-
text of spatial dynamics of the LL equation. In (a) a pattern-element type of LS, with a
plateau of length L biasymptotic to the HSS 0 is shown. In (b) the associated homoclinic
orbit in the spatial dynamics. A trajectory leaves 0 rolls several times the cycle (pattern) and
returns back to 0. This Figure has been adapted from Figure 4 of Ref. [IJ.

the spatial bifurcations that occur in the system, which will be of great interest
for the coming sections. To continue, Section [2.4] provides an overview of the
normal forms and dynamics of the bifurcations previously identified. In this way
we can predict the existence of homoclinic orbits close to those bifurcations and
consequently, the appearance of LSs. Finally, in Section we study the tails
of the LSs using the linearization previously performed. The shape of those tails
will be essential for the creation of LSs, both dark and bright solitons, and for
the formation of bound states.

2.2 The homogeneous steady state

In the following we will talk mainly about homoclinic orbits to the HSS or
continue wave (CW) solution. We will use this mathematical object to study
LSs arising in the context of the LL equation, namely

A= —(1+i0)A+ivd2A+iA|A]* + p. (2.1)

Before starting with the study of homoclinic orbits i.e. LSs, it is necessary to
take a look to the HSSs solution of the system. Any steady state of the LL
equation satisfy the ODE,

A (1+i0)A+ilAPA+p=0 (2.2)
Vi J— = .
W i i p=0,
or, written in terms of the real variables U = Re[A] and V' = Im[A],
2
—u%—U+9V—V(U2+V2)+p:0,
dx
(2.3)
d*U 2 2
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Figure 2.2: Panel (a) shows the HSS in the monostable regime for § = 1.5 and in panel (b)
an example of the HSS solution in the bistable regime (6 = 1.8) is plotted.

The solutions of Eq. can be either spatially uniform (HSSs) or spatially
nonuniform, consisting either of a periodic pattern, i.e. a spatially periodic
state, or spatially localized states, i.e. a LSs, or spatial chaos [2]. The first two
types of solution will be the main interest of our work. In this section we focus
on the HSSs, A = Ay, leaving for subsequent sections the study of the other
states. The A( states are solution of the classic cubic equation of dispersive
optical bistability, namely

I3 — 2012 + (14 6%y = p?, (2.4)

where Iy = |Ag|?, that in real variables read as

N
=] ey @9
1+ (Io — 9)2

For § < v/3, Eq. 1} is single-valued and hence the system is monostable (see

Figure a)). For 6 > /3, Eq. (2.4) is triply-valued as shown in Figure b).
The transition between the three different solutions occurs via the two saddle-
nodes bifurcations SNpp,.1 and SNpem 2 located at

20 1
Ly =|A* = 3 + 3 62 — 3. (2.6)

These two SNs unfold from a Cusp bifurcation at 6 = /3 and will be discussed
in the next Chapters.

In the following we denote the bottom solution branch (from Iy = 0 to I;) by A9,
the middle branch between I, and I; by AJ* and the top branch by A§ (Io > I1).

45



CHAPTER 2. HOMOCLINIC ORBITS TO HOMOGENEOUS STEADY STATE
SOLUTIONS: LOCALIZED STRUCTURES

The linear stability of Ag is analyzed by considering the effect of finite wavelength
perturbations A = Ag + ee®* %7 Linearizing for small ¢ on obtains for Eq.([2.1)
the dispersion relation,

k) = —1 /4160 — 33 — 02 + v(4lo — 20)2 — k. 2.7)

Since the Eq.(2.1)) is symmetric under the transformation z — —z, the dispersion
relation fulfills Q(k) = Q(—k), and as one can see it depends on k only through
k2. The HSS Aj undergoes an instability if the maximum of € becomes positive
when varying a system parameter. In coming chapters the linear stability of Ag
is analyzed in the anomalous (Chapter [3) and normal (Chapter [5)) GVD regime
is analyzed. In the first case, these pattern play an essential role in the formation
of bright solitons (see Chapter [4]). However, although existing, patterns are not
at the origin of the formation of darks solitons in the normal regime.

2.3 Stationary problem as a dynamical system

Within this thesis we will spend quite a few chapters talking about localized
stationary states i.e. LSs, solutions of Eq.. These states are biasymptotic
to the HSSs Ay, that is, the field associated with that structure A(x) — Ao,
as ¢ — too. This type of solution corresponds to homoclinic orbits I' to Ay
[3H7], that lie in the intersection between the stable and unstable manifolds of
Ap, namely W#(Ap) and W*(Ap) (see Appendix |A).

Due to this correspondence one can apply the theory of homoclinic orbits to
obtain some insight about the existence and stability of LSs in our system. In
order to do this one first writes the stationary LL equation as a dynam-
ical system. We refer to this analysis as spatial dynamics of the LL equation.
Defining the new system of variables y1(z) = U(z), y2(z) = V(2), ys(z) = d,U
and ys(x) = d,V, Eq. can be recasted as the four dimensional dynamical
system given by

dzy1 = Y3
dyy2 = yYa

2.8
days = v [y2 + 0y1 — 193 — i) (28)
doys = v [y + Oy2 — 127 — 43 + p] -

Taking y(z) = [y1(2), y2(2), ys(x), ya(x)]", and the right-hand side of (2.8) as the

vector field, f(z) = [f1(y), fo(y), f2(y), fa(y)]T, the system [2.8) can be written
in the compact form:
dy
= = ;0,p) . 2.
7 = w@)ib.0) (2.9)
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In this framework the HSSs A( correspond to the fixed point or equilibrium of
the system (2.8)), namely yo = (0,1, %0.2, %03, Y0,4) = (Uo, V0,0, 0).

This system is invariant under the involution transformation

R: (291,92, Y3,¥a) = (=2, y1,Y2, —Y3, —Va), (2.10)

and therefore spatially reversible. In this case, the symmetric section is defined
by
S={(y1,y2,y3,y4) 1 y3 = ya = 0}. (2.11)

In the presence of reversibility, I' is formed by the transverse intersection be-
tween W*¥(Ap) and the 2-dimensional symmetric section S. If the equilibrium
Ay is hyperbolic, then W*(Ap) is also two-dimensional and therefore I" is of
codimenison-zero by dimension counting. Because of this, these orbits persist
under generic perturbations that preserve reversibility [8]. This will be impor-
tant when studying homoclinic solutions of truncated normal forms (see Section
, because if this condition is satisfied, any solution of a truncated normal
form will be also solution of the complete normal form.

2.3.1 Linearization

Our main interest focus on orbits homoclinic to yg (i.e. to the HSS Ap). There-
fore, to study this type of orbit, it is first necessary to linearize (2.8]) about
that point. Separating the field f(x) in its linear and nonlinear components, the

system (2.12)) can be written as

2 y(a) = DF (go)ye) + Ny()] (212

where Df(yo) is the Jacobian

0 0

0 0
0—vys—3yi  1—2y1y0
—(142y1y2) 0 —yi —3y3

Df(yo) =v (2.13)

oS O OoOX
o O X O

Y=Yo
and with A[y(x)] representing the nonlinear terms.

The linear dynamics of the system about yo gives a lot of information
about the nature of the equilibrium, changes in the dynamics around those points
(when a bifurcation takes place), and the way in which the manifolds W*(Ag)
and W#*(Ap) approach or leave Ag. Thus, one can understand the behavior of
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Figure 2.3: Sketch of the possible organization of spatial eigenvalues A satisfying the
biquadratic equation (2.14)) for a spatially reversible system. The names corresponding to the
different labels are explained in Table E

homoclinic orbits very close to Ay, and what is the same, predict the shape of the
tails of the LSs. The four eigenvalues of D f(yg) satisfy the biquadratic equation

M (41 — 20)uN? + 02 + 312 — 401y + 1 = 0. (2.14)

This equation is invariant under A — —X and A — X and leads to eigenvalue
configurations symmetric with respect to both axes as depicted in Figure [2.3]
The form of this equation is a consequence of spatial reversibility [8HI0]. The

eigenvalues satisfying Eq. (2.14]) are

/\i\/(aﬂo)yimgL

According to the control parameter values one can identify four qualitatively
different eigenvalue configurations:

(2.15)

1. the eigenvalues are real: A\ 2 = £q1, A\34 = £¢2

2. there is a quartet of complex eigenvalues: A1 234 = £qo ko
3. the eigenvalues are imaginary: A; o = iky, Az 4 = +iko
4

. two eigenvalues are real and two imaginary: \; 2 = %qo, A34 = Fiko
A sketch of these possible eigenvalue configurations is shown in Figure 2:3] and
their names and codimension are provided in Table 2.1} The crossing from one

of the regions to the next one occurs via the following bifurcations or special
transitions:
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A Belyakov-Devaney (BD) [4] [5 8] transition occurs within the transition
from region I to region II. Here the spatial eigenvalues are \; > = *£qo,
A3.4 = £qo.

e The transition from region II to region III is via a Hamiltonian-Hopf (HH)
bifurcation [5, 11], with /\1,2 = +tik., /\3,4 = +ik..

e The transition from region I to region IV is via a reversible Takens-Bogdanov
(RTB) bifurcation with eigenvalues A1 o = %qo, A3 = Ay = 0 [} [5].

e The transition from region III to region IV is via a reversible Takens-
Bogdanov-Hopf (RTBH) bifurcation with eigenvalues A1 2 = £ikg, A3 =
Ay =0 [4 5]

The unfolding of all these scenarios is related to the quadruple zero (QZ) codimension-
two point with A\; = Ag = A3 = Ay = 0 [4, B, [13]. In regions I and II of Figure

Ay is hyperbolic, i.e. Re[\] # 0, and therefore homoclinic orbits to Ag are of
codimension zero, so as we said before, if the intersection between the unstable
manifold of Ay and symmetric section S is transverse then homoclinic orbits
must persist under small reversible perturbation.

The configuration of the eigenvalues for the normal and anomalous dispersion
regimes are shown in Figures 2.4 and Figures Figures 2.5 and 2.7 show the
different regions I-IV for each eigenvalue configuration described in Figure
in the parameter space (p,6) for both regimes.

The condition Iy = 1 defines, in terms of the (6, p), the line
p=+1+(1—0). (2.16)

For the normal GVD regime this line corresponds to a BD transition when 6 < 2
and a HH bifurcation when 6 > 2. In contrast, in the anomalous case the HH
and BD are exchanged, and now the BD transition occurs for § > 2 and the HH
bifurcation when € < 2. In the next section we discuss briefly the linear dynamics
derived from the normal forms around each of the bifurcation lines RTB, RTBH
, HH and BD shown in Figure [2.3] and we see what may be gleaned from those
normal forms concerning the existence of homoclinic orbits.

In this particular case one can have two different but similar unfoldings when
considering the normal or anomalous GVD regimes.
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Cod (M 2,3.4) Name Label
Zero | (dqo % iko) Saddle-Focus SF
Zero | (%q1,%tq2) Saddle S
Zero | (Liky, £iko) Double-Center DC
Zero | (%qo, +iko) Saddle-Center SC
One (%40, 0,0) Rev.Takens-Bogdanov RTB
One | (%iko,0,0) | Rev.Takens-Bogdanov-Hopf | RTBH
One (40, £q0) Belyakov-Devaney BD
One | (+ike, +ik.) Hamiltonian-Hopf HH(MI)
Two (0,0,0,0) Quadruple Zero QZ

Table 2.1: Nomenclature used to refer to different transitions in the spatial eigenspectrum.

2.3.2 Relation between the spatial eigenvalues and the dispersion rela-
tion

The spatial stability analysis of the linearized system is equivalent to
study the linear stability of Eq. considering spatial perturbations of the
form A(z) = Ao + ee’ where in general A is complex. Since the linearization
is around the same state as in the temporal stability analysis and since the
perturbations are the same as the ones considered there replacing ik by A, the

spatial eigenvalues \ satisfy
Q(—i\) =0, (2.17)

expresion that is equivalent to Eq.(2.14)).

This result makes possible to obtain information about the temporal dynamics
of the system through the spatial dynamics approach. For example, if the spatial
eigenvalue configuration consists on two purely imaginary eigenvalues +ik; and
+iks, then, in the framework, Q(k12) = 0 for real ky and ko. As a consequence
Q(k) must be positive for k; < |k| < k2, and therefore Ay is unstable to pertur-
bations with wavenumber within this range. As one can observe, this situation
corresponds to region IT of Figure where the HSS is a DC.

2.3.3 Spatial eigenvalue configurations in the normal regime

In the normal GVD regime, the configuration of the spatial eigenvalues is the one
shown in Figure Panel (a) shows the situation for § = 1.4 < /3 just in the
monostable regime. Here the single HSSs state branch is initially a saddle-focus
(SF). Increasing p the imaginary parts of these complex conjugate eigenvalues
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Figure 2.4: Spatial eigenvalues of Ao for several values of 0. (a) 6 = 1.4 < v/3; (b)
V3<0=18<2;(c)8=2;(d) 2 <6 =4. The different labels are explained in Table
Solid (dashed) lines indicate stability (instability) in time.

approaches Im[A] = 0 until it reaches at the BD transition, and for p values on
the right of BD Ay has became a saddle (S). Figure shows the projection
of the different bifurcation lines for this regime in the (6, p)—parameter space.
Increasing further the value of # we cross the the cusp C shere Ay becomes
trivaluate. This situation corresponds to the diagram shown in panel (b) for
V3 < 0 = 1.8 < 2. For this value both SNyj,,.1 and SNy, 0 are RTB bifur-
cations. AZ is a saddle-center (SC) and A a S for any value § > /3. When
6 = 2, (see panel (c)) all the lines meet at the QZ point at (,p) = (2,v2),
where the BD becomes a HH bifurcation and SNj,.,,1 changes from a RTB to a
RTBH bifurcation. When 6 > 2, A} is a SF until reaching HH where it becomes
a focus that persist until the SNy, 1 where it becomes a SC. Figure (b)
shows a zoom (not in scale) of the panel (a) around QZ where we can appreciate
the unfolding of this bifurcation.
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Figure 2.5: In (a) spatial bifurcation lines in the parameter space (6, p) for the normal
dispersion regime. In (b) we show a zoom, not at scale, of panel (a) around QZ where one
can observe the unfolding of that bifurcation. Here we just show the regions regarding the
first branch Ag, where the unfolding of the QZ bifurcation takes place.

2.3.4 Spatial eigenvalue configurations in the anomalous regime

The situation regarding the anomalous case is shown in Figure [2.6] The values
for the control parameter 6 are the same that those in Figure [2.4] although now
the eigenvalues configuration is different. In the monostable regime (see panel
(a)) Ap, is a SF for Iy < 1 and a DC resonance for Iy > 1. Thus, for Iy > 1 Ag
is unstable to perturbations with a wavenumber within the range k1 < |k| < k.
At 6 = /3, Ay becomes trivaluate at C, splitting itself in three branches (see
panel (b)). Now A} is a DC and AJ* a SC for any value 6§ > /3. Here in
contrast to the normal regime, SNy, 2 is a RITBH bifurcation. Taking a look
to the bottom branch and the SNj,,, 1 one can see that there is an inversion
in the order of appearance of HH and the BD with respect the normal regime.
In this case HH exist for & < 2 and the BD for § > 2. At the QZ, as before,
these branches meet and the SNy, 1 that is a RITBH for § < 2 becomes a RTB
for 8 > 2. Figure shows the projection of all these lines into the parameter
space.

2.4 Unfolding of the quadruple-zero codimension-2 point

As we already said, the HH, RTB, and RTBH bifurcations and the BD transi-
tion previously introduced emerge from a codimension-2 bifurcation known as
quadruple-zero (QZ) point with spatial eigenvalues A = 0 with algebraic multi-
plicity four and with gometric multiplicity oneﬂ as depicted in the sketch shown

1With geometric multiplicity of an eigenvalue \ of a matrix A we refers to the dimension of
the subspace spanded by the eigenvector associated with it i.e. the dimension of Ker(A — AI).
In contrast, the algebraic multiplicity of A correspond to the number of times that A appears
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Figure 2.6: HSS together with spatial eigenvalues configuration for several values of 6. (a)
0 =14 < V3 b) V3 <0 =18<2; (c)@ =2and (d) § = 4. Here RTBH stands
for reversible Takens-Bodganov-Hopf, RTB stands for reversible Takens-Bodganov, HH is a
Hamiltonian-Hopf, BD a Belniakov-Devaney transition and QZ a quadruple zero codimension-

2 point.
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Figure 2.7: Same that in Figure but for the anomalous case. The bifurcation lines are
now reinvers respect to Figure

as a root of the characteristic polynomial of A.
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in Figure In Ref. [13] G. Iooss derived a normal form for this point in a
general fourth-order vector field where the origin is a persistent symmetric fixed
point. Despite of that, the study of this bifurcation is widely open. Here we
review some aspects about the dynamics of the system around the codimension-
one bifurcations and the BD transition shown in Figure 23] and to do that we
will follow closely Ref.[4] and the references therein. All the normal forms associ-
ated with the codimension-one bifurcations HH, RTB and RTBH are integrable,
and they all lead to the existence of homoclinic orbits, and therefore to the ex-
istence of LSs. Our aim in this section is only didactical and the normal forms
presented here have not been derived directly from the dynamical system ,
but they refer to a general four dimension reversible vector field. However, this
section will be useful to understand, at least qualitatively, the unfoldings shown

in Figures 2.5 and

2.4.1 Normal form near the reversible Takens-Bodganov bifurcation

In the RTB bifurcation the spatial eigenvalues are Aj 2 = £qp, and A3 = Ay = 0.
The eigendirection associated with A\ o = +¢qo are unimportant in describing the
bifurcating solutions and therefore the center manifold theorem can be applied

to reduce (2.8)) to a planar system (see Section [A.6]). Once reduced to the center
manifold, the normal form analysis gives the nonlinear oscillator system [14]

wy(z) = wa(x)

wy(x) =) ej(mwi (@)

A single parameter p unfolds the degeneracy with p > 0 corresponding to the
near-zero eigenvalue being real (region 2). Upon truncation to lowest order and
after applying a rescaling w; and wy becomes O(p), and becomes

(2.18)

w(2) = wa(z)
(2.19)
’LUé(Z‘) = :|:,LL’LU1 - %w%a
which for p > 0 possesses a single symmetric homoclinic orbit T' : wy(z) =
sech?(z/2). This solution profile has monotonic tails and is sometime referred

to as the Korteweg-de Vries(KdV)-type soliton.
In presence of an up-down symmetry w; — —wq, the truncated normal form is

wy(x) = wa(x)
(2.20)
wh(z) = pwy — Put,
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where § = £1. If 8 = —1, there is a pair of homoclinic orbits I'y : wy(z) =
+sech(z) related by the up-down symmetry for p > 0. For the other sign there
are no homoclinic solutions. For the planar normal forms and it is
possible to prove that the homoclinic orbit persist for g > 0 against perturbations
restoring the original system [14], [15].

Our system does not have up-down symmetry, therefore one does not expect the
last type of solutions to occur. On the contrary, as we will see in Chapter [f] and
Chapter [5] the LL equation supports KdV-type of solitons in both the anomalous
and normal regimes. In the anomalous case these solitons are bumps unfolding
from the SNpopm,1 for § > 2. In the normal dispersion case these type of homo-
clinic orbits arise in both SNp4y,.1 for 6 < 2 and SNpey, 2 for any value 6 > V3.
In the first case they are bumps and in the second one holes. Chapter [4] will be
devoted to the understanding of the bifurcation structure and stability of these
bump states in the anomalous regime. Chapter [5] will be focused on the study of
these structures in the normal regime. In both cases we apply weakly nonlinear
analysis around the RTB and we confirm the existence of KdV-type of states.

2.4.2 Normal form near the reversible Takens-Bodganov-Hopf bifurca-
tion

For the RTBH bifurcation the spatial eigenvalues are Ai 2 £ ikg, and A3 4 = 0.
The normal form (Ioos-Kirchgaster normal form [I4]) about this point is a four

dimensional ODE completely integrable in two real variables w; and wy and a
complex one z, that reads

wy(x) = wa(z),
wh(a) = M(p,wi(z), |2(z)[?),

(2.21)
2'(x) = iz(x) N (p, wi (@), |2(2) ),

' (x) = —iz(@)N (n, wi(2), |2(2)*),

where M and N are arbitrary order polynomials in their arguments. Truncating
this normal form considering

M (p,un, |2[7) = e (p)wr + ea(p)wi + do ()| 2], (2.22)

and
N (p,wi, |2[%) = bo(p) + 1 (p)ws, (2.23)
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one can find two types of homoclinic solutions. The first type is a sech? orbit
I" homoclinic to Ay, now a SC' in region IV. The problem here is that Ag is
not hyperbolic and therefore, in general, one does not expect these solutions to
persist under small reversible perturbation to the truncated normal form. In
Hamiltonian systems it was proved that given a primary homoclinic orbit to a
SC, symmetric respect the involution, there are, under certain conditions, N-
pulses or N-homoclinic orbits occurring at isolated parameter values. The second
type of solutions are homoclinic orbits to periodic orbits (known as generalized
solitary waves) with a sech? core and exponentially small tails. The amplitude
of the periodic orbit is an exponentially small function of p and can not be
captured by the normal form truncated at any order. In our system we
have not found, so far, any of these kind of solutions.

2.4.3 Normal form near the Hamiltonian-Hopf bifurcation

At the HH bifurcation (also known as double-Hopf with 1:1 resonance or Turing
bifurcation in temporal dynamics), the eigenvalues are A\ 234 = =ik, ik,
and the normal form (known as Iooss-Peroueme [IT], 12])E| is a 4 dimensional
completely integrable ODE expressed in terms of two complex variable z(z)
and z3(z) that reads

Zi = tkez1 + 29 + izlP(u, |21|2, Z'(leg — 512’2)/2),

2 = ikezy +i29P(p, |21|% i(2122 — Z122) /2) + 21Q(1, |21, i(21 22 — Z122) /2).

Here P and @ are arbitrary order real polynomials in their arguments and u
is the unfolding parameter, with p < 0 corresponding to region II where Ay is
a SF, and p > 0 corresponding to region III, where Ag is a DC. A truncated
normal form can be derived by replacing P and @) by the first-order terms of
their Taylor expansions, namely,

P(p,y1,92) = pops + pay1 + P2y, (2.25)

and
Q1,y1,y2) = qopt + Q1 + G2y (2.26)

As Hopf bifurcation the HH can be either supercritical or subcritical. By fur-
ther reduction to polar coordinates, it is possible to find in the subcritical regime
(for g2 < 0) a one-parameter family of homoclinic solutions that bifurcates for
p < 0. These solutions are of the form I'y, : z1(x) = Asech(Bx)exp(ikc.z + ¢)

2 Although it was originally derived in [12]
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for constants A, B and k related with the coefficients of the normal form. This
family is parametrized by an arbitrary phase ¢. However, terms beyond all
algebraic orders (absent in any truncated normal form) select generically two
values ¢ = 0 and 7 from the circle [0, 2) [16] [I7]. The resulting solution pro-
files have oscillatory tails and are sometimes referred as nonlinear Schrodinger
(NLS)-type solitons or envelope solitons. In contrast for the supercritical case
the bifurcation of homoclinic orbits to periodic orbits occurs for p > 0. In the
presence of up-down symmetry, there are four possible values ¢ = 0,7/2,7 or
37 /2 selected. In all cases T' is homoclinic to a SF. Near the codimenison-two
transition between the super and subcritical cases, i.e. a degenerate HH point
(dHH), there exist homoclinic orbits that wind arbitrary many times around a
(reversible) periodic orbit. Those homoclinic orbits are organized into bifurca-
tion curves called homoclinic snaking [18]. We will analyze in detail this type
of homoclinic orbit and its bifurcation structure in Chapter [d] when studying
the LL equation in the anomalous dispersion regime. There, the HH bifurcation
exist for § < 2. The bifurcation structure and stability of patterns unfolding
also from HH in the anomalous regime will be studied in Chapter [3]

In the subcritical case, these orbits exist in a region of parameter space where
Ag is a SF, and therefore, hyperbolic. Hence, we should expect that transverse
homoclinic solutions to the normal form with the truncated terms
persist against reversible perturbation. Nevertheless, due to the size of the terms
ignored in the truncated version , which are not small compared with the
bifurcation solution, the prove is not trivial [II]. It is also possible to prove
that given the existence of a primary homoclinic orbit, there are initially many
N-pulses homoclinic orbits for each N > 1.

2.4.4 Dynamical behavior near the Belyakov-Devaney transition

This line does not correspond to a bifurcation, because the equilibria Ag remains
hyperbolic (Re[A] # 0) and only changes between a S (region I) and a SF' (region
IT). This is the reason to refer it as BD transition [8] [I9]. Because of this, all
finite amplitude homoclinic orbits should persist across the BD transition line.
Nonetheless, infinitely many orbits homoclinic to the SF can be created by a
dramatic non-local bifurcation at the BD. This bifurcation has been called broom
bifurcation [20] owing for the infinite number of homoclinic orbits emerging from
it. In our context, this phenomenon arises for bright LSs in the anomalous GVD
regime when 6 > 2. In that scenario Im[\] — 0, as p approaches the BD,
and therefore the wavelength of the oscillatory tails of the LSs goes to infinite.
Hence, in a infinite domain, two DSs will increase infinitely their separation as
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Figure 2.8: Localized states for the LL equation. In (a) a NLS-type of bright solitons arising
in the anomalous dispersion regime for § = 1.5 and p = 1.11445. In (b) a KdV-type dark type
of solitons occurring in the normal dispersion regime for § = 4 and p = 2.29129. In (c) a front
or SW also in the normal dispersion regime for § = 4 and p = 2.3252908. As we can observe
structure (a) has oscillatory tails, (b) monotonic and (c) both.

approaching the BD transition. However, in periodic system with period L the
maximum separation that they can reach coincides with L/2. We will talk more
about this in Section .4l

2.5 Linearization of the homoclinic orbits around the equi-
librium point Ay

In the previous Section we have analyzed the linear dynamics of the system
about the different bifurcation points appearing. In the coming chapters we will
see that the tails of these LSs are quite relevant to understand the formation of
bound states of solitons or soliton molecules (see Chapter @ and the formation
of dark solitons (see Chapter[5]). In both cases, the formation of these structures
comes from the interaction of single solitons in the first case and fronts with
different polarity in the second one.

Regarding the interaction of solitons, it can be attractive or repulsive as function
of the separation. Moreover, when the tails have oscillations around Ag, the
structures can lock at different distances that differ by the wavelength of the
oscillations. In contrast if the tails are monotonic, that locking does not occur
and the structures approach or separate infinitely. The nature and shape of the
tails around A can be explained by the linearization of the dynamical system
around Ag. As we have seen before, in principle, in this system one could
have homoclinic orbits in four different regions. In this work we just focus in two
of them, region II where A is a SF and region I where Ay is a S. In region III
and IV Ag are DC and SC global bifurcation points. As said before, in region IV
LSs are possible although difficult to observe. However in region III, Ay is a DC'
and homoclinic orbits to that point cannot exist due to the absence of strong
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stable/unstable manifolds. Nonetheless, the dynamics in a neighbourhood of
the origin may be quite complex and orbits homoclinic to a periodic orbit or
equivalently orbits homoclinic to an equilibrium in a suitable Poincare map are
still expected. In Chapter [8]and Chapter [p] we will show that pattern solutions
unfold from those global bifurcations in the anomalous dispersion regime.

Figure showw three types of localized structures which will be studied along
this thesis. In panel (a) a bright soltion occurring in the anomalous dispersion
regime is shown. This is an envelope-type of soliton and in spatial dynamics
terms, a homoclinic orbit to a SF equilibrium Aj. Consequently the tails of
this state are oscillatory. Panel (b) shows a dark soliton arising in the normal
dispersion regime. This is a KdV-type of soliton and corresponds to an homo-
clinic orbit to a S equilibrium Af, and then their tails are monotonic. Finally
in panel (¢) a front, domain wall or switching wave (SW) solution connecting
the top HSSs Af with the bottom one A} is plotted. In the spatial dynamics
terminology this state would correspond to an heteroclinic orbit connecting a
S equilibrium with a SF. Therefore its tails are monotonic close to Af and
oscillatory close to Aj.

The linearization of (2.12)) about Ag = yo is given by

d

7,9(@) = Df(Ao)y(z) + O(lyl). (2.27)

and its solution reads as
y(x) =PIy, (2.28)

where Yo = [U(),Vo,O,O}T.

Considering the change of variables given by y(z) = M~1§(x), with M a given

linear transformation (a matrix), solution (2.28)) can be written as
) = Me"PTWI M~y = e Agp, (2:29)

with A being the linear normal form of D f(yo).

The normal form depends on the eigenspectrum of D f(yo), and therefore on the
nature of the HSSs Ay. In the following we focus in the linearizations around
Ap in the cases where it is a saddle-focus (region I) and a saddle (region II).

2.5.1 Region II: The saddle-focus case

In this region Ag is a SF ie. Aj234 = £qo £ iko. With this spectrum it is
possible to find a transformation M (see Ref.[21]) where the normal form reads
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Figure 2.9: Projection of the soliton shown in Figure a) into three subspace of the phase
space: (y1,¥3) in (a), (y2,y4) in (b) and (y2,ys) in (c). The saddle-focus nature of A} is
appreciated in the oscillatory way in which W“(Ag) and WS(Ag) leaves and approaches to it.
Here § = 1.5 and p = 1.11445.

as
qo —k'() 0 0
o ko qo 0 0
A=1 0 w© —ko | (2.30)

0 0 ko qo

and therefore, the solution of the system around Ay (in the linear regime) is
given by
71 = e?%cos(kox)go,1 — e®”sin(kox)Po 2

y2 = e1%cos(kox)Fo,1 + e®”sin(kox)Jo 2
(2.31)
y~3 = e_qozCOS(k'oaﬁ)go’g, — e_qozsin(kox);gog

ya = e~ %cos(kox)Yo,3 + e~ ©Tsin(kox)To,3

This orbit leaves and approaches Ay in a oscillating way with frequency equal
to kg and damped or amplified by gg. From here one can deduce that, in this
regime, the oscillatory tails of LSs, associated with the homoclinic orbit are
oscillatory, with a wavelength equal to 27 /ko, and a decay rate given by qo.
The bright solitons studied in Chapter [4] correspond to this type of homoclinic
orbits. Projecting this structure into the phase space {(y1 = U,y2 = V,y5 =
d,U,ys = d,V)} one obtains the orbit shown in Figure which dynamics
around Ag are described by . As shown in Figure the tails of this
soliton are oscillatory, and they can be described by y1(x) and y2(z). Both of
them are linear combinations of the harmonic functions sin(z) and cos(z) and
can be simplified to

Y1,2(T) = Yo;1,2 = a1,2¢" cos(z + ¢1,2) (2.32)
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Figure 2.10: Oscillatory tails of the bright soliton shown in Figure a) around the saddle-
focus point Ag. We show both the actual tail of the soltion and its fitting with Eq.7 for
the real (panel (a)) and imaginary (panel (b)) parts of the field. The fitting is plotted in red
line. The parameters for the fitting are (a1, 1) = (1.4550216 - 10~7, —0.053020265) for panel
(a) and (a2, @2) = (5.1106923 - 10~8,2.0644709) for panel (b). Here Iy = 0.96812475.

Re[M]
Im([A]

Figure 2.11: Real and imaginary part of the spatial eigenvalue X in function of # and p in
the anomalous dispersion case. In the normal regime the labels Re[A] and Im[A] must be
interchanged.

being a1 2 and ¢ 2 combinations of yy elements. Those coefficients can be also
calculated by fitting of the actual oscillatory tails shown in Figure using
as ansatz (2.32). The fitting using Eq.(2.32) is quite good showing the linear
analysis done around Ag can describe the shape of the oscillatory tails.

In the anomalous regime, the real and imaginary parts of A i.e. ¢y and kg are
given by

1
q0:ﬁ\/\/92—4910+313+1+9—210 (2.33)

and

1
ko — ﬁ\/\/9240+3[3+1(0210)' (2.34)

In the normal one the real and imaginary parts of A for the SF A} are reinvers.
In Figure these parts are plotted in function of 6 and p.
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Figure 2.12: Projection of the dark soltion of Figure b) into subspaces (y1,y3) in (a),
(y2,94) in (b) and (y2,¥3) in (c). As we can see, now the stable and unstable manifolds of A
are monotonic.

In Chapter [7] we will come back to these figures to understand the interaction
between bright solitons.

2.5.2 Regime I: The saddle case

In this region Ag is a S i.e. A\j 2 = £q1 A3.4 = £¢2. In this case the normal form
for Df(Ap) is given by

@w 0 0 0
A— 8 o 22 8 , (2.35)
00 0 —g
and therefore,
1 =eM%o1 Yo =€ N1 Yz =ePTg3 s = e T 3. (2.36)

Now the orbits leaves and approach Ag monotonically. In the anomalous regime
this region is found for § > 2, where A} is a saddle between the BD line and
the SNjom.1. In the normal dispersion regime this is the configuration for Af
for any value of 6, and for A} for § < 2, between the BD and SNhom,1-

Figure [2.12] shows the projection of the KdV-type dark soliton shown in Fig-
ure (b), into three different phase subspaces. Here, W¥(Af) and W*(Af)
leave and approach the equilibrium point monotonically.

2.6 Conclusions

In this chapter we have studied how localized structures or dissipative solitons
biasymptotic to the HSSs Ay can be understood as homoclinic orbits in a suitable
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phase space defined by {(y1,¥y2,¥3,v4)}. In these variables the stationary LL
equation can be recast to a four order dynamical system, that is a system of 4
ODEs where the variable is the space = instead of the time ¢. A particularity
of this equation is that it is reversible i.e. invariant under the transformation
x — —x, and therefore the dynamical system is also reversible. Using this feature
it is possible to apply existing results of homoclinic orbits in reversible systems to
obtain some insight of our case. After linearizing the problem we have classified
the different bifurcation points and transitions in both the anomalous and normal
GVD regime. In both cases, the different bifurcation lines meet in a codimenison-
two point known as a quadruple zero responsible for the linear dynamics of the
system. Later we have presented an overview of the linearization and normal
forms of the different bifurcation appearing in this case. The theory predicts
the existence of homoclinic orbits about some of these points. In particular, in
this thesis we will study the bifurcation structure and stability of homoclinic
orbits or LSs unfolding from an Hamiltonian-Hopf bifurcation (see Section
and from a RTB bifurcation (see Section and Section . For these two
cases we will confirm the previous results performing a weakly nonlinear analysis
in a neighborhood of those points. The linearization of those orbits around Ay
give the shape of the LSs’ tails very close to the HSSs. The understanding of
how those shapes are modified through the different dynamical transitions in
parameter space will allow us to predict the formation of bound states of LSs or
the creation of dark soltions.
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Chapter 3
Pattern states in the anomalous
group velocity dispersion regime

3.1 Introduction

Modulated states, spatially periodic or pattern solutions have been studied the
years since the Lugiato-Lefever (LL) model was proposed in 1987 [I] in both
temporal and spatial systems [2H7].

In the LL model, patterns arise through a Turing instability, also known as
modulational instability (MI) in the context of optics [8HIT]. In this type of in-
stability the homogeneous steady state (HSS) solution initially becomes unstable
to perturbations with a given wavelength, leading in this way, to the formation
of an ordered modulated structure: a pattern. An example of this mechanisms
is shown in Figure [3.I], where a initial noisy backgroud develops after a certain
time of evolution, a periodic state with a fixed wavelegth. In both, one and two
extended dimensions, the pattern can be supercritical or subcritical depending
on the values of the detuning parameter [I, [5]. In particular, in the subcritical
regime, the bistability between the HSS solution and the stable pattern allows
the formation of localized states (LSs) by the locking of two fronts with different
polarities connecting the HSS with the pattern and vice versa [I2HI5]. These
types of LSs are studied in Chapter

The different patterns arising in this model undergo secondary bifurcations that
make them unstable to patterns with different wavelengths (Eckhaus bifurca-
tion), oscillate in time and in space (wave instabilities), or unstable to finite
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>

x

Figure 3.1: First stage of the temporal evolution of an initial condition consisting on the
backgroud HSS solution plus white noise. After certain amount of time the noise backgroud
develops a periodic ordered structure: a pattern. The range of z is [—~L/2, L/2] and the range
of t is [0,40]. Here Ip = I, # = 1.5 and L = 160.

wavelength perturbation leading to patterns with half the wavelength (finite
wave intability).

In this Chapter we focus in the patterns arising in the LL model in the anomalous
GVD, and we present a detailed analysis of their bifurcation structure.

The chapter is organized as follows, in Section we analyze the linear stability
of the homogeneous solutions against non-uniform perturbations obtaining the
threshold for the formation of patterns via a MI. Later, in Section [3.3] we apply
weakly nonlinear analysis to calculate the pattern solution around the MI, from
where they unfold. In Section [3:4] starting from this perturbative solution, we
apply numerical continuation techniques to calculate the solution branches for
patterns as function of p, the driving field amplitude, for a fixed value of the
frequency detuning (6 = 1.5). After, in Section we extend this analysis to
any value of detuning 6 < 2, and we map the different types of patterns and
their bifurcations to the parameter space (6, p). In Section we identify the
secondary bifurcations that occur for patterns, in particular to the Pog branch,
pattern branch with wavevector 2k, where k is the pattern emerged close to
threshold. In this section we show that this pattern undergoes Eckhaus (EC),
finite wavelength (FW) and FW Hopf or wave instabilities. Finally, in Section
[3.8| we discuss briefly the case for § > 2 where LSs can be understood as a single
peak pattern.

3.2 Temporal stability analysis and unfolding of patterns

In this section we analyze the linear stability of the HSSs solutions in the anoma-
lous case in detail. The study of how patterns appear in the LL model has been
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widely studied since it was proposed in 1987 [IH3, 5]. Here we will follow the
steps done in these pioneering works and we will analyze how the MIs change
when modifying the detuning 6.

The LL equation in the anomalous regime is given by
WA= —(1+1i0)A+i02A+iA|A]* + p, (3.1)
and in terms of the real variables U = Re[A] and V' = Im[A] is written as

U = -2V —U 40V — V(U2 +V2) +p,
(3.2)
OV = 02U —V — U + U(U? + V?2).

To start we first study the linear stability analysis of HSSs (Up, V) to small
perturbations of the form

[ ‘Ii N [ gg ] e 283 ] +0(e), (3.3)

We consider that any pattern solution of Eq.(3.1) can be described by the ansatz

[ _ | Gk ] ikz+Qt
L ] = { b | e +c.c., (3.4)

with ay, by the real amplitudes associated to the mode with wavenumber k.

Inserting this ansatz in Eq.(3.2)) the problem at first order in €, reduces to study
a linear eigenvalue problem,

L(A) [ “ } = Q[ “ } , (3.5)

V1 V1
with ( ) ) ) 2 g2
. —(1 420,V - Uy —3Vy — 0z
L{Ao] = [ C(O-VZ-3UZ—32) 142U Vi (3.6)

being the linear operator associated to the right-hand side of Eq.(3.2)) evaluated
at Ag, and uy, v the eigenvectors associated with the eigenvalue €.

If any of the eigenvalues positive the HSS will be unstable. Furthermore, the
eigenvector associated to this positive eigenvalue indicates the spatial profile of
the growing perturbation and therefore the shape of the pattern.
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This problem can be solved analytically and we find that the growth rate € is
given by

Q) = —1 % \ 4100 — 313 — 62 + (4o — 20)k? — K. (3.7)

In the linear approximation, the superposition principle applies and therefore,
any pattern solution of the problem can be written as the linear combination,

Uy . Qg ikz4+Qt
= +ece., 3.8
[vl]w) ;{bk]e o (3.8)

Depending on the sign of €2 for a given wavenumber k, the different eigenmodes
will grow, if Q(k) > 0, or decay if Q(k) < 0, and therefore the HSSs will be stable
or unstable against perturbations like those given by Eq.. In Figure we
show the growth rate (k) for § = 1.5 and for Iy = 0.9,1.0 and I, = 1.1.
The growth rate corresponding to Iy = 0.9 is negative for any value of k and
therefore, perturbations will decay for any value of k. When Iy = 1.1, there
is an interval of wavenumbers [k~ , k], where Q(k) > 0, and therefore any mode
with k € [k, k™] will grow. Within this set of modes the most unstable mode,
labeled by k,,, will be the dominant. Therefore it will grow faster than any other
mode forming a pattern state characterized by k,. The transition between those
two situations, happens at a critical value of k. and defines a bifurcation known
as, Turing [8HIT] or modulational instability (MI).

The condition Q(k) = 0, gives the equation
k* — (41p — 20)k? + 313 + 6% — 410 — 1 =0, (3.9)

and determines the points of intersection between the the growth rate curve
and the horizontal axis that we have labeled as k= and k*. On the contrary,
O(ky) = % k, = 0, corresponds to the equation

k(k*— (2 —0)) =0 k= /21, — 6, (3.10)

whose solution gives the value of £ with maximal growth rate, or equivalently,
the most unstable mode. In the following we will write k, = /21y — 6.

The MI occurs when the maximum of €2 is tangent to the horizontal axes, and
therefore when both conditions are satisfied simultaneously, namely

Q(ke) =0, (3.11)
(k) _
ak |k, =0, (3.12)
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Figure 3.2: Growth rate €2 as a function of the wavenumber k for § = 1.5 and three different
values of Ip, namely Ip = 0.9 (gree), Io = 1 (blue) and Ip = 1.1 (red).

with k. being the critical wavenumber. This occurs at the critical wavenumber
ke = vV2—6 and Iy = I. = 1. The condition Iy = 1 defines a line in the
parameter space (p, §) given by

pe=+/1+(1—0)2 (3.13)

The critical wavenumber k. is only defined when 6 < 2 (in the other case it would
be imaginary), and therefore MI only happens for § < 2. MI corresponds in terms
of spatial dynamics to a Hamiltonian-Hopf (HH) bifurcation [I6] [I'7] from which
the the pattern with k. is born. When 6 > 2, p. becomes a Belyakov-Devaney
(BD) transition [I8], and therefore no pattern bifurcates from p. anymore. The
point # = 2 where this transition occurs correspond to a quadruple zero (QZ)
from which both MI and BD lines unfold [I9]. Throughout this thesis we will
use either MI or HH.

The situation is more complex than it appears because together with the critical
pattern unfolding from p. when 6 < 2, there is a continuous family of patterns
with k£ € [k~, k™] unfolding from the HSS solution for Iy > I.. The bifurcating
point of those patterns corresponds to resonances (non-hyperbolic points) that
can be either a saddle-center SC or a double-center (DC) (see Section [2.3).
In this chapter, we will just focus on the study of the bifurcation structure and
stability of the pattern unfolding from MI, and therefore we will restrict ourselves
to 6 < 2. The case for § > 2 will be briefly discussed in Section [3.8] Knowing
the range of wavelengths [k~ k], for different values of the control parameters
would be useful to estimate the regions of stability of the HSSs solutions against
perturbation . For a fixed value of 6, the set of points ¥~ and k™ determine
a curve known as marginal or neutral instability curve. As we know, those points
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satisfy Eq.(3.9) that can be also written as

2 1
IE (k,0) = §(9+k2)i g\/02+k4+20k273, (3.14)

Marginal instability curves are shown in the left side of Figure for different
values of 6. In the right side the HSSs at the same detuning values are plotted.
The solid (dashed) lines represent the HSSs solutions that are stable (unstable)
against perturbations of the form . For a fixed value of #, marginal insta-
bility curves, show the values of I for which the HSS is stable or unstable. For
a given mode k', the HSS solution is unstable for I, (k’,0) < Iy < I (k',0) and
stable otherwise. For uniform perturbations i.e. perturbations with k& = 0, we
find that in the monostable regime the HSSs A solutions are always stable. For
a given wavenumber k a pattern with that wavenumber emerges from I (k, 6).
These precise points are marked for k. and its harmonics in Figures as le.

In terms of spatial dynamics, MI; is always is a HH bifurcation. In contrast
MIZ,MI;E,% and MIffkc are resonances that can be either a saddle-center or a
double-center depending on the control parameters of the system. The spatial
eigenvalues of those points are shown in Figure for 6 =1.1.

Let us take a look at Figure [3.3] For § = 1.1, a pattern with wavenumber k.
bifurcates from the modulational instability MI," at I. and for large values of
Iy reconnects with the HSSs at the double-center global bifurcation labeled by
MIzC. In the same fashion, a pattern with 2k. arises initially from the double-
center labeled as Ml —and reconnects at the double-center MI;,%. For the
pattern with 4k, the situation is similar.

For 6 = 1.5 (see panel (b)) the situation is similar to the previous one despite
of the fact that now, the different instability points for k. and their harmonics
come closer and that the tongue of unstable modes shifts to lower values of k.
The approaching of the instabilities can be easily observed in Figure a) where
we plot the instability lines in function in the parameter space (6, I). Together
with those lines we have also added the saddle-nodes of the HSS solution, namely
SNhom,l and SNy,

In most of the chapters of this thesis we work in terms of the driving amplitude
p. Therefore we also show in Figure [3.5(b), the same lines but in terms of
(0, p). Figure c) is a zoom of Figure b). For § < /3, Ay is always stable
against uniform perturbations k¥ = 0. In contrast, when 6 > /3, i.e. when
the HSSs becomes trivaluate, the HSS is unstable for uniform perturbations
between I, (k,0) and I (k,0). So, for v/3 < 6 < 2, A} and Af branches are
stable against & = 0 perturbations and Af* unstable, and this is the reason why
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Figure 3.3: On the left marginal instability curves for 6 = 1.1 (a), 8 = 1.5 (b), 6 = 1.8 (¢)
and 0 = 2.0 (d). On the right the HSSs solutions corresponding to the same values of 6. Solid
(dashed) lines represent when the HSSs is stable (unstable) against perturbations like .
The different MI;E instabilities are indicated with points and between brackets. The dashed
line in the marginal instability curves represents the most unstable mode k,, for value of 6.
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Figure 3.4: Spatial eigenvalues associated with the MIki. and MI2ik. for 6 = 1.1 (see Fig-
ure a)). Panel (a) is a Hamiltonian-Hopf bifurcation. Panels (b)-(d) are DC resonances.
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Figure 3.5: In (a) the instabilities lines Mli and the saddle-nodes of the HSSs solution are
plotted in parameter space (6, Ip). In (b) we plot the same lines but now considering (0, p).
(c) represent a zoom of (b) around the C bifurcation of the HSSs solutions. Labels SR}, and
SR%:2 stand for the spatial resonance at 1 : 2 with O(2) symmetry that occur when MIkJrC and

MI,, (both DC resonances meet). QZ stands for quadruple zero codimension-2 bifurcation
point.

this regime is known as the bistable regime. This situation correspond to panel
(c) of Figure [3.3] for § = 1.8, where the tongue starts now at k = 0.

Finally, increasing even more 6, MI% points approach each other until all collapse
at k = 0 for = 2 (see panel (d)). This situation corresponds to the codimension-
two point QZ (see panels (b) and (c) of Figure and at this point the MI
disappears.

To summarize, there are two distinct regions in parameter space where patterns
have a different nature:

1. For 6 < 2 the HSS loses first its stability at the MI, instability (spatial HH

bifurcation) at Iy = I. = 1 to a pattern with wavenumber k. = /2 — 6.
These patterns bifurcate supercritically if 8 < 41/30 and subcritically for
0 > 41/30 (see Ref.[5]) and reconnects with HSS at MI;| (a double-center)
(see Figures 3.3 . For values of the intensity above Ig = I., there is a
one parameter family of patterns, defined by the wavenumber k, and each
pattern bifurcates from the HSS at MI,  and reconnecting with the HSS
at MIZ.

2. For 6 > 2 the HH bifurcation at Iy = I. becomes a BD transition. Now
the instability takes place for values Iy > I., and always with critical
wavenumber k. = 0.
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As mentioned before, in this chapter we will focus in the first case: the region
0 < 2. In the next chapter we will then study what happens with pattern
solutions and localized states for 8 > 2. There we will see how, in periodic
systems, a localized state can be understood as a large wavelength pattern with
k ~0.

3.3 Weakly nonlinear analysis around HH

The LL equation is non integrable, however it is possible to obtain approximative
analytical solutions in the neighborhood of certain bifurcation points. In this
section we compute weakly nonlinear patterns using multiple scale perturbation
theory near the HH bifurcation corresponding to MI; " in the temporal dynamics.
These calculations are detailed in Appendix [C} Along this Section we use the
HH notation instead of MI, for refering this bifurcation. First, we fix the value
of # and suppose that patterns at p =~ p., where p = p, corresponds to the HH
bifurcation,

pe=+14(1-06)2, (3.15)

U Ul [u
GROED
where U* and V* represent the HSS A} and u and v capture the spatial depen-
dence. We next introduce appropriate asymptotic expansions for each variable

in terms of a small parameter e defined through the relation p = p. + €26. Then,
the asymptotic expansion for each variable can be written in the form

are captured by the ansatz

ulr | Ue 2| Uz
HEAEE a1
[“}:e[ul}+62{“2]+e3{u3]+... (3.18)
v V1 ) U3
The scaled variable is X = ex and we will consider all the variables to be

functions of z and X, i.e. u; = ui(z, X(x)) and v; = v;(x, X(z)). Then the
differential operator on any of those fields will be

O2ui(x, X () = 02u; + 2€0,0xu; + 0% u;. (3.19)

Inserting the ansatz given by Eq.(C.2) in Eq.(3.2) we can calculate the different
variable solving the system order by order in e.
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At order O(€°) we find that,

Pe
v =] e (320
1+ (I.—0)?

At order O(e'), we need to solve the equation

uy o 0
J[m]=[0] o
with L = L[A] the linear operator defined by Eq.(3.5)). In order to do that we
consider the ansatz

{ u } - [ b ] (G(X)e™em + G(X)eher), (3-22)

U1

with a,b € R and ¢ € C"(R,C). The solvability condition for this equation with
the previous ansatz gives us that the value of k. is

he = £/ (21— 0) £ T 1. (3.23)

We have to mention that is solution of the Eq. that was obtained in
the linear stability analysis in Section [3.2] and that I. was also calculated there.
However in the present calculation the value I, will be determined at next order
in the calculation. With the previous condition satisfied, we find

a 0—2V2 — 1.+ k2
{ b ] = 1 +21Uch . (3.24)

At O(e?), we obtain from the solvability condition related with the HSS contri-
bution that

Uy | 1-20.V, |1 [ Uy
[%}Mc{wgﬂc_e}a{%], (3.25)
with
de =1+6%431* — 401.. (3.26)

And from the solvability condition of the equation regarding the spatial depen-
dence, another constraint for k., namely

k2 =2I.—0 (3.27)
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Equation (3.23) together with Eq.(3.27) give us the condition
I.=1, (3.28)
as we already showed in Section [3.2
Finally at O(€?), the solvability condition for the equation at this order give us
the amplitude equation or normal form for the functions ¢(X), namely
d*¢(X)
dx?2

o +0a20(X) + as|e(X)Po(X) =0, (3.29)

where «;, i = 1,2,3 are functions of the control parameters (see Appendix .

To solve Eq.(3.29) we consider the ansatz ¢(X) = Ae'¥, with A € RT. With this
ansatz two kind of solutions can be found depending on the fact that A depends
on X or does not.

If A+# A(X), then Eq.(3.29) becomes
das A+ azA® =0, (3.30)
with solutions Ag = 0 and Ay = +/—daz/a3. Then the solution is ¢ =

[ dag
— —26“”, with ¢ arbitrary (due to the translational invariance). Consequently
Qas

at leading order in € we find that from HH a spatially periodic solution (pattern)
of the form:

{ 5 ] = [ (éc ] + [ ‘qu ] (p—pe)+2 { 1 } —Zfz(p—pc)COS(kcxﬂp)?

(3.31)
arises. Moreover, we have that if as/as > 0, the pattern bifurcates subcritically
toward p < p. and when as/as < 0 it does supercriticaly towards p > p.. The
transition between supercritical and subcritical takes place at the value of 6
where s /a3 goes from negative to positive. This occurs for § = 41/30 as was
already calculated in Ref.[5] (first page). These perturbative solutions are only
valid in the neighborhood of HH. Nevertheless applying continuation methods
we can track these solutions for parameter values far from HH, and therefore
we can calculate the bifurcation diagrams of these states. The understanding of
the bifurcation structure and instabilities of patterns unfolding from HH
is the goal of the coming section.

The case A = A(X) has a LSs solutions of sech type that unfold together with
the previous patterns from HH [I5], [16]. We will study these LSs in Section
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Figure 3.6: Bifurcation diagram of patterns with wavenumbers k., 2k., and 4k, for 8 = 1.5.
Panel (a) show the bifurcations of Py, and how it connects with Pog, at FW;1. Panel (b)
shows a broader region of the bifurcation diagram. Here the pattern Pgj_  connects with the
pattern Py, at FW2. A zoom of that connection is shown in the inset.

3.4 Bifurcation structure of patterns

In Section [3:3] we have calculated a perturbative solution for the pattern un-
folding from the HH. This solution is only valid in the neighborhood of the HH
point, and we wonder how those patterns looks like far from that point and
moreover how their bifurcation structure is. These questions are addressed in
this section.

First we analyze the bifurcation structure for the critical pattern for a fixed
value of the detuning. This pattern is connected with other patterns whose
wavevectors are even harmonics of the critical one, i.e. the pattern with . is
connected to a pattern with A./2, the latter with one with A\./4 and so on. Later
we will show that for any pattern unfolding for Iy > I. (from resonances) the
scenario is analogous.
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Figure 3.7: Profiles of patterns corresponding to the bifurcation diagrams shown in Fig-
ure Panels (i)-(vi) correspond to Py . Panels (vii)-(x) to Pog, and (xi)-(xii) to Py, .
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Figure 3.8: Spatial eigenvalues associated with the MI;C, MIQ_kC and MIZkC for 6 = 1.5
(see Figure . Panel (a) is a Hamiltonian-Hopf bifurcation. Panels (b) and (c) are DC

resonances.

In order to proceed we fix throughout this section # = 1.5 and a domain size
L =16, just a multiple of the critical wavelength A.. In Figure [3.6] we can see
the bifurcation diagram for the pattern state unfolding from the HH bifurcation
with the critical wavelength A\. = 27/k.. As bifurcation measure we choose the
L?—norm,
1 [L/2
||A]]? = f/ |A(z)|?da. (3.32)
—L/2
In the following we will label those patterns as Py . For this value of detuning,
a small amplitude pattern Py, (see Figure i)), bifurcates subcritically from
HH at Iy = I.. Decreasing the value of p the pattern increases its amplitude
until reaching the saddle-node SNy (see Figures[3.6[a)) where it becomes stable.
The pattern is the one shown in panel (ii) of Figure Profles (ii)-(iv) of the
same figure show how the pattern increases its amplitude for larger values of p

(s



CHAPTER 3. PATTERN STATES IN THE ANOMALOUS GROUP VELOCITY
DISPERSION REGIME

1ali?

1,22
1.144 ' AL
(b) i 1:142 ML, /4
. ; 1.140 ; 4
/ ] 1.1gg ,’ ]
,MI-L_“' 1.1 , ]
1.00 M, — 1.134 , ]
NE | MI'k{,-A | 1132p FW, - 7 %
= o8k 1 1,132 1,134
' — (d) ML,
F P 1.175 SN, 3 7
N - — e
0.96 - SN, 74—"/ 1 1.170} FW z 1
vl WA v by s by by Lo s Ly Ly 1165' 1// d
1.112 1.116 1.120 1.124 1160 e
p 1.1375 1.1385 1.1395
p

Figure 3.9: In (a) bifurcation diagram for patterns with different wavenumbers unfolding
from HHSs at MI; points and MI2_Ic‘ The wavenumbers are k. = 8.88, k1 = 9.38577, ko =

9.88577, k3 = 10.3858 and k4 = 10.8858. In (b) a zoom of the panel (a) around the MI,_
unfoldings. Panel (c) and panel (d) show the unfolding of Py, and P2k4 from MI2_Ic3 and

MI;k4 respectively. FW1 stands for finite wave instability, DC' is a double-center and SF is a

saddle focus.

until reaching SNy where it becomes again unstable. Once the fold is passed
and p is decreased, spatial oscillations (SOs) start to appear in between peaks as
we can appreciate looking at the real part of profile (v). These SOs correspond
to the growth of the second harmonic 2k, of the pattern wavenumber. These
peaks grow in amplitude (see panel (vi)) until Py, merges with the pattern Py,
which has a wavenumber 2k.. This merging occurs at a finite wavelength FW;
instability of P, at a double of its wavelength.
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This new pattern unfold from MI;,; , that corresponds to a double-center DC
as we can see by looking at its spatial eigenvalues shown in Figure [3.8] Initially
this pattern arises supercritically and unstable (see panel (vii)) but its amplitude
grows increasing p (see panel (viii)) until reaching SN where it folds back.

Continuing after the fold, several SNs come up in pattern branches Pqj, and as
before, SOs in between peaks grow before that the pattern coalesces at point
FWsy with another branch, denoted by P4, with characteristic wavenumber
4k.. This new pattern bifurcates again supercritically, unstable and with small
amplitude (see panel (xi)of Figure from the HSS at MIj; , that is also a
DC in spatial dynamics (see Figure (c)). Increasing p the same behavior as
in the previous cases is found (see panel (xii) of Figure [3.7).

As we already mention, for Iy > I., patterns with different wavelength also
unfold from the HSSs at global bifurcations that we label as MI,f. Therefore,
on top of the bifurcation diagram shown in Figure [3.6] we also have to con-
sider an infinite number of similar bifurcation structures for each of these pat-
terns. In Figures[3.9)(a) we show bifurcation diagrams corresponding to different
wavenumbers for § = 1.5. For each pattern we have chosen the domain size L
to be equal to just one pattern wavelength, L = A. Here we just plot branches
for five different wavenumbers, k. and k; with ¢ = 1, ..., 4 for increasing values of
k. The broader diagram corresponds to k., already shown in Figure As the
wavenumber is increasing, we can observe two main different features happening.
First, the bifurcation structure is preserve and patterns P are also connected
with their even harmonics Py via FW instabilies. Second all the Py patterns un-
fold subcritically from their respectives MI, bifurcations (see Figure b)). On
the contrary, as we can see in Figure a) and [3.9(c)-(d), P2 patterns unfold
supercritically from ML, and ML, , but subcritically from ML, , ML, =~ and
MIL,,,,. Third, the bifurcation structure although preserved, shrinks increasing
the wavenumber.

In the next section we will analyze the modification of the bifurcation structure
for patterns as function of 6 and we will map those changes into the (6, p)-
parameter space.

3.5 Patterns in the (p, 8) plane

In the previous Section we have studied the bifurcation scenario for a particular
value of detuning, § = 1.5, where the pattern is known to be subcritical. In this
section we analyze how the bifurcation structure is modified when changing the
value of #. In order to do that we will just focus in the pattern with critical
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Figure 3.10: Parameter space (p,6). SRs:.1 is a condimension-two point where MI; and

MIZ, ~ (both DCs) meet. From this point a FW1 instability line (red) is born. For clarity we
also exclude the line corresponding to SN3. Different cuts of this space for a fixed value of 6

are shown in Figures [3.11] and 3:12]

wavenumber P . To have a complete understanding of the dynamics of the
pattern we project the bifurcation points calculated for each value of 8 in the
parameter space (p, ) shown in Figures

For low values of 6 the situation is like the one depicted in the diagram of
Figures a) for # = 1.1 < 41/30. As we can see, the pattern Py (red lines)
bifurcates supercritically from the HH bifurcation at Iy = I. and returns back
to the HSS at MI; (a DC bifurcation point). Meanwhile Py, (blue lines)
bifurcates from MI,;, ~(another DC point) and extends to higher values of p
until connecting again with the HSS at MI;’kC.

Increasing a little bit 0, MI;C and MI,, ~encounter each other in a 2:1 spatial
resonance with O(2) symmetry (SRq.1) [20H22], a codimension-two bifurcation
point of the HSS which organize the bifurcation scenario in the (p, ) —parameter
space. This point can be calculated analytically by the condition I(J{ (ke,0) =
Iy (2k.,0), standing for the collision between MI;c and MI,, in the parameter
space (6, p).

Increasing further the value of 6 we cross the point SRe.; (see Figures|[3.10]) and
a bifurcation line FW; emerges from that point. All along this line Py, and
Py, patterns connect. This situation can be observed, for instance, at 6 = 1.2
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Figure 3.11: Bifurcation diagrams corresponding to § = 1.1 (a), 8 = 1.2 (b), § = 1.3 (¢)
and 6 = 1.4 (d). As before, the red lines correspond to Py, and the blue lines to Pay,. Panel
(a) and (b) show the situation before and after crossing SR2:.1. FW; stands for finite wave
instability. Panel (b) and (c) show the changing from of pattern Py, from supercritical to
subcritical at the degenerate HH at 6 = 41/30. The subpanels show a zoom around the FW;
instability.
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0 = 1.8 in (¢). In the subpanels we zoom in some parts of
(a)), Pay, bifurcates supercritically from HSSs at MI,, .

Bifurcation diagrams corresponding to # = 1.5 in (a), ¢ = 1.72 in (b) and

the diagrams. For § = 1.5 (panel
On the contrary for 8 = 1.72, the

Py, unfolding is subcritical. In panels (b) and (c) we can observe how the FW1 instability

moves forward SN3.

and 6 = 1.3 in Figures|3.11[(b)-(c), where both patterns emerge supercritically

from the HSSs. At 6 = 41/30, the pattern Py,
(dHH) where it becomes subcritical for § > 41/30.

undergoes a degenerate HH
This new regime is shown in

Figures d) for # = 1.4. Here patterns bifurcate initially unstable from HH
and become stable at the saddle-node SN; (orange dashed line in Figures [3.10]).
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This branch of solutions (Pj,) extends until FW;, where it connects with Poy,_.
In this regime Ap and Py, both stable, coexist and therefore LSs arise in terms
of a homoclinic snaking structure [I4} [I5], that will be analyzed in the next
Chapter.

At 0 = 1.5 (see Figures [3.12|a)) the most relevant change in the bifurcation
structure is that Py_ bifurcates subcritically from FWj, i.e. initially the pattern
emerges unstable from FW; and gain stability at SNy (also in orange dashed
line in Figures . The transition between super and subcritical happens in
a degenerate FW; bifurcation. The pattern Py, is stable between SN; and SNo
and unstable between FW; and SNs. The stability of the branch Py, is more
complex and involves the appearance of Hopf and Eckhaus bifurcations.

For § = 1.72 (see Figures [3.12b)) Py, becomes also subcritical in another
degenerate MI,, point. Due to this, a new saddle-node bifurcation SN3 appears
(not shown in Figures . In this saddle-node the pattern, that initially
emerges unstable from HSS, becomes stable. In the subpanels of Figures b)
and (c¢) we can see a zoom of the region around FW; for § = 1.72 and 6 = 1.8
respectively. In the top panel of (b) we see that the unstable pattern Pj_ meets
Pokr, at FW;. Increasing 0, the FW; point approaches more and more SNj
until, eventually, they meet in a new degenerate point. This is for example the
situation shown in the bottom panel corresponding to # = 1.8.

We distinguish four main dynamical regions, labeled I-VI in the phase diagram
in Figure[3.10] in terms of the existence of HSSs and patterns:

e Region I: The HSS solution Ay is stable. This region spans the parameter
space p < pe.

e Region II: The pattern Py is stable and Ay unstable. This region spans
the parameter space p inbetween p. and MIZE for 0 < Ogr,., and p in

between MI;~ and MI;, for 6 > Osg,,,

o Region III: Bistability between P, and the HSS Ay. This region spans for
6 > 41/30 and for psn, < p < pe.

e Region IV: Bistability region for the HSSs. For § > /3, A} and A}, coexist
in region p; < p < plﬂ .

o Region V: Coexistence between Py unfolding from MIQ_kC and Py_ unfold-
ing from MI, (HH).

1pp and p; represent the possition of the SNhom,1 and SNy, 2 Tespectively
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e Region VI: Coexistence between the Py, unfolding from MI;, and the
unstable Ag.

In the parameter space shown in Figures [3.10] we only focus on the region around
the FW; point, and therefore on the bifurcations related only with Py, and Py, .
However we find that a similar configuration takes place between the patterns
Pog, and Pag,, Par, and Pgi, and so on. These lines and their intersections were
already shown in Figures b) and (c). As we can observe in those figures,
there is a sequence of SRy.5 bifurcation points occurring.

On top all this picture, for the critical pattern and their even harmonics, we also
have that a similar organization of patterns occurs for a dense family of patterns
for each wavenumber k& € RT, which implies that the scenario is quite complex.

3.6 Secondary bifurcations of patterns

In this Section we analyze numerically the stability of the pattern solutions
A, = (Up,V,) against perturbations with wavenumber ¢ i.e. perturbations of
the type ~ €%®. In this way we can find and characterize all the secondary
bifurcations that the pattern undergoes for different values of p and 6.

First of all, we present the technique that has been used in this analysis. After
that, we show the results regarding the stability of Py, for a fixed value of
detuning, in particular § = 1.5. We demostrate that Py, undergoes three types
of instabilities, Eckhaus (EC) instabilities, finite wavelength (FW) instabilities
and finite wavelength Hopf (FWH) instabilities. This last type of instability is
responsible for the oscillation of the pattern in time and space and is also known
as wave instability (W) [111 23H26].

3.6.1 Linear instability of patterns

This method is a generalization of the technique described in [27]. First we lin-
earize Eq. around a stationary pattern A, = (U, V,) and we calculate the
eigenspectrum of the linearized operator, for different values of the wavenumber
q. In other words, we have to solve the eigenvalue problem

LA = X, (3.33)
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where now we consider the linear operator L[A,] = L¢[A,, A,] written in func-
tion of complex variables, namely

- —(1+1i0) + 2i|Ap|? +i0? iAZ

b = —iA2 —(1—1i0) — 2i| A, — 02 |’
(3.34)

and v the eigenmodes associated with the eigenvalue A. If any of the eigen-

values is positive the pattern will be unstable. Furthermore, the eigenvector

associated to this positive eigenvalue indicates the spatial profile of the growing

perturbation.

Due to the periodicity of L[A,], we can apply the Bloch theorem and write the
eigenmodes as a superposition of Bloch waves,

_ [ € f(z.q)
w(%Q) - |: efiqu*(x’ _q) :| ) (335)

where
f(lL' + )‘pv Q) = f(xvq)v (336)

with A, the wavelength of A,. Both f and A, can be written as the Fourier
expansion:

N-1
Fa.q) = Fm(g)e™", (3.37)
m=0
and
N—1 ‘
Ap(@) =) ape™n?, (3.39)
m=0
with k,, = 2rm/X, and N the number of Fourier modes considered in the
analysis.
Inserting Eq.(3.37) and Eq.(3.38)) in Eq.(3.34]) we get the discretized problem
L(arm Q)En(Q) = A (Q)En(Q)) (339)

with ¥, = (fo(q),-+, fn—1,fo(q), -, fv—1) and A,(q) the eigenmode and
eigenvalue associated with the matrix L(a,,q). For more details see Refs.[27-
29).

Then, the stability of the of A,(z) reduces to find the 2NV eigenvalues A, (g) of the
matrix L(am, q) for each value of ¢q. The eigenvalues for a given ¢ determine the
stability of the pattern against perturbations containing any set of wavenumbers
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Figure 3.13: Bifurcation diagram for § = 1.5. In red the pattern branch Pj_ unfolding from
HH. In blue the branch of Py, that arises from ML, . Labels (i)-(iv) correspond to the
unstable patterns analyzed in Figure Those patterns with initially 32 rolls evolves to
patterns with a different number of rolls depending on the value of p. The correspondence is
signaled by an arrow and the new pattern branches (in gray) are labeled with P, being n the
number of rolls of the new state.

km £ q. To know the stability of the solutions against any possible perturbation
it sufficient to consider only the ¢ values inside the first Brillouin zone. Any
perturbation with wavenumber ¢’ outside the Brillouin zone is equivalent to
another with ¢ = ¢’ + k,,,. In solid state physics this representation is described
as the reduced zone scheme [30].

Using this technique we characterize how the the eigenspectrum of L(A,) change
as a function of g for each set of values (0, p) and therefore we will predict insta-
bilities to patterns of any wavelength. We find that patterns Py, only changes
its stability through saddle-node bifurcations, as we can observe in Figure [3.11]

and Figure [3.12]

In Figure we show a portion of the bifurcation diagram for § = 1.5 where
we can see the branches corresponding to Py, (in red) and Pgy, (in blue), and
as usual, solid (dashed) lines represent stable (unstable) solutions. Regarding
the Pgj, three bifurcation occur along its solution branch. From left to right,
the first instability that appears is a FW instability, where Pyg, connects with
Pi.. In second place a EC instability occurs, and finally a Hopf bifurcation
(H) takes place. The pattern Py is stable between H and EC. For values of p
on the left of EC patterns are unstable against long-wavelength perturbations
(g ~ 0), and for this reason this instability is also known as long-wavelength
(LW) instability[1T] 23].
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Figure 3.14: Modification of the eigenspectrum around the EC instability. In this figure we
plot Re[\(q)] at § = 1.5 for different values of p. (a) p = 1.57, (b)p = p¥C = 1.58 (c) p = 1.59.
We just show the leading eigenvalue A;.

3.6.2 Eckhaus or long-wavelength instability

When a Eckhaus instability takes place, there is one branch of eigenvalues A1 (q)
that, for small ¢, has a parabolic shape centered at ¢ = 0, namely Re[A1(q)] x
|g|?>. The EC instability is characterized by a change in the convexity of this
eigenvalue. This type of change can be observed in Figure where we have
plotted the eigenvalue of the leading mode of the complete eigenspectrum in
function of ¢ for three different values of p, namely p = 1.57, p = 1.58 and
p = 1.59. The range of ¢ studied belongs to the first Brillouin zone, [0, %’/2]
being k' = 2k.. In panel (c) p = 1.59 and Re[A1(q)] is negative. Therefore the
pattern Py, is always stable no matter the wavelength of the perturbation. In
panel (b) (p = 1.58) the branch of eigenvalues flattens around Re[A(q)] = 0. This
value corresponds to the EC or LW instability, and we label it as p¢ = 1.58.
Finally in (c), the branch of eigenvalues has change its convexity, and the pattern
is unstable to perturbations with ¢ € [0,¢;]. We have found that the pattern
Py, is EC unstable all the way from EC until MI;, where it emerges from the
HSSs. On top of these instabilities the patterns exhibit a FW instability that
will be study in detail in the next section.

Figure @ shows how the the unstable pattern Py  behaves depending on
its eigenspectrum for different values of p between My, ~and EC. The labels
(i)-(iv) correspond to different point along the pattern branch P, plotted in
Figure The left column of Figure shows the real part of the eigenspec-
trum Re[A(q)], and the middle column represents a detailed view of the leading
eigenvalue A1(q). The right column shows the temporal evolutions of the initial
patterns from (i) to (iv).

For p = 1.5 (see panel (iv) of Figure[3.15)), Py is unstable to perturbations with
q in between 0 and ¢, being the most unstable mode the one corresponding to
the maximum of the curve. The evolution of this pattern is shown in the right
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Figure 3.15: Re[A(¢)] at # = 1.5 in the region Eckhaus unstable and temporal evolutions
of the pattern to patterns of different wavelengths. Those patterns are shown in gray in
Figure The initially 32 rolls pattern, evolves to Pag in (iv) for p = 1.5, Pas in (iii) for
p = 1.4, Poy in (ii) for p = 1.3 and Pa2 in (i) for p = 1.2.

panel of (iv). In the first stage of the simulation the pattern seems to be stable
although, after a large amount of time, the wavelength of the pattern suddenly
increases to the wavelegth of the most unstable mode. Thus our pattern that
initially had 32 rolls becomes a pattern with 28 rolls that we name as Pyg. This
new pattern can be tracked back and forward on p and as result one obtain the
solution branch plotted in Figure [3.13

Decreasing the value of p, A\; moves upward (see middle panel (iii) Figure
for p = 1.4), increasing the region of unstable modes. Reducing even farther the
value of p, the pattern becomes unstable to any ¢ € [0, k’'/2] (see panel (ii)) for
p = 1.3. As we can also observe, the maximum of A;, the most unstable mode,
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Figure 3.16: Modification of the eigenspectrum around the FW instability. Here we show
the eigenspectrum Re[A(q)] at 8 = 1.5 for different values of p. (a) p = 1.176, (b) p = pF'W =
1.17715 (c) p = 1.178.

becomes larger as decreasing the value of p (see middle panels from (iv)-(i)), and
therefore the amount of time needed for destabilize the pattern Ps; decreases
with p, as we can observe in the right panels of Figure [3.15]

We can always track the final state of the simulation in p and obtain the corre-
sponding solution branches plotted in Figure |3.13] Each new branch is labeled
with P,, been n the number of rolls of the final pattern. The correspondence
between the pattern branch Psi and the new branches of patterns are indicated
by arrows.

3.6.3 Finite wavelength instability

Here we characterize the points that previously we have labeled as FW;, with
i =1,2,.... At these points a solution branch corresponding to a pattern with a
wavenumber k, lets say Pj connects the branch of a pattern with wavenumber
2k, i.e. Pog. This instability is a specific type of bifurcation occurring at a finite
wavenumber ¢, and therefore they are called Finite Wavelength instabilities.

In our case, it is the pattern Py with wavenumber k' = 2k the one that under-
goes a particular type of FW instability happening at ¢ = k’/2. This indeed cor-
respond to a wavenumber g = k, and therefore Poj become Py. This bifurcation
is characterized by a branch of eigenvalues A(¢q) having a parabolic shape cen-
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tered at ¢ = k'/21i.e. Re[A(q)] o |g—k'/2|?, that crosses Re[\(q)] = 0 at ¢ = k'/2.
This transition is shown in Figure for the value of detuing 6 = 1.5 for three
values of p around FW, namely p, = 1.176, pf'M = 1.17715 and p, = 1.178,
so before the FW, at the FW; and after. The position of these three values is
shown in Figure a) and in Figure Figure [3.16{(a) shows the situation
for a value p < p. In the bottom panel we see a zoom of the eigenspectrum
centered at zero. As we can observe there are two relevant eigenvalues A\ (¢q) and
A2(q). Re[A1(q)] is positive for all the range ¢ € [0, k’/2 = k] and therefore the
pattern Py is unstable to any perturbation ~ €!9® with ¢ € [0,%/2 = k]. For
all this range, the maximum of Re[A1(g)] correspond to the wavenumber of the
most unstable mode. The other relevant eigenvalue is Ay (see bottom panel).
This branch of eigenvalues, as we said before, is centered at ¢ = k’/2 and is posi-
tive. In panel (b) we show the eigenspectrum at the FW; instability occurring at
p = p¥W. At this value the branch \5(q) is negative and tangent to Re[A(¢q)] = 0
at ¢ = k’/2. Finally in panel (c¢) we show the situation at p, = 1.178, where the
branch A2(q) is completely negative.

For these values of p the pattern is always unstable to any perturbation with
q € [0,k'/2 = k], and therefore we can not observe the FW instability. However,
this bifurcation signals the connection of the branches of patterns Poy and Py.
As one can appreciate in Figure [3.10] this instability emanates from a spatial 1:2
resonance with O(2) symmetry SRj.o.

3.6.4 Hopf instability

Here we analyze the last bifurcation that we have found along the branch of
patterns Pag . As shown in Figure @, the pattern Py  is stable between
EC and the Hopf (H) bifurcation at p = 1.87. This bifurcation diagram can
be re-plotted in terms of the extrema of |A]? i.e. max(|]A*) and min(]A|?)
as shown in Figure Here as usual solid (dashed) lines represent stable
(unstable) stationary states, and the crosses represent simulations. Moreover the
Hopf bifurcation is supercritical. In the context of patterns, two types of Hopf
bifurcations can occur. The first type corresponds to an amplitude instability
occuring at ¢ = 0, and it is known as homogeneous Hopf bifurcation. In this
bifurcation the real part of two complex eigenvalues with ¢ = 0, A2(0) and A3(0)
becomes zero at the critical point, with an imaginary part different from zero.
When the real parts becomes positive the pattern start to oscillate uniformly
with a period T' = 2/w, with w = Im(A2(0)) = Im(A3(0)).

The second type of Hopf bifurcation occurs with ¢ # 0, and is known as finite
wavelength Hopf (FWH) or wave instability (WI) [11], 23H26]. The pattern that
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Figure 3.17: Bifurcation diagram for § = 1.5. Here we plot the extremum of |A|? i.e.

max(|]A|?) and min(]A|?). In blue crosses we represent the oscillatory states. Some of those
time evolutions are shown in Figure

becomes unstable through this type of bifurcation does not oscillate uniformly,
contrary to the previous case, but it oscillates in time and in space. The Hopf
indicated in Figure [3.17)is indeed a FWH instability.

The three leading branches of eigenvalues are plotted in the top panels of Fig-
ure [3.18| for the values p = 1.84 in panel (i), p = 1.87 in panel (i) and p = 1.9 in
panel (iii). In panel (i) the branches of eigenvalues As(g) and A3(q) are bellow
zero and their maximum correspond to ¢ = k'/2 = k.. In the bottom of panel (i)
we plot the eigenspectrum of the pattern at ¢ = k., and as we can observe g (k)
and Ag(k.) are complex conjugates. When p = 1.87 (see panel (ii)) the real
part of those two complex conjugate eigenvalues becomes zero, and therefore a
Hopf bifurcation at ¢ = k'/2 = k. occurs. Finally panel (iii) the real part of the
eigenvalues becomes positive and the pattern start to oscillates, although now
not only in time but also in space.

In Figure [3.19 we show the contour plots of this kind of states for three values of
p. For p = 1.9 (see panel (i)), the pattern oscillates in time but not uniformly.
Thus there are regions where the pattern has different oscillation amplitudes.
Increasing a bit more p the pattern undergoes some oscillations in space, where
some peaks moves from left to right (see panel (iii) for p = 2.11). Finally for
p = 2.41, the pattern exhibits much complex dynamics where peaks merge and
separate. The complete description of the dynamics of these oscillatory states in
time and space is beyond the scope of this Chapter and will be studied elsewhere.
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Figure 3.19: Time evolution of the oscillatory patterns for 6 = 1.5. In (i) p = 1.9, (ii)
p =2.11 and (iii) p = 2.41. Label correspond to Figure

3.7 Discussion

In this Chapter we have focused on the bifurcation structure and stability of
patterns for 8 < 2. For # > 2 the HH bifurcation at Iy = I. becomes a BD
transition, and the first instability takes place for values Iy > I., and always
with k. = 0. In this case, in addition to the new bifurcating homogeneous
solution (k = 0), one can consider that above I. pattern solutions with very
large wavelength (k ~ 0) exist.

In finite systems with periodic boundary conditions A(0) = A(L), L being the
spatial period, the largest possible wavelength corresponds to A\ = L. If the
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bifurcation is subcritical, and the pattern is highly nonlinear, this pattern can
be interpreted as a single localized structure.

When k = k. = 0, the instabilities MIi:0 are given by

2 1
IF(k=0)= 30+ 5\/92 —3=1Iy, (3.40)

that in fact represent the positions of SNpom,1 at I (with the — sign) and
SNhom,2 at Iy (with +). The pattern with k = Ak = 2x/\ = 2n/L appears
at MI, ., which is closer to SNpo,,1 the larger the system is, and disappears at
MIZk close to SNpom,2-

Due to the accumulation of all the MI,,, MI ., MI, \,, ... to SNpomp 1 and
MIL,, MIjn,, MIja,, - to SNiom,2 (see Figure [3.3(d) for § = 2), this single
peak pattern and their harmonics will unfold together.

In terms of spatial dynamics SNpe,,1 is indeed a reversible Takens-Bodganov
(RTB) bifurcation, and theory predicts that a sech type of LS bifurcates from
it. This state, in the context of patterns previously discussed, corresponds to a
single peak pattern. In Chapter [4] we will show that this state can be calculated
asymptotically in the neighborhood of the RTB point, and that its bifurcation
diagram keeps some similarities with the diagram shown in Figure c) for
0 =1.8.

As we already mention in Chapter [2] the unfolding of the different type of
localized states and pattern is organized through a Quadruple-zero (QZ) point
in the spatial dynamics context. Applying weakly nonlinear analysis about the
QZ point (f = 2) we have recently found that the dynamics of the system around
that point can be described by a Swift-Hohenberg equation with only quadratic
nonlinearity. This type of equation was already studied in the 90’s by Buffoni et
al. [31], and we think that these results can be fundamental to understand the
transition between the two previous scenarios.

3.8 Conclusions

In this chapter we have studied the bifurcation structure and stability of patterns
arising in the Lugiato-Lefever model in the anomalous GVD dispersion regime.
We have restricted to the range of detuning parameter § < 2, where patterns
first unfold from a Hamiltonian-Hopf (HH) bifurcation [I6]. The scenario for
6 > 2 is more complex and it will be studied in detail in Chapter [

Linear perturbation theory predicts that the HSSs becomes modulationally un-
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stable at Iy = I. = 1 to a pattern with a critical wavenumber k. = /2 — 6,
namely P [IL B]. A weakly nonlinear analysis has allowed us to obtain a per-
turbative solution of this pattern in a neighborhood of the Hamiltonian-Hopf
bifurcation. From this calculation one can also predict that Py, emerges su-
percritically if § < 41/30 and subcritically if § > 41/30, being 6 = 41/30 a
degenerate Hamiltonian-Hopf bifurcation.

This analytical approximation for the pattern Pj, around HH has been used
as initial seed in a numerical continuation algorithm that have allowed us to
calculate the bifurcation states for parameter values far from the bifurcation
point.

Consequently we can build up the bifurcation structure for patterns as function
of p for any value of . We have found that pattern unfolding from the HH
bifurcation reconnects with the HSSs for larger values of Iy at MIZC, and that
its even harmonics Pk, also unfold from the HSSs at the instabilities Mlétkc.
Changing the control parameters these two patterns connect in a finite wave
(FW) instability. In the same manner, the pattern Pyj_ is connected with Poy_
by another FW instability and so on. This behavior occurs not only for the
pattern characterized by k., but for any pattern unfolding from the HSSs at
Iy > I.. We have characterized the complete parameter space-(6,p) and we
have found that the FW instability arises from a spatial resonance at 2 : 1 with
symmetry O(2) [20H22].

Patterns can experience several dynamical instabilities which infer very rich
and complex dynamics. In particular Py, , endure Eckhaus instabilies, wave
instabilies and finite wavelength instabilities.

In the following Chapters, we will see that pattern are corner stones in the forma-
tion of localized states when bistability between the HSSs and the previous ones
is achieve [12] [I4] [15]. Consequently, this study will be useful for understanding
the complete bifurcation scenario regarding localized states.
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Chapter 4
Bright solitons in the anomalous
group velocity regime

4.1 Introduction

In this chapter we study in detail the dynamics, stability and bifurcation struc-
ture of bright solitons appearing in the one-dimensional Lugiato-Lefever (LL)
equation describing temporal cavities in the anomalous GVD regime. These lo-
calized structures (LSs) can be seen as localized spots of higher intensity light
embedded in a homogeneous surrounding. This regime has been widely studied
in one and two transverse dimensions for 6 < 2 [IH3].

As shown in Chapter [3] for # < 2 a pattern Pj_ emerges from the Hamiltonian-
Hopf (HH) bifurcation, supercritically if § < 41/30, and subcritically, if 6 >
41/30 [2]. In the subcritical case, the bistability between the pattern and the
stable bottom branch of the HSSs (A}) can lead to the formation of bright
solitons organized in a bifurcation structure known as homoclinic snaking |4 Bl.
A very detailed study about the bifurcation structure of those solitons can be
found in Ref. [7]. However, for 8 > 2, bright solitons bifurcates from the SNy, o1
(a reversible Takens-Bodganov (RTB) bifurcation in spatial dynamics), and they
are KdV-type of solitons. In Ref. [9] the authors showed that in this regime bright
solitons undergo oscillatory instabilities, temporal chaos and spatio-temporal
chaos. Nevertheless a complete understanding of the bifurcation structure and
the stability of these states was still lacking. Our main goal along this Chapter
is to complete exhaustively previous studies in this regime [I1], [12]. As we will
see, for @ > 2 bright solitons are organized in a bifurcation structure that has
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a different morphology and origin than homoclinic snaking type of bifurcation
diagrams, and that we will refer as foliated snaking following Ref. [10].

The chapter is organized as follows. In Section [£.2] we summarize the main
results regarding the spatial dynamics of the HSS solution in the anomalous
GVD regime, identifying the bifurcation from where one could expect the origin
of LSs. Later in Section we analyze the unfolding of bright solitons from
the HH bifurcation for 8 < 2. First we perform a perturbative analysis around
the HH bifurcation obtaining a first order approximation for a bump solution
only valid in the neighborhood of the HH point. After that, using continuation
techniques, we build up the bifurcation diagram for those states. In Section
we study the appearance of bright solitons that unfold from the SNpom 1, a
RTB bifurcation in spatial dynamics for # > 2. Later in Section we expose
the organization of solitons in the parameter space (6, p) showing the regions
of existence of these states. In Section [4.6] we study the oscillatory and chaotic
regimes that bright solitons undergo for high values of 8, and finally in Section
we end the Chapter with some conclusions.

4.2 Overview of spatial dynamics in the anomalous regime

Here we shortly review the spatial dynamics of the LL equation in the anomalous
GVD regime, already studied in Chapter [2| The stationary LL equation in this
regime, namely:

— V"' —U+0V -V{U*+VH+p=0,
(4.1)
U' -V —0U+UU?+V? =0,

with / standing for the derivative respect to x, can be recast to a four dimen-
sional dynamical system. In this case the spatial eigenvalues i.e. the eigenvalues
associated with the dynamical system at the HSS, have the configuration given
in Figure 2.6l In Figure 1] we have partially reproduced two panels of that
diagram representing the two configurations which are relevant in this Chapter.
Panel (a) shows the situation for § < 2, and panel (b) for § > 2. From Eq.
with v = 1 one derives that the condition Iy = I, = 1 defines the following curve

in parameter space:
p=pc=y1+(1-0) (42)

that is a Hamiltonian-Hopf (HH) bifurcation with eigenvalues Ao = =ik,
Ag,4 = Fike, for < 2 and a Beliakov-Devaney (BD) transition with A 2 = *£qo,
Aza = £qo for § > 2. Together with these lines, we also have found that

98



4.2. OVERVIEW OF SPATIAL DYNAMICS IN THE ANOMALOUS REGIME

(a) 2.0
1.8
1.6

T

0 e 4;7 ~

DC H

T

14l SNhome(RTBH) / ]

. " A m

I % so |

1.2 1
[ SN RTBH 1

ob  peg

0.8 - _i_ MI(HH
F % SF Ab (HED

0.6 © n
runriF N R R B

1.16 1.22 1.28 1.34 1.4

1412

|

(b) ST T T LRI
SNjome(RTBH) A‘ %DC

|AJ?

Figure 4.1: Spatial eigenvalues configuration for several values of 6. (a) v3 < 8 = 1.8 < 2
and (d) § =4>2

SNpom.1 is a Rev.Takens-Bodganov-Hopf (RTBH) bifurcation with A\ o = +iko,
Az = A = 0 for § < 2 and a Rev.Takens-Bodganov (RTB) bifurcation with
A2 = £qo A3.4 = 0 for 6 > 2. In contrast, SNpem, 2 is always a RTBH bifur-
cation for any value of 6. Thus, we expect LSs unfolding from the HH point in
the configuration shown in Figure a) and from the RTB bifurcation in the
configuration of Figure 4.1} E(b .

For # = 2 the BD, HH, RTB and RTBH lines meet at the quadruple zero (QZ)
point (see Section [2.3).

In Section we study the LSs unfolding from the HH point for § < 2, and in
Section those unfolding from the SNy, 1 (RTB) for 6 > 2.
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4.3 Bifurcation structure and stability of bright solitons for
6 <2

Here we study the existence, stability and bifurcation structure for the LSs un-
folding from the HH bifurcation present for § < 2. In this regime it is well known
that there is a large number of states coexisting for the same set of parameters.
First we show that the amplitude Eq. has two branches of LSs, one with
an odd number of peaks and another with an even number, both unfolding from
the HH. These kind of states have oscillatory tails and are NSL-type of solitons.
Later, using continuation techniques, we continue these states to values of pa-
rameters far from the HH point, confirming that the solution branches of these
LSs are organized in a homoclinic snaking bifurcation structure [4, [7, [§]. Af-
ter that, we also show that there exist asymmetric states interconnecting these
branches of solutions.

4.3.1 Summary of weakly nonlinear analysis around HH for localized
states
In Section [3.3] while studying the pattern solution unfolding from the HH, we

found that the spatial dependent amplitude ¢(X) of the first order perturbative
solution around the HH bifurcation, namely

e ] et s aone (43)
was solution of the amplitude equation
d’p(X
o 2D 1 036(X) + sl () Po(X) =0, (4.4

where «;, ¢ = 1,2,3 are complex functions of the control parameters (see Ap-
pendix. To solve Eq. we consider the ansatz ¢(X) = Ae'?, with A € R*.
With this ansatz two kinds of solutions can be found depending on whether A is
a function of X or not. The situation A # A(X) gives the pattern type of steady
solution of Eq.. On the contrary, in the subcritical regime i.e § > 41/30,
LSs can also be found if one consider that A = A(X). In this case Eq.(4.4)
becomes

d?A(X)

W = 51A(X) + 62443 (X) (4-5)
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FOR 6 < 2
with 81 = —das/a; and P2 = —as/a;. This equation has a solution (see
Appendix |C))

) .
$(X) = 551 sech (\/61 (X — X0)> et (4.6)
2
and therefore, at leading order, the LS perturbative solution around HH is
U . UC UQ . Uq
vl R]e-ms[R] e
with
-2 - Fc 1 - - Fc
{ Zi ] —2[ (11 } %smh 3 %w cos(kex + )

(4.8)

The parameters are the same than in Section and are given in the Ap-
pendix [C] This solution is only valid in the neighborhood of HH, therefore just
when ¢ < (p — p.) — 0. Like the spatially periodic states, this family of lo-
calized solutions is parameterized by ¢ € S 1EL which controls the phase of the
pattern within the sech(-) envelope. Within this asymptotic approximation this
phase remains arbitrary, and there is no locking between the envelope and the
underlying wavetrain at any finite order in e. However, it is known that this
is no longer the case once terms beyond all orders are included [I7HI9]. These
terms break the rotational invariance of the envelope equation and result in a
weak flow on the circle S'. This flow in turn selects specific values of the phase:
@ =0 and ¢ = 7. Moreover these phases are the only two phases that preserve
the reversibility symmetry (z, A) — (—x, A) of Eq.(4.1).

4.3.2 Homoclinic-snaking structure

As we said before the weakly nonlinear LSs solutions, calculated previously, are
only valid for e — 0, and therefore in the neighborhood of the HH bifurcation.
Nevertheless, using continuation techniques it is possible to track these states
to values of control parameters far from this point. In this way two branches of
solutions are found: one branch is associated with ¢ = 0 and includes profiles
with a local maximum in A at the midpoint, and the other branch is related

IThe unit circle defined as S := {e? : 0 < ¢ < 27}
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Figure 4.2: Homoclinic snaking bifurcation diagram for # = 1.5 and L = 160. In panels (a)
we plot the diagram using ||A||? and in panel (b) we have removed the HSSs Ag. The labels
correspond to the profiles shown in Figure@

with ¢ = 7 and includes profiles with a local minimum in A at the midpoint.
We refer to the former branch as Ly and the latter as L.

These two branches of LSs persist to finite amplitude where they undergo homo-
clinic snaking: sequence of saddle-node bifurcations that cause the branches to
intertwine as they oscillate back and forth across a parameter range called the
snaking or pinning region [4, [8]. This type of structure is shown in Figure
for domain size L = 160 and for a fixed value of detining # = 1.5. Here we use
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FOR 6 < 2
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Figure 4.3: Bright solitons profiles for the ¢ = 0 (labels (i)-(xv)) and ¢ = 7 (labels (xvi)-
(xxiv)) families of solution branches, i.e. states with an odd and even number of peaks respec-
tively, corresponding to labels shown in Figure@

as bifurcation parameter p, although the same type of diagrams appears if p is
fixed and 6 is modified, as shown in Ref. [I1].

The diagram obtained corresponds to panel (a) of Figure With this quantity
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is not so easy to differentiate the different branches of solutions. Because of this
in Figure b) the same diagram is shown, but removing the background field
(HSSs) Ap from the norm. In this way the unfolding of the different branches is
much more clear.

The two branches of symmetric LSs that bifurcate subcritically from HH, en-
ter the snaking or pinning region, in which they undergo repeated saddle-node
bifurcations as they snake across the region. These saddle-nodes converge expo-
nentially, rapidly and monotonically to a pair of values p_ and p4 (here shown
with vertical lines), representing the boundaries of the snaking region.

A sequence of profiles corresponding to Lg solutions is shown in Figure for
panels (i)-(xv). Initially these states unfold unstably and with a small amplitude
(see profile in panel (i)) from HH. Its amplitude increases as decreasing the value
of p and entering in the pinning region (profile in panel (ii)). Once reaching
SN; the state becomes stable and increases its amplitude as increasing p. One
example of this profile is shown in panel (iii). At SNg, near p; the LS becomes
again unstable and nucleates a pair of peaks or rolls, one on either side of the
central peak (see profile in panel (iv)). As one proceeds up the branch to the
next fold on the left p_ the new rolls grow to the height of the coexisting periodic
state P (see profile (v)) and the branch turns around to repeat the process. In
this way as one proceeds up the Ly branches, the LSs repeatedly add rolls on
either side symetrically each back-and-forth oscillation, increasing the width of
the state by two wavelengths 27/k. as we can appreciate in panels from (vi) to
(xv) of Figure The L, family of solutions shown in panels (xvi)-(xxiv) of
Figure undergoes the same process.

In an infinite system this process continues indefinitely as both branches ap-
proach the periodic state Py, that arises from the HH bifurcation together with
Lo . In contrast, in a finite size domain like the one shown in Figure @
(L = 160), both families of solutions Lo . connect with the pattern at a finite
value of the norm. Thus, different configurations can occur. One of these phe-
nomenon is that the Lo , states, instead of unfolding from the HH, do it directly
from a secondary bifurcation of the pattern. Moreover, if the domain size is also
small, the Ly , branches can end at different patterns, as it is actually our case,
where the Ly family ends at the pattern P1g and L, in P19 with respectively 18
and 19 rolls each.

How the size of the domain affects the structure of the homoclinic snaking is
very interesting not only from a theoretical point of view, but also from experi-
mental one. In experiments the size of the optical cavities, either fiber cavities or
microresonators, is always finite, and therefore, studing how the existence and
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Figure 4.4: Bifurcation diagram showing the snakes-and-ladders structure for § = 1.5. To-
gether with the ¢ = 0 and ¢ = 7 family of solutions branches shown in Figures [£.3] there are
extra branches of asymmetric states that connect both types of snaking through a Pitchfork
bifurcation P.

stability of LSs is modified with the domain size is of great interest. For the
interested reader we recommended Ref. [20], where the authors study this kind
of phenomenon in the prototypical Swift-Hohenberg equation.

4.3.3 Snakes-and-ladder structure

Figure shows a close-up view of the bifurcation diagram shown in Fig-
ure b)7 although here L = 80. This diagram also includes a sequence of
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Figure 4.5: Velocity of the rung states as a function of p corresponding to the branches
(a)-(d) of the snakes-and-ladders diagram shown in Figure The velocity become zero at
the pitchfork bifurcations P;, i = 1,...,4 and is possitive or negative depending on the side at
which the extra peak is nucleated.

so-called rung states branches which connect the Ly and L, branches of so-
lutions in pitchfork bifurcations located near the saddle-node bifurcations and
cross-link the two snaking branches. The profiles on the rung branches are simi-
lar to those on the snaking branches, but they are not symmetric with respect to
the reflection x — —x. This asymmetry can be observed in the panels (i)-(ix).
The LL model does not have a gradient dynamics, and therefore any asymmetric
solution, such as the rung states drifts with a constant velocity. These states are
stationary solutions of Eq. on the moving reference frame obtained through
the transformation x — x — ct i.e. solutions of

—cO,A=—(1+i0)A+i0?A +iAlA]? + p. (4.9)

The velocity as a function of p for those rung states is plotted in Figure [4.5]
and it is calculated as part of the solution of Eq., i.e. it is a nonlinear
eigenvalue. The rungs are created at pitchfork bifurcations which break the
A(z) — A(—z) symmetry of the Lo, states. Consequently each rung in the
figure corresponds to two states related by reflection symmetry, and hence, of
identical L2-norm. Profiles from (iii) to (i), on branch (a), show how close to
the SNy the single peak state belonging to the Lg-branch start to nucleate an
extra peak on its right that grows in amplitude as decreasing p, until reaching
the same height of initial peak at the SN3 where it connect with L,—snaking.
The velocity of these states is negative (see Figure and becomes zero at the
pitchfork bifurcations. The behavior is similar for the states (vi)-(iv) on branch
(b). Together to the previous states there are also branches of asymmetric rung
states where the nucleated peak occurs on the left of the initial one. An example
of such type of states (branch (c)) is shown in panels (vii)-(ix). Here, on the
contrary, the velocity is possitive as shown in Figure
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This type of structure is known as snake-and-ladders structure [2I]. As we
will see in Chapter [B] when the reflection symmetry is broken the pitchfork
bifurcations become imperfect and the degeneracy of the rungs states disappears
leading to the breaking up of the snaking in a stuck of isolas [22] 23].

4.3.4 Heteroclinic tangles and homoclinic snaking

So far we have discussed the morphology of the homoclinic snaking and the
stability of its different states. Behind this structure there is a very rich and
complex phenomenon that can be understood in terms of geometrical objects
as it was proposed in Refs. [4 5] in the context of reversible systems. Here,
following these works, we discuss briefly this mechanism. It is based on the
heteroclinic tangles that are formed between the stable and unstable manifolds
of the HSS A}, and a family of pattern solutions 7. Those heteroclinic tangles
are not only behind the formation of LSs, but also explains the way in which
those states are organized in terms of an homoclinic snaking structure.

To start let us consider a Poincaré section for the system containing the
symmetry section § = ﬁX(R)ﬂ This section allows us to display trayectories
and to depict the intersections of the stable and unstable manifolds with each
other, and with S. Adapted from Ref. [4], Figure shows schematically the
Poincaré section for different values of one control parameter of the system (here
we fix the value of 6 and we allow p to Vary)ﬂ In this picture the HSS A} and
the periodic orbit (pattern) solution P have been reduced to two saddle-type
equilibrium on the symmetric section S (see Figure [4.6(a)). The Pincaré section
intersects the pattern in two points, one corresponding to its maximum and the
other to its minimum, although in Figure [4.6] we only show one of them, let say
the one corresponding to the maximum. The intersection with the minimum
would occur, in this picture, to the left of the fixed point A}. Figure also

2As we have seen in Appendix the symmetric section is the subspace defined by the
points of the phase space which are invariants under the involution R, i.e.

S =1fix(R) = {z € R" : R(z) = z}. (4.10)
In particular for the LL model the involution is given by (see Section :

R:(z,y1,92,y3,¥4) = (=2, y1, Y2, —Y3, —y4). (4.11)

3The system described in Ref. [4] has a gradient dynamics. In contrast, the LL equation
does not. Thus the way in which the invariant manifolds intersect in the later case, is not
completely the same as the one depicted in Figure @
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Progression of a Heteroclinic Tangle in a Poincare Section
W(A)

Before

Figure 4.6: Schematic Poincaré section showing the heteroclinic tangle that generates the
formation of an standard homoclinic snaking. This has been adapted from Ref. [4]. Panel (a)
shows the situation before the heteroclinic tangle. In (b) the first tangency between the stable
and unstable manifolds of Ag and P occurs. This is known as outer tangency and correspond
to p— in Figure where the snaking is created. In panel (c) the full tangle occur and the
homoclinic orbits are created. Panel (d) shows the inner tangency at pi. Lately (see panel
(f)) the invariant manifolds become disjoint ones more.

shows the tangle between the (two dimensional) unstable and stable manifolds
of A i.e. W4 (A}) and W*(AY), and (three dimensional) collection of stable and
unstable manifolds of the periodic orbit P i.e. W*(P) and W4*(P).

On variation of p, the manifold W*(A}) will generically intersect W*(P) transver-
sally creating an heteroclinic connection between AS and one of the periodic
orbits, let say P° of P. At this point the homoclinic snaking is created. Just
before this intersection, both manifolds are tangent as shown in Figure b)7
and in terms of homoclinic snaking this situation would correspond to one of the
limits of the pinning region, for instance p_, known as outer tangency.

Increasing a bit further the value of p leads to the full heteroclinic tangle shown
in Figure c) where W*(Ab) intersects S in the region of the periodic orbit.
By reversibility, the intersection of W*(A§) with S also implies the intersection
of W*(Ab) with S and therefore the intersection of W*(Ab) with W*(Ab). The
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occurrence of these intersections corresponds, therefore, to the formation of ho-
moclinic solutions to A}, but passing close to P, i.e. a LS that belongs to the
snaking branches Ly (with a maximum in its center). Each homoclinic solutions
has one more oscillation near the periodic orbit P.

The formation of the LSs of the L.-type, i.e. with a minimum in its center,
follows the same porcess around the other intersection of P° with S.

In a system with gradient dynamics, as the SH equation, the asymmetric rung
states are stationary and are described by the spatial dynamics. They are formed
due to non generic intersections occuring outside the symmetric section S. In
contrast, in the LL equation, which does not have gradient dynamics, the rung
states drift, and they are not solutions of the dynamical system (2.8, and there-
fore their formation is not described by this mechanism.

Although not shown in Figure close to A} homoclinic connections to the
periodic solutions can also occur, which would resemble patterns containing
holes [5l [6] (see Figure 2 in Ref. [0]).

Varying p even further leads, eventually, to the disappearance of the homoclinic
connections, and therefore the disappearance of LSs. Figure d) represents
the inner tangency between the manifolds of A% and P where the homoclinic
snaking dissapears at the boundary p;. Finally, increasing further p, the in-
variant manifolds become disjoint again as we can see in Figure (f) Each
tangency point between manifold in Figures b) and (d) represent the SNs
along the p_ and p; boundaries of the pinning region.

4.4 Bifurcation structure and stability of bright solitons for
0> 2

For 6 > 2 the HH bifurcation from where the LSs and patterns used to emerge
becomes a BD transition for 8 > 2, from where no LSs can unfold. Another
important change is that SNy, 1, that for 6 < 2 was a RTBH, becomes a RTB
that admits KdV-type of soliton solutions. Moreover, in this regime, there are
patterns bifurcating from resonances, such as double-center (DC) or saddle-
center (SC') points that are relevant in the new organization of the solutions.
The bifurcation structure found here is new, although it shares some similarities
with the one found in Ref. [10], where the authors study the forced real Ginsburg-
Landau equation. In that case, they called it foliated snaking and it is the term
that we will also use here.
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In what follows we first apply perturbative techniques to calculate an approxi-
mate solution for the soliton around the RTB point. As we will see, the resulting
solution has a sech?(-) shape as was already predicted by the normal form the-
ory in Section [2:4] After that we apply continuation techniques to build up the
bifurcation diagrams that show the multistability of these type of states.

4.4.1 Weakly nonlinear analysis around RTB

In this section we compute weakly nonlinear LSs using multiple scale perturba-
tion theory near the RTB bifurcation corresponding to SNpep,,1. The LSs are
solutions of the stationary LL Eq.. Following Ref. [24], we fix the value of
6 and assume that the LSs at p ~ p, where p = p;, corresponds to the SNpopm, 1
bifurcation, are captured by the ansatz

U Ul [u
vl @12
where U* and V* represent the HSS A, and u and v capture the spatial depen-
dence. The SNp4y,,1 Occurs at

I = %(20 — Vo2 —3), (4.13)

or in terms of p, at

po =T} — 2012 + (1 + 62)I,. (4.14)
The Taylor expansion of p about I}
d 1 [/ d?
p(lo) = p(Ly) + (p> (lo—1p) + 5 <§> (Io—Ip)* +---, (4.15)
—_— dlo ) g, 2\dl§ ), ——
P N—— S—— €2
=0 op

defines the small parameter € that measures the deviation from the bifurcation
point.

Because p, has a maximum at I, we have

dp)
il =0 4.16
(d[o I ( )
1 (d%p 02 —3
= - (==L = i 4.1
” 2 (dlg>1b 2pp <0 (4.17)
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From there the small parameter € in terms of p reads,

P —Pb
&

(4.18)

€ =

We next introduce appropriate asymptotic expansions for each variable in func-
tion of € as follows:

ult U] U, o[ Us
[V]__Vb_—l—e{vl}—i-e_%]—&—... (4.19)
for the HSSs solutions and
[ Yl=el ™ ] +é [ Y2y (4.20)
v | | v1 vy |

for the space-dependent terms.
We also allow the fields u1, v1, us and v to depend on the slow variable X = +/ex.

The next step would be to calculate first the HSS terms and next the space-
dependent terms. These calculations are detailed in the following subsection
and in Appendix

Asymptotics for the uniform states

Inserting the ansatz (4.19)) in Eq. (4.1]), we obtain the correction to the HSS Ay
at any order in e.

At order O(e) we obtain expressions for Uy, and Vj as a function of 6.

Pb
[ ‘U/: = l(ﬁb({“g)ff : (4.21)
1+ (I, — 0)2
At order O(e') we have
L[%}:[g} (4.22)
where
L— { _(G_Ig_wbg) Y ] (4.23)
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is a singular linear operator. Equation (4.22) has an infinite number of solutions
that can be written in the form

%001

1
n= —5(9 — I, - 2U}) (4.25)

where

and p is obtained by solving the next order system. At O(e?) we obtain the
equation

I { U, } _ [ 20, V1 Uy + (2V2 + 1) Vi, — &y ]
Vo | | —QUE+L)U,—2VilhVy |”

where I} = U? + V2. Because L is singular, the previous equation has no
solution unless a solvability condition is satisfied. This condition is given by

(4.26)

0
=y = — . 4.27
= \/3772% + 200, + Vi (4.27)

Asymptotics for the space-dependent states

To calculate the space-dependent component of the weakly nonlinear state, we
proceed in the same fashion. We insert the full ansatz for the asymptotic state,

namely Eq. (4.12)), into the system (4.1)) and obtain, at order O(e!),

Uq . 0
[u]-0] w5
where the first term on the left hand side vanishes. The general solution of this

equation is

= e (4.29)

v
with ¢ (X) a function to be determined at the next order.
At order O(e?)

L{W]:—Pl[ul}—%[%], (4.30)

V2 U1

with the linear operators

—2U V1 +201Vy) = (wd% + 6VpV1 + 20,U1) ] (4.31)

Pi= [ v0% + 6U UL + 2V, V3 2V, Uy + 20U,V
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and

(4.32)

Py = [ —2viu; —(3v} +u?) } .

3u? + v? 2u1u;

Because L is singular, Eq. (4.30) has no solution unless another solvability con-
dition is satisfied. In the present case, this condition reads

[1 O]Pl[zﬂﬂl O]PQ[U”]:O. (4.33)

After some algebra, Eq. (4.33)) reduces to an ordinary differential equation for
P(X),

d2(X
on T 4 s (X) + () = 0, (131)
where
o] = —l/Vl, Qg = _25177 Q3 = —5b. (435)

The solution of this equation (see Appendix E[) coresponds to,

Q2

Y(X) = —3sech? (; (X — XO)> , (4.36)

o
representing a hole located at X = Xy, hereafter at X = 0. Since X = y/ex and
)

Op

€

the corresponding first order spatial correction is given by

B e A

Then we have found that the LSs around the SNy, 1, at first order in € can be
approximated by

/4
Ul | U p—pp | 1 B 2 (1 [ aafp—pp !
- [ mBL om (E 22)

(4.38)

a bump solution on top the background HSS solution.

4.4.2 Foliated snaking

In this Section we analyze the bifurcation structure associated with the bump
solution calculated previously (see Eq.[4.38)) in the neighborhood of the SNy,om 1
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Figure 4.7: (a)Bifurcation diagram showing the L?-norm, ||A||? in function of p for § = 2.5.
In Figure we show the same branches when removing the background field Ag.(b) close-up
view of panel (a) around the BD point.

(RTB) bifurcation. As we did in other Sections, we take this approximated
solution as initial guess in a predictor-corrector algorithm [25] (see Appendix,
that allows us to build up the different solution branches unfolding from the
SNhom,1 bifurcation. Together to this single bump, there are states with several
bumps also unfolding from the SNp,p, 1 bifurcation or nearby as we will confirm.

The bifurcation digram that one obtains has the morphology shown in Fig-
ure a) where the L?-norm as function of p for a fixed value of detuning
6 = 2.5 is plotted. Figure [1.2{b) is a close-up view of panel (a) around the BD
point. The unfolding becomes clear if instead of || A||? we plot || A— Ap||? as done
in Figure[£.8[a). Panel (b) is close-up view of panel (a). One can appreciate that
the morphology of this diagram is quite different to the homoclinic snaking one.
Here there is a sequence of branches of solutions that unfold from the SNjom, 1
or nearby and that are interconnected in a similar fashion as patterns were con-
nected in Chapter [3] One can also see that this diagram is very similar, at least
in shape, to the one shown in Ref. [10], and therefore we will call it, as therein,
foliated snaking.

Figure [4.9) shows the different states associated with the branches of Figure [4.8]
Initially, the bump unfolding from the SNy, 1 bifurcation, i.e. the SNpom, 1,
has the shape shown in panel (i) of Figure As the state proceeds up in the
branch, that is decreasing p, it grows in amplitude (see panel (ii)) until reaching
SN;, where it becomes stable. This state continues growing in amplitude all the
way up on the the stable branch until reaching SN5. At the end of this branch
the state has the shape shown in Figure iii). In SNa, the single peak connects
with the structure of panel (iv) that is unstable. In this structure, another peak
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Figure 4.8: Same bifurcation diagram as the one shown in Figure when removing the
HSS solution Ag. Solid lines represent stable solutions and dashed lines unstable ones. The
labels correspond to the profiles in Figure

starts to grow at half of the domain size of the previous peak i.e. at L/2, and
its amplitude grows as moving toward the left of that branch (see panel (v))
until it reaches the amplitude of the former one. This branch connects on the
left with two branches close to the SN3. One of those branches is unstable and
goes down as increasing the value of p. Along this branch the two-peaks state
decreases (see panel (vi)) in amplitude until reaching the SNy, 1 form where
it rises. The other branch, goes up and its states, like the one of panel (vii),
are stable until reaching SNy. After this fold the state (vii) loses stability and
as shown in panel (viii) two new peaks start growing in-between the initial two
resulting in a state with four peaks separated by L/4 each. Again, moving to
the left on this branch, the new peaks grow in amplitude until reaching SN (see
panel (ix)) where it connects from below with a branch of unstable states like
the one shown in panel (x), and from the top with a high amplitude state like the
one shown in panel (xi). The nucleation of new peaks in-between the old ones
is repeated each time that crossing the SNs on the right of the diagram, until
filling with peaks all the domain. As we mention before, the structure with two
peaks bifurcate from the SNj,.,,1 together with the single soliton, however, the
structures with more peaks (xi) with 4, (xv) with 8, (xvii) with 16 and (xviii)
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Figure 4.9: Profiles corresponding to the solution branches shown in Figure and Fig-

e [T

with 32 behave as patterns and rise from the global bifurcation SC along the
AfY of the HSSs solution. Initially the points of birth of those states are very
close to SNpom,1 but as adding more peaks they moves up in the Af* branch.
This situation can be observed in the diagram shown in Figure [£.7] This type of
nucleation and reconnection of branches resembles the organization of patterns
studied in Chapter [3] where it was found that there exist a sequence of FW
instabilities reconnecting patterns which wavelengths are half the wavelength of
the previous one. We will come back to this point later on this Section.
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Figure 4.10: In (a) we show in blue the branches the foliated snaking corresponding to states
shown in panels (i)-(vi). In (b) the snaking associated with states (vii)-(ix). In both the gray
branches represent the foliated snaking calculated previously and shown in Figure@

Two examples of those snakings are shown in Figure a) and (b). In the
diagram (a) the branches corresponding to the states shown in subpanels (i)-
(vi) are plotted in blue and in gray those of Figure for comparison. Here the
initial block is a 3 peaks state that undergoes the same type of nucleation that

117



CHAPTER 4. BRIGHT SOLITONS IN THE ANOMALOUS GROUP VELOCITY
REGIME

the one shown before. In panel (b), the branches in green correspond to states
(vi)-(viii) where the initial block is a states with 5 peaks. Thus we can deduce
that any state with an odd number of equidistant peaks will behave in the same
way, and each one ends in a different final pattern.

The broom bifurcation

At this point we can make the question of how is this new type of snaking related
or connected with the homoclinic snaking studied previously for § < 2. In order
to answer this, one can continue numerically any of the LSs of the homoclinic
snaking shown in Figure [£.3] to higher values of 6 and see how do they fit with
the bifurcation skeleton shown in Figure [£.8|

For example we chose a two peak state for § = 1.5, like the one on panel (xvi) in
Figure[£.3] and we continue it in p and 6 until reaching § = 2.5. Once reached this
value, we track in p the complete branch of solutions and we plot it on the top of
the diagram shown in Figure The result is shown in panel (a) of Figure
In red we show the first foliated snaking that we have calculated previously and
in blue the two branches corresponding to the two-peaks state connected with
the homoclinic snaking. The branches for this state have the same norm that the
branches of the two peaks separated by L/2. The continuation of the top blue
branch close to the SN gave us a lot of difficulties already for parameter values
far from saddle-node SN4. For clarifying this situation we decided, instead of
potting the norm, to plot the separation distance between peaks for both the
blue branches (I), (IT) and the branch (III) corresponding to asymmetric states
like those shown in Figure v). The result can be seen in Figure [£.11|(b) and
(c). As we can see in panel (b), the separation distance for the states on the
branch (III) remain almost constant with p. However, the separation distance
of branch (II) increases drastically, when approaching the value of p at which
the BD occurs, as one can appreciate looking at the panels (i)-(iii). Although it
was not possible to continue this branch, the tendency of the branches suggest
that it could collide with the branch (III), around the separation d ~ 80 at BD.
Panel (c) shows a close-up view of the branch (II) and (I).

When approaching the BD transition the real part of the complex spatial eigen-
value of A, i.e. ko = Im[\] — 0 and therefore, the the wavelength of the
oscillatory tails of the soliton profiles goes to infinity. As a result, in an infinite
domain, two single-peak LSs will separate infinitely when approching the BD. In
contrast, in a periodic domain, the they will separate until reaching L/2 at the
BD transition, which is the situation that one can observe in Figure[1.11|(b) and
(¢). This phenomenon corresponds to a dramatic non-local bifurcation known
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Figure 4.11: Bifurcation using d as bifurcation measure. We can see in panels (b) and (c),
that plotting d, branches (II) and (III) in panel (a) are now distinguishable from each other.
In (i) p = 1.425, in (ii) p = 1.763 and in (iii) p = 1.802

as broom bifurcation, at which an infinite number of homoclinic orbits emerges
27].
In the same way one can track any of the several-peaks solitons from low detuning

(see Figure [4.2)) to larger values of detuning and obtain the same divergence in
the separation between the peaks.

Understanding bright solitons via patterns

We can try to understand the structure of the diagram shown in Figure [£.7] in
terms of patterns and their bifurcation structure already found in Chapter[3] For
0 > 2 the HH bifurcation at Iy = I. = 1 becomes a BD transition. Now the first
instability takes place for values Iy > I., and always with critical wavenumber
ke =0.
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Analogously to the previous section, in this case, in addition to the new bifur-
cating homogeneous solution (k¥ = 0), one can consider that above threshold
pattern solutions with very large wavelength (k ~ 0) exist.

In finite systems with periodic boundary conditions A(0) = A(L), being L the
spatial period, the largest possible wavelength corresponds to A\ = L. If the
bifurcation is subcritical, and the pattern is highly nonlinear, this pattern can
be interpreted as a single localized structure. In the following we choose L = 160.

When k = k. = 0, the instabilities MIi:o are given by

2 1
Lp(ke = 0) = 30+ 262 =3, (4.39)

that in fact represents the positions of SNy, 1 (With the — sign) and SNy, 2
(with +). The pattern with & = Ak = 27/X = 27/L appears at MI,,, which
is closer to SNpom,1 the larger the system is, and disappears at MILC close to
SNhom,2. Nevertheless, as discussed above, this pattern seems to reconnects with
another pattern with £ = 2Ak (A = L/2) as we can observe in Figure and
Figure iv)-(v). In this case, the branches of LSs corresponding to states (i)-
(ii), and (iii) in bifurcation diagram of Figure [4.7| have to be compared with the
branches of patterns Py_ (in red) in Figure ) and (c). After SNy, the state
shown in Figure iv)-(v) appears, and here, another peak separated from the
previous one a distance L/2 starts to grow. For decreasing p, state (v) collides
in a FW; instability to A/2 i.e. A = L/2 very close to SN3, with the branches
corresponding to states (vi) and (vii). These last two states in Figure would
be analogous to Poy, (in blue) in Figure In the same fashion, the branch
corresponding to states (vii) has a SNy where again two new peaks start to grow
all of them separated by L/4 (see panel (viii) Figure . Again we found that
decreasing p, the branch corresponding to the state (viii) joins branches (ix) and
(x), in another FWy very close to SN5. These structures would correspond to a
pattern with A = L/4. This kind of structure will be repeated continuously and
at every FW instability the number of peaks in the structure will be doubled.
Note that, as shown in Figure and Figure points Mlik, MIQiAk, MijAk ,
for § > 2, would be all very close to SNpom,1 and SNy, 2 if the system is very
large. For this reason patterns with A = L, A = L/2 and A = L/4 should all
appear and disappear for very similar parameter values.

Accordingly, if in a periodic system of period L, we accept that for > 2 the one
peak localized structure is in fact a pattern with A = L, finite-wavelength-like
instabilities would connect the pattern with wavenumber Ak with the one with
2Ak, where the latter correspond to two peaks separated a distance L/2.
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Figure 4.12: Phase space in (0, p)-parameters. The bifurcation lines: SN 2 represent the
region of existence of bright solitons; SNy, 1,2 are the saddle-node bifurcations of the HSSs
solution, also labeled as p; ;; H™ stands for supercritical Hopf bifurcation that emerges from
the GG (Gravilov-Guckenheimer) codimension-two bifurcation; HH is a Hamiltonian-Hopf
bifurcation or a MI in temporal dynamics; dHH is a degenerate HH bifurcation occuring
at § = 41/30, where the pattern becomes subcritical; BD represents a Belniakov-Devaney
transition; QZ is a quadruple-zero bifurcation; C a cusp bifurcation for the HSSs and STC
the onset of the spatio-temporal chaos. The different dynamical regions I-IV are described in
Section The inset represent a close-up view of the unfolding of the H™ bifurcation from
the GG point.

4.5 Bright solitons in the parameter space

Tracking each bifurcation point in the bifurcation diagram as function of 6 one
obtains the parameter space shown in Figure The red solid line defined by
Eq. corresponds to a HH bifurcation for 8 < 2 and a BD transition for 6 > 2.
Together with this line there are other two bifurcation lines corresponding to the
saddle-node bifurcations of the HSSs solution, namely SNpy,,1 and SNpom 2, and
those corresponding to the LSs, namely SN; and SNy. As we can appreciate from
Figure the region of existence of the different branches of solutions can be
described by the saddle-nodes of the single soliton state SN; and SNy. Therefore,
the area between these two saddle-nodes bifurcation determines the region of
multistability of LSs. Looking at Figure [£.12) we see that upon increasing 6 the
region of existence of these states becomes broader.

We distinguish four main dynamical regions, labeled I-IV in the phase diagram
in Figure [I.12] in terms of the existence of HSSs and bright LSs:
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e Region I: The only attractor of the system is the stable bottom HSS AY.
No bright solitons or top HSS Af exist. This region spans the parameter
space p < p. for § < /3 and p < py f0r9>

e Region II: The HSS solution branches A§, AZ* and A coexist, and multi-
stability between bright solitons is found. This region spans the parameter
space psn, < p < psn, for 6 > /3.

e Region III: Here the bright LSs become unstable through supercritical Hopf
bifurcation H™ (see purple line in Figure [4.12)), generating a oscillatory
regime. This region spans the parameter space py- < p < pstc-

e Region IV: This region spans the parameter space p > p. for § < /3,
where Ag is modulational unstable, and p > p; for @ > /3, where the only
HSS solution is Af. In this region no bright LSs exist and spatio-temporal
chaos develops.

Regions III and IV are the main region of interest in this chapter. In the next
section we will show that region III can be further subdivided in subregions
reflecting the different dynamics that the bright solitons undergo, such as ampli-
tude oscillations of different periods, temporal chaos and spatio-temporal chaos.

4.6 Oscillatory and chaotic dynamics for bright solitons

So far we have focused on the study of stationary LSs and their bifurcation
structure. In this Section we will see that these states can undergo oscillatory
instabilities that can make them oscillate in time. The presence of these in-
stabilites modifies the region of existence of stable LSs and generates a very
rich dynamical behavior. The oscillatory instability consist in supercritical Hopf
H~ bifurcations that lead to stable temporal oscillations resembling breathings
of the individual solitons. To characterize these dynamics we combine both
time stability analysis and direct integration of the LL equation. We also com-
pute secondary bifurcations of these oscillation clarifying the different oscillatory
regimes.

In Figure we show the foliated snaking diagram for § = 3.5. For this value,
each branch of stable states becomes oscillatory unstable at a different H™,
bifurcation that occur for very similar values of the driving amplitude around p =
2.6532. This instability leads to oscillatory states like those shown in Figure [1.14]

4pp and pt represent the possition of the SNhom,1 and SNy, 2 Tespectively
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Figure 4.13: Bifurcation diagram for § = 3.5. The Hopf bifurcations are represented by H
in the figure. The labels (a)-(c) correspond to the oscillatory states shown on Figure for
p =2.67.

From bottom to the top in the diagram of Figure [£.13] the first soliton that start
to oscillates is the single-peak soliton (not shown here). Going up in the branches
of the diagram one sees how the Hopf bifurcations destabilize the states with
two, three and four equidistant peaks, resulting in the oscillatory states that
one can observe in Figure The different peaks of those states oscillates
synchronously or not depending on the control parameters. On top of these
states there exist a wide variety of oscillatory states coexisting for the same
value of the parameters. Three of these possible states are shown in Figure [£.15]
The reason of the existence of these states is that when a single soliton oscillates
generates spatial oscillations in its tails that allow the pinning of a random
number of states due to the the overlapping of the tails of one soliton with those
of its mate’s core. This behavior was studied in an equivalent model in Ref. [2§]
and in the Sine-Gordon equation in Ref. [29].

Dynamics of a single-peak localized state

In what follows, instead of focusing in the collective dynamics generated by a
number of breathers, we study how these oscillatory instabilities get modified
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Figure 4.14: Heat maps showing the spatio-temporal evolution of the real part (U) of an
oscillatory state for § = 3.5 and p = 2.67. The labels correspond to those shown in Figure
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Figure 4.15: There is a large variety of oscillatory states for the same values of parameters.
In this figure we show some of those possible states.

when changing the detuning 6 for a single soliton. Figure shows different
slices of the parameter space in Figure[4.12] Here we plot the ||A]|syp = max(|A])
instead of the L2—norm in order to improve the clarity of the diagrams, and we
use crosses to indicate the maximum and minimum of the amplitude of the
oscillatory states. The diagram in Figure a) corresponds to a value 6 = 3.5,
just the same value than for the foliated snaking shown in Figure For
clarity we have just plotted the branches connected with the single peak soliton
(in red) and the HSSs (in black). The branch of stable solitons become unstable
in the supercritical Hopf bifurcation H™ where an oscillatory state arises. The
amplitude of the oscillations of these states increases with p, until it becomes
unstable to spatio-temporal chaos (STC) when overpassing the SNpop, 1. After
that point the STC persist for high values of p. At § = 5.5 (see Figure b))
the region of existence of the solitons becomes broader, although in most of the
region the solitons are unstable due to the presence of the Hopf bifurcation. Now
the amplitude of the oscillations that arise in H™ is bigger and the STC occurs
before the SNpom, 1.
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Figure 4.16: Bifurcation diagram showing the ||A||ins and ||Al|sup for three different values
of detuning, namely § = 3.5 in (a), # = 5.5 in (b) and § = 7 in (c). In black we show the
HSS Ao, in red the branches corresponding to the one-peak bright soliton unfolding unstably
from RTB bifurcation at SNy, 4p,,1. H stands for the Hopf bifurcation where the bright soliton
becomes unstable to amplitude oscillations.

Figure[£.16 c) shows the situation for # = 7. Here the behavior of the oscillatory
states changes drastically in comparison to the previous cases. Now, together
with the increasing of the amplitude of the oscillations, the cycle undergoes a
period-doubling (PD) bifurcation, starting a route to a very complex dynam-
ics passing through a sequence of oscillatory states characterized by period-2,
period-4 oscillations, and temporal chaos, with periodic windows of period-5,
period-10 oscillations, before disappearing possibly in a homoclinic bifurcation
or boundary crisis (BC1) [30, BI]. Figure shows contour plots with the
different oscillatory dynamics. Between BC; and BCs, the only attractor of the
system is the HSSs branch A%. After BCy stable oscillations exist until they
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Figure 4.17: Heat maps showing the oscillatory and chaotic dynamics for § = 7 corresponding
to the bifurcation diagram shown in Figure [f.I8] These dynamics correspond to period-1
oscillations in (a) for p = 4.525, period-2 in (b) for p = 4.6, period-4 in (c) for p = 4.8,
temporal chaos in (d) for p = 4.9, period-5 oscillations in (e) for p = 5.2 and spatio-temporal
chaos in (k) for p = 6.

disappear into STC. Let us discuss this process in detail, first starting with the
cycle emerging from H™ on the left of the diagram and after studing the cycle
that reappears and becomes STC on the right part of the diagram. For that we
show in Figure a zoom of the diagram in Figure c) that capture the
change in the dynamics of the oscillatory states. The iformation presented in
this figure is complemented by Figures [1.19] and [£.20] showing a series of panels
characterizing the dynamics of the cycle at different values of p. From left to
right we show a time series of the evolution of the maximum of the soliton, the
Fourier transform of this time series , and a two-dimensional phase space projec-
tion onto (U(xo,t), V(zo,t)), being o the position of the center of the structure.
Panel (a) in Figure correspond to the situation at p = 4.525 in Figure
labeled with (a). The time trace and the frequency spectrum in Figure
shows a limit cycle with a singel period. In the phase space shown in Figure
we observe a fixed point A}, a saddle point S corresponding to the unstable soli-
ton, and a periodic orbit corresponding to the cycle. For p = 4.6 panel (b)
shows (corresponding to label (b) in Figure the time series and its spec-
trum which indicates that the cycle has two periods as one can also appreciate
looking at the phase space projection. Panel (c) corresponds to the situation
shown in Figure for p = 4.8 where the cycle has undergone another period-
doubling resulting in a cycle with period-4. Later, for p = 4.9 the cycle becomes
irregular, possibly a chaotic attractor, as we can see in panel (d) of Figure m
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Figure 4.18: Detail of the bifurcation diagram of Figure c) for § = 7. Vertical lines
corresponds to the separation between period-1 oscillations in region III?¢, period-2 oscilla-
tion (region III%), period-4 oscillations (region ITI¢), temporal chaos (region ITI%), period-5,
period-10 oscillations followed by temporal chaos (region III¢), region 111 where only Ag is
stable, region II19 where we find again temporal chaos, and period-4 oscillations, region III*
with period-2 oscillations and spatio temporal chaos in region IV. The labels from (a) to (k)
correspond to dynamics shown in Figures @ and @

In panel (e) for p = 5.2 a periodic window of period 5 is shown, and in panel (h)
for p = 5.21 a periodic window of period-10. For p = 5.221 the cycle becomes
again irregular (see panel (g)). Finally increasing a bit further the value of p,
the irregular cycle collides with the unstable soliton S and disappears via an
homoclinic bifurcation or a BC. As we can appreciate in Figure the region
IT in which the only attractor is the HSS dissapears suddenly and a new chaotic
attractor appears via another BC. This is the situation shown in Figure h)
for p = 5.5 corresponding to the same label in Figure m For p = 5.6 (see
panel (i)) a cycle of period-4 appears. This cycle comes from a period-doubling
of the period 2 cycle shown in panel (j) for p = 5.8. Increasing further the value
of p there is a transition to spatio-temporal chaos as one can see in panel (k).
At this point we can differentiate eight main dynamical subregions:

e [I1%: Oscillatory solitons with a single period.

e III%: The soliton oscillates with period-2.

ITI¢: The soliton oscillates with period-4.

I11%: Region of temporal chaos with periodic windows of periodicity-5 and
10.

ITI¢: Temporal chaos and the soliton oscillates with period-4.
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Figure 4.19: Oscillatory and chaotic dynamics for § = 7 corresponding to the bifurcation
diagram shown in Figure m From left to right: temporal trace of ||A||sup, its frequency
spectrum that allows us to differentiate between the different types of temporal periodicity, and
the two-dimensional phase space considering the projection of the dynamics on the variables
U(zo) and V (x0), with 2o representing the position of the center of the peak. The pump values
are p = 4.525 in (a), p = 4.6 in (b), p =4.81in (¢), p=4.9 in (d), p=5.21in (e), p =5.21 in
(d), and p = 5.221 in (g).
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Figure 4.20: Same that in Figure but for p = 5.5 in (h), p = 5.6 in (i), p = 5.8 in (j)
and p = 6 in (k) (spatio-temporal chaos).

e III/: The only attractor of the system is Aj.
e ITI9: The soliton oscillates with period-2.

e IIT": Region with spatio-temporal chaos.

The scenario can be even more complex for higher values of 6 [9]. We have found
that the supercritical Hopf H™ is born from a codimension-two bifurcation point
called Gravilov-Guckenheimer (GG) or Fold-Hopf bifurcation [32], [33]. At this
bifurcation two codimension-one bifurcations, namely the saddle-node SNy and
the Hopf bifurcation H™ occur simultaneously, and the temporal eigenspectrum
of the linear operator associated to the LL equation and evaluated in that point
has three eigenvalues )\, = £iA and A, = 0. Thus, the Hopf bifurcation line
emerges from the GG point, and although the Hopf line looks like it terminates
perpendicularly to SNy, the inset in Figure [£.12]shows that in fact it approaches
the GG point in a tangential manner, as expected for a GG point. One of the
possible unfoldings of this bifurcation shows that complex temporal dynamics
as Shilnikov chaos arise from this situation [33]. In future work we will try to
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identify the unfolding that we have in our case and therefore determine if the
complex temporal dynamics is originated, like the H™, in the GG bifurcation.

4.7 Conclusions

In this chapter we have studied in detail the bifurcation structure and stability
of bright solitons arising in the anomalous GVD regime of the LL equation.
In this regime, bright solitons arise from two different bifurcations, namely a
Hamiltonian-Hopf (HH) bifurcation, from where a pattern solutions also rises
(as studied in Chapter [3), and from the SNpop, 1, a reversible Takens-Bodganov
(RTB) bifurcation The HH bifurcation only exist for § < 2, and the RTB only
for & > 2. As we saw in Chapter [2] all these bifurcation lines arise from a QZ
codimension-two bifurcation point.

For 6 < 2, the bright solitons unfolding from HH are of NLS-type. The forma-
tion of these structures comes from the intersection of the stable and unstable
manifolds of A} (see Section and Refs. [4H6]). As predicted from normal
form theory there are two families of bright solitons, one with an odd number of
peaks, that we have previously refered as L, and another with an even number
of peaks, L, organized in two curves that snakes back and forward, forming
a bifurcation structure known as homoclinic snaking [4] [7, [8]. Together with
that two families of states, there are also rung branches of solutions correspond-
ing to asymmetric states that interconnect both snaked curves. The resulting
bifurcation structure is now known as snakes-and-ladders structure [21].

For 6 > 2, bright solitons unfold from a RTB bifurcation at the SNp4p, 1 and
they are of KdV-type of solitons. These solitons are organized in a new type of
bifurcation structure that we have called foliated snaking following Ref. [10]. The
single soliton, after arising from the RTB, grows in amplitude and at a certain
point it develops an extra peak separated from the previous one by exactly L/2.
When tracking this new state back and forward we find that it is also connected
with another structure that have four peaks equally separated from each other
by L/4. This process is repeated and each time a new state appears with twice
the number of peaks of the previous state. This type of behavior resembles
the process observed for the pattern solution when undergoing finite-wavelength
instabilities (FW). Therefore, we think that the origin of this foliated snaking is
closely related with the bifurcation structure of patterns.

For hight values of 6 solitons become unstable to oscillations via a supercritical
Hopf bifurcation. We have found that this Hopf bifurcation emanates from a
Gravilov-Guckenheimer bifurcation, a codimension-two point where a saddle-
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node and the Hopf collides in parameter space. These oscillatory regimes exist
not only for single solitons but also for structures with any number of peaks.
The oscillations undergo a series of secondary bifurcations starting a route to
temporal chaos. Along these bifurcations the dynamics increase in complexity.
Moreover, in the anomalous regime, spatio-temporal chaos is also present.

We expect that these results to be useful for experimentalist in the frequency
combs comuninty, specially those working on microresonators.
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Chapter 5
Dark solitons in the normal group
velocity dispersion regime

5.1 Introduction

Dark solitons, localized spots of lower intensity embedded in an homogeneous
surrounding, are a particular type of solitons appearing dissipative systems far
from thermodynamic equilibrium [I]. In the normal group velocity dispersion
(GVD) regime of temporal cavities, these type of localized structures (LSs) have
been studied theoretically using the LL model [2H4], and recently found exper-
imentally in microresonators [5]. However, neither a complete understanding
of their bifurcation structure, nor a detailed characterization of their dynamics
existed. Hence, the goal of this chapter is to present an in-depth analysis of
the dynamics, bifurcation structure, and stability of the dark LSs arising in this
regime.

The type of dark LSs reported here, does not arise due to the bistability between
a HSS solution and a pattern (as it was the case for the bright LSs discussed
in Chapter , but they are related with the coexistence between two different
HSSs, AY and Af, within the same range of parameters. If the two HSS states
are stable, fronts connecting them can form. In this context, two fronts with
different polarities can be considered: one that connects A with A}, which will
be called Fy, and another, F,, connecting back A} with Af. In the LL model A}
and A} are not equivalent, and therefore F; and F,, move with constant velocity
and in opposite directions. However, at the Maxwell point of the system their
velocity becomes zero, and the fronts can lock, forming in this way, a dark LS, i.e.

133



CHAPTER 5. DARK SOLITONS IN THE NORMAL GROUP VELOCITY
DISPERSION REGIME

a heteroclinic cycle in the spatial dynamics. Moreover, even when the velocities
are no zero (i.e. in a region of parameters around the Maxwell point), LSs can
bifurcate from the previous one, and all of them undergo bifurcation structure
known as collapsed snaking [6].

The organization of this chapter is as follows. In Section[5.2] we give an overview
of the spatial dynamics of spatially uniform states similar as studied in Chapter[2]
Later, in Section we perform an analysis of the bifurcation structure of dark
solitons. In Section [5.7] we analyze oscillatory and chaotic dynamics of dark
solitons. In Section [5.8 we present a discussion of the different results found
here and how these results connect with previous ones. Finally we conclude in
Section by discussing the generality of the analysis provided in the earlier
sections and in particular its relevance to frequency combs in nonlinear optics.

5.2 Overview of the spatially uniform states in the normal
regime

In this section we give a summary of the spatially uniform states or HSSs of
the LL equation, going from their temporal stability to their spatial dynamics.
These results were already presented in more detail in Chapter [2] for both, the
anomalous and normal dispersion regimes. In this way this section serve as our
starting point for further analysis in the coming sections.

5.2.1 Temporal stability
In the normal dispersion regime, the LL equation is given by

0 A= —(1+1i0)A —i0?A +i|A|*A + p, (5.1)
where we have taken v = —1.

As we have seen in previous chapters, the HSSs are the same in both regimes,
and are solutions of the cubic algebraic equation,

I3 — 2013 + (14 0*) Iy = p?, (5.2)

where Iy = |Ag|?. Nevertheless, their stability against perturbations e?**+% 4

c.c., differs and it is determined by the dispersion relation

Q) = —1 % \ 4100 — I3 — 62 — (41, — 20)k* — K. (5.3)

In contrast to the anomalous regime, here it follows that in the monostable
regime the Ay solution is always stable while for /3 < 6 < 2 (see Figure a))
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Figure 5.1: In (a) V3 <0 =1.8 <2 and in (b) 2 < 6 = 4. The different labels are explained
in Table in Chapter [2| Solid (dashed) lines indicate stability (instability) in time.

the Aj and A} states are stable and AJ* is unstable. However, when 6 > 2 the
A} branch becomes unstable at a steady state bifurcation with k # 0. This
Turing or Modulational instability (MI) occurs at Iy = I. = 1 and generates
a stationary periodic wave-train with wave number k. = /0 —2; Aj* remains
unstable while A is always stable. An example of this configuration can be seen

in Figure [5.1|(b).

5.2.2 Overview of spatial dynamics in the normal regime

Although we have already studied spatial dynamics in Chapter [2] here we revisit
such analysis focusing on the LSs arising from the reversible Takens-Bodganov
(RTB) point )\1,2 = =+qo, )\3)4 = 0 and the HH point with )\1)2 = *+ik, )\3,4 =
+ik.. Figure summarizes the possible eigenvalue configurations for normal
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5

Figure 5.2: The (0, p) parameter space for normal dispersion in the region of existence
of dark solitons. The green line corresponds to the HH bifurcation, the black lines to the
SN bifurcations of the HSS, and the red lines to the SN bifurcations of the dark DSs. The
bifurcation lines and the regions I-IV are discussed in more detail in the text.

dispersion (v = —1). The transition at Iy = I, i.e., along the green curve

p=pc=+v14+(1-0)? (5.4)

in Figure corresponds to a Belyakov-Devaney (BD) transition when 6 < 2
and an HH transition when 6 > 2. Figures a) correspond to the case 6 < 2,
and we see that the saddle-node bifurcation at SNyom,1 corresponds to a RTB
bifurcation. In contrast, for § > 2 SNyom,1 has become a reversible Takens-
Bodganov-Hopf (RTBH) bifurcation (Figure [5.1{b)). For § = 2 the BD, HH,
RTB and RTBH lines meet at the quadruple zero (QZ) point (see Section [2.3]).
In the parameter space of Figurethe QZ point corresponds to (6, p) = (2,v/2).
The other relevant bifurcation lines in this scenario correspond to SNyom,2. This
point corresponds to a RTB bifurcation in space regardless of the value of 6. As
we will see in next sections, several families of dark solitons emerging from the
SNhom,2, @ RTB in terms of spatial dynamics, are found doing a weakly non-
linear analysis around that point (see Section. Later applying continuation
techniques we continue these states in both parameters p and 6. These results
are shown in Section
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5.3 Weakly nonlinear analysis around SN, 2

In this section we compute weakly nonlinear DSs using multiple scale perturba-
tion theory near the RTB bifurcation corresponding to SNjm 2. The procedure
is the same as applied in the case of the SN, o,,1, because here the bifurcation is
also a RTB. The DSs are solutions of the ordinary differential equation

—iA” — (1 +i0)A +i|APA+p =0, (5.5)

2

where A" = Z—f In terms of the real variables U = Re[4] and V = Im[A]

x
Eq. (5.5)) is written as,

V" —U+60V -V (U?+V?)+p=0,
(5.6)
—U" -V —0U +U(U?+V?) =0.

Here we will make a short summary of the steps followed in this calculation. As
we did in Section and following [6], we fix the value of § and suppose that the
DSs at p = p;, where p = p; corresponds to the SNy, 2 bifurcation, are captured
by the ansatz U = U* +u, V = V* + v, where U* and V* represent the HSS
Al and w and v capture the spatial dependence. We next introduce appropriate
asymptotic expansions for each variable in terms of a small parameter e defined
as follows. First we consider a Taylor series expansion of p around the SNy, 2

at I = (20 + v0% = 3) /3:

dp 1 (d?p 9
p(lo) =p(I) +| - ) Io—1)+ 5|55 ) Ho—IL)"+--- (5.7)
—_— dly I, 2 \dI§ I, ——
143 N—— N———— €2
=0 5

Because p; has a minimum at I;, we have

d
)
dlo ),
1 (d%p 02 —3
0 == —5 =— .
' 2<dlg>1t 20t >0

From there we can define a small parameter € in terms of p,

_ P Pe
€= 5 (5.8)
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Each variable is written in the form

[g]:[%}—i—e[%}—i— (5.9)

=l eel ) o

and these expressions inserted into Eq. (5.6)). Solving order by order in € we find
that the leading order asymptotic solution close to the RTB point is given by

vl | U U +uy
[V]_[Vt]ﬂ[mm}, (5.11)
where U; and V; correspond to the HSS at p = p;, and

MRS (.12

U1

%] [1]

¥(x) = —3sech? [;E <p gtpt>1/4 x] . (5.14)

Here 7, p¢, a1 and oy are parameters defined in the Appendix where the
details of the calculation can be found. Of course, on a large domain we expect
to find states with 2 or more dark solitons as well. When these are well separated
these states behave like 1-soliton states and so should bifurcate from the vicinity
of SNpom,2 just like the 1-soliton states.

and

with

and

We now discuss the bifurcation structure of dark solitons in two regimes: the
bistable region before the QZ point, namely for v/3 < # < 2 and the bistable
region after QZ, i.e., for 8 > 2.

5.4 Bifurcations and stability of dark solitons for
V3 <0 <2

In the following we use the L? norm, ||A|]* = + fOL |A|2 dz, to represent the DSs
in a bifurcation diagram. Figure[5.3] computed for § = 1.95, reveals the presence
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Figure 5.3: (a) Bifurcation diagram at 6 = 1.95. (b) Zoom of panel (a) around SNp,y, 2.
The homogeneous steady states HSS are shown in black, 1-soliton states in red and 2-soliton
states in green. Temporally stable (unstable) DSs are indicated using solid (dashed) lines.
Profiles corresponding to the labeled locations are shown in Figure [5.4] and in more detail in

Figure [5-5]

of a branch of single dark solitons in the domain (hereafter the 1-soliton state,
red curve). This branch bifurcates from HSS very close to SNpom,2 as anticipated
in the preceding section and undergoes collapsed snaking [6] 8], i.e., it undergoes
a series of exponentially decaying oscillations in the vicinity of a critical value
of p, hereafter p = pps =~ 1.3506074. During this process the hole corresponding
to the dark soliton deepens, forming a pair of fronts F; connecting A§ with AY,
and F, connecting Aj with AY. This structure broadens as the A} state expels
Al (Figure profiles (i)—(iii)), becoming in an infinite system a heteroclinic
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Figure 5.4: Spatial profiles of DSs (dark and bright 1-soliton and 2-soliton states) corre-
sponding to the locations indicated in Figure a,b), with U(z) in black and V(z) in blue.
Near SNjopm,2 the states resemble holes (dark solitons) while near SNjopm,1 they resemble
localized pulses (bright solitons).

cycle between AL and A} at pys. In gradient systems this point corresponds
to the so-called Maxwell point, where both homogeneous solutions have equal
energy. In nongradient systems, such as LL equation, such a cycle may still be
present, even though an energy cannot be defined, and we retain this terminology
to refer to its location, i.e., the parameter value corresponding to the presence
a pair of stationary, infinitely separated fronts connecting Af to A} and back
again. States A} and Af are not equivalent, and therefore, fronts move with a
constant veolcity cg, which depends on the control parameters of the system i.e.
cr = cp(0, p), into the left or right depending on their orientation and the value
of p. Then we say that the veolcity cp is positive if a front F, (resp. Fy) moves
from left to right (resp. from right to left) and negative in the other case. In
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Figure 5.5: Spatial profiles of dark solitons near the upper end of the § = 1.95 1-soliton
branch at locations indicated in the middle panel, showing that the splitting of the central
peak (dip) in (U(z), V(z)), shown in black and red, respectively, occurs at different locations
along the branch.

this context, the Maxwell point of a nongradient system can be understood as
the point where the velocity of fronts is zero.

The successive saddle nodes seen in Figure [5.3] correspond to the appearance of
additional oscillations in the tails of the fronts as the local maximum (minimum)
at the symmetry point = 0 turns into a local minimum (maximum) and back
again, and hence to a gradual increase in the width of the hole. Figure shows
a detail of this process. The associated hole states are temporally stable between
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SN; and SNj, and on all the subsequent branch segments with positive slope
[6, 8], shown using solid lines. A profile of a stable localized hole on the SN;—
SNy segment is shown in Figure i). For the value of 8 used in Figure the
collapse of the saddle nodes to pj; is very abrupt because the spatial oscillations
in the tail of the front decay very fast. Figure [5.6] shows a clearer example of
the behavior in this region, albeit for a larger value of 6.

In finite systems the hole or 1-soliton branch departs from p ~ pjp; when the
maximum amplitude starts to decrease below A} and the solution turns into a
bright soliton sitting on top of A} (Figure profile (iv)). The branch then
terminates at SNpom,1, where the amplitude of this soliton falls to zero. On an
infinite domain the DS branches bifurcating from SNpom,2 and SNpom,1 remain
distinct and do not connect up.

Figure also shows the 2-soliton branch (green curve). This branch consists
of a pair of equidistant dark solitons within the periodic domain (Figure
profiles (v)—(viii)). The states on this branch can be viewed as 1-pulse states
on the half-domain and it is no surprise therefore that they follow the behavior
of the 1-pulse states shown in red. In fact, this is so for all n-soliton branches
(n > 3, not shown), provided the solitons remain sufficiently well separated;
finite size effects push the bifurcation to these states farther from the saddle-
node at SNpom,2 as n increases, with similar behavior near SNyom, 1.

Of particular interest is the third soliton branch (Figure[5.3|b), blue curve). This
branch bifurcates from the vicinity of the first left fold on the 2-soliton branch,
labeled SN. This branch also undergoes collapsed snaking in the vicinity of
prm- The states on this branch start out as a 2-soliton state consisting of a
pair of (nearly) identical solitons (Figure profile (ix)) but only one of the
two solitons broadens near py; (Figure roﬁles (x)—(x1)). The result is the
profile (xii) shown in Figure after translation by L/4. This state is seen
to correspond to a single bright soliton, with a dip in the middle; numerical
continuation shows that these states terminate on HSS near SNyom, at the
same location as the 1-soliton branch (red curve). This new branch plays a
particularly important role for 8 > 2, as discussed next.

5.5 Bifurcation and stability for dark solitons for 6 > 2

For § > 2 the saddle node SNj,.,,1 becomes a RTBH point with spatial eigenval-
ues A12 = *iko A3 4 = 0 and homoclinic orbits are exceptional [6] [9]. However,
in this case this point is preceded by a HH bifurcation on A§, which gives rise to a
branch of patterns. The pattern bifurcates subcritically (Figure but remain
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Figure 5.6: (a) Bifurcation diagram for 6 = 4 showing collapsed defect-mediated snaking of
1-soliton (red line) and 2-soliton (green line) branches, showing their reconnection with the PS
branch (orange line) that bifurcates from HH on Aj. Temporally stable (unstable) structures
are indicated using solid (dashed) lines. Black lines correspond to HSS. Enlargements of panel
(a) can be found in Figs. and (b) The spatial eigenvalues A of Ag at locations HH
and SC in (a).

unstable throughout their existence range, despite the presence of a saddle node.
This is the case for all values of the detuning 6 we explored (2.3 < 6 < 10). Thus
no bistability between the pattern and A} results and no snaking of bright DSs
takes place [10, [11]. Instead the bright solitons bifurcating from HH connect to
the dark solitons originating at p = p;, as we now discuss.

Figure [5.6[a) shows the bifurcation diagram of the 1-soliton states (red branch)
for 8 = 4 obtained by numerically continuing the analytical prediction obtained
in Eq. away from SNpepm 2. Figure a) shows a detail of this branch.
These states are initially unstable but as p increases these unstable 1-soliton
states grow in amplitude and acquire stability at saddle node SN;. The DS
profile on this segment of the branch is shown in Figure i). This solution
loses stability at SNo but starts to develop a spatial oscillation (SO) in the center;
solutions of this type become stable at SN3. An example of the resulting stable
solution can be found in Figure (ii). This process repeats in such a way that
between successive saddle nodes on the left or right a new spatial oscillation
is inserted in the center of the dark soliton profile and the soliton broadens,
decreasing its L? norm. As a result, as one proceeds down the snaking branch
the central peak (dip) repeatedly splits. Details of this process are shown in
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Figure 5.7: Detail of the 1-soliton (panel (a), red line) and 2-soliton (panel (b), green line)
branches in the vicinity of SNje., 2 for 8 = 4. Black lines show the homogeneous states
HSS. Panel (b) also shows a family of nonidentical 2-soliton states (blue line) that bifurcate
from the saddle node SN 4 on the 2-soliton branch and also undergo collapsed defect-mediated
snaking. Temporally stable (unstable) structures are indicated using solid (dashed) lines.
Profiles corresponding to the labeled locations are shown in Figure [5.8] with details of this
process shown in Figure @

Figure Numerically the collapse occurs at p = pyr ~ 2.1753479. The
DSs at this location correspond to broad hole-like states of the type shown
in Figure v). As in Section further decrease in the norm signals that
the two fronts Fy and F, connecting states A4 and A at pys are starting to
separate (Figure vi)). These two fronts are asymmetric i.e. Fy q(—2x) #
F, q(x), although they are related by a reflection transformation, F,(—z) =
Fy(z). Figure shows the front velocity as a function of p for § = 4. The
vertical line stands for the Maxwell point of the system pp; where cg(pas) = 0,
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Figure 5.9: Velocity of the front in function of p for § = 4. At the Maxwell point, at
p = prp = 2.1753479 the velocity of the fronts is zero.

and the velocity of fronts switches its sign.

The separation of fronts continues, resulting in the bright soliton state shown in
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Figure 5.10: Spatial profiles of the dark solitons near the upper end of the § = 4 1-soliton
branch at locations indicated in the middle panel, showing that the splitting of the central
peak (dip) in (U(z), V(x)), shown in black and red, respectively, occurs at different locations
along the branch.

Figure (iv); this state is shifted by half the domain width relative to panels
(i)-(vi) of Figure Thereafter the amplitude of the peak at = 0 starts to
decrease and the 1-soliton branch departs from py;, ultimately connecting to the
branch of small amplitude PS (Figure [5.11{i)) that bifurcates subcritically from
HH (see inset in Figure top panel).

Figure a) also shows the 2-soliton state (green line) that bifurcates from the
vicinity of SNpom,2 for 6 = 4 just as in the case # = 1.95. For 6 > 2 this second
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Figure 5.11: Bifurcation diagram for § = 4 showing the bifurcation of the three families of
localized states (bright solitons) from the subcritical PS branch. States with maxima at z =0
(red line) connect with the corresponding branch of dark solitons shown in Figs. a) and
a) while states with minima at z = 0 (blue line) connect with the corresponding branch in
Figure b). The states shown in green consist of two equidistant bright solitons and these
connect to the corresponding branch in Figure a).

DS family plays a key role since it is responsible for providing the second of the
two branches of localized states that are known to be associated with HH. Figures
b)7 and show how this happens. The green branch in Figure b)
consists of states with identical equidistant solitons; like the 1-soliton states,
the 2-soliton states proceed to develop internal oscillations (Figs. vii)-(viii)).
These undergo a symmetry-breaking pitchfork bifurcation at SN, giving rise
to a branch of nonidentical solitons (in blue). One of these gradually acquires
complex internal structure while the other remains unchanged. Figures ix)-
(x) show this state at the locations shown in Figure[5.7|(b), while Figure @ xii)
shows a translate of such a 2-soliton state by a quarter of the domain size.
Figures xii)-(ix) and [5.11|(xiv)-(xi) show the subsequent evolution of this
2-soliton state into a single wave packet with a minimum at its center x = 0. It
is this state that connects to PS at the same location as the corresponding wave
packet (red) with a maximum at z = 0 that originates in the 1-soliton state near
SNhom,2- In contrast, the 2-soliton state that also appears near SNy, 2 (green)
terminates in a distinct bifurcation on PS, as also shown in Figure (.11} All
three branches undergo collapsed defect-mediated snaking inbetween. Evidently
there are similar branches that bifurcate from other folds on the 2-soliton branch
(not shown).
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Figure 5.12: Sample of solution profiles corresponding to the locations indicated in Fig-

ure 5T

We note that as the domain length increases the termination point of the 1-
soliton (red line) and the nonidentical 2-soliton branch (blue line) migrates to-
wards HH and in the limit of an infinite domain the bright solitons bifurcate
from A} simultaneously with the pattern, exactly as predicted by the normal
form for the spatial Hopf bifurcation with 1:1 resonance [I12]. We also mention
that, in principle, the Maxwell point pp; may collide with the saddle node of the
pattern branch (see [I3] for details). However, we have determined that such a
collision does not occur in the LL equation and that the pattern branch remains
well-separated from the collapsed snaking branches of dark solitons around pjs
(at least in the parameter range 2.3 < 6 < 10).

We turn, finally, to the structure of the spatial eigenvalues shown in Figure b,c).
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Figure 5.13: Details of the profile transformation at § = 4 that changes two nonidentical
dark solitons (blue branch in Figure[5.7[b)) into a bright soliton with a minimum at its center
z = 0, allowing it to connect to the PS state at the same location as the 1-soliton state (red
branch in Figure a)) which evolves into a bright soliton with a maximum at its center
z = 0. The 2-soliton state consisting of two identical equidistant solitons (green branch in
Figure b)) also terminates on PS, but at a distinct location.
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Figure 5.14: Bifurcation diagram for (a) 6 = 5 and (b) # = 10 showing that the DSs are
now unstable within intervals between back-to-back Hopf bifurcations. The Hopf bifurcations
on the left (H; , panel (a)) for the 2-soliton states (green and blue lines) coincide with that of
the 1-soliton states (red line).

Panel (b) confirms that HH corresponds to a Hamiltonian-Hopf bifurcation in
space. Panel (c) shows that at the termination point of the pattern branch the
HSS state A has 2 purely real eigenvalues and 2 purely imaginary spatial eigen-
values, indicating that SC corresponds to a global bifurcation in space and not
a local bifurcation. Both HH and SC are formed in the process of unfolding the
spatially reversible QZ bifurcation that takes place at SNppm,,1 when 6 = 2.
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5.6 Soliton location in the (6, p) plane

Tracking each bifurcation point in the bifurcation diagram as a function of 6
we obtain the (6, p) parameter plane shown in Figure The green solid line
represents a BD transition for 6 < 2 that turns into a HH bifurcation for 6 > 2.
The saddle-node bifurcations determine the regions of existence of the different
dark solitons shown previously. With increasing 6 the region of existence of
these states becomes broader (Figure a,b)). In contrast, when 6 decreases
the branches of solutions with several SO progressively shrink, disappearing in
a series of cusp bifurcations Cj,...,Cy, as shown in Figure 5.2}

We distinguish four main dynamical regions, labeled I to IV in the phase diagram
in Figure 5.2} in terms of the existence of HSS and dark DSs:

e Region I: The bottom HSS A} is stable. No dark DSs or top HSS Af
exist. This region spans the parameter space p < pgp for § < /3 and
P < PSNyom,a for 0> V3.

e Region II: The bottom HSS Af and top HSS A} coexist and are both
stable. No dark DSs are found. This region spans the parameter space
PSN: < P < PSNpoma for 0> /3.

e Region III: The top HSS A} is stable. No dark DSs or bottom HSS A}
exist. This region spans the parameter space p > ppp for § < /3 and
P> PSNpom o TOr 0> /3.

e Region IV: The bottom HSS A} and top HSS Af are stable and coexist
with possibly unstable or stable dark DSs. This region spans the parameter
Space Psn,,., < p < psn, for 6 > /3.

Region IV is the main region of interest in this work. It can be further subdivided
to reflect the locations of different types of DSs. In the next Section, we refer
to the region between SN; and SNj, i.e., the region of existence of dark solitons
with one spatial oscillation (1-SO dark solitons), as subregion IV;. Similarly,
subregion IV, corresponds to 2-SO dark solitons between SN3 and SN4 and so
on. While both HSS are stable in region IV, the stability of dark DSs in the
various subregions depends on the parameter values (6,p) as discussed next.

5.7 Oscillatory and chaotic dynamics

We have seen that the range of values of the parameter p within which one finds
dark solitons increases rapidly with increasing detuning 6 although the interval
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Figure 5.15: (i) Oscillatory 1-soliton state, (ii) oscillatory 2-soliton state, (iii) a bound state
of an oscillating and a stationary dark soliton, all computed for § =5, p = 2.6. (iv) A similar
state to panel (iii) but for # = 5, p = 2.56. The solutions are represented in a space-time
plot of U(x,t) with time increasing upwards. The profile at the final instant, ¢ = 20, is shown
above each space-time plot.
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Figure 5.16: (i) Oscillatory 1-soliton state, and (ii) oscillatory 2-soliton state, when 6 = 10,
p = 4.5. The solutions are represented in a space-time plot of U(z,t) with time increasing
upwards. The profile at the final instant, ¢ = 20, is shown above each space-time plot.

with stable stationary dark solitons is reduced by the presence of oscillatory in-
stabilities that set in as 6 increases (Figure [5.14). These intervals of instability
open up on the stable portions of the collapsed snaking branches, between pairs
of supercritical Hopf bifurcations on either side. Consequently these instabili-
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Figure 5.17: (The (6, p) parameter space for normal dispersion (v = —1) showing the region of
existence of (a) the 1-SO dark soliton and (b) the 2-SO dark soliton. The different bifurcations
are labeled, with HJ_ indicating a supercritical Hopf bifurcation at location H;. The red (gray)

region corresponds to stable stationary (oscillatory) dark DSs.

ties lead to stable temporal oscillations resembling breathing of the individual
solitons. To characterize the resulting dynamics we combine here linear stability
analysis in time with direct integration of the LL equation. We also compute
secondary bifurcations of time-periodic states and point out that in appropri-
ate regimes the LL equation exhibits dynamics that are very similar to those
exhibited by excitable systems.

As already noted, for § =5 (Figure a)) and 6 = 10 (Figure[5.14b)) the sin-
gle dark soliton becomes unstable in a supercritical Hopf bifurcation (H7 ) lead-
ing to an oscillatory state. Figure i) shows the resulting oscillatory state at
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location (i) in Figure a). The temporal oscillations disappear upon further
decrease in p and do so in a reverse supercritical Hopf at H;, thereby restoring
the stability of the single dark soliton. For larger values of 6 this behavior not
only persists but the soliton with 2 spatial oscillations (SO) also exhibits tem-

poral oscillations between two back-to-back Hopf bifurcations (Figure b)).
An example of such oscillatory 2-SO dark soliton is shown in Figure i)

Figure [5.15(ii) shows the corresponding oscillation of the 2-soliton state for
0 = 5 at location (ii) in Figure a). The solitons oscillate in phase, in a non-
sinusoidal manner. Figures (iv) show oscillations of a bound state of two
nonidentical dark solitons at locations (iii) and (iv) in Figure a). In these
states the simple dark soliton on the left oscillates in a periodic fashion while
the structured dark soliton on the right remains essentially time-independent.
Figure [5.16{ii) shows a periodic oscillation of a 2-soliton state for # = 10 corre-
sponding to location (ii) in Figure[5.14[b). The individual solitons are structured
and oscillate as in panel (i). Once again, both oscillate in phase.

We can complete the parameter space shown in Figure by adding the curves
corresponding to the oscillatory instabilities at H] and H; . Figure shows
the parameter space with the curves corresponding to the temporal instabilities
of the 1-SO and 2-SO dark solitons included; the saddle nodes of the remaining
dark solitons are omitted in order to give a clearer understanding of this behavior.

Bifurcation lines separating different dynamical regimes are labeled according
to Figure With increasing 6 the Hopf bifurcation H; of the single dark DS
approaches SN; and we see that both lines are almost tangent although, for the
parameter values presented, they do not meet. The same scenario repeats for
the Hopf bifurcation H3 of the 2-SO state.

This scenario can be better understood by looking at Figure [5.18] where sev-
eral slices of Figure [5.17(a) at different values of § are shown. We choose to
plot ||A||int := min(|A|) instead of the L? norm to improve the clarity of the
bifurcation diagram, and denote the maximum and minimum amplitude of the
oscillatory DSs using crosses. The diagram in Figure a) corresponds to a
cut of Figure[5.17]at 6 = 4.6. At this 6 value the oscillatory state bifurcates from
Hi , grows in amplitude as p decreases, before reconnecting to the stationary DS
at Hy in a reverse Hopf bifurcation. For larger ¢, the amplitude of the limit cycle
between H] and H; increases, and at some point the cycle undergoes a period-
doubling (PD) bifurcation, starting a route to a chaotic attractor. This happens
already at 6 = 5 as can be seen in Figure[5.18|b). At 6 = 5.2 (Figure[5.18|c)) the
chaotic attractor touches the saddle branch S corresponding to unstable dark
solitons and disappears through a boundary crisis (BC) [14]. Let us discuss this
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Figure 5.20: Route to temporal chaos for § = 5.2. Panels (a)—(d) represent the transition
from (a) period 1 oscillations to (d) temporal chaos, corresponding to the labels in Figure[5.19]
From left to right: temporal trace of || A||inf, its frequency spectrum that allows us to differenti-
ate between the different types of temporal periodicity, a portion of the phase-space containing
A(t)7 S and the periodic attractors, and a zoom of the latter where we can appreciate the prox-
imity of S to the cycle. (a) p = 2.70248 (period 1), (b) p = 2.70358 (period 2), (c) p = 2.71528
(period 4), (d) p = 2.72178 (temporal chaos).

process in detail for the cycle emerging from H; (the case of H] is analogous).
In Figure we show a zoom of the diagram in Figure [5.18|c) close to BCs
and in Figure [5.20] a series of panels characterizing the cycle at different values
of p is shown. From left to right we show a series of time traces corresponding
to the temporal evolution of the minima of the soliton, i.e., ||A||int, the Fourier
transform of these time traces, a two-dimensional phase space projection onto
(U(xo,t),V(zo,t)), xo being the position of the center of the structure, and a
zoom of the phase space. Panel (a) in Figure corresponds to the situation
at p = 2.70248 in Figure labeled with (a). As we can see in the time trace
and in the frequency spectrum, the cycle has a single period. In the phase space
shown in Figure we observe a fixed point corresponding to Af, a saddle
point corresponding to the unstable dark soliton denoted by S and a periodic
orbit corresponding to the cycle. For this value of p the saddle S is far from the
cycle. For p = 2.70358 (panel (b) corresponding to label (b) in Figure the
time trace and the spectrum reveal that the cycle has period two as can also
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be discerned from the phase space projection. In Figure c) for p =2.71528
the cycle has just suffered another period-doubling resulting a cycle with period
four. Finally, Figure d) shows the situation for p = 2.72178, where the
cycle has become a chaotic attractor. At this parameter value the system is very
close to the boundary crisis BCy as can be appreciated from the near tangency
between S and the chaotic attractor. Once S touches the attractor, the latter
disappears and only Af and A} remain as attractors of the system. The same
occurs to the cycles appearing at H . Using time simulations we were able to
estimate the position of the boundary crises BC; and BCs in parameter space,
labeled in Figure [5.17(a). From Figure [5.18|c) to Figure [5.18(d) we can see
that at the same time as BC; moves toward Hj , H] itself approaches SN; and
therefore that the region of existence of oscillatory DSs shrinks. This behavior
can also be seen in Figure a).

At this point we can differentiate five main dynamical subregions related to
region IV, i.e., the 1-SO dark soliton, namely:

o IV{ : The 1-SO dark soliton is stable.

e IV} : The soliton oscillates with a single period.
e IV : The soliton oscillates with period two.

e IV¢: The soliton oscillates with period four.

e IV¢ : Region of temporal chaos bounded by a boundary crisis (BCz).

The region IV, of 2-SO dark solitons has the same sequence of subregions
Ivs,... . IVS, etc.

Close to BCy (respectively, BCp) the system can exhibit behavior reminiscent of
excitability [I5]. Here the stable manifold of the saddle soliton S acts as a sep-
aratrix or threshold in the sense that perturbations of A across that threshold
do not relax immediately to Af but lead first to a large excursion in phase space
before relaxing to Af. In this case the excursion corresponds to what is known
as a chaotic transient, where the system exhibits transient behavior reminiscent
of the chaotic attractor at lower values of p [I6] [I7]. In Figs. a) and (b)
we show two examples of this kind of transient dynamics. We choose a value
of p close to BCs, namely p = 2.7235, and modify the parameter p for a brief
instant using a Gaussian profile of width o and height h using the instantaneous
transformation
(z—-L/ 2)2]

= (5.15)

p = p+ h(t)exp [—
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Figure 5.21: Chaotic transient dynamics for § = 5.2: A chaotic transient is generated when
Aé is temporally perturbed with a Gaussian perturbation of height h = —2.55 (see gray area in
time traces); Panel (a) represent space-time plots of the temporal evolution of the field U(z, t),
panel (b) shows the time series of the norm [|A||jns and panel (c) is a projection of the phase
space.
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Figure 5.22: Chaotic transient dynamics for § = 5.2 similar to Figure but now for
h = —3.4431. Supanels (a), (b) and (c) represent the same than in Figure

where p = 2.7235 and o = 0.781250 with h(t) = —2.55 for 10 < ¢t < 15 and
h = 0 elsewhere [18]. Such a perturbation of A} allows the system to explore the
chaotic attractor before returning to the rest state. In Figure (b) the system
explores just one loop of the cycle before returning to the rest state. In usual
excitable systems the shape of the large excursion in phase space is a single pulse
corresponding to one cycle around a reminiscent periodic orbit, however, in this
case several pulses can be observed, corresponding to a piece of the reminiscent
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chaotic attractor

5.8 Discussion

In the present chapter we have presented a comprehensive overview of the dy-
namics of the LL equation in the normal dispersion regime. The bifurcation
structure of dark solitons, their stability and the regions of their existence were
determined. In this section we will discuss the main results presented along this
chapter.

Families of dark solitons

Three families of dark solitons, the 1-soliton and two different types of 2-soliton
states, located on three intertwined branches undergoing collapsed snaking in
the vicinity of the same Maxwell point, were identified. The 1-soliton states
bifurcate from the top left fold of an S-shaped branch of spatially homogeneous
states and terminate either on the lower homogeneous steady state (HSS) branch
in a Hamiltonian-Hopf (HH) (equivalently, modulational instability) or at the
bottom right fold, depending on the detuning parameter . On a periodic domain
of finite spatial period, these bifurcations are slightly displaced from the folds,
and in the case of the HH bifurcation to finite amplitude on the branch of
periodic states created in this bifurcation. The 2-soliton states consisting of a
pair of identical equidistant solitons in the domain follow a similar branch but
branch off the HSS farther from the folds. This is a finite size effect: these states
behave like the 1-soliton states on a periodic domain with half the domain length.
The third branch consists of a pair of nonidentical solitons and plays a key role:
this branch bifurcates from the branch of identical 2-soliton states in a pitchfork
bifurcation; as one follows this branch to lower L? norm these states undergo a
remarkable metamorphosis into a bright soliton with a minimum at its center
that allows it to terminate on the periodic states created in the HH bifurcation
at the same location as the 1-soliton states, as demanded by theory. The details
of this transition are captured in Figs. [5.11] and Related behavior likely
occurs in the Swift-Hohenberg equation as well (see Figure 19 of [I9]). On top
of this, solutions with more than 2 peaks and with an arbitrary number of peaks
(spatial chaos) may also exist.

Oscillatory instabilities

At yet higher values of the detuning parameter 6 we found that the localized
states undergo oscillatory instabilities, and at a certain point a period-doubling

159



CHAPTER 5. DARK SOLITONS IN THE NORMAL GROUP VELOCITY
DISPERSION REGIME

bifurcation initiates a period-doubling cascade into chaos. We have used this ob-
servation to determine the regions in parameter space where different stationary
and dynamical states coexist.

Quadruple zero point

We have shown that the bifurcations that organize the spatial dynamics undergo
an important transition at a Quadruple-Zero (QZ) point, which occurs at (6, p) =
(2,4/2). Here, in the normal dispersion regime, the Belyakov-Devaney (BD)
transition turns into an HH bifurcation as the detuning 6 increases through 6 = 2.
For 6 > 2 a spatially periodic pattern bifurcates subcritically from the bottom
homogeneous state at this HH bifurcation. These periodic solutions were found
to be unstable, and hence no stable bright DSs were found. However, the saddle-
node bifurcation of the top homogeneous solution remains a reversible Takens-
Bogdanov (RTB) bifurcation for all # > +/3. This observation explains the
existence of multiple families of dark DSs in this regime, and their organization
in the so-called collapsed snaking structure [0, 20]. As mentioned, these dark
DSs undergo various dynamical instabilities for larger values of the detuning 6.

Normal versus anomalous dispersion

The bifurcation scenario is largely reversed in the case of anomalous dispersion,
where the same QZ point plays an equally important role, but now the HH bi-
furcation turns into a BD bifurcation when 6 > 2 [2 [2I]. Moreover, the top
homogeneous solution is now always unstable and the upper fold never corre-
sponds to a RTB bifurcation. This reverse character of the bifurcation points has
important consequences. First, dark DSs no longer exist, although the inclusion
of additional, higher order dispersion can stabilize the top homogeneous solution
and hence lead to stable dark DSs [22]. Second, for 41/30 < 6 < 2, a stable
periodic solution coexists with the stable bottom homogeneous solution giving
rise to bright DSs that are organized in a homoclinic snaking structure [10, [IT].
However, as we have seen in Chapter {4} for § > 2, the homoclinic snaking struc-
ture disappears and bright solitons are organized in a foliated snaking type of
structure. Finally, despite these differences in the regions of existence of dark
and bright DSs in the normal vs. anomalous dispersion regime, the temporal
dynamics of the existing solutions are very similar at higher values of the de-
tuning 0. Here, for normal dispersion, we reported the existence of oscillatory
and chaotic dynamics of dark DSs as the detuning is increased. The same dy-
namical instabilities have been observed in the case of anomalous dispersion at
high values of 6, but this time for bright DSs [16, 21]. This suggests that the
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unfolding of the dynamics can be related to the same type of bifurcation point
in both cases.

5.9 Conclusions

The analysis presented in this chapter provides a detailed map of the regions of
existence and stability of dark DSs, which could serve as a guide for experimen-
talists to target particular DS solutions. We have shown that dark DSs exist
only in a well-defined zone within the wider region of bistability between two
stable homogeneous solutions. Within this zone, dark DSs are organized in a
bifurcation structure called a collapsed snaking structure. The word "collapsed"
refers to the fact that the region of existence of dark DSs shrinks exponentially
with increasing number of spatial oscillations (SOs) in the soliton profile (Fig-
ure . The collapse of the snaking structure implies that DSs with many SOs
can only be found at the Maxwell point pys, a fact that favors the observation
of DSs with a single SO over that of broader DS with many SOs.

Although such a collapsed snaking structure persists for higher values of the
detuning 6, we also showed that narrow dark DSs with a low number of SOs
destabilize first as § increases (Figure and start to oscillate in time. There-
fore, at higher values of 6 stable stationary dark DSs found experimentally will
most likely have an intermediate number of SOs. Our general analysis of the
multistability of dark DSs may also explain the numerical observations in Ref.
[2], where it was shown that the pulse profile of dark DSs becomes more dis-
torted as the detuning increases. This may be due to the fact that stable dark
DSs with a larger number of SOs are more likely to be found for higher values
of the detuning.

As shown in Figure[5.2] in the normal dispersion regime rather large values of the
detuning 6 and pump power p are required to obtain a sufficiently wide region of
dark DSs (region IV) to observe such states experimentally. However, in recent
years, the FC community has become increasingly successful at reaching the
required values of pump power and detuning. As a result, dark DSs with different
numbers of spatial oscillations (SOs) in their center (see, e.g., Figure have
been observed in experiments [5]. In Ref. [B] dark DSs were found using a
normalized pump power p ~ 2.5 and normalized detuning 6 ~ 5. Figures [5.17]
and show that around these parameter values one can indeed find dark DSs
with different numbers of SOs that can undergo oscillatory instabilities.

In Chapter [6] we will analyze how dark solitons and their bifurcation structure
are modified by considering higher orders of dispersion, in particular we focues
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Chapter 6
Third order dispersion effects:
stabilization of solitons

6.1 Introduction

Previously in this thesis, we have studied the dynamics, stability and bifurcation
structures of LSs in the two main regimes of operation of the temporal cavities
described by the LL model, namely the anomalous and normal group velocity
dispersion (GVD) regimes. In the anomalous regime (see Chapter {4) the typical
LSs are bright solitons, while in the normal one (see Chapter [5|) they are dark.
We have also shown that these two type of structures have a different origin:
while a bright LS arises as a pattern-element, the dark ones are formed due to
the locking of two fronts with different polarities. However, in a real experi-
mental setup, high-order chromatic dispersion (HOD) effects must be taken into
account. For instance, for certain values of the driving field frequency the GVD
coefficient B ~ 0, and therefore the third order of dispersion (TOD) becomes
relevant. Because of that, it is relevant, from a theoretical and experimental
point of view, to know how these HOD terms modify the scenario. Hence, in
this Chapter we will focus on analyzing how the dynamics, stability, and bifur-
cation structure of the LSs studied previously get, modified when considering
the effect of TOD in the system.

This term breaks the reflection reversibility © — —x, which leads to asymmetries
in the temporal and spectral profiles [IH4]. This asymmetry is also responsible
for the observed constant-velocity temporal drift. In microresonators, the carrier
frequency of the LS is shifted from the pump due to spectral recoil from the
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emission of dispersive waves [3H5], and its group-velocity differs slightly from
that of the pump. In fiber cavities, a similar change in group-velocity occurs
through acoustic effects and leads to long-range LS interaction [6].

Here, we will show that TOD can stabilize solitons in both regimes of operation
(anomalous and normal GVD), suppressing oscillatory instabilities [7 [8]. More-
over, in the normal GVD regime we have also found that bright solitons sitting
on a low-intensity background A}, which in the absence of higher order terms
are found to be unstable, can come into stable existence with TOD due to the
appearance of oscillatory tails around the top HSSs solutions Af.

This Chapter is organized as follows: in Section we present some features
of the influence of TOD terms on the dynamics of solitons in the LL equation.
Later, in Section [6.3] we study the spatial dynamics of the system, analyzing the
structure of homoclinic orbits to the HSSs when reflection symmetry is broken.
In Section we present the results of adding TOD to the LL equation in the
anomalous regime. Together with the suppression of oscillatory and chaotic dy-
namics we analyze how the bifurcation structure of solitons is modified. After
that, in Section[6.5] we show a similar analysis for the normal dispersion regime,
where the dynamics of dark solitons is altered and bright solitons appears. Fi-
nally in Section we draw some conclusions for this chapter.

6.2 Overview of the Lugiato-Lefever equation with drift in-
stability

Using the normalization of [9], and including dispersion up to third-order, the
LL equation reads,

A = —(1+i0)A+ivd? A+ dz02A +iA|A]* +p (6.1)

where, p, 6 are real control parameters representing the normalized injection
and frequency detuning. Parameter dz represents the relative strength of the
TOD. In Section we have seen that d3 can be calculated from the physical
parameters of the system, ds = (1/3)(2a/L)Y/?B3/|B2|*/? [10], where « is half
the percentage of power lost per round-trip, L is the cavity length, and 82 (f3)
is the second (third) order dispersion coefficient.

In this section we present some results regarding several effects of adding a TOD
term in the model. First, TOD breaks the reflection symmetry in Eq. such
that its structured solutions now have an asymmetric profile. This leads to the
advection of the different states with a velocity depending on the control pa-
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rameters. The advection leads to convective instabilities in regions of parameter
space where there is bistability between two different states.

6.2.1 The breaking of the reflection symmetry induces drift

When d3 = 0, Eq.(6.1) is invariant under the transformation (z, A) — (—z, A)
and one says that the system has reflection symmetry, or that the system is
reversible in space (x—reversible). In contrast, when ds # 0, the system is no
longer x—reversible due to the introduction of an odd derivative in the right-
hand side of Eq.(6.1). Because of that the solutions of are asymmetric with
respect to the center of the structure, let us say = 0, and they drift with a
constant velocity. Here we will show that, in the linear regime, the breaking
of the reflection symmetry induced by the TOD, causes a modification of the
profile of the solution with the form of the Goldstone mode, which induces on
one hand a permanent shift of the solution (i.e. a drift), and on the other hand
the asymmetry of such a state.

Any traveling solution of the form A(z,t) = A(x — ct,t) satisfies the equation
A — cO A= —(1+i0)A +iv0?> A+ d302 A +iA|A]? + p, (6.2)

where the Galilean transformation x — 2’ = x — ¢t has been performed, and
where / has been dropped. In particular, here we are interested on steadily
drifting LSs, and therefore in states that, on the moving reference frame at
velocity ¢, are stationary (i.e. 9;A = 0).

Let us assume that, for dg = 0, the steady state solutions of the LL are given by
As. Then, if the reflection symmetry is weakly broken (ds3 < 1), any solution on
the moving reference frame can be expanded as an asymptotic series on d3 as,

A(x) = As(z) + dsAr(x) + -+, (6.3)

with A; beeing the (first order) modification of the solution due to the influence
of the TOD. Introducing the ansatz (6.3)) into Eq.(6.13)), and scaling the velocity
as ¢ = c1ds + - - -, one gets, at first order in d3

L[AJA, = =93 A, — O, As. (6.4)
This equation will have a solution if the next solvability condition holds
(w, =02 A, — 0, As) =0, (6.5)

where w is the eigenfunction of the adjoint operator LT with eigenvalue zero (i.e.
LTw = 0), which has the same spatial symmetry as the Goldstone mode of the
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system G(z) = 0, A4,, and (-,-) denotes the scalar product defined in terms of
full spatial integration over the considered domain (see Section [B.1).

From Eq.(6.5)), one gets that the solutions (6.3]) drift with a constant velocity

c= _d3%82?7 (6.6)
proportional to ds.
Once this condition is satisfied Eq. becomes
L[A]A; =0, (6.7)
which has solutions of the form
Aq(z) = aG(x), (6.8)

where the coefficient a is determined at higher-orders on ds. So, at first order
in ds, we can see that the asymmetry in the solution (6.3) is generated by an
excitation of the (anty-symmetric) Goldstone mode, driven by the TOD.

6.2.2 Linear stability analysis

In this section we will first apply a linear stability analysis on the HSSs and we
derive the dispersion relation of the system. Later we will introduce the concept
of convective and absolute instabilities arising when advection is considered in
regions of bistability between two states. Assuming perturbation of the HSSs of

the form
U | _| U a | ikzt+Qt
{V}—{Vo]ﬁ—e[b}e + c.c., (6.9)

with @ and b real numbers, and inserting into Eq.(6.1)), we obtain that at
first order in e the dispersion relation is given by

Qk) = Q +i% = 1+ \Vay + azk? — k4 — id3k® (6.10)
where we have defined a; = 410 — 312 — 6% and ay = v (41 — 20).

The real part of Eq. equal to zero, namely (k) = 0, gives us the condi-
tions for HSS to be modulationally unstable to perturbations , and is not
affected by the TOD terms. Therefore, the regions of stability remain the same
as in the case when ds = 0, which we discussed in details in Chapter and
A MI occurs at Iy = 1 when 0 < 2 in the anomalous case and when 6 > 2 in the
normal one.
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TOD does not change the onset of the MI, but it changes its nature and leads
to convective and absolute instabilities by introducing a group velocity. In the
dispersion relation , Q; # 0, such that the perturbation becomes e+ —
eSrtti(katQit) which has the form of a traveling wave. As a result perturbations
to the HSSs drift away. In next section we will introduce briefly the concepts of
absolute and convective instabilities.

6.2.3 Convective and absolute instabilities

To explain these two instabilities we need to consider a system with bistability
between two different extended states, which we call A and B. These states can
be either HSSs solutions or patterned states.

In the absence of drift, we can say that a solution (e.g. A) is stable if, for any
perturbation of finite size and amplitude, the system relaxes everywhere back
to A. In contrast, A is said to be unstable if this perturbation grows and the
system eventually reaches the other state B [12]. In the LL system, the state A
is a HSS, while the state B could be either a patterned state or another HSS.
Which bistability exists depends on the parameters and dispersion regime (see
Chapter [3] and Chapter [5)).

When d3 # 0, any spatial inhomogeneity of the system drifts. In particular
initial localized perturbations (i.e. finite size and amplitude) on state A can
evolve in two different ways depending on the balance between the growth of
the initial perturbation and the advection. If the advection is faster than the
growth of the perturbation the system will return locally to its initial state A,
and the system is said to be convective unstable. On the contrary, if the growth
is faster than the upstream drift, then the system does not relax to A, but state
B will instead overtake the whole domain. In this last case we would say that
the system is absolute unstable.

In the anomalous dispersion case, convective instabilities where studied in the LL
model in Ref.[I]. In that work, the authors calculate analytically and numerically
the thresholds of both instabilities. The convective threshold is obtained by the
condition

Q. (k.) =0, (6.11)

with k. the most unstable mode. This is the condition needed for the MI to
occur. On the contrary, the absolute threshold is reached when

Q,(ks) =0, (6.12)
where k; is a saddle point satisfying dQ2/dk = 0. A plot of both thresholds can
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be seen in Figure 2 of Ref.[1].

As a result, any perturbation above convective threshold Iy = 1 and under the
absolute threshold, will develop a pattern that will drift in such a way that
locally the system returns to Ag. However, any perturbation above the absolute
threshold will grow everywhere, and therefore the pattern will occupy the whole
domain. As far as we know, convective instabilities have not been yet studied in
the normal dispersion regime and it is an interesting topic for a future work.

In Chapter we will use these concepts again when studying the excitability
induced by fronts in the real Ginzburg-Landau equation, where the states A and
B are HSSs.

6.2.4 Computation of steadily drifting localized states

The weakly nonlinear analytical expresion for the asymmetric solution, aris-
ing in the presence of TOD, is only valid for ds < 1. However, any steadily drift-
ing solution of Eq. can be computed numerically, using a Newton-Raphson
algorithm (see Section to solve the equation,

— O, A= —(14+i0)A+ivd? A + dz02 A +iA|A* + p. (6.13)

To do that, one also needs to calculate the velocity ¢ as part of the solution
of Eq.(6.13]), which can be done by adding to Eq.(6.13) an extra condition on
the form Q[A(z)] = 0. This is then equivalent to solve the following nonlinear
eigenvalue of the problem,

d3U d*V du

dgd%3 vzt U+0V-VU>+V*)+p=0

v d*U  dV 9 o (6.14)
QA(z)] =0,

which has been written considering the real variables U and V.

Without loss of generality we constrain a maximum of the field A to occur at
x = 0. Such,

d| A2 v dv
QA(®)]|a=z, = %Izo =2 (de + de) : (6.15)
or JU
QA®)]|a=z, = PP (6.16)
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Figure 6.1: Single DSs for d3 = 0.07 in (a), d3 = 0.1 in (b), d3 = 0.2 in (c¢) and d3 = 0.3 in
(d) for (0, p) = (2.2,1.5) and L = 160. In blue a detail of the oscillatory tails are shown.

One could also use integral phase conditions as done in Refs. [I3] [14].

Solving the system , we can continue any of the LSs of the LL equation from
ds = 0 to any value d3 # 0. In Figure [6.1] we can observe some single peak LS of
Eq.(6.13) for (0, p) = (2.2,1.5) and different values of d3. The TOD strength for
each panel are ds = 0.07,0.1,0.2 and 0.25 from (a) to (d) respectively. As we can
observe the field profiles are asymmetric and the tails at one side and the other
of the central core are different. Moreover, the asymmetry increases with the
strength of TOD. These oscillatory tails can be interpreted as dispersive wave
or Cerenkov radiation emitted by the soliton [4} [5] [15].

In what follows we will just focus in the modification of the properties of LSs
when including TOD in both the normal and anomalous dispersion regimes.

6.3 Spatial dynamics: homoclinic orbits in non-reversible
systems

As we said before, the introduction of an odd derivative breaks the spatial re-
versibility (z, A) — (—x, A) of the system, and therefore solutions of Eq.(6.1]
are no longer symmetric with respect to the symmetry plane at z = 0, i.e. re-
spect to the symmetry section S = fix(R) defined in Chapter [2l The stronger
the TOD (ds), the larger the asymmetry and drift velocity of LSs will be.

Nevertheless, despite this symmetry breaking, any LS can still be described as
an homoclinic orbit to the HSSs A in the reference frame moving with the LS.
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In this section we will mainly focus on the spatial dynamics in the anomalous
dispersion regime, although the concepts introduced here can also be applied to
the normal dispersion case as we will see in Section

The stationary LL equation in the moving reference frame i.e. Eq.(6.13]) can
also be written as the dynamical system,

dlyz = Yi+2, i = la"'a4
days = d:?i[vyzx —cys +y1 — Oy2 — oyt — y3 — p] (6.17)
doys = d3 ' [—vys — cys + y2 — Oy2 — Y} — 193],

considering the 6-dimensional phase space defined by variables y; = U, yo =V,
ys = d.U, ys = d,V, y5s = d2U and yg = d2V. This procedure has been
extensively applied in Chapter |2[ in the context of the reversible LL Eq..
Previous work related with the application of this concept in reversible systems
can be found in Refs. [I6H20]. As we saw in the previous Section the absence
of z-reversibility can be easily seen by plotting the profiles of the LSs shown
in Figure [6.1] where the fronts leaving and approaching the HSS Ay are now
different.

In terms of the dynamical system defined by , these fronts can be inter-
preted as heteroclinic orbits in a six dimensional phase space and a LS as a
homoclinic orbit results from the intersection of the unstable and stable mani-
folds of Ay. In Figure we show the projection of the single LS for d3 = 0.25
(see Figure d)) into three different subspaces of the phase space. In blue
we plot the unstable manifold W*(A})) that leaves the fixed point Ay mono-
tonically. In red we show the stable manifold W#*(A})) that approaches Ay in
an oscillatory way characterized by a given frequency and decay rate. In the
linear approximation we can characterize these manifolds studying the spatial
eigenvalues of the system . In order to do this we calculate the eigenval-
ues of the linear operator associated with the dynamical system ie. its
Jacobian,

0 0 d3 O 0 0
0 0 0 d3z 0 0
_ 0 0 0 0 d 0
Df(y()) = d3 ! 0 0 0 0 03 dS 5
2

14 2y192 9—y1—3y§ - 0 v
9—y§—3y% 1—2y192 0 —c¢ —-v

o o

Y=Yo

(6.18)
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Figure 6.2: Projection of the single LS shown in Figure d) into subspaces (y1,y3) in (a),
(y1,y5) in (b), and (ys3,ys) in (c) of the phase space defined by (6.17). In red (blue) we plot
the stable (unstable) manifolds W% (A})) of AY.

with Yo = [UOa ‘/Oa 0,0,0, 0]
We find that the eigenvalues of (6.18)) are roots of the characteristic polynomial

d2A® 4 (2cdz + 1A — 2d3 X3 + (ag + A% —2cA+ 1 +a; = 0. (6.19)

E| If d3 = 0 we recover the characteristic equation for the LL equation, namely
Eq., where the solutions always come in pairs: each spatial eigenvalue X is
accompanied by its counterpart —A. This property is also reflected in the fact
that with d3 = 0, Eq. is biquadratic in A and as a result the fronts leaving
and approaching Ay have the same envelope and wavelength. When ds # 0, this
is no longer the case and therefore the trajectories leaving and approaching A
are different (see the field profiles in Figure . The eigenvalues of can
be calculated numerically. In Figure we can observe the dependence of Re[}]
and Im[A] with ds for (6, p) = (2.2,1.5). Panels (i) and (ii) of Figure show
the spatial eigenspectrum corresponding to two slices of Figure for d3 = 0.1
and d3 = 0.25 respectively. Due to the reversibility symmetry breaking, the
spatial eigenvalues do not appear in pairs. From all these eigenvalues, there are
two that are dominant in the dynamics.

The frequency and decay rate of the W#*(A$)) correspond to the imaginary and
real part of the eigenvalue with the smallest, in absolute value, negative real
part, namely Im[A~] and Re[A\~]. On the contrary W*(A})) is characterized
by the eigenvalue with the smallest positive real part, that is A™. AT has no
imaginary part which explains the monotonic way in which W*(A})) approaches
A} (see Figure . Due to this, trajectories leaving A% do so following eir'e

I Characteristic equation can be equivalently obtained by calculating the grow rates
of perturbations to the HSSs, i.e. considering the ansatz for trajectories leaving/approaching
the HSSs, U(x) = Up + eu(z) and V(z) = Vo + ev(z), with ansatzs u(z) = ae*?, v(z) = be?,
and X\ € C. These calculations are shown in the Appendix at the end of this Chapter.
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Figure 6.3: Real and imaginary part of the spatial eigenvalues of the HSSs (solutions of
Eq.(6.19)) in function of d3 for (0, p) = (2.2,1.5). In (i) dg = 0.1, (ii) d3 = 0.25 (see panels (a)
and (b).

and trajectories approaching Ay can be described by e *. We verified this
for two different values of d3, namely d3 = 0.1 and d3 = 0.25, where the two
oscillatory trajectories approaching A} can be described by the function

y1(z) —yo1 = CleRe[)‘ileOS(Im[)f]x + ©1). (6.20)

This fitting is shown in Figure[6.4] In blue we plot the fronts and in red the fitted
approximation using Eq.. The red dashed line represents the decay of the
oscillatory tails determined by the Re[A~]. For both values of d3, the fitting is
very accurate confirming that the linear theory gives a good approximation of
the shape of the tails of the LSs.

An analytical approximation for those eigenvalues can be obtained by solving
by Eq.(6.19) only considering the highest order in A. In this way, we obtain that
A~ can be approximated by the expression

V14 2cds

A=A =40
i A

(6.21)

This expression shows that the eigenvalue approaches infinity (A~ — oo) when
TOD becomes zero (ds — 0), result that can be observed looking at the spectrum
of Df(yo) for different values of ds. When d3 — 0, these two eigenvalues A\ ™,
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Figure 6.4: Fitting (in red) of the real part of front (in blue) approaching the HSS, Ag for

parameters p = 1.5, 6 = 2.2 and L = 160. In (a) d3 = 0.1 and this value Re[A~] = —0.0902543,

Im[A~] = 10.3256, ¢ = 0.3 and ¢; = 0.000105. In (b), d3 = 0.25, Re[A7] = —0.148424,

Im[A~] = 4.75771, ¢ = 2.85 and ¢; = 0.000065. The red dashed line correspond to the
Re[A7],

envelope of the front approximated by e

and its complex conjugate, tends to +ioco. Figure shows how the wavelength
Atails = 27 /Im[A 7] of the oscillatory tails changes as function of ds, where Im[A~]
has been calculated with approximation given Eq.(6.21) (in red diamonds) and
by solving the complete polynomial in blue crosses. Indeed, for small
values of d3 the agreement is quite good.

6.4 Bifurcation structure and stability of solitons in the
anomalous dispersion regime

In this section we will study how the bifurcation structure of bright solitons
and their stability are modified by the effects of the TOD term. As we saw in
Chapter[4] in the absence of TOD, the LL equation in anomalous GVD, exhibits
a multistability of soliton states with a different number of peaks. For 6 < 2,
these states are organized in a snake-and-ladders structure [I6] 21]. In contrast,
as we showed in Section [4.5] when 6 become larger than 2, LSs are organized in
a foliated snaking type of structure [22].
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Figure 6.5: Wavelength of the oscillatory tails A;qi;5. In blue crosses the exact value and in
red diamonds the approximated one using expression (6.21)).

When TOD is taken into account, these bifurcation structures are modified. In
the first case we will show how the branches of solutions of the snakes-and-
ladders structure, present for § < 2, are reorganized in a stack of isolas. In the
second case, the scenario is much complex, and the main bifurcation structure
is a kind of mized snaking, where the solution branches corresponding to a odd
or even numbers of peaks are now interconnected [7].

6.4.1 Dynamics and stability of single bright solitons

In Section we have studied the temporal instabilities arising in the anoma-
lous regime for high values of detuning. In this parameter range, a bright soli-
ton can exhibit temporal oscillations, temporal chaos and even spatio-temporal
chaos. Here we will analyze how the dynamical regions of single bright solitons
are modified when considering TOD effects. As we will see any oscillatory or
chaotic regimes can be suppressed by a large enough TOD showing that TOD
in microresonators can stabilize Kerr combs [4] [7].

An example of oscillatory and chaotic behavior of an isolated bright soliton in
the absence of TOD (d3 = 0) is shown in Figure[6.6(a) and [6.7/(a), respectively.
Only the pump amplitude differs in these two simulations as indicated in the
captions. The pseudocolor plots show the evolution of the temporal intensity
profile of the intracavity field. Figures [6.6{b) and [6.7|(b) reveal that when the
magnitude of TOD is sufficiently large the dynamical instabilities are completely
suppressed: the soliton is stable, albeit in a moving reference frame. In order
to verify whether the stabilization of the LSs is a general feature in the pres-
ence of TOD, we analyzed the stability of solitons in the whole parameter space
(0, p) for various values of the TOD. The result of this analysis is shown in
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Figure 6.6: Evolution of (a) the temporal intensity profile of an oscillating soliton over
successive round trips in the absence of TOD (ds = 0). (b) With d3 = 0.15, the system is
stable. The profiles at time ¢ = 5 are shown on top of each graph. § = 6.1, p = 4.
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Figure 6.7: Same as Figurebut for p = 5.5, for which the solution exhibits spatio-temporal
chaos in the absence of TOD.

Figure As we already know for § < /3, only one HSS exists, hence the
system is monostable. For § > /3 three HSS states appear, one of which is a
saddle point (unstable), hence this regime is referred as bistable. These homo-
geneous solutions are connected through the saddle-node bifurcations SNpopm, 1,2
and SNjom,2 shown in Figure [6.§ . We also plot the saddle-node bifurcation SNy
and SNy that determine the region of existence of LSs (see Section [4.6) Fig-
ure -(a ¢) represent the same (6, p) —parameter space for increasing values of

From Figure it is clear that while the region of existence of the HSSs is
independent of TOD, the snaking region in which LSs can be found (between
the blue lines) shrinks with increasing values of the TOD. To highlight this point,
we plot in Figure the width of the snaking region, Ap = p(SNa) — p(SNy),
versus the TOD strength ds for a fixed detuning # = 6.1. Here it can be seen
that the shrinking, while initially rapid, somewhat saturates at higher ds such
that a region admitting solitons solutions can be found independent of the TOD
strength d.

Figures 'a ¢) also illustrate the dependence of various regions of instabilities
of a single brlght soliton as a function of the TOD strength ds. We distinguish
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Figure 6.8: Regions of existence of single bright solitons and their instabilities in the (6,p)
parameter space for (a) dg3 = 0, (b) d3 = 0.15, (¢) d3 = 0.9. Region I: stable bright solitons;
region II: time-oscillation solutions arising through Hopf bifurcation H (red line); region III:
spatio-temporal chaos (STC) emerging in the green line. The blue and black solid lines denote
the saddle-node bifurcations of the HSS and single solitons, respectively.

4 T T T

Figure 6.9: Width of the pinning region where bright solitons exist versus d3 for § = 6.1.

three main dynamical regions, labeled I to III, in the phase diagrams shown in

Figure namely:
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1. Region I: Single bright solitons are stable.

2. Region II: Single bright solitons are found to exhibit a time-oscillatory
behavior (as was illustrated in Figure [6.6{a)).

3. Region III: Temporal evolution of the LSs lead to spatio-temporal chaos.

Oscillatory solutions emerge through a Hopf bifurcation H (thin red line). In
Section 1.6 we saw that in the absence of TOD, this Hopf bifurcation unfolds
from a Gavrilov-Guckenheimer codimension-2 point [2I] and has been experi-
mentally observed using fiber resonators [23]. Above region II, for increasing
values of pump power and detuning, we find that the temporal evolution of the
LSs evolve to spatio-temporal chaos (as was illustrated in Figure [6.7(a)). Fig-
ure[6.8|(a)—(c) demonstrate that both the oscillatory (II) and chaotic (III) regions
of instabilities shrink and shift to higher values of the detuning 6, confirming
that the stabilization of LSs in the presence of TOD, which was exemplified in

Figure [6.6] and is a general feature.

The dynamical regimes discussed above concerns only single LSs. However, in
the absence of TOD, multistability between many different stationary solutions
is known to exist [2I]. These solutions consist of multiple DSs and can be
understood as bound states of single LSs. Therefore, in the next section, we
proceed to studying the effect of TOD on the stability and bifurcation structure
of multi-peak solutions.

6.4.2 Formation of isolas for § < 2

The modification of homoclinic snaking when reversibility is broken was first
studied in Ref. [24] in the context of a system with gradient dynamics: the
Swift-Hohenberg equation. The authors reported that the loss of reversibil-
ity symmetry destroys the pitchfork bifurcation responsible for the rung states
present near of each saddle-node of the homoclinic snaking. When the pitchfork
bifurcation becomes imperfect, the different branches of solutions are reorga-
nized in a different fashion. In the LL equation the snakes-and-ladders bifur-
cation structure is also present and the breaking of reversibility generates the
same kind of structures, as we will see below. In Figure [6.10, we can observe
the snakes-and-ladders structure in the context of the LL equation for § = 1.5.
In this diagram we use, similary as in Chapter |4} the L?—norm

1 L2

=0l = 7 [ 1A) — Aol (622
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Figure 6.10: The breakup of the snakes-and-ladders structure into a stack of isolas when
d3 = 0.01. The underlying snakes-and-ladders structure (d3 = 0) is shown for comparative in
blue. Here 6 = 1.5.

as bifurcation measure. In blue we plot the homoclinic snaking corresponding to
the LSs with an odd number of peaks, that we referred to as Ly in Section [1.3}
the homoclinic snaking corresponding to LSs with an even number of peaks,
refereed as L, are colored in green; the rung states solution branches are plotted
in blue dashed lines. Solid and dashed lines represent, as usual, the stable and
unstable states respectively. The first of these rung state branches extends from
a pitchfork bifurcation in the neighborhood of SNs to another pitchfork near
SN3. A sequence of rung states branches connect the rest of the pitchforks of
the snaking structure. When ds # 0, the destruction of the pitchfork bifurcations
leads to the appearance of a stack of isolas as we can observe in Figure for
ds = 0.1. We point out that for a fixed value of the detuning, the isolas shrink
with increasing values of d3, until they eventually disappear in a cascade of cusp
(C) or hysteresis bifurcations. This phenomenon can be observed in Figure
for a single isola and different values of d3 in the range 0.01 — 0.0788. For
ds = 0.076 they almost have disappeared. In the same figure we also plot the
profiles of LSs on some of these isolas. As we can appreciate, the asymmetry
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Figure 6.11: Here we show isolas formed within a pair of rings of the snakes-and-ladders
structure for § = 1.5. The strength of the TOD are ds = 0.01,0.02, 0.04, 0.06,0.076 and 0.0788
from (i) to (vi). and 5. The underlying snake-and-ladders structure is indicated by blue lines.
As d3 increases the size of the isola decreases. The isolas are plotted in red. The profiles on
the left are three peak soliton corresponding to the stable branch of the isolas labeled with the
same roman number. The vertical dashed line represents the reflection symmetry plane when
ds = 0. As we can observe, the asymmetry increases with ds.

respect to x = 0 also increases with ds.

We have also checked how the drift velocity changes along the isolas for several
values of ds. In Figure we plot the isolas shown already in Figure[6.11} but
using the drift velocity ¢ instead of the norm ||A — Ag||2. The panel on the left,
show all the six isolas. From bottom to top the strength of TOD increases, as
it does ¢. The six panels from (i)-(vi) show a zoom of those isolas. As we can
observe, in terms of ¢, the isolas keep their morphology. For every value of ds,
the drift velocity increases and decreases along the isolas’ branches.

The shrinking of the pinning region with ds is clear in Figure The width
of the pinning can be predicted analytically as it was shown in Ref.[25]. In
this work, the authors derived conditions that allow predicting bifurcation dia-
grams and drift speeds upon adding perturbative terms to the underlying system.
These conditions rely on evaluation of the perturbative terms g(A4,d¢A) (in our
case g = 02 A) along the solutions of the unperturbed system. Moreover, with
this method it is only necessary to know half of the localized structure i.e. the
two fronts solutions. In future work we plan to apply these methods to the LL
equation. In Ref.[24], the authors showed that for some parameter values, in-

181



CHAPTER 6. THIRD ORDER DISPERSION EFFECTS: STABILIZATION OF
SOLITONS

——— () : oz00s -(i) 7 0.055[ 7%
R -
(ii) © 00086 E R ]
0.06 0.0084 1 0.052 1
0.0082 E 0.051
1.11201.11251.11301.11351.11401.11451.115 1.1132 1.1134 1.1136 1.113
(iii) - 0.0675 —
0.0185 -(11) _ = 1  ooenaf V) ) ]
0.04 0.0180| PR R 4 . 0oees5F 7 E
o . © -~ - _ © A
it oo1715F L2 =7 ~ 4 ~ oocesof - B
1 ooizof < - -7 4 ooessf — i
(IV) 0.0165 0.0650
(V) 1.11201.11251.11301.11351.11401.11451.115 1.11340 1.11345 1.11350
0.02 P ey 7 00692 —
=== 037(i1) e ooseaf{ Vi) . ]
0.036 1 0.0688 - E
< - o %,
—=——(;i ) 0035 - e E 0.0686 - - b
[ Cooooriieo ] ooessf B
0.00 I 0034 0.0682 .
1.112 1.1135% 1.115 1.1125 1.1130 1.1135 1.1140 1114 1.113431.113441.113451.11346
p P e

Figure 6.12: On the left we show the modification of the velocity of the LSs along the isolas
for the same values of d3 than in Figure[6.10} On panels from (i)-(vi) we show a zoom of each
of the isolas shown in Figure As we can see the average velocity along the isolas increases
with d3.

stead of stack of isolas, it was also possible to find a different morphology, as for
example a pair of interwined snakes. More recently, analytical work has shown
that the bifurcation structure of an homoclinic snaking can be modified in two
different ways [25]. This change in the morphology depends on a scalar quan-
tity defined within the evaluation of the perturbation along the unperturbed
solution branches. Although we did not observe interwined snakes in the LL
equation, theory tell us that it is possible to find a region of parameters where
this structure exist.

All these results apply in the case where the underlying bifurcation structure,
in the absence of a reflection symmetry perturbation, is a snakes-and-ladders
structure. When this is not the case, the resulting bifurcation scenario is more
complex as we will see in next section.

6.4.3 Mixed snaking for § > 2

In Sectionwe have studied that, when 6 > 2, LSs unfold from the SNy, 1 (RTB)
bifurcation and they are organized in a foliated snaking type of bifurcation struc-
ture. In Figure[6.13|we show how this bifurcation structure changes with increas-
ing values of TOD strength, namely d3 = 0.1,0.15,0.6 and 0.9.

For low values of d3, all the multi-peak LSs are unstable, and as we can see the
LSs branches corresponding to even and odd numbers of peaks are merged in
a type of mized snaking. In panels (i)-(iv) we observe the profiles of LSs for
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Figure 6.13: Mixed snaking for # = 6.1 and d3 = 0.1,0.15,0.6 and 0.9 from panel (a) to panel
(d). On the right we can see localized structures corresponding to single and multipeak states
for d3 = 0.1 in panels (i)-(iv) and for d3 = 0.9 in panels (v)-(viii). As we can see, different
solution branches are stabilized within Hopf bifurcations H. Vertical dashed lines represent the
bistability region when d3 = 0.

ds = 0.1 corresponding to the bifurcation diagram (a). The structure (i) with
one single peak is stable until the Hopf bifurcation H where it starts to breathe
at the same time it starts drifting. The oscillation of an initially unstable single
pulse can be seen in Figure [6.14|I). Profiles (ii)-(iv) correspond to LSs that
are unstable all the way along the solution branches in Figure ). The
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Figure 6.14: Evolution in time of localized states corresponding to diagrams shown in Fig-
urefor 0 = 6.1. In panels (I-IT), d3 = 0.1 and in panels (III-IV), d3 = 0.6. The values for
parameter p are p = 4.6755 in panel (I), p = 4.08452 in panel (II), p = 3.55955 in panel (III)
and p = 3.04058 in panel (IV).

integration of Eq. using as initial condition one of these structures (here
we chose a 3-peaks state) is shown in Figure II). As we can see the different
peaks, initially oscillating, start to merge until finally only a single breather
soliton persist.

Figure b)—(d) show that TOD increasingly stabilizes the multiple peak so-
lutions, starting with the one peak branch in panel (b), and then gradually
stabilizing the two-peak one in panel (c), three-peak one in panel (d), etc. This
stabilization process seems to involve multiple Hopf bifurcations as most clearly
seen in Figure c). Panels (v)-(viii) show the real profiles of stable LSs cor-
responding to diagram (d) of Figure In Figure [6.14(I1I) and (IV) we see
the temporal evolution of initially unstable states labeled corresponding to the
bifurcation diagram shown in Figure d). In this case, each of the peaks of
the LS starts to oscillate with a different phase until reaching an stable cycle.

Although difficult to appreciate in panels (i)-(ii) of Figure unstable local-
ized states present a single spatial oscillation in-between consecutive peaks, a
feature that does not appear in the case of the higher TOD profiles (iv)-(viii).
Comparing the bifurcation diagrams in Figure [6.13] we can see that there is a
change in the shape and extension of the solution branches between diagram (b)
and (c). Because the previous bifurcation diagrams are constructed by contin-
uing a single peak LS, it is possible that we miss additional solution branches
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Figure 6.15: Mixed-snaking and isolas for # = 6.1. In panel (a) (d3 = 0.15) mixed snaking
(in blue) connected with the single peak soliton and in red isolas corresponding calculated
tracking structures (vii) and (viii) from d3 = 0.9 to d3 = 0.15. In panel (b)(d3 = 0.29) the
isola grows and the mixed snaking suffers shrinking of the top branches. For higher values
of d3 both structures merge resulting in a bifurcation diagram as the one in panels (c)-(d) of

Figure [6.13]

that are disconnected. In order to clarify this we took the LSs (v)-(viii) and we
tracked them back to smaller values of ds. The result is as shown in Figure[6.15
In panel (a) the blue diagram represents the same solution branches plotted in
Figure [6.13|b) for d3 = 0.15. The red diagrams comes from tracking (iv)-(viii)
from ds = 0.9 back to d3 = 0.15. When continued both snaking diagrams for
higher values of TOD (see Figure [6.15(b) for d3 = 0.29), the region of existence
of the multiple peaks branches for the blue structure starts to shrink, and the red
snaking branch broaders until reaching a similar width than the blue diagram.
Therefore, we expect that for d3 > 0.29 these two snakings will merge resulting
in the bifurcation diagram shown in Figure c¢).We finally remark that other
solutions (not shown here) such as multiple displaced single LSs connected via
their oscillatory tails can also exist, as we will show in Chapter

6.5 Bifurcation structure and stability of solitons in the nor-
mal dispersion regime

After studying the influence of TOD in bright solitons in the anomalous GVD
regimes, we extended this study to the normal regime and we analyze how brek-
ing of the reversibility symmetry affects the stability and bifurcation structure
of dark solitons [26], 27]. In Section we have seen that in the normal GVD
regime, dark solitons exist and that they are organized in a type of bifurca-
tion structure known as collapsed snaking. For high values of detuning we also
found (see Section that those steady states have oscillatory instabilities and
they start to breath. For some parameter values these oscillatory states undergo
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a period doubling bifurcation starting in this way a route to temporal chaos
[26, 27]. In this section we present first how the collapsed snaking is modified
when increasing the TOD strength. Secondly, we will show how due to the ef-
fect of TOD, bright solitons of different widths occur in a similar way than the
dark ones, forming a second collapsed snaking on the bottom of the bifurcation
diagram and close to the SNj,.,,1. Finally we will see that TOD, as occurred
in the anomalous regime, also stabilizes the oscillatory regimes of dark solitons,
showing that this mechanism of stabilization is generic and not specific to the
anomalous regime.

6.5.1 Modification of front solutions

When ds = 0, dark solitons can be understood as the pinning of two fronts, F),
and F,, connecting the top and bottom branches of the HSSs, namely A{ and
Ab. As we known (see Section , the fronts move with a constant velocity cp
(see Figure that depends on the control parameters of the system. Around
the Maxwell point, there is a pinning region in which both fronts can lock at
different separation distances, allowing the multistability of of hole states or dark
solitons which are organized within a collapsed snaking bifurcation structure.

When ds # 0, the reflection symmetry is broken, so F,(—z) # Fy(x), and LSs
are no longer left/right symmetric. One example of a typical structure in the
context is shown in Figure a) for § = 4, p = 2.3251 and d3 = 0.7. This
solution is the result of the locking of the two fronts F,; and F,, shown in Fig-
ure[6.16[b) Figure ¢). The front F; leaves A}, monotonically and approaches
Ab in an oscillatory way, with a characteristic frequency w,. On the contrary,
F,, leaves Ag monotonically and reaches Af in a oscillatory way with a frequency
we. In terms of spatial dynamics, taking into account the phase space defined
by the dynamical system in Section the fronts can be understood
as heteroclinic connections between the fixed point of the system A} and A}.
The analysis of the eigenvalues of the Jacobian at each of these points
reveals how the stable and unstable manifolds of the system behave in a neigh-
borhood of those equilibriums, and therefore the shape of the monotonic and
oscillatory tails of both fronts. In panels (d), (e) and (f) of Figure we show
the projection of the two fronts into three different subspaces of the phase space
{(y1,Y2,Y3,Y4,Ys5,Ys) }- Red color shows the heteroclinic connection correspond-
ing to F,, and the blue the one corresponding to F,;. The intersection of these
two connections generates the heteroclinic cycle (homoclinic orbit) corresponding
to the LS shown in Figure a). The way in which trajectories wind around
A and AY is described by the angular frequencies w, = Im[A~(A})] = 1.3905
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Figure 6.16: In (a) localized state for = 4, p = 2.3251 and d3 = 0.7, formed by the connec-
tion of two fronts F, shown in (b) and F4 shown in (c). In (d), (e) and (f) we show different
projections of the localized state shown in (a) into three different subspaces of the phase space
defined by the dynamical system . In red we show the heteroclinic orbit corresponding
to the front Fy, (see panel (b)). In blue we plot the heteroclinic orbit corresponding to Fj (see

panel (c)).

and w, = Im[A~(A4})] = 2.5478, and by the decay rates Re[A~(A})] = —0.1528
and Re[A™(Af)] = —0.13 respectively.

With d3 = 0, the monotonic behavior of the front near A} prevents the appear-
ance of bright solitons. In contrast, with d3 # 0 oscillatory behavior appears
around Af at least in one of the fronts, allowing the formation of bright struc-
tures. In the next Section we will see how the collapsed snaking for the dark
solitons is modified by TOD. Moreover, we will show how bright solutions appear
in a similar collapsed bifurcation diagram as it was the case for dark solitons.

In Figure We show the spatial eigenvalues around A} (panel (a)) and around
Al (panel (c)), where we label the dominant eigenvalues as AT for the repulsive
one and A~ for the attracting one. In red crosses we also show the spatial
eigenvalues for the top and bottom branches when dz = 0. In panel (b) and (d)
of the same figure the fitting of the oscillatory tails of fronts Fy; and F,, around
A} and A! are shown respectively.

The fitting parameters for the real part of the oscillatory tails without the HSS
background, are ¢; = 0.048395184 and ¢ = 2.9244074 for panel (b) and ¢; =
0.025797178 and @2 = 0.18703286 for panel (d).
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Figure 6.17: Panels (a) and (c) show the spatial eigenvalues for § = 4 and d3 = 0.7 around
Ag and AB respectively. In panels (b) and (d) we show the fitting, using spatial eigenvalues
A~ shown in (a) and (c), of the oscillatory tails corresponding to fronts F; and F,, shown in
Figure [6.16] The fitting parameters are are ¢c; = 0.0484 and ¢1 = 2.9244 for panel (b) and
co = 0.0258 and @2 = 0.1870 for panel (d). In red crosses by comparative we add the spatial
eigenvalues for d3 = 0.

6.5.2 Collapsed snaking for dark and bright solitons

In previous sections we saw how the TOD modified the shape of solitons and
their bifurcation structure in the context of anomalous dispersion, forming either
isolas, due to the breaking up of the snake-and-ladders structure for 6 < 2, or a
mixed snaking type of structure for 6 > 2.

Figure shows in black the bifurcation structure of dark solitons for ds =
0 and 6 = 4. As also discussed in Chapter |5 dark solitons unfold initially
unstable from the SNpopm, 2, that in terms of spatial dynamics corresponds to
RTB bifurcation. These states, after a sequence of saddle-nodes collapses into
the Maxwell point of the system at pp; along which dark solitons become broader
and broader when decreasing their norm ||A||. In finite systems, this branch of
solutions departs from p = pp; when the maximum amplitude starts to decrease
below A% and the solution turns into a bright soliton sitting on Aj. This unstable
soliton decreases their amplitude for increasing values of p until reaching the HH
point from where all the structure unfolds.

When TOD is taken into account, the modification of the spatial eigenvalues
that we studied previously is responsible for the appearance and stabilization
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Figure 6.18: Collapsed snaking diagrams for § = 4 and different values of d3, namely d3 = 0
in black, d3 = 0.3 in yellow, ds = 0.5 in green, dg3 = 0.7 in red. In (a) collapsed snaking
for dark solitons. As we can see, snakings shift for larger values of p when increasing d3
and pinning regions for the different type of structures becomes broader. In (b) collapsed
snaking for bright solitons. For d3 = 0 a single branch of states exist. When increasing ds3
new branches of bright solitons start to nucleate through cusp bifurcations. As it was the case
for darks solitons, the snaking becomes broader for increasing d3. Solid lines (dashed) lines
represent stable (unstable) solutions.

of structures, in particular bright states, that were not present before. In Fig-
ure[6.18| we can see the modification of the collapsed snaking structure for several
values of ds, namely d3 = 0,0.3,0.5 and 0.7. Regarding panel (a), we can see how
the collapsed snaking becomes broader when increasing TOD strength ds. Due
to this, the regions of existence of the different types of dark solitons increase
with ds at the same time that the collapsed region is shifted to higher values of
p. This can be easily seen by looking at Figure a) where the Maxwell point
is shifted with ds in such a way that p}i\fo < pB=0? < p‘f\;”[:Oﬁ < p}i\f’[:07.

If we now take a look to panel (b) of Figure we observe that the vertical
snaking branch collapses monotically for d3 = 0. In contrast, when d3 # 0,
that branch starts to develops oscillations around p%} and the amplitude of the
oscillations increases with ds, as one can see in Figure[6.18] This new bifurcation
structure explains the existence of stable bright solitons sitting on Ag, that for

189



CHAPTER 6. THIRD ORDER DISPERSION EFFECTS: STABILIZATION OF
SOLITONS

(a)4.6

4.4}

426

lal1?

40

3.8

2.1 2.2 2.3 2.4 2.5 2.25 2.30 2.35 240 2.45
p p

1) w 1tav) Mw—

-25 0 25 -25 0 25 -25 0 25 -25 0 25

uyv
I
- O = N
X
8
=
O
=

uv
I
- O = N
~X
=
E—
2
f
=
=)
=
==
<
s
g

Figure 6.19: Detail of the collapsed snaking for dark (in panel (a)) and bright solitons (panel
(b)) shown in Figure [6.18] for d3 = 0.7. Subpanels (i)-(iv) make reference to the dark solitons
corresponding to solution branches of panel (a). Subpanels (v)-(viii) correspond to bright
solitons branches shown in panel (b).

d3 = 0 were accumulated at pj;.

As it was the case for dark solitons, separation between consecutive saddle-nodes
increases with ds3, and so does the region of existence of bright solitons. In order
to understand the organization of the different states in the new bifurcation
structure we plot in Figure [6.19] two portions of the bifurcation diagram for
ds = 0.7 already shown in Figure In panel (a) we can see the collapsed
snaking related with dark pulses. Dashed lines represent unstable states and
solid ones the stable solutions. Profiles of these states corresponding to each
branch are shown in Figure i)—(iv). At this point we can clearly appreciate
the asymmetry generated by TOD. Panel (b) shows the collapsed snaking for
bright pulses. These states undergo bifurcations similar to those of the dark
ones. As before, two things happen at the saddle-nodes. On one hand the
localized structure change from stable to unstable, or vice-versa; on the other
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Figure 6.20: Bifurcation diagram showing the velocity c of the dark (left column) and bright
solitons (right column) as function of p, for different values of d3. In (a) d3 = 0.3, and in (b)
d3 = 0.7. As we can appreciate the velocity change direction when crossing a critical value pc,
that depends on d3.

hand spatial oscillation are also generated on the profiles. Some of these stable
bright solitons are shown in Figure [6.19] (v)-(viii).

Increasing even further, the velocity of solitons become always positive. The
right column shows the velocities of bright solitons. In this case one can see a
change of the direction in the velocity for ds = 0.3, that for the other values of ds
is always positive. Another interesting feature of this scenario is related with the
drift velocity of the localized states. In Figure we show how the velocities
of solitons change along the bifurcation diagram shown in Figure [6.18] for both,
dark solitons (left column) and bright ones (right column). For d3 = 0.3 (see
Figure a)), dark solitons unfolding from SNy, 2 drift with constant positive
velocity that increases with p. In SNi, where the single dark soliton becomes
stable, the velocity starts to decrease, until it becomes negative at pl. At SNa,
it starts to increase again, and solutions change velocity at p?. This oscillation
in the velocity is repeated all along the snaking. Increasing ds, the situation is
similar despite of the fact that the p’ calues shift and accumulate to the same
value, and the interval in which solitons have negative velocity decreases for high
values of d3. This is the situation shown in Figure [6.20(b) for d3 = 0.7.

We have also characterized how the velocity ¢ of the dark solitons depends
on other features, as for example their width. Figure shows, for 6 = 4,
how c oscillates as a function of its width at the half minimum A for three
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Figure 6.21: Velocity of the dark solitons as a function of the width at half minimum A for
0 = 4 and d3 = 0.3,0.5,0.7. The velocity changes in a damped oscillatory way as a function
of A. The stable (unstable) dark solitons correspond to the solid (dashed) lines.

different values of TOD (d3 = 0.3,0.5,0.7). In both cases, the difference between
the minimum and maximum velocity of a soliton decreases as they get wider,
approaching a constant value for very wide dark solitons (large A). This constant
velocity in the limit of very wide structures increases with the TOD.

6.5.3 Stabilization of oscillatory regimes

Here, we show that TOD can suppress oscillatory and chaotic dynamics, similarly
as in the anomalous GVD regime. To illustrate this we first show the bifurcation
diagram for § = 5 and d3 = 0 in Figure ). Dark solitons are unstable
between H; and Hs. We choose this value of detuning, in order to avoid the
temporal-chaos and the disappearance of this one when reaching the BC of the
attractor. In this way we will observe stabilization for the oscillatory states but
not of the chaotic ones, although the last ones can also be stabilized by TOD.

When d3 # 0, the Hopf bifurcations shift in such way that the region of oscil-
latory states shrinks. This can be seen in the diagrams (b) and (c) shown in
Figure for 6 =5 and d3 = 0.2,0.3 and 0.7 respectively.

While for ds = 0.2, dark solitons between H; and Hs oscillate and drift, for d3 =
0.3 and 0.7 the oscillatory instabilities have been suppressed and only a drifting
soliton remains. The direction in which the soliton drifts is not obvious by
looking at its profile and changes with the pump p . In Figure[6.22] solid purple
(green) lines correspond to dark solitons with positive (negative) velocity, while
the solid red lines (for d3 = 0) indicate zero velocity. By increasing the strength
of TOD, the parameter range of solitons with negative velocity shrinks. Although
in principle bright solitons could also undergo oscillatory instabilities and similar
stabilization with increasing TOD, for the parameter range considered in this
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Figure 6.22: Stabilization of dark solitons for # = 5. In panel (a) d3 =0, in (b)ds = 0.2, in
(c) d3 = 0.3 and , in (d) dz = 0.7. The Hopf bifurcation stabilizes the branches of single dark
solitons when increasing d3. Hy 2 correspond to Hopf bifurcations (black dots). Solid (dashed)
lines stand for stable (unstable) states. In solid purple (green) lines we refer to states with
positive (negative) velocity. Solid red lines (for d3 = 0) and red dots indicate zero velocity.

work, no such oscillations of bright solitons have been found.

6.6 Conclusions

In summary in this chapter we have shown that the dynamics, stability and
bifurcation structure of solitons is largely modified in the presence of TOD in
both the anomalous and normal GVD regimes. Third order dispersion tends to
suppress dynamical instabilities of the single DSs such as oscillations and chaos.
In the anomalous dispersion regime the so-called snaking structure, organizing
the single and multiple bright soliton solutions, is altered by TOD. For 6 < 2,
homoclinic snaking breaks down due to the destruction of the Pitchfork bifurca-
tion responsible for the existence of the rung states, resulting in the formation of
a stack of isolas. For 6 > 2, another type of snaking structure, where branches
of states with an odd and even number of peaks are connected, is created. We
refer to this type of structure as mized snaking. Moreover, our analysis has also
revealed that despite multi-peak solutions can be stabilized by TOD), such stabi-
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lization requires an increasing amount of TOD as the number of peaks increases.
In the normal dispersion regime, TOD also alters the bifurcation structure for
dark solitons. As we have seen, the Maxwell point, and thus the collapsed
snaking, is shifted to larger values of p when increasing dsz, and together with
this shift, the regions of existence of dark solitons becomes broader. Another
interesting feature is that TOD can also favor the formation of bright solitons
due to the presence of oscillatory tails around the top branch of HSSs, Af. We
find that these structures are also organized in a collapsed snaking structure
unfolding from a HH and merge with the collapsed snaking of the dark solitons
as the norm increases. Finally, as occurs in the anomalous regime, oscillatory
and chaotic regimes for dark solitons are suppressed due to the influence of TOD
terms. The stabilization of dark/bright solitons within TOD can be seen as an
alternative to the stabilization accounting when non-local terms are present [30].

Appendix

As we said in section the spatial eigenvalues can be just obtained inserting
U(z) = Up+eu(x) and V(z) = Vo+ev(z), with ansatzs u(z) = ae?®, v(z) = be’?,
and A € C, into Eqs.. At order 0 in € we just recover the HSSs algebraic
equation. At first order in €, we have,

dsu” — " + e/ — u+ v — 2VoUpu — 2VEv — vly = 0

dsv"" 4+ vu” + v’ — v — Qu + 2VoUpv + 2Ugu + uly = 0, (6.23)

with ’ standing for the derivative respect to x. This system of coupled ODEs,
when taking into account the ansatzs for u(xz) and v(z), have a non trivial
solution if and only if, the next determinant satisfy,

dsX3 +ch — (1+200Vy)  —vAZ+0—3V2 - U2

UA2 04302+ V2 da 4 eh— (1—20pV0) |~ (6.24)

And from there, after some algebra, we arrive to Eq.(6.19).
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Chapter 7
Interaction of solitons and the
formation of bound states

7.1 Introduction

In this chapter we study the formation of bound states (BS) or soliton molecules
due to the interaction of single-peak solitons in the LL equation. This interaction
arises from the overlapping of the tail of one soliton with the other [I]. When
the tails have spatial oscillations, locking or pinning between two solitons can
occur at fixed distances related with the wavelength of the oscillations, forming
a BS. In Chapter [2] and [6] we have analyzed the properties of these tails from
the spatial dynamics point of view [2]. Here, following references [1l BH5], we
derive an effective potential of interaction and relate its periodicity to the spatial
eigenspectrum of the HSSs Ayg.

In [I] an analytical expression for the effective interaction potential in the driven
and damped nonlinear Schrodinger (NLS) equation was derived. It was found
that equilibrium distances correspond to the maximum and minimum of that
potential. The maximum gives the unstable equilibrium separations and the
minimum the stable ones. The interaction in the presence of "skew" terms (terms
breaking spatial reversibility) has also been studied [3, 4]. It was shown that
locking of solitons can be produced via radiative interaction or dispersion wave
emission [0, [7]. In this particular case it is the maximum of the potential, and
not the minimum, which determines the stable equilibrium separation distances
allowed for BSs [3]. This last case is very relevant in the context of our model
where dispersion wave emission is present, for example, when including third
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order dispersion effects in the system. In the same work, the formation of BSs
of breather solitons in the ac-driven Sine-Gordon equation was studied. In [5],
the interaction and formation of BSs was analyzed in the same equation as in
[1], but in this case the interaction potential was calculated using the complete
Hamiltonian, and not just the interaction one, as done in [T, 3, [4]. A comparison
between these different procedures showed that the obtained separation distances
were equivanlent.

Interaction of solitons in dissipative systems has also been studied using pertur-
bation theory, such as in Ref. [§], for the modified Swift-Hohenberg equation [J].
The formation of LSs via front or domain wall interactions was also analyzed
using similar techniques in the context of the Ginzburg-Landau equation [10]
and in the degenerate optical parametric oscillator (DOPO) [L1].

In summary, the presence of oscillatory tails is essential for the formation of BSs
of solitons at discrete separation distances, determined by the spatial oscillations
of the tails. When the tails are monotonic, locking at fixed and discrete distances
is no longer possible and the two solitons move towards or away from each other.

In this chapter we will apply these methods to the LL equation. This equation
is dissipative in nature and it is not integrable. Therefore we can not obtain a
closed analytical expression for the interaction potential. Nevertheless we can
use the numerical solution for the soliton to calculate such potential and the
locking distances.

The chapter is organized as follows. In Section we calculate the interaction
potential via the complete Hamiltonian and the interaction one. We compare
the locking distances obtained with both methods with the exact ones showing
good agreement. We find that the periodicity in the potential is given by the
wavelength of the oscillatory tails and therefore by the imaginary part of its spa-
tial eigenvalues (see Chapter [2). In Section we review some of the different
types of bifurcation structures that one can obtain considering two soliton states
separated at different distances and the case of several solitons. In Section [7-4]
we briefly discuss how the interaction gets modified depending on the control pa-
rameters of the system. After that, in Section [7.5] we apply the same method to
generalization of the LL equation in two cases, one considering terms conserving
the reversibility and another one with terms breaking it, in particular we choose
fourth and third order dispersion effects. Finally in Section [7.6] we use simula-
tions in the presence of noise to show how two soliton structures jump between
neighbouring stable distances increasing or decreasing their separations. We also
calculate the probability for the system to reach a given separation distance.
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7.2 Interaction potential

The LL model has a variational formulation in terms of a generalized action
functional

SE/thL[AHZl]dt:/th/[ﬁ[.&fl]dacdt7 (7.1)
R R R

and the Lagrangian density for the anomalous GVD regime[I2]
L= % (A, A — AD,A) — 0, A0, A —ip(A—A) —0AA + %/PA?. (7.2)

In this framework the LL equation corresponds to the Fuler-Lagrange equation
derived from the least action principle defined by:

d

64S(A) = o

| _ S(A+ed) =0, (7.3)

where A is the variation of A and e a small parameter 0 < € < 1.

The Hamiltonian density is given by,
H = 0,A0,A+ip(A— A) +0AA - %Aw, (7.4)
and the interaction Hamiltonian density by just the term
Hr = —%Am?. (7.5)

Integrating Eq.(7.2)), (7.4) and (7.5]) over space we obtain the Lagrangian, Hamil-

tonian and interaction Hamiltonian functions respectively.

In this section we will calculate the effective potential of interaction using both
the full Hamiltonian function coming from ([7.4)) and the interaction Hamiltonian
function coming from ({7.5)).

To start we check the temporal evolution of two single-peak solitons separated
by different distances to obtain some insight about their interaction behavior. In
Figure we can observe the time evolution of two solitons initially separated by
distances zg = 32.8157 in panel (a) and by zo = 39.0613 in panel (b). Looking at
the right panel in (a) and (b), where we plot the separation z between both peaks,
those initial conditions converge to the same attractor i.e. a BS characterized
by a separation zs = 36.2. Figure c) and Figure (d) show a similar time
evolution but now the initial separations are zp = 42.1881 and zg = 46.8747
respectively, and as before, they converge to the same stable separation zs =
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Figure 7.1: Temporal evolution of two solitons with different initial separations for § = 1.5
and p = 1.11445. (a) zo = 32.8157 and z5 = 36.1968 , (b)zo = 39.0613 and z; = 36.2084 (c)
z0 = 42.1881 and zy = 45.3205 and (d) zo = 46.8747 and zy = 45.3415. The subpanels on the
right of each panel show how the separation distance between the peaks z evolves in time.

45.3. From Figure [7.1] we can therefore conclude two things, first only certain
separation distances are allowed for the two-peaks solitons BSs, and second,
the interaction between the individual solitons can be repulsive as in panels (a)
and (c), or attractive as in panels (b) and (d). The question now is if we can
predict these distances and obtain information about the BSs without using
time evolution simulations, that need a large amount of time to converge to the
stable attractor. In the same way as in Refs.[I} 5], we derive effective interaction
potentials, depending on the separation distances z, where the extrema give these
stable and unstable separations. The potential is determined by the overlapping
integral between the tail of each soliton and its mate’s core. Therefore, the
interaction depends strongly on the nature of the tails [I} 2, 5]. We will show how
the periodicity of the potential is given by THE wavelength of the oscillatory
tails, and therefore, as we showed in Chapter [2] it can be determined by the
spatial eigenvalues of the HSSs Ajg.

In what follows we derive an Euler-Lagrange equation describing the interaction.
This equation has the form of a constraint, such that the action functional
is extremal. Similarly as in Ref.[5], we consider that the BS formed by two
solitons that are widely separated can be described by the ansatz

Az, 2) = A(z) + Ay (2) — Ao, (7.6)
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7.2. INTERACTION POTENTIAL

where A_(x) = Agor(x—2/2) represent a one soliton state displaced by a distance
2/2 to the left of the center of the domain at = 0, and A, = Agu(z + 2/2) a
soliton displaced by a distance z/2 to the right, with z being a time dependent
free parameter. As we do not have an exact analytical solution, we use the
numerical stationary solutions obtained via continuation techniques to calculate
the potential. The potential is calculated considering first the full Hamiltonian
and later the interaction one . Comparing both approaches with the
exact separation, obtained numerically, one can see that the agreement is quite
good.

7.2.1 Full Hamiltonian

With the ansatz (7.6)) the action functional depends on z i.e. S = S[A(z), A(2)].
The critical points of the action functional, that is, the solution of

0.S8(2) =0, (7.7)
correspond to the pinning distance z.

With the state configuration given by Eq.(7.6) the kinetic term in Eq.(7.1) is
zero [B] and the variational problem reduces to

d / e H(z + e2)dt =0 (7.8)

628(2) = &’ezo R

The Taylor expansion of H about z gives
d 2t df 2
o [ (mG+ e 0) -

dH
:/e%—%dtzo.
R dZ

The last equation holds for any variation Z and therefore the Euler-Lagrange
equation for this problem is given by

dH

= =0

dz
This equation has the form of a constraint and its zeros correspond to the equi-

librium separation distances for the BSs. Then H as a function of z defines an
effective potential

(7.9)

Un(2) = HIA(2)] = /R HIA(2)]dz. (7.10)

201



CHAPTER 7.
BOUND STATES

INTERACTION OF SOLITONS AND THE FORMATION OF

64582 5 N

—-6.40 § -6.4586 E\/\/—\___g _

S -6.4590 .

—6.42 50 55 60 65 70 75 80

= —6.44 ]
-6.46

—6.48 —

—-6.50 1 1 . . ) ]

0.04 0.0004 _

: £ 00000 i

0.02 —0.0004 —

= = 50 55 60 65 70 75 80 -
S 0.00

-0.02 —

_0.04 1 1 1 1 1 ]

20 30 40 50 60 70 80
z

Figure 7.2: (a) Effective potential Uy as function of separation distance between peaks z.
In (b) the derivative of Uy with respect to z is shown.
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Figure 7.3: In (a) the effective potential Uy, as function of separation distance between
peaks, i.e. z. In (b) the derivative of Uy, respect to z.

Taking the numerical solution for a single-peak soliton state for a given set of
parameters, (6, p) we evaluate Uy describing the interaction between two of
them widely separated. This potential is shown in Figure (a) for (0,p)
(1.5,1.11445). This potential oscillates in z with a fixed period or wavelength Ay
and decays for increasing values of z. The subpanel inside panel (a) shows that
even at large distances the oscillations are still present. The minimum (maxi-
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7.2. INTERACTION POTENTIAL

mum) of the potential correspond to stable (unstable) equilibrium separations
and therefore to stable or unstable BSs. The zeros of Eq. give the values
of the stable and unstable separation distances zJ and z;* respectively. These
points are signaled by e and o in Figure b) and they have been calculated
numerically interpolating the function dH/dz to find zeros. The numerical val-
ues for some of those stable points are shown in Table.(7.1). For comparison
we have also added the exact separations distances calculated using numerical
simulations. Although the agreement is not complete, the difference seems to be
of the order of those found in Ref.[5] whith a similar equation.

The periodicity of this potential Ay = z; | — z;, i.e. the different between the
position of two consecutive local minimum (or maximum) can be calculated for
every set of control parameters. For the present case, # = 1.5 and p = 1.11445,
and using this method, one finds that Ay, ~ 9.11673.

7.2.2 Interaction Hamiltonian

Another constraint equation similar to Eq.(7.9) can be obtained by minimizing
the interaction Hamiltonian

Hy=— ;/AQAQ /|A|4d:n (7.11)
R

instead of the complete one given by Eq.(7.4). This Hamiltonian defines an
effective interaction potential

Un, () = Hi[A(2)] = —7/ Az, 2)|*da. (7.12)

This potential is plotted in Figure [7.3] for the same set of parameters used in
Figure[7.2] As in the previous case, the zeros of equation

dH;
- 1
o =0 (7.13)

provide the equilibrium distances, where the minima (maxima) correspond to
stable (unstable) solutions. As before Table ([7.1)) shows the stable equilibrium
distances and the periodicity calculated with this method.

In Figure [74] four examples of BSs corresponding to some of the separations
given in Table [7.]] are shown. The bifurcation structure of some of these states
will be explored in Section We will show that when the separation distance
is large enough (L/2 or similar), each single-peak soliton within a BS behaves as
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Pinning dist. Uy Un, Exact
z] 35.297953 | 35.657525 | 36.318053
z5 44.392649 | 44.789084 | 45.485578
z3 53.511588 | 53.930950 | 54.652346
zs 80 80 80
Zpi1 = %y 9.11673 9.14159 9.16677
(251 —2)/2m | 0.689192 0.687318 0.685378

Table 7.1: Several stable separations z; calculated with different methods. The last column
represent the exact numerical values calculated by temporal simulations.

(a)1.4F 1 (c)raf ]
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S 1.0f ] = 10} ]
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0.6F ] 0.6F ]
-80 -40 0 40 80 -80 -40 O 40 80
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Figure 7.4: Two pulses BSs corresponding to the separation distances: 27 = 36.3180 in panel
(a), 2§ = 45.4855 in panel (b), 25 = 54.6523 in panel (c) and zZ = 80 in panel (d) for § = 1.5
and p = 1.11445.

an individual soliton and its bifurcation structure shows also homoclinic snaking
[13]. In contrast when the solitons are closer the snaking breaks up in a stack of
isolas.

7.2.3

As previously mentioned, the mechanism behind the interaction is related with
the shape of the solitons’ tails, and therefore with the presence of spatial oscilla-
tions. As shown in Chapter [2] such tails are described by the spatial eigenvalues
of the dynamical system and they arise when the solitons are asymptotic
to a saddle-focus (SF) type of HSSs. In contrast if the HSS is a saddle (S) the
tails are monotonic and the pinning does not occur. In the linear regime, the
oscillatory tails are approximated by

Interaction via tails

U =Up+ are®cos(kox + p1), (7.14)
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Figure 7.5: Wavelength of the interaction potential. In solid line the value calculated using
Eq. (7.15) and in red diamonds the value obtained using the interaction potential in the region
of existence of LS.

where a; and ¢ are functions of the control parameters (6, p), and can be
estimated by fitting the tails with function (7.14]).

For the control parameter values used here the frequency and the decay rate
are respectively kg = 0.6853 and gy = 0.1827, and the fitted parameters are
(a1,¢1) = (1.45- 1077, —-0.053). The imaginary part of the tails is described by
a function analogous to . For these parameters Ag is a SF, and kg and

go can be determined analytically by Egs. (2.33)) and (2.34). Consequently the
wavelength of the oscillatory decaying tails is

Atails _ 2\/§7T
tails _ .
VNV =401, + 313 + 1 - (6 - 2I)

(7.15)

This expression is plotted in Figure 7.5 as function of p for § = 1.5. The points
on top of this line correspond to the periodicity of the potential calculated, us-
ing Eq., in the pinning region of the homoclinic snaking. The agreement
between \;*!* and Ay is quite good although not perfect possibly because the
errors introduced when evaluating the potential and when calculating the equi-
librium distances. So the fact that Ay ~ A tails reveals the connection
between the interaction and the spatial eigenvalues of the HSSs solution. Thus,
given a initial stable separation distance z;, one can calculate any other equi-
librium position wiht the relation 2, = 2 + Ay. Moreover, some properties
of the interaction can be understood by analizing the spatial eigenvalues of Ag .

7.3 Bifurcation structure

We explore the bifurcation structure of some of BSs that can be formed com-
bining one, two, three, ... peaks LSs, as those found in Section [£.4] at different
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pinning distances. A detailed study of the bifurcation structure of BSs has been
done in Ref.[13] in the context of the Swift-Hohenberg equation. In Section
we have seen that the equilibrium separations between two soliton states is given
by the overlapping of the tail of one soliton with the other, and therefore inter-
action is intrinsically determined by the spatial eigenvalues of the HSSs. Then,
for a fixed set of parameters (p, ), one expects to have as many BSs as com-
binationS of existing pulses are possible. In an infinite domain, the number of
possible states is infinite, however in a finite size system is finite, constrained by
the domain size.

7.3.1 Two-pulses bound states

First let us discuss the two-pulses structures. The simplest class of these states
consist in two single solitons separated by L/2, like the one shown in Fig-
ure d). These pulses are equidistant from the nearest neighbours on either
side, and their behavior is identical to the behavior of single pulses on a peri-
odic domain of size L/2. These type of structures are organized in a snaking
bifurcation diagram as the one shown in Figure a). Modifying p back and
forward the different branches of the diagram have been calculated. The first
stable branch corresponds to a BS in Figure [7.4(d) (here relabeled by (i)). Be-
cause both single soliton behave as if they are independent, their modification
along the branches is related with the way in which both behave separately. For
example, after folding the second saddle-node, each of the 1-peak states of the
BS (i) develops extra peaks, one on the left and one on the right of its central
peak resulting in a new BS like the one shown in Figure [7.6{(a)(ii). This process
is repeated and at each saddle-node two extra peaks are added to the previous
state in the same fashion than in the homoclinic snaking shown in Figure [1.2] of
Section [£.3] The process of adding peaks continues until filling the domain. As
a result the snaking is reconnected with a pattern branch (P;g) from which it
originated. In the same way a BS formed by two 2-peaks pulses separated by L/2
like the one shown in Figure [7.6](b)(i) does also exist. In this case the behavior
of the even-peaks equidistant BSs is similar to the previous ones. The process
of adding two extra peaks happens to each of the base states resulting in the
sequence of structure (i)...(iv) plotted in Figure In this case the branches
also reconnect with the pattern Pis.

Together with the stable separation L/2, other stable equilibrium separation 23
(see Table are possible and therefore two pulses symmetric BSs separated
by z;, as those shown in Figure do also exist. Bound states corresponding to
25 and z§ (see Figure[7.4[b) and Figure[7.4|c)) share the same bifurcation struc-
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Figure 7.6: (a) Bifurcation diagram of two equidistant single-peak pulses separated by L/2
(see structure in subpanel (i)). In Panel (b) the diagram showing the bifurcation structure of
a BS composed by two 2-peaks LSs separated by L/2 is shown. Parameters: § = 1.5, L = 160.
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Figure 7.7: Isola formed by two-pulses BSs at pinning distance 27 for = 1.5, L = 160. On
the right column the real part of the field for the different positions marked on the diagram.

ture than those separated by L/2. This can be understood because at pinning
distances z5 and z3 the solitons are far enough to behave as independent ones.
Bound states corresponding to z{ (Figure[7.4[a)) are organized into large isolas
and do not connect directly with the pattern branches. The type of isolas that
are found are like those shown in Figure[7.7] This kind of behavior was reported
in Ref.[I3] (see Figure 5 in page 7) to be originated by using insufficient accu-
racy in the continuation algorithm, what generates jumps the soliton between
independent isolas, generating in this way a large one. Despite of improving the
accuracy in the numerical continuation algorithm it was not possible to find such
independent isolas.

In addition to the symmetric two-pulses states, there are many more states
which are not related by reflection symmetry i.e. which are asymmetric. As a
consequence such states in the LL equation move with a constant velocity. If the
separation is L/2 these asymmetric states form also snaking type of bifurcation
diagrams (see Figure 6 in Ref.[13]). However, when the separation between the
DSs is smaller these BSs are also organize in isolas.

7.3.2 Several-pulses bound states

Moreover, together with the two-pulses BSs presented before, there is a wide
variety of states built up by any number of pulses randomly separated by the
pinning distances z;. Figure shows two examples of isolas which occur in
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Figure 7.9: Monotonic effective interaction potential Ug, for 6 = 2.2 and p = 1.5.

this case. Panel (a) shows the isola corresponding to a 4-pulse BS whose peaks
are separated by a distance z5. Panel (b) shows a similar structure but for a
4-pulse BS where the inter-distance between peaks is also given by z3.

7.4 Dependence of the interaction on parameters

In this section we disccus how the spatial eigenvalues of the HSS Ag, and there-
fore the interaction between pulses, are modified depending on the control pa-
rameters (6, p).
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In Chapter [d it was shown that in the anomalous GVD regime, two situations
can been found depending on the value of 6. For § < 2, the bottom HSS branch
Ab is stable all the way until the MI(HH) at Iy = I. = 1, where it becomes
modulational unstable. Moreover A} is, from Iy = 0 to Iy = I., a SF with
spatial eigenvalues \; 2 3.4 = Fqop £ ko and therefore a wide variety of BSs exist.

For 6 > 2, Ag is stable all the way until SN, 1. Nevertheless, the spatial eigen-
values get modified when crossing the BD line at Iy = I, and two subregions
must be considered, one below the BD line (I < I.), where A} is a SF, and one
above the BD line (Ip > I.) where A} is a saddle with eigenvalues A2 = xq1
and A3 4 = *£¢o. In the first subregion, the LSs have oscillatory tails although
they are highly damped (see the plot for gy shown in Figure a)). Conse-
quently the interaction potential is almost monotonic as shown in Figure
for 8 = 2.2 and p = 1.5. In the second subregion (I > I.), the tails of LSs
are monotonic, and so it is the potential, and consequently no pinning between
solitons is possible.

7.5 Interaction with higher order effects

In this section we apply the previous techniques to study the formation of BSs
when high order dispersion (HOD) terms are considered in the LL model (see
Section . These terms modify the spatial eigenspectrum of the HSSs Ay,
and therefore the tails of the LSs. To illustrate this we fix (f = 2.2,p = 1.5)
just in a region where the tails are monotonic and so is the interaction potential
(see Figure . We will show that, for these values, HOD effects produce
spatial oscillations on the soliton’s tails and as a consequence on the interaction
potential, allowing the formation of a wide variety of BSs.

The LL equation in the anomalous regime including HOD terms reads

A =—(1+i0)A+i0jA+ > i"dm0 A+ iAlAP + p (7.16)

m>3

The even terms (with m = 2n, n € N) conserve the spatial reversibility. In
contrast the odd ones (m = 2n + 1) break that symmetry. In the following
we focus in two particular types of HOD effects, fourth order dispersion (FOD)
and third order dispersion (TOD). FOD is modeled by the term ~ d;d%, which
conserve reversibility, and TOD is modeled by ~ d303 which breaks it.

We will calculate the interaction potentials, and the stable and unstable sep-
aration distances, of the LL equation when each of these terms is considered,
showing that the matching between the theoretically predicted separations and
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Figure 7.10: Single soliton states in the presence of FOD (i)-(iii) and TOD (iv)-(vi). Here
ds4 = 0.02,0.1 and 0.3 from (i) to (iii) and d3 = 0.1,0.3 and 0.6 from (iv) to (vi).

the exact ones is very accurate.

Figure [7.10] shows how FOD and TOD effects modify the shape of the single
solitons, and in particular their tails.

7.5.1 Terms conserving reversibility: fourth order dispersion

The LL in the anomalous regime considering FOD terms reads

HA = —(1+i0)A+i0?A+ dy0t A+ iAlA* +p (7.17)
In Figure a single soliton state is plotted for three increasing values of dy.
These states have left /right symmetry and their oscillatory tails increase their
amplitude and wavelength with dy.

Inserting ansatz into Eq. the potential Uy is calculate as function
of the separation z. These potentials are shown in Figures [7.11a)-(c) for dy =
0.05,0.1 and 0.15 respectively. Figure shows dH /dz as function of z for the
potential of Figure C) (d4g = 0.15). The intersection of the graph with zero
gives the equilibrium separations z™. Here, as before, the minimum (maximum)
corresponds to stable (unstable) separation distances.

In Figure [7.13] one can see several two-soliton stationary BSs at different sepa-
ration distances for d4y = 0.15. Panel (i) shows the BS with the smaller distance
allowed, and in panels (ii)-(iv) the two peaks of the BS are separated by one,
two and four spatial oscillations (SOs) respectively. The potential prediction (see
Figure is only valid when separation between the solitons is large enough.
In this way the predicted separation corresponding to states (i)-(iii), fails. How-
ever, for BSs (iv) and for (v)-(vi), where the separation is larger, the prediction
is in good agreement with the real separation. A comparation between the real
and the theoretical separation distances is shown in table
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Figure 7.11: Effective interaction potential Up, for 6 = 2.2 and p = 1.5 for different values
of d4. In panel (a) ds = 0.05, in (b) d4s = 0.1 and in (c¢) d4 = 0.15. The minimum (maximum)
corresponds to the stable (unstable) separation distances 27" and 2!} respectively. Here L = 200.

2 T

Figure 7.12: Derivative of the interaction potential Uf;, respect to the separation distance
z corresponding to panel (c) in Figure for dg = 0.15. The zeros of this plot correspond to
the stable (signaled with e) and unstable (o).

Using the variables y1 = U, yo =V, y3 = d. U, ys = d,;V, ys = diU, Yo = d?L,V7
y7 = d3U and yg = d2V the stationary version of Eq.(7.17) is recast to the
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Figure 7.13: Bound states for dg = 0.15, 6 = 2.2 and p = 1.5. The separations correspond
to 20 = 3.2117 in (i), 2} = 5.5808774 in (ii),22 = 7.948731 in (iii),2? = 12.643589 in (iv),
216 = 40.41223 in (v),233 = 79.503312 in (vi). Here L = 200.

dy =0.15 z4 25 Zi6 Z5g Zsg
Un, 12.797605 | 24.265611 | 40.35027 | 61.032138 | 79.413032
Exact 12.643589 | 24.251682 | 40.41223 | 61.119042 | 79.503312

Table 7.2: In this table several stable separations z; for d4 = 0.15 calculated with the
interaction potential and the exact ones are shown. The first row corresponds to the stable
distances calculating using the potential of interaction. The second row represents the exact
numerical values.

dynamical system:

da:yi = Yi+2, 1= 1,...,6
dyy7 = dZi [y2 + 0y1 — ys — y1 (i + ¥3)] (7.18)
doys = dy " [—y1 + Oyo — ys — y2(y? +43)] .

The eigenspectrum of the Jacobian of (7.18) evaluated at Ay is obtained via
solution of the characteristic polynomial

dINE 4-2du N0 4 (1 —2d40 4+ 4dy To)A* + (41 — 20) N> +-312 — 4o+ 0> +1 =0, (7.19)

and consists of two sets of eigenvalues A1 234 = Fqo+iko and A5 67,8 = £q1£ik1,
as those shown in Figure for dy = 0.02 (panel (a)) and d4 = 0.15 (panel
(b)). Due to the spatial reversibility the eigenspectrum is symmetric respect to
the axes Im[A] = 0 and Re[A] = 0. Figures from panel (a) to panel (c)
show how the wavelength of the potentials increases with d4. This dependence
is shown in Figure and it has been calculated using the potential (black
diamonds) and 27 /k; (red crosses), where k; is the imaginary part of the spatial
eigenvalue with smallest negative real part in absolute value. As one can see the
agreement is very good.
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Figure 7.14: Spatial eigenvalues satisfying the characteristic polynomial ((7.19)) for 6§ = 2.2,
p=1.5 and d4 = 0.02 in panel (a), and d4 = 0.15 in panel (b)
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Figure 7.15: Periodicity of the potential Ay as function of the FOD coefficient d4 for 6 = 2.2
and p = 1.5. Black diamonds are calculated directly from the potential. Red crosses stand for
2w [k1.

7.5.2 Terms breaking reversibility: third order dispersion

The effects of TOD on solitons was widely studied in Chapter [f] in both the
anomalous and normal GVD regimes. With this term the LL model reads

HA =—(1+i0)A+i0?A+ dz03 A+ iAlAP + p. (7.20)

Equation is not invariant under the transformation © — —x and there-
fore the solution of this equation is no longer left/right symmetric ( see Fig-
ure iv)—(vi)). Due to this asymmetry, a LS drifts with constant velocity ¢
which can be determined numerically.

With TOD the shape of the oscillatory tails is well predicted by the spatial
eigenvalues (Chapter @ Here, despite of the asymmetry of the solitons, we
show that BSs are also formed by the locking between the tail of each soliton
and its mate’s core, and that the allowed separation distances can be predicted
by the spatial eigenvalues.
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Figure 7.16: Effective potential obtained from the interaction Hamiltonian H; for 6 = 2.2,
p = 1.5, and different values of d3: (a) d3 = 0.1, (b) d3 = 0.2 and (c) d3 = 0.3.
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Figure 7.17: In (a) Effective potential obtained from the interaction Hamiltonian Hy for § =
2.2, p = 1.5 and d3 = 0.3. In panel (b) we show dUp, /dz. The intersection of this last function
with vertical axes at 0 give the stable separation distances. In this case Ay = 1.3201666.

In Figure the interaction potential for three different values of ds is shown.
As also happens with FOD, TOD modifies the shape of the potential going from
a monotonic potential (see Figure to the oscillatory potentials shown in
panels (a)-(c) for d3 = 0.1, 0.2 and 0.3 respectively. Here, in contrast with the
LL equation, and the LL equation with FOD effects, the maximum (minimum)
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Figure 7.18: Two-pulses BSs for d3 = 0.1 and different stable distances. In (a) z§ = 14.8621,
in (b) 25 = 19.1223, in (c) 275 = 22.7739 and in (d) 2§45 = 26.4255. Here as well L = 160.

ds =0.1 z5 z7 Zi3 219
Un, 15.010894 | 19.269321 | 22.921311 | 26.572410
Exact | 14.862133 | 19.122334 | 22.773986 | 26.425529

ds =0.3 z5 z3 z7 213
Un, 14.788130 | 19.357768 | 25.453909 | 34.600589
Exact | 14.966661 | 19.517315 | 25.601455 | 34.742282

Table 7.3: Several stable separations z;, for d3 = 1 and d3 = 0.3 calculated with the interac-
tion potential and the exact ones. The first row corresponds to the stable distances calculating
using the potential of interaction. The second row represents the exact numerical values.

correspond to stable (unstable) separation distances as it was also predicted in
Ref. [3]. This can be observed in Figure for ds = 0.3.

Figure shows four examples of BSs at stable equilibrium distances (a)
25 = 148621, (b) 28 = 19.1223, (c) 255 = 22.7739 and (d) 235 = 26.4255,
for d3 = 0.1. The separations calculated using the potential (first row) and

simulations/Newton-Raphson algorithm (second row) can be compared in table
[7.3] for d3 = 0.1 and 0.3.

Figure shows Ay = z, ., — z; first calculated directly from the poten-
tial and calculated from the the spatial eigenvalues frequency Im[A~] (we plot
27 /Tm[A~] in Figure [7.19). For comparison, we have also added the analytical
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Figure 7.19: Here it is shown how the wavelength Ay of the potential changes in function
of d3, for a domain size L = 160. With blue crosses the wavelength obtained through the
spatial eigenvalue A~ obtained solving the characteristic polynomial is shown. The
black triangles represent the same quantity calculated with the analytical expresion ,
and the red diamonds represent the same quantity obtained directly from the potential.

approximation that we obtained in Section [6.3}

vV ]. =+ 2Cd3
ds '

As we can observe Ay increases with the strength of the TOD. Due to this, for
the same fixed domain size, the larger the TOD strength, the smaller the number
of two-soliton. To summarize, we have shown that BSs arise in the presence of
HOD effects for values of (6, p) where in their absence BSs are not allowed.

A" =i (7.21)

7.6 Effects of noise on the bound states

We have seen that BSs of solitons can be formed due to the locking, at fixed
distances, of single-peak solitons, and that this locking is induced by the exis-
tence of oscillatory tails on the solitons’ profiles. In this Section we study how
these BSs and their stability are modified when the background is noisy. Here
we focus on the effect of noise when only FOD and TOD terms are considered.
The noise is incorporated to the system through a fluctuating pump intensity of
the form

p = po+ VDE(x,t) (7.22)
where &(z,t) is a Guassian white noise of zero mean and correlation
(E(x, )¢’ 1)) = 6(t — t')o(x — 2') (7.23)

7.6.1 When fourth-order dispersion is considered

Figure [7.20] shows the time evolution of an initially stable BS with separation
zo = 40.0266 for a FOD strength d4 = 0.02 for different realizations of the noise.
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Figure 7.20: Effect of white noise £(z) on a BS for parameter values, § = 2.2, p = 1.5 in the
presence of FOD d4 = 0.02. Red dashed lines represent the stable separation distances z; and
black dashed lines the unstable ones z¥, both calculated using the interaction potential. Here
is VD = 1.5 and L = 300.

Due to the effect of noise, the positions of the two peaks of a BSs fluctuate,
showing sudden jumps between neighboring equilibrium positions, increasing or
decreasing the separation between peaks. The difference between the stable
(red dashed lines) and unstable (black dashed lines) separations is given by
Ay /2 =285 — 2% = 0.43987. As time passes, in average, the two-soliton BS tends
to increase its separation instead of decreasing it, not matter which initial seed
is used to generate the noise. Here one can identify that the dynamics exhibits
two different time scales, one fast and the other slow. The fast scale describes
the evolution of the system from a given separation to the closest largest one
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Figure 7.21: Probability of being in a given separation distance for § = 2.2, p = 1.5 in the
presence of FOD d4 = 0.02. Red pointed lines represent the stable separation distances z; and
black dashed lines the unstable ones z%. Here L = 230 and v/D = 0.5 and we have considered
70 different realizations of the noise.

(corresponding to the closest minimum into the right if one looks to Figure.
The slow scale describes how, for an infinite time, the system evolves toward
larger separations until reaching the minimum of the envelope of the potential.
In an infinite system the separation will increase infinitely. However, our system
is periodic, and therefore the larger separation allowed is z = L/2. Moreover,
there is a direction which is facilitated by the evolution of the system, the one
that increases the separation distance, as according to the asymmetric potential
shown in Figure [[1I] In a symmetric potential the system would jump from
a given separation to the closest one, no matters if it is larger or shorter than
the former one. This occurs because the symmetry in the potential facilitates
equally any direction. However, if the potential is asymmetric, the system, in the
presence of noise, will evolve to the minimum of the envelope of the interaction
potential, which in a periodic domain corresponds to z = L/2.

In order to characterize better this phenomenon we have calculated the frequency
density distribution f E| (see Figure describing the jumping between differ-
ent stable separations when noise is added. To do that we have run simulations
starting from different stable BSs with separations within the range z € [50, 100],
for the same amount of time, and for 70 different realizations of the noise. The
election of —log;, in Figure is arbitrary. The logarithmic function allows
to see in detail the structure of the histogram, not clear otherwise. In this way
logo(f) represents the probability of reaching a given stable separation distance.

1The number of events that we have at each separation distance.
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30

Figure 7.22: Effect of white noise £(z) on a BS for parameter values, § = 2.2, p = 1.5 in the
presence of TOD strength d3 = 0.1. Red dashed lines represent the stable separation distances
z$ and black dashed lines the unstable ones z%. Here v'D = 1.5 and L = 200.

Thus, the maxima correspond to the most probable separations and the minima
to the less probable ones. The use of —log;, allows us to establish a corre-
spondence with the interaction potential shown in Figure [T.11} whose minima
correspond to the minima of Figure [7.21] and therefore to the basins of attrac-
tion of the system, i.e. stable separation distances (shown in red dashed lines).
Thus, in a fast time scale, Figure shows where the system spends most of
its time during the temporal evolution, and one can interpret the probability as
the escape time from a certain basin of attraction.

The barriers of the interaction potential, (see Figure decrease for increas-
ing separation distances, and consequently the barriers of —log;,(f) shown in
Figure [7.2I] Therefore, the amplitude of noise that it is necessary to apply to
the system in order to make it escape from a given basin of attraction must be
larger for small separations, and smaller for the larger ones. For a fixed value of
noise, a BS needs more time to escape from a basin of attraction characterized
by a short separation, and then with a larger barrier, than from one with a
shorter separation where the barrier is smaller. Moreover, it is possible to show
that the escape time dependent on the size of the barrier [14].

7.6.2 When third-order dispersion is considered

Figure shows the evolution of BSs in the presence of only TOD effects. Here
ds = 0.1, VD = 1.5, 2y = 26.425529 and Ay /2 = 0.304253. In this case the noise
generates a similar behavior i.e. the position of both peaks fluctuate until the
jumping between neighboring positions occurs. Nevertheless, in contrast to the
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Figure 7.23: Probability of being in a given separation distance for § = 2.2, p = 1.5 in the
presence of TOD d3 = 0.1. Red pointed lines represent the stable separation distances z; and
black dashed lines the unstable ones z%. Here L = 200 and v/D = 1.5 and we have considered
54 different realizations of the noise.

FOD situation, the separation between peaks decreases in time according to the
potential shown in Figure [7.16] until reaching the maximum value of its envelope.
Proceeding in the same way that in the case with FOD, we have calculated the
frequency histogram shown in Figure for the BSs in the presence of noise.
As before the minima of this quantity confirm the stable separation distances
obtained by the interaction Hamiltonian. However, now the system evolves to
minima separation.

We can summarize saying that with FOD the separation between peaks tends to
increase and with TOD tends to decrease. This phenomenon can be understood
by looking to the interaction potentials in both cases. While with only the
GVD and FOD effects the stable separations correspond to the minimum of the
potential, in the TOD case they are given by the maximum. In this context, the
stochastic dynamics of a two-soliton BSs tends to the minimum of the potential
envelope for the reversible cases (only GVD and FOD) and therefore to the
largest separation, and to the maximum of that envelope, and consequently to
the shortest separation, for the non-reversible cases (with TOD).

7.7 Conclusions

In this work we have applied the variational principle to study the interaction and
the formation of BSs in the LL equation. We have derived an effective potential
depending on the separation distance between solitons. The extrema of this
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potential determine the stable or unstable separation distances and they are
related with the overlapping of the solitons’ tails of one soliton with its mates’
core, and therefore can be understood by analyzing the spatial eigenvalues of
Eq.(3.1)). Moreover, the periodicity of the potential is determined by the spatial
eigenvalues of Ay. After studying these potentials we have calculated some of
the bifurcation diagrams which arise for the different BSs. Regarding the two-
soliton BS, if the separation is L/2 or similar, solitons behave as independent
ones and the resulting bifurcation diagram is of snaking type [I3]. In contrast,
when the separation is smaller, BSs are organized in a stack of isolas that are
not connected with the pattern. If we consider arrays of more than two solitons,
the bifurcation structures obtained are normally isolas.

These results can be extended for the LL when high order effects are considered.
Here we have focused in the fourth order dispersion and third order dispersion
effects. For both cases, spatial oscillations appears on the solitons’ tails, due to
the modification of the spatial eigenvalues of Ag. While in the FOD case the
oscillations in the tails are symmetrical, for TOD they are asymmetric respect
the symmetry plane z = 0.

We have shown that for parameters for which finding BSs in the LL model is
difficult, a wide variety of BSs arise due to tail interaction when considering the
extra dispersion terms. In both cases we calculate the equilibrium distances from
the potential itself and from the spatial eigenspectrum. This is an important
quantity because just knowing the separation of a single BS it is possible to
predict any other stable separation.

Finally in Section we have studied the effects of adding white Gaussian noise
on the BSs for both the TOD and FOD. From the different realizations of this
noise we have calculated the probability of being in a given position and we
have found that the basins of attraction obtained with this method correspond
exactly to the stable possition predicted by the potential.

Recently, BSs of solitons has been studied experimentally in the context of pas-
sive driven nonlinear resonators where several new binding mechanism involving
Gordon/Kelly sidebands, birefringence, and dispersive waves have been identi-
fied [15], so we expect that our results are relevant for this community.
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Chapter 8
Effects of defects and drift on the
dynamics of solitons in the
Lugiato-Lefever model

8.1 Introduction

In previous chapters we have analyzed the dynamics of localized structures (LSs)
in the context Lugiato-Lefever equation describing one-dimensional driven opti-
cal cavities, in both the normal and anomalous regimes. There we have shown
that while in the anomalous regime typical dissipative solitons (DSs) are bright,
in the normal regime the DSs are dark. Although these states have a different
origin, bright solitons are formed as a pattern element, and dark ones are the
result of the locking of two fronts with different polarities, both of them can
undergo instabilities leading to a wide variety of temporal dynamics, such as
periodic oscillations [IH4] and chaos [4H6].

An interesting question is to know how the dynamics of these DSs are modified
when defects and drift are present in an optical cavity. Inhomogeneities, or
defects, are unavoidable in any experimental setup, and drift is also often present
in many optical, fluid and chemical systems. In optical systems this can be
caused by misalignments of the mirrors 7}, [§], nonlinear crystal birefringence [9],
or parameter gradients [10] , while in fluid and chemical systems drift is due to
fluid flow [I1, 12]. In synchronously pumped fiber cavities it has been shown
that a mismatch in the synchronization induces drift [13], and in both, fiber

225
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cavities and microresonators, drift can also be induced by odd high-orders on
chromatic dispersion. The competition between these two ingredients can lead
to a very rich DS dynamics. In particular, a special type of transient dynamics,
known as excitability, can be generated [16], [I7].

In this chapter we analyze the effects of these two elements on the dynamics
of DSs in the Lugiato-Lefever equation, considering both periodic boundary
conditions and absorbing ones. Microcavities or fiber cavities are by nature
periodic. On the contrary spatial cavities filled with a nonlinear medium [I§],
can be modeled using absorbing boundary conditions.

Without loss of generality, we consider one-dimensional LL equation in the
anomalous dispersion regime. This equation is formally identical to the LL
describing a Fabry-Perot spatial cavity when one of the transverse dimensions
is shorter than the critical wavelength. Hence, within this chapter we will think
on a spatial cavity that is very long and narrow. The defect or spatial inhomo-
geneity can be induced in the system by injecting a Gaussian beam on top of
the homogeneous pump. To consider this effect on the model we add the term

5(z) = p+b(x) = p + hexp (— (m ;%)2) , (8.1)

where h is the amplitude of the Gaussian beam centered at x = z(, and o its half
width at half maximum. The drift, can arise easily if, for example, the mirrors of
the cavity are not perfectly aligned. If these two conditions occur simultaneously,
then the electric field inside the cavity is described by the equation

A =—(1+i0)A+i|APA+i0?A — cO, A+ p(z), (8.2)

where we have modeled the drift by adding the general gradient term —c0, A,
being c its strength.

This chapter is organized as follows, in Section [8.2] we discuss the bifurcation
scenario in the presence those two elements leading to oscillatory and excitable
dynamics. We show that, with absorbing boundary conditions, the dynamics and
bifurcation structure are equivalent to those found in Refs. [16] [I7]. In contrast,
with periodic boundary conditions, the dynamics of DSs, periodically generated
at the inhomogeneity, are altered by the periodicity of the boundary conditions.
Such boundary conditions allow those same DSs to interact with the defect again
after having traveled one full round trip in the cavity (see Section . Later
in Section we also briefly show that the DSs dynamics can be much more
complex at higher values of the cavity detuning due to the bistability of the HSSs
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Figure 8.1: Bifurcation diagrams of the different steady-state state solutions in function of
h with ¢ = 0. The solid (dashed) lines represent the energy of the stable (unstable) states.
The subpanels (i)-(iii) depict the absolute value of the field A inside the cavity (blue) and the
corresponding profile of the defect (red pointed line). In (i), h = 0.052, (ii) h = 0.556, and
(iii) h = —0.196.

and the proximity of the different oscillatory and chaotic instabilities. Finally,
in Section [8.5] we end with a short discussion.

8.2 Dynamics and bifurcation structure for low values of
detuning

In this Section, unless mentioned otherwise, we fix the values L = 70, § = 1.56
and p = 1.137 within the low values of the frequency detuning in the range
41/30 < 6 < 2, and such that single DSs exist in the LL equation without drift
and inhomogeneity. We also choose o = 0.2727 around half the width of the DS
at half maximum and z¢y = L/2, such that the inhomogeneity is centered in the
x—domain. Similar behavior can be found for other values of § and p within this
region. In what follows, we analyze first the effect of the spatial inhomogeneity
on the single solitons dynamics and after that we study how these dynamics
change when including also the drift.
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8.2.1 Dynamics induced by the spatial inhomogeneity

Figure shows the bifurcation diagram of the steady-state solutions in the
presence of a defect (h # 0), but without a drift term (¢ = 0) in more detail. The
maximum absolute value of the field A is plotted as a function of h. Depending
on the amplitude h of the inhomogeneity, several pinned steady states appear.
The fundamental state of the system corresponds to branch (i) and is a small
bump solution induced by the inhomogeneity rather than a perfect homogeneous
solution as we can see in Figure i). When increasing the value of i the system
reaches a high amplitude DS (branch (ii)) pinned at its center (see Figure[8.1J(ii)).
Finally, for negative values of h, DSs in branch (iii) are pinned at the first
oscillation of its tail as we can observe in Figure iii). This branch is actually
degenerated and there is another state corresponding to a DS pined at the other
side of the defect.

8.2.2 Dynamics induced by the spatial inhomogeneity and drift

When the drift term is taken into account (¢ # 0), the pinned states shown in
Figure experience a force trying to detach them from the inhomogeneity.
This competition between the inhomogeneity that pins the states to a fixed
position and the drift force trying to pull them out, leads to the appearance of a
rich variety of dynamics, namely small and large amplitude oscillations (train of
solitons) and soliton excitabilityﬂ Figure shows how the bifurcation scenario
in Figure B.1] changes with increasing values of the drift strength c¢. For low
values of ¢ two extra saddle-node bifurcations, namely SN, and SN, appear
involving unstable steady state solutions (see Figure a)). These SNs arise
from the transcritical bifurcation at h = 0 for ¢ = 0, when it becomes imperfect
for ¢ # 0. Increasing ¢, the SNy becomes soon a SNIC (saddle-node on the
invariant circle) creating a limit cycle. This oscillatory solution corresponds to
a periodic generation and emission of DSs from the inhomogeneity resulting in
a sequence of drifting solitons called train of solitons or soliton tap [20]. This
type of oscillations were also observed in the context of the Swift-Hohenberg
(SH) equation with absorption in the boundaries [16] [I7]. In the present case,
an example of such a train of solitons (for a higher value of ¢) is shown in
Figure i) and Figure [8.4(i) for absorbing and periodic boundary conditions
respectively. Due to the periodic boundary conditions, the train of solitons is
instead reinjected on the other side of the domain, filling up the whole cavity. At

1This type of excitability is an emergent property of the DSs and one says that a system is
said to be excitable if perturbations below a threshold decay exponentially, while perturbations
above this threshold induce a large response before going back to the resting state.
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Figure 8.2: Bifurcation diagrams of the different steady-state solutions in function of h for
different values of the the drift strength ¢: ¢ = 0.025 in (a), ¢ = 0.06 in (b) and ¢ = 0.1
in (c). The solid (dashed) lines represent the energy of the stable (unstable) states. The +
markers correspond to the extrema of oscillatory solutions, and the vertical dashed line shows
the location of the Fold of Cycles (FC). Other parameters are as in Figure The labels

(i)-(iii) correspond to Figures and

the SNIC the period of emission of DSs diverges, and it decreases as one moves
away from the SNIC bifurcation point [21I].

For higher values of ¢ (see Figure [8.2|b) for ¢ = 0.06), SN; and SN; collide in
a cusp bifurcation, a subcritical Hopf bifurcation H* appears, the SNIC disap-
pears in favor of another saddle-node bifurcation SNy, and a supercritical Hopf
bifurcation H™ is created. Finally, increasing the value of ¢ further (see Fig-
ure ¢)), all saddle-node bifurcations have disappeared and a single branch
remains with a supercritical H~ and subcritical HT Hopf bifurcation.

In Chapter [9] we will see that the bifurcation structure in the SH equation is
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Figure 8.3: Different soliton regimes for ¢ = 0.1 when considering absorbing boundary
conditions. The panels (i)-(iii) depict the evolution and final profile of the absolute value
of the field A inside the cavity. In panel (i), a periodic train of solitons is created at the
inhomogeneity (h = 0.3). In panel (ii), a soliton is pinned at the inhomogeneity and locally
oscillates with small amplitude (h = 0.49). In panel (iii) (h = 0.51), the system is excited by
transiently (At = 30) changing the parameter values by h — h + Ah, with Ah = —0.3.
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Figure 8.4: Different soliton regimes for the same parameter values than in Figurewhen
considering periodic boundary conditions. The regimes considered here are the same that
those in Figurefor absorbing boundary conditions. In panel (i), a periodic train of solitons
is created at the inhomogeneity. In panel (ii), a soliton is pinned at the inhomogeneity and
locally oscillates with small amplitude. In panel (iii), the parametric excitation leads to the
emission of a DSs form the defect location that continues to circulate in the cavity.

qualitatively equivalent to the one found here, showing the generality of this
mechanism. In H™, a stable limit cycle is created. This limit cycle initially cor-
responds to oscillations of small amplitude which remain localized at the defect
position in the cavity (see Figure ii) and Figure ii)). When decreasing
the strength of the inhomogeneity, these oscillations rapidly increase in ampli-
tude in a so-called Canard explosion (CE) [22] and lead to the detachment of
solitons from the defect. Those solitons then drift away and lead to a train of
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solitons. These large-amplitude oscillations persist until a Fold of Cycles (FC)
bifurcation where the stable limit cycle collides with an unstable limit cycle orig-
inating at H*. At values of the defect strength h beyond the supercritical H™
bifurcation, the pinned DS is stable. However, the system can be excited to emit
a DS from the defect location through direct perturbation of the DS profile or by
transiently changing the parameter to the nearby oscillatory regime as shown in
Figure iii) for absorbing and Figure (iii) for periodic boundary conditions.

The periodic boundary conditions also have an important effect in the excitable
regime encountered beyond H™, shown in Figure c¢). The excitation leads
to one DS that remains pinned in the defect and another DS that drifts away
from the defect. Due to the periodic boundary conditions of the system, this
drifting DS eventually collides with the pinned DS from behind. This collision
frees the pinned DS from the defect such that it drifts away, while the DS that
was previously drifting now takes its place and remains pinned at the location
of the defect. This type of dynamics reminds of the classic Newton’s cradle.

8.3 Periodic versus absorbing boundary conditions

Comparing Figures 8.3 and [8:4] we see that although locally the dynamics is the
same, the global system behavior with periodic boundary conditions differs from
the case with absorbing boundaries.

To generate absorption in the boundaries we modify the pump normalized am-
plitude by p — p(x) with

p(x) = pexp (—x lxo)zo » (83)

in such a way that, on the plateau p(z) = p, and at the boundaries p(x) takes
a value outside of the region of existence of DSs, and therefore DSs disappear.
With these boundaries the dynamics are the same that those found in the context
of the SH equation (see Chapter [J).

In contrast with the absorbing case, periodic boundary conditions lead to the
recirculation of DSs in the domain and to interaction with the defect at the center
of the domain and with the new DS emitted there. In particular, Figure [8.5
demonstrates that the large-amplitude oscillations (h = 0.3 and ¢ = 0.1) are
modified through this interaction. The temporal evolution of the field A at
the defect position is plotted for both absorbing (black line) and periodic (red
line) boundary conditions. In the case of absorbing boundary conditions, the
period of the oscillations T is essentially given by the Hopf frequency. The
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spatial wavelength of the emitted train of solitons is therefore Ay ~ ¢Ty. In
Figure a) one can see that the shape of the oscillations is slightly adjusted as
soon as the first emitted DS reaches the defect after one roundtrip. In this case
the period of the oscillations does not change considerably because the train of
DSs (consisting of n peaks) emitted by the defect with a natural period Ty has a
wavelength A\g that is an almost exact submultiple of the cavity length Ly &~ n)g.
In general this will not be the case for arbitrary cavities. If the length of the
cavity is L # Lo, and the same amount of peaks (n = 9) are emitted, then
L = n)\, where now A = ¢T" and therefore the period of emission of DSs from the
defect is constrained by the length of the doamin i.e. L ~ T. This dependence
can be observed in Figure b), which compares the temporal evolution with
absorbing and periodic boundary conditions for a domain size of L = 85 and
with the same amount of peaks (n = 9) emitted. In this case, since a multiple
of the natural wavelength no longer fits exactly within the cavity length, the
period of the oscillations changes more considerably. Therefore, in the presence
of periodic boundary conditions, and for the same number of peaks n, the period
of oscillations T' changes when varying the cavity length L and satisfies, together
with the natural period Ty ~ Ly, the relation

L. (8.4)

Ly Tp
From here one gets that if L > Ly (L < Lg) then T > Ty (T < Tp), so if the
doamin size of the system increases (decreases) then the period T as well in
order to accommodate the same amount of peaks in the modified domain. This
analysis can be seen in Figure The top panel shows the oscillation period
T of the various solutions of train of solitons (A - H), while the natural period
Ty is indicated with a red solid line as reference. The bottom panel shows the
amount of DSs within the train of solitons corresponding to the branches shown
in the top panel. As the cavity becomes larger more solution branches coexist
and the system allows for soliton trains with different amounts of DSs.

8.4 Dynamics and bifurcation structure for detunings 6 > 2

For high values of detuning the dynamics of DSs in the presence of spatial inho-
mogeneity and drift become much more complicate basically due to bistability
between the bottom AY and top Af branches of the HSS, and due to the prox-
imity to the instabilities leading to oscillatory and chaotic dynamics. On one
hand, due to the bistability of the HSSs, convective instabilities involving these
two states when ¢ # 0 modify the scenario when considering the defect. On
the other hand, for a value of p close to the Hopf threshold, the term p defined
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Figure 8.5: Temporal evolution of the field A at the defect position zg for two different
boundary conditions: 1) absorbing boundary conditions (black solid line), 2) periodic boundary
conditions (red dashed line). The train of solitons generated in the cavity corresponds to 9
peaks that circulate (branch H in Figure[8.6). In panel (a) the domain width L = 78, while in
panel (b) L = 84.8. Here h = 0.3 and ¢ = 0.1.
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Figure 8.6: The top panel shows the oscillation period T of the various solutions of train
of solitons (A - H) in the system with periodic boundary conditions. The natural period
To in the system with absorbing boundary conditions is plotted in dashed lines as reference.
The bottom panel shows the amount of DSs within the train of solitons corresponding to the
branches shown in the top panel. The labels (a)-(b) correspond to Figure a)-(b).

by Eq.(8.1)) modifies locally the value of p and therefore it is possible to induce
locally i.e. in the neighborhood of zg localized oscillatory and chaotic dynamics.

Figure illustrates how the dynamics can be altered for higher values of the
frequency detuning. Here, we choose (6 = 3.8, p = 2.6), values close to a Hopf
instability of DSs in the LL equation without drift and defect. At such high
values of # the LL model , without defect and drift, has been shown to
exhibit a wide range of oscillatory dynamics [4] [6, 23]. Trains of solitons still
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Figure 8.7: Evolution of a train of solitons for h = 1.482 in (a), h = 2.682 in (b) and h = 5.682
in (c¢). The panels depict the evolution (bottom) and final profile (top) of the absolute value
of the field A inside the cavity. Other parameters are 8 = 3.8, p = 2.6, ¢ = 3, 0 = 0.2727 and
xo = L/2.

exist and can originate from an oscillatory instability at the defect location that
emits one DS at a time. Similar as in Figure i), the DSs eventually fill up
the whole domain and continue to circulate in the cavity. However, in contrast
to the trains of stable solitons in the low detuning region (Figure [8.4i), these
solutions can now undergo a wide range of instabilities. In Figure a) each
DS within the train of solitons oscillates, but not necessarily with the same
frequency. For higher values of the defect strength h, the trains of solitons start
behaving more chaotically, see Figure b)—(c). A detailed analysis of the origin
and organization of these various instabilities at higher values of 8 is beyond the
scope of this work and will be investigated elsewhere.

8.5 Conclusions

In this chapter we have analyzed the effects that inhomogeneities or defects,
and drift can have on DSs in the context of one-dimensional nonlinear optical
cavities. We show how the competition between these two elements can lead
to oscillations and excitability of solitons. This mechanism was first analyzed
in Refs. [I6], [I7] using the Swift-Hohenberg equation and later in the LL model
[24]. In both models it was found that a similar bifurcation scenario leads to
the periodic emission of cavity solitons from locations in the cavity containing
defects or imperfections.

Inhomogeneities and drift in optical cavities are unavoidable due to imperfections
in the fabrication process, material properties and higher order chromatic light
dispersion. Therefore, we believe that the type of dynamics studied in this work
could be of considerable importance for all applications based on DS in nonlinear
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optical cavities.

In Chapter [0] we will study this mechanism in detail in the prototypical Swift-
Hohenberg equation. We will show that the bifurcation structure and and dy-
namics of solitons, in the presence of inhomogeneities and drift, are equivalent
to those found here. This will confirm the generic nature of this dynamics and
argue that the main ingredients for the generation of trains of solitons are a)
inhomogeneities that can exert a pinning force on the soliton, b) a drift that
gives rise to a pulling force on the soliton.
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Chapter 9

Dissipative soliton excitability
induced by drift and defects

9.1 Introduction

In general, defects, or spatial inhomogeneities, are unavoidable in any experi-
mental setup, and drift is also often present in many optical, fluid and chemical
systems. In Chapter [8| we have analyzed the influence of these two elements on
the dynamics of DSs in drinven nonlinear optical cavities described by the LL
equation. There we have shown that the competition between both elements
can lead to the generation of a very rich DS dynamics, going from oscillatory to
excitable dynamics [1].

The effects of drift and defects on the DS dynamics in optical cavities was firstly
studied experimentaly and numerically for the case of an injected broad area
semiconductor laser (VCSEL) [2, B]. In that type of system the defect was mod-
eled in the cavity detuning parameter, accounting for spatial inhomogeneities
introduced during the growth process of the device. Despite of the theoretical
work, a complete description in terms of bifurcations was absent.

In this chapter we provaid a detailed description based on a bifurcation analysis
of the dynamics of DSs induced by the presence of defects and drift in the real
one-dimensional Swift-Hohenberg (SH) equation showing the generality of this
mechanism [0}, [7]. Contrary to the SH equation for a complex field which shows a
rich variety of dynamical behaviors as shown in [8, 9], the SH equation for a real
field can be considered as a prototypical system that does not exhibit any time-
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oscillatory dynamics. As we will see, the competition between the two previous
ingredients introduces an oscillatory instability, which can lead to a regime in
which DSs are pulled one by one from the defect (referred to as a train of DSs),
and to an excitable regime in which the DSs stay pinned in the defect but can
be pulled out by a transient perturbation to the system. Here, as in Ref. [4],
excitability is an emergent property of the DSs that has its origins in the spatial
coupling. Hence, this type of excitability is different to the one arising as a local
property, such as in neural models [5].

The chapter is organized as follows. In Section[9.2] we will first introduce the SH
equation for a real field, a generic amplitude equation describing pattern forma-
tion in a large variety of systems [10] [IT]. We then introduce additional terms in
the SH equation such that it accounts for both drift and spatial inhomogeneities.
Next, we proceed to analyze the individual and combined effects of drift and de-
fects by exploring bifurcation diagrams as function of the strength of the drift
and the size of the defect (Section . This analysis will reveal various regions
of dynamical behavior, where we will highlight the distinctive properties of os-
cillatory (Section and excitable (Section DS dynamics. These dynamics
are then shown to unfold from two Takens-Bogdanov (TB) [I2HI5] co-dimension
two bifurcation points in Section [9.6] In Section [0.7] we discuss the generality
of this drift-defect mechanism, (i) by considering a different parameter region of
the SH equation and (ii) by assuming the spatial inhomogeneity is in the gain of
the SH equation. Finally, we end by discussing the general aspects of the work
and its particular relevance in optics (Section .

9.2 The Swift-Hohenberg equation

The SH equation for a real field u in one spatial dimension x can be written as
follows,

5‘tu:—(8§+k3)2u+ru+au2—gug , (9.1)
with g > 0 to avoid divergences. Of particular interest for our purposes is that
the SH equation is variational (for periodic boundary conditions), or in other
words the dynamics follows a gradient [I6]. This implies that the rhs of Eq.
can be written as the (functional) derivative of a certain functional, namely

ou 6F
= 2
ot du’ (92)
with .
1 1 1 1
F = / de | —=ru® + = ((8% + kg) u)2 — —au® + —gu* ). (9.3)
o 2 2 3 4
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The dynamics in the SH equation are such that F decreases in time until it
reaches a local minimum, i.e. a steady state that minimizes F. As a consequence,
the SH equation cannot exhibit dynamical regimes different from stationary
states (i.e. this excludes oscillations and chaos). The simplicity and lack of any
oscillatory dynamics will allow us to clearly identify how drift and defect terms
adjust the dynamical behavior of DSs.

9.2.1 Linear stability analysis of the homogeneous steady state

The HSS solutions of the SH equation are,

u, = 0, (9.4)

- 21g<ai\/m> (9.5)

The linear stability of the HSSs in response to finite wavelength perturbations,
u(z,t) = us + eexp(QUt + ikx) , (9.6)

is determined by the dispersion relation
Q(k) =7 + 2au, — 3gu? — (k2 — k*)? . (9.7)

The HSSs undergo a generalized Turing (or modulational) instability [10,[11] as a
function of 7 if Q(k)|k=k, = %¢|k=k, = 0 for a given critical value k = k.. In other
words, the HSS is Turing unstable when Q(k) develops a maximum for some k =
k. and this maximum is exactly zero. The trivial solution © = 0 becomes Turing
unstable first at r = 0 for perturbations with critical wavenumber k. = £ky. At
r = kg this trivial state is also unstable to uniform perturbations (perturbations
with critical wavenumber k. = 0). When a > 1/27/38¢ (see Ref.[I7]) a spatially
periodic solution emerges subcritically from the Turing instability at » = 0.
Unless mentioned otherwise, we will consider ¢ = 1, a = 1.2 and k3 = 0.5
throughout this work, ensuring the presence of a subcritical pattern.

9.2.2 Localized dissipative structures

Together with pattern solutions, different types of localized dissipative structures
(LSs) can also arise in this system. Any stationary state of the system is solution
of the stationary SH equation

2 ?
- (dx2 + k'g) u+ru+ au® — gu =0, (9.8)
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Figure 9.1: Configuration of the spatial eigenvalues (9.11). For r < 0, us = 0 is a SF, at
r =0, us = 0 undergoes a HH bifurcation, and for » > 0, us = 0 is a DC resonance.

that can be written using the variables ug = wu, u; = dyu, us = d2u and
ug = d3u, as a four order reversible system

deO = U1
dmul = U2
dots = us (9.9)

dyuz = (r — ki) + aud — gud — 2k3us

In Chapter [2] we showed that LSs are in this framework, homoclinic orbits to
the HSSs. In particular here we will focus on the LSs that are biasymptotic to
the u = 0. As shown in Chapter [2] the origin and existence of these homoclinic
orbits can be determined by the spatial eigenvalues of the Jacobian of system
i.e. the solutions of the characteristic polynomial

A+ 2k302 + 1 — kg = 0. (9.10)
It is easy to check that the spatial eigenvalues are given by,

+iko £ /—1/2ko + O(r) ifr <0
A={ Liko+O(r) ifr=0 (9.11)
tiko £ iy/T/2ko + O(r)  if r > 0.

Figure [9.1] shows the different configuations of these eigenvalues as a function
of r. For r < 0, the eigenvalues form a complex quartet and us = 0 has two
stable and two unstable manifolds and therefore, homoclinic orbits to the HSS
can exist. In contrast, for » > 0, all the eigenvalues lie on the imaginary axis
and as a result no exponentially L.Ss can exist. At r = 0, the system has a HH
or a Hopf bifurcation in a reversible system with 1:1 resonance, i.e. there is a
pair of imaginary eigenvalues with double multiplicity, from where LSs unfold.
In Ref.[I7] the authors calculate using weakly nonlinear analysis a first order
approximation for the pattern and LSs unfolding from the HH point at r» = 0.
With this analysis they found that, in the neigbourhood of the HH bifurcation,
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the pattern can be described by

u(z) = 2\/icos(kcx +¢)+ O(r) (9.12)

and LSs by

u(z) = 2\/zsech (x;/]j) cos(kez + @) + O(r), (9.13)

where 3 = 398&2 — 3g. Although ¢ at first order is arbitrary, there are only two

values preserving the reversibility, namely ¢ = 0 and ¢ = 7. These two values
define two sets of LSs, one with an even number of peaks and one with an odd
number of peaks. Using continuation techniques it is possible to continue these
states to parameter values far from HH. In this way it is possible to calculate for
each of the LSs given by their homoclinic snaking bifurcation diagrams
Refs.[I7H20]. For the parameter values chosen here the homoclinic snaking cor-
responding to LSs with an odd number of peaks is shown in Figure [9.2] The
solutions are plotted in the Lo-norm,

L
[l E/O u(z)?dx (9.14)

The different branches corresponding to LS solutions oscillate back and forth
around the Maxwell point (the location where the Lyapunov functional F is
equal for the subcritical pattern and the trivial solution), explaining the term
snaking structure. The solid lines represent the stable solutions and the dashed
lines the unstable ones. After crossing each saddle-node bifurcation at the right
hand side of the diagram the LSs add a pair of peaks symmetrically at both
sides of the existing peaks. Some examples of such LS solutions are shown in
the insets. In the next Sections, we will simplify our analysis by fixing the value
of the control parameter r to —0.2 and by focusing on the dynamical properties
of a LS consisting of a single peak.

9.3 Overview of the drift-defect induced dynamics in the
Swift-Hohenberg equation

In this paper a drift is modeled in the SH equation by introducing a gradient
term

cOyu, (9.15)
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[lul1?

Figure 9.2: Homoclinic snaking for k3 = 0.5, a = 1.2 and g = 1. The solid (dashed) lines
represent stable (unstable) LSs. The vertical dashed line shows the value of r chosen in the
analysis in Section III. The insets show the spatial profile of the LSs with an odd number of
peaks, corresponding to the solid black circle on each stable branch.

with ¢ the group velocity. The spatial defect is defined by a single Gaussian
profile b(z) of height h and half-width o that is located in the center xy of a
system with domain width L (z¢ = L/2):

b(z) = h exp (— (x _0330)2) . (9.16)

In the context of optical cavities this defect can be seen as a injected beam into
the cavity as already described in Ref. [21].

The SH equation modified to include drift and defect thus reads:
= F(z)u+ au® — gu® — (92 + kS)Q u — cOpu + b(x). (9.17)

To avoid drifting DSs from re-entering the domain on the opposite side, we use
a super-Gaussian gain profile r(z),

o) =7 — 1+ o (— (- ‘A‘TO)lS) . (9.18)

in such a way that, on top of the plateau 7(x) = r, and at the boundaries 7(x)
takes a value outside of the prinning region, where LSs do not exist. In this
way the system has an effective width 2A, and all drifting DSs disappear at the
boundaries. Unless mentioned otherwise, we choose o = 2.045 (roughly half the
width of a DS), A = 94.0842 and r = —0.2.

242



9.3. OVERVIEW OF THE DRIFT-DEFECT INDUCED DYNAMICS IN THE
SWIFT-HOHENBERG EQUATION

(a)

Il

(b) 1 of(0) Gy . Jah) - Jav)

0.5 A A
0.0 A W M| !

-0.5

u(z)

70 130 70 130 70 130 70 130
T x x x

Figure 9.3: (a) Bifurcation diagram (maximum ||ul|sup) as a function of the strength of
the spatial defect h for ¢ = 0. (b) Examples of the steady state solutions (black solid lines)
corresponding to the labeled branches, together with the profiles of the spatial defect (red
dashed lines displaced for clarity to negative values). SN; and SN3 represent saddle-node
bifurcations and T; and T9 transcritical bifurcations.

9.3.1 Dissipative solitons in the presence of drift

For periodic boundary conditions, in the presence of drift, but without defects
(h =0, ¢ # 0), spatial reversibility under the transformation (u, z,t) = (u, —z,t)
is broken and the system can display convective instabilities. The solutions of
Eq. are steadily drifting states [22]. By introducing a change of variables
(z,t) = (x — ct,t) this drift can be removed and the system can be studied in
a reference frame moving at velocity c. In that frame the solutions can be only
stationary and the system dynamics is still variational.

9.3.2 Dissipative solitons in the presence of a defect

In the presence of defects, but without drift (¢ = 0, h # 0), Eq.(9.17)) is still
variational with a Lyapunov functional given by,

L
Fn = f—l—/ b(x)u(z)dx, (9.19)
0
and, as before, only steady state solutions of Eq. (9.17)) exist.
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Figure 9.4: (a) Bifurcation diagram (maximum ||u||sup) as a function of the strength of the
spatial defect h for ¢ = 0.0015. (b) Examples of the steady state solutions (black solid lines)
corresponding to the labeled branches, together with the profiles of the spatial defect (red
dashed lines displaced for clarity to negative values).

One of the main consequences of the defect term is the breaking the invariance
of Eq. under the translational transformation x — x 4 a, with a € R. The
steady state solutions are now pinned at the location of the spatial defect. We
can gain a better understanding of the effects of such spatial inhomogeneities by
looking at the bifurcation diagram showed in Figure [9.3] generated for periodic
boundary conditions. In this diagram we plot ||u|syp := max (u(z)) as a function
of the control parameter h. ||ul|syyp is chosen here instead of the Lo-norm because
it allows all different branches to be more clearly visible in this case. Each branch
corresponds to a different type of solution. Examples of each type of solution
are shown in the bottom panels.

The stability of the LSs us(x) is determined by solving the eigenvalue problem
Llus ()] = (r = (97 + k§)* — c0a + 2aus — 3gul) ¥ = Xy, (9-20)

for the eigenvalues A and the corresponding eigenmodes 1, as discussed in Sec-
tion The stable steady state solutions (i), (ii) and (iv) are the main at-
tractors of the system. Solution (i) corresponds to the fundamental solution, a
small deformation of the trivial solution. Solutions (ii) and (iv) correspond to
a large amplitude DS pinned at its center or at the first oscillation of its tail,
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respectively. Finally, solution (iii) also represents a large amplitude DS pinned
at the first minimum of its oscillatory tail, but this position is unstable.

Due to the breaking of the translational symmetry, a transcritical bifurcations
Ty and Tq [16] take places at h = 0. At Ty branch (ii) becomes unstable, while
branch (iii)-(iv) is stabilized. Physically, at h = 0 the defect goes from being a
bump to a hole. DSs tend to sit at the maximum of any inhomogeneity, such
that DSs centered at the hole become unstable and shift their position until the
hole coincides with the first minimum of its tail. Branch (iii) corresponds to
pinned DSs whose maximum is at the right of the defect.

Here we must point out that although Eq. with ¢ = 0 is reversible in z,
asymmetric solutions like (iii) and (iv) arise together with two other states with
the maximum at the left side of the defect, which are degenerate in ||u||syp. One
of these states is pinned at the first maximum on the right, while the other at
the first minima. As it will be discussed in the next section, this degeneracy
is broken by the drift. In the following, we will just focus on the DSs whose
maxima are located downstream of the defect, since this branch will reconnect
to branch (ii) in the presence of drift.

9.3.3 Dynamics and bifurcation structure in the presence of drift and
defect

When considering the joint effect of drift and defect, it is no longer possible to
describe the system in a moving reference frame and the system no longer follows
gradient dynamics minimizing a functional. As a result, steady state solutions
can undergo instabilities leading to time oscillatory dynamics. As previously
mentioned, in the presence of only drift (h = 0, ¢ # 0), solutions move with a
constant velocity. By also introducing a spatial inhomogeneity (h # 0, ¢ # 0),
the drift can be compensated for if the pinning force due to the defect is stronger
than the drift force trying to pull it out. As we will show below, this competition
between pinning (defect) and depinning (drift) can give rise to a wide range of
dynamical instabilities.

In Figure a) we show how the bifurcation diagram of Figure is modified
when introducing a small drift (¢ = 0.0015). Even a small drift is enough to
break the spatial symmetry and leads to the appearance of a pair of imperfect
transcritical bifurcations that split the solution branches at h = 0. A saddle-
node bifurcation SNy now connects branch (ii) (stable large amplitude DS) to
branch (iii) (unstable large amplitude DSs pinned at the first tail oscillation).
Likewise, the branch (iv) (stable large amplitude DSs pinned at the first tail
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Figure 9.5: Bifurcation diagram (maximum ||u||sup) as a function of the strength of the
spatial defect h for (a) ¢ = 0.05, (b) ¢ = 0.12, (c) ¢ = 0.162, and (d) ¢ = 0.4. Crosses indicate
the extrema (maxima and minima) of the DS oscillatory amplitude. The main dynamical
regions A - E are labeled in red.

oscillation) connects to the unstable middle branch DS, which previously (for
¢ = 0) connected branch (i) and (ii). A new saddle-node bifurcation SNy arises
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Figure 9.6: Two-parameter (c vs. h) phase diagram of the system for a = 1.2 and r = —0.2.
The bifurcation lines and regions A-E are explained in the main text.

from the middle branch, while the saddle-node bifurcations SN; and SN3 were
already present for ¢ = 0. Examples of the different profiles in the presence of a
defect and small drift are shown in Figure b). In what follows, we will focus
on the region in parameter space where h > 0.

Figure shows how this bifurcation structure (for h > 0) is modified as the drift
speed c is gradually increased. Figure a) shows the single snake-like branch
for a weak breaking of the reflection symmetry (¢ = 0.05). The crosses indicate
the extrema of oscillations in the amplitude of the DS at the central defect
location. These oscillations originate at the saddle-node on the invariant circle
(SNIC) and terminate at a fold of cycles (FC) bifurcation, which will be discussed
in more detailed later. As one can observe in the two parameter (¢,h) phase
diagram shown in Figure[9.6]the SNIC bifurcation emanates from a codimension-
two point together with the FC and the SNy found for lower values of ¢ (see
Figure [9.3). For increasing values of ¢ the branches stretch (Figure [0.5(b))
and SN; coalesces with SNy in a codimension-two point known as a hysteresis
or cusp bifurcation that we denote as Cp, which takes place at (cc,,hc,) =
(0.11772,0.038529). For values of ¢ just below c¢,, a Hopf bifurcation appears
subcritically (Figure b)) . We denote this subcritical bifurcation as H*,
where the label + points to the subcriticallity of the bifurcation.

As c is increased further, the SNIC turns into a saddle-node bifurcation SNy
through another codimension-two point, referred to as a saddle-node separatrix-
loop (SNSL) bifurcation [14], 15]. At (cc,,hc,) = (0.1642,0.105467), SN, and
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Figure 9.7: Zoom of the two-parameter phase diagram shown in Figure such that the
overlap between regions A and D, as well as A and E is visible. Labels (a)-(c) correspond to
the spatio-temporal evolutions shown in Figure @ Here a = 1.2 and » = —0.2.

SNj3 coalesce in another cusp bifurcation that now we label as Cs, see Figure
In Figure ¢) we show the bifurcation structure changing h or ¢ just below cc,.
In the inset one can see that another Hopf bifurcation H™ has also appeared. In
this case, the Hopf is supercritical (hence the symbol —).

Finally, for larger values of ¢, there is a single monotonic branch of steady state
solutions (Figure [9.5(d)). From the supercritical Hopf H™ a stable limit cycle
appears, which persists until FC, where it folds back to end at HT.

Overall the phase diagram shown in Figure [9.6] has five main dynamical regions,
which are labeled A - E in Figs. [0.5]- 0.7

e Region A: The fundamental solution is stable. The system can display
Type II excitability for parameters close to the FC line (see more details

in Section .

e Region B: DSs oscillate periodically in time (see more details in Section

9.4).

e Region C: Stable large amplitude DSs pinned at the defect exist, while
Type II excitability occurs for parameters close to the H™ line (see more

details in Section .

e Region D: Stable large amplitude DSs pinned at the defect exist, while the
system can also admit Type I excitability (see more details in Section .

e Region E: The fundamental solution and oscillatory DSs coexist.
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Figure 9.8: Contour plots of u(x,t) showing the spatio-temporal evolution of a train of DSs
for h = 0.04 (a), h = 0.06 (b), and h = 0.08 (c), for ¢ = 0.12 and L = 209. Above the contour
plots the spatial profile u(z, ¢ = 800) is plotted.

Figure [0.7] shows a zoom of the two-parameter phase diagram shown in Fig-
ure The zoom allows to better observe the overlap that exists between
regions A and D (bounded by the SNIC and SN;), and between regions A and
E (bounded by SN; and SNj). In the next Sections, we will discuss in more
detail the properties of the oscillatory (Section and excitable (Section
dynamical regions, and we will show how the different bifurcations unfold from
two Takens-Bogdanov co-dimension-two points (Section .

9.4 Oscillatory dynamics

In region B static solutions are unstable. This instability leads to DSs that
remain pinned at the defect, but whose amplitude oscillates periodically in time.
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Figure 9.9: (a) Time evolution of the magnitude u(xo) at the center of the domain (xg = L/2)
for a train of DSs. h = 0.08, ¢ = 0.12, and L = 209. (b) Snapshots of the spatial profile u(z, t)
at different times (as indicated in individual panels and corresponding to the blue diamonds in
panel (a)), illustrating the growth and depinning of a DS from the spatial defect. The defect
is shown in a red dashed line displaced for clarity to negative values.

In Figure 0.5] crosses indicate the maximum and minimum amplitude of the
oscillatory DS at the defect position. In Figure b), where ¢ = 0.12, stable
oscillations originate from the SNIC and disappear at the FC. For ¢ = 0.12 and
h = 0.04, Figure a) shows how the time-periodic oscillations of the pinned DS
affect the spatial dynamics in the whole domain. The oscillations correspond to
the periodic creation of a DS at the defect that then drifts away, thus generating
a train of DSs originating from the defect. These drifting DSs disappear at the
boundary of the domain due to the absorbing boundary conditions that are used,
i.e. the super-Gaussian gain coefficient r(x) given by . For all numerical
simulations involving drifting structures we have used such absorbing boundary
conditions, while periodic boundary conditions have been used to determine
the bifurcation diagrams. Since the absorbing boundaries are located far away,
close to the pinning defect the profile of the localized solutions is very similar
for both boundary conditions. Furthermore, the instabilities of these localized
solutions are associated to modes whose spatial profiles are also localized, and
are thus practically independent of the boundary conditions. As a consequence
the observed instabilities are the same for both kinds of boundary conditions.

When increasing h further (b = 0.06), the oscillations start showing a second
time scale (Figure [0.8b)), which becomes more pronounced for even large h =
0.08 (Figure[9.8|c)). Such oscillations with two time scales are characteristic of
systems displaying relaxation oscillations, as for instance described by the Van
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Figure 9.10: Canard explosion illustrated by plotting the maxima and minima of an oscillat-
ing DS, evaluated at u(z = xm ) as function of h, for z,, &~ 123 and ¢ = 0.4. Contour plots of
u(z,t) showing the spatio-temporal evolution of a train of DSs for h = 0.136 (i), and a small
amplitude oscillation for h = 0.164 (ii). ¢ = 0.12 and L = 209. Above the contour plots the
spatial profile u(z,t = 0.25) is plotted.

der Pol equation [14]. Figure (a) shows in more detail the time evolution of
the amplitude of the DS in the center of the domain xzy = L/2, confirming the
presence of a fast and slow time scale. The fast time scale corresponds to the
nucleation process in which a DS is created at the inhomogeneity, while the slow
one is the time it takes to detach a DS once it is formed due to the drift. The
time to nucleate a DS is basically independent of the drift strength, while the
escape time strongly depends on it. Figure b) shows snapshots of the full
spatial profile during one period of such an oscillation.

For larger values of ¢, two types of oscillations are observed (see Figure d)
for ¢ = 0.4). First, for h < 0.158, the regular train of solitons is found as
shown in Figure (1) Second, for larger values of h, close to the supercritical
Hopf bifurcation H™, the strength of the defect is large enough to prevent the
advection of the DS, but nevertheless the competition between drift and pinning
at the defect induces small amplitude oscillations of the DS (see Figure ii)).
The transition between both types of oscillatory regimes occurs very suddenly
through what it is called a canard explosion. One refers to a canard explosion
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Figure 9.11: Scaling of the oscillation period T in function of h for type I (a), and Type II
(b,c) excitability. (a) ¢ =0.12, (b) ¢ = 0.6, (c) ¢ =0.4.

whenever varying a parameter (here h) leads to a very fast transition from small
amplitude limit cycles to large amplitude relaxation oscillation cycles. This
very fast transition happens within a small range of the control parameter. In
Figure the extrema of u(z,,) are plotted, where z,, ~ 123 was chosen
to be in the tail of the DS such that one can clearly differentiate between the
small oscillations of the DS and the train of DSs. The canard explosion occurs
for h ~ 0.158 close to H™. This limit cycle corresponding to the train of DSs
originating at the canard location remains stable all the way to a fold of cycle
(FC) bifurcation, where it becomes unstable and disappears in HT.

In the next Section, we will show that close to these oscillatory regions, there
also exist different types of excitability of DSs.

9.5 Dissipative soliton excitability

A system is said to be excitable if perturbations below a certain threshold decay
exponentially, while perturbations above this threshold induce a large response
before going back to the resting state. Having a threshold is thus one of the basic
ingredients in order to have excitability. A second ingredient is a reinjection
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mechanism in the phase space that forces the system to go back to the resting
state. Here, that reinjection mechanism corresponds to the combination of drift
and absorbing boundary conditions such that any DS is eventually removed from
the domain. The time scale separation present in the relaxation oscillations
(train of DSs) is a strong indication of excitability: the fast time scale is related
with the triggering of the perturbation, and the slow time scale is related with
the time required for the system to go back to the resting state (see Figure(9.10]).

In the literature it is common to find a classification for excitability that is based
on whether or not there is a divergence of the period of the limit cycle involved
in the dynamics [5]. Excitability is defined to be of Type I if the period diverges
close to the bifurcations involved in the creation or destruction of the limit cycle,
while it is of Type II if the period does not diverge and remains almost constant
when approaching the bifurcation. Before discussing our system in more detail,
we will briefly discuss these two types of excitability.

Type I excitability is related with two specific bifurcations, a saddle-loop (SL)
bifurcation (also referred to as a homoclinic bifurcation) [16], or a SNIC bifur-
cation. In both bifurcations, the stable manifold of a saddle point plays the role
of a separatrix in phase space, so that only perturbations bringing the system
beyond this threshold trigger an excitable excursion [23]. A clear signature of
this excitability is the divergence of the period of the oscillations that appear or
disappear with each bifurcation. As we mentioned before, in a SNIC, a saddle-
node bifurcation occurs inside a limit cycle. Before the SNIC, stable manifolds
of the saddle and node states transverse to the center manifold are organized by
an unstable focus inside a limit cycle. At one side of the bifurcation the system
exhibits oscillatory behavior, while at the other side the dynamics of the system
is excitable. Although this bifurcation is local in (one dimensional) flows on the
circle, it has global characteristics in higher dimensional dynamical systems, so
it is also termed as a local-global bifurcation. The best way of characterizing
the presence of that bifurcation is analyzing how the period of the cycle behaves
close to it. For the SNIC it is know that the period of the cycle diverges as one
approaches the bifurcation (see Figure a)), following the power law

T o (h — hgnic) V2. (9.21)

Another kind of Type I excitability is mediated by a SL bifurcation [4] in which
a stable limit cycle collides with a saddle and disappears. Here, the unstable
manifold of the saddle plays the role of sepatatrix in phase space. In this case
the period diverges logarithmically when approaching the bifurcation,

T  In(h — hgy). (9.22)
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One of the main differences between those two mechanisms of Type I excitability
is that the SNIC, due to the square-root scaling law, occurs over a broader
parameter range.

Type II excitability is related with the presence of a subcritical Hopf bifurcation
H™ or a supercritical Hopf H™ bifurcation with a canard explosion. In this case
there is no saddle involved, and, as a consequence, there is no separatrix in
phase space. For this reason the threshold is not very well defined and one refers
to a quasithreshold [5]. In Type II excitability the period of the oscillations
remains practically constant as one approaches the point where such oscillations
are created or destroyed (see Figure [9.1T|(b)-(c)).

In this work, excitability can be found in regions A, C, and D in Figure[0.6] In
order to induce an excitable excursion, we use a suitable transient parameter
change instead of perturbing the state of the system [23]. The transient param-
eter change should bring the system into the oscillatory region B. It should be
long enough so that the system starts to oscillate following the periodic limit
cycle, but shorter than the period of the limit cycle. Proceeding in this way
a pulse can be excited before returning to the resting state. Here, we will use
perturbations in A modifying the defect strength for a short time. We redefine
the profile b(x,t) as follows to incorporate this transient perturbation:

b(x,t) = (h + ARH(, to, t1))exp ( <f” — x°)2> , (9.23)

g

with the step function H (¢, to,t1) defined as,

0, if t <to
H(t,to,tl) =<1, iftg<t<ty (924)
0, ift>ty

Here, without loss of generality, we have chosen ¢y as the time at which the
perturbation starts and At = ¢, — to (with 3 > %) as the duration of the
perturbation.

9.5.1 Type | excitability (SNIC): region D

In our system, Type I excitability mediated by the SNIC bifurcation can be found
in region D, close to the SNIC line separating regions B and D. For steady states
with parameters in region D, a perturbation that brings the system beyond the
excitability threshold triggers the unpinning of a DS leading to an excitability
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Figure 9.12: Type I excitability (SNIC): region D. An excitable excursion of the DS is shown
close to the SNIC for ¢ = 0.12,h = 0.085 and Ah = —0.035, At = 10. Panel (a) shows the
contour plot of the real field u, while several spatial profiles u(z) for fixed values of ¢ are shown
in (b).

excursion. This excursion is shown in Figure[0.12] The initial state corresponds
to the parameters ¢ = 0.12 and h = 0.085. By applying a perturbation Ah =
—0.035 in h for a time period At = 10, the system is brought into region B
for a time that is insufficient to complete a full limit cycle. The perturbation
is long enough, however, to allow a DS to be pulled out of the defect and drift
out of the finite size domain, bringing the system back to its initial state. The
divergence of the period of oscillations in region B close to the SNIC can be seen
in Figure a), confirming the presence of Type I excitability.

9.5.2 Type Il excitability (H™ and H™): regions A and C

Type II excitability is found in region A, close to region B and E, and it is medi-
ated by the subcritical Hopf bifurcation HT. An example of a typical excursion
is shown in Figure [9.13] The initial and final resting state is not a high ampli-
tude DS but a low bump solution, the fundamental solution. A perturbation of
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Figure 9.13: Type II excitability (H): region A. An excitable excursion of the DS is shown
close to the FC for ¢ = 0.6, h = 0.092 and Ah = 0.035 At = 10. Panel (a) shows the contour
plot of the real field u, while several spatial profiles u(z) for fixed values of ¢ are shown in (b).

this fundamental solution in region A beyond the excitability threshold (bringing
the system into region B) allows the system to generate a DS, which then drifts
away, resetting the system to its resting state. If one applies a perturbation such
that the system crosses FC, but not HT, the system will find itself in region E
which is bistable. The best way to trigger an excitable excursion is to perturb
the system in the region where FC and HT are almost tangent. This way the
perturbation required to excite an excursions will be smaller. Actually, the sys-
tem is excitable even for h = 0, although in this case, very large perturbations
are required to induce an excursion.

The second region of Type II excitability is found in region C, again close to
region B, but this time it is mediated by the supercritical Hopf bifurcation H™.
Figure shows an example of an excursion in region C, close to H™. Here, the
resting state is a large-amplitude DS, in contrast to the fundamental solution
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Figure 9.14: Type II excitability (H™): region C. An excitable excursion of the DS is shown
close to the H™ for ¢ = 0.4, h = 0.175 and Ah = —0.045, At = 10. Panel (a) shows the contour
plot of the real field u, while several spatial profiles u(z) for fixed values of ¢ are shown in (b).

in region A. Close to H™ in region B, DSs exhibit small amplitude oscillations,
but moving a further away from H™, a train of DSs is formed through a canard
explosion, as explained in the previous section. The excitability threshold is
defined by this canard explosion as the transient parameters need to be chosen
such that the defect can serve as a source of DSs (~train of DSs).

9.6 Organization of the dynamics by codimension-two bi-
furcation points

In this Section, we will show that the various bifurcations involved in the creation
of oscillations and excitability, i.e. the Hopf bifurcations (H*, H™) and the
SNIC, are organized by codimension-two bifurcation points. Bifurcation points
of codimension-two require two parameters to be varied for a bifurcation to
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occur. The various bifurcations unfold from three such codimension-two points:
two Takens-Bogdanov (TB) points, and one saddle-node separatrix-loop (SNSL)
point.

9.6.1 Takens-Bogdanov bifurcations

A Takens-Bogdanov (or double-zero) bifurcation takes place for parameter val-
ues (crB,hrp) if at fixed point u;,FB, the linear operator has a zero eigen-
value with algebraic multiplicity two A1 2 = 0 [12] [I3]. According to the center
manifold theorem, there exists a family of smooth two-dimensional invariant
manifolds ch,h around the steady state ulB. At that point, Wgh is tangent
to the linear eigenspace spanned by the eigenmodes 17 and 1 associated with
A12 = 0. The projection of our infinite dimensional dynamical system on the
center manifold Wgh is topologically equivalent to the normal form [I5]:

dA;
o -
(9.25)
dA
d—j = Bi+BoAs + A2+ 54, Ay,

where A; 5 represent the amplitudes of the modes 1)1 2, and ;2 are coefficient
which can be determined perturbatively, and the parameter s takes the values
+1. In both cases the TB bifurcation involves a saddle-node bifurcation, Hopf
bifurcation, and a SL bifurcation. The SL bifurcation is a global bifurcation
and cannot be detected using a local analysis. Therefore, the SL bifurcation
has been determined numerically. In a similar notation as we used for Hopf
bifurcations, we will denote a SN bifurcation curve as SN~ if the transverse
eigenmode is stable after crossing the center manifold. Likewise, we write SN+
when the mode is unstable after crossing the center manifold. For s = +1, a
subcritical Hopf bifurcation HT unfolds from the TB point, tangent to a saddle-
node bifurcation SNT. Furthermore, a SLT, where an unstable cycle is destroyed,
is created tangent to the Hopf bifurcation HT. For s = —1, a supercritical Hopf
bifurcation H™ unfolds from the TB point, tangent to a saddle-node bifurcation
SN~; and a SL™, where a stable cycle is destroyed, also unfolds tangent to H™.

Figure and Figure [0.16] show that both types of TB bifurcations occur in
the SH equation with drift and defect. In Figure the TB point corresponds
to the normal form case with s = +1, which we will call TB;. The unfolding
of TBy is further illustrated in Figure [0.17} where the top panels show how the
bifurcation diagrams change when increasing ¢ and as such crossing TB;. The
bottom panels plot the real part of the largest eigenvalues associated with each
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Figure 9.15: Unfolding of the Takens-Bodganov TB; bifurcation, completing the phase
diagram in Figure [9.6] for a = 1.2 and r = —0.2. The black dashed lines refer to Figure [9.17]
where the corresponding bifurcation diagrams and eigenvalues are shown. The dot-dashed blue
line corresponds to Ht.

solution branch. For ¢ = 0.1171, in Figure a), the eigenmode transverse
to the center manifold is stable, such that we label the saddle-node bifurcation
as SNy . Close to the TB; point (¢ = 0.1173), there exist two modes with zero
eigenvalue Re[A; 2] = 0 (Figure b)). At TB; the transverse mode to the
center manifold of the SN; switches from being stable to being unstable, such
that we now label the saddle-node SNT". At the same time, two other bifurcation
lines, a subcritical Hopf bifurcation (H) and a saddle-loop bifurcation SL™ (not
shown in Figure unfold. Figure c)-(d) illustrates the situation when
further increasing ¢ (¢ = 0.1175 and ¢ = 0.1177). The Hopf bifurcation H*
moves to the left, destabilizing the branch of fundamental (low bump) solutions
(labeled i) in Figure. H* eventually moves beyond SN;Z and SN2+ in its turn
approaches SNf. Increasing ¢ further leads to the coalescence of both unstable
SN curves in a cusp bifurcation Cj.

In Figures and we show the unfolding of the second TB point (TB3),
corresponding to the normal form case with s = —1. Figure a) corre-
sponds to the situation before crossing TBs. Two saddle-node bifurcations can
be observed: SN leading to a stable structure on the invariant circle, and SNéF
giving rise to unstable solution. At TBy (not shown in Figure , the trans-

259



CHAPTER 9. DISSIPATIVE SOLITON EXCITABILITY INDUCED BY DRIFT
AND DEFECTS

O.164f
o.1szf
o.1sof
0.158:
o.1sef

0.154 [

0.105

AT
0.104
h

0.103

Figure 9.16: Unfolding of the Takens-Bodganov TBg bifurcation, completing the phase
diagram in Figure for a = 1.2 and » = —0.2. The black dashed lines refer to Figure [9.18
where the corresponding bifurcation diagrams and eigenvalues are shown. The dot-dashed blue
line corresponds to H™ and the red dashed line to a SL bifurcation.

0.34 T v T T y T
sl (CYRIEEEE B O DR i (S ] (@)
? 3 SNZ(\ SNZ/\: SN;::“ -7 SN;(____
3 030f N '/’//\T]Bl [ THSNYT ‘__,__ﬁ.;——‘SNI
028k — - HY 4t
0.01 t t t t \ t v
E 0.0 N A _ 1 = - \ _ .—WJ’__"
< .
-0.01 . ? . . / . .
3.842 3.846 3.846 3.848  3.8496 3.8500  3.85255 3.85275
h(107%) h(107%) h(107%) h(107%)

Figure 9.17: Bifurcation diagrams as a function of h (top), and the real part of the leading
eigenvalues (bottom) for fixed increasing values of ¢ crossing the TB; point: (a) ¢ = 0.1171, (b)
¢ =0.1173, (c) ¢ = 0.1175, (d) ¢ = 0.1177. These values of ¢ are also indicated as horizontal

dashed lines in Figure @

verse eigenmode to the center manifold of SN3 crosses the manifold, switching
from being unstable to being stable. Therefore, after crossing TBa, SN7 be-
comes SN; . This situation is shown in Figure b) for ¢ = 0.158. In this case
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Figure 9.18: Bifurcation diagrams as a function of h (top), and the real part of the leading
eigenvalues (bottom) for fixed increasing values of ¢ crossing the TB2 point: (a) ¢ = 0.154,
(b)e = 0.158 ,(c) ¢ = 0.162 and (d) ¢ = 0.164. These values of ¢ are also indicated as horizontal

dashed lines in Figure

the Hopf bifurcation curve is supercritical (H™) and creates a stable cycle which
is destroyed in a SL~ bifurcation. As we mentioned before, such SL bifurcations
are global bifurcations and cannot be detected locally. We used the scaling law
to extrapolate the location in parameter space of SL™, see Figure
Close to the SL™ line, SL-mediated Type I excitability can be found in a very
narrow region (not shown here). At ¢ = 0.162, in Figure (c)7 the SN, al-
ready occurs out of the cycle and H™ has moved to the left until almost crossing
the SN . Finally, for ¢ = 0.164, SN3 and SNy, both stable, are located very
close and they will coalesce in the cusp bifurcation Cs.

9.6.2 Saddle-node separatrix-loop bifurcation

The destruction of the SL bifurcation is related with another codimension-2 point
know as saddle-node separatrix-loop (SNSL) [5, 24]. A SNSL is a local-global
codimension-2 point in which a saddle-node bifurcation takes place simultane-
ously with a saddle loop bifurcation. Figure shows the unfolding of this
SNSL point for the case involving the SL™. One can see that there is a line of
saddle-node bifurcations that at one side of the SNSL corresponds to a saddle-
node bifurcation out of the limit circle (SN4). At the other side, however, it
corresponds to a SNIC bifurcation, where the saddle node occurs inside the
limit cycle. Similarly as in TBs, the SL™ curve also unfolds tangentially to SNy
from the SNSL.
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Figure 9.19: Two-parameter (¢ vs. h) phase diagram of the system for a = 1 and » = —0.09.
The bifurcation curves and the labels of the regions corresponds to the ones in Figure [9.6|
The points labeled with (a), (b) and (c) correspond to the solutions shown in Figure for
c=0.08.

9.7 Robustness of the scenario with respect to parameter
variations

In the previous sections, we demonstrated that the interaction between drift
and a spatial defect can lead to oscillatory and excitable dynamics of a DS. We
explored these phenomena by focusing on the SH equation using one parameter
set (i.e. @ = 1.2 and g = —0.2). For this set of parameters we analyzed all
bifurcations, both those of codimension-one and the codimension-two Takens-
Bogdanov points serving as organizing centers of the dynamics. In this section,
we show that these dynamical regimes are a general feature when including drift
and defect in a broad parameter range. In order to check the consistency of the
scenario in the SH equation, we studied the location of the previously charac-
terized bifurcations for an alternative parameter set: « = 1 and » = —0.09. In
Figure [9:19 we plot the phase diagram corresponding to those values. The same
bifurcation curves and dynamical regions are found as in Figure [0.6] There-
fore, it is not too surprising that the dynamics is largely similar as previously
reported. Figure shows the temporal evolution of several trains of solitons
corresponding to different values of h for ¢ = 0.08. Figure a) shows a train
of solitons for A = 0.04, found right in the middle of oscillatory region B in
Figure 0.19] Similar as in Figure [0.10} the period of oscillations of the DS at
the defect increases as one approaches the SNIC bifurcation, and a fast and slow
time scale can be observed (Figure[9.20b)). Moreover, an additional DS is reg-
ularly emitted slightly to the right of the defect. There are thus two competing
oscillations: one is related with the emission of a DS at the spatial defect (and
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(a)

(¢)

Figure 9.20: Contour plots of u(z,t) showing the spatio-temporal evolution of oscillatory
solutions for ¢ = 0.08 (see dashed line in Figure[9.19). The defect strength is varied: h = 0.04
(a), 0.05 (b), 0.085 (c).

its period diverges when approaching the SNIC), and the other is related with
the emission of a DS at the first oscillation of the tail of the pinned DS. This
second oscillation has a period which increases when decreasing h within region
B, potentially because there exists a secondary SNIC or SL bifurcation.

So far, the dynamics are similar to those reported in Figure[0.10] and Figure [0.6]
for a = 1.2 and » = —0.2. However, when increasing h beyond the SNIC
bifurcation, some differences can be observed. For a = 1.2 and r = —0.2, the only
attractor of the system in region C was a single peak DS centered at the spatial
defect (Figure [9.6). This solution exists in region C for ¢ = 1 and r = —0.09
as well (Figure, but here, the system shows bistability between this single
pinned DS and the oscillatory solution shown in Figure c¢). This new limit
cycle is composed of a small amplitude oscillation of the DS centered at the
spatial defect and a train of solitons emitted from the first spatial oscillation of
its tail (this oscillation was already present in Figure [9.20[b)). This added layer
of complexity could be due to the fact that for these parameters, the pinning
range of DSs and the Turing instability of the background uw = 0 state are very
close in parameter space. Therefore, DSs can be triggered not only at the spatial
defect, but also from the tails of the DS.
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Figure 9.21: Bifurcation diagram for Eq. with the defect in the gain term at ¢ = 0.0001.
Branches corresponding to DSs with two-peaks are shown in blue, DS with a single peak in
black, and the asymmetric rung states in red. Solid and dashed lines represent stable and
unstable states, respectively.
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Figure 9.22: Spatial profiles u(z) of the main attractors of the system for ¢ = 0. The red
dashed line shows the defect profile.

9.8 Spatial defect in the gain term

In this section we consider the SH equation with drift and defect, where the drift
is introduced in the same way as before in Eq.(9.17), but the spatial defect is
now added to the linear gain term. The resulting SH equation is given by:

O = (r(z) + b(z)) u+ au® — gu® — (02 + kS)Q u — Oz, (9.26)

where the spatial inhomogeneity is no longer an independent driving term in
the equation (as in Eq.(9.17)), but it is part of the gain parameter that now
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reads 7(z) = r(z) + b(x). In other words, the effective gain parameter 7 changes
around the center g due to the effect of the defect and close to the borders due
to the absorbing boundary conditions. We will show that in this situation the
bifurcation scenario is richer and more involved. However, despite the added
complexity, the competition between drift and defect still introduces similar
oscillatory and excitable dynamics as before, confirming the generality of the
concepts presented in this Chapter. As in Section we will consider g = 1,
a = 1.2 and k2 = 0.5. In the present case, both LSs consisting of a single
peak and multiple peaks are involved in the bifurcation diagram, in particular
two-peak states and asymmetric rung states [25]. The rung states connect the
single peak with the two-peak DSs. The existence of a pinning defect implies
that these solutions can be pinned at different locations of the DS profile. For
¢ = 0, DSs pinned outside the center of its profile are degenerate with a branch
of solutions corresponding to DS pinned at the left of the center and another
branch corresponding to DS pinned at the right. Figure [0.21] represents the
bifurcation diagram for a value ¢ = 0.0001. In order to make the diagram easier
to understand, we plot the two-peaks DSs branches in blue, the single DSs
branches in black, and the asymmetric rung states branches in red. For ¢ = 0,
six transcritical bifurcations (T;...Tg) take place at h = 0 where the solution
branches involved exchange their stability. Considering a finite value for ¢ (as in
Figure leads to three effects. First, the transcritical bifurcations at h = 0
become imperfect and branches at positive and negative values of h detach in a
similar way as in Section Second, the branches of solutions pinned at the
left or at the right of the center are no longer degenerate. Third, the pitchfork
bifurcation P at negative values of h where rung states are born from two peaks
DS becomes imperfect (for a more detailed picture see Figure a) in the
Appendix). Furthermore, the imperfect bifurcations arising at finite ¢ lead to
the reconnection of different branches forming isolas (loops) as described in the
Appendix.

Now the fundamental solution of Eq. is the trivial one v = 0 without any
deformation. This fundamental solution undergoes a transcritical bifurcation at
h > 0, labeled T in Figure where it exchanges stability with branches 25
and 31 corresponding to small bump states with one and two peaks, respectively.
The other main attractors are those corresponding to the branches 1, 3, 22 and
31 and can be seen in Figure [0.22] They consist in a two-peak DS pinned at
its center minimum, a two-peak DS pinned at the right peak (and another one
pinned on the left peak), a single DS pinned at its center, and a small amplitude
two-peak DS pinned at its central minimum.

A complete analysis of the states and reconnection of branches related with this
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Figure 9.23: Bifurcation diagrams for Eq. with the defect in the gain term for increasing
values of the drift ¢: ¢ = 0.05 (a), ¢ = 0.15 (b), and ¢ = 0.3 (c). Only the branches for h > 0
are shown. The main dynamical regimes are indicated in red and explained in the main text.
Panel (d) shows the spatial profiles of the main attractors for ¢ # 0.

scenario is presented in the Appendix. Here, for simplicity, we skip the unnec-
essary details and we focus on the study of branches 11, 12, 13 and 22, related
with the one-peak DS, which are the ones necessary to explain the oscillatory
and excitable dynamics in the system.
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Figure 9.24: Contour plots of u(z,t) showing the spatio-temporal evolution of oscillatory
solutions of the high amplitude DS (train of solitons) for Eq.(9.26]) with the defect in the gain
term for ¢ = 0.15 and h = 0.268. Above the contour plots the spatial profile u(x,t = 800) is
plotted.

For very small values of the drift ¢, branches 11, 12 and 13 are disconnected
from branch 22, as shown in Figure [9.21] However, as ¢ increases, branch 19,
which is connected to branch 22, approaches branch 13 and reconnects with it
for ¢ = 0.0003 (see Appendix). As a consequence for ¢ > 0.0003 branch 22 is
connected to branch 11 via branches 13 and 12 as shown in Figure [0.23|(a) for
¢ = 0.05. The spatial profiles of the DSs corresponding to these branches are

shown in Fig d).

As the drift strength c is further increased branch 11 moves to the left of branch
12 and SN; becomes a SNIC bifurcation (Figure b)) Similar as in Eq.7
this SNIC bifurcation leads to oscillations of the high amplitude DS (region B).
An example of these oscillations, corresponding to a train of solitons, is shown
in Figure [0.24] Close to the SNIC the period of the oscillations is very large
and one observes the typical time-scale separation. The period decreases for
decreasing values of h moving away from the SNIC. Decreasing h even further,
the oscillations disappear in a fold of cycles (FC). The stable limit cycle (train
of solitons) collides with an unstable limit cycle created at the subcritical Hopf
H* of the trivial solution. Increasing ¢ further (¢ = 0.3), SNy and SN3 coalesce
in a cusp bifurcation C, while the SNIC bifurcation remains present up to higher
values of ¢ shown in Figure [0.23{c).

In the case of Eq., we demonstrated in Section that both Type I and
Type II excitability originated close to the SNIC bifurcation, Hopf bifurcations,
and the fold of cycles. Similar bifurcations occur here when the spatial defect is
present in the gain term, such that one can expect to again find excitability of
the high-amplitude DS solution. Figure shows that this is indeed the case.
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Figure 9.25: Excitable excursion of a DS for Eq. with the defect in the gain term.
The parameters are ¢ = 0.15, h = 0.281, Ah = —0.03 and At = 10. Panel (a) shows the
contour plot of u(x,t) illustrating the spatio-temporal evolution of the excited DS. In (b)
several snapshots of spatial profiles are shown for fixed values of ¢.

Close to the SNIC bifurcation, Type I excitability is observed by transiently
perturbing the parameter set. This way, the system transiently finds itself in
the oscillatory region and at the defect location a new DS is emitted and pulled
towards the boundary, where it is removed from the domain.

Finally, Figure[0.26]shows the phase diagram with the organization of the various
bifurcations in the parameter space (h,c). The black lines show instabilities
associated to the large amplitude DS while blue lines show instabilities of the
trivial solution u = 0. The subcritical Hopf bifurcation H' is shown again to
unfold from a Takens-Bogdanov point (TB). Therefore, the trivial solution that
become unstable at the transcritical bifurcation T7 for values of ¢ below TB,
will become unstable at HT for values of ¢ above TB. Four dynamical regions,
labeled A to D are denoted in the phase diagram. These regions allow to identify
where stable solutions can be found, and where they show oscillatory or excitable
dynamics:

e Region A: The trivial solution is stable. This region is similar to Region A
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Figure 9.26: Two-parameter (¢ vs. h) phase diagram for Eq.(9.26) with the defect in the
gain term. The bifurcations and regions A-D are explained in the main text.

in Figure [0.6] For parameters close to the FC line the system can display
Type II excitability.

e Region B: The system displays DSs which oscillate periodically in time,
similar as in Region B of Figure

e Region D: The system admits stable large amplitude pinned DSs coexisting
with the trivial solution v = 0. Within this region, the system can display
Type I excitability.

e Region D2: This region is similar to Region D, but the trivial solution is
now unstable. For ¢ > 0.35, region D2 borders region B. As a consequence,
for parameter values within region D2 close to the SNIC line, the system
can display Type I excitability.

9.9 Conclusions

In this chapter, using the Swift-Hohenberg equation for a real field, we have pre-
sented a mechanism to induce dynamical instabilities of otherwise static DSs,
preserving the structure of the DS. The mechanism relies on the interplay be-
tween spatial inhomogeneities and drift, together with absorbing boundary con-
ditions, and therefore can be implemented under very general conditions. The
presence of a defect and drift introduces two competing effects. On the one
hand, a defect pins a DS at a fixed position, while on the other hand, the drift
tries to pull it out. If the drift overcomes the pinning force, DSs are released
from the inhomogeneity. Depending on the strength of the spatial defect and
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the strength of the drift, we found three main dynamical regimes: i) station-
ary (pinned) DS solutions, ii) oscillatory regimes, where the pinned DS serves as
continuous source of drifting DSs, and iii) excitability, where a perturbation may
trigger a single DS that drifts away from the defect location. The excitability
regime requires the presence of absorbing boundary conditions, which removes
the drifting DS. For systems with periodic boundary conditions the drifting DS
are reinjected and a train of solitons is typically observed instead [1]. We first
reported on these results in Ref. [6]. Here, we presented a detailed bifurcation
analysis, we linked these bifurcations to the presence of oscillatory and Type I
and Type II excitable dynamics of DSs, and we have analyzed how these dy-
namics are intimately linked to the presence of various codimension-two points
such as Takens-Bogdanov bifurcations and saddle-node separatrix loops. Next,
we set out to show that this mechanism generating oscillations and excitabil-
ity is generic, such that our analysis sheds light on the influence of defects and
drift in any physical system. We have addressed this question of generality in
two ways: 1) we showed that the dynamics persisted for different parameter sets
in the SH equation, ii) we changed the SH equation by introducing the defect
in the gain term rather than including it as an independent driving term, and
we demonstrated that oscillations and excitability were generated in a similar
way. Furthermore, we have also shown that in different non-variational equa-
tions, such as the Lugiato-Lefever equation for a nonlinear Kerr optical cavity,
the interaction of drift and defect can generate similar oscillatory dynamics [IJ.
Therefore the scenario described here leading to spatio-temporal dynamics of
DSs does not depend on the details of the system. The results concerning the
LL model were presented, in Chapter [1] for systems described by the LL equa-
tion with both absorving and periodic boundary conditions. We believe that our
work provides a solid theoretical framework to explain the dynamics of DSs in
systems with drift and defect. Our analysis could be especially useful in the field
of optics. There, the drift can be produced by misalignments of mirrors [26], [27],
nonlinear crystal birefringence [28] [29], parameter gradients [30] or by higher
order effects chromatic light dispersion [3I]. Inhomogeneities can originate from
mirror or waveguide imperfections in an optical cavity and from the presence
of fiber impurities, leading to variations in absorption coefficient or refractive
index [32H34]. Synchronously pumped fiber cavities have also been shown to
be modeled by a Lugiato-Lefever equation with a well-defined inhomogeneity in
the pump [35] [36]. The drift-defect mechanism can explain experimental obser-
vations in semiconductor microresonators [2], [37], and could be applicable to a
wide variety of other optical systems. We finally remark that the mechanism for
excitability reported here is generic and therefore it can take place in a variety
of systems beyond optics provided that there are spatial inhomogeneities and
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Figure 9.27: Detail of the diagram in Figure showing the imperfect transcritical bifur-
cations around h = 0. Branches corresponding to DSs with two-peaks are shown in blue, DS
with a single peak in black, and the asymmetric rung states in red. Solid and dashed lines
represent stable and unstable states, respectively. T1,...,T¢ represent transcritical bifurcations.

drift.

In Chapter [10] we will sudy a different mechanics leading to excitability of DSs,
based on front interaction and anhilation.

Appendix: Reconnection of the solution branches shown in
Figure 9.21

In this Appendix we analyze in detail the scenario in Section [0.8] in particular
the transition that takes place when drift is considered.

As we said in the main text, at h = 0 the transcritical bifurcations become
imperfect and branches for h > 0 and i < 0 detach. In Figure[9.27]a zoom of the
diagram displayed in Figure[0.21] for ¢ = 0.0001 shows the imperfect transcritical
bifurcations around A = 0. The imperfect transcritical bifurcation labeled as T4
involves only two-peaks states, T4 and Tg involve single peak DS and T5, T3 and
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Figure 9.28: In (a) transcritical bifurcations Tg and T3 and their imperfections corresponding
to Figure[0.27]are shown, together with examples of the spatial profiles of the L-states. The two
red (dotted and dashed) lines correspond to the bifurcation for ¢ # 0, while the black dashed
lines correspond to the overlapping solution branches for ¢=0. In (b) Bifurcation diagram
showing the transcritical bifurcation T4 and its imperfection for ¢ = 0.0001. In the bottom
panel the profiles of the states corresponding to those branches are shown. The thin dashed
lines represent the solution branches at ¢ = 0.

T4 a combination of rung states and two-peaks states. In the following we show
in detail the unfolding of the transcritical bifurcations Ts, T3 and T4 due to the
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Figure 9.29: In (a) Pitchfork bifurcation (P) for ¢ = 0 and its imperfection for ¢ = 0.0001
are shown. In (b) and (¢) we show the reconnection of solution branches 13 and 19. In (b)
we plot a zoom of the diagram in Figure showing branches 13 and 19 for ¢ = 0.0001.
In panel (c) a zoom of panel (b) illustrates how branches 13 and 19 approach for increasing ¢
until they reconnect for ¢ = 0.0003.

drift. Branches 5, 6, 7 and 8 are those related with T3, and 9, 10, 11 and 12 are
related with Ts. Analyzing these bifurcations in more detail (see Figure
(a)), we find that there is a doublet of transcritical bifurcations, one related with
the rung states pinned at the right (labeled T§3), and one related to the solutions
pinned on the left (labeled T% ), which for ¢ = 0 are degenerate in norm. When
the drift is included, the diagram in Figure a) shows that those bifurcations
become distinguishable and therefore, we can differentiate between rung states
pinned on the left, L-states (plotted with pointed lines) and rung states pinned
on the right R-states (plotted in dashed lines). The bottom panel in Figure
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(a) shows the profiles corresponding to the L-states. In black dashed lines we
show how the branches are connected through Ts and T3 for ¢ = 0.

The diagram shown in Figure [0.2§|(b) represents the transcritical bifurcation
T, and its imperfection corresponding to the diagram in Figure 0.27} In this
bifurcation only branches 18, 19, 22 and 23, corresponding to the single-peak
solitons shown in the bottom panel, are involved. In this case we only show the
branches corresponding to the L-states, although as before, R-states would be
also present. As a result of the imperfection of T4 and SN; are created.

It is known that the rung states are asymmetric solutions connecting the solution
branches with an even number of peaks with those with an odd number of peaks
in the homoclinic snaking [25]. The connection of those rung states branches
with the snaking occurs through a Pitchfork bifurcation. Due to the breaking
of z—reversibility (for instance by including a drift term in the system) that
pitchfork bifurcation becomes imperfect and results in the formation of isolas
[22]. In our case, we are locally modifying the strength of the gain parameter
r, and therefore there is the possibility of reaching the previous pitchfork bi-
furcation. This is what happens for h < 0, as shown in Figure 0.2I] In the
diagram of Figure a) the pitchfork bifurcation P is plotted in more detail,
and becomes imperfect when ¢ # 0. For ¢ = 0, branches 7 and 9 corresponding
to the rung states are degenerate in norm, but when P becomes imperfect the
degeneration disappears and the solution branches become distinguishable. This
imperfect pitchfork and the imperfect transcritical bifurcations T4, Ty, T3 and
T are responsible for the formation of isolas L; (composed by branches 1, 2, 5
and 7) and Lo (composed by 9, 10, 14 and 16) in Figure When the strength
of the drift further increases, the isolas shrink until eventually they disappear
122, 31].

Finally, in order to understand the transition between the diagrams in Fig-
ure and Figure [9.23(a), we need to see how branches 11, 12, 13 and 22
reconnect. In Figure b) we show a zoom of Figure (¢=0.0001) that
includes the isola L3, composed by branches 8 and 67, branches 12, 13 and 6%,
and the branches 19, 20, 21 and 22. The zoom of Figure |9.29(b) can be seen in
Figure c) for several values of the drift strength. For ¢ = 0.0001, branches
19 and 20 are disconnected from 13. Increasing c¢ those sets of branches ap-
proach as shown for ¢ = 0.0002, and at some point they touch resulting in the
reconnection of 19 with 13 for ¢ = 0.0003.
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Chapter 10

Excitability induced by front
Interaction

10.1 Introduction

In spatiotemporal dynamics, excitability can appear in several kinds of extended
systems. In the most straightforward case, systems which are individually ex-
citable are coupled in space. These excitable media typically exhibit charac-
teristic excitable waves or pulses [TH3]. Besides, extended systems can display
excitable behavior in a more subtle way through the emergent dynamics of coher-
ent structures, which does not require local excitable dynamics [4]. The excitable
excursion follows the remnants of a limit cycle corresponding to an oscillatory
localized structure and can be described in terms of an effective reduced phase
space [4} B].

In Chapters[land [0] we have also seen that DSs excitability can arise in extended
systems where spatial inhomogeneities (or defects) and drift are present [6] [7].
In both chapters this phenomenon occurs through the excitation of an unstable
structure, created through the destruction of an oscillatory localized structure,
via Hopf, SNIC or SL bifurcations [8] [@].

The scenario presented in this Chapter, allows the possibility of having excitable
behavior in a system that contain just two ingredients: 1) (local) bistable behav-
ior, and 2) spatial coupling allowing the formation of fronts that connect the two
homogeneous states. In other words, we will show that it is possible to obtain
transient spatiotemporal spots having neither locally excitable dynamics (as in
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Figure 10.1: Bifurcation diagram for the HSSs Ag, where we plot |Ag| in function of p for
6 = 4. The vertical dashed line represent the Maxwell point of t the system, here occurring at
pyv = 2.1753, where the velocity of the fronts connecting Ag with Aé is zero. The gray region
represent the range of value of p for which the HSSs AS is excitable due to front movement
and interaction.

[10]), nor oscillatory LS solution disappearing when changing a parameter (as in
[4]), as bistable dynamics and spatial coupling suffice. In this sense, this could
explain experimental observations of transient localized spots in a more general
setting, that does not assume local excitability or the presence of LSs. Systems
with bistable homogeneous states in which this mechanism could be observed in-
clude, for instance, chemical reactions [I1], optical systems [12, [13], and biology.
In particular in the context of cellular biology, transient localized excitations,
also called patches, have been observed in early stages of cell migration. One of
the most studied examples is the cellular slime mold, Dyctiostellium discoideum.
In this system, the uniform application of the chemoattractant cAMP leads to
the spontaneous emergence of localized regions of high protein concentration,
patches, that after some time dismantle and appear elsewhere [I4]. In [I0] an
explanation was suggested in terms of a two-component FitzHugh-Nagumo ex-
citable model. However, as pointed out in [I5], despite the extensive use of
reaction-diffusion models, direct evidence for excitability is lacking.

To start let us first illustrate this behavior in the LL model in normal GVD
regime where the system is bistable. The bistability is appreciated in the bifur-
cation diagram shown in Figure for # = 4. As we have seen in previous
Chapters, a front or switching wave (SW) between stable states, A} and A}, and
vize versa can be formed. We call these fronts F, and Fj respectively. States A}
and A} are not equivalent, and therefore, fronts move with a constant veolcity v
into the left or right depending on their orientation and the value of p. Then we
say that the veolcity v is positive if a front F,, (resp. Fy) moves from left to right
(resp. from right to left) and negative in the other case. The vertical dashed
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Figure 10.2: Evolution of U(z,t) = Re[A] after a perturbation on A% with ' = 15.6, to = 50
and At = 2. In (a) a sub-threshold perturbation with G = 1.3 is shown and in (c) the temporal
evolution of the maximum of U(zp,t) is plotted. Panels (b) and (d) correspond to a super-
threshold perturbation with G = 1.5. The vertical dashed lines in panels (c) and (d) indicate
the switching on and off of the perturbation. In panels (a) and (b) the range of = is [—20, 20]
and the range of ¢ is [0,200]. Here § = 4 and p = 2.16 < pjs.

line shown in Figure [10.1] reprsents the Maxwell point of the system where the
velocity of fronts is zero. This occurs for p = pyr = 2.1753.

For p > ppr, v < 0, and two fronts F,, and F, move appart such that the upper
solution overruns the lower one. On the contrary, for p < pps, v > 0, and the two
fronts move closer until they annihilate. This annihilation takes place because
these fronts approach and leave the top HSSs branch A} in a monotonic way
i.e. A} is a saddle (S) point, and therefore there is no pinning. The gray region
represents the interval of p where the system is bistable and where v > 0. In
this situation, excitability for the A% HSSs can be induced by front movement
and interaction. The excitable behavior it is shown in Figure for two time
evolutions of different perturbations of the bottom HSSs. These perturbations
can be generated by for example an injected Gaussian beam

- (ln2(xr— xo))2‘| | (10.1)

during a time At, as done in Section Here G and z( are the height and
center of the Gaussian and I' is the half width at half maximum.

g(z) = Gexp
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Small localized perturbation to the stable homogeneous state Ag, lead to a fast
relaxation and smoothing due to diffusion/diffraction/dispersion. back to the
stable state (see Figure [10.2(a) and (c)). Instead, if the perturbation exceeds
locally the separatrix AJ', like it is the case in Figure [10.2(b) and (d), it may
happen that A} is able to connect with the other stable state A, and attracting
state, by becoming two fronts connected through their head. For this to happen,
the approach to the other (attracting) stable state must able to overcome the
smoothening effect of diffusion/diffraction/dispersion. If the resulting two-front
state is relatively broad, it will be relatively long-lived, although, ultimately, the
two fronts will annihilate and the system will return to the stable homogeneous
state.

Our aim in this chapter is to present a study of these finite-lifetime localized
structures. First we show this in a system where fronts are formed between
equivalent states. For that we will use the probably simplest example (and thus
prototypical): the one-dimensional real cubic (GL) equation. Later on we will
generalize the mechanism to different models where the HSSs are not equiva-
lent, like the quintic GL equation. The structure of the chapter is as follow. In
Section we show the results in the cubic GL equation. In Section we
present how these excitability can be sustained by noise. Later, in Section [10.4]
we show that this new type of excitability is also present when considering in-
teraction between two non-equivalent fronts, as it is the case in the quintic GL
equation. Moreover, we consider a variation of this mechanism considering con-
vective instabilities in the last model, and finally in Section we end with
the Conclusions of the Chapter.

10.2 Excitability mediated by equivalent fronts

In this Section we show our results regarding front induced excitability when
the two fronts are formed between equivalent stable HSSs solutions, that is the
most elementary situation. For that we consider the real cubic GL equation in
one extended dimension, namely

Oyu = pu — u® + 3§u. (10.2)

We first introduce the model and later present the main block of this study
where we show that the front interaction and annihilation generates excitability.
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Figure 10.3: Homogeneous steady state for the cubic GL equation. The stable trivial HSSs
suffers a pitchfork bifurcation at = 0, where it becomes unstable and unfold two stable HSSs,
namely u’é and ué, with the same potential energy.

10.2.1 A general model: the real Ginzburg-Landau with cubic non-
linearity

This equation probably is the simplest partial differential equation containing
the two above mentioned ingredients needed to implement front excitability, i.e.
bistability and spatial coupling. The two equivalent (stable) HSSs, u and uf,
are given respectively by u = 4,/u that are found for p > 0 (see Figure .
They appear in a pitchfork bifurcation at g = 0 where v = 0 also becomes
unstable. This unstable state acts as separatrix for the two HSSs.

The two possible front solutions, known as kink and anti-kink, have opposite
polarity and connect the two equivalent states u8 and u} of Eq. (10.2)). They

are given by [16],
VR

uz (z) = +/ptanh (2) (10.3)

Several examples of such fronts are shown in Figure These fronts can be
seen in a spatial dynamics context, as heteroclinic connection between uf and
uf, whose stable and unstable manifolds approach these states monotonically.
To prove that the stationary equation O;u = 0 can be recast to the equivalent
spatial dynamical system

dyur = ug

dyuz = uf — pur, (104)

with 1 = w and uy = dyuy. The Jacobian of this system around any of the
bifurcation states ug’t has the eigenvalues A = ++/2u. This shows that the stable
and unstable manifolds of both states ug’t, approach and leave monotonically,
fact that is reflected on the shape of the fronts u4. Due to the monotonic nature
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Figure 10.4: In panel (a) we plot a kink front u4 for p = 0.5,1.0 and 2. In (b) we show the
heteroclinic connection obtained after projecting the front into the phase space (u1,u2).

of the fronts, they do not exhibit pinning, ultimately annihilating in a behavior
known as coarsening [17].

Due to the fact that the front occurs between equivalent states i.e. both HSSs
have the same potential energy V = Vi[u] = —pu?/2 + u*/4, the front is sta-
tionary and therefore the dynamics of the system does not favor any of the two
bifurcating flat solutions. This can be shown as follows. Let us consider that, if
the front moves, it does with a velocity v that depends on the control parameter
w. This velocity is the solution of the nonlinear eigenvalue problem:

—o(p)u'(z) = =0,V [u] + u”(z) (10.5)

with the boundary conditions, u(—oc0) = u} and u(+o0) = uf and ’ standing
for derivative respect to x. Integrating Eq.(10.5)) along the heteroclinic orbit we
obtain the explicit equation for the front velocity given by:

o) = V1w~ V1ug] (10.6)

[ (x)dz

that is zero because V[u}] = V[u§]. So the front does not move.

10.2.2 Front annihilation and excitability

Previously we have seen that in the cubic GL equation a single front
between equivalent HSSs uf and u} does not move. In contrast this is not the
case when considering two fronts with opposite polarity i.e. a kink and anti-kink
states. In this situation these two fronts attract with an exponentially decaying
interaction, until they annihilate each other [I6]. This transient behavior knowns
as coarsening is one of the basic ingredients of this mechanism of excitability.
For large separation distances d(t) = z5(t) — 21(¢), between the positions x4 (t)
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Figure 10.5: Evolution of u(z,t) after a perturbation on u(bJ with I' = 15, to = 50 and
At = 2. In (a) a sub-threshold perturbation with G = 0.79 is shown and in (c) the temporal
evolution of the maximum of u(zg,t) is plotted. Panels (b) and (d) correspond to a super-
threshold perturbation with G = 81. The vertical dashed lines in panels (c¢) and (d) indicate
the switching on and off of the perturbation. In panels (a) and (b) the range of z is [—22, 22]
and the range of t is [0,200]. Here p = 1.

and zo(t) for the kink and anti-kink’s cores it is possible to obtain a perturbative
approximation at first order for the velocity at which the fronts are attracting
each other [I6]. This velocity is given by,

d = cexp(—~d) (10.7)

where ¢ = —24./2u and v = /2u. The absent of roots of this equation shows,
what it was already confirmed by the spatial eigenvalues, that there is not pin-
ning of fronts, and therefore no localized structures are present in this system.

In this framework the excitability mechanism is as follows. While the system
is sitting at a stable HSS, small localized perturbations decay exponentially.
Instead, for perturbations exceeding u(x) = 0 in a wide enough spatial region,
part of the system will initially evolve to the other (attracting) HSS leading to
the formation of a pair of kink-anti-kink fronts. At a second stage the two fronts
interact, slowly approaching each other. If the resulting kink-anti-kink structure
is relatively broad this second stage will be long-lived. Finally, at a third stage,
kink and anti-kink annihilate each-other and the system returns to the initial
HSSs. These structures can be viewed as excitable excursions and, following
[14], we will refer to them as patches.

The excitable behavior is illustrated in Figure showing the spatiotemporal
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Figure 10.6: Projection of the dynamics into the (h,d) phase space. Lines with arrows show
trajectories obtained integrating Eq. starting from an initial condition with differ-
ent dp and Hp . The arrows correspond to the velocity field, allowing to identify fast and slow
time scales. Trajectories in color correspond to do = 4.98 and different Hp , whose temporal
evolution is plotted in Figure Red lines correspond to the analytical h—nullclines ,
and in blue dashed lines, those given by .

dynamics after a perturbation of u8 generated by adding to Eq.(10.2)) during a
time At the Gaussian spatial profile given by Eq.(10.1)).

Figure a)-(c) shows the behavior observed for low enough values of h, case
in which the patch decays quite rapidly. In this context, decaying means that
the two fronts that constitute the patch coarsen and annihilate. In contrast,
Figure[10.5|b)-(d) shows the behavior of a patch with a slightly larger h, showing
a much larger decay time. This observation points at the existence of a threshold
separating two clearly different decaying ways, pointing out to excitability.

In the following, and without loss of generality, we take = 1, being ug’t = +1.
In classical Type II excitable systems with a two-dimensional phase space (e.g.
the FitzHugh-Nagumo model), the excitable behavior under perturbations to a
stable fixed point can be understood [I8§] by analyzing the shape of the nullclines
in phase space H Here the phase space is infinite-dimensional, however, we find
a very similar scenario by considering the two-dimensional phase space (h,d)

INullclines are defined as the geometric place in which the time derivative of one of the
system variables is zero, being found the fixed points at the intersection of these nullclines.
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where h(t) = u(xo,t) — uf is the height of the patch at its center xg, and d(t)
its half width at half maximum. Figure displays the projection of the
evolution obtained from numerical integration of Eq. for a set of different
initial condition of the type

2
u(x,0) = uf + Ho exp l— (th(ﬂilo—xo)> 1 . (10.8)

For d larger than the front width, we can approximate the shape of the patch
by two tanh fronts back to back

u(@, t) = ug + h(t) (2, x0 — d(t)) — n(z, 2o + d(t))] (10.9)

where 7)(z, a) = tanh((z—a)/+/2). Introducing (10.9)) in Eq.(10.2) and evaluating

it at * = x¢, one gets

h=h [6htanh (jﬁ) + (1 — 4h?)tanh? (%) — 3} , (10.10)

where we have consider that the evolution of d(¢) is much slower than that of
h(t). The h—nullcline is

hy = gcoth(d/ﬁ) + %/4 — 3coth®(d/V2), ho =0, (10.11)

and it is plotted in Figure using a red solid line. This h—nullcline is therefore
composed by three pieces as shown in Figure h4 which is attracting and has
a vertical asymptote at h = 2, h_ repelling with a vertical asymptote at h = 1
and hg also stable. h, and h_ are connected at h = v/3/2, d = In(74+4v/3)/v/2 ~
1.86.

When d is small the shape of a patch can be approximate by using a Gaussian
profile, namely

b n2(z — z0) \ >
u(z,t) =uj + h(t)exp |- | ——+ . (10.12)
d(t)
Inserting (10.12)) in Eq.(10.2)) and evaluating at x = x, one obtains the equation
. In2
h=-2(1 h+ 3h* — h®. 10.13
(1 o) 1+ (10-13)
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Figure 10.7: Phase space projected in variables A and h. In this variables the fixed point
(resting state) is located at (h, A) = (—1,0).

With this approximation, the h—nullcline is given by

1 8In2
hi2<3i\/1 ys ) ho = 0. (10.14)

In this case we plot it with blue dashed lines. The evolution of the different initial
conditions in the phase space (h, d) is then organized by the h—nullclines
as follows. For h > 0, h < 0, except inside the U-shaped region delimited by
h_ and hy where h > 0. For initial conditions located at the right of h_ the
trajectory evolves rapidly towards the nullcline hy. This corresponds to the
first stage of the excitable excursion. The center of the patch is very flat and
evolves towards uf at time scale is of order O(p) making h the fast variable
of the dynamics, while d changes at a much smaller rate. The outcome of this
stage is the formation of a kink-antikink pair connecting uf with uf and back
to ub. In the reduced phase space this means that the nullcline h; has been
reached. After reaching the nullcline, the patch evolves slowly along hy. This
corresponds to the second stage of the excitable excursion in which kink and
antikink slowly approach each other decreasing d following Eq..

Finally the third stage in which kink and antikink annihilate each other cor-
responds to the fast jump to nullcline hg. This reinjection mechanism is not
following the remnants of a limit cycle in phase space since the system Eq.((10.2])
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Figure 10.8: Projection of the trajectories on the h coordinate. Each color corresponds to a
trajectory in Figure m and Figure m For all the trajectories dg = 4.98, and from bottom
to top, Hp = 0.6,0.8,1.0,1.1,1.2,1.25,1.3.

does not have periodic solutions. For initial conditions located at the left of
h_ or below the connection of h_ with hy, the system evolves quickly to hg.
This corresponds to sub-threshold perturbations which decay exponentially. A
drawback of the (h,d) description is that the width of the patch is not well de-
fined for h = 0. As a consequence it is not apparent in Figure that all the
trajectories evolve finally to ug. A convenient way to avoid this is to use the

area of the patch A instead of d as shown in Figure [L0.

In this new phase space the theoretical prediction for the nullclines that we have

used is
A =4hd[1 — 2exp(—L/2)] (10.15)

for the h—nucline defined by Eq.(10.11]), being L the size of the system and,

m
A=,/— 10.1
’/ln2hd (10.16)

for the nullcline defined by Eq.(10.14). In this representation all trajectories
ultimately converge to the fixed point (h, A) = (0,0) which corresponds to u}.

Altogether, it is evident that the h—nullclines organize very well the dynamics
of the system. The approximate nullclines given by (10.11]) agree very well
with numerical simulations for large values of d (and A). For smaller values of
d (d < 3.5) where the ansatz is not expected to be good, the numerical
simulations indicate that the nullcline h, is located slightly above the prediction
(10.11). For this regime we have also considered the Gaussian ansatz .
With nullclines predicted with this last ansatz we find, on the contrary, that the
real nullcline is situated slightly bellow.
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The time evolution of trajectories generated with an injected signal with different
amplitude can be observed in Figure Colors correspond to the trajectories
shown in in Figure and Figure [10.7 For Hy 2 1.1 trajectories first grow
while for Hy < 1.1 they decay exponentially. In fact, the shape of the trajectories
changes gradually and Hy =~ 1.1 is a pseudo-threshold, as typical in Type II
excitability.

To summarize, in this Section we have shown that annihilation of equivalent
fronts with different polarities can lead to excitability without the presence of
limit cycle in the dynamics. In the next Section we will study briefly how the
presence of noise can trigger excitable excursions which is an interesting result
due to the fact that in experimental setups fluctuations are normally present.

10.3 Effect of noise

Many studies have been devoted to the interplay between excitability and noise
[19]. In particular the presence of noise can trigger excitable excursions even for
subtreshold perturbations. We illustrate this effect in our system by injecting
signals of the form with a fluctuating amplitude

G = G° + VDg(t) (10.17)
where £(t) is a Gaussian white noise of zero mean and correlation

(€@), &) =o(t —t'). (10.18)

Figure shows the effect of adding a signal of half-width I' = 15 and duration
At = 2 every T = 200. In this way it is possible to plot several events in the
same figure. Those signals have G° = 0.79, just below the pseudo-threshold, and
are subject to noise with D = 0.3. Without noise all the perturbations relax fast
to uf and there are no excitable patches. In contrast, when the noise is present,
patches are triggered randomly.

10.4 Excitability mediated by non-equivalent fronts

So far we have focused in systems with bistability between two equivalent HSS i.e.
two states with the same potential energy. Nevertheless excitable behavior can
appear even when two HSSs are not equivalent, like for example in the normal
GVD regime in the LL equation. In this Section we see that the mechanism
previously presented generates excitability in these type of systems. To do that
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~

x

Figure 10.9: Simulation showing the dynamics generated by the repetitive addition of Gaus-
sian signals with a noisy amplitude . The range of = plotted is [—22, 22] and the
range of ¢ is [0, 5000] (left panel) and [5000, 10000] (right panel). The values of the parameter
are shown in the text.

we use one of the simplest models where fronts between non equivalent HSSs
may occur, the one-dimensional real quintic GL equation:

Opu = pu + u® — u® + 02u. (10.19)

When the control parameter is set to be at the Maxwell point of the system, both
the trivial and the up (down) HSSs have the same energy and a stationary front
can be formed, just like in the previous case. On the contrary, when the system
is not in the Maxwell point, the difference of energy between the HSSs makes
that one state dominates on the other invading, in this way, all the domain.

It is known that two fronts of different polarity will move apart or closer depend-
ing on the energy balance between the forming HSSs. Here we show that in the
region of parameters where the two fronts move closer, excitability can be also
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Figure 10.10: In panel (a) the subcritical pitchfork bifurcation scenario for the HHSs solu-
tions is shown. In (b) we show the potential V' of uf and ug in function of . The vertical
dashed line represents the Maxwell point of the system, where V[u}] = V[u}].

induced. To start, we first introduce some results regarding the real quintic GL
equation and after that we analyze the excitability induced by these fronts.

10.4.1 The real Ginzburg-Landau with quintic non-linearity

For Eq.(10.19)), the HSSs are given by the trivial solution u$ = 0 and the bifur-
cating states

ul' =+ —\Jpu+ = (10.20)

1 1
uy=£\[5 +\ut g (10.21)

Because Eq. has u — —u symmetry, only positive values of amplitude
u will be consider, unless stated otherwise. At p = 0, the trivial HSSs has a
subcritical pitchfork bifurcation, where uj* unfolds unstable. Decreasing p, the
later state undergoes a SN bifurcation at yu = ugn = —% from where uf, appears

This bifurcation scenario can be seen in Figure (a). Here in contrast to
previous sections, two different types of fronts can be considered. First class
are those formed between two equivalent HSSs as can be those connecting —u,
with uf. This case is equivalent to the one shown in the cubic GL equation
in Section due to its equal potential energy V = Vj[u], these fronts are
stationary. The second class are those fronts which occurr between uf and wuf.
At po= py = —55, VIud] = V([uf], as seen in Figure b), and therefore
the fronts do not move. On the contrary, when p # uar, V[ub] # V[ub] and

and
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the front is not stationary but it moves from left to right or from right to left
depending on the balance between V[u}] and V[u}], that is the system evolves
to the minimum potential energy configuration. As shown in Section front
velocity is given by,
[V (z)dz

The potential of both states can be seen in Figure b) as function of p.
When V[ub] > V[u§], for i < par, front velocity is defined positive. The front
moves from left to right and therefore uf invade all the system. On the contrary,
when V]ub] < V[ul], for u > pas, front velocity is defined negative and the top
state will expand invading all the system.

(10.22)

In Ref.[23], front velocity was calculated explicitly. It was found to be,

1 ( —1 3
— 1+4u—1) if S <p<?®
o) VB 4 1 (10.23)

2/ if p> 3.

As done in the previous section, we study the spatial dynamics associated with
this model. Defining the variables u; = u and us = d,u; we can derive the
system:

(10.24)

Around u} = 0 and for u < 0, the eigenvalues of Jacobian of (10.24) satisfy
A = +y/—pu, and therefore trajectories approaching or leaving these states do it

monotonically. Around uf), the eigenvalues satisfy A\ = :I:\/ 4p 4+ 24/ p+ i -1,

for psn < p < 0 and, as before, no spatial oscillations occurs around this
state, which implies that no locking between fronts with different polarizations
may occur. Due to this, no localized structures arise and fronts with opposite
polarities move apart, or closer until they collide and annihilate each other.

10.4.2 Excitable dynamics

As we said before, at p = par, uf and uf have the same potential energy, and
the dynamics of a patch formed between a kink and antikink fronts will be
similar to the dynamics of the patches considered in Section and therefore
excitability may occurs in the same fashion than in the real cubic GL equation.
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Figure 10.11: Projection of the time evolution of the patches into the 2-dimensional phase
space defined by (A, h). This picture is equivalent that the one shown in Figure [10.7] in the
context of the real cubic GL equation. Here p = —0.2

Here we focus on the excitability induced by the interaction of non-equivalent
fronts connecting u} and wuf, where we consider that the resting state is uf,
and then the excited state is a portion (patch) of states uf embedded on uj.
With this configuration, front induced excitability can be found in regions of
parameters where u} is boost energetically, i.e. for u < pas. In this context, the

role of threshold is played by the unstable middle branch ug".

For values of p such that, p > pas, uf is boost energetically and any patches
sitting on u} do not shrink but expand until that u{ invades all the space. Due
to this, excitability does not occur for the resting state uf. At the end of this
Section we will see that excitability behavior can be achieved in this regime due
to the occurrence of convective instabilities.

As done in Section the time evolution of the patches defined by Eq. is
projected on the particular space defined by (h, d) or (h, A). The (h, A)—projection
space is show in Figure [[0.11] Although quantitatively different, the scenario
is qualitatively equivalent to the one shown in Figure of Section As
we can observe, ugj’ acts as pseudo threshold, in such a way that perturbations
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Figure 10.12: Projection of the time evolution of patches in h. The different colors refers to
Figure for dy = 19.15. From bottom to top, Ho = 0.45,0.52,0.56 and 0.6.

bellow ug* will decay rapidly to u8 and perturbations above u{* will experience
a large response before returning to the resting state.

Figure [10.12] shows the time evolution of initial patches with different H, and
the same half width dy = 19.15. As done in Section Colors correspond
to the trajectories shown in Figure For Hy 2 0.52 trajectories first grow
while for Hy < 0.52 they decay exponentially. Here the shape of the trajectories
changes gradually and Hy ~ 0.52 is a pseudo-threshold, as typical in Type II
excitability.

10.4.3 The non-linear convective regime

For values of p such that, p > par, ul is boost energetically and any patches
sitting on uf do not shrink but they expand until that u} invades all the domain.
Due to this, excitability does not occur for the resting state u$. To avoid this
situation one can induce drift instabilities by adding a convective or drift term

~ cOyu in Eq.(10.19)), namely
Ou = pu+ u® — u® + 9Fu — coyu. (10.25)

These instabilities are classified in two types, absolute and convective instabilities
[20,21]. In Chapter@we reviewed these instabilites in the context of LL equation
when bistability occurred between an HSSs and a modulated one [22]. In our
context the stable states involved in these instabilites are u} and uf. We say
that the state u is connectively unstable, if localized perturbations are driven by
the mean flow in such a way that they grow in the moving reference frame, but
decay at any fixed location. On the contrary, in the absolute instability regime,
localized perturbations grow at any fixed location, and the system finally reach
completely the attractor wuf.
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Figure 10.13: Homogeneous steady state of the quintic real GL equation. We show the
absolute and convective non-linear instability regimes that arise when drift is considered.

In Ref.[20] it was shown that for ¢ # 0, in the unstable domain (u > —3/16),
the instability is nonlinear convective (NLC) when v < ¢, since, in this case,
although expanding, a patch connecting u} and u is finally advected out of the
system. On the contrary when v > ¢, the instability is absolute (NLA) and the
patch finally invades the system. Therefore the transition between NLC and
NLA instabilities occurs at the value g4 at which v = ¢, namely:

3(02—1+2c> if c<V3

16 V3
HA = (10.26)
2

The different instability regions for the HSSs of Eq. are shown in Fig-
ure In the NLC regime (for par < p < p14), an excitable excursion can be
trigger from the resting state u$. In order to trigger this transient behavior we
consider a the Gaussian perturbation of finite duration and extension. To
model a finite domain, we define the parameter u to be space dependent with
the shape of the super-Gaussian profile,

20
fi(z) = (1 + p)exp (- (I Ax(’) > ~1. (10.27)

This is the same procedure that it was already used in Section [0.3] The profile
has a plateau on top of which fi(z) = p and outside fi(x) = —1. In this
way, outside the plateau the only attractor of the system is u = ug and therefore
fronts disappear.
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Figure 10.14: Spatiotemporal evolution of a Gaussian perturbation with I' = 6.8,
switching on at ¢t = 20 with a duration At = 2. In (a) G = 0.22, that is an under-threshold
perturbation and in (b) the perturbation is over-threshold with G = 0.23 and we have excitable
excursion in the convective regime. Here p = —0.1, c =1, A = 163.6, o = 122.7 and L = 419.

The spatiotemporal evolution of two different perturbations of the HSSs u$ are
shown in Figure when using the Gaussian , with I' = 6.8 centered at
xo = 122.7. Both perturbations have been switched on at ¢ = 20 during a time
At = 2. In (a), G = 0.22, and the height of the perturbation is not enough to
generate a kink-anti-kink structure, and therefore it decays rapidly to u4. This is
in an under-threshold perturbation. The top panel (a) correspond to a contour
plot of the evolution and the bottom one shows some snapshots of this evolution
at fixed values of time. The pointed-dashed line represents the f(x) and the
dashed line stands for the unstable HSS solution ug'. In contrast, in panel (b)
G = 0.23, in such a way that the perturbation, crosses ug® (the threshold in this
context) and, while advected away, grows until reaching u}, where a kink and
antikink states form a patch of height h = uf. In this regime of parameters, the
two fronts moves apart or closer at a velocity v < c.

Therefore the patch is advected faster than it grows, reaching the border of the
plateau where both fronts annihilate each other and the system returns to the
resting state u = uf. Here, as in previous cases, we should talk about a pseudo-
threshold because the transition between having excitability or not is smooth,
not existing in this way a well defined separatrix.
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10.5 Conclusions

To summarize, in the present Chapter we have presented and discussed evidence
for a novel mechanism leading to the appearance of transient localized spa-
tiotemporal structures, that we call patches. We have shown that these patches
can be understood as excitable excursions. The mechanism presented here only
requires the coexistence of two stable homogeneous solutions and a spatial cou-
pling such that the fronts connecting the homogeneous solutions are monotonic.
We have shown the existence of a pseudo-threshold such that, while sitting at
one of the homogeneous states, sub-threshold perturbations decay exponentially.
In contrast super-threshold perturbations induce a long excursion. The excur-
sion is characterized by the fast emergence of a structure formed by two back
to back fronts connecting the two homogeneous states followed by a slow ap-
proximation of the fronts until they eventually annihilate each-other. These two
well separated time scales, which do not appear explicitly in the models used
here, are an emerging property of the dynamics and allow for a clear observa-
tion of the patches. These patches resemble the excitable localized structures
of [], obtained when a stable oscillatory localized structure disappears through
a limit-cycle instability, and also resemble the transient localized structures re-
ported for a locally excitable medium [10]. From an observational point of view,
while transient localized structures normally have a characteristic spatial size
independent of the spatial extension of the perturbation, the size of the patches
generated here is determined by that of the perturbation. From a fundamental
perspective, the mechanism introduced here does not requires local excitability
nor that the system supports localized structures. Furthermore, it neither re-
quires the existence of a nearby oscillatory regime in parameter space. Thus, this
mechanism could explain experimental observations of transient localized spots
in more general setting. Systems with bistable homogeneous states in which this
mechanism could be observed include, for instance, optical systems [12] [13] or
chemical reactions [I1].

This mechanism is described in the real cubic and quintic GL equations to cover
both cases when the HSSs are equivalent and when they are not. We also have
shows how these type of transient dynamics can be sustained with noise even
for values of G bellow threshold. Finally we also have seen how convective
instabilities offer a possible scenario for excitability.
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Chapter 11

Conclusions and Outlook

11.1 Summary of results

In this thesis we have studied emergent structures in spatially extended systems,
that are dissipative. Thermodynamically speaking such type of systems are open
systems interchanging energy and matter with the medium, and therefore far
from the thermodynamical equilibrium. In this context, emergent structures
are known as dissipative structures. These structures arise in a wide number of
natural systems such as fluid dynamics, plasma physics, chemistry, plant ecology,
nonlinear optics and biology [TH3]. An important subgroup of the dissipative
structures is the one composed of localized states (LSs) or dissipative solitons
(DSs), which can be seen as spots of a one state embedded in a different one [4].

A system that is internally damped and externally driven is a relevant example of
a dissipative system. In this thesis we have focused on the field of nonlinear optics
where we have studied a particular type of those systems: a driven nonlinear
optical cavity with losses. Here, due to the double balance between spatial
coupling and nonlinearity on the one hand and gain and losses on the other, a
wide variety of LSs arises.

When the material inside the cavity or the cavity has a Kerr-type nonlinearity,
the dynamics of a pulse of light propagating inside the cavity is described by
the Lugiato-Lefever (LL) model [5]. This model is a type of forced complex
Ginzburg-Landau (FCGL) equation at 1 : 1 resonance, although it can also
be seen as a driven and damped nonlinear Schrodinger (NLS) equation. This
equation has been widely studied since it was proposed in 1987 to describe a
ring-cavity partially filled with a nonlinear medium. In the last few years it has
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become widely studied by the scientific communities working on frequency comb
(FC) generation in microresonators [6] [7].

Here we have investigated one particular type of driven nonlinear optical, tem-
poral cavities, that are described by the one-dimensional LL equation.

Within the previous ten Chapters, using dynamical system and bifurcation the-
ories we have analyzed in detail the different dynamical regimes that this equa-
tion exhibits depending on the control parameters of the system. By applying
asymptotic methods (weakly nonlinear analysis), numerical continuation tech-
niques and numerical simulations we have been able to analyze the dynamics,
stability and bifurcation structure for the different types of static or dynami-
cal states arising in the system, which will be of interest for experimentalists
working in the field of nonlinear optical cavities and in FC generation.

In Chapter 2 we have studied the spatial dynamics of the LL equation. This
consists on analyzing the stationary LL equation as a dynamical system of finite
dimension. In this context LS solutions of the stationary LL equation, biasymp-
totic to the homogeneous steady state (HSS), correspond to homoclinic orbits
to such points. The HSS solutions are monovaluate for < V3 and trivaluate
for @ > /3, with three solution branches separated by two saddle-nodes (SNs)
one on the top and one on the bottom of a S—shape bifurcation diagram. We
have performed a linear stability analysis of the spatial system around the HSS
solutions and we have identified the different bifurcations that they undergo, in
both the anomalous and normal group velocity dispersion (GVD) regimes. After
that, using normal form theory we have identified the possible types of LSs or
patterns arising from those bifurcations. Some of these results are published in
Refs. [8, 9].

Chapter 3 and Chapter 4 are focused on the anomalous GVD regime. In
Chapter 3 we analyzed the different types of patterns solutions appearing in
the system. In particular we have studied in detail the pattern with the critical
wavenumber k. arising from a modulational instability (MI) for 6 < 2. Applying
weakly nonlinear analysis around the MI and using a numerical continuation
algorithm we have calculated the branches of pattern solutions for any value of
f < 2. This bifurcation skeleton has allowed us to identify that for some regimes
of parameters, patterns of a given wavelength A\ are connected to patterns with
a wavelength A\/2 and the latter ones to others with A/4 and so on. Doing a
detailed stability analysis of the patterns we have discovered that such type of
connection points consist in secondary bifurcations known as finite wave insta-
bilities (FWs). Furthermore, applying the same analysis we were also able to
find other secondary bifurcations of the patterns such as Eckhaus bifurcations
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or wave instabilities. Together with the pattern with critical wavenumber k. we
showed that there is a wide family of patterns with different wavelengths coex-
isting and sharing the same type of dynamics and bifurcation structure, whose
region of existence expands also to 6 > 2.

After that, in Chapter 4, we have investigated the formation of bright LSs in
the anomalous GVD regime. According to the spatial eigenvalues of the HSSs
found in Chapter 2 two different regimes must be considered. For 6§ < 2 normal
form theory around the MI shows that bright LSs unfold, together with the
pattern, when the pattern is subcritical (for § > 41/30). In this way we have
obtained an asymptotic analytical solution for the LS. Later we have built up the
homoclinic snaking bifurcation diagram for these LSs at different values of the
control parameters. For 8 > 2 the MI has disappeared and now the LSs unfold
from one of the saddle-node (SN) bifurcations of the HSSs. We have found
that these type of LSs are organized in new type of bifurcation structure known
as foliated snaking. For high values of 6 these states become unstable through
supercritical Hopf bifurcations and they start to oscillate in amplitude. Using
numerical simulation we have identified that these oscillatory states undergo
secondary bifurcations that start a route to temporal chaos. Spatiotemporal
chaos is also present in this regime. These results are partially published in

Ref. [8].

Chapter 5 is dedicated to the normal GVD regime. Here the LSs are dark
solitons formed due to the locking of two fronts or switching waves (SWs) of
different polarities connecting the top and bottom HSSs. Applying the same
asymptotic techniques as in previous Chapters we have found that they unfold
from the top SN of the HSSs, as predicted by the theory. Later we have shown
that these states are organized in a collapsing snaking bifurcation structure.
For high values of the cavity detuning dark solitons also undergo oscillatory
instabilities where they start to oscillate in amplitude. Secondary bifurcations
of these cycles start a route to temporal chaos in the same fashion as bright
LSs in the anomalous regime. We have characterized the different bifurcation
regions as function of the control parameters. These results were published in
Refs. [9, 10].

In Chapter 6 we studied how third order dispersion (TOD) effects modify
the dynamics, stability and bifurcation structure of LSs in both the anomalous
and normal GVD regimes. This effect is modeled by a term ~ d3zd2A, that
on the one hand breaks the spatial reversibility symmetry of the LL model,
and therefore of its solutions, and on the other hand induces a drift instability,
in such a way that now any LS moves at a constant velocity determined by
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the control parameters. In both regimes, we have discovered that oscillatory
and chaotic dynamics are suppressed by this effect for both bright and dark
structures. Furthermore the bifurcation structures are modified in different ways
depending on the parameters. Moreover, in the normal dispersion regime, TOD
also stabilizes bright solitons, and therefore regions of multistability between
dark and bright LSs are found. This work has been published in Refs. [IT], 12].

Chapter 7 is focused on the interaction of solitons and the formation of bound
states (BSs), i.e. aggregations of single-peak LSs at different separation dis-
tances. Here we have focused on the anomalous regime and therefore bright
solitons, although the results are general and therefore also applicable to dark
solitons. We have derived an effective interaction potential using both the com-
plete and interaction Hamiltonian of the LL equation and we have found that the
stable separation distances are discrete and determined by the minimum of this
potential. This is also the case when considering any reversible generalization
such as adding a fourth order dispersion (FOD) effect. The potential is deter-
mined by the overlapping of the tails of one soliton with the core of the other one,
and therefore the interaction is intrinsically related with the presence or absence
of oscillatory tails in the solitons’ profiles. Furthermore we have determined that
the periodicity of the potential corresponds to the wavelength of the oscillatory
tails of the solitons involved in the interaction. This principle also applies when
considering terms that break spatial reversibility such as TOD, although in this
case the maxima, and not the minima of the potential, determine the stable
separation distances. Moreover we have studied the bifurcation diagrams for
some particular arrays of LSs and we have analyzed the effects of adding a noisy
background in the stability of the different BSs.

In Chapter 8 we have investigated how the presence of inhomogeneities, (or
defects) and drift modifies the dynamics of DSs in the LL model. The effects
of these two elements on a soliton is that while a defect pins the soliton to a
fixed position, the drift tries to pull it out. We have shown that the competi-
tion between these two ingredients induces a very rich dynamical behavior going
from oscillatory states to excitability of DSs. Using bifurcation theory we have
identified the bifurcations behind the origin of the previous dynamical regimes.
Moreover, we have also studied the oscillatory dynamics in the presence of peri-
odic and absorbing boundary conditions. These results have been published in
Ref. [13].

In Chapter 9 we have shown that the dynamics induced by the presence of
defects and drift on DSs are generic and not just a particularity of the LL equa-
tion. To show this generality we have used the prototypical Swift-Hohenberg
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(SH) equation. We have studied in detail the different dynamical regimes aris-
ing in this system such as oscillatory states (train of solitons) and excitability,
and we have found that all these dynamics unfold from two Takens-Bodganov
(TB) bifurcations. Type I and II excitability have been found as usual near the
bifurcations where the oscillatory states appears or disappears. Furthermore we
have also studied this type of dynamics when the defect appears in the gain of
the model. In this case, although the bifurcation scenario is much more complex,
the same dynamical regimes have been found. This research has been published
in Refs. [14], [15].

Finally in Chapter 10 we have presented a novel mechanism leading to the
appearance of transient localized spatiotemporal structures, which can be un-
derstood as excitable excursions. This mechanism only requires two ingredients:
the coexistence of two HSSs and spatial coupling such that the fronts connecting
the two HSSs annihilate each other. This new type of excitability does not re-
quire that the system is locally excitable, nor that an oscillatory LS disappears
through a limit-cycle instability. We have found that this type of behavior exists
in the LL model in the normal dispersion regime. Furthermore we have studied
this mechanism in detail in two cases: when the HSSs solutions are equiva-
lent, and when they are not. For the first analysis we have used the real cubic
Ginzburg-Landau (GL) equation, and for the second one the real quintic GL
equation. Moreover, we have studied how excursions can be randomly triggered
when noise is considered. This work was partially published in Ref. [16].

11.2 Future directions

Despite the fact that the LL model has been analyzed for several decades, and
although we have tried to perform a complete and detailed study of this equation,
there still remain many open questions. Here we list several directions for future
research, inspired by some of the results of this work.

Unfolding of the quadruple zero bifurcation

In Chapter 2, while studying the spatial dynamics of the LL equation, we
have seen that the different bifurcations that the HSSs exhibit unfold from a
codimension-two point known as Quadruple zero (QZ) bifurcation with the spa-
tial eigenvalue A = 0 with multiplicity four. Although the unfolding of this
bifurcation was already studied in Ref. [I7], a complete understanding on the
dynamics of LSs around this point is still lacking. In the LL equation the QZ
occurs at § = 2 for both the anomalous and normal GVD regimes. A bet-
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ter comprehension of this point is crucial to understand the transition between
homoclinic snaking (for § < 2) and foliated snaking (6 > 2) occurring in the
anomalous GVD regime. We have recently found that in a neigborhood about
the QZ the LL equation can be reduced to a SH-type of equation with a quadratic
nonlinearity [I§]. Thus we hope that the study of this last equation can help us
to understand how the dynamics of the system behaves about such point.

Furthermore, it would be also interesting to study the transitions occurring in
other systems when passing through this point as for example in the modified
real SH equation [19]:

Ou =+ eu — u® — vd*u — Otu. (11.1)

Here, in contrast, a preliminary analysis has shown that a transition between
homoclinic and collapsing snaking occurs when going through the QZ.

Unfolding of the Fold-Hopf bifurcation

In Chapter 4, while studying bright LSs in the anomalous GVD regime, we saw
that the supercritical Hopf bifurcation is responsible for the oscillatory dynamics
that unfolds from a codimension-two point known as a Gravilov-Guckenheimer
(GG) or Fold-Hopf (FH) bifurcation [20, 2T]. It would be interesting to study
the different unfoldings of its normal form and identify which one corresponds
to our particular case. This can be useful in order to understand the origin of
temporal chaos appearing for high values of frequency detuning.

Conservative limit of the Lugiato-Lefever model

For high values of the detuning, the dynamics of the LL equation become more
and more complex, and LSs exhibit amplitude oscillations at different frequen-
cies, temporal chaos and spatiotemporal chaos. Although the derivation of the
LL equation in optical cavities is only valid for low values of detuning, from
a mathematical point of view it would be interesting to study the origin of the
previous dynamics when considering § — oo, for both the anomalous and normal
regimes.

To study this problem it is first necessary to consider the rescaling, T = 6t,
X =0z and ¢ = A/\/@ that reduce the LL model to the following equation:

orp = —(a+ i)Y +i0%0 +ilY|>Y + o (11.2)
with 1
o= 93%, and a= ik (11.3)
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If one takes # — oo, then a,0 — 0, and Eq. becomes a NLS-type of
equation [22]. Therefore the study of the dynamics of the LL equation for very
high values of detuning reduces to the study of Eq. for low values of a and
o. In this way the origin of the previous dynamics will be related with the point
(o,0) = (0,0), i.e. the conservative limit of the LL equation.

Effects of fourth-order dispersion and nonlocal interaction on the bifurcation
structure and dynamics of LSs in the LL model

In Chapter 6 we have studied how TOD effect modifies the dynamics, stability
and bifurcation structure of solitons in both the anomalous and normal GVD
regimes. It is known that the presence of FOD terms in the LL equation sta-
bilizes dark solitons in the anomalous regime [23]. In future work we expect
to understand how FOD and other high order effects, modify the different sce-
narios presented within this thesis. Together with those dispersion effects, the
analysis of Raman and thermal effects, both modeled by nonlocal terms, would
be relevant for theorists and experimentalist.

Understanding dynamics in general systems driven near their natural fre-
quency

We plan to study more general systems driven near their natural frequency. We
will repeat the analysis done in the LL model in a broader class of systems, those
described by the forced complex GL (FCGL) equation at 1:1 resonance, namely

NA = (n+i0)A+ (1 +ia)d?A — (1 +1iB)|A*A + p. (11.4)

Despite its generic character and importance, surprisingly little is known about
the dynamics of this equation. We will characterize to which extent results
obtained in the LL model are transferable to the universal Ginzburg-Landau
equation at 1:1 resonance [24].
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Appendix A
Dynamical systems and bifurcation
theory

In this chapter, we review some general results from dynamical systems theory
and bifurcation theory. These topics are covered in much more depth in Refs. [T
9.

A.1 Dynamical system theory

We consider a nonlinear dynamical system defined by the set of n first-order
ordinary differential equations

b= fa ), (A1)

where z € R" is a vector describing the state of the system, ¢t € R is the
independent variable that we refers as "time", and pu € RP describes system
parameters. The vector field

f:R" x RP —; R™,

has the relevant information of the physical system, and Eq.(A.1l)) describes
the evolution of the state x as determined by f. Let us initially neglect the
dependence of the field with the parameters.

By a solution of Eq.(A.1]) we mean a map, Z, from some interval I C R into R,
namely
Z:1—R" t+—Z(t), (A.2)
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such that z(t) satisfies Eq.(A.1) i.e.
#(t) = f(5(0), 6 1),

Geometrically we can interpret the map (A.2)) as a curve in R"™, whose tangent
vector at each point is defined by the dynamical system (|A.1)), Therefore we also

refer to (A.1l) as a vector field. The space of dependent variables of (A.l) i.e.
R™ is called phase space.

Two types of dynamical systems can be considered depending on the the explicit
dependence with the independent variable ¢ or not. If the dynamical system
explicitly depends on t i.e. & = f(x,¢; ) it is referred as non-autonomous or
time dependent dynamical system, and if the dependence with ¢ is not explicit
ie. & = f(x;u) they are referred as autonomous or time independent dynamical
systems. Along this thesis we will deal with the later case.

We say that the vector field f generates a flow ¢; : R — R, where ¢;(z) = é(z, t)
with ¢t € I C R and satisfying

d

= (0(.0)) = f (Bl i) (A3)

The flow ¢, satisfies the group properties (i) ¢g = Id, and ii) ¢14rs = ¢¢ 0 Ps.

With this notation, a particular solution of the dynamical system which passes
through z¢ at t = 0 can be written as ¢(xg,t). The map ¢(xg,) : I — R”
defines the trajectory, phase curve or orbit I' of the dynamical system [A-T] based
on zg:

I'={y:y=9¢(xo,1)} (A4)

Between the different types of solutions of (A.1)) we focus in the following:

Definition 1 (Stationary, fixed point or equilibrium solution) Given the
autonomous dynamical system & = f(x;u), one defines a stationary solution of
that system as a point x5 € R™ such that f(zs; 1) = 0. Thus a solution that does
not change with t. Or in terms of the flow, ¢(xs,t) = xs.

Definition 2 (Periodic orbit) One says that a point is periodic of period T
iff p(z,t +T) = Pp(a,t) for all t, and ¢(x,t + s) # ¢(x,t) for all 0 < s < T.
Then, the curve I’ = {y : y = ¢(x,t),0 <t < T} is called a periodic orbit of the
system [A71], and is a closed curve in phase space.
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Definition 3 (Invariant set) A set ¥ C R™ is invariant under the action of
the flow ¢4 iff for allx € X, then ¢(x,t) € X for all t. Stationary points, periodic
orbits and strange attractors are some examples of a invariant sets. When the
set 3 has differentiable structure we call it invariant manifold.

Definition 4 (Local stable and unstable manifolds for an invariant set)
The local stable and unstable manifolds of an invariant set are defined respec-
tively by

We(E)={zeUCR": ¢(x) > X, t - oo} (A.5)

WE(E)={zeUCR": ¢(x) = X,t & —c0}, (A.6)

where U is a neighborhood of the invariant set ¥ both of them are invariant
under the action of ¢y.

These definitions can be adapted for stationary points or periodic orbits.

A.2 Stability of trajectories

The stability of solutions of differential equations can be a very difficult property
to pin down. Here we will concentrate in two of the most commonly used defi-
nitions. Roughly speaking, if Z(t) is a solution of the dynamical system ,
then we say that z(t) is stable if solutions starting "close" to Z(t) at a given time
remain close to it for all later times. Moreover, Z(t) is asymptotically stable if
nearby solutions not only stay close, but also converge to Z(t) as t — co. These
two types of stability can be formalized as follows.

Definition 5 (Lyapunov stability) The solution Z(t) is said to be stable (or
Lyapunov stable) if, given € > 0, there exist a § = §(e) > 0 such that, for any
other solution, y(t), of (A-1) satisfying ||Z(to)—y(to)|| < 8, then ||Z(t)—y(t)]| < €
fort > tg, to € R. Here || - || stands for the norm in R™.

Definition 6 (Asymptotic stability) The solution Z(t) is said to be asymp-
totically stable if it is Lyapunov stable and for any other solution, y(t), of ,
there exist a constant b > 0 such that, if ||Z(to) — y(to)|| < b, then

lim [|z(t) —y(8)[| = 0.

t—o00
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These definitions provide different types of stability, however, they do not provide
us with a method for determined when a given solution is or not stable. In the
following we present method based on the linearization of the system about
a solution Z(t). We call this procedure linear stability analysis.

A.3 Linearization of the nonlinear system

A good point to start the study of a nonlinear dynamical system is by char-
acterizing the dynamics of the system near a solution x. So let us consider
that

z(t) = z(t) + ey(t), (A7)
with € < 1. Inserting in Eq. and Taylor expanding about = gives
&= a(t) +y(t) = f(z(t) + DF @)y + O|lyl), (A.8)
where Df is the derivative (Jacobian) of f. Eq. reduces to
y(t) = Df(x)y + N(y), (A.9)

with N = O(||y||?) being the nonlinear terms.

The evolution of trajectories arbitrarily close to x is then described by the linear
system

y(t) = Df(z)y. (A.10)

The first difficulty appears when one tries to solve Eq.(A.10)), since here there are
no general analytical methods for finding the solutions of linear ODEs with time-
dependent coefficients. However, when the solution is a fixed point Z(t) = z, or
a periodic orbit, the solution can be found easily.

In most of the thesis we are working with stationary solutions so from now on
we will develop the theory of dynamical systems for these type of solutions. So,
if z(t) = x5, then Df(z) = Df(xs) is a matrix with constant coefficients and the
solution of the system through the point yo € R™ at ¢t = 0 is given by

y(t) =PIty (A.11)
Here the linear flow eP/(*<)t is generated by the linear vector field Df(zs)y.

After calculating the eigenvalues {\;};=1,,, and eigenvectors {e;};=1, of Df(zs),
solution (A.11) can be also expressed in the form

y(t) = Zaieie)‘it, (A.12)
i=1
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Stable Unstable Saddle
——— +i+

!

Figure A.1: Illustration of a stable, an unstable and a saddle fixed point (illustrated with
straight line trajectories, for the sake of simplicity)

where a; are constant coefficients determined by y(t = 0).

Then we say that y(t) is asymptotically stable if all the eigenvalues of Df(x5)
have negative real parts. If this happens it is not difficult to prove that the
equilibrium solution z; of the nonlinear vector field (A.1)) is asymptotically stable
.

Depending on the real part of the eigenvalues we can define the stable, unstable
and center subspaces for the linear system (A.10]):

E?® =span{ey,...,en. },

E* =span{en 11, -€n.4+ny, }s Ng + Ny + Ne =0, (A.13)
E® = span{en 4n, 415+ €ntn,tn. b
such that and where {ey,...,e,, } are the eigenvectors of Df(xs) correspond-

ing to the eigenvalues {\;}i=1,,, such that Re[\;] < 0, {en.4+1,---)€n.tn.}
those corresponding to the eigenvalues {A;}i=n,+1,n.4+n, With Re[\;] > 0 and

{€ny+ny+1s---»Enytny+n, } those corresponding to {\; Fi=n,+n,+1,n.+nu+n. Such
that Re[A;] = 0. These three subspaces are invariant under the action of the
linear flow eP/(:)t,

In this way R™ can be expanded as the direct sum:
R"=E°® E“ @ E°. (A.14)

Based on the dimensions of these subspaces one can classify the equilibrium
points x4 first as hyperbolic if n. = 0 i.e. none of the eigenvalues has a zero real
part, and non-hyperbolic if n. # 0. Moreover, hyperbolic equilibrium points can
be:

1. unstable if n, > 0.

2. stable (asymptotically stable) if n, = 0.
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3. a node if for all ¢, Im[\;] = 0, and either ny = n or n, = n. In the first
case we say that the node is a sink, and in the second we call it a source.

4. a saddle if for all 4, Im[)\;] = 0, with both ns > 0 and n,, > 0.

5. a focus if it has a pair of complex eigenvalues \, \.

For the non-hyperbolic points the classification is more difficult, in part because
stability depends critically on nonlinear terms and they are not determined by
(A.10). However, we use the term center to refer to a non-hyperbolic equilibrium
which has a pair of imaginary eigenvalues \ = +iw.

At this point we can consider the following important question: What can one
say about the solutions of the nonlinear system based on the knowledge
obtained from the linear system ¢

Well, let us suppose that for a fixed value of parameters p, the stationary point
is hyperbolic. Then the answer to the previous question is provided by two
fundamental results of dynamical systems, the Hartman-Grobman and the stable
manifold theorems.

Theorem 1 (Hartman-Grobman theorem) If © = z; is stationary hyper-
bolic point, then there is a continuous invertible map, h defined on some neigh-
borhood of x5, U C R™ which takes orbits of the nonlinear flow ¢; of to
those of the linear flow ePf()t of i.e. they are topologically equivalents.
This map can be chosen so that the parametrization of time is preserved.

This theorem establish that the in a neighborhood of such point, the dynamics
of the nonlinear system can be determined by the dynamics of the linear one.
From this theorem we also know that the stability of the stationary solution
T = z, is determined by the linearization (A.10). The next theorem provides
nonlinear analogues of the flat invariant £° and E™.

Theorem 2 (Stable manifold theorem) If x; is an hyperbolic point of the
nonlinear system (A.1)), then there exist local stable and unstable manifolds
W (xs) and Wt (xs) that are tangent to the flat invariant eigenspaces E® and
E" at x5 and with the same dimension ng and n, respectively.

These manifolds have global analogues W* and W*" obtained by letting points
in Wi . flow backwards in time and those of W} flow forwards:
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Wi (zs) = Utgo ot (Wige(zs))

Wt (xs) = Utzo bt (Wige(s))

Two stable (or unstable) manifolds of two distinct stationary points can not
intersect, nor can W#(x) (or W*(xy)) intersect itself. However intersections of
stable and unstable manifolds of the same or distinct stationary points can occur.
Moreover, these later interactions are source of much of the complex behavior
found in dynamical systems. As we will see they are in the corner stone in the
formation of homoclinic orbits.

(A.15)

When the equilibrium loses hyperbolicity as the control parameter p varies, the
local nonlinear dynamics will undergo a qualitative change, which is referred to
as a local bifurcation. In this situation together with the stable and unstable
manifolds, the a central manifold W¢(z,) can be defined tangent to E° at x5. As
we will see in non-hyperbolic points, a different machinery based on the central
manifold reduction and the normal form theory, must be applied in order to
obtain some insight about the nonlinear system around the bifurcation point.

Linearization around a periodic orbit

If Z(t) = zp, then Df(Z(t)) = Df(xp) is matrix with T—periodic elements. The
analysis of this type of equation is covered by Floquet theory [3]. Solutions of
the (A.1) take now the form

y(t) = At)yo, (A.16)

where A(t) is the fundamental matriz. The stability of the periodic orbit is
determined by comparing the initial perturbation yy with the perturbation after
N periods, y(NT). In this way (A.16) becomes

y(NT) =Y biANE, (A.17)
=1

where §; and A; are the eigenvectors and eigenvalues of A(T"), and b; are constant
coeflicients determined by yo. The eigenvalues A; are called Floquet multipliers
and they may be complex.

Stable (unstable) perturbations are associated with Floquet multipliers |A;| < 1
(|A;] > 1). A periodic orbit always contains a Floquet multiplier A = +1
associated with perturbations y = @p along the trajectory, which neither grow
nor decay.
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A.4 Reversible systems
Definition 7 (Reversible system) We say that a dynamical system
dx
- 1)), A.18
R 0) (A.18)
with t € R™ and f : R® — R™ a wvector field that we assume to be r times
differentiable is reversible if given the involution R : R™ — R™ satisfying

RoR=1d, (A.19)

then
— (R(z)) = —f (R(z)) . (A.20)

Using the chain rule on the left of Eq. and Eq. the definition of
reversibility for the vector field f, i.e. for the dynamical system reduces
to the relation

DR-f=—foR, (A.21)

with DR the Jacobian matrix of R.

All the point that are invariant under R define a subspace S known as symmetric
section i.e.
S=fix(R) = {zx € R" : R(x) = z}. (A.22)

In particular, we say that a stationary solution x, is a symmetric stationary point
if R(xs) = x5 i.e. x4 is invariant under the involution R. From the linearization
of the problem about a symmetric point we find that

DR(zs)Df(xs) = —Df(xzs)DR(xs) (A.23)

i.e. the Jacobian matrix of f anticommute with the Jacobian matrix of R,
and we say that Df(xs) is infinitesimally reversible. This n X n matrix has a
characteristic polynomial p(\) satisfies

p(=A) = (=1)"p(N), reC. (A.24)

In particular if A is an eigenvalue of {(z) so is — and the spectrum is symmetric
with respect to the real and imaginary axes.
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A.5 Homoclinic and heteroclinic orbits

In dynamical systems we can understand many global phenomena in terms of
stable and unstable manifolds to equilibrium, periodic orbits or other invariant
sets. In this context a special orbit I" that approaches a forward limit set X and
a backward limit set ¥~ plays a central role because it lies precisely in the inter-
section between the unstable manifold of ¥~ , W*(X7) and the stable manifold
of 1, W#(XT). Such an orbit is known as an homoclinic orbit if ¥~ = 31, and
a heteroclinic orbit if ¥~ # XF. The codimension of an homoclinic/heteroclinic
orbit can be determined by dimension counting. If n* = dim(W*(X7)) and
n® = dim(W#*(X7T)), then the codimension of T n¢ can be shown to be

n®=n+1-n°—n", (A.25)

being n the dimension of the phase space. The dimensions n* and n® are deter-
mined by the linear theory around those limit sets.

A heteroclinic cycle is a homoclinic orbit which consists of two (or more) hete-
roclinic orbits. For example, a heteroclinic cycle between the two limit sets X+
and ¥~ would involve a heteroclinic orbit from X to ¥~ followed by a second
heteroclinic orbit from ¥~ back to ¥T. We also use the term homoclinic cycle to
refer to a heteroclinic cycle involving limit sets which are related by symmetry.

In reversible systems, an homoclinic orbit to an stationary point I'(¢) = {z(¢) :
t € R} is defined such that I'(¢) is a solution to Eq.(A.18) satisfying.

I'(t) = x5, t — Loo, (A.26)

) € S, (A.27)
where f(zs) =0,25 € S.

A.6 Bifurcation theory

Bifurcation theory is the study of the qualitative change in the flow ¢(z,t) of
as the system parameters p are varied. This may involve, for example,
the creation or destruction of solutions, or a change in their stability. The
parameter values at which such changes occur are called bifurcation points. The
codimension of any particular bifurcation is the minimum number of parameters
that must be independently varied for the bifurcation to occur.

In this section we overview some important results related with local bifurcations
that have the particularity of that they can be analyzed entirely in terms of the

317



APPENDIX A. DYNAMICAL SYSTEMS AND BIFURCATION THEORY

local behavior of solutions near a fixed point or periodic orbit. In this context,
the bifurcation takes place when a hyperbolic point becomes non-hyperbolic as
the control parameter y varies. At the particular parameter value . where this
transition occurs n. # 0 i.e. there is at least one A;(p.) such that Re[A;(u.)] = 0.
The nature of this bifurcation depends on how the eigenvalue \; passes through
the imaginary axis Re[\;] = 0. For example, the case of a single real eigenvalue
passing through Re[)\;] = 0 is known as a steady-state bifurcation, while the case
of a complex conjugate pair passing through Re[\;] =Re[\;] = 0, Im[)\;] # 0 is
known as a Hopf bifurcation. Using the same approach that the one done with
hyperbolic points, one can think about simplifying the system as much as
possible about the non-hyperbolic point, in such a way that some information
can be inferred from the simplified system. There are two main techniques
that can be applied in this context: first reduce the system to the center
manifold, and second simplify the vector field obtained in that manifold to a
normal form of it.

Another type of bifurcations, which can not be studied locally, are the global
bifurcations. These bifurcation are associated with changes of large portions
of the phase space instead of the statbility of fixed points and therefore in the
nonlocal behavior of solutions, such as the creation of a heteroclinic orbit between
two fixed points.

A.6.1 Center manifold reduction

The center manifold exist just in the point where the fixed point suffers a bi-
furcation i.e. the point becomes non-hyperbolic when changing the value of the
parameter p. In this point one can identify two different dynamical scales, one
occurring on the stable and unstable manifolds, and the one happening in the
center manifold. Thus one can reduce the dynamics of the system to the last
manifold. Here the two main results are the Center manifold theorem and the
Shoshitaishvili theorem.

From linear algebra it is possible to find a transformation M such that the linear

system (A.10]) reads as

U Js 0 0 U
o l=0 J, 0 v |, (A.28)
w 0o 0 J. w

where M~y = [u,v,w] € R™ x R™ x R" and J,, J, and J. are matrices

having eigenvalues with negative, positive and zero real part respectively.

318



A.6. BIFURCATION THEORY

Applying the same transformation to the nonlinear system (A.10) one obtains

= Jsu+ Ng(u,v,w)

0 = Jyv + Ny(u,v,w) | (A.29)

w = Jow + N.(u,v,w)
where N.(u,v,w), N.(u,v,w) and N.(u,v,w) are the first ng, n, and n. com-
ponents of the vector M~1N (My). The main goal here is how to reduce the
system to a simplified decoupled system in variables u, v and w.

Theorem 3 (Central manifold theorem) Letz, be a stationary non-hyperbolic
point of the nonlinear system , possessing the flat invariant eigenspaces E°,
EY and E°, then there exist a C" stable and unstable invariant manifolds W*
and W* tangent to x, and a C"~1 center manifold W¢ tangent to E° at x., all
of them invariant for the nonlinear flow of f. The stable and unstable manifolds
are unique, but W¢° need not be.

To simplify the notation let us consider that n, = 0. Then the central manifold
is given by

Wie(zs) = {(u,w) € R®* x R : u = h(w),
||z — zs|| < 6, h(zs) = x5, Dh(zs) = 0}. (A.30)

To calculate the center manifold we proceed as follows:

1. The coordinates of any point on W¢(x,) must satisfy
u = h(w). (A.31)
2. The coordinates (4, w) of any point on W€(z,) must satisfy
i = Dh(w)w, (A.32)

obtained by differentiation of v = h(w) with respect to time. This is the
tangency condition between the field and the manifold, which implies that
the manifold is invariant respect to the nonlinear flow.

3. Any point of W¢(zs) must obey the dynamics generated by the system
(A.29), and therefore, after substituting

@ = Jsh(w) + Ng(h(w),w)

W = Jyw + Na(h(w), w), (A-33)
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into Eq.(A.32)) gives
Dh(w)[Jaw + N(h(w),w)] = Jsh(w) + Ns(h(w), w). (A.34)
Then in order to calculate the center manifold described by h(w) one has to solve

Eq.(A.34). Normally to solve this equation one use power series expansions that
allow us to obtain a solution with a given degree of accuracy.

Another important result is analogues to the Hartman-Grobman theorem but for
non-hyperbolic points the Shoshitaishvili theorem states that in a neighborhood
of x = x4, the flow of (with n,, = 0) is topologically equivalent to the
flow of the decoupled system

u = Jsu

w = Jow + Ne(h(w),w). (A.35)

A.6.2 Normal form theory

Onces the nonlinear field is reduced to its central manifold, the next step in the
analysis is to simplified that system as much as possible, until reducing it to
inst normal form. The procedure is as follows. The starting point is the set of
equations from on the central manifold

w = Jw+ N(w), (A.36)

where J = J. and N(w) = N¢(h(w),w) the nonlinear term, which can be Taylor
expanded

N(w) = Na(w) + N3(w) + -+ - + Nyp—1(w) + O(|Jw||"). (A.37)
Taking the near identity transformation

w =1+ h(h) = b+ Y hi(d), (A.38)

where h; € H; is an vector valued homogeneous polynomial of degree i, and
inserting it on Eq.(A.36) one arrives to

i = Jb+ Jhy (@) — Dha (@) Jb +Na (@) + L ha (1) + Na () + - - - O(||]|") =

L ho (@)

Jw + z_: LY hi(w) + N (@) + O(|Jw]|").  (A.39)

i>2
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The linear operator Lf,i) : H; — H; defined by
LY hi () = Jhi(@) — Dhi(d) Ji (A.40)

is called the homological operator and is the Lie derivative associated with the
vector field Jy. Our main goal will be to find transformations h; satisfying

LY hi(w) = Ny(w), (A.41)

in such a way that we can simplify into normal form as many terms as we can.
However, N;(w) belongs to a polynomial space H; which can be descomposed as

H; = Tm(LY) & Comp[lm(L{)], (A.42)

where Im(LF;)) is the image of the operator, and Comp[Im(LFj))] its comple-
mentary subspace. Thus, the nonlinear components N;(w@0) can be written as
N;(w) = NI (w) + N} (®), with NJ*" () belonging to Im(LL(,i)) which can be
eliminated and N/ (), belonging to Comp[Im(L‘(,i))]7 which do not. These last
terms are then known as resonant terms. Hence, with these considerations the

system (A.36]) can be reduced to its normal form
w = Jw + N3 () + N3 (D) + - - - + N;_ () + O(||@]|"). (A.43)

The election of Comp[Im(Ly))] determines the normal form style, and there are
two main approaches.

e If J can be diagonalized, then the Poinaré normal form can be obtained
by choosing Comp[Im(Lf;))] = Ker(Lf;)).

e If J can not be diagonalized, then the Elphick normal form can be obtained
by choosing Comp[Im(LSZ))] = Ker(L(ZT)), being JT the adjoint matrix of

J
J.

The resulting normal form is not necessarily unique due to the sometimes arbi-
trary choices involved in selecting the resonant terms. Also, the transformation
in formally preserves the dynamics of the original system but this is not
necessarily true for the truncated normal form obtained by solving up to
some finite order. For the reader interested in this topic we recomend Ref. [I]
and references therein.
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A.6.3 Codimenison-one bifurcations

Here we review some of the main codimension-one bifurcation that appears in
this thesis.

Saddle-Node bifurcation

u<o ©=0 u>0

Figure A.2: Phase portrait for the saddle node bifurcation & = pu + x2. The direction of the
vector field is drawn on the horizontal axis (figure based on [4])

The first example of a bifurcation type is the saddle-node bifurcation, which is
the basic mechanism by which fixed points are created and destroyed. Consider
the normal (one-dimensional) form for the saddle node bifurcation

i =p+2? (A.44)

For p < 0 we have two fixed points z; = /—p and x_ = —\/—p, x4 is unstable
and x_ is stable, see Figure . As i increases, the fixed points move towards
each other. At u = 0 (the bifurcation point) both points coincide and we end up
with a half-stable fixed point. If we further increase p, the fixed points disappear
into thin air.

So in a saddle-node bifurcation two fixed points (one stable and one unstable
fixed point) move towards each other, collide and mutually annihilate when a
parameter is varied in a certain direction. In the other direction, two fixed points
suddenly appear [4].

Transcritical bifurcation

The transcritical bifurcation is the standard mechanism for changes in stability
of fixed points. It does not involve any creation or destruction of fixed points.
The normal form for the transcritical bifurcation is

&= pr — 2? (A.45)
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Hu<0 #=0 H>0

ﬁ < X < X ﬂ—ﬂ-«x

Figure A.3: Phase portrait of the transcritical bifurcation & = pa — 2. The direction of the
vector field is drawn on the horizontal axis (figure based on [4])

For u < 0 we have an unstable fixed point at z = p and a stable fixed point at
x = 0 (see Figure . As we increase p, the unstable fixed point approaches
the origin. At u = 0 (bifurcation point) both fixed points coincide. When p > 0
the origin has become unstable, while x = p is now stable. You can say that the
two fixed points "exchanged" their stability.

Pitchfork bifurcation

The pitchfork bifurcation is, just as the saddle-node bifurcation, a mechanism
to create or destroy fixed points. It is a characteristic bifurcation for systems
with inversion symmetry. Hence it often occurs in physical problems that have
an intrinsic symmetry. Fixed points then tend to appear and disappear in sym-
metrical pairs. There are two different types of pitchfork bifurcations, the su-
percritical and the subcritical pitchfork bifurcation.

The normal form for the supercritical pitchfork bifurcation is
&= px — a3 (A.46)

Note that this equation is invariant under the transformation r — —z. When
p < 0, the origin is the only fixed point, and it is stable (see Figure [A.4)).
When p = 0, the origin is still stable but not as stable as when p < 0. When
> 0, the origin has become unstable and two new stable fixed points appear
symmetrically around the origin at =z = 4,/u.

The normal form for the subcritical pitchfork bifurcation is
&= px+ 23 (A.47)

so that the cubic term is no longer stabilizing (pulling z(t) back toward = = 0),
but destabilizing. By changing u — —pu, 4 in Eq.[A247] becomes exactly —# from
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u<0 #=0 #>0

Figure A.4: Phase portrait of the pitchfork bifurcation & = pz — 3. The direction of the
vector field is drawn on the horizontal axis (figure based on [4])

Eq. [A746] So by inverting the p-axis and inverting the stability of every fixed
point of the supercritical case, we obtain the subcritical case.

Hopf bifurcation

In all the previous bifurcations real eigenvalues passed through A = 0, thus they
were all zero-eigenvalue bifurcations. But the Hopf bifurcation is quite different.
At a Hopf bifurcation two complex conjugate eigenvalues cross the imaginary
axis at the same time. So at the bifurcation the eigenvalues are purely imagi-
nary. This means that at a Hopf bifurcation, a time-periodic solution appears or
disappears near a steady state [4]. The Hopf bifurcation is only possible in two or
more dimensional systems. It has no one-dimensional counterpart, as opposed
to the previous bifurcations which can all occur in a one-dimensional system.
There are two different types: supercritical and subcritical Hopf bifurcations.
At a supercritical Hopf bifurcation, the fixed point becomes unstable and gets
surrounded by a stable limit cycle. The normal form (in polar coordinates) is

= pur—rd

P (A.48)

where the radial equation is identical to the supercritical pitchfork Eq. [A746]
The resulting phase portrait is shown in Figure [AX5] At a subcritical Hopf
bifurcation, a fixed point gets unstable after colliding with an unstable limit
cycle. The trajectories close to the fixed point simply flow to a distant attractor
after the bifurcation has occurred. The normal form is

F=pur4+r3—rd
0w (A.49)
where the radial equation is almost identical to the subcritical pitchfork Eq.

The term —r5 (stabilizing term) is added to play the role of distant attractor to
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©)

L<o0 u>0

2

Figure A.5: Phase portrait of the normal form of the supercritical Hopf bifurcation, above
and below the bifurcation point ;x = 0. When p > 0, the origin has become unstable and the
trajectories flow outward to the new stable limit cycle with amplitude /i (figure from [4]).

u>0

Figure A.6: Phase portrait of the normal form of the subcritical Hopf bifurcation, above and
below the bifurcation point g = 0. The unstable limit cycle surrounding the origin for p < 0,
shrinks continuously with increasing p until it collides with the origin (1 = 0), after which the
origin becomes unstable and the trajectories flow to some distant attractor (x > 0). In this
case the distant attractor is the large stable limit cycle on the outside, generated by the extra

—r® term in Eq. (figure from [4]).

@

n<o

which the trajectories can evolve after the origin becomes unstable. The typical
phase portrait of a two-dimensional subcritical Hopf bifurcation is shown in

Figure [A76]

Saddle-node on the invariant circle

The saddle-node on invariant circle (SNIC) bifurcation, also known as saddle-
node infinite-period (SNIPER), or as saddle-node central homoclinic bifurcation,
is a particular case of the saddle-node in two dimensions. It appears when a
stable and unstable fixed points that collide at the bifurcation point are located
on a limit cycle. Therefore, the normal form can be written in one dimension

325



APPENDIX A. DYNAMICAL SYSTEMS AND BIFURCATION THEORY

provided that the variable is the position inside the circle
0 = w — psinf (A.50)

If 4 = 0 this equation reduces to a uniform oscillator. The control parameter

0=m/2
n<w H=w n > w

Figure A.7: Phase portrait for the saddle-node on invariant circle bifurcation.

u introduces a non-uniformity in the flow around the cycle, the flow is faster at
6 = —7/2 and slower at § = w/2. Since p increases this non-uniformity becomes
more pronounced. When g is slightly less than w (¢ < w) the phase takes a long
time to pass through the point 8 = 7/2 (this is called a bottleneck), after which
it completes the rest of the cycle very fast (Figure . At p = w the system
no longer oscillates and a fixed point appears at § = 7/2. Finally, for u > w this
fixed point splits in a stable and an unstable fixed points (as in the saddle-node
bifurcation), the limit cycle is broken, and all the trajectories end at the stable
fixed point. Since this is a special case of the saddle-node bifurcation there is
also an eigenvalue that becomes 0 at the bifurcation point.

Beyond the bifurcation point the system is said to be excitable, while resting on
the stable fixed point, if the system undergoes a small perturbation it decays
back to the resting state. But, if the system is perturbed beyond the saddle, it
will make a long excursion on what remains of the limit cycle. An important
signature of this bifurcation is how the period of the oscillations scales as p tends
to w. It can be shown that the period depends on u as [4].

T (A.51)

JR

Due to this dependence this bifurcation is also called infinite period bifurcation,
given that the period tends to infinity at the bifurcation point.
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Figure A.8: Phase portrait for the SL or homoclinic bifurcation.

Saddle-Loop or Homoclinic bifurcation

In this bifurcation, an unstable fixed point collides with a limit cycle becoming
a homoclinic orbit (that is why this bifurcation is also known as homoclinic or
saddle-homoclinic bifurcation) [3,[6]. Unlike the previous bifurcations discussed,
in this bifurcation there is no change of sign of the real part of an eigenvalue at
the bifurcation point. This is because the bifurcation involve changes of large
portions of the phase space instead of changes on the stability of fixed points.
At a difference with the previous cases, this is a global bifurcation. The lowest
number of dimensions in which this bifurcation can occur is two (since it requires
the presence of a limit cycle). Therefore, the lower dimensional normal form that
can be written for this bifurcation is

1 = T2

To=p+z1 + x% + z12To. (A.52)
For p < p. the system has a stable limit cycle and a unstable fixed point at the
origin (Figure‘ When p tends to p. the limit cycle approaches to the saddle,
and for g = p. the limit cycle and the saddle collide, creating a homoclinic orbit.
Then, for p > u. the saddle connection breaks, and the loop is destroyed. In this
bifurcation the period of the oscillations also tends to infinity as p tends to . ,
as in the SNIC bifurcation. In this case, however, the period of the oscillations
scales as In(u — pe) []. If there is a fixed point close to the saddle, beyond the
bifurcation the system also behaves in an excitable way as it happens with the
SNIC bifurcation.
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Figure A.9: Unfolding for the Cusp bifurcation

A.6.4 Codimension-two bifurcations

The hysteresis or Cusp bifurcation

A hysteresis or cusp bifurcation is the point where two branches of saddle-node
bifurcation curve meet tangentially. For nearby parameter values, the system
can have three fixed points which collide and disappear pairwise via the saddle-
node bifurcations. Since this bifurcation involves two saddle-nodes, the lowest
dimension needed for it to occur is one. Therefore, in one dimension, the normal
form of this bifurcation is

&=y + pox — 2® (A.53)

In Figure @ we plot the bifurcation diagram. The lines SN; and SN corre-
spond to the two saddle node bifurcations, and are given by p; = :I:ug/ 2/ /3 for
t2 > 0 (the plus sign corresponds to the SN; line and the minus to the SNj).
In the region between the two lines there are three fixed points, two stable and
a unstable fixed point. At the bifurcation lines one of the stable fixed points
collides with the unstable one and therefore outside the wedge only a stable fixed
point remains.

Takens-Bodganov bifurcation

The Takens-Bogdanov (or double-zero) bifurcation occurs when a fixed point has
two eigenvalues that become 0 simultaneously. Three codimension-1 bifurcations
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{
'\%\ A gl

SL

Figure A.10: Phase diagram showing the unfolding of the Takens-Bodganov bifurcation.

occur nearby the Takens-Bogdanov; a saddle-node, a Hopf and a saddle-loop
bifurcation. The presence of a Takens-Bogdanov bifurcation implies the presence
of a Hopf bifurcation, therefore it can occur only for systems of dimension two
or more. Hence, the lowest dimensional normal form that can be written is in
two dimensions, and yields

il = X2

. A.54

To = U1 + U2x1 + x% + sxi1xso. ( )
We will show here the case for s = —1 for which the Hopf bifurcation is super-
critical. The case s = 1 can be reduced to the case s = —1 by the substitution

t — —t, xo — —x9. This does not affect the bifurcation curves but the limit
cycle becomes unstable. The unfolding of this bifurcation is plotted in Fig-
ure The lines SN corresponds to the saddle-node bifurcation and is given
by p1 = p3/4. The Hopf bifurcation occurs along the line H, given by pu; = 0
and p9,0. The line SL corresponds to the saddle-loop bifurcation, and is given
by w1 = 6u3/25 + O(u3) and po < 0. The Takens-Bogdanov bifurcation occurs
at the origin where there is a fixed point with two zero eigenvalues. Nearby the
bifurcation the system has two fixed points, a saddle and a non-saddle station-
ary point. For po > 0 the non-saddle is an unstable fixed point and for ps < 0
is a stable fixed point. The saddle and the non-saddle collide and disappear
in a saddle-node bifurcation that occurs along the SN line. For us < 0 the
stable fixed point undergoes a Hopf bifurcation generating a limit cycle (line
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Figure A.11: Phase diagram showing the unfolding of the SNSL bifurcation

H in Figure [A.10). This limit cycle then degenerates into a homoclinic orbit
to the saddle, and disappears in the saddle-loop bifurcation along the SL line.
This bifurcation can also be seen as the point in which a saddle-node bifurcation
between a stable fixed point and a saddle (SN line for 2 < 0) becomes a saddle-
node bifurcation between a saddle and a unstable fixed point. Therefore from
the unfolding of this critical point a Hopf and a saddle-loop bifurcation emerge.

Saddle-node separatrix loop bifurcation

A saddle-node separatriz loop bifurcation (SNSL) is the point where a saddle-
node bifurcation (off limit cycle) becomes a saddle-node on invariant circle [7 [§].
It is also called called saddle-node non-central homoclinic bifurcation or saddle-
node homoclinic orbit bifurcation [9]).

Three codimension-one occur nearby the SNSL point; a saddle-node, a saddle-
loop and a saddle-node on invariant circle bifurcation. Hence, the presence of
a SNSL bifurcation implies the nearby presence of a limit cycle, and therefore
the minimum dimension in which this bifurcation can occur is two. In this case
we choose to take a normal form in one dimension with a reset condition which
defines a closed manifold. This normal form is

&= +2%, if x— oo, then = ps. (A.55)

The unfolding of this bifurcation is shown in Figure [AI1] The line SN cor-
responds to the saddle-node (off limit cycle) bifurcation given by p; = 0 for
e > 0. The saddle-node on invariant circle occurs along the line SNIC, given
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by p1 = 0 for s < 0. The line SL is corresponds to the saddle-loop bifurcation
and is given by ps = u}/ 2. The SNSL bifurcation occurs at the origin, where
the three lines meet. In the plane p; < 0 the system behaves as if a limit cycle
where present; x grows to infinity and then is reinjected to a finite value po.
Crossing the SNIC line, a stable and unstable fixed point appear, while x is
reinjected before these two fixed points. As we have already explained for the
SNIC bifurcation this creates an excitable behavior.

If we now cross the pu; = 0 axis through the SN line, a stable and unstable
fixed point also appear. For large values of o the reinjection point of x now is
beyond the pair of fixed points a limit cycle is created and the system is bistable.
For initial conditions above the saddle the system will end at the fixed point,
and for initial conditions beyond the saddle  will grow to infinity and then be
reinjected again beyond the saddle staying always in this region of the phase
space. Crossing the SL line the system undergoes a saddle-loop bifurcation,
in this case the reinjection point coincides with the saddle. Crossing this line
coming from the bistability region (that is, decreasing us) the limit cycle is
destroyed, and we are back to the region of excitable behavior. Finally at the
SNSL point the saddle-node bifurcation occurs at the same time as the limit
cycle collides with the saddle
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Appendix B

Analytical and numerical methods
for nonlinear equations

In this appendix we briefly describe the analytical and numerical methods which
have been used along this thesis. The numerical algorithm used within this thesis
have been implemented in FORTRAN 77 and IDL.

B.1 Weakly non-linear analysis

Upon the analytical approximations to solve nonlinear problems we find the per-
turbation or asymptotic methods [I]. According to theses techniques the solution
of a physical problem can be represented by the first terms of an asymptotic ex-
pansion. These expansions may be carried out in terms of a parameter (small
or large) which appears naturally in the equations, or which may be artificially
introduce for convenience. Such expansions are called parameter perturbations.
Moreover if the spatio-temporal scales are well separated, we can applied a mul-
tiple scales expansion.

Let us consider that the the physical system is described by the physical field
u(x,t,€), which dynamics is determined by the differential equation (ODE or
PDE) Afu(x,t),V¥] = 0. In particular in this thesis we are going to apply this
method for solving ODE in the z variable i.e. equations of the type A[u(z), %] =
0, then we can express the physical field v as an asymptotic series in the small
parameter €

u=uge’ + uret + uge® + -+ -, (B.1)
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with 0 < € < 1, related with the parameter distance to a given nascent bifur-
cation, and where the coefficients u; at each order in € are functions of multiple
spatial scales x, X1, Xo - -+ [2]. For example if u; = u;(x, X (x)) with X = ex any
derivative of the field u; is expressed as

Ozpui(x, X) = Opui(z, X) 4+ edxui(x, X). (B.2)

The requirement that the physical field v in the form of the expansion (B.1))
solves the original equation Afu(x),d%] = 0 leads to an equation of the form

A0€0+A161 +A262+"' = O, (BS)

where A; denotes the terms collected at the iy, order in €. Since these equations
must hold for all values of €, each coefficient A; must vanish independently
because sequences of € are linearly independent, and then one gets the following
hierarchy of conditions:

O(): Ayg=0
O(): A1 =0
O(2): Ay=0 (B.4)

The iy, condition A; = 0 generally takes the form
Lui = fi[Uj] j < i, (B5)

where L is a linear operator obtained from linearizing around the nascent insta-
bility in the original equation, and f; is a function of u;.; and their space and
time derivatives.

The key feature here is that the linear operator L is singular (non invertible),
and therefore Eq. does not have a non-trivial solution unless the solvability
condition is satisfied [3, 4]. To define this condition one has first to define the
adjoint operator L' and its nullvector w satisfying the adjoint homogeneous
equation

Liw = 0. (B.6)

L' is defined by the equation
(u, LTU> = (Lu,v), (B.7)

with (-,-) being a suitable inner product. The boundary conditions on v are
determined by requiring that the boundary term in Eq.(B.7), known as the
bilinear concomitant, vanishes identically.
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In this framework, the Fredholm alternative theorem states that the Eq.(B.5))
has nontrivial solution if given a nullvector w of the adjoint operator L', the
condition

called the solvability condition, is satisfied.

In general, the i, order condition can be solved for u; as long as Eq. is
satisfied, and one can proceed to the next order. Otherwise, Eq. provides a
solvability condition on u; (j < ) that must be satisfied in order that a solution
for u; exists.

B.2 Split-step integration method

In this Section, we describe the numerical method used to integrate PDE, like
those appearing in this thesis. The PDEs that have been considered in this work
can be written in the following form:

Ou(z,t) = Flu(z,t)] = agu(z, t) + Z ujOlu(z,t) + N (u(z,t)), (B.9)

Jj21

where € R™ (along this thesis n = 1), a; € C and N (u(z,t)) is a nonlinear
function of the field u(z,t), that can be real or complex.

The time evolution of u subjected to periodic boundary conditions is obtained by
numerically solving Eq. in Fourier space. This method is pseudo-spectral
and accurate up to second order in time. We start by computing the Fourier
transform of Eq. , giving the evolution in time of each Fourier mode (g, t):

dit(q,t) = —aga(q,t) +N(alg, 1)), (B.10)

where

ag = —(ao+ Y _(ig)?). (B.11)

jz1

At any time, the amplitude N (i(g, t)) is calculated by taking the inverse Fourier
transform of (g, t), computing the nonlinear term in real space and then calcu-
lating the Fourier transform of this term (using e.g. a standard FFT subroutine).
Eq. is integrated numerically in time with a two-step method. For reasons
of convenience, we define the time step to increase by 20t at each iteration.

In order to solve the system numerically, the field u needs to be discretized in
space with a sufficiently large spatial resolution. Due to the corresponding small
spatial step size, the range of values ¢ is large such that the linear time scales
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aq can take a wide range of values. This stiffness problem is circumvented by
treating the linear terms exactly by using the formal solution:

Opii(t) = e~ @t (a(to)e%to + /t: ./\7(12(3))60“1st> , (B.12)

where for simplicity the dependence of ¢ on the field A has been omitted in the
notation. From Eq.[B:12] the following relation is found:
a(t+0t)  a(t — ot) tot

= et N (i(s))e*e*ds. (B.13)
t—at

efocq(;t B eaqét

The term on the right-hand side is then simplified using a Taylor expansion
around s = t assuming small values of d0t:

N(u(t))

agdt _ ,—agdt
S ) (B.14)

Qg
Substituting this result into the evolution equation (B.13) leads to

N(i(n)) + O(5t%), (B.15)

1— —2a40t
a(n+1) =e 20adtg(n — 1)+ —°
Qq

where n is used for ndt. This expression is called the slaved leap frog scheme [5].
In order for this scheme to be stable, a corrective algorithm is needed. Following
steps similar to the ones before, the following auxiliary expression can be found:

1— efaq& B

i(n) = e~ q(n — 1) + N(i(n —1)) + O(5t?). (B.16)

Qq

Using Eqgs. (B.15)-(B.16]), we use the numerical method below, also referred to
as the two-step method [6]:

1. Compute N (@(n — 1)) from @(n — 1) by going to real space.
Eq. (B.16)) is used to obtain an approximation for @(n).

Using this approximated (n), the nonlinear term N (@(n)) is calculated.

a(n 4 1) is obtained using Eq. (B.15).

> W N

At each iteration @(n + 1) is thus obtained from @(n — 1) as time advances by
26t. The total error is of order O(6t®) despite the fact that the intermediate step
is accurate to O(5t2).
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B.3 Newton-Raphson method for the stationary problem

Here we are interested in finding the stationary solutions i.e. dyu = 0 of Eq.,
and therefore solutions to

Flu(z,t)] = agu(z,t) + Y w;diu(z, t) + N (u(z, 1) = 0. (B.17)

Jj=1

To solve this nonlinear equation we will use a Newton-Raphson method. If we
consider that the first estimate of the solution is denoted by u(?), we can perform
a Taylor expansion of F[u] around u(%),

Flu] = Fu9) + DF[u9](u — u(Y) + 0(2), (B.18)

where DF' is the functional derivative of F'.

If u is a solution of (B.17)) then, using the expansion (B.18)), we can write:
u=u" —DFuO] Fu®] + 0(2) (B.19)

This approximate solution u will be a new estimate v = u(!) for a new iteration.
So we have a sequence of estimates:

u =y — DFu®] 1 Fu®] + O(2)

u? =y — DFuM]~ 1F[u(1)] +0(2) B.20

u® = u® — DFu®]- Flu®] + O(2) (B.20)
w1 = () — DFuM]= Flu™] + 0(2)

We will work with the discretization of the previous type equations.In this way,
the functional F' will be a vector field of dimension n

F:RY — RN Ju(zy), - u(zy)] — [Fi(u), -, Fx(u)]. (B.21)

and the nonlinear stationary partial differential equation, will be system o N
nonlinear equations

—0
Fy(u(zy), - ’u( )) =0 (B.22)
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Newton method with parameters

If we take parameters p into account we have to solve the equation F[u, u] =0,
that defines a parametric curve of one dimension v(s) € F~1(0) in R"*1. This
curve is a branch of solutions that gives the dependence of the solution on the
parameter . To parametrize such curve Q(u, p,s) = 0. to the system
that now depends on . Now for each value of s this system has N 41 equations
and NV + 1 unknowns.

There are several ways to choose the parametrization of v. Herein we will con-
sider only two,

1. The natural parametrization, is the most obvious choice and uses the
parameter p as a curve parameter too, so @ = p — s. In this case problems
will occur at the turning points of the curve, where we have Z—Z = .
One solution to this problem consist use the norm of u as a parameter for

passing through the the fold.

2. The pseudo arclength parametrization, use the arclength of the curve
to make the parametrization. This parametrization is defined by the con-
dition

du dp 2
"(s)|| =1 —|P+ () =1 .
WI=1 15+ <d> (B.23)

B.4 Continuation techniques for stationary solutions

At this point we are prepared to introduce the bases of continuation methods for
stationary solutions of PDEs. A continuation method is based on the obtention
of the parametric curve +, i.e. the dependence of the stationary field with the
parameter pu. Here we apply a predictor-corrector algorithm. To illustrate the
bases of this method, we will first consider the natural parametrization scheme.
After that we will see how the the method is modified for considering the pseudo
arclength parametrization. So from now on we choose s = p.

In the coming sections we follow closely Refs. [7H9] and therein.

B.4.1 Predictor methods

We will consider two types of predictor methods.

1. The constant predictor consist in that if we know the solution ug for the
parameter g we can guess as a approximate solution in the parameter
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= po + Ap,
ugo) = ug = u(lo) (B.24)
2. Another method consist in approximate u(O)(ul) by its Taylor expansion
about ug
du
W) =)+ (52) )10 @25)
Ko

truncated at some order. Depending of how many terms we took in the
expansion we have different, and more precise, initial approximations. In
particular the Euler predictor method considers that u(®(u;) is approxi-
mated by the first order in the previous expansion

W\ = g + g A, (B.26)

with 4y = (%) . To obtain the tangent vector g to the curve u(u) at

Ko
ug = u(pp), we have that Flu,u] = 0, and from there:
dF du OF
@hto = ’DF(uo,uu)@‘uo + ahto =0.
Therefore, to obtain such a vector we have to solve the linear system

DF(uoyllo)uO = aMF‘Ho =0. (B~27)

B.4.2 Corrector method

To make corrections in the previous guess for the solution of the equation we
use a correction method based in the Newton-Raphson algorithm described at
the beginning of this appendix. So, in this case, given a solution uy at the
parameter value pg, i.e. (ug, o) of Flu, ] = 0, our problem will be to compute
the solution (w1, u1) with g1 = po + Apz. Again using applying the Newton-
Raphson algorithm we will have to solve the system,

DF[uy” A = —Fluf” ™™ = un(n) + A, (B-28)
with n representing the estimate of the solution.

So for each solution (ug, p) we have to iterate enough n times. For (uq, u1) we

have,
(1)

[ pa] P Fuy” ] + O(2)

ugz) _ DF[ul), i P, ] + O(2)

WP~ Dp® -l ),m] +0(2)
D u&”) —DF[u g ),m] 1F[u1 ]+ 0(2),
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(B.29)

with %(?) (41;) chosen using the constant or Euler predictor. In the following we
will consider only the first term,so for us u(® (1) = u(uo).

B.4.3 Keller pseudo-arclength continuation

Here we describe the continuation method that uses the pseudo-arclength parametriza-
tion of the curve v given by ||7/(s)|| = 1. The problem consists in given a point

(10, u0) = (11(s0), u(s0)) to continue it along the curve « until reaching the point

(11, u1) = (1(s1),u(s1)), both of them parametrized by the pseudo-arclength s.

For more details see Refs. [7H9].

The condition used here is described by the equation,
Q(u, p, s) = (ur — o) Tt + (1 — po)fo — As =0, (B.30)

In this method we will use the Euler predictor given by

ugo) = Ug + ﬂoAS (BSl)
180 = po + froAs.
The system which we have to solve is given by
it ] =0
Glu, p] = ’ = . B.32
[, [Q(%u,S) 0 (B-32)
Applying the Taylor expansion of G up to first order we get
DF  9,F Aul™ Fl(u{™, 1™
[ 3 } o | == | St @)
6“’@ aMQ (ugm),u(lm)) Aulm Q[ulm 7M1m 75]
Or in a more compact way:
DG[o}™ ) Avi™ = ~Gluy™ ju]
(B.34)

U£m+1) _ U%m) + A’Ulm),

where we have defined the vector v,(cm) = [u,(cm), ugn)].
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To build the predictor (B.31)) we have to calculate first the tangent vector vy =
[©t0, f10] to the point (ug, o) and after that any tangent vector 0 = [t, fix] to
the point (ug, p). For the first case we need to solve the two next equations:

DF[ug, po)ttg = OpF[ug, fio]

fio = V/&lliol]* + 1.

And for any other point we solve the system [7]:

ol ] e
Uk Hk (Uk+1,Hk+1) He+1 1

So the algorithm of the Keller pseudo-arclength continuation is as follows. If
given the point (ug, o) we want to obtain (uq, p1):

(B.35)

1. We take as initial input (ug, o) and As, and the tangent vector (g, fio)
that we have previously calculated using Eq.(B.35)).

2. We apply the Euler predictor (B.31)) as initial guess for the solution.

3. We apply the Newton-Raphson correction by solving the system (B.34)),

until obtaining the best approximation vgmﬂ) = v1 to the exact solution.

4. We calculate the tangent vector (i1, (1) to the point (u1, 1) by solving

the system (B.30)).

5. We go to point 2 to obtain (ug, u2) and so on.
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Appendix C
Weakly nonlinear analysis near the
Hamiltonian-Hopf bifurcation

C.1 Introduction

In this appendix calculate weakly nonlinear LSs using multiple scale perturbation
theory near the Hamiltonian-Hopf (HH) bifurcation in the Lugiato-Lefever (LL)
equation for both the anomalous and normal GVD regimes. The HH point is
occurs for any value of § < 2 by the condition Iy = I, = 1, i.e,

pe=+/1+(0—-1)7 (C.1)

We fix the value of the detuning parameter § and we suppose that the LSs
emerging from the HH point can be described by the ansatz

U Ul”, [u
-]l ©
where U* and V* correspond to the HSS Ay and w and v capture the spatial
dependence.

We expand both the homogeneous and the spatial dependent components of the

ansatz (C.2) as:
vl _[U. 2| Uz
|:V:|_|:‘/c:|+€|:‘/2:|+'” (C.3)
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BRI S I

where € is the expansion parameter defined as [I]

e= =P (C.5)

1 d2p)
Lidey (C.6)
Q(dfg I

We consider all the variables to be functions of x and X, i.e. u; = u;(z, X (z))
and v; = v;(z, X(x)). Then the differential operator on any of those fields will
be

and
e

O2ui(w, X (1)) = 0%u; + 2€0,0xu; + €20%u;. (C.7)

Now introducing expansions (C.3) and (C.4]) into the stationary LL equation
(2.3) we can separate order by order in e the components of the expansions
(C.3) and (C.4). In following sections we solve the problem order by order in

parameter e.

C.2 Equations at O(¢°)

The first order in the asymptotic series give us the HSS (Homogeneous steady
state) at the HH point.

o[t [ [5]-8] s

From Eq.(C.8]) we obtain that,

pe
| ©9
1+ (I.—0)?
C.3 Equations at O(e?)
L[:ﬁ]:{g} (C.10)
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where,
B —(142U,V,) 0 —1I.—2V2 —vd?
L= [ LO— -2 ud?) 1420V (C1)
To solve Eq.(C.10|), we consider the ansatz
Uy a ikex | 7 —ikew
[ o ] = [ b } (p(X)e™ e 4+ ¢(X )e ") (C.12)

The solvability condition for this equation with the previous ansatz gives us the
value of k.. Inserting the ansatz in the equation we have

—(1+20.V,) 0 —1,—2V2+ vk? al|l [0 (C.13)
—(0 — 1. —2U2% + vk?) -1+20.V, b| |0 '
This system has nontrvial solutions if its determinant is zero i.e. det[-] = 0.

From there we get the characteristic polynomial
kX4 (20 — AL)Wk? + 1+ 6% + 312 — 401, =0 (C.14)

with the solution

he = £/ QL — 0y + T 1. (C.15)

The value of Iy will be determine later on. The solution of Eq.(C.13|) will be
given by,

" 0—2V2—I.+vk?
{ } = 1+ 2U.V. (C.16)
1

being p € R, absorved by ¢.
Then the solution of Eq.(C.10]) takes the form

[ " } - [ i ] (G(X)e™o? + G(X)e ) (C.A7)

U1

with p V2T 12
—2Ve—-I.+v
p— c c .1
“ 1+ 20V, (C.18)
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C.4 Equations at O(€?)

At O(€%) we obtain the next system of equations:

U2 0 U9 0 —2u81 8)( (751
ks e N R Pl | P

[ —2uyvy (30} + ) ] [ Ue } _ [ 0 ] (C.19)

3uf 4 v? 2v1uq Ve 0

We separate between the spatial dependent and the homogeneous components.
HSS contribution
The HSS contribution satisfy

—(14+20Ve)  6-L—2V2 (U] [6]_
—(0—1.—2U2) —1+2U.V, Vs -

Lo

In this case the operator Lg is not singular and then we can calculate its inverse
and obtain the solution of Eq.(C.20) as:

U2 _ -1 756
Rk o
with the inverse operator
o 1420V, —(0—1.-2V2?)
Ly" =do { 0—1.—-20% —(1+2U.V,) (C.22)
and
do = (detLo) ™' =1+ 6% 4 31% — 401, (C.23)
Then the solution is given by:
U, | 1-20.V. |_ . [0
[0 ] s dr %, |-a ] o
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Space dependent contribution

This is given by
U2 . 0 2V8I8X Uy
L|: (%) :| o [ —2V8$6X 0 :| |: (%1 :| *

2uqv1 311% + u% U.
[ —(3u? +v})  —2vuy V. (C.25)

To solve this we will first evaluate the rhs of Eq.(C.25). The first term in RHS
of Eq.(C.25) is:

0 21/8$8X Ul o 21/8936_)(?}1 .
—21/6$8X 0 U1 - —21/89;8Xu1 -

—la } (i¢/ (X)e™* 4+ c.c.) (C.26)

—_——

ai

by
Proceeding in the same way with the second term on rhs of Eq.(C.25|) we obtain
the contributions of each element of the matrix. Those terms are given by:

2v [ 1 } 0,0x (qﬁ(X)eikcw + c.c.) = 2vk,. [

—a

Then the second terms is

2uqv 302 + u? U. | _ 4a 6 + 2a? U.
[ *(31&14:’0%) *12'01“11 ] [ e } B [ —(6a®>+2) —4a ] [ Ve } [6OP+
2 . — .
iy e || @enee s e

= { Zs } p(X)[* + { Zj } (G2(X)eiher 4 G2(X)e2iker)  (C.27)

with the coefficients

ap | [ 4aU.+ (6 +2a)V.
[ bo ] - { —(6a® +2)U, — 4aV. (C.28)
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and

[ as } _ [ 2aU. + (34 a*)V, (C.29)

ba —(3a® + 1)U, — 2aV,

In this way we will have

=] |lecors

V2

{ b ] (i (X)e™er + c.c.) + { b } (0™ +ec)  (C30)

To evaluate the lhs of Eq.(C.30) we have know how the operator acts on the
same bases in which the rhs is written. For that we consider the ansatz:

MNEELCE
{ Ay } (i (X)ei*e" + c.c) + [ gz } (4%(X)e*™*<* 1 c.c.) + h.harmonics
(C.31)

Then, the operator maps the ansatz of Eq.(C.31]) to:

L[ u2 } = Lo { g‘; ] (X)) > + Ly { gi ] (i¢/ (X)e™*" + c.c.) +

V2

L] 5 | (@05 ce) hon (€32

with the operators

_ _(1 + 2Ucvc) 0 — IC — 2V02 + ng
L= [ —(0 — I, — 2U? + vk?) —1+42U.V, (C:33)
B —(1+2U,V,) 0— 1. —2V2 + dvk?
L2 = [ (0~ 1, — 2U2 1 4vk2) 14 20.V, (C:34)

Now comparing Eq.(C.30) with Eq.(C.32) order by order in e*™*<* we get the
following set of equations.
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Equation at O(et0toz)

Ao | _ | ao
w[]=[] 0
Ly is invertible with L ! given by Eq. (C.22). Then the solution of the previous
system is:

Ao | (-1+2U0.V)ag — (6 — 1. — 2Vc2)b0
{ Bo ] = { (0 — 1, —2U%ag — (14 2U.V,)by (C.36)
Equation at O(eiikcx> .
Al o (251
I [ By } - [ by } (C.37)

As we saw before det(L1) = 0, and Ly is not invertible. To obtanin the solvability
condition for this equation we calculate LI and its nullvector.

[ —(+2UV) =0 - L —2U2 + vk?)
L= [ 0—1,—2V2+ vk? -14+2U.V, (C.38)
and the nullvector verifying LJ{W =0,
w 0 —1,—2U? + vk?
wz[ ! } =¢| T -tV (C.39)
wa 1
where ¢ € R. We can choose ( = 1.
Then the solvability condition for Eq.(C.37)),
wia; +web; =w; —a=0 (040)

gives

)
Using the expressions derived previously for wy and a we arrive to the condition,
0 —1,—2U? + vk? B 0 —2V2 — I, + vk?

= —— =
L =a 1+ 20,V, 1+ 20,V,

k2 =v(2I. - 0) (C.42)

349



APPENDIX C. WEAKLY NONLINEAR ANALYSIS NEAR THE
HAMILTONIAN-HOPF BIFURCATION

Equation (C.15)) together with Eq.(C.42)) give us the that the condition
I.=1 (C.43)

Ones, conditions Eq.(C.43)) and eq.(C.42) are satisfied, we can solve Eq.(C.37).

For that we multiply both sides of the equation by [1,0] and we get

(ol 5] .

1oL [ A1{Bl ] T T+ 20.V,)(A/By) + (6 — I, — 2V2 + vk2)

B, =

Without loss of generality we choose A; = 0 and then we have:

B — vk,
YT 01, —2VZ 1 uk?)
Equation at O(et2or) .
A2 o ag
L[] ca
In this case Lo is invertible with
1 —1+2U.V. —(0 — I, — 2V2 + 4vk?)
Ly" =d (9 —1I.— 2U62 + 41//€2) —(1 + 2Uc‘/c) (0.45)

and

dy = det(Lo) ™' = (1 —21.(0 — I.) + (0 — 1.)* + 8k20v — 16k2I.v + 16k3)‘1

(C.46)
Then the solution of Eq.(C.44]) is
Ay | _ [ (C1+2UVe)as — (0 — Lo — 2V2 + 4vk2)by (C.a7)
By | | (0 —1.—2U2 + 4vk?)ay — (1 + 2U.V,)by '

C.5 Equations at O(¢?)

[ oo o ][

v v Ve
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with
_ 0 —200%
My — | 2OV +Velz) - =2(3VeVo + Uel) —vd% (C.50)
27| 2(3U.Uz + Vo Va) + v0% 2(VoUs + UcVa) ’ '
_ 7(&11}2 -+ ’U1U2) 7(3’[)1’1)2 + U1U2)
M3 =2 |: 3’LL1U2 + V1V ViU + U1V (C51)
and (u? 2)
_ 0 —(ug + vy

L is singular so we need a solvability condition for Eq.(C.48]). Using the nullvec-
tor of LT,

w(z) = { “f } (ee® 4 e iker) (C.53)
and the inner product
L —
() = [ Fa) - g(a)da (C.54)
0

we get the solvability condition:

U2 U1

V2 U1 U1

A e S

I II 111 v

Now we calculate each term in Eq.(C.55))

Calculation of |

81/1@6{ _Asz ] (ip(X)p(X)e*™ " —ip(X)¢'(X)e 2H¥)  (C.56)
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and then
(w, My { zz ]> = 4L{vke (w1 By — Ay)Re[¢" (X)] (C.57)

Calculation of 1l
Writing Us = 55(72 and Vo = 5‘72 we have:

(5% :| —95 [ —(Uc‘72 + V;ﬁz)@ — (SVCVQ + Ucﬁz)

ikex
(83U Uy + ViVa)a + (VoUs + U Va) } (p(X)e™" 4 c.c.) +

y[ -1 } (¢"(X)e™*" +c.c.) (C.58)

a

and then we have

(w, My [ Zi }) = 45L¢ (w1 My + Ma)Re[(X)] (C.59)
where
M, = —(UVa + V.Us)a — (3V.Va + U.Us)
) 3 ) . (C.60)
My = BU Uy + Ve Va)a + (VoUs + U V2)
Calculation of Il
Uc | _ —(u1vg + viug)Ue — (Bv1va + wiug) Ve
MS |: Ve :| =2 I: (3U17.L2 + ”U1’UQ)UC + (’Uﬂtz + Ul’l}g)‘/:; (061)

Now we evaluate one by one the elements uqvs, vius, v1v9 and ujus of Ms.

u1ve = a(By + Ba) (|¢>|2¢)eik°w + c.c.) +

dq

aBy (i¢/ pe**® —i¢/ ¢ + c.c.) +aBy (¢3e** " + c.c.) (C.62)
I
(o2 (o2

ViU = (AO + AQ)‘I)l + Alq)g + Ag(bg (063)
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ULUy = a(Ao + AQ)(I)l + aA1 Py + aByP3 (C64)
V1Vy = (Bo + BQ)(I>1 + B1®5 + ByPsg (C.65)
Ones we have evaluated each element we can calculate the inner product,
Ue
(w, M3 [ v }) = 4L{(w1 N1 + No)Re [|¢]*4] (C.66)

with N7 and N> are given by

N1 = —((ZUC —+ 3VC)(BO —+ BQ) — (Uc —+ aVC)(Ao + AQ)
(C.67)
Ny = (U, + aV,)(By + By) + (3aU, + Vo) (Ao + As)

Calculation of IV

2] -] 2]

U1 Uy

(a® +1) [ ‘al } (3[¢(X)2p(X)e™ e 4+ ¢3(X)eP e +c.c.)  (C.68)
and therefore,
(w, My [ u } —6LC(a® + 1) (a— wi)Re[[6(X)P6(X)] =0 (C.60)
——
=0

Amplitude equation for ¢

Finally, after adding I, II, III and IV and equaling to zero, we get that the
equation for ¢ reads:

19" (X) + 6ca2(X) + az|o(X)[*¢(X) = 0 (C.70)
with
ay = kev(aBy — Ay) (C.71)
as = alM; + M,y (C.72)
a3 = aNy + Ny (C.73)
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C.6 Solution of the amplitude equation

To solve Eq.(C.70) we take the ansatz ¢(X) = Ae'¥, with A € RT. With this
ansatz two kind of solutions can be found depending on the fact that A depends
on X or does not.

o If A +# A(X), then Eq.(C.70) becomes
dag A+ O¢3A3 =0
, with the solutions Ay = 0 and Ay = £1/—das/a3. Then the solution will be
oo

¢ = ——Qei‘/’, with ¢ arbitrary (due to the translational invariance).
as
o If A= A(X), then Eq.(C.70) becomes

A(X) = BLAX) + o AP(X) (C.74)

with 81 = —das/a; and By = —ag/a;. Now we write the previous equation as
a dynamical system and calculate the orbits in the phase portrait.

=y
13T he s o (C79)

This system has three fixed points at (z,y) = (0,0) and (z,y) = (£+/—F1/52,0).

The Jacobian matrix of the previous system evaluated at (z, y) (0,0), has the
eigenvalues +4/8;. Then (0,0) will be a saddle-point of the system if 5, > 0.

The orbits in the phase space are given by

y? = pra’ +52 +Co (C.76)

If localized structures exist they will necessary pass by the saddle-point (z,y) =
(0,0) from where we get that Cy = 0. With this

=4\ Bra? + ﬂg (C.77)

4
x
that after making the change of variables 22 = 122 + /32?, can be written as:
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s=22—p (C.78)

From there we arrive to the integral equation

/ (jﬁ»ld;z » - /Bldt (C.79)

Taking the change of variables ¢ = \/%, dz = /B1dE,
1

/EQdf o= \/E/dt (C.80)

and after integrating we get,

In (ﬁg) = —2/B1(t — to).

Where tg comes from the integration constant. In this way we can write,

148 2y/Bii—to)

—_
A}

2z

62x+1

6—2\/,67(:&—150) _1
z= \/ﬂTm = \/Bitanh (_\/E(t - to)) .

and from there, using that tanhz = , we get

recovering the = variable,

T = \/251 (tanh2 (\/E(t — to)) — 1) = \/_;51 sech (\/E(t — to))

2 2

In the original variables,

_Qﬁl ip
B(X) = =5, sech (\/E(X - XO)) e (C.81)
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C.7 Patterns and bright solitons
If A+# A(X) then
Pp(@) = \[=—(p = pc)e’? (C.82)

and we have a pattern or modulated solution:

[ ‘(i } B [ [‘ic } * [ gj } (p_chz[ Cf } ¢p(w)cos (kew) (C.83)

When as/as > 0, the pattern bifurcates subcritically toward p < p. and when
ag/ag < 0 it does supercriticaly towards p > p.. The transition between super-
critical and subcritical takes place at the value of § where s /a3 becomes zero.
goes from negative to positive. This value corresponds to § = 41/30 ~ 1.37, as
it was already predicted in Refs. [2] [3].

When as/ag > 0, and A = A(X) we have that:

bal() = %ﬁ;*ﬂc)m %j”x i (C.84)

and there a localized bright soliton solution given :

R R A (R R L S e
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Appendix D
Weakly nonlinear analysis near
reversible Takens-Bodganov
bifurcation

In this appendix calculate weakly nonlinear LSs using multiple scale perturbation
theory near the reversible Takens-Bodganov (RTB) bifurcation in the Lugiato-
Lefever (LL) equation for both the anomalous and normal GVD regimes. The
RTB occurs at the saddle-node SNy, 1 of the HSS solution for § > 2 in the
anomalous regime and for 6 < 2 in the normal one. On the contrary SNpom, 2 is
a RTB only in the normal regime when 6 > /3. These saddle-nodes occur at
the points

1
I =1y = 5(20 £ V62 - 3). (D.1)

Here we perform the calculations using I,. as the label correpnding to the RTB
point, non matter the if it corresponds to the SNpy,,1 0r SNpom 2.

We fix the value of the detuning parameter # and we suppose that the LSs
emerging from the RTB point can be described by the ansatz

U Ul [u
BRI C -
where U* and V* correspond to the HSS Ay and u and v capture the spatial
dependence.
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The pump amplitude parameter p is defined in function of I as

p= /I — 2013 + (1 +62)I, (D.3)
and we can sonsider the Taylor expansion about the bifurcation point I,
d 1 [/ d?
i) =gt )+ (50 ) (o-1)+5 () (o-1fe (04
—— dlo ) ;. 2\dl5 ) | ~——
or ——— —_——— €2
=0 5,

= p(Iy) has an extreme at Iy = I, a maximum if I, = I;, and a minimum if
- = I, and therefore we have that

<j£>10 = 0. (D.5)

Then we can define the expansion parameter € measuring the parameter distance
from the RTB as

P — Pr
= D.6
€ 5 (D.6)
If I, = I, then
1 (d%p 02 -3
0r=0p = = () =— <0 (D.7)
2 \dI? I 2pp
and if I, = I; then
1 (d%p 62 —3
6r=0 == — = 0. D.8
"2 (dlg ) I 2pt g (D8)

Nos we can expand both the homogeneous and the spatial dependent components
of the ansatz (D.2)) in funciton of € as:

{‘[i]*:{[‘]/:%e[gﬂ“ﬂ%]% (D.9)

)=l el ) "

where we allow the fields u; and v; to depend on the rescaling variable X = \/ex.

Now introducing expansions and (D.10) into the stationary LL equation
(2.3) we can separate order by order in e the components of the expansions

(D.9) and (D.10)). In Section we perform the weakly nonlinear analysis for
the HSSs and in Section we do it for the spatial dependent components.

and
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D.1. ASYMPTOTIC FOR THE HOMOGENEOUS STEADY STATE
SOLUTIONS

D.1 Asymptotic for the homogeneous steady state solutions

For the HSSs solutions we colect the terms of the same order in € and we obtain
the following equations and components for the expansion.

D.1.1 Equations at O(¢°)

- [ty FE)[5]-[] oo

From Eq.(D.11)) we obtain that,

Pr
KR AT D12
1+ (I, - 0)2

D.1.2 Equations at O(e!)

—(1+20,V,) 60—1,-2V? Uil [o0
{—(H—IT—2UE) —1+2U,V, Vi| o (D-13)

If we define the linear operator

L:{ —(1420,V,) 91r2vr2}

(01, —2U2) —1+20,V, (D.14)

we can just write Eq.(D.13)) as

Ui | |0
TAER o1
After some algebra we find that two out of the four components of the operator
L are zero, and therefore we have:

L= [ —(0—1?—2U3) Y ] (D.16)

Because of this, L is not invertible and that the system given by Eq.(D.15) has
infinite number of solutions that can be written as

%]-+[1]
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with 1
n= 7(0—@-2@?) (D.18)

To determine the value of u we need to solve the O(e?) system.

D.1.3 Equations at O(€?)

For order €? we have the system

U, . 200 V4 2‘/12 + 1 U, _ O
L[ v, ] = { _QUZ+ 1) -2Vl ] [ v, ] [ 0 (D-19)

where I} = U2 + V2. Because L is singular Eq.(D.19) has no solution unless
the solvability condition is satisfied. To obtain this condition we need first to
calculate the adjoint operator of L. In our case is just LT = LT and then:

o [ 8 —(e—I_TQ— 2U2) } (D.20)

The nullvector of LT is given by the solution of the next system of equations:

i w1 o 0
v[=]-[0] a1
again this system has an infinite number of solutions that we can write as:
wy | _ | ¢
[wJ—[o} (D.22)

with ¢ € R. In the following we will take { = 1.

The Fredholm alternative theorem confirm that an equation Lu = f has non-
trivial solution if given the nullvector w of LY, i.e. Lfw = 0, the condition
(w, f) = 0 (solvability condition) is satisfy, being (-, ) the inner product defined
in our case as the vector multiplication.

For our problem this condition is given by

2U1V1UT+<2V12+11>V;—5T . 0
[1 0] —QU}+ 1)U, —2VilhV, |~ | 0 (D-23)
or just
20, ViU, + 2V + 1)V, — 6, =0 (D.24)
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Now using that Vi3 = un, and Uy = p, one finds that the value p = p, satisfying

Eq.(D.24) is

oy
r= ==+ D.25
H Ht.b \/3772% TonU, +V, ( )

For I, = I, the denominator inside the square root is negative for any value of 8,
but §, = §, < 0 so we everything inside the square root is positive. For I, = I,
the denominator is positive as well as the 6, = d;. The question now is which

sign must we take in Eq.(D.25)).
For a value of p ~ p,, the HSS is bivaluate for both SNj4m,,1 and SNpom 2. In
terms of the amplitude Iy = |A|?> we have the expansion:

Io(p) = I + € (2U, Uy + 2V, V1) +O(€?) (D.26)
| ——
+A

If p~ pp (SNpom,1) the value —A corresponds to the Ap branch and +A to the
Afr branch, and if p = p; (SNpom,2) —A corresponds to the Af* branch and +A
to the A} branch. From spatial eigenvalues analysis we know that the localized
structures, if any, must be biasymptotic to the stable bottom or top branch.
Then we need to choose Iy(p) = I, — €A, around SNpom 1 and Io(p) = I + €A
SNhom,1, where £A = 2U, Uy + 2V, V1 = 2, (U, + V1) with the &+ coming from
iy

D.2 Asymptotic for spatial dependence solutions

Considering now the complete ansatz (including the space dependent terms) for
the localized structures that we want to find, we get order by order the equations:

D.2.1 Equations at O(e')

We can write it in matricial form and we get,

L{‘U/ﬁ;ﬁl]z{g} (D.27)

and we know that LUy, V4]T = [0,0]7 then
Uy o 0
Jo1-10] .
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The solution for this last equation can be written as:
Ul o U1
[ " ] - [ 0 } B(X) (D.29)

with ¢ (X) a function to be determined from the higher order equations.

D.2.2 Equations at O(€?)

For the next order O(e?) and after some algebra we get

U, o —@V2+0) [ U, 5
L[%}*{wfﬂl WU, v, |t *

=0
s U I —(2UTV1 +2U01V,) —(Vag( + 6V, V1 + QUTUl) U1 I
Vo u8§( +6U, Uy + 2V, V; 2V,.U1 +2U,. V4 VU1

—2viu; —(3vF +u?) U. | |0
+ { 3u? + v 201U 10 (D.30)

<

where I} = U? + V2.

If we define the operators,

P, = —(2UTV1 + 2U1V;~) —(V8§( + 6V,.Vq + 2UTU1) (D 31)
VT wok 46U UL + 2V 2V, Uy + 20U, V4 '
and (302 2)
_ | 2viur —(3v7 +uy
P2 = [ 3uf + v} 21wy (D-32)
we can write Eq. as
Ug _ uy _ Ur
[z]-a[z]alE] o

Due to the singularity of L, Eq.(D.33]) has no solution unless another solvability
condition is satisfied. As before and in order to derive that condition we multiply
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both sides of Eq.(D.33)) by the nullvector of LT (see Eq.(D.22)), resulting: and
then the solvability condition is:

[1 0]7?1{2%[1 0]%[%}:0 (D.34)

The dependence of ¢ with X will be determined by this condition. To continue
we evaluate the first term on the left of Eq.(D.34))

U7 .
de

—U, Vi +2U, V) U1 (X) — vy (X)Vy — (6V,. V4 + 2U,.Up) Vi (X)
v (XU + (6U,.Uy + 2V, V1)U (X) + (2V,.Uy + 2U,. V1) Vi (X)
(D.35)
and then

Uy

(1 0P| U] = —euvi 2o

U1

— v (X)Vy — (6V,. V1 + 20U, U )Vih(X) = a19"(X) + aop(X)  (D.36)

with
o] = —I/V1 (D37)

and

ay = —(6V, VP 4+ 4U, U\ Vi + 2V, U?) = —2(3V,. V32 + 22U, U V; + V,U}) =

= —2u2(30°V, + 20U, + V,) = 26, (D.38)

}

} FA(X) (D.39)

From the second term on the left of Eq.(D.34]) we get:

[ 2vitw(X) @BV + UP)YA(X)
| (3U2 + VR)WR(X) WL U2 (X)
[ —2ViULU, — (3V2 + U2V,

U,
PQ[VT]

Bl

(U2 + VAU, + 2V, ULV,
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and then
[1 0]P, [ g ] = — (21U, + 3V32V, + UV, )9 (X) = az¢?(X) (D.40)
with o
ag = —(3VEV, + UV, + 2U,U,V;) = 72 =9, (D.41)

The solvability condition given by Eq.(D.34) is reduced to an ODE for ¢ (X)
given by,
a1 (X) + ah(X) + azp?(X) =0 (D.42)

Eq.(D.42) is the amplitude equation around the RTB bifurcation.

D.3 Solution of the amplitude equation

We can write the previous equation as a dynamical system in space. In order
to not complicate the notation we rename temporary the variables, X — t,
Y(X) — x(t) and we define y(t) = &(t). In the fashion the dynamical system is:

j’; =
{ y — ZJ? _ ba:2 (D.43)

with @ = —ag/a; and b = as/a;. This system has two fixed points at (z,y) =
(0,0) and (x,y) = (—a2/ag,0). If analyze their linear spectrum we get:

1. The jacobian matrix of the previous system evaluated at (x1,31) = (0,0),
has the eigenvalues ++/—as /7. In order to have an homoclinic orbit (i.e.
LSs), one need, at least, one stable and one unstable directions, hence
(z1,y1) must be a saddle. The table shows the different values that
the coefficient a1 takes in the different configurations

V3<6<2 0>2
a1 >0, (x1,y1) is a center | as; <0, (x1,y1) is a saddle
ag1 >0, (z1,y1) is a center | ag1 >0, (z1,y1) is a center

=S
I o
==

v=-—1 0 <2 0>2
I.=1, | as <0, (x1,y1) is a saddle | ag; >0, (21,y1) is a center
I,=1 | as1 <0, (z1,y1) is a saddle | ag1 <0, (z1,y1) is a saddle

Table D.1: Evaluation of the coefficient a21 at (z1,y1) for different configurations.
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2. The jacobian matrix of the previous system evaluated at (x2,y2) = (—aa/as,0),
has the eigenvalues +4/as/a;. Table shows the different configura-
tions obtained.

V3<h<?2 6>2
a1 > 0, (x2,y2) is a saddle | as; < 0, (x2,ys2) is a center
a1 > 0, (x2,y2) is a saddle | ag1 > 0, (z2,y2) is a saddle

=S
I o
=~

v=-—1 0 <2 0>2
I.=1, | as <0, (z2,y2) is a center | agy >0, (x2,y2) is a saddle
I, =1 | as <0, (x2,y2) is a center | ag; <0, (x2,y2) is a center

Table D.2: Evaluation of the coefficient aa1 at (z2,y2) for different configurations.

Written
dy dy. dy

T r=y )
dt dz dx
and combining the two ODEs in Eq.(D.43)), one gets

d
y% = ax — ba®. (D.44)

Integrating it we get,
2 .
y? = azx? — gbx‘3 + Cp.

Because we are looking for an homoclinic orbit, such orbit must be homoclinic
to the saddle point (z,y) = (0,0) (it has stable and unstable manifolds). Then
the equation for the phase path have to pass by (x,y) = (0,0). From there we
derive that Cy = 0 and then,

2
y=+4/ax? — gbm?’ (D.45)

2
Making the change of variables 22 = a — gbx, we can write

2 . 2
&=y =+ ax? — Zbz® = +x1/a — Sbxr = taz
3 3

3 3
We write everything in function of z, (x = %(a —2%) and & = —gzz) and we
get:
1
5= jzi(z2 —a) (D.46)
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making some readjustment we can integrate,

/1 - (2)2 :/%dt (D.47)

taking the change of variables £ = %, dz = /adg,
a
d¢ Va
=4+ D.4
/ aey =+ / dat (D.48)

we obtain ¢ Ja
1 1+ a

——In| ——= ) =+"—t+ (4.

5 n(l—f) 5 t+ C

We can absorbe the constant Cy defining C; = —y/aty/2, and from there

1+¢ — EValt—to)
1-¢

—2z

and from there, using that tanhx = , we get

1+e 2
1 — etValt—to) _ Jatenh (j:\/&(t — t0)> .

F=va 1+ eta(t—to) 2

recovering the x variable,

e 2 (1t (200

2
+ — 1
?2)—Zsech2 (\/EL(;Yf())) = —@sech2 ( —%(t — to)) .

In the original variables,
1
Y(X) = —3sech? (2 ——=(X - X0)> (D.49)

This solution will exist when the coefficient as; = aa/a; is negative.
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D.4 Localized structures: Bright and dark solitons

P~ Pr
Oy

P(x) = —3sech (;\/% <,0;Tpr> " x) (D.50)

and due to the translational invariance of the system one can choose zo = 0.
Therefore, the localized structure is the pulse,

“ﬂ“ﬂ}ﬂt P(STPT{H[HMI)]- (D.51)

After considering the changes X = /ex and € = , Eq. (D.49) reads

Where we have considered for HSS just contributions ¢ and €' and for the
spatial one e'. The LS (D.51) is a bright pulse when p, = u, and dark one
when p, = .
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