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Abstract 
 

 
The main objective proposed in this doctoral thesis was focused on the study and development of a solution for 

the remote sensing of the submarine topographic relief, using for this, inexpensive equipment. Here we focus in 

three works that altogether will improve the remote sensing process for underwater medium using sonars as the 

main relief data acquisition system. The problem was systematically addressed since the previous work in the 

master thesis, constituting three stages: 1) building a prototype data extraction platform, 2) data acquisition and 3) 

data processing. In the first stage was developed a prototype taking as a reference the modular structure and the 

software design applied in AUVI project (Acosta 2008), and besides it was used the model of autonomous 

navigation system developed to AutoTracker project (Acosta et al., 2005), this stage and part of the following one 

were developed in the master thesis. In the second stage, it was done the survey planning and the acoustic data 

extraction including navigational data in three different places: i) On the cove “Estancia”, located in Palma, 

Mallorca island/Spain, where we used the prototype developed in the first stage of this work as a platform to data 

extraction; ii) “Alfeite Arsenal” Port, located on the Tejo River, in Almada/Portugal into the context of robotics 

exercises promoted by the Navy of Portugal (REX2014). In this location, it was used the robotic vehicle ZARCO 

from the Oceansys Lab, through cooperative work with the Oceansys Lab. research group at the University of 

Porto (UP)/INESC in Portugal and finally, iii) in the “Bay of All Saints”, near the city of Salvador/Brazil, where 

were performed some missions to collect data using hydrographic survey boats in cooperation with the Federal 

University of Bahia (UFBA) and Belov Engineering - Port Engineering and Hydrographic Services Company, 

both located in Salvador/Bahia. Finally, the third stage, that is the main body of this thesis, was characterized by 

the data analysis and comparison between several datasets. In this stage, studies had been conducted to verify the 

feasibility of the use of spatial statistical algorithms in the process of bathymetric data interpolation without any 

ancillary information to support the prediction. We determined an optimized procedure for estimating the 

unsampled points, hence it was validated using a regular cross-validation method and a comparative validation 

method to compare the estimated data with a second dataset acquired in the same region and acting as a Merit 

Figure. The average discrepancy between the estimated data and Merit Figure data value was 25 cm, it is below 

the acceptable error for bathymetric data at depths below 30m (IHO 2012). In addition, an algorithm based on the 

Stochastic Resonance (SR) theory was developed. It consists in applying white noise in an optimal intensity level 

to improve the contrasts of acoustic images generated by a side Sonar Scan (SSS). The SR theory also, was used 

as a basis for development of a weak signals detection algorithm in sensing applications. Regarding the sensors 

application for measure remote sensing physical variables, we could cite the magnetic field meters 

(magnetometers), and inertial sensors (accelerometers and gyroscopes), in this study was performed a simulation 

of Chua's circuit operating in a chaotic regime as a sensor, where we could determine successfully the region of 

system solution into the strange attractor, using, for this, the technique of residence time, which will be defined 

along this thesis. The entire set of modules, techniques and processes described in this work proposed one solution 

to the remote sensing problem applied to the underwater environment, and give the opportunity to develop in more 

deep way future works in sensor integration, algorithms and data acquisition platform.  
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Resum 
 

 

L'objectiu principal proposat en aquesta tesi doctoral es va centrar en l'estudi i desenvolupament d'una solució per 

a la detecció remota del relleu topogràfic submarí, utilitzant per a això un equip econòmic. Aquí ens centrem en 

tres treballs que en total milloraran el procés de teledetecció per al medi submarí utilitzant sonars com el principal 

sistema d'adquisició de dades de relleu. El problema es va abordar sistemàticament des del treball anterior a la tesi 

de màster, que constava de tres etapes: 1) construcció d'una plataforma d'extracció de dades prototip, 2) adquisició 

de dades i 3) tractament de dades. En la primera etapa es va desenvolupar un prototip prenent com a referència 

l'estructura modular i el disseny de programari aplicat en el projecte AUVI (Acosta 2008), a més d'utilitzar el 

model de sistema de navegació autònom desenvolupat per al projecte AutoTracker (Acosta et al., 2005 ), aquesta 

etapa i una part de la següent es van desenvolupar en la tesi de màster. En la segona etapa, es va realitzar la 

planificació de l'enquesta i l'extracció de dades acústiques, incloses les dades de navegació en tres llocs diferents: 

i) A la cala "Estancia", situada a Palma, illa de Mallorca / Espanya, on utilitzem el prototip desenvolupat a la 

primera etapa d'aquest treball com a plataforma d'extracció de dades; ii) Port "Alfeite Arsenal", ubicat al riu Tajo, 

a Almada / Portugal, en el context dels exercicis de robòtica promoguts per l'Armada de Portugal (REX2014). En 

aquesta ubicació, es va utilitzar el vehicle robotitzat ZARCO del laboratori Oceansys, a través del treball 

cooperatiu amb l'Oceansys Lab. grup d'investigació de la Universitat de Porto (UP) / INESC a Portugal i, finalment, 

iii) a la "Badia de Tots Sants", a prop de la ciutat de Salvador / Brasil, on es van realitzar algunes missions per 

recollir dades utilitzant vaixells d'enquestes hidrogràfiques en cooperació amb la Universitat Federal de Bahia 

(UFBA) i Belov Engineering - Port Engineering and Hydrographic Services Company, ambdós ubicats a Salvador 

/ Bahia. Finalment, la tercera etapa, que és el cos principal d'aquesta tesi, es va caracteritzar per l'anàlisi de dades 

i la comparació entre diversos conjunts de dades. En aquesta etapa, s'han realitzat estudis per verificar la viabilitat 

de l'ús d'algoritmes estadístics espacials en el procés d'interpolació de dades batimètriques sense cap tipus 

d'informació auxiliar per a la predicció. Es va determinar un procediment optimitzat per estimar els punts sense 

mostrejar, per tant, es va validar mitjançant un mètode de validació de mètodes regular i un mètode de validació 

comparatiu per comparar les dades estimades amb un segon conjunt de dades adquirit a la mateixa regió i actuant 

com a Figura de mèrit. La discrepància mitjana entre les dades estimades i el valor de dades de Merit Figure va 

ser de 25 cm, per sota de l'error acceptable per a dades batimètriques a profunditats inferiors a 30 m (IHO 2012). 

A més, es va desenvolupar un algorisme basat en la teoria de la ressonància estocàstica (SR). Consisteix en aplicar 

soroll blanc en un nivell d'intensitat òptima per millorar els contrastos d'imatges acústiques generades per un costat 

Sonar Scan (SSS). La teoria del SR també es va utilitzar com a base per al desenvolupament d'un algoritme de 

detecció de senyals feble en la detecció d'aplicacions. Pel que fa a l'aplicació de sensors per a la mesura de les 

variables físiques de control remot, podríem citar els mesuradors de camp magnètic (magnetòmetres) i els sensors 

inercials (acceleròmetres i giroscopis), en aquest estudi es va realitzar una simulació del circuit de Chua que 

funciona en un règim caòtic com a sensor, on podríem determinar amb èxit la regió de la solució del sistema en 

l'estrany atractor, utilitzant, per a això, la tècnica del temps de residència, que es definirà al llarg d'aquesta tesi. 

Tot el conjunt de mòduls, tècniques i processos descrits en aquest treball proposen una solució al problema de 

teledetecció aplicat a l'entorn submarí i permeten desenvolupar de manera més profunda futurs treballs en 

integració de sensors, algorismes i plataforma d'adquisició de dades..  
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Resumen 
 

 

El principal objetivo propuesto en esta tesis doctoral se centró en el estudio y desarrollo de una solución para la 

detección remota del relieve topográfico submarino, utilizando para esto, equipos de bajo costo. Aquí nos 

enfocamos en tres trabajos que en conjunto mejorarán el proceso de detección remota para medios subacuáticos 

usando sonares como el principal sistema de adquisición de datos de alivio. El problema fue abordado 

sistemáticamente desde el trabajo anterior en la tesis de maestría, constituyendo tres etapas: 1) construcción de 

una plataforma prototipo de extracción de datos, 2) adquisición de datos y 3) procesamiento de datos. En la primera 

etapa se desarrolló un prototipo tomando como referencia la estructura modular y el diseño de software aplicado 

en el proyecto AUVI (Acosta 2008), y además se utilizó el modelo de sistema de navegación autónomo 

desarrollado para el proyecto AutoTracker (Acosta et al., 2005 ), esta etapa y parte de la siguiente se desarrollaron 

en la tesis de maestría. En la segunda etapa, se realizó la planificación de la encuesta y la extracción de datos 

acústicos, incluyendo datos de navegación en tres lugares diferentes: i) En la cala "Estancia", ubicada en Palma, 

isla de Mallorca / España, donde utilizamos el prototipo desarrollado en el primera etapa de este trabajo como una 

plataforma para la extracción de datos; ii) Puerto "Alfeite Arsenal", ubicado en el río Tajo, en Almada / Portugal 

en el contexto de ejercicios de robótica promovidos por la Armada de Portugal (REX2014). En esta ubicación, se 

utilizó el vehículo robótico ZARCO del Laboratorio Oceansys, a través del trabajo cooperativo con el Laboratorio 

Oceansys. grupo de investigación en la Universidad de Oporto (UP) / INESC en Portugal y finalmente, iii) en la 

"Bahía de Todos los Santos", cerca de la ciudad de Salvador / Brasil, donde se realizaron algunas misiones para 

recopilar datos utilizando barcos hidrográficos en cooperación con la Universidad Federal de Bahía (UFBA) y 

Belov Engineering - Compañía de Ingeniería Portuaria y Servicios Hidrográficos, ambas ubicadas en Salvador / 

Bahía. Finalmente, la tercera etapa, que es el cuerpo principal de esta tesis, se caracterizó por el análisis de datos 

y la comparación entre varios conjuntos de datos. En esta etapa, se realizaron estudios para verificar la viabilidad 

del uso de algoritmos estadísticos espaciales en el proceso de interpolación de datos batimétricos sin ninguna 

información auxiliar para respaldar la predicción. Determinamos un procedimiento optimizado para estimar los 

puntos no muestreados, por lo que se validó utilizando un método de validación cruzada regular y un método de 

validación comparativa para comparar los datos estimados con un segundo conjunto de datos adquiridos en la 

misma región y actuando como una figura de mérito. La discrepancia promedio entre los datos estimados y el valor 

de los datos de Merit Figure fue de 25 cm, está por debajo del error aceptable para los datos batimétricos a 

profundidades por debajo de 30 m (OHI 2012). Además, se desarrolló un algoritmo basado en la teoría de la 

Resonancia Estocástica (SR). Consiste en aplicar ruido blanco en un nivel de intensidad óptimo para mejorar los 

contrastes de las imágenes acústicas generadas por un Sonar Scan lateral (SSS). La teoría SR también se usó como 

base para el desarrollo de un algoritmo de detección de señales débiles en aplicaciones de detección. En cuanto a 

la aplicación de sensores para medir variables físicas de teledetección, podríamos citar los medidores de campo 

magnético (magnetómetros) y sensores inerciales (acelerómetros y giroscopios), en este estudio se realizó una 

simulación del circuito de Chua operando en un régimen caótico como sensor, donde pudimos determinar con 

éxito la región de la solución del sistema en el atractor extraño, utilizando, para ello, la técnica del tiempo de 

residencia, que se definirá a lo largo de esta tesis. El conjunto completo de módulos, técnicas y procesos descritos 

en este trabajo propuso una solución al problema de teledetección aplicado al entorno subacuático, y brinda la 

oportunidad de desarrollar de manera más profunda futuros trabajos de integración de sensores, algoritmos y 

plataforma de adquisición de datos. 
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Resumo 
 

 

O objetivo principal proposto nesta tese de doutorado foi focado no estudo e desenvolvimento de uma solução 

para o sensoriamento remoto do alívio topográfico submarino, usando para isso, equipamentos baratos. Aqui nos 

concentramos em três trabalhos que, em conjunto, melhorarão o processo de sensoriamento remoto para o meio 

subaquático, utilizando os sonares como o principal sistema de aquisição de dados de alívio. O problema foi 

sistematicamente abordado desde o trabalho anterior na tese de mestrado, constituindo três etapas: 1) construção 

de um protótipo de plataforma de extração de dados, 2) aquisição de dados e 3) processamento de dados. Na 

primeira etapa foi desenvolvido um protótipo tomando como referência a estrutura modular e o projeto de software 

aplicado no projeto AUVI (Acosta 2008), e além disso, utilizou-se o modelo de sistema de navegação autônomo 

desenvolvido para o projeto AutoTracker (Acosta et al., 2005 ), este estágio e parte do seguinte foram 

desenvolvidos na tese de mestrado. Na segunda etapa, foi feito o planejamento da pesquisa e a extração de dados 

acústicos, incluindo dados de navegação em três lugares diferentes: i) Na enseada "Estancia", localizada em Palma, 

Ilha de Maiorca / Espanha, onde usamos o protótipo desenvolvido no primeira etapa deste trabalho como 

plataforma para a extração de dados; ii) Porto do "Alfeite Arsenal", localizado no rio Tejo, em Almada / Portugal 

no contexto de exercícios de robótica promovidos pela Marinha de Portugal (REX2014). Nessa localização, 

utilizou-se o veículo robotizado ZARCO do Laboratório Oceansys, através do trabalho cooperativo com o 

Oceansys Lab. grupo de pesquisa na Universidade do Porto (UP) / INESC em Portugal e, finalmente, iii) na "Baía 

de Todos os Santos", perto da cidade de Salvador / Brasil, onde foram realizadas algumas missões para coletar 

dados usando embarcações hidrográficas em cooperação com a Universidade Federal da Bahia (UFBA) e a 

Engenharia Belov - Empresa de Engenharia de Portos e Hidrográficos, ambos localizados em Salvador / Bahia. 

Finalmente, o terceiro estágio, que é o corpo principal desta tese, foi caracterizado pela análise de dados e 

comparação entre vários conjuntos de dados. Nesta fase, foram realizados estudos para verificar a viabilidade do 

uso de algoritmos estatísticos espaciais no processo de interpolação de dados batimétricos sem qualquer 

informação auxiliar para sustentar a predição. Determinamos um procedimento otimizado para estimar os pontos 

não amostrados, portanto, foi validado usando um método de validação cruzada regular e um método de validação 

comparativa para comparar os dados estimados com um segundo conjunto de dados adquirido na mesma região e 

atuando como uma Figura de mérito. A discrepância média entre os dados estimados eo valor de dados da Figura 

de Mérito foi de 25 cm, está abaixo do erro aceitável para dados batimétricos a profundidades abaixo de 30 m 

(IHO 2012). Além disso, um algoritmo baseado na teoria da Ressonância Estocástica (SR) foi desenvolvido. 

Consiste na aplicação de ruído branco em um nível de intensidade ótimo para melhorar os contrastes de imagens 

acústicas geradas por um lado de Sonar Scan (SSS). A teoria SR também foi utilizada como base para o 

desenvolvimento de um algoritmo de detecção de sinais fracos em aplicações de detecção. Em relação ao aplicativo 

de sensores para medir as variáveis físicas de sensoriamento remoto, podemos citar os medidores de campo 

magnético (magnetômetros) e sensores inerciais (acelerômetros e giroscópios), neste estudo realizou-se uma 

simulação do circuito de Chua operando em regime caótico como sensor, onde podemos determinar com sucesso 

a região da solução do sistema no atrativo estranho, usando, para isso, a técnica de tempo de residência, que será 

definida ao longo desta tese. Todo o conjunto de módulos, técnicas e processos descritos neste trabalho propôs 

uma solução para o problema de sensoriamento remoto aplicado ao ambiente subaquático e oferece a oportunidade 

de desenvolver de forma mais profunda os futuros trabalhos em integração de sensores, algoritmos e plataforma 

de aquisição de dados.  
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Preface 
 

At beginning of this work the focus are pointed at the development of low-cost underwater remote sensing 

solutions applying to robotic platforms. The common purpose to this solution was addressed to perform underwater 

topographic relief surveys and object recognition (natural or man-made) using sonar technology. The research 

developed and documented in this thesis was mainly supported by the Ministry of Education and Science of Spain 

into the framework of the IOGECS project (Calvo Ibáñez 2006). Remote sensing in underwater medium has 

several requirements and constraints, most of these relates to (i) mechanical paradigms to make electronical and 

electrical devices operating in high pressure medium and in waterproof mode; (ii) communications and navigation, 

since in underwater medium we cannot apply the common carrier communications based in radio frequency 

devices as radio-links and GPS navigational system; and finally, (iii) sensing task, we are limited by the use of 

acoustical devices to sense the topographic relief since the acoustic waves has low attenuations than 

electromagnetics sensing devices in underwater environments. In conclusion, to address all requirements and 

constraints, the underwater remote sensing solution, proposed in this thesis, was divided in two parts: hardware 

development (Underwater Vehicle Platform) and Algorithm development (Stochastic Resonance and Geostatistics 

applied to Acoustic Data). 

 

The main research question was addressed to reach the convergence of hardware and software into the focus called 

Underwater Remote Sensing. The research starts with the development of a low-cost underwater, an unmanned 

vehicle prototype, capable to support acoustic remote sensing devices as a Single Beam Echo Sounder (SBES) and 

a Side Scan Sonar (SSS).  The second stage of work was composed by two tasks, the first was the acoustic data 

acquisition in a specific site survey to extract real data using the SBES and SSS acoustic devices, it was used a 

conventional hydrographic boat to carry the devices as a prelaminar step to integrate the sensors to the underwater 

vehicle prototype. The second task was related to algorithm study, development of data enhancement and data 

processing based in geostatistics to increase the resolution for point sampling data from SBES. In addition it was 

used stochastic resonance to enhance the quality of acquired data by SSS, in order to increase the success of target 

perception into acoustic image data. 

 

During the work to integrate navigational and sonar data one question arouse, how to increase the accuracy of 

sensors that sense weak signals from some physical variables, for example in our navigational data set, given by 

inertial sensors one application can be done by magnetometers and thus, this study can be applied to increase the 

accuracy of inertial sensors and biosensors. It was an addendum to what was initially proposed in this thesis, but 

it added an interesting research line for my academic formation. Therefore, using the expertise of thesis 

supervisors, a new technique to using stochastic resonance to detect changes in weak dc signal was studied. 

 

Regarding the real data used in this research that was obtained by hydrographic survey, two distinct types of 

acoustical sensors were used SBES and SSS as the main research dataset. And the data from the Multi Beam Echo 

Sounder (MBES) was used as a data reference to estimate the error from the geostatistical regression method 

applied to SBES device samples. Then, the SBES was used to extract topographic underwater relief data to perform 

the research study in geostatistical regression techniques, thereby, increase data resolution using Kriging 

interpolator. The SSS data processing was uncorrelated with the two mentioned sensors. The main objective related 

to SSS data processing was the acoustical image enhancement. This was due the fact that the SSS has an intrinsic 

noise embedded in his acoustical data, which may be due from instabilities of remote sensing platform during the 

survey process or some interferences from electrical or environmental conditions. Improvements in SSS acoustic 

data before the processing stage to object detection and recognition can increase the rate of successful for automatic 

and human based processing task.  

 

A set of underwater remote sensing real data (sonar samples) were acquired using both the Low-Cost Underwater 

Remote Sensing, developed in the first stage of this research work, and a hydrographic boat used as the main 

source of data to get results reported here. Relating to the topographic relief data (bathymetric data) acquired and 

processing the results reached will attend the requirements of errors of vertical uncertainty according the standard 

from IHO-Order 1 specifications (IHO 2008). 

 

Contribution of This Thesis 
 

In this thesis, the work enfolds the research and development of techniques and algorithms that allow the 

improvement of signal detection tasks, which involves the development of detectors that use the phenomenon of 

stochastic resonance as a support for the detection of signals of low intensity, or low frequency such as sensors of 

magnetic field, acoustic sensors and biosensors. Simulation-based studies have been successful demonstrating that 
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the stochastic resonance process can be used to increase the level of signal detection in sensor applications. On the 

other hand, the study of stochastic resonance was advancing in the direction of the analysis and processing of 

signals involving acoustic images acquired with a lateral scanning sonar, which are widely used in submarine 

inspection systems, remotely detecting morphological and structural characteristics of the submerged relief or even 

in the inspection of structures to support navigation or mineral extraction used in the oil industry. 

 

Another scientific contribution was the development of a study involving a spatial statistical tool called 

geostatistics. The objective was to determine if the predictions made with its linear regression technique would 

leverage a sufficient level of confidence to be accepted within the international standard for hydrographic surveys. 

Thus, we would confirm the efficiency of this tool in the prediction of bathymetric sample values, which are useful 

in the elaboration of hydrographic maps to support navigation, underwater infrastructure management and 

geomorphology. The results that will be demonstrated throughout the work confirm the acceptance of the method 

in this sense. 

 

The three objects of the scientific work described in this thesis converge to a single application focus area: the 

development of devices and signal processing techniques geared to the remote sensing area. The theories and 

techniques of detectors and processing presented can be used in the development of devices for both marine and 

submarine sensing and remote sensing by satellites, where magnetic and inertial field sensors are used as support 

for image data acquisition. In turn, require a processing system based on spatial statistics, which confirm or 

estimate values in certain regions, where the data could not be identified or acquired correctly, corrupted by some 

effect unrelated to the regular operation of the equipment. In this way, this work serves as a contribution of 

discussion to the area of remote sensing. 

 

Thesis Layout 
 

This thesis is divided in two parts. The firsts part is related to basic knowledge about mathematical paradigms, 

tools, devices and procedures used to acquire, develop and processing data from this research. The main purpose 

of the first part is to introduce mathematical, physical and methodological concepts using equations, expressions 

and illustrations to support all knowledge needed to interpret and understand the work developed and described in 

the second part. The second part, described as original work, will revels the core mathematical and physical 

assumptions, accompanied by data processing and analysis to extract the relevant information’s from the worked 

signals and data to the remote sensing area. 

 

Related Projects and Colaborations Efforts 
 

The work presented in this thesis was made with support of some cientific projects, and their main reseraches and 

colaborators. The two projects involved was IOGECS and AUVICOPS, both with support from Spain Ministry of 

Eduation and their main researches Oscar Calvo,  Gerardo Gabriel Acosta and Alejandro Rozenfeld. Besides these 

project, a big and helpfull colaboration and support, witout this I cannot ending the thesis work was done by 

Electronic Engineering Group from UIB university and their main researches and colaborators involved Eugenio 

Garcia Moreno, Wojciech Korneta and Rodrigo Picos Gayà. 
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1.0 Introduction 
 

 

A remote sensing problem consists mainly in search and investigate a phenomena or parameter under study through 

the solution of an inverse problem (Legleiter & Roberts 2009). The inverse problem is the basic process behind 

sensing systems and promotes the relationship between system input and output, mapping parameters and relates 

it to measurements from sensing elements. Into the context of remote sensing, parameters are measured without 

direct physical contact with sensing element, and the process to acquire remote sensing data is called survey or 

technical mission survey. The term survey in the research scientific area is commonly used to the process of 

gathering information or acquire a set of data to model any characteristics about a space, system or object. Remote 

sensing applications is defined as the techniques used to measure something or extract some information about 

one system or object without direct contact (Schowengerdt 2007). Here in this work, into the context of underwater 

remote sensing, the term survey will be used to define any process of data collection, in continuous or discrete 

form to acquire a landscape information using underwater acoustics. It will generate some information to infer 

physical characteristics capable to predict some topographic relief parameters and trends to help the solution of 

inverse problem related to underwater mapping for underwater navigation, features extraction and data fusion. 
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2.0 Dynamic Systems and Sensing 
 

 

The general inverse problem can be summarized, according many authors, as the problem to identify the Cause-

Effect (CE) explicit factor or relationship from a set of data sampling behaviour. For example, Calvettti and 

Somersalo, in their work, defined the inverse sampling problem as “The problem of retrieving information of 

unknown quantities by indirect observations” (Calvetti & Somersalo 2007), in another work from Kubo, the 

definition for the inverse problem was “determination of input or source from output or response” (Kubo 1993). 

 

 

Different tools can be applied to model an inverse problem (Tarantola 2005), for the sake of  simplicity and 

coherence, the approach used by Guillermo Rus and Rafael Gallego in this work (Rus & Gallego 2002) and 

similarly in (Rus & Gallego 2007), was chosen as a base for our definition in this work. The result of a comparison 

between inverse problem and forward estimation problem is very interesting. As described in following works 

(Rus & Gallego 2002) and (Rus & Gallego 2007), regarding direct problem, all the mathematical laws governing 

the studied physical model are known, as well as the values of the parameters and their responses when subjected 

to define values, resulting in the property of reproducibility. Respect to our problem research, related to discrete 

data the work (Bertero et al. 1985) has the mathematical bases to apply the inverse modelling in discrete dataset. 

In a short and direct definition, the forward problem, relates to observe a physical phenomenon, and in order to 

describe how it works on a system (internally, externally or both), we will discover physical laws, and thus, we 

can extract some model parameters useful to make predictions/estimations on the results of measurements of 

observed variable. In other hand, think in a reverse case. Inverse problem solution will address a values or results 

based in some measures  or both, measures and model parameters of observed variable (Tarantola 2005). As an 

example of forward problem, we depict in the Figure 2.1 and inverse problem in the Figure 2.2 as an illustration 
of the process of the relationship among excitation signal, system under study and response according the forward 

problem defined by (Rus & Gallego 2002). 

 

Considering one hypothetical system under study, we need to have a map between objects of interest (parameters), 

extracted from some acquired information about these objects (data or measurements). Assuming we have a 

system, response defined by the displacements 𝑢 and the tractions 𝑞 of the object under a known boundary 

conditions (some previous known values about 𝑢 and 𝑞). We can extract the direct mapping expression or forward 

problem expression for a given force (𝑇), applied to body as a function defined by the hypothetical, equation 2.1. 

That relates the correspondence between the parameter 𝑘 and the data 𝑓(𝑢, 𝑞).  
 

Forward Problem 

System or Body Under Probe 

Properties 

Geometry (Ω) 

Mechanical Properties (𝒌) 

Physical Model (Operator 𝑳) 
 

Estimate 
Parameters 

Excitation 

Input 

Response 

Predict Data 

Output 𝑻 𝒇 

Figure 2.1: Diagram of direct problem relationship 

𝑻 𝒇 

Inverse Problem 

Unknowing System or Body 

Properties 

Geometry (Ω) 

Some Mechanical Properties (𝒌∗) 
Unknowing Physical Model (Operator 

𝑳′) Output 

Prediction 
Parameters 

Response     Excitation 

Measured 
Data 

Input 

Figure 2.2: Diagram of inverse problem relationship 
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In this case, considering typically the Hilbert space 𝐻in the space of data 𝐺, and parameter 𝐿 ∈ 𝐻, given a function 

𝑓(𝑢, 𝑞) ∈ 𝐺, that relates the displacements 𝑢 and traction 𝑞. 

 𝑓(𝑢, 𝑞) = 𝐿(𝑘) ∙ 𝑇 eq. 2.1 

The correspondence relationship to solve the inverse problem should invert the operator 𝐿, and finding parameters 

values 𝑘 ∈ 𝐻 1from a set of knowledge data (𝑢, 𝑞) ∈ 𝐺, then the inverse problem is expressed by equation 2.2 that. 

Observing that L is a linear operator. 

 𝑇 = 𝐿(𝑘)−1 ∙ 𝑓(𝑢, 𝑞) 
eq. 2.2 

In remote sensing applications, a common way to specify an empirical relationship to predict some unknown 

properties, parameters or features related to a set of measured data taken from a target involves methods to solve 

an inverse problem. Here, the term “target” is used to define any object, region or surface under study. 

Environmental and biological information, spatially or temporally distributed, can be predicted as an attribute of 

some physical measurements over a surveyed objective. 

 

To estimate directly the relationship between measures and physical properties as an attribute of interest in 

underwater acoustical data, such as bathymetry or acoustic images, some pre-emptive knowledge about physical 

properties of medium and surface target, is required to apply any inverse problem algorithm. The underwater 

acoustic data cannot follow a regular pattern, it will depend on geomorphologic topographic relief, distance from 

target surface and interaction characteristics among signal apply to sense, medium and target, these will change 

according to the magnitude and bottom type (Lesser & Mobley 2007).  

 

Underwater acoustical remote sensing uses active devices called sonars to sense the interior of any water body 

(lakes, ocean, rivers, etc.).  Sonar devices are applied to extract characteristics or features such as: (i) target distance 

from source, (ii) target shapes and, in some cases (iii) the intensity of backscatter energy reflected from the target. 

Some of these features or properties, emerge from the relationship between sensing signal and target surface, 

however, in our main application, only the first feature, (i), was used to represent the topographic relief sampling 

technically called bathymetry. 

2.1 Sensing Linear and Non-Linear Systems 
 

The use of the technology to interact with an environment, things and persons, gives the science an opportunity to 

understand complex processes.  These interactions are commonly carried out by devices named sensors.  

Regarding the robotic application, and most specifically, the underwater robotics application and sonar mapping, 

we need one or more sensors to get the information about the location and operation of the robot. Any sensor must 

be capable to receive an excitation signal as a stimulus or input signal and translate it into electrical signal called 

response or output signal (Fraden 2010), this is shown in Figure 2.3. 

 

The sensor is often used as a part of a control system as it is shown in Figure 2.4. There are thus two applications 

of sensors: passive and active. Their measurement of physical variable can be absolute, i.e. independent of the 

measurement conditions, or relative, i.e. related to a referential system. 

 

There is a set of constraints which should be considered in sensor development and in designing signal processing 

systems. Some of these constraints are related to a sensitivity and the excitation input range known as a “span”. 

The most important in our study was the accuracy, the stability, the decrease of hysteresis effects and the linearity 

                                                           
1 Hilbert Space generalizes the Euclidian Space extending the vector algebra and calculus to a finite or infinite number of 

dimensions.   

Figure 2.3:Block Scheme of the Information Transfer 
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of the response. Relates to automatic control system, a simple scheme that involves a sensor as an element to 

measure the efficiency and accuracy of control acting over a generic system is show in Figure 2.4 

 

 

Considering an automatic control system, a sensor device uses sensing elements to read some physical or chemical 

variable to generate inputs and send this information and help to solve some control problem, mapping or simply 

store or share a log of data. The underwater robotics and mapping surveys are basically sensor-based systems in a 

mission survey. The robotic vehicle uses data information from sensors to improve navigation and log data from 

the environment. In a task of autonomous underwater systems, one should consider energy restrictions, reliability, 

immunity to noise and exposure to extreme environmental conditions. Furthermore, deep in the water, the online 

monitoring system is excluded.  Besides, it is not possible to verify the system state, task execution and system 

diagnostics by remote monitoring system communication due to restrictions in sending and receiving high data 

transmission through the water by radio frequency spectrum. In some cases, one can use an acoustics 

communication system, but the slow data rate and energy consumption requirements limits its use in autonomous 

systems because of power consumption constraints. 

 

To abstract the concept of sensor applied to measure a system behaviour we introduce our model system related 

to environmental survey, specifically to underwater topographic landscape, and in this abstraction, our sensor 

system consists in acoustic transducers called SOund Navigation And Ranging (SONAR) and our system is the 

underwater landscape and sometimes any structure lying on its. The effort of investigation developed in this work 

was made to solve problems and paradigms involving data processing from two basic sonars, Single Beam Echo 

Sounder (SBES) and Side Scan Sonar (SSS).  

 

Regarding to the effort of sensor works, in this thesis we consider a sensor simulation model based on electronic 

Chua’s circuit and the stochastic resonance phenomenon which can be used, e.g., acoustic transducer response, 
inertial magnetometer. Magnetometer sensors are used massively to improve an autonomous navigation in both 

indoor and outdoor environments. In underwater robotics magnetometers give a control system the attitude and 

heading information without GPS signal, due to its sensing element is based on the measure of the magnetic earth’s 

field. 

 

The use of dynamic systems in the description of natural phenomena involves mathematical modelling by 

differential equations and computer simulation. Dynamical systems are represented by a set of variables 

interconnected by causal relationships. In a dynamical system, some characteristics of the interacting elements 

change over time. Continuous dynamical systems can be modelled by the following set of ordinary differential 

equations (L. Gammaitoni et al. 1998), as represented in the equation 2.3. 

 𝑥̇𝑖(𝑡) =  𝐹𝑖[𝑥1(𝑡), 𝑥2(𝑡),… , 𝑥𝑛(𝑡)] eq. 2.3 

For  𝑖 = 1, … , 𝑛  .  By 𝑥1(𝑡), 𝑥2(𝑡),… , 𝑥𝑛(𝑡) are denoted system state variables and 𝑥̇𝑖(𝑡) is the time derivative.  

𝐹𝑖(… ) is a function which describes the variation rate of state variables. The system time evolution in n-

dimensional phase space determines the trajectory called orbit. For discrete dynamical systems, the time changes 

discretely.  One thus has a default time increment or spacing ∆t.  The time evolution of each system state variable 

is given by the map in the following equation 2.4. 

 

 𝑋𝑖+1 =  𝐹[𝑋𝑖 , 𝑋𝑖−1, 𝑋𝑖−2, … , 𝑋𝑖−𝑘] eq. 2.4 

 

Where n-dimensional vector 𝑋𝑖 represents the system state variables in the ith time step and 𝐹 is a function 

describing evolution of the system. The system state variable is thus a function of past values of state variables.  

In many cases, it is convenient to use a discrete set of times and describe continuous system evolution as discrete 

jumps from one configuration to another. Another paradigm to model a system behaviour is based in a linear 

dynamical system, and it is completely defined if the system under study has two properties: superposition and 

homogeneity. 

Control System 

Sensor 

Set-Point 

Sensor Signal 

Figure 2.4: Scheme of the Control System Using Sensor 
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The superposition property: any two equations or solutions can be combined by simple addition to generate a third 

solution or equation.  The state obtained by the superposition property for two different inputs 𝑥 and 𝑦, in the 

context of the function F(...) will describe a dynamical system given by the equation 2.5. 

 𝐹(𝑥 + 𝑦) = 𝐹(𝑥) + 𝐹(𝑦) eq. 2.5 

The homogeneity property: for any real number 𝑘 and for the function 𝐹(… ), we can describe a dynamical system 

according the equation 2.6.  

 𝐹(𝑘𝑥) = 𝑘𝐹(𝑥) eq. 2.6 

Any function that does not satisfy superposition and homogeneity is nonlinear. The linear approximation of 

equations describing dynamical system can be used as good approximations to nonlinear ones in situations where 

the trajectory stays very close to a stable fixed point or limit cycle. Nonlinear system equations describe its time 

evolution including at least one term that contains the square, power different from one, a product of system 

variables, one term in a logarithm form, i.e., any nonlinear function of the state variable. Thus, the addition of two 

solutions does not yield a valid new solution.  In all real systems deviations of large enough amplitude require 

nonlinear terms in the relevant model. The consequences of nonlinearity are profound.  Most importantly, 

nonlinear systems may contain multiple attractors, each with its own basin of attraction. The attractor can be a 

single point, limit cycle, a finite set of points, a curve, a manifold, or even a complicated set with fractal structure 

known as a strange attractor. Let 𝐹 be a map from the n-dimensional space to itself.  We say that a compact set 

𝐴 ∈ ℝ𝑛 is an attractor for the map 𝐹 if it satisfies the following properties: 

 

• 𝐹(𝐴) = 𝐴, i.e. 𝐴 is invariant; 

• 𝐴 contains an initial point whose trajectory travels throughout 𝐴. 

 

The portion of a trajectory corresponding to the progress toward the attractor is called a transient.  The set of points 

in state space that lie on transients associated with a attractor is called the basin of attraction of the attractor.  In a 

stable linear system, all points in state space lie in the same basin of attraction. Bifurcation is an abrupt change in 

the properties of a system when system parameters change. There are different types of bifurcations (Gammaitoni 

et al. 1998), (Benzi et al. 1982) and (Kapitaniak & Bishop 1999).  We shortly describe some of them, such as the 

saddle-node bifurcation, pitchfork bifurcation and Hopf bifurcation.  Bifurcations are usually represented by the 

bifurcation diagram where the system state variable and control parameter are represented.  The stable and unstable 

solutions are depicted by continuous and dotted lines respectively. In the phase space diagrams stable fixed points 

are denoted by black circles and unstable by white circles.   

 

The saddle-node bifurcation is a bifurcation in which two fixed points one stable (node) and one unstable (saddle) 

coalesce into a single point and annihilate each other (Gammaitoni et al. 1998) and (Bacelar 2010).  In the Figure 

2.5A we show an example of phase space diagram of 1D system with two fixed points: one stable (left) and one 

unstable (right).  In Figure 2.5 B we show the corresponding bifurcation diagram with two solutions 𝑥∗ for this 

system, one stable 𝑥∗ < 0 for 𝑟 < 0 and the other unstable  𝑥∗ > 0 for 𝑟 < 0 , where 𝑟 is a system control 

parameter. 

 

Pitchfork bifurcation occurs in systems with inversion or reflection symmetry (Bacelar 2010).  This bifurcation 

has two types: supercritical (appear two stable equilibria) or subcritical (appear two unstable equilibria).  In Figure 

2.6 A, we show supercritical pitchfork bifurcation with one stable fixed point 𝑥∗ = 0 .  In Figure 2.6 B we show 

the bifurcation diagram with one stable solution for 𝑥∗ = 0 for 𝑟 < 0, one unstable solution for 𝑥∗ = 0 with 

parameter 𝑟 > 0 , and finally two stable solutions for 𝑥 ≠ 0, when  𝑟 > 0, considering in all cases, 𝑟 is a system 

parameter. 

 

Figure 2.5: Saddle node bifurcation: the phase space and the bifurcation diagrams (Gammaitoni et al. 1998) 
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The Hopf bifurcation is a bifurcation in which a limit cycle arises from an equilibrium in dynamical system 

when the equilibrium changes stability via a pair of purely imaginary eigenvalues.  In the phase portrait of 

nonlinear systems limit cycle is an isolated closed trajectory. An isolated trajectory means the absence of other 

closed trajectories infinitely close. Therefore, the neighbouring trajectories must approach or move away from 

the limit cycle which is a periodic attractor or repeller. 

 

 

Like Pitchfork bifurcation, the Hopf bifurcation has two types: supercritical (stable limit cycle) or subcritical 

(unstable limit cycle). To obtain this sort of bifurcation minimally a two-dimensional system is necessary (Bacelar 

2010). In Figure 2.7A example of the bifurcation diagram for the supercritical Hopf bifurcation is presented, 

whereas in Figure 2.7 B and Figure 2.7 C examples of phase space diagrams are shown before and after 

bifurcation, 𝑟 is a system parameter, whereas x and y are system state variables. 

 

In a short definition, a bifurcation can be understood as change in the equilibrium, in some special systems the 

solution will be periodic orbits, and changing in this orbit will represent a bifurcation point too. Then bifurcations 

mean a change in system stability properties, according a parameters variation. This can be visualized as changes 

in the topology of the trajectories in the phase space. 

2.2 Stochastic Resonance and Noise  
 

The theory of stochastic resonance (SR) comes from the study of non-linear dynamical systems and the optimal 

level of noise to enhance weak signal. The stochastic resonance occurs in a bistable threshold-based system driven 

by a periodic external force in the presence of noise. The phenomenon involves a rapid increase in the signal-to-

noise ratio with an optimal noise variance value (Andò & Graziani 2000). We present below the basic concepts of 

the stochastic resonance phenomenon and introduce its characteristics.  

 

In the (Gammaitoni et al. 1998) the phenomenon of stochastic resonance is explained analysing the motion of 

heavily damped particle with mass 𝑚 in symmetric double well potential 𝑉(𝑥) represented in the Figure 2.8. We 

can identify three fixed points: two stable 𝑥𝑎,  and  𝑥𝑐 and one unstable 𝑥𝑏. There are thus two regions of stable 

state with the minimum energy and one unstable region with the maximum energy.  If a particle receives enough 

energy, it can jump between the two potential minima.  Applied external periodic excitation source causes 

Figure 2.6: Phase space and the bifurcation diagrams of supercritical Pitchfork Bifurcation (Gammaitoni et al. 1998) 

Figure 2.7:Bifurcation and the phase space diagrams of supercritical Hopf Bifurcation(Bacelar 2010) 
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transitions between potential wells  with a rate given by the Kramers formula (Gammaitoni et al. 1998) (Brinkman 

1956)(Hanggi et al. 1990), the equation 2.7 express this relationship: 

 
𝑟𝑘 =

𝑤0𝑤𝑏
2𝜋𝛾

 exp (−
∆𝑉

𝐷
) 

eq. 2.7 

Where, 𝛾 denotes viscous friction, 𝑤0
2 = 𝑉′′  

(𝑥𝑚)

𝑚
 is the squared angular frequency of the potential in the potential 

minima 𝑥𝑚 located at 𝑥𝑎 and  𝑥𝑐 ; 𝑤𝑏
2 = |𝑉′′  

(𝑥𝑏)

𝑚
|  is the squared angular frequency at the top of the potential 

barrier located at 𝑥𝑏 and ∆𝑉 is the height of the potential barrier separating the two minima and 𝐷 is the noise 

intensity.  

 

 

The noise intensity is related to the temperature (𝑇) by the formula 𝐷 = 𝐾𝐵𝑇, where 𝐾𝐵 is the Boltzmann constant. 

External periodic excitation tilts double-well potential asymmetrically up and down, as it is shown in Figure 2.9 

(subplots 2 and 4), periodically raising and lowering the potential barrier. Although the periodic forcing is too 

weak to let the particle roll periodically from one potential well into the other, the noise induces hops between 

potential wells.   

 

 

Statistical synchronization of particle jumps with external periodic forcing takes place when the average waiting 

time 𝑇𝑘(𝐷) = 1/𝑟𝑘 between two noise-induced inter-well transitions is comparable with half of the period of 

periodic forcing.  This yields the time-scale matching condition for stochastic resonance.   

 

The noise is a random signal that cannot be described by a specific function ahead of its occurrence (Andò & 

Graziani 2000).  Engineers and scientists for many years tried to avoid any type of noise in a signal under study.  

In recent years, it was shown that noises can promote an enhanced desired information signal and often, need to 

be added to make a most realist model of physical system behaviour.  Today a relevant number of natural 

phenomena can be explained by the presence of some type of noise (Andò & Graziani 2000). In electronics, noises 

are well understood and their study are fundamental to reduce undesirable effect over electronic components and 
circuits that can degrade the desirable level of signal.  For example: a resistor has a noise of thermal origin and if 

Figure 2.8: Double well potential with mass (Gammaitoni et al. 1998), (Hanggi et al. 1990) 

Figure 2.9: Double-Well potential with external excitation (Gammaitoni et al. 1998) 
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it is in an audio amplifier circuit the output signal can be degraded.  The thermal noises are close to the white 

noise, because their spectral density is a flat spectrum.  The white noise is highly random signal and its spectral 

statistics demonstrates that its intensity is the same over all frequencies. 

 

There are some types of the noise that differ basically by the frequency distribution or random fashion.  For 

example, biological or geological phenomena produce low frequency noise and this is known as flicker or pink 

noise.  This is a type of called coloured noise which is different from a white noise in its spectral distribution. 

2.3 Chaotic Systems 
 

Chaos theory is basically applied to the study of dynamical behaviour of deterministic systems modelled by a set 

of differential equations.  The long-term prediction of dynamical behaviour of deterministic systems highly 

sensitive to initial conditions is impossible (Ghys 2012) and (Lorenz 1963). Their dynamical behaviour can be 

predictable for a while and then 'appear' to become random.  Systems or signal that present this behaviour are 

called chaotic.  Chaos is characterized by stretching and folding mechanism, nearby trajectories of a dynamical 

system are pulled apart exponentially and folded back together, repeatedly. 

 

A chaotic signal has a broad Fourier spectrum in intermediate form between a periodic signal and a stochastic 

signal (noise) (Silva 2006).  Primarily in systems with chaotic dynamics, scientists only identified chaotic regions 

to avoid them. Later, more complete studies of chaos control and chaos synchronization initiated chaos theory 

applications in biology, physics, engineering and in computer sciences (Silva 2006).  Nowadays scientists, 

engineers and technicians are faced with a non- linear paradigm.  They have a large amount of data with nonlinear 

behaviour to analyse and understand.   

 

Chaotic dynamical behaviour can be observed and studied in simple dynamical systems. One of the simplest and 

most widely studied real nonlinear dynamical system is called Chua’s Circuit (Silva 2006), (Kennedy 1993b), 

(Kennedy 1993a), and (Boccaletti et al. 2000).  

2.4 Chua’s Circuit 
 

Chua’s electronic circuit is shown in Figure 2.10.  It consists of linear inductor L, a linear resistor R, two linear 

capacitors C1 and C2, and a single voltage controlled nonlinear resistor 𝑁𝑅 called a Chua diode (Silva 2006) and 

(Kennedy 1993b).  

 

 

Differential equations describing Chua’s circuit are the following in the system equation 2.8. 

 

{
  
 

  
 

𝑑𝑖

𝑑𝑡
=  −

1

𝐿
𝑉2

𝑑𝑉2
𝑑𝑡

=
1

𝐶2
𝑖𝐿 −

1

𝑅𝐶2
(𝑉2 − 𝑉1)      

𝑑𝑉1
𝑑𝑡

=  
1

𝑅𝐶1
(𝑉2 − 𝑉1) −

1

𝐶1
  𝑔(𝑉1)           

 

 

eq. 2.8 

 

Figure 2.10: Chua’s Electronic Circuit 
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where V1 and V2 are voltages across capacitors C1, C2, 𝑖 is the current of the inductor L and g(VR) is a piecewise-

linear function shown in Figure 2.11 representing the change in resistance vs. current across the Chua Diode.    

 

Chua’s circuit allows one to change parameters and observe many different phenomena related to chaotic 

dynamical behaviour (Silva 2006).  It exhibits a large variety of bifurcations and different approaches to chaotic 

dynamical behaviour (Silva 2006), (Kennedy 1993b) and (Kennedy 1993a).  This circuit is easy construct at low 

cost.  Some applications involving Chua’s circuits provide a controlling of chaos and selection of desired periodic 

orbit from orbits embedded in the attractor. This control applies small perturbations like an optimal noise to 

stabilize selected orbit.  The Chua’s circuit as a nonlinear dynamic system with chaotic behaviour is sensitive to a 

noise and to initial conditions.  Small perturbation can give rise to a very large response in the course of time.  The 

optimal choice of a perturbation can direct the trajectory to wherever one wants in the attractor and to produce a 

series of desired dynamical states.  This is exactly the idea of targeting (Kennedy 1993b), (Kennedy 1993a), 

(Boccaletti et al. 2000) and (Grebogi & Lai 1997). 

2.4.1 Chua’s Diode 
 

Chua’s diode is the main component to Chua’s electronic circuit.  It is a type of nonlinear active resistor built using 

resistors, capacitors and operational amplifiers.  In new designs of Chua circuit, Chua’s diode is replaced by a 

component called memristor.  This was proposed by Chua in order to describe a new non-linear passive two-

terminal electrical component relating flux linkage 𝜑(𝑡) and the amount of electric charge that has flowed 𝑞(𝑡) 
(Matsumoto 1984), (Chua 1992) and (Kennedy 1992).  The memristor is characterized by its memristance function 

𝑀(𝑞) describing the charge-dependent rate of change of flux with charge and defined as equation 2.9. 

 
𝑀(𝑞(𝑡)) =

𝑑𝜑

𝑑𝑞
=
𝑑𝜑/𝑑𝑡

𝑑𝑞/𝑑𝑡
=
𝑉(𝑡)

𝐼(𝑡)
 

eq. 2.9 

In the equation 9, we can see that the memristance is thus charge-dependent resistance.  The memristor that 

replacing Chua’s diode is a flux controlled memristor that is characterized by its memductance 𝑊(𝜑) and modelled 

in the equation 2.10. 

 
𝑊(𝜑(𝑡)) =

𝑑𝑞

𝑑𝜑
=
𝑑𝑞/𝑑𝑡

𝑑𝜑/𝑑𝑡
=
𝐼(𝑡)

𝑉(𝑡)
 

eq. 2.10 

The relation 𝐼(𝑡) = 𝑔(𝑉1) will be given by equation 2.11. 

 
𝐼(𝑡) = 𝑊(𝜑(𝑡))𝑉1(𝑡) =

𝑑𝑞

𝑑𝜑
𝑉1(𝑡) 

eq. 2.11 

In which nonlinear dependence of  𝑞 on 𝜑 is introduced.  The first Nano-scale TiO2 memristor was constructed in 

May 2008 and the result was published in Nature Letters (Strukov et al. 2008).  The memristor is currently under 

development by various research groups including in the University of Balearic Island, that works in their 

modelling (Picos et al. 2015), (Garcia-Moreno et al. 2015) and (Tetzlaff et al. 2016). 

 

  

Figure 2.11:Generic response curve of Chua diode: 𝒎𝟏  is the slope of 

the middle segment and 𝒎𝟎 is the slope of the two outer segments. 
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2.4.2 Residence Time  
 

Considering a system described in the subsection 2.2, and depicted in the Figure 8, this model is characterized by 

a bistable potential energy function, in which two stable states, are separated by an unstable point represented by 

the maximum of the potential. Considering a sensor application using the model of double well potential from 

Figure 8, to move particle between the two potential minima, one external periodic excitation signal is required. 

The system subjected to a periodic deterministic excitation 𝐴(𝑡) and some random force 𝜉(𝑡), promotes the particle 

jumps between minima according Kramers rate, modelled according equation 7 (L. Gammaitoni et al. 1998) and 

(Brinkman 1956). 

 

Hence, considering the deterministic signal, 𝐴(𝑡), the target signal to be sensed, and it is monitored through the 

particle dynamics or the particle state between the two minima, this will be done using a statistical approach based 

on monitoring the difference of the mean residence time. The Residence Time (RT) is the time that particle spends 

in each of the two minima stable states (Dari et al. 2010).  
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3.0 Underwater Acoustics: Physical 
Interactions and Data Extraction 

 
 

Despite the underwater acoustic waves studies comes from the 15th century with Leonardo da Vinci experiments 

(Urick 1983), studies on acoustic propagation remained without developing their mathematical basis to model their 

behaviour until the 17th century. This started with Newton’s study to model a sound wave propagation, published 

in “Mathematical Principles of Natural Philosophy”, and posterior application to underwater sound propagation 

that was carried out by Charles Sturm and Jean-Daniel Colladon on the 19th century, in order to measure the 

velocity of the sound in water (Urick1983) and (Plumian1837). Relevant researches on the underwater sound 

propagation applied to sonar devices were only perform after 19th century and specifically after the sinking of the 

Titanic in 1912, to civil navigation security and after the Second World War to military application (Urick 

1983).and (Medwin & Clay 1998). Studies to Submarine Warfare applications was conducted by Ewing and 

Worzel in 1947 when they discovered the deep sound channel (Urick 1983), (Medwin & Clay 1998), (Blondel 

2001) and (Lurton 2010).  

 

The device developed to use sound waves energy as well as the transport vehicle to acquire underwater data is a 

sonar. The first active sonar was patented after the sinking of the Titanic in 1912. Today there are some types of 

sonars to cover a diversity of application such as detection of objects, navigation and mapping (Brouwer 2008) 

and (Bartberger 1966). Nowadays, ceramic transducers are the main component of the sonar system; they are made 

mainly by Piezoelectric sensor element. 

 

Piezoelectric ultrasonic transducer is the most common underwater acoustic sensing component used in an 
underwater sonar system. The sensor response is produced using the properties of piezoelectricity (Rongxing Li 

1992), (Ting 1992) and (Ensminger & Bond 2011), despite the existence of many technologies to acoustic 

transducer like Lasers, electromagnetic and mechanical coupling (Ensminger & Bond 2011). Some researches to 

develop other type of sensors elements as MEMS underwater acoustic sensors used a silicon wafer or Silicon 

Insulator (SOI) as the base material (Li et al. 2007). A piezoelectric transducer can work as a simple ultrasonic or 

acoustic sensor, which acquire a charge and generate an electrical pulse when compressed by a mechanical 

excitation or perform a mechanical excitation when submitted to an electrical charge variation (Li, Zhiqun Daniel 

Deng, et al. 2012) and (Ensminger & Bond 2011).  

 

The field of ultrasonic transducers application increase in classical and new areas of their use due to discovers and 

development of more sensitive and compact piezoelectric sensors (Li, Zhiqun Daniel Deng, et al. 2012), (Ting 

1992), and (Ensminger & Bond 2011). Their application can be found in different areas such as industry, 

metrology, chemistry, biology and material science. One of the fundamental difference between acoustic and 

electromagnetic energy propagation is the necessity of mass particle to perform a mechanical wave propagation in 

the medium in the case of acoustics waves. Electromagnetic waves don’t need mass particles to propagate, can 

propagate in the vacuum medium (Ensminger & Bond 2011). 

 

Actually, a piezoelectric acoustic transducer is a core of the underwater sonar system, it can work in a passive or 

active mode to acquire an acoustic information about the environment in which is immersed. Developments in 

Lead Zirconate Titanate (PZT) (Li, Z. Daniel Deng, et al. 2012) and (Martins et al. 2012) leads this composite to 

be the most used piezoelectric ceramics for sonar underwater applications. In our work, we use an active 

underwater sonar system. On the other hand, in a passive mode, the underwater sonar system is common called 

hydrophone, and sense an acoustic mechanical wave energy propagated thrown the medium from other sources of 

sound like animals, boats, geological activities, noise background active sonars.  

 

An active sonar system generates an acoustic pulse (mechanical energy) and it is transmitting a mechanical energy 

in an acoustic beam spread to a mass of particles. The mass of particle refers to a volume element that contains so 

much elements, that it may be consider as continuum fluid. Despite this, yet small enough so that the acoustics 

properties of pressure, density and velocity can be considered as constant throughout the volume element of the 

considered fluid medium. The acoustic energy travels thrown the medium by energy transfer from particle to 

particle. This is exemplified in the Figure 3.1A, which represents a portion of continuum fluid that have not 

disturbance or pressure applied, the distribution of particles mass is uniform.  If we consider a disturbance signal, 

like a sinusoidal acoustic pressure illustrating in the middle of the Figure 3.1 applied into the medium, this will 

propagate in it, and regions of high pressure (compressed particles) and low pressures (uncompressed particles) 

will appear, Figure 3.1 B.  
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When the wave find an obstacle (target), it scatters a portion of acoustic emitted energy back to the sonar transducer 

(Ensminger & Bond 2011).  The acoustic backscatter signal has attenuations as a result of beam spreading, 

absorption, and other time dependent effects inherent to the acoustical propagating wave into the fluid medium 

(Lurton 2000), (Blondel 2001), (Blondel 2009), (Clifford 1980) and (Urick 1983). 

 

There are some types of sonars devices and their uses depend on the surveys constraints, namely, needed 

information, effective cost and time response. The pulse beam spreading, wavelength and duration are very 

important to survey resolution from a sonar system data acquisition, it will directly influence in the object detect 

and mapping application. 

 

Applications and uses of a sonar system depend on the physical construction and sensor arrangement, including 

their electronic systems. On the simplest way a single active sonar transducer works emitting an acoustic pulse in 

the medium (firing), normally to one specific direction. The sonar system waits to receive a backscatter portion of 

the emitted pulse from a target reflection, during a time ∆T, according the maximum range of the pulse propagation 

setting. It can be used to measure a single distance between a sonar system to a target object simply using the wave 

velocity propagation (𝑐) in the medium and the wave flying time (𝑡) using the equation 3.1. 

 𝑑𝑖𝑠𝑡𝑓𝑟𝑜𝑚 𝑠𝑜𝑛𝑎𝑟 = 𝑐. 𝑡   eq. 3.1 

Some sonar application needs to take the reflectivity information from a specific target or surface, not the distance. 

Despite this, it can be inferred with indirect methods, using the wave spreading and their relationship with 

geometric characteristics of the data extracted to form an acoustic image.  In this case the sonar system converts a 

sequence of received acoustic pulse, based on successive sampling at each discrete space time (∆𝑡𝑖). According 

the strength of the echo signal backscatter to sonar, a specific level of gray-scale is determined to this point, or 

element sample of the backscatter information vector, along the entire propagation time (∆𝑇). The entire 

backscatter vector represents a 1-D acoustic information of the surveyed area or target and can be called an acoustic 

image line. A set of acoustic backscatter vector or 1-D information also can be extract if we have a single sensor 

scanning one region or a row of sensors passing throw one region.  When the sonar sensor acquiring a set of vectors 

and maintaining these together, side by side, it can represent a covered scanning region, and then perform a 2-D 

or a 3-D representation. 

 

In conclusion, the quantity of information acquired, surface representation or dimension, 1-D to 3-D, will depend 

on sensors arrangement to capture a single discrete information or the spatial distribution of the acoustic 

backscatter when scanning a region and finally this information is processed. 

Figure 3.1:Underwater medium distortions over acoustic signal disturbance 



Shallow Water Remote Sensing Using Sonar Improved with Geostatistics and Stochastic Resonance Data Processing 

 29 

3.1 Interactions with Environment and Losses 
 

The acoustic waves transmitted by the sonar transducers interact with the underwater medium, fluid, bottom 

surface and subsurface bottom, depending on some factors like sonar frequency, the composition of underwater 

floor and their physical arrangement. All the previous exposure, refers to the relation about medium impedance 

and their relationship. The impedance for each medium is dependent on wave velocity propagation (𝜈) and medium 

density (𝜌). At each medium interface the amount of energy reflected is proportional to the acoustic impedance 

contrast at each frontier interface. Thus, in the propagation trough fluid medium, the acoustic energy can interact 

in different ways. Acoustic waves can backscatter to transducer, reflect, be absorbed and refract. These can be 

seen in a simple representation in the Figure 3.2. 

In the geometry of sidescan data acquisition, we consider some sensor inner characteristics, settings and 

environmental correlation. Regarding image formation geometry, and data acquire, we need to distinguish some 

relationships about physical and geometrical approach. The propagation of acoustical pulse in the medium will 

imply in some attenuations and distortions (Lurton2002), (Urick1983) and (Klein1985), and it directly depend on 

the type and characteristics of fluid (Chemical components, density and temperature) and the maximum range 

distance spread.   

 

 

The wave amplitude and polarity reflection is proportional to the acoustic impedance. The acoustic pulse 

propagates away from transducer, in a spherical spreading, the energy will spread over one increased surface and, 

Figure 3.2: Acoustic pulse interaction with seabed 

Figure 3.3: Spherical spreading of an acoustical pulse over consecutives surface layers and 

the energy intensity distribution over an element surface of each wave front.    
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consequently, the emitted initial energy intensity will be distributed over this surface. The result of the energy 

distribution over a continuous increased area is the intensity loss by unit of area covered, thus, some notion of 

energy spreading modelling and attenuations are fundamental to understand the acoustical image physical 

generation. 

 

The acoustic energy in the wave front per unit of area or intensity, decrease in a square of the distance. In 

quantitative terms, the acoustic energy will loss of 6 dB for each doubling of the distance travelled to 1/4 (25 %) 

of the sound intensity initial value. (Klein1985) and (Urick1983). This relation is summarized by equation 3.2. 

 Intensity ∝ 
1

𝑅2
 eq. 3.2 

The Figure 3.3 shows the spherical wave spreading and the intensity propagation in consecutives spherical layers 

of wave front. The energy intensity, according the distance from power source can be calculated if we have the 

source power level:  

 
𝐼𝑆𝑖 =  

𝑃0
4𝜋𝑅𝑖

2 
eq. 3.3 

Where: 

 

𝑃0 - is the power leaves the transducer; 

𝑅𝑖 - is the distance from sonar. 

 

If we consider a homogenous medium, in a far distance from transducer, the wave front tends to be planar. In this 

work, all considerations about energy propagation and interaction with the medium will consider this 

approximation (Urick1983) and (Randall2010). For the case of plane wave propagation, the concept of sound or 

acoustic pressure 𝑃 (amplitude) is related to the particle velocity 𝜈 as shown in the equation 3.4 and represents a 

called Ohm’s law for acoustics, where acoustic pressure is analogue to voltage, the particle velocity is analogue to 

the current, and the specific acoustic resistance is considered as 𝜌𝑐 (impedance), this is analogue to the electrical 

resistance. Sound pressure decrease inversely proportional to the distance from the sound source and the acoustic 

sound pressure level decreases by −6 𝑑𝐵 for doubling of the distance from the source to 
1

2
 (50%) of the sound 

pressure initial value (Lurton2002), (Urick1983) and (Klein1985). 

 𝑃 = 𝜌𝜈𝑐 eq. 3.4 

Where:  𝑃 - is the acoustic pressure; 

𝜌  - is the density; 

𝜈  - is the particle velocity; 

𝑐  - is the velocity of plane wave propagating. 

 

For seawater, 𝑃 has the value 1.5 × 105 𝑔/𝑐𝑚 𝑠2 and for air is 42 𝑔/𝑐𝑚 𝑠2 . In theoretical investigations, the 

sound pressures are often expressed in 𝑁𝑒𝑤𝑡𝑜𝑛 𝑚2⁄   and sound intensities in 𝑊𝑎𝑡𝑡 𝑚2⁄ . However, historically 

because of the large range of audible intensities, covering several orders of magnitude, the common way to describe 

these quantities is using a logarithmic scale. The intensity level unit is bel, but in practice it is convenient to use 

the decibel = 0.1 bel. The decibel scale is used to compress a wide range of absolute values into a manageable 

range, this is a relative measure, and thus we need a reference value to infer the relationship to the quantity 

measured value. To define the decibel measure we use the equation 3.5. 

 
𝑑𝐵 = 10𝑙𝑜𝑔10 

𝑄𝑢𝑎𝑛𝑡𝑖𝑡𝑦 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑

𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑣𝑎𝑙𝑢𝑒
 

eq. 3.5 

Then the intensity level (𝐼𝐿) of sound intensity 𝐼 in decibel is: 

 
𝐼𝐿 = 10 log

𝐼

𝐼0
 

eq. 3.6 

Where  the intensity reference, 𝐼0, or threshold level and the logarithmic scaling makes the values manageable 

from 0 to 140𝑑𝐵, if the reference value 𝐼0 ranges from 10−12 𝑊/𝑚2  (threshold of audibility) to 100 𝑊/𝑚2. The 
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Standard Reference Sound Intensity 𝐼0 = 1 𝑝𝑊/𝑚2= 10−12 𝑊/𝑚2 = 0 𝑑𝐵 (Lurton2002, Urick1983 and 

Klein1985). For the pressure level, the similar relationship can be expressed in relation to a pressure reference (𝑃0) 
using the equation 3.7. 

 
𝑃𝐿 = 10 log

𝑃

𝑃0
 

eq. 3.7 

The reference pressure level in underwater acoustics is one micropascal (1𝜇𝑃𝑎) and it corresponds to an intensity 

of 0.65 𝑥 10−18 W/𝑚2. Differences between air and water reference pressure level differ by approximately 62 dB. 

(Urick1983, Klein1985 and IAGC_OGP2008). The source level (SL), can be defined as the relationship between 

the intensity of the energy source at standard range (𝑆0) and the reference intensity (𝐼0). This can be seen in the 

equation 3.8. 

 
𝑆𝐿 = 10 log

𝑆0
𝐼0

 eq. 3.8 

The medium impedance depends from both, fluid density and speed wave propagation, also known as the specific 

acoustic resistance. The medium impedance is the opposition that the medium offers to a longitudinal wave motion 

and this property is analogous to resistance or impedance in electrical circuit theory. The unit for acoustic 

impedance is rayl, equal to 𝑝. 𝑠/𝑚 (Pascal second per metre) or 𝑘𝑔 𝑚2 𝑠⁄  (kilogramme per square meter second). 

Lurton2002, Urick1983, Blondel2009). To measure the impedance value (𝑍), we can use the equation 3.9. Where 

the 𝜌 and 𝜈 express the fluid density and the particle mass velocity introduced in this section.  

 𝑍 = 𝜌𝜈  eq. 3.9 

When two dissimilar mediums, such water and bottom or a specific object including vegetation are adjacent to 

each other, the boundary between the two is called a discontinuity. When sound energy is traveling through one 

medium and encounters a discontinuity, part of the energy will be transferred across the boundary, part will be 

absorbed and another part will be reflected into the original medium. It can be viewed in the Figure 15, and the 

relation between incident angles (grazing angle), reflected and transmitted angle can be expressed by de Snell law. 

Considering the sonar acoustic image system, we must consider some acoustic reflectivity characteristics for 

acoustic image formation. Concerning the acoustic reflectivity, it depends on the bottom material and their 

impedance, grazing angle and distribution of reflective bottom surface. Respecting the impedances, the greater the 

difference between the characteristic impedances, the greater will be the percentage of energy reflected 

(Lurton2002), (Urick1983) and (Blondel2009) 

 

At the interfaces, interactions between propagation energy or acoustic pulse level and surface targets will be lead 

to help the characterization of the surveyed environment. To describe relationship between the angles and the 

velocities of waves that have a strong dependence with impedances in two different mediums we have used the 

Snell's Law.  

 

Figure 3.4: Path ways of acoustic energy after environmental medium interaction 



Shallow Water Remote Sensing Using Sonar Improved with Geostatistics and Stochastic Resonance Data Processing 

 32 

Consider an acoustic wave propagation through two distinct mediums with impedances 𝑍1  and 𝑍2 . If the angle of 

incident acoustic wave is 𝜃𝑖, then, the reflected angle will be 𝜃𝑟 , and so 𝜃𝑖 = 𝜃𝑟 . We can see this figurative 

relationship in the Figure 3.4.   

 

The Snell law is represented in the equation 3.10, and the ratio between propagate medium velocities 𝑐1 and 𝑐2 

equates to the grazing angles 𝜃 and refracted angle ∅ ratio. 

 sin(𝑎𝑖𝑛𝑐𝑖𝑑)

sin (𝑎𝑟𝑒𝑓𝑟𝑎𝑐)
=
sin (𝜃𝑖)

sin (𝜃𝑟)
=
𝑐1
𝑐2

 
eq. 3.10 

Then, the amplitude of the reflected wave is a function of the reflected coefficient 𝑅 and is a function of grazing 

angle, density and velocity of the medium. The numeric value of the reflected amplitude of the reflected energy 

can be seen in equation 3.11.  

 
𝑅(𝜃) =

𝜌2𝑐2 sin(𝜃𝑖) −  𝜌1𝑐1 sin(𝜃𝑟) 
𝜌2𝑐2 sin(𝜃𝑖) + 𝜌1𝑐1 sin(𝜃𝑟)

 
eq. 3.11 

In traveling through a fluid, an underwater sound signal becomes delayed, distorted, and weakened. It is known as 

transmissions loss, spreading loss and attenuations loss. The interaction between fluid medium, irradiating energy 

including mechanical disturbances, surfaces and objects together with its boundaries, forms a complex medium 

for the propagation of sound. It can create many diverse effects upon the sound emitted from an underwater source. 

An important factor that influences the acoustic signal response and attenuations in the underwater medium is the 

wavelength, which correspond to the spatial correspondence to the time periodicity of acoustic signal.  

 

Absorption is a frequency dependent factor to lose some portion of the propagated energy through the process of 

molecular relaxation. The physical-chemical main process to absorb energy consists in dissociation of ionic 

compounds caused by the Magnesium Sulphate (𝑀𝑔𝑆𝑂4) and Boric Acid (𝐵(𝑂𝐻)3) in seawater. Some works 

show and relate the absorption frequency dependency to energy propagation in water using empirical or simulation 

methods, and to summarize, the higher is the frequency, greater will be the absorption (Sawant 2010), (Pinkerton 

1947) and (Li & Liu N.D.). On the other hand, if we have in mind the physical constraints, frequency implies in 

the absorptions, and it is related to the period of the local pressure variation. If it is greater than the molecule 

relaxation time the process is reproduced at every cycle and dissipate energy permanently, so the attenuation due 

to this process appears at frequency lower than the characteristic relaxation frequency of the relevant compound. 

Many models have been proposed to describe this process and the model most used is the Francois-Garrison Model 

(Lurton 2010) and (Blondel 2009). 

 

To specify the Transmission Loss, we need to compare the amount of intensity of the signal at a specific range 

from the source. Normally in the literature it is used the distance at one yard as reference:  

 𝑇𝐿 = 10 log
𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒

𝐼𝑛𝑡𝑒𝑠𝑖𝑡𝑦 𝑖𝑛 𝑡𝑎𝑟𝑔𝑒𝑡 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒
= 10 log

𝐼(𝑎𝑡 1 𝑦𝑎𝑟𝑑)

𝐼(𝑡𝑎𝑟𝑔𝑒𝑡 𝑓𝑟𝑜𝑚 𝑡ℎ𝑒 𝑠𝑜𝑢𝑟𝑐𝑒)
   eq. 3.12 

Where:  𝐼(𝑎𝑡 1 𝑦𝑎𝑟𝑑) - Is the intensity reference at 1 yard from the source; 

𝐼(𝑡𝑎𝑟𝑔𝑒𝑡 𝑓𝑟𝑜𝑚 𝑡ℎ𝑒 𝑠𝑜𝑢𝑟𝑐𝑒) – Is the intensity at the target point from the source. 

 

The received source level (𝐿𝑠) can be extracted from the relationship between the intensity source level (SL) from 

the equation (19) and the transmission loss (TL) from the equation 3.12. These relations are expressed by the 

equation 3.13. 

 
𝑇𝐿𝑆 = 𝐿𝑆 − 𝑇𝐿 =  10 log

𝐼(𝑎𝑡 1 𝑦𝑎𝑟𝑑)
𝐼0

− 10 log
𝐼(𝑎𝑡 1 𝑦𝑎𝑟𝑑)

𝐼(𝑡𝑎𝑟𝑔𝑒𝑡 𝑓𝑟𝑜𝑚 𝑡ℎ𝑒 𝑠𝑜𝑢𝑟𝑐𝑒)
 

𝐿𝑆 = 𝐿𝑆 − 𝑇𝐿 =  10 log
𝐼(𝑡𝑎𝑟𝑔𝑒𝑡 𝑓𝑟𝑜𝑚 𝑡ℎ𝑒 𝑠𝑜𝑢𝑟𝑐𝑒)

𝐼0
 

𝐿𝑆 = 10 log
𝐼(𝑡𝑎𝑟𝑔𝑒𝑡 𝑓𝑟𝑜𝑚 𝑡ℎ𝑒 𝑠𝑜𝑢𝑟𝑐𝑒)

𝐼0
 

eq. 3.13 

 

The quantity of transmission losses will consider spreading loses and absorption loses and besides it will depend 

on the type of geometric spreading, medium characteristics (density and temperature), and finally the wave 

frequency.  
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3.2 Acoustic Data Extraction 
 

The acoustic backscatter can be used to perform an imaging systems and covers thus all processes related to image 

processing techniques. Since we perform an image from objects and environment considering the physical 

characteristics about sensors that convert acoustics pressure to electric signals, these signals will be sampled and 

quantized into digital signals and then they can be processed by an electronic processing system based on 

microcontrollers or microprocessors (SeaBeam Instruments 2000), (Blondel 2009) and (Lurton 2000). 

  

The goal is attaining a spatial representation (1-D to 2-D) of an acoustic sampled area and extract a signal 

backscatter from an object or surface, and represent it conveniently with a referenced space where the sonar is 

localized. Supposing that we know besides the physics characteristics of the sensor, a geometry of received signal 

in the sensor and the environmental properties of the medium. A 2-D spatial acoustic representation can be called 

as a simple acoustic image, and is an approximation of objects and surface of the sampled area like a photo. Using 

techniques and algorithmic of image processing for optics images, with some considerations and corrections 

inherent to acoustic image formation, we can extract physicals characteristics about the surveyed area and objects 

into it (Lurton 2000), (Lurton 2010), (Urick 1983) and (Medwin & Clay 1998). In this work, we used acoustic 

images of the bottom surface acquired from a sidescan sonar, generating a digital gray scale image, at two-

dimensional (2-D) surface. We worked with a non-bathymetric sidescan, that is a type of sensor that we have no 

information about bathymetry directly because of his characteristics in the geometric acquisition and physical 

arrangement of the sensor array. Despite this, we can get a high-resolution representation from a bottom survey 

like an acoustical photo. The image resolution acquired at least, depends on system settings as a maximum range, 

acoustical pulse frequency and distance to bottom from sensor. A special sidescan sonar device that incorporate a 

distinctive physical arrangement of sensor arrays and special algorithms, can infer the bathymetry from bottom 

represented in the image. It is reached using a backscatter signal processing considering the phase difference 

between two separated sonar array sensors, this process is also called interferometry (Lurton 2010).  A sidescan 

sonar represent a useful tool to surveys underwater bottom, applications come from civil, scientific and military 

interests. For civilian and some researches application the hobbyists and professional divers normally searches 

shipwreck (Diercks et al. 2010), (Blondel 2009). Industry uses the acoustic representation of underwater 

environment to survey navigation channel, underwater infrastructures, petroleum products pipelines, 

communication cables and etc. (Blondel 2009). Researches in geology sciences can study geological facies and 

sediment characterization, with a space-temporal sampling method can study additional characteristics about 

sedimentology as sediment displacement and redistribution (Blondel 2001), (Lurton 2000) and (Collier & Brown 

2005). Archeologic discovery can be carried by a sidescan image analysis too (Quinn et al. 2005), (Atallah et al. 

2005). In Biology, scientists use acoustic representation in studies about benthic habitat including a reef formation, 

structure and conservation(Brown & Collier 2008), (Cochrane & Lafferty 2002). Military applications is about 

port and coastal security, underwater target detection as mines and some structures that implies in navigation 

security and strategic underwater subsurface mineral resources (Reed et al. 2003), (Rao et al. 2009), (E. Dura et 

al. 2005) and (Dura 2011). 

3.3 Sonar Device System and Process: A Basic 
Overview 

 

Sonar devices are largely used in hydrographic area to mapping surveys application, in this case we have to take 

into account the footprint coverage of the sonar beam, some transducers will project over a surface a circular 

footprint, and others will project an ellipsoid footprint. There are some types of sonars, each of them can be called 

by a short name that describe your using and some of your characteristics. 

 

A Single-Beam Echo Sounder (SBES) is a type of single element sonar, the SBES devices use the most basic 

function of an echo sounder, they measure the range to the target underwater, and with this information it is 

possible to extract the estimated distance from an object or the ocean floor by emitting a single acoustic pulse in a 

specific direction and sensing your backscatter from it.  Range to target can be infered by the total pulse travel 

time, for that we need the wave velocity in the propagation medium. Despite new technologies developed to 

acoustic surveys, single beam echo sounders (SBES) still remain, and is a traditional equipment used on 

hydrographic surveys (IHO 2008) and (El-Hattab 2014), this type of sonar can extract the bathymetric information 

from one specific location with each ping, measuring the depth to a specific location on the underwater bottom, 

directly below the vessel or underwater vehicle doing the survey. This task is knowing in the Hydrography area as 

a Bathymetric survey. Nowadays this device is used combined with any global system reference as GPS and 
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inertial sensors to correct motions of the sensor or platform. With this set, we can extract an information about 

depth at specific point on the underwater bottom (Umbach 1976)and (IHO 2008). Thus, according the survey 

vessel or the vehicle movement it takes a sample point over bottom along the line track survey, the bathymetric 

accuracy and resolution will depend on the sensor applied, surveys settings and environmental conditions (Blondel 

2009). 

 

One type of multi-element sonar is based on a set of transducers in a line array, this physical arrangement is used 

in a type of sonar called  Side Looking Sonar or more commonly Side Scan Sonar (SSS), the SSS and their survey 

characteristic methods are designed to provide “acoustic images” of the seafloor (Lurton 2010) and (Lurton 2000). 

The sidescan sonar system ensonifies the underwater bottom using two array of ultrasonic sensors, one in each 

side of the body device. The resultant acoustic beam is large in the plane perpendicular to the sensor trajectory and 

narrow in the plane of the trajectory (Lurton 2000) and (Blondel 2009). Each pulse generated by the sonar 

transducer will back to the sonar, the amplitude of the backscattered echoes will be sampled and quantized to form 

a row, the vector that each column is composed by gray level pixels. The value of each pixel is dependent of the 

backscatter intensity corrected by a Time Varying Gain (TVG) amplifier, which normally has a gain proportional 

to the square of the elapsed time measured from the sidescan firing pulse to the backscatter intensity reached to 

sensor for each specific pixel (Blondel 2009) and (clifford1980). A disadvantage regarding the sidescan TVG 

corrections, is about the system that has a constant gain characteristics, in this case the possibility of input range-

dependent variations, causing distortions on the image are increased (Anstee 2001).  

 

The sidescan device will acquire the acoustic backscatter line by line, according the sensor travelling on the 

trajectory to compose an acoustical image. The acoustic beam will ensonifier the bottom with an incident grazing 

angle and will result in an acoustic image representing the echo strength from the bottom, and represent it 

numerically into a gray level range from 0 to 255. For example, a more or less medium gray level of reflective 

surfaces, can represent a flat bottom; high gray level values is from, as rigid objects or rigid surfaces that has 
orthogonality with the incident acoustic pulse propagation, low and very low gray level from reflective surfaces, 

as shadow can indicate a region that no acoustic pulse ensonifier (Lurton 2000), (Lurton 2000), (Urick 1983). An 

especial type of sidescan sonar that can extract the bathymetric information and at the same time measure the 

bottom reflectance is called bathymetric sidescan sonar and generally it uses the interferometry principle, it means, 

the phase difference between the signals received on two separate receivers of the sonar arrays. 

 

A Single Beam Mechanical Scanning sonar (SBMS) is a special type of Single-Beam Echo Sounder that the sensor 

body enclosure a mechanical scanning device to rotate the transducer over 360° in relation to the sensor axis. As 

the sidescan sonar a SBMS is an image sonar, but different to the SBES their acoustic beam has an elliptical cone 

resulting in an elliptical footprint over the bottom surface. The acoustic image around the sensor is forming by the 

backscatter from the scanning ensonifier. 

 

Since the sidescan is a type of multi-element sonar, and it consists of a transmitter and receiver array, the common 

arrangement is on array perpendicular to each other (SeaBeam Instruments 2000). Each orthogonal array consists 

on several piezoelectric elements and each of these can receive a portion of the backscatter at specific angle and 

correlate it, combining and summing in phase to extract a bathymetric information from each surface bottom 

portion. Then, the multibeam sonar is capable of resolving the arrival angle from several directions 

simultaneously(SeaBeam Instruments 2000) and (Mussai 2010). 

3.3.1 Remote Sensing Using a SBES 
 

Bathymetric data survey, in the first approach is the process to acquire a set of measures representing topographic 

bed relief relating to a standard reference. As a standard reference of Earth’s geometry, we have two distinct 

models, ellipsoid and a geode approximation. The Ellipsoid is a mathematical approach that uses an approximation 

of Earth’s geometry to represent the Earth’s shape. In this representation, the Earths shape are characterized by an 

ellipsoid of revolution. The Geometrically description can be seen in the Figure 3.5, where we have an Earth’s 

ellipsoid representation. In this ellipsoid, the two axes in horizontal plane (𝑥, 𝑦), represented by 𝑎 and 𝑏 symbols 

have equal values and in vertical plane (𝑧), represented by 𝑐, has distinct and shortest value than 𝑎 and 𝑏. The 

Ellipsoid model was calculated based on the hypothetical equipotential gravitational surface, this is defined by 

either the semi-major axis, represented in the figure 16 by 𝑎 and 𝑏 (𝑎 = 𝑏) and by the semi-minor axis 𝑐 or can by 

switched with the representation using 𝑎  and the flattening 𝑓 = (𝑎 − 𝑐) 𝑎⁄ .  This model has a smooth surface and 

can be described mathematically, and because of this, the ellipsoid model can be used as basis for map projections. 
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The Earth’s geometry isn’t a perfect ellipsoid shape and in some locations the ellipsoid approximation don’t 

describe some irregularities, hence, there isn’t one single ellipsoidal representation that can be used to every part 

of Earths (IHO 2012), (Bowditch 2002) and (Schowengerdt 2007). For this reason, we will refer the Earth’s shape 

as a geoide structure and different models of ellipsoids to model the Earth’s shape are used to cover different 

regions of the Earth. For this work, we used the latest revision of the World Geodetic System, WGS-84, as the 

reference system. The geoide shape uses the Earth’s gravity field to model the specificity and regional irregularities 

of Earths, and generate the best shape approximation for a specific region, therefore as a reference for elevation 

data calculous, the surface of ocean would align with the geoide surface, and this is the best approximation of the 

mean sea level. In some places the geoide and the mean sea level are not coincident for some environmental factors 

and one variable is used to separate the geoide and the mean sea level, this variable is called Sea Surface 

Topography (SST) (Kovalevsky et al. 2011), (Intellingence Agency of EUA 1984) and (IHO 2012). 

 

The standard reference to depth measure is the Mean Sea Level (MSL) acceding a specific geoide approximation, 

but this cannot fit the real shape of Earth’s surface in some regions. According this, the depth value of any point 

laying in the Earth’s surface must be related to other local environmental variable as an instantaneous tide value. 

Using an instantaneous tide measurement and correlate it with historical local variations of tide, we can estimate 

the best local value for correlate the elevation data to MSL and the best fit to store a bathymetric topographic 

measure, it means, the distance from bed to Local MST. Concluding, to perform the bathymetric survey, there are 

some considerations related to the sonar transducer used, survey vehicle, geodetic reference (datum) and dynamic 

of local water level (tide). In the Figure 3.6, we can see an illustration of a conventional boat survey and a sonar 

transducer installed in his hull, observing the difference between distance from transducer to bottom and the water 

surface to bottom. Regarding to an accurate mapping process, it is necessary some corrections in vertical and 

horizontal directions because the off-set distance between sensors, reference systems and periodical changes in 

environmental dynamics.  If we consider a concrete instant of measure, the offset value between the sonar distance 

measure 𝐷𝑆𝐵 and the distance to water surface is represented in the Figure 3.6 as the value 𝐷𝑆𝑊. To obtain the 

correct value of the topographic relief of bottom 𝐷𝐵𝑊 , the offset 𝐷𝑆𝑊 need to be added to the value measured by 

the sonar, this relationship is expressed by equation 3.14.  

 𝐷𝐵𝑊 = 𝐷𝑆𝐵 + 𝐷𝑆𝑊 = 𝐵𝑃 eq. 3.14 

In the equation 3.14, the variable 𝐵𝑃 is used to name a past point measured, adding a sequential number to each 

new point acquired and, store the value surveyed into the structure of data survey log. A set of measured points 

𝐵𝑃1 to 𝐵𝑃𝑛 into the hole of surveyed region is called bathymetric survey or bathymetry. To store bathymetric 

information, the spatial positioning information to each bathymetric point are relevant to identify each surveyed 

point in any georeferenced map representation and it is stored together in the same log file. The spatial localization 

can be stored in any acceptable georeferenced coordinates system and datum, describing the position of a 

geographic location on the earth's surface representing the survey track for horizontal measures and elevation level 

for vertical.  

 

Figure 3.5: Illustration of Ellipsoid Earth’s Surface Approximation 
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The survey track follows a determined horizontal navigation trajectory commonly pass by a set of predefined way-

points and the sequence of point sampled is usually called transect. Generally, some physical considerations related 

to data, acquire in space and time domain, are needed to ensure a data conditioning and corrections.   

3.3.2 Depth Reference, Tide and Vertical Datum 
 

There are two main applications to use acquire underwater elevation data, that could come from acoustical sensors 

using marine vehicle as manned survey boat or unmanned robotic vehicle. The first approach is related to vehicle 

navigation aid, i.e., when the vehicle navigates through a trajectory and uses the distance information from his 

submerged hull to underwater bed, to avoid collision with respect to underwater bed structures. The second 

application relates the use of acoustic measures to bathymetric surveys, when the relative distance measure from 

acoustic source (acoustic transducer or sonar) to target (point of underwater landscape) will be used in topographic 

relief representation and mapping. In this case, this distance isn’t the correct topographic elevation according to a 

local geodetic reference, and represent only the distance between acoustic source device to the surface target or 

underwater bed (Bowditch 2002)(Medwin & Clay 1998)(Randall 1997). The standard reference to topographic 

survey is related to the distance from underwater bottom surface to local water mean surface level also called Mean 

Sea Level (MSL), this represents the average sea level over time and, in some cases, over space (Kovalevsky et 

al. 2011). One approximation is the representation of a bathymetric point symbolized by the variable 𝐵𝑃 in the 

Figure 3.6 and in the expression 3.14 reveals the instantaneous sea level. In modern topographic survey, elevation 

points that are measured above the water surface are called traditionally as a topographic elevation data. 

Topographic elevation data are stored with respect to any geodetic reference model. Otherwise, bathymetric data, 

is a special case of topographic elevation data, that was acquired from underwater Earth’s surfaces, and is related 

to a tidal datum. A set of reference points can be installed in some places spatially distributed over land as a 

geodetic reference to positioning and elevation, mainly for applications in local measurements. In case of 

bathymetric elevation data, the use of a local tide measure gauge, calibrated with respect to geodetic reference 

point, helps bathymetric surveys to perform tide corrections to store a more accurate elevation data than use an 

estimated geodetic model to predict the tide movement. 

 

Tide is a natural and periodic movement of sea surface level, and it is characterized by a long-period waves that 

roll around the planet (NOAA Coastal Services Center 2009) and (NOAA Coastal Services Center 2005). The 

local tide information is an import factor in the process of bathymetric surveys.  The movement of sea surface will 

affect the accuracy of data extracted according the time expended to complete the survey, the region of survey, 

period of the day and lunar cycle. The tidal movement is mainly characterized by changes in tidal range, i.e., the 

rise and fall along the time, this movement will characterize the predictions and establishment of a local tidal 

datum. This range will change in distinct modes in some regions of the Earth’s surface depending mainly by 

changings in attractive forces caused by lunar and solar cycles and the interaction with Earth’s rotation. The tidal 

movements can affect some aspects of coastal oceanographic and geomorphologic dynamics (Bowditch 2002), 

(IHO 2012) and (Medwin & Clay 1998). The previous exposure factors, will affect the survey process to acquire 

Figure 3.6: Illustration of an example of boat survey using an acoustic transducer to get samples of bottom depth.  
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a bathymetric data in coastal zones. Measures of underwater topographic surface using sonar extract the distance 

from transducer to underwater bed, and can be used in two distinct ways at the same time: the instantaneous real 

distance from sensor to underwater bed and to calculate the topographic elevation with reference to a reference 

MSL or a local tidal datum. Both are important and are used in different ways, the first one is applied in navigation 

tasks and the second one to bathymetric surveys (mapping applications).  

 

The tide movement has three main vertical reference levels; they are influenced by the interaction among Sun, 

Moon and Earths movement, e.g., the Mean Low Water (MLW), the Mean High Water (MHW) and Mean Sea 

Level (MSL). But the extreme values of tide are very important in port operations and are named as highest high 

waters (MHHW) and the lowest low waters (MLLW) of a tide cycle. The MHHW and MLLW occur according to 

the Moon, Sun and Earth, they are nearly in alignment, representing the full or new moon, the periodicity of the 

tide movement is approximated 2 times per month and this is also called Spring Tide (NOAA Coastal Services 

Center 2005) and (IHO 2012). An illustration of tidal datum can be seen in the Figure 3.7. To survey an elevation 

point over the Earth’s surface (depth or height), we need a reference to a specific vertical datum (sets of data) from 

which all elevations can be determined. A vertical data represents the reference for elevation heights measures in 

a consistent system, all elevation measure data will be referred to specific local, regional or global vertical datum. 

Despite the existence of many different types of vertical datum to bathymetric use, the predominance are based in 

tidal and geodetic datum (Willumsen et al. 2007) and (IHO 2012). 

 

A distinctive type of vertical datum is the WGS-84, as mentioned before,  this is due the large use in the GPS 

system and the recommendation of the International Hydrographic Organization (IHO 2012) as the standard 

geocentric reference system. In this work, this datum was used to acquire the bathymetric data because the WGS-

84 was the best geodetic model to fit the surface of surveyed area.  

 

The MSL is a main parameter into the vertical datum representation, the MSL is not an equipotential surface, and 

the measure of tide variations in specific site is performed using a tide gauge station, the station measures the rise 

and fall of sea level continuously. The MSL is not a constant and can be affected by variations in currents, wind, 

hydrologic factors (Kovalevsky et al. 2011). In operations of bathymetric surveys, a common sense is install a 

MSL station gauge in the surveyed region, with a system calibrated to any close georeferenced point or station to 

measure the water sea level variations while the bathymetric survey is executed and the data login file of the gauge 

need to be stored with a timestamp and the data log of the bathymetric survey too. It will give the opportunity to 

compare the data stored from the bathymetric survey at the same time of sea level are taken to perform data 

corrections according tide variations during the survey.  

3.3.3 Tide Correction in Bathymetric Surveys 
 

Bathymetric surveys can be performed in a variety of area extension and it will imply in the time to acquisition 

the complete hole of data to conclude the survey process.  Therefore, some corrections need to be done in the 

Figure 3.7: Tidal Datum Illustration. where GT is the Great Diurnal Range, MN is the Mean Range Tide, 

DHQ is the Mean Diurnal High Water Inequality and DLQ is the Mean Diurnal Low Water Inequality  
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bathymetric data to behold changes in the local tide dynamic resulting in changes in the instantaneous level of 

local tide regarding the MSL during the data acquisition.  The tidal dynamic is a result of some factors including 

earth’s dynamics and environmental interactions. The seasonal cycle of MSL at the coast is affected by 

gravitational interactions and meteorological/hydrological contributions that acts in the sea level time series 

(Tsimplis & Woodworth 1994), the tidal range will vary cyclically according these interaction and mainly by the 

combined effects of gravitational interaction forces among Earth’s, Moon, Sun and the Earth’s rotation (Medwin 

& Clay 1998). During the bathymetric survey, the time to complete the data extraction of survey can affect the 

accuracy of measures. The effect of changes in tide level affects the relative vertical positioning of the boat survey 

or surface robotic vehicle and will lead an incorrect measure of underwater bed relating the MSL or geodetic 

reference system. As the surface boat or robotic survey platform rise and fall together with the tide changes, the 

relative position between the transducer and underwater bed will change. To store and represent the correct value 

of topographic relief, the application of a correction factor is necessary to perform the correction of tide change 

during the bathymetric survey, adjust heights based on the measurements of a local and calibrated tide gauges, 

adjust the MSL measures data based in others stations far from the survey area. The Figure 3.8 is a hypothetical 

representation of a tide measure gauge insert in the marine environment and they theoretical interactions with 

mains tidal references and survey boat measurements. Instantaneous measure of sea level usually is referenced 

with tidal datum using a local tide measure gauges, and may be considering three components to do some 

correction and represent the measure to a geodetic consistent model and extract an observed measure (OM) as 

follows: actual tide (AT) also called instantaneous tide measured, mean sea water level (MSL), and meteorological 

residuals (MR)(IOC-UNESCO 1985). The relationship among these components are described by the equation 

3.15. 

 𝑂𝑀 ≈ 𝐴𝑇 +𝑀𝑆𝐿 + 𝑀𝑅  eq. 3.15 

The component MR or meteorological irregular residuals results of variations from local weather and are related 

to a non-tidal component which remain after removing the tides by analysis. The MR components will have a 

relative importance according the latitude, period of year, proximity and extensions of shallow water areas. Storms 

and the inverted barometer effect, the last caused by changes in atmospheric pressure, acts vertically on the sea 

and can affect the tide level (IOC-UNESCO 1985). The instrument to measure the tide level along time is called 

tide gauge, and records water levels at fixed intervals of time. The right measure of bathymetric data need to be 

corrected before it is stored, the correction can be done using the GNSS system or a local chart datum using a tide 

gauge measure stations with reference 

 

 

The GNSS based system can be used in the boat survey to acquire the positioning information from GPS 

constellation satellite (X, Y, Z position information) the bathymetric elevation of underwater relief sounding can 

be obtained by subtracting the height of the vessel’s GPS antenna above the WGS84 ellipsoid. The value N, 

represented in the Figure 19, is the distance between the ellipsoid chart and the datum reference, needed to calculate 

Figure 3.8: Tide References and Gauge Measurements Relationship: Bathymetric hydrographic surveys, executed by a 

survey boat using a single beam sonar, extract the depth just below you line track or survey trajectory. The depth extract 

represented by D is not the right topographic underwater relief measure. 
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the depth value. In this case we don’t need the tide measure data from a tide gauge measure to estimate the 

bathymetric depth, this will be derived from GPS and sounding data(Surveyors, International Federation 

Greenland & Higgins 2006). The equation 3.16 is a simple mathematical expression to estimate the depth or 

topographic elevation relief value from a chart datum using the GPS signal system. 

 𝑆 = 𝐾 + 𝐷 − 𝐻 − 𝑁 eq. 3.16 

Where according the figure 19 we have the variables definition as: 

 

𝑆 - Is the corrected depth value according official chart datum; 

𝐾 - Is the distance from GPS receiver a type of Global Navigation Satellite System (GNSS); 

𝐷 - Is the distance measure from sonar transducer (Ex. A Single Beam Echo Sounder) to a point in the 

underwater bed; 

𝐻 - Is the distance from GPS receiver to an ellipsoid reference level; and 

𝑁 - The distance from the official local chart datum to the ellipsoid reference level. 

 

The bathymetric survey uses only the single GPS system information without instantaneous tide measure cannot 

separate the model between chart datum (CD) and WGS-84, this results in depth measure inaccuracy because the 

tide measure is one fundamental information to do corrections and without is we cannot know the CD relationship 

and instantaneous water level measurement. In the Appendix we show the flowchart published by (Surveyors, 

International Federation Greenland & Higgins 2006), in this appendix it is related the flow process to calculate the 

separation values between CD and WGS-84 at a discrete point. Some studies were performed to compare a new 

implementation of GPS system information to obtain an accurate three axis positioning, Arroyo et al have been 

presented a study of Global Differential GPS System (Arroyo-Suarez et al. 2005), the GDGPS structure is 

composed by a Global GPS Network, the Real-Time GIPSY developed by the Jet Propulsion Laboratory (JPL) of 

the National Aeronautics Space Administration (NASA) in Spring 2001 and a signal-in-space provided via 

Inmarsat. This paper demonstrates level of accuracy for positioning in altitude information about 95%, which is 

acceptable according Table 1 in  (IHO 2008). On the other hand, a unique tide gauge measure calibrated in respect 

to any or some better proximal geodetic reference points can be used to measure the instantaneous local tide, value 

represented by T in the Figure 3.8. The surveyor can obtain their depth with respect to WGS84 accurately. In this 

case, and adding the instantaneous information of local sea level we will infer the depth using the equation 3.17. 

 𝑆 = 𝐷 + 𝑇𝑥 − 𝑇  eq. 3.17 

Where 𝑇𝑥 is the vertical distance from instantaneous sea water level to sonar transducer. All data used in this work 

was extracted using a manned survey boat and a single beam echo sounder, to correct the depth information we 

work with a DGPS real time system information. 

3.3.4 Remote Sensing Using a Sidescan Sonar 
 

As mentioned before, the portion of sound energy scatter back to the sensor after hit the target (object or underwater 

bottom) is called backscatter. Generally, it is a function of the pulse incidence angle to target and material 

properties. The dependence of material properties has a relationship with the impedance between medium 

boundaries. A backscatter can contain geometric information about the target or surface being imaged, the survey 

detail level depends on acoustic transducer type, transducer arrangement and the method used to acquire data. 

Despite some limitations, the reconstruction of targets or seafloor can be performed using acoustics backscatter 

information through inverse acoustic models (Lurton 2010) and (Urick 1983). Consider a flat bottom, for an image 

sonar, the backscatter strength dependence with the frequency and grazing angle variation, these can be used to 

reduce radiometric and geometric distortions over the data set (Blondel 2009) and (Lurton 2000).  The signal 

frequency and wavelength are one of the main operational parameters used to characterize the acoustic system and 

their interaction in the medium and characterize the distance over which the wave's shape repeats. The equation 

3.18 represent the relationship between frequency and wavelength. 

 𝜆 =
𝑐

𝑓
  eq. 3.18 

Where: 𝜆 - is the wavelength of acoustic wave; 

𝑐  - is the mean velocity of acoustic waves; 

𝑓 - is the frequency of acoustic waves. 
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For a sound velocity of 1,500 m/s, underwater acoustic wavelength will be 150 m at 10Hz, 1.5m at 10kHz and 

0.0015m at 1MHz. The main constraints on the frequency usable for an application. The sound wave attenuation 

in water, limiting the maximum usable range whose effect increases very rapidly with frequency.  

 

The sonar system used to acquire the data in this work uses the Compressed High Intensity Radar Pulse (CHIRP). 

This technique uses two different frequencies to emitting the acoustic pulse, the chirp sweeps across a band of 

frequencies. The difference between start frequency (𝑓𝑠) and end frequency (𝑓𝑒) will lead the Bandwidth. Thus, it 

will generate a resultant signal with a resultant frequency equal to the centre of this frequency difference. For 

example, considering a sonar system that use two frequencies to generate the acoustic pulse with values: 𝑓𝑠 =
430 𝑘𝐻𝑧 and 𝑓𝑒 = 470 𝑘𝐻𝑧, the bandwidth (𝐵𝑊) will be extracted using the equation 3.19. 

 𝐵𝑊 =  𝑓𝑒 − 𝑓𝑠 eq. 3.19 

The resultant frequency (𝑓𝑟) can be expressed using the half part of BW as described in equation 3.20. 

 𝑓𝑟 = 𝑓𝑠 + 
𝐵𝑊

2
  eq. 3.20 

In practice, the frequency change will give a unique and short acoustic signature than the low frequency used (𝑓𝑠) 
and the high frequency (𝑓𝑒) used to produce the chirping pulse. Using a short acoustic signature carried by chirp 

techniques, results in an increment of the resolution for target detection. We will have a better compromise between 

power needed, ping duration, resolution to provide even greater detail and information when processed. 

 

 

The distance travelled by the acoustical wave front, from the transducer to the target (bottom or object), is called 

the slant-range (SR), see Figure 3.9. The distance between the vertical imaginary line below the transducer and 

the target is called ground-range (GR), this is also understood as a projection of the SR line over the bottom plane. 

The angle between the incoming wave and the reference plane of the bottom is called angle of incidence and the 

angle formed by the incoming wave and the vertical plane (normal to the bottom), is called grazing angle, and 

represent, 90° - angle of incidence (Blondel2009). 

  

Sidescan sonars work emitting an acoustic pulse at specific time rates (firing time) and pulse lengths, T. A short 

pulse emission will produce a thinner spatial pulse length resulting in a higher resolution. Short acoustics pulses 

need more power to reach the same range of large pulse to compensate the transmission losses and abortions 

(Lurton 2000), (Urick 1983) and (Mazel 1985). In this work, we can reach a good resolution using a chirp sidescan 

sonar system. The resolution decrease as far as the acoustic pulse travels (Lurton 2000), (Urick 1983) and (Blondel 

2009). 

 

The resolution concept is one characteristic to measure the sonar system performance and can be defined as the 

capability to distinguish separated entities into the environment or surveyed area and represent it into the acoustic 

image. The sidescan system spreads their bearing to target, object or surface in a solid angle, and when hit one 

Figure 3.9: Illustration of sidescan data acquire geometry to image formation (adapted from Blondel 2009). 
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generic surface will ensonifier it as we can see in the Figure 3.9, forming a general two-dimensional footprint area 

with two perpendicular resolution components: along-track and across-track resolution. 

 

3.3.4.1 Along-Track Resolution  
 

The resolution in the along-track direction, (𝑗𝑅𝑒𝑠𝑜𝑙) is dependent of sonar system velocity, distance to target from 

sonar system (Range) and horizontal aperture beam angle (Azimuth), also knowing as beam with (𝜃𝐴𝑍). 

Concerning the last the beam width will be determined by array characteristic, mainly the length of the sonar array 

(Lurton 2000), (Lurton 2010), (Waite 2002) and (Blondel 2009). Conventional sidescan sonar system devices need 

to travel at constant velocity and between levels defined by each manufacturer. The along track resolution will be 

also dependent with the range (𝐺𝑅)(Blondel 2009). 

 

 

A short and good definition about along-track resolution is written by (Blondel 2009): “ The along-track 

resolutions is the smallest of the distance travelled over ground during the reception interval, and width of the 

beam on the ground”. In the Figure 3.10 we can see an illustration of along-track SSS beam.  

 

 

The along-track resolution (𝑖𝑅𝑒𝑠𝑜𝑙) can be defined by the mathematical equation 3.21, considering the sonar  

system travelling in a constant velocity (Blondel 2009): 

 𝑖𝑅𝑒𝑠𝑜𝑙 = 𝑅𝑎𝑛𝑔𝑒 × Sin (𝜃𝐴𝑍) eq. 3.21 

If we have the sonar system altitude from bottom (A), length of the sidescan sonar array (L), and the pulse 

wavelength, we can have one expression to describe the azimuth resolution in function to the incidence angle (𝑎𝑖), 

Figure 3.10: Illustration of SSS Along-track beam 

Figure 3.11: Sidescan footprint and element of image (pixel), with geometrics correlations 



Shallow Water Remote Sensing Using Sonar Improved with Geostatistics and Stochastic Resonance Data Processing 

 42 

if we maintain the constant altitude. We can use the equation 3.22 to describe the numerical along-track resolution 

too. 

 
𝑖𝑅𝑒𝑠𝑜𝑙 =

𝐴 × 𝜆

L × cos (𝑎𝑖)
 

eq. 3.22 

The along-track resolution is a main factor to take into account when measuring the capability to distinguish into 

the sidescan acoustic mage two objects related to the horizontal distance (along-track direction). If the distance 

between them is shorter than along-track resolution they will be represented as only one object into the sidescan 

image. We can see it, in the Figure 3.12, objects (C, D, H and I), “C and D” are represented as only one object in 

the Sidescan Segmented Starboard Image.  The same effect is represented for the targets “H and I” in the Sidescan 

Segmented Image representation for portboard. 

 

In the Figure 3.12 we can observe in the centre of figure, an illustration of the three gray levels class representation 

of the sidescan acoustic image. In this representation, a background or bottom have a mean of gray level values 

about 125 in gray scale, targets are represented with a high reflectance area about 255 in gray level and the area 

that we have not an acoustic backscatter is a shadow region, and numerically is 0 in gray scale. The bottom plot in 

the Figure 23 describes the changes profile levels between three classes in the line “0” of the segmented image. 

 

3.3.4.2 Across-Track Resolution  
 

In a sidescan sonar system, across-track resolution can be related to the minimum distance that two targets can be 

distinguish in the orthogonal direction to the sidescan sonar system travels (Sonar Track). The across-rack 

resolution is dependent of the pulse length, each pulse will occupy an equivalent "distance" related to its pulse 

duration (𝜏), the sidescan acoustic wave propagation velocity (𝑐) and the grazing angle (𝑎𝑔𝑟𝑎𝑧). This is referred as 

"range resolution", and it can be approximated by the expression 3.23 when the 𝑎𝑔𝑟𝑎𝑧 = 0, in case we don´t have 

the grazing angle information. 

Figure 3.12: Top view of SSS beam (up illustration), digital acoustic image representation (meddle illustration), and line profile of backscatter 

signal (bottom illustration) 
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𝑅𝑟𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 =  

(𝑃𝑢𝑙𝑠𝑒 𝐿𝑒𝑛𝑔𝑡ℎ  𝑥 𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝑜𝑓 𝑆𝑜𝑢𝑛𝑑)

2
=  
𝜏 × 𝑐

2
 

eq. 3.23 

Another way to calculate the across-track resolution is through the equation 35 if we have a grazing angle 

information.   

 
𝑅𝑟𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 = 

(𝑃𝑢𝑙𝑠𝑒 𝐿𝑒𝑛𝑔𝑡ℎ  𝑥 𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝑜𝑓 𝑆𝑜𝑢𝑛𝑑)

2
 × 

1

cos (𝑎𝑔𝑟𝑎𝑧)
= 

= 
𝜏 × 𝑐

2
 × 

1

cos (𝑎𝑔𝑟𝑎𝑧)
 

 

eq. 3.24 

 

The velocity of acoustic propagation (c) depends on some factors, such as water temperature, salinity(density) and 

pressure (Lurton 2010), (Urick 1983) and (Mazel 1985). The value of 1500 m/s is usually taken as the average 

sound velocity in seawater, Figure 3.13 shows the sidescan sonar image. 

 

 

In the middle of the Figure 3.13, we can see the grayscale strip image (Sidescan Segmented Profiler Image) related 

to the geometry, some detected targets characteristics and bottom interaction. The bottom illustration, in the Figure 

24, is a profile plot into three gray scale level classes, from that we can detect targets, shadows and background. 

When we have the sonar altitude information and a grazing angle (𝑎𝑔𝑟𝑎𝑧), we can infer the height of target object 

from bottom simply measuring the distance from sonar (GR) and the length of shadows.  

 

For a sidescan sonar systems the information from Table 1 classify SSS qualitative resolution according to the 

operating frequency used, one summarized relationship between sidescan survey frequency, wavelength and 

maximum range was published by the Woods Hole Coastal and Marine Science Center (C. and M. C. Woods Hole 

2016). 

 

 

 

Figure 3.13: Front view of SSS beam (up illustration), digital acoustic image representation of one data line 

(meddle illustration), and line profile of backscatter signal (bottom illustration) 
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3.3.4.3 Slant Range Correction   
 

The entire raw Image formation from a sidescan system, extracted from the surveyed area, is reached using an 

acquired acoustic row concatenation. However, this row image is not a correct real space representation, this is a 

Slant Range (SR) representation or time per time representation (∆𝑡 𝑥 ∆𝑡) and so called Slant Range Image (SRI). 

In the Figure 3.14, we can see the strip sample of SRI image, it can be understood as the bottom representation 

from the sonar point of view, approximates the real space representation and have some distortions.  

 

 

If we need the ground referenced view to associate with any geographical information system, we need to perform 

a slant range correction and thus generate a Ground Range Image (GRI). The slant range correction will give the 

space per space representation (∆𝑠 𝑥 ∆𝑠), also called GRI and can be georeferenced to be more precise and to have 

a standard positioning.  

 

 

The total distance composed by two sides range is also called swath width. Altitude information is very important 

on the processing of SR corrections; we use this in the process of conversion from SRI to GRI. In the Figure 3.15 

we can see a simplified illustration of a linear trajectory of a SSS and the representation of beam interaction and 

Figure 3.14: Representation of the geometric differences between a Slant Range and Ground Range Images and how 

targets are represented in a sidescan acoustic image. 

Figure 3.15: Illustrative sidescan survey track-line, bottom coverage and ping overlapping according survey velocity 
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the relationship between GPS, platform velocity and beam slant, ground range and resolutions. 

4.0 Spatial Statistics and Regionalized Variable  
 

 

Statistics will help any research to understand the meaning behind the numerical data universe encapsulated in a 

cohesive dataset. The significance and interpretation of a numerical data can be correlated with the spatial or 

temporal distribution, the main objective is to understand the significance behind data and their trends. Several 

authors have been divided statistics analyses and applications in three main stages: Data Description; Interpretation 

and Estimation  (Cressie 1993) and (Lucieer 2007). A data description will give to us the opportunity to know our 

dataset universe through exploratory data analysis and hence, we can describe characteristics data from some 

statistical descriptors as moments, average, deviance, correlation and etc. Using some information from data 

descriptors we can perform a data interpretation and thus estimations can be done based on mathematical models 

driven by data knowledge. Several works related to statistical researches were used to develop tools, 

methodologies and procedures to solve statistical problems in data mining, interpretation, estimation and 

predictions related to various sample data, however, we gave a special attention to work with a branch of statistics 

called Spatial Statistics and into this, methods and techniques related to Geostatistics (Cressie 1993), (Hengl et al. 

2008) and (Diggle & Ribeiro Jr. 2007). 

4.1 Spatial Statistics  
 

Spatial Statistics techniques allow us the opportunity to analyse a spatial dataset, such as, in our case, bathymetry 

dataset or acoustic images. We consider the spatial distribution and their neighbourhood interaction as the main 

influences to explain some behaviour driven by a dataset and, also, it is possible to predict their trends based on 

data correlations. Hence, a study of spatial correlation among data points can be done considering the distance 

between them. It will be tested the level of correlation to a set of samples into a specific dominium, along a specific 

direction or around several directions from an certain point or spatial entity (Cressie 1993), (Diggle & Ribeiro Jr. 

2007) and (Wackernagel 1995). In a simple way, differences between classical statistical analysis and spatial 

statistical techniques, have only the insertion of a spatial component as the inflexion point to decision making 

process and weighting.  Thus, spatial statistics have some advantages of georeferenced data samples available for 

each spatial entity to improve the prediction task to uncover relationships between the spatial objects and 

phenomena. Some models have been developed to cover a variety of applications, related to this thesis, the main 

guidance and inspiration are described in the following papers: (Cressie 1993), (Wackernagel 1995), (Diggle & 

Ribeiro Jr. 2007), (Brenning & Boogaart n.d.) and (Hengl 2007).  Geostatistical based approach is used here to 

classify, quantify, and then, increase the survey resolution to find relevant information occulted into the original 

dataset, to make a conceptual information map based on concepts of raster map. This map allows the construction 

of navigations map as a background to perform an autonomous robotic navigation based on track topographical 

relief objects. Another application is a resolution increase of bathymetric surveys to costal environment using 

SBES in application, where a multibeam sonar cannot be applied because surveys limitation such as survey vehicle 

capacity, environmental limitation or costs. 

 

In the geostatistical concepts like a branch of classical statistics, measures quantities defined by moments will play 

an important role supported by the concept of variance/covariance to analyse the spatial dependence for a regional 

variable (Cressie 1993). The first and second moments, respectively mean and variance are the base to develop a 

reasoning path to reach a covariance concept, resulting in the possibility to use a Multiple Linear Regression 

(MLR), a covariance function approach is used to model a set of samples which represent a domain of a sampled 

surface. The MLR is a core of a Geostatistical predictor called simple Kriging (Diggle & Ribeiro Jr. 2007) and 

(Wackernagel 1995). This work has a core fundaments based on Kriging based interpolation to solve the problem 

of weight average to make a prediction of a value for an unsampled point (unknowing), using information from 

sampled points spreads in a spatial distribution around the unknowing point. A simple version of Kriging 

interpolation cannot be applied unrestrictedly to any type and distribution of spatial sampling, some requirements 

need to be verified before their implementation variable regionalization and trends. Therefore, values of statistical 

moments and covariance among sampled points, as a method to estimating statistical parameters need to be 

checked and consider the development of the prediction process with Kriging. The method of statistical moments 

was developed over a set of e independent random variables. 
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4.2 Regionalized Variables  
 

According the Matheron thesis (Matheron 1970), “Geostatistics is the application of the theory of regionalized 

variable of mineral deposit (with all that this implies)”. But, we need to answer a question: What is a Regionalized 

Variable?  In a simple way, Matheron describe that the Regionalized Variables (RV) are described by a 

phenomenon spreader in a space with the exhibition of a spatial structure (Matheron 1970). A simple function over 

a spatial distribution, can be considered a RV, but when the variable represents a sample from any natural or 

environmental domain, it will represent a very irregular function (Matheron 1970) and a simple linear model can 

fail if applied unrestrictedly over all dataset. It is because the contradictory aspect from theory of RV, represented 

by the random nature of study variable and the structural aspect imposed by RV theory. Thus, the original theory 

from (Matheron 1970) aims to solve the problem of estimate a value of RV at the unsampled point. 

 

4.2.1 Regionalized Variable (RV) into the Context of 
Topographic Relief Elevation Dataset   

 

Considering a real surface represented by "𝑠" extracted from a portion of earth’s surface "𝑆", both represent a 

continuous surface that the area differs from zero (Wackernagel 1995) and (Diggle & Ribeiro Jr. 2007).  Samples 

points from "𝑠" will generate a set of elevation points samples 𝑧(𝑛), where 𝑛 is the number of samples over all 

surveyed area represented by (𝑠). Considering "𝑥"  as georeferenced coordinate point into "𝑠", a concise and 

mathematical representation of a generic data location can be described in a 2-dimensional Euclidian space 

according (Cressie 1993), and is expressed in the expression 4.1. 

 𝑠(𝑥) ∈ ℝ2 exp. 4.1 

Values sampled from region (𝑠) has the survey realization independent from one point to another into this region. 

Into our practical application to extract a real data, each one sampled point was taken at distinct time in a sequential 

transect sampling method but in the same survey uninterrupted process. Each sample will generate a potential 

datum 𝑧(𝑛) as an output value, this is a regionalized value as the outcome of some random natural mechanism and 

this random mechanism could produce different property at each point of a region (Wackernagel 1995). Now, into 

any georeferenced coordinate system, which coordinates are given by "𝑥" we consider the value 𝑧(𝑥) (Elevation 

level value “Bathymetric Point”), one realization (Measure) in the spatial location 𝑠(𝑥) (Location), then, it will 

vary over an index set Domain 𝐷 ⊂ ℝ2, and the process will generate the multivariate random field so called 

random process (Cressie 1993), represented by mathematical expression 4.2. 

 {𝑍(𝑥): 𝑠(𝑥) ∈ 𝐷}  exp. 4.2 

According (Diggle & Ribeiro Jr. 2007), the mathematical expression 3.26 can be consider a partial realization of 

a stochastic process into the 2-dimensional Euclidian (ℝ2) surveyed area. However, the sampling design assumed 

for locations 𝑠(𝑥) has a deterministic fashion, because the extraction data has quasi-equal distance from one 

sampled to another. Besides that, the survey trajectory is in linear transect method, and if we delimitate a closed 

subarea or portion into the entire surveyed surface, it seems like a regular grid. Additionally, in the core of sample 

process we have stochastically intrinsic components into the survey realization, where each sampled realization is 

uncorrelated to another one, and small variations can be result from dynamics of ocean, survey boat track and 

noises. In this way, each sample 𝑧(𝑥) will compose a set of measures that define a random variable of a stochastic 

process 𝑍(𝑥). With this, 𝐷 can be consider as a random set domain, according (Cressie 1993) it means  𝐷 “is a 

measurable mapping from a probability space onto a measure space of subsets of ℝ𝑑”, in our case 𝑑 = 2.  

 

The bathymetric dataset from a SBES device that was used in this work, is a type of survey realization to extract 

discrete elevation data samples, it is able to meet all requirements of a regionalized variable according definitions 

given by (Matheron 1971b), (Wackernagel 1995), (Diggle & Ribeiro Jr. 2007) and (Cressie 1993). We apply a 

variogram geostatistical analyse to probe the assumption of our dataset in a priori context, complies all 

requirements and constraints to be a regionalized variable field.   

 

A proposed geostatistical model needs to be met in the first approach two main constraints (I) and (II), but 

internally to definition of sampling survey we include a third requirement (III): 
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I. The stationarity of RV – This is relating to a trend in data, and will explicit the need that some 

characteristics of RV remain the same when shifting a given set of n sampled points from one region 

𝑠(𝑥𝑏) to another 𝑠(𝑥𝑎) into the same survey domain  {𝒁(𝒙): 𝒔(𝒙) ∈ 𝑫}; 
II. Gaussian Process – The samples values should have a Gaussian behaviour, then, statistical algorithms 

and methods can model their characteristics; 

III. Mutually Independence of Sampling Realization – Data extracted from survey realization need to be 

uncorrelated from one generic point 𝑧(𝑥𝑎) to another 𝑧(𝑥𝑏), each sample are an independent event. The 

mathematical model expression to obey this assumption is given by 𝒑(𝑧(𝑥𝑎) ∩ 𝑧(𝑥𝑏) =

𝒑(𝑧(𝑥𝑎)). 𝒑(𝑧(𝑥𝑏)), where 𝒑(𝑧(𝑥𝑛)) represent the probability of event 𝑧(𝑥𝑛)  and represent a generic 

event or sampling process. 

Overall, if the dataset meets the all requirements from I to III, in first approximation, we can apply a geostatistical 

approach to analyse sampled data and predict values at unsampled points.  

 

4.2.2 Basic Statistical Support  
 

In a concise way, we describe briefly some characteristics about statistical parameters emerging from a set of 

sampled values that demonstrate both a sufficiently strong central tendency to cluster it in a domain of regionalized 

variable and the weighted covariance value that correlates values between them. Regardless of, relationships 

among subsets of regionalized variables, those statistical parameters are proposed and used as decision make 

prediction factor. 

 

Considering a set of discrete random variables 𝑍(𝑥), this type of variable is the most common type of stochastic 

model, then we will refer here to the process represented by our model as a stochastic process. Into the context of 

our dataset the process will be defined by a Cumulative Distribution Function (CDF) as a Gaussian Random 

Variable (GRV) behaviour, with this we can map elements from the sample using the space probability law (Nisbet 

et al. 2009) and (Ross 2009).  

 

Let 𝑍(𝑥), defined here as a random variable, each element is mapped by 𝑍(𝑥) into “𝑛” values. Then, we can 

partition the sample surface “𝑠” into “𝑛” disjoint subsets (𝑠1, 𝑠2, … , 𝑠𝑛), having the probability mass function 

𝑝(𝑥) = 𝑃(𝑍(𝑥) = 𝑠𝑛)  for any value of 𝑠𝑛 ∈ 𝑠 is represented here by its CDF in the equation 4.3. 

 𝐹(𝑥𝑗) = ∑ 𝑝(𝑠𝑛𝑛≤𝑗 )   eq. 4.1 

Another definition from our dataset comes from the assumption of stationary Gaussian model.  

 

The random variable {𝑍(𝑥): 𝑥 ∈ ℝ2}, represent an instance of one Regionalized Variable (RV), and it is a Gaussian 

process with mean 𝜇, variance 𝜎2 = 𝑉𝑎𝑟{𝑍(𝑥)} with correlation function 𝜌(𝑢) = 𝐶𝑜𝑟𝑟{𝑍(𝑥), 𝑍(𝑥′)}, 𝑤ℎ𝑒𝑟𝑒 𝑢 =
‖𝑥 − 𝑥′‖ and ‖∙‖ denotes distance. 

 

Observing that the random variable is conditional on {𝑍(𝑥): 𝑥 ∈ ℝ2}, where each individual measure 𝑧(𝑖) 
represent a mutually independent random variable, normally distributed with conditional means 𝐸[𝑍𝑖|𝑍(∙)] =
𝑆(𝑛) and conditional variance 𝜏2. 
 

4.2.2.1 Variance 
 

Let 𝑍(𝑥), in the context of the RV, we denote the variance 𝑉𝑎𝑟(𝑍(𝑥)), the quantity expressed by: 

 𝜎2 = 𝑉𝑎𝑟(𝑍(𝑥)) = 𝐸([𝑍(𝑥) − 𝐸(𝑍(𝑥)]2)  eq. 4.2 

The calculous of variance will give us the simple measures of the spread, or variability, of the distribution. 

 

Obs.: The variance defined here don’t obey the scale properties, we only work with SI unit, where meter is the 

standard unit to represent length and distance measures. 
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4.2.2.2 Standard Deviation 
 

The Standard Deviation (SD) can be used to remedy the scaling problem from variance approach and 

mathematically is described by equation 4.3. 

 
𝜎(𝑍(𝑥)) = √𝑉𝑎𝑟(𝑍(𝑥)) 

 eq. 4.3 

4.2.2.3 Covariance 
 
The covariance between two samples into the concept of the random variable will compute the dependence 

between them, and will be described by the equation 4.9. 

 𝐶𝑜𝑣(𝑧(𝑥𝑎), 𝑧(𝑥𝑏)) = 𝐸[(𝑧(𝑥𝑎) − 𝐸(𝑧(𝑥𝑎)) ∙ (𝑧(𝑥𝑏) − 𝐸(𝑧(𝑥𝑏))]   eq. 4.4 

Obs.: In the same way of the variance definition, the covariance defined here do not obey the scale properties, to 

overcome this problem in application, we need to apply the concept of correlation. 
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5.0 Basic Geostatistical Regression Support 
 

 

Geostatistical is a branch of spatial statistics data processing and has, as fundamentals aims, the numerical study 

to determine the correlation among measured samples, it will give us the notion of similarity coupled to a distance 

in one specific direction or in omnidirectional form. Then, the way to perform geostatistical analysis and 

estimations starts when are applied the theory of Regionalized Variables to the problem of predicting spatial 

phenomena (Matheron 1962) and (Matheron 1970). The study starts with a graphical analysis of spatial distribution 

and values of data samples using the so called Variogram or Semivariogram function (𝛾(ℎ)), in this thesis, I will 

use the semivariogram. The semivariogram function is the graphical tool to describe the spatial correlation of a 

phenomenon, and will give us the correlation function among samples measured into the measured area according 

the distance lag (ℎ). The Figure 5.1 represent some samples from the surface S.  
 

 

To construct the semi-variogram graphical representation, we compare the sample values against distance in space 

using the equation 5.1, and each value found will be plot in the semi-variogram graphic represented in the Figure 

5.2. After the first analysis using a geostatistical process to plot the empirical semivariogram, we can predict values 

at unsumpled locations using a predictor, or a geostatistical interpolation method called Kriging. Thus, inserting 

information (parameters) from semivariogram analysis we can extract parameters values obtained using the 

graphical representation after fit the semivariogram cloud using any adequate theoretical semivariogram model, in 

order to perform estimations (Chiies & Chauvet 1974) and (Matheron et al. 1987).  

 𝛾(ℎ) =
1

𝑁
∑ (𝑧(𝑥 + ℎ) − 𝑧(𝑥))2𝑁
𝛼=1    eq. 5.1 

Where  
 

𝛾(ℎ) – Is the semivariogram value;  

𝑧(𝑥) and  𝑧(𝑥 + ℎ) – Represent the measure of RV at origin and at distance ℎ from origin; 

𝑁 – Represent the number of measures into the survey sampling. 

Figure 5.1: Illustration of Lag distance among some points 
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The experimental variogram is usually computed using 𝒉 vectors wit length inferior to half of interest region 

diameter (Diggle & Ribeiro Jr. 2007) and (Wackernagel 1995), it will prevent the use of samples near the survey 

border region in estimations at the centre of region that will be not representative of the hole dataset. To calculate 

the experimental semivariogram, ones ideally need to have any knowledge about the RV phenomena under survey, 

and it will give some definition about the phenomena to define an isotropic or anisotropic behaviour. Hence, we 

can calculate the semivariogram function adequately for each specific direction or considering all direction. 

Usually we choose four directions to analyse: E-W, N-S, NE-SW and NW-SE. Considering now, the simplified 

graphical representation of experimental semivariogram in the Figure 5.3, to extract parameters of interest we 

need to fit by one of the formals theoretical semivariogram models. The use of theoretical semivariogram model 

allow us the opportunity to apply any adequate regression method based on this model. 

 

 

From the theoretic model we can extract the three parameters called, the nugget effect value, range and sill, all 

before are described in context by (Diggle & Ribeiro Jr. 2007), (Clark 1979), (Matheron, G. Kleingeld 1987) and 

(Wackernagel 1995) as: 

 

• Nugget effect: Represent the semivariogram value at lag distance equal to zero “0”, this value 

represent variability at small scales, with this, the discontinuity at the origin can be identified. The 

correct model definition will give to the kriging process the possibility to avoid numerical predictions 

instability. The nugget effect characterizes the variogram shape near the origin; 

 

• Range: The lag distance at the variogram model fit becomes constant, define the existence of 

autocorrelation value among sample measures, and this parameter has the lag value equal to the first 

Figure 5.2: Semi-variance cloud fitted 

Figure 5.3: Simplified Experimental semivariogram fitted 
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flattens out. In the geostatistical model theory, next the lag distance equal to range, the autocorrelation 

is 0; 

 

• Sill: The semivariogram value that attains at the range value, can be equal to the data variance. 

 

The theoretical semivariogram model is defined under two assumption related to the random functions, but an 

intrinsically stationary random function does not need to have a constant mean or a constant variance: 

 

• The mean is invariant for any sampling location into the surveyed region (ideally must not have any 

drift); 

 

• The variance of increments in  𝒉 need to has a finite value and equal to 2𝜸(𝒉), and will depend only 

on the length and the orientation of 𝒉 vector. 

 

Mathematically we can define these two assumption using equations 5.2 and 5.3 that describe respectively the 

expectation and variance (Wackernagel 1995). 

 [𝑧(𝑥 + ℎ) − 𝑧(𝑥)] = 𝑚(ℎ) = 0   eq. 5.2 

 

 𝑣𝑎𝑟[𝑧(𝑥 + ℎ) − 𝑧(𝑥)] = 2𝛾(ℎ)     eq. 5.3 

According the semivariogram behaviour we can estimate the smoothness of the RV phenomena from the 

theoretical variogram model fitting over the sampling realization. In a concise way, it can be described by three 

types smoothness indicators (Wackernagel 1995), described by the Table 5.1. 

Table 5.1: Smoothness indicator and their relationship with regionalized variable aspect  

Properties of 

Semivariogram 

Cloud 

Behaviour of 𝜸(𝒉) at origin Regionalized 

Variable Aspect 

Observation 

𝜸(𝟎) = 𝟎 Differentiable smooth  

𝜸(𝒉) ≥ 𝟎 Continuous but not differentiable rough  

𝜸(𝒉) = 𝜸(−𝒉) Discontinuous speckled Nugget effect – RV changes abruptly at small scale 

 

The geostatistical method for data analysis and prediction was chosen here due the increased information from a 

bathymetric survey, mainly because their characteristics of recognition the spatial variability applied to complex 

surface as topographic relief. The geomorphologic change in some way has a random profile and there are often 

complexities to be model by a simply linear regression method. In some mathematical approaches specifics 

geomorphologic attributes can be smoothed by some regression algorithms. The geostatistics analysis developed 

by George Matheron and improved by Kriging estimator become one powerful regression tool to estimate analysis 

values using the RV theory. Originally developed to ore mineral deposit estimation and then it was used as a 

general-purpose estimation if the sampled studied that obeys the properties of RV. Remember, regionalized 

variables try to characterize physical phenomenon spread over a space as a random process defined by the spatial 

structure (Matheron, 1965). 

 

This will imply in a contradictory or complementary relationship, described by (Matheron, 1971), in his work 

Matheron has two main purposes to apply a geostatistical analysis and estimation: 

 

• Express structural properties in an adequate form; and 

• Solve the problem of regionalized variable estimation from fragmentary sampling data. 

The previous purposes are defined for samples that falls into the same region and the error estimation will 

depend on the structural characteristics (Matheron, 1971). Geostatistical approaches assume that the samples 

measured are independent, has a spatial correlation and has no trend.  

 

If we have a system composed by two variables 𝑍1 and 𝑍2,  we can represent their relationship in a scatter diagram, 

we will have a cloud of points in a plane represented by the 𝑍1 and 𝑍2 axis according Figure 5.4. According 

(Wackernagel 1995), considering the centre of mass from data points cloud defined by the two means points 𝑚1 

and 𝑚2.  
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The data cloud dispersion around this centre of mass is obtained multiplying the difference between values of one 

variable and its means (residual). Then, the covariance is defined as the average of this products, and modelled by 

equation 5.4 (Diggle & Ribeiro Jr. 2007) and (Wackernagel 1995). 

 
𝑐𝑜𝑣(𝑍1, 𝑍2) =

1

𝑛
∑ (

𝑛

𝛼=1
𝑧1 𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙 )(𝑧2 𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙 ) = 

=
1

𝑛
∑ (

𝑛

𝛼=1
𝑧1
𝛼 −𝑚1)(𝑧2

𝛼 −𝑚2) 

 

eq. 5.4 

Covariance values will give the information about two variables relationship into a cloud of measures. This will 

be done extracting the level of correlations or linking strength and their behaviour, negative or positive correlation. 

Because this definition, often, the covariance will be performed using pairs of variables. Concluding, covariance 

function will describe the relationship between variances from pairs of measures related with their distance ℎ. One 

relationship can be done between semivariogram and covariance function using the equation 5.5.  

 𝛾(ℎ) =  𝑐𝑜𝑣(0) − 𝑐𝑜𝑣(ℎ)   eq. 5.5 

Where  

 

𝛾(ℎ)     - Is the semivariogram values between pairs of measures located at 0 and ℎ distance; 

𝑐𝑜𝑣(0) - Represent the covariance of data sample; 

𝑐𝑜𝑣(ℎ) - Represent the covariance at distance ℎ. 

 

Ideally, covariance function requires the stationarity assumption, as in case of some variogram function 

applications, but in the case of semivariogram the assumption of stationarity does not need to have the assumption 

of stationarity in the data, represented by a constant mean and variance (Wackernagel 1995)(Matheron 1962).  

 

There are a set of theoretical variogram used to fit an experimental variogram realization, here we can see four 

representative models of these from expression 5.6 to 5.9. 

 

Linear Model: 

 
𝛾(ℎ) =  {

0,                  𝑖𝑓 |ℎ| = 0
𝑐0 + 𝑝ℎ,     𝑖𝑓 |ℎ| ≠ 0

 
 eq. 5.6 

Exponential Model: 

Figure 5.4: Scatter Plot of sample Cloud and their Relationship between variables measured 
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𝛾(ℎ) =  {

0,                                                          𝑖𝑓 |ℎ| = 0

𝑐0 + 𝑐[1 − 𝑒𝑥𝑝(−3|ℎ| 𝑎⁄ )], 𝑖𝑓 |ℎ| ≠ 0
 

 eq. 5.7 

Spherical Model: 

 

𝛾(ℎ) = {

0,                                                                𝑖𝑓 |ℎ| = 0

𝑐[1.5(|ℎ| 𝑎⁄ − 0.5(|ℎ| 𝑎)⁄ 3],    𝑖𝑓 0 <  |ℎ| ≤ 𝑎

𝑐0 + 𝑐,                                                      𝑖𝑓 |ℎ| ≥ 𝑎

 

 eq. 5.8 

Gaussian Model: 

 
𝛾(ℎ) =  {

0,                                                          𝑖𝑓 |ℎ| = 0

𝑐0 + 𝑐[1 − 𝑒𝑥𝑝(−3(ℎ 𝑎⁄ )2)],       𝑖𝑓 |ℎ| ≠ 0
 

 eq. 5.9 

Where: 

 

𝑝      -  Represent the slop of linear model;  

𝑐0    -   Is the nugget value; 

𝑐      -   Is the sill; 

𝑎      -  Represent the range. 

 

The previous models are all isotropic, it means, the spatial correlations have the same behaviours in all directions, 

but in many cases of spatial data we might expect spatial correlation in one direction but not another, anisotropic 

case, and thus we need to apply another approach. One alternative is to apply the geometric anisotropy technique 

followed by the linear transformation (Cressie 1993). 

5.1 Modelling Spatial Continuity Using Geostatistics 
 

The Spatial continuity, from some surveyed surface can be inferred using an adequate set of data sampling 

submitted to a geostatistical process. Considering this geostatistical inference system, empirical semivariogram 

cloud acts as a support to estimates values at unsampled locations using kriging predictor algorithm. In this work, 

I use a set of discrete elevation samples from a surface 𝑆 extracted using SBES device. The 𝑆 region represent a 

portion of a random domain 𝐷. To validate predictions, another set of sample from a MBES device were extracted 

in the same region to be considered as the merit figure to compare and determine the quality of geostatistical 

method to estimate unsampled points in bathymetric dataset. In this way, the domain 𝐷 can be considered as a 

random set domain, according (Cressie 1993) it means  𝐷 “is a measurable mapping from a probability space onto 

a measure space of subsets of ℝ𝑑”. Each sample 𝑧(𝑥) will compose a set of measures that define a random variable 

of a stochastic process 𝑍(𝑥) to extract discrete elevation data samples. It can meet all requirements of a RV. Thus, 

we consider each discrete sampling as 𝑥 and measures, (𝑥 + ℎ), another realization separated by the lag distance 

ℎ as a RV, and applying the function modelled by the mathematical expression 46 an empirical semivariogram 

(ES) cloud will be generated. The ES will need to be fitted using any Theoretical Semivariogram (TS) assuming a 

specific mathematical model behaviour. Aspect and behaviour of semivariogram slop will indicate the spatial 

structure of RV into the data sampled, including their changes. It can be summarized in the Table 5.2. 

Table 5.2: Sampling Dissimilarity and Spatial Structure Relationship 

Semivariogram Average Dissimilarity 

Between Sampling Data Separated by 

lag Distance 𝒉 

Spatial Structure Characteristics in 

the Data 

Constant There is no spatial structure 

Non-zero slop near the origin  There are some spatial structures 

Abrupt change in slop  Passage to a different structuration 

 

To perform the prediction process model, and estimate spatial continuity geostatistical analysis, we start with an 

empirical variogram fitted by one theoretical semivariogram model, and in some cases, supported by one type of 

ancillary information. These assumptions are often assumed in geostatistical literature, and ancillary information 
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is extracted from the physical knowledge of the study phenomena including any robust method to evaluate 

anisotropy directions, ratio and range.  

 

The key question is: how is the best set of ancillary information or just the unique auxiliary information to perform 

a prediction task? 

 

The modelling process involving geostatistics, can be done using two procedures described in (Goovaerts 1997),  

the first is called  Black-Box (BB), it involves a computational automatic choice and fitting the experimental 

semivariogram, and the second is Semi-Automatic (SA) process, that sill and range can be chosen by user 

(Goovaerts 1997). According (Goovaerts 1997), The BB estimation must be avoided because it cannot consider 

ancillary information. However, if we have an experimental semivariogram well fitted, the user decision can be 

supported by any efficient computation tool to get better parameters, and additionally backed by experimental data 

or ancillary information (Goovaerts 1997). Another basic structural information to support the prediction task is 

related to the correct definition of better semivariogram model, we have two choices, that is, isotropic or 

anisotropic. It will be done comparing the experimental variogram in some directions. Usually, at least as reference 

directions, we consider four basics cardinal directions as South-North (SN), West-East (WE), North-East (NE), 

and North-West (NW). Often, when computation direction is considered, we determine an angle of tolerance to 

input in the semivariogram computation.  

 

 The spatial structure and values of parameters extracted from variogram analysis will guide the geostatistical 

estimation process using one interpolation method. The official and most used geostatistical method to predict 

unsampled values is based on Kriging algorithm (Chiies & Chauvet 1974) and (Hengl 2007). The Kriging 

algorithm will consider the correlation from sampled values extracted around an unsampled points, according a 

model based mainly in the spatial distribution of samples analysed by geostatistical Variogram analysis. Kriging 

is the direct application of regression analysis proposed by D.G. Krige to solve the problem of estimate of ore 
reserve using sparse sampling block of ore. It is correlated to some others elements spatially distributed around 

them (Matheron, G. Kleingeld 1987), (Matheron 1971b), (Gumiaux et al. 2003) and (Diggle et al. 2002). Despite 

the existence of others interpolation methods to estimate unsampled values, Kriging estimators has the advantage 

to prevent the problem related to optimal parameter estimation, because it uses in their interpolation process, 

parameters based on preview spatial structure analysis. Then, we can use definitions from (Cressie 1993), (Diggle 

& Ribeiro Jr. 2007) and (Wackernagel 1995) as the fundamental bases to investigate the process of spatial 

continuity modelling and their confidence level to construct an underwater mapping representation based on 

discrete samples spread in the region of interest. 

5.2 Regression Using Kriging  
  

The problem of estimating values in a continuous surface, that uses information from discrete sample, is the main 

matter of this part of the thesis. In this research work we explore some structural spatial dependence in discrete 

samples realization to infer structural characteristics of the surface and thus, predict values at unsampled regions. 

The work was improved using a type of linear regression called Kriging supported by geostatistical spatial 

statistical analysis. The focus here was the study of two simple and common Kriging algorithms, their advantages 

in solve the prediction problem related to continuous surface estimation using discrete bathymetric sampled from 

a SBES sonar without any ancillary information contrasting it with the common assumption of many geostatistical 

bibliographies that relates the importance of the use ancillary information to reach a satisfactory result in 

geostatistical prediction process as is the case of Kriging. 

 

Considering a Kriging based application over a set of random variables, described here as a regionalize variable 

𝑧(𝑢𝛼), where 𝑖 = (1, … , 𝑖) is the number of sample points, and if this random variable is a subset of a second-

order stationary random function 𝑍. The regionalized variable 𝑧(𝑢𝛼) will be the reference base sampling to perform 

a regression analysis, and because this,  it will be called “regressors” on a “regressand” 𝑧(𝑥𝑢) where 𝑢 = (1, … , 𝑛) 
is the number of sampling points that are need a prediction (Wackernagel 1995). With this assumption, we gave 

two main relationships between sample distribution into the specific domain according equations 46, 49, and 50 

(Wackernagel 1995). The basic problem is to find a type of weight average to make estimations at unsampled 

point.  Geostatistical and kriging methods take a knowledge of covariance among random variables and their 

structure distribution.  

 

All Kriging application has a base algorithm designed from a linear regression application defined as equation 

5.10, following the notation described in (Goovaerts 1997). 
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 𝑍∗(𝑢) − 𝜇(𝑢) = ∑ 𝜆𝛼(𝑢)[𝑍(𝑢𝛼) − 𝜇(𝑢𝛼)]
𝑛(𝑢)
𝛼=1     eq. 5.10 

Where: 

 

𝑍(𝑢) – Predicted value; 

𝜇(𝑢) –Expected values of RV represented by 𝑍(𝑢); 
𝜆𝛼(𝑢) – Weight assigned to the sample; 

𝑧(𝑢𝛼) – Sample; 

𝜇(𝑢𝛼) – Expected values of RV represented by 𝑍(𝑢𝛼). 
 

Estimations error and predictions can be done using the relationship 𝑍(𝑢) − 𝑍(𝑢𝛼), and the common objective of 

kriging algorithm variations has the same constraints, minimize the estimation error variance 𝜎𝐸
2(𝑢), considering 

the unbiasedness characteristic of kriging estimator, represented by equation 5.11. 

 𝜎𝐸
2(𝑢) = 𝑉𝑎𝑟{𝑍∗(𝑢) − 𝑍(𝑢)}  eq. 5.11 

And their minimization assumption given by the equation 5.12. 

 𝐸{𝑍∗(𝑢) − 𝑍(𝑢)} = 0  eq. 5.12 

The Kriging model based estimation is sensible to the adopted model for the random function 𝑍(𝑢) (Goovaerts 

1997). The random function 𝑍(𝑢) can be decomposed in two independent terms. 

 𝑍(𝑢) = 𝑅(𝑢) + 𝜇(𝑢)  eq. 5.13 

The residual component is modelled as a stationary random function with zero mean and covariance 𝐶𝑅(𝑢) 
according expression 5.1 and equation 5.14. 

 𝐸{𝑅(𝑢)} = 0  
exp. 5.1 

 

 𝐶𝑜𝑣{𝑅(𝑢), 𝑅(𝑢 + ℎ)} = 𝐸{𝑅(𝑢) ∙ 𝑅(𝑢 + ℎ)} = 𝐶𝑅(𝑢)  
eq. 5.14 

 

The expected values of RV at location 𝑢, expression 5.2, is thus the value of the trend component at the location. 

 𝐸{𝑍(𝑢)} = 𝜇(𝑢)   exp. 5.2 

Just using the bases of Kriging estimator theory, we can explicit three main types or variants based on distinctive 

approach for trend 𝑚(𝑢), as follows in equations 5.15, 5.16, and 5.17. 

 

5.2.1 Simple Kriging (SK) 
 

Simple Kriging (SK) algorithm considers the knowledge about mean 𝑚(𝑢), and it is constant throughout the 

study area S: 

 𝜇(𝑢) = 𝜇, known  ∀ 𝑢 ∈ 𝑆  eq. 5.15 

5.2.2 Ordinary Kriging (OK) 
 

Ordinary Kriging (OK) accounts for local fluctuations of the mean by limiting the domain of stationarity of the 

mean to the local neighbourhood 𝑊(𝑢): 
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 𝑚(𝑢) = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝑏𝑢𝑡 𝑢𝑛known  ∀ 𝑢′ ∈ 𝑊(𝑢)   eq. 5.16 

Unlike SK, here the mean is deemed unknown.  

 

5.2.3 Kriging with Trend (KT) 
 

Kriging with trend (KT), like OK, it considers the unknown local mean 𝑚(𝑢′). The mean can vary smoothly for 

each part of region or neighbourhood 𝑊(𝑢), hence over the entire study area 𝑆. The trend component is modelled 

as a linear combination of functions 𝑓𝑘(𝑢) of the coordinates: 

 

𝑚(𝑢′) =∑𝑎𝑘(𝑢
′)𝑓𝑘(𝑢

′)

𝐾

𝑘=0

 

 eq. 5.17 

With 𝑎𝑘(𝑢
′) ≈ 𝑎𝑘 constant but unknown ∀ 𝑢′ ∈ 𝑊(𝑢) 

 

The coefficients 𝑎𝑘(𝑢
′) are unknown and deemed constant within each local neighbourhood 𝑊(𝑢). By convention, 

𝑓0(𝑢
′) = 1, hence the case 𝐾 = 0 is equivalent to OK (constant but unknown mean 𝑎0). 
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6.0 Bathymetric Surveys: Data Uncertainty and 
Their Requirements 

 
 

The knowledge about the uncertainty in bathymetric elevation measures is necessary in order to monitor the 

performance and system reliability, despite the criteria used, here is specified by hydrographic surveys manuals 

(IHO 2008), (IHO 2012), (Bowditch 2002) and (Surveyors, International Federation Greenland & Higgins 2006). 

Some factors can influence the bathymetric data accuracy and as cited in the Standard (IHO 2008), for shallow 

water surveys and considering a datum error irrelevant , due the fact that the distance to geodetic station reference 

is too small, the set of main factors related to vertical and horizontal uncertainty is described below: 

 

I. Vertical: 
 

• Vertical positioning system errors;  

• Tidal measurement errors; 

• Instrument errors; 

• Vessel motion errors; 

• Seabed slope; and  

• Time synchronisation and latency.   

 
I. Horizontal: 
 

• Positioning system errors; 

• Range and beam errors; 

• The error in vessel heading; 

• System pointing errors resulting from transducer misalignment; 

• Sensor location; 

• Vessel motion sensor errors; 

• Sensor position offset errors; 

• Time synchronisation and latency. 

 
Survey errors comes from a variety of factors, these contributing elements can be combined by applying the Law 

of Propagation of Random Variances, resulting in estimations of Total Propagated Uncertainty (TPU) for both the 

vertical (depth) and horizontal position (Positioning). It will include two of main uncertainty elements, one is 

related to systematic errors and other is the random component due to noise in the survey measure process (IHO 

2008). In a basic definition, the uncertainty relates the range of values or interval that will contain the true value 

measured at the required confidence level. According to the Fifth Edition of the IHO Standards (IHO 2008) , the 

total error in depth measurements should not exceed the confidence level of 95%, this means 1.96 x Standard 

Deviation (STD). If surveyed data has a normal distribution of errors with a probability of 90%, 0.3 meters for 

depths less than 30 meters or 1% of depths greater than 30 meters.  To hydrographic surveys operations the IHO 

standard (IHO 2008), classify a surveyed area according the needed or requirements for security navigations and 

maximum depth to sampling in four types, named order as follow: 

 

• Special Order: Areas where under-keel clearance is critical, generally less than 40 metres; 

• Order 1A: Areas shallower than 100 metres where under-keel clearance is less critical but features of 

concern to surface; 

• Order 1B: Areas shallower than 100 metres where under-keel clearance is not considered to be an issue 

for the type of surface shipping transit the area; 

• Order 2: Areas generally deeper than 100 metres where a general description of the sea floor is 

considered adequate. shipping may exist. 

 

In this thesis, we will consider as the minimum standard for quality control to the proposed process of geostatistical 

estimation, the standard related to the Special Order (Ideal) to 1A (Acceptable). The Special order generally relates 

to shallow water depth less than 40 meters where under-keel clearance (distance from boat hull o bottom) is critical. 

For 1A Order, about shallow water areas that depth is below 100 meters, under-keel clearance (distance from boat 
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hull o bottom) is critical (Special Order) or less critical but features of concern to surface shipping may exist (Order 

1A). 

6.1 Vertical Uncertainty  
 

A simple standard calibration technique was performed to a Single Beam Echo-Sounder device (SBES) to 

eliminate systematic errors occurrence from survey instruments before acquisition of data.  A simple “Bar Check” 

method was applied for calibrating both Multi Beam devices (MBES) and Single Beam devices (SBES) (CHS 

2008). The procedure involves a piece of metal with conical format or plate lowered to a maximum depth reference. 

The Figure 6.1 illustrates the physical disposition of devices and support elements to the process of bar check 

calibration using a port structure. The process involves the installation of a fixed ruler bar and the reference plate 

next to a pier of port structure, installing and positioning the transducer in a straight line down to the plate, and 

after that starts the bar check calibration. In the calibration process, the acoustical pulse will propagate directly to 

the plate surface and after receive the backscatter energy from it, we can measure the distance between them. 

Recording this measure, called Water Depth from Transducer to Plate (WDT) and knowing the bar ruler measure 

by manual reading, called here Measure in Ruler (MR), we can compare these measures to extract an Index of 

Error (IE) for measures by the transducer, and we can correct it in the data extraction or store process, or later 

when the data will be conditioned or interpreted. 

 

If environmental conditions and support structures enable the bar check process with the transducer installed in 

the boat survey, this will be the best choice because we can extract the level references and off-set displacements 

among sensors at the same time. To compute the confidence level we use the standard definition published in 

(IHO 2008) to reach the maximum allowable Total Vertical Uncertainty (TVU) we can use the equation 6.1 

published in the same report. 

 ±√𝑎2 + (𝑏 × 𝑑)2
2

  eq. 6.1 

Where parameters 𝒂 is the uncertainty that does not vary with depth, also called, depth independent error (the sum 

of all constant error) and 𝒃  is the uncertainty that varies with depth, called the factor dependent error, while 𝒅 is 

the depth. The term resulting from 𝒃 × 𝒅 is called the depth dependent error and represent the sum of all depth 

dependent errors (IHO 2008). The Table 6.1 specifies the value of parameters 𝒂 and 𝒃 applied to each survey 

order. We can use the equation 6.1, to find the value of TVU, considering the survey depth of data acquire. The 

equation will compute the 95% of confidence level to depth measurements. 

 

 

Figure 6.1: Illustration of an underwater echo sounder bar check calibration 

using a port structure support. 
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Table 6.1: Parameters Values According Survey Order 

 Special Order Order 1A Order 1B Order 2 

𝒂 0.25 0.5 1 1 

𝒃 0.0075 0.0013 0.023 0.023 

In the Table 6.2, we demonstrate results of calculous to compute the confidence level using the equation 65 to 

depth values from 5 to 30 meters. Our work dataset depth reached between 20 and 30 meters. 

 

Table 6.2: Confidence Level for Depths Between 5 and 30 meters for all orders of hydrographic Surveys 

Depth (m) Special Order Order 1A Order 1B Order 2 

5 m 0.25 m 0.50 m 1.01 m 1.01 m 

10m 0.26 m 0.50 m 1.03 m 1.03 m 

15m 0.34 m 0.50 m 1.06 m 1.06 m 

20 m 0.27 m 0.50 m 1.10 m 1.10 m 

25 m 0.29 m 0.50 m 1.00 m 1.10 m 

30 m 0.31 m 0.50 m 1.21 m 1.21 m 

 

As we can see in the section 3.3.3, the depth measure of bottom also called bathymetry can be carry out using the 

equation 3.16, considering that a local tide gauge measures are available. All components of the equation 66 have 

not relationship among them, resulting in independent terms, then, knowing the uncertainty of each individual 

variable, we can apply the method of propagation of uncertainty based in the equation 6.2 (Lockhart et al. 2001) 

and (Minami 2013). 

 𝜎𝑆
2 =  𝜎𝐷

2 + 𝜎𝑇𝑥
2 − 𝜎𝑇

2  eq. 6.2 

 

Where each individual uncertainty is represented by sigma (𝜎) subscript the equation 27 term for each component, 

it is represented in the equation 6.2.  This error model is related to prior estimations, posteriori error estimations 

models differ from it and the most usual method is related to both Root Mean Square Error (RMSE) for a set of 

measures or population and the standard deviation applied to a single  data sample (Fisher & Tate 2006). The 

RMSE is a general method applied to compare a sample population with another reference dataset, usually used 

to compare a set of predicted values with a reference base. To apply the RMSE analysis we need to define the 

accuracy (random and systematic components) and precision (random component) (Willumsen et al. 2007), 

(Byrnes et al. 2002) and (Umbach 1976). In general, a degree of randomness in samples is much more acceptable 

than in systematic fashion. Thus, we can resume the relationship between systematics (biases) and non-systematics 

uncertainties (random),  to calculate the statistical error associated to depth observations to calculous the TVU 

related to vertical measurements in the following equation 6.3 (Byrnes et al. 2002) and (Wolberg 2006). 

 𝜎𝑇𝑜𝑡𝑎𝑙 =  √∑𝜎𝑁𝑜𝑟𝑚𝑎𝑙 𝐷𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑖𝑡𝑒𝑑
2 + 𝑆𝑦𝑠𝑡𝑒𝑚𝑎𝑡𝑖𝑐 𝐸𝑟𝑟𝑜𝑟𝑠    eq. 6.3 

To confidence level required for (IHO 2008), we can apply the equation 6.4 relationship. 

 𝐶𝐿 = 1.96 ∗ 𝜎𝑇𝑜𝑡𝑎𝑙    eq. 6.4 

Where CL represent the confidence level. 

6.2 Horizontal Uncertainty  
 
Horizontal uncertainties are related to the uncertainty at the position of the sounding device (transducer) and hence, 

the horizontal position of the sampled point within the geodetic reference frame. According the standard for 

hydrographic published surveys (IHO 2008), the Total Horizontal Uncertainty (THU) for survey dataset will have 

confidence level applied to total vertical, that is, 95 percent. At the same way applied to vertical uncertainty case, 

there are four (4) groups for hydrographic survey to classify a horizontal positioning orientation used to navigation 

and topography aids in signalization purpose. The Table 6.3 is a partial transcription of Table 1 from (IHO 2008). 
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Table 6.3: Minimum Standards for Hydrographic Surveys Related to Positioning 

Description of Objective Special 

Order 

Order 

1A 

Order 

1B 

Order 

2 

Positioning of fixed aids to navigation and 

topography significant to navigation. (95% 

Confidence level) 

2 2 2 5 

Positioning of the Coastline and topography less 

significant to navigation. (95% Confidence 

level) 

10 20 20 20 

 

In hydrographic surveys uses SBES, the device is generally installed in the survey boat hull, some cases it is set 

in the steam boat or, in other cases installed in the boat hull edge using a mechanical support to adapt the transducer 

body to boat hull fixed point. In this case, we can consider the system composed by the SBES and Boat a rigid 

body, the position of sounding device or SBES is the same position of the survey boat considering plus/minus an 

off-set. The off-set results in the distance separation from the antenna of the boat geo-positioning system in our 

case a Differentia Global Positioning System (DGPS) device and the SBES. The Figure 6.2 illustrates the 

relationship between positioning system receptor (GPS Receptor) and the transducer device SBES.  

 

The uncertainty in horizontal positioning for extracted data from SBES can be considered the same of vessel 

positioning system, and approximated by the THU approach. Some standard of bathymetric survey recommends 

maintaining the horizontal positioning precision in deliverable surveys reports into decimetres, at least, but in some 

cases it can reach few meters (NOS 2013) and (IHO 2008). Nowadays with advances in the GPS systems, a mainly 

in the DGPS approach to use Real Time Kinematic (RTK) techniques, we can give a horizontal positioning with  

order of centimetres accuracy. The reference of horizontal and vertical positioning of the GPS system is based on 

MSL of chart datum. 

 

The GPS system has two types of services, the standard Positioning Service (SPS) and the Precise Positioning 

Service (PPS). The PPS service provide the GPS standard codes and signal in a broadcast mode by all GPS 

constellation of Navstar satellites in L1 frequency (USA 2008). This service is available for peaceful civil, 

commercial, and scientific use. The PPS service provides by way of authorized access in broadcast at the GPS L1 

and L2 frequencies.  In the case of PPS service there are one precision (P) code ranging that is reserved for 

authorized use. This P code is encrypted and altered to become the Y-code. The Y-code will be available only for 

usuries that has a valid cryptographic keys(USA 2007).   
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In this work, we use a special service of Navistar to have a DGPS adjust to precise positioning system from the 

GPS PPS service, we reach a positioning mark with 4 cm of precision.  

 

  

Figure 6.2: Hydrographic survey boat scheme to SBES data extractions a correlation among off-sets 



Shallow Water Remote Sensing Using Sonar Improved with Geostatistics and Stochastic Resonance Data Processing 

 62 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Part II: Original Research 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



Shallow Water Remote Sensing Using Sonar Improved with Geostatistics and Stochastic Resonance Data Processing 

 63 

7.0 Sensing Based in Stochastic Resonance 
and Chaos Approach 

 
 

The process to measure physical variables from some environmental signal or effect often starts from sensing 

elements based on dynamical sensors.  Many sensors have nonlinear input-output characteristics and conventional 

techniques cannot be used to infer a linear and proportional input-output relationship commonly used to a linear 

sensor.  To solve this problem, and to answer the research question related to non-linear sensing based devices a 

study to solve the problem of nonlinear response sensor behaviour was proposed and simulated using a sensing 

based on a Chua’s circuit chaotic regime. 

 

In the underwater remote sensing context using a manned or unmanned marine platform some nonlinear data are 

acquired using inertial/navigational and sonar devices. Today, techniques to increase the quality and the confidence 

level of remote sensing data will impact directly in the survey efficiency and results, one of the most common 

techniques uses standards sensors, and in some cases with hardware replication, to performing a data fusion among 

sensing devices. For example, regarding to remote sensing path planning and navigation process, the use of data 

fusion between positional and attitude data from inertial, navigational and image sensors is most common in order 

to achieve its self-localization and mapping tasks in underwater inspection surveys. Sensors data fusion will reduce 

the estimative error in attitude and positioning but can increase a time delay in sensing, data processing or 

communication stages (Robertsson et al. 2011) and (Kim 1997). This can influence controller time response and 

timestamp synchronization between all sensors using acquired data. Advances in research involving dynamic 

nonlinear systems and concepts to treat nonlinearity and chaos in Chua’s circuit have inspired this work to improve 

stochastic resonance in chaotic regime in sensing applications. 
 

In this work, we focus on a new paradigm to process a signal by applying a noise activated nonlinear bistable 

dynamical system. It can have many applications in detecting weak dc or low-frequency response signals 

(Kapitaniak & Bishop 1999) and (Bacelar 2010). As an example of this type of sensors, I cite the Fluxgate 

Magnetometer, that is a core sensor component of an electronic compass system.  An electronic compass system 

is one of the main sensors embedded in mobile robotic platform and it is one of components embedded in any 

autonomous navigation system. Its task is to give the vehicle attitude and heading information.  A common way 

in navigation and self-localization task is to perform data fusion between inertial sensors and GPS receivers and 

to improve the navigation data passed to system controller.  In an underwater survey application performed with 

underwater data acquisition platform there is no GPS receiver information. Data from compass and other inertial 

sensors are the only way to infer the attitude, position and heading data. Estimative in attitude, heading and position 

is better when the sensor and signal processing are better and faster. 

 

The aim of this work is to simplify and speed up data interpretation from one of the navigation sensor element, a 

compass based fluxgate magnetometer, and to get higher accuracy in data acquisition and fast data processing in 

self-localization and mapping application.   

7.1 Stochastic Resonance Chua’s Circuit and 
Residence Time Differences 

 

In this study, nonlinear bistable systems are used to detect and quantify small DC or low frequency signals.  The 

proposed sensor is based on the stochastic resonance phenomenon (SR) and the residence time difference (RTD) 

technique.  RTD technique is free from the second type of error (ii) mentioned above and reduces complexity of 

the electronic board.  There is no feedback loop in RTD technique.  The existence of chaotic systems with two 

attractors inspired us to use them as sensors of small DC target signals.  We considered a sensor based on Chua’s 

electronic circuit.  It is a very simple circuit with a variety of different dynamic behaviours.  Its chaotic dynamical 

behaviour is characterized by two single scroll attractors.  The period of switching between attractors is called as 

residence time and this switching has a random component (Bulsara et al. 2003).  The residence time distribution 

has been studied e.g. in neurophysiological experiments based on spiking stimulus of neuron transmissions.  The 

external target signal produces an asymmetry in the nonlinear states potential what leads to concomitant difference 

in the mean residence times at two attractors.  Performing numerical simulations, we obtained that the residence 

time difference is proportional to potential asymmetry caused by DC target signal (Bulsara et al. 2003).  
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Here in this work, we propose how to detect DC or low frequency voltage signals based on the stochastic resonance 

phenomenon. A simulation data and processing was verified in a practical implementation of Chua’s circuit 

operating in a chaotic state in which two single scroll attractors coexist and the noise activates bistable dynamic 

sensor (Gammaitoni & Bulsara 2002) and (Dari & Gammaitoni 2009).  The Chua’s circuit is an easy and accessible 

circuit at low cost and now can be implemented in a single component based on bulk-silicon as a monolithic chip 

(Zhong & Ayrom 1985) and (Cruz & Chua 1992).  The capability to make Chua’s circuit as miniaturized chip is 

important in its sensor applications.  In our applications, the external periodic bias signal is not necessary 

(suprathreshold scenery) and the noise drives the sensor between attractors and use this observable as a quantifier 

of the target signal. The work of the sensor operation was conducted using numerical simulations. The best results 

were archived by applications of an optimal noise.  In the sensor design, there are two main difficulties.  One is 

the relationship between input and output signals known as sensor response which should be linear and disrupting 

in presence of a noise (Gammaitoni & Bulsara 2003).  The second difficulty is the observation time (Kennedy 

1992).  The first difficulty is overcome in our sensor because the noise is inherent in the proposed circuit, and for 

the optimal noise level there is practically linear dependence between the output time proportion and the input dc 

target signal voltage.  For the second difficulty, we show fast decrease of the error with the observation time for 

our sensor driven by the optimal noise. 

7.2 Sensor Description, Detection Strategy and 
Operating Range 

 

The proposed design of a sensor based on Chua’s circuit that we have studied by numerical simulations and tested 

in practical experiments based on classical circuit proposed in ref.(Matsumoto 1984) is made up of one resistor, 

one inductor, two capacitors and one nonlinear element called Chua’s diode characterized by a three-segment 

piecewise-linear current–voltage curve (Dari & Gammaitoni 2009) and (Chua 1992).  The Chua’s diode can also 

be made using multiple discrete components like resistors, operational amplifiers, diodes and transistors 

(Matsumoto 1984) and (Chua 1992), or integrated circuits (Chua 1992).  Nowadays in many works Chua’s diode 

is replaced by a new type of a component called Memristor (Chua 1971), (Strukov et al. 2008) and (Wang et al. 

2011). The sensor based on Chua’s circuit proposed in this work has a standard configuration diagram with the 

innovative difference, a source of a noise and the signal from sensing element are inputted in the inductor circuit 

loop. The schematics of the proposed circuit is presented in the Figure 7.1. 

 

 

 

 

 

 

 

 

 

 

 

 

The current versus voltage dependence of Chua’s diode is defined analytically as follows: 

 𝐼 = 𝑓(𝑉) =  𝑚1𝑉 + 
1

2
(𝑚0 −𝑚1)(|𝑉 + 𝑉0| − |𝑉 − 𝑉0|)     eq. 7.1 

where: 

 

𝑓(𝑉) – represents the function Voltage-Current;  

𝑉 – is the potential voltage over the Chua’s diode; 

𝑉0 – is the potential breakpoint of the Chua’s diode response curve; 

𝑚0 – is the slop curve into the linear region between −𝑉0 and 𝑉0; 
𝑚1 – is the slop curve out of limits (−𝑉0 , 𝑉0), also linear from −𝑉0 𝑡𝑜 −∞ and 𝑉0 𝑡𝑜 + ∞. 

In Figure 7.2, we show graphical representation of the voltage-current curve and in Table 7.1 we list values of 

parameters used.  

 

Figure 7.1: Noise activated voltage sensor based on Chua’s circuit 
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Table 7.1: Voltage-Current parameter values 

Parameter Value 

𝑉0 1.08 Volts 

𝑚0 -0.758 mA 

𝑚1 -0.409 mA 

 

The sensor based on Chua’s circuit has dynamical behaviour described by three state variables, modelled by 

differential equations.  These state equations are the following: 

 𝐿
𝑑𝐼𝐿

𝑑𝑡
= −𝑉2 + 𝑆(𝑡) + 𝜉(𝑡)   eq. 7.2 

 

 𝐶2
𝑑𝑉2

𝑑𝑡
= 𝐼𝐿 − 𝐺(𝑉2 −𝑉1)   

eq. 7.3 

 

 𝐶1
𝑑𝑉1

𝑑𝑡
= 𝐺(𝑉2 − 𝑉1) − 𝑓(𝑉1)    eq. 7.4 

where: 

 

𝐺 =
1

𝑅
 - represent the inverse of the resistance R which influences dynamical speed; 

𝑆(𝑡) - is the target signal to be detected; 

𝜉(𝑡) - is the noise intensity. 

 

Values of circuit components relates to parameters given in Table 7.1 was defined in the Table 7.2.  

 

Table 7.2: Components Values to make an Autonomous Chua’s Circuit in the Figure 7.2 

Component Value Observation 

𝐿   (Inductor) 0.018 H  

𝐶1 (Capacitor) 10 nF  

𝐶2 (Capacitor) 100 nF  

R (Resistor) 1.9~2k R is a linear variable potentiometer 

 

The autonomous Chua’s circuit with these components exhibits rich variety of chaotic attractors, bifurcation 

phenomena and routes to chaos (Matsumoto 1984).  The sensor based on Chua’s circuits has different dynamical 

behaviour based on the value of the resistance R. This is described in Table 7.3. 

 

 

 Figure 7.2: Graphical representation voltage-current 
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Table 7.3: Relationship between value of the resistance R and Chua’s circuit dynamical behaviour 

Input 
Range Value selected (R) System Behaviour 

𝑺(𝒕) 𝝃(𝒕) 
0 0 R > 2.1 k The sensor is in the stable equilibrium point, figure 36A 

0 0 ~2030   < R < 2.1 k The sensor loses the stability of the equilibrium point 

0 0 ≈2030  Stable limit circle emerges (Hopf bifurcation), figure 36B 

0 0 ~1994 < R <~2030  Gives rise to period-2, period-4 etc. limit circles 

(Bifurcations),  

0 0 ~1969 <R <~1994  Two single scroll attractors coexist, figure 36C 

0 0 R< 1969  The single scroll attractor abruptly enlarges itself and the 

double-scroll attractor is created, figure 36D 

0 0 =1970  Sensor operates near the birth of the double scroll attractor 

 

For R values (~1969 <R < ~1994), the system trajectory will converge to a particular attractor if the initial 

conditions are chosen in its basin of attraction Figure 7.3.  The two coexisting attractors we observe in experiments 

depends on the initial state of the sensor.  The single scroll attractor has a structure of Rössler’s spiral-type attractor 

(Zhong & Ayrom 1985).  The dynamics of a sensor is not strictly periodic, but its frequency varies in time around 

some preferred value which in our case is 2900 Hz. This dynamic behaviour mimics the oscillatory processes 

occurring in natural biological systems(Moss 2004). 

 

The noise activated dc signal sensor proposed in this work operates in the resistance R range in which two single 

scroll attractors coexist Figure 7.3 D. By increasing R in this range one increases the speed of target signal 

detection because noise activated crossings between attractors become faster.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

We selected R=1970, i.e. the sensor operates near the birth of the double scroll attractor. In recent years Chua’s 

diode with three-segment piecewise-linear current–voltage characteristic has been replaced by Chua’s diode with 

smooth cubic current–voltage characteristic (Rössler 1979). Chua’s circuit with cubic nonlinearity has a period-1 

oscillation frequency in the MHz frequency range, so it is more than 300 times faster than Chua’s circuit used in 

this paper. 

7.4 Numeric Simulations 
 

We have performed computer simulations using the set of three differential equations 7.4 to 7.6. The time step 

was ∆𝑡 =10−6 s. Each simulation run we started from different initial conditions. We assumed the noise 𝜉(𝑡) to be 

the Gaussian white noise with zero mean. The noise intensity, i.e. the noise standard deviation we denote by  𝜎. 

The Box–Muller algorithm (Box & Muller 1958) was used to generate Gaussian random variables from uniformly 

distributed random variables in the interval [0, 1]. When the target and noise signals are absent, the dynamic 

trajectory of the sensor is in one single scroll chaotic attractor. When only dc target signal is present, dynamical 

A B 

C D 

Figure 7.3: Different dynamical behaviour of Chua’s circuit in the Phase space. 
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trajectory remains on one attractor. Switching on the noise source causes crossings of dynamic trajectory between 

coexisting single scroll attractors. We followed the value of the voltage 𝑉1(𝑡) and used the step function 𝛳(𝑡) =
±4 V to identify the attractor in which the trajectory is located. In this procedure, additional crossing levels ±4 V 

were used to eliminate anomalous switching events where the trajectory crosses zero but remains on the same 

attractor (Gammaitoni et al. 1998).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The example of the voltage 𝑉1(𝑡)  and the step function 𝛳(𝑡) temporal evolution for the weak dc target signal 60 

mV and for the noise intensity 𝜎 = 0.5 V is shown in Figure 7.4. The information about the target signal is 

contained in unequal residence times of the sensor dynamic trajectory in two stable single scroll attractors. The 

sensor converts dc target signal voltage into square waveform with stochastic switching between two states. The 

sequence of crossings between attractors can be linked to the spike train recorded from real sensory neurons 

(Wellens et al. 2004), (Lindner 2004), (Bulsara & Gammaitoni 1996) and (Moss 2004). 

 

We propose to quantify dc target signal by the proportion 𝑇𝑢 𝑇⁄  of the time 𝑇𝑢 which dynamic trajectory stays in 

the single scroll attractor with the center at the positive voltage +4 V to the total observation time 𝑇. We choose 

the time proportion and not the mean residence time difference in coexisting attractors, like in RTD technique, to 

simplify the readout scheme and avoid averaging. The time proportion 𝑇𝑢 𝑇⁄  depends both on dc target signal 

voltage and on the noise intensity as it is shown in Figure 7.5. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The dependence of the time proportion 𝑇𝑢 𝑇⁄  on the noise intensity for different positive dc target signals is 

presented in Figure 7.6. For negative dc target signals this dependence is symmetric to the dependence shown in 

Figure 7.6. with respect to the line 𝑇𝑢 𝑇⁄ = 0.5.  

 

Figure 7.4: The voltage 𝑽𝟏(𝒕)  (thin line) and the step function 𝜭(𝒕)  (thick line) for dc target signal 𝑺(𝒕)= 60 𝒎V and the noise 

intensity 𝝈 = 𝟎. 𝟓 V. 

Figure 7.5: The diagram showing the time proportion 𝑻𝒖 𝑻⁄  for different values of dc 

target signal and the noise intensity. In regions denoted by dotted lines the sensor is 

unstable. 
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7.5 The Optimal Noise Level for Signal Detection 
 

To perform the study of signal detection we assume that dc target signal to be detected is in the range (-127.5 

mV,127.5mV). In Figure 7.7, we present enlarged part of Figure 7.5.  Thick dashed lines show the selected range 

of dc target signals for three noise intensities: 0.005, 0.5 and 1.6 V. One can notice that this range for the very low 

noise intensity 0.005 V is mainly in the region where Tu⁄T = 1, so most of dc target signals are not detected. For 

the noise intensity 1.6 V the selected range spans the range of time proportions (-0.9, 0.9), so the sensor resolution 

for time proportions outside this range is not used. Higher noise intensities deform attractors too much and 

assigning dynamic trajectory to a given attractor becomes impossible. The sensor thus cannot operate for σ> 1.6 

V. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The optimal noise intensity for the range (-127.5 mV, 127.5 mV) of dc target signals is near 0.5 V. In Figure 7.8, 

we present the dependence between the output time proportion 𝑇𝑢 𝑇⁄  and dc target signal voltage obtained in this 

case for two observation times. This dependence is close to the linear dependence denoted by grey line in the 

Figure 7.6: The dependence of the time proportion Tu⁄T on the noise intensity for different 

positive dc target signals. The curves from bottom to top are for S(t) equal: 10, 20, 30, 40, 50, 

60, 70, 80, 90, 100, 110, 125, 150 and 200 [mV]. 

Figure 7.7: The enlarged part of the diagram from Figure 16. The dotted lines are for ± 125.5 
mV. The thick dashed lines are for noise intensities 0.005,0.5 and 1.6 V. The thin lines 

correspond to time proportions T_u⁄T: 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8 and 0.9 (from bottom 

to top). 
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figure. One can notice that the error in measurement of dc target signal decreases with the observation time. To 

quantify this effect, we divided the input dc signal range (-127.5 mV, 127.5 mV) into 256 uniformly distributed 

voltages and we performed computer simulation runs for all these voltages over given observation time.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Next we rescaled obtained output time proportions into output voltages using the formula  𝑆𝑜𝑢𝑡 = 255(𝑇𝑢 𝑇⁄ −
0.5). The dc target signal measurement error 𝐸(𝑡) we then calculated using the following formula from equation 

7.7 as follow. 

 

𝐸(𝑡) = 〈√∑
[𝑆𝑜𝑢𝑡(𝑖, 𝑡) − 𝑆𝑜𝑢𝑡(𝑖, 𝑡 = 15)]2

256

255

𝑖=0

〉 

 

eq. 7.5 

Where the sum runs over 256 uniformly distributed voltages and brackets < . . .> denote the average over several 

runs starting with random initial conditions. In this formula 𝑆𝑜𝑢𝑡(𝑖, 𝑡 = 15) is the output voltage after 15 s obtained 

from time proportions shown in Figure 7.8. In Figure 7.9 we show how the measurement error decreases within 

the first 1.5 s of the observation time.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This decrease can be well fitted by the power law 𝐸(𝑡) = 4.53 √𝑡⁄ , which is shown by continuous line in this 

figure. This dependence was expected and it was also obtained for the measurement error in sensors based on RTD 

measurement technique(Nikitin et al. 2003). 

Figure 7.8: The dependence of the output time proportion on the input dc signal 

voltage for the noise intensity 0.5 V. The observation time was 0.25 s (thin line) 

and 15 s (thick line). 

Figure 7.9: The dependence of the measurement error on the observation time for the noise 

intensity 0.5 V The continuous line is defined by the power law with the exponent -0.5. 
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7.6 Conclusion 
 

In this section, we proposed the new stochastic resonance noise activated sensing detector applied to measure a 

weak dc signal or also a low frequency voltage target signal in sensing applications. The sensor is based on Chua’s 

electronic circuit operating in chaotic range where two single scroll Rössler’s spiral-type attractors coexist. We 

selected standard parameters of electronic components, so this sensor can practically be implemented at very low 

cost. Moreover, Chua’s circuits can now be fabricated in a single chip, so this sensor can be made very small. 

Small-size sensors are especially needed and used in many applications. The detection strategy of the proposed 

sensor is based on the monitoring of crossings between attractors activated only by the noise added to a target 

signal. The proportion of time the sensor stays in one attractor is used to quantify its output. The operational 

scenario described in this paper has many advantages. The sensor performs well in the presence of noise, because 

the noise is inherent in its functioning.  

 

The readout scheme is very simple to implement practically without complicated electronics. The sensor operates 

in the absence of a time-periodic bias signal commonly used in conventional bistable dynamic sensors to drive 

them between their stable states. Performing numerical simulations, we obtained the diagram showing the output 

time proportion for different values of the input dc target signal voltage and the noise intensity. This diagram 

allows one to determine the range of noise intensities optimal for detection of a given target signal. We found the 

optimal noise intensity 0.5 V for dc target signals in the range (-127.5mV;127.5mV). We obtained nearly linear 

output–input relation in this case, what is one of the most desirable features of a good sensor. The short observation 

times often limit the applicability of noise activated sensors operating without the bias signal. For the optimal noise 

level, we obtained that the measurement error decreases with the observation time according to the power law with 

the exponent 0.5 and it is smaller than 4 mV after 1.5 s. Finally, we would like to mention very close relation 

between the sensor described in this paper and natural biological systems. Its internal dynamics within the attractor 

mimics the natural oscillatory processes, whereas crossings between attractors can be linked to the spike train 

recorded from real sensory neurons. 
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8.0 Contrast Modification of Acoustic Images 
Based on Stochastic Resonance  

 
 

In this section we present the model of contrast enhancement of acoustic images developed in (Sousa et al. 2016) 

that was inspired by environmental noise applications in biological systems.  Visual detectability of biological 

systems attracted considerable attention over the last decades. It was shown that visual perception characteristics 

of the input subthreshold signal are enhanced at some optimal level of added noise (Simonotto et al. 1997) and 

(Siegel & Read n.d.).  This process comes from a phenomenon called the stochastic resonance (L. Gammaitoni et 

al. 1998) and (Lindner et al. 2004). Recently, new form of stochastic resonance phenomenon has been introduced 

under the name of suprathreshold stochastic resonance (SSR) to illustrate the fact that it is not restricted to 

subthreshold signals (Stocks 2000) and (McDonnell et al. 2012).  This phenomenon occurs in an array of 

comparators (threshold devices) subject to the same input signal and independent identically distributed noise.  

The output from each device is summed to give an overall output.  It has been shown that above a certain noise 

intensity the optimal threshold settings of comparators occur when all thresholds are equal to the signal mean 

(McDonnell et al. 2006) and (Mcdonnell et al. 2005).  The array of comparators subject to signal and noise is a 

useful model for a range of systems including flash parallel analog-to-digital converters (McDonnell et al. 2005), 

networks of sensory neurons (Ashida & Kubo 2010) and digital sonar arrays e.g. DIMUS (Digital Multibeam 

Steering) sonar array which was one of the first digital beamforming sonar systems (Anderson 1960)(Rudnick 

1960).  It has been shown that pre-processor based on the phenomenon of SSR can be used to improve the 

performance of bearing estimation especially in an environments contaminated with leptokurtic (heavy-tailed) 

noise (Hari et al. 2009a)(Hari et al. 2009b).  This non-Gaussian noise is typical for ocean acoustic environments 

(Machell et al. 1989a). The performance of the pre-processor was optimized by appropriate selection of the 
standard deviation of the noise added to comparators and their number.   

 

Sonar systems represent an efficient tool for obtaining acoustic images from underwater relief (Lurton 2010). 

These systems provide a portrait of underwater sounded area in the form of high-resolution images even in waters 

where the visibility is poor for optical systems or human vision (Celik & Tjahjadi 2011). The processing of these 

images is the basis for solving different problems in automated target identification, underwater pipeline and cable 

inspections and in the navigation (Chapple 2008) (Acosta & Villar 2015).  The lateral side scan sonar (SSS) is one 

of the most widely used type of lateral scanning sonars, constituting the main visualization tool for obtaining 

acoustic images of the sea floor (Celik & Tjahjadi 2011) (Esther Dura et al. 2005) (Reed et al. 2006) (Petillot et 

al. 2002).  The SSS images present a low dynamic range of pixel intensities and it is difficult or often impossible 

to distinguish targets or objects details in these images.  Thus, they must be improved to perform tasks like the 

automated target detection and recognizing.  Additionally, SSS images present an inherent noise known as speckle 

pattern. This noise is a common disturbance in remote sensors that use coherent radiation as a source.  When the 

energy pulse in the form of acoustic waves is emitted, after the impact or interaction with a target or underwater 

bed these waves are no longer in phase.  There are thus positive or destructive interferences, which generate 

abnormally high or low returns. Speckle noise is difficult to distinguish automatically, and its elimination is 

complex. At present, there is no universal algorithm for the improvement of SSS acoustic images, although there 

are several strategies used which depend on the sonar device used, the wavelength, acquisition depth, processing 

time and other factors (Lurton 2010) (Chapple 2008) (Blondel 2009). 

 

In this section the technique to modify digital sonar grayscale image contrast using noise based on the threshold 

elements is investigated.  Many of our sonar images have very low dynamic range of the intensity values and 

therefore needed to be enhanced before being displayed.  Moreover, the performance of processors used for 

underwater source localization degrades rapidly as the quality of the sonar image reduces.  It was shown that pre-

processing of sonar images extends their usability (Hari et al. 2009a) and (Hari et al. 2009b).  We apply the 

algorithm for contrast modification like the algorithm proposed by Marks et.al. (Marks et al. 2002). In this 

algorithm, the noise is added repeatedly to an image and is successively thresholder followed by overall averaging.  

Our aim is to demonstrate how the contrast and the quality of digital sonar image depends on the number of binary 

representations used to get the output composite image and on the noise mean, intensity and probability 

distribution.  We consider the generalized Gaussian noise parameterized by positive exponent p (Nadarajah 2005). 

This noise family is widely used in underwater acoustics and sonar application (Machell et al. 1989b).  We selected 

the Uniform noise described by the rectangular probability density function (RPDF with p=∞), the white noise 

described by the Gaussian probability density function (GPDF with p=2) and the Laplacian noise described by the 

Laplace probability density function (LPDF with p=1 ).  The Gaussian white noise was successfully used for 

contrast enhancement of low-contrast and low-quality images (Chouhan 2012) and (Jha et al. 2012), the Uniform 
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noise was used by Marks et.al. (Marks et al. 2002) to present the suprathreshold stochastic resonance for the image 

signal, whereas the Laplacian noise is used to model underwater acoustic noise (Machell et al. 1989a) and it can 

effectively be used in pre-processing of sonar images (Hari et al. 2009a)(Hari et al. 2009b).  In experimental 

situations, it is often difficult to distinguish between stochastic noise and deterministic chaos.  We have also 

replaced the stochastic noise by the chaotic time-series generated by the logistic map.  The logistic map is a very 

simple quadratic difference equation parameterized by positive parameter R (May 1976).  For the R=4 case, the 

iterate sequence of numbers in the interval (0.1) generated by this map is chaotic for almost all initial conditions.  

The probability density function of these numbers increases fast and reaches maxima near 0 and 1, so it is very 

different from generalized Gaussian probability density functions.  It was observed that the amount of 

improvement offered by the stochastic resonance is dependent on the signal-to-threshold distance (Korneta et al. 

2006) and (Stocks 2000). This distance can be changed by moving the noise mean or the threshold.  In order to 

show how the contrast and quality of the output composite image depend on the number of its binary 

representations, we have obtained output images for the number of binary representations from 1 to 10000.  It has 

proven difficult to determine a metric for the contrast of natural images. Bex et.al. (Bex & Makous 2002) showed 

that rms contrast was the best metric for natural images among the commonly used Michelson contrast, root-mean-

square (rms) contrast, and band-limited contrast metrics (Peli 1990).  The rms contrast is a single value assigned 

to the whole image simple to calculate.  We use rms metric to quantify image contrast in this work.  (Collins et al. 

2002) proposed cross-correlation measure as appropriate measure to quantify aperiodic stochastic resonance.  The 

correlation coefficient was used e.g. to measure the performance of preprocessors enhancing sonar images (Hari 

et al. 2009b).   We measure the quality of the processed image in terms of its correlation coefficient with the 

original image.  We also compare results of image contrast modification considered in this work with results of 

image histogram equalization, histogram stretching and contrast and brightness modification procedures in GIMP 

image processing software. 

8.1 Method Description 
 

In this section, the method of contrast and quality enhancement applied to SSS images is described. Let’s denote 

the original input image of size 𝑚 × 𝑘 by 𝐼 .  𝐼(𝑖, 𝑗) represents the intensity level of a pixel in 𝑖 − 𝑡ℎ row and 𝑗 −
𝑡ℎ column with 𝑖 = 1, … ,𝑚, and 𝑗 = 1, … , 𝑘.  We denote by 𝑏 the possible number of intensities and for 8 bits  

𝑏 = 256. The proposed method consists of generating the composite image 𝐼𝑐 by producing and combining 𝑁 

binary images. Each binary image 𝑔(𝑖, 𝑗) is generated according to the following formula: 

 
𝑔(𝑖, 𝑗) = {

𝑒1 𝑖𝑓 𝐼(𝑖, 𝑗) + (𝑏 − 1) − 𝜉(𝑖, 𝑗) ≤ 𝑇

𝑒2 𝑖𝑓 𝐼(𝑖, 𝑗) + (𝑏 − 1) − 𝜉(𝑖, 𝑗) > 𝑇
 

 

eq. 8.1 

Where 𝜉(𝑖, 𝑗) denotes random variable extracted from the probability distribution of the noise at the position (𝑖, 𝑗). 
The random variable 𝜉(𝑖, 𝑗) is generated and added to each pixel intensity of the image 𝐼(𝑖, 𝑗). The result of the 

operation 𝐼(𝑖, 𝑗) + (𝑏 − 1) − 𝜉(𝑖, 𝑗)  is thresholded using a single threshold 𝑇. If it is less than or equal to the 

threshold 𝑇, it establishes a label 𝑒1 (for example, the lowest possible pixel intensity value 𝑒1 = 0). Otherwise, a 

label 𝑒2 is established (for example the highest possible pixel intensity value 𝑒2 = 𝑏 − 1). Generally, a constant 

threshold 𝑇 is set equal to (𝑏 − 1). The resulting image will contain only two possible tag values 𝑒1 and 𝑒2, 

generating a binary image.  This procedure is repeated up to 𝑁 times generating a set of binary images 

𝑔1(𝑖, 𝑗), … , 𝑔𝑁(𝑖, 𝑗). These images are combined to form a single composite image 𝐼𝑐 by averaging its pixel values. 

Each composite image 𝐼𝑐 will contain 𝑁 + 1 pixel intensity values. The composite image 𝐼𝑐 is finally approximated 

to intensity of pixel values between 0 and 𝑏 − 1. 

In order to evaluate the composite image quality and contrast we have different metrics that emerge from the theory 

of digital image processing (González 2010). To analyse the contrast of a digital image 𝐼 we have: 

• Michelson's contrast (Albert A Michelson 1927) useful for periodic patterns defined as the quotient between 

maximum intensity  (𝐼max) and minimum intensity (𝐼𝑚𝑖𝑛) difference and the sum of these image boundary 

intensities 𝐼: 

 𝐶 =
𝐼𝑚𝑎𝑥 − 𝐼𝑚𝑖𝑛
𝐼𝑚𝑎𝑥 + 𝐼𝑚𝑖𝑛

  

eq. 8.2 
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• Webber contrast (Peli 1990), useful for well-defined objects and background defined as the difference 

between the intensity at a point 𝐼(𝑖, 𝑗) and the average intensity < 𝐼 >of the image 𝐼 divided by the average 

intensity < 𝐼 >. 

 
𝐶 =∑∑

𝐼(𝑖, 𝑗) − 〈𝐼〉

〈𝐼〉

𝑘

𝑗=1

𝑚

𝑖=1

 
 

eq. 8.3 

• Contrast expressed by the root mean square value (RMS) (Peli 1990), which uses the standard deviation 𝜎𝐼  
of the pixel intensity levels in the image 𝐼 defined as. 

 

𝐶 = 𝜎𝐼 = √
1

𝑚𝑘 − 1
∑∑[𝐼𝑛(𝑖, 𝑗) − 〈𝐼𝑛(𝑖, 𝑗)〉]

2

𝑘

𝑗=1

𝑚

𝑖=1

 

 

eq. 8.4 

Where 𝐼𝑛 represents the normalized intensity level such that 0 ≤ 𝐼𝑛 ≤ 1. 

 

On the other hand, in order to analyses the quality of a digital image, the correlation coefficient 𝜌 between the 

input and output image (Collins et al. 1995) (Mcdonnell et al. 2002) can be used. This coefficient between the 

composite output image 𝐼𝑐 and the original image 𝐼 is defined as: 

 
𝜌 =

∑ ∑ (𝐼𝐶(𝑖, 𝑗) − 〈𝐼𝐶〉)(𝐼(𝑖, 𝑗) − 〈𝐼〉)
𝑘
𝑗=1

𝑚
𝑖=1

√∑ ∑ (𝐼𝐶(𝑖, 𝑗) − 〈𝐼𝐶〉)
2∑ ∑ (𝐼(𝑖, 𝑗) − 〈𝐼〉)2𝑘

𝑗=1
𝑚
𝑖=1

𝑘
𝑗=1

𝑚
𝑖=1

 
 

eq. 8.5 

Therefore, if the correlation coefficient 𝜌 presents a high value, close to 1, it means that the images 𝐼𝑐 and 𝐼 are 

similar. It thus represents an appropriate quantitative measure of similarity. 

8.2 Sidescan Device and Image Acquisition 
 

The acoustic images were acquired in Todos los Santos bay, near the Salvador city in, state of Bahia in Brazil. For 

this, the side scan sonar (SSS) Starfish 450F of the company Blueprint was used (S. Blueprint 2016). The SSS was 

mounted on the front of a research vessel's hull using a steel bracket Stainless as shown in Figure 8.1. The SSS 

device comprises a dual acoustic echo channel employing two frequencies 430 kHz and 470 kHz to produce a 

chirping type signal. The maximum sonar range was set to remain three to four times greater than the depth of the 

water. The SSS provide an acoustic pulse for each side and each of these called beam. These beams are acquired 

perpendicular to the trajectory that the boat makes. Transducers array are tilted 30° to the horizontal reference or 

water surface. The main acoustic beam had 60° of vertical aperture (perpendicular to the sonar track line) and 1.7° 

of horizontal aperture or azimuth (parallel to the sonar track line)(S. Blueprint 2016). Figures  and 2 show some 

SSS device beam characteristics. If the acoustic pulses move through the column of water without refraction, the 

pulse strikes the frontal surface of an object that returns to sonar being much stronger than the marine surface 

around the object. To survey vessel navigation followed the best practices of the National Oceanic and 

Atmospheric Administration (NOAA), (Umbach 1976) and (Bowditch 2002). 

 

 

 

 

 

 

 

 

 

 

 

 

The vessel speed was less than 4.5 m/s for depths of between 5 m to 20 m and was reduced between 1.5 m/s and 

2 m/s in deeper water (> 20 m). These speeds are set by the manufacturer of the acoustic device for correct 

Figure 8.1: Survey boat, sonar from the left with sonar 

bracket and GPS-Sonar head relative position. 
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coverage. In this way, by joining successive contiguous beams, it is possible to construct acoustic SSS images. 

These images are saved in bitmap format with 8 bits per pixel (intensity levels between 0 and 255).  To acquire 

and insert a spatial data from standard georeferenced system we used a SIF III GPS device connected to the survey 

by Universal Serial Bus (USB)(S. Blueprint 2016).   
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Data extraction are performed in shallow waters then we assume that the sound pulse moves in the water column 

without refraction, the returned reflected pulse from the front surface of the object made of denser material 

(pipeline, rock a etc.) is much stronger than from the background (flat seabed). Our images were saved in the bmp 

file format with 8 bits per pixel, i.e. pixel grayscale intensities were between 0 and 255 (S. Blueprint 2016).   

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Trial and surveys were performed in two stages. The first stage was initialized at a latitude and longitude of -12 ° 

51'19.5 '' S, -38 ° 32'23.03''W respectively and finished at -12 ° 52'23.28 "S, -38 ° 33 ' 48.48 W. The system has 

collected 50500 beams of acoustical data which provided 51 images of size 1000x1000. The second stage began 

at a latitude and longitude of -12 ° 53 '33.04 ", -38 ° 33' 48.14" W respectively and ended at -12 ° 52 '16.1 "S and 

-38 ° 31' 37.14" W. The system collected 47000 beams of acoustic data providing a total of 47 images of the same 

size as in the first stage. One of the obtained images was cut out for its best presentation (size 604x800 pixels) and 

it  is shown in Figure 8.3.  In this figure, we present the real acoustic image of a pipeline lying at the bottom at 6 

m depth from water surface acquired from SSS device at left and its histogram defined as the probability 

distribution of pixel grey levels at the right graph.  

8.3 Nonlinear Image Processing and Analysis 
 

Vision is the most powerful way of environmental perception to human and animals. The process of the vision can 

be a single static image, like a photo, being spatial representation of environment, an animal or an object. Besides 

this, a movement of creatures and objects can be detected like a movie simple called scene. Today image 

processing is a tool used in several areas and applications as industrial, medical, security, entertainment etc. The 

aim of image processing is often to extract and classify information and objects at images.  Often it is required to 

extract subparts of an image and focus in a specific area or object in a region of interest (ROI) according to its 

certain properties. It permits to get some relevant information in ROI, make an analysis and specific decisions.  

Here we divided these procedures in two hierarchical groups:  Pre-processing and Processing. The pre-processing 

Figure 8.2: Sidescan beam characteristics and coverage 
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Figure 8.3: Sidescan image seeing a real pipeline extracted in a hydrographic mission survey 
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operation is composed by a set of procedures to prepare or conditioning images as normalization, selective focus, 

binarization, filtering, resampling etc. It can significantly increase the reliability of acoustic image surveys. We 

can perform image pre-processing by applying some filtering algorithm in spatial or frequency domain. In pre-

processing image processing stage, computational algorithm extracts the information of interest to make decisions 

faster and exactly as required. Here, we focus on one type of filtering i.e. acoustic image enhancement, a pre-

processing task to prepare adequately the raw image to the next processing stage.  

8.3.1 Nonlinear Approach applied to Acoustic Images 
 

Active sonars are commonly monostatic signal acquiring systems what means that the source and the receiver are 

in the same location. With this, the acquiring process is the foillowing:  

 

I. A pulse is generated by the acoustic source and transmitted to the medium; 

II. The acoustic pulse travels through the medium suffering some losses imposed by physical properties of 

the propagation medium.  Signal absorption signal is determined mainly by the pulse frequency2  and the 

distance (Stojanovic & Freitag 2006); 

III. When the pulse reaches a target, a fraction of its original intensity is reflected and/or spread through the 

medium, depending on physical characteristics of the target and the medium; 

IV. The portion of a pulse that is backscatter to a sonar platform will suffer losses too and it reaches the sonar 

receptor.  

 

The acoustics pulse energy is propagated and absorbed to depending on the frequency, the range, the density and 

elasticity modulus of the medium. These processes are modelled using a square root and logarithmic dependence. 

The acquisition signal has thus non-linear characteristic. In addition, the target reflection can have random 

reflectivity and absorption depending on their properties. 

 

The acoustic image has itself non-linear properties and because of this our procedure of sonar image processing 

uses non-linear approach like the stochastic resonance. We apply this technique to enhance acoustic images and 

prepare them to a next stage of image processing i.e. selection of ROI and extraction of the information. 

8.3.2 Image Enhancement Using Stochastic Resonance 
 

Image enhancement is one of the pre-processing techniques which facilitates the next stage of image processing 

i.e. feature extraction. It performs balance between image pixel values by expanding a dynamic range of pixel 

level representation.  Researches in this area develop solutions using global or local approach.  In the first case 

this technique is applied to all pixels of an image or scene. The local approaches are applied into a specific area, 

ROI of image or scheme. A care in the image enhancement application must be taken to maintain a coherence 

between pixel levels. In acoustic image processing perception of some features and information is limited by small 

differences in their grayscale. 

 

The stochastic resonance effect usually requires the following three components: subthreshold input signal, a noise 

with small correlation time and a nonlinear system.  The stochastic resonance phenomenon was studied mainly in 

bistable and excitable nonlinear systems.  The periodic stimulus is assumed as the input signal in most of the 

literature on the stochastic resonance (L. Gammaitoni et al. 1998) and (Korneta et al. 2006).  In the case of aperiodic 

signals which are common in real world the term aperiodic stochastic resonance was introduced (Gang 1992) and 

(Harmer & Abbott 2000).  The aperiodic stochastic resonance is characterized by the maximum of cross-

correlation between the stimulus signal and the system response.  Typically, in theoretical and experimental studies 

of the stochastic resonance and aperiodic stochastic resonance phenomena the white noise with the Gaussian 

probability distribution and zero mean value is added to the input signal (L. Gammaitoni et al. 1998), (Wellens et 

al. 2004) and (Korneta et al. 2006).  In some studies, the stochastic noise was replaced by deterministic chaos 

which models dynamical input from an environment. 

 

We performed image enhancement using contrast modification based on the stochastic resonance.  The technique 

we applied to digital acoustic image being digital representation of an acoustic underwater sonar system. The 

inspiration comes from processing of visual signals observed in biological systems. The physical visual effect is 

like separation of the distance between the brightest and the darkest pixels in grayscale image. With this we get an 

emphasis in grayscale range i.e. shadows are darker and highlights are brighter. The purpose is to have better 

                                                           
2 The signal frequency determines the absorption occurs because of the transfer of acoustic energy into heat. 
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visible details in the image what facilitate the next stage of image processing to get relevant information for feature 

extraction. Acoustic underwater image acquisition has random nature, because some parameters of the acquisition 

process and of the underwater medium have nonlinear aspect. Our proposition was to apply a nonlinear approach 

to acoustic image enhancement based on the stochastic resonance.  By adding an optimal noise to the image we 

increased its contrast. 

 

In this method, we search for an optimal noise level that applied to digital sonar grayscale image enhances its 

contrast.  The output image is formed by averaging binary images obtained by repeatedly adding a noise to the 

input image and thresholding.  The output image contrast and quality are quantified by rms contrast and the output-

input correlation function.  The dependence of these quantities on the number of binary representations forming 

the output composite image and on the noise mean, intensity and distribution is discussed.   

 

8.4 Algorithm for Image Contrast Modification by 
Noise and Quantitative Performance Metrics 

 

The method of image contrast modification applied in this work to SSS images is based on the method used by 

Marks et.al. (Marks et al. 2002) to present the stochastic resonance effect in the image visualization.  The method 

was presented in the ARGENCON 2016 Conference (Sousa et al. 2016).  Let’s denote by Image(i,j) the grey level 

of a pixel in the ith raw and jth column of the image, where  i=1,…,m  and j=1,…,k .  We denote by ξ(i,j)  random 

variable drawn from a given noise probability distribution at the position (i,j) .  We generate for each image pixel 

random variable 255-ξ(i,j) and add it to grey level of the pixel.  The obtained sum Image (i, j) + (255-ξ(i,j)) is then 

subjected to a threshold and it equals 0 for values smaller than 255 or 255 otherwise.  This procedure forms binary 

image.  Repeating this procedure N times for different realizations of the noise ξ(i, j)  it is obtained a set of N 

binary images.  The average of these binary images forms a composite image with (N+1) grey levels between 0 

and 255.  This composite image is finally approximated by the output image with 256 gray levels between 0 and 

255. In this work, we selected the root mean square (rms) contrast to measure the contrast in the image.  This 

contrast characterizes the image globally.  The rms contrast is a common way to compare contrast of images.  We 

found it the most suitable contrast metric to quantify the performance of the technique of contrast modification 

using the noise for our sonar images.  In this paper, we use normalized rms contrast defined as the standard 

deviation of pixel grey levels  𝜎𝐼   divided by 127.5 which is the maximal possible value of  𝜎𝐼 .  The formula for 

normalized rms image contrast 𝐶 is thus the following: 

 
𝐶 =

𝜎𝐼
127.5

=
√〈(𝐼𝑚𝑎𝑔𝑒 − 〈𝐼𝑚𝑎𝑔𝑒〉)2〉

127.5
 

 

eq. 8.4 

Where 〈.〉 denotes an average.  We obtained for the image shown in Figure.8.3  𝜎𝐼 = 10.87 , so its normalized rms 

contrast  𝐶 = 0.085  is very small.  The normalized rms contrast  𝐶~0.1  was typical for our sonar images.  The 

average of pixel grey levels for the image is  𝜇𝐼 = 81  and it equals to their median value. The measure often used 

to characterize aperiodic stochastic resonance and suprathreshold resonance is the correlation coefficient between 

the output and input signals (Collins et al. 2002), (Harmer & Abbott 2000), (Mcdonnell et al. 2002), (Hari et al. 

2009b) and (Chapeau-Blondeau 2000). The correlation coefficient between the output composite image  𝐼𝑚𝑎𝑔𝑒𝐶   

and the original image  𝐼𝑚𝑎𝑔𝑒𝑂  is defined as:  

 𝜌 =
〈(𝐼𝑚𝑎𝑔𝑒𝐶 − 〈𝐼𝑚𝑎𝑔𝑒𝐶〉)(𝐼𝑚𝑎𝑔𝑒𝑂 − 〈𝐼𝑚𝑎𝑔𝑒𝑂〉)〉

√〈(𝐼𝑚𝑎𝑔𝑒𝐶 − 〈𝐼𝑚𝑎𝑔𝑒𝐶〉)
2〉〈(𝐼𝑚𝑎𝑔𝑒𝑂 − 〈𝐼𝑚𝑎𝑔𝑒𝑂〉)

2〉
 

 

eq. 8.5 

The correlation coefficient is large when images 𝐼𝑚𝑎𝑔𝑒𝐶  and 𝐼𝑚𝑎𝑔𝑒𝑂 are similar and it is an appropriate 

quantitative measure of their similarity.  We use the correlation coefficient ρ to quantify the quality of the output 

composite image. 
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8.5 Application of the Method to the Sonar Image 
and Quantitative Representations of Results 

 

In this section, we apply the technique of image contrast modification using noise to the sonar image shown in 

Figure 8.3.  By μ and σ we denote the noise mean and standard deviation (i.e. the noise intensity) respectively. 

The random variable ξ(i,j)  is computed from the Gaussian distribution with the mean value equal to the average 

pixels grey levels of the image i.e.  μ=μ_I. We first selected the Gaussian white noise, because it is the most often 

used to present the stochastic resonance and suprathreshold resonance phenomena in many different systems (L. 

Gammaitoni et al. 1998) and (Korneta et al. 2006) and in image processing methods based on these phenomena 

(Simonotto et al. 1997), (Harmer & Abbott 2000), (Chapeau-Blondeau 2000), (Ryu et al. 2011), (Ye et al. 2004), 

(Chouhan 2012) and (Chouhan 2012). We have used the Box–Muller algorithm (Box & Muller 1958) to generate 

Gaussian random variables from uniformly distributed random variables in the interval [0, 1]. We have obtained 

a series of output composite images for different values of the noise intensity and different number of binary 

representations. Generally, in studies of aperiodic stochastic resonance or suprathreshold resonance phenomenon 

one usually plots the dependence of the measure of the output-input fidelity, defined e.g. by the correlation 

coefficient, on the noise intensity, i.e. on the noise standard deviation (Collins & Kuperman 1994), (Harmer & 

Abbott 2000) and (Mcdonnell et al. 2002).  In image visualization, the image contrast is another factor important 

for its perception.  The normalized rms contrast we use in this paper depends on the noise intensity.  In order to 

optimize the output composite image one should thus observe how both its rms contrast and its correlation 

coefficient with the original image depend on the noise intensity.  Moreover, one should consider how these two 

images metrics depend on the number of binary representation forming the output composite image. We propose 

to represent the efficiency of the technique of image contrast modification using noise in the plot which takes into 

account all these factors. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

It allows one to select properties of the optimal output composite image with respect to specific applications and 

to obtain the noise intensity and the number of binary representations (the number of threshold elements) to get 

this image. We call this plot as CvC plot i.e. the correlation versus contrast plot. This plot for output composite 

images obtained for the image in Figure 8.3 is shown in Figure 8.4.  The noise intensity is treated in this plot as a 

parameter which connects the normalized rms contrast of the output composite image to its correlation coefficient 

with the original input image. In CvC plot each thin line is for different number of binary representation forming 

the output composite image. The noise intensity varies along these lines. The noise intensity along dashed lines is 

the same.  All thin lines start at the same point corresponding to zero noise intensity σ=0 and ξ(i,j)=𝜇𝐼. In this case, 

grey level of pixels satisfying the condition  𝐼𝑚𝑎𝑔𝑒𝑜(𝑖, 𝑗) <  𝜇𝐼 is set to 0 and grey level of other pixels is set to 

255. As an example of underwater background acoustic image, Figure 8.5 shows three composite images 𝐼𝑐 
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Figure 8.4: The CvC plot for the Gaussian noise represents the correlation coefficient ρ versus contrast C.  Thin lines from the right 

to the left are for 1, 2, 4, 10, 24, 40, 63, 256, 1000 and 10000 binary representations.  The vertical dot-dash line marks the original 
image contrast.  Thin dashed lines from the right to the left are for the noise intensities 1, 2, 4, 5, 6, 10, 20, 40, 100, 300 and 1000 

times σ_I/3.  The thick line connects points corresponding to the maximal.  Four points marked by diamonds correspond to composite 

images shown in fig.4.  Points marked by the square and the triangle correspond to images obtained in the GIMP software after 

histogram equalization and histogram stretching of the image Track1 respectively.  The thick dashed line corresponds to 〖σ=σ〗
_I and images with equalized histograms. The right-side plot is the magnification of the lower plot. 
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composed of 𝑁 = 64 binary representations for noise intensities equal to equal to 20.24≈2𝜎𝐼 , 13.49≈
4𝜎𝐼

3
  and 

6.75≈ 
2𝜎𝐼

3
  respectively.  

. (a) (b) (c) 

   
Figure 8.5: Composite output images with N = 64 binary representations 

for noise intensities σ equal (a) 20.24≈2𝜎𝐼, (b) 13.49≈ 
4𝜎𝐼

3
 and (c) 6.75≈

2𝜎𝐼

3
. 

Images in Figure 8 5 (a) (with ρ = 0.945 and C≈0.247) and Figure 8 5 (b) (with 𝜌 ≈0.964 and C≈0477) have 

higher similarity with the original image. On the other hand, in the image in Figure 8 5 (c) (𝜌 = 0.949 and C≈
0.345) light and dark intensities are more noticeable. These three images show the importance of optimizing both 

the correlation coefficient 𝜌 and the contrast C to select the output image that satisfies the task to be solved (Sousa 

et al. 2016). 

As our main research line is related to pipeline track survey, we choose the pipeline Track1 image shown in Figure 

8.3 to present the method.  The composite image has the maximal normalized rms contrast C=1, because the 

average and the median of pixel grey levels for the image Track1 are the same.  The correlation coefficient between 

the black and white image for C=1 and the original image Track1 is ρ=0.8, so some features of the original image 

has been lost. All thin lines for more than 1 binary representation have a maximum for a non-zero level of noise.  
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Figure 8.6 Images composed with 63 binary representations of the image Track1 
for noise intensities 7.75, 13.4 and 21.73 (from the left to the right) and their 

histograms below the images track. 
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This maximum represents the output composite image for which the correlation coefficient with the original input 

image is maximal. The thick line connects these maxima.  One can notice that in fact there is a range of noise 

intensities near each maximum in which the correlation coefficient changes slightly, whereas the rms composite 

image contrast changes a lot. Let’s consider in Figure 8.6, the range of noise intensities 𝜎 = (
2𝜎𝐼

3
, 2𝜎𝐼), for the 

output image composed of 63 binary representations, i.e. 64 possible pixel grey levels. This range corresponds to 

the upper part of the thin line above dotted horizontal line drawn for ρ=0.945.  The correlation coefficient at the 

maximum of this line is at ρ=0.962, so ρ changes in this range less than 2%.  The correlation coefficient in the 

considered range is high, so the output composite image has almost all features of the original image in this case. 

The normalized rms contrast at the maximum is at 0.52, so it is around 7 times higher than the normalized rms 

contrast of the original image.  In the considered range, C decreases from 0.686 to 0.376 with increasing noise 

intensity, i.e. about 45%.  This affect the visual perception of the output composite images with approximately the 

same ρ.  In Figure 8.6, we present three composite images and their histograms corresponding to points denoted 

by diamonds in Figure 8.4. The left and the right image (a) and (c), have ρ=0.945 and rms contrast C=0.376 and 

C=0.686 respectively.  The image in the middle (b), has the maximum correlation coefficient ρ=0.962 and the 

contrast C=0.52.  The form of the image histogram depends on the noise intensity.  Histograms of composite 

images obtained for the noise intensity below  𝜎 = 𝜎𝐼  increase near pixel grey levels 0 and 255.  The low noise 

intensity thus moves pixel grey levels of the image to their extreme values. Histograms of composite images 

obtained for  𝜎 > 𝜎𝐼  have the maximum in the middle of the grey scale. The higher is the noise intensity the faster 

is the decrease of the histogram from its maximum.  The range of grey levels used in the output composite image 

decreases with increasing the noise intensity.  The histogram of the composite image obtained for  𝜎 = 𝜎𝐼   is flat.  

Histograms of the left image and the middle image in Figure 8.6, expand over the whole grey scale and many 

details are better visible. On the other hand, very bright points on the pipeline of the right image are better visible.  

Images in Figure 8.6, show the importance of both the correlation coefficient and rms contrast in the output image 

optimization and selection. Histograms of output composite images corresponding to points along the thick dashed 

line in Figure 8.4 are flat up to 256 of their binary representations. When the number of binary representation is 

large and increases, these histograms tend to the histogram of the image obtained from the image Track1 after its 

histogram equalization in the GIMP software. The operation of histogram equalization is performed by remapping 

graylevel of the image Track1, based on its own graylevel probability distribution shown in Figure 8.3. The image 

Track1 graylevel probability distribution can well be fitted by the Gaussian distribution with μ=μ_I an 𝜎 = 𝜎𝐼  is 

used as the noise distribution for points along the thick dashed line in Figure 8.4. The described variation of the 

output composite image histogram for images corresponding to points along this line is presented in Figure 8.8. 

The asymptotic output image composed of very large number of binary representations is the same as the image 

obtained from the image Track1 after remapping its grey levels by the noise cumulative distribution function 

multiplied by 255. Histogram of the image obtained after such remapping are plotted in Figure 8.8 for comparison. 

The asymptotic behaviour of the output composite image was briefly discussed in ref.  (Ye et al. 2007). 

 

Figure 8.7: Histograms of output images composed of 256 and 10000 binary 
representations obtained using the Gaussian noise with μ=μ_I and σ=σ_I.  Histograms 

of images obtained from the image Track1 after its histogram equalization in GIMP 

software and after remapping of its grayscale by the noise cumulative distribution are 

shown for comparison. 
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The normalized rms contrast C and the correlation coefficient ρ for output images composed of 1000 and 10000 

binary representations and images obtained from the image Track1 after its histogram equalization in GIMP 

software and after remapping of its gray levels by the noise Gaussian distribution are practically the same.  Points 

corresponding to these images in Figure 8.4 coincide with the point denoted by the square. In Figure 8.4, we 

denoted by the triangle the point corresponding to the image obtained from the image Track1 after its histogram 

stretching in GIMP.  One can notice that the output image with nearly the same C and ρ was obtained for 10000 

binary representations and the Gaussian noise. The number of pixel grey levels increases with the number of binary 

representations and the correlation coefficient of the output composite image with the input image increases.  For 

small number of binary representations, the maximum of the correlation coefficient increases fast with their 

number.  For the number of binary representations above 256 this increase becomes very slow.  Moreover, in 

Figure 8.4, lines for different number of binary representations overlap in a certain range of noise intensities.  This 

range allows one the selection of the minimum number of threshold elements used in the algorithm to get the 

output image with nearly the same C and ρ.  This justifies different selection of the minimal number of comparators 

in different applications (Hari et al. 2009b), (Yang 1998), (Yang 1998), (Ryu et al. 2011), (Jha et al. 2012) and 

(Jha et al. 2012).   

 

In the Figure 8.4, points on thin lines have been obtained for noise intensities from zero up to very high noise 

values  𝜎 ≈ 100𝜎𝐼 .  For very high noise intensities all pixel grey levels concentrate very close to 127.5 and the 

rms contrast of the output image drops below the rms contrast of the original image.  In this case, there are output 

images with high correlation coefficient and very small contrast, like e.g. the output image obtained for 10000 

binary representations and the noise intensity 𝜎 = 73𝜎𝐼 .  Its correlation coefficient ρ=0.7 and the contrast C=0.016, 

i.e. it is more than 5 times lower than the normalized rms contrast of the input image Track1.  Details in this image 

are almost invisible what shows that the correlation coefficient cannot be the only metrics quantifying the output 

image properties. 

8.5.1 The Effect of Moving the Noise Mean on The Output 
Composite Image 

 

The CvC plot in Figure 8.4 was obtained assuming the mean of the Gaussian noise used in the algorithm equal to 

the average of the image Track1 pixels grey levels.  In this section, we present how this plot changes when one 

moves the noise mean value.  By moving the noise mean one changes the position of the threshold with respect to 

processed image pixel grey levels. 

 

The number of black and white pixels in the binary output image corresponding to the common starting point for 

thin lines in Figure 8.4 is the same.  This is because the noise mean value coincides with the median value of the 

image Track1 pixels grey levels.  The rms contrast at this point is thus 𝐶 = 1.  For different noise mean values, 

the number of black and white pixels in the black and white image corresponding to the starting point of thin lines 

in CvC plot is different and the rms contrast of this image is 𝐶 < 1 .  In CvC left plot in Figure 8.8 the thick dashed 

line connects positions of starting points for different noise mean values.  Both  𝐶  and  𝜌  for black and white 

images corresponding to these points decrease when the distance of the noise mean value to the median of pixel 

grey levels of the input image increases.  The starting point for thin lines obtained by applying the noise with  𝜇 

above the highest pixel grey level in the image Track 1 has coordinates (0,0).  In Figure 8.8 we present CvC plots 

obtained for the Gaussian noise mean μ = μI + 1.5σI  (the left plot) and μ = 255  (the right plot).  By plotting 

some dotted lines obtained for  μ = μI  one can notice that at high noise intensities any thin line obtained for the 

noise with any mean value overlaps with the dotted line obtained for the same number of binary representations.  

For very large noise intensities the output image with the same  𝐶 and  𝜌 can thus be obtained using noises with 

any mean value. This property and the position of the starting point divide thin lines in two groups: lines turning 

to the right and to the left of the starting point. This division of lines helps one e.g. to select the number of binary 

representations above which thin lines start to overlap in a certain range of noise intensities, or to predict the 

contrast range of the output image for a given number of binary representations.  Dotted lines with points having 

the contrast  𝐶  for high noise intensities near the contrast  𝐶  of the thin lines starting point determine the number 

of binary representation for which the output composite images have very small rms contrast range.  In the left 

plot of Figure 8.8 thin line obtained for 6 binary representations first turns to the right and then to the left.  The 

contrast modification of the output image composed of 6 binary representations using noise is in this case very 

limited. 

 

Assuming  𝜇 = 𝜇𝐼   one assigns pixels with grey level  𝜇𝐼in the input image in the middle of the grey scale in the 

output image, regardless of the value of  𝜇𝐼  .  For images with high and low  𝜇𝐼  values this means a significant 

change in the mean brightness of the processed image. 
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For fixed  𝐶 and  𝜌 values of the output image one can adjust its brightness by moving the noise mean value.  In 

Figure 8-9 we present two output images with  𝐶 ≈ 0.31 and  𝜌 ≈ 0.92  obtained using two different noise mean 

values:  𝜇 = 𝜇𝐼 = 81  and  𝜇 = 𝜇𝐼 + 1.5𝜎𝐼 = 97.3 .  The point denoted by triangle in Figure 8.8 in which dotted 

and thin lines overlap corresponds to these images.  The average intensity value is 127.5 for the left image and 64 

for the right image, so the left image is much brighter.  This shows the importance of the noise mean value used 

in the algorithm on the outlook of the output image. 

 

To show that using the Gaussian noise one can modify the image brightness similar as in the image processing 

software, we have modified the Track1 image brightness in the GIMP image processing software by +50.  The 

obtained image and its histogram are shown in Figure 8-10 and the point corresponding to this image is denoted 

by the square in Figure 8.8.  Using the Gaussian noise with  𝜇 = 𝜇𝐼 + 1.5𝜎𝐼   and 𝜎 = 12𝜎𝐼  , we have obtained the 
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Figure 8.8: The CvC plot for the Gaussian noise with 〖μ=μ〗_I+1.5σ_I (upper plot–UP) and μ=255 (lower plot – LP).  Thin lines 

from the right to the left are for 1, 2, 3, 4, 6, 8, 25, 63, 1000, 10000 (UP) and 1, 10, 30, 63, 128, 256, 1000 and 10000 (LP) binary 

representations.  The vertical dot-dash line marks the original image contrast.  Thin dashed lines from the right to the left are for 

the noise intensities 3, 10, 20, 50 (UP) and 40, 100, 20, 500 (LP) times in/3.  Dotted lines are for the Gaussian noise with 〖μ=μ〗
_I and 4, 63, 10000 (UP) and 63, 256, 1000 and 10000 (LP) binary representations.  The thick dashed line denotes positions of thin 

lines starting points for different noise mean values.  Points denoted by unfilled square and circle correspond to the sonar image 

after modification of its brightness (+50) in the GIMP software and to the composite image with approximately the same properties.  

Composite images corresponding to the point denoted by the triangle are shown in Figure.8.4. 

Figure 8.9: Images composed with 63 binary representations obtained for the Gaussian noise with 

𝝁 = 𝝁𝑰  and  𝝈 = 𝟖𝝈𝑰/𝟑  (left plot) and 𝝁 = 𝝁𝑰 + 𝟏. 𝟓𝝈𝑰  and  𝝈 = 𝟐𝝈𝑰  (right plot) corresponding to 

the point denoted by the triangle in fig.23. 
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output image composed of 10000 binary representations with the same outlook and the histogram shown in Figure 

8.10.  The point corresponding to this image is denoted by the circle in Figure 8.10.  One can notice that C and ρ 

values for both images obtained by two different methods are approximately the same.  The average value and the 

standard deviation of histograms in Figure 8.10 are the same, but the histogram obtained in the GIMP software 

have several peaks.  The histogram of the composite image is smooth because of finite number of binary 

representations.  The GIMP procedure does not redistribute pixel intensities to produce smooth histogram.  It is 

useful for highlighting borders and edges between different objects, but it reduces intensity variations within these 

objects. The image brightness modification using the noise in some applications can thus give better results. 

 

 

The right CvC plot in Figure 8.8 was obtained for the Gaussian noise with the mean value μ=255.  This value is 

the highest grey scale level and the threshold value in the technique of image contrast modification applied in this 

paper.  Assuming μ=255 in the algorithm is equivalent of adding the Gaussian noise with the zero mean to input 

image pixel grey level.  The white Gaussian noise with zero mean is commonly added noise to the input signal in 

many experimental and theoretical investigations of the stochastic resonance and suprathreshold resonance 

phenomenon.  The CvC plot shows that in this case it is impossible to obtain the output composite image with high 

correlation coefficient and with the rms contrast higher than the rms contrast of the original image Track1.  This 

is because the original image pixel grey levels are too distant to the threshold.  All curves start at the point (0,0) 

and the output image one can obtain using the noise with the intensity  𝜎 = 3𝜎𝐼 .  The output–input correlation 

coefficient becomes bigger than 0.5 for the output image composed of the minimum 125 binary representations 

and it tends to 0.97 for 10000 binary representations.  The rms contrast of output images with high ρ values is 

however very small. 

8.5.2 The Effect of Noise Distribution on the Output 
Composite Image 

 

In previous sections the output composite image was obtained using the Gaussian white noise (GPDF).  In this 

section, we present results of using non-Gaussian noise.  The non-Gaussian noise the most frequently used in the 

image enhancement algorithms based on the stochastic resonance is the Uniform noise with the rectangular 

probability density function (RPDF) (Yang 1998), (Ye et al. 2007) and (Jha et al. 2012).  We selected this noise 

and the Laplacian noise (LPDF) which is widely used in sonar applications (Hari et al. 2009b).  The RPDF, GPDF 

and LPDF noises are members of noise family described by the generalized Gaussian probability density function 

(GGD) defined as expressed in equation 8.6. 
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Figure 8.10: The sonar image after modification of its brightness (+50) in the GIMP software and its histogram.  The thick line represents 

the histogram of the output image composed of 10000 binary representations using the Gaussian noise with 𝝁 = 𝝁𝑰 + 𝟏. 𝟓𝝈𝑰 and = 𝟏𝟐𝝈𝑰 
The dashed line denotes the position of the average grey level of both histograms.  
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𝑓(𝜉) =

𝐴

𝜎
𝑒𝑥𝑝(−𝐵 |

𝜉 − 𝜇

𝜎
|
𝑝

) 
 

eq. 8.6 

where 𝐴 = (𝑝/2)Γ[3/𝑝]1/2/Γ[1/𝑝]3/2, 𝐵 = [Γ(3/𝑝)/Γ(1/𝑝)]𝑝/2 and Γ(.) is the gamma function.  One has for 

p=2 the Gaussian distribution, for p=1 the Laplace distribution, for p→+∞ the Uniform distribution and for  𝑝 →
0+ one has the impulse probability function at ξ=μ.  The function  𝑓(𝜉) has tails that are heavier than normal for 

p<2 (leptokurtic distribution) or lighter than normal for p>2 (platykurtic distribution).  At present, GGD noise is 

widely used in engineering in the area of signal processing (Yu et al. 2012) and to model the impulsive heavy-

tailed noises like e.g. the environmental noise in the ocean (Machell et al. 1989a).  

 

The random variable ξ which has Laplacian distribution with the mean μ and the intensity σ we generated from 

the following eqution: 

 

 𝜉 = 𝜇 − 𝜎 𝑠𝑔𝑛(𝑈 − 0.5)𝑙𝑛(1 − 2|𝑈 − 0.5|)/√2  eq. 8.7 

 

 

In the equation 8.6, 𝑈 is a random variable drawn from the uniform distribution in the interval (0, 1).  This formula 

follows from the inverse cumulative distribution function.  The probability density functions for RPDF, GPDF and 

LPDF noises and their cumulative distributions are shown in Figure 8.11.  The GPDF and LPDF functions are 

maximal for ξ=μ, whereas RPDF function is flat. 

 

In dynamical environments, whose complex behaviour is neither purely random nor perfectly predictable the 

stochastic noise is often replaced by the chaotic time-series.  The simplest nonlinear equation generating the chaotic 

time-series is the logistic map (May 1976)(Sprott 2003).  It was used to present the chaotic resonance in bistable 

system (Ippen et al. 1993)(Castro & Sauer 1997).  We selected as the fourth noise added to the original image the 

chaotic noise defined by the logistic time series (LOGISTIC).   

 

 𝜂𝑙 = 4𝜂𝑙−1(1 − 𝜂𝑙−1)   eq. 8.8 
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Figure 8.11: The probability density functions and cumulative distributions for Laplace, Gaussian and Uniform noises and for the chaotic 

noise generated by logistic time-series (tails are up to around 0.37).  The mean value is 81 and the standard deviation is 10.87 
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We obtained the successive numbers  𝜂𝑙  of the logistic time-series by iterating the following map assuming any 

random number in the range (0, 1) with 0.25, 05 and 0.75 excluded as the initial number  𝜂0.  Numbers  𝜂1.  for 

l=1,2, …  form a chaotic set of numbers between 0 and 1.  The probability density function of these numbers is 

symmetric and minimal at 0.5 and it fast increases close to 0 and 1.  It is thus very different from the generalized 

Gaussian probability density functions. The probability density function and the cumulative distribution for the 

chaotic variable ξ defined by logistic time-series with the mean  𝜇 = 𝜇𝐼  and the standard deviation  𝜎 = 𝜎𝐼  is 
shown in Figure 8.11. 

 

In Figure 8.12 we present the dependence of the output-input correlation coefficient on the noise intensity obtained 

for 63 binary representations using noises with different distributions and the mean 𝜇 = 𝜇𝐼   . This dependence is 

typically plotted to present the suprathreshold stochastic resonance (Mcdonnell et al. 2002).  The correlation 

coefficient has the maximum for nonzero noise intensity for all noises.  We also present in Figure 8.13 the 

dependence of the normalized rms contrast of the output composite image on the noise intensity.  This contrast is 

the biggest for Laplacian noise and the smallest for chaotic noise for all noise intensities.  The CvC plot obtained 

in this case is shown in Figure 8.13.  Points corresponding to RPDF, LPDF and LOGISTIC noises are on the line 

for GPDF noise.  For a given number of binary representations, the output image with a given rms contrast and 

the correlation coefficient can thus be obtained using any considered noise.  In Figure 8.12 we denoted by dotted 

lines values of  𝐶  and  𝜌  corresponding to the unfilled circle point in Figure 8.13.  The intensity of noises used 

to obtain the output image corresponding to this point are the following:  79.69 (LPDF), 50.71 (GPDF), 37.64 

(RPDF) and 30.74 (LOGISTIC).  In Figure 8.13 we marked by unfilled symbols positions of points corresponding 

to the output image obtained using different noises having the same intensity 50.71.  The difference between noise 

intensities necessary to get a given composite image becomes very pronounced for high noise intensities. 

 

In Figure 8.14 (left) we present CvC plot obtained for different noises with the mean  𝜇 = 128 .  We assumed this 

mean value to show the relation between image contrast modification using the noise and applying the standard 

contrast modification procedure in the GIMP image processing software.  By thick dashed line we denoted  𝐶  and  

𝜌  values of images obtained by modifying the contrast of the image Track1 in GIMP software.  One can observe 

that points corresponding to output images obtained using RPDF noise for 1000 and 10000 binary representations 

are on this thick dashed line in a large range of noise intensities.   
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Figure 8.12: The dependence of the normalized rms contrast and the correlation coefficient of the output image composed with 63 binary 

representations on the noise intensity for different noise distributions and the noise mean  𝝁 = 𝝁𝑰.  Dotted lines denote parameters of the 

composite image corresponding to unfilled circle point in Figure 8.13. 
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This range increases with the number of binary representations.  In Figure 8.14 (rigth) we also present CvC plot 

obtained for different noises with the mean 𝜇 = 255 i.e. the value of the threshold assumed in this paper.  This 

case is equivalent to typical observations of the stochastic resonance phenomenon in which the noise with zero 

mean is added to subthreshold image.  One can notice that using only the LOGISTIC noise one can get the 

composite image with the contrast higher than the contrast of the original image. 

 

Lines in Figure 8.14 obtained for different noises and the same number of binary representations start at the same 

point corresponding to zero noise intensity and they do not overlap in a wide range of noise intensities.  However, 

for high noise intensities these lines are close to and finally overlap with lines presented in Figure 8.4 obtained for 

the GPDF noise with the mean  𝜇 = 𝜇𝐼  .  The noise mean and distribution thus become unimportant for very high 

noise intensities.  The correlation coefficient of the output composite image obtained in this case with the input 

image is however small.  Using different noises to modify the image Track1 contrast we have the same (Figure 

8.13) or different (Figure 8.14) output composite images. 
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Figure 8.13: The CvC plot for the noise with  𝝁 = 𝝁𝑰  and different probability distributions.  
Lines from the right to the left are for 2, 4, 10, 63 and 1000 binary representations.  The vertical 

dot-dash line marks the original image contrast.  Points marked by unfilled symbols correspond 

to the noise intensity  𝝈 = 𝟏𝟒𝝈𝑰/𝟑  (the circle represents GPDF noise). 
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Figure 8.14: The CvC plot for the noise with μ=128 (left plot - LF) and μ=255 (rigth plot – RG) and different probability distributions.  

The number of binary representations is given in brackets.  The thick dashed line corresponds to the sonar image after modification 

of its contrast (from +127 to -127) in the GIMP software.  The thin dashed line denotes positions of lines starting points for different 

noise mean values.  The vertical dot-dash line marks the original image contrast.  Dotted lines are for the Gaussian noise with  𝝁 = 𝝁𝑰  
and 10, 1000, 10000 (LF) and 128, 1000 (RG) binary representations 
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8.6 Conclusion 
 

We applied the technique of image contrast modification using non-dynamical system of threshold elements and 

the noise to digital grayscale sonar image.  The threshold was set at the maximum of the grey scale.  We presented 

results obtained for the chaotic noise generated by the logistic map and for Gaussian, Uniform and Laplace noises.  

The contrast and quality of the output image was quantified by the normalized rms contrast and the output-input 

correlation coefficient.  These quantities are the most important for visual image perception.  We proposed CvC 

plot (correlation vs. contrast plot) to show the effect of the noise properties and the number of binary 

representations on the output composite image.  Lines in CvC plot determine the correlation coefficient and rms 

contrast of the output composite image for a given number of its binary representations and varying noise intensity.  

They allow to select the number of binary representations and the noise properties to get the output image with 

required contrast and quality.  This is important e.g. to minimize the time of image processing.  For very high noise 

intensities lines obtained for any noise mean value and distribution but the same number of binary representations 

overlap.  The point in CvC plot which belongs to lines obtained for the same number of binary representations 

using the noise with different mean values allows one to select the output image brightness having the same its 

contrast and quality.  The dependence of the output-input correlation coefficient on the noise intensity has the 

maximum for any considered noise, any position of its mean value (i.e. both for subthreshold and suprathreshold 

images) and any number of binary representations bigger than 1.  Varying the noise intensity, one modifies also 

the output image contrast.  The range of contrast modification depends on the number of binary representations 

and on the noise, mean value and distribution.  We showed that for high number of binary representations image 

contrast modification using noise can replace image contrast and brightness modification procedures of the GIMP 

image processing software.  Images obtained using both techniques have the same contrast and quality.  Their 

histograms have the same mean and standard deviation, but the histogram of the composite image is smoother 

because of finite binary representation error.  For increasing number of binary representations, the output 

composite image tends to the image obtained by remapping pixel grey levels of the input image by the noise 

cumulative distribution function. 
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9.0 Study of Reliability of Unsampled 
Bathymetric Points Estimations Using 
Spatial Statistics, a Geostatistics Approach 

 
 
The technical and scientific community makes efforts to discover or increase knowledge about hidden properties 

in some materials, structures or environmental behaviour. To this end, some techniques aim to explore and 

understand the environmental objects or properties around us, based on discrete samples for the representation of 

a continuous surface. It is considered the specific case of spatial sampling involving measurements of the elevation 

level of an underwater surface or submerged topography, this process is called bathymetry, see chapter 3. The 

resolution of the data acquired in the sampling, especially in geospatial data, will depend on several factors such 

as sensor resolution, the coverage area of the inspection, the limitation of the operating time and the memory of 

the equipment to support data collection. 

 

A variety of devices and technologies can be used to acquire discrete data through a sampling process. The 

researches in the area of remote sensing seek to develop a model to explain or predict some phenomenon, or 

explain characteristics of the surface under study, in the context of the inverse problem, from a limited set of 

samples. Many techniques are applied to extract characteristics of a topographic relief considering samples taken 

by sensors that are above the surface of the water. Among them, we can highlight an optical acquisition system, 

technically known as LIDAR, operating on a variety of light frequency spectra (Höfle et al. 2013) and Radio Wave 

Detection and Ranging (Wandinger 2005). 

 

In recent years, the use of laser scanning systems installed in airborne and terrestrial systems and vehicles have 

become the most widely used remote sensing devices for acquiring topographic data to cover large regions above 

sea level (Shan & Toth 2008) and (Hell 2011). Nowadays, the research focuses on the sensor fusion paradigm, 

using more than one type of technology to acquire the data. The objective is to reduce the uncertainty of estimates 

related to the studied characteristics by comparing information from the same target or acquired by two distinct 

devices or by adding complementary auxiliary information from two or more different sensors (Hermosilla et al. 

2005), (Lockhart et al. 2008), (Coiras et al. 2003) and (James & David 2008). 

 

Despite the availability of all the technologies and techniques mentioned above, it still configures as a problem 

when the object of study is a submerged landscape. The problem comes from the physical restrictions at high 

frequencies, which results in the dissipation of the energy flow when it is transmitted through the water, resulting 

from the interaction with a non-zero conductivity medium (Lurton 2010), where the dielectric properties can affect 

electromagnetic waves, avoiding that the transport of information is adequate, especially in sea water. These effects 

were discussed in the work of (Jiang et al. 2008) and (Karagianni 2015), which discussed the problems of wireless 

networks in underwater environments, addressing some physical constraints involving the information 

transmission process and the influences of general physical properties in this medium on electromagnetic waves 

of 2.4 GHz. 

 

In the work of (Karagianni 2015), it was explained that, in underwater environment, the electromagnetic waves 

used in optical systems and by devices based on lasers undergo a strong attenuation/absorption. The main causes 

are due to the intrinsic impedance, conductivity and molecular relaxation of the medium, which have influence on 

the delay of the particles of the medium to respond to the change of wave field, resulting in energy lost to the 

medium. Despite this, some radar-based technologies and LIDAR systems can be used by aircraft and satellites to 

estimate underwater topographic relief, but with certain known limitations (Lockhart et al. 2008), (Gao 2009) and 

(Penrose et al. 2005). 

 

In order to solve the inverse problem for the construction of the topographic maps, objective after the acquisition 

of data in underwater environment, acoustic devices based on sonar technology are currently applied. These 

devices were originally developed to assist ships and boats in navigation, to collision avoidance, and are also 

adapted for other civil and military applications (Medwin & Clay 1998) and (Peyvandi et al. 2011). In fact, 

underwater acoustic propagation is the most widely used physical principle to perform underwater 

communications (Nelson 2009), (Stojanovic 2008) and (Stojanovic & Preisig 2009), as well as applications in 

remote sensing (Tacconi & B 1981). Some techniques use specific characteristics of acoustic devices and 

characteristics of elastic (Medwin & Clay 1998), (Daniel R. Raichel 2006) and (Taroudakis 2013), to perform the 
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underwater signal processing and solve the inverse problem involving acoustic signals (Stojanovic 2008)(Vaccaro 

1998). 

The sonar devices used in bathymetric applications employ sensing energy principles based on backscattering of 

acoustic waves when impacted on a target. The propagation of acoustic waves in a medium can undergo refraction 

and absorption according to the physical characteristics of the fluid or medium in question (Medwin & Clay 1998), 

(Lurton 2010) and (Daniel R. Raichel 2006). The temperature, density and salinity in an aquatic environment are 

important factors that influence the propagation of the acoustic signal (Lurton 2010) and (Medwin & Clay 1998). 

The interaction between the medium and the propagated energy allows us to apply a digital processing paradigm 

of acoustic signals that, in some cases, presents analogies when compared to conventional optical systems. In the 

case of sonar images, for example, techniques that involve the relationship between shading and highlights of 

objects and regions can be used to assist in the processing of underwater relief reconstruction tasks and in the 

detection of submerged objects submersos (Coiras et al. 2007), (Rongxing Li 1991), (Bikonis et al. 2005) and 

(Rongxing Li 1992). 

 

For the survey of bathymetric data, sonar devices may be transported by a conventional research vessel, surface 

robotic vehicle (SRV) or underwater robotic vehicle (ROV or AUV). Each of them introduces specific 

uncertainties in data acquisition. Technicians and researchers generally need to consider this fact in the stages of 

conditioning or pre-processing of data (Baker & Li 2002), (Johnston 2002) and (Elmore et al. 2009). The type of 

described trajectory for the sampling of an underwater area depends on the sensor, the vehicle, the environmental 

characteristics and, in some cases, the final applications of the data collected (Lurton et al. 2015) and (Penrose et 

al. 2005). 

 

In relation to the bathymetric survey, it is common to use two types of sonars called Single Beam Echo Sounder 

(SBES) and Multi Beam Echo Sounder (MBES) (Haris & Chakraborty 2013) and (Gao 2009). The first device, 

SBES, consists of a single active transducer element, which emits only one acoustic pulse for the target at any 
given time, recording the echo received after the backscatter process after impact on the target. Thus, knowing the 

velocity of propagation of the acoustic wave to the medium, we can infer the distance between the sensor and the 

target (Hell 2011), (Lurton et al., 2015) and (Brouwer 2008). Some sonar systems can record the echo intensity 

received, revealing some additional physical characteristics of the target (Lurton et al., 2015). The systems that 

use MBES are composed of a set of active transducer elements, in a specific physical arrangement. The device 

will emit an acoustic pulse from each transducer element simultaneously and will receive several echo signals, 

each signal referring to a transducer element, covering a large survey area, with a better resolution than SBES. 

The use of SBES or MBES in a bathymetric survey process is conditioned by some questions such as: need for 

data accuracy, application, environmental characteristics, level of knowledge of the technicians involved and 

survey vehicle (IRO, 2005), (Penrose et al., 2004) and (Lurton et al., 2015)). In some cases, SBES is chosen due 

to economic issues (available budget) and simplicity of work, but the level of detail and precision required may 

result in an inefficient survey for certain applications. In the case of MBES, although the evolution of the 

technology of these devices produces better resolution results, this device presents a relatively high cost (Lurton 

et al., 2015) and (Penrose et al., 2005). 

 

The use of MBES in surveying with underwater autonomous robotic vehicles is restricted to industrial and 

commercial applications mainly in offshore industries and in some cases in the area of port infrastructures and 

coastal military security. Bathymetric surveying applications for simpler systems such as small port infrastructures, 

coastal civil management, rivers and dams are generally performed using SBES. In this case, the sampling will 

have lower resolution compared to the same operation performed by an MBES. The resolution of the sampling 

process can be increased through analyses and adequate statistical inferences, aimed at estimating values at non-

sampled points. 

 

Statistical analyses are composed of three specific stages: description, indication and estimation (Cressie 1993). 

In the first stage, the work is directed to the summarization of the data, performed by the exploratory analysis of 

the data. This stage will be completely defined, when the best theoretical model that allows an adjustment of the 

data is defined. The second phase is related to the extraction of parameters (indicators), extracted from the 

theoretical model that adjusts the experimental distribution of data. Finally, in the third phase, we are able to 

estimate the study variable value in some places or points on the study surface, where we do not have 

measurements made. The conventional sequence of operations in statistical analysis described in this paragraph 

will be used in the application of geostatistics to bathymetric data. 

 

Geostatistics is a methodological process to predict values of variables in points not previously sampled. The 

predictions are based on the structural analysis with the use of spatial statistics, from discrete samples collected on 

the region of interest. In many cases, the prediction is supported by another auxiliary variable, which has a 
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correlation with the variable of interest. The geostatistical prediction technique consists mainly of the application 

of specific spatial statistics algorithms developed by Matheron in his work (Matheron 1970) and (Matheron, G. 

Kleingeld 1987). The geostatistical method of interpolation or prediction, is based on the algorithm of Kriging, 

that initially was used to solve the problem of the prediction of the gold reserves. In our research, we applied a 

geostatistical approach using spatial correlation on the submerged topographic relief, using as basis discrete depth 

samples. 

 

9.1 Exploratory Data Analysis 
 

 

In this work, we used a data set composed by 424 sample points extracted from the researched area, shown in the 

scatter plot of Figure 9.1. This scatter plot represents the values of the samples confronted with the geographic 

coordinates of the survey obtained in the Bay of All Saints (a more detailed description can be seen in Appendix 

B, item 2.4). The colour of the point expresses the value of the regionalized variable (Depth) of the underwater 

topographic relief. The deeper topographic values, i.e., higher depression is indicated in light yellow, on the other 

hand, lower topographic values, represented by shallower regions, are represented in dark blue colour. In the graph, 

we observed a trend in the transverse direction, that is, specifically in the direction Northeast (NE). 

 

 

 

 

The hypothesis of considering a trend surface in the direction (NE) was investigated throughout this work. In 

contrast to a constant average depth assumption, we applied a spatial trend function to vary the mean depth 

throughout the work, which showed little efficiency over the approach used. Referring to Figure 9.1, the sample 

set does not have a perfectly regular grid, and may vary slightly, the distance from one point to another along the 

trajectory in the direction of the survey is approximately 7 meters, while the value of the distance between 

trajectories is approximately 5 meters. 

 

 

 

 

 

Figure 9.1: Bathymetric Dataset Scatter Plot from a SBES 
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The sampled data were represented by a histogram, it is intended to make a first characterization, Figure 9.2. In 

this histogram, we observe that the data do not have symmetrical distribution, i.e., presents a non-Gaussian 

distribution. Thus, it is not possible to apply conventional and simple statistical algorithms. The data presented a 

distorted behaviour, with predominance of values for greater depths. In addition, no outliers appear.  

 

However, the histogram analysis is a simple statistical analysis, as shown in Table 9.1, by itself does not contain 

details about spatial structure. In the representation of data through the graph of Figure 9.2, it will not be possible 

to determine changes in spatial variability such as roughness. Thus, the statistical summary through the histogram 

is a very simple representation, in this work the exploratory data analysis step, which involves the histogram, was 

performed with the geoR (Diggle & Ribeiro Jr. 2007) and (Ribeiro Jr. & Diggle 2001). The characteristics on 

sample distribution were discussed in (Cressie 1993) 

 

Consider a set of data with sequentially collected samples through a continuous survey path. The sequence is 

plotted in Figure 9.3 A, which shows the relationship between the navigation trajectory and the geographic 

coordinates. In the Figure 9.3 B is shown the relationship between the sample sequence and the bathymetry values. 

 

 

 

 

Dataset Summary 

Geographical Coordinates and Distance 

 Latitude Longitude Data Samples Distance (m) 

Minimum -12.85318 -38.84306 5.04 

Maximum -12.85142 -38.84083 248.41 

Data Samples Non-Spatial Statistics (Depth) 

Minimum (m) 1st. Qu. 

(m) 

Median 

(m) 

Mean 

(m) 

3st. Qu. 

(m) 

Maximum (m) 

6.22 10.53 11.62 11.36 12.58 14.00 

Figure 9.2: Frequency distribution of elevation (in meters) sampling. 

Table 9.1: Dataset Summary 
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Consider a set of data with sequentially collected samples through a continuous survey path. The sequence is 

plotted in Figure 9.3 A, which shows the relationship between the navigation trajectory and the geographic 

coordinates. In the Figure 9.3 B is shown the relationship between the sample sequence and the bathymetry values. 

 

 

 

Conventional statistical analysis was initially applied in order to discover any hidden spatial tendency or 

correlation in the data. It was observed that there were different averages associated with different sites within the 

sampling region, proving the non-Gaussian distribution. This feature is an evidence of a correlation structure that 

depends on spatial location. This problem is adequately described in (Cressie 1993), (Diggle & Ribeiro Jr. 2007) 

and (Goovaerts 1999). In a conventional approach, the path could be to apply a mathematical transformation to 

solve the problem of a non-Gaussian distribution, allowing the use of common statistical tools in solving the 

prediction problem. Another way to approach the system is to apply a spatial statistical approach, in our case we 

use the tools of geostatistics. We performed the exploratory data analysis using a scatter plot in order estimate the 

Figure 9.3: Dataset path line track survey (A) and sequence sample (B). 

A 

B 
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spatial trend, but presenting the dispersion with respect to each geographic coordinate separately. In Figure 9.4, 

we can see the measured depth in latitude (left) and longitude (right). The graphs confirm a clear trend in the Data 

vs. Longitude, where the trend is confirmed in the direction (NE). Thus, we have one more indication that the 

assumption of constant mean cannot be applied in the forecast of points not sampled. For best results, we can apply 

any Kriging methodology based on non-constant mean 𝜇(𝑢), such as the OK process, consider a model as a trend 

as KT, or address the problem according to segmentation of the dataset and apply different parameters to Different 

regions.  

 

 

 

The study presented here was developed using the correlation structure of the regionalized variable considering 

some patterns and spatial variations, and with a non-constant 𝜇(𝑢). 
 

The most suitable model for the prediction of data was determined after the analysis of the three Kriging processes, 

considering the exploratory data analysis under the simple and spatial statistical paradigm. We consider the 

structure of the mean determined by equation 9.1, according to (Diggle & Ribeiro Jr. 2007). 

 
𝜇(𝑢) = 𝛽0 +∑𝛽𝑗(𝑢)𝑑𝑗(𝑢)

𝑝

𝑗=1

 
 

eq. 9.1 

Where 𝛽0 represents the initial average parameter, 𝛽𝑗(𝑢) is the average iterative parameter for the real region and 

𝑑𝑗(𝑢)  is the spatial explanatory variable. The average parameter 𝛽𝑗(𝑢) has initial value determined by an ordinary 

least squares criterion and 𝑝 is the total number of samples available (Diggle & Ribeiro Jr. 2007). 

  

Figure 9.4: Dataset scatter plot relative to each survey geographical coordinate 
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9.2 Empirical Semivariogram Analysis 
 
The calculations of the function related to the semivariogram can be performed under the assumption of isotropy 

or anisotropy, so we must determine what type of behaviour can be framed the data of the surveyed surface by 

checking the spatial structure. In this work, the calculation and representation on the experimental semivariogram 

graph uses the classical method (Cressie 1993) and (Diggle & Ribeiro Jr. 2007). In Figure 9.5, we present the 

graph of the experimental semivariogram, calculated from the samples collected. 

 

 

The final analysis of the data set expressed in the representation of the experimental semivariogram relates the 

correlation between the values of the samples and the directional effect of the spatial structure of interest. In Figure 

9.5, the visual analysis can be performed taking into account the three parameters of analysis presented in chapter 

5, that is, nugget, range and sill. We observed that the value represented by the nugget is extremely low, this means 

that the sampling process was performed correctly, in relation to the number of data collected, spacing and 

regularity in the sampling. The maximum correlation distance between the sample values reaches almost 50% of 

the sample space, that is, we obtain correlation in samples ranging up to 200 meters. However, we should note that 

this correlation may not be confirmed in all directions, as we will see more clearly in Figure 9.6. 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9.5: Semivariogram cloud  

Figure 9.6: Directional variogram 
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Still with respect to the analysis of Figure 9.5, the graph does not present a constant sill value until the end of the 

graph, which represents the calculation of the correlation between points at a great distance. The lack of a constant 

plateau may represent predictability instability for some regions. The directional analysis of the spatial correlation 

can be performed using the anisotropic semivariogram, where we can observe the correlation for each direction 

chosen in a segmented way. A set of four direction indicators is usually used for the calculation of the directional 

semivariogram (0 °, 45 °, 90 ° and 135 °). 

 

The result of the directional semivariogram analysis is shown in Figure 9.6. We observed that there are three 

directions in which the values of the samples have a higher correlation between them (0°, 90° and 135°), although 

they have differences of scale in the behaviour, in addition a certain level of anisotropy is seen in the direction of 

90°. The behaviour shown for the direction (45°) presents the greatest dissimilarity, resulting in a level of 

anisotropy in the structure. At this point, we observe that a simple and unique prediction model should not satisfy 

the requirements for a good prediction result. 

 

In the presence of an anisotropic behaviour in some directions, the application of the omnidirectional experimental 

semivariogram is valid to observe more clearly the level of anisotropy. In our analysis, shown in Figure 9.7, we 

observed the strong anisotropy level for the 45 ° direction, which represents a very representative trend in this 

direction. In the direction of 0°, the trend is lower, but it should still be treated. The best result regarding non-

existence of tendencies lies in the direction of 135 °, in this direction, simple predictions can be carried out with 

good results. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

The anisotropic semivariogram map is used to confirm that the direction of the maximum anisotropy corresponds 

to 135 °, corresponds to the results of the directional semivariogram present in Figure 9.7. Confirms the trend 

assumption depicted in Figure 9.6. 

 

9.2.1 Analysis and Results - General Concerns 
 
After performing the initial analyses involving the exploratory data analysis and the construction of the 

experimental semivariogram, we need to adjust the distribution of points in the experimental semivariogram 

through one of the theoretical models described in chapter 5, and thus extract some parameters to be used in the 

predictor of kriging. In particular, we applied a set of five prediction validation processes, of which four are cross-

validation tools available in the EasyKrig3.0 Matlab Toolbox (Chu 2004), until the prediction error presented is 

as minimal as possible. The fifth and last process was implemented from a second set of data acquired with an 

MBES, performed in the same region and at the same time we collected the data with the SBES. 

Figure 9.7: Omni-directional semivariogram map 
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The difference between the two sets of data is related to the resolution. The reference data have a minimum 

resolution five times higher than the data used in the estimation, which guarantees an excellent reference source 

for the validation of the prediction process. This process was called the Inter-Samples (IS) validation, in which 

each estimated point is compared to a nearest reference data. The final result will be accepted if a minimum 

reference requirement is reached based on an international standard for bathymetric data (IHO 2008). The process 

of predicting non-sampled points was performed using a conventional geostatistical approach using the classical 

Kriging predictor methods: simple, universal and ordinary. We use the algorithms in the geostatistical package 

EasyKrig3.0 without any adaptation or modification. We evaluated the best predictor, which in our study, based 

on the analysis from the validation processes was the Ordinary Kriging in "Block to Block" mode. 

 

The result of applying techniques to remove the linear trend found in the original data for certain directions was 

not satisfactory to achieve the desired results according to (IHO 2008). So, the problem was faced with a focus on 

the segregation in closed regions of samples that present spatial correlation. The set of regions was evaluated by 

the application of a partitioning technique called "K-mean clustering". We then apply geostatistical analysis to 

each cluster using a set of different kriging parameters. However, the same OK kriging model was applied to all 

of them. 

 

In the search for the best solution for the application of gestational techniques in prediction applications without 

the use of an auxiliary variable, the work proposal consisted of dividing the study into two paradigms. In the first 

case, the predictions were made considering the entire set of data. In the second case, we considered the 

segmentation of the data, classified the same in groups of samples with higher correlation in the same prediction 

group. Thus, we predicted by groups, considering the prediction for the total area as the junction of the predictions 

of each group. We compared both prediction paradigms to prove the efficiency of each method to mark our 

conclusion. 
 

9.3 Geostatistical Semivariogram Analysis, Kriging 
Estimations and Results without Clustering 

 
Here we will describe in more detail the characteristics of our data set, as well as the geostatistical analysis about 

them. The whole process was oriented according to the studies of reference works (Goovaerts 1999), (Houlding 

2000), (Wackernagel 1995), (Matheron 1962) and (Diggle & Ribeiro Jr. 2007). The set of 𝑛 samples was acquired 

in the same hydrographic surveying operation, considering the universe of measurements in the context of 

regionalized variables 𝑍 (𝑥), as described in Chapter 5. 

 

9.3.1 Theoretical Semivariogram Analysis and Model 
Parameters Estimation 

 
All analyses were performed using tools on generic computing support platforms such as R and Matlab. The 

experimental variogram was extracted with the 424 samples acquired in the bathymetric survey carried out in the 

Bay of All Saints (Bahia de Todos os Santos), in the state of Bahia, Brazil. The processing extractions and 

parameters were supported by the EasyKrig 3.0 Matlab Toolbox (Chu 2004) on the Matlab platform. The result is 

shown in Figure 9.8. 
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The value of the Nugget, identified by the first semivariogram point, is located on the origin of the axes. This 

behavior means that the data collection operation was executed correctly, in relation to the number of points and 

spacing between them. The adjustment was performed with the function of the theoretical semivariogram of the 

Exponential-Bessel type. 

 

Table 9.2: Parameters used to adjust the experimental semivariogram 

Survey Dataset Theoretical Model Parameters 

Model Exponential Bessel 

Nugget 3.2947 × 10−13 

Sill 1.5337 

Length 1.0659 

Power  

Hole Scl 5.4956 

Range 0.93586 

 

Considering the initial experimental semivariogram, we need to adjust it using one of the accepted theoretical 

semivariogram models, so we can extract the value of the parameters to use in the kriging predictor. The best 

theoretical model and the parameters used to adjust the experimental semivariogram are described in Table 9.2. 

After completing the process of extracting parameters from the model, we started the prediction process using 

Kriging. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9.8: Experimental Semivariogram Fitted using a Theoretical Semivariogram Model for Both Fashion Dataset 
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9.3.2 Kriging Prediction 
 
The best Kriging predictor model was determined following a test sequence between the three basic estimation 

models, simple (SK), ordinary (OK) and universal Kriging with trend (KT). The predictor based on the OK offered 

the best performance, mainly for two reasons: (i) the bathymetric values acquired in the surveyed surface do not 

have a constant average throughout its length, varying the trend behavior depending on the direction, in this case 

SK will fail. In addition, the use of KT was affected by variation in the type of trend, which was linked to the 

direction of the study. (ii) The trend presented in the distribution of data values is extremely smooth in a specific 

direction, around 135 °, the trend in the 90 ° direction has an intermediate value and in the orthogonal direction at 

135 °, that is, 45 °, the trend is extremely pronounced. 

The comparative analysis of the prediction was performed using the variance values, comparing estimated values 

with the actual data sampled. Thus, the variance map shown in Figure 9.10 was used. Figure 9.9 shows the results 

of the map predicted by OK. In the semivariogram shown in Figure 9.8, it is possible to observe a behaviour in 

the region of the sill, represents a behaviour of cyclicity and in principle, could provoke an instability in the 

prediction, known as prediction hole effect (Wackernagel 1995), (Matheron 1962) and (Diggle & Ribeiro Jr. 2007). 

 

The hole effect results in the inability to automatically extract the parameter from the theoretical model related to 

the Sill. However, the parameters were found semi-automatically, automatic extraction was used to obtain Sill 

reference values, and then manual adjustment was performed between values ranging from -10% to 10% of the 

reference. The cyclicity presented in the graphical representation of the experimental semivariogram may be a 

result of the anisotropy in the spatial structure as observed in the directional variogram of Figure 9.6 and in the 

anisotropic variogram of Figure 9.7. The problem related to cyclicity may affect kriging estimates.  

 

In Figure 9.10 we present the map of variance relative to the prediction OK, this map shows a small value of 

variance in the predicted values within the surveyed region. In this figure, the region surveyed is represented by 

small white dots, one point for each sample acquired with the SBES sensor. The small error level, that is, low 

variance in prediction, is found within the surveyed area, the map in Figure 9.10 is represented by the dark blue 

colour, which is dominant in the region. 

Figure 9.9: Bathymetric map representation after Kriging Prediction process 
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In order to obtain the most accurate variance map, we change the scale of representation of the map of variance, 

we represent the result in Figure 9.11, which shows the small-scale variations within the sampled area. In Figure 

9.11, we note that the error does not reach 0.10 meters. Based on the results expressed by Figure 9.1, the Kriging 

estimates lead us to believe that the method is appropriate and sufficient for the estimation of bathymetric data. 
 

 

 

 

Figure 9.11: Small scales variance map 

Figure 9.10: Variance map from Kriging prediction model used in the first phase of this work 
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Despite the good results obtained for the processes related to interpolation, this model is certainly not capable of 

extrapolating. In this case, for the outer area or limit the area sampled shows the much greater variance error, 

reaching values over two meters, as we can see in Figures 9.10 and 9.11. 

 

9.3.3 Cross-Validation Process 
 
The cross-validation process is a simple numerical technique capable of estimating the efficiency and robustness 

of the prediction model based on a comparative study of observed (sample) and predicted data. Some cross-

validation methods are based on statistical tests intrinsically dependent on residues. In this work, we apply two 

methods based on the calculation of residues, both provided by EasyKrig 3.0 (Chu 2004), they are identified as 

methods 𝑄1  and 𝑄2, both described in the work (Kitanidis 1997). Both methods are used to validate predictions 

of kriging. Both methods take the values sampled and the values predicted for the same point, leaving these values 

to estimate the deviation. 

 

The validation process based on methods 𝑄1 and 𝑄2 begins with the construction of the normalized residual matrix 

(𝜀𝑘) (Kitanidis 1997). The value of the indicator 𝑄1 represents the mean of the residuals (𝜀𝑘) being calculated using 

equation 9.7: 

 
𝑄1 =

1

𝑛 − 1
∑𝜀𝑘

𝑛

𝑘=2

 
 

eq. 9.2 

We note that 𝑄1 will be calculated on a normally distributed set of values with mean 0 and variance 
1

𝑛−1
 (Samui & 

Sitharam 2011). The probability density function (pdf) of 𝑄1 will be expressed by equation 9.8: 

 
𝑓(𝑄1) =

1

√ 2𝜋
𝑛 − 1

 𝑒𝑥𝑝(−
𝑄1

2

2
𝑛 − 1

) 

 

eq. 9.3 

Where 𝑛 represents the number of data points. If the value of the indicator 𝑄1 is superimposed on the graph of the 

Gaussian distribution of the residues under analysis, it should remain within the range considered acceptable, 

ideally on or near zero of the distribution. This will indicate that the test demonstrates the validity of the model 

used in the predictions (Samui & Sitharam 2011) and (Kitanidis 1997). In the case of the indicator 𝑄2 is related to 

the variance of the matrix values (𝜀𝑘), the mathematical expression for its calculation is presented in equation 9.9. 

 
𝑄2 =

1

𝑛 − 1
∑𝜀𝑘

2

𝑛

𝑘=2

 
 eq. 9.4 

The calculation of the indicator 𝑄2 follows the chi-square distribution with (𝑛 − 1) degrees of freedom. Where 𝑛 

is the number of data points (Samui & Sitharam 2011). The mean and variance of 𝑄2 are respectively 1 and 
2

𝑛−1
 

(Samui & Sitharam 2011). The expression that models the computation of the probability density function (pdf) is 

given by equation 9.10. 

 
𝑓(𝑄2) =

(𝑛 − 1)
(𝑛−1)
2  𝑄2

𝑛−3
2 𝑒𝑥𝑝 (−

(𝑛 − 1)𝑄2
2 )

2
𝑛−1
2 𝛤(

𝑛−1
2
)

  

 

eq. 9.5 

Where   represents the gamma function, which is an extension of the factorial function for a set of real and 

complex numbers, since the argument is subtracted from 1, the pdf value of the 𝑄2 indicator should be close to 1 

to indicate the validity of the model prediction. 

 

The results of cross-validation for the predictions made with our bathymetric data can be seen in Figure 9.12. In 

this figure, we confirm that the best result for the prediction performance is provided by the 𝑄1 indicator. In the 

case of the 𝑄2 indicator, it does not show a good validity for the predictions made. Referring to the reference (Chu 

2004), we confirm that it is difficult to obtain the indication of validation of the model by both indicators. The 

numerical results of the cross-validation for methods 𝑄1 and 𝑄2 are provided in Table 9.3. 
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After analysing the results for the indicators 𝑄1 and 𝑄2, it was decided to use two more methods of cross-validation 

provided by EasyKrig 3.0, the Double-Kriging (DK) and Leave One Out (LOO) methods. The simplest application 

of cross-validation by DK cross-validation is determined by a two-step process described in (Chu 2004) and (Piazza 

et al. 2009). In the first step, the sampled original values are reserved as input for a comparison process. In the 

second step, a Kriging process is performed considering the average value of the actual samples and the parameters 

extracted from the theoretical model of the semivariogram extracted automatically. Then the result of the second 

Cross-Validation Result for 𝑸
𝟏
 and 𝑸

𝟐
 Method 

𝑸
𝟏
 𝑸

𝟐
 

Value Deviance Error Value Deviance Error 

-0.00962767 0 0.711183 0.288817 

Table 9.3: Cross-Validation Numerical Results for 𝑸𝟏 and 𝑸𝟐 methods 

Figure 9.13: Double-kriging cross validation result 

Figure 9.12: Cross-validation 𝑸𝟏 and 𝑸𝟐 results. 
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kriging phase is compared with the original sampling data. Presenting as output a graph where the predicted and 

sampled values are represented simultaneously.  

 

In Figure 9.13 illustrate the results of the cross-validation process using DK, the numerical results reveal a good 

prediction level with the difference between observed and predicted values in the order of 0.000172 meters, while 

the variance was 0.026. This numerical data is presented in Table 9.4. 

 

 

 

 

 

 

 

 

The LOO method works similarly to the DK, it considers the sampled data 𝑧𝑛 as one of the input data of the 

comparison step. The process consists in the consecutive withdrawal of sampled points, and subsequent estimation 

of this point using the neighbouring points that were estimated by the Kriging prediction process. In this way, the 

mean error is calculated and used to evaluate the model. In terms of accuracy, LOO can often result in a large 

variation of results for validation of a predictor (Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel et al. 

2011). 

 

In the cross-validation by the LOO method, shown graphically in Figure 9.14 and numerically in Table 9.5, the 

interpolation process performed by the Kriging technique was shown to have a good estimation quality. This 

conclusion is based on the differences between observed and predicted values, but in this case the result was not 

classified as better than the one indicated by the DK cross validation technique. Looking at Figures 9.13 and 9.14 

we have identified that both DK and LOO methods have some points that were underestimated. 

 

 

 

 

 

 

 

 

Double-kriging Cross-Validation Numerical Results 

Observed-Predicted Difference Variance 

0.000172593 0.025939 

Leave-One-Out Cross-Validation Numerical Results 

Observed-Predicted Difference Variance 

0.0027217 0.247461 

Figure 9.14: Leave one out cross validation result 

Table 9.5: Numerical results from Leave-One-Out  

Table 9.4: Numerical results from Double-Kriging Cross-Validation process 
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The results obtained by the study of the various methods of cross-validation demonstrate ambiguities between 

some of these methods, thus, we developed the proposal of applying a second set of data obtained with another 

type of sensor, an MBES. The set of data collected with MBES was collected in the same SBES data collection 

used in the study of this thesis. Both sample points were collected independently and with different variances. In 

addition, data collection using MBES results in a data set with sample densities greater than one hundred times the 

number of points collected with the SBES within the region of interest.  

 

The region of interest was defined as the region of perfect overlap between SBES and MBES data. The proposed 

method that confronts the predicted values with the actual values acquired with the MBES will be called here as 

the Inter-Sensor (IS) method, being considered here as our main method of validation. The set of reference data 

having a much higher density of sample points allows more precisely quantifying the prediction error, or deviations 

obtained using the method of interpolation by the Kriging method. Figure 9.15 shows the two sets of SBES and 

MBES data and the region in which the collected data match, that is, we have measurements of the same area 

performed by both sensors 

 

 

Figure 9.15: Interest region to use in IS validation method from, worked dataset (SBES) and reference dataset (MBES). The regions 

bounded by the yellow line represent the data that coincides in the same geographic region 
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In the upper illustration, you will find the representation of the cloud of sample points of the SBES and in the 

illustration below the data referring to the MBES. To obtain a more consistent view of all the sample space in 

which the bathymetric survey was performed, we present in Figure 9.16 an overlap of the data collection region 

for both sensors 

 

After the kriging interpolation process, the original data set, composed of 424 samples and represented in Figure 

9.16 as black circles, was incremented to 50,000 estimated points. The final result of the estimated points is a 

regular network, with estimated points equally spaced in the directions of the reference axes. This spacing was 

determined by one (1) meter, determined based on the average spacing of our reference data. The network of 

predicted points is represented in Figure 9.16 as red squares, which due to the density of points we observe as a 

continuous surface. The reference data set, i.e. the MBES, is represented in this same figure by a total of 51,131 

real points, represented by the blue area which are blue squares on a small scale. Further details on the number of 

points for each sensor and for the predicted data are given in Table 9.6. 

 

After the kriging interpolation process, the original data set, composed of 424 samples and represented in Figure 

9.16 as black circles, was incremented to 50,000 estimated points. The final result of the estimated points is a 

regular network, with estimated points equally spaced in the directions of the reference axes. This spacing was 

determined by one (1) meter, determined based on the average spacing of our reference data. The network of 

predicted points is represented in Figure 9.16 as red squares, which due to the density of points we observe as a 

continuous surface. 

 

 
 

  

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The reference data set, i.e. the MBES, is represented in this same figure by a total of 51,131 real points, represented 

by the blue area which are blue squares on a small scale. Further details on the number of points for each sensor 

and for the predicted data are given in Table 9.6. 

 

 

 

 

Figure 9.16: Graphical representation of dataset crossing 
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The IS method will consider the three SBES datasets, estimated based on kriging (SBES-K) and obtained by the 

MBES survey, to perform the comparative analysis within the intersection area, bounded by the blue line in Figure 

9.16. The comparative analysis will be implemented following the following algorithm: 

 

• 1° Consider a single point (𝑃𝑆𝐵𝐸𝑆−𝐾) within the SBES-K data set; 

• 2º. Search the sampled point within the MBES data set closest to 𝑃𝑆𝐵𝐸𝑆−𝐾; 

• 3° Use equation 9.11 to evaluate the difference between the sampled and predicted values represented by 

the chosen points. 

The comparison is performed by performing the operation represented by equation 9.11, in which the residual 

value is extracted for the chosen points within the two previously defined data sets SBES_K and MBES. 

 𝛿𝐼𝑆 = 𝑧𝑝 − 𝑧𝑟     eq. 9.6 

Where 𝑧𝑝  represents the estimated value, while 𝑧𝑟  represents the reference value of the nearest neighbor of the 

estimated point. The value of the residual, represented by 𝛿𝐼𝑆 , will be stored in a stock accumulation matrix to be 

graphically plotted as a histogram. Figure 9.17 shows a small intercession region of the two SBES-K and MBES 

data sets, showing that there are a large number of reference points, represented by blue circles with "x" 

neighbouring an estimated point, represented by a red square. 

 

 

 

Data Type Number of Total Data 

Points 

Number of Data Points 

into the Intersect Region 

Distribution 

SBES Sonar 424 222 Irregular 

SBES Kriging 50000 19430 Regular 

MBES Sonar 51131 23792 Partially Irregular 

Table 9.6: Number of points and aspect for each dataset. 

Figure 9.17: Distribution of predicted and reference points with the nearest neighbour selected 
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Looking at Figure 9.17, we conclude that we cannot guarantee that we will always have a reference point correlated 

to an estimated point over the same geographic coordinate to compare its values. However, there are many points 

in a nearby neighbourhood that ranges from 2 to just over 0.8 meters which can ensure the formation of a pair, 

estimated point - reference point. To determine the nearest neighbour in relation to each estimated point, a simple 

non-parametric test type was performed, based on the k-nearest method. For the calculation of the metric distance 

used in this work, we consider the Euclidean distance algorithm presented in equation 9.12. 

 𝑑𝑠𝑡
2 = (𝑥𝑠 − 𝑦𝑡)(𝑥𝑠 − 𝑦𝑡)

′  eq. 9.7 

The nearest neighbour computation applying the k-nearest classification algorithm was performed within the 

intersection region shown in Figure 9.18 for both sets of data using the Matlab program. 

 

 
 

  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

As a result of the IS validation process, a map was generated that reflects the residue value for each estimated 

point by the kriging process. In Figure 9.19, we can see the residual map considering the nearest reference points 

with distance ≤ 1.0 meter. 

 

In Figure 9.19 the differences between the predicted and reference values are plotted in a colour code, with each 

colour representing a range of error, it would be a form of classification in clusters of errors. The smallest 

prediction errors are represented as red, numerically representing an error value between 0.30 and -0.30 meters. If 

we compare these values in term of percentage error, this represents an approximate value of 2.42% in relation to 

the maximum value recorded in the dataset and 4.82% in relation to the minimum value. According to the 

International Standard for Hydrographic Surveys (IHO 2012), this error value is acceptable for classifying 

bathymetric surveys and estimates within the IHO-S44 Special Order (IHO 2008). On the other hand, the region 

of green dots represents a small prediction error that is between 0,31 and 0,50 meters. In this case, the estimated 

points can be accepted as being valid for classification under the IHO-S44 Order 1A and Order 1B standard, 

depending on the total depth in the second sound area (IHO 2008). For the other areas, the predictive value did not 

reach the minimum necessary for classification within the standards (IHO 2008), these regions are represented by 

the light blue and dark blue points. 

 

Figure 9.18: Intersect regions extracted from predicted dataset (left) and reference dataset (right)  
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Observing the result of the errors associated with the estimated values presented in Figure 9.19, some regions 

experienced a high level of error, in this case, we have investigated the three overlapping data sets (SBES, SBES-

K and MBES). We observed that there is a region of intercession involving not only the two previously studied 

(SBES-K and MBES). Figure 9.20 shows this region of intersection, the largest errors were found outside the zone 

of intersection of the three data sets, that is, we were considering not only the interpolated data, but also the 

extrapolated data. As we noted in section 9.2 and Figures 9.10 and 9.11, the prediction using Kringing is not valid 

for extrapolations, the results obtained by the residue analysis strengthened the previous statement in section 9.2.  

 

Figure 9.19: Residual map generated after the IS validation process 

Figure 9.20: Intercept region between real point dataset and predicted points 
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In the intersection region involving the three data sets we have 5,117 points, of which 4,517 represent valid 

estimated points, representing a total of 87.82% of the total predicted points and with classification capacity within 

the standard IHO-S44 Special, 1A and 1B Order (IHO 2008), but only 3,234 points can be classified as Special 

Order, with an estimated prediction error below 0.30 meters, representing 63.20% of the total estimated points. 
 

Kriging Results 
Description Std. Dev Bins % IHO-S44 Order Validity 

Number of Points into Region  - 5,117 100%  

Number of Points with Difference Value (DV) <=0.3 1 𝜎 3,234 63,20% Special Order 

Number of Points with Difference Value (DV) <=0.5 1.61 𝜎 4,517 87,82% Special Order and Order 1A and 1B 

0.50<Number of Points with Difference Value (DV) 

<=0.60 

2 𝜎 4,917 8.27% Acceptable only to depth > 100 m 

Number of Points with Difference Value (DV) >0.6 - 200 3,91% Not Acceptable in IHO Standard 

 

In Table 9.7 we present the summary of the IS validation process with the percentage of valid points for 

classification according to IHO-S44 Special, 1A and 1B Order (IHO 2008). In this table, the number of invalid 

points for classification is also displayed. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In this case, we consider as invalid points all points at which the residual error value is above 0.5 meters. 

Considering this case, we will have a total of 607 points, which represents 11.87% of the total estimated points. 

Considering the need to analyse the content of the residues more graphically, in Figure 9.21, we represent these 

values in the form of a histogram of the residual Gaussian distribution. This representation allows an analysis of 

the mean magnitudes of the residues alongside some descriptive statistics and indicators may help to better 

understand the quality of the estimates generated by kriging. 

Table 9.7: Kriging results data summary 

Figure 9.21: Estimated error distribution against Gaussian distribution 
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9.3.4 Average Magnitude of Errors Analysis 
 
The next stage of study and literature review was established in order to study the methods of the mean magnitude 

of errors evaluation. Thus, we used some techniques to measure and compare the mean error amplitude using 

different interpolation methods that were applied to the data. In this context, for example, the reference (Robinson 

& Metternicht 2006) compare the accuracy of some interpolation methods such as kriging, Inverse Distance (IDW) 

and Splines. In this work, the authors used a set of reference data and another set of estimated data to extract some 

statistical information about the mean magnitude of errors, evaluating the efficiency of the prediction involving 

spatially distributed solid properties. 

 

In the analysis of (Robinson & Metternicht 2006) the main techniques used in the evaluation of the mean 

magnitude of errors are implemented through the Mean Error (ME) and Mean Squared Root Error (RMSE) 

indicators, which led to similar results involving cross validation and RMSE. In another study, (Curtarelli et al. 

2015) carried out a work involving a comparison of interpolation methods for bathymetric data of a water reservoir 

located in the Amazon Basin. The results were evaluated according to the application of the analysis based on the 

RMSE and Mean Absolute Error (MAE) indicators, in order to choose the best interpolation method. The results 

confirmed that the geostatiscal-based interpolation method can map important features obtained from the 

bathymetric survey. The numerical values found for the RMSE and the MAE were respectively 0.92m and 0.45m. 

 

 

 

 

 

 

 

 

Another interesting work was done to estimate the evolution of the bathymetry of a river and discharge calculation 

(Yoon et al. 2012). In this application, the achieved results were confirmed by the RMSE value of 0.52 m. Thus, 

the use of statistical indicators corresponding to the mean magnitude of the error constitutes a frequent evaluation 

of the predictions in some scientific works for the estimation of environmental variables. We then identified three 

widely used indicators based on RMSE, MAE and MSE. Among these, we chose RMSE as our main indicator and 

MAE with a secondary indicator. They were used here as indicators of the estimation performance. Our numerical 

results for measuring the magnitude of the error were provided in Table 9.8 for the numerical results for our 

estimate. 
 

Observing our results, reflected in the numerical results of Table 9.8, we have the notion of the accuracy level of 

the predictions performed with the Kriging method in the context of bathymetric surveys without the use of 

complementary information. The values found for RMSE and MAE were 0.32 m and 0.25 m, respectively. 

 

Table 9.9 shows the results of the study involving the descriptive statistics on the data set, comparing the values 

and correlations between the observed (SBES), estimated (SBES-K) and reference (MBES) data. This statistical 

study indicates some differences between extreme values related to the different datasets, resulting in a high value 

for the discrepancy between observed and estimated values. 

 

The Table 9.9 shows the results of the study involving the descriptive statistics on the data set, comparing the 

values and correlations between the observed (SBES), estimated (SBES-K) and reference (MBES) data. This 

Global Average Magnitude of the Errors Analysis 

RMSE RMSE (%) MAE MAE (%) Correlation 

Coefficient 

Standard 

Deviation 

0.320 2.21 0.25 1.72 0.9098 0.3143 

Descriptive Statistics Measures with All Bathymetric Data 
Descriptors Original 

Data 

(A) 

Estimated  

(B) 

Reference 

(C) 

Discrepancy 

(A-B) 

Discrepancy 

(A-C) 

Discrepancy 

(B-C) 

 meters meters meters meters % meters % meters % 

Minimum Value 6.22 10.54 10.49 4.27  38.03 4.27 34.13 0.05 0.40 

Maximum Value 14.00 13.82 14.46 0.18  1.58 0.46 3.68 0.64 5.10 

Average 11.36 12.51 12.55 1.14  10.04 1.19 9.51 0.04 0.32 

Median 11.62 12.50 12.54 0.88 ( 7.57 0.92 7.36 0.04 0.32 

Standard 

Deviation 

1.61 0.68 0.75 0.42 26.09 0.86 126.47 0.07 9.33 

Table 9.8: Numerical results for the global average magnitude of the error metrics 

Table 9.9: Descriptive statistics for all bathymetric data 
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statistical study indicates some differences between extreme values related to the different datasets, resulting in a 

high value for the discrepancy between observed and estimated values. 

 

Note that in this case we are not considering data in all regions, coincident or not, so we find high values of 

discrepancy. In Table 9.10, in the used data sets is considered only points within an intersection area, where there 

must be samples of the three data sets considered. In Table 9.10, it is observed that, when the area is limited to the 

coincident region, the discrepancy is reduced drastically. The result was expected, but the underestimation for 

some points still exists. 

 

9.3.5 Discussion and Preliminary Conclusions  
 

In this section, we will discuss the results presented in Table 9.7, comparing with the requirements of the 

international standard for bathymetric surveys (IHO 2008) and finally compare with the conclusions published by 

Cressie 1993 that is our main reference in the study of spatial statistics. In Table 9.7, line 3, only 87.82% of the 

estimated data can be accepted within the standard (IHO 2008) for classification between Special Order, Order 1A 

and Order 1B. In chapter 1, of the reference (Cressie 1993), the author developed a comparative study on two 

situations. The first situation considers that the sample set with mean 𝜇 and variance 𝜎0
2 𝑛⁄ . In the second case, the 

data set of the samples has a positive correlation between the values of the samples, in this case, the correlation 

between the samples decreases as the distance between the samples grows. 

 

In the first case, for both sides of the Gaussian distribution, the confidence interval is defined as 95% in relation 

to the mean according to expression 9.13. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In 

the second case, where there is a positive correlation between the sample values, the covariance is defined by 

equation 9.13. 

 𝑐𝑜𝑣(𝑧𝑖 , 𝑧𝑗) = 𝜎0
2 ∙ 𝜌|𝑖−𝑗| eq. 9.13 

Where i, 𝑗 =  1, . . . , 𝑛, and 0 < 𝜌 < 1. As a result, we will arrive at a first-order autoregressive process (Cressie 

1993). In this case, for a spatial data set in ℝ1, where 𝑧 (0) or 𝑧(2 3)⁄   predictions represent similarities for any 

𝑧(𝑛 + 1). Then, considering 𝑍̅ as an estimator for this process, having mean 𝜇 and variance 𝜎0
2 𝑛⁄ , the process 

variance will be given by: 

 

 
𝑣𝑎𝑟(𝑧̅) = {∑∑𝑐𝑜𝑣(𝑧(𝑖), 𝑧(𝑗))

𝑛

𝑗=1

𝑛

𝑖=1

} = 

 = {
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2
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} [1 + 2{

1
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eq. 9.14 

 (𝑍̅ − (1.96)𝜎0 √𝑛⁄ , 𝑍̅ + (1.96)𝜎0 √𝑛⁄ )  exp. 9.13 

Descriptive Statistics Measures with Only Bathymetric Data into Intersected Region 
Descriptors Original 

Data Inter 

(A) 

Estimated 

Data 

(B) 

Ref. Data 

(C) 

Discrepancy 

(A-B) 

Discrepancy 

(A-C) 

Discrepancy 

(B-C) 

 meters meters meters meters % meters % meters % 

Minimum Value 10.74 10.54 10.49 0.20 1.60 0.25 2.00 0.05 0.40 

Maximum Values 14.00 13.82 14.46 0.18 1.44 0.46 3.68 0.64 5.10 

Average 12.48 12.51 12.55 0.03 0.24 0.07 0.56 0.04 0.32 

Median 12.48 12.50 12.54 0.02 0.16 0.06 0.48 0.04 0.32 

Standard Deviation 0.77 0.68 0.75 0.09 0.69 0.02 2.94 0.07 9.33 

Table 9.10: Descriptive statistics for data into the survey coincident region 
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Considering the value 𝑛 =  10, 𝜌 =  0.26 and e 𝑣𝑎𝑟(𝑍̅) = {𝜎0
2 10⁄ }[1.608],  the 95% confidence interval for 

both sides of the Gaussian distribution for the mean 𝜇 will be defined as: 

 (𝑍̅ − (2.485) 𝜎0 √10⁄ , 𝑍̅ + (2.485) 𝜎0 √10⁄ )  eq. 9.15 

In this case, the hypothesis of assuming the application of non-spatial statistics in the estimates leads to inconsistent 

results. If we consider the previously studied confidence intervals, in the second case, the confidence interval of 

the estimates reaches 87.8% instead of the 95% reached in the first case. Comparing these results with the results 

obtained in our study, expressed in Table 9.7, line 3, the result is exactly equal to the result found by (Cressie 

1993). Therefore, we have concluded that the use of geostatistics for the estimation of bathymetric data at non-

sampled points, without the use of auxiliary information to support the process, will give similar results to the 

application of simple statistics. 

 

In contrast, we perceive three different regions for the behaviour of the estimated values compared to those 

observed from the results and using a graphical representation that relates the estimated and observed data in a 

plane, represented by Figure 9.22. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In Figure 9.22 we observe the bad estimates related to the values of bathymetry above 13.1 meters and below 11.7 

meters. The region between 11.7 and 12.1 has a good prediction result. Thus, although the data tends to follow a 

trend of normal distribution in intermediate values, we confirm the existence of two regions with distinct 

behaviour, as shown in Figure 9.23. These two regions exert influence over the regression algorithm based on 

kriging, and therefore estimates using the entire dataset result in failures for some locations. 
 

 

 

 

 

 

 

 

 

 

 

 

Figure 9.22: Observed data against estimated data relationship 
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We note that there is a visual similarity between Figures 9.22 and 9.23, which means that we can evaluate the 

adequacy of the original distribution of the data values to verify the feasibility of making geostatistical estimates. 

If the data distribution represents a deviation from the normal distribution, there will probably be a failure in the 

prediction process using Kriging. In this case, we intuit that according to the data distribution, we can divide the 

dataset into distinct regions, extracting the main prediction parameters for each region. Therefore, we could 

perform the kriging process for each region separately, joining the results in a single set later. In this case, it is 

necessary to apply or develop an analytical method to divide the regions before the geostatistical prediction 

process. 

 

 

Figure 9.23: Normal probability plot from original data 

Figure 9.24: Plot of relationship between residual and reference point distance from estimated point 
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As an additional consideration to guarantee a minimum level of confidence, we will choose the reference point 

using as a parameter of choice the half of the maximum distance for surveying bathymetric points according to the 

standard (IHO 2008), representing a distance of 1 meter, based on the comparative analysis carried out by the IS 

validation process. Thus, we will have some assurance that the estimates will be accepted by the international 

standard reference. 

 

Figure 9.24 shows the illustration of the residual value related to the distance between the observed points and the 

reference points. We observed that the maximum distance between points was 1 meter, so the method used to 

choose the reference points is within the limits established by our previous hypothesis. 
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9.4 Geostatistical Semivariogram Analysis, Kriging 
Estimations and Results Appling Clustering 

 

After the application of the geostatistical estimation and analysis presented in the previous sections, it was observed 

that only 87.82% of the estimated data can be accepted within the IHO (IHO 2008) standard for classification 

between Special Order, Order 1A and Order 1B. This would make it impossible to apply the method for the 

construction of bathymetric maps to support navigation in certain coastal regions or rivers that demand a more 

accurate confidence level. In this case, we propose a second way of approaching the estimation problem, which, 

like the previous approach, will not use any auxiliary information to support the geostatistical prediction. It was 

observed that the desired confidence level around 95% was not reached due to the trend in some directions of the 

sampled surface. Thus, the extraction of parameters for the geostatistical estimation using only one adjustment on 

the experimental semivariogram is not enough to capture all the nuances of variability and behaviour of the sample 

values. 

 

The spatial data analysis applied in this paper actually relates to the quest for spatial dependence between 

observations, the basic and intuitive assumption will be: "if we have two samples close together, their values are 

more correlated than distant ones. ". Therefore, the idea of seeking a spatial correlation between acquired samples 

using a transect method in a distribution of measurements on a plane was mathematically formalized by Whittle 

in his work (Whittle 1954). After that, Besag (1972) concludes that self-covariance related to some spatial process 

cannot be mathematically expressed using a standard analytic technique. Considering a discrete sample scheme, 

Besag suggests the use of conditional expectation models against the autoregressive model in bilateral spatial 

situations involved in normal processes. On the other hand, Haining in his work (Haining 1991) assumes that pairs 

of spatial observations are independent for parametric and non-parametric association test applications. In his 

paper, Haining noted that correlation measurements may reflect the properties of covariance that are dependent on 
the location and variables means involved in a bivariate system. Thus, this dependence can be used as an indicator 

of the spatial correlation existing in the distribution of the sample data, but with the exception of non-use as the 

only indicator. 

A modelling proposal aimed at solving the problem of identifying the different characteristics and property 

dependent on location was proposed in (Ripley 1977) to approach spatially distributed processes. In this work, one 

of the solutions was based on a grouping process. This solution divided the sample space into subsets because the 

total set of samples would apparently not be covered by the assumption of the Poisson distribution, mainly due to 

trends in certain directions Distribution of samples on the surface (Nelson et al. 2003), (Ross 2009) and (Ripley 

1977). The division of the process into subsets G through a grouping technique such as k-means allows regions 

with similar characteristics to be grouped, avoiding the effect of trends, approaching the characteristics of each 

subset closer to a Poisson distribution in 𝑅2. Summarizing, we propose a technique of geostatistical analysis from 

the segmentation of the initial set of samples, resulting in the creation of subsets with similar trends using the 

grouping technique called k-means. 

 

The K-means clustering technique uses an unsupervised learning algorithm (Hastie et al. 2009). The K-means 

algorithm finds clusters based on a centre and a radius from this centre, considering a set of unmarked data (Wang 

2006), (Fred & Jain 2006) and (Hastie et al. 2009). Thus, we must define the number of desired centres, which 

will consequently result in the number of clusters that will be generated as a processing result, having as 

preliminary information only the data of the bathymetry samples. The approximate determination of this number 

of centres, or clusters based on existing data, became the first challenge of solving the problem. The division of 

the sample dataset into subsets will permit the adjustment of the experimental semivariogram more precisely, 

resulting in more reliable predictions through the use of geostatistics. In order to guide the process of determining 

the number of subsets in this work, an empirical expression called the Grouping Factor (GF) was developed. The 

GF correlates the values of the correlation coefficients of the data with respect to the coordinate axes, which allows 

to determine the probable number of regions that we must segment the total of samples in disjoint regions for 

application of the clustering algorithm. 
 

The determination of GF is initiated by calculating the correlation coefficient, derived from descriptive statistics, 

the coefficient and correlation measures the degree of correlation between two variables (Richardson & Hemon 

1981), (Hauke & Kossowski 2011) and (Haining 1991). The correlation coefficient can be extracted according to 

different methods, receiving different names for each type of method. In this work, three different types of methods 

were used to calculate the correlation coefficient corresponding to each coordinate axis, these are called Pearson's, 

Spearman’s and Kendall’s correlation coefficients. The process of extracting the GF consists of two steps. In the 

first step two of the methods of calculating the correlation coefficient (𝜌) were used, on the bivariate system 

composed by an axis of the geographical coordinates described in Latitude and Longitude (𝐿𝑎𝑡, 𝑙𝑜𝑛) and by the 
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value of the sample (𝑧). In this case, we will find the correlation coefficients for each axis as 𝜌𝐿𝑎𝑡 for the bivariate 

system (𝐿𝑎𝑡, 𝑧) and (𝐿𝑜𝑛, 𝑧). In the second step, we will extract numerical values, which are indicators of the 

correlation coefficient for each axis, that is, a coefficient indicator on the vertical axis and coefficient indicator on 

the horizontal axis. 

 

In this work, we follow the open-set abstraction with inherent properties of the topological space, more concretely, 

the total sample space set will be defined as a union of subsets, in which the mathematical formalist is described 

in (Benedikt et al. 2006). In the representation of topological spaces, the open sets can be represented by a subspace 

in which each one includes different characteristics, since they represent different spaces. 
 

9.4.1 Dataset Correlation Coefficient 
 

The original sampling data of the bathymetric survey consists of a digital file in which each registered sample is 

stored with its corresponding geographical coordinate. The generated digital file format represents the sample 

value on the Latitude and Longitude plane in the format (𝑥, 𝑦, 𝑧), where 𝑧 is the sample value. The digital sample 

file is decomposed into a bivariate arrangement: latitude versus sample (𝑥, 𝑧) and Longitude versus sample (𝑦, 𝑧). 
Thus, considering the bivariate correlation coefficient analysis (𝜌) for each bivariate system, the correlation, or 

dependence between the variables of the new arrangement will be expressed through a numerical value ranging 

from −1 (strong negative correlation), through 0 (indicating lack of correlation or total randomness) to value 1 

(strong positive correlation). In this case, a question arises within the context of our study: How can we extract 

useful information about spatial dependence within the bathymetric data using the bivariate correlation coefficient 

analysis in the two directions of interest? A preliminary study stage was started seeking the understanding and use 

of studies on the correlation of the variables. 

9.4.1.1 Pearson’s Correlation Coeficient 
 

From Pearson's paper (Pearson 1900), we will have one formal definition for describing the linear correlation 

coefficient of two random variables within a data set. This work was a consequence of published work Pearson & 

Filon 1898). The Pearson correlation coefficient or product-moment correlation coefficient is the linear type, it is 

currently the most used form to calculate the correlation coefficient for a bivariate system (𝑥𝑖 , 𝑦𝑖),, where 𝑖 varies 

from 1 to 𝑛 (Press et al. 1992). The Person correlation coefficient was formally defined as the covariance between 

two variables divided by the product of the standard deviations of each variable (Pearson 1900). The mathematical 

formulation is expressed in equation 9.16. 

 𝜌𝑥𝑖,𝑦𝑗 = 𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛(𝑥, 𝑦𝑗) = 

=
𝑐𝑜𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒(𝑥𝑖 , 𝑦𝑗)

√𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒(𝑥𝑖)√𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒(𝑦𝑖)
=

∑ (𝑥𝑖 − 𝑥̅)(𝑦𝑖 − 𝑦̅)𝑖

√∑ (𝑥𝑖 − 𝑥̅)
2

𝑖 √∑ (𝑦𝑖 − 𝑦̅)
2

𝑖

 

 eq. 9.16 

Where 𝑥̅ is the mean of the measurement values 𝑥𝑖 and  𝑦̅ represents the mean of the measurement values for 𝑦𝑗 . 

Using the Matlab function "corrcoef" and the algorithm of the "coor" function, the values of the correlation 

coefficients 𝜌𝑥𝑖,𝑦𝑗 are generated in the form of a 2𝑥2 matrix. Note that the value of 𝜌𝑥𝑖,𝑦𝑗  calculated using the 

algorithm of Person ignores individual characteristics of the point distributions. Therefore, we can not probe the 

null hypothesis in its distribution for all bands considering a single bivariate system, but using the composition of 

systems such as two bivariate systems, we increase this possibility. 

9.4.1.2 Spearman Correlation Coeficient 
 

Spearman's correlation coefficient, or classification order correlation (Press et al. 1992), can evaluate the 

monotonic relationship between two continuous or discrete variables, that is, the variables tend to change together, 

but not necessarily to a constant rate. Spearman's correlation has no assumption that the relationship between 

variables is linear. Thus, Spearman's correlation is a nonparametric correlation measure, this means, unlike 

Pearson's correlation, that there is no requirement for normality nor the need to measure the strength of association 

between two variables. The expression for calculating the Spearman correlation coefficient is given in equation 

9.17. 
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Where the value 𝑑𝑖  is the classification distance between variables, considering the bivariate system defined as 

(𝑙𝑎𝑡, 𝑦𝑗) for the latitude axis e (𝑙𝑜𝑛, 𝑥𝑖) for the length axis. The value of 𝑛 represents the number of pairs that 

measure the correlation (Press et al. 1992). The existence of a zero value (0) as a result of the Spearman correlation 

calculation, different from the case where we calculated the correlation coefficient using Pearson's, does not imply 

that there is no relation between the variables. This is a motivation not to use just one kind of correlation coefficient 

in a decision-making process within our method. 

 

9.4.1.3 Kendall 𝝉 Correlation Coeficient 
 

This coefficient was introduced by (Kendall 1938), and can be used as an alternative to the Spearman correlation 

coefficient for organized row data (Hauke & Kossowski 2011). The Kendall coefficient 𝜏 performs a mean 

operation between pairs of samples. The main advantage of the Kendall 𝜏 coefficient according to the work (Hauke 

& Kossowski 2011) is summarized, with the expression: "The main advantage of using Kendall 𝜏 lies in the fact 

that its distribution has slightly better statistical properties in terms of probabilities, according to concordant and 

discordant pairs are observed. " As an example, we can consider N data points (𝑥𝑖 , 𝑦𝑖), and  
1

2
𝑁(𝑁 − 1) pairs of 

points, where a point of the data cannot be paired with itself, in addition, points in any order can be considered as 

a pair (Press et al., 1992). We can define the technique using the formalism of (Press et al. 1992) and (Christensen 

et al. 2005), in which it describes that the Kendall correlation 𝜏 between two sets of random variables 𝑋 =  (𝑥𝑖) 
and 𝑌 =  (𝑦𝑖) with 𝑖 =  (1,2,3, . . . , 𝑁), and it can be determined using the assumptions published in (Press et al. 

1992): 
 

i. We call a pair of concordants if the relative ordering of the rows of the two elements 𝑥𝑖 is the same relative 

to the relative ordering of the rows of the two corresponding elements 𝑦𝑖; 
 

ii. We call a pair of discordants if the relative ordering of the rows of the two elements 𝑥𝑖 is opposite to the 

relative ordering of the rows of the two corresponding elements 𝑦𝑖; 
 

iii. If there is a tie in the classifications of the two elements 𝑥𝑖  or in the rows of the two elements 𝑦𝑖 , then we 

do not classify the pair as concordant or discordant. 

 

• If the tie is in the x, we will call the pair of "extra pair y". 

• If the tie is on y, we will call the pair an "extra pair x". 

• If the tie is in the x's and y's, we do not name it. 
 

The Kendal coefficient 𝜏 can be described as a simple combination of the previously mentioned terms defined as: 

 

𝝆𝝉 =
𝒄𝒐𝒏𝒄𝒐𝒓𝒅𝒂𝒏𝒕 − 𝒅𝒊𝒔𝒄𝒐𝒓𝒅𝒂𝒏𝒕

√𝒄𝒐𝒏𝒄𝒐𝒓𝒅𝒂𝒏𝒕𝒆 + 𝒅𝒊𝒔𝒄𝒐𝒓𝒅𝒂𝒏𝒕 + 𝒆𝒙𝒕𝒓𝒂 − 𝒚√𝒄𝒐𝒏𝒄𝒐𝒓𝒅𝒂𝒏𝒕𝒆 + 𝒅𝒊𝒄𝒐𝒓𝒅𝒂𝒏𝒕𝒆 + 𝒆𝒙𝒕𝒓𝒂 − 𝒙
 

eq. 9.18  

As the correlation coefficients of Pearson and Spearman, Kendal 𝜏 will range from −1 to 1. 

 

In our experimental implementation, we identified a very similar result in the values of the correlation coefficient 

calculated with the Spearman and Kendall 𝜏 algorithms, on the other hand, the most discordant value was found 

with the Pearson algorithm. The best way to determine a numerical value for the cluster factor is to use at least 

two methods, if the values are divergent, we will apply the third method as a tie-breaking criterion. This method 

of determining a value that represents the ideal value of clusters within a dataset was inspired by the reference 

(Wang 2006), this work was applied to gene expression data. Thus, we could find a relation between the 

coefficients of correlation between the coordinated axes and the techniques of groupings applied in spatial data. 

 
𝜌𝑥𝑖,𝑦𝑗 = 1 −

6∑𝑑𝑖
2

𝑛3 − 𝑛
 

 eq. 9.17 
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9.4.2 Determine of the Cluster Factor (CF) by the 
Correlation Coefficient 

 
The determination of the Cluster Factor (CF), as a function of the correlation coefficient, intends to provide the 

cluster algorithm with a notion of the ideal number of clusters within the data set. Thus, we can increase the 

confidence level of the predictions involving the study and application of the geostatistical method insofar as it 

helps to divide the data set into groups whose elements have statistical characteristics that respect the assumption 

of the Poisson distribution. Therefore, each cluster encompasses samples with structural characteristics and similar 

trends. After the data characterization using the experimental (empirical) representation, that relates the values of 

the correlation coefficients of the bivariate system to the generation of the CF is developed considering the 

following steps: 

 

1. Choice of two distinct methods to calculate the correlation coefficient (𝜌) of the bivariate system, in our 

case: 

 

• 𝜌𝑙𝑎𝑡 - For the bivariate system (latitude, sample); and 

• 𝜌𝑙𝑜𝑛 - For the bivariate system (Longitude, sample). 

 

2. Extraction of the correlation coefficient indicators for each axis of the bivariate system: 

 

• Vertical Axis Coefficient Indicator (𝑉𝐴𝑖); and 

• Horizontal axis coefficient indicator (𝐻𝐴𝑖). 
 

The process of calculation and determination of the indicators will be carried out according to the chosen method 

for the calculation of the correlation coefficient. 

 

1) For Pearson’s Correlation Coefficient: 
 

1. We extract the determinant of the matrix 𝜌, which represents the correlation coefficient generated by the 

Pearson algorithm, resulting in the value 𝜌
det

 for each bivariate system; 

 

2. We compare the values of 𝜌
det

 for both bivariate systems and consider the highest value of 𝜌
det

 as the 

Indicator 𝑉𝐴𝑖. Thus, the lower value will be the Indicator 𝐻𝐴𝑖. 
 

2) For Spearman e Kendall τ Coeficiente de Correlação: 

 
1. Comparamos os valores do coeficiente de correlação 𝜌 para ambos os sistemas bivariados, determinamos 

o maior dos valores do coeficiente de correlação como 𝑉𝐴𝑖  e o menor como 𝐻𝐴𝑖 . 
 

2. We compare the values of the correlation coefficient 𝜌 for both bivariate systems, we determine the 

highest values of the correlation coefficient as 𝑉𝐴𝑖  and the smaller one as 𝐻𝐴𝑖  
 

After the comparisons and adjustments of the correlation coefficients relative to each bivariate system generated, 

we can calculate the CF, thus extracting the best indication of the ideal number of clusters that we will enter as 

parameter in the K-means aggregation method, whose operation is represented in the expression 9.14 

 𝐶𝐹 = 𝑟𝑜𝑢𝑛𝑑𝑒𝑑 (
𝑉𝐴𝑖

𝐻𝐴𝑖
)   exp. 9.14  

Note 1: If the values of the CF, after rounding are different, a third method for extraction of the correlation 

coefficient should be used as a tie-breaking criterion between the previously calculated CF values. Note that we 

consider only absolute values to represent the value of ρ. 

To illustrate graphically the definition operation of CF, we developed the graphical idea of the correlation plane 

(𝜌
𝑙𝑎𝑡,𝑧𝑖

, 𝜌
𝑙𝑜𝑛,𝑧𝑗

). In this plan, we represent the distribution or spreading form of the data samples in relation to the 

two axes, representing the value of the CF in relation to this distribution. The graphical representation is valid only 

for the calculation of the correlation coefficient using the methods of Pearson and Spearman. 
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The correlation plane (CP), represented in Figure 9.25, will graphically represent the reliability regions for use or 

not of the correlation plane method to determine how many clusters the set of samples can be divided to maximize 

the confidence level of the Predictions using the geostatistical method. 

 

The correlation plane can be simplified due to the symmetry between the occurrences of correlation coefficient 

values and the regions described in Figure 9.25. Thus, we can present the CP using only the absolute values of the 

correlation coefficients. In this way, the simplified representation of the CP represented by Figure 9.26, includes 

the ideal values of clusters related to the relationship of the correlation coefficients with respect to the two bivariate 

systems. Recalling that this plan was only validated for the use of correlation coefficients using the algorithms of 

Pearson and Spearman. 

 

Figure 9.25: Correlation coefficient to cluster number map grid, scatter plot representation 
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In the correlation plan model, we represent only 100 relationship sub-regions, because in this case, we only need 

to consider only one decimal digit. Depending on the number of existing data points, the different dimensions and 

trends present in the data collection region, we can consider increasing the number of decimal digits, so we will 

increase the cluster number. The information extracted from the correlation plane will be similar to the information 

of the calculation of the cluster factor (CF), this information will be used as a parameter for the k-means cluster 

algorithm. The clustering process, as well as geostatistical data processing, was performed on a computer with 64, 

Windows 2010 and Matlab software architectures. 

 
Considering our data, we will use the expression (9.14), to extract the ideal cluster number or CF, the analytically 

calculated result was 3. The methodology used to extract this information was done through the three-step 

procedure described below: 

 

Step 1: We chose as the first two algorithms for the extraction of the correlation coefficient and subsequent 

calculation of the correlation indicators the algorithms of Pearson and Spearman. 

 

Step 2: We then determine the vertical and horizontal correlation indicators 𝑉𝐴𝑖  and 𝐻𝐴𝑖: 
 

Pearson’s Case: 

𝜌𝑙𝑎𝑡,𝑧 = (
1 0.1741

0.1741 1
) ; then, 𝜌det _𝑙𝑎𝑡 = 𝑑𝑒𝑡 (

1 0.1741
0.1741 1

) = 0.9697  eq. 9.19 

𝜌𝑙𝑜𝑛,𝑧 = (
1 0.6298

0.6298 1
); then, 𝜌det _𝑙𝑜𝑛 = 𝑑𝑒𝑡 (

1 0.6298
0.6298 1

) = 0.6034  
eq. 9.20 

 
Comparing both 𝜌det _𝑙𝑎𝑡 and 𝜌det _𝑙𝑜𝑛 values, we will have 𝜌det _𝑙𝑎𝑡 > 𝜌det _𝑙𝑜𝑛, then: 

 𝑉𝐴𝑖 = 𝜌det _𝑙𝑎𝑡 = 0.9697  exp. 9.15 

 

 𝐻𝐴𝑖 = 𝜌det _𝑙𝑜𝑛 = 0.6034  exp. 9.16 

Spearman Case: 

 𝜌𝑙𝑎𝑡 =  0.1951  exp. 9.17 

 

 𝜌𝑙𝑜𝑛 =  0.5958  exp. 9.18 

Figure 9.26: Correlation coefficient to cluster simplified map diagram 



Shallow Water Remote Sensing Using Sonar Improved with Geostatistics and Stochastic Resonance Data Processing 

 119 

Comparing both 𝜌lat and 𝜌lon values, we will have 𝜌𝑙𝑜𝑛 > 𝜌𝑙𝑎𝑡, then: 

 𝑉𝐴𝑖 = 𝜌lon = 0.5958   exp. 9.19 

 

 𝐻𝐴𝑖 = 𝜌lat = 0.1951    exp. 9.20 

 

Step 3: Determining values for: 

 
Pearson’s Case: 

 
𝐶𝐹𝑃 = 𝑟𝑜𝑢𝑛𝑑𝑒𝑑 (

𝑉𝐴𝑖
𝐻𝐴𝑖

) =
0.9697

0.6034
= 𝑟𝑜𝑢𝑛𝑑(1.60) = 2; 

 eq. 9.21 

Spearman Case: 

 
𝐶𝐹𝑆 = 𝑟𝑜𝑢𝑛𝑑𝑒𝑑 (

𝑉𝐴𝑖
𝐻𝐴𝑖

) =
0.5958

0.1951
= 𝑟𝑜𝑢𝑛𝑑(3.05) = 3; 

 
eq. 9.22 

As the values of 𝐶𝐹𝑃 and 𝐶𝐹𝑆 are divergent, we need to calculate the 𝐶𝐹 using a third method, Kendall 𝜏. 
 

Kendall 𝝉 Case: 

 𝜌𝑙𝑎𝑡 =  0.1368  
exp. 9.21 

 

 𝜌𝑙𝑜𝑛 =  0.4375  exp. 9.22 

Comparing both 𝜌lat and 𝜌lon values, we will have 𝜌𝑙𝑜𝑛 > 𝜌𝑙𝑎𝑡, then: 

 𝑉𝐴𝑖 = 𝜌lon = 0.4375  exp. 9.23 

 

 𝐻𝐴𝑖 = 𝜌lat = 0.1368  exp. 9.24 

 
 

𝐶𝐹𝑆 = 𝑟𝑜𝑢𝑛𝑑𝑒𝑑 (
𝑉𝐴𝑖
𝐻𝐴𝑖

) =
0.4375 

0.1368
= 𝑟𝑜𝑢𝑛𝑑(3.19) = 3; 

 

 
eq. 9.23 

In this case, since most of the results point to a CF = 3, we use this value as the input parameter of the k-means 

algorithm to partition the entire data set into three disjoint regions. Thus, after division, we can apply the 

geostatistical method, making predictions by the kriging algorithm with parameters suitable for each of the 

grouping regions. 

9.4.3 Clustering Bathymetric Dataset Based in K-means 
Algorithm 

 
The technique of dividing the dataset into disjoint groupings will be applied to our data set. The objective will be 

to increase the reliability in the predictions made through the geostatistical analysis, as a result of the elimination 

or decrease of the trend level present in the data of each grouping. Therefore, from the initial consideration, it 

consists of a set of measurement data (𝑧𝑖) extracted from a single bathymetric surveying operation, which forms a 

single P region within the context of regionalized variables (Matheron 1971b). The region P will be expressed as 

a set of sub regions 𝑝𝑖, mathematically represented by the expression 9.25. 

 𝑃 =⋃𝑝𝑖
𝑖≤𝑛

 
 

exp. 9.25  

Where 𝑝𝑖 ∩ 𝑝𝑗 = ∅, if 𝑖 ≠ 𝑗. Thus, the clustering operation performed on the region P will form disjoint groupings 

𝑝1, …, 𝑝𝑛, where n represents the total number of portions or grouping. The size of each cluster may be the same 
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or different, but must have a minimum number of data, approximately 50 samples, ideally the value should be 

above 100 samples. The cluster algorithm k-means uses an iterative relocation technique based on similarity, in 

order to improve the position of the centroids within each group, this algorithm represents a generalization of the 

classic clustering criterion of the sum-of-squares method SSQ clustering criterion (Hans-Hermann 2008). The 

application of the FC, developed in this work, intends to satisfy the classical request of the k-means algorithm, 

which consists in determining the desired number of classes in which the data set must be divided into subsets that 

do not overlap. The algorithm will interactively minimize the Euclidean distance between the reference centroid 

and each sample, to include points in each partitioned region. The result is a set of compact clusters that are as 

separate as possible. 

 

The data set was plotted in Figure 9.1. The total set of available samples has 424 points, but only 220 points can 

be used because they are the points that are in the same region of the reference dataset, as observed in section 

9.3.3, and represented in Figure 9.20 by the intersection between Black spots (SBES samples) and coloured 

(MBES samples). In this way, we can proceed to the study of prediction reliability by comparing predictions and 

reference data. So, we proceeded with the initial analysis to find the ideal number of clusters to divide the data. 

 

 

Observing the distribution of the data samples values in front of the line of a normal distribution, through the graph 

of probabilities distribution, we can observe deviations or outliers in relation to the normal distribution. Deviations 

or outliers may represent the existence of a trend in the data. This graphical representation can be visualized in 

Figure 9.27. 

Parameters Values 

Minimum 10.74 

1st Qu. 11.86 

Mean 12.45  

Median 12.45 

3rd Qu. 13.13 

Maximum 14.00 

Standard Deviation  0.79 

Skewness -0.11 

 
We determine the outliers with the denomination of atypical points, that is, all points above and below two standard 

deviations (2𝜎). In Table 9.11, we summarize the statistical characteristics for the set of considered samples. 

Figure 9.27: Probability plot against normal distribution of 220 data points selected 

Table 9.11: Simple statistical analysis 
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1) Determination the number of clusters using CF 
 
 

According to the algorithm discussed in this chapter, in order to guarantee a more accurate prediction of values 

for non-sampled points, we will perform the process of determining the ideal cluster number for dividing the data 

samples in a few steps as shown below. 

 

Step 1: Determination of the correlation coefficients (𝜌𝑙𝑎𝑡,𝑧 and 𝜌𝑙𝑜𝑛,𝑧), in addition to calculating the correlation 

indicators (𝑉𝐴𝑖and 𝐻𝐴𝑖) for the bivariate system represented by the relation. The coordinate axes and the value of 

the samples. We first chose the Person and Spearman methods. 

 

Pearson’s Case: 

𝜌𝑙𝑎𝑡,𝑧 = (
1 0.2289

0.2289 1
) ; then,  𝜌det _𝑙𝑎𝑡 = 𝑑𝑒𝑡 (

1 0.2289
0.2289 1

) = 0.9476  eq. 9.24 

𝜌𝑙𝑜𝑛,𝑧 = (
1 0.5661

0.5661 1
); then,  𝜌det _𝑙𝑜𝑛 = 𝑑𝑒𝑡 (

1 0.5661
0.5661 1

) = 0.6795  
eq. 9.25 

 
Comparing both 𝜌det _𝑙𝑎𝑡 and 𝜌det _𝑙𝑜𝑛 values, we will have 𝜌det _𝑙𝑎𝑡 > 𝜌det _𝑙𝑜𝑛, then: 

 𝑉𝐴𝑖 = 𝜌det _𝑙𝑎𝑡 = 0.9476   exp. 9.26  

 

 𝐻𝐴𝑖 = 𝜌det _𝑙𝑜𝑛 = 0.6795  exp. 9.27 

 
Spearman Case: 

 𝜌𝑙𝑎𝑡 =  0.2772  exp. 9.28 

 

 𝜌𝑙𝑜𝑛 =  0.5671  exp. 9.29 

Comparing both 𝜌lat and 𝜌lon values, we will have 𝜌𝑙𝑜𝑛 > 𝜌𝑙𝑎𝑡, then: 

 𝑉𝐴𝑖 = 𝜌lon = 0.5671  exp. 9.30 

 

 𝐻𝐴𝑖 = 𝜌lat = 0.2772  exp. 9.31 

 

Passo 2: Determine values to CF. 

 
Pearson’s Case: 

 
𝐶𝐹𝑃 = 𝑟𝑜𝑢𝑛𝑑𝑒𝑑 (

𝑉𝐴𝑖
𝐻𝐴𝑖

) =
0.9476 

0.6795
= 𝑟𝑜𝑢𝑛𝑑(1.39) = 1; 

 
eq. 9.26 

Spearman Case: 

 
𝐶𝐹𝑆 = 𝑟𝑜𝑢𝑛𝑑𝑒𝑑 (

𝑉𝐴𝑖
𝐻𝐴𝑖

) =
0.5671 

0.2772
= 𝑟𝑜𝑢𝑛𝑑(2.04) = 2; 

 
eq. 9.27 

As the values of 𝐶𝐹𝑃 and 𝐶𝐹𝑆 are divergent, we need to calculate the 𝐶𝐹 using a third method, Kendall 𝜏 again. 

 

Kendall 𝝉 Case: 
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 𝜌𝑙𝑎𝑡 =  0.1731  
exp. 9.32 

 

 𝜌𝑙𝑜𝑛 =  0.4012  exp. 9.33 

Comparing both 𝜌lat and 𝜌lon values, we will have 𝜌𝑙𝑜𝑛 > 𝜌𝑙𝑎𝑡, then: 

 𝑉𝐴𝑖 = 𝜌lon = 0.4012   exp. 9.34 

 

 𝐻𝐴𝑖 = 𝜌lat = 0.1731    exp. 9.35 

 

 
𝐶𝐹𝑆 = 𝑟𝑜𝑢𝑛𝑑𝑒𝑑 (

𝑉𝐴𝑖
𝐻𝐴𝑖

) =
0.4012  

0.1731
= 𝑟𝑜𝑢𝑛𝑑(2.31) = 2; 

 

 
eq. 9.28  

 

In this case, as the majority results points to 𝐶𝐹 = 2, we will use this in the K-means cluster algorithm to 

partitioning our dataset in two disjoints regions. 

 

2) Appling K-Means Clustering using the Cluster Factor (CF)  
 
The K-Means algorithm that was used in this work is based on the algorithm inspired by (Helmuth Spath 1985) 

and (Seber 2004). The CF value, previously calculated, will be used to divide the dataset into two regions, both 
regions are indicated by Region 1 and Region 2. Therefore, after dividing the region, we must start the geostatistical 

analysis and processing of each region separately. Table 9.12 shows the previously separated regions and a 

statistical summary of the samples. 

 

 

 

Table 9.12 shows the differences between the extreme values, that is, the maximum and minimum values of the 

sample set in relation to the mean for each region. The values can be seen in Table 9.13. 

 

 
 

 

 

  

 

 Exploratory Data Analysis Region 1   Exploratory Data Analysis Region 2  
Parameters Values Parameters Values 

Minimum 10.74 Minimum 12.59 

1st Qu. 11.55 1st Qu. 12.92 

Mean 11.96 Mean 13.18 

Median 11.86 Median 13.20 

3rd Qu. 12.22 3rd Qu. 13.42 

Maximum 12.58 Maximum 14.00 

Parameters Region R1 Region R2 Both Regions Together 

Dif. Mean-Maximum (m) 0.62 0.82 1.55 

Dif. Mean-Minimum (m) 1.22 0.59 1.71 

Table 9.12: Scatter data from both disjoints regions created by K-Means cluster 

 

Table 9.13: Differences from mean to extreme sample values for each region and entire dataset. 
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Reducing the differences between the extreme values of the samples in relation to the mean after dividing the 

regions will result in a greater precision in the kriging estimates, regardless of the method used. Figure 9.28 shows 

the histogram of both separated regions. The R1 region is represented by the left side illustration and the right side 

is the region 2 representation. Despite the non-Gaussian distribution model in both regions, the decrease of the 

differences between the extreme values of the samples and the mean, allows the predictions to have a smaller error, 

when compared to the values obtained if we used the whole set of samples in the same prediction operation. 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The parameters values extracted after adjustment of the experimental half-variogram, using a theoretical semi-

variogram model for both regions, are shown in Figure 9.29 graphically and numerically in Table 9.14. These 

values will be used in the estimation process using the kriging algorithm, which will result in value propositions 

for not sampled points within the regions of interest. 

 

Figure 9.28: Box-plot from both clustered regions 

Figure 9.29: Experimental semi-variogram fit for both regions 
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Variogram Parameter from Region R1 Variogram Parameter from Region R2 

Theoretical Model Fit Gaussian-Bessel Theoretical Model Fit Exponential-Cosine I 

Nugget 0.0478 Nugget 2.1842 x 10−13 

Sill 1.1307 Sill 0.91632 

Length --------- Length 0.64398 

Hole Scl. 12.5271 Hole Scl. 8.9425 

Range 0.95 Range 0.95 

Resolution 0.025 Resolution 0.025 

 

After an iterative process to choose the best model of theoretical semi-variogram, we arrived at the adjustment 

using the Gaussian-Bessel and Exponential-Cosine 1 models for regions 1 and 2, respectively. The parameters 

used in the kriging estimator are expressed in Table 9.15 in addition to the definition of some other parameters. 

Additional Kriging Parameter to Estimates Over Region R1 Additional Kriging Parameter to Estimates Over Region 

R2 

Model Ordinary Kriging Model Ordinary Kriging 

Scheme Point to Point Scheme Point to Point 

Search Radius 0.3 Search Radius 0.3 

Min. Kriging Points 10 Min. Kriging Points 10 

Max. Kriging Points 30 Max. Kriging Points 30 

Relative Variance 2.5 Relative Variance 2.5 

Estimation Resolution 1 meter Estimation Resolution 1 meter 

 
As previously described, the process of prediction or estimation of values in non-sampled points began in the 

division of the sampling region into disjoint sub-regions (R1 and R2).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

Table 9.14: Variogram parameters from both regions R1 and R2 

 

Table 9.15: Additional kriging parameters to estimate data at unsampled points for both regions 

 

Figure 9.30: Contour map from both regions estimated separately 
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Under each region, the operation of prediction value is applied, with different parameters for each region, 

according to the specific characteristics of the regions, keeping only the parameter related to the desired resolution 

at the end of the individual prediction process. The final result will be composed of the union of the two predicted 

regions, grouping them and forming a single estimated region. Figure 9.30 shows the estimate for Regions R1 

(illustration above) and R2 (illustration below). 

 

 

The EasyKrig 3.0 Matlab Toolbox module has its own algorithm to calculate the error of the estimates, generating 

a variance map that allows to evaluate the accuracy in the prediction process. The maps of Figure 9.31 were 

generated from this tool, in which we can see both regions, R1 (in the upper illustration) and R2 (in the lower 

illustration). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9.31: Variance map from kriging estimations of both regions. 

Figure 9.32: Cross-validation results using 𝑸𝟏method for both regions, R1(left) and R2 (right) 
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In Figure 9.31, we can see that in the R1 region the prediction error is about 0.5 meters and for the R2 region, 

about 0.44 meters. If we compare this value with the prediction result considering the entire data set, shown in 

Figure 9.10, the error presented was less than 0.5 meters, however, we still must cross-validate and analyse the 

residuals for the second approach. In Figure 9.32, we present the cross-validation result for both regions of Figure 

9.30. 

 

Figure 9.32 shows the cross-validation result 𝑄1 for the two regions. This validation method confirms the good 

results of the estimation. The magenta line representing the calculated value of the 𝑄1indicator is within the 

accepted region as valid (among the red bars), indicating the suitability of the regression process for the dataset. 

The numeric result for each region is specified on each graph, being -0.00254797 for the R1 region and -0.0389129 

for the R2 region. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The cross-validation result using the 𝑄2 method is shown in Figure 9.33, both regions, R1 and R2, have similar 

values, the calculated value is approximately 1.0, this is an interesting result because according to the reference 

(Chu 2004) it is difficult to obtain good cross-validation results for both methods for the same estimation process. 

Despite this, it was decided to continue the cross-validation process using two other methods provided by EasyKrig 

3, such as, the Leave One Out (LOO) and Double Kriging (DK) methods. 

 
 

 

Considering the cross-validation method using LOO for both regions, the results are presented in Figure 9.34, we 

can see some underestimates occurring in situation of sudden changes values of regionalized variables, where they 

occur in local maxima and minima. Numerically, the value of the residue between the observed and predicted 

values was about 0.0026 with a variance of 0.09. The last cross-validation method applied was the DK and the 

graphical results are presented in Figure 9.35. The cross-validation DK presents the numerical result for the values 

of residue and variance equal to 0.0014 and 0.13 respectively. 

 

Figure 9.33: Cross-validation results using 𝑸𝟐method for both regions, R1(left) and R2 (right). 

Figure 9.34:Cross-validation results using LOO method for both regions. 
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All cross-validation methods validate positively the predictions results; however, we proceed with the application 

of the evaluation method based on the comparison of the predicted values with real samples of an IS reference 

dataset. The advantage of using the IS method is the independence of the data between the estimated and observed 

samples, both from independent sources, but are taken from the same region. It guarantees independence in the 

evaluation of our estimates, calculating the residue between the observed data and the estimated data. Figure 9.36 

shows the variance map generated after the application of the IS method. We can see the clear difference in the 

variance values when compared to the application of the geostatistical method for the whole dataset without the 

clustering process, shown in Figure 9.19. 

 

 

 

 

Figure 9.35: Cross-validation results using DK method for both regions. 

 

Figure 9.36: We observe the decrease of estimation error, and there are more regions with error bellow 0.3 meters 

ideal to consider into the specification to SO of IHO-S44 Standard. 
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In Figure 9.36, we observed visually, through the colour indication, that the number of points whose estimation 

error is below 0.30 meters increased considerably in relation to the geostatistical prediction operation without the 

initial clustering process. The percent error was numerically described in Table 9.16. In Figure 9.37 we graphically 

present the residual analysis on the residue distribution histogram graph, adding some information about the 

confidence level study.  
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The processing approaches considered in this work are divided into: (i) Processing of the entire data set using the 

same model and parameter for the entire region; and (ii) to process the data set divided into clusters according to 

similarity assessments among samples and to apply different models and parameters, both processing was 

approached in order to meet the standard of the (IHO 2008).  

 

The standard (IHO 2008) requires a minimum confidence level for measurements in bathymetric survey 

operations. Thus, depending on the level of confidence we can build bathymetric maps, or maps highlighting 

characteristics of interest for a sampled region. 

 

These maps can serve as support to the navigation, being classified according to the criticality of the operation 

linked to the level of confidence achieved in the representation. In a brief review, we consider the reference values 

of parameters a and b of Table 1 of the reference (IHO 2008) as input of the expression of the calculation to 

determine the level of vertical uncertainty. Therefore, two equations were considered, equation 9.29 related to the 

confidence level for the Special Order (SO) and equation 9.30 for Order 1A and 1B. 

  𝐶𝐿 = ±√(0.25)2 + (0.0075 × 𝑑)2  eq. 9.29 

 

  𝐶𝐿 = ±√(0.5)2 + (0.013 × 𝑑)2  
eq. 9.30 

 

Figure 9.3: We observe the decrease of estimation error, and there are more regions with error bellow 0.3 meters ideal to consider 

into the specification to SO of IHO-S44 Standard. 
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Within our sample set the maximum depth reached was 𝑧𝑖 = 14 m, this will be our value 𝑑, represented in 

equations 9.29 and 9.30. Applying equation 9.29, for SO, our 95% confidence level is numerically about ± 0.27 

m, this value was approximated to ± 0.3 m in our calculations and representations. Therefore, this value (𝐶𝐹𝑆𝑂) 

was found to be: 

𝐶𝐹𝑆𝑂 = ±√(0.06)2 + (0.0075 × 14)2 = ± 0.27 𝑚 =≅ ± 0.3 𝑚 
 eq. 9.31 

Considering now the level of confidence to reach the orders of classification Order 1A and 1B, when we apply the 

equation 9.30, we will have as the value of CL approximately equal to ± 0.53 m, approximated here to ± 0.5 m, 

found of the following expression: 

𝐶𝐹1𝐴 𝑎𝑛𝑑 1𝐵 = ±√(0.5)2 + (0.013 × 14)2 = ± 0.53 𝑚 ≅ ± 0.5 𝑚   eq. 9.31 

 

In the analysis of the comparative study between both paradigms (i) and (ii), we compared the global results using 

the same parameters for both, and thus, we can have a notion of precision involving both cases. Considering the 

first case, the kriging algorithm generates 8810 estimated sample values. From the total set of estimated points, 

we look for the points within the reference data set with a maximum distance of 0.5 m from an estimated point 

using the k-nearest neighbour algorithm, considering the Euclidean distance. This process resulted in 5117 

reference points, so in the first case, we performed the analysis using these points. In the second case, the prediction 

process using the data grouped in clusters generated 8490 estimated values, similarly to the first case, points with 

a maximum distance of 0.5m within the set of reference samples were searched. In this case 8182 reference points 

were found with distance equal to or less than 0.5m. 

 

The result of the kriging application is summarized in Table 9.14, we note that in the first case approach, the 

confidence level for the classification of Special Order estimates of 63.20% of the total, that is, the estimation error 

for 63.20% of the Estimates reached a maximum of 0.3 meters. In the situation where we analysed and processed 

the data after a previous cluster operation, the use of the estimates within the confidence level for the Special Order 

was 88.11%. Considering the estimated values for Orders 1A and 1B, for the first processing paradigm, the 

estimation reached a valid confidence level of 87.82% of the total, while for the data of the second case the 

confidence level reached was 97.51% of the total estimated points. 

 

Table 9.2: Results and comparisons in kriging estimations for both cases 

Kriging Results 
Description Data without Cluster (DWC) Clustered Data (DC) IHO - 

S44 

Std. D. Samples % Std. D. Sample

s 

%  

Number of Points into the Region  xxx 5,117 100% xxx 8,182 100%  

Number of Points into one Standard 

Deviation 
1 𝜎 3,234 63,20% 1 𝜎 6,563 80,21% SO for 

Both 

Number of Points with Difference 

Value (DV) <=0.3 

xxx 3,234 63,20% xxx 7,209 88.11% SO for 

Both 

Number of Points with Difference 

Value (DV) <=0.5 

xxx 4,517 87,82% xxx 7,978 97.51% SO/1A/

1B 

Number of Points into two Standard 

Deviation 
2 𝜎 4,917 96.09% 2 𝜎 4,917 97.06%  

Number of Points with Difference 

Value (DV) >0.5 

xxx 607 11.87% - 200 2,49% Invalid 

 
If we consider the standard confidence level for statistical estimates in which the 95% confidence level must be 

reached for occurrence within any Gaussian distribution a value of two standard deviations, that is, 2σ, the two 

approaches to the problem reach this requirement. However, according to the international standard (IHO 2008), 

only the second case of application of the kriging estimator will meet the level of confidence required for three 

valid Cases, namely Special Order, Order 1A and 1B. 
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9.4.4 Classical Metrics to Evaluate Results from Residual 
Analysis 

 
A classical estimation method was applied using the Root Mean Square (RMSE) and Mean Absolute Error (MAE) 

indicators, which are based on residuals. This allowed a second evaluation of the solution used, the calculated 

values are described in Table 9.15. 

 

Table 9.3: Numerical results for the global average magnitude of the error metrics 

Global Average Magnitude of the Errors Analysis 

 RMSE RMSE (%) MAE MAE (%) 

Estimation without cluster 0.3200 2.21 0.2500 1.72 

Estimation with cluster 0.2033 1.45 0.1541 1.10 

Accuracy increment 0.117 65.00 0.0959 61,64 

 

In Table 9.15 it can be observed that the best estimate was reached in the methodology when the clustering was 

applied. In this sense, the evaluation should take into account that the best estimation must present the lowest 

values for RMSE and MAE. In this case, we obtained a great improvement in the precision in the estimations for 

the regions divided by the clustering process, fact that confirms the comparative method of measurement of the 

precision used in this work. 

 

9.5 Conclusion 
 
In this section, we proposed the main objective  related to the use of the geostatistical linear regression method, 

called Kriging (Cressie 1993)(Matheron 1971a), on a dataset from bathymetric survey that extracted discrete 

samples of the submerged surface depth value within a delimited region using an SBES device. The bathymetry 

samples were extracted in a sampling operation along a transect path, collecting samples at points with almost 

regular spacing of approximately 5 (five) meters. The main objective is verifying the viability of a Kriging 

predictor in the task of increasing the resolution of the bathymetric survey, estimating depth values in non-sampled 

geographic points, thus considering the discrete depth samples as a regionalized variable under the theory of 

estimation and geostatistical prediction. 

 

The resolution of the trend problem in the data, which results in instability that decreases the confidence level of 

the predictions, has been solved by applying a data-grouping process that aggregates a set of samples with similar 

statistical characteristics into disjoint groupings prior to the application of the Analysis and geostatistical 

prediction. The evaluation of the quality and confidence level of the prediction process was performed using cross-

validation methods provided in the Toolbox used in the work, EasyKrig 3.0 (Chu 2004), in addition to a method 

that compares the predicted values with a second data set with a much higher resolution extracted from the same 

working region. In the international standard for hydrographic surveys published in the document (IHO 2008), the 

value of the confidence level of bathymetric information in the construction of aid maps to coastal navigation 

operations should be at least 95%, in our study the application of the predictor Kriging together with the data 

grouping method, a prediction confidence level of approximately 97% was achieved. 

  



Shallow Water Remote Sensing Using Sonar Improved with Geostatistics and Stochastic Resonance Data Processing 

 131 

10.0 Overall Conclusion 
 

All sections described in this thesis has one focus, remote sensing applications. Although remote sensing covers a 

very wide field, remote sensing techniques in underwater medium often is required to acquire data in some places 

that cannot be directly collected by humans. This will improve advances in data extractions to mapping the 

underwater landscape and any structures immersed in this medium. 

 

In this thesis, we pay attention in the main definition of remote sensing as the measure some information about an 

object or phenomenon under study without making physical contact. Into this context, we focus in underwater 

remote sensing applying sonars and their sensing elements. We probe the improvement in data information 

collected and the process gain using spatial statistics to predict a dense bathymetric data from few numbers of 

bathymetric measured points and stochastic resonance approach to increase the sensitivity of sensing elements and 

to decrease the noise level present in acoustic images. 

 

The key aspect related to research in sensing in this thesis is the monitoring applied to crossings between attractors 

activated only by an optimal level of noise added to a target signal. Thus, we improve the sensibility and sensing 

velocity to detect weak dc signal using only a simple approach of the proportion of time the sensor stays in one or 

another state.  

 

The focus in acoustic image processing was pointed to image contrast modification using stochastic resonance, it 

means chaotic noise generated by the logistic map and for Gaussian to conduct an image enhancement in their 

digital grayscale levels non-dynamical system of threshold elements and the noise to digital grayscale sonar image. 

This will result in a better acoustical image to use a visual or automatic feature extraction computer algorithm.  

 
Spatial statistics improves feature extraction and underwater landscape to map generation using data points 

generated from the geostatistics regression tool called Kriging from some samples points extracted with a Single 

Beam Echo-sounder. It means, we increase the resolution of an underwater survey with high confidence level. 

 

The set of study and solutions developed and present in this thesis will help the underwater acoustical survey area. 

It improves the data extraction from underwater landscape and can be used to mineral resources as petroleum and 

gas; telecommunications and energy routing and distribution in underwater medium and environmental 

management.  
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Appendices  
 

A - Sonars and Devices to Support Data Acquired 

A1 Sidescan and Single Beam Sonar 

 
The work presented here starts from a bathymetric survey using an acoustical transducer to acquire a underwater 

depth in many area from Todos os Santos Bay (TSB), and their estuaries. The TSB is localized near the Salvador 

city, in Bahia, Brazil. Each data consists in a discrete depth point information taken just below the survey vehicle 

or boat. We use three types of sonar devices, a Starfish Sidescan Sonar, Teledyne Echotrack CV100 Single Beam 

Sonar and Multibeam R2 Sonic 2024. 
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B - Surveys and Dataset Acquired 
 

The data format to data extracted using SBES was stored in a XYZ file format, where three columns of data 

represent in our case, longitude, latitude and a depth value. This stored data format is very closely related to geo-

referenced raster and grids representation, but some considerations need to be done to represent a XYZ data file 

into a raster or grid data space, but in our application, we work in the first approach with a vector format of map 

representation, the so-called contour map to do a cluster analysis. We can consider that each sampled point value 

will represent a unit portion of the entire area, each portion will be called grid cell, or simply consider each sampled 

point as a discrete measure spatially distributed. A point measurements can be allocated at the vertices of a grid 

cell or in the interior of it (centre of observation points). Here we consider each sample will represent a value 

centred on observation points cell value according guidance from (McBratney & Webster 1981).  

B1 Survey Mission Region 1:  Palma Bay – Mallorca – Spain 
 

The surveys works was realized in the Palma Bay and was performed using two small cove beach, Cala Estància 

and Cala Gamba, the first survey was used to extract navigational data to probe the control and navigations 

modules. The second mission were performing to extract acoustic image data extract using a Sidescan Sonar and 

a type of kayak boat survey.  

The Palma Bay, is a biggest bay from Mallorca island, and it is show in the Figure B.1, in this figure Mallorca is 

the biggest island about the centre of the Balearic Archipelago, and this archipelago is one of the autonomous 

community of Spain. The environmental and geographical conditions allies to academic knowledge of marine data 

extraction/processing and technological development is an attractive to joint to UIB research groups to develop 

works in the marine technologic and environmental data processing area, and the first and last stage of this work 

development reflect these assumptions.  

 

B1.1 Cala Estància – Palma  
 

This mission survey was performed in three days to extract navigational data to probe the control system, 
communications and instrumentation modules and mechanical design of the underwater robotic vehicle. The 

control and navigation model used was designed with an inspiration in the work (Acosta et al. 2005) and (Calvo 

et al. 2005). While the mechanical design was inspired by the work developed in the Marie Curie - European 

Project - MIF2-CT-2004-003027 from Prof. Dr. Gerardo G. Acosta (Acosta 2005). In the Figure B.2 (left), we can 

see the localization/situation map of Cala Estància beach, a small cove beach into the Palma bay that we extract 

navigational data and probe navigation and control algorithm using the Low-cost underwater vehicle developed. 

The Figure B.2 (right), is the picture of the underwater vehicle developed taken at this beach. 

 

The coloured area selected into the four-vertex region was the selected as a best testbed according the shallow 

mean depth and the calm water characteristics, details about the vertex points are expressed in the Table B.1, and 

the total worked area covered and limited by the vertex points are about 6000 𝑚2. 

Figure B.1: localization/situation map of Iberian Peninsula (left) and the Balearic Island archipelago (right), both extracted from Google 

Earths. 
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Table B.1: Geo-located Vertex points of Cala Estància survey 

Point Latitude Longitude 
Vertex 1 39°32'4.39"N 2°42'44.31"L 

Vertex 2 39°32'3.48"N 2°42'48.73"L 

Vertex 3 39°32'2.13"N 2°42'47.23"L 

Vertex 4 39°32'2.08"N 2°42'44.11"L 

 

 

Two published work was generated using the navigational data extracted in this survey mission and here I can cite 

(O. Calvo et al. 2009) and (Calvo et al. 2008). These works relate experiments and results of control of two methods 

for governing an AUV to perform lawnmower searches of pipelines and cables based on Lyapunov and PI 

controller to achieve better performance, passing through a series of waypoints with guaranteed convergence. 

 

B1.2 Cala Gamba – Palma  
 

The Cala Gamba mission survey was performed using a small boat like a kayak with small adaptations including 

an electric propulsion and manned control. The main objective in this mission was try to extract acoustic images 

using a Starfish Sidescan Sonar in a shallow water region that we can travel in a long straight line trajectory, some 

images were taken with some distortions and we cannot extract a good set of GPS data. In the Figure B.3, we can 

see the situation map of Cala Gamba beach, like the Cala Estància this is a small cove beach into the Palma bay 

too. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The problem related to the Sidescan image distortions was mainly provoked by the inefficient survey vehicle 

velocity from 0.3 to 0.5 𝑚/𝑠, two unites of sealed mercury marine trolling motor from the set of Torpedo2000 

Diver DPV devices (Torpedo 2016) were used attached in the kayak boat hull as propeller, one in each side.  

 

Figure B.2: localization/situation map of Cala Estància beach (left) extracted from Google Earths and a view of an Autonomous 

Underwater Vehicle developed(right). 

Figure B.3: localization/situation map of Cala Gamba beach extracted from Google Earths. 
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Despite the motor trolling propulsion  technical specification published at (Torpedo 2016) relates a speed about 

0.88 𝑚/𝑠 for each trolling motor, the sea conditions, drag from the kayak boat hull and the payload composing by 

a sonar device and operator decrease the propulsion efficiency and the velocity using two motors was about 0.4 

𝑚/𝑠 with variations about 1 𝑚/𝑠. According the Starfish Sidescan user guide manual (Blueprint 2010), the 

velocity to acquire acoustic imagine need to be constant and between 0.51 𝑚/𝑠 and 2 𝑚/𝑠. In other way, the GPS  

receptor based on sirf-star iii chipset module from (D. E. L. Blueprint 2016), only receive the signal from 5 to 7 

satellites, and it can result in an inaccurate navigational data. In the Figure B.4 we can see a set of 6 acoustics 

images from this site survey, without any special features or object detected but a lot of distortions can be viewed 

mainly because the inefficient survey boat velocity and perturbation from environmental conditions heave, roll 

and yaw movements. 

 

 

In the Table B.2, is described the vertex points that limits the polygonal survey area, shown in the Figure B.3, this 

area is delimited by a polygon with 4 vertexes. The total worked area covered and limited by the vertex points are 

about 32000 𝑚2. 

Table B.2: Geo-located Vertex points of Cala Gamba survey 

Point Latitude Longitude 

Vertex 1 39°32'47.79"N 2°42'44.31"L 

Vertex 2 39°32'44.55"N 2°41'52.31"L 

Vertex 3 39°32'42.94"N 2°41'40.42"L 

Vertex 4 39°32'39.76"N 2°41'43.82"L 

 

The dataset generated by this survey work cannot be used to do studies mainly because distortions in the acoustic 

images, but given the knowledge base to planning and develop a survey mission to acquire sonar and navigational 

data using a boat. 

B2 Survey Mission Region 2: Todos os Santos Bay – 
Salvador – Brazil 
 

The survey process was performed in four stages using a boat survey, three in collaboration with “Belov 

Engenharia” (www.belov.com.br) (Belov 2015), a local private company specialized in port engineering and 

Figure B.4: Small set of acoustic images extracted with a Starfish Sidescan Sonar in the Cala Gamba survey mission, this acostic dataset 

was not processed because some acquisition distortions in the data. 

http://www.belov.com.br/
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hydrographic data acquire and processing with focus in private and public companies from brazil and around the 

world. The boat navigation tracking method used follow a zig-zag path to cover an entire region in topographic 

underwater relief data extraction and in linear fashion to survey pipelines or pier structures. Todos os Santos Bay 

is the second biggest by in Brazil and is located in Bahia. This bay has a fundamental importance to the concave 

coastline regions around to Port operations, related to commercial and people transport, connecting some cities 

and regions through the bay. Furthermore, the military interest is evident because it has some military units of 

Brazilian army, one of the biggest Brazilian petroleum refinery and a complex habitat interaction with some others 

internal bays, small islands and delta rivers generating mangroves habitats.       

 

In the Figure B.5 we can see the localization/situation map of Bahia state, localized in the southwest of Brasil 

(left), and the localization/situation map of Todos os Santos Bay localized in Bahia state (right), we can see a 

diversity of environmental interactions among small and big islands and distinct water bodies from delta rivers, 

interior bay.   

 

 

The mission survey to acquire data was designed to cover basics task into the concept of hydrographic and 

underwater structure search survey, both very important to navigation and port security. The survey objective was 

extract a gas pipeline acoustic images using a sidescan, the others three was to extract the navigation channel data 

using a sidescan and single beam echo sounder in the last case from three navigations channel: Madre de Deus, 

Aratú Bay and Paraguaçu River. 

 

B2.1 – Pipeline Track – Gas Pipeline Itaparica-Aratú 
 

The gas pipeline Itaparica-Aratú is a ridged carbon steel pipeline with 33 km of length and 8 inches’ diameter, it 

connects the continental area (Aratú Port) and the Itaparica island, the pipeline has capability to transport gas with 

a rate about 100 𝑚3/ℎ  and is laying in the sea bottom around 20 meters’ depth. The main objective in this survey 

mission is collect sidescan data using a boat survey with sonar adapter designed to fix the sonar sidescan device 

to a boat hull, and with this acquire the acoustic data to probe the image quality to track a target far away from 10 

meters’ depth and prove the limitations to get data to track small pipeline targets at this condition. The Figure B.6 

show the context map of the pipeline track survey region into the Todos os Santos Bay. 

Figure B.5: localization/situation map of Bahia in the Southwest of Brasil (left) and the Todos os Santos Bay (right), both extracted from 

Google Earths. 
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In this survey, the main difficult were track the pipeline with a manned boat survey without an automatic navigation 

close loop control, in some time we lost the pipeline according the boat had changing their heading because tidal 

currents and wave interactions in the hull boat. The total area choosing to do a pipeline search and survey is limited 

to four vertex points, and represent a polygonal area with 8.9 𝑘𝑚 x 2.6 𝑘𝑚 in its side, representing 32 𝑘𝑚2, with 

vertex coordinates presented in Table B.3. 

Table B.3: Geo-located Vertex points of Todos os Santos bay to pipeline track survey 

Point Latitude Longitude 

Vertex 1 12°51'9.02"S 38°31'14.73"O 

Vertex 2 12°53'29.90"S 38°35'40.24"O 

Vertex 3 12°52'11.71"S 38°36'47.28"O 

Vertex 4 12°50'3.26"S 38°32'17.31"O 

 

To get the sidescan data from pipeline track we use a regular boat presented in the figure 36 with a special structure 

installed in his hull steam line to support the sidescan device. The boat named Tonhozé is 16 feet long with a single 

central motor, and the sidescan adapter support was made using a stainless steel, the position at the hull steam line 

is to guarantee the most solid fixation at the boat hull when the boat navigates forward and to maintaining the 

sonar device completely into the water because the pipeline track was made orthogonally to the predominant sea 

current, causing a constant boat roll movement.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Figure B.6: Survey area selected into the Todos os Santos bay limited by a set of vertex points (left), source: Google Earths.  Nautical 

chart from the same region to illustrate the gas pipeline (blue line between vertex point) into the bay, connecting Aratú port (Continental 

region) and Itaparica island. 

 

Figure B.7: Survey area selected into the Todos os Santos bay limited by a set of vertex points (left), source: Google Earths.  Nautical 

chart from the same region to illustrate the gas pipeline (blue line between vertex point) into the bay, connecting Aratú port (Continental 

region) and Itaparica island. 
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In the Figure B.8 we can see some acoustic image samples acquired in this pipeline track survey some of these 

were used in the study to develop these three works (Sousa et al. 2016) , (Villar et al. 2014) and (Villar et al. 

2013).  

 

In Figure B.8, we can see some features into the acoustic images and two of this are shading and pipeline distortion, 

in the first case, shading is a result of sea stirring and tide current from navigation channel, transverse to the 

pipeline track trajectory shocking in the boat hull side, causing a boat roll movement, take out from water one of 

the sensor side, despite the care in positioning the sensor in a boat hull position to minimize this disturbance. The 

second feature, pipeline distortion, is caused by the same problem of sea stirring and tide currents, but in this case, 

affect the navigation of boat causing oscillations in heading direction, yaw movement. The effect of yaw movement 

into images on the Figure B.7, can be viewed as a sinuous pipeline shape. In several moments in the track survey 

operations we lost the pipeline track because the yaw disturbance and to continue the survey, we perform the zig-

zag search to find and track the pipeline again. 

 

B2.2 – Navigation Channel Track – Salvador – Madre de Deus 
 

The navigation channel Salvador-Madre de Deus is main way to oil products transport and logistic of Bahia and 

in on of this extreme has the second biggest petroleum maritime terminal.  

 

 

This is an artificial dragged channel and starts at the latitude and longitude position (12º 49’ 2” S, 038º 34” 0’ W), 

nearest to Salvador cost and ending at the Madre de Deus Terminal (12º 45’12” S, 038º 37’ 27” W). The objective 

in this survey is acquire some data using a sidescan sonar to identify some physics features from the navigation 

Figure B.8: Pipeline track sample images 

Figure B.9: Survey area selected into the Todos os Santos bay limited by a set of vertex points (left), source: Google Earths. 
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channel as dimensions and structural components, as we pass beside the Madre de Deus Maritime Terminal we try 

to acquire some data from pier structure. The Figure B.9 show the context map of the navigation channel into the 

Todos os Santos Bay. 

 

The total area choosing to do a navigation channel structure search and survey is limited to four vertex points, and 

represent a polygonal area, representing a total area around 2.6 𝑘𝑚2, with vertex coordinates presented in Table 

B.4. 

Table B.4: Geo-located Vertex points of Todos os Santos bay to Salvador-Madre de Deus, navigation channel survey 

Point Latitude Longitude 

Vertex 1 12°46'10.04"S 38°36'2.74"O 

Vertex 2 12°46'0.90"S 38°35'38.95"O 

Vertex 3 12°45'12.66"S 38°37'42.17"O 

Vertex 4 12°45'3.27"S 38°37'42.44"O 

 

Some difficult were found to perform this survey task, first of all is the navigation channel dimensions and a not 

sharp change from the low to higher depth, in this survey only sidescan data was extracted. During the survey, I 

cannot found any feature or relevant structures from the navigation channel formation, probably because the 

underwater seabed is very smoothed formed majority by loamy and sand soil type. Because the before explained, 

we decide to start a port structure survey and acquire some data from navigation buoy and pier pillars around the 

Madre de Deus Terminal. In the Figure B.9 we can see some acoustic image extracted in this mission survey. 

 

In the Figure B.10, we can observe some structures and debris found lying in the navigation channel seabed, as 

port pillars, a sunken small boat and some debris, this data were user to probe the sidescan sonar system and GPS 

signal integration, but we cannot apply it in any published work. 

  

Figure B.10: Sample images from navigation channel Salvador-Madre de Deus, in these images are show actual pillars pier structure, 

some debris and an old pier structure which was flooded after an accident with an oil cargo tanker vessel few decades before. 
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B2.3 – Navigation Channel and Port structure of Aratú – Aratú Bay 
 

The second navigation channel survey after the first experience was performed in the Aratú Bay, an interior bay 

with access through the Todos os Santos Bay, that start the Aratú Port Navigation Channel. This channel conduct 

mainly chemical and solid/dry freight using cargo ship.  The channel starts at the latitude and longitude position 

(12º 50’ 2” S, 038º 31’ 4” W), and ending at the Aratú Terminal (12° 47’ 71” S, 38° 28' 48"O). The objective in 

this survey is try to acquire some data using a sidescan sonar to identify some physics features from the navigation 

channel as dimensions and structural components and if possible, extract some data from pier/port structure or 

some debris laying in the seabed. The Figure B.11 show the context map of the navigation channel into the interior 

Aratú Bay. 

The total area choosing to do a navigation channel and structure search and survey is limited to four vertex points, 

and represent a polygonal area, representing a total area around 0.6 𝑘𝑚2, with vertex coordinates presented in 

Table B.5. 

Table B.5: Geo-located Vertex points of Todos os Santos bay to Salvador-Madre de Deus, navigation channel survey 

Point Latitude Longitude 

Vertex 1 12°47'19.53"S 38°27'55.34"O 

Vertex 2 12°47'19.53"S 38°27'55.34"O 

Vertex 3 12°47'19.53"S 38°27'55.34"O 

Vertex 4 12°47'19.53"S 38°27'55.34"O 

 

This survey was performed with support of Hydrography Department of Belov Engineering LTDA, and data was 

acquired with a Starfish Sidescan Sonar and the Starfish GPS. The most important feature detected was a pier 

Figure B.11: Survey area selected into the Aratú Bay limited by a set of vertex points (left), source: Google Earths. 

Figure B.12: Sample images from Aratú navigation channel, in these images are show some pillars pier structure, and some old pier 

dolphin structure which was flooded and lying on the seafloor. 
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structure flooded into the water, laying in seabed and some pillars from the pier structure. In the Figure B.12 we 

can see some acoustic image extracted in this mission survey. 

 

In the bottom image at left side, we can identify a pier structure called mooring dolphin flooded lying in the 

seafloor and some grooves in the seafloor sediments.  Moring Dolphin is a man-made structure construct beside a 

pier and out of shore to provide a fixed point facility to keep a ship stable and fixed at the berth.  The image context 

can be an indication that it could have been dragged by a boat and their pillar made the furrows in the seafloor 

before it sank completely. 

 

B2.4 – Paraguaçu River – São Roque do Paraguaçu 
 

The third survey was performed in the Paraguaçu River, near to the Paraguaçu Delta into the Todos os Santos Bay, 

this mission was made by Belov complete team and devices and is the best set of datasets because has the complete 

information to do some research study. The Figure B.13 show the context map from Paraguaçu river region and 

the region that the data was acquired. 

The vertex points that limit the survey region are expressed in the Table B.6. The total area surveyed is around 

0.22 𝑘𝑚2, and the area into the vertex points is around 0.32 𝑘𝑚2.  

Table B.6: Geo-located Vertex points of Paraguaçu river that the data was acquired 

Point Latitude Longitude 

Vertex 1 12°50'34.17"S 38°49'21.48"O 

Vertex 2 12°50'30.13"S 38°49'15.52"O 

Vertex 3 12°49'50.11"S 38°49'29.32"O 

Vertex 4 12°49'51.89"S 38°49'38.63"O 

 

This survey is being acquired the best set of sonar data and was the main dataset used to perform the work based 

in geostatistics approaches. Additionally, in future works these datasets will be used to develop studies in data 

fusion to increase the capability of feature extraction and digital elevation model construction (DEM) using 

simultaneously Single Beam Echo Sounder (SBES), Multi Beam Echo Sounder (MBES) and Sidescan Sonar.  

Figure B.13: Context map from Paraguaçu river, in the left, the location of Paraguaçu river into the Todos os Santos Bay and at right the 

survey region into Paraguaçu river delimited by fou Vertex points. 
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The Figure B.14 show a scatter plot from the SBES with 442 data points, and MBES with 51,131 data points. This 

two datasets were used in the geostatistics work developed in this thesis, and in the Figure B.15 we have the 

Sidescan data from the same region. The complete dataset from three sensors give the opportunity to compare the 

data from each sensor in order to evaluate the information among these sensors and how we can increase the region 

information using data fusion in future works. 

 

The complete dataset from three sensors give the opportunity to compare the data from each sensor in order to 

evaluate the information among these sensors and how we can increase the region information using data fusion 

in future works. 

 

  

Figure B.14: SBES and MBES datasets acquired from the Paraguaçu river survey, source from Belov Engenharia 

Hydrographic Department. 

Figure B.15: Sample of Sidescan image acquired in the Paraguaçu river survey. 
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C IOGECS Project – Sketch of Preliminary 
research work an project that support this 
thesis 

A Low-Cost Experimental Platform to Perform Underwater Remote Sensing 

 

In this part of the thesis I described efforts to develop a Low-Cost Underwater Remote Sensing Platform to acquire 

some data from underwater relief or structures to support underwater operations as mineral resources exploitations.  

The human history has been driven by the need to overcome the man limits to adapt in the most adverse situations. 

Almost always this results in a technologic knowledge evolution. Often, the men felt the need to discovery new 

frontiers, beyond the limits imposed by the physical, chemical and biological. The human limitation to interact 

with aggressive environments characteristics is the start-up point to develop solutions to ovecome it, based in 

learning with earlier works to apply in new developments, this is the normal way to lead the science evolution to 

increase the human knowledge about their body and mind, technology, nature and interacions into the earth's 

enviroment. The global aim of this work is involving the study and development of hardware (robotic platform) 

and software (algorithm) to effort a knowledge based on survey the underwater environment based on data 

extraction of underwater topographic relief using acoustics sensor (sonars). To perform the work of data 

conditioning and signal processing new approaches using stochastics resonance and geostatistics has been used. 

On this part of the thesis I will describe some aspects about vehicle development, the hardware and software 

architecture concept are described,  

2.1 Generic Architecture Guideline 

 

The prototype design was based in a generic architecture proposed in some research works with some 

simplifications. A modular philosophy was used in the design and development of the small AUV, re-using many 

modules previously developed and tested in other applications. The dynamic Mission Planner (DMP) (Acosta et 

al. 2005) and the Obstacle Avoidance Software (OAS) are in cascade. Thus, if the OAS does not detect any object 

through the forward-looking sonar, its output will be simply the desired trajectory from the DMP. On the contrary, 

if an obstacle is detected, the OAS changes the necessary waypoints in the trajectory provided by the DMP.  

 

The software architecture, running on a Debian Linux CPU, is based on communications messages between 

modules implemented using the UDP layer. The system is divided in modules specialized in a particular task (O 

Calvo et al. 2009). We have four main structures to do fundamentals vehicle tasks: Navigation Module, Dynamic 

Mission Planner (DMP), Sensor Fusion and Guidance & Control Systems. According to figure 1 we can see that 

the Navigation Module gets the vehicle position information from GPS and Inertial Sensors to navigate in surface. 

When the vehicle is submerged, the underwater navigation is need to be performed, another type of sensor is 

necessary. Then, a navigation Doppler system called Doppler Velocity Logs (DVL), is used. The DVL is a sonar 

based device that measures the vehicle velocity with respect to the sea bottom by taking advantage of the Doppler 

effect (Acosta et al. 2009). In our case, we have not a DVL sensor to support the navigation data enhancement so 

we apply a GPS receiver.  

 

The Sensor Fusion takes signals from the sensors responsible to recognize and track underwater structures. Among 

these sensors we can find sonar, magnetic trackers and optical sensors like cameras or scanners lasers. This module 

is very important to obtain a high quality mission, due to the acquired navigation information must be sent to the 

DMP, to confirm the correct track path, any deviation or inconsistency between the expected environmental or 

target characteristic. The DMP module takes information from the environment (self-position and target position), 

the exclusion zones in the mission data bank, and the static mission plan, provided by the user. The DMP decides 

the trajectory to follow, this trajectory is verified against the exclusion zones and probable obstacles detected by 

the Obstacle Avoidance Sonar (OAS) and modified accordingly before is sent to the path planner.  

 

The Guidance & Control Systems module provide the settings for propellers and rudders to reach the desired 

trajectory or a specific waypoint. This module yields its output taking into account the Dynamical Mission 

Planning module output and the broadcast information from the Navigation module. The path planner also receives 

information from a Static Mission planner, that could take control at any time modifying the final trajectory (i.e. 

safety reasons, beginning of mission, abort, etc)(O Calvo et al. 2009)(Acosta et al. 2003)(Acosta et al. 2009).  
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Finally, the actual command is sent to the Autopilot that controls thrusters, rudders and buoyancy. Then, this DMP 

is capable to redefine its original mission plan in an adaptive way, and hence it was called dynamic. 

 

Relative to the remote sensing tasks devices, the main requirement is to integrate mainly two types of sonar sensors 

a Side Scan Sonar (SSS) and a Mechanical Scanning Echo Sounder (MSES) used as Single Beam Echo Sounder 

(SBES). The data extracted from sonars are used in two distinct ways, as an input to the sensor fusion module to 

improve the Navigation Module tasks in on-line operations and signal processing and in off-line processing using 

the sensor data stored from the survey operation performed. 

 

The mechanical design constraint was inspired mainly by the before work developed by the UIB researcher 

member Dr. Gerardo Gabriel Acosta in his research project called Autonomous Underwater Vehicle for 

Inspections (AUVI), supported by the FP6 Marine Science and Technology Project (MIF1- CT-2004-003027). 

The AUVI prototype developed in this project uses the structure of two parallel hulls propeller (horizontal plane), 

using a binary actuation to navigate in the horizontal plane (yaw movement). The hull based components used is 

based in two singles units of Torpedo Dive Propulsion (TDP) (Torpedo 2016). The two hulls shape models were 

used in other projects along the world as the Deep Blue AUV and the Benthic Explorer AUV (O. I. Woods Hole 

2016) and as the model of dynamics behavior to perform a navigation the catamaran feature was selected to avoid 

problems with rudders.  

 

The control system was inspired in the Cormoran AUV project developed by Instituto Mediterráneo de Estudios 

Avanzados (IMEDEA) in collaboration with the University of the Balearic Islands (G. G. Acosta et al. 

2007)(Valenciaga et al. 2007). The Cormoran AUV is a torpedo marine vehicle to support at shallower depths; 

your propulsion system is composed by one main electrical thruster with a guided mechanism based in a rudder. 

The immersion control was based on a density change by use of piston mechanism to environmental water 

admittance. The mathematical model for a physics interaction between vehicle and environment has been proved 

and publish in some papers(G. G. Acosta et al. 2007)(Valenciaga et al. 2007). 

5.0 Hardware Architecture 

 

Figure C.1:Hardware Modules Used to the Vehicle Development 
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To perform the AUV control system, the vehicle hardware was composed by two main 

processor boards: a low-level control and a high level control. The low-level control was based 

on an Ingenia microcontroller developer board: the iCm4011 development board, which uses a 

dsPIC 30F4011 as a main processor. 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This board provides I2C and RS232 interfaces to communicate with sensors, actuators and high level CPU.  The 

Figure C.2 shows the low-level control system. At this level, we have some basics functions to read some sensors 

and to coverage an actuator controller to move the vehicle as proposed by the guidance system. 

 

  

Figure C.2: Sketch of hardware architecture from AUV prototype developed in IOGECS project. 
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