Absorptive Capacity and Ambidexterity in R&D: Linking Technology Alliance Diversity and Firm Innovation

ABEL LUCENA 1 and STEPHEN ROPER 2
1 Business Economics Department, University of the Balearic Islands, Palma, Spain
2 Enterprise Research Centre and Warwick Business School, University of Warwick, Coventry, UK

The aim of this study is to examine how firms realize the benefits associated with a diverse range of technology alliances. We propose and test the hypothesis that firms’ knowledge combinative capabilities mediate the relationship between technology alliance diversity and innovation. Using panel data for Spanish manufacturing companies during the period 2004–2011, we provide evidence that firms’ absorptive capacity and ambidexterity in R&D serve as mediating mechanisms between technology alliance diversity and innovative performance. Our study advances the literature on technology alliances by showing how firms use their portfolios of technology alliances to form their combinative capabilities, and subsequently, to enhance innovation outcomes.

Keywords: absorptive capacity; ambidexterity; technology-alliance diversity; firm innovation; mediation analysis

Introduction

Innovation is the process through which firms find solutions which meet market needs through knowledge search (Katila and Ahuja, 2002). The generation of solutions in this process depends critically on firms’ ability to combine existing knowledge in new ways and/or reconfigure how new and existing knowledge is combined (Henderson and Clark, 1990). As shown by prior studies, technology partnerships play a potentially important role in enhancing firms’ knowledge recombination capabilities (Rosenkopf and Almeida, 2003; Grant and Baden-Fuller, 2004). Involvement in technology alliances enables firms to extend their knowledge search activities outside their organizational boundaries, encouraging the formation of novel combinations of knowledge (Rothaermel and Alexandre, 2009; Rosenkopf and McGrath, 2011). Recent studies have identified the diversity of firms’ technology alliances as an important factor in shaping innovative performance by enhancing the opportunities for new knowledge combinations (Faems et al., 2005; Sampson, 2007; Oerlemans et al., 2013; Wuyts and Dutta, 2014). Diversity in this context refers to the degree of differentiation – defined in terms of a given trait – among the set of alliances formed by a firm. This may relate, for instance, to the presence of different partner types along the innovation value chain (e.g., upstream, downstream, horizontal links), or across distinct geographic contexts (e.g., regional, national, international) (Powell et al., 1996; Nieto and Santamaria, 2007; Duysters and Lokshin, 2011; Faems et al., 2012; van Beers and Zand, 2014).

Empirical studies on technology alliance diversity confirm that new knowledge combinations resulting from links with different partner types shape firms’ innovation outcomes. Some studies find evidence indicating the presence of positive innovation performance effects linked to technological alliance diversity (Nieto and Santamaria, 2007; van Beers and Zand, 2014; Wuyts and Dutta, 2014). Other studies report that the effects of technology alliance diversity are significant, but limited by the presence of important liabilities, such as the learning difficulties and management costs associated with highly diverse alliance portfolios (Sampson, 2007; Duysters and Lokshin, 2011; de Leeuw et al., 2014). More recently, studies have suggested the potential value of a contingency perspective to uncover the factors that influence the technology alliance diversity–innovation relationship (Faems et al., 2012). Firms’ technology management capabilities (Oerlemans et al., 2013), the configuration of the firm’s internal knowledge bases (Wuyts and Dutta, 2014), and firms’ experience in

Correspondence: Abel Lucena, Business Economics Department, University of the Balearic Islands, Campus UIB, 07122, Palma, Spain. E-mail: abel.lucena@uib.eu

© 2016 European Academy of Management
managing diverse external knowledge sources (Love et al., 2013) have all been identified as potentially important factors in moderating the impact of technology alliance diversity on innovative performance.

Prior studies postulate a direct relationship between technology alliance diversity and firms’ innovation outcomes. Knowledge recombination and its associated complementarities are widely recognized as the predominant mechanism driving this relationship. Yet, previous research tends to conceive of knowledge recombination as a ‘black box process’, in which the focus is on determining the connection between inputs (technology alliance diversity) and outputs (innovation outcomes) rather than explaining how firms actually undertake knowledge recombination. More research is therefore needed to uncover the mechanisms through which technology alliance diversity shapes firms’ innovative performance.

In this paper, we aim to fill this gap by proposing a theoretical framework for how firms’ knowledge combinative capabilities mediate the connection between technology alliance diversity and innovative outputs. Our goal is to determine whether the relationship between technology alliance diversity and innovation outcomes occurs indirectly through the development of these capabilities. We define technology alliance diversity as the combination of two attributes: the position of firms’ partnerships across the innovation value chain and the geographic scope of their partnerships. We also focus on the mediating role played by two specific knowledge combinative capabilities: firms’ absorptive capacity (ACAP) and their ambidexterity in research and logistical development (R&D). Using rich panel data on Spanish manufacturing companies for the period, 2004–2011, our evidence shows greater technology alliance diversity helps firms to improve their ACAP and ambidexterity in R&D. This increases firms’ ability to take advantage of both internally and externally based knowledge and knowledge generated by different learning processes (exploration vs. exploitation). We then provide evidence indicating that, by influencing firms’ knowledge combinative capabilities, technology alliance diversity enhances innovative performance.

Our research extends the previous literature in the following respects. To the best of our knowledge, this is the first study that integrates research on ACAP and ambidexterity to explain how firms create value from their technology alliances. Compared to other studies on alliance diversity (Faems et al., 2005, Sampson, 2007, Duysters and Lokshin, 2011, de Leeuw et al., 2014, van Beers and Zand, 2014) our research demonstrates that ACAP and ambidexterity in R&D are important in enabling firms to realize the benefits of diverse technology alliances. Some studies have started to consider mediating mechanisms to link alliance formation and firm innovation. For instance, Fosfuri and Tribó (2008) analyze how alliance formation drives a firm’s potential ACAP, and then, its innovative performance. However, they ignore the role of alliance diversity as an influence on firms’ knowledge combinative capabilities. Simsek (2009) proposes a model in which network diversity impacts firms’ organizational ambidexterity, and subsequently, its performance but does not empirically validate these relationships. Together, these contributions provide only a fragmented view of the relationship between alliance diversity and firm performance and the potential mediating role of both ACAP and ambidexterity.

Our study identifies technology alliance diversity as a new antecedent of firms’ ambidexterity extending previous studies which have focused on intra-organizational characteristics and environmental conditions as the main determinants of ambidexterity in exploration and exploitation (Gupta et al., 2006; Jansen et al., 2006; Raisch and Birkinshaw, 2008). Our study also offers new evidence to indicate that technology alliance diversity can contribute to ACAP. Several prior studies have theorized about this linkage (Cohen and Levinthal, 1990; Nicholls-Nixon, 1995; Zahra and George, 2002) but very few have actually provided empirical evidence about the impact of technology alliance diversity on ACAP (George et al., 2001).

Our study is not only the first to assess the indirect effects of technology alliance diversity on firms’ innovative performance through its ACAP and ambidexterity in R&D, but we also conduct this assessment using panel data. Thus, compared to other studies (George et al., 2001; Fosfuri and Tribó, 2008) we are able to establish causality and to avoid problems, such as the presence of common method bias, which might affect the validity of the reported results. In addition, our research exploits rich data on firms’ alliance portfolios that allows an examination of the effects of diversity arising not only from R&D collaboration but also from market-based agreements. In doing so, this study generates new evidence about the impact of alliance diversity arising from market-based agreements on innovation outcomes.

The paper is organized as follows. The next section presents the theoretical foundations for studying the links between technology alliance diversity, knowledge combinative capabilities and innovation. In subsequent sections, data, methods and results of the study are described and concluding remarks are discussed in detail.

Theoretical background

Explaining the links between technology alliance diversity and success in innovation

We postulate that firms realize the benefits of technology alliance diversity when diversity contributes to the
development of their knowledge combinative capabilities, defined according to Kogut and Zander (1992) as the abilities that lead a firm to ‘synthesize’ and ‘apply’ current and new knowledge sources. An implication of this idea is that these combinative capabilities act as the mechanisms that mediate the link between technology alliance diversity and firms’ innovative performance. To see how this mediation might occur we develop the arguments of earlier studies on organizational learning (Cohen and Levinthal, 1990; March, 1991; Kogut and Zander, 1992; Tushman and O’Reilly, 1996) to propose two effects linking technology alliance diversity and firms’ knowledge combinative capabilities. The first is a knowledge-provision effect, viewed here as the increase in a firm’s knowledge combinative capabilities made possible by better access to new knowledge resources from a varied range of partnerships. The second is a learning-experience effect that occurs when the experience gained by the firm in managing diverse technology alliances reduces the presence of behaviors that could impair knowledge recombination in the innovation process. As explained below, when these effects are present, a firm is better able to achieve knowledge recombination and successful innovation.

In this study, two specific knowledge combinative capabilities are proposed as mechanisms linking technology alliance diversity and innovations: (i) a firm’s ACAP and (ii) its ambidexterity in R&D. A firm’s ACAP is the set of knowledge processing capabilities related to the identification, assimilation, and application of external knowledge (Cohen and Levinthal, 1990). ACAP enhances a firm’s innovative performance by enabling the utilization of external knowledge in innovation (van Beers and Zand, 2014). Ambidexterity is a capability that allows firms to perform highly incompatible activities simultaneously (Duncan, 1976; Tushman and O’Reilly, 1996). Here, the focus is on ambidexterity occurring in exploration and exploitation, because of the critical role of these activities in enhancing firms’ innovative performance (Katila and Ahuja, 2002; He and Wong, 2004; Rothaermel and Alexandre, 2009). A manifestation of ambidexterity in exploration and exploitation occurs when firms make an effort at balancing their focus on research and technological development activities. As shown by previous studies on R&D management, these activities are highly complementary, but at the same time they involve different operating logics and organizational requirements (DeSanctis et al., 2002; Mudambi and Swift, 2011; Davila et al., 2012). Thus, ambidexterity in R&D involves the development of capabilities that allow firms to combine exploration and exploitation in R&D through the innovation process.

In Figure 1, we present a mediated model that describes the channels through which we argue that technology alliance diversity can influence innovative performance.

To clarify the contribution of our research, Table 1 compares our approach with previous contributions in the field.

Technology alliance diversity and firms’ knowledge combinative capabilities

First, the influence of technology alliance diversity on building the firm’s ACAP is considered. ACAP is a combinative capability because it allows firms to combine external and internal knowledge needed for innovation (Lewin et al., 2011). A relevant attribute of ACAP is that its formation is path-dependent, since prior experience in conducting knowledge processing activities determines firms’ current abilities to learn from external knowledge (Lane and Lubatkin, 1998, Roberts et al., 2012). For example, several studies indicate that there is a positive feedback between ‘experience’ and ‘competence’ that makes learning easier from technologies where there has been prior knowledge accumulation (Kogut and Zander, 1992; Leonard-Barton, 1992; Ahuja and Lampert, 2001). Hence, firms tend to form competences in processing knowledge related to areas where prior experience exists, and these competences ease the share and transfer of knowledge across firms’ sub-units, thereby supporting their capacity to assimilate and utilize internally generated knowledge, or what is called inward-looking ACAP (Cohen and Levinthal, 1990; Lewin et al., 2011). However, the development of competences grounded in previous experience may also reduce the diversity of the firm’s knowledge. This may incline the firm to become more myopic reducing its interest in external technologies. This may impair its capacity to recognize and acquire externally produced knowledge, or what is called outward-looking ACAP (Cohen and Levinthal, 1990; Rothaermel and Alexandre, 2009).

In this study, diverse technology alliances are viewed as sources of knowledge-provision and learning experience effects that offset this trade-off. First, the role of the knowledge-provision effect is considered. This effect occurs when knowledge resources generated by the firm’s participation in diverse technology alliances enhance their ACAP. These resources may improve the way a firm monitors and assesses the evolution of new technological fields. For instance, participation in upstream and/or
<table>
<thead>
<tr>
<th>Authors and year</th>
<th>Research focus</th>
<th>Methodology</th>
<th>Main conclusions</th>
<th>Our contribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>de Leeuw et al. (2014)</td>
<td>Innovation consequences of alliance diversity</td>
<td>Panel data and large-scale sample of Dutch manufacturing firms</td>
<td>Alliance portfolio diversity has an inverted U-shape relationship with productivity and radical innovation, and a positive and linear relationship with incremental innovation. Different levels of diversity are needed to induce productivity and innovations with alternative degrees of novelty.</td>
<td></td>
</tr>
<tr>
<td>Duysters and Lokshin (2011)</td>
<td>Innovation consequences of alliance diversity</td>
<td>Cross-section and large-scale sample of Dutch manufacturing firms</td>
<td>Innovators compared to imitators form alliance portfolios with higher degrees of diversity. Innovators benefit more from exploration and imitators from exploitation. Alliance complexity has an inverted-U shape relationship with firm innovative performance.</td>
<td></td>
</tr>
<tr>
<td>Faems et al. (2012)</td>
<td>Innovation consequences of alliance portfolio attributes</td>
<td>Theoretical paper</td>
<td>Propositions defining combinations between “structural” and “managerial” attributes of alliance portfolios that better drive firm innovation.</td>
<td></td>
</tr>
<tr>
<td>Lavie and Miller (2008)</td>
<td>Performance effects of alliance portfolio internationalization</td>
<td>Archival data from a panel of 330 US-based firms in the software industry</td>
<td>The degree of internationalization of a firm’s alliance portfolio shapes its performance. Evidence indicates that as the level of internationalization increases, firm performance declines, then improves, and then declines again.</td>
<td></td>
</tr>
<tr>
<td>Love et al. (2013)</td>
<td>Innovation consequences of alliance diversity and moderator factors</td>
<td>Panel data and large-scale sample of Irish manufacturing plants</td>
<td>Evidence indicating that experience in collaborations in previous periods positively moderates the link between openness and firm innovation.</td>
<td></td>
</tr>
<tr>
<td>Nieto and Santamaria (2007)</td>
<td>Innovation consequences of alliance diversity</td>
<td>Panel data and large-scale sample of Spanish manufacturing firms</td>
<td>High degrees of novelty are associated with alliance portfolios comprising several partner types. Cooperation with suppliers, clients and research centers are particularly useful to increase the novelty of innovations.</td>
<td></td>
</tr>
<tr>
<td>Oerlemans et al. (2013)</td>
<td>Innovation consequences of alliance diversity and moderator factors</td>
<td>Cross-section and large-scale sample of South African manufacturing firms</td>
<td>Evidence indicating an inverted-U relationship between alliance diversity and firm innovative performances (radical and incremental). The use of technology management tools positively moderates the link between alliance diversity and innovation outcomes.</td>
<td></td>
</tr>
<tr>
<td>Sampson (2007)</td>
<td>Innovation consequences of alliance diversity</td>
<td>Archival data on 465 R&D alliances in the telecommunications equipment industry</td>
<td>Evidence supporting an inverted-U relationship between technological diversity in alliances and firm innovation. Equity joint ventures help companies harness the benefits of alliance diversity.</td>
<td></td>
</tr>
<tr>
<td>Wyts and Dutta (2014)</td>
<td>Innovation consequences of alliance diversity and moderator factors</td>
<td>Archival data from a panel of 52 pharmaceutical companies</td>
<td>Alliance portfolio diversity has a positive effect on firms’ prospects for having superior innovation. Internal knowledge attributes moderate the link between alliance diversity and firm innovation.</td>
<td></td>
</tr>
<tr>
<td>Fosfuri and Tribó (2008)</td>
<td>Antecedents and innovation consequences of potential ACAP</td>
<td>Cross-section and large-scale sample of Spanish manufacturing firms</td>
<td>Participation in R&D cooperation and external knowledge acquisitions are drivers for firms’ potential ACAP. Potential ACAP shapes innovation.</td>
<td></td>
</tr>
</tbody>
</table>

(Continues)
international technology alliances may help a firm’s employees be aware of new technical advances in diverse technological fields (Cohen and Levinthal, 1994; Fosfuri and Tribó, 2008; Lavie and Miller, 2008). In this way, the firm may expand its capacity to screen technological opportunities in areas unrelated to prior knowledge accumulation, thus increasing its abilities to recognize the importance of emerging external technologies (i.e., outward-looking ACAP). In this regard, Cockburn and Henderson (1998) suggest that the level of ‘connectedness’ to the scientific community is a key factor that enables pharmaceutical companies to advance their abilities in recognizing the value of upstream developments. Alternatively, other knowledge resources may help the firm better utilize its internal sources of information. For instance, engagement in alliances with competitors, suppliers or clients, or with local partners, may facilitate the benchmarking of managerial practices, strategies and routines, which could improve knowledge sharing and utilization within the firm (i.e., inward-looking ACAP). As suggested by Lenox and King (2004), the way knowledge is shared across a firm’s functional areas plays an important role in enhancing the inward-component of ACAP.

A learning-experience effect also contributes to shaping a firm’s ACAP. This effect arises when technology alliance diversity leads firms to gain experience in knowledge processing that favors a balance between the inward- and outward-looking components of their ACAP. For instance, connections with diverse partners make it more likely that a firm is exposed to varied learning experiences, increasing its capabilities to recognize and acquire external knowledge (Rosenkopf and Almeida, 2003; Lavie and Miller, 2008). In doing so, technology alliance diversity helps firms prevent the emergence of behaviors, such as those related to the ‘not-invented here syndrome’ that over-emphasizes internal search and reduces the perceived value of new external knowledge (Laursen and Salter, 2006).

By balancing the inward- and outward-looking components of their ACAP, firms gain experience in managing external and internal searches simultaneously. In doing so, they are better able to recognize underlying differences in learning from external and internal sources, which facilitates the management and subsequent integration of these learning modes (Rothaermel and Alexandre, 2009; Duysters et al., 2012). An implication is that a balanced ACAP profile leads firms to develop capabilities, which improve organizational learning. That is, firms are better able to reconfigure their internal knowledge searches to neutralize technological inertia, or the tendency to learn mainly from technologies rooted in familiar knowledge (Lavie and Rosenkopf, 2006). Thus, they are better able to change their knowledge search behavior in response to external knowledge

<table>
<thead>
<tr>
<th>Authors and Year</th>
<th>Research Focus</th>
<th>Methodology</th>
<th>Main Conclusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>George et al. (2001)</td>
<td>Antecedents and performance consequences of ACAP</td>
<td>Archival data of 143 biopharmaceutical companies</td>
<td>The numbers of alliances (horizontal/vertical), the number of market-based links, along with proxies for firms’ ACAP, determine their performance. Firms’ ACAP mediates the link between number of alliances and firm performance.</td>
</tr>
<tr>
<td>Simsek (2009)</td>
<td>Antecedents and consequences of organizational ambidexterity</td>
<td>Theoretical paper</td>
<td>Proposition indicating that network alliance characteristics, organizational attributes and environmental conditions affect firm performance through driving organizational ambidexterity.</td>
</tr>
<tr>
<td>Linking Technology Alliance Diversity and Firm Innovation</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
A. Lucena and S. Roper

innovation process, technological development portfolios of products and technologies. Since the use of to utilize existing knowledge for improving their current in the R&D process (Rosenkopf and McGrath, 2011). Whereas research – the firm to different types of knowledge search (Hoang and Rothaermel, 2010; Mudambi and Swift, 2011; Rosenkopf and McGrath, 2011). Whereas research – the ‘R’ in the R&D process – includes activities intended to discover and use new knowledge sources over the innovation process, technological development – the ‘D’ in the R&D process – includes activities that allow firms to utilize existing knowledge for improving their current portfolios of products and technologies. Since the use of ‘new’ or ‘existing’ knowledge is conventionally adopted as a rule to distinguish exploration and exploitation (Levinthal and March; 1993, Lavie et al., 2010; Rosenkopf and McGrath, 2011), we assume here that firms’ effort in research is directed to the pursuing of exploration, while effort invested in technological development is addressed to the undertaking of exploitation. With this assumption, we then propose that a diverse range of technology alliances shapes a firm’s incentives to implement ambidextrous models of knowledge search, reflected in the balance it reaches in the ‘R’ and ‘D’ processes. We further posit that the knowledge-provision and learning-experience effects serve as mechanisms that explain the link between technology alliance diversity and the presence of ambidexterity.

First, the role of the knowledge-provision effect is analyzed. This effect is produced when connections with diverse partner types provide knowledge that encourages the firm to undertake exploration and exploitation internally enhancing ambidexterity. Technology alliance diversity obliges firms to handle sources of information resulting from both upstream and downstream activities along the innovation value chain (Hoang and Rothaermel, 2010), or from activities rooted in different geographical contexts (Lavie and Miller, 2008). While some of these sources comprise a pool of new ideas, others form a pool of well-established ideas. In both cases, firms will benefit from balancing their search effort to harness the inputs provided by these pools and potential cross-fertilization from combining diverse ideas (Quintana-García and Benavides-Velasco, 2008; Faems et al., 2012). In the case of the pool of new ideas, firms receive inputs that lead them to reinforce their internal exploration activities. In the case of the pool of well-established ideas, firms receive inputs that reinforce their internal exploitation activities. From this pool, they can learn how to adjust, improve and leverage their current knowledge bases and competences. In addition, the pool of new ideas may lead firms to engage in more intensive exploitation in an attempt to transform these ideas into inputs for the product and/or technology development process (Holmqvist, 2004; Rothaermel and Deeds, 2004). Similarly, well-established ideas may also lead firms to undertake more exploration, especially in cases in which technological exhaustion caused by these ideas is imminent (Ahuja and Katila, 2004; Holmqvist, 2004).

A learning-experience effect also explains how technology alliance diversity shapes firms’ ambidexterity in R&D. In this case, this effect appears when the exposure to diverse types of partners helps firms balance exploration and exploitation internally, thereby avoiding search behaviors that might impede the presence of ambidexterity. Diverse portfolios of technology alliances enable a firm to allocate specific search activities to specific network patterns. For instance, whereas exploratory search occurs at upstream stages of the innovation value chain and/or in distant geographic contexts, exploitation search arises at downstream stages and/or in local geographic contexts (Rosenkopf and Almeida, 2003; Faems et al., 2012). By buffering these search activities, a firm is able to mitigate incompatibilities existing between them in terms of differing operating logics. As a result, firms connected to diverse partner types are better positioned to experience differing learning activities without any crowding out.

Just as firms can blend diverse external search types they may also learn how to blend similar internal search processes rooted in exploration and exploitation. Our argument is that, when recognizing differences in learning processes associated with diverse partnerships, firms gain valuable experience in identifying and managing comparable differences in the learning process adopted in their internal ‘R’ and ‘D’. This helps firms accommodate the ‘R’ and ‘D’ processes favoring the presence of ambidexterity. As postulated by Parkhe (1991), the recognition of differences in the attributes of a given process is the first step toward making sense of them, which in turn, facilitates their subsequent organization.

Because the experience of handling diverse alliances helps a firm to shape capabilities in managing different search types, less polarization in either exploration or exploitation is expected in the organization of its intramural R&D activities. This claim is coherent with the suggestion of Simsek (2009) that network diversity
assists firms in avoiding familiarity and propinquity traps that impede a balance in exploration and exploitation. Altogether, these arguments lead us to suggest that:

Hypothesis 1b. A diverse portfolio of technology alliances enhances the degree of ambidexterity in a firm’s R&D.

Knowledge combinative capabilities and firm innovative performance

Here, we posit that firms’ knowledge combinative capabilities contribute to shaping their innovative performance by improving the integration of knowledge differing in their loci (internal vs. externally-based) and generating processes (exploration vs. exploitation). First, the role of the firm’s ACAP in improving innovation outcomes is considered. High levels of ACAP mean firms are able to learn from external knowledge, making further technological renewal more likely (Lavie and Rosenkopf, 2006). As a result, new knowledge recombination opportunities are created as firms are enabled to embrace external sources of knowledge differing from those in their own technological background (van Beers and Zand, 2014). High levels of ACAP also help firms utilize external knowledge in creating and capturing value from resulting innovations (George et al., 2001). This suggests:

Hypothesis 2a. ACAP is positively related to the likelihood that firms will successfully commercialize innovative products.

The presence of ambidexterity in R&D allows firms to integrate exploration and exploitation and to use knowledge generated from these activities to increase the impact of their innovations. From the ‘R’, firms explore new technological opportunities, thereby expanding the possibilities for knowledge recombination. From the ‘D’, firms exploit existing knowledge and capabilities to adjust their product lines with the aim of meeting customer needs. Ambidexterity in R&D assists firms in transforming knowledge from research activities into new product designs with the capacity to add value. Thus, a balanced combination of ‘R’ and ‘D’ activities allow firms to avoid the risks of over-exploring and over-exploiting knowledge. The benefits of ambidexterity in knowledge search have been documented by several studies. For instance, Katila and Ahuja (2002) provide evidence for a sample of robotics companies about the benefits of balancing exploration and exploitation on their abilities to make new product introductions. Likewise, Rothaermel and Alexandre (2009) demonstrate that balanced combinations of technological sourcing strategies aligned with exploration and exploitation lead firms to increase their innovativeness. He and Wong (2004) also show that ambidextrous firms are better placed to increase their sales through the generation of more product and process innovations. Together this leads us to hypothesize that:

Hypothesis 2b. The degree of ambidexterity in R&D is positively associated with the likelihood that firms will successfully commercialize innovative products.

The mediating role of knowledge combinative capabilities

As the degree of technology alliance diversity increases, firms are exposed to a wider range of knowledge resources and experiences that improve their abilities to integrate internal and external knowledge bases and exploration and exploitation searches. This leads firms not only to build ACAP, but also to develop ambidexterity in R&D. With enhanced knowledge combinative capabilities, firms increase the chance of generating new product lines with a high commercial value. We therefore hypothesize that:

Hypothesis 3. Firms’ knowledge combinative capabilities mediate the relationship between technology alliance diversity and the likelihood of successfully commercializing innovative products.

Empirical analysis

Data

Our analysis makes use of data from the “Panel of Technological Innovation” (henceforth PITEC). The PITEC is gathered by the Spanish National Statistical Institute (INE), in collaboration with the Spanish Science and Technology Foundation (FECYT) and the Foundation for Technological Innovation (COTEC). The PITEC is built from data collected annually by the Innovation in Companies Survey, which provides information on firms’ technological innovation activities for all the main industries of the Spanish economy. Information is available from the year, 2003 in a set of

1In the field of technological innovation, several studies define ambidexterity by using the dichotomy between product and process innovation (Benner and Tushman, 2003) and between incremental and radical innovation (Greve, 2007). In line with He and Wong (2004), our interpretation here is that exploration and exploitation are ex ante strategies aimed to the production of innovation outcomes.
annual files. In line with the EU Community Innovation Survey (CIS), the PITEC applies the methodological rules and the type of questions defined by the Organization for Economic Cooperation and Development’s (OECD) Oslo Manual (2005). In order to maintain representativeness, the PITEC comprises four samples that aim to characterize different firm populations. The first includes data for large firms (with more than, 200 employees). This sample covers 73% of all large firms that are listed by the Spanish National Classification of Economic Activities (Henceforth, CNAE-2009). Due to data limitations, we built a sample that covers a time frame from, 2004 to, 2011. The effective sample size ranged between 2,933 and 3,517 firms because of both the lag structure needed in the study of mediation models and the presence of missing values. Classifying industries as low- or high-tech intensive according to the OECD taxonomy (2005), suggests that nearly a quarter of the companies in the sample operate in low-tech industries, while, on average, the share of companies in the sub-sample of high-tech industries is around 12.7%. On average, companies in the sample have 199 employees. Companies in high-tech industries are on average larger than those in low-tech sectors, as indicated by the average number of employees, which for the former group reaches, 194 while for the second group is equal to 178 employees.

Our sample has some characteristics that are relevant for the purpose of this study. First, the tracking of information on the same companies over time is necessary for the purpose of this study. Since a correctly defined mediation model sets out causal relationships among variables, temporal precedence of causal factors is required (MacKinnon et al., 2007; Ndofor et al., 2011; Lejarraga and Martinez-Ros, 2013). In our sample, information for characterizing ‘technology alliance diversity,’ ‘knowledge combinative capabilities’ and ‘innovation outcomes’ is available at different points in time, so causality can be established. Second, a multi-industry sample of companies allows us to account for the presence of well-documented industry-idiosyncratic effects that can influence the formation of firms’ knowledge combinative capabilities and their abilities to produce innovation (Malerba, 2007; Vega-Jurado et al., 2009).

Measures

Dependent variable: innovative performance: Our theory suggests that, by shaping knowledge combinative capabilities, technology alliance diversity increases firms’ chances of successfully commercializing new products. Elaborating on Nieto and Santamaría (2007), we characterized innovative performance using two binary variables, which indicate whether a firm had sales in year \(t \) attributable to new products introduced between \(t-2 \) and \(t \). The first variable indicates whether sales at \(t \) were due to ‘new-to-the-market’ product introduction, regarded here as a proxy for the presence of radical innovation. The second variable specifies whether sales at \(t \) were attributable to any ‘new-to-the-firm’ product introduction, viewed as a proxy for incremental innovation. The use of these indicators allows us to examine the existence of differences in the way in which knowledge combinative capabilities translate technology alliance diversity into enhanced probabilities to commercialize innovative products with varying degrees of novelty.

Mediator variables A firms’ ACAP is largely recognized to be multidimensional construct (Zahra and George, 2002; Jansen et al., 2005; Lewin et al., 2011; Roberts et al., 2012). To capture this feature in our operationalization, we chose several indicators to represent the main dimensions of ACAP. First, in line with Cohen and Levinthal (1990), we took into account firms’ R&D expenditure to capture the learning

9 We opted for binary variables to represent innovation outcomes for the following reason. The use of measures like total sales due to new products requires the treatment of censored outcome variables in the assessment of the mediation effects of technology alliance diversity. Then, tobit regression analysis is required. But, since tobit estimation assumes non-linearity, the assessment of mediation may become difficult. Ignoring the censoring problem of the outcome variable might generate misspecification concerns. Other options allow the assessment of mediation effects for the case of binary outcome variables. Although estimation of models with binary outcome variable assumes non-linearity, some methods have been developed to treat this issue while testing for mediation. For a discussion on this topic, see Kenny (2008) and MacKinnon et al (2007).

© 2016 European Academy of Management
dimension of the construct. Second, we took into consideration the fact that ACAP is formed from related prior knowledge (Cassiman and Veugelers, 2006; Escribano et al., 2009; Xia and Roper, 2014). To do so, we added a dummy variable that takes the value of 1 when a firm claims that its R&D engagement is continuous. Third, along the line of prior literature on organizational learning, we incorporated the human capital dimension of ACAP (Leiponen, 2005; Xia and Roper, 2014). To do so, we considered two indicators: training for R&D personnel and employee skills. The first indicator is a continuous variable measuring the level of firms’ investment in scientific and technical training. With this variable, we aim to capture the fact that training helps firms develop multi-skilled employees (Lazear, 1998). This type of training facilitates job rotation, communication and flexibility, attributes that greatly favor knowledge sharing and its utilization within firms (Jansen et al., 2005). The second indicator is a continuous variable that reflects the percentage of employees with at least an undergraduate degree in any subject. In line with earlier studies, we assumed that well-educated employees enhance both the capacity for the assimilation and application of new external knowledge and knowledge sharing within firms (Xia and Roper, 2014).

In order to form a composite measure that represents the multidimensionality of ACAP, we proceeded as follow. Drawing on Escribano et al. (2009), we built a measure of ACAP that is the principal component of the variables described above. Hence, ACAP is represented by a linear combination of the indicators previously defined, so that each of these indicators was weighted by its corresponding factor loading. Formally, firms’ ACAP is defined as follows: \[\sum_{i} \omega_i \upsilon_i, \] where \(\upsilon_i \) represents the standardized values of the observed variable \(i \), whereas \(\omega_i \) is the corresponding factor loading of \(i \). There are two benefits associated with the use of our measure of ACAP. First, the use of composite measures provides a mean of mitigating the presence of measurement errors inherent in all measured variables (Hair et al., 2010). Second, the use of composite measures tends to produce more suitably complex constructs than single base indicators (Lejarraga and Martinez-Ros, 2013).

In our framework, ambidexterity in exploration and exploitation takes place through the balancing of ‘R’ and ‘D’ activities. To measure this capability, we used the PITEC information about the type of R&D performed by the surveyed firms. Specifically, we analyzed data where firms indicate how they distributed their R&D expenditures between ‘research’ and ‘technological development.’ In the PITEC, expenditures on research refer to those explicitly addressed to the generation of new knowledge (i.e., basic and applied research). Alternatively, the PITEC distinguishes expenditures on technological development, which are defined as those dedicated to the search for new applications of existing knowledge sources that improve current materials, products, and/or technologies.

To measure the presence of ambidexterity in R&D, we calculated the degree of diversification of firms’ R&D expenditures by applying the Blau’s (1977) index:

\[1 - \sum_{i=1}^{2} (K_i)^2. \]

In this context, \(K_i \) represents the percentage of internal R&D expenditures dedicated to the objective \(i \), where \(i = \text{research, technological development} \). This index ranges between 0 and 0.5, where high values suggest firms equally distribute their R&D expenditures between research and technological development, while low values indicate a resource allocation in which firms tend to focus on either research or technological development. This operationalization captures the balance dimension of ambidexterity proposed by Cao et al. (2009). Hence, ambidexterity takes place when firms tend to allocate resources to research and development around the ideal balance point of 50%–50%.

It is worthwhile to note that our measure of ambidexterity rests on the assumption that distributions of resources for ‘R’ and ‘D’ reveal information about how knowledge search is conducted within firms. For instance, because R&D spending primarily covers labor costs, a distribution of resources around the balance point of 50%–50% should be reflective of the time and energy invested by researchers (i.e., effort in exploration) and engineers-managers (i.e., effort in exploitation) within firms as part of the knowledge search process. This distribution shows how firms deploy their resources to obtain blends of exploration and exploitation activities, (March, 1991; Gupta et al., 2006; Lavie et al., 2010). This is consistent with the definition of a firm’s capability viewed as a set of decision rules, routines and processes whereby the firm allocates and mobilizes resources to accomplish its strategic objectives (Teece and Pisano, 1994; Langlois and Robertson, 2002; Jansen et al., 2009). Our position is that decisions on how firms allocate resources between research and technological development are encoded in their competences and capabilities, so these decisions are informative about how firms organize their knowledge searches.

Independent variables Diversity arising from alternative forms of technology alliances – R&D collaboration or market-based arrangements – may have a differentiated
impact on firms’ knowledge combinative capabilities, and subsequently on innovation outcomes. This may arise as technology alliances can differ from each other in terms of their purposes, interaction modes, and learning requirements (Lane and Lubatkin, 1998; Anand and Khanna, 2000; Lucena, 2011). To take this issue into account, we distinguished portfolios formed by R&D collaboration from those containing R&D outsourcing deals.7

In the PITEC, firms are asked about the set of R&D collaboration agreements in which they participated during the period between $t-2$ and t. These agreements include domestic and international links with eight different partner types.8 From this information, we built a measure of diversity based on the combinations formed by varied partner types across alternative geographic contexts. This variable is calculated as follows:

$$\frac{1}{N^2} \sum_{j} \sum_{i} o_{ij},$$

where N stands for the number of partner types with whom a firm can co-develop R&D activities, L represents the number of geographic locations corresponding to its partners, and c_{ij} is an indicator variable that takes the value of 1 when the firm is linked to a partner of type i that operates in the region j. This indicator ranges from 0 to 1; with high values indicating the presence of diversity, whereas low values indicating the occurrence of specialization in a portfolio of R&D collaboration agreements.

The PITEC also examines the sources from which firms acquired R&D services in the markets for technology during the period between $t-2$ and t. These sources comprise domestic and international deals with six alternative seller types.9 Similar to the previous case, we built a measure of diversity based on the combinations formed of diverse R&D seller types across different geographic contexts. This indicator is calculated as follow:

$$\frac{1}{ML} \sum_{i} \sum_{j} o_{ij},$$

where M represents the number of R&D seller types from which a firm can acquire external R&D services, L stands for the number of geographic origins where R&D sellers operate, and a_{ij} is an indicator variable that takes the value of 1 if the firm acquired R&D services from a seller of type i and origin j. This variable ranges between 0 and 1, where high values indicate the presence of diversity, and low values reveal the presence of focused portfolios of R&D outsourcing deals.

Control variables. We included in our study the following control variables. First, we controlled for firms’ affiliation to other companies, since these connections may provide access to valuable resources for the development of combinative capabilities and the promotion of innovation. Business affiliation was measured by two binary variables: Parent company and Subsidiary. These variables indicate whether a firm is either a group parent company or a subsidiary of a larger corporation. Second, we included the variable Firm size because larger companies might have richer endowments of resources that enable them to enhance their combinative capabilities and innovative performance. Firm size was measured as the logarithm of the number of employees. Third, we controlled for whether firms decentralized their R&D activities by establishing R&D units in alternative locations within Spain. We expect that decentralized models of R&D will influence the organization of knowledge search, and subsequently the development of firms’ combinative capabilities. Furthermore, decentralization also might improve the access to diverse knowledge sources, influencing firms’ prospect to make innovations. To control for this issue, we introduced the variable R&D decentralization, which measures the number R&D units the firm allocates across different location within Spain. Fourth, we controlled for firms’ export propensity because of its influence in stimulating knowledge search and innovation. Firms with a high propensity to export are expected to develop their combinative capabilities and increase innovative performance to compete effectively in international markets. We measured exporting by the binary variable Export propensity, which takes the value of 1 if the firm reported exports outside the European Union. Fifth, we included the indicator Public support for R&D to control for the effect that technology policy may have on the organization of the firm’s knowledge search activities and on its innovation behavior. Public support for R&D was measured by the percentage of a firm’s internal R&D expenditures that were financed with public funds.

Finally, we accounted for the following issues. First, to control for the presence of persistence in the formation of firms’ combinative capabilities and in their propensity to innovate, we included one-period lagged values of the dependent variables corresponding to mediators and innovation outcomes. Second, to control for differences across industries in terms of factors, such as technological opportunities, and appropriability, we adopted Pavitt’s (1984) taxonomy of patterns of technological regimes, which classifies industries as Supplier-dominated, Scale intensive, Specialized supplier and Science-based. By considering the two digit-level CNAE-2009 industry classification, we created four binary variables—one for each of the prior categories—and classified surveyed firms accordingly.

7R&D collaboration includes intentional links formed by firms and external actors with the aim of co-developing innovation activities, while R&D outsourcing refers to projects and R&D services contracted by firms in the markets for technology.
8Partner types include: other companies of the firm’s business group, clients, suppliers, competitors, consulting firms/commercial laboratories, universities, public research centers, and technological centers.
9Sellers of R&D services include: other companies of the firm’s business group, other firms, universities, public agencies, research associations, and other institutions.
Methods

To test our hypotheses we proceeded as follows. First, we estimated two sets of models, one for the determinants of firms’ knowledge combinative capabilities and the other for their innovative performance. The nature of the dependent variable used in each situation determined the types of models finally implemented. In the first case, we used generalized linear square (GLS) regression analysis because our proxies for firms’ knowledge combinative capabilities are continuous variables. In the second case, we used probit analysis to model firms’ likelihood of commercializing innovative products. To conduct the empirical study, we took advantage of the panel design of our data. First, we treated the presence of unobserved heterogeneity by using random-effect specifications. Second, with the inclusion of the first lag of the dependent variables in each model, we accounted not only for the presence of persistence effects, but also for sources of unobserved heterogeneity (Rothaermel and Alexandre, 2009; Leiponen and Helfat, 2011). This mitigates potential problems derived from specification errors, such as the presence of omitted variables (Jacobson, 1990).

Subsequently, we examined the mediation hypothesis proposed by our framework in two ways. First, we implemented the causal-step method developed by Baron and Kenny (1986) to verify the conditions required for mediation, taking into account temporal precedence among variables. We started the analysis by confirming the presence of a direct relationship between technology alliance diversity (t-2) and firm innovation (t). Then, we verified the presence of an indirect-type relationship by examining if: (i) technology alliance diversity (t-1) shapes firms’ combinative capabilities (t); and (ii) these capabilities (t-1) determine their prospects to make innovations (t). We also verified if technology alliance diversity (t-2) affects firms’ propensity to generate innovations (t), once the effects of their combinative capabilities is controlled (t-1). Second, we complemented previous analysis by using the product-coefficient method (Preacher and Hayes, 2004, 2008) to assess the indirect effects of technology alliance diversity on the firm innovation. In this case, we tested for the statistical significance of the direct and indirect effects attributable to technology alliance diversity.

Results

Table 2 lists descriptive statistics and bivariate correlations for the variables under consideration. Given the presence of moderately high correlations for some pairs of covariates, we evaluated the presence of multicollinearity by estimating the variance inflation factor (VIF). In most cases, we found average VIFs to be under 1.35, with a maximum of 1.73. Since VIF scores were
below the conservative ceiling of 5, we conclude that the threat of multi-collinearity is limited (Cohen et al., 2003).

Results from the causal-step method. Table 3 reports the estimates from the random effect GLS regression analysis used to explain firms’ knowledge combinative capabilities. Hypotheses 1a and 1b predicted that technology alliance diversity will positively affect the formation of these capabilities. Models 1 and 2 show that increases in the degree of diversity coming from both R&D collaboration and R&D outsourcing deals have statistically significant effects on ACAP and ambidexterity in R&D adopted by firms. The impact of technology alliance diversity on firms’ ACAP is stronger than that on their ambidexterity in R&D. These findings provide support for Hypotheses 1a and 1b, confirming that a diverse range of connections with external agents enhances firms’ knowledge combinative capabilities, as measured by ACAP and ambidexterity in R&D.

Table 4 reports the results relevant for Hypothesis 2a and 2b. Since innovation outcomes in these models are binary variables, estimations were derived from probit analysis with random effects. To treat the dynamic panel structure in this context, we included the initial dependent variable values in each time to account for the initial conditions problem emerging in the estimations of dynamic probit models (Wooldridge, 2005). Models 3a and 3b report the results when predicting firms’ likelihood of successfully commercializing product that are new to the market (radical innovations), whereas models 4a and 4b show the results for product introductions that are new to the firm (incremental innovations).

In regard to radical innovation effects, model 3a shows that technology alliance diversity positively influences firms’ likelihood of successfully commercializing this type of innovative product. This confirms the existence of a direct relationship between diversity in firms’ external links and the presence of highly novel product introductions. Alternatively, model 3b shows that firms’ ACAP and ambidexterity in R&D have a positive and statistically significant impact on their probability of commercializing radical innovations, thereby providing support to Hypotheses 2a and 2b. With regard to incremental innovation effects, model 4a indicates that diversity coming from R&D outsourcing has a positive and statistically significant effect on firms’ probability of successfully commercializing this type of innovative product, revealing the presence of a direct relationship. However, diversity from R&D collaboration fails to explain the likelihood of commercializing incremental innovation. Likewise, model 4b shows that ambidexterity in R&D explains the probability of commercializing incremental innovation. However, it is also observed that the impact of the firm’s ACAP is not statistically significant in driving the prospects for incremental innovation. Taken together, results from models 2 and 4 partially confirm Hypothesis 2a that a firm’s ACAP shapes the likelihood of successfully commercializing innovative products, and gives strong support to Hypothesis 2b that ambidexterity in R&D does drive such possibilities.

Hypothesis 3 predicted that firms’ knowledge combinative capabilities mediate the relationship between technology alliance diversity and innovative performance. Examination of the conditions established by the causal-step method uncovers the following results. As regard radical innovation, the findings in models 1–3 meet the conditions for mediation. First, they show that sources of technology alliance diversity positively determine firms’ knowledge combinative capabilities (Hypotheses 1a-1b), and that these capabilities have a positive effect on firms’ propensity to make radical innovations (Hypotheses 2a and 2b). Second, model 3b shows that the influence of R&D outsourcing is no longer statistically significant after accounting for the effect of firms’ combinative capabilities, which reveals the presence of ‘total mediation.’ Alternatively, the results suggest that the influence of R&D collaboration diversity reduces, but remains statistically significant once we control for firms’ knowledge combinative capabilities suggesting the presence of ‘partial mediation.’ These results are consistent with the premise that R&D outsourcing diversity affects firms’ likelihood of commercializing radical innovations exclusively through shaping their knowledge combinative capabilities. In contrast, R&D collaboration diversity not
Table 4 Regression results for firm innovative performance

<table>
<thead>
<tr>
<th>Independent variable</th>
<th>Coeff. Model (3a)</th>
<th>M.E. Model (3a)</th>
<th>Coeff. Model (3b)</th>
<th>M.E. Model (3b)</th>
<th>Coeff. Model (4a)</th>
<th>M.E. Model (4a)</th>
<th>Coeff. Model (4b)</th>
<th>M.E. Model (4b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constant</td>
<td>-1.175*** (0.127)</td>
<td>-</td>
<td>-1.087*** (0.129)</td>
<td>-</td>
<td>-0.812*** (0.119)</td>
<td>-</td>
<td>-0.806*** (0.122)</td>
<td>-</td>
</tr>
<tr>
<td>Prior innovative performance t-1</td>
<td>0.843*** (0.055)</td>
<td>0.270***</td>
<td>0.841*** (0.055)</td>
<td>0.266***</td>
<td>0.960*** (0.051)</td>
<td>0.272***</td>
<td>0.958*** (0.051)</td>
<td>0.271***</td>
</tr>
<tr>
<td>Innovative performance at t = 0</td>
<td>0.723*** (0.069)</td>
<td>0.231***</td>
<td>0.692*** (0.068)</td>
<td>0.219***</td>
<td>0.552*** (0.059)</td>
<td>0.157***</td>
<td>0.549*** (0.059)</td>
<td>0.155***</td>
</tr>
<tr>
<td>Parent company t-1</td>
<td>0.014 (0.095)</td>
<td>0.005</td>
<td>0.005 (0.094)</td>
<td>0.002</td>
<td>-0.072 (0.091)</td>
<td>-0.020</td>
<td>-0.078 (0.090)</td>
<td>-0.022</td>
</tr>
<tr>
<td>Subsidiary t-1</td>
<td>-0.088 (0.067)</td>
<td>-0.028</td>
<td>-0.093 (0.067)</td>
<td>-0.029</td>
<td>-0.034 (0.063)</td>
<td>-0.010</td>
<td>-0.032 (0.063)</td>
<td>-0.009</td>
</tr>
<tr>
<td>Firm size t-1</td>
<td>0.067*** (0.027)</td>
<td>0.021***</td>
<td>0.052* (0.026)</td>
<td>0.016**</td>
<td>0.067*** (0.025)</td>
<td>0.019***</td>
<td>0.063*** (0.025)</td>
<td>0.018**</td>
</tr>
<tr>
<td>R&D decentralization t-1</td>
<td>0.074** (0.037)</td>
<td>0.024**</td>
<td>0.057 (0.037)</td>
<td>0.018</td>
<td>0.080** (0.034)</td>
<td>0.023**</td>
<td>0.075** (0.034)</td>
<td>0.021**</td>
</tr>
<tr>
<td>Public support for R&D t-1</td>
<td>0.020 (0.016)</td>
<td>0.006</td>
<td>0.016 (0.016)</td>
<td>0.005</td>
<td>-0.011 (0.015)</td>
<td>-0.003</td>
<td>-0.012 (0.015)</td>
<td>-0.003</td>
</tr>
<tr>
<td>Export propensity t-1</td>
<td>0.016 (0.059)</td>
<td>0.005</td>
<td>-0.002 (0.059)</td>
<td>-0.001</td>
<td>0.047 (0.056)</td>
<td>0.013</td>
<td>0.041 (0.056)</td>
<td>0.012</td>
</tr>
<tr>
<td>Science-based t-1</td>
<td>-0.014 (0.079)</td>
<td>-0.004</td>
<td>-0.096 (0.079)</td>
<td>0.030</td>
<td>0.049 (0.073)</td>
<td>0.014</td>
<td>0.028 (0.075)</td>
<td>0.008</td>
</tr>
<tr>
<td>Specialized suppliers t-1</td>
<td>0.178** (0.083)</td>
<td>0.057**</td>
<td>0.161** (0.082)</td>
<td>0.051**</td>
<td>0.150* (0.077)</td>
<td>0.043*</td>
<td>0.144* (0.077)</td>
<td>0.041*</td>
</tr>
<tr>
<td>Scale intensive t-1</td>
<td>-0.073 (0.083)</td>
<td>-0.023</td>
<td>-0.073 (0.082)</td>
<td>-0.023</td>
<td>-0.086 (0.076)</td>
<td>-0.025</td>
<td>-0.086 (0.076)</td>
<td>-0.024</td>
</tr>
<tr>
<td>Diversity in R&D collaboration t-1</td>
<td>0.578*** (0.196)</td>
<td>0.185***</td>
<td>0.461*** (0.195)</td>
<td>0.146**</td>
<td>0.264 (0.191)</td>
<td>0.075</td>
<td>0.213 (0.192)</td>
<td>0.060</td>
</tr>
<tr>
<td>Diversity in R&D outsourcing t-1</td>
<td>0.438* (0.243)</td>
<td>0.140*</td>
<td>0.352 (0.242)</td>
<td>0.111</td>
<td>0.443* (0.236)</td>
<td>0.126*</td>
<td>0.409* (0.236)</td>
<td>0.116*</td>
</tr>
<tr>
<td>Firm’s ACAP t</td>
<td>-</td>
<td>-</td>
<td>0.107*** (0.023)</td>
<td>0.034***</td>
<td>-</td>
<td>-</td>
<td>0.023 (0.022)</td>
<td>0.007</td>
</tr>
<tr>
<td>Ambidexterity in R&D t</td>
<td>-</td>
<td>-</td>
<td>0.490*** (0.120)</td>
<td>0.158***</td>
<td>-</td>
<td>-</td>
<td>0.254* (0.115)</td>
<td>0.072**</td>
</tr>
<tr>
<td>Chi-squared (χ²)</td>
<td>716.9***</td>
<td>767.8***</td>
<td>763.8***</td>
<td>772.1***</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes: (i) M.E = marginal effects, (ii) 2,933 observations, 9,174 firms-year observations, (iii) Models were estimated by dynamic random effects probit models, (iv) Time dummies are included in all models, (v) Standard errors in parentheses:

*** p < 0.01,
** p < 0.05,
* p < 0.1.
only has a direct effect on making this type of commercialization more likely, but also has an indirect effect running through the development of firms’ knowledge combinative capabilities.

As regard incremental innovation, the conditions for mediations are met particularly when ambidexterity in R&D serves as a mediator. As indicated by Table 3, the sources of technology alliance diversity positively determine the degree of ambidexterity in R&D, while, as shown by Table 4, this combinative capability has a positive and statistically significant effect on the probability of commercializing incremental innovations. Alternatively, although technology alliance diversity influences the firm’s ACAP, as shown by Table 3, this combinative capability does not have a statistically significant effect on firms’ likelihood commercializing incremental innovations. Therefore, ACAP does not transform the effect of technology alliance diversity into enhanced incremental innovative performance. Diversity from R&D outsourcing, however, has a direct effect on incremental innovative performance, and an indirect effect running through the formation of ambidexterity in R&D. Interestingly, the results of model 4a in Table 4 reveal that the effect of diversity from R&D collaboration is not statistically significant in driving incremental innovation. Compared to Baron and Kenny’s (1986) framework, studies on mediation by MacKinnon et al. (2002) and Zhao et al. (2010) recently recognize that a significant direct relationship between independent and dependent variables is not a necessary condition in order for mediation to be present. For these scholars, mediation just requires the existence of significant relationships between independent variables and mediators, and between mediators and dependent variables. When this is the case, total mediation can be claimed. According to this criterion, our study shows that ambidexterity in R&D appears as the only link connecting R&D collaboration diversity and firms’ incremental innovation performance. Since R&D collaboration diversity and innovative performance in this case are not directly related, one can state that ambidexterity in R&D totally mediates this link.

Results from the product-coefficient method. To further examine the mediating role of firms’ knowledge combinative capabilities, the product coefficient method was adopted to estimate the direct and indirect effects of technology alliance diversity (Preacher and Hayes, 2004). According to this method, the indirect effect of X on Y mediated by M_1 and M_2 can be calculated by: $\sum a_i\beta_i$, where a_i is the estimated effect of X on M_i, while β_i stands for the estimated effect of M_i on Y. The Stata routine for Binary Mediation Analysis was implemented to obtain the estimates for a_i and β_i. Pooled ordinary least squares (OLS) and pooled probit regression analysis were used in the estimation, depending on the nature of the dependent variable under consideration. From this estimation, we generated bootstraps standard errors and 95% confidence intervals for the indirect and direct effects. A given effect is then statistically significant when the corresponding confidence interval does not contain zero. If a zero is included, an insignificant effect is claimed.

Tables 5a-5b contain the results from the product coefficient method. These findings strongly support Hypothesis 3 that technology alliance diversity has an indirect effect on firms’ innovative performance, which runs through increases in their knowledge combinative capabilities. Indeed, the direct effects reported in Tables 5a and 5b fail to be statistically significant, as evidenced by the fact that the corresponding confidence intervals include zero. In the case of radical innovation (Table 5a), one can observe that knowledge combinative capability appears as a valid mediation mechanism between technology alliance diversity and innovative performance, as confidence intervals for the indirect effects in each case contain only positive values. On the other hand, Table 5b confirms the conclusion drawn from the causal step method that ambidexterity in R&D is the only valid mechanism that mediates the link between technology alliance diversity and firms’ incremental innovation.

Control variable and robustness checks. Results for control variables in Table 3 and 4 show interesting insights. As regard results from Table 3, positive and statistically significant coefficients on the lagged dependent variables show the path-dependent nature of firms’ combinative capabilities. Having a business affiliation to other companies, receiving public support for R&D, and allocating the innovation activities across Spanish regions are distinctive factors enhancing firms’ ACAP, while having a strong propensity to export outside

1Slightly changes in the coefficient in the independent variables once mediators are included are founded by the Heimeriks and Duysters (2007) in their study of the mediating role of alliance capability in the link between experience and alliance performance.

11 Tiwana (2008) illustrates a case in which this criterion is used when testing for mediation in the context of the causal-step method.

12 The use of structural equation modelling (SEM) represents another alternative to assess the presence of mediation. However, SEM assumes the presence of linearity, which is incompatible with the use of binary variables as measures of innovation outcome.

13 Given differences in their scales, these parameter estimates were previously standardized according to the procedures discussed by preceding studies on mediation (MacKinnon et al. 2007).

14 Compared to other procedures (e.g., Sobel test), bootstrapping is advantageous because it does not impose any requirement on the distribution of indirect effects (Preacher and Hayes 2008).
the European Union is a significant influence on the degree of ambidexterity in R&D. As regard results in Table 4, positive coefficients on the lagged dependent variables indicate that the innovation behavior of firms is persistent across time. Additionally, firm size and the tendency to decentralize the R&D functions appear as important drivers for explaining firm innovative performance both radical and incremental. A technological regime characterized by the presence of specialized suppliers also favors the development and commercialization of innovative products in Spain.

Two important robustness checks were conducted. First, we tested the presence of moderation, but we found no significant interaction effects between the sources of technology alliance diversity and our indicators of firms’ combinative capabilities. This reinforces our arguments about the mediating role of firms’ knowledge combinative capabilities developed in the study. Second, we accounted for the presence of potential correlations among the error terms in the models used for the mediation analysis (Shaver, 2005). To do so, we estimated the predicted values of our mediator variables from models 1 and 2, which were used as instruments in the estimation of models 3 and 4. In both settings, we obtained results consistent with those presented above.

Discussion and conclusions

Our objective in this paper has been to provide an explanation on how technology alliance diversity shapes firms’ likelihood to introduce innovative products. We developed a theoretical framework in which two distinctive knowledge combinative capabilities – the firms’ ACAP and ambidexterity in R&D – are proposed as mechanisms that explain the links between technology alliance diversity and innovative performance. Using panel data from Spanish manufacturing companies for the period, 2004–2011, this research is among the first in estimating a mediated model to examine the causal relationship existing between technology alliance diversity, firms’ knowledge combinative capabilities, and their innovation consequences.

Our results provide strong support for the hypothesis that a firm’s ACAP and ambidexterity in R&D mediate the relationship between technology alliance diversity and innovation. As a result, this research demonstrates that these capabilities explain part of the process through which firms transform the benefits of technology alliance diversity into enhanced innovative performances. Specifically, this study describes alternative paths that allow firms to create value from a diverse range of technology partnerships. For instance, consistent with the presence of total mediation, our results indicate that R&D outsourcing diversity influences firms’ radical innovation exclusively by shaping their knowledge combinative capabilities. Similarly, R&D collaboration diversity has an impact on firms’ incremental innovation, which runs totally through the formation of firms’ ambidexterity in R&D. In line with the presence of partial mediation, our conclusions also reveal that R&D collaboration diversity has a direct effect on firms’ propensity for radical innovation as well as an indirect effect that operates through its influence on their
knowledge combinative capabilities. Likewise, R&D outsourcing diversity has not only a direct effect on firms’ incremental innovation, but also an indirect effect running through the formation of their ambidexterity in R&D. Altogether; these findings uncover new ways through which different types of technology alliance diversity drive firm innovative performance.

Differences in the mediation patterns previously reported could depend on the presence of alternative interaction modes in collaboration and market-based agreements. As indicated by other studies on inter-organizational learning, strong interactions prevail among partners in R&D collaboration links, which facilitates learning from tacit knowledge sources. On the contrary, interactions in market-based agreements are limited to successive exchanges of standard and highly codified knowledge sources (Lane and Lubatkin, 1998; Anand and Khanna, 2000; Gomes-Casseres et al., 2006). Since tacit and codified knowledge sources differ from one another in their capacity to induce radical and incremental innovations, these differences could explain why R&D collaboration and R&D outsourcing diversity have correspondingly dominant effects on radical and incremental innovative performance.

Our results also reveal differences in the way firms’ knowledge combinative capabilities mediate technology alliance diversity and their innovative performances. Ambidexterity in R&D appears as a critical factor in transforming the benefits of technology alliance diversity into both types of innovative performance. This finding confirms that ambidexterity in knowledge search contributes to the production of innovation streams, defined by Tushman et al. (2010) as the ability of firms to produce and commercialize incremental and radical innovations simultaneously. However, contrary to our expectations, ACAP appears to be critical only to enhancing firms’ radical innovation. This finding supports the idea that ACAP fundamentally favors the utilization of external knowledge for the innovation process that is essentially unrelated to firms’ knowledge background (Lavie and Rosenkopf, 2006).

Implications for research

The results of this study have relevance for several research areas. For instance, they uncover an understudied role of R&D outsourcing as a driver of innovative performance. Traditionally, studies on inter-organizational learning consider that market-based agreements have a reduced capacity to produce learning effects because they give access to codified knowledge (Anand and Khanna, 2000; Lucena, 2011). However, our results point to the diversity of this type of arrangement as important in driving firms’ knowledge combinative capabilities, and subsequently, innovation outcomes. However, this indirect effect has been rarely assessed in prior studies on inter-organizational learning. To the best of our knowledge, only the works of George et al. (2001) and Fosfuri and Tribó (2008) examine the mediating role of ACAP, but for the link between the adoption of R&D alliances – including market-based arrangements – and firm innovation. Our study advances these contributions by uncovering the role of diversity as an important attribute of market-based agreements in forming firms’ ACAP, and in shaping innovative performance. Our research also extends prior contributions by assessing the mediating role of ambidexterity in R&D as an alternative knowledge combinative capability that explains the impact of R&D outsourcing diversity on innovation outcomes.

Our results also have relevance for the literature that examines firm innovation from the perspective of the resource-based view. In this stream of research, access to partners’ resources is commonly considered as a driver of innovation (Lavie, 2006). However, much less attention has been paid to the internal processes needed to orchestrate these resources in the production of innovations. In line with studies on resource management (Ndofor et al., 2011; Sirmon et al., 2011), our research shows that ACAP and ambidexterity in R&D are factors that help transform external resources emanating from technology alliances into innovation. In terms of Sirmon et al. (2011), this is a process in which firms ‘structure,’ ‘build,’ and ‘leverage’ their capabilities to use technology partnerships for creating and capturing value. Orchestration of external resources through firms’ combinative capabilities is also relevant to understand how firms create sustainable competitive advantages. For instance, our research suggests that the link between technology alliance diversity and knowledge combinative capabilities is a valuable source of competitive advantage. The combination of these elements not only is difficult to replicate, but also constitutes a driving force enhancing the impact of firms’ innovation.

Finally, our results have implications for the alliance management literature. Our study indicates that technology alliance diversity impacts firms’ likelihood of innovations, depending on whether partial or total mediation is involved. From these results, two alternative models can be inferred to describe how firms generate value from their technology alliance portfolios. In the case of total mediation, firms create value by learning from their R&D partners. That is, firms internalize diverse knowledge and learning experiences that form their knowledge combinative capabilities, and subsequently, their prospects for innovation. In the case of partial mediation, the existence of both direct and indirect effects suggests that firms create value through a two-fold process –namely, they learn from and along with their partners.
Firms learn from their partners by acquiring knowledge and gaining experience that molds their knowledge combinative capabilities. Alternatively, technology alliance diversity has a direct effect on firms’ likelihood of innovating. This fact indicates that firms learn along with their partners, by co-developing innovation activities that are embedded in their connections. This is consistent with the idea that a diverse network of technology partnerships serves as a basis for building relational capabilities (Dyer and Singh, 1998) and social capital (Powell et al., 1996), factors which widely contribute to firms’ innovative performance (van Beers and Zand, 2014).

Managerial implications

Our results have also implications for management actions. First, they show that decisions on the configuration of a firm’s portfolio of technology alliances have wider strategic relevance. Our findings indicate that managers should choose a technology alliance portfolio design by taking into account the firm’s innovation targets. For instance, managers should emphasize R&D collaboration diversity where their aim is radical innovation, and portfolio designs with diverse market-based relationships deals when the target is more incremental innovation. Second, given the reported effects of diverse technology partnerships, it is clear that managers should promote strategies that improve interconnections between research and business units, inside and outside their firm. For instance, the adoption of innovation platforms, or networks that bring together different organizations’ members to diagnose common problems and identify solutions, constitutes an example of how companies could boost boundary-spanning interactions (Davila et al., 2012). The use of these platforms may increase the effectiveness with which firms boost technology alliance diversity to develop their knowledge combinative capabilities. In line with this suggestion, managerial actions stimulating the use of open innovation models, namely, the establishment of independent open innovation business units, the use of information technologies, and incentives based on open-orientated metrics (Chironi et al., 2010), may further help companies channel the knowledge obtained from their technology partnerships into the formation of ACAP and ambidexterity in R&D.

Limitations and future research

The results of this research are subject to limitations, which at the same time, open new avenues for future research. First, our measures of firms’ knowledge combinative capabilities are based on the outcomes associated with the presence of these capabilities. We are not able to detect specific organizational routines embedded in these combinative capabilities that are affected by technology alliance diversity. For instance, we cannot identify whether the presence of alliance diversity leads firms to buffer research and development activities in specialized sub-units with the purpose of achieving structural ambidexterity. Similarly, we cannot identify whether alliance diversity leads firms to use gatekeepers or cross-functional knowledge sharing practices to develop their ACAP. In line with the work of Jansen et al. (2009) and Lewin et al. (2011), we acknowledge that more research is needed to identify the emergence and evolution of specific organizational routines resulting from firms’ exposures to diverse alliances and that might shape their knowledge combinative capabilities.

Second, our mediated model is necessarily incomplete, because it does not take into account the effects of innovation outcomes on other indicators of firm performance, such as market value and sales growth. In line with Faems et al. (2010), future research is needed to assess the causal relationships between technology alliance diversity, knowledge combinative capabilities, innovation outcomes, and firm performance. Third, we recognize that our results may be affected by the lag structure used among independent, mediators and outcome variables. A post hoc analysis in which a greater lag between mediators and outcome variables was allowed revealed that the main conclusions of the study hold, but with smaller indirect effects, particularly for incremental innovation. A deeper analysis is needed to identify the time span over which the impact of technology alliance diversity on both knowledge combinative capabilities and innovation occurs.

Additional suggestions for future research include the following. First, the study and examination of the costs that diversity in technology alliances may have on the formation of firms’ knowledge combinative capabilities is a promising avenue for future research. In the context of this study, a post hoc analysis uncovered the presence of an inverted U-shape relationship between technology alliance diversity and our indicator of ACAP. This finding is intriguing because it seems to indicate that, once a given threshold is reached, increases in technology alliance diversity impair the formation of firms’ ACAP. The analysis of the causes of this effect deserves more attention. Second, the study of other countries could generate valuable knowledge to assess how different contexts influence the links between technology alliance diversity, firms’ combinative capabilities and innovation outcomes. Spain is a ‘technology-follower,’ as suggested by some of the indicators traditionally used to monitor

1It is worthwhile mentioning that the main results of the study hold once this curvilinear effect is controlled. We thank one of the anonymous reviewers for raising this issue.
developments (Vega-Jurado et al., 2009). For instance, data from the 4th Community Innovation Survey (CIS-4) reveal that the rate of technological cooperation in Spain was below the European Union average. Despite these facts, the results show that technology alliance diversity has a relevant role in promoting innovation outcomes. Examinations of countries with better and worse technological performance could be insightful to uncover the influence of alternative national innovation systems on the relationships between technology alliance diversity and innovative performance. In addition, the comparison of the mediation role of knowledge combinative capabilities between service and manufacturing companies could be helpful to identify industry-idiosyncratic factors with potential effects on determining how companies in different industries realize the benefits of technology alliance diversity.

Acknowledgements

We are grateful to helpful comments and suggestions received for four anonymous reviewers. We also appreciate the feedback received on earlier versions from participants in the Annual Meeting of the Academy of Management in Philadelphia (2014) and the 24th Annual Conference of the European Academy of Management (EURAM) in Valencia (2014). Abel Lucena gratefully acknowledges the financial support of the research grants, namely, ECO2010-21393-C04-02 and ECO2013-48496-C4-1-R. A previous version of this paper received the Best Paper award of the Ambidexterity Track of the Strategic Management SIG during the EURAM Conference in Valencia (2014). Any errors or omissions remain entirely the authors’ responsibility.

References

