Abstract: Cognitive flexibility is critical for humans living in complex societies with ever growing multitasking demands. Yet the low frequency neural dynamics of distinct task-specific and domain-general mechanisms sub-serving mental flexibility are still ill defined. Here we estimated phase electroencephalogram synchronization by using inter-trial phase coherence (ITPC) at the source space while twenty six young participants were intermittently cued to switch or repeat their perceptual categorization rule of Gabor gratings varying in color and thickness (switch task). Therefore, the aim of this study was to examine whether proactive control is associated with connectivity only in the frontoparietal theta network, or also involves distinct neural connectivity within the delta band, as distinct neural signatures while preparing to switch or repeat a task set, respectively. To this end, we focused the analysis on late-latencies (from 500 to 800 msec), since they are known to be associated with top-down cognitive control processes. We confirmed that proactive control during a switch task was associated with frontoparietal theta connectivity. But importantly, we also found a distinct role of delta band oscillatory synchronization in proactive control, engaging more posterior frontotemporal regions as opposed to frontoparietal theta connectivity. Additionally, we built a regression model by using the ITPC results in delta and theta bands as predictors, and the behavioral accuracy in the switch task as the criterion, obtaining significant results for both frequency bands. All these findings support the existence of distinct proactive cognitive control processes related to functionally distinct though highly complementary theta and delta frontoparietal and temporoparietal oscillatory networks at late-latency temporal scales.
Reviewers’ Comments and Authors’ Response

Ms. No.: NIMG-18-896

Title:

“Dynamic low frequency EEG phase synchronization patterns during proactive control of task switching”

Authors’ Response to Editor’s comments

Dear Editor,

We are grateful for giving us the opportunity to revise the first version of our article, and we thank the reviewers for their interest and time. All their comments have been very useful and have led to a significant improvement of the manuscript. Please find below the responses to all the comments made by the reviewers and a modified version of the manuscript. Modifications and new references on the manuscript and on the supplementary material have been marked in red color.

Sincerely,

María Eugenia López

Corresponding author
HIGHLIGHTS

Estimation of phase electroencephalogram synchronization in a switch task
Distinct neural signatures to respond to switch or repeat cue
Switch cue showed an increased delta and theta connectivity compared to repeat cue
Delta and theta bands contribute to cognitive flexibility on late-latencies
Implication of frontoparietal and temporoparietal networks in proactive control
6. Response to Reviews

Reviewers’ Comments and Authors’ Response

Ms. No.: NIMG-18-896

Title:

“Dynamic low frequency EEG phase synchronization patterns during proactive control of task switching”

Authors’ Response to Editor’s comments

Dear Editor,

We are grateful for giving us the opportunity to revise the first version of our article, and we thank the reviewers for their interest and time. All their comments have been very useful and have led to a significant improvement of the manuscript. Please find below the responses to all the comments made by the reviewers and a modified version of the manuscript. Modifications and new references on the manuscript and on the supplementary material have been marked in red color.

Sincerely,

María Eugenia López

Corresponding author
REVIEWERS' COMMENTS:

REVIEWER #1:

Thanks for submitting the revised version. The paper is improved, but one thing needs to be addressed:

1. You did not provide the scatter plots and the dispersion of the ERPs, as requested by the other referee. Please see in this paper several solutions, with code. https://onlinelibrary.wiley.com/doi/abs/10.1111/ejn.13400

 Author's response: As requested by the reviewer, Figure 7 of the revised MS already shows the scatter plots and dispersion for the significant association found between EEG connectivity values and behavioral accuracy. In turn, the ERP waveforms for switch and repeat trials shown in Figure 3 were intended to justify our choice of time window for the ITPC analyses (from 500 to 800 ms post-cue onset), since group averaged ERPs themselves were not the focus of this study. Please note that mean cued-locked ERPs from the same pool of participants have been fully reported in a recent study (cf., Barcelo & Cooper, 2018). This has now been clarified in the main text: “This dataset was partly the same to that used to examine late frontoparietal ERP positivities in task switching (Barceló and Cooper, 2018)” (p. 10 revised MS).

 Notwithstanding this, and to adopt one of the possible solutions proposed by the reviewer, now we have incorporated the 95% confidence intervals around switch and repeat task conditions to the grand averaged ERPs shown in Figure 3 (cf., Rousselet, Foxe & Bolam, 2016; Fig. 2B).

 Also the legend of Figure 3 has been modified accordingly: “**Figure 3.** Timing of the PLV analysis relative to the cue onset. Grand mean ERPs elicited by switch and repeat cues are plotted together with their 95% confidence intervals. The black dots along the x-axis mark time points at which there is a significant paired t-test (P < 0.05). Code to plot the figure from Rousselet et al. (2016)” (p. 15 revised MS).

2. Also, if the raw data cannot be shared, please share the code and the derived data, so to make re-analysis and meta-analysis possible.

 Author’s response: We are happy to share both the raw data, the derived data and the code. The repository to download these files is this: https://github.com/LCCN/Neuroimage2018

 We have added in the MS (p.10) the following statement: “The final dataset is available online at this web site: https://github.com/LCCN/Neuroimage2018”. (p. 10 revised MS).
3. Concerning the absence of phase-locked power effect, I think that's an important finding that needs to be discussed more.

Author’s response: In the revised MS, now we highlight our finding that the present functional connectivity results largely capture non-phased locked power effects:

In page 14 of the Method section: “A decomposition of the total EEG power time-locked to the task cues revealed that task differences in this late latency window largely captured non-phase locked power effects (see Supplementary material). This is a relevant aspect of our analyses as much as the LPC and other endogenous ERP components associated with cognitive control have been related to non-phased locked (induced, or latency variable) EEG activity (Brydges and Barceló, 2018; Cohen and Donner, 2013).

In page 28 of the Discussion section: “The present functional connectivity analyses in the delta and theta bands targeted the latency of the LPC elicited proactively by task cues in task-switching paradigms (Barceló and Cooper, 2018; Rushworth et al., 2002), which has been shown to be largely locked to neither the stimulus nor the response (Brydges and Barceló, 2018). This type of non-phase locked oscillatory long-range synchronization between frontal and temporo-parietal cortices has been proposed to index the type of sensori-motor decision processes necessary for the proactive memory updating of task-set representations at cue onset (Cohen and Donner, 2013). Further, it has also been suggested that non-phase locked power modulations may be more closely linked to cognitive control and to its effects on behavior than the phase-locked event-related potentials reactively elicited by the stimulus itself (Barceló and Cooper, 2018; Cohen and Donner, 2013).”

4. Double dipping: you now use one single index, but this choice is a post-hoc one. You should disclose in the paper that you already tried more indices, together with the reason why you chose this one.

Author’s response: As in previous studies with this same task-cueing paradigm, we adopted overall task accuracy as the most reliable index of efficient task-switching behavior (cf., Cooper et al., 2016; Barceló & Cooper, 2018). Further, our participants were also administered several other paper-and-pencil tasks of executive function (see Table 1). However, these other tasks were indirect proxies of task-switching behavior, and did not always reliably correlate with task-switching accuracy. Consequently, these other indexes of executive function are listed in Table 1 as control variables, although they were not used in the correlational analyses with functional connectivity values. This is briefly explained in p. 15 of the Methods section:

“This hence, for these regression analyses we employed as dependent variables the values of the connectivity differences, and the overall accuracy (percent correct responses) in the switch task as the criterion. Here we adopted overall task-switching accuracy as the most valid and reliable index of efficient task-switching behavior in line with previous studies using the same task-switching paradigm (Barceló and Cooper, 2018; Cooper et al., 2016).”
REVIEWER #2:

In my prior review, I noted that Lopez and colleagues needed to address four key concerns: (1) Greater transparency with the data that fed into complex analysis pipelines and figure presentations, (2) a better explanation or rationalization of statistical methods for identifying significant phase-locking, (3) consideration for the multiple comparisons problem in their correlation analyses, and (4) a more robust discussion of limitations of the current work.

The authors have done a thorough job addressing these key concerns. The main text has been substantially clarified and revised, including new figures that address my questions regarding more unprocessed data. The manuscript is now in reasonable shape for publication.

Author’s response: We thank the reviewer for his/her endorsement of our study, as well as for the very useful comments and suggestions that substantially helped us to improve our original submission.
Dynamic low frequency EEG phase synchronization patterns during proactive control of task switching

María Eugenia López¹,²,³*, Sandra Pusil²,⁴, Ernesto Pereda²,⁵ Fernando Maestú¹,²,³, & Francisco Barceló⁴

¹ Department of Experimental Psychology, Psychological Processes and Speech Therapy, Universidad Complutense of Madrid, Spain
² Laboratory of Cognitive and Computational Neuroscience (UCM-UPM), Centre for Biomedical Technology (CTB), Madrid, Spain
³ Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
⁴ Laboratory of Neuropsychology, University of the Balearic Islands, Spain
⁵ Electrical Engineering and Bioengineering Group, Department of Industrial Engineering & IUNE, University of La Laguna, Tenerife, Spain

*These authors contributed equally to this work.

Corresponding authors:
Francisco Barceló, PhD.,
Laboratory of Neuropsychology
University of the Balearic Islands (UIB)
07122 Palma de Mallorca
Balearic Islands, Spain
E-mail: f.barcelo@uib.es
And
María Eugenia López
Department of Experimental Psychology, Psychological Processes and Speech Therapy
Universidad Complutense of Madrid (UCM)
28223 Pozuelo de Alarcón,
Madrid, Spain
E-mail: meugenia.lopez@ctb.upm.es
Abstract

Cognitive flexibility is critical for humans living in complex societies with ever growing multitasking demands. Yet the low frequency neural dynamics of distinct task-specific and domain-general mechanisms sub-serving mental flexibility are still ill defined. Here we estimated phase electroencephalogram synchronization by using intertrial phase coherence (ITPC) at the source space while twenty six young participants were intermittently cued to switch or repeat their perceptual categorization rule of Gabor gratings varying in color and thickness (switch task). Therefore, the aim of this study was to examine whether proactive control is associated with connectivity only in the frontoparietal theta network, or also involves distinct neural connectivity within the delta band, as distinct neural signatures while preparing to switch or repeat a task set, respectively. To this end, we focused the analysis on late-latencies (from 500 to 800 msec post-cue onset), since they are known to be associated with top-down cognitive control processes. We confirmed that proactive control during a task switch was associated with frontoparietal theta connectivity. But importantly, we also found a distinct role of delta band oscillatory synchronization in proactive control, engaging more posterior frontotemporal regions as opposed to frontoparietal theta connectivity. Additionally, we built a regression model by using the ITPC results in delta and theta bands as predictors, and the behavioral accuracy in the switch task as the criterion, obtaining significant results for both frequency bands. All these findings support the existence of distinct proactive cognitive control processes related to functionally distinct though highly complementary theta and delta frontoparietal and temporoparietal oscillatory networks at late-latency temporal scales.

Keywords: Electroencephalogram; Proactive control; Switch task; Inter-trial phase coherence; Behavioral accuracy; Functional networks
1. Introduction

Daily activities normally occur in multi-task environments. Even habitual and well-learned behaviors such as driving a car or writing a letter typically involve some type of cognitive control to manage multiple chunks of sensorimotor information chronologically and hierarchically organized towards certain goal that we commonly refer to as “tasks”. Successful performance in such situations needs not only a careful selection and maintenance of the final task’s goal, but also of each sub-goal and its corresponding stimulus-response (S-R) mappings, so as to flexibly update the correct S-R mappings proactively whenever contextual cues anticipate a change in the task goals or sub-goals (Grange and Houghton, 2014). Therefore, proactive cognitive control demands a flexible adjustment to newly relevant S-R mappings for efficient execution of upcoming actions to guide goal-directed behavior in changing environments (Cooper et al., 2015). In this way, humans can effectively prepare for a change in task goals or sub-goals even in anticipation of the imperative target stimulus that is to be overtly responded to. For accomplishing this, it is required to regulate interactions between distant brain regions to produce effective, purposeful goal-directed behavior (Yeung, 2006a).

For decades researchers have studied cognitive control using variants of the task-switching paradigm (Kiesel et al., 2010; Rogers and Monsell, 1995; Vandierendonck and Liefooghe, 2010). The cued task-switching paradigm is well suited for studying proactive control and related top down processes (Corbetta and Shulman, 2002). This paradigm implicates a contextually relevant sensory stimulus (cue) that informs participants what overt response is to be executed upon onset of the behaviorally relevant (target) stimulus. The task cues may or may not explicitly announce the correct S-R mapping to be used next (Kiesel et al., 2010). However, cognitive demands are maximally engaged when using transition cues, which implicitly prompt to switch (‘switch cue’) or repeat (‘repeat cue’) to a newly correct S-R mapping. Thus, transition cues are valuable because they can give us information about the neural substrates implicated in the proactive control of the currently active perception-action rule.

However, there is still a debate about the neural mechanisms directly involved in cognitive control, top down processes and task switching paradigms. Proactive control has been related with the activation of the lateral prefrontal cortex (Braver, 2012;
Dreher and Berman, 2002; Zanto et al., 2011) while parietal regions have been usually associated with attentional control (Le et al., 1998; Toth and Assad, 2002). These two regions have been postulated to be part of a so-called ‘fronto-parietal network’ or ‘cognitive control network’ responsible for accomplishing a wide panoply of executive functions involved in goal-directed behavior (Cole et al., 2013; Corbetta and Shulman, 2002; Vincent et al., 2008).

In recent years, results from task-based functional magnetic resonance imaging (fMRI) have argued for an extension of the model of cognitive control beyond the frontal and parietal cortices. Several studies have suggested the existence of large-scale brain systems involved in cognitive control such as top down attentional control, task-set maintenance, implementation, inhibition, and trial by trial control (Dosenbach et al., 2008; Power and Petersen, 2013). In fact, an influential model of cognitive control defines two anatomically and functionally segregated brain systems that might be central to supporting cognitive control functions; namely, the frontoparietal and cingulo-opercular cortical networks (Cocchi et al., 2013). Most neurophysiological studies to date (using electroencephalography, EEG, and magnetoencephalography, MEG) have found that cognitive control is associated with low oscillatory synchronization activity, and more specifically, theta band (4-8 Hz) oscillations (Cooper et al., 2015; Raghavachari et al., 2006). Moreover, it has been considered a unique role of theta activation promoting integration of information and enabling goal-directed control processes (Sauseng et al., 2010). On the other hand, the literature also suggests a distinct role of lower frequency oscillations in cued task switching, as several studies found an increase in delta activity related to the execution of cognitive tasks and in cognitively demanding situations (Cooper et al., 2016; Gulbinaite et al., 2014; Harmony et al., 1996).

The study of temporal dynamics, source reconstruction and functional connectivity (FC) provide detailed information about how brain regions coordinate to support higher cognitive functions (Bola and Sabel, 2015; Simpson et al., 2011; Sporns et al., 2004; Wang et al., 2010; Zanto et al., 2011). Thus, this type of analysis offers an insight between the interactions and relationships among different brain regions. In this way, recent task switching EEG and MEG studies have found an implication of slow waves
by using functional connectivity analyses (Cavanagh et al., 2009; Cooper et al., 2015; Gladwin et al., 2006; Mansfield and Karayanidis, 2012; Sauseng et al., 2007).

The present work was designed to explore the neural substrates behind the cued task-switching paradigm using EEG functional connectivity measured with phase locking value (PLV) in source space. We compared the temporal dynamics triggered by switch and repeat cues within low frequency EEG oscillations (delta and theta bands) of the whole brain network focusing on a late-latency time window (500 – 800 msec post-cue onset) when top-down switch-specific control processes are known to maximally engage the fronto-parietal cortical network (Barceló and Cooper, 2018; Cole and Schneider, 2007; Cooper et al., 2015; Zanto et al., 2010) in a sample of 26 healthy young subjects. To our knowledge, there are no studies exploring the whole brain network using functional connectivity analysis in EEG source space using cued task-switching paradigms. We hypothesized a differential involvement of both the fronto-parietal and cingulo-opercular networks in response to either type of cue, with larger large-scale functional connectivity expected for switch compared to repeat cues (Cocchi et al., 2013; Dosenbach et al., 2008). Our findings partly confirmed our original hypotheses about: a) an anticipatory increase of connectivity in both the delta and theta frequency bands, that is expected to be larger in response to switch as compared to repeat cues, presumably due to the larger cognitive demands under switch conditions; and 2) a functionally distinct involvement of the delta and theta bands in either task condition (Braver et al., 2003; Cocchi et al., 2013; Cooper et al., 2015; Dosenbach et al., 2008; Shi et al., 2014; Vincent et al., 2008; Yeung, 2006b).

2. Materials and Methods

2.1 Participants

Twenty six young adults who were students at the University of the Balearic Islands (2 male, ages= 19-33 years, mean= 22.2 years, SD = 3.67 years) took part in the study (this is a subset of the 31 participants previously used to examine switch-related late ERP positivities by Barceló and Cooper, 2018; see the EEG analyses section for details). All of them reported no history of neurological or psychiatric disorders, and presented normal or corrected-to normal vision. Informed consent was obtained from all participants and experimental procedures and behavioral testing was performed in
accordance with the Declaration of Helsinki, and with the approval of the Ethics committee of the university. All participants had an overall hit rate better than 85% in the switch task; with a minimum of 60% trial runs with correct responses to the first three target trials (see Stimuli and Procedures). These strict behavioral criteria ensured that only participants who had understood and complied with task instructions entered the final sample.

2.2 Neuropsychological indexes of cognitive control

A battery of neuropsychological tests was administered that encompassed several indexes of working memory span (Forward and Backward Digit Span, Wechsler Adult Intelligence Scale WAIS-IV (Wechsler, 2008), control of interference (Stroop test; Jensen and Rohwer, 1966), verbal fluency (Controlled Oral Word Association Test – COWAT; Benton, A. L., Hamsher, 1976), and as a paper-and-pencil measure of cognitive flexibility, the Madrid card sorting test (MCST), a task-switching analogue of the Wisconsin card sorting test (Adrover-Roig and Barceló, 2010; Barceló, 2003). Task administration was paper-and-pencil except for the computerized cued task-switching procedure as described below. Table 1 summarizes the descriptive statistics of the selected neuropsychological indexes for our sample of young participants.

<table>
<thead>
<tr>
<th>Variables</th>
<th>Mean</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>22.2</td>
<td>3.67</td>
</tr>
<tr>
<td>Stroop CW</td>
<td>49.4</td>
<td>7.34</td>
</tr>
<tr>
<td>Stroop INT</td>
<td>5.2</td>
<td>5.97</td>
</tr>
<tr>
<td>Forward DS</td>
<td>9.9</td>
<td>1.56</td>
</tr>
<tr>
<td>Backward DS</td>
<td>8.0</td>
<td>1.78</td>
</tr>
<tr>
<td>COWAT</td>
<td>39.7</td>
<td>8.41</td>
</tr>
<tr>
<td>Efficient MCST series</td>
<td>9.8</td>
<td>1.24</td>
</tr>
<tr>
<td>Perseverative MCST series</td>
<td>0.5</td>
<td>0.65</td>
</tr>
<tr>
<td>Accuracy Switch task (% correct)</td>
<td>90.0</td>
<td>0.02</td>
</tr>
</tbody>
</table>

Table 1. Demographic and cognitive scores of 26 young adults. Stroop CW= Stroop Color-Word; Stroop INT= Stroop Interference; Forward DS= Forward Digit Span; Backward DS= Backward Digit Span; COWAT= Controlled Oral Word Association Test; Efficient MCST series= Number of efficient series in a modified version of the Wisconsin Card Sorting Test (MCST); Perseverative MCST series= Number of series containing perseverative errors in the MCST.
2.3 Stimuli and procedures

Participants sat in an electrically shielded, sound attenuated, and dimly lit room at a viewing distance of 150 cm from a 27-inch video LCD monitor (800 x 600 at 75 Hz), with a response pad in their hands. Stimuli consisted of four equally probable \((p = 0.21)\), colored Gabor patches with horizontally oriented gratings (either red or blue, 4 or 10 cpd, 25% contrast, 1° visual angle, 3.5 cd/m²), and two infrequent \((p = 0.08)\) gray Gabor patches (oriented either vertically or horizontally, 2 cpd, 25% contrast, 1° visual angle, 3.5 cd/m²), displayed against a gray background (2.85 cd/m²) at a visual angle of 6.5° to the left or to the right of a central fixation cross with 0.5° x 0.5° of visual angle. The central fixation cross remained continuously present throughout the experiment.

The experiment consisted of a switch task, which involved different motor responses depending on the cue stimuli (switch or repeat) (Fig. 1). A 972-trial sequence was semi-randomly generated offline, with the constraint that trial runs between two consecutive gray Gabor patches contained a varying number of four to eight colored patches. This trial sequence was divided into six blocks to allow for short self-paced breaks every five minutes, approximately. On each trial, a Gabor patch appeared for 100 msec on the left or right visual hemifields, and participants had a maximum of 1200 msec to respond with a button press on designated target trials. Both response speed and accuracy were emphasized in the instructions prior to each task. Wrong or late responses, as well as false alarms (i.e., button presses to non-target gray gratings) were followed by feedback to help subjects keep track of the correct rule. As a consequence, stimulus onset asynchrony (SOA) was either 1900 or 2400 msec on correct and incorrect trials respectively (i.e., depending on feedback presentation). However, since trial runs containing any kind of errors were disregarded from the analyses, SOA was 1900 msec for all trials examined in this study. Tasks were administered in counterbalanced order between participants to control for learning effects.

All participants were presented with exactly the same trial sequence during the experiment. Before the switch task, a short block of 74 test trials was administered to warrant that task instructions had been understood. Stimuli display and behavioral response collection were carried out using Presentation® software (Neurobehavioral Systems Inc., Albany, CA). The switch task was a variant of the intermittent-instruction paradigm (Monsell, 2003; Rushworth et al., 2002). Participants were instructed to fixate
their gaze on the central cross and to sort the colored Gabor patches according to two classification rules, either the color or thickness of the gratings (i.e. spatial frequency) by pressing a key with their left or right index fingers. When sorting by the color rule, subjects pressed the right button for ‘red’ and the left button for ‘blue’. When sorting by thickness, subjects used the right key for ‘thin’ and the left key for ‘thick’. The horizontal and vertical gray gratings instructed subjects to either ‘repeat’ or ‘switch’ the previous rule. The relation between gray grating orientation and instruction was counterbalanced between participants (Fig. 1).

Figure 1. Task design, stimulus material, and stimulus-response (S-R) mappings. In this Switch task, vertical and horizontal gray gratings instructed participants to switch or repeat the previous S-R mapping, respectively. Participants were explicitly instructed not to respond to the gray Gabor patches. Hypothetical task-set information and S-R mappings for correct performance are also shown for the task. Task demands were manipulated by varying the amount of contextual information conveyed by the gray gratings for anticipatory updating of active S-R mappings (see Methods section).

2.4 Electrophysiological recordings

Continuous EEG data (0.05–100 Hz bandpass) were collected using SynAmps RT amplifiers (NeuroScan, TX, USA) from 60 scalp sites using tin electrodes mounted on an elastic cap (Synamp2 Quikcap, Compumedics, TX) at a sampling rate of 500 Hz. EEG electrodes were placed following the extended 10–20 position system (Fp1, Fp2, AF7, AF3, AFz, AF4, AF8, F7, F5, F3, F1, Fz, F2, F4, F6, F8, FT7, FC5, FC3, FC1, FCz, FC2, FC4, FC6, FT8, T7, C5, C3, C1, Cz, C2, C4, C6, T8, TP7, CP5, CP3, CP1,
CPz, CP2, CP4, CP6, TP8, P7, P5, P3, P1, Pz, P2, P4, P6, P8, PO7, PO3, POz, PO4, PO8, O1, Oz, O2) and were referenced to the left mastoid. The electrodes were later re-referenced offline to the average reference. Four additional electrodes were placed above and below the left eye and on the outer canthi of both eyes to monitor blinks and eye movements. Sensor impedances were kept below 10 kΩ.

2.5 Behavioral analyses
At the beginning of the Switch task, subjects were instructed to begin sorting by color up to the onset of the first gray grating in the trial run. These trials were eliminated from the analyses. Reaction times (RTs) were analyzed from correct trial runs only, and those trial runs containing any false alarm, omission, or any other errors were discarded. Error trials were used to compute accuracy indexes. Only the first and third target responses in a trial run (after a gray grating) were considered for behavioral analysis, since behavioral costs in intermittently instructed paradigms typically reach an asymptote in later trials (Monsell, 2003; Rushworth et al., 2002).

2.6 EEG Analyses
Only trials accepted for behavioral analyses entered the cue-locked EEG analyses, whereas trial runs containing errors, false alarms and omissions were discarded in both tasks. EEG data were epoched into segments of 1700 msec (from −500 to 1200 msec relative to cue onset), and were merged together for each task condition and participant. Epochs containing non-stereotyped artifacts (e.g., cable movement, swallowing), and residual artifacts larger than ± 100µV were manually removed by visual inspection based on their scalp topographies, time courses, and activation spectra using Brainstorm (Tadel et al., 2011). A maximum of two bad channels per subject were detected by visual inspection and excluded from processing. Those epochs containing stereotyped artifacts (e.g., eye blinks, muscle artifact, etc.) were retained. Independent Component Analysis (ICA-Infomax; EEGLAB) (Bell and Sejnowski, 1995) was applied to each task condition in order to isolate stereotyped artifacts (e.g., eye blinks, muscle artifact, etc.). A maximum of 4 components were removed for each subject and condition. Then, EEG data were reconstructed without those components. Subsequently, signals were extended at both sides (mirror padding) to avoid edge effects and then, they were band-pass filtered in the traditional frequency ranges, namely delta (2-4 Hz), theta (4-8 Hz), alpha (8-12 Hz), beta (12-30 Hz) and gamma (30-46 Hz). In the present work, we
focused on the slow frequency range (delta and theta bands) which is assumed to underlie proactive control of task switching (Cooper et al., 2015; Sauseng et al., 2010).

At least 55 trials per condition and participant after artifact rejection were used for further analysis (range 55 - 65 trials across participants). The mean number of trials that entered the EEG analyses did not differ significantly between switch and repeat conditions. This dataset was partly the same to that used to examine late frontoparietal ERP positivities in task switching (Barceló and Cooper, 2018). Therefore, from the original subset of 31 participants examined in that previous study, only 26 subjects with a minimum of 55 clean trials per task condition entered in the connectivity analyses. These strict data requirements motivated the exclusion of 5 participants from the original dataset. The final dataset is available online in this web site: https://github.com/LCCN/Neuroimage2018.

2.7 Source reconstruction

Source reconstruction analysis was carried out using the Brainstorm software (Tadel et al., 2011). To this end, we employed the default anatomy included in this toolbox, which consisted of the segmented cortical surface (15000 vertices) of the MNI/Colin27 brain. A realistic head model of 3 layers (scalp, outer and inner skull) was calculated using the symmetric boundary element method OpenMEEG BEM (Gramfort et al., 2010). To estimate the noise level in the recordings, a noise covariance matrix was computed using the pre-stimulation baseline. Then, to solve the inverse problem, sources were determined with weighted Minimum Norm Estimation (wMNE) (Mosher et al., 2003). wMNE is well-suited for the estimation of large-scale functional connectivity networks, since it addresses the problem of volume conduction, reducing spurious signal correlations (Hassan et al., 2014; Palva and Palva, 2012). The cortex surface was divided into 68 regions of interest (ROI) based on Brainstorm atlas Desikan–Killiany (Desikan et al., 2006), as shown in Table 2. Regions were translated to the Talairach atlas and Brodmann areas in order to establish a resemblance with the task switching literature. The time series of each ROI was extracted by taking the average of all the signals coming from the dipoles of that region.
Table 2. Abbreviations of the 68 regions of interest based on the Brainstorm atlas Desikan-Killiany, and their corresponding translation to the Talairach atlas and Brodmann brain areas.

2.8 Functional connectivity

To study functional connectivity, inter-trial phase coherence (ITPC) was calculated according to Lachaux et al. (1999). ITPC measures the grade of similarity of the relative phase between two signals over many repetitions, and provides an estimation of the degree of synchrony between the signals as a function of time. This method is based on first filtering the signal and then converting it into a complex valued one, from which the corresponding phase is then obtained. The phase $\theta_i(t)$ of the filtered signal $x_i(t)$ was obtained using the Hilbert transform:

$$z_i(t) = x_i(t) + i \cdot Hilbert \left(x_i(t) \right) = A_i(t) \cdot e^{i\theta_i(t)}$$
We used a sliding window of 10 msec size (5 samples) to obtain a series of phases, where θ_i^j (n), n=5*Ntrials is the length of the series, $i=1,..,68$ indicates the reconstructed ROI, and $j=1,..,N_w$ stands for the number of windows. Then, for each of these concatenated phase series, we calculated the relative phases between every two reconstructed cortical sources $\phi_{i,k}^j(t) = \theta_i^j(t) - \theta_k^j(t)$ and from these relative phases, we finally estimated the ITPC between two sources as follows:

$$ITPC_{i,k}(j) = \left| \langle e^{i\theta_{i,k}^j(t)} \rangle \right|$$

(1)

where $\langle \rangle$ and $| |$ indicate average and absolute value, respectively, and $j=1,..,N_w$ (see Fig. 2a). Defined in this way, ITPC$_{i,k}(j)$ ranges from 0 (no synchrony) and 1 (perfect phase synchrony) between sources i and k for window j. It provides an estimation of the dynamics of functional connectivity for each pair of sources as a function of time, with a time resolution of 10 msec.
Figure 2. Inter-trial phase coherence analysis. (A) Series of phases are calculated from the filtered signal by using a sliding window of 10 msec for each trial. Then, for each of these concatenated phase series, the relative phases are calculated between every two reconstructed cortical sources \(\{\psi_{1.2}(n)\} \), and finally the
phase locking value is computed. (B) Surrogate data is reconstructed by randomly shuffling the order of the trials. Then inter-trial phase coherence analysis is applied as mentioned in Figure 2a.

To test the statistical significance of the values of (1) for each subject and channel pair, we used a procedure consisting of randomly shuffling the order of the trials, thereby obtaining different surrogates versions of it, $\varphi_{l,k}^{s,j}(t)$ ($s=1,..,99$), where the phase synchrony, if any, between the original signals was removed by construction due to the shuffling procedure. From these shuffled relative phases, we got shuffled $ITPC_{l,k}^s(j)$ (see Fig. 2b). The original $ITPC_{l,k}(j)$ is considered as significant, with $p<0.01$ level of statistical confidence, if it is greater than $ITPC_{l,k}^s(j) \forall s = 1,..,99$ (non-parametrical significance test). Otherwise, it is set to zero. This test of significance allows removing the spurious ITPC, where the value of the index was not due to actual functional connectivity between two ROIs, but was instead a result of some other feature of the individual signals. In our data, after applying this procedure, a 15% of the original ITPC values were considered not significant.

2.9 Statistical analyses

To further reduce the high dimensionality of the data, and to explore functional connectivity of the well-known Late Positive Component (LPC, 500-800 msec) of the event-related potential (ERP) observed in response to cues in task-switching procedures (see Figure 3), we selected three time windows of interest each of 100 msec of duration: 500-600 msec, 600-700 msec, and 700-800 msec (Barceló and Cooper, 2018). A decomposition of the total EEG power time-locked to the task cues revealed that task differences in this late latency window largely captured non-phase locked power effects (see Supplementary material). This is a relevant aspect of our analyses as much as the LPC and other endogenous ERP components associated with cognitive control have been related to non-phased locked (induced, or latency variable) EEG activity (Brydges and Barceló, 2018; Cohen and Donner, 2013). Then, a Wilcoxon signed-rank test (nonparametric test for two populations when the observations are paired) was used to compare between conditions (switch vs. repeat) for each frequency band and time window using Matlab v16a. Specifically, for each window, we obtained the average value of the ITPC across the 10 ms windows. Then, we singled out those 100 ms windows/frequency band pairs showing significant differences and tested them using non-parametric permutation test (Maris and Oostenveld, 2007) by pooling the ITPC.
values on both conditions and randomly dividing them in two equal sets whose size is the number of subjects. A total of 10,000 of such permutations were used for each significant link, and the differences were considered significant with a non-parametric \(p \) value <0.001 (after False discovery rate (FDR) corrected for multiple comparison) (Yekutieli and Benjamini, 2001). Finally, we applied stepwise regression analyses using the differences between switch and repeat cues of the significant functional connectivity links obtained in each (delta and theta) band as predictors, and the behavioral accuracy in the switch task as the criterion. Hence, for these regression analyses we employed as dependent variables the values of the connectivity differences, and the overall accuracy (percent correct responses) in the switch task as the criterion. Here we adopted overall task-switching accuracy as the most valid and reliable index of efficient task-switching behavior in line with previous studies using the same task-switching paradigm (Barceló and Cooper, 2018; Cooper et al., 2016).

![Figure 3](image)

Figure 3. Timing of the PLV analysis relative to the cue onset. Grand mean ERPs elicited by switch and repeat cues are plotted together with their 95% confidence intervals. The black dots along the x-axis mark time points at which there is a significant paired t-test (P < 0.05). Code to plot the figure from Rousselet et al. (2016).
3. Results
We analyzed functional connectivity differences using ITPC between switch and repeat cues in delta and theta frequency bands in three time windows (from 500 to 600 msec, from 600 to 700 msec, and from 700 to 800 msec post-cue onset) during the performance of a switch task, obtaining the following results:

3.1 ITPC results
Most of the time windows selected showed greater synchronization values in both delta and theta bands in response to switch compared to repeat cues. Figure 4 shows the significant links obtained in the functional connectivity analysis ($p < 0.001$, corrected) when comparing switch and repeat cues in delta band (2-4 Hz) in three of the selected time windows (from 500 to 800 msec). Similar results were observed for the theta band (4-8 Hz) when comparing switch and repeat cues (see Fig. 5). Additionally, to exhibit the consistency of effects of the PLV through subjects, Figure 6 shows the distribution of PLV in critical connections across the 26 subjects with their respective p value.

For the delta band, from 500 to 600 msec post-cue onset (Fig. 4A, D), connectivity values were higher in response to switch compared to repeat cues mostly across right hemisphere regions, thus between Right Inferior Frontal Gyrus (opercular) and Right Supramarginal, Right Paracentral and Right Superior Temporal Gyrus, as well as between Right Fusiform and Left Paracentral. Moreover, lower connectivity values in response to switch compared to repeat cues were found between Right Middle Temporal Gyrus and Left Fusiform and Left Lingual, Left Posterior Cingulate and Right Middle Temporal Gyrus. For this window and as an illustrative example Figure 6 shows the distribution of PLV in strong connections across the 26 subjects.

From 600 to 700 msec post-cue onset (Fig. 4B, D), there was an increase of connectivity values in response to switch compared to repeat cues between the Right Inferior Parietal Lobule and several brain regions such as the Right Fusiform, Right Posterior Cingulate, Right Paracentral, Right Parahippocampal, and the Left Precuneus region. Also, switch-related increases in connectivity were found between the Left Middle Temporal Gyrus and the Left Parahippocampal Gyrus, the Left Inferior Frontal Gyrus (triangular) and the Right Superior Temporal Gyrus, and between the Left
Superior Parietal and Right Supramarginal gyri, but also a decrease between the Right Cuneus and Right Middle Temporal regions.

Finally, from 700 to 800 msec post-cue onset (Fig. 4C, D), we found higher connectivity values in response to switch compared to repeat cues between the Left Precuneus and the Right Middle Temporal Gyrus, and lower connectivity values between Left Inferior Temporal and Left Posterior Cingulate, and Left Parahippocampal and Left Cingulate Gyrus in response to switch compared to repeat cues.
Figure 4. Significant functional connectivity results ($p < 0.001$, corrected) in the delta band (2-4 Hz) at three time windows: 500-600 msec (A); 600-700 msec (B); and 700-800 msec (C) post-cue onset. Red color represents higher connectivity values for switch compared to repeat cues, and blue color illustrates lower connectivity values for switch compared to repeat cues. Additionally, in the circular representation, line thickness of significant links is proportional to ITPC values (a higher value corresponds to thicker lines, and vice versa). (D) Functional connectivity differences between switch and repeat cues. Red color indicates greater connectivity following switch cues, and blue color indicates the opposite pattern.

For the theta band (Fig. 5), we mostly found increased synchronization in response to the switch cue when compared to the repeat cue in the whole time-window explored, namely from 500 to 800 msec post-cue onset. From 500 to 600 msec post-cue (Figs. 5A,D) we found higher connectivity values in Right Fusiform and Right Inferior Frontal Gyrus (opercular), Right Middle Temporal Gyrus and Right Cingulate Gyrus, Left Entorhinal Cortex and Left Middle Frontal, Right Inferior Frontal Gyrus (opercular) and Right Supramarginal and Right Superior Temporal Gyrus and Left/Right Paracentral and lower connectivity values between Right Middle Temporal Gyrus and Left Fusiform and Left Lingual, Right Middle Temporal and Left Posterior Cingulate and Left Lingual, and finally in Right Orbital Gyrus and Right Superior Temporal Gyrus. Additionally, from 600-700 msec (Figs. 5B, D), in comparison to the repeat cue, we
found an increase in connectivity in the switch cue between the Right Inferior Parietal and the Posterior Cingulate Cortex, the Right Lingual and Superior Frontal Gyrus, and the Left Superior Temporal and the Left Inferior Frontal (triangular) and a decrease in connectivity in the Left Fusiform and the Left Supramarginal. Finally, from 700 to 800 msec, we obtained increased synchronization in response to the switch cue in the Left Middle Temporal Gyrus and Right Posterior Cingulate and Left Inferior Frontal Gyrus (orbital) and Right Postcentral Gyrus (Figs. 5C, D).
Figure 5. Significant functional connectivity results \((p < 0.001, \text{corrected})\) in the theta band (4-8 Hz) at three time windows: 500-600 msec (A); 600-700 msec (B); and 700-800 msec (C) post-cue onset. Red color represents higher connectivity values for switch compared to repeat cues, and blue color illustrates lower connectivity values for switch compared to repeat cues. Additionally, in the circular representation, line thickness of significant links is proportional to ITPC values (a higher value corresponds to thicker lines, and vice versa). (D) Functional connectivity differences between switch and repeat cues. Red color indicates a greater connectivity following switch cues, and blue color indicates the opposite pattern.

Figure 6. Illustrative example of the distribution of ITPC values across all subjects in both conditions (blue: repeat, red: switch) for the areas indicated in the x-axis.
3.2 Stepwise regression results

With the aim to explore to what extent the accuracy achieved during the performance of the switch task was explained by the significant ITPC results, we applied a stepwise regression analysis using values of the connectivity differences between switch and repeat trials as dependent variables (Figs. 3D, 4D), and the percent correct responses in the switch task as the criterion. Table 3 presents the final stepwise regression model for the delta band, which revealed two connectivity links (i.e., right paracentral – right superior temporal gyrus, Beta= -0.121, p= 0.007 for model 1; and Beta= -0.152, p= 0.001 for model 2; and left inferior temporal gyrus – left posterior cingulate gyrus, Beta= 0.154, p= 0.036 for model 2) that jointly explained over 34% of variability in behavioral accuracy. Table 4 presents regression results for the theta band, which revealed two connectivity links (i.e., left paracentral – right superior temporal gyrus, Beta= -0.140, p= 0.012 for model 1; and Beta= -0.179, p= 0.002 for model 2; and right orbital gyrus – right superior temporal gyrus, Beta= -0.175, p= 0.035 for model 2) that jointly explained around 32% of variability in behavioral accuracy. Interestingly, for both delta and theta bands, larger PCL – rHES connectivity values in repeat compared to switch trials were predictive of better performance (Fig. 7).

<table>
<thead>
<tr>
<th>Model</th>
<th>Variables</th>
<th>Beta</th>
<th>R² adjusted</th>
<th>Standard Error of the Estimate</th>
<th>F</th>
<th>Sig</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>rPCL - rHES (Fig.4A)</td>
<td>-0.121</td>
<td>0.235</td>
<td>0.017</td>
<td>8.674</td>
<td>0.007</td>
</tr>
<tr>
<td>2</td>
<td>rPCL - rHES</td>
<td>-0.152</td>
<td>0.343</td>
<td>0.016</td>
<td>7.537</td>
<td>0.001</td>
</tr>
<tr>
<td></td>
<td>lITG - IPCG (Fig.4C)</td>
<td>0.154</td>
<td></td>
<td></td>
<td></td>
<td>0.036</td>
</tr>
</tbody>
</table>

Table 3. Results of the stepwise regression analysis for the delta band.

<table>
<thead>
<tr>
<th>Model</th>
<th>Variables</th>
<th>Beta</th>
<th>R² adjusted</th>
<th>Standard Error of the Estimate</th>
<th>F</th>
<th>Sig</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>lPCL - rHES (Fig.5A)</td>
<td>-0.140</td>
<td>0.206</td>
<td>0.017</td>
<td>7.484</td>
<td>0.012</td>
</tr>
<tr>
<td>2</td>
<td>lPCL - rHES</td>
<td>-0.179</td>
<td>0.321</td>
<td>0.016</td>
<td>6.898</td>
<td>0.002</td>
</tr>
<tr>
<td></td>
<td>rOrbG - rSTG (Fig.5A)</td>
<td>-0.175</td>
<td></td>
<td></td>
<td></td>
<td>0.035</td>
</tr>
</tbody>
</table>

Table 4. Results of the stepwise regression analysis for the theta band.
Figure 7. Significant relationship between connectivity values and behavioral accuracy for: (A) Delta band, and (B) Theta bands. Each black dot in the plot represents a subject.

4. Discussion

The present study used cortical EEG functional connectivity to identify synchronized brain cortical regions involved in a switching paradigm in a sample of 26 healthy young subjects. To this end, we analyzed the connectivity brain patterns in slow frequency bands (delta and theta) during late-latencies (from 500 to 800 msec) post-cue onset, known to be associated with top-down cognitive control processes. The current findings showed that compared to a repeat cue, the response to a switch cue showed an increase in functional connectivity in both delta and theta bands in most of the time windows studied. In general, this increment in functional connectivity may be interpreted as the need to coordinate and use more brain resources to attend cognitively demanding stimuli and to proactively control and flexibly adjust to newly relevant S-R mappings for efficient execution of upcoming actions.

In the delta band, we found an increase in connectivity 500-600 msec post-cue between right pars opercularis and right supramarginal gyrus for the switch cue in comparison with the repeat cue. Both brain areas are part of the fronto-parietal network, which is involved in top-down processes in task-switching (Cocchi et al., 2013; Mansfield and Karayanidis, 2012). Besides, recent studies suggest that the connectivity between fronto-parietal regions may reflect the voluntary orientation of attention toward unexpected and task-relevant stimuli (Harper et al., 2017). Additionally, these two regions have been related with task preparation during the cue-to-target interval (Shi et al., 2014). Specifically, the connection between the pars opercularis and the parietal...
cortex is usually involved in the updating of general task representations and might provide relevant stimulus-response associations needed to execute the switching task (Brass and Von Cramon, 2004).

Interestingly, an increased in delta connectivity 600-700 msec post-switch cue, showed that most of the regions found in this time period were connected to the right inferior parietal lobule. This region is known to play an important role as a part of the fronto-parietal network, maintaining task and context information. Further, Keil et al. (2016) suggest that this region may be involved in facilitating stimulus processing. In this case, the connections with the parietal cortex may indicate an exogenously driven and cognitively demanding mental activity (Cocchi et al., 2013). Also, frontal regions and the cingulate cortex synchronized with the inferior parietal cortex suggest that the two systems (fronto-parietal and cingulo-opercular systems) are involved in cognitive control (Dosenbach et al., 2008). Specifically, the fronto-parietal system supposedly processes cue-based information and rapidly implements adaptive control, initiating and adjusting control and maintaining task-relevant information across trials (Cocchi et al., 2013). This network seems to combine brain regions that initiate attentional control at cue onset with regions that process performance feedback to adjust control settings on a trial-by-trial basis (Dosenbach et al., 2008). In contrast, the cingulo-opercular system facilitates maintenance of task-related goals across trials (Cocchi et al., 2013).

Overall, the connectivity profile obtained in this study includes many links involved in these two systems supporting the idea that some functions associated to cognitive control are partly implemented by both systems. In addition, the connections with the inferior parietal lobe from 600 to 700 msec post-cue may be seen as a bridge with other systems such as the hippocampus and the dorsal attention systems, supporting cognitive demands across many task domains. Vincent et al., (2008) found a correlation between the hippocampus, the posterior inferior parietal lobule and the lateral temporal cortex, regions that are also involved in memory processes. Although the fronto-parietal system is not likely to support specific long-term memory functions, this system is known to increase its activity during many working memory and decision-making tasks in addition to memory-retrieval tasks. Specifically, Johnson et al. (2017) found that this fronto-parietal network was also involved in working memory, which was severely impaired in patients with brain lesions in these particular areas. The fronto-parietal
control network is therefore anatomically positioned to integrate information from these two opposing brain systems (Vincent et al., 2008). In addition, within 600-700 msec post-cue we found an increase in delta connectivity for the switch cue condition between the left superior parietal cortex and the right supramarginal cortex. These regions, especially the superior parietal cortex, increase their activity when a difficult task is being performed (Crone et al., 2006). Previous evidence suggests that the superior parietal cortex is a common locus both for switching spatial attention and for switching between abstract task rules (Chiu and Yantis, 2009).

During the last time window (700-800 msec), the inferior temporal and occipital cortex increased their delta connectivity in the switch condition. This increment might reflect top-down attention on stimulus attributes when S-R mappings needed to be switched (Stelzel et al., 2011). However, we also obtained higher delta connectivity values in repeat-cue than in switch-cue conditions in all time windows analyzed, mainly between occipitotemporal cortex and limbic regions. Thus, in the repeat cue, we found an increase in connectivity between occipitotemporal regions within 500-600 msec and 600-700 msec post-cue onset. It has been described that some areas within the occipital cortex (as the fusiform gyrus) respond transiently to visual cues, probably reflecting the sensory analysis of the cue. In turn, those areas situated in the posterior parietal cortex, the parietal cortex and the frontal cortex usually show a more sustained response (Corbetta and Shulman, 2002). In fact, prolonged practice of a task normally produces an increase in neural activity and its duration, even when it is no longer required, an effect probably related to task-inertia (Wylie et al., 2006). Yeung (2006) suggests that task-set inertia affects the occipitotemporal and prefrontal cortices reflecting a similar increase in delta connectivity to repeat cues as the one observed here. Relatedly, within the 500-600 msec and 700-800 msec time windows there was an increase in delta connectivity between posterior cingulate cortex and the temporal cortex. It is known that limbic regions such as the posterior cingulate cortex are involved in maintaining task-set information across trials, and increased delta connectivity may be necessary when repeating an action during the execution of a task (Cocchi et al., 2013).

Additionally, we explored the differences between switch and repeat cues in the theta band. Most task-switching studies associate this frequency band with set switching and proactive control processes (Cooper et al., 2015; Keil et al., 2016). For the switch cue
condition, we obtained higher frontoparietal, fronto-temporal and fronto-occipital theta connectivity in the three time windows analyzed. We observed an increase in theta connectivity from 500 to 600 msec in right parsopercularis and right supramarginal gyrus. These regions belong to the fronto-parietal network, which is usually involved in cognitive control. Besides parsopercularis, that is located in the inferior frontal cortex, is involved in maintaining task-relevant information needed for the control of behavior (Yeung, 2006b). In addition, during this period, it was found an increase in connectivity between the left entorhinal cortex and left middle frontal gyrus. The connection between these two regions may suggest underlying cognitive processes related with memory and executive function. Recent studies report that these areas are related with high-level cognitive processes, such as memory encoding and retrieval, working memory retention, novelty detection, and top-down control (Cavanagh and Frank, 2014). Additionally, frontotemporal connections, and in particular the medial temporal cortex, have been involved in the coordination of attentional processes to respond to non-expected stimuli (Harper et al., 2017).

From 600-700 msec post-switch cue, there was an increase of theta connectivity between right inferior parietal cortex and right posterior cingulate cortex. These two regions are associated with top-down processes related with cognitive control. In recent studies, the posterior cingulate cortex is an important hub that facilitates task-based integration of information between nodes (i.e. anterior cingulate cortex, prefrontal cortex and parietal cortices). Therefore, the posterior cingulate cortex seems to play a key role in managing the coordinated activity of specialized systems to achieve an efficient cognitive control (Cocchi et al., 2013). Additionally, in this time window, the increase of connectivity between the inferior frontal and the superior temporal cortex may indicate memory related processes and also context updating for the next stimulus (Backus et al., 2016; Harper et al., 2017). For the repeat cue, results were similar to those obtained in the delta band. Thus, from 500 to 600 msec, there was an increase in connectivity between inferior frontal and superior temporal cortices. The inferior frontal cortex in connection with the temporal cortex has been implicated in cognitive control processes, guiding the access to relevant information of semantic memory (Badre and Wagner, 2007). Finally, we obtained higher connectivity results between left fusiform and left supramarginal gyrus from 600 to 700 msec for the repeat cue compared to the switch one. These findings suggest that when repeating a rule of action, it is also
required an interaction between regions related with both cognitive control and the perceptual analysis of the cue.

A stepwise regression analysis examined which of the significant connectivity differences between cues (if any) were predictive of behavioral efficiency in the switch task. We obtained two significant links for each frequency band that explained a very reasonable percentage of task accuracy (between 20% and 34% depending on the model). For both frequency bands, these links included frontal and temporal brain areas, being the link between the paracentral lobule and superior temporal gyrus the one common structure that explained the largest proportion of variance in behavioral accuracy. These results (supported by those shown in Figure 7) highlight that both delta and theta bands jointly help to synchronize similar brain networks to carry out a successful behavior that requires cognitive flexibility (McLelland and VanRullen, 2016), and that the complex time dynamics of cognitive control are best explained by neural oscillations across several frequency bands (cf., Cooper et al., 2016).

The present functional connectivity analyses in the delta and theta bands targeted the latency of the LPC elicited proactively by task cues in task-switching paradigms (Barceló and Cooper, 2018; Rushworth et al., 2002), which has been shown to be largely locked to neither the stimulus nor the response (Brydges and Barceló, 2018). This type of non-phase locked oscillatory long-range synchronization between frontal and temporo-parietal cortices has been proposed to index the type of sensori-motor decision processes necessary for the proactive memory updating of task-set representations at cue onset (Cohen and Donner, 2013). Further, it has also been suggested that non-phase locked power modulations may be more closely linked to cognitive control and to its effects on behavior than the phase-locked event-related potentials reactively elicited by the stimulus itself (Barceló and Cooper, 2018; Cohen and Donner, 2013).

There are some limitations in our attempt to map low frequency EEG phase synchronization patterns with proactive control of action rules in task switching. Firstly, the limitations of conventional F statistics for a correlational study analyzing multiple and highly correlated brain and behavioral measures with small sample sizes; in these cases the use of Bayesian statistics would be more appropriate for testing hypotheses
with evidence gathered from small sample sizes (Friston et al., 2002; Wagenmakers, 2007). Second, previous research has shown that increased slow-delta phase coherence over frontotemporal cortical regions is related to temporal expectations of an upcoming imperative stimulus, as delta band phase locking increases with increasing probability of stimulus occurrence (Stefanics et al., 2010). However, since we employed a fixed cue-target interval, the potential confound between temporal predictability and proactive control of task switching cannot be easily discerned with the present task design. Future research making use of different cue-target durations should be able to disentangle the contributions of these two neural processes to the observed effects.

There are also two technical issues regarding the estimation of phase synchronization (PS) indices that merit further discussion. The first one is the well-known issue that zero-lag synchronization can be due to linear mixing of different sources in two signals. While the source reconstruction procedure helps to deal with this problem, the insufficient spatial resolution of the EEG gives rise to source leakage, a problem whereby the activity of one source “leaks” to the neighboring ones. Various indices of phase synchronization, which are insensitive to zero lag, have been described in the literature (see Bruña et al. (2018) for a recent survey of these methods). However, a recent study suggests (Palva et al., 2018) that these methods may not be sufficient, and that more sophisticated methods are needed to tackle this issue (Ossadtchi et al., 2018; Wang et al., 2018 a,b). Therefore, the results presented here correspond to patterns of functional connectivity that should be interpreted in the light of these recent works.

The second issue is that, as it has been recently pointed out (Cole et al., 2017; Lozano-Soldevilla et al., 2016), waveforms may not be sinusoidal, which might be presumed to affect the estimation of PS. Yet, even if the waveform is not strictly sinusoidal, the use of a Hilbert transform, which is not affected by the possible non-stationarity in the data, allows estimating PS using ITPC. Indeed the original derivation of the PS concept (Rosenblum et al., 1996) is demonstrated in chaotic systems (in that case, two Rössler systems), whose waveforms are also not sinusoidal. As indicated in this seminal work, the method can be applied to noisy oscillators as well, in which the amplitudes vary along each oscillatory cycle in a different, random way, provided that the signal is periodic, which is guaranteed by the filtering process.

Overall, we conclude that the present study identifies and provides important evidence on the EEG substrates underlying the cued task-switching paradigm. This work confirms and supports the role of delta and theta oscillations in fronto-parietal and
cingulo-opercular networks during top-down cognitive control and working memory (Cocchi et al., 2013; Dosenbach et al., 2008; Ekstrom and Watrous, 2014; Vincent et al., 2008). Recent technical advances in functional neuroimaging, such as brain connectivity, allow a refined characterization of large-scale brain system dynamics during cognitive control.

Declarations of interest: None

Author contributions: M.E.L. and S.P. analyzed the data, prepared all figures, and wrote the main manuscript text. E.P. and F.M. supervised data analyses and wrote the manuscript. F.B. conceived and supervised the project, designed the experimental paradigm, and edited the manuscript. All authors read and approved the final manuscript.

Acknowledgements: Supported by grants from the Fundació La Marató de TV3 (112710) and Spanish Ministry of Economy and Competitiveness (MINECO PSI2013-44760-R) to FB. E. Pereda is supported by MINECO grant (TEC2012-38453-C04-03); ME López by a postdoctoral fellowship from the Spanish Ministry of Economy and Competitiveness (IJC1-2016-30662) and Sandra Pusil by a postdoctoral fellowship from the Spanish Ministry of Economy and Competitiveness to Sandra Pusil (BES-2014-069501).

Lozano-Soldevilla, D., Ter Huurne, N., Oostenveld, R., 2016. Neuronal Oscillations with Non-sinusoidal Morphology Produce Spurious Phase-to-Amplitude Coupling

