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Abstract

The dissertation covers five topics on deforestation in Legal Amazon. The first study investigates
spatial heterogeneity of deforestation determinants at municipality level. Spatial differences are
assessed by geographically weighted regression. The distances between regression points are
measured in travel time. The computation is done programmatically. Different drivers of defores-
tation emerge in different locations of Legal Amazon. For Para and its surroundings, cattle market
is an especially strong driver of deforestation. Crop cultivation leads to forest clearings only in a
relatively small area, located in southeastern Pard and northeastern Mato Grosso. Rural credit
constraints are effective in curbing deforestation in Pard. Here less deforestation happens where
more forests are legally protected, where precipitation levels are favorable for agriculture and at
lower altitudes. U-shaped environmental Kuznets curve is concluded for the entire region. How-
ever, significant links are found only in Amazonias, Roraima, Pard and its proximities. Timber
value motivates deforestation in most parts of the Amazon biome. Official roads contribute to de-
forestation in Amazonias, Roraima and their surroundings. Adverse effect of unofficial roads on
extant forests is especially evident in northern Rondonia and northeastern Para. Links between
rural population and deforestation are very strong for western parts of Rondénia and Mato
Grosso, but are very weak in Para. The implementation of economic distances relative to Euclid-
ean distances changes the results significantly for some regions. The second article investigates
whether sugarcane expansion in southern Brazil exports deforestation into the Amazon. This in-
direct land use change is captured using spatial Durbin model. The parameters are estimated by
fixed-effects regression. The results indicate that sugarcane expansion exported 16.3 thousand
km? (12.2%) of deforestation during period 2002-2012, which is equivalent of 189.4 Mg of carbon
emissions. The third study contributes to the polemics of whether rural population is linked with
deforestation on forest edges. Empirical strategy is as follows: Pard state is partitioned into 5x5
km grids, only cells that classify as forest frontier are retained, links between deforestation and its
covariates (including rural population) are investigated both parametrically (fractional logistic
regression) and non-parametrically (regression tree). The results confirm positive link between
the size of rural communities and deforestation on forest frontiers. Both methods suggest that de-
forestation is positively linked with cattle herd size and distance to the most proximate river and
negatively linked with forest cover and precipitation. Regression tree also reveals that deforesta-
tion within protected areas is substantially lower. The fourth paper quantifies avoided deforesta-
tion in Pard’s protected areas, on their edges and in their peripheral areas (buffer zones) by
matching. Location characteristics are converted into a single propensity score by the means of
logistic regression. Para avoided ~2900 km? of deforestation during 2000-2004. Space has huge
implications: conservation units in remote regions do not avoid deforestation, whereas protected
areas near deforestation hotspots save substantial areas of forests. Avoided deforestation is posi-
tive in buffer zones located to the west of highway BR-163 and on the banks of Amazon River,
and negative in buffers located in eastern Pard. Boundaries of conservation units are well pro-
tected from edge effects. The last study maps deforestation at 5x5 km grids in selected territory in
Rondodnia from past and time-fixed factors. Eigenvector-based spatial filtering is applied to solve
spatial autocorrelation problem and to improve mapping accuracy. Output values of trained arti-
ficial neural network satisfactory correlate with actual values (correlation coefficient is 0.79).



Resumen

La tesis cubre cinco topicos distintos sobre la deforestaciéon en Amazonia Legal. El primer estudio
investiga la heterogeneidad espacial de determinantes de deforestacion a nivel municipal. Las di-
ferencias espaciales son evaluadas por regresién geograficamente ponderada. Las distancias entre
puntos de regresion estdn medidas por tiempo de viaje. Segun el estudio, la ganaderia afecta a la
deforestacion mas en Pard y sus alrededores. El cultivo de las cosechas aumenta la deforestacion
sOlo en el sureste de Para y nordeste de Mato Grosso. Las restricciones de crédito rural son una
medida eficaz contra la deforestacion en Pard. Aqui hay menos deforestacion en las zonas con
mas bosques bajo proteccion legal, con niveles de precipitacion favorables para la agricultura y en
alturas mas bajas. La relacion entre PIB per capita y deforestacién sigue la curva en forma U. El
valor de la madera explica la deforestaciéon en la mayoria de las regiones del bioma Amazoénico.
En general, las carreteras contribuyen a la deforestacion més en las regiones remotas. Los vinculos
entre poblacion rural y deforestacion son mas fuertes en el norte de Rondoénia y norte de Mato
Grosso. La implementacion de las distancias por tiempo de viaje con respecto a las distancias Eu-
clidianas cambia los resultados significativamente para algunas regiones. El segundo articulo in-
vestiga si la expansion de la cafia de aztcar en el sur de Brazil exporta deforestacién a la frontera.
Los vinculos indirectos entre cafia de azdcar y deforestacién estan capturados por modelo espa-
cial de Durbin. Los parametros estan estimados por regresion de efectos fijos. La cafia de aztcar
export6 16.3 miles de km? (12.2%) de deforestacion durante el periodo 2002-2012, el equivalente
de 189.4 Mg de las emisiones de carbono. El tercer estudio prueba empiricamente la declaracién
que la poblacién rural esta positivamente relacionada con la deforestacion en los bordes del bos-
que. El estado de Pard se divide en cuadriculas de 5x5 km. Las relaciones entre deforestacion y
sus determinantes (incluyendo poblacién rural) estan investigados por dos métodos: regresion lo-
gistica fraccional y arbol de regresion. Los resultados confirman que el tamafio de las comunida-
des rurales esta relacionado con la deforestaciéon. Ademas, ambos métodos sugieren que la defo-
restacion esta vinculada positivamente con el tamafio del rebafio bovino y la distancia al rio mas
cercano, y negativamente con la cubierta forestal y la precipitacién. El arbol de regresion revela
que la deforestacion es significativamente mas baja dentro de las areas protegidas. El cuarto arti-
culo cuantifica la deforestacion evitada en las &reas protegidas, en sus bordes y en sus zonas para-
choques en Para por método de pareamiento. Las caracteristicas de localidades estan convertidas
en un Gnico puntaje de propension por regresion logistica. Para evité ~2900 km? de deforestacion
durante 2000-2004. El espacio tiene implicaciones importantes: unidades de conservacion en las
regiones remotas no evitan la deforestacion, mientras que areas protegidas ubicadas cerca de los
focos de deforestacién salvan grandes areas de bosques. La deforestacion evitada es positiva en
las zonas parachoques ubicadas hacia el oeste de la autopista BR-163 y en las orillas del rio Ama-
zonas, y negativa en las zonas parachoques situadas en el este de Para. Los limites de las unida-
des de conservacion estan bien protegidos de los efectos de borde. El dltimo estudio simula defo-
restacion en cada cuadricula de 5x5 km. Mediante filtrado espacial los vectores propios que solu-
cionan el problema de autocorrelaciéon espacial (y automaticamente mejoran la precisiéon de la
prediccién) estan identificados. Los valores de deforestacion estan calculados por la red neuronal
artificial. El coeficiente de correlacién entre los valores reales y los simulados es 0.79).



Resum

La tesi cobreix cinc topics distints sobre la deforestacié a I’Amazonia Legal. El primer estudi in-
vestiga la heterogeneitat espacial de determinants de deforestaci6 a nivell municipal. Les diferen-
cies espacials son avaluades per regressié geograficament ponderada. Les distancies entre punts
de regressio estan mesurades per temps de viatge. Segons 'estudi, la ramaderia afecta la defores-
taci6 més a Para i els seus voltants. El cultiu de les collites augmenta la deforestacié6 només a la
zona ubicada al sud-est de Pard i nord-est de Mato Grosso. Les restriccions de crédit rural son una
mesura eficag contra la deforestaci6 a Pard. Aqui hi ha menys deforestaci6 a les zones amb més
boscos amb proteccié legal, amb nivells de precipitacié favorables per a l'agricultura i a altures
més baixes. La relacié entre PIB per capita i deforestacié segueix la curva en forma d’U. El valor
de la fusta explica la deforestaci6 a la majoria de les regions del bioma Amazonic. En general, les
carreteres contribueixen a la deforestacié més a les regions remotes. Els vincles entre poblaci6 ru-
ral i deforestaci6 son més forts en el nord de Rondoénia i nord de Mato Grosso. La implementacié
de les distancies per temps de viatge respecte de les distancies Euclidianes canvia els resultats sig-
nificativament per a algunes regions. El segon article investiga si I'expansi6 de la canya de sucre a
les regions d’Amazonia Legal fora del bioma Amazonic exporta deforestacié al bioma. Els vincles
distants entre canya de sucre i deforestacié estan capturats per model espacial de Durbin. Els pa-
rametres estan estimats per regressio d’efectes fixos. La canya de sucre exporta 16.3 milers km?
(12.2%) de deforestacié durant el periode 2002-2012. El tercer estudi prova empiricament la decla-
racié que la poblacié rural esta positivament relacionada amb la deforestacié a les voreres del
bosc. L’estat de Paré se divideix en quadricules de 5x5 km. Les relacions entre deforestaci6 i els
seus determinants (incloent poblacié rural) estan investigats per dos metodes: regressié logistica
fraccional i arbre de regressio. Els resultats confirmen que la mida de les comunitats rurals esta
relacionada amb la deforestaci6. A més, ambdos metodes suggereixen que la deforestacié esta
vinculada positivamente amb la mida del ramat bovi i la distancia al riu més proxim, i negativa-
ment amb la coberta forestal i la precipitacié. L’arbre de regressi6 revela que la deforestaci6 és
significativament més baixa dins les arees protegides. El quart article quantifica la deforestacio
evitada a les arees protegides, en els seus limits i a les seves zones para-xocs a Pard pel métode
d’aparellament. Les caracteristiques de localitats estan convertides en una tnica puntuacié de
propensio per regressi6 logistica. Paréd evita ~2900 km? de deforestacié durant 2000-2004. L’espai
té implicacions importants: unitats de conservacio a les regions remotes no eviten la deforestacio,
mentre que arees protegides ubicades a prop dels focus de deforestacio salven grans arees de bos-
cos. La deforestaci6 evitada és positiva a les zones para-xocs ubicades cap a l'oest de "autopista
BR-163 i a les voreres del riu Amazonas, i negativa a les zones para-xocs situades a I'est de Para.
Els limits de les unitats de conservaci6 estan ben protegits dels efectes de limit. El darrer estudi si-
mula deforestacié a cada quadricula de 5x5 km. Mitjancant filtrat espacial els vectors propis que
solucionen el problema d’auto correlacié espacial (i automaticament milloren la precisi6 de la pre-
diccid) estan identificats. Els valores de deforestacié estan calculats per la xarxa neuronal artifi-
cial. El coeficiente de correlacio entre els valors reals i els simulats és de 0.79).
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Chapter 1

Introduction



Massive rainforest deforestation takes place in a limited number of countries. Nonetheless,
the consequences are global. Large amount of carbon stock is released into the atmosphere.
Thus, forest clearings fuel the process of global warming, which is a widely discussed topic in
today’s political summits. Besides, continuous deforestation threatens a variety of endemic
species and nature’s genetic resources in general. Some reasons leading to deforestation are
also global. Deforestation is often fueled by commercial agriculture, and the scope of agricul-
ture is defined by the global demand of agricultural commodities. Global implications of de-
forestation underlie its importance and promote interest into the topic.

Brazil faces the largest annual deforestation in terms of total area cleared among all countries.
Deforestation in Brazil came with colonization. By the end of the 19t century, most of the At-
lantic forests in Brazil’s northeast, south and center-south were cut. Agriculture was primar-
ily responsible for further clearings in center-western and northern regions during the second
half of the 20th century (Araujo et al., 2011). Early governments of Brazil favored colonization
into the Brazilian Amazon. It wasn’t until the eighth decade of the 20t century that deforesta-
tion raised serious concerns for governmental institutions. However, massive deforestation
continued to soar, reaching its peak in 2004. Since then, combined efforts of the Brazilian gov-
ernment and NGOs coupled with global economic crisis led to a significant reduction in de-
forestation rates. Despite this, current level of forest loss remains a huge treat to environ-
mental sustainability.

Deforestation is a complex phenomenon. It is influenced, among other factors, by economic
activities, infrastructure layout, demographics, terrain characteristics and legal enforcement.
The connections between deforestation and its determinants sometimes are bidirectional and
often manifest indirectly through other phenomena. Occasionally, deforestation is affected by
distal factors. Most importantly, causes of deforestation cannot be generalized to all locations.
As a consequence, policy measures to mitigate deforestation can be effective only if local con-
texts are properly addressed. Spatial heterogeneity of the processes that affect deforestation
remains incomprehensively researched. Therefore, the main objective of this dissertation is to
empirically investigate the interactions between deforestation and various factors by address-
ing spatial differences.

This dissertation is comprised of five self-contained studies. The first study investigates direct
and underlying causes of deforestation and how those factors affect deforestation in different
locations across Legal Amazon. The second work answers the question whether sugarcane
expansion in southern Brazil exports deforestation into the Amazon. The third investigation
empirically tests the theory that rural communities are responsible for deforestation on forest
frontiers. The fourth paper builds on researches into the influence of legal forest protection on
deforestation by measuring avoided deforestation in conservation units, in buffer zones, and
on the edges of conservation units. The last study aims to map deforestation from past and
time-fixed variables by exploiting spatiotemporal contagion of deforestation.

Causes of deforestation, both direct and underlying, are widely analyzed in academic litera-
ture. Key direct causes of deforestation in Legal Amazon, as indicated by most investigators,
are agriculture and infrastructure. Agriculture consists of livestock (mostly cattle) and crop
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cultivation (mostly soybean and sugarcane) businesses. Agriculture in Brazil relies heavily on
the credit system. The official rural credit portfolio covers about a third of the annual finan-
cial needs of the agricultural sector in Brazil (Assuncdo et al., 2013b). Rural credit is loaned in
accordance to rules and conditions issued by the Central Bank of Brazil. However, this money
in the hands of farmers may fuel deforestation. In response to such fears, in 2008 Resolution
3545 was released, which conditioned the concession of rural credit for use in agricultural ac-
tivities in the Amazon Biome upon presentation of proof of borrowers’ compliance with envi-
ronmental legislation, as well as of the legitimacy of their land claims and the regularity of
their rural establishments. Among documents needed was the declaration stating the absence
of current embargoes caused by economic use of illegally deforested areas (Assuncao et al.,
2013b). However, rural credit concessions do not necessarily increase deforestation. As As-
suncdo et al. (2013b) notice, crop farmers are likely to invest a larger share of rural credit
loans in the intensification of production, instead of expanding it by operating in the exten-
sive margin as cattle ranchers do. Indeed, there are important differences between cattle
ranching and crop cultivation in terms of pressure on forests. Geo-ecological barriers are in
general more restrictive in the case of crop cultivation (Margulis, 2004), making cattle ranch-
ing the predominant industry. Numerically, ranching enterprises occupy roughly 75 percent
of the deforested areas of Legal Amazon. The key restriction for plant cultivation is high rain-
fall (the other important constraint is steep slope), causing most problems during seeding and
harvesting. Topographic and climatic characteristics vary across Legal Amazon, and, as a re-
sult, land suitability for crop cultivation. This is a strong argument in favor of models that
capture spatial heterogeneity.

Another widely recognized determinant of deforestation is road network. A classic example
of road-induced deforestation is the Trans-Amazonian highway, opened in the eighth decade
of previous century. Thus, not constructing a road is a way to prevent deforestation. How-
ever, even bigger concern is the network of unofficial roads. These roads are generally built to
open up forests to illegal logging, thus leading to new colonization, forest fragmentation, eco-
logical degradation and increased fire risk (Barber et al., 2014).

Market growth and foreign trade are often named as contributors to deforestation. Both crop
cultivation and cattle ranching satisfy both national and international markets. International
demand of Brazilian products increases the need to deforest. Some efforts to mitigate interna-
tional pressure on Brazilian rainforests have been made. For example, under the pressure of
retailers and NGOs, major soybean traders signed Brazil's Soy Moratorium, which is a volun-
tary agreement not to purchase soy grown on lands, deforested after July of 2006. However,
weaknesses in federal enforcement aggravate the potential of this initiative. Currently, for
more than half of registered properties with embargoes producer identification is inconsistent
with the system of Rural Environmental Registry of private properties (Gibbs et al., 2015b).
This system is used by soy traders to check for embargoes. Since information is inconsistent,
transactions with properties under embargoes continue to happen. Similarly, meatpacking
companies in Pard began signing the legally binding Terms of Adjustment of Conduct
(known as TAC), committing to purchase cattle only from ranchers registered with the Para
State Rural Environmental Register. Furthermore, in 2009 Brazil’s largest slaughterhouses
(JBS-Bertin, Marfrig and Minerva) signed an agreement with Greenpeace not to purchase
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meat production from ranches with deforestation (Gibbs et al., 2015a). The initiative only con-
siders direct suppliers, thereby leaving plenty of room to circumvent commercialization re-
strictions. Trade of agricultural products, especially beef, continues to soar. The biggest im-
porters of Brazilian beef are Russia, Hong Kong, Venezuela and Egypt (SECEX-MDIC, 2015).
Arguably, ever increasing demand of agricultural products is a consequence of growing popu-
lations in foreign trade partners, because larger populations imply higher meat consumption.

Naturally, the size of population emerges as a potential direct cause of deforestation. Here the
distinction is often made between rural and urban communities. Indeed, there is an ongoing
debate among scholars, whether rural or urban population contributes to deforestation to a
higher extent. Authors, who argue that urban population growth rather than rural population
growth is a stronger accelerant of deforestation, defend their position by arguing that urbani-
zation raises consumption levels and increases demand for agricultural products. DeFries et
al. (2010) claim that urban consumers generally eat more processed foods and animal prod-
ucts than rural consumers, thereby stimulating commercial production of crops and livestock.
On the contrary, Wright & Muller-Landau (2006) find that recent deforestation rates are posi-
tively related to local rural population density, and that the percent of the remaining forests is
often negatively related to rural population density in the tropics. Key arguments in favor of
rural-driven deforestation are immigration and high natality rate (Izquierdo et al., 2011).

The relationships between deforestation and its determinants are region-specific (Margulis,
2004), but most academic studies ignore this fact. To the best knowledge of the author, only
Oliveira & Almeida (2011) investigated the causes of deforestation from local perspective in
Legal Amazon at county level. This was achieved by applying geographically weighed re-
gression (GWR). However, these authors were restricted to the limited capabilities of the soft-
ware that estimates GWR, which led them to make two very restrictive assumptions. Specifi-
cally, those assumptions are: 1) all covariates are strictly exogenous, and 2) Euclidean dis-
tances reflect well the communications between municipalities.

As already discussed, deforestation is potentially explained by the size of populations. How-
ever, as Angelsen & Kaimowitz (1999) notice, growing populations affect labor market, tech-
nological progress and institutional changes. Thus, deforestation itself may attract new in-
habitants as a result of these changes. Similar argument applies to national income. However,
its effect on deforestation can be both positive and negative. Higher national income creates
additional job opportunities outside agricultural sector, thus reducing pressure on forests, but
higher income also increases the production of agricultural and timber products, thus stimu-
lating deforestation. Furthermore, deforestation itself is a source of income. Therefore, both
population and national income shall be treated as endogenous in deforestation modeling.

The application of GWR method requires distances between the regression points (municipal-
ity seats in this dissertation). Euclidean distances, most often used by the researchers, may not
be a proper representation of communications inside Legal Amazon. Most logged woods are
transported by roads in trucks. However, these roads in Legal Amazon often are winding due
to geographical constraints, financial gains in building a single road that stretches through
multiple towns, or unwillingness to pave a road that crosses intact forests to avoid potential
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deforestation. Moreover, roads are not homogenous in quality: some roads are highways and
some are not paved. This has important implications on travel time. Furthermore, Legal
Amazon hosts around 100 towns that do not have access by roads. These towns are located on
the banks of the Amazon River or other major river in Legal Amazon. Connections between
these towns are based on water transport. Rivers, especially smaller, meander to a high ex-
tent, thus extending the distance and time required to travel to a destination.

Chapter 2 investigates the main causes of deforestation in Legal Amazon. The findings of the
linear model under endogenous treatment of population and GDP per capita are presented.
Further, GWR based on economic (travel time) distances is applied to assess spatial heteroge-
neity of deforestation determinants. This is done programmatically. The code is written in
Gauss platform, and is author’s own elaboration. Also, a comparative analysis on how the
implementation of economic distances instead of straight line distances changes the results is
presented.

Complete analysis of deforestation determinants must consider the possibility that cause and
effect are separated in space. It is widely theorized that in Brazil crop planters displace cattle
ranchers into the Amazon, thereby indirectly contributing to deforestation. The displacement
happens because the farmers residing in non-frontier regions sell their pastures to crop busi-
nesses and move to the frontier, where they purchase land from local smallholders. This phe-
nomenon is known as indirect land use change (ILUC). To understand the reasons of ILUC, it
is necessary to discuss the economic and geo-climatic context of Brazil. The territory of Brazil
can be partitioned into two major zones that differ in conditions for agriculture. For simplicity
I refer to those as agricultural and frontier zones. The former are located outside the Amazo-
nian Biome and are characterized by high land prices and unavailability of productive land
(especially, in closer proximities to the frontier). In most parts both crop cultivation and live-
stock farming can be practiced due to favorable climatic and topographic conditions. Con-
versely, the frontier is covered by vast areas of available and inexpensive land (forests to be
cleared). However, due to high level of rainfall, crops cannot be readily cultivated. In eco-
nomic terms this means that the frontier has a comparative advantage for livestock farming as
opposed to crop cultivation. An economic factor that encourages farmers to sell land proper-
ties to crop planters in agricultural zones and move to the frontier is high differential in land
prices (Sawyer, 2008).

Various crops are cultivated in Brazil, but the most widespread are soybean and sugarcane.
Sugarcane is the main source of ethanol biofuel. Ethanol is widely used in Brazil in the trans-
port industry. Its production is likely to expand further due to the potential size of the domes-
tic market and to the opportunities for exporting (Walter et al., 2014). Due to the fact that
growing sugarcane absorbs more carbon than is emitted when the ethanol is burned as fuel,
ethanol is considered as a potential solution to global warming problem. The later statement
relies on the assumption that sugarcane has no influence on deforestation. Empirical findings
from the Amazon region generally show that sugarcane and deforestation are not directly
linked. However, in case sugarcane planters displace livestock farmers into the Amazon, and,
as a result, export deforestation, the superiority of ethanol over fossil fuel in terms of reduc-
ing COz emissions may be overstated.



Much of the academic literature focuses on ILUC associated with soybean, the primary crop
in Brazil. Several studies indirectly linked soybean with deforestation in the Amazon. How-
ever, empirical evidence of ILUC associated with sugarcane is scant. Therefore, chapter 3 em-
pirically tests the hypothesis that sugarcane planters in southern Brazil contribute to defores-
tation in the Amazon Biome, and measures the magnitude of the effect. The study uses 2002-
2012 panel dataset. Indirect linkages between sugarcane expansion in southern Brazil and de-
forestation are captured using spatial Durbin model. The parameters are estimated by fixed-
effects regression.

Large producers who move to the frontier purchase lands from smaller producers. Questions,
such as where those small producers come from and whether they contribute significantly to
deforestation have to be answered. Rural family children in Legal Amazon follow one of the
three alternatives in terms of migration. Some move to urban areas to seek off-farm employ-
ment, which enables to diversify risks and overcome credit constraints. Some new generation
rural inhabitants remain on the farm. Finally, some move to forest edges. Even though those
are relatively few, Carr & Burgdorfer (2013) theorize that rural farmers residing near forest
edges have a disproportionally large adverse effect on extant forests, since newly arrived ru-
ral migrants often engage in expansive agriculture due to cheap family labor, scarce capital,
low technology, high cost of transportation and insecure land tenure. The latter implies that
as soon as new migrants arrive, they establish their farming systems and cut down trees to
demonstrate land claims (Simmons et al., 2003). Later, these farmers seek official recognition
of the land which they developed. As more rural migrants arrive, land availability decreases.
As it happens, some farmers move to another undisturbed location on forest edge. Their pre-
viously developed lands are sold for large scale producers. Those lands are then consolidated
to create large enough areas for cattle grazing or cultivation of commercial crops.

The relationship between deforestation and rural population may be different on forest fron-
tiers and in long-settled rural areas. Long-settled rural areas are covered by large pastures or
crop fields. The consumer of agricultural commodities that originate from those areas is often
a foreign citizen. Therefore, distal demands of agricultural production is what control land
use change in old rural settlements. This, in turn, implies that local rural population here is
not a significant component of deforestation function or at least drives forest clearings to a
lesser extent than on forest edges. Forest edges are characterized by abundant and undis-
turbed forest resources. As discussed, here migrant rural settlers engage in extensive defores-
tation, thereby opening large previously inaccessible areas for colonization. An additional ru-
ral migrant here creates a lot of pressure on standing forests. As a result, a separate analysis is
needed to understand the associations between deforestation and rural demographics on for-
est edges.

Chapter 4 presents such a study, which empirically tests the argument of Carr & Burgdorfer
(2013) that rural settlements are linked with deforestation on forest edges. Selected study area
encompasses the state of Para. To properly capture the associations between deforestation
and its covariates on forest edges fine scale analysis is needed. Therefore, the territory of Para
is partitioned into 5x5 km grids. Besides rural population, all relevant and available covari-
ates are included. The analysis is based both on parametric (fractional logistic regression) and

6



non-parametric (regression tree) approaches. The findings also complement the analysis in
chapter 2, as the links between deforestation and its explanatory factors in some instances
may be scale-dependent (Pan & Carr, 2010).

As discussed, land insecurity in Brazil creates incentives to deforest (Araujo et al., 2011) and is
a consequence of weaknesses in legislation. The Land Statute of Brazil states that squatters!
who are developing a land during at least five consecutive years and are not in a conflict with
landowners can claim formal property title over that land. Moreover, the Brazilian Constitu-
tion of 1988 states that unproductive establishments can be taken over and redistributed to
other parties. Such legislation creates incentives to clear forests, since forests are considered as
unused lands.

One of key measures in combating land insecurity in Brazil is the protected area system. The
legal framework of the system was established in 2000 by the National Protected Areas Sys-
tem Law (SNUC). In 1998 the Amazon Region Protected Areas Program (ARPA) was formu-
lated. The program foresaw the establishment of 15 conservation units under strict protection
during four-year period (between 2000 and 2003). Later, in 2005 and 2006, the network of pro-
tected areas in Legal Amazon was expanded drastically, especially in the state of Pard. How-
ever, protected area itself is only a part of protection mechanism. Conservation units are sur-
rounded by buffer zones. A buffer zone is a peripheral area around a conservation unit and is
meant to benefit local populations by allowing low environmental impact activities. In this
way it is expected that local inhabitants will be involved in the protection of a conservation
unit near their residence. However, the establishment of protected areas may provoke dis-
placement of deforestation locations (substitution effect). It is probable that loggers move to
the surroundings of a newly created conservation unit instead of entering the protected terri-
tory, which they would have entered if that territory had remained unprotected. Therefore,
avoided deforestation in buffer zones can be both positive and negative depending on whether
effective buffer zone management or substitution effect dominates. Buffer zones also shed
protected areas from edge effects. An edge effect in this dissertation is described as an exces-
sive deforestation of park’s edge relative to its internal area. There are at least two reasons
why an edge of a conservation unit is subjected to higher deforestation risk: 1) it borders un-
protected areas or, even worse, open areas without vegetation, and 2) deforested fields in
nearby areas of a conservation unit are dry and can easily catch fire, affecting forests on the
edge of a conservation unit. Therefore, buffer zones constitute a shield from those risks. Fur-
thermore, buffer zone management has important implications in ecology, since buffer zones
and ecological corridors ensure that species have sufficient habitat to survive and that those
species can migrate through the forests. The importance of buffer zones is well understood by
the Brazilian government. The Government of Brazil together with the Pilot Program for the
Brazilian Rainforests allocated almost 23 million US dollars for buffer zone management un-
der the four-year ARPA project. However, despite the immense importance of buffer zones,
their implications on avoided deforestation did not receive sufficient attention from scientists.
A meticulous study on avoided deforestation in conservation units of Legal Amazon is found
in Nolte et al. (2013), but the study did not consider buffer zones.

I Squatters are individuals who invade lands and develop them, but hold no property rights over those lands.
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To fill the gap of knowledge, chapter 5 investigates the implications of buffer zone manage-
ment on avoided deforestation in Pard. The percentages of avoided deforestation are esti-
mated by propensity score matching. Edge effects are tested by comparing avoided deforesta-
tion on park’s edge and in its nuclear area (park’s territory beyond its edge). Most impor-
tantly, buffer zones around protected areas are considered separately for each protected area
or a group of protected areas that share borders. Location matters primarily due to the differ-
ences in deforestation pressure: some conservation units are located on deforestation frontiers
and some are located in remote areas, where forest protection has only a cartographic mean-
ing.

Knowing the factors responsible for deforestation and applying measures to counteract it is
necessary, but does not suffice. Deforestation monitoring and prediction is equally important.
Until 2004 the Brazilian Institute of Environment and Renewable Natural Resources (IBAMA)
relied on voluntary reports of logging events. As a result, IBAMA could not locate deforesta-
tion at its roots. Finally, in 2004 a near real-time system of deforestation detection (DETER)
was introduced. DETER is a satellite-based system that captures and processes georeferenced
imagery on forest cover in 15-day intervals (Assuncdo et al., 2013a). The system uses LAND-
SAT imagery and is capable of detecting deforested areas that are larger than 25 hectares.
Newer images are compared with older images to identify changes in forest cover. The im-
agery is prepared in a form of georeferenced digital maps. Deforestation identified by those
maps is verified by field inspections. Some campaigns to prevent deforestation are initiated
by NGOs. For example, Greenpeace uses an airplane to locate illegal log rafts and reports ob-
served rafts to the authorities. In addition, Greenpeace developed a technique based on ultra-
violet paint to track illegally chopped woods back to exporting companies.

Deforestation monitoring helps to detect deforestation in its initial stage and prevent forests
from further exploitation. Chapter 6 offers a detailed methodology to map deforestation from
past and time-fixed processes. Mapping is done at 5x5 km grids. To achieve successful results,
several aspects have to be taken into consideration. Firstly, deforestation is spatially and tem-
porarily contagious. Spatial contagion implies that deforestation in the neighboring locations
increases the probability of deforestation in the reference location. Temporal contagion im-
plies that deforestation that happened in recent past is likely to continue into the future. To
account for this spatiotemporal contagion, a deforestation function includes past deforesta-
tion and its focal variables. However, contagion creates an econometrical problem known as
spatial autocorrelation. Under the presence of spatial autocorrelation, linear model errors in-
clude both white noise and unobserved covariates. Filtering those important covariates from
the errors of the initial model could greatly improve mapping accuracy. Several methods to
accomplish this task have been developed, but the most modern and the most promising
technique is eigenvector-based spatial filtering. Eigenvectors represent spatial patterns of dif-
ferent spatial autocorrelation levels. Therefore, filtered eigenvectors are artificial constructs of
unobserved covariates and are simply added to the list of explanatory variables. To refine
mapping accuracy, variables that control for legal protection, terrain and climatic characteris-
tics, and infrastructure are also included. Deforestation values in chapter 6 are simulated us-
ing an artificial neural network. The method captures nonlinearities between deforestation
and its determinants and, as a result, provides more precise estimates.
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The main findings of this dissertation are synthesized and policy recommendations are given
in chapter 7. Chapter 8 includes appendices. Chapter 9 presents programming codes.
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Chapter 2

Fundamental causes and spatial heterogeneity of
deforestation in Legal Amazon!!

Abstract. This study explores the main direct and underlying causes of deforestation in Brazil's
Legal Amazon region by considering spatial differences. The computation of localized parame-
ters is based on geographically weighted regression (GWR). The novelty of this paper lies in its
incorporation of economic, rather than Euclidean, distances into the GWR. Economic distances
are measured by travel time, sourced from Google Inc. A global approach revealed several im-
portant factors that affect deforestation, including: rural population, GDP (suggesting a U-
shaped environmental Kuznets curve), forest stock, cattle ranching, timber value, and road net-
works (both official and unofficial). Local analysis uncovered patterns not seen under global
models, especially in the state of Pard. Most notably, crop cultivation was found to accelerate
deforestation in southeastern Para and northeastern Mato Grosso, while in some regions (espe-
cially in the northeastern corner of Pard), the area covered by crop plantations was negatively
associated with deforestation. For Para, rural credit constraints, larger territories designated as
sustainable use areas and indigenous lands, and higher levels of precipitation inhibit deforesta-
tion. Further, rural population has a very heterogeneous impact on deforestation across Legal
Amazon: it is not a significant factor of deforestation in northern Pard and Amapa4, but it has a
relatively strong effect in the western parts of Mato Grosso and Rondénia. Also, official and ille-
gal roads create significantly more pressure on forests in remote regions compared to developed
areas. Finally, the use of economic distances, as opposed to Euclidean distances, leads to notably
different GWR results.

Keywords. Deforestation, Legal Amazon, Google time distances, spatial heterogeneity, GWR.

II This artcile has been published. Publication details are: Jusys, T. (2016). Fundamental causes and spatial het-
erogeneity of deforestation in Legal Amazon. Applied Geography, 75, 188-199.
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2.1. Introduction

Reducing emissions from deforestation, a major source of CO, could be a highly cost-
effective option for climate policy (Rametsteiner et al., 2009). Tropical deforestation also has
other negative externalities, such as the loss of biodiversity, erosion, floods, and lowered wa-
ter levels (Espindola et al., 2011). As such, research into causes of deforestation has a long his-
tory. Some studies investigate a specific cause of deforestation. For instance, Arima et al.
(2011), Barona et al. (2010), Macedo et al. (2012), and Morton et al. (2006) study the effect of
agriculture on deforestation; Barber et al. (2014) and Pfaff et al. (2007) investigate links be-
tween road networks and deforestation, and Carr & Burgdorfer (2013) discuss the implica-
tions of rural populations on forest clearing. Araujo et al. (2010), Bhattarai & Hamming (2001),
Culas (2012), and Ehrhardt-Martinez et al. (2002) test for an environmental Kuznets curve.
Assuncdo et al. (2013a) focus on causality between rural credit concessions and deforestation.
Soares-Filho et al. (2006) assess the impact of protected areas. Araujo et al. (2010) investigate
the effects of land insecurity on forests. Faria & Almeida (2016) explore the relation between
openness to trade and deforestation. Other studies investigate the general causes of deforesta-
tion, including Aguiar et al. (2007), Hargrave & Kis-Katos (2013), Laurance et al. (2002), and
Reis & Guzman (1993). The most relevant empirical findings on the drivers of deforestation
were surveyed by Angelsen & Kaimowitz (1999) and Geist & Lambin (2002).

Evidence from empirical case studies that identify both proximate causes and underlying
forces at work on tropical deforestation suggests that no universal link between cause and ef-
fect exists (Geist & Lambin, 2002). This is because policy is made at village, county, state, and
national levels, rather than consistently over an area (Carr et al., 2012). The most popular
technique to account for variability over such large land masses is called geographically
weighted regression (GWR), developed by Brunsdon et al. (1998). Applications of GWR in
deforestation and forest loss modeling can be found in Carr et al. (2012), Jaimes et al. (2010),
Moon & Farmer (2012), Oliveira & Almeida (2011), and Witmer (2005). However, only
Oliveira & Almeida (2011) applied GWR to the situation in Legal Amazon.

The objective of this study is to investigate the causes of deforestation in Legal Amazon, but
with two important differences compared to Oliveira & Almeida (2011). Firstly, this study
considers gross domestic product and demographic variables as endogenous, following rec-
ommendations by Angelsen & Kaimowitz (1999) and Kaimowitz & Angelsen (1998). Sec-
ondly, the weighting is based on economic, rather than geographical, distances, which are
measured by travel time.

The extent of similarities between the results obtained by applying different distance meas-
urement methods depends on the topographic characteristics of geographical regions, road
networks, and an area’s economic development, among other factors. If a territory is large,
economically advanced, and has highly populated urban areas, straight lines are appropriate
and represented by distances traveled by plane. However, in large, densely forested areas
with numerous villages, plane connection is not cost-effective. Under such cases, ground
transport is the only viable means of transportation. Here, the terrain itself is an important
factor. For instance, in mountainous or densely forested areas, roads are winding (see Figure
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A1), which leads to significant differences between road and straight line mileages. Moreover,
considering only the mileage may be too restrictive, since roads are heterogeneous in quality
and type. Undoubtedly, highways provide much faster access than dirt roads that cut
through the landscape. Additionally, Legal Amazon has almost one hundred villages which
can only be accessed via the river network, implying that access to these villages is slower
than it would be in the presence of roads. Therefore, travel time is the most appropriate way
to measure distances between locations in Legal Amazon.

2.2. Data and methods

The data covers 486 municipalities in Legal Amazon. Observations for which forest coverage
was lower than 5% of the territory were omitted. Some municipalities were removed from the
dataset because of a lack of information. Data available as shapefiles or in fine scale raster
grids was aggregated to the level of municipalities in ArcGIS (Version 10.0, ESRI, Redlands,
CA, US). Squares of GDP per capita were computed to test an environmental Kuznets curve.
Past population and GDP per capita variables were used as instruments. This is a cross-
sectional analysis, and the study year is 2010. Brief descriptions, units of measurements, and
data sources are presented in Table 1. See Appendix B for municipal level descriptive statis-
tics. Furthermore, it was verified that no severe multicollinearity between the covariates ex-
ists (Table C1). Nevertheless, the correlation coefficients reveal notable collinearity between
rural credit per capita and GDP per capita, rural credit per capita and crop area, and official
and unofficial roads.

As far as data regarding distance is concerned, the computation of straight line distances was based on
decimal coordinates of municipality capitals, reported by the IBGE. Road and time distances used in
the research are the property of Google Inc., located at 1600 Amphitheatre Parkway, Mountain
View, CA 94043, United States. The distances are measured between municipality seats. The
data was extracted using The Google Distance Matrix API service (Google Developers, 2014).
However, almost one hundred locations in Legal Amazon do not offer road access. Therefore,
distances by rivers between roadless municipality seats were computed in ArcGIS. The compu-
tations were based on a river shapefile, downloaded from GEOFABRIK, OpenStreetMap. Occa-
sionally, the traveler, who aims to travel from one roadless location to another, may opt for a river jour-
ney from an initial village without a road to the nearest location with a road, then travel by road as far
as is possible and make the final part of the trip on the river again. However, changing means of trans-
port is not desirable and would pay off only when considering longe distances. Miscalculations of long
distances have little to no effect on the results of GWR, because those distances are lightly weighted.
Finally, to fill in the empty gaps made up of distances between locations without roads and locations
with road networks, it was assumed that the traveler always prefers travelling by roads over travelling
by rivers. Thus, any distance of this kind is measured as the distance by river between the initial
roadless location to the nearest port accessible via roads, plus the distance by road between the port
and the final destination. To calculate river travel times between ports, data on all fluvial routes, offered
by the transportation company Cris Transporte Maritimo, was used to compute the average speed of
passenger transport boats in the Amazon River and its tributaries. The speed proved to be relatively
constant across routes (45 km/h). This figure was used to complete the time-disance matrix.

13



Table 1. Description of the variables

Abbreviation Description Unit Source

Annual deforestation increments. Data on the
municipal level is available on the INPE’s web-
site. It is aggregated from PRODES maps, which
DEF are distributed at a 60-meter spatial resolution km? INPE (2014)
and are created by digital image processing and
visual interpretation of LANDSAT ™ imagery
on computer screens.

POPURB Number of urban inhabitants from 2010 census count IBGE (2014)
POPRUR Number of rural inhabitants from 2010 census count IBGE (2014)
GDP Gross domestic product per capita in 2010 R$ (BRL) IBGE (2014)
FCOVER Extant forests % INPE (2014)
Average elevation over 90 square meter cells
ELEV that fall within the borders of a municipality meter SRTM (2014)
CATTLE Cattle (bovines) count IBGE (2014)
CROP Planted acreage of temporal (yearly) crops ha IBGE (2014)
TIMBER Value of all timber products R$ IBGE (2014)
ROF Total length of official roads, excluding urban Km GEOFABRIK
streets and roads under construction (2014)
RUNF Total length of unofficial roads km IMAZONM
Sum of rural credit per capita, issued by Central Bank of
CREDIT official banks and credit cooperatives RS Brazil (2013)
TENURE Ezcentage of private properties in total proper- % IBGE (2014)
Annual precipitation over municipality seat
PREC (computed as in Arima et al., 2011). mm TRMM (2016)
Territory designated as strict protection areas 0
STRICT (IUCN categories I, II and III)1V ’ WDPA (2015)
Territory designated as sustainable use areas 0
SUST (IUCN categories IV, V and VI) ’ WDPA (2015)
INDIG Territory designated as indigenous lands % WDPA (2015)
TERR Territory of a municipality km? IBGE (2014)
Autocovariate (normalized weighted sum of de- Compiled by the
A .. . km?
forestation in the neighbors) author
POPURBLG Number of urban inhabitants from 2000 census count IBGE (2014)
POPRURLG Number of rural inhabitants from 2000 census count IBGE (2014)
GDPLG Gross domestic product per capita in 2009 R$ (BRL) IBGE (2014)

INPE: Brazil’s National Institute of Space Research; SRTM: Shuttle Radar Topography Mission; IBGE: Brazil’s
Institute of Geography and Statistics; IMAZON: Amazon'’s Institute of Human and Environment; TRMM: Tropi-
cal Rainfall Measuring Mission; WDPA: World Database on Protected Areas

Il See acknowledgements.

IV For some records in the attribute table of the WDPA, a TUCN (International Union for Conservation of Nature)
category of protected areas in the shapefile is not reported or is reported incorrectly. IUCN categories were
taken from the cadastre of protected areas, managed by the Brazilian Ministry of Environment (MMA, 2016).
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Prior to the application of GWR, it must be verified that the errors of the global regression are
independent and identically distributed. Failure to meet this condition leads to increased type
I errors, thus aggravating hypothesis testing and prediction (Dormann et al., 2007). To check
for spatial autocorrelation of model errors, Moran's I (Moran, 1950, Cliff & Ord, 1972) was
calculated (see Appendix D). To correct for non-randomness in the spatial distribution of
model errors, the initial list of covariates was supplemented by an autocovariate term (eq. 1),
which was treated as an exogenous covariate (in the remainder of this study the global model
without the autocovariate is referred to as 2SLS-1V, and the model with the autocovariate as
SEM).

Here, y; is the response value at site j among site i’s set of ki neighbors and wj; is the weight,
which expresses site j’s influence over site i (Dormann et al., 2007). The weights are calculated
as inverse distances. The number of neighbors (k) is selected so that it minimizes the standard
score. Further, to account for endogenous relations, the study implemented an instrumental
variables approach (one instrument per endogenous covariate). After weighting the data, the
GWR-IV estimator is:

b -[z'wx] 7wy @

Here, X is a matrix of all values of exogenous and endogenous variables with an implicitly
written intercept, Z is a matrix of all values of exogenous and instrumental variables with an
implicitly written intercept, y is a vector of response values, and WV, is a weighting matrix for
observation i. The T symbol indicates the transpose. The weights were computed by applying
a kernel function and then placing weighted distances from location i to all the other locations
into the main diagonal of a weighting matrix, thus creating one weighting matrix per obser-
vation (eq. 3). The chosen kernel function is adaptive and Gaussian (eq. 4), and it was pro-
posed by Brunsdon et al. (1998) as one of the options for GWR. Adaptive kernel functions are
suggested when the spatial density of regression points (municipality seats) is not even. Fig-
ure Al reveals that in some parts of Legal Amazon, municipality seats are concentrated in a
particular area, whereas in other parts, municipality capitals are sparsely distributed.

k, 0 .. 0
W = 0 ke o O , wherek, =1 (3)

0 0 ..k,

d
K; —exp[—J}, K; €(01] &)
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Scalar & in eq. 4 represents bandwidth. Here bandwidths are the distances to the p*' nearest
neighbor. The optimal number of nearest neighbors was estimated by minimizing the cross-
validated sum of squares (eq. 5). The computation, as developed by Brunsdon et al. (1998),
begins by excluding the i" observation from the model to avoid minimization at zero nearest
neighbors. In computational terms, it means replacing the value of the k" element with zero.

The optimal number of nearest neighbors gives a vector of bandwidths, which is plugged into
eq. 2 to obtain local estimates of the coefficients. Then, it must be evaluated whether those es-
timates are sufficiently heterogeneous. There is adequate spatial variability if: 1) the variabil-
ity in local coefficients of a covariate (eq. 6) exceeds the variance of the global coefficient cor-
responding to that covariate, or 2) the null hypothesis of a Monte Carlo simulation that all lo-
cal coefficients are equal is rejected (for details see Brunsdon et al., 1998).

Vi zlzn:(bAij _b_i)2 6)

Nz

Vector x; in eq. 5 is a row vector of the original values of exogenous and endogenous covari-
ates of the i observation; y; stands for the i’ element of the response vector. The * symbol in-
dicates the exclusion of the i* observation from eq. 3; v; in eq. 6 represents the variability of
local coefficients of covariate j, and f; hat denotes the local coefficient of the i* observation of
covariate j. f}j bar is the average over local coefficients of covariate j. Local standard errors are
computed by eq. 7 (see Fotheringham et al., 2002):

vev (b )=CC's? (7),

S (-9

where C = [ZTV\/iX]fl Z'W (8)ands 2 _ =

where §, =x[Z'WX ] Z'Wy (10)

VCV is the variance-covariance matrix; tr(S) is the trace of the hat matrix, and . is the pre-

dicted value of deforestation in the i location. The hat matrix S is formed by horizontally
concatenating all s;s. The computations were based on the author’s own programming code,
written in Gauss 10.

2.3. Results
The errors of 2SLS-IV model (without the autocovariate term) are clustered (Table 2). After

the inclusion of the autocovariate term, the null hypothesis that model errors are distributed
randomly, cannot be rejected.
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Table 2. Spatial autocorrelation and Moran’s I

Model # neighbors Moran'’s I E(MI) 103 var(MI) Z score p value
2SLS-IV - -0.0021 0.0348 4.8259 0
SEM 3 -0.0021 0.0353 1.4421 0.1493
Table 3. Results of global regressions
2SLS-IV SEM
Cons 9392.4108 5909.0916
(10288.145) (9557.9127)
POPURB -0.0058 -0.0028
(0.0112) (0.0104)
POPRUR 0.2167* 0.21**
(0.1139) (0.1057)
GDP -1.947%** -1.5676***
(0.4162) (0.389)
GDPSQ 0.0232%** 0.0183***
(0.0062) (0.0058)
FCOVER 129.1639*** 72.1396*
(45.0999) (42.4398)
ELEV -15.0342 -14.0207
(12.6409) (11.7349)
CATTLE 0.0484*** 0.0474***
(0.0093) (0.0086)
CROP 0.0074 0.0055
(0.0195) (0.0181)
TIMBER 0.2778*** 0.2012%**
(0.0785) (0.0735)
ROF 23.952%** 18.0965***
(6:3932) (5.9744)
RUNF 5.4575%** 5.4181%**
(1.7038) (15817)
CREDIT -0.3701 -0.1069
(0.9901) (0.9194)
TENURE 45.1036 28.3457
(81.4303) (75.6246)
STRICT 98.0825 90.075
(109.8015) (101.9447)
SUST -60.3399 -35.8517
(42.3415) (39.4135)
INDIG -37.741 -74.6585
(58.3051) (54.3207)
PREC -3.5709 -3.1728
(3.002) (2.7872)
TERR 0.216*** 0.2482%**
(0.0772) (0.0718)
A 405.8324***
(49.3483)
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Table 3 (continued)

R squared 0.5015 0.5712

Weak identification test F@,467) F (1, 466)
POPURB 5752.61 5859.83
POPRUR 1012.26 1018.2

GDP 299.28 296.21
GDPSQ 178.44 177.32
Cragg-Donald Wald F stat 40.35 40.1
Endogeneity test Chi square: 34.43 (p=0) Chi square: 29.24 (p=0)
Instruments POPURBLG, POPRURLG, GDPLG, GDPSQLG

Standard errors are in parentheses

Symbols ¥, “** and “***" imply statistical significance at 10%, 5% and 1% level respectively
Coefficients and standard errors are multiplied by 1000

Variable abbreviations are introduced in Table 1

GDPSQ: GDP per capita squared in 2010

GDPSQLG: GDP per capita squared in 2009

The percentage of explained variation in deforestation increased from 50% to 57% upon im-
plementation of the SEM model (Table 3). A statistically significant coefficient on the autoco-
variate justifies the use of this model. The endogeneity test concludes that variables assumed
to be endogenous should be treated as such, i.e., the null hypothesis that all variables treated
as endogenous in the model could have been treated as exogenous is rejected. The weak iden-
tification test indicates that the selected set of instrumental variables is a strong set.

Global models reveal several contributors to deforestation, including rural population, forest
stock, cattle ranching, the timber market, official and unofficial roads, and deforestation in the
neighboring municipalities (captured by the autocovariate). Further, the relation between de-
forestation and GDP per capita is found to follow a U-shaped curve: more income is linked
with less deforestation at lower levels of GDP per capita and with more deforestation at
higher levels. The break-even sum was 3570 R$/month in 2010 (equivalent to ~1530 €/month
per capita at 2010 prices). The break-even point was estimated by equating the first derivative
of the deforestation function with respect to GDP per capita to zero and solving for GDP per
capita. The global coefficient for territory is statistically significant, but the finding does not
have economic meaning: the variable was only included in the analysis to control for hetero-
geneous sizes of municipalities. Insignificant factors under the global approach are: urban
population, elevation, crop cultivation, rural credit schemes, land tenure, legal protection,
and precipitation.

The cross-validated sum of squares under travel time distances is minimized at 15 nearest
neighbors (the average bandwidth is 316.4 minutes). The quasi-global R? of the GWR regres-
sion is 89%, which constitutes a significant improvement over the global model fit of 57%. See

18



Figure E1 for local R? values (the formula for computing local R? can be found in Fothering-
ham & Brunsdon, 1999). The Monte Carlo simulation detected sufficient spatial variation in
the local coefficients of forest cover, elevation, crop cultivation, strict legal protection, and ter-
ritory (Table 4)V. In all cases however, variabilities of local coefficient estimates exceed the
variances of corresponding global coefficients. This indicates that there is some justification
for considering spatial variation patterns in all coefficients.

Table 4. Variability of local coefficients

JV; x1000 ste(b; )x1000 JV; /ste(b;)  pMonte Carlo

Cons 14251.972 9557.9127 1.49 0.5926
POPURB 0.0335 0.0104 3.23 0.6399
POPRUR 0.3222 0.1057 3.05 0.323
GDP 0.5359 0.389 1.38 0.9815
GDPSQ 0.0086 0.0058 1.48 0.9568
FCOVER 111.3014 424398 2.62 0.0535*
ELEV 34.392 11.7349 2.93 0.0597*
CATTLE 0.0402 0.0086 4.66 0.2551
CROP 0.1751 0.0181 9.67 0.035**
TIMBER 0.3769 0.0735 5.13 0.4486
ROF 12.9506 5.9744 2.17 0.6132
RUNF 6.7584 1.5817 427 0.1584
CREDIT 2.6553 0.9194 2.89 0.2078
TENURE 89.34 75.6246 1.18 0.8683
STRICT 292.0364 101.9447 2.86 0.0412%*
SUST 57.6968 39.4135 1.46 0.3416
INDIG 110.674 54.3207 2.04 0.4239
PREC 5.8732 2.7872 2.11 0.2737
TERR 1.063 0.0718 14.8 0.0062*+*
A 191.6645 49.3483 3.89 0.7984

Symbols “*" and “** and “***" imply statistical significance at 10%, 5% and 1% level respectively
Variable abbreviations are introduced in Table 1

Urban population is significantly and negatively linked with deforestation only in Acre, the
southeastern corner of Para, and the northeastern corner of Mato Grosso. Elsewhere, the links
are statistically insignificant. Rural population per se was found to contribute to deforestation
the most in western Rondonia and western Mato Grosso (Figure 1). Also, the contribution is

V Note that statistically significant variation does not imply that all or some of the local coefficients are statisti-
cally significant. Sufficient variation in local coefficients is concluded if the null hypothesis of coefficient equality
is rejected. Statistical significance of a coefficient is concluded if the null hypothesis stating that a coefficient is
equal to zero is rejected. It is entirely possible that the latter hypothesis is not rejected (for all local coefficients),
whereas the former hypothesis is rejected.
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notable in Acre. The size of rural communities is not a significant determinant of deforesta-
tion in mid and eastern Ronddnia, mid Mato Grosso, northwestern Pard and Amapd, and
most parts of Maranhdo. GDP per capita is linked with deforestation in Amazonias, Roraima,
Para, northern Amapa, and the northeastern corner of Mato Grosso. However, spatial varia-
tion is low, and the local relation between income and deforestation almost exclusively fol-
lows a U-shaped environmental Kuznets curve. Forest stock explains deforestation the most
in the northeastern corner of Para. The link is statistically insignificant in western and south-
eastern Pard, most parts of Roraima, Rondonia, and Mato Grosso, and in mid Amazonias.
Elevation is significantly and negatively linked with deforestation almost exclusively in Para
and Amapa. The highest extent of cattle ranching contributing to deforestation occurs in
ParaVl. The contribution is insignificant in Acre, Rondo6nia, and Mato Grosso.
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Figure 1. Spatial distribution of local coefficients of selected variables. Stars in the legends indicate that the coef-
ficients are multiplied by 1000. Stat. insig. implies that a coefficient is statistically insignificant at 10% level (p
value is greater than 0.1). Variable abbreviations that appear above the maps are introduced in Table 1. This 2010
municipality boundary map was downloaded from the IBGE's website.

VI Official statistics of cattle heads, which were used in the model, are flawed for some municipalities. For in-
stance, Margulis (2004) showed that the IBGE significantly overestimates the density of animal units in Parago-
minas. Therefore, the results for particular municipalities should be interpreted with caution. Nevertheless, the
general pattern is likely to be well represented by the map.
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Figure 1 (continued)

Crop cultivation is negatively and significantly linked with deforestation in Acre, southern
Amap4d, and northeastern Pard and positively and significantly linked in a few municipalities
in southeastern Para and northeastern Mato Grosso. Local coefficients of the timber market
show little spatial variation in areas where these coefficients are statistically significant. Tim-
ber value has an insignificant effect on deforestation in Acre, Rondoénia, and Mato Grosso. Of-
ficial roads drive deforestation in distant Amazon regions, mostly in Amazonias, Acre, the
western edge of Pard, and most parts of Amapa. Spatial variation of local coefficients is rela-
tively low. Unofficial roads significantly contribute to deforestation in all regions where such
roads exist, except for Mato Grosso. However, the strongest impact was found in northern
Rondoénia and the northeastern corner of Pard. Rural credit schemes are significantly and
positively linked with deforestation in Pard state (except for the northern regions), especially
in the northeastern part, where deforestation for agriculture is rampant. Local coefficients of
land tenure and strict legal protection are statistically insignificant. Furthermore, in Para and
Amap4, less deforestation happens where more forests are declared to be protected sustain-
able use areas. Indigenous lands are significantly and negatively linked with deforestation in
most parts of the Amazon biome, except for in remote areas (mostly in Amazonias and Ro-
raima). The links are especially strong in eastern Para. Precipitation is significantly and nega-
tively connected with deforestation in most parts of Pard, the southern edge of Amazonias,
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and in eastern Acre. The neighbor effect is strongest in Pard (especially, in the northeastern
part) and Amapa.
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Figure 2. Comparison of GWR beta estimates under straight line and travel time distances for cattle ranching
(left) and unofficial road network (right). Mapped figures are the ratios of local coefficients under straight line
distances and corresponding coefficients under travel time distances. Therefore, darker colors indicate overesti-
mation of the effect on deforestation, and lighter colors imply underestimation. This 2010 municipality boundary
map was downloaded from the IBGE's website.

A comparative analysis reveals that the implementation of road/river distances does not
dramatically alter the conclusions, but the results seen under straight line distances diverge
significantly for some municipalities. Figure 2 contrasts those differences for cattle ranching
and unofficial road networks. Among all regions where cattle ranching is a factor in explain-
ing deforestation, straight line distances overestimate cattle contribution most evidently in
Roraima and a few municipalities located in the middle of Legal Amazon, along the adminis-
trative borders of Amazonias and Para. As for unofficial roads, the most notable overestima-
tion is observed in Para and Amap4, and the most evident underestimation is seen in the
same region where the contribution of cattle farming is significantly overestimated. Signifi-
cant differences exist for other factors as well, but these two examples suffice to illustrate that
the method for measuring distance has important implications on results. These differences
arise because relative distances change when using economic distances. For example, the
geographical distance between Roraima and Para is relatively short, but travel time between
those locations is relatively long due to the presence of dense forests and the absence of road
networks in some regions (a possible route between, say, Belém in Pard and Boa Vista in Ro-
raima is via the Amazon river from Belém to Manaus and then by road BR-174 from Manaus
to Boa Vista). Therefore, in the case of cattle ranching in Roraima, processes affecting defores-
tation in Para have relatively little impact on deforestation in Roraima, and for this reason,
the large adverse effect that the cattle market has on extant forests in Para does not transfer to
Roraima. However, the straight line approach cannot take into account factors such as travel
by river or the absence of roads in dense forests; therefore, it overestimates the impact of cat-
tle farming on deforestation in Roraima.
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2.4. Discussion

Generally, the agricultural frontier advances at the expense of forests. The open economy and
trade turns cattle ranching into a profitable business and puts severe pressure on tropical
rainforests. As economies grow, individuals tend to spend more on meat products, thus in-
creasing the demand for beef and other meats (Kaimowitz et al., 2004). As a consequence,
such countries increase meat imports. Therefore, as Brazil’s trading partners increase their
demand for cattle production, more forests have to be cleared to supply cattle with necessary
grazing areas. Cattaneo (2008) estimates that additional 18000 km? of land are needed annu-
ally in the Amazon to account for pasture expansion. Cattle farming is especially prevalent in
eastern Para. This region is highly urbanized, close to the main export centers, and has well
developed road networks. Well capitalized farmers reside there (Margulis, 2004), and cattle
ranches extensively replace forests. However, the effect of the cattle market on deforestation
may have decreased since 2010, because individual meatpacking companies in Pard began
signing legally binding Terms of Adjustment of Conduct (MPF-TAC) agreements in July 2009
to stop purchasing meat products from properties that partook in illegal deforestation (Gibbs
et al., 2015a). Furthermore, later in 2009, Brazil's largest meatpacking companies signed the
G4 agreement with Greenpeace to avoid being associated with deforestation. Gibbs et al.
(2015a) showed that these agreements were effective in curbing deforestation. Nevertheless,
both agreements currently govern only those properties selling directly to slaughterhouses,
thereby leaving many opportunities to circumvent supply chain restrictions.

Crop cultivation is subject to climatic constraints, especially excessive rainfall (Margulis,
2004). As a result, in some areas crops cannot be grown. Therefore, crop cultivation was
found to contribute to deforestation only in a certain region near the borders of Para and
Mato Grosso (Figure 1). This area lies on or near a deforestation frontier and has two favor-
able characteristics for crop cultivation: 1) it is located near trade centers, which increases
commercialization opportunities and hence, increases profitability, and 2) average annual
rainfall over that area is generally less than 2000 mm, which is favorable for crop cultivation.
However, local coefficients on crop cultivation in Mato Grosso, where soybean growing pre-
vails, are statistically insignificant. This seemingly counterintuitive finding has at least two
potential explanations. Firstly, large areas in the state of Mato Grosso are either already de-
forested or covered by savannas. Thus, soybean cultivation does not require extensive defor-
estation of currently standing forests. Instead, crops are cultivated on lands previously occu-
pied by cattle ranchers (Macedo et al., 2012). Soybean cultivation exports deforestation to
other regions, especially northward, in the form of displaced cattle ranchers (Arima et al,,
2011, Barona et al., 2010), thereby indirectly contributing to deforestation. Cattle ranchers
have incentives to sell their lands in Mato Grosso to crop planters and purchase land near
forest edges thanks to a strong differential in land prices (Sawyer, 2008). This indirect land
use change may also explain significant and negative links between the area of crop planta-
tions and deforestation in some regions, especially northeastern Para. This area is a new fron-
tier for soybean cultivation. Soy planters cannot advance further westward due to unfavor-
able climatic conditions (excessive rainfall). As a result, soybean plantations expand past cat-
tle grazing areas, not directly causing deforestation, but at the same time displacing cattle
ranchers to the nearby locations in the west where forests are cleared to accommodate graz-
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ing cattle herds. Therefore, more crop plantations are associated with less deforestation. Sec-
ondly, the decoupling of crop cultivation and deforestation is at least partially a consequence
of Brazil’s Soy Moratorium, which is a voluntary agreement signed by soybean traders not to
purchase soy grown on lands deforested after July 2006. Gibbs et al. (2015b) showed that after
the implementation of the agreement, deforestation due to soy production decreased dra-
matically.

Livestock farmers and crop planters in Legal Amazon rely heavily on a rural credit system. In
2008, resolution 3545 was issued. This policy set up conditions for the concession of rural
credit for use in agricultural activities in the Amazon Biome upon presentation of proof of
borrowers’” compliance with environmental legislation, as well as proof of the legitimacy of
their land claims and the regularity of their rural establishments (Assuncao et al., 2013a).
Also, a territorial performance approach to deforestation was adopted in which the geo-
graphical unit of intervention was the municipality instead of the individual farm (Nepstad et
al., 2014). Access to agricultural credit was suspended for those farms located in priority mu-
nicipalities (with the highest deforestation rates). The majority of those municipalities are lo-
cated in Pard. Figure 1 suggests that rural credit restrictions are effective in curbing deforesta-
tion in Para. Also, note that the global model (Table 3) found that rural credit is not a signifi-
cant factor in explaining deforestation. This finding is simply an artifact of the failure to ac-
count for regional differences, and it underlies the importance of considering spatial hetero-
geneity.

Money is an important component in the deforestation function. However, the relationship
between deforestation and income is often complex. The results suggest a U-shaped Kuznets
curve for Legal Amazon. This result is backed by Araujo et al. (2010), but objected by Culas
(2012), who finds an inverse U-shaped Kuznets curve in Latin America. The finding that
richer communities stimulate deforestation is in line with Angelsen & Kaimowitz’s (1999) ar-
gument that higher income increases pressure on forest resources. The conventional approach
argues that the exploitation of environmental resources is the consequence of poverty. When
a higher level of wealth is achieved, owners of land properties are expected to invest more in
capital and labor intensive sectors. New employment opportunities should encourage indi-
viduals to shift their activities from the extraction of environmental resources to better paid
jobs in the industrial, manufacturing, and tourism, etc. sectors. However, the predominant
sectors in Brazil are land intensive. Therefore, higher incomes do not always lead to prevent-
ing extensive deforestation. Logging is costly, as it necessitates covering transportation and
storage costs of cut down wood, as well as renting or buying machinery to log trees, paying
wages for lumberjacks and other personnel involved in the process, or paying environmental
fines when caught. However, agriculture may become very profitable if it is done on a large
scale; this creates incentives to clear forests. Therefore, it can be argued that with lower in-
comes, farmers do not have sufficient funds to engage in mass deforestation. It could be
speculated that money is invested in agriculture intensification, thus reducing the pressure on
forests (this argument does not hold for forest edges though, where rural migrants are known
to engage in expansive agriculture upon arrival). However, under a certain point of wealth
(3570 R$/month) economic agents become involved in expansive agriculture, driven by the
need to supply cattle with grazing lands. The average inhabitant in Legal Amazon contributes
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only 10000 R$ annually, to GDP (Table B1). Therefore, small scale farmers are in the down-
ward sloping part of the GDP curve.

Agriculture is not the only sector that profits from deforestation. Economic agents also gain
by selling cut wood and its derivative products. A significant and positive link between de-
forestation and the timber market is suggested by this investigation and is confirmed by other
studies (Damette & Delacote (2011), Oliveira & Almeida, 2011, Reis & Guzman, 1993). This
finding is also in line with the view expressed by Angelsen & Kaimowitz (1999). The eco-
nomic explanation of why higher timber prices drive forest clearings is quite simple -- higher
prices of wood mean that economic agents receive more income for the same quantity of
wood sold. Opponents of this view argue that higher timber prices encourage more effective
forest management. However, forests are subjected to market failures, as they are zero-priced
in the market.

Large scale cash-orientated producers shape Amazonian forests by clearing land for pastures
and crop fields. However, smallholders (those operating small, often subsistence, farms) in
rural communities also play a role in deforestation, which is mostly manifested through rural
migration. A portion of second generation rural farm children migrate to forest edges, where
land is widely available. Newly arrived migrants engage in expansive land use change, which
is motivated by cheap family labor, scarce capital, low technology, the high cost of transporta-
tion, and insecure land tenure (Carr & Burgdorfer, 2013). As more migrants arrive, land
availability decreases. Eventually, smallholders sell their properties to larger producers, who
consolidate the lands for large scale commercial agriculture. The smallholders move on to
new previously untouched frontiers and begin a new round of deforestation (Izquierdo et al.,
2011). The process of rural migration to forest frontiers may not be adequately captured in the
municipality level analysis, but the results confirm the positive link between deforestation
and rural populations in most parts of the Amazon biome.

The routes of smallholder migration are dictated by accessibility. Therefore, governments face
tremendous pressure from scientists and environmentalists to halt road paving projects. Such
projects commonly initiate a process of spontaneous colonization, logging, mining, land
speculation, and investment (Fearnside, 2005, Fearnside & Graga, 2006, Laurance et al., 2001).
Barber et al. (2014) estimate that almost 95% of Legal Amazon’s deforestation happens within
a distance of 5.5 km to the nearest road. New official roads often spur a large network of en-
dogenous (unofficial) roads far into dense forests. These roads are the result of the interacting
interests of migrant farmers and loggers who move to forest frontiers (Davidson et al., 2012).
Therefore, the conclusion that both official and unofficial roads explain deforestation (Figure
1 and Table 3), especially in remote regions, is reasonable. In some regions with large open
(deforested) areas, road networks were found to be an insignificant factor. Many roads lo-
cated in these regions were built several decades ago and therefore drove previous deforesta-
tion until the lands became extensively deforested.

A popular policy measure to restrain forest frontier encroachment is the protected area sys-
tem. Protected areas are managed under a wide range of legal regimes in order to achieve bet-
ter ecological and social outcomes. A distinction is made between: strict protection areas that
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prohibit resource use, and often physical access; sustainable use areas that allow for con-
trolled resource extraction, land use change, and in many instances, human settlements; and
indigenous lands that are set up to protect the livelihood of indigenous people (Nolte et al.,
2013). The three types of land restrictions were considered separately in the analysis. Sustain-
able use areas and indigenous lands were negatively linked with deforestation in Para (sec-
tion 3). The negative link may imply either that legal protection is an effective measure in
curbing deforestation or that protected areas are located in low-deforestation regions. It is
common knowledge that many protected areas are established far from deforestation hot-
spots and, therefore, legal protection here is only precautionary. These conservation units are
expected to have a significant inhibitory effect in the future, when deforestation frontiers reach
their proximities. Strict protection was not associated with less deforestation, but this finding
by no means indicates that strict governance is ineffective in protecting forests. This is be-
cause the goal of protected areas is to protect a certain forest, not necessarily the whole mu-
nicipality. Legal protection may be very effective in avoiding deforestation within the borders
of a protected area, but concurrent deforestation in surrounding areas within the same mu-
nicipality may be very extensive. Paradoxically, in the municipality level analysis, the link be-
tween legal protection and deforestation could be positive, even though legal protection effec-
tively prevents deforestation inside protected lands. Another aspect that cannot be captured
at the municipality level is the potential rearrangement of deforestation spots. Upon estab-
lishment of protected areas loggers may be displaced to other locations. This displacement
should be most prevalent in young, expanding agricultural frontiers, where land tends to be
cheap and abundant (Nepstad et al., 2006). However, even if deforestation is not decreased
but only shifted from one place to another, the benefit of the legal protection system may lie
in prioritizing the protection of ecosystems with higher ecological values.

Policies aimed at mitigating deforestation are also made at the property level. Forest Code
(FC) is the central piece of legislation regulating land use and management on private proper-
ties. Created in 1965, it was transformed during the 90s into a de facto environmental law via a
series of presidential decrees (Soares-Filho et al., 2014). The code requires landowners situ-
ated in the Amazon to set aside a legal reserve that occupies 80% of land property. Further-
more, a new FC, approved in 2012, introduced a mechanism known as the Environmental Re-
serve Quota. Implementing the mechanism could create a trading market for forested lands,
adding monetary value to native vegetation (Soares-Filho et al., 2014). Historically however,
the enforcement of FC legislation has proven to be largely ineffective (Nepstad et al., 2006).
Soares-Filho et al. (2014) showed that even under Brazil’s 2012 FC, most land properties lo-
cated in Par4, Mato Grosso, and Rondoénia do not comply with the requirements. Additional
efforts to tackle illegal deforestation include The Action Plan for the Prevention and Control
of Deforestation in the Legal Amazon, which introduced the use of a real-time deforestation
detection system so the Brazilian Institute for the Environment and Renewable Natural Re-
sources (IBAMA) can react in a timely manner and issue environmental fines upon verifica-
tion of illegal deforestation. Even though the collection rate on environmental fines is low,
they are often accompanied by other sanctions that are more binding, such as the seizure and
destruction of production goods, tools, and materials, as well as embargoes on production
areas (Assuncao et al., 2013b).

26



2.5. Conclusions

Global results suggest that rural populations, forest stock, cattle business, the timber market,
and road networks (both official and unofficial) are contributors to deforestation. The relation
between GDP per capita and deforestation was found to follow a U-shaped environmental
Kuznets curve. The cross-validated sum of squares of the GWR model, based on travel time
distances, was minimized at 15 nearest neighbors. Using this method, the global R? increased
from 57% to 89%.

Different drivers of deforestation emerge in different locations of Legal Amazon. A variety of
factors explain deforestation in Para and its surrounding areas. Here, cattle ranching has the
strongest impact on deforestation among all regions in Legal Amazon. Crop cultivation con-
tributes to deforestation only in the southeastern Para as well as in northeastern Mato Grosso.
Interestingly, the link between crop cultivation and deforestation is negative in northeastern
Pard, which may be a consequence of indirect land use change associated with crop expan-
sion past cattle grazing areas. High income is an accelerant of deforestation. Rural credit con-
straints curb deforestation. The clearing of forests is also motivated by timber value. The rural
population in Para has either an insignificant or a marginal effect on deforestation. Here, less
clearing occurs in areas where more forests are under legal protection as well as on lands at
higher altitudes and those in areas with unfavorable precipitation levels for agriculture.
Roads, especially official ones, in Paré (except for in the northeastern part) and its proximities
are generally weakly associated (in relative terms) with deforestation. Road networks here are
mostly old, indicating that the adverse effect they have on forests has already taken place.
Contrarily, in remote areas (Amazonias and Roraima) road networks strongly influence de-
forestation patterns. Forrest clearing here is also motivated by cattle farming, timber value,
and high levels of income. More deforestation happens in regions with larger rural settle-
ments. It is also worth noting that in the case of western and northern Rondonia, the rural
population and networks of unofficial roads have the strongest contribution to deforestation
across Legal Amazon. Comparative analysis revealed that the implementation of geographi-
cal distances instead of economic distances leads to notably different results for some regions,
thereby highlighting the importance of the method used for measuring distances in this GWR
application.
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Chapter 3

A confirmation of the indirect impact of sugarcane
on deforestation in the Amazon

Abstract. A widely discussed assumption that the expansion of sugarcane indirectly contributes
to deforestation in Brazil has been backed statistically by only a handful of studies. The present
research measures the indirect effect of sugarcane in Brazil’s frontier counties as a weighted
summation of changes in sugarcane area in agricultural (non-frontier) counties, where weights
are constructed using road distances and the bandwidth that minimizes overall model error. In
addition to economic variables, indirect effect variables are employed to create a model that ex-
plains deforestation. Parameters are estimated following fixed-effects methodology. The results
reveal that sugarcane indirectly contributed to deforestation in Brazil during the period from
2002-2012. The effect was estimated to be sizeable; in particular, 16.3 thousand km? of forest was
cut by economic actors displaced by expanding sugarcane plantations. This figure constitutes
12.2% of deforestation in Brazil from 2002-2012 and is equivalent to 189.4 million Mg of carbon
emissions.

Keywords. Deforestation, sugarcane, Brazil, indirect land use change.
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3.1. Introduction

Recent trends in the decoupling of soybean and sugarcane expansion with deforestation in
the Brazilian Amazon raised hopes that the dual goal of protecting the environment and satis-
fying an ever increasing demand for crops and derived crop products could be met (see Ma-
cedo et al., 2012). Indeed, Brown et al. (2005) and Galford et al. (2010) found that most of the
recent increase in crop production is attributable to the slight expansion of already existing
fields, conversion of already deforested land, and higher yields. Macedo et al. (2012) esti-
mated that from 2001 to 2005, 74% of soybean expansion in Mato Grosso was into previously
cleared pasture areas and that from 2006 to 2010 the figure reached 91%. Rudorff et al. (2010)
found that sugarcane expands almost exclusively over pasture land and annual agricultural
crops in the state of Sao Paulo. Some researchers, however, have theorized that cattle pastures
are displaced by mechanized farming and, as a result, are reconstituted in distant regions on
forest frontiers (see Barretto et al., 2013; Lima et al., 2011; Vera-Diaz et al. 2008; Walker et al.,
2009; Walker, 2014). This phenomenon is known as indirect land use change (ILUC). ILUC
associated with sugarcane in particular was discussed by Fargione et al. (2008), Lapola et al.
(2010), Martinelli & Filoso (2008), Miccolis et al. (2014), Searchinger et al. (2008), and Walter et
al. (2014).

Statistical evidence of ILUC associated with soy expansion in Legal Amazon during the first
half of the 2000s was found by Arima et al. (2011). This study was later updated by Richards
et al. (2014), who confirmed that soy expansion contributed to frontier deforestation during
2002-2011 in Brazil. Gollnow & Lakes (2014) verified ILUC associated with soy alongside the
BR-163 highway during 2001-2004, but found no connection between soy expansion in Mato
Grosso and deforestation alongside BR-163 during 2005-2012. de S4 et al. (2013) tested ILUC
associated with sugarcane by creating an interactive variable using sugarcane area in Sao
Paulo and cattle heads in the Legal Amazon, following the assumption that sugarcane’s effect
on deforestation is manifested by displacing ranching activities. The interaction terms, to-
gether with other explanatory variables, were regressed against deforestation. The study con-
cluded that sugarcane production in Sdo Paulo increased the impact of cattle ranching on
land clearing in the Amazon.

The present study offers an alternative way to statistically test for and measure the indirect
impact of sugarcane expansion in Brazil’s non-frontier regions on deforestation. This indirect
effect is measured as a weighted summation of changes in the area dedicated to sugarcane
cultivation in non-frontier regions and is included in the model that explains deforestation.
This methodology was implemented by Arima et al. (2011) and Richards et al. (2014) for test-
ing ILUC associated with soy. A key challenge associated with this method is choosing a
weighting scheme that reflects the relationship between the farmers’” willingness to migrate
and the distance from the original location of farmers” residence to the location of new pas-
tures. The lack of information about this relationship has potentially led researchers to select
sub-optimal weighting schemes, thereby leading to results that may be inaccurate. Arima et
al. (2011) assumed a weighting scheme with a constant slope (weights and distances are line-
arly related), and Richards et al. (2014) used inverse distances (travel time) as weights. To
overcome the lack of knowledge on how farmer migration depends on distance, I apply a
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computationally rigorous way of defining the weighting scheme. Specifically, the weighting
function includes a parameter that defines how weights and distances are related. This pa-
rameter is estimated by minimizing model error. The results of this study have global impor-
tance, since the research tests the indirect impact of the Brazilian sugarcane industry on de-
forestation over more than a decade.

3.2. Research context

Sugarcane is used to produce sugar and ethanol and generate surplus electricity for the mills
(Walter et al., 2014), and the sugarcane industry is rapidly expanding in Brazil. From 2002 to
2012 sugarcane plantations in southern Brazil (defined by non-frontier counties, see section
3.3) expanded by 45.9 thousand km?2. The biggest share of sugarcane expansion in southern
Brazil was recorded in the state of Sdo Paulo (56%), followed by Goiés (12.8%), Minas Gerais
(12.3%), and Mato Grosso do Sul (10.4%). Figure 3 illustrates sugarcane expansion in the
southern non-frontier regions during 2002-2012. The expansion can be explained by a combi-
nation of government policies aimed at the development of sustainable renewable energy,
energy security, and rural development (Verdade et al., 2012; Walter et al., 2014).
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Figure 3. Changes in planted sugarcane area between 2002 and 2012 in agricultural counties (see Figure G1) in
terms of square kilometers (left) and percent of county’s territory (right). This municipality boundary map was
downloaded from the IBGE’s website. Municipality boundaries are not shown to improve visualization. Projection:
Albers Equal Area Conic.

The production of first-generation ethanol using sugarcane is a conventional technology in
Brazil. Local demand of ethanol was boosted after 2003 due to the introduction of flex-fuel
cars that use either gasoline or pure ethanol into the market (Alkimim et al., 2015). Brazilian
production reached 23.64 billion liters in the 2012/2013 season (Damaso et al., 2014). Ethanol
is also the main biofuel used in the world, and its consumption is likely to rise in the future.
Its energetic balance is generally positive, meaning that the growing sugarcane absorbs more
carbon than is emitted when the ethanol is burned as fuel (Martinelli & Filoso, 2008). There-
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fore, recently, ethanol production started to be seen as a potential solution to the global
warming problem.

A large share of Brazil’s mitigation policy with regard to greenhouse gases is predicated on a
belief that agronomically suited cattle pastures will be converted to cropland. The total area
of pastures suitable for sugarcane production is still greater than the total area covered by
sugarcane plantations in Brazil (Cohn et al., 2014). Besides, Morton et al. (2016) noted that few
areas remain for the legal expansion of croplands, indicating that the major share of expan-
sion has to be onto cattle pastures. Relative to cattle ranching, crop farming might promote
regional economic development; cultivating crops on low-productivity pastures might also
help to restore soil fertility, impel neighboring pastures into more intensive cultivation, and
spare land from deforestation (Cohn et al., 2016). Moreover, the transition of former large cat-
tle ranches and soybean fields to relatively smaller sugarcane fields in Brazil’s non-frontier
regions may be more beneficial to the environment, since it could regenerate vegetation (Redo
et al., 2013). However, if sugarcane expansion moves cattle farmers to the frontier, forests are
cleared to create pastures for displaced cattle and, as a result, a large volume of carbon stock
is released. Searchinger et al. (2008) estimated that ethanol from Brazilian sugarcane could
pay back the carbon emissions in four years if sugarcane only replaces tropical grazing land
or in 45 years if displaced ranchers convert rainforest to grazing land.

Several economic explanations exist to support ILUC theory. Firstly, land is up to 10 times
more expensive in southern Brazil than in frontier regions (Nepstad et al., 2006; Sawyer,
2008). As a result, cattle ranchers who own properties suitable for sugarcane production can
sell their holdings with enormous capital gains and buy inexpensive land from smallholders
in frontier regions. Land availability and insecurity in the Brazilian Amazon is another factor
that may explain migration to the frontier. Cheap and abundant land often encourages cattle
ranchers to engage in expansive agriculture, thereby leading to substantial deforestation.
Land insecurity is a consequence of insufficient legal enforcement. For example, Brazil’s For-
est Code which requires keeping 80% of private properties in the Amazon as forests is often
ignored by landowners, and environmental fines are rarely paid.

ILUC also relies on an assumption that beef demand is inelastic. This assumption is based on
the argument that meat products have few substitutes. Converting pastures to crop fields re-
duces beef supplies, and in turn raises beef prices (Walker, 2011, Walker, 2014). If beef de-
mand is inelastic, beef production must be reconstituted in another location, most likely, on
forest frontiers.

3.3. Data and methods

Variable descriptions, units of measurement, and data sources are presented in Table 5. An-
nual changes in cattle herd size and planted areas of soy and sugarcane were calculated as
differences between current and previous year data, as t—(t—1). Data on environmental fines
(autuagoes ambientais) on a county level was aggregated from the dataset of detailed records

made available by Brazil’s Institute of Environment and Natural Resources (IBAMA). In case
of fine status changes, the same record appears more than once in the dataset. Therefore, re-
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peating records were trimmed programmatically in R software (Version 3.2.2) (each record
has a unique process number). The study used agricultural commodity prices recorded in the
southern Brazilian state of Parand; these prices are highly correlated with average local crop
prices calculated for a sample of municipalities in Legal Amazon (Assuncao et al., 2013). So,
this price data only exhibits temporal variation. GDP, rural credit, environmental fines, and
commodity prices were deflated to year 2012 using Brazil’s consumer price index (Indice Na-
cional de Pregos ao Consumidor Amplo; IPCA).

Table 5. Description of the variables

Abbreviation Description Unit Source

Annual deforestation increments. Data on the
municipal level is available on the INPE’s web-
site. It is aggregated from PRODES maps, which
DEF are distributed at a 60-meter spatial resolution km? INPE (2016)
and are created by digital image processing and
visual interpretation of LANDSAT ™ imagery
on computer screens.

CATTLE Annual changes in size of cattle (bovines) herd count IBGE (2016),

SIDRA database
; IBGE (2016),

SOY Annual changes in planted area of soy ha SIDRA databese
; IBGE (2016),

SUGAR Annual changes in planted area of sugarcane ha SIDRA database

CREDIT  farming ondtcrop cultivagony n real termg s, 1000RS  Central Banik of
& P ’ (BRL) Brazil (2016)

sued by official banks and credit cooperatives
1000 R$ IBGE (2016),

GDP Gross domestic product in real terms (BRL) SIDRA database
FINES Sums of issued environmental fines in real terms 1?§§T§$ IBAMA (2016)
PCATTLE Real price of fat cattle (boi gordo) received by the R$ per SEAB/PR (2016)
producers arrobaVll
. . R$ per 60
PSOY Real price of soy received by the producers ke SEAB/PR (2016)
PSUGAR Sresal price of sugarcane received by the produc- Rt$0£:r SEAB/PR (2016)

INPE: Brazil’s National Institute of Space Research; IBGE: Brazil’s Institute of Geography and Statistics; SIDRA:
IBGE’s system of Automatic Recovery; IBAMA: Brazil's Institute of Environment and Natural Resources;
SEAB/PR: Parana State Agriculture and Supplies Bureau

Brazil is undergoing a very dynamic process of county administrative border adjustments.
Also, new municipalities are being created. The study used Brazil’s administrative boundary
maps from 2000 and 2014, which are available from Brazil’s Institute of Geography and Statis-

VII Arroba is a weight measure used by the Brazilian farmers. It is equivalent to 15 kilograms of beef carcass or
30 kilograms of live weight (Borras et al., 2011).
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tics (IBGE), to calculate the territory of each county in both years. Administrative border ad-
justments that resulted in at least a 2% change in territory were considered significant and
were addressed. Counties that saw their borders changed as well as newly established coun-
ties were highlighted on the map (refer to Appendix F for the map of territorial changes). Fur-
thermore, the maps from 2000 and 2014 were overlaid in ArcGIS (Version 10.0, ESRI, Relands,
CA, USA) to identify the smallest time-constant geographical units. The data for each geo-
graphical unit was obtained by aggregating the data of the counties within each unit. The seat
of the largest municipality in a geographical unit was considered to be the seat of the whole
unit.

Municipalities in the study area were partitioned into deforestation and agricultural counties.
The former are those located within the Amazonian Biome (the shapefile of the Amazonian
Biome is made available by IBGE). The latter are the counties of the states of Goids, Minas
Gerais, Mato Grosso (except for those counties that are located within the Amazonian Biome),
Mato Grosso do Sul, Parand, and Sao Paulo. Those six states host the majority of Brazil's sug-
arcane plantations. The study period encompasses years 2002-2012; it was constrained by
data availability and the methodological approach.

To estimate the indirect effects of crop expansion the study used road distances between mu-
nicipality seats. The shapefile of roads was obtained from Brazil’s Ministry of Environment
(MMA, 2016). The coordinates of county seats were obtained from IBGE, and they were used
to create a point shapefile. Both shapefiles were loaded into ArcGIS and projected to the same
Albers Equal Area Conic projection. Planned roads were removed from the attribute table of
the road shapefile. Next, the polylines (road segments) in the road shapefile were split by the
points (counties) in the seat shapefile. The ArcGIS Network Analyst extension was employed
to locate municipality seats on the road network using a 10km search radius. Counties with-
out a road connection were omitted from the analysis. Roadless locations face zero or little de-
forestation and have marginally sized cattle herds. Thus, it is safe to assume that displaced de-
forestation in remote areas is close to zero. Refer to Figure G1 for the illustration of deforesta-
tion and agricultural counties that remained in the sample after excluding roadless locations.

The dimensions of the distance matrix are 2105x302 (2105 agricultural counties and 302 defor-
estation counties). The weights were calculated from road distances using the kernel function
presented in eq. 11 (subscripts f and a represent deforestation and agricultural counties, re-
spectively, h is bandwidth).

_df a
W, , =€exp h ' (11)

The weighting scheme assumes that the farmers are unwilling to move long distances as high
migration costs associated with long distances may encourage the farmers to switch to crop
cultivation or move to nearby metropolitan areas in southern Brazil instead of selling their
pastures and relocating cattle ranching to Legal Amazon. However, the exact relationship be-
tween distances, migration costs, and willingness to migrate are unknown. Therefore, an ac-
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curate weighting scheme cannot be determined a priori. The weighting in eq. 11 is controlled
by a bandwidth, which determines how fast the weights decrease as distance increases. The
computation of optimal bandwidth is explained later in this section.

The weighted indirect effect (WIE) in county f at time ¢t is calculated as the weighted sum of
cropland area (c) in agricultural counties at time ¢, normalized by the sum of weights. The
idea of using distances to compute the indirect effects of cropland expansion was originally
proposed by Arima et al. (2011).

an,twf a
WE,,

=--a @
’ wa,a
a

(12)

Eq. 12 formally illustrates the concept of ILUC. Crop expansion in all agricultural counties is
assumed to heterogeneously affect deforestation in each county located in the Amazonian Bi-
ome. This heterogeneity is created by assigning higher weights to nearer agricultural counties
and lower weights to distant agricultural counties, thereby introducing cross sectional varia-
tion. Weighting is motivated by the assumption that migrant cattle farmers are much more
willing to move short distances due to lower migration costs. See Figure H1 for the estimates
of the WIE of sugarcane when using eq. 12.

The model in this study explains deforestation as a function of economic variables, listed in
Table 5. Additionally, it includes the one-year lag of deforestation, the square of GDP (to ac-
count for environmental Kuznets curve theory), the weighted indirect effects of soy and sug-
arcane, and one-year lags of these two variables due to the possibility that changes in agricul-
tural counties may have a delayed impact on land use changes in the deforestation counties.
Even though testing for ILUC associated with soy is not the goal of this study, it is essential
that this variable is included in the modeling to avoid omitted variable bias.

The model parameters were estimated by fixed-effects (FE) panel methodology. Under FE,
both observed (elevation, soil type, etc.) and unobserved county fixed effects are removed by
demeaning. This procedure also eliminates the need to model deforestation determinants that
change slowly over time, such as the road network, population, and areas that receive special
protection. A programming code that estimates FE regressions was integrated with the code
that computes the weighted indirect effects from the dataset (programming was done in
Gauss, the code in available in section 9.2). This code was used to loop through bandwidths
with increments of 1 km and save the overall mean squared errors (MSEs) under each band-
width. Then, the optimal bandwidth is the one that minimizes overall MSE (model error). The
formula to estimate the overall MSE is given by eq. 13. As for notation, Y, is the deforesta-

tion increment in county f at time ¢; X, is a row vector of covariate values in county f at time

t,and b is a column vector of coefficient estimates (all data is considered before demeaning).

MSE=Y"3(y,, - X;b) (13)
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3.4. Results and discussion

The dependency of model error on bandwidth size for the interval [10, 250] km is graphically
illustrated in Figure 4A. Model error was minimized at /=99 km. The weighting in eq. 11 with
optimal bandwidth leads to a 21.6% reduction in model error as compared to inverse distance
weighting. Figure 4B shows the dependence between weight and distance when optimal
bandwidth is used.
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Figure 4. Overall mean squared error for various bandwidths (left) and weighting mechanism with optimal
bandwith, by road distance (right)

Regression results are presented in Table 6. Collinearity statistics are available in Table I1,
which reveal that the covariates are weakly correlated. The key finding for this research is
that sugarcane expansion in agricultural counties contributed to deforestation in the Amazo-
nian Biome (i.e., the coefficients of the weighted indirect effect of sugarcane are statistically
significant). From the results, it can be suggested that sugarcane expansion during the study
period (2002-2012) indirectly explained 12.2%, or 16.3 thousand km? in absolute terms, of de-
forestation that happened in Legal Amazon during the same time. Given that the average for-
est carbon density in Brazil is 116 Mg ha (Harris et al., 2012), sugarcane expansion in south-
ern Brazil was responsible for 189.4 million Mg of carbon emissions during the study period.
Following Goldemberg & Guardabassi (2010), 6617 liters of ethanol can be produced from
one hectare of sugarcane per year. Combining this figure with the findings of this study, it
can be concluded that the yearly production of every one billion liters of ethanol from sugar-
cane in Brazil during the 2002-2012 period indirectly released 17.5 million Mg of carbon into
the atmosphere.

For comparison, the indirect contribution of soy expansion to deforestation was found to be
17.6%, or 23.6 thousand km? in absolute terms. The results suggest that carbon emissions re-
lated to soy expansion generated 273.6 million Mg. These figures are much more modest es-
timates compared to previous studies: Arima et al. (2011) suggested that a 10% reduction of
soybean plantations in the Amazonian savannas would have reduced deforestation by
around 26 thousand km? during the 2003-2008 period (40% of the deforestation that took
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place during that period), and Richards et al. (2014) found that one third of deforestation dur-
ing the 2002-2011 period was indirectly caused by soy expansion in the Brazilian regions out-
side the Amazon. The lower estimates of soy’s indirect effect can be partially explained by the
spatial extent of this study, which covers only six states, where a major share of Brazil's sug-
arcane is cultivated. The differences in the magnitude may also be due to methodological dif-

ferences (weighting scheme, variable selection, etc.).

Table 6. Regression results

The findings only indicate that sugarcane indi-
rectly contributed to deforestation during the pe-

Abbreviation Fixed-effects riod from 2002 to 2012. However, it is unclear
DEF (-1) 106.2452 (45'74*55)* whether this tendency will continue into the fu-
élé\;fTLE giég Eggggég** ture. If it does, two types of policy measures
SUGAR _1"5515 (é.2226) could be applied to mitigate this problem: 1)
CREDIT -0.6418 (0.1896)* policies that target cattle ranching, because the
GDP 100118 (0.00766) indirect effect of sugarcane on deforestation is
GDP/2 0.000176 (0.0000948)* manifested through displaced cattle farming, and
FINES -0.6559 (0.2168)** 2) policies that directly target sugarcane and its
PCATTLE -359.9817 (118.0482)** derivative products.
PSOY 677.6511 (142.065)**
PSUGAR -957.1251 (155.7607)** Popular policy agreements to control cattle-driven
WIESOY 1.014 (0.1571)** deforestation are known as MPF-TAC (Terms of
xigggg?i 34922;3(55225)12:* Adjustment of Conduct) and G4. The former was
’ ' : signed in 2009 by individual meatpacking com-
LV(I)]EEUGAR 1) ;é'zoz% (7.9228)¢ panies in order to stop purchases from properties
# groups 302 where illegal deforestation took place. The latter
Sigma u 7931 is a zero-deforestation agreement with Green-
Sigma e 5819 peace signed in 2009 by Brazil’s largest meat-

packing companies. Both agreements currently
govern only those properties selling directly to
slaughterhouses (Gibbs et al., 2015), thereby leav-
ing access to commercialization channels for calv-
ing or breeding ranches that illegally expand
their properties at the expense of forests. Never-
theless, the two agreements are effective in curb-
ing deforestation associated with cattle farming
(Gibbs et al., 2015) and create disincentives for cattle ranchers located in agricultural counties
to migrate.

** p<0.01 *p<0.05 *p<0.1

Periodization: 2002-2012

Parameters are multiplied by 1000
Cluster-robust standard errors are in parentheses
Variable abbreviations are introduced in Table 5
GDP*2 is GDP squared, divided by 10”6

WIE stands for weighted indirect effect

(-1) indicates one-year lag

A way to limit pressure on forest frontiers from the cattle industry is through intensification.
The Brazilian cattle stocking rate grew from 0.47 head/ha in 1960 to 1.2 head/ha in 2010
(McManus et al., 2016). Cohn et al. (2014) suggested two strategies for how to promote inten-
sification further: a tax on cattle from conventional pastures and a subsidy for cattle from
semi-intensive pastures. A tax would raise agricultural commodity prices and would lead to
higher productivity agriculture. However, higher prices may also increase production. A sub-
sidy would increase the output due to higher productivity systems as well as reduce the
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prices of agricultural commodities. However, lower prices would increase consumption. A
study conducted by Cohn et al. (2014) found that both cattle ranching intensification policies
in Brazil can sucessfully limit deforestation and carbon emissions.

Alternatively, the adverse effect of sugarcane expansion on forests can be mitigated through
the price of biofuels. The price could be adjusted to compensate for indirect environmental
costs, especially, the loss of carbon stock. However, raising the price of biofuels may not be
desirable, because it reduces the attractiveness of ethanol biofuel as compared to conventional
fossil fuels.

Other results presented in Table 6 are of secondary importance for the purpose of this study,
but have great importance overall. Most coefficients have the expected signs. The results indi-
cate that: 1) deforestation last year is a valid predictor of deforestation this year, 2) changes in
cattle herd size and acreage of soy plantations directly contribute to deforestation, 3) changes
in sugarcane area does not directly affect forest clearing, 4) higher GDP is related to more de-
forestation, and 5) environmental fines constrain forest clearing.

Two findings, however, defy prior expectations. Firstly, rural credit is negatively linked with
deforestation (with a statistically significant coefficient). Rural credit constraints are one of the
policy measures applied by the Brazilian government to curb deforestation. Therefore, a posi-
tive link between the two variables should exist. However, Jusys (2016) showed that rural
credit is positively linked with deforestation (with statistically significant local coefficients) in
Para when the spatial heterogeneity of deforestation determinants is considered, even though
the sign is negative in the conventional global model. The other unexpected result is that beef
and sugarcane prices are negatively associated with deforestation. The fact that only temporal
variation in prices was captured by the model could have led to this result.

3.5. Conclusions

This study tested the assumption that the sugarcane industry indirectly contributes to defor-
estation in the Brazilian Amazon. The indirect effect was measured as a weighted summation
of annual changes in sugarcane area, divided by the sum of weights. The methodological
novelty proposed by this study is to select the weighting scheme by estimating the band-
width (a parameter that controls the relationship between weights and distances) that leads to
the lowest model error. A model that explains deforestation as a function of economic vari-
ables, including indirect effects, was built, and the parameters were estimated by fixed-effects
regression.

The research concludes that sugarcane expansion in Brazil’s non-frontier regions during 2002-
2012 is indirectly associated with deforestation. Specifically, the findings suggest that the
sugarcane industry in southern Brazil is indirectly responsible for 16.3 thousand km? of
cleared land, which corresponds to 12.2% of total deforestation during the study period.
Those figures translate into 189.4 million Mg of carbon emissions. Also, a yearly production
of every one billion liters of ethanol from sugarcane resulted in 7.5 million Mg carbon emis-
sions. The research also confirms ILUC associated with soy expansion. The estimates suggest
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that 23.6 thousand km? (corresponding to 17.6% of deforestation) was attributable to the soy
industry in agricultural counties during the study period. Therefore, policies for mitigating
the effects of ILUC must be integral. That is, both soy and sugarcane expansion must be con-
sidered.
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Chapter 4

Associations between deforestation and population on
forest frontiers in Para: empirical study

Abstract. The presence of connection between deforestation and population is subjected to aca-
demic debates. While in general it is agreed that the trends shifted towards urban-induced de-
forestation, it is theorized that rural communities directly contribute to deforestation on forest
frontiers. Recent release of population estimates at high spatial resolution enables to zero in on
frontier forests. This study covers the state of Para in Brazil, where deforestation represent a se-
rious concern. Study period is 2010-2014. The analysis is done at 5 km spatial resolution. The
study interprets the results of fractional logistic regression and the regression tree. The results
reveal that higher rural population density is associated with more deforestation on forest fron-
tiers in Pard. Weak links between distance covariates reflecting the access to urban markets and
deforestation likely imply the presence of significant subsistence component of agriculture, fur-
ther strengthening the conclusion that rural inhabitants directly contribute to deforestation.

Keywords. Deforestation, rural population, Para, forest frontier, high spatial resolution.
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4.1. Introduction

Historically, growing rural communities and rural insurgencies prompted Brazilian authori-
ties to support smallholder colonization of rainforest regions (Rudel et al., 2009). Road con-
struction provided easy access to forest resources and, as a result, led to massive deforesta-
tion (Pan & Carr, 2010). In particular, rainforest colonization stretched alongside newly con-
structed Trans-Amazonian highway. Slash and burn agriculture is believed to have caused
two-thirds of past tropical deforestation (Wright & Muller-Landau, 2006). However, private
agricultural enterprises gradually increased their production for international markets (Rudel
et al., 2009). Whether rural communities still directly induce a significant share of deforesta-
tion or the trends shifted towards deforestation driven by urban and international demands is
an ongoing debate. In any case, the relationship between rural population, urban population
and deforestation is likely to be complex (Brook et al., 2006).

Some scientists argue that rural communities no longer constitute a primary threat to forests.
Rudel et al. (2009) stress that well-capitalized ranchers, farmers, and loggers producing for
consumers in distant markets became more prominent and that this globalization weakened
historically strong relationship between local population growth and forest cover. Browder et
al. (2008) conducted a study in Rondoénia (Brazil) that revealed a dramatic reduction in the
portion of production consumed on the farm. More specifically, in 1991 the shadow priced
value of farm production consumed by households was equivalent to 2843 Brazilian reals,
dropping to 825 Brazilian reals in 2001. These findings suggest that farmers are shifting from
subsistence to commercial agriculture. DeFries et al. (2010) argue that urbanization raises con-
sumption levels and increases demand for agricultural products. They also stress that urban
citizens consume more processed food than rural inhabitants. If urban populations constitute
a major driver of deforestation, this is a growing concern, since urban growth is vastly out-
pacing rural growth (DeFries et al., 2010). Furthermore, Carr (2004) notes that small-scale
frontier farmers have many incentives to sell their properties to cattle ranchers, who continu-
ously clear forests to supply their cattle with land. Those incentives arise, because small pro-
ducers do not have easy access to markets and credit, and face other economic and political
constraints (Carr, 2004, Izquierdo et al., 2011). This can be an argument in favor of urban-
induced deforestation, since cattle ranchers mostly produce for urban and international mar-
kets. Even though cattle ranching requires solid investment, the direct return on cattle ranch-
ing itself (excluding profits from the sale of timber) consistently exceeds 10% (Margulis, 2004).

The advocates of rural-induced deforestation emphasize that land cover change remains ex-
traordinarily expansive per capita on forest edges. There are several reasons for that. Firstly,
it is the rational investment in land expansion given cheap available family labor, scarce capi-
tal, low technology, high cost of transportation, and insecure land tenure (Carr & Burgdorfer,
2013, Carr, 2009). The latter characteristic implies that new forest frontier settlers are encour-
aged to clear the land as quickly as possible to establish their claim and deter potential squat-
ters (Carr, 2004). Further, it is important to discuss what happens with second generation
frontier farm children. Barbieri et al. (2009) point out that out-migration tends to dominate
second-generation settler household demographic dynamics. This out-migration is directed
towards urban areas, since second generation of original settlers sees the urban environment
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and off-farm employment as increasingly attractive livelihood options (VanWey et al., 2012).
This economic migration serves as a hedge against lost harvest or an injured family member
and helps to raise income, diversify risk and overcome credit constraints (Barbieri & Carr,
2005, Barbieri et al., 2009, Davis & Carr, 2014, VanWey et al., 2012). However, many second
generation settlers remain in original lands, and this leads to land fragmentation. Cortes et al.
(2013) conducted a study in Santarém (Pard, Brazil) to reveal that 44 out of 311 properties in
2003 were fragmented and that those 44 properties in 2003 became 113 in 2009. The portion of
second generation settlers who migrate to another location on forest frontier is small. Despite
this fact, Carr (2009), Carr (2012) and Carr & Burgdorfer (2013) argue that this small portion
has a disproportionally large adverse effect on extant forests. Another argument in favor of
expansive agriculture on forest edges is that intensification represents an unnecessary labor
burden, is uneconomical, inefficient and too risky for small semi-subsistence producers (Carr,
2004). Moreover, farmers are encouraged to expand their farms due to economic reasons, as
those farms are later sold to larger producers (Izquierdo et al., 2011). Afterwards, the farmers
move to another location to initiate a new round of deforestation (Brondizio et al., 2013).

The lack of agreement on whether and how rural and urban inhabitants spur deforestation in
21st century partly arises from the scarcity of detailed local studies that specifically investigate
the relationship between population dynamics and deforestation (Izquierdo et al., 2011).
Among such studies is Wright & Muller-Landau (2006), who find that proportion of forest
cover remaining is closely correlated with human population density. Another study is by
Jorgenson & Burns (2007), who conclude that deforestation is positively linked with rural
population growth and negatively correlated with urban population growth. On the contrary,
an empirical study by DeFries et al. (2010) positively linked urban citizens with deforestation
and found no correlation between the size of rural communities and deforestation. The men-
tioned studies are country level analyses. Carr & Burgdorfer (2013) criticized DeFries et al.
(2010) by arguing that if rural population growth data is used at the national scale, the demo-
graphic situation at the local level on the external frontier may be inappropriately reflected.
To investigate what happens on forest frontier, it is necessary to use sufficiently small scale.
In general, a positive correlation between population growth and deforestation is found at
temporal and spatial macro-scales, but evidence for associations between population and de-
forestation at micro-scales is scant (Carr, 2004). An early attempt to model deforestation and
rural population in Legal Amazon at relatively high spatial resolution is found in Laurance et
al. (2002). The best population data available at that time was from census 2000, carried out
by IBGE. As a result, within municipality variations could not be observed. The lack of popu-
lation data at high spatial resolutions could explain the paucity of studies at micro-scales. In
2015 ~100x100 m grid population raster was released by WorldPop. This data constitutes an
opportunity to empirically test the arguments made in theoretical studies. WorldPop data has
already been used by Ryan et al. (2015) in modeling relationships between population and
forest loss in Africa.

Most importantly, Pan & Carr (2010) conclude that the results of land use studies can be scale-
dependent: inferences and relationships observed at one scale or level are not necessarily the
same for larger or smaller scales. This was confirmed by Ryan et al. (2015), who modeled for-
est cover change in selected territory in Africa and found that different drivers of forest cover
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loss emerge at local and national scales. Interestingly, the findings suggest that rural commu-
nities are associated with more deforestation at national scale, but with less deforestation at
micro scale. Relationships between deforestation and rural population in Legal Amazon are
researched by many authors, but mostly at national or district level. Besides, few empirical
analyses concentrate on forest edges. Therefore, the contribution of this research is a micro-
scale (5x5 kilometer grid) investigation into the linkages between deforestation and the size of
rural communities on forest edges in Para state in Brazil. The study empirically tests the main
argument made by Carr & Burgdorfer (2013) that rural inhabitants are directly linked with
deforestation on forest frontiers.

It is important to mention, however, that the results of this study cannot be generalized to all
locations with tropical rainforests both inside and outside Legal Amazon, because site-specific
variations do exist. Such variations stem from differences in market access and history, infra-
structure, social support or natural resource bases, etc. (Oestreicher et al., 2014). For instance,
there is evidence that forest attrition in Ecuador is positively linked with population on the
frontier, but negatively linked with overall rural population (de Sherbinin et al., 2007). Al-
though the findings can be different across areas, the priority is always to understand what
happens in deforestation hotspots, such as Para.

Linkages between deforestation and rural population were evaluated by two distinct meth-
ods: fractional logistic regression and regression tree. The regression is non-linear, since de-
forestation was measured as a fraction of deforested land. It is crucial to understand that the
findings do not prove causality and can only be interpreted in terms of associations. This is
because complete understanding of demography and environment cannot privilege a single
causal direction (Vanwey et al., 2012). That is, not only population influences deforestation,
but deforestation can also initiate changes in population. For instance, a new deforestation
frontier may attract settlers from other areas. To account for such complex relationship, valid
instrumental variables are needed. However, such data is not available at high spatial resolu-
tion. Nevertheless, associations between deforestation and rural population do answer the
question whether or not deforestation happens within rural settlements.

4.2. Materials and methods

The analysis includes eleven covariates to explain deforestation. Those consist of cattle (coded
as CTL later in the text), rural population (POP), altitude (ALT), slope (SLOPE), surface flat-
ness (FLAT), forest cover (FC), the shortest travel time to the nearest city (TIME), the shortest
Euclidean distance to the nearest road, river and protected area (ROAD, RIVER and PA), and
precipitation (PREC). The study period covers 5 years, from 2010 to 2014 inclusive.

Deforestation was measured as a fraction of cleared land in total land during 2010-2014 inclu-
sive. The data source is Brazil’s National Institute of Space Research (INPE, 2015). Grid level
estimates of cattle heads were based on municipality level statistics from Brazil’s Institute of
Geography and Statistics (IBGE, 2015). The number of cattle animals (2009-2014 average) was
distributed evenly over available land within each municipality. Available land was defined
as total area net of forests. Forest cover estimates (2009-2014 average) were obtained from
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MODIS VCF product, version 051 (NASA, 2014). Population data comes from the WorldPop
Americas dataset (WorldPop, 2015). It is reported at ~100 m spatial resolution at the equator.
Each cell contains an estimated number of persons. The data can be used both to support ap-
plications for planning interventions, measuring progress, and to predict response variables
intrinsically dependent on the population distribution (Sorichetta et al., 2015). For detailed
explanations how the population values were estimated the reader is directed to Sorichetta et
al. (2015). The original figures were adjusted to match municipality totals. This was achieved
by estimating correction factors for each municipality (see Appendix J). The final figures,
used in the research, are the averages of adjusted population estimates corresponding to
years 2010 and 2015, expressed in persons per square kilometer. It is obvious that population
data accuracy decreases as spatial resolution increases. Therefore, a too high spatial resolu-
tion may invalidate the results. As a result, the research was done at 5 km spatial resolution.
In this way each 5x5 kilometer raster cell is defined by a sum of estimated persons from 2500
original cells. Altitude (in meters) comes from the Shuttle Radar Topography Mission 90m
Digital Elevation Model, version 2.1 (SRTM, 2015). One of its derivatives, slope, was com-
puted in ArcGIS. It was estimated from 8 adjacent cells as described in Burrough & McDonell
(1998). The resulting figures are in degrees. Surface flatness is the sum of altitude differences
between each 90x90 meter parcel and the lowest altitude within each aggregated (5x5 km)
parcel of land. Thus, lower figures indicate flatter surfaces. Forest cover is a percentage of for-
ests within each parcel of land in 2010 (at the beginning of the study period). The data is
found in MODIS VCF product. Time distances are estimated as travel time in minutes to the
nearest city of 50000 or more inhabitants in 2000. The data was retrieved from the Global En-
vironment Monitoring Unit - Joint Research Centre of the European Commission (GEMU-
JRC, 2014). I acknowledge that some cities could have grown and that new roads were con-
structed after 2000, but this is the best data of this kind available at high spatial resolution.
Euclidean distances to the nearest road (excluding urban streets and roads under construc-
tion), river and protected areas were computed in ArcGIS. Road and river shapefiles were ob-
tained from GEOFABRIK, OpenStreetMap (GEOFABRIK, 2014). Shapefiles of protected areas
are from the World Database on Protected Areas (WDPA, 2014). The distance data was ex-
pressed in kilometers. Precipitation was measured as a multiyear average of rainfall in milli-
meters. The data source is World-Clim (World-Clim, 2015). A shapefile of forest frontiers is
provided by the World Resource Institute (WRI, 2015). Frontier forests are defined as being
primarily forested, of sufficient size to support viable populations of the full range of indige-
nous species associated with that particular forest ecosystem given periodic natural distur-
bance episodes, and exhibiting a structure and composition shaped largely by natural events,
as well as by limited human disturbance from traditional activities (WRI, 2015). Administra-
tive borders of Pard and its municipalities were obtained from IBGE. All GIS datasets were
projected to Albers Conic Equal Area projection, which is an appropriate projection for Brazil
(IBGE, 2015). Refer to Appendix K for descriptive statistics of the variables.

Only populated cells (=1 person per km?) with relatively dense forest cover (=40%) were re-
tained. Additionally, the cells contaminated by severe cloud coverage (=20%) were removed.
The WordPop dataset includes both rural and urban populations. The distinction between
rural and urban settlements is usually based on population density. Since forest frontiers are
sparsely populated, all communities residing near forest edges are rural. In fact, the highest
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population density in the sample is less than 75 persons per km? (see Appendix K). National
census authorities in most advanced countries use 400 persons per km? as a cut-off mark.

To estimate regressions, it is essential to consider that the response variable (deforestation) is
a fraction. Early works (as well as some recent studies, see DeFries et al. (2010) for example)
applied the arc-sine transformation on the dependent variable. However, it does not perform
well at the extreme ends of a distribution and does not confine the data between 0 and 1
(Hardy, 2002). To account for fractional response, fractional logistic regression was applied.
However, heteroskedasticity is likely to be present, since the variance of the dependent vari-
able conditioned on its covariates is unlikely to be constant when response values are
bounded between 0 and 1 (Papke & Wooldridge, 1996). As a result, robust standard errors
were reported. The computations were done using Stata’s fracreg command.

Additionally, a regression tree was created for complementary analysis. This was done in R
software using the library tree. The tree routine is based on classification and regression tree
(CART) algorithm. However, high correlation between any of the covariates may invalidate
the results (Sutton, 2005). Therefore, the covariates were tested for multicollinearity by com-
puting variance inflation factors. No significant collinearity was detected. Next, the data was
randomly divided into training and testing sets, each containing half of the data.

The working principle of CART is to select the split that leads to the greatest reduction in the
sum of the squared differences between the response values for the training sample cases cor-
responding to a particular node and their sample mean (Sutton, 2005). Formally, it minimizes
the following expression:

S(v-va) + X (v-¥e) (14)

i eA i:xeB

Here x; is a vector of covariate values of i observation, y; is response value of i observation,
ya bar and yg bar are the training sample means of the response values corresponding to nodes
A and B respectively. The partitioning is recursive. That is, each child node, in turn, becomes
a parent node, unless it is a terminal node (Moisen, 2008). The number of terminal nodes
(leaves) defines the size of a tree. Finding the optimal size requires two steps. Firstly, an overly
large tree is grown. However, some stopping rule must be applied. Otherwise, the tree grows
until the number of terminal nodes equals the number of observations in the training sample,
which leads to a training prediction error equal to zero (the predicted response value in each
terminal node is the actual response value). Undoubtedly, such a tree would not be applicable
outside the training sample. Therefore, the tree continued to be grown until the child nodes
contained at least 10 observations or a pair of child nodes contained at least 20 observations.
The motive to grow an oversized tree instead of looking for the optimal size by sequentially
increasing the tree size is that some early trivial split may lead to an important split in the
subsequent step. The second step involves tree pruning. Pruning is based on the procedure
called cross-validation. Specifically, mean squared errors (MSEs) on the testing sample are
recorded for different sizes of a tree, ranging from 1 to the size of non-pruned tree. The opti-
mal size is the size that minimizes MSE on the testing sample. MSE is computed as follows:

52



MSE:%ZI:SSm (15), where S, = 3 (v, - ,)  (16)

m=1 iem

Here n represents the testing sample size and SSy is the within-node sum of squared differ-
ences from the mean in terminal node m, and [ is the number of terminal nodes. The predicted
response value in each terminal node is simply the mean of within-node response values. For
further reading on decision trees refer to Ripley (2008).

4.3. Results

The main research interest is in the relationship between deforestation and rural population.
The link could be both positive and negative. A negative association could imply that most
deforestation occurs outside rural settlements. This, in turn, could indicate that commercial
agriculture prevails, and that the demand of agricultural products and the pressure on stand-
ing forests is dictated by urban and international consumers. Alternatively, a negative link
could arise due to the fact that small producers often sell their land properties to cattle ranch-
ers, whose farms are generally larger than the farms dedicated to semi-subsistence food pro-
duction. As a result, low population density is associated with more deforestation (Carr,
2004). Since cattle ranchers mostly produce for urban and international markets, it would be
suggestive that deforestation is more responsive to urban meat consumption levels rather
than subsistence farming. A positive association could indicate that rural farmers actively cut
forests to open up land for agriculture.

Forest frontier deforestation is concentrated in two major quadrants (Figure 5). One is located
in the western Pard. Here most deforestation happens alongside the Trans-Amazonian high-
way and adjacent to (and even within) protected areas. The other quadrant is on the eastern
side, where deforestation stretches mostly alongside the borders of protected areas (see Ap-
pendix L for locations of the Trans-Amazonian highway and the network of protected areas).
Spatial comparison of the arrangement of deforestation hotspots and rural settlements on for-
est frontiers tends to suggest that positive link between the two variables may exist.

Regression results (see Table 7) indicate that the size of rural settlements is positively linked
with deforestation (refer to Appendix M for marginal effects, OLS results are reported for
comparison). The link is statistically significant. The regression tree (Figure 6), which offers a
complementary analysis, also suggests a positive association between deforestation and rural
population. Specifically, the results indicate that in areas with 130-847 cattle heads per parcel
and relatively sparse vegetation (<58.7%) deforestation is 4.6% if rural population density is
less than 2.9 persons per km? and 7.6% otherwise. Also, in parcels with more than 847 cattle
animals and favorable levels of precipitation (<2099 mm) deforestation is 6.8% if rural popu-
lation density is lower than 1.8 persons per km? and 11% otherwise. Therefore, the findings
empirically confirm the theoretical argument made by David Carr that forest frontier settlers
directly contribute to deforestation. However, its importance is not as overwhelming as sug-
gested by David Carr. The coefficients of a logistic regression do not reveal the relative im-
portance of each determinant, but a regression tree provides such information. The first two
splits are based on cattle heads, meaning that cattle variable is the most powerful discrimina-
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tor between areas with relatively low and relatively high deforestation (0.7% in parcels with
less than 130 cattle heads, 4.3% in parcels with 130-847 cattle animals and 8.5% in the remain-
ing parcels). Population appears only in the fourth split.
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Figure 5. Spatial distribution of deforestation and population on forest frontiers in Para during 2010-2014. Light
grey areas indicate out-of-sample territories.

The next question that naturally rises is how deforestation is related to urban population. Un-
fortunately, to assess the impact of urban population at high spatial resolution is difficult,
since deforestation and urban consumption of agricultural products happen at different and
often distant locations is space. The influence of urban citizens on extant forests may be best
proxied by the distance to the nearest road or the distance to the nearest urban area. If agri-
culture is urban-orientated, farmers are likely to be situated in close proximities to fast-access
roads or cities, because it reduces transportation costs of agricultural products. Indeed, Rudel
et al. (2009) point out that landowners intensified agriculture close to newly constructed or
improved roads. The evidence on linkages between deforestation and distance variables in
this study is contradictory. The regression suggests that both time and road distance covari-
ates are negatively linked with deforestation. The latter association is found to be statistically
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significant. These findings are contradicted by the results of the regression tree, which indi-
cates a positive link between road distance and deforestation. However, the link is weak, as it
appears in the last split, meaning that many conditions have to be met for road covariate to
have an effect. Weak relationships are not so surprising owing to the fact that forest frontiers
are such regions, which are characterized by limited accessibility. In any case, the relationship
between distance covariates and deforestation should not be taken as evidence in favor of or
against urban-induced deforestation. This is primarily because choices of farming locations
by cash-orientated producers also depend on other factors, such as legal enforcement, soil
quality, climatic conditions and land price (lands are often purchased from smaller producers
and then consolidated).

Table 7. Regression results

Coefficients and standard errors

OLS FRACLOG
Cons 97.4716*** -1224.635***
(14.8377) (350.906)
CTL 0.0412%** 0.9232%**
(0.00531) (0.1582)%
POP 0.7781** 18.9974**
(0.3921) (9.2255)F
ALT -0.00831 0.1951
(0.017) (0.4617)F
SLOPE -9.3328 -327.6202**
(6.2091) (140.4977)%
FLAT -0.0189 -0.3791
(0.018) (0.4265)F
FC -0.6271*** -20.7258***
(0.14) (3.7508)F
TIME 0.00025 -0.0495
(0.00121) (0.0452)%
ROAD -0.0479 -2.6065*
(0.0512) (1.4755) ¥
RIVER 0.139** 3.7232**
(0.058) (1.5331)F
PREC -0.0191*** -0.62%**
(0.00564) (0.1525)%
PA -0.0717 -2.5044
(0.0587) (1.5633)F
# obs 1172 1172
R squared 0.274 -

Standard errors are in parentheses

Symbol ‘1" indicates robust standard errors
*** p<0.01 ** p<0.05 * p<0.1

Parameters are multiplied by 1000

Terrain variables do not seem to influence
deforestation on forests frontiers in Para. Ter-
rain is much more of a constraint for crop
cultivation. Crop fields constitute a relatively
minor agricultural use in the study area. Here
the overwhelmingly predominant type of
land use is pastures, which is not so respon-
sive to surface characteristics. Interestingly,
forest cover is negatively associated with de-
forestation. This finding possibly indicates
that most farmers expand the existing fields
until the forests adjacent to those fields are
cleared, while denser forests remain rela-
tively untouched until the existing pastures
become unviable or are sold to large produc-
ers. It is well-known that excessive precipita-
tion constrains agriculture. This fact is re-
flected in the results. The fractional logistic
regression suggests a negative and statisti-
cally significant association between defores-
tation and the level of rainfall. The regression
tree indicates that the threshold value of rain-
fall is 2099 millimeters. Conditional on rela-
tively large cattle herds, deforestation is 9.5%
in dryer areas compared with 4.2% in areas
with excessive rainfall. Another important
finding is that deforestation in protected ar-
eas is almost three times lower than in unpro-
tected lands (1.4% versus 4%). This finding
holds for land parcels with middle-sized cat-
tle herds and dense forests. Note that cut-off
mark in the regression tree is 2.5 km. Since
distances were calculated from the centers of
each cell, the actual cut-off mark is zero, that
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is, the borders of protected areas. Despite this finding, it cannot be concluded that lower de-
forestation is attributable to effective protection, since climatic, economic and other character-
istics inside and outside protected areas often are very different. It is a common knowledge
that conservation units are located in areas that face lower deforestation pressure.

5.2
’<1> 1CTL<130 6PA<25

2CTL<847 7POP<1.38

3 FC < 58.7 8 ROAD < 60.1
4 PREC <2099 9 RIVER < 62.5
5POP<29 10RIVER <564

418795 93 133

Figure 6. Pruned regression tree. The numbers in rhombuses correspond to the numbers in the legend. In case a
condition in the legend is correct, the results to interpret are on the left branch. The figures in the tree are within-
node means of deforestation. Figures at the bottom of branches are deforestation means in the terminal nodes.
Refer to Appendix N for detailed statistics.

4.4. Discussion and conclusions

The findings have two important implications. Firstly, a policy that fosters rural-to-urban mi-
gration should lead to a reduction in deforestation pressure on forest frontiers in Para. This is
line with forest transition theory. As predicted by the theory, industrialization, urbanization
and abandonment of rural settlements should lead to forest regeneration. Nevertheless, Para
is a source of large volume of agricultural products, especially beef, which satisfy the de-
mands of ample international markets. Unless consumption trends change, cattle ranching
will remain a leading primary business in Pard. Therefore, rural-to-urban migration may only
redistribute the relative contribution to deforestation by rural and urban settlements. That is,
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the gain in avoided deforestation attributable to shrinking rural communities due to rural-to-
urban migration may be lost, beacuse those migrants may increase pressure on forests indi-
rectly through meat consumption. Nonetheless, urban-induced deforestation is easier to con-
trol. This is primarily because commercial production must be purchased and transported.
Currently, a package of measures is being applied by the Brazilian government and NGOs to
mitigate the adverse impact of commercial agriculture on forests. Those include, but are not
limited to, credit constraints, embargoes and voluntary agreements by the retailers and trad-
ers not to purchase agricultural production from illegally deforested lands. Additionally,
trucks can be inspected along the roads. Unlike commercial agriculture, subsistence farming
and its implications on deforestation are difficult to observe and control, because the products
are not purchased by the companies and are consumed on site. Arguably, the best measure
against rural-driven deforestation is the network of areas under legal protection. Its impor-
tance will grow in the future as frontiers approach the borders of conservation units. There-
fore, the second important policy implication is to ensure effective buffer zone management.
On its effectiveness depends whether or not small-scale farmers will invade protected territo-
ries, thereby starting another round of deforestation, or they will be forced to consider alter-
native options.

The key message from the research is that rural communities are directly linked with defores-
tation on forest frontiers in Paré, as theorized by David Carr. The regression tree suggests that
the link is evident in areas with middle-sized cattle herds and sparse vegetation, and in areas
with relatively large cattle herds and favorable precipitation level for agriculture. Other im-
portant findings are: 1) cattle heads is by far the most powerful discriminator between regions
with high and low deforestation, 2) distance covariates are weakly linked with deforestation,
3) terrain characteristics have no significant influence on deforestation, 4) territories with less
dense forest cover are more likely to be deforested if those territories host middle-sized cattle
herds, 5) the level of rainfall is an important factor in farmers” decision where to cut forests if
cattle farming is prevalent, 6) deforestation in conservation units is significantly lower than in
unprotected forest frontiers in areas with dense vegetation and middle-sized cattle herds.
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Chapter 5

Quantifying avoided deforestation in Para: protected
areas, buffer zones and edge effectsVIll

Abstract. Percentage of forests saved due to the establishment of protected areas is an important
piece of information for government institutions and, therefore, is the goal of this study. How-
ever, non random location selection bias makes such information directly unobservable. To
overcome this problem, propensity score matching was applied. Unlike in previous studies, im-
plications of buffer zone management were assessed by estimating avoided deforestation in
buffer zones and park edges. The study area is the state of Pard. Overall results achieved satis-
factory mean absolute bias of 7.8% and revealed that park protection saved 0.72% of protected
surface from deforestation during period 2000-2004 (~2900 km? of forests). The highest percent-
age of avoided deforestation was recorded in protected areas, situated near deforestation hot-
spots: central part of eastern Pard, alongside Trans-Amazonian highway and on the banks of
Amazon River. The findings also suggest that buffer zones tend to reduce deforestation where
deforestation pressure is lower, but the substitution effect takes over in areas of high deforesta-
tion pressure (since loggers are prevented from deforestation within conservation units, defores-
tation in surrounding areas increases). Finally, the study does not find evidence for edge effects
in the state of Para.

Keywords. Avoided deforestation, protected areas, buffer zones, edge effects, Pard, propensity
score matching.

VIII This article has been published. Publication details are: Jusys, T. (2016). Quantifying avoided deforestation in
Para: Protected areas, buffer zones and edge effects. Journal for Nature Conservation, 33, 10-17.
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5.1. Introduction

The protected area system is among popular measures to combat deforestation and save ge-
netic resources in selected territories. Historically, the aim of protected areas was the protec-
tion of ecosystems of significant esthetic and cultural value. Later, the primary goal became
the protection of ecosystems with threatened species and/or with commercial stocks in de-
cline (ISA, 2015). The process of identification of areas for conservation began with Radam
Project in the seventies. However, the criteria were based on a singular geological and geo-
morphologic phenomenon. Shortly afterwards, a new proposal arose suggesting to prioritize
areas with high concentration of endemism (ISA, 2015). In 1990 project Workshop 90 was
adopted. Under this project, the criteria for the selection of areas for conservation considered
bio-geographical analyses of endemism and richness of species, taking into account the occur-
rence of rare or threatened species, the presence of special geological phenomenon, and the
degree of vulnerability of ecosystems (ISA, 2015). However, due to technical difficulties in as-
sessing the richness of biodiversity, the focus switched to the distribution of ecosystems and
landscapes. Also, the possibility of the area being defensible and protected was taken into
consideration. Key event was the seminar held in September of 1999, which had the objective
to define priority areas and actions for conservation. As a result, a new map of priority areas
of Legal Amazon was created, which guides the establishment of protected areas (ISA, 2015).

The network of protected areas in Legal Amazon is ever being expanded. As of 2010, more
than 680 thousand km? in Para were declared as protected areas, constituting around 55% of
its territory.

Quantifying the percentage of forests saved due to the establishment of protected areas is of
key importance for governments aiming at reducing the intensity of deforestation. This in-
formation can be used in assessing whether the establishment of a particular protected area is
a financially sound decision, in deciding which protected areas require better management
and surveillance, or in understanding how park characteristics influence the percentage of
avoided deforestation.

However, this seemingly simple task is hampered by the fact that locations for protected ar-
eas are not selected randomly. For this reason land characteristics inside and outside pro-
tected areas are not similar, thus making direct comparisons between the two types of territo-
ries misleading. Since usually protected areas are located in lower deforestation pressure ar-
eas, the area of forests saved is exaggerated if non random location selection bias is ignored
(Joppa & Pfaff, 2011).

Recent academic literature uses matching methods to overcome non-randomness of location
selection. Among studies, which compute avoided deforestation by matching methods are
Joppa & Pfaff (2011), Andam et al. (2008), Nelson & Chomitz (2009) and Nolte et al. (2013).

However, those studies do not consider avoided deforestation in or due to buffer zones, thus
providing an incomplete picture of protection of conservation units. The Amazon Region Pro-
tected Areas Program (ARPA) was a four-year (2000-2003) project that described the protec-
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tion of conservation units in Brazil. ARPA revealed that the Government of Brazil contributed
to the creation of the protected area system by supplying US$ 18 million as direct support to
conservation units and US$ 6.5 for buffer zone management. In addition, the Pilot Program
for the Brazilian Rainforests (PPG7) supplied US$ 10 million as direct support to conservation
units and US$ 16.4 million for buffer zone management. The fact that more than 20 million US
dollars were allocated to buffer zone management and that the sum is almost as large as for
direct conservation unit protection illustrates the importance of buffer zone management.

The ARPA documentation describes buffer zones as being of benefit to local populations by
allowing low environmental impact activities. The participation of local communities is in-
creased by promoting the sustainable use of natural resources in buffer zones through income
generating activities such as tourism, sustainable use of genetic resources, and environmental
services. In this way local communities are expected to understand the benefits of protected
areas and become involved in their protection.

Thus, two seemingly contradictory goals of buffer areas exist: save the environment and al-
low exploitation to benefit local inhabitants at the same time. Indeed, Martino (2001) raises
the question do buffer zones serve as extensions of national parks or integrate parks and people. Some
authors assume the former (Martino, 2001). However, this is a misconception. If the goal of a
buffer zone is to save forests to the same extent as within a conservation unit, buffer zones as
such would not be necessary, since a protected area itself could be extended. In 2000, a law
governing the protected area system in Brazil was issued (law N¢ 9985, Conservation Units
National System, SNUC). Under article 2 of respective law, buffer zone is defined as the envi-
ronment around a protected area, where human activities are subject to specific norms and
restrictions in order to minimize negative impacts on that protected area. Also, where only
those human activities are allowed that do not cause damage to the nuclear area (article 41,
paragraph 1). Therefore, a buffer zone is meant to protect its conservation unit from defores-
tation rather than itself.

It is important to understand that buffer zones are multifunctional. Among their functions is
to reduce edge effects (Martino, 2001). If no buffer zones are established, park edges would be
exposed to potential deforestation or, at least, deforestation could reach to the very edges of
protected areas. Logged fields near forests are dry and prone to fire (Cochrane & Laurance,
2002), thus posing fire risk to park edges. Some other functions of buffer zones involve pro-
tection from gold mining, drug cultivation, poaching, and maintaining viable population of
species. However, those aspects are outside the scope of this research.

The research design is illustrated in Figure 7. Three treatment groups were identified: internal
protected area (core), external protected area (edge) and buffer zone. Edge effects were tested
by comparing avoided deforestation on park’s edge and in its core. Thus, the presence of ex-
cess deforestation on park edges can be detected. Avoided deforestation in buffer zones can
be both positive and negative. Positive result would indicate that forest resources in a buffer
zone are used in a sustainable way that helps to avoid deforestation relative to not having any
buffer zone. However, in areas with high deforestation pressure, often characterized by land
intensive agricultural businesses and relatively little forests remaining, the creation of a pro-
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tected area could increase deforestation in the surrounding areas of that protected area (sub-
stitution effect). In this case, avoided deforestation is negative.

Control

Buffer

Edge

Core

Figure 7. Layers of park protection

The goal of this research is to quantify the percentages of avoided deforestation for each pro-
tected area (including on its edge and in its surrounding areas), located in the state of Para,
during period 2000-2004 inclusive. Short study period is motivated by the fact that in 2005
and 2006 the majority of remaining territories of Para were declared as protected areas, thus
leading to an insufficient number of control samples to perform propensity score matching.
The contribution of this research lies in analyzing what repercussions have the existence of
buffer zones on avoided deforestation and whether edge effects are present. However, the re-
sults shall not be used for interpretations of how effective buffer zone management is for two
reasons. Firstly, some very well managed buffer zones may not avoid deforestation simply
because a protected area it surrounds is located far from deforestation hotspots. Secondly,
even if avoided deforestation in a buffer zone is significantly lower than in a corresponding
protected area, the benefits of a buffer zone may lie in protecting the edge of that protected
area or protecting park’s recourses and habitat from poaching and illegal mining. However,
the results shall be used in understanding how much deforestation was avoided depending
on parks’ characteristics and their location.

Buffer zone analysis is relatively rare in academic literature (Martino, 2001). Alexandre et al.
(2010) focus on determining optimal widths of buffer zones in Brazil. However, elaborate
studies that relate buffer zones and avoided deforestation are missing. This research fills in
this gap of knowledge.

5.2. Materials and methods

For this research the data on eleven variables was collected. The outcome variable is defores-
tation. The ten covariates used in building a propensity score include altitude, slope, surface
flatness, agricultural suitability, number of fires, percentage of forest cover, the nearest dis-
tances to major city, major road and river, and precipitation.
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Deforestation estimates were based on deforestation maps, provided by Brazil’s National In-
stitute of Space Research under PRODES project (INPE, 2014a). However, some deforestation
was observed later than it actually occurred due to cloud coverage. Therefore, it is likely that
some part of deforestation included in the analysis happened before 2000. In those cases the
data was still classified as deforestation during 2000-2004 year period. Likewise, certain par-
cels were cleared during the study period, but could not be identified due to cloud coverage.
To address the problem of cloud coverage, deforestation map that includes next year defores-
tation was downloaded. In case areas marked as clouds in the original deforestation map were
classified as forests in the latter map, clouds were replaced by forests in the original map. The
move is justifiable, since it is highly likely that areas, which are currently forested, were for-
ests last year. Since most cloud coverage was observed over intact, impenetrable forests, this
procedure substantially reduced the number of land parcels, marked as clouds in the original
deforestation map. Given that observations are cloud free, each area represented by a pixel is
classified as cleared, forested, non-forested or hydrographic. The figures are available at 120
meter spatial resolution. The data was aggregated by forming 8x8 squares. Deforestation was
computed as a percentage of deforested 120x120 meter parcels in each square kilometer dur-
ing 2000-2004. Finally, the data was resampled to 1 km spatial resolution using methods im-
plemented in ArcGIS. See Figure O1 for spatial patterns of all variables.

The data on altitude was retrieved from the Shuttle Radar Topography Mission (SRTM) 90m
Digital Elevation Model (DEM), version 2.1 (SRTM, 2014). It is measured as an average alti-
tude in meters over 90x90 meter parcels in each square kilometer. Slope was computed from 8
adjacent parcels, as described in Burrough & McDonell (1998). The figures are in degrees. Sur-
face flatness is the sum of height differences between each 90x90 meter parcel and the lowest
altitude in square kilometer under consideration. Agricultural suitability in this research is a
measure of climate, soil and terrain constraints for agriculture in 2002, where 1 refers to no
constraints and 7 - unsuitability for agriculture. The variable is a coarsened continuous vari-
able with values ranging from 0 to 100. The data was downloaded from the International In-
stitute for Applied System Analysis, Global Agro-Ecological Zones dataset, Plate 28 (IIASA,
2014). The shapetfiles containing coordinates of fires were obtained from Brazil’s National In-
stitute of Space Research (INPE, 2014b). The data was converted to raster format in ArcGIS,
where each pixel contains the number of fire events during the study period. The data on for-
est cover comes from MODIS Vegetation Continuous Fields (MOD44B, version 5) product
(NASA, 2014). The figures are five-year averages of forest cover percentages. Time distances
are travel time in minutes to the nearest city of 50000 or more inhabitants in 2000. The data
was retrieved from the Global Environment Monitoring Unit - Joint Research Centre of the
European Commission (GEMU-JRC, 2014). Euclidean distances to the nearest river (in meters)
were computed in ArcGIS. The computations were based on the river shapefile, downloaded
from GEOFABRIK, OpenStreetMap (GEOFABRIK, 2014). The road shapefile was obtained
from the same source. Road distances are Euclidean distances in meters to the nearest high-
way, primary, secondary, or tertiary road. I acknowledge that new roads were built in the last
ten years. However, this shapefile is the best information that could be accessed. Precipitation
data in millimeters was obtained from World-Clim (World-Clim, 2015). The figures are mul-
tiyear averages of precipitation. Since the study period encompasses five years, those figures
should reflect actual precipitation relatively well.
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Territories covered by clouds were removed from the analysis. Also, deforestation data was
not available for a square-shaped area in the northeastern Parad due to satellite technical prob-
lems. As a result, this area was not considered. Additionally, all observations with sparse cov-
erage of forests in 2000 (less than 20%) were discarded. This automatically eliminated hydro-
graphic areas, depleted lands, urban areas, savannas, etc. Finally, out of the remaining obser-
vations 20% were chosen randomly for matching.

The shapefile of administrative borders of Para was downloaded from GADM database of
Global Administrative Areas, version 2.0 (GADM, 2014). The shapefiles of protected areas
were obtained from the World Database of Protected Areas (WDPA, 2014). Additionally,
missing information on attributes of protected areas was filled in using the National Cadastre
of Protected Areas, provided by Brazil's Ministry of Environment (MMA, 2014).

A protected area was excluded from the analysis if: 1) it was established in 2005 or later, 2)
has an area of less than 200 km? or contains less than 200 suitable observations for matching
within its boundaries, 3) is embedded in another protected area and hence has no buffer zone
as such, and 4) is classified either as an environmental protection area or as a particular pat-
rimonial reserve (except the protected area of Arquipélago do Maraj6, which is covered by
dense forests and is interesting due to its size). The last criterion follows from SNUC (article
25), which states that environmental protection areas and particular patrimonial reserves are
not required to be surrounded by buffer zones.

Thus, the analysis concerns 36 protected areas in Para (see Appendix P for geographical loca-
tion and park characteristics). However, buffer zones and edges were not constructed sepa-
rately for each protected area, because some parks share borders. Instead, buffers and edges
were formed on a basis of geographical units. The justification for this approach lies in the
fact that assigning a buffer for each protected area that borders other protected areas is com-
plicated, since the management of a buffer zone near one park may be affected by the man-
agement of a buffer zone near another park in the same geographical unit. Moreover, build-
ing a buffer around a group of protected areas increases the number of observations that fall
within that buffer and raises the chance that reliable matching results are achieved. Therefore,
17 buffer zones and 17 edges were formed.

Finally, the widths of both buffer zones and park edges have to be selected. SNUC does not
specify the exact width of buffer zones, the law only states that the limits of buffer zones may
be defined either under the establishment of protected area or afterwards (article 25, para-
graph 2). However, the resolution by Brazil’s National Council of Environment (CONAMA)
(Ne 013, article 2) states that any activity within a 10 kilometer distance from conservation
units that may affect the biota must be licensed by the competent environmental authority.
Therefore, the chosen width of a buffer zone is 10 kilometers. As for park edges, too narrow
width may lead to the lack of observations for reliable matching, too wide width may conceal
(average out) potential edge effects. One of the main threats to park edges is fires. Cochrane &
Laurance (2002) studied edge effects caused by fires in the state of Pard and found that fires
may penetrate up to 2.4 kilometers inside forests destroying 40% of all standing stems. There-
fore, a selected width of a park edge in this study is 3 kilometers.
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The most similar pairs of observations from inside and outside of each park’s territory were
identified by propensity score matching (the computations were done using psmatch2 com-
mand in Stata 11.0). The idea of the method is to compare a deforestation estimate of each
land parcel inside a protected area (the treatment sample) with a deforestation estimate in the
most similar land parcel from the control sample. To obtain a single score from ten variables a
simple logistic regression, as implemented in Stata 11.0, was applied. Propensity scores were
constructed by computing probabilities of success for each observation (latent dependent
variable was assigned value 1 for observations in the treatment group). Formally:

exp(X'b)

Lo (X) (17)

s

Here PS; is the propensity score of i observation, x; represents values of all ten covariates of
i" observation, f is the vector of maximum likelihood estimates of coefficients on covariates,
and letter T denotes transpose. Next, each observation in the treatment sample is matched
with one observation from the control sample in a way that absolute difference of propensity
scores is minimal among all possible pairs in the control sample. This method is known as the
nearest neighbor matching and is described formally as follows (Becker & Ichino, 2002):

C(i%)=min|ps, — ps.| (18)

C(i°) is the set of control units matched to the treated unit i* with an estimated value of the
propensity score of matched control unit (Becker & Ichino, 2002). Zero difference between
propensity scores of a cell from the treatment sample and its nearest neighbor from the con-
trol sample would imply perfect matching given observed characteristics. In many cases the
minimal difference proved to be close to zero. However, to enhance the quality of avoided
deforestation estimates, caliper of 0.01 was imposed. That is, observations from the treatment
group were only considered paired if the absolute difference between propensity scores did
not exceed 0.01. This procedure ensures that poor matches are removed from the analysis. If
multiple observations from the control sample with exactly the same propensity score were
identified to be the closest matches, all those observations were considered as matched pairs
of a corresponding treatment observation. A control estimate of deforestation under such
cases is an average of deforestation estimates over all matched pairs. Also, matching was with
replacement - the same control cell could have been paired with more than one treatment cell.

Average treatment effects on the treated (ATTs) are calculated as differences between defor-
estation values of matched control and corresponding treatment observations. The resulting
figures were averaged to obtain results on protected area level. Formally:

ATT =E(Y'-Y") (19)

Here Y' denotes deforestation value of observation i in the treatment sample and Y°"stands
for deforestation value of matched pair of observation i.
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Further, the quality (balance) of matching has to be assessed. One way is to perform t-test
comparisons. However, this procedure is highly controversial due to its sensitivity to sample
size. That is, under large number of observations the test tends to suggest that data is imbal-
anced even if differences in the means are negligible. Therefore, an alternative measure, stan-
dardized differences, was selected. Following Rosenbaum & Rubin (1985), standardized per-
centage bias of covariate j is estimated as follows:

om

% % <100 (20)

\/0.5(var(1x})+var(x?))

biasj =

Here x. and X" are average values of covariate j in the treatment and matched control sam-

ples respectively, var (X

J ) and Var(xf) are variances of covariate j values in the treatment and

control groups respectively.

Overall bias was then computed as an arithmetic average of 10 biases in absolute terms:
o 10
bias=0.1)"|bias,| (21)
=1

To compute percentages of bias reduction, standardized percentage biases were estimated
both before and after matching. Then, the latter was divided by the former. Finally, obtained
proportions were subtracted from one and multiplied by 100 to express reduction in percent-
ages. If bias reduction of covariate j is 100 percent, it implies that the mean value of covariate j
in matched control sample is identical to the mean value of covariate j in corresponding treat-
ment sample. Hence, the bias resulting from observed covariates is fully eliminated. How-
ever, this does not guarantee that pairs are well matched, since, frequently, not all important
factors are observed. In theory, it is possible that two locations in the treatment and control
samples may have similar observed characteristics, but at the same time they may differ in
important characteristics, which are unobserved. However, if a sufficient number of propen-
sity score covariates are included, such a possibility becomes unlikely. Bias reduction of zero
percent would imply that the bias before and after the matching remained unchanged. Nega-
tive values in bias reduction would imply that matching degraded inferences relative to not
matching. Poor matches are a consequence of lacking relevant control observations. There-
fore, it is important that the control sample includes locations with characteristics similar to
characteristics of treatment locations.

Further, approximate standard errors of treatment effects were used to assess whether or not
estimates of avoided deforestation are statistical zeros. Those figures are computed assuming
independent observations, homoskedasticity of the outcome variable within the treated and
within the control groups and that the variance of the outcome does not depend on the pro-
pensity score (Leuven & Sianesi, 2003). The formula under the nearest neighbor matching
simplifies to ( is the number of matched pairs):
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(22)
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Finally, edge effects were tested by comparing ATTs in internal (core) and external (edge) ar-
eas of protected areas. The t statistic for the test of mean equality assuming unequal variances
of ATT estimates of internal and external park areas was computed using ttest command in
Stata 11.0™. The null hypothesis of the test is that ATT in core area of a conservation unit is
equal to ATT on its edge.

5.3. Results and discussion

Table 8. Determinants of propensity score The fact that locations of conservation units are
highly selective is reflected in Table 8X. The re-
Variable Coefficients and sults reveal that all ten covariates are statisti-
standard errors cally significant at 1% level. Protected areas, as
Cons -4361.662 (70.8596)* . .
Altitude 0.8638 (0.0616)* cpmpareq w%th areas under no protection, are
Slope 1141634 (8.3334)* situated in hlgh'er aljcltudes with sfcee.p.er slopes
Surface flatness 0. 1336 (0.004021)* and flatter terrains, in closer proximities to ur-
Agricultural suitability -33.7718 (6.1986)* banized areas and further away from the near-
Number of fires -1081.213 (19.5347)* est roads and rivers. Conservation units also
Forest cover 9.5959 (0.4949)* face fewer fires, are covered by larger percent-
Time to city -0.2872 (0.004072)* age of forests, and are located in regions with
Distance to river 0.007019 (0.0003034)*  fewer constraints for agriculture and higher
Distance to road 0.018 (0.0001032)* amount of precipitation.
Precipitation 1.1179 (0.0224)*
McFadden R 0.2039 To perform a quality assessment of matching,
# obs 196494 standardized percentage biases shall be ana-
Ireatment (%) 29.5 lyzed. Table 9 provides statistics for such analy-
Control (%) , 70.5 sis. The values reported in Table 9 are weigh-
ft;lg grld errors are in parentheses ted averages (weighted by matched pairs). The
Parameters are multiplied by 1000 highest percentage of bias after matching re-
Buffer zones and park edges were not included in mains in covariates of altitude, surface flatness
the treatment group and distance to the nearest road. The least per-

Only 20% of samples were used in the estimation

centage of the remaining bias is in fire covari-
(chosen randomly)

ate. Overall results achieved satisfactory mean
absolute standardized percentage bias of 7.8%.
There is no clear consensus over what percentage of bias should imply proper matching, but
10% mark has been taken to indicate a negligible difference in the means (Austin, 2011). Most
bias was eliminated in fire covariate; also, more than 90% of bias was removed in precipita-
tion and distance to nearest road covariates. The lowest percentage reduction in absolute bias

IX For technical note see Stata Base Reference Manual, Volume 1, A-H, Release 11, page 2002.
X Here a single logistic regression was estimated. However, matching was done independently for each geo-
graphical unit (park core, its edge, and buffer zone).
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was achieved in slope and surface flatness variables. Overall, propensity score matching was
successful, as it reduced the initial bias by almost 88%.

Table 9. Balance statistics: mean absolute standardized percentage bias (MASPB) after matching and percentage
of bias elimination (BE)

MASPB alt slope flat agr fires fc time  rivers roads prec mean
Buffer 11.96 7.66 11.2 8.26 1.05 8.76 9.79 7.89 12.37 9.19 8.84
Edge 6.66 5.29 6.91 416 2.29 4.67 4.47 49 419 497 4.86
Core 8.14 7.56 8.02 7.28 2.48 41 6.15 6.89 5.7 8.68 6.53
All 10.58 7.15 10.08 7.33 1.41 7.57 8.42 7.19 10.18 8.26 7.84
BE, % alt slope flat agr fires fc time  rivers roads prec mean
Buffer 8938 8154 7442 8351 98.05 8742 8095 79.62 9121 9127 8752
Edge 91.85  78.61 75.48 90.2 9337 9053 90.01 8899  93.89 92.7 90.07
Core 90.52  75.02 7471 82.03 9356 9201 8577 8626 9291 8783 8757
All 89.85  80.76 74.6 84.67 97.1 88.18 8297 8235 9161 91.3 87.93

The results revealed that 0.72% of conservation units’ surface avoided deforestation during
2000 and 2004 inclusive due to the existence of protected areas (see Table 10). This figure
translates into ~2900 km? of forests. Avoided deforestation in internal areas of conservation
units is 1.12%, in external areas (edges) the result is 1.52%. However, excessive 0.89% of sur-
face was deforested around conservation units as compared with no protection. Higher per-
centage of forests saved on park edges relative to core areas may be explained by arguing that
in some instances edges of protected areas are subject to higher deforestation pressure than
their internal areas, since the former are directly exposed to open (scarcely forested) areas,
which facilitates access to forest resources. The figures also tend to suggest that no edge ef-
fects are present, but the full picture can be drawn only after the analysis on conservation unit
level. Negative avoided deforestation in buffer zones suggests that the substitution effect
dominates. That is, some deforestation events are directed towards the proximities of a pro-
tected area rather than occurring inside it. However, this implication is just a general result
and does not necessarily hold for each buffer zone separately.

Further, the findings reveal that protected areas established prior to 1990 shielded a higher
percentage of forests from deforestation than areas established during the succeeding decade.
The result is as expected, as longer period of protection may imply more effective manage-
ment. Unexpectedly, protected areas established during the study period avoided very simi-
lar percentage of deforestation as conservation units, present since at least 1989. Possibly, lo-
cations of newer conservation units are subject to much higher deforestation pressure. Pro-
tected areas governed by ministries or agencies avoided more deforestation than areas gov-
erned by indigenous people. The result is intuitive, since indigenous people in Para live fur-
ther away from urbanized areas, that is, were deforestation pressure is lower. It is also evi-
dent that strict protection areas (IUCN categories Ia, Ib and II)XI avoided roughly 1.5 times
more deforestation than sustainable use areas (IUCN categories V and VI). Finally, large con-

XI Refer to IUCN (2015) for the description of IUCN categories.
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servation units can be linked with lower avoided deforestation. This has two potential expla-
nations. Firstly, large intact forests and their protected areas are usually located further away
from urbanized areas (lower deforestation pressure). Secondly, larger areas are more difficult
to manage.

Table 10. Average treatment effects on the treated by park characteristics

ATT No protected areas No matched pairs
Overall -0.72 70 80167
Buffer 0.89 17 16910
Edge -1.52 17 5545
Core -1.12 36 57712
Period:
1961-1989 -1.45 15 24811
1990-1999 -0.65 14 23383
2000-2004 -1.41 7 9518
Government:
indigenous people -0.77 19 38723
agency/ministry -1.82 17 18989
IUCN category:
I-11 -2.48 4 2728
V-VI -1.71 13 16261
Area (square km):
200 - 3000 -1.29 11 2747
3000 - 10000 -2.01 15 12541
More than 10000 -0.84 10 42424

ATTs here are weighted averages of ATTs of geographical units
Avoided deforestation on edges of conservation units is not considered in the breakdown of ATTs by park char-
acteristics (year of establishment, governing type, [IUCN category, and area)

For comparison, Nolte et al. (2013), who investigated avoided deforestation in Legal Amazon,
find that strict protection and sustainable use areas established before 2000 saved about 2% of
forests during 2001 and 2005 year period. This figure seems to corroborate the findings of this
study (approximately 1.8% forests saved over the five-year study period). However, Nolte et
al. (2013) find that conservation units under the management of indigenous people avoided
more than 4% of deforestation over a five-year period in Legal Amazon, whereas the findings
of this research suggest only 0.8% of avoided deforestation in protected indigenous lands of
Para. Andam et al. (2008) concluded that the network of protected areas in Costa Rica saved
around 10% of forests over almost four decades. This result is similar to the result for Para,
which is reasonable, because Costa Rica and Para are similar in terms of climatic and economic
conditions. Joppa & Pfaff (2011) find that on global scale around 0.5% of forests were salvaged
from deforestation between 2000 and 2005.

It is important to understand that low figures of avoided deforestation do not imply that the
management of these particular protected areas is ineffective in reducing deforestation. Some
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protected areas are precautionary, that is, are created in remote areas, where little deforesta-
tion happens. Therefore, low figures of avoided deforestation may reflect the degree of defor-
estation pressure rather than effectiveness. Since different locations face very different rates of
deforestation, results of avoided deforestation vary greatly between different protected areas.
This observation was made both by Nolte et al. (2013) and Joppa & Pfaff (2011), and is con-
firmed for Para by analyzing Figure 9. The analysis shall be complemented by the analysis of
balance and statistical significance of ATT estimates (Figure 8).
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Figure 8. Mean absolute standardized percentage biases (A) and statistical significance of avoided deforestation
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As can be inferred from Figure 8A, characteristics of major part of small conservation units
and buffer zones were well matched with characteristics of respective control samples. Larger
territory of a conservation unit seems to negatively affect the quality of matching. Avoided
deforestation estimates of conservation units that appear in dark colors in Figure 8A shall be
interpreted with caution. Figure 8B reveals that avoided deforestation is a statistical zero in
conservation units of Araweté Igarapé Ipixuna (5)X!, Arquipélago do Marajo (6), Nhamunda/
Mapuera (21), Panara (22), Rio Paru D'Este (25) and its buffer zone, and Parque do Tumu-
cumaque (34) and its buffer zone, as well as in buffer zones around conservation units of
Amazonia (2), Andird-Marau (3), Caxiuana (9), Itaituba I (11), Itaituba II (12), and Verde para
Sempre (35). Zero avoided deforestation in those conservation units is an intuitive result,
since forests located in northwestern Para are remote and intact, and Arquipélago do Marajo
is primarily aimed to protect marine resources.

Figure 9 reveals that the highest percentage of avoided deforestation happened in the central
part of eastern Para (located in so-called Arc of Deforestation), alongside the Trans-Amazonian
highway and on the banks of Amazon River, that is, in deforestation hotspots. The most pro-

XII Figures in parentheses are spatial references of protected areas. These numbers correspond to the numbers in
Figure P1. The names of conservation units can be found in Table 11.
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tected conservation units include indigenous lands of Arara (4) and Parakana (23), and na-
tional forest of Tapajos (30). Specifically, avoided deforestation in core areas of those conser-
vation units are 9.5, 8.2 and 6.1 percent respectively over the five-year study period. Interest-
ingly, two protected areas - Itacaiunas (10) and Alto Rio Guama (24) - faced excessive defor-
estation relative to no protection at all. This is not a new finding. Nolte et al. (2013) stress that
global protected area assessments have identified countries where protected areas exhibit
higher rates of land use change than counterfactual territories. The two potential explanations
provided by these authors are methodological weaknesses and protests against protection.
Protests may arise because local communities no longer have access to natural resources upon
which they depend.

Avoided

deforestation, %o

Figure 9. Avoided deforestation in percentages during 2000-2004 year period. Avoided deforestation on edges of
protected areas can hardly be analyzed from the map. Therefore, the reader is directed to Table 11 for edge effect
analysis. In cases where a buffer zone or park edge share a border (or overlap) with a protected area, excluded
from the analysis, territories along that border were cut from buffer or edge zone. Only those observations that
fall within territory of Para were used in computations of ATT. However, on the map full territories of protected
areas are depicted (both territories inside and outside the state of Pard).
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An interesting observation can be made by analyzing geographical arrangement of protected
areas in Pard. Some areas have borders alongside rivers or mountains, thus forming natural
buffer zones. In Para, many protected areas share borders, implying that the total perimeter
of conservation units is reduced. This decreases the area exposed to edge effects and reduces
the area needed for buffer zones, thus facilitating buffer zone management. Also, many pro-
tected areas are round, which further shortens the perimeter of conservation units.

As can be inferred from Figure 9, buffer zones of conservation units located to the west of
highway BR-163 and on the banks of Amazon River contributed to avoiding deforestation.
Most notably, those are the buffers around conservation units of Mulata (19), Rio Trombetas
(26), Saraca Taquera (29), Tapajos (30), and, unexpectedly, Mae Maria (17). In those territories
legal protection during the study period was achieved without damaging surrounding areas,
and even protecting them from deforestation. However, in the eastern part of Pard, known for
its high rates of deforestation, the substitution effect takes over. Buffer zones that experienced
the most additional deforestation due to the establishment of conservation units are the buff-
ers of Parakana (23) and Alto Rio Guam4 (24). The main conclusion stemming from the find-
ings is that buffer zones in Para do avoid deforestation, but only up to a certain extent of de-
forestation pressure.

Table 11. Edge effect analysis

GU Name of a protected area Difference P(T <t) P(IT]>[t])

Altamira, NF (1)

1 Riozinho do Anfrisio, ER (27) 0.0098 0.5079 0.9842
Amazonia, NP (2)
,  Andira-Marau, IL (3) 05451 0.1691 0.3383

Itaituba I, NF (11)
Itaituba II, NF (12)

Arara, IL (4)
Araweté Igarapé Ipixuna, IL (5)
3 Kararao, IL (15) 1.0555 0.9809 0.0383
Koatinemo, IL (16)
Trincheira Bacaja, IL (33)

Badjonkore, IL (7)
Kayapo, IL (14)
Menkragnoti, IL (18)
Panarg, IL (22)

0.0504 0.5361 0.9278

Carajas, NF (8)
Itacaiunas, NF (10)
5 Tapirapé, BR (31) -0.8739 0.2391 0.4783
Tapirapé-Aquiri, NF (32)
Xikrin do Rio Catete, IL (36)

6 Caxiuana, NF (9) 1.1873 0.8394 0.3212

7 Jari, ES (13) 1.113 0.9487 0.1026
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Table 11 (continued)

8 Mae Maria, IL (17) -0.4672 0.4469 0.8938
9 Mulata, NF (19) -1.5833 0.047 0.094
Munduruku, IL (20)
10 Sai-Cinza, IL. (28) 0.4762 0.8648 0.2705
11  Nhamunda/Mapuera, IL (21) Not reported
12 Parakana, IL (23) 3.3291 0.9511 0.0978
13 Alto Rio Guamé, IL (24) -5.0842 0.0485 0.0969
Rio Paru D'Este, IL (25)
14 Parque do Tumucumagque, IL (34) Not reported
Rio Trombetas, BR (26)
15 Saraca Taquera, NF (29) 0.5177 0.7881 0.4239
16 Tapajos, NF (30) 0.2512 0.5723 0.8553
17 Verde para Sempre, ER (35) 0.1758 0.5506 0.8987

Abbreviations: BR - biological reserve, ES - ecological station, ER - extractive reserve, IL - indigenous land, NF
- national forest, NP - national park; environmental protection area of Arquipélago do Marajé (marked as 6 in
Figure P1) is not included, since it is not required to be surrounded by a buffer zone by law; difference here is
calculated as DIFF = ATT™® - ATT*®; some results are not reported, since avoided deforestation in both core and
edge were found to be statistical zeros

It shall not be forgotten that buffer zones are multifunctional and one of their goals is to pro-
tect conservation units from edge effects. P values of two alternative hypotheses are reported
in Table 11: one stating that ATTs are not equal and the other that ATT on park edge is lower
than in its core. Generally, the results suggest no evidence of edge effects in Para. This implies
that park edges avoid statistically equal percentage of deforestation as compared to core ar-
eas. Possibly, this is due to effective buffer zone management.

Finally, it is interesting to visually inspect maps to see if the existence of protected areas can
be visually observed. Figure 10 is an image of an area with high deforestation pressure, where
protected areas of Parakana and Mae Maria are located. The contours of both protected areas
can be seen clearly in Figure 10, indicating that legal protection is a very effective measure in
avoiding deforestation within parks’ territories. The picture also seems to support the conclu-
sion of no edge effects in those two conservation units, since areas along the edges and core
areas seem to be equally intact. However, lands in the immediate proximities of both pro-
tected areas are extensively deforested, suggesting a strong substitution effect. Also, both
conservation units can be dubbed as green islands*1l. The fact that only protected lands remain
forested in territories with high deforestation pressure underlies the importance of legal pro-
tection.

XIII Tsolation of vegetation is a huge problem in ecology. For implications of green island problem refer to DeFries
et al. (2005).
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Figure 10. Parakana and Mdae Maria (picture taken on 2014 04 30). Source: Map data © 2014 Google.
5.4. Conclusions

All ten covariates proved to be important factors to consider in constructing a propensity
score. Propensity score matching as a technique proved to be successful, since overall bias af-
ter matching dropped to satisfactory 7.8%, thus eliminating 88% of the initial bias. However,
matching in few larger protected areas featured some balance problems.

The findings suggest that Para’s network of protected lands avoided 0.72% of deforestation
during 2000 and 2004 inclusive as a consequence of protection. Avoided deforestation in cores
and edges of protected areas was 1.12% and 1.52% respectively. However, buffer zones ex-
perienced excessive deforestation equal to 0.89% as a result of displaced deforestation. Con-
servation units that avoided the most deforestation are those established prior to 1990, gov-
erned by ministries or agencies, classified under categories I and II under IUCN scheme, and
smaller in territory. The results also indicate that the most deforestation was avoided in pro-
tected areas located on a deforestation frontier in mid-eastern Pard, alongside the Trans-
Amazonian highway, and on the banks of Amazon River. More than 5% of deforestation was
avoided in Arara, Parakana and Tapajos. In protected areas, isolated by natural obstacles,
avoided deforestation was concluded to be a statistical zero. Those include Arquipélago do
Maraj6, Nhamundéd/Mapuera, Rio Paru D'Este, and Parque do Tumucumaque. Additionally,
legal protection had no effect on deforestation patterns in Araweté Igarapé Ipixuna and
Panard. Avoided deforestation in Alto Rio Guama and Itacaiunas was found to be negative.

Buffer zones around conservation units located to the west of highway BR-163 and on the
banks of Amazon River avoided deforestation. The most deforestation was avoided in buffer
zones around Mulata, Rio Trombetas, Saracd Taquera, and Tapajés. On the contrary, buffer
zones located in eastern Pard were overwhelmed by the substitution effect (except for the
buffer around Mae Maria). The most severe excessive deforestation was found in buffer zones
of Alto Rio Guama and Parakana. However, the results offer no evidence of edge effects in
spite of geographical location of a conservation unit.

The findings call for stronger buffer zone management on deforestation frontiers. However,
the results cover time period 2000-2004. Analyses based on recent observations are needed.
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Unfortunately, prospects of such analyses are hampered by the lack of counterfactual samples
resulting from a continuous creation of new conservation units. Future research should focus
on finding ways to perform matching under the shortage of adequate control pairs.
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Chapter 6

Using artificial neural networks and eigenvectors to
predict deforestation at 5x5 kilometer grids

Abstract. This article aims to map deforestation at 5x5 km grids from lagged and time-fixed
data. Important innovation lies in inclusion of eigenvectors to solve spatial autocorrelation prob-
lem and to improve prediction accuracy. Initially, data on 20 covariates is collected, mostly con-
sisting of past deforestation in a cell and in its nearest neighbors, distance covariates, protection
covariates and terrain characteristics. Using backward elimination procedure 10 key covariates
are identified. The residuals of OLS model with selected variables are severely clustered. How-
ever, after adding eigenvectors to the covariate list OLS model errors are randomly distributed,
and adjusted R squared increases by more than 50%. Further, artificial neural network is applied
to increase generalization ability. Testing sample RMSE of trained network is lower than the
corresponding measure of OLS by more than 10%. Correlation coefficient between actual defor-
estation and simulated values from the final artificial neural network with eigenvectors is 0.79.

Keywords. Deforestation, prediction, eigenvectors, artificial neural networks.
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6.1. Introduction

Anthropogenic land conversion is a huge threat for environmental sustainability. The conver-
sion from forests to pastures and, to a lesser extent, to croplands continues in the tropical
rainforests of the Amazon. In order to properly respond to deforestation, the authorities need
fine resolution maps of deforested areas. Academic researches on mapping and predicting
deforestation could be grouped into four distinct types. Firstly, deforestation maps are pro-
duced for deforestation monitoring. In Brazil deforestation activity is being traced by DETER,
which is a satellite-based system that captures and processes georeferenced imagery on forest
cover in 15-day intervals. These images are used to identify deforestation hotspots and issue
alerts signaling areas in need of immediate attention (Assuncao et al., 2013). The system can
detect deforestation events larger than 25 hectares. Recent work by Diniz et al. (2015) de-
scribes the upgraded variant of DETER, called DETER-B, which is capable of detecting log-
ging spots smaller than 25 hectares. Kehl et al. (2012) use MODIS imagery to develop a tool
capable of detecting daily deforestation in the Amazon. Jacobson et al. (2015) offer a method
to detect near real-time deforestation using Google imagery. Some studies map deforestation
that already happened. Those studies usually offer some refinements over existing methods.
Examples of such researches are Arai et al. (2011), Morton et al. (2005) and Zhan et al. (2002).
Asner et al. (2006) map selective logging undetectable by DETERS system. Another sort of
studies aims to project deforestation into far future. Among such investigations are Lapola et
al. (2011), Laurance et al. (2001), Moreira et al. (2009), Rosa et al. (2013), Soares-Filho et al.
(2006) and Wassenaar et al. (2007). Those studies offer deforestation projections under differ-
ent policy scenarios. Finally, some academic works aim to predict next period deforestation.
Such studies are scant. One example is the research by Mas et al. (2004), who predict next pe-
riod deforestation in Mexico. Such investigations offer important benefits, since they 1) pro-
vide a better understanding on how various processes are linked with deforestation, 2) gen-
erate future scenarios of deforestation, 3) predict the locations of forest clearings and 4) are
important piece of information for policy making (Mas et al., 2004). This paper contributes to
the literature by offering a method to map deforestation from past and time-fixed variables.

The study exploits the fact that deforestation is spatially and temporarily contagious. Conta-
gion implies that locations surrounded by recently deforested areas are more likely to suffer
deforestation themselves (Rosa et al., 2013). This phenomenon is widely discussed in aca-
demic literature (see, for example, Aguiar et al., 2007, Alves, 2002, Asner et al., 2006, Espin-
dola et al., 2011, Robalino and Pfaff, 2012, Wassenaar et al., 2007). Figure Q1 illustrates defor-
estation contagion in the study area. It reveals that deforestation are not only spatially, but
also temporally contagious. The fact that deforestation is contagious is promising for predic-
tion. However, positive spatial correlation of observations leads to clustered model errors
when deforestation is predicted from its determinants by OLS regression. What is important,
model prediction accuracy could be improved greatly by eliminating non-randomness in spa-
tial distribution of model errors. An effective way to avoid spatial autocorrelation is to select
cells from every k' row and column, as is done by Arima et al. (2007). Some authors apply
methods that eliminate spatial dependencies without sacrificing observations. For example,
Aguiar et al. (2007) implement spatial lag model. This research uses the technique known as
spatial filtering. The main source of spatial autocorrelation in the dependent variable is unob-
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served covariates (Tiefelsdorf and Griffith, 2007), whereas spatial filtering is a modern and
the most promising method in filtering unobserved covariates from the initial model errors.

The study uses OLS regression to obtain eigenvectors. However, predicted deforestation is an
output of trained artificial neural network (ANN). The method has strong capability to cap-
ture nonlinearities between the dependent variable and its covariates, is non-parametric and
is able to learn data relationships that are not otherwise known. Examples of ANN applica-
tions in deforestation and forest fire modeling are found in Kehl et al. (2012), Maeda et al.
(2009) and Mas et al. (2004).

6.2. Study area

The study area is a regular square tessellation. It is located in the state of Rondonia between
approximately 9° 23" and 10° 33" South and 63° 32" and 64° 48" West (Figure 11). It encom-
passes ~18000 square kilometers and contains 728 5x5 kilometer parcels. The northern half of
the study area lies in the municipality of Porto Velho, southwestern quadrant is located in
Nova Mamoré, Buritis is located in the mid section of the study area, and southeastern corner
lies in Campo Novo de Rondénia. Additionally, the study region includes western edges of
Alto Paraiso, Ariquemes and Monte Negro.

0510 20 30 40

Municipality boundaries
Figure 11. Geographical location of the study area

The study area is densely covered by unofficial road network. It totals more than 6500 kilo-
meters (see Figure 12). The only city with more than 25000 inhabitants is Buritis. Some forests
within selected study area are legally protected. Specifically, conservation units include in-
digenous lands of Karipuna and Karitiana (southern edge), national park of Guajara-Mirim
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(northern part), extractive reserve of Jaci-Parana and national forest of Bom Futuro. The study
area can be characterized by intensive deforestation. In 2012 the area of cleared forests totaled
230 km?. The following year deforestation reached 431 km?. In 2014 additional 378 km? were

deforested. At the end of 2014 8636 km? of forests remained.

® Buritis " Indigenous lands
—— Rivers [ |ITUCN V1
— Official roads B 1UCN -1

—— Unofficial roads

Figure 12. Location of roads, rivers, city of Buritis and conservation units. Those are clas-
sified into indigenous lands, sustainable use areas (IUCN category VI) and strict protec-

tion areas (IUCN categories I and II).

6.3. Materials and methods

This section is comprised of three parts. Firstly, data sources and main processing steps are
revealed. Second part explains how observed covariates and eigenvectors are selected. Lastly,
the calibration of the artificial neural network is concisely described.
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6.3.1. Data sources and processing

Initially, data on 21 variables was collected. Firstly, PRODES map of 2014 in raster format was
downloaded from Brazil’s National Institute of Space Research (INPE, 2016a). The cells are
classified into forested, non-forested and deforested by the year of deforestation (some cells
are classified as hydrography and clouds, but those are few). The data is distributed at ~60 m
spatial resolution. Deforestation in 2014 (target variable) was measured as the percentage of
cleared pixels in each 5x5 km parcel. Studies that model deforestation in Legal Amazon at
square grids (those are Kirby et al., 2006 and Rosa et al., 2013) guided which covariates to se-
lect. This study is based on the hypothesis that deforestation is spatially and temporally con-
tagious. Therefore, four covariates, consisting of past deforestation (one-year and two-year
lags, coded as d12 and d13 later in the text) in a parcel and in its adjacent parcels (d12f and
d13f), were included in the analysis. I adhere to Queen’s definition of adjacencyX!V. Likewise,
previous period forest coverage (forl3) was estimated as a percentage of forested pixels
within each 5x5 km parcel. Lagged fire covariate (f13) and its focal variable (fire in adjacent
cells, f13f), measured as the total number of fire events, were constructed from decimal coor-
dinates of fire events, available on INPE’s website (INPE, 2016b). The motivation to include
fires is that selective logging usually precedes the burning. Since the moisture content is ini-
tially high, the vegetation is left to dry until the next dry season, when it is finally burned in
order to clear the area (Cochrane and Laurance, 2002). Thus, fires reflect past deforestation
and potentially can predict future clearings if the hypothesis of temporal contagion holds.
Further, five distance covariates were included: Euclidean distances to the nearest official
road (rof), unofficial road (runf), river (riv), city (cit) and open area (op13). Road shapefiles
(both official and unofficial roads) were obtained from IMAZON with help of Stefania Costa.
River shapefile was retrieved from GEOFABRIK, OpenStreetMap (GEOFABRIK, 2016). Deci-
mal coordinates of Amazon’s cities are distributed by Brazil’s Institute of Geography and Sta-
tistics (IBGE, 2015). Distance to open area is a measure of accessibility. It is measured as
Euclidean distance to the nearest non-forested cell. Thus, cells in open areas have value 0 and
isolated cells in the middle of forests have high values. All distance covariates were estimated
at 60 meter spatial resolution and later aggregated by averaging the values to form 5x5 kilo-
meter grids. This average provides an effective index of density (Laurance et al., 2002). The
research further includes three protection covariates: one for indigenous lands (indig), one for
sustainable use areas (sust) and one for strict protection areas (strict). The polygons of conser-
vation units are freely accessible at the World Database of Protected Areas (WPDA, 2016). The
polygons were merged onto the polygon of Rondénia. The combined shapefile was converted
into 60x60 meter raster grids. In this way, the borders of conservation units can be adequately
reflected. Each cell was classified either as protected (discriminating between the three types
of protection) or unprotected. Afterwards the data was aggregated by calculating the mean of
binary values within each 5x5 km? quadrant. Next, the list of covariates was supplemented by
terrain and climatic characteristics. Elevation in meters (elev) comes from the Shuttle Radar
Topography Mission 90m Digital Elevation Model, version 2.1 (SRTM, 2016). Slope in degrees
(slope) was calculated from adjacent cells. A measure of climate, soil and terrain constraints

XIV' According to Queen’s definition a cell is adjacent if it either shares a border or a corner with a neighboring
cell.

83



for agriculture (soil) was obtained from the International Institute for Applied System Analy-
sis, Global Agro-Ecological Zones dataset, Plate 28 (IIASA, 2016). Precipitation in millimeters
(multiyear average, prec) is found on World-Clim’s website (World-Clim, 2016). Lastly, rural
population in 2015 (pop) was retrieved from WorldPop (WorldPop, 2015). All covariates were
grouped into time-varying (dynamic) and time-consistent (static). Past deforestation and fires
and their focal variables, forest cover, distance to open area and protection covariates were
treated as dynamic. Some variables that are dynamic were treated as static due to data con-
strains. Those include rural population, distances to roads, distance to cities and precipitation.
However, as those variables change slowly over time, static treatment does not pose a serious
concern.

6.3.2. Covariate selection and spatial filtering

iy Initially, the covariates were assumed to be linearly
M | connected with deforestation and were selected by
32 | backward elimination (the variable with the highest p
value is discarded and the model is re-estimated). The
initial OLS model included all 20 covariates, which
28 | continued to be discarded as long as all covariates be-
come statistically significant at 5 percent level. Figure
13 graphically illustrates the procedure step-by-step. In
this way, 10 predictors of deforestation were identified.
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B e Those include past deforestation (both one-year and
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SZEZEEETREESIEFEESSS two-year lags) and corresponding focal variables,

Variable lagged forest cover, elevation, strict protection and in-

digenous governance covariates, distance to the nearest
official road and distance to the most proximate city.
Further, it was verified that no substantial multicollin-
earity between the picked variables exists (Table R1).

Figure 13. Covariate selection. Horizontal
axis shows the variable to be eliminated.

Deforestation is also explained by unobserved covariates. Some of the missing covariates can
be effectively replaced by eigenvectors, constructed by the means of eigenvector-based spatial
tiltering. Under presence of spatial autocorrelation, model residuals can be viewed as com-
posites of unobserved covariates and white noise (Griffith and Peres-Neto, 2006). Following
Tiefelsdorf and Griffith (2007) and Griffith (2000), the rationale of spatial filtering is that ei-
genvectors that are extracted from a transformed spatial link matrix exhibit distinctive spatial
patterns with associated spatial autocorrelation levels. Formally, the transformed spatial link

matrix is given by:
i’ i’
| -——|C| I ——| (23

Here I is an identity matrix, j is a vector of ones, 1 is a number of observations, C is a connec-
tivity matrix and letter T denotes transpose. In this research the connectivity matrix is binary
coded with value 1 if a cell is the nearest neighbor and 0 otherwise. The transformation in eq.
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23 guarantees that the extracted eigenvectors are orthogonal and linearly independent (Grif-
tith, 2000). Key implication of orthogonality is that the eigenvectors follow a strict sequence
whereby each eigenvector explains a specific proportion of the variance in the residuals, with
the first selected eigenvector capturing the largest amount of variation, the second selected
eigenvector the second largest proportion, and so on (Tiefelsdorf and Griffith, 2007). The ap-
proach is semiparamatric. Eigenvectors are estimated from the dataset (non-parametric part)
and then are additively coupled with the set of covariates whose coefficients need to be esti-
mated (parametric part). Therefore, the covariates are used in assessment of which eigenvec-
tors to choose, but are not used in constructing the eigenvectors.

Spatial filtering was done in R software, using library spdep. The algorithm implemented in R
finds the single eigenvector reducing the standard variate of Moran’s I for regression residu-
als most, and continuing until no candidate eigenvector reduces the values by more than pre-
defined value. For further interest in spatial filtering refer to Griffith (2013). See supplemen-
tary material for programming codes used to extract eigenvectors.

6.3.3. Network calibration

Deforestation values were simulated from trained artificial neural network. It is worth noting
that the obtained set of eigenvectors is sub-optimal for ANN. However, statistical packages
cannot estimate eigenvectors that nullify spatial autocorrelation in ANN model errors di-
rectly. Such a procedure would be computationally cumbersome.
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Figure 14. Graphical illustration of artificial neural network with ¢ inputs and 4 hidden neurons

ANN training was done in MATLAB. Before network training, the dataset was randomly par-
titioned into training, validation and testing sets by the ratio 7:2:1. Training set is used to cali-
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brate the network, validation set serves as a hedge against overfitting and testing set is used
to evaluate generalization ability of the trained network. Figure 14 can be used to explain the
derivation of output functions. Summation signs in the graph indicate that the products of
inputs (denoted by letter n) and input layer weights are added together. Biases (additional
weights to enhance flexibility) are also added (in the graph biases are embedded in the
squares). The expressions are then passed through a transfer function (illustrated by the bent
lines). In this study log-sigmoid function was used. Next, the expressions (denoted by letter )
are weighted by the hidden layer weights and summed (also adding the bias). This final ex-
pression is the output function (0). The training process error of observation i is the difference
between target (actual) value of observation i and its output function.

Network training was based on Levenberg-Marquardt algorithm. Let’s define a Jacobian ma-
trix (J) as a matrix whose elements are first order derivatives of training process errors with
respect to weights and biases. Matrix | is written as follows (Yu and Wilamowski, 2011):

o8 %8 0508 0§
i

o5 08 080 08
J: an 8W2 8Wc 8bl 8bd (24)
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o ow, ow, b, b,

The Jacobian matrix has p rows and c+d columns. Letter p is the size of the training set, c is the
number of weights and d is the number of biases. At the beginning of calibration, all weights
and biases are generated randomly. Those figures are used to obtain numerical values of the
elements in matrix |. Under Levenberg-Marquardt’s method, initial weights and biases are
iteratively updated according to the following rule:

W

(t+1)

_ T -1 T
=W, =(303+m) I8, (29

Index t marks iterations, W is a composite vector of weights and biases, e is a vector of errors,
ml is the product of combination coefficient and identity matrix. The latter term ensures that
the expression within the brackets in eq. 25 (approximation of Hessian matrix) is invertible.
The procedure in eq. 25 continues until validation error starts to increase. In this study root
mean squared error (RMSE) was used. Increasing validation error signals that the network is
starting to overfit and, therefore, the calibration has to be terminated. Optimal set of weights
and biases is then used to simulate target values of the testing sample. Those values are then
compared with actual values to assess generalization ability of the trained network. Specifi-
cally, the study used RMSE as a measure of generalization. Formal description of Levenberg-
Marquardt algorithm is found in Marquardt (1963) and Levenberg (1944). For detailed theory
and applications of neural computing refer to Ripley (2008).
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The calibration of the final neural network was accomplished in three steps. Firstly, variables
that may have non-linear relationships with deforestation were identified by graphical analy-
sis. Those include precipitation, lagged distance to open area, distance to unofficial roads and
rural population. However, due to multicollinearity (see Table R1), only the latter two were
retained. Next, 10 networks with identical (MATLAB's default) settings were run on each
dataset. Note that the validation error reaches only local minimum, implying that different
sets of initial weights and biases lead to different results. A preferable dataset is the one that
leads to a lower testing sample RMSE. In the second step optimal network configuration was
empirically determined by testing different numbers of hidden neurons. Specifically, neural
networks with 2, 4, 6, 8, 10, 12, 14 and 16 neurons in the hidden layer were calibrated 10 times
each. Lastly, the best configuration was run 100 more times to select the final network.

6.4. Results

Spatial distribution of the initial OLS model residuals is illustrated in Figure 15A. It suggests
that the residuals are highly clustered. Clustering is verified by the Moran’s statistic: the null
hypothesis that errors are randomly distributed in space is strongly rejected (see Table 12).
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Figure 15. Spatial distribution of OLS (A) and OLS-E (B) residuals

Table 12. Moran’s I of model residuals

Model Moran’s I E(MI) 103 var(MI) Z score p value
OLS 0.2235 0.0014 0.691 8.5552 0
OLS-E 0.0188 0.0014 0.7 0.7632 0.4454
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Spatial filtering identified 39 eigenvectors that capture spatial autocorrelation levels. Appen-
dix S visualizes the map patterns of the first six eigenvectors. The values of the first eigenvec-
tor are highly spatially clustered, indicating that it captures a large share of spatial autocorre-
lation. The maps become increasingly fragmented as more eigenvectors are included. Figure
15B portrays the residuals of OLS model with eigenvectors (further as OLS-E), which appear
to be randomly distributed. Moran’s statistic confirms the randomness in the residuals (see
Table 12). Nevertheless, the most important question for this research is to what extent the
filtered eigenvectors improve the prediction power. Table 13 presents the key statistics. Even
though the inclusion of 39 eigenvectors leads to a sizeable loss in the degrees of freedom, ad-
justed R squared increases by more than 50%.

Table 13. Prediction power of OLS and OLS-E models

Model # variables R squared Adj R squared Correlation
OLS 10 34.26 33.34 58.5
OLS-E 49 53.42 50.05 73.1

ANN calibration yielded the following results: 1) additional covariates that may have non-
linear relationships with deforestation do not improve generalization ability, 2) optimal num-
ber of hidden neurons is 4, 3) testing sample RMSE of the final model is 2.84. The latter figure
means that the generalization was improved by more than 10% compared to OLS-based mo-
del (testing sample RMSE of OLS-E model is 3.17). The correspondence between actual defor-
estation in 2014 and the simulated values for that year, measured in terms of Pearson correla-
tion coefficient, is 0.79. Figure 16 visually contrasts actual and simulated values.

(A) Actual deforestation in 2014, % (B) Predicted deforestation in 2014, %

o - s s5-7 [ 7-o -2 -

Figure 16. Actual and simulated deforestation in 2014
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Simulated map captures very well general patterns of deforestation, implying that the gener-
alization would be higher at coarser scales. Cumulative deforestation for the whole region is
predicted with very high accuracy. Actual deforestation in 2014 was 382.6 km?, whereas pre-
dicted deforestation for that year is 382.9 km?. The accuracy at the cell level seems fair, but
some obvious limitations of the model emerge. Firstly, the model cannot identify new defor-
estation events (events that appear in areas previously untouched by deforestation). This is
due to the fact that deforestation in adjacent cells is one of the key explanatory variables. If no
deforestation happened in previous years in the surrounding areas, the model predicts zero
or close to zero deforestation. Secondly, the model cannot foresee occasions when forest clear-
ings suddenly cease to continue. Again, this is because the model heavily relies on the hy-
pothesis of contagion. That is, if deforestation happened in previous year, it is likely to con-
tinue this year. However, those two kinds of situations are rare. Lastly, the model underpre-
dicts the extent of deforestation in the hotspots. This is best seen by analyzing Figures 15B and
16B: the cells with the largest positive errors spatially correspond to the hotspot cells. Model’s
ability to identify hotspots is analyzed next. This is done by computing two metrics: matching
rate (the ratio between the count of correctly identified hotspots and the count of actual hot-
spots) and commission rate (the ratio between the count of incorrectly identified hotspots and
the count of actual non-hotspots). Figure 17 graphs both metrics for different thresholds.
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Figure 17. Matching and commission rates for different thresholds

A threshold is a cut-off mark, which is used to classify all land parcels into deforestation hot-
spots and non-hotspots. For instance, if a threshold is set at 5%, all cells with deforestation
higher than 5% are treated as hotspots and the rest of the cells are identified as non-hotspots.
Figure 17 reveals that the matching rates fall within the interval from 0.7 to 0.8 for thresholds
from 1 to 5. The highest matching rate, exceeding 0.8, is reached at threshold equal to 5. How-
ever, if a hotspot cell is defined as facing at least 6% of annual deforestation, matching rate is
substantially lower, below 0.6. If a threshold is set at 9%, less than half of deforestation hot-
spots are correctly identified by the model. Commission rate is very high (> 0.2) for threshold
equal to 1. The percentage of incorrectly identified hotspots is much lower at thresholds from
2 to 5, ranging between 7 and 9 percent. In case a threshold is set at 6 to 9 percent, commis-
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sion percentage is only 1 to 2 percent. The latter result implies that for higher thresholds the
model is unlikely to predict large scale deforestation where it does not happen.

6.5. Conclusions

To explain deforestation, the following set of covariates is needed: 1) covariates that reflect
spatiotemporal contagion of deforestation, 2) additional factors, consisting of altitude, pres-
ence of legal protection (indigenous governance and strict protection) and proximities to the
nearest official road and city, 3) eigenvectors that capture different spatial autocorrelation
levels. Residual analysis showed that eigenvector-based spatial filtering nullified spatial
autocorrelation. What is key, however, is that the linear model that additionally includes ei-
genvectors as covariates is able to explain a substantially larger share of variation in defores-
tation. Additional generalization is gained by calibrating an artificial neural network that uses
the observed covariates and eigenvectors as inputs. The output values of trained network
fairly correlate with actual deforestation (Pearson correlation coefficient is 0.79). Those simu-
lated values portray very well the general patterns of actual deforestation. As a result, predic-
tion accuracy would be greater at coarser scales. The model could be applied to identify de-
forestation hotspots. If cells with at least 5% of annual deforestation are defined as hotspots,
the model is able to correctly identify 80% of actual cases, while commission error is a satis-
factory 8%. Thus, provided that spatiotemporal contagion is taken into consideration and arti-
ficial covariates are created to capture spatial autocorrelation patterns deforestation can be
mapped at 5x5 km grids with fair precision. Notwithstanding, spatial filtering is computa-
tionally expensive. The time required to filter eigenvectors exponentially increases as more
observations are added. This poses a challenge if the intension is to predict deforestation for
large areas. However, the problem can be circumvented by partitioning large territories into a
number of tiles and produce eigenvectors separately for each tile. This would allow mapping
deforestation in large areas within a reasonable timeframe. The model is an important step
towards predicting future deforestation more accurately. However, in its current form it can-
not be successfully applied for mapping future deforestation patterns. Even though model’s
observed predictors reflect the past or are time-fixed, unobserved processes that are captured
by eigenvectors are often dynamic. As a result, outdated set of eigenvectors becomes redun-
dant in the model that aims to map future deforestation patterns.
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Chapter 7

Conclusions
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This dissertation answered the following questions: what are the main drivers of deforesta-
tion in Legal Amazon and how the results depend on space, does the choice of travel time in-
stead of Euclidean distances lead to different findings of GWR, does sugarcane expansion in
southern Brazil is related to deforestation in the Brazilian Amazon, is rural population linked
with deforestation on forest frontiers in Pard, to what extent conservation units protect forests
from deforestation in Pard and how space influences the results, is buffer zone management
effective in protecting the edges of Para’s conservation units, can deforestation be accurately
mapped using only past and time-fixed variables.

Commonly, the researchers rely on various packages, where GWR is implemented, thus auto-
matically accepting their limitations. Geographical (Euclidean) distances are accepted as ap-
propriate representations of access between locations. However, for the case of Legal Ama-
zon, distance approximation to Euclidean is very crude due to substantial differences in road
quality, spatial arrangement of the road network, and absence of roads in certain regions. A
comparative analysis in chapter 2 confirmed that the implementation of travel time distances
into GWR notably alters the findings for some regions. For example, it was shown that the
model based on Euclidean distances significantly overestimates the impact of cattle market on
deforestation in Roraima and the impact of unofficial roads in Para and Amap4, and underes-
timates the effect that unofficial roads have on deforestation in the region located to the south
of the Brazilian port of Manaus. Therefore, using economic (travel time) distances was an im-
portant step towards obtaining more accurate results.

Space is important in deforestation modeling. Chapter 2 revealed that deforestation determi-
nants in Legal Amazon are location-specific. It was concluded that cattle ranching contributes
to deforestation most evidently in Para (especially, eastern side) and its surroundings. Those
regions lie on a deforestation frontier, where professional and well-capitalized ranchers re-
side. Livestock farms in eastern Para are located in highly urbanized areas with dense road
network, thereby facilitating the transportation of beef and other cattle products to trade cen-
ters. Those favorable economic conditions make cattle business profitable. Furthermore, chap-
ter 4 concluded that cattle ranching is an important economic activity of rural migrants on
forest edges in Para. The findings indicate that deforestation during period 2010-2014 was
0.7% on forest edges with fewer cattle animals (less than 130 per 25 km?), 5.2% in parcels with
middle-sized cattle herds (from 130 to 847 animals), and 8.5% in parcels with relatively large
cattle herds (more than 847 animals). Also, cattle farming was found to be the most powerful
discriminator between high and low deforestation areas. On the contrary, forests in remote
regions, such as Amazonas and Roraima, are not subjected to high deforestation pressure
from cattle business partially due to the fact that poor accessibility and long distances to trade
centers negatively affect its profitability. Those economic constraints also apply to crop culti-
vation. However, additionally, it is constrained by climatic (excessive rainfall) and terrain
(steep slopes) characteristics. As a result, crop cultivation was found to induce deforestation
only in a certain region, located in southeastern Para and northeastern Mato Grosso, where
average annual rainfall is generally lower than 2000 mm. The results also suggest that defor-
estation is negatively linked with precipitation in most parts of Pard, thereby confirming that
rainfall shapes the patterns of deforestation.
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GWR results suggest that crop cultivation is not linked with deforestation in most parts of
Mato Grosso, where soybean and sugarcane (the two most commonly cultivated crops in Bra-
zil) are widely grown. However, it would be incautious to conclude that crop cultivation here
is decoupled from deforestation. This is because cause and effect may be separated in space.
Specifically, crop growing in non-frontier Brazilian states may stimulate deforestation is Legal
Amazon. Since crops almost exclusively expand over past grazing areas, new crop fields of-
ten appear without forest clearing. However, livestock farmers who sell their pastures to crop
planters may migrate to frontier regions, where cattle production is reconstituted. Chapter 3
empirically investigated this indirect land use change, but with the emphasis on sugarcane
(ILUC associated with soybean expansion is already well researched). The findings revealed
that sugarcane was not directly linked with deforestation in Legal Amazon during 2002-2012.
The adverse effect of sugarcane expansion in southern Brazil on deforestation manifested in-
directly through displaced cattle ranchers. Specifically, expanding sugarcane plantations in
southern Brazil was indirectly associated with 12.2% of Legal Amazon’s deforestation during
2002-2012, which constitutes 16.3 thousand km? of forests. These figures translate into 189.4
Mg of carbon emissions. Moreover, the production of every one billion liters of ethanol from
sugarcane in Brazil led to 17.5 Mg loss of carbon stock. For comparison, indirect contribution
of soy industry to deforestation was found to be 17.6 %, or 23.6 thousand km? of forests. The
findings do not reveal whether ILUC associated with crop expansion continues into this day,
but if it does, then policies aimed at mitigating deforestation from ILUC must be integral.
That is, both sugarcane and soy expansion must be addressed.

Chapter 2 revealed that deforestation is not linked with urban population. The finding most
likely underlies the importance of international markets. However, these aspects are outside
the scope of this dissertation. Generally, the results suggest that the size of rural communities
per se is linked with deforestation, but the relationship is very complex. GWR identified sig-
nificant spatial differences across the regions. Rural communities have the strongest direct
impact on extant forests in western parts of Rondoénia and Mato Grosso. Interestingly, the re-
sults indicate that rural population is not a significant factor is explaining deforestation in
northern Pard, Amapd, Maranhdo and regions with sparse vegetation in Rond6nia and Mato
Grosso. However, it should not be concluded that rural population is not linked with defores-
tation in those areas due to the fact that rural migrants are known to engage in expansive ag-
riculture on forest edges. Forest edges and long-settled rural regions are very different envi-
ronments. The latter is covered by extensive cash-oriented pastures and crop fields. Here the
size of rural communities may not be linked or even negatively linked with deforestation, be-
cause cattle ranches are usually larger than subsistence-oriented farms. Economic agents re-
sponsible for deforestation on forest edges are newly-arrived rural settlers. Forest edges at-
tract rural migrants from other rural areas. This migration is motivated by land scarcity in old
rural settlements and land insecurity on the frontier. As discussed by Carr & Burgdorfer
(2013), those migrants get involved in expansive agriculture due to cheap family labor, low
transportation costs and lax legal enforcement. Chapter 4 provides empirical evidence sup-
porting this view. A parametric approach (fractional logistic regression) confirms a positive
link between rural population and deforestation. However, causal claims cannot be made, be-
cause rural population was treated exogenously. A non-parametric method (regression tree)
indicates that larger rural population is linked with more deforestation in land parcels with
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sizeable cattle herds, relatively sparse vegetation and favorable levels of precipitation (less
than ~2100 mm).

Migrant farmers tend to sell their land properties to larger producers, as cattle business is too
risky for smallholders. Indeed, financial aspect is very important in explaining deforestation,
as can be learned from chapter 2. The relationship between deforestation and GDP per capita
follows a U-shaped curve, meaning that increasing incomes curb deforestation at lower levels
of GDP per capita and boost it at higher levels. The result is generally applicable to all loca-
tions in Legal Amazon, as little spatial variation was observed. Financial resources turn into
an accelerant of deforestation only if they are sufficient, because agriculture has to be large-
scale to be profitable. As economies grow, urban citizens increase the consumption of meat
products, and rural dwellers receive increasingly greater remittances from migrant family
members. Therefore, growing levels of income may become a concern in the future. Financial
resources for agriculture are often obtained in a form of rural credit. Therefore, to restrain de-
forestation, the Brazilian government restricts the access to rural credit for land properties lo-
cated in high deforestation municipalities. Rural credit restrictions proved to be effective in
curbing deforestation in Pard (chapter 2). This is especially true for northeastern Par4, charac-
terized by extensive cattle ranching and relatively dense forests. This finding is a strong ar-
gument in favor of GWR approach: if spatial differences are ignored, rural credit scheme is
concluded to be an inefficient policy.

Chapter 2 further revealed that the road network shapes deforestation patterns across Legal
Amazon. Accessibility is a necessary prerequisite for deforestation. Roads are necessary to
access logging spots and to transport harvested woods. As those spots become more easily
accessed, squatters invade the lands and get involved in extensive deforestation. As lands be-
come more developed, they are purchased by large producers and further deforested. There-
fore, government plans to build or pave a road always provoke resistance from environmen-
talists. Fast road connection is important for Brazil’s economy. However, roads should be
paved only if mechanisms that ensure forest integrity alongside planned roads are well pre-
pared and could be effectively implemented. Adverse effects of road network on forests shall
not be underestimated. Newly paved roads commonly spur large networks of endogenous
(unofficial) roads deep into the forests, thus exposing vast forest areas to potential deforesta-
tion. Chapter 2 found that both official and unofficial roads are contributors to deforestation.
A general observation is that a road network leads to much more deforestation in remote re-
gions (Amazonias and Roraima) as opposed to deforestation frontiers. This finding does not
indicate that roads on forest frontiers are weaker contributors to deforestation, but instead it
reflects the fact that most forest frontier roads are old and, therefore, their contribution to de-
forestation took place in the past until areas alongside those roads became deforested.

The protected area system is among policy measures applied by the Brazilian government to
mitigate deforestation. The effect of legal protection on deforestation was researched from
few different angles in this dissertation. Global municipality level analysis presented in chap-
ter 2 did not find any connection between legal protection and deforestation, but the links
emerged under the local approach. It was concluded that in Para and nearby regions less de-
forestation happens where more forests are declared as sustainable use areas and indigenous
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lands. The background reason for this finding, however, cannot be revealed by the model. It
could be that the negative link simply reflects the fact that many protected areas are estab-
lished far from deforestation hotspots (precautionary protected areas). Alternatively, it could
mean that legal protection is effective in curbing deforestation. The results also found no link
between strict protection and deforestation. This counterintuitive finding underlies the cave-
ats of analyzing the effect of legal protection on deforestation at municipality scale. Strictly
protected forests may avoid deforestation completely, whereas areas nearby, located within
the borders of the same municipality, may be subjected to extensive deforestation. In this way
the effectiveness of strict legal protection cannot be seen in municipality level analyses. Chap-
ter 4 presents a finer scale grid level analysis and reveals that deforestation is threefold lower
within protected areas as compared to unprotected forests (the conclusion holds for parcels
with middle-sized cattle herds and dense vegetation). However, even this finding cannot be
taken as evidence that legal protection inhibits deforestation, because characteristics inside
and outside protected areas are often dissimilar. Therefore, a separate study in chapter 5 was
devoted to isolate the protection effect by matching.

Chapter 5 quantified avoided deforestation due to legal protection in Paré state. The results
revealed that 0.72% of forests (~2900 km?) avoided deforestation during period 2000-2004 in-
clusive. If displaced deforestation in buffer zones is ignored, avoided deforestation is overes-
timated by 60%. The most forest clearings were avoided in conservation units established un-
til 1990, governed by a ministry or an agency, classified by the IUCN into categories Ia, Ib or
II, and small in territory. However, the finding that indigenous lands saved less forests than
protected areas managed by the governmental institutions is not backed by Nolte et al. (2013),
who conclude the opposite. For the case of Para, it is intuitive that indigenous lands avoid less
deforestation, because those are located further away from deforestation hotspots and have
relatively large areas. Thus, low avoidance of deforestation is a consequence of low deforesta-
tion pressure and challenging management (territory per environmental inspector is large).

The overall figure of avoided deforestation in Para seems low. However, it is important to re-
alize that large areas of protected lands lie in remote territories where deforestation pressure
is low and, therefore, little deforestation can be avoided. The boundaries of some protected
areas, located on deforestation frontiers, can be discerned clearly by looking at the maps that
show forest cover. For instance, such conservation units are Parakana and Mae Maria, where
avoided deforestation was computed to be 8.2% and 4.8% respectively during 2000-2004.
Other conservation units with high percentage of avoided deforestation include Arara and
Tapajos (9.5% and 6.1% of saved forests respectively). For the case of Arara, under no legal
protection its forests would become completely deforested in slightly more than 50 years if
conditions affecting deforestation remained unchanged. In general, protected areas that
avoided the most deforestation are located in close proximities to deforestation hotspots:
alongside the Trans-Amazonian highway, on the banks of Amazon River, and in the central
part of eastern Pard. The majority of conservation units where avoided deforestation is a sta-
tistical zero are located in remote areas or areas surrounded by natural obstacles (northwest-
ern corner of Para and archipelago of Marajo). The protection of those lands may become im-
portant in the future if deforestation pressure builds. Avoided deforestation is negative in
Alto Rio Guama and Itacaiunas. This may be a consequence of protests by local communities
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who are ceased unlimited access to forest resources that were available prior to the establish-
ment of a protected area.

Protecting the edges of conservation units and their surroundings is a challenging task. Since
the establishment of a protected area implies that the local communities no longer can exploit
forest resources without restrictions in that area, deforestation may be displaced to the sur-
rounding areas. Buffer zones are meant to protect park edges from deforestation and to en-
courage local communities to participate in the preservation of conservation units. The find-
ings suggest that buffer zones around protected areas located in eastern Para experienced ex-
cessive deforestation relative to no legal protection. Deforestation in eastern Paré is intensive
and forest cover is declining. Potential deforestation spots are substantially narrowed by the
establishment of protected areas. Deforestation pressure is therefore transferred to unpro-
tected forests. However, the result is different where deforestation is not so intensive (to the
west of highway BR-163 and on the banks of Amazon River). Here buffer zones were able to
absorb the pressure from deforestation displacement and even avoid deforestation relative to
counterfactual territories.

Chapter 5 found no evidence of edge effects in Pard. Moreover, in some instances park edges
avoided more deforestation than nuclear areas (the difference proved to be statistically sig-
nificant). Those conservation units are located near deforestation hotspots. A possible expla-
nation of this seemingly counterintuitive finding is that park edges face higher deforestation
pressure than nuclear areas and, as a result, avoid more deforestation. Forest edges are di-
rectly exposed to unprotected lands, and this may be a source of excessive pressure on park
edges relative to the cores. However, edge effects were tested assuming equal deforestation
pressure both in the nuclear of each conservation unit and on its edge. If park edges are sub-
jected to significantly higher deforestation pressure than the nuclear areas, this could invali-
date the results. Some conservation units situated in eastern Para can be discerned in Google
Maps. Visual inspection of the map suggests that forests on park edges and in core areas are
equally intact. This observation backs the conclusion that edge effects are not present in Para.

The research framework in chapter 5 has some other caveats. To start with, deforestation dis-
placement is assumed to occur only within 10 kilometers from protected areas” borders. Some
loggers may migrate longer distances, where forest resources are abundant or economic con-
ditions are more favorable. Further, the methodology in chapter 5 has its shortcomings. One
problem is that not all factors affecting deforestation can be observed at fine scales. Therefore,
even if a control cell with identical observed characteristics is found, the differences in defor-
estation between treatment and control cells may be due to the differences in unobserved fac-
tors rather than legal protection. The other problem is that propensity score matching cannot
be done under the lack of relevant control observations. This is the reason why this research
considered only period 2000-2004. In subsequent years vast previously unprotected forests
became legally protected. If up-to-date matching study was attempted, most forests in Para
would fall under the treatment group and most deforested areas would be in the control
group. Matching then is not balanced, because no pairs of treatment and control observations
with similar characteristics can be found. Solving this problem is left for future.
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Chapter 2 revealed that deforestation is linked with deforestation in the neighboring counties
(neighborhood effect was captured by the autocovariate). Thus, deforestation is contagious in
space. What is more, it is well-known that past deforestation to a certain extent explains de-
forestation patterns at current times. This spatiotemporal contagion can be used for predic-
tion. Chapter 6 raises and tests a hypothesis that deforestation can be relatively precisely
mapped exclusively from past and time-fixed data. An artificial neural network was trained
to learn patterns of current deforestation at regular 5x5 km grids from past dynamic proc-
esses, factors that do not change over time, and eigenvectors that partially capture unobserved
covariates. The correlation coefficient between simulated and actual deforestation is 0.79. If all
grids with deforestation higher than 5% are defined as hotspots, the model is able to identify
80% of actual cases with commission error equal to 7.8%. Even though the results are promis-
ing, predicting next period deforestation remains challenging. This is because unobserved co-
variates that are replaced by eigenvectors must be assumed to be static to be able to predict
deforestation in the following year. However, most unobserved processes affecting deforesta-
tion are dynamic. As a result, the initial eigenvectors become redundant if the model is used
to foresee deforestation, thereby reducing the prediction accuracy significantly.

Economic actors involved in deforestation can be separated into large scale producers and
small scale farmers. The influence on deforestation by large scale commercial farmers mani-
fests through extensive agriculture (mostly cattle farming and soybean cultivation). To limit
deforestation due to expansion of pastures and soy fields, NGOs initiated few important
agreements, such as Soy Moratorium and Beef Moratorium. Gibbs et al. (2015a) and Gibbs et
al. (2015b) showed that those measures are effective in curbing deforestation, but have some
limitations (see chapter 1). Further enforcement and continuation of those initiatives is impor-
tant. Sugarcane cultivation also contributes to deforestation, but indirectly through displaced
cattle ranchers. Therefore, policies that aim to curb deforestation resulting from pasture ex-
pansion should also be effective in reducing indirect land use change associated with sugar-
cane (and soy) expansion. Also, adverse environmental effects associated with sugarcane cul-
tivation (deforestation and consequential contribution to CO> emissions) may be included in
the price of biofuels.

Small scale farmers occasionally migrate to forest edges where they initiate deforestation. The
protected area system may be an effective hedge against such colonization. It is especially
important to protect the perimeter of protected lands by ensuring effective buffer zone man-
agement, which becomes increasingly important as deforestation approaches the borders of
protected areas. More efforts and financial resources should be allocated to protect the pe-
rimeters of conservation units located in high deforestation regions, such as eastern Para.
Also, it is strongly advisable to postpone the paving of roads that stretch through intact and
remote Amazonian forests until measures that can effectively prevent smallholder coloniza-
tion and subsequent deforestation alongside newly paved roads are in place.
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8.1. Appendix A

Figure Al. Road and river network in Legal Amazon. Road and river shapefiles were downloaded from GEO-
FABRIK in 2014. White dots indicate seats of municipalities that were included in the analysis, whereas black
dots mark the rest of municipality seats in Legal Amazon.
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8.2. Appendix B

Table B1. Descriptive statistics for municipalities

Variable Mean Standilir:ndevia- Minimum Maximum
DEF 12.51 29.05 0 353.7
POPURB 24570.23 98526.72 836 1792881
POPRUR 10565.43 11548.68 195 125336
GDP 9971.64 9166.79 2269.82 103404
FCOVER 38.35 27.48 5 98.74
ELEV 178.06 123.19 5.32 760.94
CATTLE 121573.7 176922.8 15 2022366
CROP 17874.78 69311.28 7 875839
TIMBER 4789.89 13591.55 1 162906
ROF 190.78 227.58 0 1733.31
RUNF 683.49 1143.53 0 10607.14
CREDIT 760.83 1571.31 0 15970.07
TENURE 89.61 13.15 18.57 100
STRICT 3.55 9.96 0 71.87
SUST 13.46 25.61 0 100
INDIG 10.38 19.45 0 99.55
PREC 1861.16 393.77 902.02 3250.17
TERR 9027.19 16477.56 66.28 159533.3
POPURBLG 18772.53 78281.08 518 1396768
POPRURLG 9761.46 10136.72 458 80139
GDPLG 9216.02 9868.97 1946.36 119560.1

Variable abbreviations are introduced in Table 1

105



Table C1

. Correlation matrix for municipalities

8.3. Appendix C

m & & = 1~ = > ~
. £ E 5 5 z E 5 £ . 5 B8 B 2 5 £ g g
) = = © 2 = U 3 = > 2 3 = &? ? Z & =
DEF 1
POPURB 0.066 1
POPRUR 0345 0.215 1
GDP -0.07 0135 -0.177 1
FCOVER 0.247 0.046 0.097 -0.011 1
ELEV 0.007 -0.079 -0.332 0.501 -0.064 1
CATTLE 0497 0.041 0.084 0.189 -0.002 0.364 1
CROP -0.017 0.011 -0.063 0.523 -0.068 0.358 0.014 1
TIMBER 0330 0.022 0.165 0.007 0.130 -0.022 0.187 0.006 1
ROF 0450 0.270 0.178 0307 0.090 0320 0493 0318 0.171 1
RUNF 0545 0.091 0107 0298 0147 0351 0.732 0294 0361 0.664 1
CREDIT -0.075 -0.072 -0.248 0.629 -0.165 0.514 0.158 0.604 -0.023 0.225 0.328 1
TENURE 0.033 -0.084 0.152 -0.304 0.078 -0.342 -0.126 -0.284 -0.021 -0.173 -0.235 -0.368 1
STRICT 0.064 0.070 -0.053 0.096 0.305 0.028 0.030 -0.047 -0.027 0.090 0.014 -0.071 0.004 1
SUST -0.035 0.046 0122 -0.154 0.129 -0377 -0197 -0.107 -0.044 -0.119 -0.166 -0.186 0.085 0.041 1
INDIG 0.105 -0.046 -0.047 0.053 0334 0.243 0.062 0.019 -0.045 0158 0.102 -0.019 -0.064 0.152 -0.154 1
PREC 0.025 -0.024 0.060 -0.112 0414 -0345 -0196 -0.115 0.074 -0.058 -0.065 -0.198 0.122 0.157 0.092 0.149 1
TERR 0.388 0.039 0.134 -0.002 0471 0.033 0.200 0.012 0.107 0373 0339 -0.068 0.002 0323 0.041 0354 0.29 1

Variable abbreviations are introduced in Table 1
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8.4. Appendix D

Formulae of Moran’s I in terms of matrix algebra are presented below. The notation is as fol-
lows: MI - Moran’s I, n - number of observations, I - identity matrix, j - vector of ones, € -
vector of model errors, W - matrix of weights (inverse distances). Symbol "o’ in formulas D6,
D7 and D9 denotes element by element multiplication.

e’ (I —“TJW(I —”TJe
MI =L n ") Dby

X

S S

n(Sz(nz—3n+3)—n§+3(80)2)—85(g(n2—n)—2ng+6(80)2)_[ 1

var(MI): 2
(n-1)(n-2)(n-3)(%,)

J )

$=i'W (D9

SzeT(l—%]e (D5)
sﬁ%ij((W+wT)o(W+wT))1 (D6)
S =] (((jTW)T +V\4)o((ij)T +V\4)) (D7)

S = 7 X S4084T S,0S,) (DY)
) (Si°8)) (Si°S,)
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8.5. Appendix E

Omitted

Figure E1. Local determination coefficients. This 2010 municipality boundary map was downloaded from the IBGE’s
website.
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8.6. Appendix F

B Lost territory
" No/minor territorial changes

B Gained territory

New counties

Counties outside study area
Figure F1. Territorial changes of Brazilian counties between 2000 and 2014. This municipality boundary map was

downloaded from the IBGE’s website. Municipality boundaries are not shown to improve visualization. Projection:
Albers Equal Area Conic.
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8.7. Appendix G

B Deforestation counties
B Agricultural counties

Figure G1. Deforestation and agricultural counties with road connection. This municipality boundary map was
downloaded from the IBGE’s website. Municipality boundaries are not shown to improve visualization. Projection:
Albers Equal Area Conic.
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8.8. Appendix H
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Figure H1. Total weighted indirect effect (the sum of current and lagged weighted indirect effects) of sugarcane
measured in hectares during 2002-2012. This municipality boundary map was downloaded from the IBGE’s website.
Municipality boundaries are not shown to improve visualization. Projection: Albers Equal Area Conic.
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8.9. Appendix I

Table I1. Collinearity statistics

Abbreviation VIF R-squared
DEF (-1) 1.18 0.1496
CATTLE 1.14 0.1197
SOY 1.32 0.2445
SUGAR 1 0.0023
CREDIT 1.36 0.264
GDP 1.01 0.0085
FINES 1.09 0.0856
PCATTLE 1.62 0.3814
PSOY 1.49 0.3286
PSUGAR 1.15 0.1292
WIESOY 1.52 0.3437
WIESUGAR 1.65 0.3949
WIESQY (-1) 1.61 0.3796
WIESUGAR (-1) 1.59 0.3727

VIF stands for variance inflation factor

VIF>5 is considered as a sign of severe multicol-
linearity

Variable abbreviations are introduced in Table 5
WIE stands for weighted indirect effect

(-1) indicates one-year lag
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8.10. Appendix ]

Brazil's Institute of Geography and Statistics (IBGE) recently (in 2010) conducted a meticulous
survey of all households in Brazil. This reliable source of information is a perfect way to as-
sess the accuracy of population estimates by WorldPop for Para and to adjust the data to
match municipality totals. The computations were done in ArcGIS. Firstly, it was verified that
GIS estimates of territory closely match the figures reported by IBGE (see Figure J1A).
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Figure J1. Population data (WorldPop) accuracy assessment: the ratio between territory reported by IBGE and
territory computed in ArcGIS (A) and the ratio between population reported by IBGE (census 2010) and 2010
population estimates by WorldPop (B). Computations in ArcGIS were based on Albers Conic projection, the
same projection used by IBGE. Selected standards match those used by IBGE and are as follows: longitude of
origin is -54 degrees, latitude of origin is -12 degrees, standard parallel 1 is -2 degrees and standard parallel 2 is -
22 degrees.

Estimated population is the sum of estimated persons over all pixels that fall within adminis-
trative borders of a municipality. Correction factor is the ratio between census 2010 data, re-
ported by IBGE, and ArcGIS estimates. Figure J1B suggests that WorldPop underestimates
population in Pard, but with almost homogenous factor, ranging between 1.06 and 1.08. The
adjustment was done at the original spatial resolution (~0.096 km).
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8.11. Appendix K

Table K1. Descriptive statistics (grid level)

Mean 3:3/?;?:;1 Minimum Maximum

DEF 0.04 0.04 0 0.26
CTL 502 345 4 1748
POP 2.37 277 1 72.63
ALT 190.74 94.52 16.5 532.71
SLOPE 0.26 0.22 0 1.57
FLAT 138.19 84.91 27.07 683.8
FC 57.6 10.8 40 81.9
TIME 1021 1041 88 6816
ROAD 33.8 23.2 0 1471
RIVER 28 22.3 0 95.5
PREC 2000 201.31 1430.6 2606.03
PA 223 221 0 97.1
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8.12. Appendix L
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Figure L1. Map of Para. Circles represent cities. The size of a circle is determined by the number of inhabitants in
2010. Protected areas include indigenous lands.
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8.13. Appendix M

Table M1. Marginal effects of variables

MErracLoG M/IIEJIIEOCE:G
CTL 0.035 0.85
POP 0.7211 0.93
ALT 0.0074 -0.89
SLOPE -12.4357 1.33
FLAT -0.0144 0.76
FC -0.7867 1.25
TIME -0.0019 -7.53
ROAD -0.099 2.06
RIVER 0.1413 1.01
PREC -0.0235 1.23
PA -0.0951 1.33
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8.14. Appendix N

Table N1. Regression tree: detailed statistics

Condition # observations ss;ligr(;i Defcr):lzztstion
CTL < 130* 141 0.0148 0.0068
CTL > 130 445 0.8127 0.052
CTL < 847 351 0.4493 0.0433
FC < 58.7 200 0.2683 0.0515
POP <29 161 0.1888 0.0457
ROAD < 60.1* 149 0.1276 0.0417
ROAD > 60.1* 12 0.03 0.0948
POP > 2.9* 39 0.0513 0.0757
FC > 58.7 151 0.1496 0.0324
PA <25* 43 0.0112 0.0139
PA > 2.5* 108 0.1178 0.0398
CTL > 847 94 0.2367 0.0846
PREC < 2099 75 0.1807 0.0954
POP <1.8 26 0.0491 0.0678
RIVER < 62.5* 15 0.0274 0.0476
RIVER > 62.5% 11 0.0072 0.0953
POP >1.8 49 0.1012 0.1101
RIVER < 56.5* 28 0.0566 0.0932
RIVER > 56.5* 21 0.0261 0.1325
PREC > 2099* 19 0.013 0.0421

Stars indicate terminal nodes

117



8.15. Appendix O
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Figure O1. Spatial patterns of characteristics
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8.16. Appendix P
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Figure P1. Protected areas in Pard by characteristics (year of establishment, type of governance, and IUCN cate-
gory). The map shows only those protected areas, which were included in the analysis.
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8.17. Appendix Q
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Figure Q1. Contagious deforestation. This map is adapted from INPE.
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8.18. Appendix R

Table R1. Multicollinearity statistics: variance inflation factors (VIFs), condition
numbers, and determinants of correlation matrices

VIF

OLS 10 OLS 12 OLS 14
d13 1.9 1.91 1.91
d13f 2.47 2.52 2.83
forl3 2.72 2.87 3.14
d12 1.85 1.85 1.85
d12f 2.74 2.78 29
elev 1.67 1.68 2.01
strict 1.6 2.05 212
indig 2 2.58 3.64
rof 1.31 1.33 2.45
cit 2.24 2.26 524
prec - - 4.94
opl3 - - 4.56
runf - 2.35 3.44
pop - 1.17 1.19
Condition no 27.52 28.96 130.35
Det(CorrMat) 0.0246 0.0089 0.0004
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8.19. Appendix S
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Figure S1. Map patterns of the first six eigenvectors
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9.1. GWR-2SLS codes

This section presents a collection of Gauss codes that: 1) generate autocovariate term, 2) com-
pute 25LS parameters, 3) calculate Moran’s statistic, 4) search for optimal number of the near-
est neighbors, 5) estimate local coefficients for selected number of the nearest neighbors, 6)
estimate local determination coefficients, 7) estimate variabilities in local coefficients and run
Monte Carlo simulations, 8) estimate local standard errors and p values. Here d is the distance
matrix (may be Euclidean, travel time, binary, etc.), x0 is the matrix of endogenous and ex-
ogenous variables, i0 is the matrix of exogenous and instrumental variables, y is the vector of
response values.

» n=rows(y); /“the number of observations*/
» j=ones(n,1); /*creates a vector of ones*/
» id=eye(n); /*creates an identity matrix*/
» w0=1/d; /*here weights are calculated as inverse distances*/
» z=zeros(n,1); /*creates a vector of zeros*/
» w=diagrv(w0,z); /“replaces diagonal elements of matrix w0 with zeros*/
» proc (1)=sortallc(w); /*procedure to sort each column of a matrix separately”/
for i(1,cols(w),1);
wl. i]=sortc(wl[.,i],1);
endfor;
retp(w);
endp;
» ws=sortallc(w); /*sorts weights*/
» wn={};
» for i(1,cols(w),1); wn=wn~sortind(w[.,i]); endfor; /“creates a matrix of original row indices*/
» kn=3; /*selected number of neighbors for autocovariate*/
» nb=1;
» sum=0;
» sum1=0;
» do while (nb<=kn);
a=(diag(ws[n+1-nb,.].*y[wn[n+1-nb,.],1])); /“numerator of eq. 1*/

al=(ws[n+1-nb,.])’; /*denumerator of eq. 1%/
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sum=sum-+a;
suml=al+suml;
a2=sum./suml; /*creates a vector of autocovariate values*/
nb=nb+1;
endo;
» x=j~x0~a2; /*adds autocovariate to the list of covariates*/
» i=j~i0~a2; /*adds autocovariate to the list of exogenous covariates and instruments*/
» 1i=inv(i"™*i);
» b=inv (x"*1*1i*1"*x)*x *i*ii*i"*y; /*25LS estimator®/
» yp=x*b; /*predicted values of 25LS model*/
» e=y-yp; /*errors of 25L.S model*/
» e2=(y-yp)"2;
» ss=sumc(e2); /*residual sum of squares®/
» ybar=meanc(y); /*average value of the dependent variable*/
» sstot=sumc((y-ybar)”2); /“total sum of squares*/
» 12=1-ss/sstot; /*determination coefficient of 25LS regression*/
» cl=cols(x); /*number of coefficients to be estimated*/
» mse=sumc(e2)/ (n-cl); /*mean squared error*/
» vev=(inv(x"*1*ii*i'"*x))*mse; /“variance-covariance matrix of 25LS regression®/
» v=diag(vcv); /*variances of 25LS coefficients”/
» ste=sqrt(v); /*standard errors of 2SLS coefficients*/
» tstat=Db./ste; /*t statistics of 25LS coefficients*/
» s0=j"*w*j; /*eq. D4*/
» s1=e"*(id-(j*j'") /n)*e; /*eq. D5*/
» moran=(n/s0)*(e™(id-(j*j') /n)*w*(id-(j*j') /n)*e)/s1; /*Moran’s I*/
» §2=0.5%"*((w+w').*(w+w"))*j; /“eq. D6*/
s 3= w) +w ) 5( W) +wH); /eq. D7/
» sd=e-(j*e"j)/n; /“eq. D8*/
» s5=(n*(s4.*s4)'*(s4.*s4))/ (s12); /*eq. D9*/
» varl=n*((s2*(n"2-3*n+3)-n*s3+3*s0*s0)) / ((n-1)*(n-2)*(n-3)*s0*s0); /*see eq. D2*/
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» var2=s5*(s2*(n"2-n)-2*n*s3+6*s0*s0) / ((n-1)*(n-2)*(n-3)*s0*s0); /*see eq. D2*/
» emoran=-1/(n-1); /*eq. D3*/
» var=(varl-var2-emoran”2); /*eq. D2*/
» zscore=(moran-emoran)/sqrt(var); /*z score of Moran’s statistic*/
» wsg=sortallc(d); /*sorts each column of the distance matrix separately*/
» g=1; /*number of nearest neighbors*/
» do while (g<=100); /*computes cvss (eq. 5) for gs from 1 to 100 with increments of 1*/
loop=1;
sum=0;
do while (loop<=n);
restart: if(loop<=n);
h=wsg[g+1,.]; /*bandwidths are the distances to the p** nearest neighbor*/
k=exp(-d./h); /*Gaussian type kernel*/
k[loop,loop]=0; /*replaces k" entry with zero*/
betaw=inv(x"*(k[.,loop].*id)*i*inv(i"*(k[.,loop].*id)*i)*i"* (k[., loop].*id) *x)*x'*
(k[.Joop].*id)*i*inv (i"*(k[., loop].*id)*1)*i"*(k[.,loop].*id)*y; /*local coefficients es-
timated using modified weighting matrices to avoid minimization at 0 nearest
neighbors; the formula applies both to the case when the number of instruments
(i) equals the number of endogenous covariates (z) and to the case when i>z;
therefore, the formula is different from eq. 2, which is applicable only under
i=z*/
cv=(y-(x*betaw))"2;
cvss=cv[loop,1];
sum=sum-+cvss; /“cross validated sum of squares*/
loop=loop+1;
goto restart;
endif;
endo;

print sum;
g=g*L;
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endo;
» g=15; /*optimal number of neighbors*/
» loop=1;
» coef={};
» s={};
» do while (loop<=n); /*the following lines estimate local coefficients and hat matrix*/
restart: if(loop<=n);
h=wsg[g+1,.];
k=exp(-d./h);
cO=inv(x"™*(k[.,loop].*id)*i*inv (i"*(k[.,loop].*id)*i)*i"*(k[.,loop].*id) *x)*x"*(k[.,loop].*id)*i*
inv(i"*(k[. loop].*id)*i)*i"*(k[. loop].*id); /*eq.&*/
coef0=c0*y;
coef=coef~coef(; /*local coefficients*/
sO=x[loop,.]*c0;
s=s|s0; /*hat matrix*/
loop=loop+1;
goto restart;
endif;
endo;
»i=1;
» do while (i<=n); /*the following lines estimate local determination coefficients*/
yp=x*coefl.,i];
nom=sumc(k[.,i].*(yp-meanc(yp)).*(y-meanc(y)))/n;
denom1=sqrt(sumc(k[.,i].*((yp-meanc(yp))”*2))/n);
denom?2=sqrt(sumc(k[.,i].*((y-meanc(y))”*2))/n);
r=nom/(denoml*denom?2);
r2=r"2;
print r2; /*prints local determination coefficients*/
i=i+1;

endo;
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»i=1;

> ss={l;

» do while (i<=n); /*the following lines estimate residual sum of squares of GWR*/
yp=x*coefl.,i];
e2=(y[i,1]-yp[i,11)"2;
ss=ss | e2;
i=i+1;
endo;

» r2gl=1-sumc(ss)/sstot; /*pseudo-global determination coefficient of GWR*/

» vbar=meanc(coef'); /“averages of local coefficients by covariate*/

» v0=sumc((coef'-vbar')"2)/n; /*variabilities*/

» se0=sqrt(v0);

» ratio=se(. / ste;

» 11=1;

» varm={};

» do while (ll<=n-1); /*the following lines run Monte Carlo simulations*/
rr=rndi(n,1); /*randomly generates a vector of values from univariate distribution*/
rrl=rr/maxc(rr); /*normalizes the values; this step is not necessary*/
dr=rr1~d; /*adds the column of randomly generated values to the distance matrix*/
drs=sortc(dr,1); /*sorts the distance matrix by randomly generated values*/
drsl=drs[1:n,2:n+1]; /*sorted distance matrix (by row)*/
drt=rr1~drsl’; /*adds the same vector of randomly generated values to the transposed
distance matrix*/
drts=sortc(drt,1); /*sorts the transposed distance matrix by randomly generated values
*/
drtsl=drts[1:n,2:n+1]; /*sorted distance matrix (both by row and column)*/
wsgl=sortallc(drts1); /*sorts each column separately*/
loop=1;
coefr={};

do while (loop<=n);
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restart: if(loop<=n);
h=wsgl[g+1,.];
k=exp(-drts1./h);
betaw=inv(x"*(k[.,loop].*id)*i*inv(i"*(k[., loop].*id)*i)*i"*(k[., loop].*id)*x)*x'*
(k[.,loop].*id)*i*inv (i"™*(k[.,loop].*id)*1)*i"*(k[., loop].*id)*y;
coefr=coefr~betaw;
loop=loop+1;
goto restart;
endif;
endo;
vbar=meanc(coefr');
v=sumc((coefr'-vbar')"2)/n;
varm=varm-~v;
1=11+1;
endo;
» rankO=varm][.,.].>v0; /*returns value 1 if the condition is correct and 0 otherwise*/
» rank=sumr(rank0); /*sums by row*/
» p=rank/n; /*approximate p values of Monte Carlo simulation*/
» yhat=s*y; /*GWR model predictions, eq. 10*/
» vl=sumc(diag(s)); /“trace of the hat matrix*/
» sigma=sumc((y-yhat)"2)/(n-v1); /*eq. 9*/
» loopl=1;
» varcoef={};
» do while (loopl<=n); /*the following lines estimate the variances of local coefficients*/
restart: if(loopl<=n);
h=wsg[g+1,.];
k=exp(-d./h);
cO=inv(x"*(k[.,loop1].*id)*i*inv (i"*(k[.,loop1].*id)*i)*1"*(k[.,loop1].*id)*x)*x"*(k[.,loop1].*
id)*i*inv(i"*(k[., loop1].*id)*1)*i"*(k[.,loop1].*id);
varcoef0=diag(c0*c0"sigma); /“eq. 7%/

129



varcoef=varcoef~varcoef(; /*local variances*/
loopl=loop1+1;
goto restart;
endif;
endo;
» stecoef=sqrt(varcoef); /*local standard errors*/
» tcoef=coef./stecoef; /*local t statistics*/
» pv0=cdfTc(tcoef,n-cl);
» t1=tcoef].,.].>0;
» pvl=pv0.%t1*2;
» t2=abs(t1-1);
» pv2=(1-pv0).*t2*2;
» pv=pvl+pv2; /*local p values*/
» pvt=pv’;
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9.2. Fixed-effects code with computation of ILUC variables

A programming code displayed in this section iteratively plugs in different bandwidths start-
ing from 10 and ending at 1000 with increments of 10 in eq. 11 and prints MSE of fixed-effects
regression under each bandwidth.

» h=10;
» do while (h<=1000);
load data[2105,302]=D:\PhD\ road_dist.txt; /*loads the matrix of road distances*/
droad=data;
load data[2105,25]=D:\PhD\ crops.txt; /*loads the matrix of crop values, the first col-
umn is a state code, columns 2:13 include soy values of each year (from 2002 to 2012),
columns 14:25 store sugarcane values of each year*/
s=data;
droadl=s[.,1]~droad; /“the following 5 lines are not necessary, those only offer a pos-
sibility to compute ILUC from a specific state*/
m=droadl][.,1].<7;
droad2=selif(droadl,m);
c=cols(droad?2);
droad3=droad?2[.,2:c]/1000;
w=exp(-droad3/h); /*the kernel function given by eq. 11*/
ml=s[.,1].<7; /*those two lines are not needed if the whole study area is considered*/
sl=selif(s,m1);
cc1={2,14}; /*vectors ccl and cc2 are used to estimate indirect effects of soy and sugar-
cane separately*/
cc2={13,25};
k=1;
crop3={};
do while (k<=2);
s2=sl[.,ccl[k,.]:cc2[k,.]];
s3=s2";
wl=w';
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n=rows(wl); /*# frontier counties*/
p=L
crop2={};
do while (p<=12);
q=1
cropl={};
do while (gq<=n);
nom=sumr(s3[p,.].*wl[q,.]); /*nominator of eq. 12*/
denom=sumr(w1[q,.]); /*denominator of eq. 12*/
crop=nom/denom; /*eq. 12%/
cropl=cropl | crop;
q=q+L;
endo;
crop2=crop?2 | cropl;
p=p*L
endo;
crop3=crop3~crop2; /*contains indirect effect estimates of soy and sugarcane*/
k=k+1;
endo;
crop4=trimr(crop3,0,302); /“the following 3 lines create lagged indirect effects*/
z=zeros(302,2);
crop5=z | crop4;
cropb=crop3~crop5; /*contains current and lagged indirect effect estimates (one-year
lags) of soy and sugarcane*/
i2=1; /*the following procedure creates an id column*/
c2={};
do while (i2<=12);
i1=1;
cl={};
do while (i1<=302);
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cl=cl]il;
i1=i1+1;
endo;
c2=c2|cl;
i2=i2+1;
endo;
i3=1; /*the following procedure creates a t (time) column*/
jj=ones(302,1);
c3={};
do while (i3<=12);
jj1=jjtis;
c3=c3 |jj1;
i3=i3+1;
endo;
crop7=c2~c3~cropb;
crop8=sortmc(crop7,1|2); /*indirect effect data is sorted by id and by t*/
load data[3624,12]=D:\PhD\ data_for_code.txt; /*loads the matrix of variables, already
sorted by id and by ¥/
d00=data;
dO=crop8][.,1]~d00~crop8][.,3:6]; /*adds an id column and indirect effect variables to the
dataset */
d=packr(d0); /*deletes rows with missing data (observations of 2001)*/
t=11; /*# time periods (years)*/
obs=302; /*# observations (frontier counties)*/
ii=1; /*the following lines do demeaning*/
d3={};
do while (ii<=obs);
mask=d[.,1]./=ii;
d1=delif(d,mask);

mnc=meanc(d1);
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mnct=mnc';

jj=ones(t,1);

mncj=mnct.*jj;

d2=d1-mngc;j;

d3=d3|d2;

ii=ii+1;

endo;
cl=cols(d3);
dfe=d3|.,2:cl]; /*demeaned variables*/
yte=dfe[.,1]; /*demeaned dependent variable*/
xfe=dfel[.,2:cl-1]; /*demeaned independent variables*/
bfe=inv(xfe"*xfe)*xfe'*yfe; /*fixed-effects (FE) estimator”/
sefe=sqrt(diag(inv(xfe*xfe)*(sumc((yfe-xfe*bfe)"2)/ (obs*(t-1)-cols(xfe))))); /“FE stan-
dard errors*/
tte=bfe./sefe; /*FE t statistics*/
d4=d[.,1]~d3[.,2:cl];
j=1; /*the following lines calculate cluster-robust standard errors of FE regression*/
sum=0;
do while (j<=obs);

maskl=d4[.,1].==j;

ds=selif(d4,mask1);

dsy=ds[.,2];

dsx=ds|.,3:cl];

dse=dsy-dsx*bfe;

see=dse*dse';

sw=dsx'*see*dsx;

sum=sum-+sw;

=j+1;

endo;

secfe0=inv(xfe"*xfe)*sum*inv(xfe'*xfe)*(obs/ (obs-1))*(obs*t-1) / (obs*t-cols(xfe));
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secfe=sqrt(diag(secfe0));

tcfe=bfe./secfe; /*FE f statistics under cluster-robust standard errors*/
o=bfe~secfe~tcfe; /*output (coefficients, cluster-robust standard errors and f statistics*/
y=d[.,2]; /*original values of the dependent variable*/

x=d[.,3:cols(d)]; /*original values of the independent variables*/

p=x*bfe; /*predicted values*/

mse=sumc((y-p)"2); /“eq. 13*/

print mse;

h=h+10;

endo;
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9.3. Spatial filtering codes

This section presents programming codes used to obtain eigenvectors. Nearest neighbors we-
re identified in ArcGIS using Generate Near Table tool.

Gauss 10 script for obtaining the connectivity matrix

» load data[5504,4]=D:\PhD_D\P3\ Data728\ near_nb.txt, /*.txt file was created directly from
ArcGIS, necessary information is stored in the second column (id of a cell) and in the third
column (id of one of its nearest neighbors)*/
» d=data,
» d1=d[.,2:3],
» d2=d1+1, /*original ids range from 0 to n-1, n is a number of observations*/
» n=rows(d2),
» =1,
» w={}, /*stores the connectivity matrix*/
» do while (I<=n),
mask0=d2][.,1]./=I,
d3=delif(d2,mask0),
i=1,
k={},
do while (i<=n), k=k|i, i=i+1, endo, /“creates a 1,2,...,n vector*/
c=rows(d3),
=1,
s={},
do while (j<=c),
mask=Kk[.,1].==d3Jj,2], /*creates a vector of n rows which contains value 1 if the
element is a c" nearest neighbor of a cell to which a vector corresponds and 0
otherwise*/
s=s~mask,
=i+l

endo,
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v=sumr(s), /*creates a vector that codes all nearest neighbors as ones and non-neigh-
bors as zeros*/
W=W~V,
1=1+1,
endo,
» output file = D:\ PhD_D\ P3\ Data728\ conn_nb.txt reset,
» W,

» output off, /*Gauss writes data from left to right with 4 elements in each row*/

R 3.2.2 script for obtaining eigenvectors

> library(maptools)

> library(spdep)

> setwd("D:/PhD_D/P3/Data728")

> d<-read.table("D:/PhD_D/P3/Data728/d.txt") /*contains values of dependent and inde-
pendent variables*/

> c0<-as.matrix(read.table("D:/PhD_D/P3/Data728/conn_nb.txt")) /*works only if n squared
is divisible by 4, otherwise c0 cannot be read as a matrix*/

> c<-matrix(t(c0),728,728) /“converts c0 into original connectivity matrix*/

> x <- mat2listw(c) /*converts matrix c to a weights list object*/

> lw <- nb2listw(x$neighbours, style="W") /*IV coding implies row standardization®/

> nSFE <- SpatialFiltering(V1 ~ ., data = d, nb = x$neighbours, style = "W", ExactEV = T)
/*ExactEV uses exact expectations and variances rather than the expectation and variance of
Moran’s I from the previous iteration*/

> nlmSFE <-Im(V1 ~ . + fitted(nSFE), data = d) /*OLS with eigenvectors*/

> summary(nIlmSFE) /*reports OLS results*/

> write.csv(fitted (nSFE), "eigen_nb.csv") /*writes values of eigenvectors into .csv file*/
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