

Title: testIA: Webservice for the scientific comunity to
test Image Analysis algorithms

AUTHOR: Milan Sindjelic

Master’s Thesis

Master’s degree in Computer Engineering
(With a specialty/itinerary in Interactive Technologies)

at the

UNIVERSITAT DE LES ILLES BALEARS

Academic year 2017/2018

Date 28.07.2018

UIB Master’s Thesis Supervisor Dr Antoni Jaume-i-Capó

UIB Master’s Thesis Co-Supervisor Dr Gabriel Moyà Alcover

testIA: Webservice for the scientific comunity to test Image Analysis
algorithms

Milan Sindjelic
Tutors: Antoni Jaume-i-Capó, Gabriel Moyà Alcover

Treball de fi de Màster Universitari Enginyeria Informàtica (MINF)
Universitat de les Illes Balears

07122 Palma de Mallorca
milan.sindjelic1@estudiant.uib.cat

Abstract

In this work we made system which offers execution of any
image analysis algorithm to other researchers with their data-
sets by applying our algorithms on their dataset without sha-
ring the code of experiments. System allows researchers to
easily reuse designed experiments and repeat them with the
same dataset or with a new dataset. This way we tried to re-
duce problem of reproducibility in computer science. System
is called testIA and it consists of two parts: front-end, for re-
searchers and back-end management system for administra-
tion. System is developed using Django web framework and
RESTful web services.
Keywords: reproducibility, reusability, testing environment,

image analysis

1. Introduction

One of the biggest objective in science is critical evaluation
of the correctness of scientific results and conclusions of other
scientists. This could be carried out if the scientist, who is ma-
king critical evaluation, has well defined methodology and if
he has documentation of the project which should be evalua-
ted. Documentation needs to cover the description of the pro-
cess which is executed in the experiment and description of
the analysis of gained data. During that process, the scientists
try to repeat, replicate and reproduce original results and con-
clusions. The idea for this work came from my mentors from
UGiVIA (Computer Graphics and Vision and Artificial Inte-
lligence Group) Department of Mathematics and Computer
Science (DMI) at UIB in order to make a system that allows
running and testing different experiments and is available to
vast group of researchers. At the end, any obtained result from
the experiment is not completely constituted if it is not able to
be reproduced independently. There is a lot of disagreement
in scientific circles about definitions of these three terms. He-
re I will use the definitions by the Association for Computing
Machinery which are proposed based on definitions from the

International Vocabulary of Metrology [2]:

• Repeatability (Same team, identical experimental se-
tup): The measurement can be obtained with stated pre-
cision by the same team using the same measurement
procedure, the same measuring system, under the same
operating conditions, in the same location on multiple
trials. For computational experiments, this means that a
researcher can reliably repeat her own computation. [2]

• Replicability (Dissimilar team, identical experimental
setup): We can achieve the measurement with stated pre-
cision by a dissimilar team using the same measurement
procedure, the same measuring system, under the same
operating conditions, in the same or a different location
on multiple trials. For computational experiments, this
means that an independent group can obtain the same
result using the author’s own artifacts. [2]

• Reproducibility (Dissimilar team, Dissimilar experi-
mental setup): We can achieve the measurement with sta-
ted precision by a dissimilar team, a dissimilar measu-
ring system, in a dissimilar location on multiple trials.
For computational experiments, this means that an inde-
pendent group can obtain the same result using artifacts
which they develop completely independently. [2]

The biggest problem is how to achieve the reproducibility of
algorithms in computer science, since for reproducibility aut-
hors need to share an original code of the project. Sharing the
code represents the point of dispute among scientists and aut-
hors of the works. From one side, code represents the good of
its author and if it is shared then that good is gone. On the ot-
her hand, if the scientist wants to reprocude some project, he
should be able to have an access to the original code. Over the
years a new term has emerged among the authors - reusabi-
lity. This term tries to merge replicability and reproducibility
in one. Essentially, it applies the process from the paper to
similar question. In case of software engineering that can be
applied on the process on a new set of data. We can say that
reusability is more important than reproducibility. The main
reason for this is that reusability allows getting new results
which the author did not expect or even did not think about,

since we apply process to new data. With reproducibility, re-
searchers cannot obtain new results.[3][4] Therefore, the main
objective of this project is to offer the possibility to other re-
searchers that they can execute any image analysis algorithm
with their dataset without access to the original code. With
this, they just need to upload their dataset and after execu-
tion, they will get the results. This way we cover one of the
main principles of reproducibility in computer science since
the researchers will be able to rerun the experiment with new
datasets. As we said in the previous paragraph, that possibi-
lity, to rerun the experiment with new data, in this case with
a new set of images, is very important in today’s approaches
of computer science. Second objective, which is of great im-
portance, is to collect new images from the researchers. With
those images we will be able to get new datasets for future re-
searches and improve already existing experiments. The main
objective is mainly intended for the researchers to easily test
algorithms with theirs datasets. The second objective is inten-
ded for the owner laboratory of the project.
testIA will be used for execution different image analysis algo-
rithms. Image analysis(IA) is extraction of important or mea-
ningful information from the digital image. One example can
be detection of different things on the image (text, faces, ob-
jects). With testIA researchers will have the possibility to run
any available IA algorithm with theirs dataset. In IA is used
machine learning(ML). Especially, the most used type of ML
here is supervised learning. There are some common steps
which typically IA does: Image preprocessing, Segmentation,
Feature extraction and Classification.
This paper is organized as follows: after the introduction, in
next subsection we have view of several similar works. In Sec-
tion 2 is given a view of the architecture used for developing
and why they are chosen. The results and discussion of execu-
ting one test on given experiment are presented in Section 3.
Finally, the conclusions and the proposals for future studies
are given in Section 4.

1.1. Existing work
There is a lot of previous works which are related to image

analysis, particularly medical images. Those images are very
interesting for researchers since improvements in that field
brings a lot of gain for medicine. A specialized case of dif-
ferent types of images are those with human cells. Since I am
going to discuss the results by running testIA application on
the experiment designed for classification of cells, here I will
give some observation of existing systems for analysis images
with cells.
Very similar paper is published by group of authors from Car-
negie Mellon University and Intel Labs Pittsburgh. During
their work they developed a public website which enables
to researchers running experiments and checking its status
online using their developed user interface. Also, the websi-
te enables, for any researcher or researcher group, uploading
their own cell images for analysis and comparison. This part
represents similarities between my work and this. The diffe-

rences are reflected in fact of proposed algorithms for ima-
ge analysis. They presented a few algorithms for cell ima-
ge analysis where they included image restoration of micros-
copy’s images, cell event detection and cell tracking in a large
population[2]. Using developed system, researchers are able
to run their experiment on those algorithms.[8]
Another one similar system is CellProfiler, developed for
analysis of images in order to recognize and quantify diffe-
rent types of cells. CellProfiler is the first free program and it
is open source. Primary, it is created for biologist researchers
with the aim to obtain important information from microsco-
pic images. For example: numbers of cells or their type, etc.
This system enables them to put in process a huge number of
images, hundreds and thousands of them. CellProfiller is de-
veloped as desktop application and that is the main difference
in comparison with this work. Also, on back-end it uses the
different algorithms then me here. [9]
There is one similar paper to experiment whose results will
be commented in result part. This paper can be watched as
one possible experiment which can be run on testIA. They
tried to find and extract the most relevant features for skin le-
sion computational diagnosis based on shape properties, color
variation and texture analysis using different techniques. The
group of features which they used are the same as in our ex-
periment. As we will see the differences are in the classes of
extracted objects, they do with skin lesions while our system
is more generic, and can do with any classes of objects in IA.
One more similarity is reflected through the process which is
applied, step by step.[5]

2. Methods

2.1. Django framework
Django is an application web framework for the develop-

ment of web applications. It is written in Python program-
ming language and is free and open source. The following is
an MTV (model-template-view) architectural pattern. One of
the great advantages of Django is that it facilitates and ac-
celerates the development of complex web applications that
use the database for storing information and retrieving and
displaying them on the database-driven website. Those ad-
vantages were mainly reason why we decided to use Djan-
go to develop web application for research community. Djan-
go follows MTV pattern which is based on Model-Viewer-
Controller (MVC). MVC is an architectural form that serves to
implement user interface. It shares the software in three parts
to separate the original representation of information from the
way the information is presented to the user. Since MVC is a
form, certain architectures that use this form may vary.
First, I will explain how these parts are described in the tra-
ditional definition. The central part is a model. It records ap-
plication behavior in the domains of the same domain as the
problem that is independent of the user interface. Also, it ac-
cess data, logic, and application rules directly. The second part

is a viewer. View is any output result of an application such as
a chart, table, or text. It is made possible to create more views
of one information. The third part is the controller who recei-
ves the input and translates it into an outward-looking model
or view. The controller is actually a mediator between the mo-
del and the look in both directions. Model-Template-View is
a kind of MVC architecture used for web site development.
It separates different parts of a web application: display, da-
ta access, and website logic. MTV enables independent web
application building, enhances system security and simplifies
system maintenance. There are three parts: Model The model
defines data forms and relationships in databases. The Djan-
go circle model is a class written in the Python programming
language, specifies the variables and methods associated with
certain types of data, and has the meaning of the table in the
database. Associated variables have the meaning of the co-
lumn in the table, and the methods define relationships bet-
ween the variables. The model is closely related to the data-
base and view. From a database, the model retrieves the re-
quested data and props them. The model does not have any
knowledge of the existence of the template and functions de-
rived from it. In this way, the database is separated from the
remaining two parts of the system; View The purpose of the
view is to determine which data will be displayed, namely,
which data will be retrieved from the database and displayed
by the view in the web browser. In the Django environment,
a separate view file is created when creating a web page for
each application. The view file consists of functions written in
the Python programming language. For each page, a special
function is written that manages the query execution. In addi-
tion to the ability to query the data retrieval model, it has the
ability to implement email sending, authentication, input pa-
rameter verification, and many more. The view does not know
how data is displayed in a web browser. The job of view is
to fetch the requested data and forward it to a layer that will
show them in the browser. Template The template is a MTV
architecture layer closely linked to the web browser. It is an
HTML page with additional structures that allow display of
data passed from the view. The task of the template is the con-
tent received from the view to organize and embed into the
HTML code that will be displayed in the web browser. The
preload file has additional limitations on the impossibility of
typing commands in the Python programming language. This
prevents mixing of functions of individual layers and provides
additional security to the web page. It represents view from
MVC pattern.

2.2. RESTful web services
Representational State Transfer (REST) is a model of ar-

chitecture for distributed hypermedia systems. This model is
based on the transfer of the resource state, where the resour-
ce can be any meaningful, addressable concept, and the re-
source view is mainly a document containing the current sta-
te of the resource. The largest REST application is the Web
itself, characterized by using the HTTP transport protocol and

URL addressing mechanism. REST supports all types of me-
dia and XML is the most popular method used for the trans-
mission and presentation of structural information. Services
that follow REST are called RESTFul services. This type of
services is used in this project. REST is not dependent on
any protocol, but almost every RESTful service uses HTTP
as the basic protocol. These services are much better inte-
grated with HTTP than SOAP services, and as such do not
require XML SOAP messages or WSDL definitions. Becau-
se it is much simpler, REST has almost completely replaced
SOAP and WDSL. This is the first reason why we develo-
ped system with RESTFul service, next is that here we do not
need Statefull service. From client part we need just data as
he is originally so stateless is perfect, without any additional
parts between client and server. RESTful services should have
the following features and characteristics: no state (Stateless),
uniform Interface-URI, explicit use of HTTP methods, trans-
fer XML and / or JSON. All of those features exists in testIA.
With this type of service, resources (such as static pages, files,
database data...) have their own URLs or URIs that identify
them. Access to resources is defined by the HTTP protocol,
where each call is one action (it creates, reads, modifies or
deletes data). The same URL is used for all operations, but
the HTTP method that defines the type of operation changes.
This is the main feature of REST architectural model is dif-
ferent from other networks. The model is exactly the uniform
interface between the components. Uniforms interface com-
pletely separates the server and client’s duties, thus simplif-
ying the architecture itself. HTTP offers a set of methods that
we call verbs: GET, PUT, POST, DELETE. RESTful services
are used: with limited bandwidth and resources (feedback can
be in any form) and in operations that do not use the state. If
an operation needs to be continued then REST is not the right
approach and SOAP is probably a better solution. Since in tes-
tIA we do not have an operation which need to be continued
then logic choice was RESTful service. Advantages of REST-
ful service are next: simplicity-clients who call REST services
do not have to formulate requests for SOAP specification and
do not have to pave the SOAP response in order to extract the
result from it; the flexibility of the format of the returned data-
the format in which the data is returned is not predefined and
depends on the service itself. Clients can request data in the
format that suits them best, unlike the SOAP format, although
it has to be standardized, it must parse. So JavaScript can get
data in JSON format that can read easily, and the RSS reader
in the RSS-XML format that it can display. using existing net-
work infrastructure;quick mastering technique. RESTful ser-
vices are focused on resources and how to provide access to
them. When designing a system, the first thing we are paying
attention to is the identification of resources and determining
how the resources are tied to one another. The principle is si-
milar to the design of the database: identification of entities
and connections between them. Once we identify our resour-
ces, the next thing we need to do is to present resources to you
in our system. REST allows you to use any format for resource

Figure 1: Database schema for testIA.

presentation.

2.3. Architecture of application
In this work I developed a web application which consists

of two parts. One part is the user interface, where term user co-
rrespondents to any researcher from science community who
wants to make some test with own dataset on already existing
experiment, this part is front-end part of the application. Se-
cond part is for administration of the web application and that
is back end part of the system, this part is conceived as a ma-
nagement system for experiments. Since both are developed
as Django web applications behind both parts is the same ar-
chitecture (Figure 3). It is architecture based on MVC design
pattern which is explained in previous section together with
Django framework. The only differences are in numbers of
templates used in their design, in front-end part there are mo-
re then on back-end. For back-end part regular users do not
have access. This architecture is chosen because of its advan-
tages: fast process of development; easy to grow, for future
extensions; the model is separated from the user’s view. As
database we used postgreSQL. We chose SQL type of databa-
se before NoSQL, since it more suitable to keep information
for this type of web application. Here we do not have dyna-
mic schema of database so SQL was logic choice. Between
different DBMS in SQL we chose postgreSQL because it is
more suitable for application which is developed in Django
framework.

2.3.1. Server equipment

testIA runs on server which is owned by University of Ba-
learic Islands(UIB). It is run on virtual machine. Virtualiza-
tion allows physical compute, memory, network, and stora-
ge resources to be divided between multiple virtual entities.
Each virtual device, in this case is testIA, is represented wit-
hin its software and user environments as an actual, standa-

lone entity. Configured properly, virtually isolated resources
can provide more secure applications with no visible connec-
tivity between environments. Virtualization also allows new
virtual machines to be provisioned and run almost instantly,
and then destroyed as soon as they are no longer needed.
Configuration of our virtual device is next: the IP address is
130.206.30.141; Names of DNS (Domain name server) tes-
tia.uib.es, testia.uib.cat, testia.uib.eu. Those are for three dif-
ferent languages: catalan, spanish and english, respectively.
This languages follows the general politics if UIB for officiall
languages. For now, is accessible only from UIB network, but
the plan is to put web application available to more widely re-
searcher’s community and will be available only on English
language. The operating system on which server is run is Li-
nux Ubuntu 16.04.3 LTS globally well-known Xenial Xerus.
On the server our application has 14GB of space for root di-
rectory and 20GB of files important for the application. Since
the files for application and for experiment do not take a lot of
space, the huge amount of that space will be used to save da-
tasets of users. About how will we treated that saved datasets
and information I will say something later in section for secu-
rity. testIA can be achieved by port 80 or 443. Port 80 is with
less security and 443 is with SSL (Secure Socket Layer) in
order to have a more powerful application in view of security.

2.3.2. Database

As I mentioned before, we used PostgreSQL for the data-
base. In designed schema of testIA I have 4 different tables:
Experiment, User,Test and UserProfile as is shown on Figu-
re 1. With the last one, UserProfile, is left the possibility to
change the schema in the future. If someone wants to add so-
me new attribute in order to make testIA more useful or if
there are needs for some new data. Every of those tables have
their appropriate class in Model part of the architecture (Fi-
gure 3). Experiment is table in database which is responsible
to save information about experiment which is created by ad-

Figure 2: Appearance of Sign Up template

ministrator. For parameters it has ID, which is auto genera-
ted like for all other tables; description_experiment - which is
here to save explanation of experiment and to give useful in-
formation to researcher; external_function - here is the name
of main function of experiment, with this is left opportunity
for creators of experiment to give different names for diffe-
rent experiments; file_name - keep the name of file in order
to import that module when experiment is in running mode;
image_name - keep the name of cover image which is used
to show to researchers main aim of experiment or some im-
portant characteristics; example_file - creators of experiment
can added this file for the researchers, inside can be deeper
description of experiment and also examples of images used
in experiment. Table User keeps information about users of
the system. There are username, password, email - in order to
contact them when results of experiment are ready, is_active
- only users which are activate their account can login, etc.
Table Test keeps informations about individual tests run by
users. There are attributes necesary to model that: which user
is run the test -user, on which experiment was launched test,
information about uploaded dataset - path_files, boolean va-
lue is_finished which is there to change the state from is run-
ning to finished and etc. During development of application
we tried also to run testIA with SQLite on localhost server
with IP address 127.0.0.1 in order to compare performance of

Figure 3: MVC design pattern used in both, back-end and
front-end part of testIA

two different DBMSs. The results was pretty the same becau-
se they both are SQL DBMS and has very similar characte-
ristics. As we can see from Figure 1, there are some relations
between those tables in database. Every test has reference to
one Experiment, since we should know on which experiment
test was launched. Every Experiment can have a larger num-
ber of tests, so, this database relation is one to many. Second
relation is between User and Test. Every Test has reference
to one user which launched it. With this we know which user
run, which experiment and later we can give him opportunity
to download just results of a test which he was launched. One
User can have more tests related to him. Also, this relation is
one to many, if we talk from database view. The last relation
between User and UsesProfile is one to one relation, one User
has reference to just one UserProfile and opposite.

2.3.3. User interface

The user interface is one for researchers. During develop-
ment of it, I tried to make it so straightforward and for easy to
use. Those things were the mainly aims for that part of appli-
cation. Also, I want to make that interface to be clear, because
clarity is one of the key characteristics of good user interfa-
ce. This means that in every part of application user needs to
know what he can do and how. I did not want UI which is
confused and frustrating for users. In order to get this cha-
racteristics I made several explanation of User interface. As
is shown on Figure 5, where is flowchart of front-end part of
testIA system, using web application starting with login page.
If researcher already have their credential they can put it here
and after successfully login they will come to home page. In
case that they forgot theirs password I create ’reset password’

Figure 4: Home part of testIA

part where they can reset password and get new one through
email provided during registration. For this purpose are crea-
ted two different templates, login template and home template
which is shown on Figure 4. If users are not registered from
login page they can go to registration part and fill form with
username, password and email, this is the second path from
login page. The first is from login to home template. After
registration they have to activate account on provided email.
For registration is created template with name signup. The ap-
pearance of signup template is shown on Figure 2. As we can
see there is also the one box for recaptha which represent one
type of security in testIA. Also, before registering new users
should accept the terms and conditions by click on check box.
They can read it on given link next to check box. About se-
curity, terms and conditions will be talk for two sections after
this. The home page is a place where researchers can choose
on which one existing experiment they want to run their tests.
On this part is reflected a desire of simplicity of the UI. The-
re are big cards with images of experiments with the name of
experiment. Appearance of it is shown on Figure 4. There is
one existing experiment which simply rotate the image. That
is not confusing for the users which with one click choose
desired experiment. Part for the test is also very straightfor-
ward. After choosing the desired experiment users come to
test page where they have a description of an experiment, and
part to upload their dataset. In this point is placed important
thing for reproducibility of the experiment. Every user can run
test with his own dataset. He starts it by click on button Start.
The complete work flow is: First is login, then choosing the
experiment, after that uploading the dataset, starting test and
on the end users will get notification when results are availa-
ble in the application. Notification will be send by email on
the address provided during registration. In application there
is part which is called Results where will be placed all results
for current user. For results part is designed template with na-
me results. There are buttons where by click on them user
can download the results of every test. This user interface is

evaluated using one survey with 10 people. They have tested
the application on the same machine. From their opinion, I
saw that the simplicity of this UI is achieved. UI is written
in HTML(HyperText Markup Language) language. With this
User part of application I tried to achieve reusability, but wit-
hout code sharing. Every researcher can come to testIA and
run available algorithm with his dataset. With that he can get
some new result of experiment or can get some unexpected
conclusion.

2.3.4. Admin interface

Second part of application is developed for administration
and they are responsible for making different experiments. It
back-end management system for add the experiments. Ac-
cess to back-end have just super users, the ones which are
making experiments. On this way roles in application are se-
parated. Regular researchers are there to make their tests and
administrators are there to make new experiments. We need
that in order to make our application more usable, since we
can have more different experiments and on the end with that
more opportunities for researchers. For the administrators the-
re is just one page. Before that they need to login through lo-
gin page like normal users. The difference is that they after
login go to that one admin page which is shown in Figure
6. Through it they can upload information and code for the
experiment. Also, here they need to check the libraries for
new experiment. With this they have control of available al-
gorithms which can be run on testIA. The list of things which
administrator have to provide during creation of experiment is
the following: Description of experiment, main function na-
me, name of experiment. python module-code of experiment
written in python, cover image. File with examples is optio-
nal. Description of experiment is a text which will be shown
to users when they click on desired card on home page (Figure
4) and it should describe in several sentences the experiment.
Main function name is there for programming reasons. With

Figure 5: Flowchart for testIA

this name we left to author’s of experiment freedom to give
their name. Name of experiment and cover image appear on
the card on home page. Example is zip file where authors of
experiment can put whatever they think that is important to
researchers to know for example images, detailed description
of experiment, etc. After his click to button start experiment
becomes available for users. For purpose of this management
system is developed one template. The appearance of this part
is shown on Figure 6.

2.3.5. Views

In previous subsections are given observations about two
of three main parts of the MVT design pattern. The model is
processed in subsection Database, and template is processed
in last two subsections as a User and admin interface. Now
is time to view, the part which connects those two. In testIA
views are developed in file views.py, since the convention is
to put views in file with that name. As we can see from ex-
tension they are written in the Python programming langua-
ge. Every view is represented with one python function. The
input parameter which all views have is web request which
contains information from user’s side. For example, informa-
tion about logged user, information about data which are sent
from user’s browser, etc. Some of the views have additional
input parameters which are usually value of ID for database
of an experiment, value of ID for one test or user. They re-
turns web response which contains web page which will be
rendered on user’s side. Some of them with web page returns
a list of objects which should be shown to users. Inside every
view communicate with the database through model, does so-
me processing of them, and then depending of the request save
informations to the database or just put to web response those
informations and return it. The featured view is one where test
is run. There is used django background task module in order
to put the execution of test, which can take a lot of time for a
large dataset, in the background. The user immediately get the
notification that test is running and when it is finished he will
get an email. With background task we have fast response to
user and execution of test is separated. Here exists one ques-
tion: How django knows which views is correspond to a re-

quest which is coming? For this there is URL dispatcher. For
it, I created a Python module called a URLconf, from URL
configuration. This module is pure Python code and is a map-
ping between URL path expressions to views. With it django
knows which function(view) call when some request is on the
server.

2.3.6. Security, terms and conditions

During development of testIA security was taken into ac-
count. There are several responsibility levels of it. First is
using SSL, for which we need to get a certificate in order
to have HTTPS (Secure HTTP protocol). With this the data
which users send from their computer to our servers is safety,
since SSL is protocol, which enable secure point-to-point con-
nection between client and server. All data from the client is
encrypted and on that way send to server. Next level is that tes-
tIA provides a login / logout system where just logged users
can access to the experiments. On this way we are sure that
users who are not logged can not come and run any expe-
riment or download the results. There is also reCAPTCHA
system, which is designed to establish that a computer user
is human or bots(machine), in order to protect websites from
bots. Before registration every user need to check reCAPT-
CHA field. Whereas reCAPTCHA assists in the digitization
of books, testIA with using it helps in that big project, too.
testIA with its Terms and contition satisfies the EU GDPR
(European Union General Data Protection Regulation). Users
before registration have to accept those terms, since without
that registration is not possible. The GDPR aims primarily to
give control to citizens and residents over their personal data
and to simplify the regulatory environment for international
business by unifying the regulation within the EU. The most
important parts of this regulative in our case are how we ca-
re about data of users and about theirs uploaded datasets. The
personal information we will save on the way that satisfy rules
of EU. For dataset they can choose will give us permission to
use it in next researchers or not. In case when they allow us to
use it the future that dataset will be saved on server after test
execution.

Figure 6: Back-end part of testIA

3. Results

We use one example here to demonstrate how testIA works.
Any researcher can run any available experiment. The user can
download the results of execution from the web application.

3.1. Cell classification

First, in order to create and run an experiment, the user
needs to have administration’s privileges. It is superuser of
testIA system or administrator. We need to create it through
command line. After the administrator’s creation, he has ac-
cess to administration interface. Through it, the administra-
tor can create an experiment. The experiment is developed
by Natasa Petrovic from UGiVIA at UIB. This creation is li-
ke plugging one module to testIA. We upload the code and
when the test is in execution, this module will be imported in-
to the system and executed. Developed module classifies the
red blood cells using machine learning (ML) algorithm. This
experiment is one which covers full image analysis process
for given dataset. Inside the module were used 7 different ML
algorithms for classification: SVM (Support vector machine),
decision tree, extra trees, gradient boosting tree, random fo-
rest, KNN (K-Nearest Neighbors) and multilayer perceptron.
The result of it is one file where is summarized numbers of
three different types of cells (circular, elongated and others)
by every algorithm. Experiment is created by uploading one
file with code through the admin’s interface. The requirement
for the new experiments is that they have to include the main

function with the parameters which follow some testIA rules.
Also, along side with the code, user uploads also a cover ima-
ge of experiment, sets the name of main function and gives
the description of experiment. Before the creation of an expe-
riment we should check if there are dependencies to be insta-
lled. Since a lot of dependencies are installed beforehand, we
did not have to add any. Experiment is created by clicking on
button start. After this we obtained one available experiment.
For execution of this experiment, we need to have one regular
user. We created it through user interface. After the successful
registration, test user could see one available experiment whe-
re he can put his dataset and run his test. The part for create
test dataset is uploaded and after that test started. User first
got notification that he will get a notification email when test
is finished. After that notification, he can visit the results pa-
ge and download the results. This way any user can come and
execute his test on given experiments with theirs datasets and
with this we obtain the reusaibility, since experiment can be
used any number of times for different datasets.

4. Conclusion and future work

In this paper we exposed one possible solution to improve
reusability in computer science, since we enabled researchers
to reuse already designed experiments for their dataset. Also,
in this way we fufilled our secondary objective, which is to use
their datasets for the future research. One of possibility for fu-
ture work is to give access to those datasets for whole research
community. Also, one of the possible improvements can be

introduction of parallel programming. This could improve the
speed of running the classification algorithms. Parallelism can
also improve the image segmentation process.

Apéndice .1. User manual

Apéndice .1.1. Login

When user come to web application first he will see login
page.
- In field Username user should put his username, in Pass-
word field his password if they are already registered. And
after click on button "Login".
- If user is not registered he should click on button "New
member.and fill the form for registration.
-If user is registered but he forgot his passsword he should
click on link "Forgot password". After that user have to put
his email in the field and click button "submit". Than have to
go to his email, click on link in email and after that fill the
form where will provide new password. After that can log in
with new credentials.

Apéndice .1.2. Sign up

- User need to put username, email on which he will get no-
tifications and password. Password has to be at least 8 charac-
ters and can not contains some well known words like qwerty,
12345678, etc. After click on button "Sign Up"they need to
go to provided email and activate account. Without that they
can not login and they are not registered. -

Apéndice .2. Home
-On this page users just need to click on one available card

and on this way they choose experiment which what to reuse.

Apéndice .3. Test
-Here user have to fill the form about his test. First should

put the name of test. Then, dataset. Here is one option to put
his answers if that is necessary for the experiment. And also
need to give permission to use his dataset in the future resear-
ches. By clicking on the button "Start"test is go to execution
and user is redirected to page where web application notify hit
that he will get an email when results are ready.

Apéndice .3.1. Results

- To this part of application user can come by click on -
esult"button in navigation. From here user can download re-
sults of his finished tests. Just need to click on button with the
name of the test which want to download.

Apéndice .3.2. Backend part-admin

- Admin need to fill a form in order to add new experi-
ment in system. First should provide description of experi-
ment. Than name of main function in code, name of module,
module code and one example file where can put any informa-
tion regarding to experiment which he creates. By clicking on
"Start"button experiment is added to system. If he needs some
new dependency, which is not already installed he has to put
the name of the dependency in format: name_of_dependency
=== desired_version_of_dependency in the appropriate field
and click add. Bellow that field is list of installed dependen-
cies.

Referencias

[1] Dr. Anirban Mukhopadhyay Machine Learning in Image
Analysis - Theory and Practice - http://www.zib.de/MLIA
(Accessed June 11, 2018)

[2] International Vocabulary of Metrology Ba-
sic and General Concepts and Associated
Terms (VIM), 3rd edition, JCGM 200:2012,
http://www.bipm.org/en/publications/guides/vim.html.
(Accessed June 11, 2018)

[3] Steven N. Goodman, Daniele Fanelli and John P. A. Ioan-
nidis What does research reproducibility mean?. Ameri-
can Association for the Advancement of Science, 2016

[4] Hans E. Plesser Reproducibility vs. Replicability: A Brief
History of a Confused Terminology. Frontiers in Neuroin-
formatics 11 (2017): 76. PMC. Web. 11 June 2018.

[5] Roberta B. Oliveiraa, Aledir S. Pereirab and João Manuel
R. S. Tavaresa Computational Diagnosis of Skin Lesions
from Dermoscopic Images using a Combination of Featu-
res. Manuscript Draft

[6] Cristian Varela https://medium.com/@cvarelaruiz/why-i-
love-python-and-django-26596ce4d82e (Accessed June
11, 2018)

[7] Ali Ahadi http://comtech2.com/web-services-
architecture-when-to-use-soap-vs-rest2/ (Accessed
June 11, 2018)

[8] Takeo Kanade and Zhaozheng Yin and Ryoma Bise and
SeungIl Huh and Sung Eun Eom and Michael Sandbot-
he and Mei Chen Cell Image Analysis: Algorithms, Sys-
tem and Applications IEEE Workshop on Applications of
Computer Vision (WACV) 2011

[9] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1794559/
(Accessed June 11, 2018)

[10] https://www.w3.org/TR/soap12/ (Accessed June 11,
2018)

