
	

	

	

DOCTORAL	
 THESIS	

2016	

	

	

	

	

RECONSTRUCTION	
 PROBLEMS	

FOR	
 LGT	
 NETWORKS	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

Joan	
 Carles	
 Pons	
 Mayol	

	
	
	

DOCTORAL	THESIS	
2016	

	

Doctoral	Programme	of	Mathematics	
	
	

	

RECONSTRUCTION	PROBLEMS	
FOR	LGT	NETWORKS	

	
	

	

Joan	Carles	Pons	Mayol	
	
	
	

	
	
	
	

Thesis	Supervisor:		
Dr.	Gabriel	Cardona	Juanals	

	
	

Doctor	by	the	Universitat	de	les	Illes	Balears	

Statement of Authorship

This thesis has been submitted to the Escola de Doctorat, Universitat de les Illes Balears,
in fulfilment of the requirements for the degree of Doctor en Matemàtiques. I hereby
declare that, except where specific reference is made to the work of others, the content
of this dissertation is entirely my own work, describes my own research and has not been
submitted in whole or in part for consideration for any other degree or qualification in
this, or any other university.

Joan Carles Pons Mayol

Palma, September 2016

Funding

The work reported in this thesis was supported by Ministerio de Ciencia e Innovación
through grants Grafos en bioloǵıa computacional (MTM2009 07165), Aplicaciones bioin-
formáticas en filogenética, metagenómica, bioloǵıa de sistemas y genómica del cáncer
(DPI2015-67082-P), Creación de una red temática en computación biomolecular y celu-
lar (TIN2008-04487-E/TIN) and Renovación y nuevas actividades de la red temática en
computación biomelecular y biocelular (TIN2011-15874-E) and Obra Social “La Caixa”
through Programa Pont “La Caixa” per a grups de recerca de la UIB.

i

ii

Supervisor’s Agreement

I, Gabriel Cardona, Ph.D. in Mathematics and Associate Professor at the Department of
Mathematics and Computer Science, Universitat de les Illes Balears

ATTEST THAT

this dissertation, titled Reconstruction Problems for LGT Networks and submitted by
Joan Carles Pons Mayol for obtaining the degree of Doctor en Matemàtiques, was carried
out under my supervision and contains enough contributions to be considered as a doctoral
thesis.

Dr. Gabriel Cardona

Palma, September 2016

iii

iv

Abstract

Phylogenetics is the study of evolutionary history and relationships among species, and
in particular, its reconstruction from biological data. It plays an important role in under-
standing biology because it allows to stablish the relationships between organisms. Based
on Darwin’s theory, which states that all species have evolved from a common ancestor,
evolutionary histories have been represented using trees. However, when non-vertical evo-
lutionary events such as hybridizations, recombinations and lateral transfer of genes occur,
the use of phylogenetic networks is indeed more appropriate than trees in order to model
those reticulate evolutionary histories.

The main motivation of this thesis is to develop a new model for phylogenetic networks
modelling evolutionary histories with lateral gene transfers, as well as computational meth-
ods and algorithms for their reconstruction.

The new model we propose, which we call LGT networks, captures the asymmetry of
lateral gene transfer events. The model is based on considering a principal tree that
represents the main line of evolution of the considered species, and a set of arcs modelling
lateral transfer events. Our LGT networks generalizes some other existent models which
were designed for a similar purpose.

We solve the well-known phylogenetic network reconstruction problem for the above-
mentioned LGT networks from induced sets of trees and trinets. Both cases require some
topological constraints to be imposed in order to obtain unicity of solutions, which is lost
when considering generic LGT networks.

We reconstruct such networks from a set of trees formed by a principal tree and a set
of secondary subtrees, being each of these secondary subtrees associated to a specific
secondary arc. To do this, we propose a polynomial algorithm, which we applied to real
biological data sets in order to predict or discover lateral transfer events. We also study the
reconstruction problem from a set of “basic” LGT networks on three leaves and with only
one secondary arc. We call such networks tri-lgt-nets, which are similar to the well-known
trinets. With this, we contribute to extend the set of possible phylogenetic networks that
can be recovered using the previous substructures.

Finally, we extend the framework for the reconciliation problem between gene trees and
species trees using LGT networks as the species phylogeny. In order to set up the evo-
lutionary scenario, we allow transfer events via secondary arcs of the network only, as
well as duplications and losses. For this model, we present fast computational algorithms
addressed to obtain the most parsimonious reconciliation between a gene tree and an LGT
network.

v

vi

Resum

La filogenètica és l’estudi de les històries evolutives i les relacions entre espècies, i en
particular la seva reconstrucció a partir de dades biològiques. Aquesta juga un paper
important en la comprensió de la biologia, ja que permet determinar les relacions de
parentiu entre organismes. Basant-se en la teoria de Darwin, la qual defensa que totes
les espècies han evolucionat d’un ancestre comú, les històries evolutives s’han representat
emprant arbres. No obstant això, quan ocorren processos evolutius no verticals tals com
hibridacions, recombinacions i transferències laterals de gens, l’ús de xarxes filogenètiques
és, certament, més apropiat que l’ús d’arbres per a modelar aquestes històries evolutives
reticulars.

La principal motivació d’aquesta tesi és desenvolupar un nou model per a xarxes filo-
genètiques que modelen històries evolutives amb transferències laterals de gens, aix́ı com
mètodes computacionals i algorismes per a la seva reconstrucció.

El nou model que proposem, i que anomenem xarxes LGT, captura l’asimetria de les trans-
ferències laterals de gens. El model es basa en considerar un arbre principal, representant
la ĺınia principal d’evolució de les espècies considerades, i un conjunt d’arcs modelant
les transferències laterals de gens. Les nostres xarxes LGT generalitzen altres models ja
existents que foren dissenyats amb un propòsit similar.

Resolem també el problema ben conegut de reconstrucció de xarxes filogenètiques per a
les esmentades xarxes LGT a partir de conjunts indüıts d’arbres i de trinets. Ambdós
casos requereixen que s’hi imposin algunes restriccions topològiques per obtenir unicitat
de solucions, que es perd considerant xarxes LGT genèriques.

Reconstrüım aquestes xarxes a partir d’un conjunt d’arbres format per un arbre principal i
un conjunt d’arbres secundaris. Cadascun d’aquests últims està associat a un arc secundari
espećıfic. Per fer-ho, proposem un algorisme polinòmic que apliquem a dades biològiques
reals per a predir o descobrir processos de transferència lateral de gens. També estudiem
el problema de reconstrucció a partir d’un conjunt de xarxes LGT “bàsiques” de només
tres fulles i un sol arc secundari. Anomenarem a aquestes xarxes, xarxes tri-lgt-nets que
serien similars a les conegudes trinets. Amb això, contribüım a estendre el conjunt de
xarxes filogenètiques que poden ser reconstrüıdes emprant les subestructures prèvies.

Finalment, estenem el marc del problema de reconciliació entre arbres de gens i arbres
d’espècies emprant les xarxes LGT com a filogènia d’espècies. Per establir l’escenari evo-
lutiu, permetem les transferències laterals de gens, només a través dels arcs secundaris de
la xarxa, aix́ı com també duplicacions i pèrdues. Per això, presentem algorismes computa-
cionals ràpids adreçats a obtenir la reconciliació més parsimoniosa entre un arbre de gens
i una xarxa LGT.

vii

viii

Resumen

La filogenética es el estudio de las historias evolutivas y las relaciones entre especies, y
en particular de su reconstrucción a partir de datos biológicos. Esta juega un papel im-
portante en la comprensión de la bioloǵıa puesto que permite establecer las relaciones de
parentesco entre organismos. Bajo la teoŕıa de Darwin, que defiende la procedencia de
todas las especies de un ancestro común, las historias evolutivas han sido representadas
usando árboles. No obstante, cuando ocurren procesos evolutivos no verticales cómo hibri-
daciones, recombinaciones o transferencias laterales de genes, el uso de redes filogenéticas
es, ciertamente, más apropiado que el uso de árboles para modelar estas historias evolutivas
reticulares.

La principal motivación de esta tesis es desarrollar un nuevo modelo para redes filogenéticas
que modelan historias evolutivas con transferencia lateral de genes, además de métodos
computacionales y algoritmos para su reconstrucción.

El nuevo modelo que proponemos, que llamamos redes LGT, captura la asimetŕıa de las
transferencias laterales de genes. El modelo se basa en considerar un árbol principal
representando la ĺınea principal de evolución de las especies consideradas y un conjunto
de arcos modelando las transferencias laterales de genes. Nuestras redes LGT generalizan
otros modelos ya existentes que fueron diseñados con un propósito similar.

Resolvemos el conocido problema de reconstrucción de redes filogenéticas para las men-
cionadas redes LGT a partir de conjuntos inducidos de árboles y trinets. En ambos casos se
requiere la imposición de restricciones topológicas para obtener unicidad en las soluciones,
ya que esta se pierde cuando consideramos redes LGT genéricas.

Reconstruimos estas redes a partir de un conjunto de árboles formado por un árbol prin-
cipal y un conjunto de árboles secundarios. Cada uno de estos últimos está asociado a
un arco secundario espećıfico. Para hacerlo, proponemos un algoritmo polinomial que
aplicamos sobre datos biológicos reales para predecir o descubrir procesos de transferen-
cia lateral de genes. También estudiamos el problema de reconstrucción a partir de un
conjunto de redes LGT “básicas” de unicamente tres hojas y un sólo arco secundario.
Llamamos a estas últimas redes tri-lgt-nets, similarares a las conocidas como trinets. Con
esto, contribuimos a extender el conjunto de posibles redes filogenéticas que se pueden
reconstruir usando estas subestructuras.

Finalmente, extendemos el marco del problema de reconciliación entre árboles de genes
y árboles de especies usando las redes LGT cómo filogenia de especies. Con el fin de
establecer el escenario de evolución permitimos transferencias laterales de genes, sólo a
través de los arcos secundarios de la red, aśı como también duplicaciones y pérdidas. Para
esto, presentamos algoritmos computacionales rápidos dirigidos a obtener la reconciliación
más parsimoniosa entre un árbol de genes y una red LGT de especies.

ix

x

Agräıments

Arribat aquest moment i després del recorregut que m’ha portat fins aqúı, no vull deixar
passar l’oportunitat d’expressar el meu agräıment:

• Al meu director, Biel Cardona, pel seu suport i seguiment durant la meva carrera
universitària des dels meus inicis i fins al dia d’avui. Sense ell, aquest treball de
recerca no hauria estat possible i, el meu interès per l’àlgebra, tampoc.

• Al grup de Biologia Computacional i Bioinformàtica (BIOCOM) de la Universitat
de les Illes Balears (UIB), per contribuir a la meva formació, especialment a Cesc
Rosselló com a director del grup.

• Al Departament de Matemàtiques i Informàtica de la UIB i en representació seva a
Ricardo Alberich, director del mateix durant aquest treball de tesi.

• A na Cati Vich, per tot (hi ha massa coses per anomenar-les totes).

• A en Joan Duran i na NN Vich; cadascun en sap els motius particulars però, gràcies
per ser-hi, recolzar-me i ajudar-me en tot moment.

• Als amics d’Algaida i altres companys del departament de la UIB, pel seu interès a
seguir i conèixer el meu camı́.

• À Céline Scornavacca pour le traitement et l’aide qu’elle m’a donné, dans et hors
l’université pendant mon séjour de recherche à Institut des Sciences de l’Evolution,
Université Montpellier II.

• To Krzysztof Bartoszek, Marta Casanellas and Jesús Fernández to open the doors
and for the help they have provided me with during my visits in Uppsala University
and Departament de Matemàtica Aplicada I, Universitat Politècnica de Catalunya,
respectively.

• Als meus pares, la meva germana i als meus avis, per la seva ajuda i la força que
m’han transmès.

• A en Miquel Amengual, al que li dec la meva passió per les matemàtiques des de
ben jove.

xi

xii

Contents

Introduction 1

1 Preliminaries 7

1.1 Graphs . 7

1.2 Some biological concepts . 9

1.3 Trees and networks in phylogenetics . 11

1.4 Newick notation for trees and networks . 12

1.5 Decomposition of trees and networks . 14

1.6 Classification of phylogenetic networks . 16

1.7 Topological restrictions . 17

1.8 Metrics on phylogenetic networks . 22

1.9 Phylogenetic networks reconstruction . 26

1.10 Reconciliation between gene trees and species trees 28

2 LGT networks 33

2.1 Introduction . 33

2.2 LGT networks . 34

2.3 LGT networks generalize species graphs . 37

2.4 Other models for LGT events . 37

2.5 An extension of Robinson-Foulds metric for LGT networks 39

3 A reconstruction problem for LGT networks based on trees 43

3.1 Introduction . 43

3.2 Secondary and reduced subtrees . 44

3.3 Subtree prune and regraft on LGT networks 45

xiii

CONTENTS

3.4 LGT network reconstruction problem . 46

3.5 Restricted LGT networks . 48

3.6 Computational experiments . 62

3.7 Some technical proofs . 66

4 A reconstruction problem for LGT networks based on tri-lgt-nets 77

4.1 Introduction . 77

4.2 Decomposition of a binary arc-node LGT network 78

4.3 Redundant arcs and coverings . 86

4.4 Characterization of partial coverings of a redundant arc 90

4.5 Temporal consistency and minimum LGT network 101

5 A reconciliation problem between gene trees and LGT networks 111

5.1 Introduction . 111

5.2 Parsimonious reconciliations between gene trees and species trees 112

5.3 Reconciliation between gene trees and species networks 114

5.4 The best tree displayed by an LGT network 116

5.5 The best reconciliation with the LGT network 125

Conclusions and future work 129

Bibliography 131

xiv

Introduction

Computational biology and bioinformatics are disciplines on the border between mathe-
matics, computer science and biology. They aim to solve the algorithmic problems that
appear in molecular biology and are dealt with specific computer tools. In the last decades,
technology has experienced a vast improvement, which has boosted research in computa-
tional biology and bioinformatics, allowing the continuous development of these disciplines.

Such bioinformatics tools have become essential for biologists, since they are of great use
in data generation, analysis and applications. Among other fields, computational biology
has become of great importance in phylogenetics, which can be defined as the science
that classifies living organisms based on their ancestral relationships. This branch of the
biology allows us to study the evolutionary history of a group of organisms.

Looking backwards, already early nature researchers tried to classify the different groups
of organisms on Earth, starting with Aristotle, who classified such organisms in a scalae
naturae. In his scale, the simplest organisms were placed at the bottom, and as its com-
plexity increased they had higher position, until the top, where we find the most complex
organisms, humans. However, Aristotle’s classification did not attract the interest of ma-
jor experts in natural history until the 17th and 18th centuries, when Leclerc, Bonnet and
Linné based their work on Aristotle’s idea. The latter of this researchers is the father of the
classification of the living beings, best known as taxonomy. In the 19th century, Lamarck
proposed an evolutionary theory which explained the evident and gradual change of living
beings within the same species; namely that an organism can pass characteristics acquired
during his lifetime onto its descendants. He suggested the use/disuse theory, based on the
inheritance of acquired characteristics. In the mid 19th century, a different theory was
presented by Darwin in his famous work On the Origin of Species, where he established
that species evolve from generation to generation by natural selection. He also explains
the variety of organisms coming from a common ancestor, using a tree-like representation
relating such organisms. Such evolutionary idea forms the basis of phylogeny, a concept
introduced later by Haeckel.

Following Darwin, the evolutionary history of a group of species, or phylogeny, has been
represented using a (phylogenetic) tree. Ultimately, the Tree of Live would show the
evolution of all extant and non extant species on Earth from a single common ancestor.
Such trees can take a wide variety of shapes, being the most commonly used a directed
graph with labelled leaves, each of which refers to an organism. The internal nodes of
the graph represent common ancestors, the arcs model the lineage persistence across time,
and the root the most recent common ancestor of all considered species.

Since the DNA discovery, at the mid-20th century, the use of the aforementioned phylo-
genetic trees has notably evolved. Nowadays, their use has been extended to also describe
relationships between gene families [Mäser et al. (2001)], to explain population histories

1

INTRODUCTION

[Edwards (2009)], pathogenic dynamics and epidemiology [Grenfell et al. (2004)], cancer
research [Campbell et al. (2010)], language evolution [Gray et al. (2009)], classification
of metagenomics sequences [Brady and Salzberg (2011)], gene identification [Kellis et al.
(2003)], and reconstruction of ancestral genomes [Paten et al. (2008)], among others.

Despite the importance and wide applicability of phylogenetic trees, some relevant evo-
lutionary events, which mainly affect specific groups of organisms, cannot be properly
modeled properly using a tree [Martin (2011); Doolittle and Bapteste (2007)]. In such
cases, trees simplify too much the evolution scenario since they only account for those
evolutionary processes where each organism has a single direct ancestor. In other words,
they are only suitable for modelling “vertical” events, such as mutations. There exists
evidence of the existence of phylogenies with evolutionary events that cannot be explained
using the paradigm of the single direct ancestor, referred to as reticulations or “horizontal”
events. They enclose events such as lateral gene transfers, hybridizations and recombina-
tions, to name a few. Lateral gene transfers consists in the transmission of genes from
an organism to another one not genealogically related to the former [Chia and Goldenfeld
(2011)]. Examples of this process are found mainly in bacteria [Hotopp (2011); Hao and
Golding (2004); Polz et al. (2013)], as well as in some plants [Yue et al. (2012); Nikolaidis
et al. (2014)]. Hybridization is the creation process of a hybrid organism, which takes place
in specific plants and groups of fishes [Mallet (2007); Seehausen et al. (2008)]. Finally,
in a recombination event, descendants can have attributes not found in their parents, as
happens in recombination events in viruses [Holmes et al. (1999); Martin et al. (2015)].

Thus, we have strong evidence that reticulation events are present in a substantial variety
of organisms and hence the quest for the Tree of Life is simply vain: “Molecular phylo-
genists will have failed to find the ‘true tree’, not because their methods are inadequate or
because they have chosen the wrong genes, but because the history of life cannot properly
be represented as a tree” [Doolittle (1999)]. In order to include such reticulation events
in the modelling of evolutionary histories, a new model is required that generalizes phy-
logenetic trees: phylogenetic networks. As it happens in the case of phylogenetic trees,
one can consider rooted as well as unrooted phylogenetic networks, and for both kinds of
networks we find in the literature a large amount of different definitions and subclasses.
In this dissertation we will focus on rooted phylogenetic networks, for which there seems
to be a consensus in the use, as mathematical model, of rooted directed acyclic graphs
with a bijective correspondence between their leaves and the set of extant species under
consideration [Semple and Steel (2003); Huson et al. (2010); Morrison (2011); Felsenstein
(2004)].

One of the main goals of phylogenetics is the development of methods to reconstruct evo-
lutionary histories. With these methods we obtain phylogenetic trees, as well as networks,
that represent the most accurate hypothesis of the ancestral relationships between species.
There exist lots of references in the literature about tree inference [De Bruyn et al. (2014)
and references therein]; however, the reconstruction problem using phylogenetic networks
is nowadays still a challenge. Roughly speaking, this reconstruction problem consists in
obtaining an optimum phylogenetic network under certain specific constraints that models
the evolution of different organisms. The algorithms to reconstruct phylogenetic networks
can have as input data clusters [Van Iersel et al. (2010a)], triples [van Iersel and Kelk
(2011)], distances [Francis and Steel (2015a)], trees [Wu (2013)] and trinets [Oldman et al.
(2016)], among others. Nevertheless, the reconstruction problem for arbitrary networks
is necessarily difficult, since it has been proved to be NP-hard, and hence no polynomial
algorithm can solve it (if one assumes that P 6= NP) [Kanj et al. (2008); Bordewich and
Semple (2007)]. Hence, some topological constraints, either based on biological facts or

2

INTRODUCTION

mathematical conditions, are needed in order to tackle the problem. For further reading
and full guide on phylogenetic networks, as well as related software, we refer the reader to
Gambette (2010), Huson et al. (2010) and Morrison (2011).

Although in the early days of phylogenetics the reconstruction of the evolutive history
of species was based on visible characteristics of the species (that is, their genotype), all
modern studies are based on the comparison of genetic material (that is, their genotype
or more generally their full genome). Since the comparison of the full genome of species
is clearly intractable, in order to study the evolution of a set of species, one usually takes
different genes and studies their evolution in the species under consideration, obtaining
gene trees. The fact that different genes are considered, together with the diversity of
reconstruction algorithms, makes that different studies may lead to different evolutive
hypothesis.

This discrepancy between different studies leads to different problems. One of them is
the yet mentioned reconstruction problem for phylogenetic networks: given different gene
trees explaining the evolutive history of a set of genes in different species, try to infer
a phylogenetic network that explains the evolution of species. A second problem is the
comparison of trees and networks, that can be treated mathematically as finding sound
distances in the spaces of phylogenetic trees [Robinson (1971); Hein (1990); Allen and Steel
(2001)] and networks [Moret et al. (2004); Cardona et al. (2008c,a, 2009b,e,c); Nakhleh
(2010b)]. A third problem is how to harmonize the evolutive history of genes with the
evolution of species.

This last problem is commonly known as the reconciliation problem between gene trees
and species trees or networks. The solution to this problem is given by a reconciliation
scenario, where evolutive events at the gene level are mapped to evolutive events at the
species level; more technically, it is obtained by means of a mapping that takes each
internal node of each gene tree to a node of the species tree or network subject to certain
conditions that model mathematically the underlying biological mechanisms. Depending
on the events that are considered at gene level (essentially, mutations, duplications, losses
and transfers), one obtains different models, such as DTL models [Doyon et al. (2010),
Tofigh et al. (2011), Bansal et al. (2012)], that take into account duplications, transfers and
losses, or DL models [Doyon et al. (2009), To and Scornavacca (2015)], where transfers
are not allowed. The reconciliation problem has applications in, for instance, coevolution,
[Merkle et al. (2010)] becoming of great importance in parasitology and biogeography,
[Ronquist (1995); Page and Charleston (1998); Nieberding et al. (2010); Brooks and Ferrao
(2005); Merkle and Middendorf (2005); Charleston and Perkins (2006)].

From an algorithmic point of view, we are thus led to consider the problem of reconstruct-
ing combinatorial structures (namely phylogenetic networks and recombination scenarios)
from substructures or partial data (gene trees, clusters, subtrees, etc.). The methods de-
veloped to solve these reconstruction problems can be divided into two big families, those
based on parsimony and those based on maximum likelihood. In big lines, methods of the
first kind are based on Occam’s razor: the simplest solution is the best one. An example
in reconstruction of networks would be to choose as solution a network with the minimum
number of reticulation nodes, or to choose the tree that minimizes the number of mutations
on the branches. When working in the reconciliation problem, a parsimonious solution
could be the one that minimizes the number of evolutionary events. The second family of
methods require the definition of a statistical model in order to evaluate candidate trees,
networks or scenarios. In general, methods based on maximum likelihood are much more
complex and consume much more computing resources, but the results they give are sta-
tistically optimal. Thus, both methods present their own advantages and disadvantages;

3

INTRODUCTION

however, they both share the same goals: efficiency, which tries to reduce the execution
time; consistency, which asks if the phylogenetic tree or network is a reliable reproduction
of the given data; and robustness, which measures the sensitivity of a particular method
to small changes in the input data.

Contributions of the dissertation

The main subject of this dissertation is the development of models and algorithms for the
reconstruction of phylogenetic networks modelling lateral gene transfers and its reconcili-
ation with gene trees.

LGT networks

The first contribution is the development of a model to describe phylogenetic networks
where the non-tree-like events are lateral transfers of genes. The existing models for
phylogenetic networks did not allow to distinguish between the different species involved
in the appearance of a new one, which is appropriate for events like hybridizations or
recombinations. However, in lateral gene transfers, there is one (and only one) species that
contributes in greatest measure to the genetic material of the formed species. We introduce
a new kind of phylogenetic networks, that we call LGT networks, that model properly this
asymmetry in the contributions of the different parents. We do so by distinguishing the
arcs in the network between principal and secondary arcs; the former describe the main
line of evolution and the latter describe lateral gene transfer events. We also define a
sound metric on the space of LGT networks that extends the well known Robinson-Foulds
distance on trees.

Reconstruction from trees

Our second contribution in this field is the development of a method for the recovery of an
LGT network from a set of trees that it induces. More precisely, we consider the principal
subtree of an LGT network, formed by its principal arcs, and for each secondary arc one
secondary subtree, that essentially models a gene that has evolved through the main line
of evolution except for the chosen arc, through which it has been transferred laterally. In
order to solve the associated reconstruction problem, we introduce a technical condition
on the networks to consider and give an algorithm that recovers the network from the set
of trees (or detects that no such network can exist).

These results have been published in a journal article:

Gabriel Cardona, Joan Carles Pons, Francesc Rosselló. A reconstruction problem for a
class of phylogenetic networks. Algorithms for Molecular Biology, 2015; 10:28.

Reconstruction from trinets

The third contribution of this dissertation is the study of the reconstruction problem
of LGT networks from substructures induced by triplets of leaves. This problem is well
known for trees, but for phylogenetic networks our knowledge is limited to some particular

4

INTRODUCTION

cases. The first problem to solve is how can one define a substructure induced by a triplet,
like trinets used on some phylogenetic networks, that is more suitable for LGT networks,
and then decide whether or not one can recover the full network from this data. For this
reason, we introduce what we call basic tri-lgt-nets, which are LGT networks with three
leaves and at most one secondary arc, and a class of LGT networks that can be singled
out by the basic tri-lgt-nets that they contain.

The results we have obtained have led to a preprint (joint with Dr. Gabriel Cardona) that
will be submitted to Journal of Mathematical Biology.

Reconciliation with gene trees

Finally, the fourth contribution of this dissertation is the development of efficient al-
gorithms for solving the reconciliation problem between gene trees and LGT networks
representing the evolution of species. We consider a scenario with duplications, losses
and transfers, but restrict transfers to happen through secondary arcs. In this setting
we adapt previous results on trees to obtain a polynomial algorithm that gives the most
parsimonious reconciliation between a gene tree and an LGT network.

These last results were obtained while a research stay of the author at the Institut des
Sciences de l’Evolution, Université Montpellier II under the supervision of Dr. Céline
Scornavacca and have led to a manuscript (joint with Dr. Céline Scornavacca and Dr.
Gabriel Cardona) that has been submitted to Journal of Theoretical Biology.

Organization of the text

This dissertation, apart from this introduction, consists of five chapters plus one last small
chapter of conclusions.

Chapter 1 provides a review of phylogenetic trees, phylogenetic networks and an overview
of methods to infer and reconcile such networks. Moreover, some biological concepts and
processes that cause dissimilarities between phylogenies are described.

In Chapter 2 we introduce the model of LGT networks and some notation relative to such
networks that is used in later chapters. Also, there is a comparison between our model
and other ones designed in a similar flavour, and a metric which allows for its comparison.

In Chapter 3 we define the secondary subtrees, reduced versions of subtrees and the SPR
operation that can be used to analyze the distance between the principal and secondary
subtrees. Moreover, we present the subclass of restricted LGT networks and also give an
algorithm that allows for the reconstruction of such networks from the set of phylogenetic
trees corresponding to its principal and secondary subtrees, provided that such a network
exists. Finally, in order to test our algorithms, we include two computational experiments
using real biological data.

In Chapter 4 we introduce what we call basic tri-lgt-nets, which are LGT networks with 3
leaves and one secondary arc. We define how a secondary arc induces a set of those basic
networks and characterize which tri-lgt-nets are represented in a network. This leads to
the concept of redundant arcs, arcs whose removal does not change the basic lgt networks
represented, and their coverings. Finally we exhibit a class of LGT networks that are
determined by the set of tri-lgt-nets that they represent.

5

INTRODUCTION

Finally, in Chapter 5 we first look into the reconciliation problem between gene trees and
species trees, its extension to species network and the barriers to extend the duplication
and loss model to the one where also transfer events are allowed. Then, we solve the
problem of finding the most parsimonious reconciliation using LGT networks as species
networks and provide computationally efficient algorithms for its computation.

6

Chapter 1

Preliminaries

Contents

1.1 Graphs . 7

1.2 Some biological concepts . 9

1.3 Trees and networks in phylogenetics 11

1.4 Newick notation for trees and networks 12

1.5 Decomposition of trees and networks 14

1.6 Classification of phylogenetic networks 16

1.7 Topological restrictions . 17

1.8 Metrics on phylogenetic networks 22

1.9 Phylogenetic networks reconstruction 26

1.10 Reconciliation between gene trees and species trees 28

In this chapter, we review concepts, definitions and problems relevant to this dissertation.
First we introduce basic required nomenclature to work in graph theory and we briefly
summarize some biological concepts and processes which are important for phylogenetic
evolution. Then, we define phylogenetic trees and networks, some concepts where both
structures appear to be linked and different ways to represent them. Mainly focusing on
phylogenetic networks, we review their classification and also different ways to compare
them. Finally, we introduce the reconstruction problem of phylogenetic networks and the
reconciliation problem between gene trees and species trees.

1.1 Graphs

An undirected graph is an ordered pair G = (V,E) (see Figure 1.1 (a)) where V is a set of
vertices or nodes and E is a set of edges. Each edge e is determined by an unordered pair
of nodes {u, v} which are called its end nodes or simply its ends; to simplify notations,
we simply write e = uv. In this case we say that the node u (or v) and the edge e are
incident and also that u and v are adjacent.

A directed graph (see Figure 1.1 (b)) is defined analogously as in the undirected case
except that the pair of nodes defining an arc (which is the name used for edges in directed
graphs) are taken as an ordered pair (u, v). In a directed graph, given an arc (u, v), the
node u is called the source or starting node of the arc and the node v is called its target

7

CHAPTER 1. PRELIMINARIES

or destination node. In this case we also say that v is a child of u and that u is a parent
of v. The pair of nodes that determine an arc are called its extremes.

If G = (V,E) is an undirected graph, the degree of a node u ∈ V , denoted by deg(u), is
defined as the number of edges incident to u. If u is a node in a directed graph, its in-
degree (resp. out-degree), denoted as indeg(u) (resp. outdeg(u)), is defined as the number
of arcs whose destination node (resp. starting node) is u. We say that a node u ∈ V is a
root of G when indeg(u) = 0. We say that a node u ∈ V is a leaf if deg(u) = 1 (in the
undirected case) or if outdeg(u) = 0 (in the directed case). The nodes of the graph that
are not leaves are called internal nodes. The sets of leaves and internal nodes of a graph
G are denoted by L(G) and I(G), respectively. Sometimes we also consider that some
nodes of the graph are labelled by a set L(G); that is, one considers a mapping from a
certain subset U of V to L(G). Although in a general setting all nodes can be labelled, we
hereafter will consider that the labelled nodes are exactly the leaves and that the labelling
is injective, that is, no different leaves share the same label. More formally, we consider
a fixed bijection between L(G) and L(G). Also, we will identify, usually without further
mention, a leaf with its label.

Given G = (V,E) a directed graph, and u, v ∈ V , a directed path P between u and v,
denoted by u v, is a sequence of nodes (u = u0, u1, . . . , uk−1, v = uk) with k ≥ 1 such
that (ui−1, ui) ∈ E for all i = 1, . . . , k. When k > 1, the path is proper. A directed cycle
is a proper directed path which starts and finishes in the same node. A directed acyclic
graph, or simply a DAG, is a directed graph that does not contain any directed cycle. A
DAG is rooted when it has only one root, and it is sometimes simply called an rDAG. A
rooted directed acyclic graph labelled on a set S is called a S-rDAG (see Figure 1.1(b) or
Figure 1.3).

2

1

5

4

3

G1(a)

1 2 3 4

c d e

a b

rG2(b)

Figure 1.1: (a) The graph G1 is an undirected graph labelled on {1, 2, 3, 4, 5}. (b) The
graph G2 is a rooted directed acyclic graph labelled on S = {1, 2, 3, 4} (i.e. an S-rDAG).
The root of G2 is r, its leaves are L(G2) = {1, 2, 3, 4} and its internal nodes are I(G2) =
{r, a, b, c, d, e}. The proper directed path r 2 can represent any of the paths (r, a, d, 2),
(r, a, c, 2), or (r, b, c, 2). The nodes c, d, e are the children of a, hence outdeg(a) = 3. The
nodes a i b are the parents of e and hence indeg(e) = 2.

A directed acyclic graph is connected if there is an undirected path, that is a directed path
ignoring arc orientations, between each pair of nodes. A node (arc) of a directed graph
is called a cut node (cut arc) if its removal disconnects the graph. A directed graph is
biconnected if it contains no cut-nodes. A biconnected subgraph B of a directed graph G is
said to be a biconnected component if there is no biconnected subgraph B′ 6= B of G that
contains B. For example, the directed graph depicted in Figure 1.2 has four biconnected
components.

Two S-rDAGs on the same set S are isomorphic if there exists an isomorphism of DAGs
between them that preserves and reflects the respective labellings of the leaves. More

8

1.2. SOME BIOLOGICAL CONCEPTS

1 2 3 4

Figure 1.2: A rooted directed acyclic graph which biconnected components are highlighted
by circles.

formally, given G = (V,E) and G′ = (V ′, E′) two S-rDAGs, an isomorphism between G
and G′ is a bijection φ : V → V ′ such that:

• (u, v) ∈ E if, and only if, (φ(u), φ(v)) ∈ E′;

• u ∈ V is a leaf labelled by s ∈ S if, and only if, φ(u) ∈ V ′ is a leaf labelled by s.

We denote by G ∼= G′, or even G = G′, if two S−rDAGs G and G′ are isomorphic. For
example, the two rooted directed acyclic graphs labelled on {1, 2, 3, 4} depicted in Figures
1.2 and 1.3 are isomorphic.

4 3 1 2

Figure 1.3: A rooted directed acyclic graph isomorphic to the one depicted in Figure 1.2.

1.2 Some biological concepts

In this section we present some basic biological concepts and processes which will ap-
pear later in this manuscript and that will help us to understand some of the biological
phenomena modelled in bioinformatics. For a broader vision, see Otto and Day (2007),
Purves et al. (2003), Nei (1987) or Crow et al. (1986), among others. We will focus on the
mechanisms of genomic evolution which give rise to new biological entities.

The functioning of all known living organisms is governed by genetic instructions that are
encoded in molecules of Desoxyribo Nucleic Acid (DNA). This molecules are formed by
long chains of nucleotides (or bases); each of these nucleotides can either be cytosine (C),
guanine (G), adenine (A), or thymine (T). Thus, a sequence of DNA can be encoded by a
string on the alphabet {C,G,A,T}. The genome of a living organism is the full set of DNA
that is present in each cell of the organism and identifies it. This genome is organized

9

CHAPTER 1. PRELIMINARIES

in chromosomes; for instance, the humane genome, that is formed by approximately 3
billions of bases, is organized in 23 pairs of chromosomes, whose length can vary from
approximately 50 millions of bases to about 250 millions of bases. The DNA in each
chromosome is divided into different genes that can act as instructions for the cell to
make proteins and ultimately determine the characteristics of the living being that will be
transmitted to its descendants.

Although all living organisms have their own genome, and in principle different organism
have different genomes, in order to study characteristics that are common to a group of
individuals, they are grouped into species. We shall not get into the details of how species
defined, that is, what makes two different organisms to be considered as members of the
same species or not. In either case, members of the same species share a great amount of
genome; for instance, the human genetic variation is only 0.5% (approximately). We can
therefore make a simplification and assume that all members of a species have “the same”
genome. However, different populations of the same species subject to different conditions
may evolve differently, making their genomes to diverge and giving rise to different species
in a process called speciation.

There are different mechanisms present in the evolution of species. Roughly speaking,
we can say that there are two kinds of such mechanisms: vertical and horizontal events.
Vertical events are those where the evolution of a species does not involve the exchange of
genetic material with other species, while in horizontal events there is such an exchange.
Classically, the studies of the evolution of species have only taken into account vertical
events, basically mutations and natural selection, as introduced by Darwin. However,
in the last few decades it has become clear that evolution cannot be properly explained
without taking into account horizontal events.

This horizontal events include hybridizations, lateral gene transfers and recombinations.
Hybridizations model the formation of a new species by cross-breeding two members of
different species. The new species members, called hybrids, acquire equal amount of genetic
material from both parent species. In lateral (or horizontal) gene transfers (LGT or HGT
events, for short) there is a (generically small) transfer of genetic material from one species
to an unrelated species. Finally, in recombinations different traits of the genome found in
either parent are combined making the offspring to have a trait distinct to those found in
the parents.

Although most of the genetic evolution studies have centered their attention on vertical
events, it is now evident the increasing importance of events like lateral gene transfers in
evolution theory [Boto (2010); Daubin and Szöllősi (2016)]. Among other things, lateral
gene transfers enable the generation of new genetic combinations as well as the expansion
of those with high biological efficiency. There is a high presence of this phenomenon in
bacteria and viruses [Ochman et al. (2000); Keen (2012)] but it can also be present in
plants and animals [Keeling and Palmer (2008)].

Notice that reticulate evolution may function at different levels. For example, through
hybridization at the species level and through recombination below the species level, at
population level.

If we focus on evolutionary events at gene level, where some sequences of DNA nucleotides
experience alterations, we find the particular case of duplication and loss events. A dupli-
cation takes place when two homologous chromosomes break at different points and are
reconnected to the wrong partners. In such cases, one of the resulting molecules will have
a missing DNA segment, which has been deleted, and the other one will have two copies

10

1.3. TREES AND NETWORKS IN PHYLOGENETICS

of it, hence a duplication. Such duplication processes are important since they permit
proteins to adquire new functions or to keep its original function when a mutation affects
a gene. When the effect of the duplication for the population is either detrimental or it
has a neutral (neither detrimental nor beneficial) effect, this sequence may get lost.

1.3 Trees and networks in phylogenetics

A group of organisms are interrelated by ancestor and descendant relationships derived
from “vertical” and “horizontal” processes as those we have seen in the previous section. A
phylogenetic tree (see also Section 1.10) is a branching diagram illustrating the evolution-
ary history infered from a set of taxa reflecting vertical events like mutations. The use of
phylogenetic trees limits the identification and visualization of more complex evolutionary
scenarios. That is, the evolutionary processes like hibridizations, lateral gene transfer or
recombinations can not be modelled by a tree structure. For this reason, phylogenetic net-
works were introduced in order to model the evolutionary history of a group of organisms
where we can take into account both vertical and horizontal events.

In the field of computational biology, the concepts of phylogenetic trees and networks
appear in a multitude of ways depending on many factors [Semple and Steel (2003); Mor-
rison (2011); Huson et al. (2010)]. Generically, they are graphs with certain restrictions
that are used to model mathematically some biological problems related to the evolution
of species. One of the main differences between different models lies on if one considers
trees and networks which are rooted or unrooted. Commonly, rooted trees or networks are
called evolutionary phylogenetic trees or networks to emphasize the existence of a common
ancestor of all considered organisms and that the arcs can be interpreted as the evolution
in time between the respective entities (see also Section 1.6).

In this manuscript we will usually consider rooted phylogenetic trees and networks. Hence,
the mathematical structure used to design a phylogenetic network is, generally, a rooted
directed acyclic graph with labelled leaves (labelled rDAG, see Section 1.1). See an example
of phylogenetic network depicted in Figure 1.4(a). It is usual to forbid elementary nodes,
that is nodes with in-degree one (or zero) and out-degree one. In phylogenetic networks,
nodes are classified depending on their in-degree; namely, nodes with in-degree one are
called tree nodes nodes and nodes with in-degree at least two are called reticulation nodes.
Then, a phylogenetic tree is a phylogenetic network without reticulation nodes (see Figure
1.4(c-f)). In this phylogenetic scenario, if there is a directed path u v between two
nodes in a (phylogenetic) tree or network, we say that u is an ancestor of v, or also v is a
descendant of u. Given two nodes u, v in a phylogenetic tree T , its lowest common ancestor
(or LCA, for short), noted as LCAT (u, v), is their common ancestor that is descendant
of every other common ancestor of them. This concept can be extended to consider the
LCA of any set of nodes in a tree.

Displayed trees and switching

The definitions of phylogenetic trees and networks as rDAGs are closely related. In fact,
a phylogenetic tree is a particular case of a phylogenetic network. The main difference
between them is that, in a phylogenetic tree, each pair of nodes are connected by exactly
one (undirected) path, while in phylogenetic networks there can be many (undirected)
paths connecting two given notes. The ultimate reason for the multiplicity of paths comes

11

CHAPTER 1. PRELIMINARIES

from the fact that, in a phylogenetic network, a node (reticulation node) can have different
parents. This tree-network relation becomes relevant to identify trees obtained from a
network and, in the other way, networks obtained from a set of trees.

A switching of a phylogenetic network is obtained by choosing, for each reticulation node
in the network, an incoming arc to switch on and switch off all the others. Once this
is done, we also recursively switch off all switched-on arcs whose target node has only
switched-off outgoing arcs [Huson et al. (2010); Kelk and Scornavacca (2014)]. After
applying all these switchings, if one removes the switched-off arcs one gets a tree. Notice
also that some elementary nodes may appear and hence they must be contracted. If a tree
can be obtained from this process from a network, we say that the tree is displayed by the
network. See a complete example in Figure 1.4.

1 2 3 4

(a)

1 2 3 4

on

on

off

off

(b)

1 2 3 4

(c)

1 2 3 4

(d)

1 2 3 4

(e)

1 2 3 4

(f)

Figure 1.4: (a) A phylogenetic network N defined in {1, 2, 3, 4}. (b) A switching of N . (c)
A tree displayed by N derived from the chosen switching. Note that there are 2 switched-
off arcs and 4 nodes which become elementary and, consequently, they are suppressed.
(d-f) The rest of trees displayed by N .

1.4 Newick notation for trees and networks

The Newick format [Felsenstein (2004)] is a way to represent the topology (and the edge
lengths if needed) of a phylogenetic tree using plain text. This is one of the most commonly
used formats in software specific to bioinformatics. Later, in Cardona et al. (2008b) it was
extended to encode phylogenetic networks.

Newick notation for phylogenetic trees

We consider a rooted tree. To obtain the Newick string encoding the tree we proceed
recursively in the following way. Each leaf is encoded by its label. Each internal node is
encoded by a string starting with “(” followed by the list of encodings of each of its children

12

1.4. NEWICK NOTATION FOR TREES AND NETWORKS

(separated by commas) and then closing the parenthesis “)”; finally, if the internal node
is labelled, this label is added as the last part of the string. The Newick string for the
tree is the encoding associated to its root by the procedure above followed by the ending
character ;. For example, the Newick strings that represent the 4 phylogenetic trees in
Figure 1.4 are:

• ((1, (2, 3)), 4); for the tree in (c),

• (((1, 2), 3), 4); for the tree in (d),

• ((1, 2), (3, 4)); for the tree in (e),

• (1, ((2, 3), 4)); for the tree in (f).

Newick notation for phylogenetic networks

The Newick format can be generalized to consider phylogenetic networks. The extended
Newick (or eNewick for short) [Cardona et al. (2008b)] is one of such generalizations.
The principal idea of this version relies on transforming the network into a rooted tree
(possibly multilabelled and with internal nodes labelled in some very specific way) such
that the original network can be reconstructed from it. The Newick string of the obtained
tree (with some special rules to encode labelled internal nodes) is the eNewick string of
the original network.

More precisely, to obtain the eNewick string which represents a phylogenetic network N
we proceed as follows: let {H1, . . . ,Hm} be the set of hybrid nodes of N ordered in any
fixed way. For each hybrid node H = Hi, let u1, . . . , uk and v1, . . . , vl be its set of parents
and children, respectively. Then H is splitted in k different nodes where the first copy
has u1 as its parent and v1, . . . , vl as its children; and the other copies have (one for each)
u2, . . . , uk as their respective parent and have no children. Finally, each of the copies of
H are labelled as [label]#[type]tag[: branch length] where:

• label (optional): string providing a labelling for the node.

• type (optional): string indicating which is the corresponding event that the node
models: hybridization indicated by H, or lateral gene transfer indicated by LGT.

• tag (mandatory): integer i identifying the node H = Hi.

• branch length (optional): number indicating the length of the arc from the considered
copy of H to its parent.

For example, the eNewick of the phylogenetic network depicted in Figure 1.4 (a) is

(((1, (2)#H2), ((#H2, 3))#H1), (#H1, 4));

where H1 and H2 represents the above and the up and down reticulation nodes in the
network, respectively.

13

CHAPTER 1. PRELIMINARIES

1.5 Decomposition of trees and networks

In this section we describe how a “global object”, describing all the evolutionary relations
among a set of species, can be decomposed into “local objects” describing relations among
restricted subsets of species. Namely, we will focus on clusters and triples. Such objects
only make sense in the setting of rooted trees but they have their unrooted counterparts,
splits and quartets. We will also show how these concepts can be extended to networks,
where one needs to consider different kinds of clusters and generalize triples to what we
call trinets.

In the classical case of phylogenetic trees, clusters and triples are enough to encode trees;
that is, one can recover the tree from this data. However, for phylogenetic networks, it is
no longer true and one needs to impose restrictions on the networks in order to recover
them from this “local data” [Cardona et al. (2008c, 2009b,c,e)].

Clusters

Given T = (V,E) a phylogenetic tree labelled on a finite set S, and a node u ∈ V , the
cluster of u, denoted by CT (u), is the set of labels of all the descendant leaves of u.
The set of clusters defined by T , denoted by C(T), is the set of clusters of all its nodes:
C(T) = {CT (u) : u ∈ V } (see Figure 1.5). Notice that the clusters of nodes in T satisfies
that:

• The cluster of a leaf is the singleton composed of its label.

• The cluster of the root is the set of labels of all leaves in the tree.

• The cluster of a node is the disjoint union of the clusters of its children.

1 2 3 4 5

(a)

1 2 3 4 5

{3, 4, 5}

(b)

Figure 1.5: (a) A phylogenetic tree T such that C(T) = {{1}, {2}, {3}, {4}, {5},
{1, 2}, {3, 4}, {3, 4, 5}, {1, 2, 3, 4, 5}}. (b) Depiction of the cluster defined by a specific
node in T .

We can also talk of clusters in phylogenetic networks. Notice that in this case there can be
more than one path from an internal node to a leaf. This fact produces different kinds of
clusters that can be considered. We say that a phylogenetic network N defines or displays
a cluster C in hardwired sense if C is the set of descendants leaves of a node in N (which
is the usual concept of cluster used in trees). On the other hand, we say that N defines
or displays C in softwired sense if C is the cluster of a node in some tree displayed by N
(see Section 1.3). Note that if N displays C in hardwired sense, then it is displayed also
in softwired sense. Indeed, let u be a node with hardwired cluster C. A tree displayed
by N and where the cluster of u is C can be constructed by considering the following

14

1.5. DECOMPOSITION OF TREES AND NETWORKS

switching. For each reticulation node h, if h is not a descendant of u, keep switched on
any incoming arc; if h is a descendant of u, keep switched on any incoming arc (v, h) such
that v is also a descendant of u. It follows easily that for each descendant leaf of u there
exists a path formed by switched on arcs. Notice, however, that softwired clusters need
not be hardwired clusters; see Figure 1.6.

1 2 3 4 5

{1, 2, 3, 4}

1 2 3 4 5

{1, 2}

Figure 1.6: A phylogenetic network displays in hardwired sense the cluster {1, 2, 3, 4}
(left) and in softwired sense the cluster {1, 2} (right). Note that, the cluster {1, 2} is only
displayed by N in softwired sense.

Triples

A triple on three different labels x, y, z ∈ S is a rooted phylogenetic tree on {x, y, z}. Figure
1.7 depicts the only four possible (non-isomorphic) triples defined on x, y, z, together with
their Newick notation (see Section 1.4). If we consider only binary trees, the triple (x, y, z)
doesn’t have to be taken into consideration. The other ones, ((x, y), z), ((y, z), x) and
((x, z), y) are commonly represented as xy|z, yz|x and xz|y, respectively.

x y z

((x, y), z)

y z x

((y, z), x)

x z y

((x, z), y)

x y z

(x, y, z)

Figure 1.7: All possible triples defined on x, y, z.

We say that a phylogenetic tree T on S defines or displays a triple on x, y, z ∈ S if
there exists a subgraph of T homeomorphic to the given triple. The triple on x, y, z ∈ S
displayed by T is denoted by Tx,y,z. The set of triples displayed by T is denoted by Γ(T);
see Figure 1.8. That is Γ(T) = {Tx,y,z : {x, y, z} ⊂ S}.

Analogously as what we did in the case of clusters, we can also define the set of triples
defined or displayed by a phylogenetic network. In this case, we need to generalize the
concept of triple used on trees and consider trinets. This last concept will be analyzed
later in Chapter 4.

A set of triples T defined on a set of taxa S is called dense if for each subset of three taxa
in S there is at least one triple in T defined on these three taxa. This notion of dense set

15

CHAPTER 1. PRELIMINARIES

1 2 3 4 5

(a)

1 2 3 4 5

(b)

Figure 1.8: (a) Phylogenetic tree, we call T , such that its set of displayed triples are
Γ(T) = {((1, 2), 3), ((1, 2), 4), ((1, 2), 5), (1, (3, 4)), (1, (3, 5)), (1, (4, 5)), (2, (3, 4)), (2, (3, 5)),
(2, (4, 5)), ((3, 4), 5)}. (b) Depiction of how the triple (1, (4, 5)) is displayed by T .

of triples will become significant in the reconstruction problem of phylogenetic networks
(see Section 1.9).

Recall that two phylogenetic trees defined on S are isomorphic if, and only if, they have the
same set of clusters, and also if, and only if, they define the same set of triples [Theorems
3.5.2 and 6.4.1 in Semple and Steel (2003)]. Then, the set of clusters and triples defines
with unicity or encodes a phylogenetic tree. Actually, the descriptions of a phylogenetic
tree T on S by means of C(T) and Γ(T) are equivalent, through the following result
[Lemma 9.1 in Dress et al. (2012)].

Theorem 1.1. Let T be a phylogenetic tree T on S. For every non-empty subset C ⊂ S,
C ∈ C(T) if, and only if, ((c, c′), x) ∈ Γ(T), for every c, c′ ∈ C and x ∈ S \ C.

1.6 Classification of phylogenetic networks

There are a multitude of definitions for many kinds of phylogenetic networks. We can
even find different names to design the same kind of phylogenetic network and, what is
worse, different kinds of networks with the same name. The classification of phylogenetic
networks may depend on a large amount of factors, as we shall shortly see. Then, it
is (at the moment) quite impossible to find a general classification that can be used by
all the scientific community. Based on Morrison (2011), Huson et al. (2010), Huson and
Scornavacca (2011), we can find two kinds of classifications. The first one divides the
whole set of phylogenetic networks into two big blocks:

• Rooted vs. unrooted networks. This classification is based on the underlying graph
model that is used (directed vs. undirected) and, biologically, it corresponds to
assuming or not that the least common ancestor of a set of species is known.

• Abstract or data-display networks vs. explicit or evolutionary networks. The ab-
stract or data-display networks are those whose edges or arcs cannot be interpreted
biologically and they are just used as a visualization tool of possible incompatibilities.
On the other hand, the explicit or evolutionary networks describe an evolutionary
scenario where the nodes and edges should represent species and evolutionary events
between them.

Other possible classifications depend on the biological phenomenon under study (for in-
stance, recombination or hybridization networks), the data used to build the networks

16

1.7. TOPOLOGICAL RESTRICTIONS

(like split, cluster or consensus networks) or the topological constraints they must satisfy
(such as galled trees, tree-child, tree-sibling or level-k networks). Next section is devoted
to the study of this last group of restrictions.

1.7 Topological restrictions

The problem of reconstructing phylogenetic networks from biological data (or certain
substructures like clusters or trees) commonly leads to NP-problems, and even NP-hard
ones, when no restriction on the space of phylogenetic networks is imposed. In order to
make the reconstruction process feasible, it is usual to introduce topological restrictions
on the space of phylogenetic networks.

The close link between the mathematical structure, to be used in solving the problem, and
the biological interpretation, that lies behind, appears here with more strength. That is,
the main goal is to obtain a mathematical model that, on the one hand, can be analyzed
mathematically and, on the other hand, it models accurately the real biological situation.

In the rest of this section, following Morrison (2013), we discuss some of the restrictions
that usually appear in the literature related to phylogenetic trees.

Restrictions on degrees

Restrictions on the degrees of the nodes can be imposed either on their indegree, their
outdegree, or both.

A typical condition related to degrees is forbidding the existence of elementary nodes,
since they cannot be recovered.

Another condition is not allowing nodes to have indegree or outdegree greater than two.
The biological motivation behind this assumption is that nodes with indegree or outdegree
greater than two are only due to the lack of information, and having more knowledge would
resolve that polytomy. We say that a phylogenetic network is binary if its tree nodes have
indegree one and outdegree two and its reticulation nodes have indegree two and outdegree
one. When this condition is only fulfilled for reticulation nodes, we say that it is semi-
binary.

Time-consistent networks

Roughly speaking, a phylogenetic network is time-consistent if it can be drawn in such a
way that arcs leading to a reticulation node are horizontal and arcs leading to tree nodes
point downwards (see Figure 1.9(a)). That is, one can assign times to the nodes of the
network in a way that strictly increases on arcs whose endpoint is a tree node (which
should model speciation events, that take time to happen) and is constant on arcs whose
endpoint is a reticulation node (which models interactions between coexistent species).
Temporal consistency becomes a key factor in the reconciliation problem between gene
trees and species trees, as we shall see in Chapter 5.

Formally, a phylogenetic network N = (V,E) is time-consistent [Baroni et al. (2006)] if it
admits a temporal assignment: a mapping τ : V → N such that:

17

CHAPTER 1. PRELIMINARIES

• τ(r) = 0, where r is the root of N .

• τ(u) = τ(v) if (u, v) ∈ E and v is a reticulation node.

• τ(u) < τ(v) if (u, v) ∈ E and v is a tree node.

Figure 1.9 depicts two phylogenetic networks. The network in (a) is time-consistent and
the number close to each node indicates its assignment in a valid mapping. In contrast,
the network in (b) is not time-consistent: it is impossible to define a temporal assignment
because the two parents of the hybrid node are tree nodes connected by an arc.

1
2

2
2

3
2

1 1 1

0(a)

1 2 3

(b)

Figure 1.9: A time-consistent phylogenetic network (a) and a non time-consistent phylo-
genetic network (b).

While the definition above of time-consistency is the most used and well-known, Górecki
(2004) uses a slightly different one. First, he considers what he calls species graphs, given
by a tree together with a set of extra arcs that are added modelling lateral gene transfer.
In this setting, the condition on the time assignment is only taken into account for nodes
that are adjacent to these extra arcs. A similar definition will be used in Chapters 4 and
5 in our own model of networks.

Tree-child and tree-sibling networks

A phylogenetic network is tree-child when every non-extant species has some descendant
through mutation [Cardona et al. (2009e)]. Mathematically, this means that each internal
node has a child that is a tree node. Both phylogenetic networks depicted in Figure 1.9
are tree-child and the one depicted in Figure 1.10 is not tree-child because it has one node
whose two children are hybrid nodes. Some problems, as the Tree Containment problem
(deciding if a given phylogenetic tree is embedded in a given phylogenetic network), the
reconstruction problem from trinets or the reconstruction from path-lengths distances be-
tween taxa [Bordewich and Semple (2015a)], among others, can be solved in polynomial
time if the space of solutions is restricted to tree-child networks, while they are NP-hard
for generic phylogenetic networks [Cardona et al. (2009e, 2010c)].

1 2 3

Figure 1.10: A non tree-child phylogenetic network.

18

1.7. TOPOLOGICAL RESTRICTIONS

A phylogenetic network is tree-sibling if at least one of the species involved in a reticulation
event has some descendant through mutation [Nakhleh (2004); Cardona et al. (2008a)].
This is, each hybrid node has at least one sibling (a child of one of its parents) that is
a tree node. Note that every tree-child network is, in particular, a tree-sibling network.
Figure 1.11 shows a tree-sibling network that is, non tree-child (a), and a non tree-sibling
network (b); notice that the parent of the leaf 3 is an hybrid node whose two sibling nodes
are also hybrid.

1 2 3 4

(a)

1 2 3 4 5

(b)

Figure 1.11: (a) A tree-sibling phylogenetic network, (b) a non tree-sibling phylogenetic
network.

Stable networks

A node u in a phylogenetic network is visible if there exists at least one leaf l such that
all paths from the root to l pass through u. In this case, the node u is said to be a
stable ancestor of l. Then, a phylogenetic network is reticulation-visible [Van Iersel et al.
(2010b)] or stable [Gambette et al. (2015a); Huber et al. (2015a)] if each reticulation node
is visible. Using the definition of visible nodes, a tree-child network can be redefined as
a network where every node (not only reticulation nodes) is visible. Figure 1.12 shows
a reticulation-visible network (a), where each hybrid node is a stable ancestor of a leaf
(node a is a stable ancestor of 1, node b is a stable ancestor of 2 and node c is a stable
ancestor of 3), and a non reticulation-visible network (b) where one hybrid node, node b,
is not visible.

1 2 3

a

b c

(a)

1 2 3

a

b

c

(b)

Figure 1.12: (a) A reticulation-visible network, (b) a non reticulation-visible network.

Thanks to the reticulation-visible networks, it is proved in Bordewich and Semple (2015b)
that Tree Containment problem becomes tractable. Some other kinds of networks based on
the concept of stability are nearly-stable networks [Gambette et al. (2015a)], genetically-

19

CHAPTER 1. PRELIMINARIES

stable networks [Gambette et al. (2015b)] and stable-child networks [Gunawan and Zhang
(2015)].

Galled trees and networks

A phylogenetic network is said to be a galled tree if each biconnected component has at
most one reticulation node [Gusfield et al. (2003)]. It can also defined as one network such
that each node belongs to at most one reticulation cycle –pair of paths with same origin
and destination nodes and with disjoint intermediate nodes. From a biological point of
view, this can be translated as saying that the reticulation events are independent. Galled
trees have been extensively used in the reconstruction problem [Jansson and Sung (2006);
Huber et al. (2011); Gambette et al. (2015c)].

Galled trees can be generalized in several ways. One of these generalizations, level-k
networks, will be analyzed in the next section. Another such generalization is to consider
galled networks [Huson and Klöpper (2007)], where the following restriction is introduced.
For each reticulation node u and each pair of nodes ui, uj such that both (ui, u) and
(uj , u) are arcs of the network, there is a non directed cycle containing ui, uj and such
that the other nodes of the cycle are tree nodes, see Figure 1.13. This corresponds to a
biological scenario in which reticulate events are quite rare [Huson et al. (2009)]. Among
others, galled networks permit to solve the Cluster Containment problem (deciding if a
given subset of leaves is a cluster of some phylogenetic tree embedded in the network)
in polynomial time [Huson et al. (2009)], while it is an NP-problem for generic rooted
networks [Kanj et al. (2008)].

1 2 3 4 5

Figure 1.13: A galled network which is not a galled tree.

Level-k networks

The level of a network is, roughly speaking, a bound on the number of reticulations that
can be mutually dependent [van Iersel and Kelk (2011)]. This is a measure to quantify
the complexity of the network by means of biconnected components. More formally, a
(binary) phylogenetic network is a level-k network if each biconnected component has at
most k reticulation nodes [Choy et al. (2005); Jansson and Sung (2006)]. See Figure 1.14.
Notice that galled trees are nothing but level-1 networks, and the biological meaning of
level-k networks can also be understood as a generalization of those in the sense that the
level describes up to which extent the reticulations are dependent. See Gambette et al.
(2009), Gambette et al. (2012), Habib and To (2012), Van Iersel et al. (2009a), Van Iersel

20

1.7. TOPOLOGICAL RESTRICTIONS

et al. (2009b) for some reconstruction problems which have can be efficiently solved using
the level constraint.

1 2 3 4 5

Figure 1.14: A level-2 phylogenetic network.

Tree-based networks

The notion of tree-based networks is important to differentiate networks which should
properly be viewed as networks from those that should be viewed as “augmented” trees, i.e.
trees with some extra arcs being added between their arcs. This distinction is important
from the biological point of view in order to determine which is the evolutionary process
under study, especially in some groups of organisms such as the prokaryotes [Dagan and
Martin (2006); Doolittle and Bapteste (2007); Martin (2011)].

Although there are similar definitions for these networks, here we will use the one given in
Francis and Steel (2015b), where a phylogenetic network is said to be tree-based if it can be
obtained from a tree with same set of leaves by inserting extra arcs between the arcs of the
tree. Here, to insert an extra arc between two given arcs, one splits each of these arcs into
an elementary path of length two and then connects the introduced elementary nodes with
an arc. See also Szöllősi et al. (2013). For example, all phylogenetic networks depicted in
this section are tree-based networks. On the other hand, an example of a non-tree based
network is presented in Figure 2(iii) of Francis and Steel (2015b) and reproduced in Figure
1.15.

1 2 3

Figure 1.15: A non-tree based phylogenetic network.

21

CHAPTER 1. PRELIMINARIES

Regular and normal networks

A phylogenetic network is regular if no two distinct nodes have the same cluster, and the
cluster of a node u is contained in the cluster of another one v if, and only if, there is a
path from the former to the latter v to u [Baroni et al. (2005); Baroni and Steel (2006)].
In other words, a network is regular if it isomorphic to the Hasse diagram of its set of
clusters. A phylogenetic network is said to be normal if it is simultaneously tree-child and
regular [Willson (2010)].

1.8 Metrics on phylogenetic networks

Metrics to measure the difference between networks play a key role in different tasks such
as the detection of incongruences between gene trees and species trees, and the comparison
of networks reconstructed from different sets of data or using different algorithms. Hence,
these metrics are of great use in determining the degree of success of the reconstruction
algorithms and of the recovery of the characteristics of the networks. Based on the idea of
comparing a reconstructed network with the true evolutionary history, some publications
refer to such distances or metrics as error-distances or error-metrics, see [Moret et al.
(2002); Linder et al. (2003)].

Contrarily to phylogenetic trees, networks can present multiple evolutionary paths from
internal nodes to leaves, making their comparison much more complex. Since there can
be non isomorphic networks whose distance is zero, the distances designed to work on
phylogenetic trees do not in general work on phylogenetic networks. Hence, one must
either restrict the space of phylogenetic networks to consider or define new metrics.

Let us consider a class C of phylogenetic networks. A metric on C is a mapping d : C×C →
R such that, for all A,B,C ∈ C:

(a) Non-negativity: d(A,B) ≥ 0,

(b) Separation: d(A,B) = 0 if and only if, A ∼= B,

(c) Symmetry: d(A,B) = d(B,A),

(d) Triangular inequality: d(A,C) ≤ d(A,B) + d(B,C).

The search of a sound metric on the set of all phylogenetic networks that can be computed
efficiently seems to be an impossible task. In fact, the isomorphism problem for tree-sibling
time-consistent networks (which is a quite restrictive case) is polynomially equivalent to
the graph isomorphism problem, hence it is thought to be neither P nor NP-complete
[Cardona et al. (2009a)].

Several metrics have been introduced so far in the literature. See [Warnow et al. (2003),
Moret et al. (2004), Baroni et al. (2005), Cardona et al. (2008c), Cardona et al. (2008a),
Cardona et al. (2009b), Cardona et al. (2009e), Cardona et al. (2009c)]. Next, we review
some of them in more detail.

22

1.8. METRICS ON PHYLOGENETIC NETWORKS

Clusters or Robinson-Foulds metric

The Robinson-Foulds (or clusters or bipartition) metric for phylogenetic (rooted) trees
can be generalized in an straightforward way to phylogenetic networks. One associates,
to each node of the network, its (hardwired) cluster and takes as distance between two
networks the size of the symmetric difference between their respective sets of clusters.
Although it does not define a proper metric (the separation axiom fails) on generic enough
classes of phylogenetic networks like tree-child or tree-sibling time-consistent; however, in
some restricted classes, like tree-child time-consistent networks, it defines a sound metric
[Cardona et al. (2009b)].

5 4 3 2 1

(a) T

1 3 4 5 2

(b) N

Figure 1.16: (a) A phylogenetic tree T , (b) a tree-child time-consistent network N . Re-
produced from Figure 3 in Cardona et al. (2009b).

The cluster representations of the phylogenetic tree T and the phylogenetic network N
depicted in Figure 1.16 are:

C(T) =
{
{1}, {2}, {3}, {4}, {5}, {4, 5}, {3, 4, 5},

{2, 3, 4, 5}, {1, 2, 3, 4, 5}
}

C(N) =
{
{1}, {2}, {3}, {4}, {5}, {1, 5}, {2, 5}, {3, 5},

{4, 5}, {1, 4, 5}, {2, 4, 5}, {3, 4, 5}, {1, 3, 4, 5},
{2, 3, 4.5}, {1, 2, 3, 4, 5}

}
.

Then, the Robinson-Foulds distance between T and N is 6.

Tripartition metric

The tripartition metric is introduced as a generalization of the bipartition metric in the
case of reconstructible networks in Moret et al. (2004). This metric associates to each
node of the network the tripartition of the set of leaves given by its strict descendants,
its non-strict descendants and non-descendants of the considered node. Here, a leaf is a
strict descendant of a node u if all paths from the root to the leaf pass through u, and
non-strict descendant if the leaf is a descendant of u, but for which there exists some path
from the root to it not containing the node u.

Although tripartitions add extra information to clusters up to our knowledge the triparti-
tion distance is not a proper metric for those classes of networks where the Robinson-Foulds

23

CHAPTER 1. PRELIMINARIES

distance fails to separate networks [Cardona et al. (2008c)]. Then, for instance, the tri-
partition distance is not a metric neither on tree-child nor on tree-sibling time-consistent
networks, and it is a metric on tree-child time-consistent networks [Cardona et al. (2009b)].

The tripartition representations of the phylogenetic tree T and the phylogenetic network
N depicted in Figure 1.16 are:

θ(T) =
{
{{1}, ∅}, {{2}, ∅}, {{3}, ∅}, {{4}, ∅}, {{5}, ∅},

{{4, 5}, ∅}, {{3, 4, 5}, ∅}, {{2, 3, 4, 5}, ∅},
{{1, 2, 3, 4, 5}, ∅}

}
θ(N) =

{
{{1}, ∅}, {{2}, ∅}, {{3}, ∅}, {{4}, ∅}, {{5}, ∅},

{{1}, {5}}, {{2}, {5}}, {{3}, {5}}, {{4}, {5}},
{{1}, {4, 5}}, {{2}, {4, 5}}, {{3}, {4, 5}},
{{1}, {3, 4, 5}}, {{2}, {3, 4, 5}},
{{1, 2, 3, 4, 5}, ∅}

}
,

where for each node we only give the strict and non-strict descendants. Then, the tripar-
tition distance between T and N is 12.

µ-distance

In the µ-distance, the data associated to each node generalizes its cluster by counting
how many paths connect the node with each of the leaves of the network. This data is
summarized in the so-called µ-vector of each node, and the distance between networks is
defined as the size of the symmetric difference between the sets of µ-vectors of the networks
under consideration. The µ-distance defines a metric on the space of tree-child networks
and also on the space of semi-binary tree-sibling time-consistent networks [Cardona et al.
(2008a, 2009e)].

The µ−representations of the phylogenetic tree T and the phylogenetic networkN depicted
in Figure 1.16 are:

µ(T) =
{

(1, 0, 0, 0, 0), (0, 1, 0, 0, 0), (0, 0, 1, 0, 0),
(0, 0, 0, 1, 0), (0, 0, 0, 0, 1), (0, 0, 0, 1, 1),
(0, 0, 1, 1, 1), (0, 1, 1, 1, 1), (1, 1, 1, 1, 1)

}
µ(N) =

{
(1, 0, 0, 0, 0), (0, 1, 0, 0, 0), (0, 0, 1, 0, 0),

(0, 0, 0, 1, 0), (0, 0, 0, 0, 1), (1, 0, 0, 0, 1),
(0, 1, 0, 0, 1), (0, 0, 1, 0, 1), (0, 0, 0, 1, 1),
(1, 0, 0, 1, 2), (0, 1, 0, 1, 2), (0, 0, 1, 1, 2),
(1, 0, 1, 2, 4), (0, 1, 1, 2, 4), (1, 1, 2, 4, 8)

}
.

Then, the µ−distance between T and N is 12.

Nakhleh’s distance m

This distance, introduced in Nakhleh (2010b), is based on the nested labelling λ of nodes
in a phylogenetic network, defined recursively as follows: If u is a leaf labelled by i, then
λ(u) = {i}. If u is an internal node and its children v1, . . . , vk have been labelled, then
λ(u) = {λ(v1), . . . , λ(vk)}. As before, the comparison of two given networks is defined
as the size of the symmetric difference of the sets of the nested labels of their respective
nodes. This distance is a true metric on the class of reduced networks, tree-child networks

24

1.8. METRICS ON PHYLOGENETIC NETWORKS

[Cardona et al. (2009d)] and semi-binary tree-sibling networks [Cardona et al. (2010a)];
however, it does not define a proper metric on tree-sibling time-consistent networks.

The nested label representations of the phylogenetic tree T and the phylogenetic network
N depicted in Figure 1.16 are:

λ(T) =
{
{1}, {2}, {3}, {4}, {5}, {{4}, {5}},

{{3}, {{4}, {5}}}, {{2}, {{3}, {{4}, {5}}}},
{{1}, {{2}, {{3}, {{4}, {5}}}}}

}
,

λ(N) =
{
{1}, {2}, {3}, {4}, {5}, {{1}, {5}},

{{2}, {5}}, {{3}, {5}}, {{4}, {5}}, {{5}},
{{{4}, {5}}}, {{{1}, {5}}, {{{4}, {5}}}}, {{{3}, {5}}, {{{4}, {5}}}},
{{{2}, {5}}, {{{4}, {5}}}}, {{{{3}, {5}}, {{{4}, {5}}}}},
{{{{1}, {5}}, {{{4}, {5}}}}, {{{{3}, {5}}, {{{4}, {5}}}}}},
{{{{2}, {5}}, {{{4}, {5}}}}, {{{{3}, {5}}, {{{4}, {5}}}}}},
{{{{{1}, {5}}, {{{4}, {5}}}}, {{{{3}, {5}}, {{{4}, {5}}}}}},
{{{{2}, {5}}, {{{4}, {5}}}}, {{{{3}, {5}}, {{{4}, {5}}}}}}}

}
.

Then, the m−distance between T and N is 17.

Nodal distance

The nodal distance for (binary) trees is defined by comparing the matrices of (undirected)
distances between pairs of leaves (from one leaf to the other through their least com-
mon ancestor) in each of the networks. It can also be generalized to arbitrary trees by
considering the matrix of splitted distances between leaves, where the length of the path
connecting two given leaves is split between the lengths of the ascending (from one leaf
to the LCA) and descending (from the LCA to the other leaf) paths taking from one leaf
to the other [Cardona et al. (2010b)]. This last concept of splitted distances allows for
the comparison not only of phylogenetic trees but also phylogenetic networks and it is a
metric on the class of tree-child time-consistent networks [Cardona et al. (2009c, 2010c)].
Otherwise, the nodal distance does not define a proper metric neither on tree-child nor on
tree-sibling time-consistent networks [Cardona et al. (2009c)].

The matrices of distances between pairs of leaves of the phylogenetic tree T and the
phylogenetic network N depicted in Figure 1.16 are:

`(T) =


0 1 1 1 1
2 0 1 1 1
3 2 0 1 1
4 3 2 0 1
4 3 2 1 0

 `(N) =


0 4 3 2 1
4 0 3 2 1
4 4 0 2 1
3 3 3 0 1
2 2 2 2 0


Then, the nodal distance between T and N is 21.

Triplets distance

The triplet distance appears as a generalization of the triplets distance used on phyloge-
netic trees, which compares the subtrees induced by each possible triple of leaves on each
of the trees. To generalize this distance to phylogenetic networks one must first define
what it means for “induced subnetwork” and find an efficient way to compute and com-
pare them. In Cardona et al. (2009c) a generalization is given that works properly for

25

CHAPTER 1. PRELIMINARIES

tree-child time-consistent networks. The triplets distance is a metric on the class of tree-
child time-consistent networks but does not define a proper metric neither on tree-child
nor on tree-sibling time-consistent networks [Cardona et al. (2009c)].

The triplets representations of the phylogenetic tree T and the phylogenetic network N
depicted in Figure 1.16 are:

Γ(T) =
{

([2, 3])[1, 2]=[1, 3], ([2, 4])[1, 2]=[1, 4],
([2, 5])[1, 2]=[1, 5], ([3, 4])[1, 3]=[1, 4], ([3, 5])[1, 3]=[1, 5],
([4, 5])[1, 4]=[1, 5], ([3, 4])[2, 3]=[2, 4], ([3, 5])[2, 3]=[2, 5],
([4, 5])[2, 4]=[2, 5], ([4, 5])[3, 4]=[3, 5]

}
Γ(N) =

{
([1, 3],[2, 3])[1, 2], ([1, 4],[2, 4])[1, 2],

([1, 5],[2, 5])[1, 2], ([1, 4],[3, 4])[1, 3], ([1, 5],[3, 5])[1, 3],
([1, 5],[4, 5])[1, 4], ([2, 4],[3, 4])[2, 3], ([2, 5],[3, 5])[2, 3],
([2, 5],[4, 5])[2, 4], ([3, 5],[4, 5])[3, 4]

}
.

Then, the triplets distance between T and N is 20.

1.9 Phylogenetic networks reconstruction

Phylogenetic reconstruction tries to infer the evolutionary history of a set of organisms
from certain sets of data. In the last decades, the reconstruction problem for phylogenetic
trees has been vastly studied and there exist a pretty good number of efficient algorithms
for this problem, see De Bruyn et al. (2014) or Felsenstein (2004) for an overview. How-
ever, the reconstruction problem for phylogenetic networks is much more recent, and even
though some algorithms have been proposed, there is no consensus on which is the best
to use in each of the possible scenarios. This problem is more challenging for rooted phy-
logenetic networks when looking for a twofold purpose: obtaining efficient reconstruction
algorithms suitable for real biological data and obtaining sound algorithms for phylogenetic
networks as general as possible. Recently, methods based on the maximum likelihood, the
pseudo-maximum likelihood and the maximum parsimony have been used to reconstruct
phylogenetic networks.

We briefly review here the maximum likelihood criteria for phylogenetic networks recon-
struction introduced in Jin et al. (2006). Let N be a phylogenetic network defined on S
where the indegree of the reticulation nodes is two. For each reticulation node hi, let eil
and eir be the two incident arcs on hi which we can interpret as the “left” and the “right”
one. For each hi, we associate a parameter γi ∈ [0, 1] which denotes the probability of
choosing the arc eil (the probability of choosing eir is (1 − γi)). That is, γi gives the pro-
portion of sites of the sequence data at hi inherited from each parent. Furthermore, let T
be a tree displayed by N . We denote by ϕT the set of switched-on arcs of N which are
incident on reticulation nodes and such that the resulting tree associated to this switching
is T itself. As the set ϕT could be not unique, let ΦT denote the set of all possible sets
ϕT . Then, the probability of inducing a tree T by N is

P (T |N,λk) =
∑

ϕT∈ΦT

[∏
eil∈ϕT

γi
∏

ejr∈ϕT

(1− γj)
]
.

where λk is a leaf labelling of the set S of taxa and k is the number of sites of the sequences.
Then, the likelihood of N with a labeling λk of S is

P (λk|N,M) =
∑

T∈D(N)

[
P (T |N,λk) · L(λk|T,MT)

]
,

26

1.9. PHYLOGENETIC NETWORKS RECONSTRUCTION

where D(N) is the set of trees displayed by N , M is the evolutionary model of sequences
with its respective branch lenghts and probabilities γi, MT is the restriction of M to the
tree T and L(λk|T,MT) is the overall likelihood of the set of aligned sequences. The
maximum likelihood problem for phylogenetic networks can be defined so as to solve

(N∗,M∗) = argmaxN,ML(λk|N,M),

where N ranges over all network topologies defined on S, and M ranges over all combina-
tions of branch lenghts, probabilities γi and models of sequence evolution.

We refer the reader to Jin et al. (2006); Nakhleh (2010a) for an extensive explanation of
the reconstruction methods based on the maximum likelihood criterion, and to Yu and
Nakhleh (2015) for the pseudo-maximum likelihood ones.

For our purposes, we focus on the maximum parsimony criterion, trying to infer a phy-
logenetic network that implies the least number of evolutionary changes, for instance a
network with less number of reticulation nodes. Then, in this section, we present different
algorithms and sets of data that are used in the reconstruction of rooted phylogenetic
networks using methods based on maximum parsimony.

Following Gambette and Huber (2012), a crucial point is to determine if the available
data (sets of clusters, distances, trees and triples) enables us to reconstruct the original
network, as in the case of trees. Therefore, it will be often necessary to impose some
restrictions on the output networks, yet only because some of the intermediate problems
to solve, such as the Cluster Containment and the Tree Containment become NP-complete
problems for generic networks [Kanj et al. (2008)].

Reconstruction from clusters

Cluster networks were introduced by Huson and Rupp (2008). The authors describe how
a phylogenetic network can be reconstructed from a set of clusters, in hardwired sense (see
Section 1.5), which are obtained from a family of phylogenetic trees, such as gene trees.

Considering clusters in the softwired sense, see Section 1.5 or Huson et al. (2009), managed
to reconstruct specific galled networks. For this type of clusters, one of the most exten-
sively used algorithm for the reconstruction problem is CASS [Van Iersel et al. (2010a)].
This algorithm allows us to combine any set of clusters in a phylogenetic network. Also,
CASS usually constructs a network with a significantly lower level and lower number of
reticulations compared with other algorithms; therefore, the resulting networks are sim-
pler than those obtained using other algorithms. An improvement of the execution time
for the CASS algorithm is proposed in the BIMLR implementation [Wang et al. (2013)].

Hence, finding a network displaying a set of clusters is feasible. Nevertheless, finding the
one that minimizes the number of reticulations or the level, becomes a much more complex
quest [Van Iersel and Kelk (2011)]. A proof that the reconstruction problem from clusters
in the softwired sense is a fixed-parameter tractable problem can be found in Kelk and
Scornavacca (2014).

Reconstruction from distances

Contrarily to phylogenetic trees, for each pair of leaves, there can be many “lowest”
common ancestors, and for each of them, there can be many different paths to the leaves.

27

CHAPTER 1. PRELIMINARIES

The reconstruction from distances is typically based on computing the average of these
distances and using this data as input.

Some of the methods specifically designed to construct phylogenetic networks from dis-
tances are the T-Rex algorithm [Makarenkov (2001)], and the NeighborNet algorithm
[Bryant and Moulton (2004)]. The first one reconstructs a phylogenetic network by start-
ing with a phylogenetic tree, which provides the initial fit for the given distance matrix.
Then, the algorithm adds new branches into the growing reticulogram. The NeighborNet
algorithm is an agglomerative method where taxa are combined into progressively larger
and larger overlapping clusters in a similar way to the Neighbor Joining (NJ) algorithm
used for trees [Saitou and Nei (1987)].

In another attempt to solve the problem, Willson (2013) proposed an algorithm that
requires some conditions on the distances to be used as input in order to reconstruct a
network. Some improvements of this algorithm can be found in Francis and Steel (2015a)
and Bordewich and Semple (2015a), where the authors do not impose those restrictions
on the distances but restrict to binary tree-child networks.

Reconstruction from trees

In the case of reconstruction from trees, the input data is a set of trees and the goal is to find
a phylogenetic network that displays (see Section 1.3) each of them. A further requirement
for the output network is that it has the minimum possible number of reticulation nodes
(parsimony principle). In general it is an NP-hard problem [Bordewich and Semple (2007)],
but there are algorithms that work reasonably well when the number of reticulation nodes
is small, like PIRNC [Wu (2013)], HybrydInterleave [Collins et al. (2011)], HybridNet
[Chen and Wang (2010)], as well as improvements of them in van Iersel et al. (2014) and
Albrecht (2015). The problem can also be solved efficiently when restricted to hybridization
networks [Semple (2006)] or when only two phylogenetic trees are considered [Bordewich
et al. (2007)].

Reconstruction from triples and trinets

Another possibility for the set of input data to be used for reconstructing phylogenetic
networks are triplets. As it happens in the case of the reconstruction from clusters or trees,
the problem of finding a phylogenetic network that represents all the given triplets (or as
many ones as possible) using the least possible reticulation notes is hard [Jansson et al.
(2006); Van Iersel et al. (2009b)]. Hence some restrictions on the input data (having a dense
set of triples, for instance) or the output network (level-k, for instance) are considered in
order to get efficient algorithms and implementations, like LEV1ATHAN [Huber et al.
(2011)], SIMPLISTIC [van Iersel and Kelk (2011)] and [To and Habib (2009)].

Further details about the reconstruction from trinets will be given in Chapter 4.

1.10 Reconciliation between gene trees and species trees

In this section we consider gene trees and species trees. We will see the differences between
these concepts and how the inconsistencies between them leads to the reconciliation prob-
lem. For a detailed view on this topic, we refer the reader to Maddison (1997), Nakhleh

28

1.10. RECONCILIATION BETWEEN GENE TREES AND SPECIES TREES

et al. (2009), Nakhleh (2013) and Doyon et al. (2011). A more detailed treatment of the
reconciliation problem between gene trees and species trees (or networks) will be presented
in Chapter 5.

Gene trees vs. species trees

A species tree or phylogeny is a way of representing a hypothesis on the evolutionary
relationships or evolutionary history for a group of species over time. In this representation
all species share a common ancestor, represented by the root of the tree, and the internal
nodes represent speciation events. Hence, it is a representation of the shared and separate
history of any pair of species.

On the other hand, a gene tree is a representation of the evolutionary history of a family of
genes (or even a single one), considering evolutionary events that simultaneously concern
the whole set of genes (like speciation events), as well as other events for specific genes (such
as duplications, transfers and losses). In a gene tree, the leaves represent the contemporary
sequences of the genes under consideration and the internal nodes represent ancestral
sequences.

The reconciliation problem

The reconciliation problem aims to describe how a species tree and a set of gene trees can
be made compatible, that is, how biological processes that affect the genes (duplications,
losses, transfers) reconcile with events described in terms of species. Mathematically, such
a reconciliation is a mapping between nodes in a gene tree to nodes or arcs in a species
tree subject to certain restrictions. These restrictions, together with the costs associated
to discrepancies between mapped nodes, are described in terms of reconciliation models.

There exist different reconciliation models depending on the biological processes to be
taken into account. For example, some partial models only consider duplication (D) and
loss events (L), and are called DL models [Goodman et al. (1979); Page (1994); Doyon
et al. (2009)]. Some other models consider lateral transfer events (T) and losses [Abby
et al. (2010); Beiko and Hamilton (2006), Nakhleh et al. (2005)]. Finally, the more generic
ones consider the three evolutionary events, duplications, transfers and losses, and are
known as DTL models [Tofigh et al. (2011); Scornavacca et al. (2013); Libeskind-Hadas
et al. (2014)].

Once the reconciliation model is fixed, together with the associated costs for discrepan-
cies, some method has to be used to solve the problem. There are mainly two different
approaches to solving this problem: parsimony and likelihood. Parsimony methods are
usually faster but less realistic, since they are based on a discretization process (the cost
for each event is knowed in advance and time in the species tree is discretized), while a
solution based on likelihood approaches involves the solution of optimization problems on
continuous probabilistic models.

In this manuscript we focus on parsimony methods to solve the reconciliation problem.
These methods attempt to obtain the optimal (in terms of the cost of the evolutionary
events) reconciliation scenario between a gene tree and a species trees to explain the incon-
gruences between them. More formally, the Most Parsimonious Reconciliation problem,
MPR problem for short, consists on: given a species tree, a gene tree and respective costs
for duplication, transfer and loss events, compute a reconciliation that has a minimum

29

CHAPTER 1. PRELIMINARIES

cost.

The DL and the DTL models

The DL model assumes that the only evolutionary events of genes are, apart from spe-
ciation, duplications and losses. A parsimonious solution (with respect to the number of
duplications and losses) to the MPR problem using the DL model can be easily computed
by means of the least common ancestor mapping, LCA mapping for short. Given G a gene
tree and S a species tree, the LCA maps each leaf of G into a leaf of S with the same
species name and each internal node u of G into the most recent species x of S such that
each descendant gene of u in G resides in a descendant species of x in S. See Figures 1.17
and 1.18. For instance, in Figure 1.17, the node t of G is mapped into the node z in S
because z is the most recent species of S such that both a and b (the descendants genes
of t) reside in the descendant species A and B of z.

We shall go into further details on the LCA reconciliation in Section 5.4.

In the DTL model, apart from duplications and losses one also allows lateral gene transfers.
This change in the model makes the problem much more difficult. In order to obtain com-
putationally tractable scenarios, one must impose restrictions in terms of time-consistency.
Furthermore, unlike the DL model, the LCA mapping does not always give a solution for
the MPR problem. In Figure 1.19, the depicted reconciliation scenario is more parsimo-
nious (considering an unitary cost for each kind of event) than the one that respects the
LCA mapping. For instance, the nodes r, v and t are located below its LCA mapping
(nodes x, x and z of S, respectively).

a b c d e f A B C D E F

r

s

t u v

x

y

z

w

p

G S

Figure 1.17: LCA mapping between a gene tree G and a species tree S.

30

1.10. RECONCILIATION BETWEEN GENE TREES AND SPECIES TREES

A B C D E F

x

y

z

p

w

r
v

st

a

†

†

u

dc

† †

b

†

†

e

†

f

Figure 1.18: A DL reconciliation between the gene tree G and the species tree S depicted
in Figure 1.17, according to the LCA mapping between them. The dashed lines represent
the gene evolution. The D and L events are represented as filled square and cross dagger,
respectively.

A B C D E F

x

y

z

p

w

r

s

v

e f

u

dc

†
t

a b

Figure 1.19: A DTL reconciliation between the gene tree G and the species tree S depicted
in Figure 1.17. The dashed lines represent the gene evolution. The T and L events (notice
that no duplication takes place) are represented by arrows and cross daggers, respectively.

31

CHAPTER 1. PRELIMINARIES

32

Chapter 2

LGT networks

Contents

2.1 Introduction . 33

2.2 LGT networks . 34

2.3 LGT networks generalize species graphs 37

2.4 Other models for LGT events . 37

2.5 An extension of Robinson-Foulds metric for LGT networks . . 39

2.1 Introduction

As we have already seen in the introduction, in order to model many relevant evolution-
ary processes that cannot be represented by a tree [Martin (2011); Doolittle and Bapteste
(2007)], more general models of (evolutionary) phylogenetic networks have been progres-
sively introduced [Huson et al. (2010); Morrison (2011)]. One specific type of non tree-like
events are Lateral, or Horizontal, Gene Transfers: transfers of genetic material from one
species to a different and, usually, taxonomically distant one [Boto (2010)] which are fre-
quent and important not only among unicellular species [McDaniel et al. (2010)] but also,
for instance, among plants [Yue et al. (2012)] or from parasites to hosts [Gilbert et al.
(2010)]. Many papers are devoted to modelling or inferring reticulation events in phylo-
genetic networks, such as lateral gene transfer events from, for example, incongruent gene
trees [see Tofigh et al. (2011); Bansal et al. (2013); Abby et al. (2010), among others].

Although lateral gene transfers are commonly modeled as arcs added to a tree, and hence
the resulting phylogenetic networks are tree-based in the sense of Francis and Steel (2015b),
in most cases the mathematical model under consideration makes no reference to the base
tree and all parents of a node are treated symmetrically. This is not accurate, because
in lateral gene transfers, the resulting species acquires its DNA mostly from one, and
only one, of its parents, which should be understood as its “principal” parent, in contrast
to the other parents which contribute in a much lesser way and should be considered as
“secondary” parents. This asymmetry is usually emphasized in graphical representations
of phylogenetic networks with lateral gene transfers, like for instance those depicted in
Figure 3 of Benveniste and Todaro (1974) (which, according to Morrison (2014) are the first
published in the literature), but again seldom in the mathematical model. Actually, and
up to our knowledge, the only types of phylogenetic networks that explicitly distinguish
between the primary, tree-like, line of evolution and the secondary, due to lateral gene

33

CHAPTER 2. LGT NETWORKS

transfers, that have been studied in the literature are those in Francis and Steel (2015b)
and those in Górecki (2004).

In this chapter we introduce a general model of phylogenetic network with lateral gene
transfers similar to the species graphs’ approach introduced in Górecki (2004): LGT net-
works, which consist roughly of a principal rooted tree with its leaves labelled on a set of
taxa (and possibly with elementary, that is, out-degree 1, nodes) and a set of secondary
arcs between nodes in this tree, representing lateral gene transfers, such that the resulting
directed graph turns out to be rooted, acyclic, with its leaves labelled and its internal
nodes unlabelled. Any such LGT network gives rise to a principal phylogenetic subtree
(by suppressing out-degree 1 nodes in the principal subtree) which can be interpreted as
representing the primary line of evolution.

Furthermore, in this chapter we analyze some previous models of phylogenetic networks
mainly focusing on which lateral transfer events are represented. Finally, we introduce a
metric distance on the space of all LGT networks.

2.2 LGT networks

In a DAG, we say that a node u is an elementary node if outdeg(u) = 1. Notice that
this definition is slightly different from the commonly used elementary node definition
which impose that both indegree and outdegree of the node are exactly one. Given S
a finite non-empty set, we consider that a phylogenetic network on the set of labels S
is an S−rDAG without elementary nodes. Notice, in particular, that we forbid in our
phylogenetic networks the existence of reticulations with out-degree 1. The reason to this
decision will be explained later. When talking about trees, we distinguish between S-trees
and phylogenetic trees. Both of them are S-rDAGs without reticulation nodes, but S-trees
can have elementary nodes, while phylogenetic trees cannot have any such node. Note
that every S-tree gives rise to a phylogenetic tree on S by suppressing all its elementary
nodes. To suppress an elementary node u in a tree T , we perform the following operation:
if u is the root, we remove it together with its incident arc; if, otherwise, u has parents
w1, . . . , wk and child v, we remove u together with the arcs incident to it, and we replace
them by the arcs (w1, v), . . . , (wk, v).

In Górecki (2004, 2010), and Górecki and Tiuryn (2012), the authors define a species graph
on a set of labels S as an S-tree endowed with a set of extra arcs, representing lateral gene
transfers, that satisfies a set of restrictions motivated by their use in the representation of
common evolutionary histories of species and genes (see Section 2.3). Here we introduce
phylogenetic networks with lateral gene transfers more general than species graphs (we
compare both models in Section 2.3), by imposing only that the graph obtained by adding
arcs to the tree is a phylogenetic network.

Definition 2.1. An LGT network on a set S is a phylogenetic network N = (V,E) on
S together with a partition E = Ep t Es of its set of arcs such that T0(N) = (V,Ep) is
an S-tree. The arcs in Ep are called principal, and those in Es, secondary. We shall call
T0(N) the principal subtree of N .

Figure 2.1 depicts an LGT network and Figure 2.2 depicts another LGT network with its
principal subtree T0(N). Henceforth, in graphical representations of LGT networks, we
shall use the following conventions: principal arcs are represented by continuous arrows
and secondary arcs by dashed arrows.

34

2.2. LGT NETWORKS

Let N be an LGT network. Since T0(N) = (V,Ep) is an S-tree, every arc in N ending in a
tree node is principal and the set of arcs ending in each reticulation h contains exactly one
principal arc: we call its origin the principal parent of h, and its other parents, secondary
parents. To ease the notations, we shall also say that the single parent of a tree node is its
principal parent. We also split the children of every node v into principal and secondary,
depending on the type of the arcs going from v to them. For instance, in Figure 2.2, the
node a is the principal parent of h, and the nodes c and d are its secondary parents; also,
the leaf 4 is the principal child of c and the nodes h and k are its secondary children.

1 2 3 4 5

Figure 2.1: An LGT network defined on {1, 2, 3, 4, 5}.

1 2 3 4 5 6 7

h k

c d

a b

r(a)

1 2 3 4 5 6 7

h k

c d

a b

r(b)

Figure 2.2: An LGT network (a) and its principal subtree (b).

Biologically speaking, the nodes of an LGT network represent species. The principal
subtree represents the main line of evolution of these species; that is, the genetic material
of a species comes mainly from its principal parent, possibly including mutations, while its
secondary parents have introduced some genes in the species through lateral gene transfers.
In this way, a secondary arc models one or more lateral gene transfer from its source to
its target.

As we have already mentioned, our model is different from other commonly used models in
the literature [Huson et al. (2010); Baroni et al. (2005, 2006); Moret et al. (2004)], where it

35

CHAPTER 2. LGT NETWORKS

is imposed that reticulations have outdegree 1, while now we impose that outdegree > 1.
The reason to do that is twofold. First, for other authors, reticulation nodes modeled the
hybridization or recombination process and its single child the resulting species. In our
model we collapse these two nodes into a single node representing both the process and the
resulting species. Hence, in our model all nodes with outdegree one must be understood
as elementary, while in the previous model only tree nodes with outdegree one should be
considered elementary. In either case, elementary nodes must be forbidden if one wishes
to solve the reconstruction problem, since those node never can be reconstructed. Second,
some of the technical results used in Chapter 3 are more easily stated using the model we
have chosen.

According to this difference in the interpretation of reticulation nodes, LGT networks can
be defined in two different ways, depending on whether you impose or forbid reticulations
with outdegree 1. These two models are mathematically equivalent, simply by collapsing
the arcs that begin in a reticulation node (resp. expanding them). This fact makes us
think that using one model or the other would not strengthen (or weaken) the forthcoming
results. The first model (reticulations with outdegree > 1) is used in Chapters 3 and 4;
and the second one (reticulations with outdegree 1) is used in Chapter 5. In Figure 2.3
there is depicted the equivalent LGT network imposing reticulation nodes with outdegree
1 to the LGT network depicted in Figure 2.2(a).

1 2 3 4 5 6 7

Figure 2.3: LGT network equivalent to the one depicted in Figure 2.2.

Notice that, using some other notations that appear in the literature, we have that the
principal subtree T0(N) is a switching of the LGT network N (see Kelk and Scornavacca
(2014) or Section 1.3); this is, take, for each reticulation node, the single principal arc
reaching it as switched-on, and all the secondary as switched-off. Then, in particular,
T0(N) is also (up to homeomorphism) a tree displayed by N (see Huson et al. (2010) or
Section 1.3). Moreover, N is also tree-based, where T0(N) is (up to homeomorphism) the
distinguished base tree (see Francis and Steel (2015b) or Section 1.7).

An isomorphism of LGT networks is an isomorphism of S-rDAG (see Section 1.1) that
preserves and reflects the partitions of the sets of arcs into principal and secondary. More
formally, given two LGT networks N = (V,E) and N ′ = (V ′, E′), an isomorphism from
N to N ′ is a bijection φ : V → V ′ such that:

• (u, v) is a principal arc in N if, and only if, (φ(u), φ(v)) is a principal arc in N ′;

• (u, v) is a secondary arc in N if, and only if, (φ(u), φ(v)) is a secondary arc in N ′;

• u ∈ V is a leaf labelled with s ∈ S if, and only if, φ(u) is a leaf labelled with s.

36

2.3. LGT NETWORKS GENERALIZE SPECIES GRAPHS

The isomorphism of LGT networks can be easily checked in linear time in their sizes.
Indeed, two LGT networks N and N ′ are isomorphic (or, equal) if, and only if, T0(N) =
T0(N ′) –which can be checked in linear time in the number of principal arcs of the
networks– and this isomorphism preserves and reflects the sets of secondary arcs.

2.3 LGT networks generalize species graphs

A species graph [Górecki (2004, 2010); Górecki and Tiuryn (2012)] is defined as a pair
(T,H) where T = (V,E) is an S-tree whose internal nodes have outdegree ≤ 2 and
H ⊆ V × V is a set of arcs satisfying the following conditions:

(HR1) If (u, h) ∈ H, then u and h are not connected by a path in T .

(HR2) If (u, h) ∈ H, then u and h are elementary in T , and every elementary node in T is
incident to some arc in H.

(HR3) If (u, h), (u′, h′) ∈ H and (u, h) 6= (u′, h′), then {u, h} ∩ {u′, h′} = ∅.

(HR4) There exists a time stamp function δ : V → N that strictly increases from source to
target in arcs e ∈ E, that remains constant from source to target in arcs e ∈ H, and
that takes different values on nodes incident to different arcs in H.

The tree T = (V,E) and the arcs in H in a species graph are the equivalent to principal
subtree and the secondary arcs in an LGT network, respectively. Note that it is easy to
check that any species graph ((V,E), H) defines an LGT network with set of nodes V , set
of principal arcs E and set of secondary arcs H. In our model, we consider phylogenetic
networks with lateral gene transfers more general than species graphs, by imposing only
that (V,E tH) is a phylogenetic network.

Comparing species graphs to our LGT network model, there exist some similarities and
some differences. Even though we do not impose any restrictions similar to HR1 and HR4
in our general LGT model, we will use some conditions analogous to them in a latter stage,
when working in certain subclasses of LGT networks. More precisely, in Chapter 3 we will
revisit condition HR1, and in Chapters 4 and 5 we will find conditions similar to HR4.
Condition HR2 states that, in a species graph, nodes with both indegree and outdegree
equal to 1 are not allowed. This is also the case for LGT networks where any such node
is the extreme of an arc in H.

In order to keep the binarity in a species graph, the starting node of each “secondary”
arc (an arc in H) is created by splitting an arc of T . These restrictions are more relaxed
in the LGT model since the starting node of a secondary arc can also be a node of the
principal subtree. Finally, restriction HR3 is also relaxed in our model, since we do allow
that two different secondary arcs have the same starting or destination nodes, or even that
the starting node of one of them is the destination node of the other (see Figure 2.1).

2.4 Other models for LGT events

In this section we review some other approaches to the modelling of lateral gene transfer
events.

37

CHAPTER 2. LGT NETWORKS

We first outline the lateral transfer scheme proposed in Hallett and Lagergren (2001).
Such model simplifies the evolutionary process by allowing lateral gene transfers, whose
main goal is to achieve the reconciliation scenario between a gene tree and a species tree
(see Section 1.10) via lateral gene transfers. A lateral transfer scheme for a species tree S
is defined as a pair (S′, A′) where S′ is a subdivision of S (that is, S′ is the tree S with
some of its arcs split by an intermediate node) and a set of arcs A′ ⊆ {(x, y) : x, y ∈
V (S′) \ V (S), x 6= y} such that:

• The mixed graph S′ ∪E(A′), where E(A′) denotes the underlying undirected edges
of A′, does not contain a directed mixed cycle. That is, a cycle that may contain
arcs as well as undirected edges, and where the cycle can be traversed in a direction
that respects the arcs but edges may be traversed in either direction.

• The source of each arc in A′ has in-degree 1 and out-degree 2 in S′ ∪A′,

• The target of each arc in A′ has in-degree 2 and out-degree 1 in S′ ∪A′.

A lateral transfer scheme shows where the lateral transfers have occurred during evolution.
The arcs in A′ represent the set of lateral transfers. The partial order of evolution induced
by the species tree S is respected in the scheme since directed mixed cycles are not allowed.
A lateral gene transfer is an event that causes some portion of the evolution represented by
an arc in the gene tree to occur along one arc in the species tree, and the remaining portion
of evolution to occur along another arc of the species tree. A lateral transfer scheme is
meaningful when combined to the notion of scenario (see Section 1.10). A scenario where
a transfer occurs in one direction between two genomes is not necessarily equivalent to
a scenario where a transfer that occurs in the opposite one. Then, in this sense, the
transfers are directed. However, in the definition of lateral transfer scheme, due to the
first condition, this transfer direction is disabled. Then, the intuition is that a transfer
can be traversed in either direction, and it represents a “moment in evolution” where the
two ancestral genomes co-existed [Addario-Berry et al. (2003)].

Similarly to the previous model, we find in Bansal et al. (2013) a method in which non
directed horizontal edges are defined in order to detect highways, which compile a great
number of lateral gene transfers taking place between pairs of species in either direction.
That method of highway detection takes as input a species tree and a set of gene trees,
and computes, for each gene tree, the lateral gene transfer events affecting that gene on
the species tree. The lateral transfer events that are inferred for a significant fraction
of the gene trees are postulated as the highways. Therefore, given a rooted tree T , a
horizontal edge on T is a pair of nodes {u, v}, such that u and v are different nodes and
none of them is descendant of the other. Horizontal edges represent potential lateral gene
transfers events. A directed arc (u, v) represents a lateral gene transfer from the species
represented by the arc with destination node u to the species represented by the arc with
destination node v. Thus, the undirected horizontal edge {u, v} represents the lateral gene
transfer events (u, v) and (v, u).

Both models were created to be used in a reconciliation framework and not also as a
evolutionary phylogenetic networks by itself, as is our model of LGT networks. Moreover,
in both cases the underlying trees that appear are binary trees and the arcs used to model
the lateral transfer events are undirected against our model which allows outdegree greater
than two for internal nodes and where the direction of the transfer events is specified.

38

2.5. AN EXTENSION OF ROBINSON-FOULDS METRIC FOR LGT NETWORKS

2.5 An extension of Robinson-Foulds metric for LGT net-
works

In this section we present a distance metric on the space of LGT networks over a given
set of taxa that generalizes, in some sense, Robinson-Foulds’ metric for phylogenetic trees
and that can be easily computed in polynomial time on the number of leaves.

Let N = (V,E) be an LGT network and T0(N) = (V,Ep) its principal subtree. Since
it can have elementary nodes, each node u is singled out in T0(N) by means of the
pair `T0(N)(u) = (CT0(N)(u), δT0(N)(u)), where CT0(N)(u) is the cluster of u in T0(N) and
δT0(N)(u) stands for the length, that is the number of arcs, of the longest path in T0(N)
from u to a node with its same cluster as a node in T0(N). Let

Υp(N) = {`T0(N)(u) : u ∈ V }.

On the other hand, let

Υs(N) =
{

(`T0(N)(u), `T0(N)(v)) : (u, v) ∈ Es
}
.

And finally, let
Υ(N) = (Υp(N),Υs(N)).

Given two LGT networks N1, N2, we define their LGT distance dLGT (N1, N2) as

dLGT (N1, N2) =
1

2

(
|Υp(N1)4Υp(N2)|+ |Υs(N1)4Υs(N2)|

)
where 4 denotes the symmetric difference between two sets, that is the set of elements
which are in either of the sets and not in their intersection.

Example 2.1. Let N be the LGT network depicted in Figure 2.2(a). Table 2.1 gives
`T0(N)(u) for every node u.

Table 2.1: `T0(N)(u) for every node u in the LGT network N in Figure 2.2(a).

u `T0(N)(u)

1 ({1}, 0)

2 ({2}, 0)

3 ({3}, 0)

4 ({4}, 0)

5 ({5}, 0)

6 ({6}, 0)

7 ({7}, 0)

h ({2, 3}, 0)

k ({5, 6}, 0)

d ({5, 6, 7}, 0)

c ({4}, 1)

b ({4, 5, 6, 7}, 0)

a ({1, 2, 3}, 0)

r ({1, 2, 3, 4, 5, 6, 7}, 0)

Then, Υp(N) is the set consisting of these ordered pairs:

Υp(N) =
{

({1}, 0), ({2}, 0), ({3}, 0), ({4}, 0), ({5}, 0), ({6}, 0), ({7}, 0),
({2, 3}, 0), ({5, 6}, 0), ({5, 6, 7}, 0), ({4}, 1), ({4, 5, 6, 7}, 0),
({1, 2, 3}, 0), ({1, 2, 3, 4, 5, 6, 7}, 0)

}
39

CHAPTER 2. LGT NETWORKS

Since (c, h), (d, h), (c, k) and (a, k) are the secondary arcs in N , we get

Υs(N) =
{

(({4}, 1), ({2, 3}, 0)), (({5, 6, 7}, 0), ({2, 3}, 0)), (({4}, 1), ({5, 6}, 0)),
(({1, 2, 3}, 0), ({5, 6}, 0))

}
Example 2.2. Let N1 and N2 be the LGT networks represented in Figure 2.2(a) and
Figure 2.4 respectively. Since

Υp(N1)4Υp(N2) =
{

({4, 5, 6, 7}, 0), ({1, 2, 3, 4}, 0),
({5, 6}, 1), ({7}, 1)

}
Υs(N1)4Υs(N2) =

{
(({1, 2, 3}, 0), ({5, 6}, 0)),

(({5, 6, 7}, 0), ({2, 3}, 0)), (({5, 6}, 1), ({2, 3}, 0)),
(({7}, 1), ({5, 6}, 0))

}
the LGT distance between these networks is

dLGT (N1, N2) =
1

2
(4 + 4) = 4.

1 2 3 4 5 6 7

Figure 2.4: The LGT network N2 defined on {1, . . . , 7} used in Example 2.2.

We prove now that one can reconstruct, up to isomorphisms, an LGT network N from
Υ(N).

Proposition 2.1. Let N = (V,E) be an LGT network on a set S of taxa. Then it is
possible to reconstruct from Υ(N) an LGT network N ′ = (V ′, E′) such that N ∼= N ′.

Proof. We construct N ′ = (V ′, E′), with E′ = E′p ∪ E′s, as follows:

• V ′ = Υp(N),

• (`T0(N)(u), `T0(N)(v)) ∈ E′p if, and only if, one of the following conditions holds

– CT0(N)(u) = CT0(N)(v) and δT0(N)(u) = δT0(N)(v) + 1

– CT0(N)(u)) CT0(N)(v), and if CT0(N)(u) ⊃ CT0(N)(w) ⊃ CT0(N)(v) for some
node w, then either CT0(N)(u) = CT0(N)(w) and δT0(u) < δT0(w) or CT0(N)(v) =
CT0(N)(w) and δT0(v) > δT0(w)

• (`T0(N)(u), `T0(N)(v)) ∈ E′s if, and only if, (`T0(N)(u), `T0(N)(v)) ∈ Υs(N)

It is straightforward to check that N ∼= N ′.

Corollary 2.2. dLGT is a metric on any class of LGT networks over a fixed set of taxa
S.

40

2.5. AN EXTENSION OF ROBINSON-FOULDS METRIC FOR LGT NETWORKS

Proof. All conditions that define a metric (see Section 1.8) follow trivially from the prop-
erties of the symmetric difference of sets, except the separation axiom

Υ(N1) = Υ(N2)⇒ N1
∼= N2,

which is a direct consequence of Proposition 2.1.

Once we have defined our model for LGT networks, we are ready to study the recon-
struction problem from a set of trees that they induce and from substructures induced by
triplets of leaves.

41

CHAPTER 2. LGT NETWORKS

42

Chapter 3

A reconstruction problem for LGT
networks based on trees

Contents

3.1 Introduction . 43

3.2 Secondary and reduced subtrees 44

3.3 Subtree prune and regraft on LGT networks 45

3.4 LGT network reconstruction problem 46

3.5 Restricted LGT networks . 48

3.6 Computational experiments . 62

3.7 Some technical proofs . 66

3.1 Introduction

As we have seen in the previous chapter, any LGT network gives rise to a principal
phylogenetic subtree representing the primary line of evolution of the involved species.
Similarly, any LGT network gives rise to a set of secondary phylogenetic subtrees, each
one of them obtained by replacing one arc in the principal subtree by one secondary
arc with the same target node (and then recursively removing non-labelled leaves and
out-degree 1 nodes). These phylogenetic subtrees can be seen as the secondary histories,
involving just one lateral gene transfer event.

This set of subtrees displayed by an LGT network suggests us to propose a reconstruction
problem of phylogenies using them as the input data. However, it is not guaranteed
that the principal and secondary phylogenetic subtrees of an LGT network are pairwise
different and that these trees determine, up to isomorphism, the LGT network. In order
to avoid these incompatibilities, in this chapter we introduce a subclass of restricted LGT
networks, which are characterized by a set of topological restrictions that allow us to solve
the reconstruction problem. The use of restricted LGT networks in order to infer with
unicity an LGT network from a set of trees is a similar approach to those presented in
Section 1.9.

More precisely we give an algorithm that solves the corresponding reconstruction problem
from incongruent trees: given a set of pairwise different phylogenetic trees T0, T1, . . . , Tk on
the same set of taxa, find, when it exists, the unique restricted LGT network such that its

43

CHAPTER 3. RECONSTRUCTION BASED ON TREES

principal phylogenetic tree is T0 and its secondary phylogenetic trees are T1, . . . , Tk. Then,
we include two computational experiments to test the introduced models and algorithms.
The first experiment uses the database of phylogenetic trees in Beiko et al. (2011), which
are based on real biological data, in order to find some subtrees to be used as input for
our algorithms. In the second one we fix an LGT network and simulate DNA strands at
the nodes using a statistical model of evolution that takes into account both mutations
(through principal arcs) and lateral gene transfers (through secondary arcs); then, we try
to infer the network from the DNA at the leaves.

The Results in this chapter have been published in Cardona et al. (2015).

3.2 Secondary and reduced subtrees

Let N be an LGT network and e = (u, h) a secondary arc in N . The secondary subtree of
N associated to e, Te(N), is the tree obtained from T0(N) by removing the principal arc
ending in h and replacing it by e, see Figure 3.1.

1 2 3 4

e1 e2

(a) N

1 2 3 4

(b) T0(N)

1 2 3 4

(c) Te1(N)

1 2 3 4

(d) Te2(N)

Figure 3.1: An LGT network (a), its principal subtree (b) and its secondary subtrees (c)
and (d).

Although T0(N) is always an S-tree, a secondary subtree of N may have non-labelled
leaves: we shall say that it is partially leaf-labelled in S. To obtain phylogenetic trees on S
from the principal and secondary subtrees of N, we reduce them. That is, we recursively
remove (in secondary subtrees) all their non labelled leaves together with the arcs ending
in them, and then we recursively suppress all their elementary nodes. We shall generically
denote by T̃ the reduced phylogenetic tree on S obtained by reducing a partially leaf-
labelled tree T on S. Notice that T̃ is an homeomorphic subtree of T , in the sense that
they have the same set of labels, the set of nodes of T̃ is contained in the set of nodes of
T , this inclusion preserves the leaf labelling, and every arc in T̃ corresponds to a path in
T . The construction of the reduced principal and secondary subtrees of an LGT network
is illustrated by Figures 3.1 and 3.2.

It is important to stress the close conection between the reduced subtrees of an LGT
network and their switchings. Let N be an LGT network. As we have already pointed
out in Section 2.2, T0(N) is a switching of N . In addition, if e = (u, h) is a secondary
arc of N , Te(N) is also a switching of N , where this switching can be obtained from the
one associated to T0(N) by switching-off the principal arc ending in h and switching-on
the arc e. However, since T0(N) and Te(N) may have elementary nodes, they are not, in

44

3.3. SUBTREE PRUNE AND REGRAFT ON LGT NETWORKS

general, trees displayed by N . Indeed, we need the reduced versions T̃0(N) and T̃e(N)
to get trees displayed by N , which are the phylogenetic trees associated to the above
mentioned switchings.

1 2 3 4

(a) T̃0(N)

1 2 3 4

(b) T̃e1(N)

1 2 3 4

(c) T̃e2(N)

Figure 3.2: The reduced principal subtree (a) and the reduced secondary subtrees (b) and
(c) of the LGT network N depicted in Figure 3.1.

3.3 Subtree prune and regraft on LGT networks

A method to compute a lower bound for the number of reticulation events which cause
the inconsistency between a pair of trees (for instance, two different gene trees) is the
number of rooted subtree prune and regraft, rSPR for short, operations to transform one
tree into the other. Roughly speaking, an SPR operation applied to a rooted phylogenetic
tree cuts, or prunes, a subtree and attaches, or regrafts, it from its root to another arc of
the remaining tree. Given any pair T, T ′ of phylogenetic trees on the same set of labels,
their rSPR distance drSPR(T, T ′) is defined as the minimum number of rSPR operations
that transform T into T ′. This distance has been extensively used in phylogenetics, where
many papers have been written applying and investigating its properties [Hein (1990);
Allen and Steel (2001); Bordewich and Semple (2005), among others].

Intuitively, the difference between the reduced principal subtree T̃0(N) and any reduced
secondary subtree T̃e(N) is that some rooted subtree of the former is pruned (by removing
the principal arc whose end is also the end of e) and regrafted (through the secondary
arc e) into the latter. This fact motivates to consider rSPR operations to analyze the
differences between the reduced principal subtree of an LGT network and its reduced
secondary subtrees. However, since these trees may not be binary, we slightly generalize
the rSPR operations defined in Bordewich and Semple (2005) to allow for the pruned
subtree to be regrafted not only to an arc but also to a node.

More precisely, we define an rSPR operation of a tree T as the following procedure:

1) Choose an arc e = (u, v) of T .

2) Remove e from T .

3) Choose a node w that is not a descendant of v.

4) If w is an internal node other than u, then apply either (4a) or (4b) below. If w is
a leaf or w = u, apply (4b).

4a) Add an arc (w, v).

4b) Add a new node w̃ and new arcs (w̃, v) and (w̃, w). If w was not the root of T
and w′ was its parent, then remove the arc (w′, w) and add a new arc (w′, w̃).
If w was the root, then w̃ becomes the root of the resulting tree.

5) Suppress u if it has become elementary.

45

CHAPTER 3. RECONSTRUCTION BASED ON TREES

We shall denote such an rSPR operation by v
node←− w (a node rSPR operation) if step (4a)

is applied, and v
arc←− w (an arc rSPR operation) if step (4b) is applied; see Figure 3.3. In

graphical representations of trees, paths are represented by snaked arrows. When it is not
necessary to specify whether it is a node or an arc rSPR operation, we shall denote it by
v

spr←− w.

v w

e

u w′

r(a)

v w

u w′

r(b)

v w

w̃

u w′

r(c)

Figure 3.3: The original tree (a), the tree obtained via node rSPR operation v
node←− w (b),

and the tree obtained via arc rSPR operation v
arc←− w (c).

For example, the two phylogenetic trees T and T ′ depicted in Figure 3.4 have drSPR(T, T ′) =
2 where two arc rSPR operations has been applied to obtain T ′ from T .

Particularly, since a reduced secondary subtree T̃e(N) of an LGT network is obtained
from its reduced principal subtree T̃0(N) by means of an rSPR operation, we have that
drSPR(T̃0(N), T̃e(N)) ≤ 1, and drSPR(T̃0(N), T̃e(N)) = 1 if, and only if, T̃0(N) 6= T̃e(N).

3.4 LGT network reconstruction problem

In this section we consider the problem of reconstructing an LGT network from its reduced
principal subtree T0 and its set of reduced secondary subtrees T1, . . . , Tk. We shall take

46

3.4. LGT NETWORK RECONSTRUCTION PROBLEM

1 2 3 4

//

∗

(a) T

1 3 4 2
\\
∗

(b)

1 4 3 2

(c) T ′

Figure 3.4: The rSPR distance between the tree T in (a) and the tree T ′ in (c) is 2. The
tree in (b) is the intermediate one in the process to obtain T ′ from T . The slash and the
star symbols on the arcs in (a) and (b) indicate the arc which is pruned and the arc on
which is regrafted, respectively; in order to obtain the tree located at its right-hand side.

into account only the case when T1, . . . , Tk are pairwise different, because if Ti = Tj , they
can be defined by the same secondary arc. Moreover, we shall restrict ourselves to the case
when T0 6= Ti for every i = 1, . . . , k, because when a reduced secondary subtree is equal
to the reduced principal subtree, it only means that we are not able to “distinguish” the
secondary line of evolution from the principal one. This leads us to the following general
problem:

Problem 3.1 LGT network Reconstruction

Input: A family of pairwise different phylogenetic trees T0, T1, . . . , Tk, on the same set
of labels S, such that drSPR(T0, Ti) = 1 for every i = 1, . . . , k.

Output: An LGT network N on S with secondary arcs e1, . . . , ek such that T̃0(N) = T0

and T̃ei(N) = Ti, for every i = 1, . . . , k, if it exists.

Note that, the LGT Network Reconstruction Problem, is focused in pairs of input trees
(T0, Ti), such that drSPR(T0, Ti) = 1. That is, we only get input trees (for instance, gene
trees) with one lateral transfers each. Then, the problem is not suitable for situations
where, for instance, one tree shows the vertical signal and the other one with at least
two lateral transfers events. Although these scenarios could be adopted, for example
decomposing a tree with n ≥ 2 lateral transfer events in n trees with only one transfer,
we focus in this chapter in the case where drSPR(T0, Ti) = 1.

Notice that the number of secondary subtrees displayed by an LGT network is at most the
number of secondary arcs, since one gets one secondary tree for each secondary arc, but
different arcs may give the same secondary tree. Hence, a network N that is a solution of
the LGT Network Reconstruction Problem has at least k secondary arcs, and one solution
with exactly k secondary arcs will necessarily be optimal.

The LGT Network Reconstruction Problem may have no solution for certain input trees.
Consider, for instance, the trees T0, T1, T2 depicted in Figure 3.5. A simple inspection
shows that if there exists an LGT network N with reduced principal subtree T0 and two
secondary arcs e1, e2 such that T̃e1(N) = T1 and T̃e2(N) = T2, then e1 must go from an
elementary node added in the arc ending in 4 to a (or to an elementary node added in
the arc ending in a), and e2 must go from an elementary node added in the arc ending in
3 to c (or to an elementary node added in the arc ending in c). But then, the resulting
directed graph contains a directed cycle: see, for instance, the graph N in Figure 3.5.

On the other hand, as it was already hinted in the discussion above, if the LGT network
reconstruction problem has a solution for a specific input, it need not be unique: see,
for instance, Figure 3.6. And, as we mentioned at the beginning of this section, there
may be repetitions in the family of reduced principal and secondary subtrees of a general
LGT network, and therefore not every LGT network can be obtained as an output of this

47

CHAPTER 3. RECONSTRUCTION BASED ON TREES

1 2 3 4 5

a c

b

r

(a) T0

1 5 4 3 2

(b) T1

1 2 3 4 5

(c) T2

1 2 3 4 5

(d) N

Figure 3.5: Any “LGT network” with reduced principal subtree T0 and reduced secondary
subtrees T1, T2 would contain a cycle.

problem.

1 2 3

(a)

1 2 3

(b)

Figure 3.6: Two LGT networks with the same reduced principal and secondary subtrees.

3.5 Restricted LGT networks

As we have shown in the previous section, where we have exhibited two different LGT
networks with the same reduced principal and secondary subtrees, the LGT Network
Reconstruction Problem cannot be solved with unicity for generic LGT networks. This
motivates us to restrict ourselves to a class of LGT networks satisfying a set of conditions
that guarantee, on the one hand, that their reduced principal and secondary subtrees
are pairwise different and, on the other hand, that there are no two different networks
in that class with the same reduced principal and secondary subtrees. The drawback of
restricting to a subclass of LGT networks is that, in some instances, the reconstruction
problem might have a solution but outside our class, which we cannot find.

Before giving the definition of this subclass of LGT networks, we introduce some notation
relative to nodes and paths in an LGT network N . Since the principal subtree T0(N) of

48

3.5. RESTRICTED LGT NETWORKS

N is an S-tree, every internal node of N has some principal child. We say that a node v is
principally elementary when it has exactly one principal child, i.e., when it is elementary
in T0(N). Since N cannot contain elementary nodes, this implies that every principally
elementary node is the source of some secondary arc. We say that a path in N is principal
when it consists only of principal arcs. In graphical representations of LGT networks,
principal paths are represented by snaked arrows. Given u and v two nodes in N , if v can
be reached from u through a principal path, we say that v is a principal descendant of u,
and that u is a principal ascendant of v. A path u v is elementary when all its nodes,
except at most v (but including its origin u), are elementary. A principally elementary
path in N is an elementary path in T0(N).

Definition 3.1. An LGT network is restricted when it satisfies the following properties:

(a) No principal child of a principally elementary node is principally elementary.

(b) The target of a secondary arc is never principally elementary.

(c) If (u, h) is a secondary arc, then there exists no principal path u h.

(d) If (u, h) is a secondary arc and z = LCAT0(N)(u, h), then the principal path z h
contains some non principally elementary intermediate nodes.

Conditions (a) and (b) are necessary to guarantee the uniqueness of the solutions:

• We suppose that condition (a) fails in an LGT network N . That is, N contains
a principal arc (u, u′) with both u, u′ principally elementary: then (since N cannot
contain elementary nodes) both u, u′ must be sources of secondary arcs, say e = (u, h)
and e′ = (u′, h′). If h = h′, these arcs define the same reduced secondary subtree. If
h 6= h′, then, if we replace e and e′ by ē = (u, h′) and ē′ = (u′, h), we obtain a new
LGT network with the same reduced principal and secondary subtrees as N . Then,
condition (a) is a necessary condition. See Figure 3.7.

• We suppose that condition (b) fails in an LGT network N . That is, N contains
a secondary arc e = (u, h) with h principally elementary. Let h′ be the principal
child of h. We shall assume that N does not contain the secondary arc e′ = (u, h′),
because otherwise T̃e(N) = T̃e′(N). Then, if we replace the secondary arc (u, h)
by a secondary arc (u, h′), we obtain a new LGT network with the same reduced
principal and secondary subtrees as N . Then, condition (b) is a necessary condition.
See Figure 3.8.

Conditions (c) and (d) are needed to avoid that the reduced principal subtree is isomorphic
to some reduced secondary subtree, or that two different reduced secondary subtrees are
isomorphic. These two conditions are topological constraints that are biologically mean-
ingful, similarly to some other constraints that we have seen in Section 1.7. More precisely,
condition (c) prevents the existence of a lateral gene transfer from a species to a principal
descendant of it, and similarly, condition (d) requires to have at least one speciation event
between the LCA of both species involved in a lateral gene transfer and the species that
receives the transference.

In Figure 3.7, there are depicted two (different) phylogenetic networks N1 and N2 which
do not satisfy condition (a) and both networks display the same set of reduced principal
and secondary subtrees. The same happens in the networks depicted in Figure 3.8, where
condition (b) fails. Moreover, in Figures 3.9 and 3.10 there are depicted phylogenetic

49

CHAPTER 3. RECONSTRUCTION BASED ON TREES

networks where conditions (c) and (d) fail, respectively. In the right side of both figures
we can observe that the reduced principal subtree is isomorphic to the reduced secondary
subtrees.

1 2 3 4 5 6

(a) N1

1 2 3 4 5 6

(b) N2

Figure 3.7: Two phylogenetic networks where condition (a) in Definition 3.1 fails and both
networks have the same reduced principal subtree and also the same reduced secondary
subtrees.

1 2 3 4 5

(a) N1

1 2 3 4 5

(b) N2

Figure 3.8: Two phylogenetic networks where condition (b) in Definition 3.1 fails and both
networks have the same reduced principal subtree and also the same reduced secondary
subtrees.

1 2 3

(a) N

1 2 3

(b) T̃0(N) = T̃e(N)

Figure 3.9: (a) A phylogenetic network where condition (c) in Definition 3.1 fails and (b)
the reduced principal subtree which is isomorphic to the two reduced secondary subtrees.

As we have previously mentioned in Section 2.3, except for condition (c), which is shared
by both definitions, the conditions that define our restricted LGT networks are indepen-
dent of those defining species graphs [Górecki (2004)]. Note that the principal subtree of
a restricted LGT network is not necessarily a semi-binary tree and the source of a sec-
ondary arc is not necessarily principally elementary; we explicitly consider the target of a
secondary arc being non principally elementary; we also explicitly consider two principally
elementary source nodes of secondary arcs being not connected by a principal arc; we
allow two secondary arcs to be adjacent; and we impose no extra condition on the relative
position of secondary arcs, except for the fact that the resulting graph must be acyclic.
On the other hand, no condition similar to (d) is imposed on species graphs.

Notice that conditions (a) and (b) in the definition of restricted LGT networks allow us

50

3.5. RESTRICTED LGT NETWORKS

1 2 3 4

e

(a) N

1 2 3 4

(b) T̃0(N) = T̃e(N)

Figure 3.10: (a) A phylogenetic network where condition (d) in Definition 3.1 is not sat-
isfied and (b) the reduced principal subtree which is isomorphic to the reduced secondary
subtrees of the arc e.

to construct any such network by “adding” arcs to its reduced principal subtree. More
precisely, let T = (V,E) be a phylogenetic tree and F ⊂ V × V ∪ E × V a set whose
elements are pairs formed by either two nodes of the tree or an arc and a node of the tree.
We can define an LGT network, that we will denote by N = T + F , as follows:

1. For each e ∈ E, if there is some node h with (e, h) ∈ F , split the arc e by inserting
an intermediate elementary node ve. More formally, add a node ve, remove the arc
e, and add arcs from the origin of e to u and from u to the end node of e.

2. For each element (e, h) ∈ F with e ∈ E, add a secondary arc from ve to h

3. For each element (u, h) ∈ F with u ∈ V , add a secondary arc from u to h.

It is straightforward to check that any restricted LGT network can be obtained by means
of this procedure, but not every choice for F gives a restricted LGT network. Strictly
speaking, this process generates directed graphs whose arcs can be principal o secondary,
but since this procedure can even generate cycles, there is in principle no guarantee that
it produces LGT networks for an arbitrary choice of F . However, if this procedure gives
a restricted LGT network, then its reduced principal subtree will be the tree T used as
input of the procedure. Notice also that if two different restricted networks have isomorphic
reduced principal subtrees, then the nodes and arcs of both trees can be identified. For
instance, each node is identified by its cluster, which is an invariant of the isomorphism
class. More formally, both trees are canonically isomorphic and hence we can safely identify
them and say that they are equal. A consequence of the construction above is that we
can also say when two secondary arcs in two different networks are “the same”, provided
that they have the same reduced principal tree. Indeed, each secondary arc is constructed
from a unique pair formed by an arc and a node or two nodes of the common reduced
principal subtree, and secondary arcs in different networks can be compared by comparing
this data that determines them and depends only on the reduced principal subtree.

We shall prove now that the reduced principal and secondary subtrees of a restricted LGT
network form a family of pairwise different phylogenetic trees.

Notice that, if T = (V,E) is an S−tree and T̃ is the reduced version of T , for every node v
in T̃ , CT (v) = C

T̃
(v). We shall often use this equality without any further mention. Given

N an LGT network, we say that the principal cluster of a node u is the set CT0(N)(u) of
leaves that are principal descendants of u. The following result is a direct consequence
of the fact that the set of triples defined by a phylogenetic tree characterizes it, and that
the triple defined on a set of three labels by a partially leaf-labelled tree with, possibly,
elementary nodes, is the same as the triple defined by its reduction. For a review for some
definitions, notation and results relative to clusters and triples, see Section 1.5.

51

CHAPTER 3. RECONSTRUCTION BASED ON TREES

Lemma 3.1. Let T1, T2 be two partially leaf-labelled trees on a set S. Then, T̃1 = T̃2 if,
and only if, T1 and T2 define the same triple on each set of three different labels of S.

The two following results prove that the reduced principal and secondary subtrees of a
restricted LGT network are pairwise different.

Proposition 3.2. If N is a restricted LGT network and e is a secondary arc in it, then
T̃0(N) 6= T̃e(N).

Proof. Let e = (u, h) ∈ Es; to simplify the notations, we shall denote T0(N) and Te(N)
by T0 and Te, respectively. We shall prove that these trees define different sets of triples;
by Lemma 3.1, this will imply that T̃0 6= T̃e.

By condition (c) in Definition 3.1, there exists no principal path connecting u and h, and
therefore CT0(h) ∩ CT0(u) = ∅. Let x1 ∈ CT0(u) and x2 ∈ CT0(h). Moreover, if z =
LCAT0(u, h), condition (d) in Definition 3.1 implies that the principal path z h contains
some intermediate node w with a principal child w1 outside this path; let x3 ∈ CT0(w1)
(see Figure 3.11). It is straightforward to check now that T0 defines the triple ((x2, x3), x1)
and Te defines the triple ((x1, x2), x3). Therefore, Γ(T0) 6= Γ(Te), as we claimed.

x1

x2

u

h x3

w

z

Figure 3.11: The structure of N involving arc e in the proof of Proposition 3.2.

Proposition 3.3. If N is a restricted LGT network and e, e′ are two different secondary
arcs in it, then T̃e(N) 6= T̃e′(N).

The proof of this proposition is similar to that of Proposition 3.2, but much longer because
we must distinguish many cases, depending on the relative positions of the source and the
target nodes of e and e′ in T0(N). Therefore, for the sake of clarity, and in order not to
lose the pace of the chapter, we give it in Section 3.7, containing some proofs of technical
results.

The problem we want to solve (and effectively do in some cases) in this section is, then,
the following special case of the LGT Network Reconstruction Problem:

Problem 3.2 Restricted LGT network Reconstruction

Input: A family of pairwise different phylogenetic trees T0, T1, . . . , Tk, on the same set
of labels S, such that drSPR(T0, Ti) = 1 for every i = 1, . . . , k.

Output: A restricted LGT network N on S with secondary arcs e1, . . . , ek such that
T̃0(N) = T0 and T̃ei(N) = Ti, for every i = 1, . . . , k, if it exists.

Our next goal is now to determine a set of necessary and sufficient conditions for the
existence of a restricted LGT network N with a given principal subtree T and a given
secondary subtree T ′. First, we give these conditions in terms of rSPR operations. Next,
we translate the resulting conditions in terms of triples and clusters.

52

3.5. RESTRICTED LGT NETWORKS

Proposition 3.4. Let T, T ′ be two phylogenetic trees on the same set of labels. There
exists a restricted LGT network N with a secondary arc e such that T = T̃0(N) and
T ′ = T̃e(N) if, and only if:

(1) drSPR(T, T ′) = 1,

(2) if h
spr←− w is an rSPR operation that produces T ′ from T , then, in T , w is neither

an ancestor of h nor a descendant of the parent of h.

Proof. As far as the necessity of conditions (1) and (2) goes, recall from Section 3.3 that,
if N is an LGT network and e = (u, h) a secondary arc in it, then T̃e(N) is obtained

from T̃0(N) by means of either a node rSPR operation h
node←− u, when u is not principally

elementary in N , or an arc rSPR operation h
arc←− u∗, with u∗ the only principal child of u

in N , when it is principally elementary. Since, moreover, T̃e(N) 6= T̃0(N) by Proposition
3.2, this entails that drSPR(T, T ′) = 1. On the other hand, u (or u∗, in the second case)
can be neither a principal ancestor of h, because of condition (c) in Definition 3.1, nor a
proper principal descendant of the parent v of h in T̃0(N), because this would imply that
v = LCAT0(u, h), against condition (d) in Definition 3.1.

Let us prove now the sufficiency of conditions (1) and (2). If T ′ is obtained from T by

means of a node rSPR operation h
node←− w, let N be the LGT network obtained by adding

to T the secondary arc (w, h). If T ′ is obtained by means of an arc rSPR operation
h

arc←− w, then, since h is not a descendant of w in T , the latter cannot be the root; in this
case, if v is its parent in T , split the arc (v, w) by adding an intermediate node u in it,
and add a secondary arc e = (u, h); let N be the resulting LGT network.

In both cases, it is clear by construction that T̃0(N) = T and T̃e(N) = T ′. Moreover, N
clearly satisfies condition (a) (because N has at most one principally elementary node), (b)
(because h is not elementary in T), (c) (because h is not a descendant of w in T), and (d)
(because, since w is not a descendant in T of the parent h0 of h, the path LCAT (w, h) h
in T0(N) contains h0 as intermediate node, and it is not elementary in T) in the definition
of restricted LGT network.

We rewrite the characterization provided by the previous proposition in terms of triples
(Proposition 3.5) using the following definition.

Definition 3.2. Let T, T ′ be two trees defined on the same set of labels S. Let {Tx,y,z :

{x, y, z} ⊂ S} and {T ′x,y,z : {x, y, z} ⊂ S} be their respective set of triples. Then, we say
that T and T ′ satisfy the principal-secondary condition on triples if there exists k, l,m ≥ 1
and a partition of S

A1, . . . , Ak, B,C1, . . . , Cl−1, Cl,1, . . . , Cl,m

(and to ease notations, let Cl =
m⋃
i=1

Cl,i) such that, for every x, y, z ∈ S:

(1) If x ∈
k⋃
i=1

Ai, y ∈ B, and z ∈
l⋃

i=1
Ci, then Tx,y,z = ((x, y), z) and T ′x,y,z = ((y, z), x).

(2) If x ∈ B, y ∈ Aj and z ∈ Ai, for some 1 ≤ i < j ≤ k, then Tx,y,z = ((x, y), z) and
T ′x,y,z = ((y, z), x).

53

CHAPTER 3. RECONSTRUCTION BASED ON TREES

(3) If x ∈ Ci, y ∈ Cj and z ∈ B, for some 1 ≤ i < j ≤ l, then Tx,y,z = ((x, y), z) and
T ′x,y,z = ((y, z), x).

(4) If x ∈ Cl,i, y ∈ Cl,j and z ∈ B, for some 1 ≤ i < j ≤ m, then Tx,y,z = ((x, y), z) and
T ′x,y,z = (x, y, z).

(5) If x, y, z do not satisfy any of the previous conditions, then Tx,y,z = T ′x,y,z.

See Figure 3.12 for a depiction of these sets.

Proposition 3.5. Let T, T ′ be two phylogenetic trees on the same set of labels. There
exists a restricted LGT network N with a secondary arc e such that T = T̃0(N) and
T ′ = T̃e(N) if, and only if, they satisfy the principal-secondary condition on triples.

Proof. As far as the “only if” implication goes, assume that e = (w, h) and let v =
LCAT0(N)(w, h) = LCA

T̃0(N)
(w, h). Let w̃ ∈ T̃0(N) be the first non principally elementary

principal descendant of w: that is, w̃ = w if w is not principally elementary, and its
principal child otherwise. Now:

• let v → u1 → · · · → uk → h be the path v h in T̃0(N) (where k ≥ 1 by condition
(d) in Definition 3.1);

• let v → w1 → · · · → wl−1 → wl = w̃ be the path v w̃ in T̃0(N) (where l ≥ 1
because condition (c) in Definition 3.1 implies that w 6= v);

• for every i = 1, . . . , k − 1, let Ai = CT0(N)(ui) \ CT0(N)(ui+1);

• let Ak = CT0(N)(uk) \ CT0(N)(h);

• let B = CT0(N)(h);

• for every i = 1, . . . , l − 1, let Ci = CT0(N)(wi) \ CT0(N)(wi+1);

• if w̃ = w, let x1, . . . , xm be its children in T̃0(N), and let Cl,i = CT0(N)(xi), for i =
1, . . . ,m; if w is principally elementary in N , let Cl = Cl,1 = C

T̃0(N)
(w̃) = CT0(N)(w).

See Figure 3.12. It is straightforward to check that the triples defined by T0(N) and Te(N)
are the same except for those in the statement.

Let us consider now the “if” implication. We shall outline here the proof, and fill in the
details in a series of Claims proved in the Section 3.7.

Assuming that the symmetric difference Γ(T)4 Γ(T ′) consists of those triples described
in the statement, we have that B is a cluster of both T and T ′ (Claim 1 in Section 3.7,
where it is proved). Since every triple in Γ(T)4 Γ(T ′) involves one, and only one, leaf
in B, it is clear that Γ(T |B) = Γ(T ′|B) and Γ(T |S\B) = Γ(T ′|S\B) and hence T |B = T ′|B
and T |S\B = T ′|S\B. So, T |B and T |S\B form a maximum-agreement forest for T and
T ′ in the sense of Hein et al. (1996), which implies that drSPR(T, T ′) = 1 [Theorem 2.1
Bordewich and Semple (2005)]. Then, the rSPR operation that transforms T into T ′ must

have the form h
spr←− x, with h the root of T |B, that is, the node in T with CT (h) = B.

In order to prove that this rSPR operation satisfies condition (2) in Proposition 3.4, we
must identify the node x and the type of rSPR operation. To do that, we use that each
Cl,i is a cluster in T and T ′ (Claim 2 in Section 3.7) and that B ∪Cl is a cluster in T ′ but
not in T (Claim 3 in Section 3.7). Then:

54

3.5. RESTRICTED LGT NETWORKS

T̃0(N) v

u1

A1
...

uk

Ak

h

B

w1

C1
...

w̃

Cl,m

Cl,1

..
.

Cl

v

u1

A1
...

uk

Ak

h

B

w1

C1
...

w̃

Cl,m

Cl,1

..
.

T̃e(N)(a)

v

u1

A1
...

uk

Ak

h

B

w1

C1
...

w

w̃

Cl

T̃e(N)(b)

Figure 3.12: The local structure of T̃0(N) and T̃e(N) around a secondary arc e = (w, h),
when w is not principally elementary (a) and when it is principally elementary (b).

• If m = 1, so that Cl = Cl,1 ∈ C(T)∩C(T ′), this entails that the nodes with clusters
B and Cl are sibling in T ′ but not in T , and therefore that x is the node in T with
cluster Cl and that the rSPR operation is of type arc.

• If m > 1, since Cl is a cluster in T but not in T ′ (Claim 4 in Section 3.7) and
B ∪ Cl,i1 ∪ · · · ∪ Cl,ik /∈ C(T ′) for every ∅ 6= {i1, . . . , ik} ({1, . . . ,m} (Claim 5
Section 3.7), we have that the nodes with clusters B,Cl,1, . . . , Cl,m are sibling in T ′

but not in T , and therefore that x is the node in T with cluster Cl and that the
rSPR operation is of type node.

In both cases, it is easy to see that x is not connected in T with h (because B ∩ Cl = ∅)
and that LCAT (x, h) is not the parent of h (because if a ∈ A1, b ∈ B and c ∈ Cl, then
((a, b), c) ∈ Γ(T)).

Corollary 3.6. Let N and N ′ be two restricted LGT networks on the same set of labels
S, each with a single secondary arc: say, e and e′, respectively. If T̃0(N) = T̃0(N ′) and
T̃e(N) = T̃e′(N

′), then N = N ′.

Proof. Let us denote T̃0(N) = T̃0(N ′) simply by T . Since both N and N ′ are restricted
LGT networks with reduced principal subtree T , their arcs and nodes can be identified
through arcs and nodes in T . The proof of Proposition 3.5 allow us that if T̃e(N) = T̃e′(N

′)
both arcs e and e′ can be determined as follows. With the notations therein, let e∗ be
either the arc ending in the node (in T) with cluster Cl (if m = 1) or the node (in T) with
cluster Cl (if m > 1), and let h be the node (in T) with cluster B. Since the secondary
arc determined by the pair (e∗, h) can be identified through nodes and arcs in T , adding
the secondary arc in T by T + (e∗, h), we can conclude that N = N ′.

55

CHAPTER 3. RECONSTRUCTION BASED ON TREES

Corollary 3.7. Let N and N ′ be two restricted LGT networks on the same set of labels
S. If T̃0(N) = T̃0(N ′) and {T̃e(N) | e ∈ Es(N)} = {T̃e′(N ′) | e′ ∈ Es(N ′)}, then N = N ′.

Proof. Let us denote T̃0(N) = T̃0(N ′) simply by T . Let e be a secondary arc of N ; the
equality of reduced secondary trees of N and N ′ implies the existence of a secondary arc e′

of N ′ such that T̃e(N) = T̃e′(N
′). The same argument as in the previous corollary proves

that e and e′ have the same source and target and hence are the same. This proves that
every secondary arc of N is also a secondary arc of N ′, and the symmetrical argument
proves the other inclusion. Then, N and N ′ have the same principal subtree and the same
secondary arcs, and hence they are equal.

Notice that the näıve implementation of the procedure given by Proposition 3.5, that
computes and writes all the O(n3) triples defined by T and T ′, and then checks whether
the symmetric difference of the corresponding sets of triples has the form described therein,
takes at least O(n4) time, due to there is at least O(n) possible partitions. Although this
cost can possibly be reduced by using the strategy in Brodal et al. (2013), we found it
simpler to translate this condition on triples into an equivalent condition on clusters that
is faster to check. That is, we rewrite now the characterization provided by Proposition
3.4 in terms of clusters (Proposition 3.8). Before, we introduce some definitions in the
context of partially ordered sets (posets) in order to be considered on clusters, since for a
given tree T , (C(T),⊆) is a poset. If (P,≤) is a poset, a segment in (P,≤) is a chain such
that every element in the poset lying between the ends of the chain also belongs to the
chain. More formally, a chain A1 ≤ A2 ≤ · · · ≤ An is a segment if for each B ∈ P such
that A1 ≤ B ≤ An, then B = Ai for some i = 1, . . . , n.

Definition 3.3. Let T, T ′ be two trees defined on the same set of labels S. Let C(T)
and C(T ′) be their respective set of clusters. Then, we say that T and T ′ satisfy the
principal-secondary condition on clusters if:

(a) The symmetric difference of the clusters of T and T ′ can be written as follows: there
exist k, l ≥ 1 such that:

• C(T) \ C(T ′) consists (at most) of two maximal disjoint segments in C(T)

Uk (· · · (U1, Wl0 (· · · (W1,

with l − 1 ≤ l0 ≤ l.
• C(T ′) \ C(T) consists (at most) of two maximal disjoint segments in C(T ′)

U ′k0 (· · · (U ′1, W ′l (· · · (W ′1,

with k − 1 ≤ k0 ≤ k.

• If l = 1 and l0 = l− 1, (respectively, if k = 1 and k0 = k− 1), the chain Wl0 (
· · · (W1 (respectively, U ′k0 (· · · (U ′1) does not exist, and then C(T) \ C(T ′)
(respectively, C(T ′) \ C(T)) consists only of the other segment.

• If C(T) \ C(T ′) (respectively, C(T ′) \ C(T)) consists of two maximal disjoint
segments of clusters, then U1 ∩W1 = ∅ (respectively, U ′1 ∩W ′1 = ∅).

(b) The minimal elements in the chains above satisfy that Uk ∩W ′l ∈ C(T)∩C(T ′). Let
B denote this cluster.

(c) The difference between the first element in the first segment and the common cluster
B, say Ak = Uk \B satisfies:

56

3.5. RESTRICTED LGT NETWORKS

• Ak ∈ C(T ′);

• if k0 = k − 1, then Ak ∈ C(T);

• if k0 = k, then U ′k = Ak /∈ C(T).

(d) Analogously, the difference between the first element in the last segment and the
common cluster B, say Cl = W ′l \B satisfies:

• Cl ∈ C(T);

• if l0 = l − 1, then Cl ∈ C(T ′);

• if l0 = l, then Wl = Cl /∈ C(T ′).

(e) If k > 1, the differences between consecutive sets in the segments above satisfy:

• Ak (U ′k−1;

• setting (even when k0 = k− 1) U ′k = Ak, we have that Ui \Ui+1 = U ′i \U ′i+1 for
every i = 1, . . . , k − 1.

(f) And analogously, if l > 1, then:

• Cl (Wl−1;

• setting (even when l0 = l − 1) Wl = Cl, we have that Wi \Wi+1 = W ′i \W ′i+1

for every i = 1, . . . , l − 1.

Proposition 3.8. Let T, T ′ be two different phylogenetic trees on the same set of labels.
There exists a restricted LGT network N with a secondary arc e such that T = T̃0(N) and
T ′ = T̃e(N) if, and only if they satisfy the principal-secondary condition on clusters.

The principal-secondary condition on clusters can be checked in O(n2) time. Indeed,
conditions (b) to (f) can be checked in linear time, since they only involve testing if
certain sets are clusters of the trees or subsets of some specific sets of leaves. As for
condition (a), one only needs to compute all the clusters of both trees, which can be done
in O(n2) time, and then computing the symmetric difference of those sets and arranging
this symmetric difference in chains, which can be done in linear time in the size of the
clusters.

Proposition 3.8 allows us to detect easily the secondary arc that must be added to T
in order to obtain T ′ as the corresponding reduced secondary tree, when it exists, using
Algorithm 1.

To ease notations, we will denote by (ωT,T ′ , hT,T ′) the output that the algorithm returns
and N(T, T ′) the LGT network T + {(ωT,T ′ , hT,T ′)}.

It turns out that N(T, T ′) is contained in every restricted LGT network with reduced
principal subtree T and having T ′ as a reduced secondary subtree.

Proposition 3.9. Let N be a restricted LGT network such that T̃0(N) = T and T̃e(N) =
T ′, for some secondary arc e. Let N ′ be the LGT network obtained by removing from N
all secondary arcs except e and then suppressing elementary nodes. Then, N ′ = N(T, T ′).

Proof. In this situation, N ′ is also a restricted LGT network with T̃0(N ′) = T and
T̃e(N

′) = T ′, and then Corollary 3.6 applies.

57

CHAPTER 3. RECONSTRUCTION BASED ON TREES

Algorithm 1

Input: Two phylogenetic trees T = (V,E) and T ′ on the same set of taxa S.
Output: A pair (ω, h) ∈ V × V ∪E × V such that N = T + {(ω, h)} is a restricted LGT
network with reduced principal subtree T and reduced secondary subtree T ′, or False if
no such network exists.

1. Check that T and T ′ satisfy the principal-secondary condition on clusters. If they
do not satisfy the condition, return False.

With the notations of that condition, detect the clusters Uk and W ′l and whether
l0 = l or l0 = l − 1.

2. Take the nodes h and u∗ in T with CT (h) = Uk ∩W ′l and CT (u∗) = W ′l \ (Uk ∩W ′l).

3. Now:

3.1 If l0 = l − 1, let e be the single arc of T ending in u∗, and return (e, h).

3.2 If l0 = l, return (u∗, h).

Algorithm 2

Input: A family of phylogenetic trees T = (V,E), T ′1, . . . , T
′
m on the same set of taxa S.

Output: A set of pairs F ⊂ V × V ∪ E × V such that N = T + F is a restricted LGT
network with reduced principal subtree T and reduced secondary subtrees T ′1, . . . , T

′
m, or

False if no such network exists.

1. Check that each pair (T, T ′i), i = 1, . . . ,m, satisfies the principal-secondary condition
on clusters. If the condition fails for any of these pairs, return False.

2. For each i = 1, . . . ,m, let (ωi, hi) be the output returned by Algorithm 1 when its
input is T, T ′i .

3. Set F = {(ωi, hi) | i = 1, . . . ,m}.

4. Let N = T + F and check if it contains cycles.

• If N contains cycles, return False.

• Otherwise, return F .

58

3.5. RESTRICTED LGT NETWORKS

Now, Algorithm 2 solves the Restricted LGT Network Reconstruction problem,
as the following theorem proves.

Theorem 3.10. Let T, T ′1, . . . , T
′
m be a family of pairwise different phylogenetic trees on

S such that each pair (T, T ′i), i = 1, . . . ,m, satisfies the principal-secondary condition on
clusters. If there exists some restricted LGT network N̄ with reduced principal subtree T
and reduced secondary subtrees T ′1, . . . , T

′
m, then the graph N defined in step 4 of Algorithm

2 applied to T, T ′1, . . . , T
′
m is equal to N̄ (up to isomorphisms of LGT networks).

Proof. In this situation, N is also a restricted LGT network with the same reduced prin-
cipal subtree and reduced secondary subtrees as N̄ , and then Corollary 3.7 applies.

This theorem entails, on the one hand, that if there exists some restricted LGT network
with reduced principal subtree T and reduced secondary subtrees T ′1, . . . , T

′
m, then it is

unique (up to isomorphisms), and, on the other hand, that Algorithm 2 is correct (and
also independent of the ordering of the trees T ′1, . . . , T

′
k), in the sense that such a restricted

LGT network exists if, and only if, the algorithm finds it: notice that if the algorithm
detects a cycle in step 4, then this theorem implies that no restricted LGT network can
have T and T ′1, . . . , T

′
m as reduced principal and reduced secondary subtrees. Another

consequence is the stability of the network reconstructed: if some new tree is added to the
input of the algorithm, then a new secondary arc is added to the network, without altering
the other secondary arcs (notice, however, that this last secondary arc could create a cycle
in the network and hence the problem would have no solution).

We have implemented the algorithms in this chapter using Python. The program can
be downloaded from the url http://bit.do/LGTnetworksReconstruction, and the only
requirements are the libraries networkx and pyparsing, which are included in most of
the standard distributions of python for scientific computation (e.g. anaconda). The zip
file contains a README file with specific instructions on how to use the program.

Some examples

The following examples show simple applications of Algorithm 2.

Example 3.1. Consider the trees depicted in Figure 3.13.

• C(T)\C(T ′1) =
{
{1, 2}

}
and C(T ′1)\C(T) =

{
{2, 3, 4, 5}

}
. Then, with the notations

of Algorithm 2, k = l = 1, k0 = l0 = 0, Uk = {1, 2}, W ′l = {2, 3, 4, 5}, B = {2},
Cl = {3, 4, 5}, u∗1 = b, and h1 = 2. So, we add a new principally elementary node in
the middle of the arc (r, b) and a secondary arc e1 from it to 2.

• C(T)\C(T ′2) =
{
{1, 2}, {3, 4}, {3, 4, 5}

}
and C(T ′2)\C(T) =

{
{2, 3}, {1, 2, 3}, {4, 5}

}
.

Then, k = l = 2, k0 = l0 = 1, Uk = {3, 4}, W ′l = {2, 3}, B = {3}, Cl = {2}, u∗2 = 2
and h = 3. So, we add a new principally elementary node in the middle of the arc
(a, 2) and a secondary arc e2 from it to 3.

• C(T) \ C(T ′3) =
{
{3, 4, 5}

}
and C(T ′3) \ C(T) =

{
{1, 2, 3, 4}

}
. Then, k = l = 1,

k0 = l0 = 0, Uk = {3, 4, 5}, W ′l = {1, 2, 3, 4}, B = {3, 4}, Cl = {1, 2}, u∗3 = a and
h3 = c. So, we add a new principally elementary node in the middle of the arc (r, a)
and a secondary arc e3 from it to c.

59

http://bit.do/LGTnetworksReconstruction

CHAPTER 3. RECONSTRUCTION BASED ON TREES

We obtain the directed graph depicted in Figure 3.14., which is acyclic and therefore a
restricted LGT network with reduced principal subtree T and reduced secondary subtrees
T ′1, T

′
2, T

′
3.

1 2 3 4 5

a b

c

r

(a) T

1 2 3 4 5

(b) T ′1

1 2 3 4 5

(c) T ′2

1 2 3 4 5

(d) T ′3

Figure 3.13: The phylogenetic trees used as input in Example 3.1.

1 2 3 4 5

a

r

c

b

Figure 3.14: The graph obtained as output when applying Algorithm 2 to the trees T , T ′1,
T ′2, T ′3 in Figure 3.13.

Example 3.2. Consider the trees depicted in Figure 3.15.

• C(T)\C(T ′1) =
{
{1, 2}, {1, 2, 3}, {4, 5, 6}

}
and C(T ′1)\C(T) =

{
{1, 5, 6}, {1, 2, 5, 6},

{1, 2, 3, 5, 6}
}

. Then, k = 1, l = 3, k0 = 0, l0 = 2, Uk = {4, 5, 6}, W ′l = {1, 5, 6},
B = {5, 6}, Cl = {1}, u∗1 = 1 and h1 = d. So, we add a new principally elementary
node in the middle of the arc (c, 1) and a secondary arc e1 from it to d.

• C(T)\C(T ′2) =
{
{1, 2, 3}, {5, 6}, {4, 5, 6}

}
and C(T ′2)\C(T) =

{
{1, 2, 6}, {1, 2, 5, 6},

{1, 2, 4, 5, 6}
}

. Then, k = 1, l = 3, k0 = 0, l0 = 2, Uk = {1, 2, 3}, W ′l = {1, 2, 6},
B = {1, 2}, Cl = {6}, u∗2 = 6 and h2 = c. So, we add a new principally elementary
node in the middle of the arc (d, 6) and a secondary arc e2 from it to c.

We obtain the directed graph depicted in Figure 3.16, which contains a directed cycle.
Therefore, there does not exist any restricted LGT network with T as reduced principal
subtree and T ′1, T

′
2 as reduced secondary subtrees.

60

3.5. RESTRICTED LGT NETWORKS

1 2 3 4 5 6

c

a

r

b

d

(a) T

4 3 2 1 5 6

(b) T ′1

3 4 5 6 2 1

(c) T ′2

Figure 3.15: The phylogenetic trees used as input in Example 3.1.

Of course, it is possible that, on a given input, the LGT network Reconstruction
Problem has a solution and the Restricted LGT network Reconstruction Prob-
lem does not, as the following example shows.

Example 3.3. Consider the trees T, T ′1 depicted in Figure 3.17. Then, C(T) \ C(T ′1) ={
{3, 4, 5}, {2, 3, 4, 5}

}
and C(T ′1) \ C(T) =

{
{2, 3}, {2, 3, 6}

}
, and therefore these trees do

not satisfy the principal-secondary condition on clusters: from C(T) \C(T ′1) we have that
k = 2, and from C(T ′1) \ C(T) that l = 2, but then both differences should consist of a
pair of segments, instead of a single segment. This means that there does not exist any
restricted LGT network with reduced principal subtree T and reduced secondary subtree T ′1.
But there actually exists an LGT network with reduced principal subtree T and reduced
secondary subtree T ′1: the network N depicted in the same figure, which is not restricted
because condition (c) in the definition of restricted LGT networks fails.

1 2 3 4 5 6

Figure 3.16: The graph obtained as output when Algorithm 2 to the trees T , T ′1, T ′2 in
Figure 3.15.

61

CHAPTER 3. RECONSTRUCTION BASED ON TREES

1 5 4 3 2 6

(a) T

1 5 4 3 2 6

(b) T ′

1 5 4 3 2 6

(c) N

Figure 3.17: The phylogenetic trees used as input in Example 3.3, and an LGT network
(c) that has them as reduced principal (a) and secondary (b) subtrees, respectively.

3.6 Computational experiments

In this section we report on two different experiments we have performed in order to test
our results and algorithms.

An application using real biological data

In the first experiment, our goal is to find a set of trees based on true biological data and
where our algorithms can be applied. First, we want to stress that our research is more
fundamental than applied and hence it has been difficult to find such input data; we hope
that further research on this topic will allow us to treat more generic input data. More
precisely, the condition that secondary subtrees are at distance one from the principal
subtree can be inderstood as if a single gene transfer has taken place, which is a rather
restrictive condition. Hence, our strategy was to start with a database with many trees
on many species and try to find a small subset of trees and species such that the subtrees
of the chosen trees restricted to the chosen set of species meet the required condition. In
particular, even when the networks we have found are consistent with LGTs reported in
the literature, we do not claim that our results are biologically significant.

62

3.6. COMPUTATIONAL EXPERIMENTS

The general strategy for this search is as follows: We first choose a database with many
phylogenetic trees; among these trees we exhaustively search a “central” tree sharing
many leaves with a large set of “companion” trees in the database. Then, we exhaustively
look for pairs formed by a subtree of this central tree and a companion tree such that
their topological restrictions to their common set of leaves satisfy the principal-secondary
condition on clusters. With all pairs satisfying this condition we look for a maximal
example: with as many leaves as possible and as many secondary trees as possible. Finally,
this maximal set of trees is used as an input to Algorithm 2.

We have taken as our datasource the database of phylogenetic trees in Beiko et al. (2011).
That database contains 159.905 phylogenetic trees, but in order to make the computations
feasible we have restricted our experiment to a random sample of 15.000 trees. Within
this sample, we have found a “central” tree T with 100 leaves and 200 other “companion”
trees sharing at least 30 labels with T . We have then kept these 201 trees and discarded
the others. More precisely, the selection of the central and companion trees from the set
of 15.000 trees has been done in the following way. We extract from the set the tree that
shares the largest number of taxa with the largest number of trees possible in the set.
The obtained tree has 100 leaves. Given the dissimilarity between the taxa of the trees, a
large number of trees do not share any taxa with the central tree. Next, to maximize the
possible similarity between the studied trees, we take the 200 trees that share more than
30 taxa with the pivot tree from the data set of 15.000 trees.

Next, for each subtree T0 of T with at least 4 leaves and for each tree T ′ in the remaining
set of 200 trees, we have computed the topological restriction of both T0 and T ′ to their
common set of leaves and checked whether they satisfy the principal-secondary condition
on clusters. With this search, we have found the subtree T0 of T described by the Newick
string

(((((9, 8), 7), 6), 5), ((4, 3), (1, 2)));

where the numbers correspond to the organisms given in Table 3.1, and the following three
subtrees of some of the remaining set of 200 trees:

T ′1: (((((9,8),7),6),5),(((2,3),1),4));
T ′2: (((((9,8),7),6),5),(((1,3),2),4));
T ′3: ((((((9,8),7),6),5),4),((3,(1,2))));

such that each pair of trees (T0, T
′
i), i = 1, 2, 3, satisfies the conditions in Proposition 3.8.

Applying Algorithm 2 to T0, T
′
1, T

′
2, T

′
3, we obtain the restricted LGT network depicted

in Figure 3.18, that contains T0 as reduced principal subtree and T ′1, T
′
2, T

′
3 as reduced

secondary subtrees. This network suggests the existence of three lateral gene transfer
events that explain the differences between T0 and T ′1, T

′
2, T

′
3. Although there is no reference

in the literature to these specific events, several lateral gene transfer events involving
Rhodobacter sp., Ruegeria pom. and Ruegeria sp. have been reported in the literature
[Frank et al. (2005); Poggio et al. (2007); Todd et al. (2012)].

An application using simulated data

In this second experiment we want to test if we can take an LGT network and recover
it from simulated DNA strands at its leaves. More precisely, we proceed as follows: We
fix an LGT network and we introduce a statistical model of evolution of DNA sequences
associated to its nodes that takes into account both mutations and lateral gene transfers;

63

CHAPTER 3. RECONSTRUCTION BASED ON TREES

Identifier Organism

1 Roseobacter_denitrificans_OCh_114

2 Ruegeria_pomeroyi_DSS-3

3 Ruegeria_sp._TM1040

4 Dinoroseobacter_shibae_DFL_12

5 Paracoccus_denitrificans_PD1222

6 Rhodobacter_sphaeroides_ATCC_17025

7 Rhodobacter_sphaeroides_KD131

8 Rhodobacter_sphaeroides_ATCC_17029

9 Rhodobacter_sphaeroides_2.4.1

Table 3.1: The organisms involved in the phylogenetic trees T0, T
′
1, T

′
2, T

′
3 given in the first

experiment in Section 3.6.

1 2 3 4 5 6 7 8 9

Figure 3.18: Restricted LGT network obtained in the first experiment in Section 3.6.

then, from different observed DNA sequences at the leaves, we reconstruct the phylogenetic
trees that best illustrate these sequences; finally, we analyze these inferred trees in order
to recover the original network with our reconstruction algorithm.

More precisely, we have considered the LGT network N depicted in Figure 3.19. For each
node, we have simulated 1000 sequences of DNA, each of them of length 100 using the
following model:

• The sequence at the root is fixed, but arbitrary. Given the symmetry of the consid-
ered evolutionary model, the selection of the initial sequence is not relevant, and we
take the one where all nucleotides are equal to A.

• We associate to each arc a substitution matrix, which gives the probability of mu-
tation of a nucleotide through the considered arc. For simplicity, we use the same
matrix for each arc, corresponding to the Jukes-Cantor model [Jukes and Cantor
(1969)] with the same α parameter:

M =


1− 3α α α α
α 1− 3α α α
α α 1− 3α α
α α α 1− 3α


64

3.6. COMPUTATIONAL EXPERIMENTS

We have run the experiment using different values for α. These values are summa-
rized in Table 3.2.

• For each reticulation node h, we consider that, with a given probability ph, the DNA
subsequence of h is inherited from its secondary parent (modeling an LGT event)
and with probability 1− ph it is inherited from its principal parent. For simplicity,
we have assumed that all reticulation nodes have the same ph and made the same
experiment with different values, that are summarized in Table 3.2.

Note that the DNA sequence at the root of the network evolves through principal and
secondary arcs simulating mutations and lateral gene transfer events until it arrives at the
leaves. Each of the 1000 sequences at the leaves has been used as input of the dnapars

program, from the PHYLIP package [Plotree and Plotgram (1989)] in order to infer the most
parsimonious phylogenetic tree. As a result, different inferred topologies are obtained.
Some of these trees are inferred much more times than other ones. This difference allows
us to predict which are the candidates to be the reduced principal subtree and the reduced
secondary subtrees of N , respectively. Figure 3.20 shows the reduced principal subtree
T̃0(N) and the two reduced secondary subtrees T̃e1(N) and T̃e2(N) of the network N .

Table 3.2 shows a summary of the results we have obtained. The columns labelled by #T0,
#Te1 and #Te2 give the number of appearances in the simulation of the reduced principal
subtree and of both of the reduced secondary subtrees, respectively. The columns labeled
#Tnext and Tnext give, among all the inferred trees different from the aforementioned ones,
how many times did the most frequent one appear and which is its Newick string.

Analyzing the results, we can observe that the reduced principal subtree is always the
most inferred one, for any of the choices of the parameters α and ph. This number ranges
from 550 to 850, approximately, and the largest values correspond to lower values of ph, as
expected. Indeed, a lower value for ph means that each DNA sequence in a node mainly
comes from its principal parent. Similarly, the two reduced secondary subtrees are in the
second and third position of the most inferred trees, except for the case where α = 0.01
and ph = 0.05. The reason for this erroneous behaviour is twofold: First, small value of
ph make that the secondary trees we want to find are less likely to be found , since rarely
the simulated flow of DNA will pass through Furthermore, in most cases, the fourth tree
in the list of inferred trees Tnext appears less than a half of times than the third one.
Thereby we can differentiate clearly which of the inferred trees corresponds to the reduced
principal subtree, which correspond to the reduced secondary subtrees and which can be
considered as spurious trees. The number of these spurious trees (trees which are different
from T0, Te1 and Te2) range from 100− 170 (when α = 0.02, 0.03, 0.05) to around 330 (for
α = 0.01). From this identification of principal and secondary trees, and applying our
algorithm we can recover the original LGT network.

Finally, we remark that when we take high values of ph, the fourth most frequently inferred
tree is that with Newick string (((2, 3), 6), ((4, 5), 1)). This tree is precisely the subtree
obtained by switching-on the two secondary arcs, which could be expected since a large
number of DNA sequences have been inherited from the secondary parents of both hybrid
nodes instead of from the principal ones.

65

CHAPTER 3. RECONSTRUCTION BASED ON TREES

1 2 3 4 5 6

e1 e2

Figure 3.19: The LGT network N used in the second experiment in Section 3.6.

1 2 3 4 5 6

(a)

1 2 3 4 5 6

(b)

1 2 3 4 5 6

(c)

Figure 3.20: The reduced principal subtree T0(N) (a), and the two reduced secondary
subtrees T̃e1(N) (b) and T̃e2(N) (c) of the LGT network depicted in Figure 3.19.

3.7 Some technical proofs

Proof of Proposition 3.3

Let e = (u, h), e′ = (u′, h′) ∈ Es; to simplify the notations, we shall denote T0(N), Te(N)
and Te′(N) by T0, Te and Te′ , respectively. We shall prove that Γ(Te) 6= Γ(Te′), which will
imply, by Lemma 3.1, that T̃e 6= T̃e′ . To do that, we shall distinguish three main cases,
depending on the relationship between u and u′ in T0, and in each case (and its subcases,
when necessary) we shall show the existence of three labels on which Te and Te′ define
different triples.

A) Consider first the case when u = u′. By condition (c) in Definition 3.1, neither h nor
h′ are principal descendants of u, and therefore CT0(u) ∩ CT0(h) = CT0(u) ∩ CT0(h′) = ∅.
This implies the existence of a leaf x3 ∈ CT0(u) that does not belong to CT0(h) ∪CT0(h′).

Since there cannot exist simultaneously two principal paths h h′ and h′ h, we shall
assume without any loss of generality that the latter, h′ h, does not exist. If there
exists a principal path h h′, then, since h is not principally elementary by condition (b)
in Definition 3.1, it has a principal child v outside this principal path and then any leaf

66

3.7. SOME TECHNICAL PROOFS

Table 3.2: Simulation study of LGT network depicted in Figure 3.19.

Parameters #T0 #Te1 #Te2 #Tnext Tnext

α = 0.01, ph = 0.05 707 42 52 56 (((4,5),6),(2,3),1);
α = 0.01, ph = 0.10 672 62 63 44 (((2,3),1),(4,5),6);
α = 0.01, ph = 0.15 571 98 106 48 (((2,3),1),(4,5),6);
α = 0.01, ph = 0.20 527 147 115 39 (((4,5),6),(1,2,3));

α = 0.02, ph = 0.05 874 49 37 27 (((1,3),2),((4,5),6));
α = 0.02, ph = 0.10 786 84 93 19 ((((2,3),1),(4,5)),6);
α = 0.02, ph = 0.15 684 129 127 29 (((2,3),6),((4,5),1));
α = 0.02, ph = 0.20 629 173 131 39 (((2,3),6),((4,5),1));

α = 0.03, ph = 0.05 893 41 43 22 ((((2,3),1),(4,5)),6);
α = 0.03, ph = 0.10 800 91 80 15 (((1,2),3),((4,5),6));
α = 0.03, ph = 0.15 689 140 132 22 ((((2,3),1),(4,5)),6);
α = 0.03, ph = 0.20 627 149 169 40 (((2,3),6),((4,5),1));

α = 0.05, ph = 0.05 855 56 50 34 ((((2,3),1),(4,5)),6);
α = 0.05, ph = 0.10 761 101 89 29 ((((2,3),1),(4,5)),6);
α = 0.05, ph = 0.15 690 122 120 34 ((((2,3),1),(4,5)),6);
α = 0.05, ph = 0.20 610 162 140 49 (((2,3),6),((4,5),1));

x1 ∈ CT0(v) belongs to CT0(h) but not to CT0(h′). If, on the contrary, no principal path
connects h with h′, then CT0(h)∩CT0(h′) = ∅ and no x1 ∈ CT0(h) belongs to CT0(h′). So,
in both cases, there exists some leaf x1 ∈ CT0(h) \CT0(h′). Take, finally, x2 ∈ CT0(h′); see
Figure 3.21. Notice that x1, x2 /∈ CT0(u).

Now, on the one hand, in Te′ we have that u = LCATe′ (x2, x3) and x1 /∈ CTe′ (u) =
CT0(h′)∪CT0(u). This implies that Te′ defines the triple ((x2, x3), x1). On the other hand,
in Te, the principal path u x3 survives because h is not a principal descendant of u, and
therefore u = LCATe′ (x1, x3), and moreover, since h′ is nor a principal descendant of u,
there cannot be any path in Te from an intermediate node in the principal path u x3 to
x2. This makes it impossible that Te defines the triple ((x2, x3), x1).

u

h h′

x1 x2

x3

Figure 3.21: The structure of N involving e and e′ in case (A) in the proof of Prop. 3.3.

B) Consider now the case when u and u′ are connected by a proper principal path, say
u u′. By condition (c) in Definition 3.1, there do not exist principal paths connecting u
with h or u′ with either h′ or h.

Assume first that the principal path u u′ is not principally elementary. Let v be the
last node in this path that is not principally elementary (v can be u, if every intermediate
node in the path u u′ is principally elementary), and let v′ be any principal child of v
outside this path u u′. If h′ is not a principal descendant of v′, take x3 ∈ CT0(v′). If, on
the contrary, h′ is a principal descendant of v′, then, by condition (d) in Definition 3.1,
the principal path v → v′ h′ must contain some intermediate node w with a principal
child w′ outside this path; in this case, take x3 ∈ CT0(w′). In this way, we always obtain
a leaf x3 ∈ CT0(v) \ (CT0(u′) ∪ CT0(h′)). Let, moreover, x1 ∈ CT0(u′) and x2 ∈ CT0(h′);
notice that x1 6= x2 because CT0(u′)∩CT0(h′) = ∅. The situation is summarized in Figure

67

CHAPTER 3. RECONSTRUCTION BASED ON TREES

3.22.(a).

Since h′ does not belong to the principal paths v x3 or v u′ x1, it is clear that
Te′ defines the triple ((x1, x2), x3). Let us prove now that Te cannot define this triple.
Indeed, notice that, since h is not a principal descendant of u, it does not belong to the
principal paths v x3 or v u′ x1. This implies that these paths survive in Te and
hence that LCATe(x1, x3) = v. Therefore, should Te define the triple ((x1, x2), x3), this
would imply that Te contains some path u′ x2 (recall that every intermediate node in
the principal path v u′ is principally elementary). But since u cannot be a descendant
of u′, this path could not contain the secondary arc e = (u, h) and therefore it would be
principal, implying the existence of a principal path connecting u′ and h′, which does not
exist. This leads to a contradiction, showing that, as we claimed, Te does not define the
triple ((x1, x2), x3).

Assume now that the principal path u u′ is principally elementary. Since T0 cannot
contain two consecutive elementary nodes, this implies that u′ is not principally elementary
(and that (u, u′) ∈ Ep). Let u′1, u

′
2 be two principal children of it and let x1 ∈ CT0(u′1)

and x2 ∈ CT0(u′2), and let x3 ∈ CT0(h′); see Figure 3.22.(b). Then Te′ defines the triple
(x1, x2, x3). Now, since h is not a principal descendant of u, the bifurcating principal
paths u′ x1 and u′ x2 survive in Te and hence LCATe(x1, x2) = u′, but h′ is not
a descendant of u′ in Te (because neither h′ nor u are principal descendants of u′) and
therefore Te defines the triple ((x1, x2), x3).

In both cases, Γ(Te) 6= Γ(Te′).

u

v

u′
h

h′

x3

x1

x2

(a) u

u′

h

h′

x1

x2

x3

(b)

Figure 3.22: The two possible structures of N involving e and e′ in case (B) in the proof
of Prop. 3.3.

C) Assume finally that u and u′ are different and not connected by any principal path, that
is, CT0(u)∩CT0(u′) = ∅. Recall that, by condition (c) in Definition 3.1, CT0(u)∩CT0(h) =
CT0(u′) ∩CT0(h′) = ∅, too. We shall consider now several subcases, up to interchanging e
and e′.

C.1) Assume that there exist principal paths u h′ and h u′. Then, since CT0(h′) ⊆
CT0(u) and CT0(u) ∩ CT0(h) = ∅, we have that CT0(h) ∩ CT0(h′) = ∅. Moreover, since
h is not principally elementary, there exists some leaf x1 ∈ CT0(h) \ CT0(u′). Take any
x2 ∈ CT0(h′) and x3 ∈ CT0(u′) (see Figure 3.23, where v = LCAT0(u, h)). It is easy to
check that Te defines the triple ((x1, x3), x2) and Te′ defines the triple ((x2, x3), x1).

C.2) Assume that there exist principal paths u h′ and u′ h. As in (C.1), this implies
that CT0(h) ∩ CT0(h′) = ∅. Let v = LCAT0(u, u′). By condition (d) in Definition 3.1, the
principal path v u h′ contains some intermediate node w with a principal child w1

outside this path, and the principal path v u′ h contains some intermediate node w′

with a principal child w′1 outside this path.

Assume first that, up to interchanging u and u′, the node w belongs the path u h′ (this

68

3.7. SOME TECHNICAL PROOFS

v u

h u′

h′x1 x2

x3

Figure 3.23: The structure of N involving e and e′ in case (C.1) in the proof of Prop. 3.3.

includes the case w = u). Let x1 ∈ CT0(w1), x2 ∈ CT0(h) and x3 ∈ CT0(h′); see Figure
3.24.(a) (where w can be u; we have not distinguished this possibility in the figure). In
this case, Te defines the triple ((x1, x3), x2) and Te′ defines the triple ((x2, x3), x1).

Assume now that both principal paths u h′ and u′ h are principally elementary; that
is, principal arcs with u and u′ principally elementary. In this case, w is intermediate
in the principal path v u and w′ is intermediate in the principal path v u′. Let
x1 ∈ CT0(w1), x2 ∈ CT0(w′1) and x3 ∈ CT0(h); see Figure 3.24.(b). Then, Te defines the
triple ((x1, x3), x2) and Te′ defines the triple ((x2, x3), x1).

v

u

w

h′

u′

h

x1 x2
x3

(a)
v

w w′

u u′

h′ h

x1 x2

x3

(b)

Figure 3.24: The structure of N involving e and e′ in case (C.2) in the proof of Prop. 3.3.

C.3) Assume that there exist a principal path u h′ but no principal path connecting u′

and h. Since u and h are not connected by any principal path, neither are h and h′. Let
v = LCAT0(u, u′), x1 ∈ CT0(h), x2 ∈ CT0(h′) and x3 ∈ CT0(u′) (see Figure 3.25). In Te′ ,
we have that u′ = LCATe′ (x2, x3) and, since there exists no principal path connecting h
with u′ or h′, x1 /∈ CTe′ (u

′). This implies that Te′ defines the triple ((x2, x3), x1). Now,
again because h is not connected in T0 with u′ or h′, the principal paths u h′ x2 and
v u′ x3 survive in Te, and hence this tree defines the triple ((x1, x2), x3).

v

u u′

h

h′

x2

x3

x1

Figure 3.25: The structure of N involving e and e′ in case (C.3) in the proof of Prop. 3.3.

C.4) Assume that there exists no principal path from {u, u′} to {h, h′}, but there exists
a principal path h u′. Let v = LCAT0(u, h) = LCAT0(u, u′).

By condition (d) in Definition 3.1, the principal path v h contains some intermediate
node w with a principal child w1 outside this path. If h′ is not a principal descendant
of w1, take x1 ∈ CT0(w1). If h′ is a principal descendant of w1, then w = LCAT0(u′, h′),

69

CHAPTER 3. RECONSTRUCTION BASED ON TREES

and the path w → w1 h′ contains some intermediate node w′ with a principal child
w′1 outside this path: in this case, take x1 ∈ CT0(w′1). In both cases, x1 ∈ CT0(w) and
x1 /∈ CT0(h) ∪ CT0(h′). Let moreover x2 ∈ CT0(u) and x3 ∈ CT0(u′): see Figure 3.26.

It is clear then that Te defines the triple ((x2, x3), x1). Now, h′ does not belong to the
principal paths v h u′ x3, w x1 or v u x2 (as far as this last path goes, notice
that u cannot be a principal descendant of h′, because h′ is a descendant of u in N , and
that h′ is not a principal descendant of u by assumption). Therefore, these principal paths
survive in Te′ and this tree defines the triple ((x1, x3), x2).

v

u

x2

w

h

u′

x3h′

x1

Figure 3.26: The structure of N involving e and e′ in case (C.4) in the proof of Prop. 3.3.

C.5) Assume now that there exists no principal path connecting a node in {u, u′} and
a node in {h, h′}, but that h and h′ are connected by a principal path, say h h′ (this
includes the case h = h′). Let v = LCAT0(u, u′), x1 ∈ CT0(u), x2 ∈ CT0(u′), and x3 ∈
CT0(h′); see Figure 3.27. Then, Te defines the triple ((x1, x3), x2) and Te′ defines the triple
((x2, x3), x1).

v

u u′

hx1

h′

x2

x3

Figure 3.27: The structure of N involving e and e′ in case (C.5) in the proof of Prop. 3.3.
The path h h′ need not be proper.

C.6) Assume finally that there exists no principal path connecting any pair of nodes
{u, u′, h, h′}. Let v = LCAT0(u, u′). We shall split this case into two subcases, up to
symmetry.

Assume first that w = LCAT0(u, h) is not a proper descendant of v: therefore, it is an
ancestor of it. In this case, let x1 ∈ CT0(u), x2 ∈ CT0(h), and x3 ∈ CT0(u′); see Figure
3.28.(a) (where w can be v; we have not distinguished this possibility in the figure). Since
h does not belong to the principal path v u′ x3, Te defines the triple ((x1, x2), x3),
and since h′ does not belong to the principal paths w v u x1, w h x2 and
w v u′ x3, they survive in Te′ and then it defines either the triple ((x1, x3), x2) (if
v 6= w) or (x1, x2, x3) (if v = w).

Assume now that w = LCAT0(u, h) and w′ = LCAT0(u′, h′) are both proper descendants
of v and therefore they are intermediate nodes in the principal paths v u and v u′,
respectively; in particular, v = LCAT0(h, h′). By condition (d) in Definition 3.1, the path

70

3.7. SOME TECHNICAL PROOFS

w h must contain some intermediate node w0 with some principal child w1 outside this
path. Let x3 ∈ CT0(w1), x1 ∈ CT0(u), and x2 ∈ CT0(h): see Figure 3.28.(b).

In this situation, Te defines the triple ((x1, x2), x3) and (since h′ cannot belong to the
principal path w1 x3, because LCAT0(h, h′) = v) Te′ defines the same triple on x1, x2, x3

as T0, namely ((x2, x3), x1).

w

u

v

x1
u′

x3

h

h′

x2

(a) v

w

u

w′

u′w0

h x3x1 h h′

x2

(b)

Figure 3.28: The structure of N involving e and e′ in case (C.6) in the proof of Prop. 3.3.

So, Γ(Te) 6= Γ(Te′) in all subcases in which we have divided (C). This finishes the proof
that Te and Te′ always define different sets of triples.

Proof of the Claims in Proposition 3.5

We first establish an easy auxiliary lemma on triples calculus, which will allow us to avoid
repeating the same argument several times:

Lemma 3.11. Let T a phylogenetic tree on S, and let x, y, z, t ∈ S.

(1) If ((x, y), z), ((x, t), z) ∈ Γ(T), then ((y, t), z) ∈ Γ(T).

(2) If ((x, y), z), ((z, t), x) ∈ Γ(T), then ((x, y), t) ∈ Γ(T).

(3) If ((x, y), z) ∈ Γ(T) and ((x, y), t) /∈ Γ(T), then ((x, t), z) ∈ Γ(T).

Proof. Assertions (1) and (2) are proved in Corollary 9.3 Dress et al. (2012); although
the trees considered therein are binary, it is easy to check that the proof is valid in the
arbitrary setting. As far as (3) goes, if ((x, y), z) ∈ Γ(T), then LCAT (x, y) is a proper
descendant of LCAT (x, z). Now, if moreover ((x, y), t) /∈ Γ(T), then t is a descendant of
LCAT (x, y) and hence LCAT (x, t) is a descendant of LCAT (x, y) and a fortiori a proper
descendant of LCAT (x, z), which implies that ((x, t), z) ∈ Γ(T).

Let us proceed with the proofs of the claims. Assume in the rest of this section that
Γ(T)4Γ(T ′) consists of those triples described in the statement. To simplify the notations,

set A =
k⋃
i=1

Ai, Cl =
m⋃
i=1

Cl,i and C =
l⋃

i=1
Ci.

Claim 1 : B ∈ C(T) ∩ C(T ′).

We shall prove that, for every b, b′ ∈ B and x /∈ B, ((b, b′), x) ∈ Γ(T)∩Γ(T ′), which implies
that B ∈ C(T) ∩ C(T ′). Since, by the explicit description of Γ(T)4 Γ(T ′) given in the
statement, Tb,b′,x = T ′b,b′,x, it is enough to prove that ((b, b′), x) ∈ Γ(T) ∪ Γ(T ′). To do
that, we consider three different cases, depending on x.

71

CHAPTER 3. RECONSTRUCTION BASED ON TREES

(1.1) If x ∈ A, let c ∈ C. Since ((b, c), x), ((b′, c), x) ∈ Γ(T ′), by Lemma 3.11.(1) we have
that ((b, b′), x) ∈ Γ(T ′).

(1.2) If x ∈ C, let a ∈ A. Since ((a, b), x), ((a, b′), x) ∈ Γ(T), again by Lemma 3.11.(1) we
have that ((b, b′), x) ∈ Γ(T).

(1.3) If x /∈ A∪B∪C, let a ∈ A and c ∈ C. We shall assume that ((b, b′), x) /∈ Γ(T)∪Γ(T ′)
and we shall reach a contradiction. Indeed, we know from (1.1) that ((b, b′), a) ∈
Γ(T ′). Then, if ((b, b′), x) /∈ Γ(T ′), by Lemma 3.11.(3), we have that ((b, x), a) ∈
Γ(T ′), and since ((b, c), a) ∈ Γ(T ′), Lemma 3.11.(1) implies that ((x, c), a) ∈ Γ(T ′).
On the other hand, we know from (1.2) that ((b, b′), c) ∈ Γ(T). Then, if ((b, b′), x) /∈
Γ(T), by Lemma 3.11.(3) we have that ((b, x), c) ∈ Γ(T), and since ((a, b), c) ∈ Γ(T),
by Lemma 3.11.(1) we have that ((a, x), c) ∈ Γ(T). But if x /∈ B, Ta,c,x = T ′a,c,x,
which leads to the announced contradiction.

This finishes the proof of Claim 1.

Claim 2. Cl,i ∈ C(T) ∩ C(T ′), for every i = 1, . . . ,m.

We shall prove that, for every c, c′ ∈ Cl,i and x /∈ Cl,i, ((c, c′), x) ∈ Γ(T) ∩ Γ(T ′). As in
the previous Claim, it is enough to prove that ((c, c′), x) ∈ Γ(T) ∪ Γ(T ′); and, also as in
the previous claim, we consider different possibilities for x.

(2.1) If x ∈ A ∪
⋃
i<l

Ci, let b ∈ B. Since ((b, c), x), ((b, c′), x) ∈ Γ(T ′), by Lemma 3.11.(1)

we have that ((c, c′), x) ∈ Γ(T ′).

(2.2) If x ∈ B, let a ∈ A. As we have just seen, ((c, c′), a) ∈ Γ(T ′) and therefore
((c, c′), a) ∈ Γ(T). Then, since ((a, x), c) ∈ Γ(T), by Lemma 3.11.(2) we have that
((c, c′), x) ∈ Γ(T).

(2.3) If x ∈ Cl,j for some j 6= i, let b ∈ B. By (2.2), ((c, c′), b) ∈ Γ(T) and hence
((c, c′), b) ∈ Γ(T ′), too; moreover, by assumption, (c, x, b), (c′, x, b) ∈ Γ(T ′). Then,
LCAT ′(x, c) = LCAT ′(b, c) = LCAT ′(b, x) = LCAT ′(b, c

′) = LCAT ′(x, c
′) and it is

a proper ancestor of LCAT ′(c, c
′), which implies that ((c, c′), x) ∈ Γ(T ′).

(2.4) If x /∈ A∪B∪C, let a ∈ A and b ∈ B. We shall assume that ((c, c′), x) /∈ Γ(T)∪Γ(T ′)
and we shall reach a contradiction. Indeed, by (2.1) we know that ((c, c′), a) ∈
Γ(T ′), and therefore, if ((c, c′), x) /∈ Γ(T ′), Lemma 3.11.(3) implies that ((c, x), a) ∈
Γ(T ′). Moreover, ((b, c), a) ∈ Γ(T ′) and then, by Lemma 3.11.(1), ((b, x), a) ∈ Γ(T ′).
Since T and T ′ define the same triples on {a, c, c′}, {a, c, x}, {a, b, x}, we have that
((c, c′), a), ((c, x), a), ((b, x), a) ∈ Γ(T). But Γ(T) also contains ((a, b), c), and this is
impossible, because these four triples are incompatible: the Aho graph they define
on {a, b, c, c′, x} is connected [Aho et al. (1981)].

This finishes the proof of Claim 2.

Claim 3. B ∪ Cl ∈ C(T ′) \ C(T).

Since, for every a ∈ A, b ∈ B and c ∈ Cl, Ta,b,c = ((a, b), c), it is clear that B ∪Cl is not a
cluster of T . Now, to prove that B ∪ Cl ∈ C(T ′), since we already know that B ∈ C(T ′),
we shall prove that:

(i) For every c, c′ ∈ Cl and x /∈ B ∪ Cl, T ′ defines the triple ((c, c′), x).

72

3.7. SOME TECHNICAL PROOFS

(ii) For every b ∈ B, c ∈ Cl and x /∈ B ∪ Cl, T ′ defines the triple ((b, c), x).

As far as (i) goes, we distinguish the following cases:

(3.1) If x ∈ A ∪
⋃
i<l

Ci, the same argument as in (2.1) proves that ((c, c′), x) ∈ Γ(T ′).

(3.2) If x /∈ A ∪B ∪ C, the same argument as in (2.4) proves that ((c, c′), x) ∈ Γ(T ′).

As far as (ii) goes, we distinguish the following cases:

(3.3) If x ∈ A ∪
⋃
i<l

Ci, we already know by assumption that ((b, c), x) ∈ Γ(T ′).

(3.4) If x /∈ A ∪ B ∪ C, let a ∈ A; we shall assume that ((b, c), x) /∈ Γ(T ′) and we
shall reach a contradiction. Indeed, if this is the case, since ((b, c), a) ∈ Γ(T ′), by
Lemma 3.11.(3) we obtain that ((b, x), a), ((c, x), a) ∈ Γ(T ′). Since Ta,b,x = T ′a,b,x and
Ta,c,x = T ′a,c,x, this implies that ((b, x), a), ((c, x), a) ∈ Γ(T), but then, by Lemma
3.11.(1), this implies that ((b, c), a) ∈ Γ(T), which contradicts the assumption that
((a, b), c) ∈ Γ(T).

This finishes the proof of Claim 3.

Claim 4. If m > 1, Cl ∈ C(T) \ C(T ′).

Cl is not a cluster in T ′ when m > 1, because if c ∈ Cl,1, c′ ∈ Cl,2 and b ∈ B, then
T ′c,c′,b = (c, c′, b) and therefore ((c, c′), b) /∈ Γ(T ′). To prove that Cl ∈ C(T), it is enough
to check that, for every c, c′ ∈ Cl and x /∈ Cl, ((c, c′), x) ∈ Γ(T). Now:

(4.1) If x ∈ A ∪
⋃
i<l

Ci, by (3.1) we know that ((c, c′), x) ∈ Γ(T ′), and, by assumption, in

this case T ′c,c′,x = Tc,c′,x.

(4.2) If x ∈ B, the same argument as in (2.2) proves that ((c, c′), x) ∈ Γ(T).

(4.3) If x /∈ A ∪B ∪ C, by (3.2) we know that ((c, c′), x) ∈ Γ(T ′), and, by assumption, in
this case T ′c,c′,x = Tc,c′,x, too.

This finishes the proof of Claim 4.

Claim 5. If m > 1, B ∪ Cl,i1 ∪ · · · ∪ Cl,ik /∈ C(T ′) for every ∅ 6= {i1, . . . , ik} ({1, . . . ,m}

Let c ∈
k⋃
j=1

Cl,ij , c
′ ∈ Cl \

k⋃
j=1

Cl,ij and b ∈ B. Then, by assumption, T ′c,c′,b = (c, c′, b) and

therefore ((c, b), c′) /∈ Γ(T ′).

This finishes the proof of Proposition 3.5.

Proof of Proposition 3.8

As far as the “only if” implication goes, assume that e = (w, h) and let T = T̃0(N) and
T ′ = T̃e(N). Consider the situation of the corresponding implication in Proposition 3.5,
depicted in Figure 3.12: we shall use the same notations as therein.

73

CHAPTER 3. RECONSTRUCTION BASED ON TREES

• For every i = 1, . . . , k, let Ui = CT (ui).

• For every i = 1, . . . , k − 1, let U ′i = CT ′(ui); if, moreover, outdegT (uk) > 2, let
U ′k = Ak, which then belongs to C(T ′) \ C(T).

• For every i = 1, . . . , l, let W ′i = CT ′(wi) (and recall that wl = w̃, the first non
principally elementary principal descendant of w).

• For every i = 1, . . . , l − 1, let Wi = CT (wi); if, moreover, w̃ = w (that is, if
outdegT0(N)(w) ≥ 2), let Wl = Cl, which then belongs to C(T) \ C(T ′).

It is straightforward to check that conditions (a) to (f) in the statement are satisfied.

In order to prove the “if” implication, assume that C(T) and C(T ′) satisfy conditions (a)
to (f) in the statement. Let B,Ak, Cl be as defined in conditions (b)–(d), let U ′k = Ak and
Wl = Cl even when k0 = k − 1 or l0 = l − 1 (the only difference is that, in these cases,
they belong to C(T) ∩ C(T ′)), and let

Ai := Ui \ Ui+1 = U ′i \ U ′i+1, for every i = 1, . . . , k − 1
Ci := Wi \Wi+1 = W ′i \W ′i+1, for every i = 1, . . . , l − 1

It is easy to check, then, that

Ui = Ai t · · · tAk tB for every i = 1, . . . , k
U ′i = Ai t · · · tAk for every i = 1, . . . , k
Wi = Ci t · · · t Cl for every i = 1, . . . , l
W ′i = Ci t · · · t Cl tB for every i = 1, . . . , l

so that, in particular, U ′i = Ui \ B, for every i = 1, . . . , k, and Wi = W ′i \ B, for every
i = 1, . . . , l.

Let h′ the node in T ′ with cluster B. If l0 = l (that is, if Cl /∈ C(T ′)), let w′ be the
parent of h′, let x′1, . . . , x

′
m be the other children of w′ and let Cl,i = CT ′(x

′
i), for every

i = 1, . . . ,m.

It turns out that, with these notations, the symmetric difference Γ(T) 4 Γ(T ′) consists
exactly of those triples described in the statement of Proposition 3.5. To prove it, we shall
describe explicitly the structures of T and T ′:

• Let h be the node in T with CT (h) = B; recall that h′ is the node in T ′ with
CT ′(h

′) = B.

• For every i = 1, . . . , k, let ui be the node in T such that Ui = CT (ui) and, for every
i = 1, . . . , k − 1, let u′i be the node in T ′ such that U ′i = CT ′(u

′
i). By (a), ui+1 is a

child of ui for every i = 1, . . . , k−1, and u′i+1 is a child of u′i for every i = 1, . . . , k−2.

• Let u′k be the node in T ′ such that CT ′(u
′
k) = U ′k = Ak, which exists by (c), and

assume that k > 1. Then, since Ak (U ′k−1 by (e), u′k is a descendant of u′k−1. It
turns out that u′k is a child of u′k−1.

Indeed, if k0 = k, then it is a direct consequence of (a). Assume now that k0 = k−1,
so that the cluster of every proper descendant of u′k−1 also belongs to C(T). If u′k
is not a child of u′k−1, the path u′k−1 u′k contains an intermediate node ū with
CT ′(ū) = Ak t Ā, with ∅ 6= Ā (Ak−1. Then, Ak t Ā ∈ C(T) and Uk ∩ (Ak t Ā) =
(AktB)∩(AktĀ) 6= ∅. This implies, by the compatibility of clusters in phylogenetic
trees, that either B ⊆ Ā or Ā ⊆ B and hence that ∅ 6= B∩Ak−1, which is false. This
contradiction implies that ū cannot exist, and therefore that u′k is a child of u′k−1,
as we claimed.

74

3.7. SOME TECHNICAL PROOFS

• For every i = 1, . . . , l − 1, let wi be the node in T such that Wi = CT (wi) and, for
every i = 1, . . . , l, let w′i be the node in T ′ such that W ′i = CT ′(w

′
i). Again by (a),

wi+1 is a child of wi for every i = 1, . . . , l − 2, and w′i+1 is a child of w′i for every
i = 1, . . . , l − 1.

• Let wl be the node in T such that CT (wl) = Wl = Cl, which exists by (d). A similar
argument as the one used to prove that u′k is a child of u′k−1 also proves that, if
l > 1, wl is a child of wl−1.

• Let us prove now that h is a child of uk. If k0 = k − 1, it is a direct consequence
of the fact that Ak ∈ C(T) by (c): if, in this case, ak is the node in T such that
CT (ak) = Ak, then the equality Uk = Ak t B implies that ak and h are the only
children of uk.

Assume now that k0 = k. Since B (Uk, h is a proper descendant of uk. Assume
that the path uk h contains some intermediate node ū, with CT (ū) = B t Ā with
∅ 6= Ā (Ak. By (a), the cluster of every proper descendant of uk also belongs to
C(T ′), and therefore B t Ā ∈ C(T ′). But then, W ′l = B t Cl ∈ C(T ′) by (d) and
(B t Ā)∩ (B tCl) 6= ∅, which implies that Ā ⊆ Cl or Cl ⊆ Ā and hence Cl ∩ Ā 6= ∅,
which is impossible because Cl ∩ Ā ⊆ Cl ∩ Ak ⊆ W ′1 ∩ U ′1 = ∅. This contradiction
implies that ū cannot exist, and hence that h is a child of uk, as we claimed.

• A similar argument shows that h′ is a child of w′l. In particular, w′ = w′l.

• The equalities U1 ∩W1 = W ′1 ∩ U ′1 = ∅ always hold. Indeed

– if k, l > 1 or k0 = k = 1 or l0 = l = 1, these intersections are empty by (a);

– if k > 1, l = 1 and l0 = l − 1, then W ′1 ∩ U ′1 = ∅ by (a) and U1 ∩ W1 =
(U ′1 tB) ∩ C1 = (U ′1 tB) ∩ (W ′1 \B) = ∅;

– if l > 1, k = 1 and k0 = k − 1, a symmetrical argument applies;

– if k = l = 1, k0 = k − 1, then C(T) \ C(T ′) = {U1} with U1 = A1 t B and
C(T ′) \ C(T) = {W ′1} with W ′1 = C1 t B. Now, in this case, U1 ∩ W1 =
W ′1 ∩ U ′1 = A1 ∩ C1 = ∅, because, by (b), (A1 tB) ∩ (C1 tB) = U1 ∩W ′1 = B.

• U1 ∪W1 = W ′1 ∪ U ′1: actually, in all cases,

U1 ∪W1 = A1 t · · · tAk tB t C1 t · · · t Cl = W ′1 t U ′1.

• Let us check that, if l > 1 or l0 = l = 1, the nodes u1 and w1 are sibling in T . To
do that, recall that, by (a), every cluster in T strictly containing U1 or W1 is also a
cluster in T ′.

Let v be any proper ancestor of u1. Then, CT (v) = U1 tX with X 6= ∅, and, thus,
U1 t X ∈ C(T ′). Now, since (U1 t X) ∩ U ′1 6= ∅ and (U1 t X) ∩W ′1 6= ∅ (because
U1 = U ′1 t B and B ⊆ W ′1) and U ′1 ∩W ′1 = ∅, we conclude that U ′1 ∪W ′1 ⊆ U1 tX
and in particular W1 ⊆W ′1 ⊆ U1 tX. This entails that every proper ancestor of u1

is also an ancestor of w1.

Let now v be any proper ancestor of w1. Then, CT (v) = W1 tX with X 6= ∅ and,
hence, W1 t X ∈ C(T ′). Now, since (W1 t X) ∩W ′1 6= ∅ and W ′1 = W1 t B, we
conclude that X ∩ B 6= ∅ and hence (W1 t X) ∩ U1 6= ∅. Since W1 ∩ U1 = ∅, this
implies that U1 ⊆ X and, hence, that u1 is a descendant of v. Therefore, every
proper ancestor of w1 is also an ancestor of u1. This finishes the proof that u1 and
v1 are sibling.

75

CHAPTER 3. RECONSTRUCTION BASED ON TREES

• A similar argument shows that, if k > 1 or k0 = k = 1, the nodes u′1 and w′1 are
sibling in T ′.

• Assume now that l0 = l; as we have seen, the parent w′ of h′ is w′l. In this case, by
(d), CT ′(w

′
l) = W ′l = CltB and Cl /∈ C(T), which means that w′l has more than one

child other than h′. Consider the clusters Cl,1, . . . , Cl,m ∈ C(T ′), with m > 1, of the
children of w′l other than h′, so that Cl = Cl,1 t · · · t Cl,m. Since they are strictly
contained in W ′l , by (a) they also belong to C(T). Let x1, . . . , xm be the nodes in T
with CT (xi) = Cl,i, for i = 1, . . . ,m. It turns out that each xi is a child of wl.

Indeed, since Cl,i (Cl = Wl, xi is a proper descendant of wl. If it is not its child,
then the path wl xl,i contains an intermediate node x̄ with cluster Cl,i tX, with
∅ 6= X (Cl \ Cl,i. Then, Cl,i tX is also a cluster in T ′. But in T ′ we have that x′i,
with cluster Cl,i, is a child of w′l, with cluster BtCl, and this leads to a contradiction,
because Cl,i (Cl,i tX (B t Cl.

In summary, the structures of T and T ′ are those described in Figure 3.29. It is straightfor-
ward to check that the sets A1, . . . , Ak, B,C1, . . . , Cl−1, Cl,1, . . . , Cl,m satisfy the conditions
in Proposition 3.5.

T

v

u1

A1 ...

uk

Ak

h

B

w1

C1...

wl

Cl,m

Cl,1

.. .

Cl

T ′

v′

u′
1

A1 ...

u′
k

Ak

h′

B

w′
1

C1...

w′
l

Cl,m

Cl,1

.. .

Cl

Figure 3.29: The structures of T and T ′ when they satisfy the conditions in Proposition
3.8.

In this chapter we have seen that the LGT network reconstruction problem using as input
data the set of reduced principal and secondary subtrees can not be solved, with unicity,
for generic LGT networks. Then, we have focused on the subclass of restricted LGT
networks, where the reconstruction problem has been solved by providing an algorithm
which has also allowed us to make some computational experiments. In the next chapter,
we still consider the LGT network reconstruction problem, but we focus on a different
input data for the problem, using an adaptation of trinets to LGT networks.

76

Chapter 4

A reconstruction problem for LGT
networks based on tri-lgt-nets

Contents

4.1 Introduction . 77

4.2 Decomposition of a binary arc-node LGT network 78

4.3 Redundant arcs and coverings . 86

4.4 Characterization of partial coverings of a redundant arc 90

4.5 Temporal consistency and minimum LGT network 101

4.1 Introduction

One of the strategies used to reconstruct rooted phylogenetic trees is by joining substruc-
tures such as triples, clusters and other trees. For the inference of phylogenetic networks,
similar methods are also applied, see Section 1.9. However, even though such substructures
allow us to reconstruct with unicity phylogenetic trees, the reconstruction is not unique in
the case of networks: different phylogenetic networks, representing different evolutionary
histories, can have the same set of triples, clusters or trees [Gambette and Huber (2012);
Willson (2011)]. This is true also for the full set of displayed subnetworks [Huber et al.
(2014)]. Because of that, an important point to take into account is which topological
constraints have to be imposed in order to be able to reconstruct networks in an unique
way.

In an analogous way that one can reconstruct phylgenetic trees using triples, certain sub-
class of phylogenetic networks can be reconstructed using trinets, which are three-leaved
networks introduced by Huber and Moulton (2013). For instance, Huber and Moulton
(2013) uses trinets to reconstruct level-1 networks. Similarly, van Iersel and Moulton
(2014) reconstruct via trinets both binary tree-child networks and level-2 phylogenetic
networks. Also, in Oldman et al. (2016), the authors introduce the TriLoNet algorithm
to construct level-1 networks from level-1 trinets. Finally, Huber et al. (2015b) demon-
strates that given an arbitrary set of trinets, the problem of deciding whether or not there
exists a level-1 network displaying trinets is a NP problem. However, the authors give a
polynomial tractable algorithm for some specific cases.

It is worth to mention that in van Iersel and Moulton (2014), the authors point out that

77

CHAPTER 4. RECONSTRUCTION BASED ON TRI-LGT-NETS

extending their results to more general networks is not straightforward. For instance,
passing from level-2 networks to arbitrary level-k networks, or from tree-child networks to
reticulation-visible networks, would require completely new techniques.

In this chapter we investigate the reconstruction of phylogenetic networks using trinets
in the specific case of LGT networks. We adapt the concept of trinets to LGT networks,
in what we call tri-lgt networks or tri-lgt-nets for short, LGT networks with three leaves
and with at most one secondary arc. As we have mentioned earlier, we must impose some
constraints so that trinets can encode phylogenetic networks. We will consider a subclass
of LGT networks, characterized by having a binary reduced principal subtree and such
that every secondary arc has its source on an elementary node of the principal subtree
and its target in a non-elementary node. We call this networks arc-node LGT networks.
We focus on the decomposition of this subclass of networks using tri-lgt-nets. First, we
show how some secondary arcs are irrelevant, in the sense that the tri-lgt-nets that they
induce are already induced by some other arc. Finally, by imposing temporal consistency,
we reach the conclusion that tri-lgt-nets encode binary arc-node LGT networks as long as
the latter do not present redundant arcs.

4.2 Decomposition of a binary arc-node LGT network

In this section we introduce a subclass of LGT networks suitable for the problem of
reconstructing networks from the set of tri-lgt-nets that are represented in them.

Definition 4.1. An arc-node LGT network is an LGT network satisfying the following
conditions:

(a) No principal child of a principally elementary node is principally elementary.

(b) For each secondary arc (u, h), the node u is principally elementary and h is not.

(c) If (u, h) is a secondary arc, then there exists no principal path from u to h.

(d) Its reduced principal subtree is binary.

Note that some conditions imposed on arc-node LGT networks, namely (a) and (c), are
common to restricted LGT networks, introduced in Section 3.5. Condition (b) here is
strengthened by imposing conditions not only on the target node of secondary arcs but
also on their source. The binarity condition imposed here is not present in restricted
networks. However, as in restricted LGT networks, any arc-node LGT network can be
obtained by the operation T + F defined in Section 3.5 where T is a binary phylogenetic
tree and F ⊂ E × V is a set whose elements are pairs formed by an arc and a node of the
tree. Particularly, we can compare (principal and secondary) arcs in different arc-node
LGT networks if both networks have the same reduced principal subtree.

See Figure 4.1 for an example of an arc-node LGT network obtained through the operation
T + F described above.

Through the rest of this chapter, whenever we talk about LGT networks, we will mean
arc-node LGT networks.

78

4.2. DECOMPOSITION OF A BINARY ARC-NODE LGT NETWORK

1 2 3 4 5

b c

a

r

e1

e2

e3

e4 e5

e6

e7 e8

(a) T

1 2 3 4 5

(b) N

Figure 4.1: An arc-node LGT network N (b) obtained by the operation N = T +F where
T is the tree depicted in (a), which is the reduced principal subtree of N , and F is the set
of pairs {(e1, 4), (e5, c), (e7, 1)}.

Basic tri-lgt networks

We call tri-lgt network, or tri-lgt-net for short, an LGT network with exactly three leaves.
There are exactly six non-isomorphic (up to permutations of taxa) tri-lgt-nets with at most
one secondary arc. We call this six tri-lgt-nets the basic tri-lgt-nets. Given a set of taxa S =
{x, y, z}, there is only one binary rooted tree defined on S (up to permutations of x, y, z),
defined by the Newick string (x, (y, z));. We denote this basic tri-lgt-net as B0(x, y, z).
The remaining basic tri-lgt-nets are obtained by adding a secondary arc to B0(x, y, z)
maintaining compliance with restrictions (a)–(d) of Definition 4.1. From condition (b),
the extremes of the added secondary arc on B0(x, y, z) must satisfy that (1) its source is a
new node splitting an arc of B0(x, y, z) and (2) its target is an existing node of B0(x, y, z).
Then, from the set of all possible networks obtained by this procedure, dismissing those
not satisfying constraints (a) and (c), we get five new basic tri-lgt-nets, which are denoted
as Bi(x, y, z) (i = 1, . . . , 5) and are depicted in Figure 4.2.

x y z

B0(x, y, z)

x y z

B1(x, y, z)

x y z

B2(x, y, z)

x y z

B3(x, y, z)

x y z

B4(x, y, z)

x y z

B5(x, y, z)

Figure 4.2: The basic tri-lgt-nets: B0(x, y, z), B1(x, y, z), B2(x, y, z), B3(x, y, z),
B4(x, y, z), and B5(x, y, z).

79

CHAPTER 4. RECONSTRUCTION BASED ON TRI-LGT-NETS

The eNewick strings (see Section 1.4) identifying the different basic tri-lgt-nets are:

B0(x, y, z) = (x, (y, z));
B1(x, y, z) = (x#1, (x#LGT1, (y, z)));
B2(x, y, z) = (x#1, ((x#LGT1, y), z));
B3(x, y, z) = (x, ((y, z#LGT1), z#1));
B4(x, y, z) = ((x, y#LGT1), (y#1, z));
B5(x, y, z) = ((x, (y, z)#LGT1), (y, z)#1);

Note that if i = 0, 1, 5, both nodes y and z play the same role in the respective basic
tri-lgt-net, then Bi(x, y, z) = Bi(x, z, y). In all other cases, any permutation of the taxa
x, y, z yields a non-isomorphic basic tri-lgt-net.

Basic tri-lgt networks defined by secondary arcs

Given N an LGT network defined on S, a 3-tuple {x, y, z} ⊆ S and a secondary arc
e = (u, v) in N , we define the tri-lgt network N e

x,y,z, as the LGT network obtained from
N by applying the following operations:

1. Delete all secondary arcs, except e,

2. Delete all nodes that are not principal ascendants of at least one of the leaves x, y, z.

3. If e has not been deleted in the previous step, and its target v is principally ele-
mentary in the resulting network, then redirect the target of e to the first principal
descendant node of v which is not principally elementary.

4. Suppress all the elementary nodes.

Example 4.1. Figure 4.3 shows the steps followed to obtain the network N e1
1,4,5 from an

LGT network N defined on S = {1, . . . , 8}.

In general, different secondary arcs e 6= e′ yield different networks, N e
x,y,z 6= N e′

x,y,z. How-
ever, some positions of the extremes of e and e′ in N may result in getting isomorphic
networks, N e

x,y,z = N e′
x,y,z. For example, let e = (u, v) and e′ = (u′, v′); if there are princi-

pal paths u u′ t and v v′ s, with t, s ∈ {x, y, z}, such that all descendant leaves
of an intermediate node of the paths u u′ and v v′ are not any of the x, y, z, then
in the third operation, the targets of the arcs e and e′ are redirected to the same node:
the first principal descendant node that is not principally elementary is the same for both
target nodes. Finally, as per the fourth operation, all nodes in the path u u′ collapse
into a single node. Consequently, N e

x,y,z = N e′
x,y,z. The same result is obtained either by

changing the role of the nodes u and u′ in u u′, or changing the role of v and v′ in v v′.
See Example 4.2.

Example 4.2. Figure 4.4 shows an LGT network N and the tri-lgt-nets N e
1,4,5 associated

to all secondary arcs of N : e1, e2, e3 and e4. Note that N e1
1,4,5 = N e2

1,4,5 = N e3
1,4,5 6= N e4

1,4,5.

Given an LGT network N defined on a set of taxa S and given e a secondary arc in N ,
for each set {x, y, z} ⊆ S, there is an i ∈ {0, 1, 2, 3, 4, 5} such that N e

x,y,z = Bi(x, y, z)
choosing a convenient order of x, y, z. In such case, we say that the tri-lgt-net N e

x,y,z is of
type i, and, also, that the basic tri-lgt-net Bi(x, y, z) is displayed by N .

80

4.2. DECOMPOSITION OF A BINARY ARC-NODE LGT NETWORK

1 2 3 4 5 6 7 8

e1

N

1 2 3 4 5 6 7 8

1 4 5 1 4 5 1 4 5

Ne1
1,4,5

Figure 4.3: Depiction of the steps needed to obtain the tri-lgt-net N e1
1,4,5 from an LGT

network N . The top two figures represent, from left to right, the network N with a
highlighted secondary arc e1, and the resulting network after applying the first operation,
respectively. In the bottom figures, from left to right, there are depicted the resulting
networks after applying the second, the third and the fourth operations, respectively.

Notice that, the definition of the tri-lgt-net N e
x,y,z depends on both the secondary arc e

and the 3-taxa x, y, z. We denote by N0
x,y,z the triple on x, y, z displayed by T̃0(N) which

does not depend on any secondary arc. Notice that N0
x,y,z is, particularly, a basic tri-lgt

of type 0 of N .

Example 4.3. In the LGT network N depicted in Figure 4.4, we have that: N e1
1,2,8 =

B0(8, 1, 2), N e4
1,4,5 = B1(1, 4, 5), N e3

1,2,7 = B2(7, 1, 2), N e2
2,6,8 = B3(8, 2, 6), N e4

1,3,4 = B4(4, 1, 3)

and N e1
3,4,6 = B5(3, 4, 6), among others. Consequently, we can say that, for example, the

LGT network N e4
1,4,5 is of type 1, and also that B1(1, 4, 5) is displayed by N .

81

CHAPTER 4. RECONSTRUCTION BASED ON TRI-LGT-NETS

1 2 3 4 5 6 7 8

e1

e2

e3

e4

N

1 4 5 1 4 5

Figure 4.4: An LGT network N (left), the isomorphic LGT networks N e1
1,4,5, N

e2
1,4,5 and

N e3
1,4,5 (middle) and N e4

1,4,5 (right).

Decomposition in basic tri-lgt networks

Let N be an LGT network defined on S with at least three leaves. For a fixed secondary
arc e in N , we denote by Γe(N) the set of all tri-lgt-nets N e

x,y,z with {x, y, z} ⊆ S; more
formally:

Γe(N) = {N e
x,y,z : {x, y, z} ⊆ S}.

Moreover, we denote

Γ0(N) = {N0
x,y,z : {x, y, z} ⊆ S}.

Then, we call the tri-lgt decomposition of N , denoted by Γ(N), the set of all basic tri-lgt-
nets displayed by N jointly with the set Γ0(N). This is

Γ(N) =

(⋃
e∈Es(N)

Γe(N)

)
∪ Γ0(N).

Similarly, in order to obtain alternative definitions of Γ(N), we denote by Γi(N) and Γie(N)
the set of tri-lgt-nets in Γ(N) and, respectively, in Γe(N), that are of type i. Then, the
tri-lgt decomposition of N can be written as

Γ(N) =
5⋃
i=0

Γi(N),

and also as

Γ(N) =

(⋃
e∈Es(N)

5⋃
i=1

Γie(N)

)
∪ Γ0(N).

In order to refer to the set of basic tri-lgt-nets displayed by a secondary arc but that are not
displayed by the principal subtree of N , we denote Γ∗(N) = Γ(N) \ Γ0(N) =

⋃5
i=1 Γi(N).

82

4.2. DECOMPOSITION OF A BINARY ARC-NODE LGT NETWORK

Remark 4.1. The reduced principal subtree T̃0(N) of an LGT network N is, in particular,
an LGT network itself. Its tri-lgt decomposition can be obtained from that of N in a
straightforward way:

Γ(T̃0(N)) = Γ0(N).

Now, we fully characterize the set of tri-lgt networks of Γe(N) in terms of the relative
position of the extremes of the secondary arc e in N . This allows us to compute the tri-lgt
decomposition of the network in an alternative way in terms of clusters. In order to do
this, we first define some sets of leaves of the network relative to e (see Figure 4.5). Let
e = (u, v) be a secondary arc in N , r its root and l = LCAT0(N)(u, v). Considering the
principal paths l→ wu u and l→ wv v, we define:

• Ae = ClT0(N)(u),

• Be = ClT0(N)(v),

• Ce = ClT0(N)(wu) \ ClT0(N)(u),

• De = ClT0(N)(wv) \ ClT0(N)(v),

• Ee = ClT0(N)(r) \ ClT0(N)(l).

AeCe De Ee

r

l

u v

Be

e

wu wv

Figure 4.5: Representative scheme of the different set of leaves relative to the secondary
arc e = (u, v).

Lemma 4.2. Given an LGT network N defined on S, a secondary arc e in N , and three
taxa x, y, z ∈ S sorted in such a way that the tree with Newick string (x, (y, z)); is in
Γ0(N), then the tri-lgt-net N e

x,y,z is

• of type 1 if, and only if, x ∈ Be and y, z ∈ Ae,

• of type 2 if, and only if, x ∈ Be, y ∈ Ae and z ∈ Ce,

• of type 3 if, and only if, x ∈ Ee, y ∈ Ae and z ∈ Be,

83

CHAPTER 4. RECONSTRUCTION BASED ON TRI-LGT-NETS

• of type 4 if, and only if, x ∈ Ae, y ∈ Be and z ∈ De.

• of type 5 if, and only if, x ∈ Ae and y, z ∈ Be.

Proof. Let e = (u, v) be the considered secondary arc in N , r the root of N and l =
LCAT0(N)(u, v). We prove each case separately.

• Let N e
x,y,z be a tri-lgt-net of type 1. We need to prove that x, y, z satisfy that x ∈ Be

and y, z ∈ Ae. If N e
x,y,z is of type 1, then u is an intermediate node in the principal

path that starts in l and ends in the least common ancestor of both y and z. Then,
y, z ∈ ClT0(N)(u) = Ae. Moreover, v is an intermediate node in the principal path
from l to x (or x = v), consequently, x ∈ ClT0(N)(v) = Be. To prove the converse
implication, given N e

x,y,z, with x ∈ Be and y, z ∈ Ae, we need to proof that N e
x,y,z

is of type 1. If y, z ∈ Ae, both nodes are principal descendant nodes of u, then u is
an intermediate node in the principal path from l to the least common ancestor of y
and z. Similarly, x is a principal descendant node of v, and then N e

x,y,z is of type 1.

• Let N e
x,y,z be a tri-lgt-net of type 2; we have to prove that x, y, z satisfy that x ∈ Be,

y ∈ Ae and z ∈ Ce. If N e
x,y,z is of type 2, then u is an intermediate node in

the principal path that starts in the least common ancestor of y and z (which is
a descendant of l) and it concludes in y. Also, v is an intermediate node in the
principal path from l to x. Then, y ∈ Ae and x ∈ Be. The leaf z is a descendant of
l, but it is not a descendant of u; then, z ∈ ClT0(N)(l) \ ClT0(N)(u) = Ce. To prove
the converse implication, given N e

x,y,z such that x ∈ Be, y ∈ Ae and z ∈ Ce, we
prove that N e

x,y,z is of type 2. If y ∈ Ae then y is a principal descendant of u and, if
z ∈ Ce then u is not a node in the principal path from the least common ancestor of
y and z (we call this node wyz) to z; consequently, u is an intermediate node in the
principal path from wyz to y. Also, if x ∈ Be then x is a principal descendant of v;
then N e

x,y,z is of type 2.

• Let N e
x,y,z be a tri-lgt-net of type 3. We prove that x ∈ Ee, y ∈ Ae and z ∈ Be. If

N e
x,y,z is of type 3, then u and v are intermediate nodes in the principal path from

the least common ancestor of y and z to y and to z, respectively. Then y ∈ Ae
and z ∈ Be. The leaf x is a descendant of r, but it is not a descendant of l; then,
x ∈ ClT0(N)(r) \ ClT0(N)(l) = Ee. To prove the converse implication, given N e

x,y,z

such that x ∈ Ee, y ∈ Ae and z ∈ Be we prove that N e
x,y,z is of type 3. If y ∈ Ae,

then y is a principal descendant of u; if x ∈ Ee, x is not a principal descendant of l;
and if z ∈ Be, z is a principal descendant of v. Hence, N e

x,y,z is of type 3.

• Let N e
x,y,z be a tri-lgt-net of type 4. We prove that x ∈ Ae, y ∈ Be and z ∈ De. If

N e
x,y,z is of type 4, then v is an intermediate node in the principal path from the least

common ancestor of y and z to y. Also, u is an intermediate node in the principal
path from l to x. Then, x ∈ Ae and y ∈ Be. The leaf z is a principal descendant of
l, but it is not a descendant of v, then z ∈ ClT0(N)(l) \ ClT0(N)(v) = De. To prove
the converse implication, given N e

x,y,z such that x ∈ Ae, y ∈ Be and z ∈ De we prove
that N e

x,y,z is of type 4. If y ∈ Be then y is a principal descendant of v and if z ∈ De

then v is not a node in the principal path from the least common ancestor of y and
z (we call this node wyz) to z. Then, v is intermediate node in the principal path
from wyz to y. Moreover, if x ∈ Ae, x is a principal descendant of u; then N e

x,y,z is
of type 4.

• Let N e
x,y,z be a tri-lgt-net of type 5. We prove that x ∈ Ae and y, z ∈ Be. If N e

x,y,z

is of type 5, then v is an intermediate node in the principal path from l to the

84

4.2. DECOMPOSITION OF A BINARY ARC-NODE LGT NETWORK

least common ancestor of y and z. Then, y, z ∈ ClT0(N)(v) = Be. Also, u is an
intermediate node in the principal path from l to x; then, x ∈ ClT0(N)(u) = Ae. To
prove the converse implication, given N e

x,y,z such that x ∈ Ae and y, z ∈ Be we prove
that N e

x,y,z is of type 5. If y, z ∈ Be, both nodes are principal descendants of v; then
v is an intermediate node in the principal path from l to the least common ancestor
of y and z. Similarly, x is a principal descendant of u; hence, N e

x,y,z is of type 5.

As a direct consequence of the Lemma 4.2, we have the following proposition.

Proposition 4.3. Let e be a secondary arc in an LGT network N . Then Γe(N) can be
computed from the sets Ae, Be, Ce, De, Ee, as follows:

• Γ1
e(N) = {B1(x, y, z) : x ∈ Be and y, z ∈ Ae},

• Γ2
e(N) = {B2(x, y, z) : x ∈ Be, y ∈ Ae and z ∈ Ce},

• Γ3
e(N) = {B3(x, y, z) : x ∈ Ee, y ∈ Ae and z ∈ Be},

• Γ4
e(N) = {B4(x, y, z) : x ∈ Ae, y ∈ Be and z ∈ De},

• Γ5
e(N) = {B5(x, y, z) : x ∈ Ae and y, z ∈ Be}.

Note that, knowing Γ0(N) and the sets Ae, Be, Ce, De, Ee for each secondary arc e in
an LGT network N , Proposition 4.3 allows us to obtain the tri-lgt decomposition of the
network. In the following example we illustrate this fact with an LGT network.

Example 4.4. Let N be the LGT network depicted in Figure 4.6. For each secondary
arc e of N , we compute the sets of leaves Ae, Be, Ce, De, Ee. Using Proposition 4.3, we
compute for each secondary arc e the set Γie(N) for i = 1, . . . , 5. We also compute Γ0(N).
Consequently, we obtain the tri-lgt decomposition of N , Γ(N).

For the secondary arc e1, we have that

Ae1 = {1, 2}, Be1 = {4, 5}, Ce1 = {3}, De1 = {6}, Ee1 = {7}.

Then, applying Proposition 4.3:

• Γ1
e1(N) = {B1(4, 1, 2), B1(5, 1, 2)},

• Γ2
e1(N) = {B2(4, 1, 3), B2(4, 2, 3), B2(5, 1, 3), B2(5, 2, 3)},

• Γ3
e1(N) = {B3(7, 1, 4), B3(7, 2, 4), B3(7, 1, 5), B3(7, 2, 5)},

• Γ4
e1(N) = {B4(1, 4, 6), B4(1, 5, 6), B4(2, 4, 6), B4(2, 5, 6)},

• Γ5
e1(N) = {B5(1, 4, 5), B5(2, 4, 5)}.

For the secondary arc e2, we have that

Ae2 = {2}, Be2 = {4, 5, 6}, Ce2 = {1, 3}, De2 = ∅, Ee2 = {7}.

Then, using Proposition 4.3:

85

CHAPTER 4. RECONSTRUCTION BASED ON TRI-LGT-NETS

• Γ1
e2(N) = ∅,

• Γ2
e2(N) = {B2(4, 2, 1), B2(4, 2, 3), B2(5, 2, 1), B2(5, 2, 3), B2(6, 2, 1), B2(6, 2, 3)},

• Γ3
e2(N) = {B3(7, 2, 4), B3(7, 2, 5), B3(7, 2, 6)},

• Γ4
e2(N) = ∅,

• Γ5
e2(N) = {B5(2, 4, 5), B5(2, 4, 6), B5(2, 5, 6)},

For the secondary arc e3, we have that

Ae3 = {6}, Be3 = {4}, Ce3 = ∅, De3 = {5}, Ee3 = {1, 2, 3, 7}.

Then, using Proposition 4.3:

• Γ1
e3(N) = ∅,

• Γ2
e3(N) = ∅,

• Γ3
e3(N) = {B3(1, 6, 4), B3(2, 6, 4), B3(3, 6, 4), B3(7, 6, 4)},

• Γ4
e3(N) = {B4(6, 4, 5)},

• Γ5
e3(N) = ∅.

Moreover,

• Γ0(N) = {B0(3, 1, 2), B0(4, 1, 2), B0(5, 1, 2), B0(6, 1, 2), B0(7, 1, 2), B0(4, 1, 3),

B0(5, 1, 3), B0(6, 1, 3), B0(7, 1, 3), B0(1, 4, 5), B0(1, 4, 6), B0(7, 1, 4), B0(1, 5, 6),

B0(7, 1, 5), B0(7, 1, 6), B0(4, 2, 3), B0(5, 2, 3), B0(6, 2, 3), B0(7, 2, 3), B0(2, 4, 5),

B0(2, 4, 6), B0(7, 2, 4), B0(2, 5, 6), B0(7, 2, 5), B0(7, 2, 6), B0(3, 4, 5), B0(3, 4, 6),

B0(7, 3, 4), B0(3, 5, 6), B0(7, 3, 5), B0(7, 3, 6), B0(6, 4, 5), B0(7, 4, 5), B0(7, 5, 6)}.

Then, Γ(N) = Γe1(N) ∪ Γe2(N) ∪ Γe3(N) ∪ Γ0(N).

4.3 Redundant arcs and coverings

In this section we show that there may be secondary arcs that, in case of being removed
from an LGT network, do not alter its tri-lgt decomposition. That is, the basic tri-lgt-
nets induced by them are also induced by some other arc. Afterwards, we study how a
set of secondary arcs should be so that, if they are removed from the network, the tri-lgt
decomposition does not change.

Given N an LGT network and e a secondary arc, we say that e is a redundant arc in
N when all basic tri-lgt-nets of Γe(N) are displayed by N \ {e}. More precisely, e is a
redundant arc if there exists a set of secondary arcs E′ that does not contain e and such
that:

Γe(N) ⊆
⋃
e′∈E′

Γe′(N).

86

4.3. REDUNDANT ARCS AND COVERINGS

1 2 3 4 5 6 7

e1

e2

e3

N

Figure 4.6: The LGT network N used in Example 4.4.

In that case, we say that the set of arcs E′ is a covering of e. Given N e
x,y,z ∈ Γe(N), if

e′ ∈ E′ satisfies that N e
x,y,z ∈ Γe′(N), we say that e′ covers N e

x,y,z or that N e
x,y,z is covered

by e′.

Note that, if we add new secondary arcs to a covering of a fixed secondary arc, the resulting
set is a (different) covering for the same arc. A covering of an arc is said to be minimal if
none of its proper subsets is a covering of the arc. Notice that there may exist different
minimal coverings for the same arc (see Example 4.5).

Example 4.5. Let N be the LGT network depicted in the Figure 4.7 (left). The secondary
arcs e1 and e2 are the only redundant arcs in N . Note that {e2, e3, e4}, {e3, e4, e5, e6},
{e2, e3, e4, e5, e6} are coverings of e1 but only the first two are minimal coverings of e1.
For example, the covering {e2, e3, e4} is minimal given that B4(1, 4, 6) ∈ Γe1(N)∩Γe2(N),
but B4(1, 4, 6) /∈ Γe3(N)∪Γe4(N); B5(1, 4, 5) ∈ Γe1(N)∩Γe3(N), but B5(1, 4, 5) /∈ Γe2(N)∪
Γe4(N) and B4(1, 5, 6) ∈ Γe1(N) ∩ Γe4(N), but B4(1, 5, 6) /∈ Γe2(N) ∪ Γe3(N). Note also
that, for instance, {e3, e5, e6} and {e1, e5, e6} are minimal coverings of e2.

1 2 3 4 5 6

e3

e1

e2
e4

e5

e6

N

1 2 3 4 5 6

e3

e4

e5

e6

Figure 4.7: An LGT network N , left; and the LGT network N \ {e1, e2} obtained by
removing both secondary arcs e1 and e2 from N , right.

The tri-lgt decomposition of the LGT network obtained by removing a single redundant
arc from an LGT network is always the same as the tri-lgt decomposition of the original
network (cf. Proposition 4.4). Nevertheless, if we remove two redundant secondary arcs

87

CHAPTER 4. RECONSTRUCTION BASED ON TRI-LGT-NETS

from the network, then the tri-lgt decomposition of the resulting LGT network can remain
invariant (see Example 4.6), but it can also be different (see Example 4.7).

In Proposition 4.5 we prove that, if two redundant arcs are removed from an LGT network,
the tri-lgt decomposition remains unchanged respect to the original one when each of these
two arcs has a covering that does not contain the other arc. The generalization of this
result to more than two secondary arcs is given in Proposition 4.6.

Proposition 4.4. Given N an LGT network and e∗ a secondary arc in N ,

(a) Γ(N) = Γ(N \ {e∗}) if and only if e∗ is a redundant arc in N .

(b) Γ∗(N \ {e∗}) = Γ∗(N) \ Γe∗(N) if, and only if, none of the basic tri-lgt-nets of type
i with i 6= 0 in Γe∗(N) is covered by a secondary arc of N (apart from e∗ itself).

Proof. Let N be an LGT network and let e∗ be a secondary arc. To prove (a), note that
Γ(N) = Γ(N \ {e∗}) if and only if all tri-lgt-nets of Γe∗(N) are in Γ(N \ {e∗}). This is, if
and only if e∗ is a redundant arc in N . To prove (b), write

Γ∗(N) =

(5⋃
i=1

Γie∗(N)

)
∪
(⋃
e∈Es\{e∗}

5⋃
i=1

Γie(N)

)
=

(5⋃
i=1

Γie∗(N)

)
∪ Γ∗(N \ {e∗}).

Now, the equality of sets in the statement of the proposition can be written as

Γ∗(N \ {e∗}) =

(5⋃
i=1

Γie∗(N)

)
∪ Γ∗(N \ {e∗})

 \ Γe∗(N)

and it holds if, and only if,
⋃5
i=1 Γie∗(N) and Γ∗(N \ {e∗}) are disjoint. This last condition

is equivalent to saying that none of the basic tri-lgt-nets of type i with i 6= 0 in Γe∗(N) is
covered by any other arc of N .

Proposition 4.5. Let N be an LGT network and let e1 and e2 be two secondary arcs in
N . Then, Γ(N) = Γ(N \ {e1, e2}) if and only if (1) both e1 and e2 are redundant arcs,
and (2) each one of them has a covering that does not contain the other one.

Proof. If either e1 or e2 is not redundant, then Γ(N) 6= Γ(N \ {e1, e2}) by definition of
redundant arc. Hence we may assume from now on that both arcs are redundant and we
need to prove that Γ(N) = Γ(N \ {e1, e2}) if and only if e1 has a covering in N that does
not contain e2 and viceversa. Notice that thanks to Proposition 4.4 we have that

Γ(N) = Γ(N \ {e1}) = Γ(N \ {e2}).

Let us assume that Γ(N) = Γ(N \ {e1, e2}), which can be written as Γ(N \ {e1}) =
Γ(N \ {e1, e2}). Thanks to Proposition 4.4(a) this implies that e2 is a redundant arc in
N \ {e1}, and hence it has a covering in N that does not contain e1. Analogously we have
that e1 has a covering that does not contain e2.

To prove the converse, notice that, since e1 has a covering that does not include e2, we
have that e1 is redundant in N \ {e2} and hence, thanks to Proposition 4.4(a), we get

Γ(N \ {e2}) = Γ(N \ {e1, e2}).

Since Γ(N) = Γ(N \ {e2}) the result follows.

88

4.3. REDUNDANT ARCS AND COVERINGS

Example 4.6. Let N be the LGT network depicted in Figure 4.7 (left) and let N \{e1, e2}
be the one depicted in Figure 4.7 (right). As we have seen in Example 4.5, there exists a
covering for e1 that does not contain e2 and a covering for e2 that does not contain e1.
Then, by Proposition 4.5 we have that Γ(N) = Γ(N \ {e1, e2}).

Example 4.7. Let N be the LGT network depicted in Figure 4.8. The secondary arcs
e1 and e2 are the only redundant arcs in N . Moreover, {e2, e3} and {e1, e4, e5} are the
only minimal coverings for e1 and e2, respectively. Then, e2 is present in each covering
of e1 and, viceversa. Note that B2(4, 2, 1) ∈ Γe1(N) ∩ Γe2(N) but B2(4, 2, 1) /∈ Γe3(N) ∪
Γe4(N) ∪ Γe5(N). Then, Γ(N) 6= Γ(N \ {e1, e2}). Notice that it still holds that Γ(N) =
Γ(N \ {e1}) = Γ(N \ {e2}).

1 2 3 4 5 6

e2

e1

e5

e3

e4

N

Figure 4.8: An LGT network N with two secondary redundant arcs e1, e2 satisfying that
Γ(N) 6= Γ(N \ {e1, e2}).

Proposition 4.6. Let N be an LGT network and let R be a set of secondary arcs in N .
Then, Γ(N) = Γ(N \R) if and only if (1) all arcs in R are redundant arcs, and (2) each
one of them has a covering in which no other arc of R is present.

Proof. If any arc in R was not redundant, the proposition would follow in a straightforward
way. Hence we assume from now on that all arcs in R are redundant.

Let us assume that Γ(N) = Γ(N\R) and let e ∈ R. Say R′ = R\{e}. Now, all inclusions in
the chain Γ(N) ⊇ Γ(N \R′) ⊇ Γ(N \R) must be equalities, hence Γ(N \R′) = Γ(N \R) =
Γ((N \R′) \ {e}). By Proposition 4.4(a), this implies that e is a redundant arc in N \R′,
and hence it has a covering in N \R′, which means that it has a covering in N that does
not contain any arc of R′.

To prove the converse, let R := {e1, . . . , ek} and consider the chain

Γ(N) ⊇ Γ(N \ {e1}) ⊇ Γ(N \ {e1, e2}) ⊇ · · · ⊇ Γ(N \ {e1, e2, . . . , ek}).

In order to get a contradiction, assume that some inclusion in the chain is strict. Let us
assume that the first strict inclusion is located at the i-th position:

Γ(N) = Γ(N \ {e1}) = · · · = Γ(N \ {e1, e2, . . . , ei−1})) Γ(N \ {e1, e2, . . . , ei}).

If Γ(N \ {e1, e2, . . . , ei−1})) Γ(N \ {e1, e2, . . . , ei}), this implies that ei is not redundant
in N \ {e1, e2, . . . , ei−1}. Since ei is not redundant in N \ {e1, e2, . . . , ei−1} and ei is a
redundant arc (ei ∈ R) in N , then any covering of ei must contain some of the arcs
e1, e2, . . . , ei−1, against our hypothesis.

89

CHAPTER 4. RECONSTRUCTION BASED ON TRI-LGT-NETS

4.4 Characterization of partial coverings of a redundant arc

In this section we study the secondary arcs that must be present in an arbitrary set of
secondary arcs to become a covering for a fixed secondary arc of an LGT network. We do
not give a full characterization of coverings in all its generality, but only those required to
study a particular case of LGT networks in the next section.

A covering of a secondary arc covers, particularly, all basic tri-lgt networks of every type
i (i = 1, . . . , 5) that the arc induces. Then, a covering of a secondary arc is composed by
a set of arcs covering each one of the types of basic tri-lgt networks: some arcs cover the
tri-lgt networks of type 1, some (not necessarily disjoint from the previous ones) cover the
tri-lgt networks of type 2, and so on. Then, given e a secondary redundant arc in N , we
say that the set E′i is a partial covering of type i of e (i = 1, . . . , 5), if the arcs in E′i cover
all basic tri-lgt networks of type i induced by e. More precisely, if

Γie(N) ⊆
⋃
e′∈E′i

Γie′(N).

Similarly to what we did in the previous section, when we can not remove any secondary
arc present in a partial covering of type i of a redundant arc, we say that the partial
covering is minimal. Note that, if E′1, . . . , E

′
5 are minimal partial coverings of respective

types 1, . . . , 5 of an arc e, then their union is a covering of e, but not necessarily minimal.
See Examples 4.8, where the union is a minimal covering, and 4.9, where the union is not
minimal.

Example 4.8. Let N be the LGT network depicted in Figure 4.7. Note that, the sets
E′1 = {e3}, E′2 = {e2, e4}, E′3 = ∅, E′4 = {e2, e4} and E′5 = {e3} are minimal partial
coverings of the redundant arc e1 for each of the types. Moreover, {e2, e3, e4} is a minimal
covering of e1 as we have seen in Example 4.5.

Example 4.9. Let N be the LGT network depicted in Figure 4.9. The set {e1, e2, e3, e4}
is a covering of the secondary arc e but it is not a minimal covering. Note that, no type
3 basic tri-lgt-net is displayed by e. The singleton {e1} is a minimal partial covering of
types 1 and 5 of e; the singleton {e2} is a minimal partial covering of types 1, 2 and 5 of
e; the set {e3, e4} is a minimal partial covering of type 2, 4 and 5. Then, {e1, e2, e3, e4}
is a covering of e, but it is not minimal. On the other hand, both sets {e1, e3, e4} and
{e2, e3, e4} are minimal coverings of e.

Let e = (u, v) be a secondary arc, l = LCAT0(N)(u, v) the least common ancestor in T0(N)
of its extremes, and consider the principal paths l → wu u, l → wv v in T0(N). Let
Ce and De be the set of nodes of the paths wu u and wv v, respectively. Let Ae be
the set of internal nodes that are principal descendant nodes of u and let Be be the set of
principal descendants of v. See Figure 4.10.

Given E′ a set of secondary arcs, we denote by π1(E′) and π2(E′) the sets of source and
target nodes, respectively, of the arcs in E′. That is, π1(E′) = {u : ∃v such that (u, v) ∈
E′} and π2(E′) = {v : ∃u such that (u, v) ∈ E′}.

Lemma 4.7. Let e = (u, v) be a redundant arc in an LGT network N defined on S, and
let E′ be a minimal covering of e. Then,

(a) π1(E′) ⊂ Ce ∪ {u} ∪ Ae,

90

4.4. CHARACTERIZATION OF PARTIAL COVERINGS OF A REDUNDANT ARC

1 2 3 4 5 6

e

e3

e4

e1

e2

Figure 4.9: An LGT network with a redundant secondary arc e used in Example 4.9.

AeCe De Ee

r

l

u v

Be

DeCe

Ae Be

e

wu wv

Figure 4.10: Representative scheme of the different set of nodes Ae,Be, Ce,De relative to
the secondary arc e = (u, v).

(b) π2(E′) ⊂ De ∪ {v} ∪ Be.

Proof. Let e′ = (u′, v′) ∈ E′ an arc in a minimal covering of e. Let x, y, z be any 3-tuple
of taxa such that Bi(x, y, z) ∈ Γe(N) ∩ Γe′(N) with i 6= 0. Notice that this basic tri-lgt
network must exist, since otherwise e′ could be removed from E′ and still get a covering
of e. Let a = LCAT0(N)(x, y) = LCAT0(N)(x, z) and b = LCAT0(N)(y, z). Since e and e′

induce the same basic tri-net on x, y, z, the respective extremes of both edges must be on
the same of the four paths a x, a b, b y and b z. That is, if u (resp. v) is in one
of these four paths, then u′ (resp. v′) must be in the same path. Whichever is the path
containing u, this full path is contained in Ce ∪ {u} ∪Ae and hence u′ belongs to this set.
Analogously, the path containing v is contained in De ∪ {v} ∪ Be, and hence v′ belongs to
this set.

Let N be an LGT network and a, b be two nodes, none of which is descendant of the

91

CHAPTER 4. RECONSTRUCTION BASED ON TRI-LGT-NETS

other. We denote by P a,b (resp. P b,a) the principal path in T0(N) from LCAT0(N)(a, b)
to a (resp. to b), excluding LCAT0(N)(a, b).

Remark 4.8. Let e = (u, v) be a secondary arc in N . It is straightforward to check that:

• ∪i∈AeP
i,v = Ce ∪ {u} ∪ Ae.

• P u,v = Ce ∪ {u}.

• P pu,v = Ce, where pu is the principal parent of u in N .

• ∪j∈BeP
j,u = De ∪ {v} ∪ Be.

• P v,u = De ∪ {v}.

• P pv ,u = De, where pv is the principal parent of v in N .

In the following five subsections we study each one of the partial coverings of a redundant
arc, from type 1 to type 5.

Partial coverings of type 1

Now we analyze the set of secondary arcs that must be present in any partial covering of
type 1 of a fixed secondary arc.

Proposition 4.9. Let N be an LGT network and let e = (u, v) be a secondary arc of N .
Then, a set of secondary arcs E′ ⊂ E not containing e is a partial covering of type 1 of e
if, and only if, for all j ∈ Be, E′ contains at least one secondary arc (u′, v′) ∈ P u,v×P j,u.

Proof. Let us assume that E′ is a partial covering of type 1 of e and prove that it always
contains arcs as in the statement of the proposition. Let j ∈ Be and take a, b descendant
leaves of u such that its LCA is the single child of u; in particular a, b ∈ Ae. Now, thanks
to Proposition 4.3 we have that B1(j, a, b) ∈ Γ1

e(N) and since E′ is a covering of type 1
of e, then B1(j, a, b) ∈ Γ1

e′(N) for some e′ = (u′, v′) ∈ E′. Using again Proposition 4.3, we
get that j ∈ Be′ (v′ is an ascendant of j) and a, b ∈ Ae′ (a and b are descendants of u′).
This last condition implies that u′ is an ascendant of u (possibly equal to u). Now, neither
u′ nor v′ can be ancestors of (or equal to) LCAT0(u, j) = LCAT0(u, v), since otherwise the
extremes of e′ would be connected by a principal path, against our assumption on LGT
networks. Then, u′ ∈ P u,v and v′ ∈ P j,u.

In order to prove the converse, let E′ be a set of secondary arcs satisfying the condition
above. In order to prove that it is a partial covering of e = (u, v) of type 1, let B1(x, y, z) ∈
Γ1
e(N), which implies that x ∈ Be (v is an ancestor of x) and y, z ∈ Ae (u is a common

ancestor of y and z). Using the condition above we have that there exists e′ = (u′, v′) with
u′ ∈ P u,v and v′ ∈ P x,u. Since u′ is an ancestor of u, then both y and z are descendants
of u′, and hence y, z ∈ Ae′ . Since v′ is an ancestor of x we have that x ∈ Be′ . Finally,
B1(x, y, z) ∈ Γ1

e′(N) and this basic tri-lgt of type 1 is covered by some arc in E′.

Now, we prove a necessary condition to achieve a minimal partial covering of type 1 of a
redundant arc.

Lemma 4.10. Let E′ be a minimal partial covering of type 1 of a redundant arc e = (u, v).
Then,

92

4.4. CHARACTERIZATION OF PARTIAL COVERINGS OF A REDUNDANT ARC

(a) each arc (u′, v′) in E′ satisfies that (u′, v′) ∈ P u,v × P j,u for some j ∈ Be,

(b) for each j ∈ Be, there is at least one arc (u′, v′) ∈ E′ such that (u′, v′) ∈ P u,v×P j,u.

Proof. The second part of the statement follows directly from the previous proposition.

In order to prove the first part, let E′′ ⊆ E′ be the set of arcs in E′ that do satisfy the
condition. The arcs in (u′, v′) ∈ E′ \E′′ satisfy that (u′, v′) /∈ P u,v × P j,u (for all j ∈ Be).
Since E′ satisfied the condition of Proposition 4.9, this same condition is also satisfied by
E′′ and hence E′′ is a partial covering of type 1 of E. By the minimality assumption on
E′, we have that E′′ = E′ and the result follows.

Corollary 4.11. If E′ is a minimal partial covering of type 1 of an arc e = (u, v), then
π1(E′) ⊆ {u} ∪ Ce.

Proof. The proof is a direct consequence of Lemma 4.10.

Now we prove that if we modify the condition in Proposition 4.9 so that, instead of asking
for the existence of at least one arc with certain properties, we ask for the existence of
exactly one arc with those properties, we get a complete characterization of the minimal
partial coverings of type 1 of secondary arcs.

Proposition 4.12. Let N be an LGT network and e = (u, v) a redundant arc in N .
Then, a set E′ of secondary arcs not containing e is a minimal partial covering of type
1 of e if, and only if, for each j ∈ Be there exists exactly one arc e′ = (u′, v′) ∈ E′ with
(u′, v′) ∈ P u,v × P j,u.

Proof. Let us assume that E′ is a minimal partial covering of type 1 of e. Then Proposi-
tion 4.9 implies that for each j ∈ Be there exists at least one arc e′ = (u′, v′) ∈ E′ with
(u′, v′) ∈ P u,v × P j,u. Let us assume that for a given j there exist at least two secondary
arcs e′ = (u′, v′) and e′′ = (u′′, v′′) satisfying the condition. Since both v′ and v′′ belong
to P j,u, one of them is ascendant of the other; let us assume that v′ is an ascendant of v′′

(or v′ = v′′), and hence Be′′ ⊆ Be′ . Also, since both u′ and u′′ belong to P u,v we get that
Ae ⊆ Ae′ and Ae ⊆ Ae′′ . Using Proposition 4.3 we get that Γ1

e′′ ∩ Γ1
e ⊆ Γ1

e′ ∩ Γ1
e. Now,

E′ \{e′′} is still a partial covering of type 1 of e, against our assumption on the minimality
of E′, hence we have reached a contradiction and for each j ∈ Be there is exactly one arc
e′ ∈ E′ satisfying the condition above.

In order to prove the converse, thanks to Lemma 4.10, we only have to prove that if we
remove an arc (u′, v′) ∈ P u,v × P j,u for some j ∈ Be, then, the resulting set of arcs is
not a partial covering of type 1 of e. This is easy to prove because otherwise, taking a, b
descendant leaves of u such that their LCA is the single child of u, the basic tri-lgt network
B1(j, a, b) ∈ Γ1

e would not be covered by any arc. Consequently, the resulting set of arcs
would not be a partial covering of type 1 of e.

As per Proposition 4.12, if E′ is a partial covering of type 1 of a secondary arc e (which
means that E′ satisfies the conditions in Proposition 4.9) we can obtain from it a minimal
partial covering of type 1 by following these steps:

1. Filter the elements in E′ so that we keep only those belonging to P u,v × P j,u for
some j ∈ Be.

93

CHAPTER 4. RECONSTRUCTION BASED ON TRI-LGT-NETS

2. For each j ∈ Be, if there is more than one arc in P u,v × P j,u, take away all of these
arcs except the one whose target node is in a higher position on P j,u of the target
node of all the other ones.

Figure 4.11 shows some examples of secondary arcs and minimal partial coverings of type
1 of them.

1 2 3 4 5 6

e

1 2 3 4 5 6

e

1 2 3 4 5 6

e

1 2 3 4 5 6

e

1 2 3 4 5 6

e

1 2 3 4 5 6

e

Figure 4.11: In each of these networks, the secondary arc labelled with e has a minimal
partial covering of type 1 composed by the unlabelled ones.

Partial coverings of type 2

Now we analyze the set of secondary arcs that must be present in any partial covering of
type 2 of a fixed secondary arc.

Proposition 4.13. Let N be an LGT network and let e = (u, v) be a secondary arc of N .
Then, a set of secondary arcs E′ ⊂ E not containing e is a partial covering of type 2 of
e if, and only if, for all i ∈ Ae and for all j ∈ Be, E′ contains at least one secondary arc
(u′, v′) ∈ (P i,j \ P pu,v)× P j,u, where pu denotes the principal parent of u.

Proof. Let us assume that E′ is a partial covering of e of type 2 and prove that it always
contains arcs as in the statement of the proposition. Let i ∈ Ae and j ∈ Be and take a a

94

4.4. CHARACTERIZATION OF PARTIAL COVERINGS OF A REDUNDANT ARC

descendant leaf of pu such that LCAT0(a, i) = pu; in particular a ∈ Ce. Now, thanks to
Proposition 4.3 we have that B2(j, i, a) ∈ Γ2

e(N) and since E′ is a covering of type 2 of e,
then B2(j, i, a) ∈ Γ2

e′(N) for some e′ = (u′, v′) ∈ E′. Using again Proposition 4.3, we get
that j ∈ Be′ (v′ is an ascendant of j), i ∈ Ae′ (u′ is an ascendant of i) and a ∈ Ce′ (pu
is a principal ascendant of u′). Now, neither u′ nor v′ can be ancestors of (or equal to)
LCAT0(i, j) = LCAT0(u, v), since otherwise the extremes of e′ would be connected by a
principal path, against our assumption on LGT networks. Then, u′ ∈ (P i,j \ P pu,v) and
v′ ∈ P j,u.

In order to prove the converse, let E′ be a set of secondary arcs satisfying the condition
above. In order to prove that it is a partial covering of e = (u, v) of type 2, let B2(x, y, z) ∈
Γ2
e(N), which implies that x ∈ Be (v is an ancestor of x), y ∈ Ae (u is an ancestor of y)

and z ∈ Ce (u is a descendant of LCAT0(y, z)). Using the condition above we have that
there exists e′ = (u′, v′) with u′ ∈ (P y,x \ P pu,v) and v′ ∈ P x,u. Since u′ is an ancestor of
y, y ∈ Ae′ . Since v′ is an ancestor of x we have that x ∈ Be′ . Since u′ is an ancestor of y
and it is not an ancestor of z (Ce ⊆ Ce′) we have that z ∈ Ce′ . Finally, B2(x, y, z) ∈ Γ2

e′(N)
and this basic tri-lgt of type 2 is covered by some arc in E′.

The minimal partial coverings of type 2 are more sophisticated than those of type 1.
Hence, the characterization of minimal partial coverings of type 2 will be examined over
a subclass of LGT networks (temporal consistent) which will be introduced in the next
section. Now, we prove a necessary condition to achieve a minimal partial covering of type
2 of a redundant arc.

Lemma 4.14. Let E′ be a minimal partial covering of type 2 of a redundant arc e = (u, v)
and pu be the principal parent of u. Then,

(a) each arc (u′, v′) in E′ satisfies that (u′, v′) ∈ (P i,j \ P pu,v) × P j,u for some i ∈ Ae
and j ∈ Be,

(b) for each i ∈ Ae and j ∈ Be, there is at least one arc (u′, v′) ∈ E′ such that (u′, v′) ∈
(P i,j \ P pu,v)× P j,u.

Proof. The second part of the statement follows directly from the previous proposition.

In order to prove the first part, let E′′ ⊆ E′ be the set of arcs in E′ that do satisfy the
condition. The arcs in (u′, v′) ∈ E′ \ E′′ satisfy that (u′, v′) /∈ (P i,j \ P pu,v) × P j,u (for
all i ∈ Ae and j ∈ Be). Since E′ satisfies the condition of Proposition 4.13, this same
condition is also satisfied by E′′ and hence E′′ is a partial covering of type 2 of E. By the
minimality assumption on E′, we have that E′′ = E′ and the result follows.

Corollary 4.15. If E′ is a minimal partial covering of type 2 of an arc e = (u, v), then
π1(E′) ⊆ {u} ∪ Ae.

Proof. The proof is a direct consequence of Lemma 4.14.

Figure 4.12 shows some examples of secondary arcs and minimal partial coverings of type
2 of them.

95

CHAPTER 4. RECONSTRUCTION BASED ON TRI-LGT-NETS

1 2 3 4 5 6

e

1 2 3 4 5 6

e

1 2 3 4 5 6

e

1 2 3 4 5 6

e

1 2 3 4 5 6

e

1 2 3 4 5 6

e

Figure 4.12: In each of these networks, the secondary arc labelled with e has a minimal
partial covering of type 2 composed by the unlabelled ones.

Partial coverings of type 4

Now we analyze the set of secondary arcs that must be present in any partial covering
of type 4 of a fixed secondary arc. Similarly to the partial coverings of type 2, we prove
a necessary condition to achieve a minimal partial covering of type 4 of a redundant
arc. However, we fully characterize these minimal coverings in the next section for time-
consistent LGT networks.

In this subsection, for the sake of clarity, and in order not to lose the thread of the chapter,
we omit the proofs of the results. This is done because the basic tri-lgt networks of type
4 are symmetric to those of type 2 and the proofs can be adapted following those for type
2.

Proposition 4.16. Let N be an LGT network and let e = (u, v) be a secondary arc of N .
Then, a set of secondary arcs E′ ⊂ E not containing e is a partial covering of type 4 of
e if, and only if, for all i ∈ Ae and for all j ∈ Be, E′ contains at least one secondary arc
(u′, v′) ∈ P i,j × (P j,u \ P pv ,u); where pv denotes the principal parent of v.

Lemma 4.17. Let E′ be a minimal partial covering of type 4 of a redundant arc e = (u, v)
and pv be the principal parent of v. Then,

96

4.4. CHARACTERIZATION OF PARTIAL COVERINGS OF A REDUNDANT ARC

(a) each arc (u′, v′) in E′ satisfies that (u′, v′) ∈ P i,j × (P j,u \ P pv ,u) for some i ∈ Ae
and j ∈ Be.

(b) for each i ∈ Ae and j ∈ Be, there is at least one arc (u′, v′) ∈ E′ such that (u′, v′) ∈
P i,j × (P j,u \ P pv ,u).

Corollary 4.18. If E′ is a minimal partial covering of type 4 of an arc e = (u, v), then
π2(E′) ⊆ {v} ∪ Be.

Figure 4.13 shows some examples of secondary arcs and minimal partial coverings of type
4 of them.

1 2 3 4 5 6

e

1 2 3 4 5 6

e

1 2 3 4 5 6

e

1 2 3 4 5 6

e

1 2 3 4 5 6

e

1 2 3 4 5 6

e

Figure 4.13: In each of these networks, the secondary arc labelled with e has a minimal
partial covering of type 4 composed by the unlabelled ones.

Partial coverings of type 5

Similarly to partial coverings of type 1, here we provide a characterization of the minimal
partial coverings of type 5 of secondary arcs. As in the previous subsection, since the
basic tri-lgt networks of type 5 are symmetric to those of type 1, we omit the proofs of
the results.

97

CHAPTER 4. RECONSTRUCTION BASED ON TRI-LGT-NETS

Proposition 4.19. Let N be an LGT network and let e = (u, v) be a secondary arc of N .
Then, a set of secondary arcs E′ ⊂ E not containing e is a partial covering of type 5 of e
if, and only if, for all i ∈ Ae, E′ contains at least one secondary arc (u′, v′) ∈ P i,v ×P v,u.

Lemma 4.20. Let E′ be a minimal partial covering of type 5 of a redundant arc e = (u, v).
Then,

(a) each arc (u′, v′) in E′ satisfies that (u′, v′) ∈ P i,v × P v,u for some i ∈ Ae,

(b) for each i ∈ Ae, there is at least one arc (u′, v′) ∈ E′ such that (u′, v′) ∈ P i,v ×P v,u.

Corollary 4.21. If E′ is a minimal partial covering of type 5 of an arc e = (u, v), then
π2(E′) ⊆ {v} ∪ De.

Proposition 4.22. Let N be an LGT network and e = (u, v) a redundant arc in N .
Then, a set E′ of secondary arcs not containing e is a minimal partial covering of type
5 of e if, and only if, for each i ∈ Ae there exists exactly one arc e′ = (u′, v′) ∈ E′ with
(u′, v′) ∈ P i,v × P v,u.

Figure 4.14 shows some examples of secondary arcs and minimal partial coverings of type
5 of them.

Partial coverings of type 3

The reason why we have left the study of partial coverings of type 3 for the final subsection
is that this coverings depend, to a great extent, on the partial coverings of type 1, 2, 4
and 5.

We first analyze the set of secondary arcs that must be present in any partial covering of
type 3 of a fixed secondary arc.

Proposition 4.23. Let N be an LGT network and let e = (u, v) be a secondary arc of
N . Then, a set of secondary arcs E′ ⊂ E not containing e is a partial covering of type
3 of e if, and only if, for all i ∈ Ae and j ∈ Be, E′ contains at least one secondary arc
(u′, v′) ∈ P i,v × P j,u.

Proof. Let us assume that E′ is a partial covering of type 3 of e and prove that it always
contains arcs as in the statement of the proposition. Let i ∈ Ae, j ∈ Be and take a
a leaf which is not a descendant leaf of LCAT0(i, j) = LCAT0(u, v). Now, thanks to
Proposition 4.3 we have that B3(a, i, j) ∈ Γ3

e(N) and since E′ is a covering of type 3 of e,
then B3(a, i, j) ∈ Γ3

e′(N) for some e′ = (u′, v′) ∈ E′. Using again Proposition 4.3, we get
that j ∈ Be′ (v′ is an ascendant of j), i ∈ Ae′ (i is a descendant of u′) and a ∈ Ee′ (a is
not a descendant of LCAT0(u′, v′)). Then, u′ ∈ P i,v and v′ ∈ P j,u.

In order to prove the converse, let E′ be a set of secondary arcs satisfying the condition
above. In order to prove that it is a partial covering of e = (u, v) of type 3, let B3(x, y, z) ∈
Γ3
e(N), which implies that x ∈ Ee (x is not a descendant of LCAT0(u, v)), y ∈ Ae (u is an

ancestor of y) and z ∈ Be (v is an ancestor of z). Using the condition above we have that
there exists e′ = (u′, v′) with u′ ∈ P y,v and v′ ∈ P z,u. Since y is a descendant of u′ we
have that y ∈ Ae′ . Since z is a descendant of v′ we have that z ∈ Be′ . Since Ee = Ee′ , we
have that x ∈ Ee′ . Finally, B3(x, y, z) ∈ Γ3

e′(N) and this basic tri-lgt of type 3 is covered
by some arc in E′.

98

4.4. CHARACTERIZATION OF PARTIAL COVERINGS OF A REDUNDANT ARC

1 2 3 4 5 6

e

1 2 3 4 5 6

e

1 2 3 4 5 6

e

1 2 3 4 5 6

e

1 2 3 4 5 6

e

1 2 3 4 5 6

e

Figure 4.14: In each of these networks, the secondary arc labelled with e has a minimal
partial covering of type 5 composed by the unlabelled ones.

Similarly to the partial coverings of type 2 and 4 we prove a necessary condition to achieve
a minimal partial covering of type 3 of a redundant arc. However, we fully characterize
these minimal coverings in the next section for time-consistent LGT networks.

Lemma 4.24. Let E′ be a minimal partial covering of type 3 of a redundant arc e = (u, v).
Then,

(a) each arc (u′, v′) in E′ satisfies that (u′, v′) ∈ P i,v×P j,u for some i ∈ Ae and j ∈ Be.

(b) for each i ∈ Ae and j ∈ Be, there is at least one arc (u′, v′) ∈ P i,v × P j,u.

Proof. The proof of (a) and (b) is a direct consequence of Lemma 4.7 and Proposition
4.23, respectively.

Note that, all minimal partial covering of type 1, 2, 4 and 5 are, particularly, a minimal
partial covering of type 3. In general terms, the main difference between them lies on the
relative position of the extreme nodes of the arcs of the covering respect to the nodes u
and v. For instance, in a minimal partial covering of type 1, the source node of the arcs are
either ascendant nodes of u or node u itself, see Corollary 4.11. Since the leaf occupying

99

CHAPTER 4. RECONSTRUCTION BASED ON TRI-LGT-NETS

the first component in a basic tri-lgt network of type 3 is not a descendant of LCAT0(u, v),
the restriction on the relative position of the extremes disapears and, consequently, the
arcs which form a minimal partial covering of type 3 are determined by Lemma 4.7.

Figure 4.15 shows an example of secondary arc and minimal partial covering of type 3 of
it which is not a minimal partial covering of types 1, 2, 4 and 5.

1 2 3 4 5 6 7

e

Figure 4.15: In the network, the secondary arc labelled with e has a minimal partial
covering of type 3 composed by the unlabelled ones.

Proposition 4.25. Given an LGT network, Lemmas 4.10, 4.14, 4.17, 4.20 and 4.24,
allow us to detect the redundant arcs of the network.

Proof. Lemmas 4.10, 4.14, 4.17, 4.20 and 4.24 allow us to detect if there is a partial
covering of type 1, 2, 4, 5 and 3 for a fixed secondary arc, respectively. Consequently,
they allow to detect if there is, or there is not, a covering for each secondary arc in the
network.

Since the decomposition Γ(N) of an LGT network contains the triplets associated to its
principal subtree T0(N), it follows that we can recover (with unicity) the reduced principal
subtree T̃0(N) from Γ(N). Notice, however, that the non-reduced principal subtree cannot
be recovered from Γ(N), as the following example shows.

Example 4.10. Both LGT networks depicted in Figure 4.16 have the same tri-lgt decom-
position. The network on the right side is the same as the one on the left side, except
that the unique redundant arc has been deleted. However, their respective (non-reduced)
principal subtrees are not isomorphic.

Remark 4.26. Recall that if two different arc-node LGT networks have isomorphic re-
duced principal subtrees, then the nodes and arcs of both trees can be identified. Hence,
when two LGT networks have the same tri-lgt decomposition, we can also assume that
they also share the reduced principal subtree and hence the only differences between two
such networks can be their respective sets of secondary arcs. That is, if we have N and
N ′ two LGT networks such that Γ(N) = Γ(N ′), say N = T + F and N ′ = T + F ′,
where T = T̃0(N) = T̃0(N ′), are due to differences between N and N ′. More precisely,
let e = (u, v) ∈ Es(N), let u1 and u2 be the (principal) parent and (principal) child of
u respectively, and let ê = (u1, u2) ∈ E(T). Note that v ∈ V (T) and (ê, v) ∈ F . Then,

100

4.5. TEMPORAL CONSISTENCY AND MINIMUM LGT NETWORK

1 2 3 4 5 6 1 2 3 4 5 6

Figure 4.16: Two LGT networks that share the tri-lgt decomposition but whose principal
subtrees are not isomorphic.

we say that N and N ′ share the secondary arc e, if (ê, v) ∈ F ∩ F ′. Also, the network
obtained for adding e to N ′ is T +F ∪{(ê, v)}. Also, we say that the secondary e in N is
redundant in N ′ if either (û, v) ∈ F ′ or if e is redundant in the network T + F ∪ {(ê, v)}.

Proposition 4.27. Two LGT networks have the same tri-lgt decomposition if and only if
each secondary arc in one of the networks is redundant in the other one and viceversa.

Proof. Let N1 and N2 be two LGT networks with the same tri-lgt decomposition. Par-
ticularly, both networks have the same reduced principal subtree. Suppose for the sake of
contradiction that e is a secondary arc in N1 that is not redundant in N2. Then, there
exists at least one basic tri-lgt network in Γe(N1) ⊆ Γ(N1) that is not present in Γ(N2).
Therefore Γ(N1) 6= Γ(N2).

Conversely, if each arc in N1 is redundant in N2 and each arc in N2 is redundant in N1,
then all basic tri-lgt networks displayed by N1 are also displayed by N2 and viceversa.
Consequently, Γ(N1) = Γ(N2).

Notice that two networks with the same reduced principal subtree but disjoint sets of
secondary arcs can have the same tri-lgt decomposition, as the following example shows.

Example 4.11. Let N1 and N2 be two LGT networks depicted in Figure 4.17. Both
networks have the same reduced principal subtree but do not share any secondary arc.
However, Γ(N1) = Γ(N2). Each arc in N1 has a covering in N2 and viceversa. The cov-
erings (in N2) of the arcs (of N1) e1

1, e
1
2, e

1
3, e

1
4 and e1

5 are {e2
1, e

2
2, e

2
3, e

2
4}, {e2

1, e
2
3}, {e2

1, e
2
4},

{e2
2, e

2
4} and {e2

2, e
2
3}, respectively. On the other hand, the coverings of the arcs e2

1, e
2
2, e

2
3

and e2
4 are {e1

1, e
1
2, e

1
3}, {e1

1, e
1
4, e

1
5}, {e1

1, e
1
2, e

1
5} and {e1

1, e
1
3, e

1
4}, respectively.

4.5 Temporal consistency and minimum LGT network

In previous sections we have investigated the decomposition of LGT networks in basic
tri-lgt networks, and found out that this decomposition does not uniquely determine the
network, one of the reasons being the presence of redundant arcs. We have fully studied
the coverings of a particular redundant arc, and found out that there always exist minimal

101

CHAPTER 4. RECONSTRUCTION BASED ON TRI-LGT-NETS

1 2 3 4

e1
1

e1
2

e1
3

e1
5e1

4

N1

1 2 3 4

e2
3

e2
4

e2
1

e2
2

N2

Figure 4.17: Two LGT networks N1 and N2 with the same tri-lgt decomposition.

coverings, but these coverings may not be unique. In this section we present a class of
LGT networks where the possible coverings of a redundant arc admit a unique minimum
covering and, more importantly, such that they are fully characterized by its decomposition
in tri-lgt networks.

We say that an LGT network N = (V,E), with decomposition in principal and secondary
arcs as E = Ep t Es, is time-consistent if there exists a time-assignment δ : V → N such
that:

• if (u, v) ∈ Ep, then δ(u) < δ(v), and

• if (u, v) ∈ Es, then δ(u) = δ(v).

This definition of time-consistency for LGT networks is slightly different from other defi-
nitions used in other kinds of phylogenetic networks [Baroni et al. (2006); Cardona et al.
(2008c)], given that the time-assignment of a parent of a reticulation node must be the
same time-assignment as that the node itself only if its parent is the principal one; and
similar to the one used in Górecki (2004); see Section 1.7. We denote by (N, δ) a time-
consistent LGT network N with time-assignment δ. See Example 4.12.

Example 4.12. Figure 4.18 shows a depiction of a time-consistent LGT network, together
with the time-assignment for each node.

Now we prove that in an LGT network (N, δ) secondary arcs cannot “intersect”.

Lemma 4.28. Let (N, δ) be a time-consistent LGT network, and (u, v) and (u′, v′) two
different secondary arcs of N . If u′ is a principal descendant of u (possibly with u′ = u),
then v′ is not a principal ascendant of v (excluding also the case v′ = v). Symmetrically, if
v′ is a principal descendant of v (possibly with v′ = v), then u′ is not a principal ascendant
of u (excluding also the case u′ = u).

Proof. Since (u, v) and (u′, v′) are secondary arcs, we have that δ(u) = δ(v) and δ(u′) =
δ(v′). Assume that u′ is a descendant of u, and hence we have that δ(u′) ≥ δ(u). If v′ was
an ascendant of v, we would have that δ(v′) ≤ δ(v) and hence δ(u) = δ(v) = δ(u′) = δ(v′).
Since the paths u u′ and v′ v are principal the only possibility is that (u, v) = (u′, v′),
against our hypothesis. The other part of the statement follows the same way.

102

4.5. TEMPORAL CONSISTENCY AND MINIMUM LGT NETWORK

16 26 3 5 4 5 5 6

4

5 5

3

3

2

1

Figure 4.18: A time-consistent LGT network.

Let i and j be two leaves in an LGT network N . We denote by Si→jN the set of secondary
arcs whose source and target are, respectively, in the principal paths LCAT0(N)(i, j) i
and LCAT0(N)(i, j) j. Let w be a node that is a principal descendant of LCAT0(N)(i, j).

In these conditions, we denote by li,jN (w) the number of non-principally elementary nodes
in the principal path LCAT0(N)(i, j) w, excluding the extremes.

We suppose that N is time-consistent. If Si→jN is not empty, let u∗ be the source of an arc

in Si→jN satisfying that:

li,jN (u∗) ≤ li,jN (u), ∀u ∈ π1(Si→jN)

and let v∗ be the target of an arc in Si→jN satisfying that:

li,jN (v∗) ≤ li,jN (v), ∀v ∈ π2(Si→jN).

Thanks to Lemma 4.28, u∗ and v∗ are well-defined, as well as the secondary arcs having
them as source and target, respectively: there cannot be two different secondary arcs
with the same source (resp. target) and whose targets (resp. sources) are connected by
a principal path. Again by Lemma 4.28 the arc whose source is u∗ and the arc whose
target is v∗ must be the same. We shall refer to this arc as min(Si→jN). Note that, if we
do not impose the time-consistency constraint, this last statement can be false. See for
example the network N2 depicted in the right side of Figure 4.17 considering the leaves 1
and 3. Note that u∗ is the source of the arc e2

4 and the node v∗ is the target of the arc e2
1.

However, the arc (u∗, v∗) is not present in N2.

Similarly, taking nodes with maximum (instead of minimum) value of li,jN (u) we can define

the arc max(Si→jN). Note that when Si→jN has a single arc, then min(Si→jN) = max(Si→jN).

These definitions are illustrated in Example 4.13.

Example 4.13. Let N be the time-consistent LGT network depicted in Figure 4.19. Then,
we have that: x = LCAT0(N)(1, 3), y = LCAT0(N)(1, 2), r = LCAT0(N)(2, 5), S1→3

N =

{e1, e4}, S2→4
N = {e1, e3}, l1,3N (a) = 0, l1,3N (b) = 0, l1,3N (c) = 1, l1,3N (3) = 1, min(S1→3

N) = e1,
min(S1→4

N) = e2, max(S1→3
N) = e4.

Proposition 4.29. Let N1 and N2 be two time-consistent LGT networks defined on S
such that Γ(N1) = Γ(N2). Then, for each pair of leaves i, j ∈ S:

103

CHAPTER 4. RECONSTRUCTION BASED ON TRI-LGT-NETS

1 2 3 4 5

y

c d

b

a

x

r

e1

e2

e4
e3

N

Figure 4.19: The LGT network used in Example 4.13.

• min(Si→jN1
) = min(Si→jN2

), and

• max(Si→jN1
) = max(Si→jN2

),

where the equality of arcs is taken according to Remark 4.26.

Proof. Let T̃0 be the reduced principal subtree common to N1 and N2. We suppose that
min(Si→jN1

) 6= min(Si→jN2
) and we prove that Γ(N1) 6= Γ(N2).

Let e1 = (u1, v1) = min(Si→jN1
) and e2 = (u2, v2) = min(Si→jN2

). Let (n1,m1) = (li,jN1
(u1),

li,jN1
(v1)) and (n2,m2) = (li,jN2

(u2), li,jN2
(v2)). Note that the condition min(Si→jN1

) 6= min(Si→jN2
)

(under the identification in Remark 4.26 from which both arcs min(Si→jN1
) and min(Si→jN2

)

can be seen as pairs formed by an arc and a node in T̃0, that is as nodes in T̃0) is equivalent
to (n1,m1) 6= (n2,m2).

We analyse the different cases:

• If n1 6= n2, assume without loss of generality that n2 < n1. Let u be the principal
parent of u1 in N1. Note that u ∈ T̃0 and, since n2 < n1, u is a principal descendant
of u2. Let k be a principal descendant leaf of u such that LCAT0(N)(i, k) = u
(notice that k is simply a leaf descendant of the child of u different from u1). Then,
since j ∈ Be2 and i, k ∈ Ae2 , we have B1(j, i, k) ∈ Γ(N2). We prove now that
B1(j, i, k) /∈ Γ(N1). If B1(j, i, k) ∈ Γ(N1), then by Proposition 4.3, there must exist
e ∈ Si→jN1

such that j ∈ Be and i, k ∈ Ae. This implies that the source of e must be

in LCAT0(N)(i, j) u; then, e = min(Si→jN1
) which contradicts the assumption that

e1 = min(Si→jN1
).

• If m1 6= m2, assume without loss of generality that m2 < m1. Let v be the principal
parent of v1 in N1. Note that v ∈ T̃0 and, since m2 < m1, v is a principal descendant
of v2 (possibly with v = v2). Let k be a principal descendant leaf of v such that
LCAT0(N)(j, k) = v. Then, since i ∈ Ae2 and j, k ∈ Be2 , we have B5(i, j, k) ∈ Γ(N2).
We prove now that B5(i, j, k) /∈ Γ(N1). If B5(i, j, k) ∈ Γ(N1), then by Proposition
4.3, there must exist e ∈ Si→jN1

such that i ∈ Ae and j, k ∈ Be. This implies that the

target of e must be in LCAT0(N)(i, j) v; then, e = min(Si→jN1
) which contradicts

the assumption that e1 = min(Si→jN1
).

104

4.5. TEMPORAL CONSISTENCY AND MINIMUM LGT NETWORK

The proof of the equality of maximum arcs follows analogously.

Coverings in time-consistent LGT networks

In Section 4.4 we studied the different coverings of a redundant arc through the analysis of
partial coverings. In particular, we studied minimal partial coverings but left some cases
not fully characterized. Now, we fully characterize those minimal coverings for the case of
time-consistent LGT networks.

Lemma 4.30. Let N be a time-consistent LGT network and e = (u, v) a redundant arc
in N . Then, a set E′ of secondary arcs not containing e is a minimal partial covering
of type 1 and type 5 of e if, and only if, there exists exactly one arc e′ = (u′, v′) ∈ E′

with (u′, v′) ∈ P pu,v × P pv ,u, where pu and pv are the principal parents of u and v in N ,
respectively.

Proof. By Proposition 4.12, each minimal partial covering of type 1 is formed by a set E′

of secondary arcs such that for each j ∈ Be there is one and only one (u′, v′) ∈ E′ with
(u′, v′) ∈ P u,v × P j,u. Since N is time-consistent, each node u′ is different from u; then,
each u′ lies in P pu,v. Moreover, since u′ ∈ P pu,v, by Lemma 4.28, each node v′ must be
a proper ascendant of v; then, v′ ∈ P pv ,u. Hence, the arc (u′, v′) does not depend on the
leaf j chosen. Then, a single arc (u′, v′) ∈ P pu,v ×P pv ,u is enough to be a partial covering
(which is obviously minimal) of type 1 in N since each j ∈ Be is a descendant of v′.

By Proposition 4.22, each minimal partial covering of type 5 is formed by a set E′ of
secondary arcs such that for each i ∈ Ae there is one and only one (u′, v′) ∈ E′ with
(u′, v′) ∈ P i,v × P v,u. Since N is time-consistent, each node v′ is different from v; then,
each v′ lies in P pv ,u. Moreover, since v′ ∈ P pv ,u, by Lemma 4.28, each node u′ must be a
proper ascendant of u; this is, u′ ∈ P pu,v. Hence the arc (u′, v′) is not dependant on the
leaf i and a single arc (u′, v′) ∈ P pu,v × P pv ,u is sufficient to be a partial covering of type
5 in N (which will be minimal) since each i ∈ Ae is a descendant of u′.

Lemma 4.31. Let N be a time-consistent LGT network and e = (u, v) a redundant arc
in N . Then, a set E′ of secondary arcs not containing e is a minimal partial covering of
type 2 and type 4 of e if, and only if, for each i ∈ Ae and j ∈ Be there exists exactly one
arc e′ = (u′, v′) ∈ E′ with (u′, v′) ∈ (P i,j \ P u,v)× (P j,u \ P v,u).

Proof. We first prove the proposition for the covering of type 2.

Let us assume that E′ is a minimal partial covering of type 2 of e. Then Proposition 4.13
implies that for each i ∈ Ae and j ∈ Be there exists at least one arc e′ = (u′, v′) ∈ E′ with
(u′, v′) ∈ (P i,j \ P pu,v)× P j,u. Since N is time-consistent, given that u′ ∈ P i,j \ P pu,v, by
Lemma 4.28, u′ must be a descendant of u; therefore v′ must be a descendant of v. Then
(u′, v′) ∈ (P i,j \ P u,v) × (P j,u \ P v,u). Let us assume that for a given i and j there exist
at least two secondary arcs e′ = (u′, v′) and e′′ = (u′′, v′′) satisfying the condition. Given
the time-consistency of N , (without loss of generality) we have that u′ is an ascendant
of u′′ and v′ is an ascendant of v′′. Hence Ae′′ ⊆ Ae′ and Be′′ ⊆ Be′ . Moreover, since u′

and u′′ are descendants of u, Ce ⊆ Ce′ and Ce ⊆ Ce′′ . Using Proposition 4.3 we get that
Γ2
e′′ ∩ Γ2

e ⊆ Γ2
e′ ∩ Γ2

e. Now, E′ \ {e′′} is still a partial covering of type 2 of e, against our
assumption on the minimality of E′, hence we have reached a contradiction and for each
i ∈ Ae and j ∈ Be there is exactly one arc e′ ∈ E′ satisfying the condition above.

105

CHAPTER 4. RECONSTRUCTION BASED ON TRI-LGT-NETS

In order to prove the converse, thanks to Lemma 4.14, we only have to prove that if we
remove an arc (u′, v′) ∈ (P i,j \ P u,v)× (P j,u \ P v,u) for some i ∈ Ae and j ∈ Be, then, the
resulting set of arcs is not a partial covering of type 2 of e. This is easy to prove because
otherwise, taking a a descendant leaf of u such that LCAT0(N)(a, i) = pu, the basic tri-lgt
network B2(j, i, a) ∈ Γ2

e would not be covered by any arc. Consequently, the resulting set
of arcs would not be a partial covering of type 2 of e.

We now prove the proposition for the covering of type 4.

Let us assume that E′ is a minimal partial covering of type 4 of e. Then Proposition 4.16
implies that for each i ∈ Ae and j ∈ Be there exists at least one arc e′ = (u′, v′) ∈
P i,j × (P j,u \ P pv ,u). Since N is time-consistent, given that v′ ∈ P j,u \ P pv ,u, by Lemma
4.28, v′ must be a descendant of v; therefore u′ must be a descendant of u. Then (u′, v′) ∈
(P i,j \ P u,v) × (P j,u \ P v,u). Let us assume that for a given i and j there exist at least
two secondary arcs e′ = (u′, v′) and e′′ = (u′′, v′′) satisfying the condition. Given the
time-consistency of N , (without loss of generality) we have that u′ is an ascendant of u′′

and v′ is an ascendant of v′′. Hence Ae′′ ⊆ Ae′ and Be′′ ⊆ Be′ . Moreover, since v′ and
v′′ are descendants of v, De ⊆ De′ and De ⊆ De′′ . Using Proposition 4.3 we get that
Γ4
e′′ ∩ Γ4

e ⊆ Γ4
e′ ∩ Γ4

e. Now, E′ \ {e′′} is still a partial covering of type 4 of e, against our
assumption on the minimality of E′, hence we have reached a contradiction and for each
i ∈ Ae and j ∈ Be there is exactly one arc e′ ∈ E′ satisfying the condition above.

In order to prove the converse, thanks to Lemma 4.17, we only have to prove that if we
remove an arc (u′, v′) ∈ (P i,j \ P u,v)× (P j,u \ P v,u) for some i ∈ Ae and j ∈ Be, then, the
resulting set of arcs is not a partial covering of type 4 of e. This is easy to prove because
otherwise, taking a a descendant leaf of v such that LCAT0(N)(a, j) = pv, the basic tri-lgt
network B4(i, j, a) ∈ Γ4

e would not be covered by any arc. Consequently, the resulting set
of arcs would not be a partial covering of type 4 of e.

Lemma 4.32. Let N be a time-consistent LGT network and e = (u, v) a redundant arc
in N . Then, a set E′ of secondary arcs not containing e is a minimal partial covering of
type 3 of e if, and only if, either there exists exactly one arc e′ ∈ E′ with e′ = (u′, v′) ∈
P pu,v × P pv ,u or for each i ∈ Ae and j ∈ Be there exists exactly one arc e′ = (u′, v′) ∈ E′
with (u′, v′) ∈ (P i,j \ P u,v)× (P j,u \ P v,u).

Proof. By Lemma 4.24, each minimal partial covering of type 1, 2, 4 and 5 is a minimal
partial covering of type 3. As per the Lemmas 4.30 and 4.31, we know that both the
single arc (u′, v′) ∈ P pu,v×P pv ,u, and the set E′ formed by one and only one arc (u′, v′) ∈
(P i,j \ P u,v) × (P j,u \ P v,u) for each i ∈ Ae and j ∈ Be, are minimal partial coverings
of type 3. By the time consistency of N , there is not any other kind of minimal partial
coverings of type 3 other than those. Each arc in the covering must have either its source
and its target nodes that are ascendant nodes of u and v, respectively, or its source and its
target nodes that are descendant nodes of u and v, respectively. Then, by Lemma 4.28,
any other kinds of coverings of type 3 are not allowed.

Lemma 4.33. In a time-consistent LGT network, a minimal partial covering of type 1
and 5 of a redundant arc is never a minimal partial covering of type 2 or 4 for the same
arc, and viceversa.

Proof. Let e = (u, v) be the considered redundant arc. Then, by Lemma 4.30, the source
and target nodes of the arcs in a minimal partial covering of type 1 and 5 of e, are ascendant
nodes of u and v, respectively. On the other hand, by Lemma 4.31, the source and target

106

4.5. TEMPORAL CONSISTENCY AND MINIMUM LGT NETWORK

nodes of the arcs in a minimal partial covering of type 2 and 4 are descendant nodes of u
and v, respectively.

Proposition 4.34. Let N be a time-consistent LGT network, e = (u, v) a redundant arc
in N and pu, pv the principal parents of u and v in N , respectively. Then, a set E′ of
secondary arcs not containing e is a minimal covering of e if, and only if, E′ contains
exactly:

• one arc (u′, v′) ∈ P pu,v × P pv ,u, and

• for each i ∈ Ae and j ∈ Be, exactly one arc (u′, v′) ∈ (P i,j \ P u,v)× (P j,u \ P v,u).

Proof. The result is a direct consequence of Lemmas 4.30, 4.31, 4.32 and 4.33.

Lemma 4.35. Let N be a time-consistent LGT network and e = (u, v) a redundant arc
in N . Then, the set of arcs formed by min(Si→jN) and max(Si→jN) for all pairs i ∈ Ae,
j ∈ Be is a covering of e.

Proof. The proof is a direct consequence of Proposition 4.34, since fixed i ∈ Ae and j ∈ Be
we have that min(Si→jN) ∈ P pu,v×P pv ,u and max(Si→jN) ∈ (P i,j \P u,v)× (P j,u \P v,u).

We call the covering in Lemma 4.35 the min-max covering of e = (u, v). Now we prove
that the min-max covering may not be a minimal covering as Example 4.14 shows, but it
is possible to obtain a such minimal covering removing some specific arcs from it.

First, note that, the arc min(Si→jN) is exactly the same for each pair i, j with i ∈ Ae
and j ∈ Be. This results from the relative position of the source and the target nodes of
min(Si→jN), which are ascendant nodes of u and v, respectively. The situation is different,

in general, for arcs of the form max(Si→jN) where different pair of leaves i, j give rise to

different max(Si→jN). However, for some relative positions of the extremes of the nodes

of max(Si→jN), superfluous arcs in the covering can appear. This is, we consider two

secondary arcs e′ = (u′, v′) = max(Si1→j1N) and e′′ = (u′′, v′′) = max(Si2→j2N) in the min-
max covering when there are principal paths u u′ u′′ and v v′ v′′. In this
conditions, Γ2

e(N) ∩ Γ2
e′′(N) ⊆ Γ2

e(N) ∩ Γ2
e′(N) and Γ4

e(N) ∩ Γ4
e′′(N) ⊆ Γ4

e(N) ∩ Γ4
e′(N).

Then, the arc e′′ can be removed from the min-max covering in order to obtain a minimal
partial covering. The same procedure can be followed iteratively for each pair of secondary
arcs under the same conditions. Finally, in the remaining set of arcs, none of these can be
removed because the arcs of the form max(Si→jN) are the only arcs in the min-max which
cover the basic tri-lgt-nets of the form B2(j, i, ·) and B4(i, j, ·).

Example 4.14. Let N be the time-consistent LGT network depicted in Figure 4.20. The
set {e1, e2, e3, e4, e5, e6} is the min-max covering of arc e. This is formed by the arcs
min(Si→jN) and max(Si→jN) for each pair i ∈ Ae = {2, 3, 4} and j ∈ Be = {5, 6, 7}.
This set is not a minimal covering of e. Note that the source and the target of the arc
e2 = max(S2→5

N) are, respectively, ascendant nodes of the source and the target of arc
e6 = max(S3→5

N). Once removed, we obtain the set {e1, e2, e3, e4, e5}, which is a minimal
covering of e.

Proposition 4.36. Let N be a time-consistent LGT network. Then, a secondary arc e
is non-redundant in N if and only if there exists a pair of leaves i and j such that either
e = min(Si→jN) or e = max(Si→jN).

107

CHAPTER 4. RECONSTRUCTION BASED ON TRI-LGT-NETS

1 2 3 4 5 6 7 8

e

e1

e2

e3

e4

e5
e6

Figure 4.20: A time-consistent LGT network with a minimal covering of the secondary
redundant arc e.

Proof. Let e = (u, v) be a secondary arc in N . We first prove that if for each pair of leaves
i, j, we have that e 6= min(Si→jN) and e 6= max(Si→jN), then e is a redundant arc in N . We

can restrict our attention to the arcs in Si→jN with i ∈ Ae and j ∈ Be. Then, for each

i ∈ Ae and j ∈ Be, in the set Si→jN there are, at least, three different arcs: min(Si→jN), e

and max(Si→jN). By Lemma 4.35, the set of secondary arcs composed by min(Si→jN) and

max(Si→jN) for each i ∈ Ae and j ∈ Be, is a covering of e. Consequently, e is a redundant
arc.

To prove the converse, let if and jf be a pair of fixed leaves such that either e =

min(S
if→jf
N) or e = max(S

if→jf
N). We consider the case where e = max(S

if→jf
N) (the

other case can be proved similarly). By Proposition 4.34, in order to be e a redundant arc,
there has to be in each of its coverings at least one arc (u′, v′) ∈ (P i,j \P u,v)× (P j,u \P v,u)
for each i ∈ Ae and j ∈ Be. Particularly, since if ∈ Ae and jf ∈ Be, there must be in that
covering an arc (u′f , v

′
f) ∈ (P if ,jf \ P u,v) × (P jf ,u \ P v,u). Then u′f is a descendant node

of u and v′f is a descendant of v; hence, the existence of the arc (u′f , v
′
f) contradicts our

assumption on the maximality of e.

Minimum LGT network

Given N an LGT network, we call its minimum network, denoted by Min(N), the subnet-
work obtained from N by first removing all redundant secondary arcs and then suppressing
the elementary nodes, if any. If there are no redundant arcs in a network, the minimum
network coincides with the original one: Min(N) = N . In Figures 4.7 and 4.16, the
network depicted in the right side is the minimum network of the one depicted in the left.

Notice that, in the given procedure to obtain the minimum network, all the redundant
arcs, without exception and all at once, are removed. Hence, the resulting network does
not depend on the order of removal of the redundant arcs.

108

4.5. TEMPORAL CONSISTENCY AND MINIMUM LGT NETWORK

Notice also that for a generic LGT network N , the tri-lgt decomposition of N does not
necessarily coincide with that of Min(N), see Example 4.7. We shall now prove that if
we restrict to time-consistent LGT networks, its tri-lgt decomposition coincides with the
tri-lgt decomposition of its minimum network.

Proposition 4.37. Let N be a time-consistent LGT network and R a set of redundant
arcs in N . Then Γ(N) = Γ(N \R).

Proof. Since R is a set of redundant arcs in N , by Proposition 4.6, we know that Γ(N) =
Γ(N \ R) if and only if for each arc in R, there exists a covering of this arc that does
not contain any arc of R. For the sake of contradiction, let us assume that there exists
e ∈ R such that all its coverings contain some other arc of R. That is, if E′ is an arbitrary
covering of e, then there is some arc e∗ 6= e with e∗ ∈ E′ ∩R. Using Lemma 4.35, take as
covering E′ of e its min-max covering. Then, there is some e∗ 6= e such that e∗ ∈ E′ ∩R.
This means that there is a pair of leaves i ∈ Ae and j ∈ Be with either e∗ = min(Si→jN) or

e∗ = max(Si→jN). Hence, by Proposition 4.36, the arc e∗ is not redundant arc, against our
hypothesis.

As a direct consequence of this Proposition we get the following result.

Corollary 4.38. Let N be a time-consistent LGT network. Then, Γ(Min(N)) = Γ(N).

Basic tri-lgt networks determine time-consistent LGT networks

In this subsection we prove the main result of this chapter, which allows us to fully
characterize when time-consistent LGT networks have the same tri-lgt decomposition and
give a criterion to decide isomorphism of networks based on their tri-lgt decomposition.

Theorem 4.39. Let N1 and N2 be two time-consistent LGT networks. Then, Γ(N1) =
Γ(N2) if and only if Min(N1) = Min(N2).

Proof. Let N1 and N2 be two time-consistent LGT networks such that Γ(N1) = Γ(N2).
We prove that Min(N1) = Min(N2). Recall that Min(N1) (resp. Min(N2)) is the LGT
network obtained by removing all redundant arcs from N1 (resp. N2). It suffices to prove
that each non redundant secondary arc in N1 is a non redundant secondary arc in N2

and viceversa. If e is a non redundant secondary arc in N1, by Proposition 4.36, there
are a pair of leaves i, j in N1 which either e = min(Si→jN1

) or e = max(Si→jN1
). In both

cases, since Γ(N1) = Γ(N2), by Proposition 4.29, we have that either e = min(Si→jN2
) or

e = max(Si→jN2
). Hence, e is a non redundant secondary arc in N2. Similarly, we can

prove that each non redundant arc in N2 is a non redundant arc in N1. Consequently,
Min(N1) = Min(N2).

To prove the other implication, we suppose that Min(N1) = Min(N2). In such case,
Γ(Min(N1)) = Γ(Min(N2)). By Lemma 4.37, we have that Γ(N1) = Γ(Min(N1)) and
Γ(N2) = Γ(Min(N2)). Then, we can conclude that Γ(N1) = Γ(N2).

Note that, both implications in the Theorem are false if we do not require the temporal
consistency of the LGT networks N1 and N2. We show examples of both situations.

As a counterexample of the first implication, consider the two networks in Figure 4.17,
and notice that only one of them is time-consistent. These two different networks have

109

CHAPTER 4. RECONSTRUCTION BASED ON TRI-LGT-NETS

the same tri-lgt decomposition, but since they have no redundant arcs, their minimum
networks are also different.

As for the other implication, consider the networks depicted in the figure used in Exam-
ple 4.7. This is a case where the tri-lgt decomposition of a network does not coincide with
the tri-lgt decomposition of its minimum network. In this case, since Min(Min(N)) =
Min(N), the original network and the minimum network have the same minimum network
but they do not have the same tri-lgt decomposition.

Finally, we can give this classification result, which is a direct consequence of the theorem
above.

Corollary 4.40. Let N1 and N2 be two LGT networks without secondary redundant arcs.
Then, N1 = N2 if, and only if, Γ(N1) = Γ(N2).

Consequently, we conclude that, tri-lgt networks represented in an LGT network com-
pletely determine it if it belongs to the subclass of time-consistent arc-node LGT net-
works, and up to redundant arcs. In case that the network contains redundant arcs, only
the minimum network can be reconstructed.

110

Chapter 5

A reconciliation problem between
gene trees and LGT networks

Contents

5.1 Introduction . 111

5.2 Parsimonious reconciliations between gene trees and species
trees . 112

5.3 Reconciliation between gene trees and species networks 114

5.4 The best tree displayed by an LGT network 116

5.5 The best reconciliation with the LGT network 125

5.1 Introduction

Reconciliation methods aim at explaining the discrepancies between the evolutionary his-
tories of genes and species. These differences are caused by evolutionary events like spe-
ciations, duplications, losses and lateral transfer of genes, among others. The most used
models for reconciliation scenarios between phylogenetic trees take into account either
duplications and losses, DL reconciliations [Goodman et al. (1979); Page (1994); Guigo
et al. (1996); Doyon et al. (2009); Górecki et al. (2011); Rasmussen and Kellis (2012); To
and Scornavacca (2015)], or also transfers, DTL reconciliations [Gorbunov and Lyubetsky
(2009); Doyon et al. (2010); Tofigh et al. (2011); Bansal et al. (2012); Scornavacca et al.
(2013)].

In the parsimony framework, a cost is associated to each evolutionary event and the cost
of an evolutionary scenario is the sum of the costs of all events that it implies; the aim
is to obtain such scenario with a minimum cost over the set of all possible evolutionary
scenarios. This is called the most parsimonious reconciliation (or MPR, for short). For
the DL model, the MPR can be found in linear time [Zhang (1997)]; however, for the DTL
model, finding the MPR becomes NP-hard mainly because we must have a time-consistent
scenario [Hallett et al. (2004); Tofigh et al. (2011)]. To overcome this issue and to ensure
that transfer events happen only between co-existing species, different approaches have
been followed, using either dated species trees [Conow et al. (2010); Merkle et al. (2010);
Gorbunov and Lyubetsky (2009); Doyon et al. (2010)] or fixing a priori the branches which
allow the transfers events [Hallett et al. (2004); Górecki (2004)], obtaining polynomially
solvable problems for the DTL model.

111

CHAPTER 5. RECONCILIATION OF GENE TREES WITH LGT NETWORKS

When moving from trees to phylogenetic networks, the situation is much less understood,
and little work has been done on the problem of finding parsimonious reconciliations
[Górecki (2004); Libeskind-Hadas and Charleston (2009); To and Scornavacca (2015)]. In
this chapter we study the reconciliation problem where the evolution of species is modelled
by an LGT network (see Chapter 2). We consider a scenario with duplications, losses and
transfers, but restrict transfers to happen only through the secondary arcs of the network.
Then, extending previous results in To and Scornavacca (2015) and in Doyon et al. (2010)
we provide fast algorithms that give, on the one hand, the MPR between a gene tree and a
tree displayed by the LGT network, and, on the other hand, the MPR between a gene tree
and the LGT network. These results improve upon previous results in Górecki (2004).

The results in this chapter have led to a manuscript (joint with Dr. Céline Scornavacca
and Dr. Gabriel Cardona) that has been submitted to Journal of Theoretical Biology.

5.2 Parsimonious reconciliations between gene trees and
species trees

Even though trees can be reconciled using probabilistic models, following a criterion of
maximum likelihood, this approach, according to Arvestad et al. (2004), leads to algo-
rithms that are very time-consuming, and hence they are only suitable for small sets
of taxa or small collections of genes. As an alternative, the combinatorial principle of
parsimony overcomes these limitations.

Parsimony methods have been vastly used to infer evolution history, as well as in reconcil-
iation problems. These methods are explicit discrete models of gene evolution that, given
the elementary costs of each evolutionary event, seek for the solution of the reconciliation
problem with minimum cost. A variety of models exist in order to reconcile a gene tree
with a species tree, being Goodman et al. (1979) and Page (1994) the pioneers papers in
this field.

In this manuscript we will focus on a model, where a reconciliation α between a gene tree
G and a species tree S is defined as a function that maps each node u of G into an ordered
sequence of nodes of S, denoted by α(u) = (α1(u), α2(u), . . . , α`(u)), and hence allows to
track the evolution of genes into the species tree [Doyon et al. (2010); Scornavacca et al.
(2013)]. These mappings are restricted by conditions aimed at having an evolutionary
history coherent with the chosen evolutionary model.

We present here the definition for the DTL reconciliation between a gene tree and a
species tree, which considers duplications (D), transfers (T) and losses (L), and which is
the foundation for more complex reconciliations using species networks. Such definition
is a simplified version of the definition of a reconciliation given in Doyon et al. (2010), as
our definition does not require the species tree to be dated (for more information on this
model, see Ranwez et al. (2015) or Jacox et al. (2016), among others).

We recall some notations before introducing the definition. We focus on binary rooted
phylogenetic trees, trees for short. Given a tree T , we denote its root by r(T) and the
set of its nodes, internal nodes, arcs, leaves and labels respectively by V (T), I(T), E(T),
L(T) and L(T). An internal node u of T has two interchangeable children (ul, ur). Then
a species tree S is a tree such that each element of L(S) represents an extant species that
labels exactly one leaf of S. This is, each leaf u in S is associated to a species, denoted
s(u). A gene tree G is a tree whose leaves are labeled by contemporary genes. From now

112

5.2. PARSIMONIOUS RECONCILIATIONS ON TREES

on we consider a species tree S and a gene tree G such that {s(u)|u ∈ L(G)} ⊆ L(S).
The same notations and considerations will be used to deal with species networks in the
following sections.

Definition 5.1. Given a species tree S and a gene tree G, α is said to be a DTL reconcil-
iation between G and S if and only if exactly one of the following events occurs for each
pair of nodes u of G and αi(u) of S (for simplicity, let x := αi(u) below):

a) if x is the last node of α(u), one of the cases below is true:

1. u ∈ L(G), x ∈ L(S) and s(x) = s(u); (extant leaf)

2. {α1(ul), α1(ur)} = {xl, xr}; (S)

3. α1(ul) = x and α1(ur) = x; (D)

4. α1(ul) = x, and α1(ur) is any species node that is a not a descendant or ancestor
of x (or symmetrically interchanging the roles of ul and ur); (T)

b) otherwise, one of the cases below is true:

5. αi+1(u) ∈ {xl, xr}; (SL)

6. αi+1(u) is any node that is a not a descendant or ancestor of x; (TL)

From this definition, a DL reconciliation is a DTL one where T and TL events are not
allowed (omit [4.] and [6.]). This is not the common definition of a DL reconciliation, but
it is equivalent [Jacox et al. (2016)] to the more widespread one, which is used for example
in To and Scornavacca (2015).

The evolutionary events modelled by this definition are:

• Speciation (S), duplication (D) and transfer (T) events are self-explanatory (see
Section 1.2).

• A speciation-loss (SL) is a speciation where the original gene is absent in one of the
two species resulting from the speciation.

• A transfer-loss (TL) is a transfer of one of the two descendants of a gene combined
with the loss of its sibling lineage.

Note that each loss is coupled with either a speciation or a transfer. Indeed, duplication-
loss events leave no trace in the data and therefore are not considered by the model
since they will never yield to a parsimonious solution. The reconciliation α is said to be
time-consistent if all T events can be guaranteed to happen between co-existing species.

Given costs δ, τ and λ for respectively D, T and L events, the cost of a reconciliation
α is defined as the sum of the costs of all events it implies. The most parsimonious
reconciliation between G and S is one with minimum cost over all possible reconciliations.
We denote this minimum cost as cost(G,S).

In order to identify the “most parsimonious reconciliations” (MPR for the DL model), as
per Górecki and Tiuryn (2006) the simple polynomial time algorithm, called LCA mapping,
can be applied. This mapping between G and S is constructed by finding for each node u of
G, the smallest cluster in S that contains the set of genes represented by u. When only D
and L events are considered, finding the most parsimonious reconciliation between G and

113

CHAPTER 5. RECONCILIATION OF GENE TREES WITH LGT NETWORKS

S is feasible by using a polynomial algorithm [Zhang (1997); Vernot et al. (2008)]; however,
when transfers are also considered in the evolutionary model, the problem becomes NP-
hard [Hallett et al. (2004); Tofigh et al. (2011)]. Such phenomena is due to the timing
constraints among nodes of S that are induced by T events, which are difficult to handle.

To palliate this problem, two strategies are commonly used to reduce the NP-complete
problem to a polynomially-solvable one. The first strategy consists in altering the defini-
tion of MPR to accept a dated tree S (imposing time scales) as input [Conow et al. (2010);
Merkle et al. (2010); Gorbunov and Lyubetsky (2009); Doyon et al. (2010)]. The other
strategy uses a priori information to fix which pairs of branches are allowed to be involved
in a transfer event: a representation called lateral transfer scheme in Hallett et al. (2004)
and species graph in Górecki (2004). The latter is the most similar strategy to the one we
follow.

5.3 Reconciliation between gene trees and species networks

The reconciliation problem for phylogenetic networks, generalizing the reconciliation prob-
lem from phylogenetic trees, has its origins in a similar problem called the cophylogeny
problem. Cophylogeny is the reconstruction of ancient relationships among ecologically
linked groups of organisms, like hosts and their parasites, from their phylogenetic infor-
mation. Then, similarly as in the “general” reconciliation between gene trees and species
trees, in the host-parasite reconciliation, the cophylogeny mapping considers associations
between the tips of two evolutionary histories representing the parasite phylogeny and
the host phylogeny, where one can consider the evolutionary events of cospeciation, du-
plication, loss, and host switch (coespeciation and host switching correspond respectively
to speciation and transfer events in the DTL jargon). Libeskind-Hadas and Charleston
(2009) present the first contribution toward solving the cophylogeny problem on networks.
They attempt to map one network into the other in order to construct the set of coevo-
lutionary events that best explains the current observations. However, they also prove
that the cophylogeny reconstruction problem is NP-complete when the host phylogeny is
reticulate, even if the parasite phylogeny is a tree. They prove that the reconstruction
problem can be solved in polynomial time for a parasite tree and a host network if the
time function defined on the host phylogeny, that is the function that assigns to each node
(event) in the host network the set of relative times when the event may have occurred,
has only one possible assignment for each node. Moreover, they prove that the problem
becomes NP-complete when the fixed-time constraint is slightly relaxed.

In order to improve the time-complexity of the algorithm presented in Libeskind-Hadas and
Charleston (2009), To and Scornavacca (2015) solve the reconciliation problem between
gene trees and species networks restricting the set of events to duplications and losses (i.e.
transfer events are not taken into account).

In this chapter we shall focus on two different problems related to the reconciliation be-
tween a gene tree and a species network, using LGT networks (see Section 2.2) and ex-
tending the models presented in To and Scornavacca (2015) to allow transfer events via
secondary arcs. Principal arcs are used to represent descent with modification while sec-
ondary arcs represent possible transfers. Efficient polynomial algorithms to solve the MPR
reconciliation will be presented.

We will model species networks with LGT networks subject to certain restrictions. For
the rest of this chapter we will assume that LGT networks are binary, that is, tree nodes

114

5.3. RECONCILIATION BETWEEN GENE TREES AND SPECIES NETWORKS

are indegree-1 and outdegree-2 nodes (except for the root that has indegree 0 and the
leaves, that have outdegree 0), while reticulation nodes have indegree-2 and outdegree-1.

To ease notations, given an internal node u of a species network, if u has a single child, we
shall denote this child as ul; otherwise, it has two interchangeable children, that we shall
denote by ul and ur.

Moreover, in order to avoid the inconsistency of the T events and overcome the NP-
completeness of the problem, in the following, we will only consider, without further
mention, time-consistent LGT networks (see Section 4.5). Remember that we say that an
LGT network N is time-consistent if there is a function t : V (N)→ N such that:

• t(u) = t(v), if (u, v) ∈ Es, and

• t(u) < t(v), if (u, v) ∈ Ep.

Figure 5.1 shows a time-consistent LGT network modelling a species network.

A B C D E F G

Figure 5.1: A species network which is a time-consistent LGT network.

Given a gene tree and a species network modeled by an LGT network, two approaches to
the reconciliation problem are possible. The first one is based on choosing a switching of
the network (hence a tree) and finding the best reconciliation of the gene tree with this
switching. Remember that, given a network N , a switching S of N is obtained from N by
choosing, for each reticulation, an incoming arc to switch on and the others to switch off.
Once this is done, we also recursively switch off all switched-on arcs whose target node
has only switched-off outgoing arcs (see Section 1.3). The second possible approach is to
define directly a reconciliation between the gene tree and the network itself and try to find
the best one.

Then, fixed a gene tree and an LGT network, in the first problem, we ask how to find
the switching of the network – and consequently, the tree displayed by the network –
having a most parsimonious reconciliation with the given gene tree according to the DTL
model [Doyon et al. (2010)], extending the result obtained in To and Scornavacca (2015),
which is designed for the DL model [Doyon et al. (2009)]. In the second problem, we
extend the DTL model for trees (see Section 5.2) to species networks where transfers are
allowed only on secondary arcs – similarly to what was proposed in Górecki (2004) – and

115

CHAPTER 5. RECONCILIATION OF GENE TREES WITH LGT NETWORKS

ask how to find a most parsimonious reconciliation (a reconciliation with minimum cost
over all possible reconciliations, denoted as cost(G,N) when G is the gene tree and N is
the species network) between the given gene tree and species network. The first model is
more adapted for ancient duplication, for which often only one copy of the gene has been
retained, while the latter is more suitable for recent duplications.

Then, the two main goals in this chapter are to solve the following problems:

Problem 5.1 Best Switching

Input: A gene tree G, an LGT network N , the costs δ, τ and λ for respectively D, T
and L events.

Output: A switching S of N such that the cost(G,S) is minimum over all switchings
of N .

Problem 5.2 Best Reconciliation

Input: A gene tree G, an LGT network N , the costs δ, τ and λ for respectively D, T
and L events.

Output: A DTL reconciliation between G and N with minimum cost cost(G,N).

5.4 The best tree displayed by an LGT network

In this section, we present an algorithm to find the tree displayed by an LGT network N
having the most parsimonious DTL reconciliation with a given gene tree G. We extend
the DTL reconciliation definition given in Section 5.2 for a species tree and a gene tree to
the case of a switching S of an LGT network and a gene tree G allowing here transfers
only via secondary arcs.

Given a network N and a switching S of N , a path of S is a path of N that uses only
switched-on arcs. We denote by Von(S) the set of nodes of a switching S that are not an
extreme node of any switched-off arc. A tree T is said to be displayed by a network if T
is isomorphic to the tree obtained by using only the switched-on arcs of a switching S of
N and by contracting all nodes not in Von(S). See Section 1.3

Definition 5.2. Given an LGT network N , a switching S of N and a gene tree G, α is
said to be a DTL reconciliation between G and S if and only if exactly one of the following
events occurs for each pair of nodes u of G and αi(u) of S (for simplicity, let x := αi(u)
below):

a) if x is the last node of α(u), one of the cases below is true:

1. u ∈ L(G), x ∈ L(S) and s(x) = s(u); (extant leaf)

2. {α1(ul), α1(ur)} = {xl, xr} and both outgoing arcs of x are in Ep and switched-
on; (S)

3. α1(ul) = x and α1(ur) = x; (D)

4. α1(ul) = x, α1(ur) = y and (x, y) is in Es and switched-on (or symmetrically
interchanging the roles of ul and ur);

or α1(ul) = xl, α1(ur) = xr and (x, xr) is in Es and both outgoing arcs of x are
switched-on (or symmetrically interchanging the roles of ul and ur, and xl and
xr, so 4 possibilities); (T)

116

5.4. THE BEST TREE DISPLAYED BY AN LGT NETWORK

b) otherwise, one of the cases below is true:

5. αi+1(u) = y, (x, y) is in Ep and x has two outgoing arcs that are switched-on;
(SL)

6. αi+1(u) = y, (x, y) is in Es and x has two outgoing arcs that are switched-on;
(TL)

7. αi+1(u) = y, (x, y) is in Ep and is the only switched-on arc of x; (∅)

8. αi+1(u) = y, (x, y) is in Es and is the only switched-on arc of x; (T)

In the following, we use αl(·) to denote the last node of α(·). Moreover, we focus on
reconciliations such that |α(r(G))| = 1, since this is the case for all most parsimonious
reconciliations. Indeed, since Definition 5.2 allows to map the root of G to any node of
the switching S, any reconciliation α where |α(r(G))| > 1 can be changed into another
one with equal or lower cost simply by mapping r(G) to the last node of α(r(G)).

Note that, since both nodes of a secondary arc have the same time-stamps, all lateral gene
transfers are time-consistent, i.e. are guaranteed to happen between co-existing species.

To and Scornavacca (2015) pointed out that, when all arcs are principal, the most parsi-
monious mapping between a switching S and G is completely determined and the most
parsimonious reconciliation is always the LCA reconciliation which we define, adapting
the definition to LGT networks as follows:

1. for each node u ∈ L(G), αl(u) is defined as the only node x ∈ L(S) such that
s(u) = s(x);

2. for each node u ∈ I(G) with child nodes {u1, u2}, αl(u) := LCAS(αl(u1), αl(u2));

3. once αl(u) is fixed for all nodes u of G, α(u) is completed as follows. First, we insert
in α(u) – before αl(u) – the ordered list of nodes composing the unique path in S
–extremities excluded– between αl(up) and αl(u), where up is the parent node of u.
Then, if

• αl(up) 6= αl(u),

• αl(up) = αl(u
′) – where u′ is the other child of up which is not u,

• (αl(up), α1(u)) is not a secondary arc,

we insert αl(up) before α1(u) in α(u).

As we previously stated, when N is a tree, there is a unique reconciliation (the LCA
reconciliation) between G and N with minimum cost. Note that the algorithms used
on trees to find the LCA reconciliation can also be used on switchings even when some
arcs are secondary. Then, the most parsimonious mapping is still completely determined.
Hereafter, when we refer to the reconciliation between a tree and a switching, we refer to
the LCA reconciliation between them.

This observation will allow us to use several of the results in To and Scornavacca (2015)
to solve the Best Reconciliation Problem. Given that cost(G,S) is the minimum cost over
all possible DTL reconciliations between G and S, it corresponds to the cost of the LCA
reconciliation.

117

CHAPTER 5. RECONCILIATION OF GENE TREES WITH LGT NETWORKS

Example 5.1. Given the gene tree G and the switching S depicted in Figure 5.2 of the
LGT network depicted in Figure 5.1, we give full details on how to compute the LCA
reconciliation α between G and S, which coincides with the most parsimonious DTL rec-
onciliation between G and S.

The LCA reconciliation maps each node in G as we have summarized in Table 5.1. We
have also included a third column giving the corresponding specific evolutionary events
which are obtained following Definition 5.2. Moreover, in Figure 5.3 there is a depiction
of the embedding modelling the reconciliation. Notice that this DTL reconciliation has 2
duplications, 3 transfers and 7 losses. Then, since α is the MPR, if we assume unitary
cost for each of the three types of events, we have that cost(G,S) = 2 + 3 + 7 = 12.

Table 5.1: LCA reconciliation between G and S

Genes α mapping corresponding events

r (z) (D)
s (z, h) (SL,T)
t (k) (D)
u (k) (S)
v (k, n, o, q) (SL,∅,SL,T)
w (z) (S)
a (A) (C)
d (n, o, p,D) (∅, SL,∅,C)
b (B) (C)
c (x,C) (∅,C)
e (j, l,m,E) (∅, SL,∅,C)
f (h, j, l, F) (TL,∅,SL,C)
g (i, G) (∅,C)

We now explain how we have been computed α for two especific nodes in G, namely α(f)
and α(v), following the definition of the LCA reconciliation.

For the node f we have that its parent node is w and its sibling node is g. Note that, since
f ∈ L(G), then αl(f) = F . Moreover, αl(w) = z and αl(g) = G. Then, for the first part
in item 3 of the definition, we have, for the moment, α(f) = (h, j, l, F). Now, notice that
z 6= G, then αl(w) 6= αl(g) (it is not satisfied the second subitem in 3.). Consequently, it
is not necessary to insert a new node in α(f).

On the other hand, for the node v, we have that its parent node is t and its sibling node is
u. Moreover, αl(v) = q, αl(t) = k and αl(u) = k. Then, for the moment, α(v) = (n, o, q).
But since

• αl(t) 6= αl(v),

• αl(t) = αl(u), and

• (αl(t), α1(v)) = (k, n) is not a secondary arc,

we insert k before α1(v) in α(v). Then, we can conclude that α(v) = (k, n, o, q).

Note that Definition 5.2 is equivalent to Definition 5.1, apart from the fact that transfers
are allowed only on secondary arcs (conditions [4.], [6.] and [8.]), and that losses are not
counted on nodes not in Von(S) (conditions [7.] and [8.]). This last fact implies that, if

118

5.4. THE BEST TREE DISPLAYED BY AN LGT NETWORK

a d b c e f g

u v

t

s

r

w

(a)

A B C D E F G

x

q p

o

n

mk

l

j

h i

z

on

off

off

on

off

on

(b)

Figure 5.2: (a) A gene tree G, and (b) a switching S for the LGT network depicted in
Figure 5.1 used for Example 5.1. The labels “on” and “off” on the arcs in (b) represent
the switched-on and switched-off arcs, respectively.

transfers are allowed only on secondary arcs, for a tree S′ displayed by the network and
its associated switching S, we have cost(G,S) = cost(G,S′). Thus, to find the optimal
tree displayed by the network, we can focus on switchings, as done in To and Scornavacca
(2015), and we can solve the Best Switching Problem.

To and Scornavacca (2015) solve this problem when all arcs of the network are considered
as principal. This implies that all the results and algorithms in the Best switching section
of To and Scornavacca (2015) are valid to find a valid reconciliation according to Defi-
nition 5.2, except for optimising the cost of transfers. Indeed, since both incoming arcs
of a reticulation are considered as principal, in their model of hybridizations there is no
difference in taking one rather than the other incoming arc of a reticulation.

The time complexity of the reference algorithm does not depend on the number of reticula-
tions in the species network but only on the level of the network (see Section 1.7). In order
to solve the Best Switching Problem, we need to recall basic notation and some definitions
relative to biconnected components in a network as introduced in To and Scornavacca
(2015):

1. For a node u of N , Nu denotes the subgraph induced by the nodes accessible from
u.

2. Given a biconnected component B (that is not a leaf) of N , the network N(B)
consists of B and all cut arcs coming out from B.

3. The mapping B(·) associates every u ∈ G to the lowest (we say that a biconnected
component Bi is lower than another one Bj if there is a path from the root of Bj to
the root of Bi) biconnected component B of N such that L(Nr(B)) ⊇ L(Gu).

4. The tree GN is obtained from G by applying the following procedure for each child
u′ of each internal node u of G. If there are k biconnected components B1, . . . , Bk

119

CHAPTER 5. RECONCILIATION OF GENE TREES WITH LGT NETWORKS

z

i

h j

k l

n m

o

p

q x

g

†

f

†

†

s

†

eA B C D E F G

r
w

tu

a

†

d

† †

v

cb

Figure 5.3: A DTL reconciliation α between the gene tree and the switching depicted in
Figure 5.2. Solid lines represent network arcs, where secondary arcs are depicted hori-
zontally and with “winglets” and grey ones represent switched-off arcs. The dashed lines
represent the gene evolution. The D, T and L event are represented as filled square, star
and cross dagger, respectively. Each gene label is represented in the figure and mapped
to the element αl(·).

properly below B(u) and properly above B(u′) in N , we add k indegree-1 outdegree-1
nodes on the arc (u, u′), respectively mapped to B1, . . . , Bk.

5. Given a biconnected component B different from a leaf, we denote by GB the set
of all maximal connected subgraphs H of GN satisfying that B(u) = B for every
internal node u of H. Note that these subgraphs are necessarily binary trees or
arcs (see Lemma 2 of To and Scornavacca (2015)); we accordingly decompose GB as
GtB tGeB.

See Figures 5.4 and 5.5 for an illustration of these concepts.

We shall see that, in order to adapt the tools proposed in To and Scornavacca (2015) to
solve the Best Switching Problem, it suffices to redefine the cost functions introduced in
To and Scornavacca (2015) to properly count transfers, i.e. secondary arcs used in the
reconciliations.

Let α be a reconciliation between G and S, for two nodes x and y in S, lgt(x, y) and

120

5.4. THE BEST TREE DISPLAYED BY AN LGT NETWORK

A B C D E F G

B1

B2

(a)

a d b c e f g

B1

B2

B2

B1

B1

B1

B1

(b)

Figure 5.4: (a) The LGT network depicted in Figure 5.1 with highlighted the two non
trivial biconnected components B1 and B2. (b) The tree GN along with the labelling B(·)
where the gene tree G is the one depicted in Figure 5.2(a). Notice that an artificial node
labelled by B2 is added on the arc (u, d) because B(u) = B1, B(d) = B2 and B1 > B2.

dist(x, y) are defined as follows: If there exists a path x y in N , lgt(x, y) and dist(x, y)
are defined respectively as the number of switched-on secondary arcs, and as the number
of nodes in Von(S), in the path from x to y. Otherwise, dist(x, y) = lgt(x, y) = ∞. We
denote tα(u) the number of transfer events in α associated to an internal node u in G;
then we have tα(u) = lgt(αl(u), αl(ul)) + lgt(αl(u), αl(ur)). Consequently, the number of
transfers of the reconciliation α, denoted by t(α), is the sum of tα(·) for all internal nodes
of G. We denote by d(α) and l(α) respectively the number of duplications and of losses
of α.

Note that, as done in To and Scornavacca (2015), we suppose that no internal node of G
has all its descendant leaves associated to the same species s̄. Indeed, if such a node exists
in G, say u, it is easy to be convinced that the most parsimonious way to reconcile Gu is
via (|L(Gu)| − 1) duplications. Thus, we can replace Gu by a leaf l such that s(l) = s̄,
reconcile the resulting tree and, a posteriori, add back Gu, along with all the duplications
it implies, to the reconciliation.

Given a biconnected component Bi of N different from a leaf, Si a switching of N(Bi)
and H a tree in GtBi

, we denote by βHSi
the LCA reconciliation between H and Si when,

for each leaf u of H, s(u) := r(B(u)). Now, for H ∈ GBi , we define cost(H,Si) as follows:

• ∀H ∈ GtBi
, if Bi = B(r(G)),

cost(H,Si) = cost(βHSi
),

• ∀H ∈ GtBi
, if Bi 6= B(r(G)),

cost(H,Si) = cost(βHSi
) + τ · lgt(r(Si), βHSi

(r(H))) + λ · dist(r(Si), βHSi
(r(H))),

• ∀H ∈ GeBi
with u the only leaf of H,

cost(H,Si) = τ · lgt(r(Si), r(B(u))) + λ · dist(r(Si), r(B(u))).

121

CHAPTER 5. RECONCILIATION OF GENE TREES WITH LGT NETWORKS

a B2 B2 e f g

B1

B1

B1

B1

B1

(a)

A r(B2) E F G

B1

(b)

d b c

B2 B2

(c)

B C D

B2

(d)

Figure 5.5: Given the LGT network of Figure 5.1 and the gene tree of Figure 5.2(a) we
find: (a) GB1 ; (b) N(B1); (c) GB2 ; (d) N(B2).

Then, the following proposition permits to analyze independently each biconnected com-
ponent of N and, hence, their cost.

Proposition 5.1. Let B1, . . . , Bp be the biconnected components of N that are not leaf
nodes, and let S be a switching of N . Moreover, for each network N(Bi), let Si its
switching induced by S. Then, cost(G,S) =

∑p
i=1

∑
H∈GBi

cost(H,Si).

Proof. Let α be a reconciliation betweenG and S with minimum cost. We denote by dα(Si)
the number of duplications in Si and by lα(u, Si) the number of losses in Si associated
with u ∈ I(G). Moreover, given two nodes in S such that y is descendant of x, we define
lgtSi(x, y) as the number of switched-on secondary arcs in Si on the path from x to y.
Note that, given u ∈ L(Si), the single arc whose target is u is never a secondary arc.
Then, using lgtSi instead of lgt, we can define the number of transfers associated with u
in Si, denoted by tα(u, Si), in the same way as tα(u). Then, tα(u) =

∑p
i=1 tα(u, Si).

Now, given u in I(G), by Lemma 3 of To and Scornavacca (2015), there exists H ∈ GtB(u)

such that u ∈ I(H) and αl(u) = βHS(B(u))(u). This also implies that αl(u) and αl(u
′) are

respectively contained in B(u) and B(u′), where u′ is a child of u.

Note that tα(u, Si) > 0 only if the path from αl(u) to αl(u
′) (being u′ a child of u) in S

contains at least one switched-on secondary arc of Bi. Then, tα(u, Si) ≥ 0 can hold only
for the three sets of nodes V 1

i , V
2
i , V

3
i of I(G) defined below:

• V 1
i := {u ∈ I(G) : αl(u) ∈ Bi}.

• V 2
i := {u ∈ I(G) : αl(u) is above r(Bi) and either αl(ul) or αl(ur) are in Bi}.

• V 3
i := {u ∈ I(G) : αl(u) is above r(Bi) and either αl(ul) or αl(ur) are below Bi}.

Note that V 2
i and V 3

i are empty if Bi = B(r(G)). By construction V1 is disjoint from V2

and V3; moreover, V2 and V3 are disjoint because if the two children of u have their αl one
in Bi and one below Bi, then αl(u) must be in Bi and thus cannot be above r(Bi).

122

5.4. THE BEST TREE DISPLAYED BY AN LGT NETWORK

Thus,

t(α) =

p∑
i=1

∑
u∈V 1

i ∪V 2
i ∪V 3

i

tα(u, Si).

Recall that the contribution to tα(u, Si) of any child u′ of u consists of the secondary arcs
in the path between αl(u) and αl(u

′) contained in Si.

Given u ∈ V 1
i , by Lemma 3 in To and Scornavacca (2015), there exists H ∈ GtBi

such that

αl(u) = βHSi
(u) while, for each child u′ of u, αl(u

′) is somewhere in B(u′). If B(u′) = B(u),
then by definition of GN , u′ is a child of u in H. If B(u′) 6= B(u), let Bj be the highest
biconnected component in N such that r(Bi) > r(Bj) ≥ r(B(u′)). Then, by definition of
GN and of βHSi

, r(Bj) will label a leaf l of H that is a child of u. Thus tα(u, Si) = tβH
Si

(u).

Then: ∑
u∈V 1

i

τ · tα(u, Si) =
∑

H∈Gt
Bi

τ ·
∑

u∈I(H)

tβH
Si

(u) =
∑

H∈Gt
Bi

τ · t(βHSi
).

The first equivalence holds because 1) any internal node u of a tree H ∈ GtBi
is a node

of G that is mapped to Bi and, by definition of GN , is an internal node, thus u ∈ V 1
i ; 2)

any such u ∈ V 1
i is an internal node for some H ∈ GtBi

. In a similar way, from To and
Scornavacca (2015), we have:∑

u∈V 1
i

λ · lα(u, Si) =
∑

H∈Gt
Bi

λ · l(βHSi
),

and dα(Si) =
∑

H∈Gt
Bi

d(βHSi
). Then, the following holds:

δ ·
∑

H∈Gt
Bi

d(βHSi
) +

∑
u∈V 1

i

(
τ · tα(u, Si) + λ · lα(u, Si)

)
=

∑
H∈Gt

Bi

cost(βHSi
).

Given u ∈ V 2
i and u′ being any of the children of u with B(u′) = Bi, by Lemma 3 of

To and Scornavacca (2015), there exists H ∈ GtBi
such that αl(u

′) = βHSi
(u′). More-

over, by definition of GN , u′ is the root of H, thus the contribution of u′ to tα(u, Si)
is lgt(r(Si), β

H
Si

(r(H))). From To and Scornavacca (2015), we know that lα(u, Si) =

dist(r(Si), β
H
Si

(r(H))), thus, joining the cases for u ∈ V 1
i and u ∈ V 2

i , we have:

δ ·
∑

H∈Gt
Bi

d(βHi) +
∑

u∈V 1
i ∪V 2

i

(
τ · tα(u, Si) + λ · lα(u, Si)

) (∗1)
=

∑
H∈Gt

Bi

cost(H,Si).

Again, the last equivalence holds because any internal node ū of a tree H ∈ GtBi
is a node

in V 2
i , with Bi 6= B(r(G)), and vice versa.

Given u ∈ V 3
i and u′ being any of the children of u below Bi, let Bj be the first biconnected

component of N between Bi and the component containing αl(u
′). Then the number of

secondary arcs in the path between αl(u) and αl(u
′) contained in Si is, by construction,

equal to lgt(r(Si), r(Bj)). Since, as noted above, αl(u) and αl(u
′) are respectively con-

tained in B(u) and B(u′), then, by definition of GN , each arc (ua, ub) in GeBi
corresponds

to exactly one of the biconnected component, namely B(ub), properly between αl(u) and
αl(u

′) for a given u in V 3
i . Then, the following holds:∑

u∈V 3
i

τ · tα(u, Si) =
∑

H:=(ua,ub)∈Ge
Bi

τ · lgt(r(Si), r(B(ub))).

123

CHAPTER 5. RECONCILIATION OF GENE TREES WITH LGT NETWORKS

Similarly, from To and Scornavacca (2015), we have:∑
u∈V 3

i

λ · lα(u, Si) =
∑

H:=(ua,ub)∈Ge
Bi

λ · dist(r(Si), r(B(ub))).

Then, from the definition of cost(H,Si), the following holds:∑
u∈V 3

i

(
τ · tα(u, Si) + λ · lα(u, Si)

) (∗2)
=

∑
H∈Ge

Bi

cost(H,Si).

Now, by Lemma 4 in To and Scornavacca (2015),

d(α) =

p∑
i=1

dα(Si) =

p∑
i=1

∑
H∈Gt

Bi

d(βHSi
)

and

l(α) =

p∑
i=1

lα(Si) =

p∑
i=1

∑
u∈V 1

i ∪V 2
i ∪V 3

i

lα(u, Si).

Moreover, above we proved that t(α) =
∑p

i=1

∑
u∈V 1

i ∪V 2
i ∪V 3

i
tα(u, Si).

Then, combining this with (∗1) and (∗2), we can conclude the proof:

cost(G,S) = δ · d(α) + τ · t(α) + λ · l(α)

=

p∑
i=1

(
δ · dα(Si) + τ ·

∑
u∈I(G)

tα(u, Si) + λ ·
∑

u∈I(G)

lα(u, Si)
)

=

p∑
i=1

(
δ ·

∑
H∈Gt

Bi

d(βHi) +
∑

u∈V 1
i ∪V 2

i ∪V 3
i

(
τ · tα(u, Si) + λ · lα(u, Si)

))

=

p∑
i=1

(
[δ ·

∑
H∈Gt

Bi

d(βHi) +
∑

u∈V 1
i ∪V 2

i

(
τ · tα(u, Si) + λ · lα(u, Si)

)
] +

+ [
∑
u∈V 3

i

(
τ · tα(u, Si) + λ · lα(u, Si)

)
]
)

=

p∑
i=1

(∑
H∈Gt

Bi

cost(H,Si) +
∑

H∈Ge
Bi

cost(H,Si)
)

=

p∑
i=1

∑
H∈GBi

cost(H,Si)

Given a gene tree and a level-k LGT network, the Best Switching Problem can be solved
applying Algorithm 3 (which is Algorithm 1 in To and Scornavacca (2015)) using the new
definition of cost(H,Si).

124

5.5. THE BEST RECONCILIATION WITH THE LGT NETWORK

Algorithm 3 Compute a switching S of N such that cost(G,S) is minimum given positive
costs δ, τ , and λ, respectively for D, T, L events
1: Compute the tree GN and its labeling function B(·);
2: Compute GBi for each biconnected component Bi of N that is not a leaf;
3: for each biconnected component Bi of N do
4: for each switching Sj

i of N(Bi) do
5: costj =

∑
H∈GBi

cost(H,Sj
i);

6: Sm
i ← the switching of N(Bi) with the lowest value of costj over all j;

7: end for
8: end for
9: return the switching S of N in which each network N(Bi) has S

m
i as switching.

Theorem 5.2. Given a gene tree G, a level-k LGT network N with p biconnected compo-
nents and the costs δ, τ and λ for respectively D, T and L events, Algorithm 3 solves the
Best Switching Problem in O(n+ 2k · p ·m) time, where n = |V (N)| and m = |V (G)|.

Proof. See Theorem 2 of To and Scornavacca (2015) to check its correctness and running
time analysis.

5.5 The best reconciliation with the LGT network

In the previous section, we showed how to find the tree in the network that has a most
parsimonious DTL reconciliation with a given gene tree G. Now, if G contains several
copies of a gene tree, each of it following a different evolutionary scenario, this model
may not be the more adapted one. Another way to approach the problem is to drop
the requirement of reconciling with a switching, and directly reconcile the gene tree with
the LGT network instead. What we want to do is to extend Definition 5.1 to networks,
allowing transfer events only via secondary arcs. To obtain this, we can simply modify
Definition 5.2 as follows. First, we consider all arcs of N as switched-on. Second, condition
[7.] is modified so that αi+1(u) is the only child of x through a principal arc. Note that,
since in an LGT network all internal nodes have at least a principal outgoing arc, and
here we consider all arcs of N as switched-on, condition [8.] will never be fulfilled. Hence:

Definition 5.3. Given an LGT network N and a gene tree G, α is said to be a DTL
reconciliation between G and N if and only if exactly one of the following events occurs
for each pair of nodes u of G and αi(u) of S (for simplicity, let x := αi(u) below):

a) if x is the last node of α(u), one of the cases below is true:

1. u ∈ L(G), x ∈ L(S) and s(x) = s(u); (extant leaf)

2. {α1(ul), α1(ur)} = {xl, xr}; (S)

3. α1(ul) = x and α1(ur) = x; (D)

4. α1(ul) = x, α1(ur) = y and (x, y) is in Es (or symmetrically interchanging the
roles of ul and ur);

or α1(ul) = xl, α1(ur) = xr and (x, xr) is in Es (or symmetrically interchanging
the roles of ul and ur, and xl and xr, so 4 possibilities); (T)

b) otherwise, one of the cases below is true:

5. αi+1(u) = y, (x, y) is in Ep; (SL)

125

CHAPTER 5. RECONCILIATION OF GENE TREES WITH LGT NETWORKS

6. αi+1(u) = y, (x, y) is in Es; (TL)

7. αi+1(u) = y and (x, y) is the only outgoing arc of x in Ep; (∅)

In Algorithm 4 we present an algorithm to solve the Best Reconciliation Problem, which is
an adaptation of the algorithm presented in Doyon et al. (2010) to consider only transfers
on secondary arcs. Note that in this algorithm we use the fact that N is a time-consistent
network and also that a bottom-up traversal of N exists.

Algorithm 4 Compute cost(G,N) given positive costs δ, τ , and λ, respectively for D, T
L events
1: for each u ∈ V (G) and x ∈ V (N), do c(u, x)←∞ end for . Initialize the matrix
2: for node u ∈ V (G) according to a bottom-up traversal do
3: for node x ∈ V (N) according to a bottom-up traversal do
4: if u ∈ L(G), x ∈ L(S), and s(u) = s(x) then
5: c(u, x)← 0. Go to the next iteration of the loop at line 3 . Extant leaf
6: end if
7: for all e ∈ {S,D,T,∅, SL,TL} do ce ←∞ end for
8: if u has two children then
9: cD ← c(ul, x) + c(ur, x) + δ . D event

10: if x has two outgoing principal arcs then
11: cS ← min{c(ul, xl) + c(ur, xr), c(ul, xr) + c(ur, xl)} . S event
12: else if x has two outgoing arcs and w.l.o.g. (x, xr) is secondary then
13: cT ← min{c(ul, x) + c(ur, xr), c(ul, xr) + c(ur, x)} + τ . T event
14: cT ← min{cT, c(ul, xl) + c(ur, xr) + τ , c(ul, xr) + c(ur, xl) + τ} . T event
15: end if
16: else
17: if x has two outgoing principal arcs then
18: cSL ← min{c(u, xl), c(u, xr)} + λ . SL event
19: else if x has two outgoing arcs and w.l.o.g. (x, xr) is secondary then
20: cTL ← c(u, xr) + λ + τ . TL event
21: c∅ ← c(u, xl) . ∅ event
22: else
23: c∅ ← c(u, xl) . ∅ event
24: end if
25: end if
26: c(u, x)← min{ce : e ∈ {S,D,T,∅, SL,TL}} . Final cost for c(u, x)
27: end for
28: end for
29: return min{c(root(G), x) : x ∈ V (N)}.

Theorem 5.3. Given a gene tree G, an LGT network N , the costs δ, τ and λ for respec-
tively D, T and L events, Algorithm 4 solves the Best Reconciliation Problem in O(n ·m)
space and time, where n = |V (N)| and m = |V (G)|.

Proof. We first prove the correctness of the algorithm.

The algorithm fills a matrix c : V (G) × V (N) → N through two nested loops, each one
visiting all nodes through a bottom-up traversal of G and N , respectively.

Consider the node u at an iteration of the loop in line 2. This loop (lines 3–28) computes
c(u, x) for each node x ∈ V (N) by considering all six possible events separately. The
consistency of the computation of the cost for each of these events is ensured because for
any child u′ of u (u′ ∈ {ul, ur}), any child x′ of x (x′ ∈ {xl, xr}) and any node y ∈ V (N),
the costs c(u′, y) and c(u, x′) have been previously computed thanks to the bottom-up
traversal of G and N . Then, the final cost for c(u, x) is computed by considering the
minimum over all possible events. Since we can assume that a reconciliation with minimum

126

5.5. THE BEST RECONCILIATION WITH THE LGT NETWORK

cost maps the root of G to a single node of N , we can find this minimum cost by taking
the minimum of c(r(G), x) where x ∈ V (N).

We now prove the running time and space cost of the algorithm. The loop over the nodes
of G (line 2) runs for O(m) iterations. The loop over the nodes of N (line 3) runs for O(n)
iterations. Thus, lines 4 to 27 run O(m · n) times. The computations of the costs of all
possible events can be computed in constant time. As a result, the overall time complexity
of the algorithm is in O(n · m). The space complexity is completely determined by the
size of the matrix c(G,N), which is m× n, and hence the space cost is also O(n ·m).

Note that, when all arcs are principal, the Best Reconciliation Problem coincides with
Problem 2 in To and Scornavacca (2015). This implies that Algorithm 4 solves the latter
problem for time-consistent networks in O(n ·m) instead of O(h2 · n ·m), as proposed in
To and Scornavacca (2015), where h is the number of reticulations of N .

In conclusion, we have studied two variants of the reconciliation problem between a gene
tree and a species network when we consider a scenario where the transfer events are
restricted to happen only through the secondary arcs of LGT networks. We provide fast
algorithms for the problem of finding the “best” (the most parsimonious) switching of the
network, and also the MPR between a gene tree and an LGT network, improving previous
results on this field.

127

CHAPTER 5. RECONCILIATION OF GENE TREES WITH LGT NETWORKS

128

Conclusions and future work

In this dissertation we have introduced LGT networks, which have proved to be a solid
model for representing the evolution of species with presence of lateral genetic transfer
events. Until now, the models used to describe the evolution of species under this kind of
events were either phylogenetic networks, that did not take into account that there is a
principal line of evolution, or trees with “extra information” that were not mathematically
well founded. We have developed methods for the reconstruction of LGT networks over a
set of species when only partial information is available. The general philosophy is that one
can either have ambiguous information on the evolutionary relationship for all species (and
get different large trees on the same set of taxa) or have very precise information on this
evolution but only for 3-tuples of species (and get networks on different small sets of taxa).
We have put these two generic problems into the context of LGT networks and described
two different classes of LGT networks where they can be solved effectively. Finally we
have shown how our model for networks is also well suited to study the reconciliation
problem between the evolutionary history of genes and species, reducing the complexity
of the problem from NP-hard to polynomial.

During the course of the research that has led to this dissertation, we have attacked
problems that we have only been able to solve partially, and for some others we have
completely failed to give a solution. We have also devised unexplored areas, but the
lack of time has prevented us to visit them. All these lacks and failures are nothing but
opportunities to keep working on the subject. We review now some possibilities for future
work.

In Chapter 2 we generalized the Robinson-Foulds distance to generic LGT networks. While
having a sound distance metric to compare LGT networks is important in order to assess
the validity of reconstructions methods, this concrete distance may not be the more ap-
propriate in some cases. For instance, the distance we introduced is very sensitive to small
changes in the principal tree, since they change many secondary arcs (or at least how we
compare them). We plan to develop new distances that can address this problem. For
instance, modifying the definition of the clusters so that they reflect directly the existence
of secondary paths to the leaves and hence those can be compared directly.

In Chapter 3 we showed how a certain kind of LGT networks can be singled out by means
of its principal and secondary subtrees. For this kind of networks, the “first degree”
approximation given by these subtrees are enough to determine the network. In some
other cases, maybe, knowing not only the subtrees induced by a single secondary arc, but
two (or more) of them could allow us to recover wider classes of networks. As a future
work we plan to investigate whether a “higher degree” approximation of LGT networks
can determine them completely.

One of the modern ways to tackle the reconstruction of phylogenetic trees is through the

129

CONCLUSIONS AND FUTURE WORK

use of algebraic invariants associated to a given statistical model of evolution on them. In
one of the experiments in Chapter 3 we introduced a simple statistical model of evolution
on LGT networks. We plan to study further this model of evolution and, although our
attempt to apply the techniques of algebraic invariants to LGT networks led us to a dead
end, we will consider it again at some time in future.

In Chapter 4 we faced the problem of finding a full description of the sets of secondary arcs
that are coverings of another secondary arc. For partial coverings of type 1 or 5 we could
find such a description in a quite simple way for generic LGT networks. However, such
a description for the remaining types was only found for time-consistent LGT networks.
We think that having simple descriptions for generic networks for any kind of coverings
could improve the clarity of our results, and hence we plan to investigate this coverings,
which could lead us to characterize more generic LGT networks by means of the triplets
that they display.

In Chapter 5 we studied the reconciliation problem, more precisely we obtained the most
parsimonious reconciliation between a unique given gene tree and a given species network.
Two different generalizations of the problem could arise: one would be the reconciliation
between a gene tree forest into one common species network; and the second would be
based on the assumption that the species network is not known and on trying to build the
LGT network together with the most parsimonious reconciliation, simultaneously.

130

Bibliography

Abby, S. S., Tannier, E., Gouy, M., and Daubin, V. (2010). Detecting lateral gene transfers
by statistical reconciliation of phylogenetic forests. BMC bioinformatics, 11(1):324.

Addario-Berry, L., Hallett, M. T., and Lagergren, J. (2003). Towards identifying lateral
gene transfer events. In Pacific Symposium on Biocomputing, volume 8, pages 279–290.
Citeseer.

Aho, A. V., Sagiv, Y., Szymanski, T. G., and Ullman, J. D. (1981). Inferring a tree
from lowest common ancestors with an application to the optimization of relational
expressions. SIAM Journal on Computing, 10(3):405–421.

Albrecht, B. (2015). Computing all hybridization networks for multiple binary phyloge-
netic input trees. BMC bioinformatics, 16(1):236.

Allen, B. L. and Steel, M. (2001). Subtree transfer operations and their induced metrics
on evolutionary trees. Annals of combinatorics, 5(1):1–15.

Arvestad, L., Berglund, A.-C., Lagergren, J., and Sennblad, B. (2004). Gene tree re-
construction and orthology analysis based on an integrated model for duplications and
sequence evolution. In Proceedings of the eighth annual international conference on
Resaerch in computational molecular biology, pages 326–335. ACM.

Bansal, M. S., Alm, E. J., and Kellis, M. (2012). Efficient algorithms for the reconciliation
problem with gene duplication, horizontal transfer and loss. Bioinformatics, 28(12):i283–
i291.

Bansal, M. S., Banay, G., Harlow, T. J., Gogarten, J. P., and Shamir, R. (2013). System-
atic inference of highways of horizontal gene transfer in prokaryotes. Bioinformatics,
29(5):571–579.

Baroni, M., Semple, C., and Steel, M. (2005). A framework for representing reticulate
evolution. Annals of Combinatorics, 8(4):391–408.

Baroni, M., Semple, C., and Steel, M. (2006). Hybrids in real time. Systematic Biology,
55(1):46–56.

Baroni, M. and Steel, M. (2006). Accumulation phylogenies. Annals of Combinatorics,
10(1):19–30.

Beiko, R. G. et al. (2011). Telling the whole story in a 10,000-genome world. Biol Direct,
6:34.

Beiko, R. G. and Hamilton, N. (2006). Phylogenetic identification of lateral genetic transfer
events. BMC evolutionary biology, 6(1):15.

131

BIBLIOGRAPHY

Benveniste, R. E. and Todaro, G. J. (1974). Evolution of c-type viral genes: inheritance
of exogenously acquired viral genes. Nature, 252:456–459.

Bordewich, M., Linz, S., St John, K., and Semple, C. (2007). A reduction algorithm for
computing the hybridization number of two trees. Evolutionary Bioinformatics, 3.

Bordewich, M. and Semple, C. (2005). On the computational complexity of the rooted
subtree prune and regraft distance. Annals of combinatorics, 8(4):409–423.

Bordewich, M. and Semple, C. (2007). Computing the minimum number of hybridization
events for a consistent evolutionary history. Discrete Applied Mathematics, 155(8):914–
928.

Bordewich, M. and Semple, C. (2015a). Determining phylogenetic networks from inter-
taxa distances. Journal of Mathematical Biology, pages 1–21.

Bordewich, M. and Semple, C. (2015b). Reticulation-visible networks. arXiv preprint
arXiv:1508.05424.

Boto, L. (2010). Horizontal gene transfer in evolution: facts and challenges. Proceedings
of the Royal Society of London B: Biological Sciences, 277(1683):819–827.

Brady, A. and Salzberg, S. (2011). Phymmbl expanded: confidence scores, custom
databases, parallelization and more. Nature methods, 8(5):367–367.

Brodal, G. S., Fagerberg, R., Mailund, T., Pedersen, C. N., and Sand, A. (2013). Efficient
algorithms for computing the triplet and quartet distance between trees of arbitrary de-
gree. In Proceedings of the Twenty-Fourth Annual ACM-SIAM Symposium on Discrete
Algorithms, pages 1814–1832. SIAM.

Brooks, D. R. and Ferrao, A. L. (2005). The historical biogeography of co-evolution:
emerging infectious diseases are evolutionary accidents waiting to happen. Journal of
Biogeography, 32(8):1291–1299.

Bryant, D. and Moulton, V. (2004). Neighbor-net: an agglomerative method for the
construction of phylogenetic networks. Molecular biology and evolution, 21(2):255–265.

Campbell, P. J., Yachida, S., Mudie, L. J., Stephens, P. J., Pleasance, E. D., Stebbings,
L. A., Morsberger, L. A., Latimer, C., McLaren, S., Lin, M.-L., et al. (2010). The
patterns and dynamics of genomic instability in metastatic pancreatic cancer. Nature,
467(7319):1109–1113.

Cardona, G., Llabrés, M., and Rosselló, F. (2010a). Two results on distances for phyloge-
netic networks. In Advances in Bioinformatics, pages 93–100. Springer.

Cardona, G., Llabrés, M., Rosselló, F., and Valiente, G. (2008a). A distance metric for a
class of tree-sibling phylogenetic networks. Bioinformatics, 24(13):1481–1488.

Cardona, G., Llabrés, M., Rosselló, F., and Valiente, G. (2009a). The comparison of tree-
sibling time consistent phylogenetic networks is graph isomorphism-complete. arXiv
preprint arXiv:0902.4640.

Cardona, G., Llabrés, M., Rosselló, F., and Valiente, G. (2009b). Metrics for phylogenetic
networks i: Generalizations of the robinson-foulds metric. IEEE/ACM Transactions on
Computational Biology and Bioinformatics (TCBB), 6(1):46–61.

132

BIBLIOGRAPHY

Cardona, G., Llabres, M., Rossello, F., and Valiente, G. (2009c). Metrics for phylogenetic
networks ii: Nodal and triplets metrics. IEEE/ACM Transactions on Computational
Biology and Bioinformatics (TCBB), 6(3):454–469.

Cardona, G., Llabres, M., Rosselló, F., and Valiente, G. (2009d). On nakhleh’s metric for
reduced phylogenetic networks. IEEE/ACM Transactions on Computational Biology
and Bioinformatics (TCBB), 6(4):629–638.

Cardona, G., Llabrés, M., Rosselló, F., and Valiente, G. (2010b). Nodal distances for
rooted phylogenetic trees. Journal of mathematical biology, 61(2):253–276.

Cardona, G., Llabrés, M., Rosselló, F., and Valiente, G. (2010c). Path lengths in tree-child
time consistent hybridization networks. Information Sciences, 180(3):366–383.

Cardona, G., Pons, J. C., and Rosselló, F. (2015). A reconstruction problem for a class
of phylogenetic networks with lateral gene transfers. Algorithms for Molecular Biology,
10(1):1.

Cardona, G., Rosselló, F., and Valiente, G. (2008b). Extended newick: it is time for a
standard representation of phylogenetic networks. BMC bioinformatics, 9(1):532.

Cardona, G., Rosselló, F., and Valiente, G. (2008c). Tripartitions do not always discrimi-
nate phylogenetic networks. Mathematical biosciences, 211(2):356–370.

Cardona, G., Rossello, F., and Valiente, G. (2009e). Comparison of tree-child phylogenetic
networks. Computational Biology and Bioinformatics, IEEE/ACM Transactions on,
6(4):552–569.

Charleston, M. A. and Perkins, S. L. (2006). Traversing the tangle: algorithms and
applications for cophylogenetic studies. Journal of biomedical informatics, 39(1):62–71.

Chen, Z.-Z. and Wang, L. (2010). Hybridnet: a tool for constructing hybridization net-
works. Bioinformatics, 26(22):2912–2913.

Chia, N. and Goldenfeld, N. (2011). Statistical mechanics of horizontal gene transfer in
evolutionary ecology. Journal of Statistical Physics, 142(6):1287–1301.

Choy, C., Jansson, J., Sadakane, K., and Sung, W.-K. (2005). Computing the maximum
agreement of phylogenetic networks. Theoretical Computer Science, 335(1):93–107.

Collins, J., Linz, S., and Semple, C. (2011). Quantifying hybridization in realistic time.
Journal of Computational Biology, 18(10):1305–1318.

Conow, C., Fielder, D., Ovadia, Y., and Libeskind-Hadas, R. (2010). Jane: a new tool for
the cophylogeny reconstruction problem. Algorithms for Molecular Biology, 5(1):1.

Crow, J. F. et al. (1986). Basic concepts in population, quantitative, and evolutionary
genetics. WH Freeman and Company.

Dagan, T. and Martin, W. (2006). The tree of one percent. Genome Biol, 7(10):118.

Daubin, V. and Szöllősi, G. J. (2016). Horizontal gene transfer and the history of life.
Cold Spring Harbor Perspectives in Biology, page a018036.

De Bruyn, A., Martin, D. P., and Lefeuvre, P. (2014). Phylogenetic reconstruction meth-
ods: an overview. Molecular Plant Taxonomy: Methods and Protocols, pages 257–277.

133

BIBLIOGRAPHY

Doolittle, W. F. (1999). Phylogenetic classification and the universal tree. Science,
284(5423):2124–2128.

Doolittle, W. F. and Bapteste, E. (2007). Pattern pluralism and the tree of life hypothesis.
Proceedings of the National Academy of Sciences, 104(7):2043–2049.

Doyon, J.-P., Chauve, C., and Hamel, S. (2009). Space of gene/species trees reconciliations
and parsimonious models. Journal of Computational Biology, 16(10):1399–1418.

Doyon, J.-P., Ranwez, V., Daubin, V., and Berry, V. (2011). Models, algorithms and
programs for phylogeny reconciliation. Briefings in bioinformatics, 12(5):392–400.

Doyon, J.-P., Scornavacca, C., Gorbunov, K. Y., Szöllősi, G. J., Ranwez, V., and Berry,
V. (2010). An efficient algorithm for gene/species trees parsimonious reconciliation with
losses, duplications and transfers. In Comparative genomics, pages 93–108. Springer.

Dress, A., Huber, K. T., and Koolen, J. (2012). Basic phylogenetic combinatorics. Cam-
bridge University Press.

Edwards, S. V. (2009). Is a new and general theory of molecular systematics emerging?
Evolution, 63(1):1–19.

Felsenstein, J. (2004). Inferring phylogenies, volume 2. Sinauer Associates Sunderland.

Francis, A. R. and Steel, M. (2015a). Tree-like reticulation networks—when do tree-like
distances also support reticulate evolution? Mathematical biosciences, 259:12–19.

Francis, A. R. and Steel, M. (2015b). Which phylogenetic networks are merely trees with
additional arcs? Systematic biology, 64(5):768–777.

Frank, A. C., Alsmark, C. M., Thollesson, M., and Andersson, S. G. (2005). Functional
divergence and horizontal transfer of type iv secretion systems. Molecular biology and
evolution, 22(5):1325–1336.

Gambette, P. (2010). Who is who in phylogenetic networks: Articles, authors and pro-
grams. Published electronically at http://www. atgc-montpellier. fr/phylnet.

Gambette, P., Berry, V., and Paul, C. (2009). The structure of level-k phylogenetic
networks. In Combinatorial Pattern Matching, pages 289–300. Springer.

Gambette, P., Berry, V., and Paul, C. (2012). Quartets and unrooted phylogenetic net-
works. Journal of bioinformatics and computational biology, 10(04):1250004.

Gambette, P., Gunawan, A. D., Labarre, A., Vialette, S., and Zhang, L. (2015a). Locating
a tree in a phylogenetic network in quadratic time. In Research in Computational
Molecular Biology, pages 96–107. Springer.

Gambette, P., Gunawan, A. D., Labarre, A., Vialette, S., and Zhang, L. (2015b). Solving
the tree containment problem for genetically stable networks in quadratic time. In
IWOCA 2015, pages to–appear. Springer.

Gambette, P., Huber, K., and Kelk, S. (2015c). On the challenge of reconstructing level-1
phylogenetic networks from triplets and clusters. arXiv preprint arXiv:1511.08056.

Gambette, P. and Huber, K. T. (2012). On encodings of phylogenetic networks of bounded
level. Journal of mathematical biology, 65(1):157–180.

134

BIBLIOGRAPHY

Gilbert, C., Schaack, S., Pace II, J. K., Brindley, P. J., and Feschotte, C. (2010). A role for
host-parasite interactions in the horizontal transfer of transposons across phyla. Nature,
464(7293):1347–1350.

Goodman, M., Czelusniak, J., Moore, G. W., Romero-Herrera, A., and Matsuda, G.
(1979). Fitting the gene lineage into its species lineage, a parsimony strategy illustrated
by cladograms constructed from globin sequences. Systematic Biology, 28(2):132–163.

Gorbunov, K. Y. and Lyubetsky, V. (2009). Reconstructing the evolution of genes along
the species tree. Molecular Biology, 43(5):881–893.

Górecki, P. (2004). Reconciliation problems for duplication, loss and horizontal gene
transfer. In Proceedings of the eighth annual international conference on Resaerch in
computational molecular biology, pages 316–325. ACM.

Górecki, P. (2010). H-trees: a model of evolutionary scenarios with horizontal gene trans-
fer. Fundamenta Informaticae, 103(1-4):105–128.

Górecki, P., Burleigh, G. J., and Eulenstein, O. (2011). Maximum likelihood models and
algorithms for gene tree evolution with duplications and losses. BMC bioinformatics,
12(1):1.

Górecki, P. and Tiuryn, J. (2006). Dls-trees: a model of evolutionary scenarios. Theoretical
computer science, 359(1):378–399.

Górecki, P. and Tiuryn, J. (2012). Inferring evolutionary scenarios in the duplication, loss
and horizontal gene transfer model. In Logic and Program Semantics, pages 83–105.
Springer.

Gray, R. D., Drummond, A. J., and Greenhill, S. J. (2009). Language phylogenies reveal
expansion pulses and pauses in pacific settlement. science, 323(5913):479–483.

Grenfell, B. T., Pybus, O. G., Gog, J. R., Wood, J. L., Daly, J. M., Mumford, J. A.,
and Holmes, E. C. (2004). Unifying the epidemiological and evolutionary dynamics of
pathogens. science, 303(5656):327–332.

Guigo, R., Muchnik, I., and Smith, T. F. (1996). Reconstruction of ancient molecular
phylogeny. Molecular phylogenetics and evolution, 6(2):189–213.

Gunawan, A. D. and Zhang, L. (2015). Bounding the size of a network defined by visibility
property. arXiv preprint arXiv:1510.00115.

Gusfield, D., Eddhu, S., and Langley, C. (2003). Efficient reconstruction of phylogenetic
networks with constrained recombination. In Bioinformatics Conference, 2003. CSB
2003. Proceedings of the 2003 IEEE, pages 363–374. IEEE.

Habib, M. and To, T.-H. (2012). Constructing a minimum phylogenetic network from a
dense triplet set. Journal of bioinformatics and computational biology, 10(05):1250013.

Hallett, M., Lagergren, J., and Tofigh, A. (2004). Simultaneous identification of duplica-
tions and lateral transfers. In Proceedings of the eighth annual international conference
on Resaerch in computational molecular biology, pages 347–356. ACM.

Hallett, M. T. and Lagergren, J. (2001). Efficient algorithms for lateral gene transfer
problems. In Proceedings of the fifth annual international conference on Computational
biology, pages 149–156. ACM.

135

BIBLIOGRAPHY

Hao, W. and Golding, G. (2004). Patterns of bacterial gene movement. Molecular biology
and evolution, 21(7):1294–1307.

Hein, J. (1990). Reconstructing evolution of sequences subject to recombination using
parsimony. Mathematical biosciences, 98(2):185–200.

Hein, J., Jiang, T., Wang, L., and Zhang, K. (1996). On the complexity of comparing
evolutionary trees. Discrete Applied Mathematics, 71(1):153–169.

Holmes, E. C., Worobey, M., and Rambaut, A. (1999). Phylogenetic evidence for recom-
bination in dengue virus. Molecular biology and evolution, 16(3):405–409.

Hotopp, J. C. D. (2011). Horizontal gene transfer between bacteria and animals. Trends
in Genetics, 27(4):157–163.

Huber, K. T. and Moulton, V. (2013). Encoding and constructing 1-nested phylogenetic
networks with trinets. Algorithmica, 66(3):714–738.

Huber, K. T., Moulton, V., Steel, M., and Wu, T. (2015a). Folding and unfolding phylo-
genetic trees and networks. arXiv preprint arXiv:1506.04438.

Huber, K. T., Van Iersel, L., Kelk, S., and Suchecki, R. (2011). A practical algorithm for
reconstructing level-1 phylogenetic networks. IEEE/ACM Transactions on Computa-
tional Biology and Bioinformatics (TCBB), 8(3):635–649.

Huber, K. T., van Iersel, L., Moulton, V., Scornavacca, C., and Wu, T. (2015b). Recon-
structing phylogenetic level-1 networks from nondense binet and trinet sets. Algorith-
mica, pages 1–28.

Huber, K. T., Van Iersel, L., Moulton, V., and Wu, T. (2014). How much information is
needed to infer reticulate evolutionary histories? Systematic biology, page syu076.

Huson, D. H. and Klöpper, T. H. (2007). Beyond galled trees-decomposition and com-
putation of galled networks. In Research in Computational Molecular Biology, pages
211–225. Springer.

Huson, D. H. and Rupp, R. (2008). Summarizing multiple gene trees using cluster net-
works. In Algorithms in bioinformatics, pages 296–305. Springer.

Huson, D. H., Rupp, R., Berry, V., Gambette, P., and Paul, C. (2009). Computing galled
networks from real data. Bioinformatics, 25(12):i85–i93.

Huson, D. H., Rupp, R., and Scornavacca, C. (2010). Phylogenetic networks: concepts,
algorithms and applications. Cambridge University Press.

Huson, D. H. and Scornavacca, C. (2011). A survey of combinatorial methods for phylo-
genetic networks. Genome biology and evolution, 3:23–35.

Jacox, E., Chauve, C., Szöllősi, G. J., Ponty, Y., and Scornavacca, C. (2016). eccetera:
Comprehensive gene tree-species tree reconciliation using parsimony. Bioinformatics,
page btw105.

Jansson, J., Nguyen, N. B., and Sung, W.-K. (2006). Algorithms for combining rooted
triplets into a galled phylogenetic network. SIAM Journal on Computing, 35(5):1098–
1121.

Jansson, J. and Sung, W.-K. (2006). Inferring a level-1 phylogenetic network from a dense
set of rooted triplets. Theoretical Computer Science, 363(1):60–68.

136

BIBLIOGRAPHY

Jin, G., Nakhleh, L., Snir, S., and Tuller, T. (2006). Maximum likelihood of phylogenetic
networks. Bioinformatics, 22(21):2604–2611.

Jukes, T. H. and Cantor, C. R. (1969). Evolution of protein molecules. Mammalian protein
metabolism, 3(21):132.

Kanj, I. A., Nakhleh, L., Than, C., and Xia, G. (2008). Seeing the trees and their branches
in the network is hard. Theoretical Computer Science, 401(1):153–164.

Keeling, P. J. and Palmer, J. D. (2008). Horizontal gene transfer in eukaryotic evolution.
Nature Reviews Genetics, 9(8):605–618.

Keen, E. C. (2012). Paradigms of pathogenesis: targeting the mobile genetic elements of
disease. Frontiers in cellular and infection microbiology, 2:161.

Kelk, S. and Scornavacca, C. (2014). Constructing minimal phylogenetic networks from
softwired clusters is fixed parameter tractable. Algorithmica, 68(4):886–915.

Kellis, M., Patterson, N., Endrizzi, M., Birren, B., and Lander, E. S. (2003). Sequencing
and comparison of yeast species to identify genes and regulatory elements. Nature,
423(6937):241–254.

Libeskind-Hadas, R. and Charleston, M. A. (2009). On the computational complexity of
the reticulate cophylogeny reconstruction problem. Journal of Computational Biology,
16(1):105–117.

Libeskind-Hadas, R., Wu, Y.-C., Bansal, M. S., and Kellis, M. (2014). Pareto-optimal
phylogenetic tree reconciliation. Bioinformatics, 30(12):i87–i95.

Linder, C. R., Moret, B. M., Nakhleh, L., Padolina, A., Sun, J., Tholse, A., Timme, R.,
and Warnow, T. (2003). An error metric for phylogenetic networks. University of New
Mexico, Tech. Rep. TR03-26.

Maddison, W. P. (1997). Gene trees in species trees. Systematic biology, 46(3):523–536.

Makarenkov, V. (2001). T-rex: reconstructing and visualizing phylogenetic trees and
reticulation networks. Bioinformatics, 17(7):664–668.

Mallet, J. (2007). Hybrid speciation. Nature, 446(7133):279–283.

Martin, D. P., Murrell, B., Golden, M., Khoosal, A., and Muhire, B. (2015). Rdp4:
Detection and analysis of recombination patterns in virus genomes. Virus Evolution,
1(1):vev003.

Martin, W. F. (2011). Early evolution without a tree of life. Biol Direct, 6:36.

Mäser, P., Thomine, S., Schroeder, J. I., Ward, J. M., Hirschi, K., Sze, H., Talke, I. N.,
Amtmann, A., Maathuis, F. J., Sanders, D., et al. (2001). Phylogenetic relationships
within cation transporter families of arabidopsis. Plant Physiology, 126(4):1646–1667.

McDaniel, L. D., Young, E., Delaney, J., Ruhnau, F., Ritchie, K. B., and Paul, J. H.
(2010). High frequency of horizontal gene transfer in the oceans. Science, 330(6000):50–
50.

Merkle, D. and Middendorf, M. (2005). Reconstruction of the cophylogenetic history of
related phylogenetic trees with divergence timing information. Theory in Biosciences,
123(4):277–299.

137

BIBLIOGRAPHY

Merkle, D., Middendorf, M., and Wieseke, N. (2010). A parameter-adaptive dynamic
programming approach for inferring cophylogenies. BMC bioinformatics, 11(1):1.

Moret, B. M., Nakhleh, L., and Warnow, T. (2002). An error metric for phylogenetic
networks. University of New Mexico, Tech. Rep. TR02-09.

Moret, B. M., Nakhleh, L., Warnow, T., Linder, C. R., Tholse, A., Padolina, A., Sun, J.,
and Timme, R. (2004). Phylogenetic networks: modeling, reconstructibility, and accu-
racy. IEEE/ACM Transactions on Computational Biology and Bioinformatics (TCBB),
1(1):13–23.

Morrison, D. A. (2011). Introduction to phylogenetic networks. RJR Productions.

Morrison, D. A. (2013). The genealogical world of phylogenetic networks: Different
topological restrictions of rooted phylogenetic networks. which make biological sense?
URL http://phylonetworks.blogspot.com.es/2013/03/different-topological-restrictions-
of.html.

Morrison, D. A. (2014). The genealogical world of phylogenetic networks: The first hgt net-
work. URL http://phylonetworks.blogspot.com.es/2014/04/the-first-hgt-network.html.

Nakhleh, L. (2004). Phylogenetic networks.

Nakhleh, L. (2010a). Evolutionary phylogenetic networks: models and issues. In Problem
solving handbook in computational biology and bioinformatics, pages 125–158. Springer.

Nakhleh, L. (2010b). A metric on the space of reduced phylogenetic networks. IEEE/ACM
Transactions on Computational Biology and Bioinformatics (TCBB), 7(2):218–222.

Nakhleh, L. (2013). Computational approaches to species phylogeny inference and gene
tree reconciliation. Trends in ecology & evolution, 28(12):719–728.

Nakhleh, L., Ruths, D., and Innan, H. (2009). Gene trees, species trees, and species
networks.

Nakhleh, L., Ruths, D., and Wang, L.-S. (2005). Riata-hgt: a fast and accurate heuristic
for reconstructing horizontal gene transfer. In Computing and Combinatorics, pages
84–93. Springer.

Nei, M. (1987). Molecular evolutionary genetics. Columbia university press.

Nieberding, C., Jousselin, E., Desdevises, Y., et al. (2010). The use of co-phylogeographic
patterns to predict the nature of host–parasite interactions, and vice versa. The bio-
geography of host-parasite interactions, pages 631–641.

Nikolaidis, N., Doran, N., and Cosgrove, D. J. (2014). Plant expansins in bacteria and
fungi: evolution by horizontal gene transfer and independent domain fusion. Molecular
biology and evolution, 31(2):376–386.

Ochman, H., Lawrence, J. G., and Groisman, E. A. (2000). Lateral gene transfer and the
nature of bacterial innovation. Nature, 405(6784):299–304.

Oldman, J., Wu, T., van Iersel, L., and Moulton, V. (2016). Trilonet: Piecing together
small networks to reconstruct reticulate evolutionary histories. Molecular biology and
evolution, page msw068.

Otto, S. P. and Day, T. (2007). A biologist’s guide to mathematical modeling in ecology
and evolution, volume 13. Princeton University Press.

138

BIBLIOGRAPHY

Page, R. D. (1994). Maps between trees and cladistic analysis of historical associations
among genes, organisms, and areas. Systematic Biology, 43(1):58–77.

Page, R. D. and Charleston, M. A. (1998). Trees within trees: phylogeny and historical
associations. Trends in Ecology & Evolution, 13(9):356–359.

Paten, B., Herrero, J., Fitzgerald, S., Beal, K., Flicek, P., Holmes, I., and Birney, E.
(2008). Genome-wide nucleotide-level mammalian ancestor reconstruction. Genome
research, 18(11):1829–1843.

Plotree, D. and Plotgram, D. (1989). Phylip-phylogeny inference package (version 3.2).
cladistics, 5:163–166.

Poggio, S., Abreu-Goodger, C., Fabela, S., Osorio, A., Dreyfus, G., Vinuesa, P., and
Camarena, L. (2007). A complete set of flagellar genes acquired by horizontal transfer
coexists with the endogenous flagellar system in rhodobacter sphaeroides. Journal of
bacteriology, 189(8):3208–3216.

Polz, M. F., Alm, E. J., and Hanage, W. P. (2013). Horizontal gene transfer and the
evolution of bacterial and archaeal population structure. Trends in Genetics, 29(3):170–
175.

Purves, W. K., Orians, G. H., Sadava, D., and Heller, H. C. (2003). Life: The Science of
Biology: Volume III: Plants and Animals, volume 3. Macmillan.

Ranwez, V., Scornavacca, C., Doyon, J.-P., and Berry, V. (2015). Inferring gene duplica-
tions, transfers and losses can be done in a discrete framework. Journal of mathematical
biology, pages 1–34.

Rasmussen, M. D. and Kellis, M. (2012). Unified modeling of gene duplication, loss, and
coalescence using a locus tree. Genome Research, 22(4):755–765.

Robinson, D. F. (1971). Comparison of labeled trees with valency three. Journal of
Combinatorial Theory, Series B, 11(2):105–119.

Ronquist, F. (1995). Reconstructing the history of host-parasite associations using gener-
alised parsimony. Cladistics, 11(1):73–89.

Saitou, N. and Nei, M. (1987). The neighbor-joining method: a new method for recon-
structing phylogenetic trees. Molecular biology and evolution, 4(4):406–425.

Scornavacca, C., Paprotny, W., Berry, V., and Ranwez, V. (2013). Representing a set of
reconciliations in a compact way. Journal of bioinformatics and computational biology,
11(02):1250025.

Seehausen, O., Terai, Y., Magalhaes, I. S., Carleton, K. L., Mrosso, H. D., Miyagi, R.,
van der Sluijs, I., Schneider, M. V., Maan, M. E., Tachida, H., et al. (2008). Speciation
through sensory drive in cichlid fish. Nature, 455(7213):620–626.

Semple, C. (2006). Hybridization networks.

Semple, C. and Steel, M. A. (2003). Phylogenetics, volume 24. Oxford University Press
on Demand.

Szöllősi, G. J., Tannier, E., Lartillot, N., and Daubin, V. (2013). Lateral gene transfer
from the dead. Systematic biology, 62(3):386–397.

139

BIBLIOGRAPHY

To, T.-H. and Habib, M. (2009). Level-k phylogenetic network can be constructed from a
dense triplet set in polynomial time. arXiv preprint arXiv:0901.1657.

To, T.-H. and Scornavacca, C. (2015). Efficient algorithms for reconciling gene trees and
species networks via duplication and loss events. BMC genomics, 16(Suppl 10):S6.

Todd, J. D., Curson, A. R., Sullivan, M. J., Kirkwood, M., and Johnston, A. W. (2012).
The ruegeria pomeroyi acui gene has a role in dmsp catabolism and resembles yhdh of
e. coli and other bacteria in conferring resistance to acrylate. PLoS One, 7(4):e35947.

Tofigh, A., Hallett, M., and Lagergren, J. (2011). Simultaneous identification of duplica-
tions and lateral gene transfers. IEEE/ACM Transactions on Computational Biology
and Bioinformatics (TCBB), 8(2):517–535.

Van Iersel, L., Keijsper, J., Kelk, S., Stougie, L., Hagen, F., and Boekhout, T. (2009a).
Constructing level-2 phylogenetic networks from triplets. IEEE/ACM Transactions on
Computational Biology and Bioinformatics (TCBB), 6(4):667–681.

van Iersel, L. and Kelk, S. (2011). Constructing the simplest possible phylogenetic network
from triplets. Algorithmica, 60(2):207–235.

Van Iersel, L. and Kelk, S. (2011). When two trees go to war. Journal of theoretical
biology, 269(1):245–255.

van Iersel, L., Kelk, S., Lekić, N., and Scornavacca, C. (2014). A practical approxima-
tion algorithm for solving massive instances of hybridization number for binary and
nonbinary trees. BMC bioinformatics, 15(1):1.

Van Iersel, L., Kelk, S., and Mnich, M. (2009b). Uniqueness, intractability and exact
algorithms: reflections on level-k phylogenetic networks. Journal of Bioinformatics and
Computational Biology, 7(04):597–623.

Van Iersel, L., Kelk, S., Rupp, R., and Huson, D. (2010a). Phylogenetic networks do not
need to be complex: using fewer reticulations to represent conflicting clusters. Bioin-
formatics, 26(12):i124–i131.

van Iersel, L. and Moulton, V. (2014). Trinets encode tree-child and level-2 phylogenetic
networks. Journal of mathematical biology, 68(7):1707–1729.

Van Iersel, L., Semple, C., and Steel, M. (2010b). Locating a tree in a phylogenetic
network. Information Processing Letters, 110(23):1037–1043.

Vernot, B., Stolzer, M., Goldman, A., and Durand, D. (2008). Reconciliation with non-
binary species trees. Journal of Computational Biology, 15(8):981–1006.

Wang, J., Guo, M., Xing, L., Che, K., Liu, X., and Wang, C. (2013). Bimlr: A method
for constructing rooted phylogenetic networks from rooted phylogenetic trees. Gene,
527(1):344–351.

Warnow, L. N. J. S. T., Linder, C. R., and Tholse, B. M. M. A. (2003). Towards the
development of computational tools for evaluating phylogenetic network reconstruction
methods. In Proc. Eighth Pacific Symp. Biocomputing (PSB’03), pages 315–326.

Willson, S. (2011). Regular networks can be uniquely constructed from their trees.
IEEE/ACM Transactions on Computational Biology and Bioinformatics (TCBB),
8(3):785–796.

140

BIBLIOGRAPHY

Willson, S. J. (2010). Properties of normal phylogenetic networks. Bulletin of mathematical
biology, 72(2):340–358.

Willson, S. J. (2013). Reconstruction of certain phylogenetic networks from their tree-
average distances. Bulletin of mathematical biology, 75(10):1840–1878.

Wu, Y. (2013). An algorithm for constructing parsimonious hybridization networks with
multiple phylogenetic trees. Journal of Computational Biology, 20(10):792–804.

Yu, Y. and Nakhleh, L. (2015). A maximum pseudo-likelihood approach for phylogenetic
networks. BMC genomics, 16(10):1.

Yue, J., Hu, X., Sun, H., Yang, Y., and Huang, J. (2012). Widespread impact of horizontal
gene transfer on plant colonization of land. Nature communications, 3:1152.

Zhang, L. (1997). On a mirkin-muchnik-smith conjecture for comparing molecular phylo-
genies. Journal of Computational Biology, 4(2):177–187.

141

	Introduction
	Preliminaries
	Graphs
	Some biological concepts
	Trees and networks in phylogenetics
	Newick notation for trees and networks
	Decomposition of trees and networks
	Classification of phylogenetic networks
	Topological restrictions
	Metrics on phylogenetic networks
	Phylogenetic networks reconstruction
	Reconciliation between gene trees and species trees

	LGT networks
	Introduction
	LGT networks
	LGT networks generalize species graphs
	Other models for LGT events
	An extension of Robinson-Foulds metric for LGT networks

	A reconstruction problem for LGT networks based on trees
	Introduction
	Secondary and reduced subtrees
	Subtree prune and regraft on LGT networks
	LGT network reconstruction problem
	Restricted LGT networks
	Computational experiments
	Some technical proofs

	A reconstruction problem for LGT networks based on tri-lgt-nets
	Introduction
	Decomposition of a binary arc-node LGT network
	Redundant arcs and coverings
	Characterization of partial coverings of a redundant arc
	Temporal consistency and minimum LGT network

	A reconciliation problem between gene trees and LGT networks
	Introduction
	Parsimonious reconciliations between gene trees and species trees
	Reconciliation between gene trees and species networks
	The best tree displayed by an LGT network
	The best reconciliation with the LGT network

	Conclusions and future work
	Bibliography

