
 
 
 

 
 
 
 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

DEPL

D

LOYING
TRAFF

Salv

DOCTO

G AN IM
FIC QO

vador A

 
 

ORAL T
2015

MPROV
OS OVE

  
 

 
Alcaraz

THESIS

VEMEN
ER DIFF

z Carra

S 

NT FOR
FSERV

asco 

R WEB 
V 





 
 
 

 

 
 
Th
Th
Th
 
Do
 

Doc

DEPL

esis Su
esis Su
esis tu

octor by

D

toral P
Comm

LOYING
TRAFF

Salv

upervis
upervis

utor: Dr

y the U

DOCTO

Program
munica

G AN IM
FIC QO

vador A

sor: Dr
sor: Dr
r. Carlo

Univers

 
 

ORAL T
2015

 
mme of
ations 

 

MPROV
OS OVE

 
  
 
 

Alcaraz
 

r. Carlo
ra. Katj
os Juiz

sitat de

THESIS

f Inform
Techno

VEMEN
ER DIFF

z Carra

os Juiz
a Gilly
 

e les Ille

S 

mation
ology  

NT FOR
FSERV

asco 

y 

es Bale

 and 

R WEB 
V 

ears 



ii



Dedicated to my friend Javi, there where you are

iii



iv



Acknowledgments

I would like to thank Prof. Ramon Puigjaner, my thesis supervisors Dr. Carlos

Juiz and Dr. Katja Gilly, and of course, Magdalena, Celia and Lućıa.
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Abstract
DiffServ architecture has been widely used to accomplish the QoS requirements in

the Internet. Traditionally, the DiffServ framework includes two devices, edge and

core. Regarding the processes, DiffServ usually needs a two colours marking process

to characterise the incoming traffic in the edge device, and then, the scheduling pro-

cess at the core device forwards the coloured packets to different queues attending to

priority rules. Furthermore, web traffic continues being one of the most important

protocols in Internet, and must coexist with other new protocols and applications.

New proposals must be developed to enhance the QoS features of this type of In-

ternet traffic. Following these trends, we investigate the differentiated treatment for

web traffic. The web flow analysis shows that this type of Internet traffic is very

close to the mice and elephants paradigm, well known in the Internet traffic. On

the other hand, the user perceived Quality of Service is a deciding factor to achieve

the success of certain website. Our proposal, named LFP (Long Flow Promotion),

aims for the above features based on a DifFServ architecture. It uses a three colour

set to differentiate the incoming traffic at the edge device. It also introduces the

token bucket model as a traffic detection mechanism and packet promotion. Finally,

the last implemented key is the extremely long flows detection and isolation, which

is related to the packet penalisation, that focuses on enhancing the overall perfor-

mance of the DiffServ system by managing the web traffic. The proposed algorithm,

Long Flow Promotions (LFP), has been tested by simulation using ns2. It has been

compared with other well-known proposals such as RED and DropTail and some per-

formance parameters are been analysed, such as: latency, dropped packets, overhead

and throughput. LFP gets reasonable values for the performance improvements we

introduce in the algorithm compared to the other proposals.
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Resumen
La arquitectura DiffServ ha sido utilizada para proporcionar los requerimientos de

QoS en Internet. Tradicionalmente, el entorno DiffServ incluye dos dispositivos, de-

nominados core y edge. En relación al proceso, DiffServ ha utilizado habitualmente

dos colores en el proceso de marcado del tráfico entrante al dispositivo edge, y poste-

riormente, el dispositivo core ha retransmitido los paquetes coloreados por diferentes

colas atendiendo a criterios de prioridades. Por otro lado, aunque el tráfico web con-

tinua siendo uno de los protocolos más importantes en Internet, tiene que coexistir

con otros protocolos y aplicaciones nuevas. Por lo tanto, nuevas propuesta deben ser

desarrolladas para mejorar las caracteŕısticas de QoS sobre este tipo de tráfico. Con-

tinuando con estas tendencias, hemos investigado un tratamiento diferenciado para

el tráfico web. El análisis del tráfico web muestra que este tipo de tráfico coincide

mucho con el paradigma de las elefantes y ratones, bien conocido en Internet. Y por

otro lado tenemos que, la Calidad del Servicio percibida por el usuario será un factor

decisivo para conseguir el éxito de un website. Nuestra propuesta, denominada LFP

(Long Flow Prommotion) está orientada a las premisas anteriores y desarrollada so-

bre la arquitectura DiffServ. Utiliza un conjunto de tres colores para la diferenciación

de paquetes en el dispositivo edge. Además, introduce el modelo token bucket como

mecanismo de detección y promoción de paquetes. Finalmente, la última propiedad

en nuestra propuesta es la detección y aislamiento de flujos extremadamente largos,

muy relacionada con la penalización de paquetes, todo ello enfocado a mejorar el

rendimiento global del entorno DiffServ en el tratamiento del tráfico web. El algo-

ritmo LFP ha sido evaluado e implementado en simulación utilizando ns2. Ha sido

comparado con otras propuestas habituales como son DropTail y RED, y han sido

analizados algunos parámetros de rendimiento como son: latencia, descarte de pa-

quetes, sobrecarga y productividad. LFP obtiene un comportamiento razonable para

algunos parámetros analizados y mejora algunos otros para diferentes escenarios de

tráfico.
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Resum
L’arquitectura DiffServ ha estat utilitzada per proporcionar els requeriments de QoS

en Internet. Tradicionalment, l’entorn DiffServ inclou dos dispositius, denominats

core i edge. En relació al procés, DiffServ ha utilitzat habitualment dos colors en el

procés de marcat del tràfic entrant al dispositiu edge, i posteriorment, el dispositiu

core ha retransmès els paquets acolorits per diferents cues atenent a criteris de pri-

oritats. D’altra banda, encara que el tràfic web cont́ınua sent un dels protocols més

importants en Internet, ha de coexistir amb altres protocols i aplicacions noves. Per

tant, noves proposta han de ser desenvolupades per millorar les caracteŕıstiques de

QoS sobre aquest tipus de tràfic. Continuant amb aquestes tendències, hem investi-

gat un tractament diferenciat per al tràfic web. L’anàlisi del tràfic web mostra que

aquest tipus de tràfic coincideix molt amb el paradigma de les elefants i ratolins, ben

conegut en Internet. I d’altra banda hem de, la Qualitat del Servei percebuda per

l’usuari serà un factor decisiu per aconseguir l’èxit d’un website. La nostra proposta,

denominada LFP (Long Flow Prommotion) està orientada a les premisses anteriors

i desenvolupada sobre la arquitetura DiffServ. Utilitza un conjunt de tres colors per

a la diferenciació de paquets en el dispositiu edge. A més, introdueix el model to-

ken bucket com a mecanisme de detecció i promoció de paquets. Finalment, l’última

propietat en la nostra proposta és la detecció i äıllament de fluxos extremadament

llargs, molt relacionada amb la penalització de paquets, tot això enfocat a millorar

el rendiment global de l’entorn DiffServ en el tractament del tràfic web. L’algorisme

LFP ha estat avaluat i implementat en simulació utilitzant NS2. Ha estat comparat

amb altres propostes habituals com són DropTail i RED, i han estat analitzats alguns

paràmetres de rendiment com són: latència, descarti de paquets, sobrecàrrega i pro-

ductivitat. LFP obté un comportament raonable per a alguns paràmetres analitzats

i millora alguns altres per a diferents escenaris de tràfic.
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Chapter 1

Introduction

When users are browsing the Internet, they are generating multiple types of flows

depending on the websites that they are visiting or the data they are requesting. From

the point of view of the generated pages size, we can find very different types of pages:

small pages (some bytes), updating web 2.0 pages (some tens of bytes), medium size

pages (some hundreds of bytes), database queries (some Kilobytes) and downloaded

files (up to gigabytes). Although web users know that the download time for each

type of flow will be different depending on the flow size, they expect to download it as

fast as possible, and if they perceive an excessive delay in a certain website, probably,

they will swap to other faster website. This issue may mean problems for a website as

it will loose popularity. From the point of view of the quality of service, websites try

to provide the fastest response in terms of delay and web user perception, as possible.

As we have mentioned above, the size of flows is very variable from very short to

extremely long flows. Every flow of the website shares the same network resources:

web servers, links, internetworking devices, etc, and it is necessary to establish some

mechanism to distinguish each type of flow. Nowadays, the QoS implemented on the

websites is developed over the DiffServ framework with the standard devices: edge

and core. The first device, the edge, is placed as a border device and dedicated to

classify the incoming packets by marking them with different colours. The second

device, the core, is placed in the core of the network, and its main function is the

packets scheduling according to the previous labels that the edge device set into the

3
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packet header. With these two functions, websites implement their own QoS policies.

The packets colouring is based on two colours: green and red. Packets that need to

receive the highest priority are marked as green, therefore, the rest of the packets,

those packets that do not need to receive so high priority, will be marked as red, and

therefore, will receive a lower priority at the core device.

With the above specifications, and considering that the packets processing at the

edge and the core devices is done at network level, the final size of flows is unknown,

therefore, the only possible mechanism to implement is through a flow size threshold:

when the size of a flow is lower than a certain threshold, it receives the highest priority

level, and therefore, the rest of flows receive the lowest priority level because they

are treated as long flows. In order to illustrate the scenario, if we have configured a

threshold of 13 Kilobytes, with the above specification, flows smaller than 13 Kilobytes

will receive always the highest priority treatment. On the other hand, flows higher

than the threshold, will receive always, the lowest priority.

Our first question is: how could we avoid a penalisation of flows whose size is close

to the threshold? With the traditional proposals, flows that are a little longer than

the threshold would be sent to the lowest priority queue. For example, flow sizes of

13.5 Kilobytes will receive the lowest priority.

In this thesis, we are looking for increasing the adaptability of this threshold. For

this reason, we have added the packets promotion term to the DiffServ framework.

Measuring the total incoming traffic to the DiffServ system, we propose to promote

some long flows, from a low to a high priority status. With the last promotion

operation, we fall in our second question: How many flows can we promote while

keeping a suitable system performance?. For this target, we have added the token

bucket mechanism to model the packets promotion in the QoS system. Obviously, we

need to regulate the packets promotion: if we promote too many packets from long

flows, they will affect over short flows, and the overall performance will be degraded.

On the other hand, if we do not promote packets or promote too few packets, the

mechanism will be negligible.

Once we have developed our promotion mechanism, the third question raised: are

we promoting some flows that do not need to be promoted?. To solve this question,
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we propose another threshold to detect those extremely long flows.

And our last question is: How can we make the extremely long flows threshold

adaptive?. In order to answer, we propose an adaptive threshold to differentiate

extremely long flows that will be computed from an historic record of recent past

flows the QoS system.

Finally, in order to compare the performance of our proposal with other solutions,

we have selected other algorithms as Short Flow Differentiation (SFD), Random Early

Detection (RED) and DropTail to run in the same architecture and with the same

simulation conditions.
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Chapter 2

Background and related work

The enhancing of the QoS of web traffic can be done considering multiple points of

view but we have identified three main aspects that are depicted in the mind map of

the Figure 2.1 in order to organise the analysis: features, foundations and proposals.

The above three characteristics are interconnected with each other in such a way that

certain well know features, such as, pattern traffic classification are directly related

to some foundations, i.e., DiffServ architectures, and finally, close to classical flow

differentiation.

2.1 Basics and foundations

In this section, we will briefly detail the foundations that support the QoS in

general. We have analysed them from several points of view, starting by a brief

summary of the QoS foundations and terminology. The DiffServ architecture and

the token bucket model are also described in this section because they are widely

developed in the QoS context and this thesis is based on these two concepts. Finally,

we deal with the most import facts related to AQM in the QoS from the web traffic

management perspective.

7



8 Chapter 2: Background and related work

QoS on
Web Traffic

Features

Mice and
elephants

Heavy-
tailed

Self-
similarity

Burstiness

End-users

Foundations

QoS

Surveys

Tools

DiffServ

Marker

Shaper

Meter

Scheduling

Token
Bucket

Others

Proposals
Flows dif-
ferentiation

Control
theoryOthers

AQM

RED

Blue DropTail

Others

Figure 2.1: Different characteristics of the QoS.
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2.1.1 Quality of Service

QoS engineering addresses the technical issues raised by the appearance of new

types, classes and qualities of Internet services. Everyday, new services and more

traffic demands are required to be supported by the Internet infrastructure. QoS

issues have been widely analysed from the early days of Internet in multiple surveys

and studies that explain the components, frameworks and characteristics of the solu-

tions proposed by the researchers. In this section, we review the literature that has

either a connection to QoS in general or some individual technique that is used in

this dissertation.

The terms and frameworks for supporting QoS were developed on the early 90s.

The first applications were oriented to get a framework that permits the multimedia

data to achieve a certain transmission quality level. Some of those first papers that

we can find are [96, 36, 55, 16, 39]. They introduced the first effort to apply to the

Internet the novel technology recently developed in those years.

The first paper that details the QoS principles is [6], where the QoS terminology

in the context of distributed multimedia systems is described. This is one of the most

detailed exposition about the QoS architectures that have emerged in the literature.

This work addresses the QoS from threes points of view: principles, specification and

mechanisms.

Regarding the QoS principles, there are several issues identified in the QoS speci-

fication:

• The transparency principle indicates that applications should be shielded from

the complexity of the underlying QoS specification and QoS management. The

target of this principle is to reduce the embedded QoS functionality over the

application level in such a way that the QoS functionality is developed in the

internetworking devices such as routers and switches.

• The integration principle states that each layer of the Open System Intercon-

nection (OSI) must collaborate to achieve the QoS requeriments. From the

Application to the Physical layer, flows go down through the different resources
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and protocols and each resource module must provide its own QoS characteris-

tics.

• The separation principle establishes that data transfer, control and management

are network tasks which are functionally separated, and these tasks should be

separated in the QoS architecture framework.

• Multiple time scales principle states that there are different time scales for each

process (e.g., routing protocols, scheduling, QoS management, etc.).

• The performance principle subsumes a variety of agreed rules for the implemen-

tation of QoS communication systems.

The QoS specification is concerned with QoS application-level and management

policies. QoS specification is generally different for each QoS system and it is used to

configure the QoS mechanisms located at the end-system and network. These QoS

specification could be summarised as follows:

• Flow performance specification, related to the specification of different traffic pa-

rameters as: jitter, throughput, delay, packet loss, etc. Obviously, the selection

of the most important traffic parameters depends on the QoS system.

• Level of service, which establishes the degree of the end-to-end resource com-

mitment required.

• QoS management policy, which states the degree of QoS adaptation than flows

can tolerate and the actions to be taken in case of not accomplishing the level

of service.

• Cost of service, related to the price that users pay by this service.

• Flow synchronisation specification, when it is necessary the synchronisation

between several flows.

Aurrecoechea et al. developed a wide QoS specification by proposing the QoS

mechanisms that a QoS system must provide and include in their architecture. In
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this document, QoS mechanisms are divided into three categories: provision, control

and management mechanisms.

Regarding to the QoS provision mechanisms, they must provide the following func-

tions:

• QoS mapping, which connects the QoS specifications between different levels

depending on the required services, for example, at transport level to accomplish

a certain parameter, such as delay, jitter, etc.

• Admission testing by controlling the resouces required by the incoming traffic

to the QoS system.

• Resource reservation protocols, that are related to the resource provisioning

and closely connected with mapping and admission testing.

Next, the QoS control mechanisms are presented, which are related to the devices

and networking media and manage the time parameters. The QoS control mechanisms

comprise the followings functions:

• Flow scheduling that deals with flow forwarding, queue management and schedul-

ing policies at the appropriate network devices, such as core devices in the

DiffServ environment.

• Flow shaping, which is used to regulate the incoming traffic to accomplish the

QoS specification, for example, peak rate and burstiness.

• Flow policing, which is applied for monitoring tasks. The monitoring operation

can be associated to the QoS management, controlling the agreement contract

between provider and client.

• Flow control, which classifies the flow control in two categories: open-loop flow

control for telephony networks and closed-loop flow control where the sender

rates can be adjusted based on the receiver feedback.

• Flow synchronisation, which is related to the event ordering and multimedia

interactions.
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And finally, the QoS management mechanisms, that are used for supervision tasks

ensuring that the QoS contracted is guaranteed. The following management mecha-

nisms are proposed:

• QoS monitoring in different networking levels and time scales, scheduling poli-

cies, flow shaping and other control mechanisms that have been introduced

above.

• QoS availability, which allows to specify the interval over some performance

parameters are examined.

• QoS degradation, regarding to the impossibility to achieve the QoS contracted.

It is often used in the client side providing other lower QoS levels.

• QoSmaintenance, comparing the expected QoS performance with the QoS mon-

itored.

• QoS scalability.

On the late 90s, we can also find papers that are more specifically related to

switched packet networks. For example, Guerin et al. [42] reviewed the basic mecha-

nisms used to support QoS features in packets networks, focusing on the analysis of

the different scheduling and buffer management mechanisms. The study emphasised

the need of adapting solutions for different environments where the QoS is deployed

and finally, points out the idea that multiple mechanisms can coexist in the same net-

work resource in order to guarantee the end-to-end QoS. From the first steps of the

QoS technology, the different subjects involved have demanded different service re-

quirements, structuring the Internet traffic over different traffic classes and therefore,

demanding different levels of quality of service for each traffic class. Other interesting

study of that decade was Xiao et al. [104], where they presented a big review of the

emergent technologies in that time: Resource Reservation Protocol (RSVP), DiffServ,

Multiprotocol Label Switching (MPLS). They discussed the available implementation

of these technologies and the emerging problems.
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The most important research contribution in the QoS development was produced

in the early 2000. In particular, for switched packet networks, we can find multiple

contributions such as Bauer et al. [9], Lu et al. [60] and Goldsmith et al. [41].

Other up-to-date study related to the QoS architecture was Zhou et al. [110]. In

this paper it was stated a wide variety of approaches and metrics to deal with the

problem and many QoS points of view are developed. In this sense, this work set

up three categorisations to classify the whole QoS problem. The first category was

related to the locations where QoS features are applied, that are the server, the proxy

and the network side. Specifically, at the network side, the QoS differentiation was

mainly based on the DiffServ architecture, that performed the flow differentiation

in both the edge and core devices. The QoS differentiation approaches were also

categorised regarding policies such as admission control, resource management and

content application. And finally, the third category was based on the implementation

level, such as the application and kernel level.

The Next Generation Networks (NGN) technology was launched by the International

Telecommunication Union (ITU) and European Telecommunications Standards In-

stitute (ETSI) as a method for establishing convergence of Internet Protocol (IP)

communications. Although this new networking concept was mainly focused on the

wireless technology, the traditional QoS concepts and methods continue being abso-

lutely valid as we can observe in references [69, 95, 91, 73].

The mathematical models that support QoS methods are out of the scope of this

thesis. For this reason, we recommend some references to complete the QoS review

[35]. There are also multiple books and manuals related to QoS where the general

concepts, trends and techniques are explained [34, 87, 102, 5, 101, 83].

2.1.2 DiffServ

DiffServ is a networking architecture which defines a simple and scalable mecha-

nism for classifying and managing network traffic providing QoS. The first document

about DiffServ was published in December 1998 by the Internet Engineering Task

Force (IETF) [11], and it defines a framework that supports a scalable form of QoS.
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DiffServ operates at class level, where a class is an aggregate of many such flows.

For example, a class might include packets coming from a set of source addresses or

packets of a certain size. DiffServ architecture is based on the basic Internet philoso-

phy, where the complexity is relegated to the edge device while preserving simplicity

of the core device. Per-hop behaviour (PHB) policies have been standardised in two

classes by the IETF: Expedited Forwarding (EF) [53] and Assured Forwarding (AF)

[47]. The main goal of the PHB-AF is to deliver the packets reliably. It is suitable for

non-real time services such as Transport Control Protocol (TCP) applications. Other

remarkable reference in this area is the RFC 3246 [27] which states features related

to low-loss and low-latency traffic.

The main contribution of the DiffServ framework was the packet marking. This

characteristic includes IP-layer marking at the edge device under a certain criteria.

After packets are marked, the second task is scheduling at the core device, where

packets are sent to different queues by following the appropriate scheduling policies.

There is a wide literature about how packets are marked at the core device. A three-

level colouring was defined by Mo [67], that achieves a fair bandwidth distribution

mechanism in a DiffServ network. Yeom et al. [107] detailed a simple scheme for

improving the service provided to a receiving-intensive application by transferring

resources to the edge of the network on the sender’s side, and they also studied

the impact of this sender’s side marking strategy and the receiver’s willingness to

pay for resources when achieving QoS goals of individual flows. Mellia et al. [65]

considered an alternative strategy to RED with IN and OUT drop probability (RIO),

in which packets are marked based on the state of individual TCP flows. Rossi et

al. [82] offered a simulation study of Hypertext Transfer Protocol (HTTP) traffic

over a DiffServ architecture. This study analysed the HTTP performance in different

congestion scenarios, when the reserved bandwidth is able to support the offered

traffic (overprovisioned) and, in the opposite case, when the reserved bandwidth is

not able to support the HTTP offered traffic (underprovisioned). They concluded

on their study that the DiffServ AF was able to achieve the compromised QoS in a

overprovisioned context, while the compromised bandwidth was not guaranteed in a

underprovisioned context when the fairness was divided among short and long flows.
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These results illustrated the idea that it was important to establish a differentiation

between short and long flows in order to avoid an unfair sharing of the available

bandwidth.

After the DiffServ architecture was proposed and during the 2000 decade, different

proposals appeared oriented to improve the QoS using this new architecture. One of

the firsts was Xiang et al. [103]. They proposed a packet classification and dynamic

queue management based on DiffServ and RED queue management. The simulation

results show that this algorithm consumes less network resources than RED and it

also improves the fairness among different types of flows. During this decade, some

new network services appeared and the discussion was oriented towards introducing

QoS in DiffServ. In this context, Tsolaku et al. [97] prepared a detailed study of the

network services defined and deployed within the DiffServ architecture and they also

proposed four more variations. They concluded that the traffic handling mechanisms

were suitable for the proposed network traffic services.

Insisting on the idea of fairness regarding the bandwidth distribution between short

and long flows, there are many references in the literature. Siris et al. [86] analysed

the fairness consequence of the network sharing. Their contribution was implemented

at the network edge, proposing a simple adaptive marker in this node. In this work,

they proposed a bandwidth broker architecture where this element drives the control

parameter inside the marker function based on the current traffic conditions. The

concept of packets marking at the edge device and the unfairness problem produced

in a DiffServ architecture were also covered by Elshaikh et al. in [31]. Where they

proposed an improved version of the time sliding window three color marker. In

this version, they included traffic adaptability mechanisms and improved the results

obtained by previous algorithms such as srTCM [48], trTCM [49] and ItswTCM [90],

in terms of fairness.

From the early days of the DiffServ development until nowdays, the DiffServ ar-

chitecture continues being valid and used in most of the QoS systems at the Internet

Service Provider (ISP), as we can confirm in the next references where new proposals

based on packets coloring and the unfairness share problem are analysed in [92, 3, 59].

As it was mentioned in the last section, the mathematical model is out of the scope
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of this thesis, however there are many studies related to the DiffServ and packets

differentiation such as [70].

2.1.3 Token bucket

The token bucket model was defined in RFC 1363 [76] as a flow specification in

Internet and mainly used in DiffServ. The token bucket traffic shaper is one of the

most important traffic conditioners that we can find in QoS architectures and it is

defined with two parameters: Committed Information Rate (CIR) and Committed

Burst Size (CBS). The main function of the traffic shaper is to avoid the traffic

peaks that overload devices and, therefore, introduce an excessively traffic delay in

bursty traffic environments. Regarding the token bucket traffic conditioners, we can

find multiple versions of the original model. For example, the proposal of Tang et

al. [78], that adds a new queue to the original token bucket model to accommodate

those packets that are not able to be delivered because there are not enough tokens

at the bucket. This new queue has a smoothing effect over the incoming traffic and

permits to accommodate certain non conforming traffic. Other researchers as Yang

et al. [105] demonstrated that the QoS weakly guarantees the service quality when

the token bucket profile produces a hard coupling between the average rate control

and the burst size control. For this reason, their proposal decouples the long term

average rate control from the burst size control. This solution improved the QoS level

for conforming traffic compared to the traditional token bucket specification.

The token bucket marker and DiffServ architecture are closely related when it

is needed to count the incoming traffic to accommodate the traffic to the contract

conditions (Service Level Agreement (SLA)) or any other constraints. The token

bucket model is usually set up at the edge devices, where incoming packets are marked.

In this sense, Park et al. [75] proposed an adaptive token bucket algorithm to solve

the unfairness share among aggregate flows in DiffServ networks, and they proposed

to adjust the target establishing a feedback mechanism edge-to-edge and any other

additional signalling protocol or measurement. Their simulation proposal provided

fair sharing bandwidth over different scenarios and network conditions.
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As it has been mentioned previously, the token bucket operation had been widely

analysed in many studies considering the individual point of view of each device in

the token bucket model. That is, the marking process at the edge and the scheduling

task at the core device, and the effect over the specific token bucket parameters, such

as CIR and CBS. Sue et al. [89] analysed the combined effect of both processes

and proposed a model that connect the CIR, CBS, Round Trip Time (RTT) and the

packet dropping at the core device. They validated the model through simulation

and confirmed the fairness effect in the bandwidth share.

Recent applications of token bucket marker that improve the perceived customers

quality of service can be found in Farmet et al. [33].

There are also several analytical models describing the token bucket model such

as [2, 88].

2.1.4 AQM

Each application protocol in Internet generates a different traffic workload. Each

type of traffic normally shares the same First In First Out (FIFO) queue at the

switching and routing nodes. If queues are allowed to drop packets only during over-

flow conditions, then bursty traffic flows will face greater dropping probabilities than

smooth traffic flows [26]. For this reason, it is necessary to develop more sophis-

ticated queue management that avoid this drawback. The most important AQM

mechanism was proposed by Floyd et al. in [38]. They proposed the RED algorithm

that focuses on detecting and avoiding congestion in networks and the global synchro-

nisation problem which is very pernicious in switched packet networks. With RED

queue management, packets are dropped with a certain probability before the queue

reaches an overflow state.

Before the implementation of RED as a standard in the switched packet networks,

DropTail was the only available mechanism to schedule packets in the switched net-

works. DropTail is mainly based on FIFO queue management and it is not able to

accommodate different types of flows to achieve any QoS. The advantage of RED

over DropTail was analysed by Brandauer et al. in [13]. This advantage is mainly
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because RED does not permit an excessive queue length, especially during peak load

and congestion conditions. This feature allows to accommodate bursts of packets into

the available queue and, hence, to achieve an overall performance improvement of the

shared network.

The original RED version has been widely used to improve the web traffic per-

formance [12, 21]. In fact, several versions of the original RED algorithm have been

proposed. For example, Claypool et al. [23] presented SHort-Lived flow friendly

RED (SHRED), that uses an edge hint to indicate the congestion window size in each

packet that is sent by the flow source or by an edge router. SHRED drops more often

packets from long-lived flows than from short-lived flows. By contrast, Altman et

al. [4] considered three variants of RED and compared them to a DropTail buffer:

standard RED, adaptive RED [37] and a gentle option of RED. Wang et al. [100]

proposed Subsidised RED (SRED) that targets short-lived or fragile flows to keep

the link utilisation high, while reducing the average flow response time. Effective

RED (ERED) was proposed by Abbasov et al. in [1], and aims to reduce packet loss

rates in a simple and scalable manner. Long et al. [57] conducted an empirical study

of the effects of AQM policies on the distribution of response times by comparing

three schemes: Proportional Integrator, Random Exponential Marking (REM) and

Adaptive RED.

2.2 Web traffic features

Since the World Wide Web (www) was developed by Tim Berners-Lee [10] working

at CERN, in Geneva, the HTTP has been the communications protocol most widely

used in Internet [77, 24, 99]. Different applications (kazaa, P2P, Ajax, Youtube, etc.)

and features (web 2.0) have been recently added to the Internet traffic, nevertheless

the latest studies show that web traffic is still the most usual data flow in Internet

[51, 28, 79, 93]. At the early stages, web traffic was composed of static and small

pages that used to contain a few objects. Later, database queries, dynamic pages and

some ad-hoc objects based on flash technology were added to web traffic, that meant

an increase in the web pages size and, hence, more packets per flow. Nowadays, web
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traffic implies that many technologies have to act together and interconnect the web

around the world [50, 80]. Although HTTP does not provide any QoS, different web

users share the available bandwidth and the network resources of the ISP. In this

context, small web pages requested from clients coexist with video streaming and

database queries.

Some of the most accepted parameters are related below: flow size, duration,

burstiness and rate. These parameters have been used to make up different flow

classifications comparing each type of flow with a different animal attending to their

own characteristics. The flow classification is summarised in Table 2.1.

Parameter Description Types
Size Amount of data transported Mice, elephants
Duration Time interval from the first packet until the last

packet
Dragonfly, tortoise

Burstiness Related to the packet inter-arrival time (lower than
a defined threshold)

Alpha, Beta

Rate The incoming data rate to the system Cheetahs, snails

Table 2.1: Flow classification.

Related to web traffic, five characteristics have been identified: mice and elephants

phenomenon, heavy-tailed distribution, self-similarity behaviour, burstiness and end-

users requirements.

2.2.1 Mice and elephants paradigm

As we have illustrated in the Table 2.1, Internet flows are classified into several

terms related to the analogies with certain animals. We only use those that are related

to size classification (mice and elephants).

Since the early 90s, the Internet pattern characterisation has been targeted by

many researchers. For example, Claffy et al. [22] developed a parametrisable method-

ology for profiling Internet flows with several granularities. Thompson et al. [94]

monitored and analysed the traffic over several high bandwidth backbones and the

research concluded with an extensive and detailed analysis of the Internet traffic in
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terms of packet sizes and duration. They also analysed the flow composition by several

criteria about protocols and applications, for two time scales (24 hours and 7 days).

In order to asses if the Internet pattern classification was scaled to every Internet lev-

els, Fang et al. [32] reported an study of traffic patterns among autonomous systems.

This work displayed a highly non-uniform distribution of flow traffic between a pairs

of hosts, networks and autonomous systems. They presented some numerical pattern

distributions and concluded that the top 9% of flows between autonomous systems

accounts for the 86.7% of the packets and the 90.7% of the bytes transmitted. This

work also suggested that routers need to maintain a limited QoS flow state.

Reviewing the literature, the mice and elephants terms were coined by Zhang et

al. in [109]. The mice and elephants paradigm is well documented by the scientific

community and it is described as follows: most of Internet flows carry a short amount

of traffic, while the rest of flows represent most of the traffic. These types of flows

are named mice and elephants, respectively. As the mice/elephants classification is

based on the flow size, many researchers have driven their investigations in order to

look for the bound which flows left the mice state and reach the elephant state.

The terms mice and elephants and the flow differentiation are closely linked be-

cause before proposing an specific solution for each type of flow, the first task is to

differentiate and isolate each type of flow. The flow differentiation is usually based

on DiffServ architectures and AQM solutions. Guo et al. described in [43] one of the

first analysis about the interaction between mice and elephants, by proving that mice

are defenceless against elephant flows, tending to loose the link bandwidth tipping the

scales in elephants favour. For that reason, this research established that mice flows

need a special treatment, proposing to use the RIO active queue management inside

the DiffServ architecture to give preferential treatment to short connections in a bot-

tleneck queue. They focused their analysis in heavy load scenarios and establish that

short flows need to be protected against long flows in terms of fairness and response

time. Their solution works as good as the RED scheme in terms of response time and

goodput. Guo’s proposal solved the short flows protection but this solution considers

only a fix threshold value that might not be suitable for other traffic patterns.

When flows from different nature share the same media, the unfair distribution
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of the media appears immediately, and long or persistent flows acquire more band-

width than short or non-persistent flows. Classification mechanisms must consider

this feature and propose solutions to alleviate the bandwidth sharing of short flows.

Kantawala et al. proposed in [54] a solution for the problem of large delays that pack-

ets may suffer at the router devices, mainly backbone routers under heavy congestion

traffic conditions. They proposed a more sophisticated packet schedulers that im-

prove the performance results for short flows. For example, Chait et al. [19] proposed

to classify and separate different flows into separated queues at the core routers. This

solution provides better fairness and improves the predictability, the transmission de-

lay and the better control over the QoS. The same reasoning is followed by Yilmaz et

al. [108] who proposed a class-based isolation of flows using the flow size as a criteria

to enforce the fairness when the congestion level is incipient. With this solution, they

achieved the improvement of the following features: fairness, predictability apart from

a lower transmission delay and better control of the QoS.

It has also been analysed the mice and elephant effect in Internet connections when

analysing TCP protocol measurements. Several studies have taken into consideration

that most of the TCP connections are made up of a few amount of packets. For

example, Avrachenkov et al. [7] suggested the use of scheduling algorithms which

favour short jobs, such as Least Attained Service (LAS), to differentiate between

short and long TCP flows. They proposed a packet level stateless threshold based

on a scheduling mechanism for TCP flows. This property was also considered by

Rai et al. [52] using the LAS policy to improve the response time of web traffic.

The advantages of scheduling algorithms to benefit short jobs were discussed in [44],

where they proposed to perform differentiated control over Web-based transactions

to give preferential service to short web requests. Similar to the aforementioned

works, Harchol-Balter et al. [46] proposed to give preference to those requests which

are short, or have small remaining processing requirements, in accordance with the

Shortest Remaining Processing Time (SRPT) scheduling policy.

From the theoretical point of view, the analytical model for short-lived flows has

been the focus of several studies. For example, Cardwell et al. [18] described the

steady-state throughput of TCP flows with extension to the start-up connection
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phase. Mellia et al. [64] proposed a recursive and analytical model to predict the

TCP performance in terms of completion time for short lived flows. This proposal

was based on the knowledge of the average dropping probability, the average RTT

and the flow length.

Brownlee and Claffy [14] did not only consider the mice and elephant classifica-

tion based on the flow size. They introduced the concept of network traffic streams

and suggested the ways they aggregate them into flows. They proposed a method of

measuring the Internet flows in terms of size and lifetime. According with the above

characteristic, they define the dragonflies and tortoises flow types. Therefore, a drag-

onfly must be a flow with a short cycle-live and faster. This description includes flows

that last less than 2 seconds, that according to their measurements, are about the 45

% of the total number of flows. Meanwhile, there are long-lived flows with lifetimes

of hours to days that carry a huge amount of data (about the 50-60 % of the total

number of bytes of a link). In this regard, they introduced a second term related

to the flows, the tortoise flow, as the flow that are longer than 15 minutes. They

underlined that flows can be classified from the traditional point of view, consider-

ing the parameter size, and from their point of view, considering the lifetime. They

considered that flow sizes are independent of flow characteristics, however, both are

important to understand the overall flows behaviour in Internet.

Papagiannaki et al. [74] emphasised the elephant flows effect over some network

functions such as re-routing and load balancing, where some traffic engineering ap-

plications could exploit this phenomenon treating elephant flows in a differentiated

manner. This work analysed flows bandwidth in order to detect elephant flows by

collecting the overall data of the link and classifying the flows based on both volume

and persistence in time. The main idea of the elephant classification is about the

definition of a separation threshold that elephant flows have to exceed. The initial

threshold value is identified through two different procedures:

• aest : based on the heavy tail nature in the flow bandwidth observed in the

collected data

• α-constant load : this strategy needs an input parameter corresponding to the
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fraction of total traffic that will detect the elephant class.

The conclusion of this work is that even this is a simple proposal and the clas-

sification scheme is able to detect elephant flows, it is insufficient for most traffic

engineering applications.

Also considering the elephants detection, Mori et al. [68] proposed that if we are

able to obtain an statistical approach of this type of flows, it will be very useful

for network operation and management. Using packet sampling, they proposed a

technique based on the Bayes’ Theorem to identify elephant flows. Deb et al. [29]

emphasised the fact that, even with enough bandwidth available in networks, it is

necessary a flow differentiation to avoid a poor QoS. This is the motivation for

differentiated services, specially for web traffic.

Gandouet et al. disserted in [40] about the problem of estimating the number of

elephant flows in a IP stream. Exploring some theoretical space complexity of this

problem, they concluded that it cannot be solved with a complexity less than O(n).

They proposed the LOGLOG algorithm which returns an estimator of the number of

elephants while using a small amount of memory.

As it has been summarised in Table 2.1, several researchers have classified the

Internet flows using different parameters. Lan et al. have studied in [56] the cor-

relation between each type of flow attending the parameters: size, duration, rate

and burstiness. They have found a certain correlation between some combinations

of size, rate and burstiness and they justified this correlation by the application and

transport-level protocols.

Recent Internet traffic studies, for example, Quan et al. [81] assessed and proved

that the classical mice and elephant phenomenon is valid nowadays. In this work,

the relation between mice and elephants is confirmed, finding that about 20 % of the

overall traffic is carried by long flows.

2.2.2 Heavy-tailed distributions

At the same time as researchers were focusing on the Internet traffic classification,

they were discovering evidences of the heavy-tailed pattern of the file sizes that are
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transmitted in the web traffic. One of the first studies was done by Crovella et al.

in [25], where the heavy-tailed evidence was underlined from different measurements:

file requests by users, file transmissions through the network, file transfers time, and

files saved on servers. Zhu et al. proposed in [111] a model to produce statistics for file

transfers according to the heavy tailed traffic distribution in Internet. By using this

model, they provided a natural and plausible explanation for the origin of the heavy

tail distribution in Internet, and they concluded that this feature is a permanent and

ubiquitous characteristic of Internet traffic and it does depend on each protocol or

user behaviour. More recent studies confirmed the heavy tailed characteristics of the

web traffic such as, Miller et al. [66] that analysed several logs from different web

servers and different applications (i.e. markets, bank, educational institutions) from

the point of view of the session workload. They checked that the data mining is also

dependent of session workload and they have also concluded that session workload,

follows a heavy-tailed distribution for transmitted data.

2.2.3 Self-similar behaviour

The fractal theory [62] was introduced to web traffic by Marie et al. in [63]. At

the beginning of the Internet, some authors detected self-similar characteristics like

the fractal’s theory in web traffic. Therefore, Crovella et al. [26] applied the notion

of self-similarity to explain the behaviour of web traffic analysing several high density

traffic backbones in USA. They evidenced that the origin of the self-similar nature

could be found in the document sizes distribution of web pages, the caching process

and the user preferences. Recent studies, for example, Shiyin et al. [85] showed that

the fractal theory is still current to explain TCP characteristics such as the bandwidth

and other issues related to the end to end congestion control.

2.2.4 End-users perception

The subject related to End-users QoS expectations has been widely discussed in

[106, 72, 45, 58, 15]. It is an important key to determine the success of a website.

When users are browsing the Internet, they want to go as fast as they can. Users can
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tolerate a long delay downloading heavy files such as multimedia streams, database

queries or large documents, but they might not stand long delays while surfing the

web; i.e. clicking into links or downloading small files such as images, sounds or

any other small object. For these reasons, end-users expectations should be strongly

considered during the website development, and it is recommended to implement a

suitable mechanism to improve the end-users perception about latencies and delays.
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Chapter 3

Long flow promotion

Traditional QoS strategies are mainly based on marking flows for its differentiation

over DiffServ. This architecture is based on two dedicated internetworking devices:

the edge and the core, as it can be observed in Figure 3.1. Web requests are produced

in the web client cloud, then they go through the Diffserv area and finally they reach

the web server cloud. Hence, web responses follow the opposite way, from web servers

to web clients. The edge node marks packets by adding different labels to them. The

information contained in these labels specifies the workload conditions related to the

SLA contracted by the client. When the marked packets reach the core node, they

are forwarded over different queues by applying the suitable AQM or an stochastic

treatment in order to achieve the required QoS level.

Our proposal considers the work of Chen et al. [20] as a startpoint. They developed

the Short Flow Differentiation (SFD) algorithm to reduce the user-perceived web

latency by using a basic DiffServ framework for flow differentiation that is executed

in the edge device. Incoming packets are then marked according to their own rules

that are based on a fixed threshold of flow size. After flow differentiation, packets

reach the core device and they are scheduled under priority scheduling. The core

physical queue is managed under RIO active queue management. The RIO scheme

has two virtual queues, named queue-IN and queue-OUT. Short packets are forwarded

over the highest priority queue (queue-IN) and the rest of packets, which are classified

as long flows, are forwarded over the lowest priority queue (queue-OUT).

27
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Figure 3.1: The DiffServ model.

SFD is also based on the mice and elephants paradigm. It assumes that the

majority of flows in Internet are short because of the small objects from web pages.

Although HTTP 1.1 allows persistent connections with more than one response on

the same HTTP connection, most of the flows are short and only a few flows are long.

Chen proposes a hard and static threshold based on the flow size. This threshold

is obtained from diverse studies [20, 28] which state that the range [13,15] KB is

accepted as the borderline size between short and long flows. Finally, they fixed the

threshold in 13 Kbytes.

Obviously, with this solution, short flows always receive the most preferential treat-

ment and, hence, achieve the lowest delay because they are forwarded over the most

preferential queue. This high priority for short flows has an immediate negative con-

sequence because long flows suffer a penalisation that in the majority of cases is

an unnecessary penalisation. If the threshold is established in k packets, the first

k packets of each flow receive the preferential treatment, but the following packets,

k + 1, k + 2, · · · packets always receive a non-preferential treatment as they are for-

warded over the low priority queue. This produces an overall increase of the long flow

delay.

The second identified disadvantage in Chen’s proposal is the static value for the

threshold that does not take into account any traffic or environment information.

This proposal does not adjust the threshold to any dynamic parameter. This fact

can drive to a non appropriate packet classification at certain congestion levels. For

example, considering a fixed threshold of τ packets, every flow of τ + 1 packets will

be marked as long flows and will be forwarded over queue-OUT at the core device.

As the first k packets of each flow are marked as preferential packets, they are always

forwarded over the queue-IN, therefore, they receive the highest treatment at the
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core device. Obviously the remaining of packets are scheduled over the queue-OUT,

receiving the lowest treatment. This fact means that from the k + 1 packet, the rest

will suffer an unnecessary delay at the core queue and do not help in alleviating the

overall delay.

This problem lead us to try to solve or minimise the effects over the overall delay

and other performance parameters, such as jitter, dropped packets and overhead. We

describe in this dissertation the development of a framework that is also based on the

DiffServ architecture. We propose to add new characteristics to both devices. Firstly,

it has been added a new differentiation algorithm in the edge device, and secondly,

the core device has been modified by adding a new queue in this device. We also keep

the queue management in the priority scheduling algorithm which is widely used as

a device scheduler in a QoS environment.

The name of our proposal is LFP and it has been developed in a incremental way

of three stages. The first state is based on the SFD mechanism, and introduces a

prioritisation process of short flows based on the static threshold defined above. The

second stage improves the first proposal by introducing the penalisation concept over

the long flows. And finally, the third stage introduces an adaptive approach that

detects and decreases the priority of really long flows.

1. Stage 1: Short flows over long flows (S1)

2. Stage 2: Promotion of long flows (S2)

3. Stage 3: Adaptive detecting and isolating elephant flows (S3)
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Figure 3.2: Stage 1: Short flows over long flows (S1)

3.1 Stage 1: preferential treatment for short flows

(S1)

Considering only the HTTP responses from the Web system, traffic sent from Web

servers reach the DiffServ area where it is firstly measured and classified at the edge

device, as it is illustrated at the top of Figure 3.2. In this device, after going through

the meter and the shaper processes, the incoming packets are marked in the marker

process with different labels. When packets leave the edge device and reach the core

device, they are sent over one of the queues depending on the assigned label. Finally,

the Priority queuing (PQ) scheduling strategy at the core device configures the QoS

level in the system [61, 30].

The overall incoming traffic is divided into n flows and defined as f1, f2, ..., fn.

Each flow fi is composed of a sequence of p packets defined as: pf1 , p
f
2 , · · · , pfq , where

pfi defines the packet i from the flow f , as it is depicted in Figure 3.3. Let us define

f̂ = {pfi ,∀i ∈ {1, .., q}} as the set of packets from flow f .

The global amount of packets that arrive to the system are also numbered, inde-

pendently of the flow they belong to. Hence, we consider that kth packet arrives at

instant tk (seconds).
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Figure 3.3: Example of a packet sequence in the QoS system.

Let us now describe the functions at the edge device. The meter is the first

function, named as χf (tk) that represents the number of packets of the flow f that

have arrived during the interval [0, tk].

χf (tk) = {Ord(f̂) in [0, tk]} (3.1)

After the meter process, packets go through the shaper function, that defines the

transition from short to long state according to the threshold τ . First of all, the

differentiation condition, S1(tk), is established:

S1(tk) ≡ χf (tk) ≤ τ (3.2)

The shaper function at the edge node is defined for each incoming flow f at instant

tk as the discrete function αf (tk) ∈ {0, 1}, defined as follows:

αf (tk) = I(S1(tk)) (3.3)

Where I function is the true function of S, defined as follows:

I(S) =

1 if S is true,

0 otherwise

A set of labels is defined as L1 = {PS, PL} in order to mark packets in the marker

process as belonging to short flows, PS, or as belonging to long flows, PL:
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L1 =

PS if αf (tk) = 1

PL if αf (tk) = 0
(3.4)

The core device is composed of the set of queues Q1 = {Qgreen, Qyellow}, where
Qgreen is the highest priority queue and Qyellow is the lowest priority queue. La-

belled packets arrive to the core device and they are forwarded over an specific queue

according to the label set inside the header of the packet:

• Packets with PS label are forwarded over Qgreen

• Packets with PL label are forwarded over Qyellow

Therefore, the packet range [1, τ ] of every flow is forwarded over the Qgreen queue.

For each flow f , the highest QoS level is assured for the sequence pf1 , p
f
2 , . . . , p

f
τ−1, p

f
τ ,

whereas the packet range [τ +1, χf (tk)] – that is, until instant tk –, is forwarded over

Qyellow. Consequently, the sequence p
f
τ+1, p

f
τ+2, . . . , p

f
χ(tk−1), p

f
χ(tk)

is penalised with the

lowest QoS level as it is illustrated at the bottom of Figure 3.2.

This stage introduces a hard threshold that clearly differentiates between long and

short flows. The main drawback of this proposal is that flows whose size is greater

but close to τ packets, are treated as long and, hence, queued to the non-priority

queue that may lead to a long response time for the client. This problem is reduced

in the second stage of LFP by promoting packets from flows considered as long to the

priority queue.
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Figure 3.4: Stage 2: Promotion of long flows (S2).

3.2 Stage 2: promotion of long flows (S2)

In order to introduce more flexibility in the static threshold just defined, this

second stage introduces a packet promotion mechanism to those flows that are a bit

longer than the threshold (τ). The aim of this improvement is that packets from

these flows are considered as they were belonging to short flows and, hence, receive a

high priority QoS level when the system is not congested.

Previous stage (S1) leaves some open questions: with S1, the first τ packets of each

flow are treated with the highest priority and the rest of packets with low priority.

Under certain traffic conditions and low congestion level, flows a little bit longer than

the threshold could be treated in a different way by not being relegated to the lowest

priority queue. In this sense, we could consider the following questions:

What does happen with flows a little bit longer than the threshold?
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Why would we not to consider these special flows as short and treat them with high

priority such as short flows in Stage S1?

In this thesis, the term promotion has been used for those packets that in S1 would

be forwarded over the lowest priority queue but under certain conditions they could

be forwarded over the highest priority queue. The S2 stages tries to promote these

packets in order to enhance the overall performance system and, in particular, the

overall flow delay. The implicit risk of packet promotion is to promote too many

packets and not to achieve the expected performance results. For this reason, it is

necessary to bound the promotion of packets by detecting the idle state of the network

and identifying those candidate flows to be promoted. For this target, the token

bucket model has been added to S2. As in the stage S1, the main philosophy continues

being packets differentiation at the edge and packets forwarding over different queues

at the core. The new functions have been added to the meter, shaper processes and

we have modified the set of labels used by the marker function. Therefore, the token

bucket model is used for two purposes:

1. Detecting the idle system state and allowing packet promotion from the low

priority to the high priority queue.

2. Bounding packet promotion in order to prevent the congestion increase.

The token bucket function is described as follows: the token bucket models the

amount of packets that could be promoted from the lowest to the highest priority queue.

The bucket is filled with tokens with a certain ratio depending on packets promotion

and tokens that are spent when packets are promoted. Therefore, if there are tokens

available in the bucket, packets could be promoted and tokens will be consumed and

therefore, the token bucket will be filled out. On the other hand, if there is an incipient

network congestion, no tokens are left for any promotion.

In the next paragraph, we are going to model the token bucket and the mechanisms

to fill up and empty the bucket. We define the maximum capacity of the token bucket

as ζ (tokens) and the fill rate as ω (tokens/s). Considering V ∗(tk) as the amount of
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promoted packets during the interval [0, tk], the state of the token bucket at instant

tk is defined by ψ(tk):

ψ(tk) = ψ(tk−1) + IN(tk)−OUT (tk) (3.5)

where:

IN(tk) = min(ω ∗ (tk − tk−1), ζ − ψ(tk−1)) (3.6)

OUT (tk) = V ∗(tk) ∗ I{V ∗(tk) ≤ (ψ(tk−1) + IN(tk))}

As the token bucket model is used to bound the quantity of promoted packets,

θ(tk) represents the percentage of the occupancy of the bucket, that can defined as

follows:

θ(tk) =
ψ(tk)

ζ
(3.7)

However, we define some levels in the bucket in order to adjust the promotion.

In order to control the promotion, it is desirable that the token bucket state, θ(tk),

remains close to a precise level or set point defined by κ, as it is depicted in Figure 3.4.

As web traffic can presents peaks of traffic because of its bursty nature, θ(tk) must

range around κ with top and bottom bounds defined by δ. Therefore, the desirable

working point for θ(tk) is defined as:

θ(tk) ∈ [κ− δ, κ+ δ], κ, δ ∈ [0, 100], κ− δ ≥ 0, κ+ δ ≤ 100

Parameters θ(tk), κ and δ define the open/close state of the token bucket, and

hence, the packet promotion. For this reason, to show the effect of κ and δ values

over the token bucket state (θ(tk)), we consider that:

• If θ(tk) is close to κ, the packet promotion is active.

• When θ(tk) reaches κ− δ level, the token bucket will change to the close state.

• At this point, no packets are promoted. Hence, tokens are only consumed with

packets from short flows.
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• As the token bucket continues being filled up with new tokens at ω ratio, then

the token bucket level θ(tk) will reach the κ+ δ level again.

• In this point, the token bucket state will turn to the open state again and the

promotion process will be reactivated.

Considering the above bounds, the differentiation function S2(tk) can be defined

as follows:

S2(tk) ≡
{
θ(tk) ≥ κ+ δ

}
∨
{
(κ− δ ≤ θ(tk) ≤ κ+ δ) ∧ βf (tk−1)

}
(3.8)

Once the metering process has concluded, the shaper process computes βf (tk)

function for each flow:

βf (tk) = I(S2(tk)) (3.9)

The set of packet labels is now defined as L2 = {PS, PL, P↑}, and it is used by the

marker to accomplish the specifications according to the following rules:

L2 =


PS αf (tk)

PL αf (tk) ∧ βf (tk)

P↑ αf (tk) ∧ βf (tk)

(3.10)

Packets are then forwarded over the core queues as follows:

• PS and P↑ packets over Qgreen

• PL packets over Qyellow

With the above specification, the highest QoS level is guaranteed for the packet

sequence [1, τ ] of every flow, as they are forwarded over Qgreen. Depending on the

state of the token bucket and the incoming traffic, some packets from the sequence

[τ + 1, χf (tk)] of some flows will be promoted over Qgreen, whereas the remainder of

packets, will be forwarded over Qyellow. An example of this behaviour is depicted at

the bottom part of Figure 3.4.
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Packet promotion permits adapting the hard threshold of the previous stage of

the algorithm to the workload. However, this approach includes a drawback under

some circumstances of low congestion: when there are few flows going through the

system, the token bucket state could be promoting some inappropriate flows. These

flows can be extremely long, and they do not need any higher priority level because

the end-users already expect a long delay for these flows. This can be considered as

a waste of the available bandwidth, and hence, could produce an overall decrease in

the performance of short flows. We consider this negative effect in the next stage and

modify the approach accordingly in order to detect the extremely long flows.
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Figure 3.5: Stage 3: elephants penalisation (S3)

3.3 Stage 3: detecting and isolating elephant flows

(S3)

As we have already introduced above, extremely long flows are normally named as

elephant flows, and their presence in the priority queue must be avoided. Hence, in

this stage our aim is to detect and isolate these flows in a new least priority queue.

Instead of defining a static threshold to detect these flows, we consider that the

value that determines if a flow is an elephant flow has to also be adaptive to the traffic

conditions of the network.

We have added new functions to the meter and shaper modules and modified the

classification method by adding a new label in the edge device. It has been added

a new queue for the scheduling packets at the core device. The global scheme is

illustrated in the Figure 3.5.

The adaptive behaviour of this stage is based on an historic of the H last flow sizes
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(in number of packets) in order to define the elephant threshold.

The presence of elephant flows in the QoS system is always bad news, as it pro-

duces an overall system performance decrease. For that reason, the main goal of the

constraint S3 is the detection and isolation of extremely long flows. Such flows are

classified as elephants and can be treated with the lowest priority.

In order to detect and isolate those very long flows, the critical issue is to define

the measurement to be applied. As the web traffic nature is very variable, setting a

number of packets to differentiate flows as long or very long with a static threshold

is not suitable, because an excessive low value could generate too many promoted

packets and, by contrast, an excessive high value could generate too few promoted

packets. None of both circumstances are desirable. For this reason, the value to

determine when a flow is long or very long must be adaptive to the traffic conditions.

Hence, we consider that it has to be calculated from the sizes of the last flows that

have crossed the QoS system. Therefore, we consider Xtk,H as the set of the last H

flow sizes that have gone through the system, and define it as follows:

Xtk,H = {χf (i) | i ∈ [tk−H , tk], H ∈ N, ∀f ∈ V (tk)} (3.11)

Considering FXtk,H
(x) as the distribution function of Xtk,H , the u − quantile is

defined by QXtk,H
(u) as follows:

QXtk,H
(u) = Inf{x | FXtk,H

(x) ≥ u} (3.12)

As QXtk,H
(u) is calculated over a set of flows that have just crossed the DiffServ

system, this measure provides an adaptive flow size measurement of the recent history

of the flows that are crossing the system. As the S3 goal is the detection and isolation

of flows whose sizes are extremely long then the S3 function is computed from (3.12)

as follows:

S3(tk) ≡ χf (tk) ≥ QXtk,H
(u) (3.13)

With the above definitions, S3(tk) is the differentiating condition between elephants

flows and just long flows. Hence, flows longer than QXtk,H
(u) are considered as ele-
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phants, and should be sent to the lower priority queue. Otherwise, they are considered

as flows with medium priority level. By applying (3.1) to the differentiation function,

the function γf (tk) is added to the shaper module:

γf (tk) = I(S3) (3.14)

The last process at the edge device is the marker, which uses the set of labels

L = {PS, PL, P↑, P↓} for marking incoming packets according to the following rules:

L3 =



PS αf (tk)

PL αf (tk) ∧ βf (tk) ∧ γf (tk)

P↑ αf (tk) ∧ βf (tk) ∧ γf (tk)

P↓ αf (tk) ∧ βf (tk) ∧ γf (tk)

(3.15)

When packets have left the edge device, they reach the next device at the DiffServ

architecture, that is the core device (see Figure 3.5). This device is defined with

the set of queues Q = {Qgreen, Qyellow, Qred}. Packets marked as PS or P↑ are for-

warded over Qgreen (highest priority queue); packets marked with PL are forwarded

over Qyellow (intermediate priority queue) and finally, packets marked with P↓ are

forwarded over Qred (lowest priority queue). Hence, the highest QoS is assured for PS

and P↑ packets. The penalisation is for P↓ packets because they are always forwarded

over Qred. And the rest of them, PL packets, receive intermediate QoS level, as they

neither are elephants, nor have received a high priority QoS level due to incoming

traffic conditions, token bucket configuration or flow length.

As we have described above, the LFP algorithm has been described step-by-step

and it is composed by three stages: S1, S2 and S3. The final version of the algorithm

includes all the stages and is named LFP for short. It has been summarised in the

flowchart of the Figure 3.6.
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Figure 3.6: Flowchart for LFP with S1 ⊕ S2 ⊕ S3.
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Chapter 4

Performance results

4.1 Introduction

The performance results have been obtained through simulation using the network

simulator ns-2 [71]. The considered scenario is based on a single bottleneck dumbbell

topology where our DiffServ model has been implemented, configuring a link of 2

Mbps as the bottleneck with small buffers. The last analysis over Internet traffic

suggest that large device buffers could be replaced with smaller ones [84, 98, 8]. Web

traffic has been generated by the ns-2 extension named HTTP PackMime [17].

Based on the topology described above, different algorithms have been simulated

over the same network and traffic conditions. Through simulation we have collected

some results and analysed different performance parameters related the web traffic

QoS. The results have been analysed from the point of view of the end-to-end perfor-

mance and not taking into account the intermediate measures such as queueing delay

or any other performance parameters related to the DiffServ system. The performance

parameters analysed in this work are: latency, jitter, dropped packets, throughput

and goodput.

The latency may be the most critical performance parameter in web traffic. It

measures the time interval between the departure of the first packet from the server

device until the arrival of the last packet of the message to the client device. As it has

been mentioned previously, we have only analysed the web responses, from the server

43
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to client. The size of these messages has a very high variability, from few bytes until

mega or even gigabytes, while the web requests size is usually only few bytes. As the

variability of web traffic from the point of view of flow size responses is very high,

this type of flows suffers latencies that can vary from one second to many seconds or

even some minutes. For this reason, service providers need to add new features to

their QoS systems to improve clients satisfaction and browsing speed through their

websites.

The jitter is related to latency or response time variation. This parameter is

usually used as the performance metric of streaming protocols such as video or voice

transmission. In our case, the jitter is used to evaluate the system capacity to keep

the same latency over every packet of the flow.

The number of dropped packets is an obvious performance parameter. Dropped

packets are always a negative circumstance in the switched packet networks. When

there is a high number of dropped packets in the system, the rest of parameters are

inaccurate, such as the final flow latency, throughput, goodput and, of course, traffic

overhead.

The throughput and goodput are widely used as performance parameters in com-

puter networks and traffic analysis. While throughput measures the amount of bits

that are transported end-to-end, including headers, goodput measures only the ap-

plication level data.

The overhead is the amount of extra data added to a message, which basically is the

amount of bytes of the headers. This parameter provides the bandwidth consumed

to send the message from a sender to a receiver.

Finally, we have also shown the link utilisation as the relation between the occupied

data over the maximum link data ratio. This parameter shows the occupation level

produced by each algorithm.

4.2 Parameters tuning

In this section we are going to detail the parameters used to configure the topology

and algorithms. As we have mentioned above, the QoS system has been modelled in
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Figure 4.1: Flow size distribution for τ = 13 packets.

NS2. In this tool, both the edge and the core devices at the DiffServ architecture

have been configured for RED management with the original values (maxp = 0.02,

wq = 0.001). The buffers capacity have been configured with a physical length of 50

packets with the RED parameters minth = 10 and maxth = 40.

Regarding the algorithm configuration, the first task is to determine the threshold

to differentiate between short and long flows. As it has been mentioned in previous

section, the threshold is the amount of kilobytes which indicates when a flow changes

its state from short to long. The value of the threshold (τ) that differentiates between

Short flows (SF) and Long flows (LF) in web traffic has been analysed by Chen et

al. [20]. They propose a table with five representative types of Web pages. The web

page size average varies in the range of [9, 12]KB, from a minimum limit in the range

of [1, 3] KB, until maximum values in the range of [80, 90] KB. Considering that

the average web size has increased since then, we define an average flow size of 13

packets for our study, that would mean to define an average web page of 19 KB in

an Ethernet infrastructure. The threshold τ has been approximated into packets for

representative purposes.

As it has been mentioned in the background and related works, the heavy tailed

nature of web traffic has been well analysed in many studies. The selected threshold

and the simulated traffic used in this thesis recreates the heavy-tailed nature and the



46 Chapter 4: Performance results

mice and elephants classification. The Figure 4.1 shows the packet distribution for

a certain congestion level and fixing the flow size threshold to differentiate between

short and long flows in τ = 13 packets. As it is depicted in the figure, flows from the

minimum size until 40 packets represent the 98.5% of the total workload in the system,

which enforces the heavy-tailed nature of the simulated web traffic. Most traffic falls

on the left side of τ , around the 90.5% of the overall traffic which corresponds to short

flows and around the 10% falls in the range of [τ + 1, 40] packets, which corresponds

to long flows. In the same figure, we can appreciate the existence of very long flows,

named as elephant flows that are composed of more than 40 packets, and correspond

to the 2% of the overall traffic.

Once we have checked the consistency of the simulated traffic generated with HTTP

PackMime and the heavy-tailed characteristics of web traffic, we need to assess that

flow differentiation that we have established by fixing a threshold to differentiate

between short and long flows is kept over the different traffic scenarios. As we have

mentioned above, HTTP PackMime is the web traffic generator, which models the web

traffic as a stochastic model based on real aggregated traffic collected on a backbone

or high-speed access links. The synthetic Web traffic is expressed as a collection of

independent TCP connections, characterised by several variables such as the arrival

time of the connection, the round-trip time for the client and server, the number of

request/response exchanges and sizes of individual responses and requests. The Web

traffic intensity is modulated with the R parameter, that sets up the incoming traffic

as the number of new connections per second introduced in the system.

Congestion R P F
Low 6 93.96 32.73

Medium 10 162.29 52.84
Heavy 14 229.51 73.68

Table 4.1: Scenarios for simulation with different congestion levels.

In order to check the consistency of the flow size distribution among the different

traffic levels, we have determined several congestion scenarios as we can see in the

Table 4.1. Varying the R parameters, and through simulation, we have measured
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other parameters in order to reinforce the congestion level for each scenario. The

description of these new parameters are:

• P measures the new packets incoming to the system per time, and

• F , measures the new flows incoming to the system per time

The scenarios that we have configured are described below:

• Low congestion: in this scenario we set R = 6. The traffic intensity is very light

and only a few packets are dropped due to the peaks of the incoming traffic.

• Medium congestion: this scenario has been configured with R = 10. The in-

jected traffic to the system is close to the available bandwidth, therefore, some

more packets are dropped and the congestion level becomes to be incipient.

• Heavy congestion: with R = 14 the incoming traffic to the QoS system is very

high and the congestion level is severe. There are many dropped packets.

The three scenarios detailed above for different load in the system have been defined

to evaluate the performance of our proposals over these scenarios. For this reason, we

need to assess that the flow differentiation we have established by fixing a threshold

to differentiate between short and long flows, is kept over every defined scenario.

Therefore, we have obtained the simulation results from scenarios with very light

congestion level (R = 1) until very hard congestion levels (R = 14). As we can

observe in the Figure 4.2, the mice and elephants paradigm is accomplished for every

scenario. The upper part of Figure 4.2(a) shows the ratio for short and long flows

for each congestion level. Most of the traffic is composed of short flows up to the

80%, and therefore, the rest of flows are long. The bottom of Figure 4.2(b) shows the

amount of transported information for each type of flow. As it is depicted, most traffic

(≈ 80%) is carried out but long flows, meanwhile the rest (≈ 20%) is transported by

short flows.

Another relevant element of our model is the token bucket mechanism. As we will

verify after our simulation, the variation of the token bucket parameters have a low
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Figure 4.2: The mice and elephant paradigm.
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impact on the final performance results. They have therefore been set to ω = 1000,

ξ = 500, κ = 40 and δ = 20.

We can consider several operating zones for the token bucket depending on the

value of θ(tk), as it can be observed in Table 4.2. The optimal operating point is

located in Z2, where θ(tk) fluctuates in the range [κ−δ, κ+δ]. At this point, the token
bucket state remains as open, and the packet promotion is produced according to the

rules described in LFP Stage S2. Meanwhile, Z1 defines the overrun zone, where the

normalised token bucket capacity θ(tk) is below the desired operating point because

the packet promotion rate is higher than ω. And finally, Z3 defines the underrun zone,

where the packet promotion is so low that the normalised token bucket capacity θ(tk)

is higher than κ+ δ, and hence, more packet promotion of incoming traffic could be

assumed.

Zone Condition
Z1 θ(tk) ≤ κ− δ
Z2 κ− δ ≤ θ(tk) ≤ κ+ δ
Z3 κ+ δ ≤ θ(tk)

Table 4.2: Token bucket operating zones.

The selection of the token bucket parameters depends on the κ and δ values and

the traffic that reaches the QoS system. As it is depicted in Figure 4.3, by setting

κ = 40 and δ = 20, the main token bucket operating zone is Z3 for less than 6 new

connections per second in the system. The more time the token bucket is in zone Z1,

the more congested the system is. That means that when more than 12 connections

per second arrive to the system, it is congested most of the time.



50 Chapter 4: Performance results

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Web traffic connections rate (conn/s)

N
u

m
b
e
r 

o
f 
p
a

c
k
e
ts

 (
%

)

0
2

0
4

0
6
0

8
0

1
0
0

θ(tk) ∈ Z1

θ(tk) ∈ Z2

θ(tk) ∈ Z3

Figure 4.3: Distribution of packets in token bucket operating zones

κ

20
40

60
80

100

δ20
40

60
80

100

M
e
a
n
 o

f o
p
e
n
 tim

e
 (%

)

0

20

40

60

80

100

Figure 4.4: Token bucket activity for κ and δ values.

The token bucket open/close state depends on several factors: incoming incoming

traffic, ω, κ and δ. As it has been explained above, the parameters which regulate
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Figure 4.5: Results of the u-quantile over the elephants detection and υ value.

the filling of the token bucket are κ ∈ [0, 100] and δ ∈ [0, 100]. κ parameter is defined

as the bucket level that can be filled with tokens, and δ is defined as the fluctuation

bound around κ. They have to be configured as average values. The activity of token

bucket for a medium congestion level is shown in Figure 4.4. From this figure, we

have chosen κ = 40 and δ = 20, which means that the token bucket is in open state

when χ ∈ [20, 60].

The last step in the parameters tunning is the election of a suitable u − quantile

over Xtk,H . The correct elephants detection in S3 will be dependant on the election

of u, that is obtained through simulation, taking into account several considerations:

• If u is too high, the threshold to differentiate between long and elephant flows

will be a high value. The consequence is that only few flows will be considered as

elephants. Therefore, they will be basically classified as long flows, and hence,

forwarded to the medium priority queue (Qyellow), instead of the lowest priority

queue (Qred). Consequence: elephant flows will spend bandwidth which should
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be assigned to other priority flows such as long, and maybe, short flows.

• On the other hand, if u is too low, the threshold to differentiate long and

elephant flows is a low value and many flows are considered as elephant, and

therefore they are forwarded to the lowest priority queue (Qred). Consequence:

certain flows which should be treated as long, and promoted to the highest pri-

ority queue, might be relegated to the lowest priority queue, and in consequence,

penalised.

We have obtained the amount of packets that are classified as P↓ and, hence, the

amount of flows which are penalised in the medium congestion level, with the same

network parameters, varying u. Results are depicted in Figure 4.5. We have obtained

the results setting uquantile in the [75, 99] range. Once the simulation has concluded,

and all the flows have been classified according the u−quantile, the value υ indicates

the mean of flow sizes in the computed quantil. For example:

• For u = 90, we get a value of υ = 17 packets, and the 35% of long flows are

marked as elephants.

• For u = 95, we get a value of υ = 30 packets and only the 30% of long flows are

marked as elephants.

• For u = 99, we get a value of υ = 123 packets and only the 20% of long flows

are marked as elephants.

We have decided to adopt u = 95 as the threshold to differentiate between long

and elephant flows.

4.3 Results for S1, S1 ⊕ S2 and S1 ⊕ S2 ⊕ S3

The first step we have considered is to obtain the performance results for each stage

of LFP, in a progressive way. In this section, we present the results of simulating S1,

then, results for S1 ⊕ S2 and finally, results of S1 ⊕ S2 ⊕ S3 simulation.
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As it was specified in the previous chapter, the packets classification is based

on marking and forwarding over different queues processes. Each stage introduces

different labels which are used to mark incoming packets. For that reason, first of

all, we need to asses the effect of the S1, S2 and S3 of LFP algorithm. The packets

classification for each stage is depicted in Figure 4.6.

As it is illustrated in Figure 4.6(a), the S1 stage uses the label set defined by

L1 = {PS, PL}. This stages also establishes a hard limit between short and long

flows. This limit is defined by τ = 13 packets, therefore, every packet in the range

[1, τ ] is classified as short, and marked as PS. The rest of packets in the range

[τ + 1, χf (tk)] are marked as PL because they are classified as long flows.

Considering the second stage of the algorithm, the behaviour of LFP by using

S1 ⊕ S2 is illustrated in Figure 4.6(b). This stage uses the label set defined by

L2 = {PS, PL, P↑} where the label P↑ has been added in order to identify the promoted

packets. In this stage, some packets that will be condemned to the lowest priority

queue are recovered and promoted to receive the same treatment as short flows, in

order to improve the final performance of flows with sizes close to τ .

Finally, the last stage that considers S1⊕S2⊕S3 constraints is depicted in Figure

4.6(c). This stage uses the labels set defined by L2 = {PS, PL, P↑, P↓} where the label

P↓ is used to mark those packets that have been treated as elephants, and hence,

forwarded to the lowest priority queue. An immediate consequence of this fact is the

releasing bandwidth in Qyellow and therefore, there is more bandwidth to promote

long flows to the Qgreen queue.

We have measured the performance parameters for S1, S2 and S3 stages by sim-

ulation. We show the results in Table 4.3 for the different scenarios already defined

in Table 4.1. The metrics shown are the link utilization, throughput and goodput,

and also other custom parameters that we have defined as: Pdrop and Fdrop. The drop

packet probability Pdrop provides the dropped packet rate detected in each situation

and Fdrop provides the probability of flows having some dropped packet. Obviously,

we are looking for strategies that maintain both probability measures as the lowest.

We have to analyse the performance parameters together. From this point of

view, the utilization and throughput values are similar in the three configurations
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Figure 4.6: Packets classification for the S1, S2 and S3 stages in LFP.
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Level Alg U Throughput Goodput Overhead P drop F drop

L
ow

S1 9.88 0.208 0.198 4.96 3.99e-04 1.18e-03
S1 ⊕ S2 10.6 0.223 0.212 4.99 5.03e-04 1.38e-03

S1 ⊕ S2 ⊕ S3 10.7 0.226 0.215 4.96 2.16e-04 6.44e-04

M
ed
iu
m S1 16.0 0.338 0.321 5.08 1.26e-03 3.33e-03

S1 ⊕ S2 15.0 0.317 0.301 5.05 1.15e-03 3e-03
S1 ⊕ S2 ⊕ S3 16.1 0.339 0.322 4.99 5.88e-04 1.76e-03

H
ea
v
y S1 21.5 0.454 0.431 5.23 3.32e-03 8.2e-03

S1 ⊕ S2 21.3 0.45 0.427 5.16 2.38e-03 5.92e-03
S1 ⊕ S2 ⊕ S3 21.4 0.451 0.428 5.1 1.81e-03 5.17e-03

Table 4.3: Summarised values for the different LFP stages.

(S1, S2 and S3), but we can emphasise the best result in goodput, overhead, Pdrop

and Fdrop is achieved by the final LFP version (composed by S1, S2 and S3 stages)

. As we have mentioned above, it is necessary to analyse these measures in a joint

manner, therefore, we highlight the results for medium congestion scenario, where

every performance parameter is improved in the LFP final stage.

4.4 Comparative with other proposals

In this section we are going to provide the simulation results for our algorithm LFP

in the final version with the three stages (S1, S2 and S3). We have compared LFP

results with simulation results obtained by Droptail, RED, and SFD. The arguments

for this comparative are detailed below:

1. We want to compare LFP with a non-active queue management algorithm, just

a queue management algorithm such as Droptail.

2. We have compared it with RED because this is the most implemented AQM

strategy in switched packet networks.

3. And finally, we have compared it with SFD because it is the starting point of

our proposal.
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We have simulated the four algorithms (DropTail, RED, SFD and LFP) under

the same topology and network parameters. We have also simulated every algorithm

in the congestion scenarios defined in Table 4.1 and, finally, we have separated the

obtained measures in two sets: for short and for long flows. We propose this classifi-

cation in order to provide more detailed values for the performance parameters that

we have analysed.

The first comparative is regarding the end-to-end latency. In this case, we have

classified the total of flows in two sets: short and long flows. We have measured the

latency in the three congestion scenarios previously described that we have proposed:

low, medium and heavy congestion. Results are shown in Figure 4.7.

Considering short flows, we observe similar results in low and medium congestion

scenarios. However, the behaviour of Droptail gets worse as the congestion increases

and its end-to-end latency increases till values close to half a second. Considering now

long flows, we still observe a significant increase in the latency perceived in DropTail.

Moreover, we can extract from the figure the improvement of latency values in LFP

compared to RED and SFD for every congestion levels when the flow size is close to

the threshold (marked with a circle in Figure 4.7) where LFP outperforms in terms

of latency the rest of algorithms.
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Figure 4.7: Latency for short and long flows for different congestion scenarios.
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Let us analyse jitter results that shows a behaviour similar to the latency for each

simulated algorithm. As we can observe in Figure 4.8, DropTail gets again the worst

results for every congestion level and for short and long flows. LFP obtains similar

measured values in short flows for every congestion level but it gest less jitter than

the other simulated options when considering flow sizes close to the threshold that

differentiates long flows. We have marked this effect with a circle in Figure 4.8.
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Figure 4.8: Jitter for short and long flows and different congestion scenarios.
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We have also computed the standard deviation for latency results. This value

provides the dispersion level of the measured values, in this case, the latency. We

consider that it is another factor that has an influence in the final QoS of the system. A

high value for the standard deviation indicates a high level of dispersion, that means

that measures are quite different. In contrast, a low value for standard deviation

indicates a low level of dispersion in the measures for latency. In our case, Figure

4.9 shows the standard deviation only for short flows, and as we can observe in the

figure, LFP gets the best behaviour for the three congestion levels.
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Figure 4.9: Standard deviation only for short flows and different congestion scenarios.

We consider that a low value of latency’s standard deviation is a desired goal for

every algorithm that pretends to improve the QoS of a certain Internet service, as it

permits to easily guarantee a value of a SLA in terms of latency.



Chapter 4: Performance results 61

X

5

10 Y
4

5
6

7
8

9
10

Z

0.2

0.4

0.6

0.8

1.0

(a) DropTail: short flows

X
5

10 Y
15

20
25

30
35

40

Z
0.2

0.4

0.6

0.8

1.0

(b) DropTail: long flows

X

5

10 Y
4

5
6

7
8

9
10

Z
0.2

0.4

0.6

0.8

1.0

(c) RED: short flows

X

5

10 Y
15

20
25

30
35

40

Z

0.2

0.4

0.6

0.8

1.0

(d) RED: long flows

X

5

10 Y
4

5
6

7
8

9
10

Z

0.2

0.4

0.6

0.8

1.0

(e) LFP: short flows

X

5

10 Y
15

20
25

30
35

40

Z

0.2

0.4

0.6

0.8

1.0

(f) LFP: long flows

Figure 4.10: 3D graphics for short and long flows, where X-axis is the web traffic load
(new conn/s), Y-axis is the flow size (packets) and Z-axis (seconds) is the smoothed
mean of latency.



62 Chapter 4: Performance results

The end-to-end final latency has been plotted for each algorithm comparing the

evolution of the web traffic load, web flow size and latency. For this reason, it has been

used a 3D graph in Figure 4.10. The results have also been compared by differentiating

between short and long flows. Obviously, a 3D graph shows a smoothed surface where

the details are hidden, but it provides the trend of the general behaviour of the system.

The X-axis shows the web traffic load, from 0 to 14 conn/s. The Y-axis shows the

flow size in packets. In the case of short flows, Y-axis shows from 1 to τ packets, and

for long flows, Y-axis goes from τ + 1 to 40 packets. And finally, Z-axis shows the

mean latency in seconds. Since the plotted surface shows the latency results (Z-axis)

for different web traffic load (X-axis) for different web flow size (Y-axis), from the

point of view of the surface appearance, DropTail shows some spikes and a steeper

slope, specially at heavy congestion level and for long flow sizes. By contrast, LFP

gets a more uniform surface for latency in both cases, short and long flows. These

results have been summarised in numerical values by computing the mean of latency,

with 0.95 confidence intervals, for short and long flows (Table 4.4).

Short flows Long flows
DropTail 0.30 [0.28, 0.31] 0.48 [0.46, 0.49]
RED 0.26 [0.25, 0.27] 0.45 [0.43, 0.46]
LFP 0.27 [0.26, 0.28] 0.43 [0.42, 0.44]

Table 4.4: Summarised data with 0.95 confidence intervals for the overall latency.
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We have also computed the overhead for each scenario classified by short and long

flows. The results are shown in Figure 4.11, where we can observe a very similar

behaviour for every algorithm for short flows. Regarding long flows, we observe the

worst overhead measure is obtained by RED algorithm, and we emphasise the best

behaviour for the LFP algorithm.
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Figure 4.11: Overhead for short and long flows and different congestion scenarios.



64 Chapter 4: Performance results

We want to point out the fact that our proposal is the one that gets the lowest

overhead in all the tested scenarios. This means that the system needs less effort to

get similar performance as the one obtained by well known algorithms as RED or

SFD.

Level Alg U Throughput Goodput Overhead P drop F drop

L
ow

DropTail 10.1 0.213 0.202 5.06 1.44e-03 3.49e-03
RED 10.5 0.222 0.210 5.66 7.63e-03 1.99e-02
SFD 9.88 0.208 0.198 4.96 3.99e-04 1.18e-03
LFP 10.7 0.226 0.215 4.96 2.16e-04 6.44e-04

M
ed
iu
m DropTail 16.2 0.341 0.323 5.11 2.25e-03 6.12e-03

RED 15.7 0.335 0.315 6.2 1.34e-02 3.5e-02
SFD 16.0 0.338 0.321 5.08 1.26e-03 3.33e-03
LFP 16.1 0.339 0.322 4.99 5.88e-04 1.76e-03

H
ea
v
y

DropTail 21.2 0.449 0.425 5.43 7.43e-03 1.95e-02
RED 20.9 0.449 0.418 6.81 2.00e-02 5.13e-02
SFD 21.5 0.454 0.431 5.23 3.32e-03 8.2e-03
LFP 21.4 0.451 0.428 5.1 1.81e-03 5.17e-03

Table 4.5: Summarised values for DropTail, RED, SFD and LFP.

We have also summarised every measure in Table 4.5, where we can globally com-

pare the behaviour of DropTail, RED, SFD and LFP.

The performance results for the parameters that we have measured must be anal-

ysed together. As we can observe, LFP gets the lowest values of the Pdrop and Fdrop

parameters. Therefore, the number of dropped packets is improved with our pro-

posal. Comparing it with other algorithms, and under the same scenario, we can

emphasise that it also improves other performance parameters, such as overhead and

throughput. Regarding the latency, we can observe that LFP get a comparable result

with RED and SFD for short flows, and it also improves the results for long flows.

Considering the latency, LFP always improves the standard deviation and jitter for

short and long flows.
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Conclusions and future work

5.1 Conclusions

We have proposed a DiffServ-based algorithm, named Long Flow Promotion (LFP),

to improve the overall performance of web traffic. The development of the algorithm

has been conducted by several premises: reduce the latency, provide a preferential

treatment for short flows, permit the coexistence of short and long flows without

excessive penalisation for any of them, and finally, isolate extremely long flows. The

algorithm uses traditional elements of the DiffServ architecture but introduces some

new characteristics as three colours processing, the Token Bucket Model, the packet

promotion term, and finally, the packet penalisation.

In order to get the goodness of LFP, it has been compared with other well-known

proposals, that we justify below:

1. DropTail, because we want to compare LFP with a simple queue mechanism,

without nor active queue management neither QoS feature.

2. RED, as a widespread used algorithm that also implements QoS in the DiffServ

environment.

3. SFD, because we have used this algorithm as our working start point.

First of all, we have justified our step-by-step final version through three stages

65
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(S1, S2 and S3). The target of S1 is the flow differentiation. We have already layed

out the main drawback of this stage, which is the penalisation of certain not so long

flows. This penalisation justifies the second stage (S2), which main target is the

promotion of some flows, from low to high preferential treatment. In this stage, we

have used the token bucket model as a packet promotion mechanism. In this stage,

we have also mentioned another drawback, which is the existence of extremely long

flows, and for that reason, we consider the third stage (S3), where we establish an

isolating and detecting mechanism for those extremely long flows. Once they have

been detected, they are marked with the appropriate label and forwarded over the

lowest priority queue.

The results have been obtained through simulation in ns-2, and the incoming syn-

thetic web traffic has been generated by PackMime-HTTP. After the simulation some

performance parameters related to the QoS have been analysed: latency, dropped

packets, throughput and overhead.

We can conclude with some statements:

• DropTail gets the worst results becauses it is the simplest solution compared

with the other algorithms. For that reason, it is not appropriate as a solution

for developing QoS into the web service providers.

• RED is the most implemented algorithm in packet switching devices and it

represents the main support for the QoS in service provider systems. However,

our results show that LFP achieves comparable values for latency than RED,

while producing smaller values of overhead and better values for throughput

and less dropped packets.

• When comparing LFP with SFD, for short flows, SFD normally gets the best

latency, but LFP improves the rest of performance parameters: that means

better latency for long flows, throughput and link utilisation.

Considering the questions that were contemplated in the introduction of this thesis,

we can conclude as follows:

How could we avoid a penalisation of flows whose size is close to the threshold?
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With the token bucket features we have avoided the penalisation of those flows that

are close to the size threshold by marking packets belonging to them with green colour

and promoting them in the edge device and therefore, achieving a better treatment

at the core device. As we have detailed previously, the performance results for short

flows using our proposal (LFP) is comparable to SFD and RED, and for long flows,

LFP does not suffer any significant decrease in the performance results. These better

results for delay are achieved while keeping the overhead level with LFP lower than

the overhead of the rest of algorithms.

How many flows can we promote while keeping a suitable system performance?

The positive results for LFP have been obtained using the promotion mechanism

detailed in stage S2. Moreover, the amount of promoted packets sent over each queue

has been justified in Figure 4.6(c).

What happens if we are promoting some flows which do not need to be promoted?

To avoid this fact, we have used another threshold, defined as uquantile. The target of

this threshold is to delimit long and extremely long flows. As we have demonstrated

through simulation, when forwarding these flows over the lowest priority queue, LFP

achieves the best results in terms of performance than the other algorithms.

How can we make the extremely long flows threshold adaptive? We have used the

last history of incoming traffic to the QoS system, to adaptively set the threshold

depending on the characteristics of the last flows in the system.

Finally, we can conclude that LFP can be taken into consideration as a good choice

for flow differentiation in a QoS system architecture.
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5.2 Future work

Regarding the future work and open research issues, we propose to develope the

following ideas in a close future:

• To update the flow size thresholds tunning of the LFP algorithm with recent

traffic characteristics that include the Ajax protocol or IPTV traffic.

• To redefine the token bucket model in order to deal with heavy bursty work-

load. It would be important to analyse in depth the repercusion of including

high levels of burstiness in the workload and analyse variations of the proposed

algorithm that permit the system to maintain the desired QoS.

• Before the final implementation, it would be interesting to validate the model

using modern model checking technologies, such as Specification and Descrip-

tion Language (SDL) or Promela and Spin verification



Chapter 6

Contributions

The list of contributions and paper generated by this thesis, below:

• Alcaraz, S., Juiz, C., Gilly K. and Puigjaner, R., A New Token Bucket DiffServ

Policy for Web Traffic, Proc. of the International Conference on Telecommu-

nications & Multimedia (TEMU 2006), ISBN: 960-88785-2-7, Vol.: S2, pp:1-8,

July, 2006, Crete, Greece.

• Alcaraz, S., Juiz, C., Gilly K. and Puigjaner, R., Una Estrategia de QoS para
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69



70 Chapter 6: Contributions

• Alcaraz, S., Gilly, K., Juiz, C. and Puigjaner, R., Promoting Web Traffic Over

a DiffServ Architecture, Proc. of 22nd International Symposium on Computer

and Information Sciences, ISCIS 2007, ISBN: 1-4244-1364-8, Vol: 1, pp: 8-13,

November 7-9, 2007, Ankara, Turkey.

• Alcaraz, S., Gilly, K., Juiz, C. and Puigjaner, R., Accommodating short and

long web traffic flows over a DiffServ architecture, LNCS, ISBN: 978-3-642-

24748-4, ISSN: 0302-9743, Vol: 6977, pp: 14-28, 2011, Elsevier, Heidelberg,

Berlin.



Chapter 7

Appendix

7.1 NS2 model

The implementation of NS2 models has two parts of source code:

• Scripts based on Tcl.

• Source code based on C++

As you can see below, we have developed a configution file on tcl programming

language. With this model, we can execute the simulation for each algorithm we

have analysed in the thesis: DropTail, RED, SFD and LFP, by using the appropriate

parameters in an external data file named config.dat.

1 #: : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :

2 #: : : w e b . t c l v1 .0 (web t r a f f i c )

3 #: : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :

4 #: : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :

5 #: : : reading ’ con f i g . da t ’ f i l e

6 #: : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :

7 set i n f i l e [open "config.dat" r ]

8 while { [ gets $ i n f i l e r e a d l i n e ] >= 0 } {
9 regsub −all {\ ’} $ r e a d l i n e "\"" line

10 set parameter [split $line =]

11 set par_name [lindex $parameter 0]

12 set par_value [lindex $parameter 1]

13 set cmd " set $par name $par va lue "

14 eval $cmd

71
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15 puts $cmd

16 }

17 close $infile

18

19 #:::::::::::::::::::::::::::::::::::::::::::

20 #::: reading command-line parameters

21 #:::::::::::::::::::::::::::::::::::::::::::

22 set vars {FileName Algorithm Scenario CIR CBS TraceMIME

23 TraceNS TracePolicy Qn Version CBRrate Kappa Delta}

24

25 set n_vars [llength $vars]

26

27 for {set i 0} {$i < $n_vars} {incr i} {

28 set var_name [lindex $vars $i]

29 set var_value [lindex $argv $i]

30 set cmd {set $var_name $var_value}

31 eval $cmd

32 }

33

34 #:::::::::::::::::::::::::::::::::::::::::::

35 # useful variables

36 set duration [expr $Warmup + $Length ]; # total simulation time (s)

37 set CLIENT 0

38 set SERVER 1

39

40 #:::::::::::::::::::::::::::::::::::::::::::

41 #: Setup Simulator

42 #:::::::::::::::::::::::::::::::::::::::::::

43 remove-all-packet-headers

44 add-packet-header IP TCP

45 set ns [new Simulator]

46 $ns use-scheduler Heap

47

48 #:::::::::::::::::::::::::::::::::::::::::::

49 #:Topology

50 #:::::::::::::::::::::::::::::::::::::::::::

51 # Edge Core

52 # | |

53 # B | A |

54 # ServersCloud <--- > R3 --- > R2 --- > R1 <--- > ClientsCloud

55 # ^ |

56 # | C |

57 # +---------------+

58 #:::::::::::::::::::::::::::::::::::::::::::

59

60 #:::::::::::::::::::::::::::::::::::::::::::
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61 # link parameters

62 #:::::::::::::::::::::::::::::::::::::::::::

63 set ABandwidth "2Mb"

64 set ADelay "5ms"

65 set BLength "50"

66 set BBandwidth "10Mb"

67 set BDelay "5ms"

68 set CLength "50"

69 set CDelay "5ms"

70 set CBandwidth "10Mb"

71 set REDMinTh "10"

72 set REDMaxTh "40"

73 set REDWeight "0 .002 "

74 set ThresholdQCoreA "10"

75 set MaxThresholdQCoreA "30"

76 set WeightQCoreA "0 .02 "

77 set ThresholdQCoreB "8"

78 set MaxThresholdQCoreB "24"

79 set WeightQCoreB "0 .02 "

80 set ThresholdQCoreC "8"

81 set MaxThresholdQCoreC "24"

82 set WeightQCoreC "0 .02 "

83

84 #:::::::::::::::::::::::::::::::::::::::::::

85 # create nodes

86 set ClientCloud [$ns node]

87 set ServerCloud [$ns node]

88 set R1 [$ns node]

89 set R2 [$ns node]

90 set R3 [$ns node]

91

92 #:::::::::::::::::::::::::::::::::::::::::::

93 # create links

94 $ns duplex-link $ClientCloud $R1 10Mb 5ms DropTail

95 $ns simplex-link $R1 $R3 $CBandwidth $CDelay DropTail

96 $ns queue-limit $R1 $R3 $CLength

97 $ns duplex-link $R3 $ServerCloud 10Mb 5ms DropTail

98

99 #:::::::::::::::::::::::::::::::::::::::::::

100 # Setup a UDP connection

101 set udp [new Agent/UDP]

102 $ns attach-agent $ServerCloud $udp

103 set null [new Agent/Null]

104 $ns attach-agent $ClientCloud $null

105 $ns connect $udp $null

106
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107 #:::::::::::::::::::::::::::::::::::::::::::

108 # Setup a CBR over UDP connection

109 set cbr [new Application/Traffic/CBR]

110 $cbr attach-agent $udp

111 $cbr set rate_ " [ expr $CBRrate + 0 ]Mb"

112 $cbr set random_ false

113

114 #:::::::::::::::::::::::::::::::::::::::::::

115 # SEGMENTO DE CÓDIDO ESPECÍFICO PARA CADA MODELO

116 if { $Algorithm == "DropTail" } {# Definición de polı́tica DropTail

117 $ns simplex-link $R3 $R2 $BBandwidth $BDelay DropTail ;

118 $ns queue-limit $R3 $R2 $BLength

119

120 $ns simplex-link $R2 $R1 $ABandwidth $ADelay DropTail ;

121 $ns queue-limit $R2 $R1 $QLength

122 } elseif { $Algorithm == "RED" } { # Definición de polı́tica RED

123 $ns simplex-link $R3 $R2 $BBandwidth $BDelay RED ;

124 $ns queue-limit $R3 $R2 $BLength

125

126 $ns simplex-link $R2 $R1 $ABandwidth $ADelay RED ;

127 $ns queue-limit $R2 $R1 $QLength

128

129 } elseif { $Algorithm == "SFD" || $Algorithm == "LFP"} { # SFD/PLF

130 $ns simplex-link $R3 $R2 $BBandwidth $BDelay dsRED/edge ;

131 $ns queue-limit $R3 $R2 $BLength

132

133 $ns simplex-link $R2 $R1 $ABandwidth $ADelay dsRED/core ;

134 $ns queue-limit $R2 $R1 $QLength

135

136 #:::::::::::::::::::::::::::::::::::::::::::

137 #: Setup Diffserv parameters

138 #:::::::::::::::::::::::::::::::::::::::::::

139 set qEdge [[$ns link $R3 $R2] queue]

140 set qCore [[$ns link $R2 $R1] queue]

141

142 #:::::::::::::::::::::::::::::::::::::::::::

143 # setup EDGE node parameters

144 $qEdge meanPktSize $MSS

145 $qEdge set numQueues_ 1

146 $qEdge setNumPrec 3

147

148 if {$Algorithm == "SFD"} {

149 set Version 1 }

150

151 $qEdge addPolicyEntry \

152 -1 -1 LFP 10 $SizeThreshold $CIR $CBS $Version \
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153 $TracePolicy $ACK $RTX $HistoryQn $Qn $SimultFlowsW $Kappa $Delta

154

155 $qEdge addPolicerEntry LFP 10 11 12

156 $qEdge addPHBEntry 10 0 0

157 $qEdge addPHBEntry 11 0 1

158 $qEdge addPHBEntry 12 0 2

159

160 #:::::::::::::::::::::::::::::::::::::::::::

161 # setup CORE node parameters

162 $qCore setMREDMode RIO-C

163 $qCore setSchedularMode PRI

164

165 $qCore meanPktSize $MSS

166 $qCore set numQueues_ 1

167 $qCore setNumPrec 3

168

169 $qCore addPHBEntry 10 0 0

170 $qCore addPHBEntry 11 0 1

171 $qCore addPHBEntry 12 0 2

172

173 $qCore configQ 0 0 $ThresholdQCoreA $MaxThresholdQCoreA $WeightQCoreA

174 $qCore configQ 0 1 $ThresholdQCoreB $MaxThresholdQCoreB $WeightQCoreB

175 $qCore configQ 0 2 $ThresholdQCoreC $MaxThresholdQCoreC $WeightQCoreC

176 }

177

178 #:::::::::::::::::::::::::::::::::::::::::::

179 # Setup queue parameters (if it’s necesary)

180 #:::::::::::::::::::::::::::::::::::::::::::

181 # setup TCP

182 Agent/TCP/FullTcp set segsize_ $MSS;

183 Agent/TCP set window [expr round($Window*1024.0 /($MSS + 40.0))]

184

185 #:::::::::::::::::::::::::::::::::::::::::::

186 #: Setup PackMime

187 #:::::::::::::::::::::::::::::::::::::::::::

188 set pm [new PackMimeHTTP]

189 $pm set-client $ClientCloud;

190 $pm set-server $ServerCloud;

191 $pm set-rate $Scenario; # new connections per second

192

193 #:::::::::::::::::::::::::::::::::::::::::::

194 # Setup PackMime Random Variables

195 global defaultRNG

196

197 # create RNGs (appropriate RNG seeds are assigned automatically)

198 set semilla 0
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199

200 set flowRNG [new RNG]

201 $flowRNG seed $semilla

202

203 set reqsizeRNG [new RNG]

204 $reqsizeRNG seed $semilla

205

206 set rspsizeRNG [new RNG]

207 $rspsizeRNG seed $semilla

208

209 # create RandomVariables

210 set flow_arrive [new RandomVariable/PackMimeHTTPFlowArrive $Scenario]

211

212 set req_size [new RandomVariable/Uniform]

213 $req_size set min_ 100

214 $req_size set max_ 200

215

216 set rsp_size [new RandomVariable/PackMimeHTTPFileSize $Scenario $SERVER]

217

218 # assign RNGs to RandomVariables

219 $flow_arrive use-rng $flowRNG

220 $req_size use-rng $reqsizeRNG

221 $rsp_size use-rng $rspsizeRNG

222

223 # set PackMime variables

224 $pm set-flow_arrive $flow_arrive

225 $pm set-req_size $req_size

226 $pm set-rsp_size $rsp_size

227

228 # record HTTP statistics

229 set fileMime "$FileName.mime"

230 if {$TraceMIME} { $pm set-outfile $fileMime}

231

232 #:::::::::::::::::::::::::::::::::::::::::::

233 # Packet Tracing

234 #:::::::::::::::::::::::::::::::::::::::::::

235 proc trace {} {

236 global ns R2 R1 FileName CBRrate

237

238 # setup packet tracing

239 Trace set show_tcphdr_ 1

240

241 set fileOut1 " $Fi leName.tr "

242 set qmonf1 [open " |
243 grep ˆ\ [ d\−\ ] | cut −d \ \" \" −f 1 , 2 , 6 , 8 , 1 2 > $ f i l eOut1 " w]

244
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245 $ns trace-queue $R2 $R1 $qmonf1

246 }

247

248 #:::::::::::::::::::::::::::::::::::::::::::

249 # Cleanup

250 #:::::::::::::::::::::::::::::::::::::::::::

251 proc finish {} {

252 global ns pm reqsizeRNG rspsizeRNG flowRNG req_size rsp_size

253 flow_arrive TraceNS

254 if {$TraceNS} {$ns flush-trace}

255

256 # delete all of the RNGs and RanVars we created reqsizeRNG

257 delete $rspsizeRNG

258 delete $flowRNG

259 delete $req_size

260 delete $rsp_size

261 delete $flow_arrive

262

263 # delete PackMime $pm Simulator $ns

264 exit 0

265 }

266

267 #:::::::::::::::::::::::::::::::::::::::::::

268 # Simulation Schedule

269 #:::::::::::::::::::::::::::::::::::::::::::

270 $ns at 0.0 "$pm s t a r t "

271

272 if {$CBRrate} { $ns at 0.0 " $cbr s t a r t "}

273 if {$TraceNS} {$ns at $Warmup "trace"}

274

275 $ns at $duration "$pm stop "

276

277 if {$CBRrate} {$ns at $duration " $cbr stop "}

278

279 $ns at [expr $duration + 1] " f i n i s h "

280

281 $ns run

7.2 Configuration file

Different configuration parameters have been specified in config.dat file. We can

simulates different scenarios or model properties by changing these parameters.

1 WebScenarios=’1 2 3 4 5 6 7 8 9 10 11 12 13 14 ’
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2 Scenar io = ’3 ’

3 Congest ionLeve l s=’6 10 14 ’

4 Length= ’5000 ’

5 Samples= ’10 ’

6 S izeThresho ld = ’12 ’

7 Rango1=’4 40 ’

8 Rango2=’8 15 ’

9 Pi= ’6 ’

10 LFPVersions=’1 2 3 ’

11 ABandwidth= ’2 ’

12 ACK= ’1 ’

13 RTX= ’1 ’

14 Qn= ’98 ’

15 QnList=’90 91 92 93 94 95 96 97 98 99 ’

16 CIR= ’500 ’

17 CIRList=’500 1000 1500 ’

18 CBS= ’500 ’

19 CBSList=’500 1000 1500 ’

20 Kappa= ’40 ’

21 KappaList=’1 2 3 4 5 6 7 8 9 ’

22 Delta = ’20 ’

23 De l t aL i s t =’1 2 3 4 5 6 7 8 9 ’

24 QLength= ’50 ’

25 QLengthList=’10 20 30 40 50 60 70 ’

26 CBRLow= ’0.0001 ’

27 CBRMedium= ’0.001 ’

28 CBRHeavy= ’0.01 ’

29 Warmup= ’0 ’

30 MSS= ’1460 ’

31 Packe t In t e rva l = ’10 ’

32 ThWindowLeft= ’4 ’

33 ThWindowRight= ’12 ’

34 RatioA= ’0 ’

35 RatioB= ’1.4 ’

36 RatioC= ’10 ’

37 PrecGraph= ’500 ’

38 PrecHist = ’400 ’

39 Conf idenceInterva lA= ’1 ’

40 Conf idenceInterva lB = ’0.95 ’

41 VeryLongFlow= ’500 ’

42 HistoryQn= ’500 ’

43 SimultFlowsW= ’0.7 ’

44 Window= ’16 ’

45 Condor= ’1 ’

46 TailA= ’2 ’

47 TailB= ’4 ’
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48 CondorMaxJobs= ’0 ’

7.3 C++ source code

Model changes need to be added to the source code of the NS2 tool. In this case, we

have added the LFP Policy C++ object as you can see below. This object implements

every LFP property and characteristic.

1 Quant i l eClas s : : Quant i l eClas s ( ) {
2 indexIN=0;

3

4 for ( int i =0; i<MAXQUANTIL; i++) {
5 h i s t o r i c [ i ]=0;

6

7 for ( int j ; j <3; j++)

8 U[ i ] [ j ]=0;

9 }
10 }
11

12 void Quant i l eClas s : : addValuesHi s tor i c ( int v , int h) {
13 maxHistor ic = h ;

14

15 i f ( indexIN == maxHistor ic )

16 indexIN=0;

17

18 h i s t o r i c [ indexIN ]=v ;

19 indexIN++;

20 // p r i n t f (” index=%d\n” , indexIN ) ;

21 return ;

22 }
23

24 void Quant i l eClas s : : p r i n tH i s t o r i c (void ) {
25 for ( int i =0; i<maxHistor ic ; i++)

26 i f ( h i s t o r i c [ i ] )

27 p r i n t f ( "\n history [%d]=%d" , i , h i s t o r i c [ i ] ) ;

28 return ;

29 }
30 int Quant i l eClas s : : c oun tH i s t o r i c (void ) {
31 int c=0;

32 for ( int i =0; i<maxHistor ic ; i++)

33 i f ( h i s t o r i c [ i ] )

34 c++;

35 return c ;
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36 }
37

38 void Quant i l eClas s : : printU (void ) {
39 for ( int i =0; i<maxHistor ic ; i++)

40 i f ( U[ i ] [ 0 ] )

41 p r i n t f ( "\n U[%d]=\t%d\t%d\t%d" , i ,U[ i ] [ 0 ] ,U[ i ] [ 1 ] ,U[ i ] [ 2 ] ) ;

42 return ;

43 }
44

45 int Quant i l eClas s : : computeQuantile ( int q ) {
46 int c l a s e , nElems , r e to rno ;

47 int i , j ;

48

49 for ( i =0; i<maxHistor ic ; i++)

50 for ( j =0; j <3; j++)

51 U[ i ] [ j ]=0;

52

53 for ( i =0; i<maxHistor ic ; i++) {
54 i f ( h i s t o r i c [ i ] ) {
55 c l a s e=h i s t o r i c [ i ] ;

56 U[ c l a s e ] [ 0 ]++;

57 }
58 }
59

60 for ( c l a s e =1; c l a s e<maxHistor ic ; c l a s e++) {
61 U[ c l a s e ] [ 1 ]=U[ c l a s e −1] [1]+U[ c l a s e ] [ 0 ] ;

62 nElems=U[ c l a s e ] [ 1 ] ;

63 }
64

65 for ( c l a s e =1; c l a s e<maxHistor ic ; c l a s e++)

66 U[ c l a s e ] [ 2 ]= ( int ) 100∗U[ c l a s e ] [ 1 ] / nElems ;

67

68 re to rno=0;

69 for ( c l a s e =1; c l a s e<maxHistor ic ; c l a s e++)

70 i f ( U[ c l a s e ] [ 2 ] <= q && U[ c l a s e ] [ 0 ] )

71 re to rno = c l a s e ;

72

73 return ( r e to rno ) ;

74 }
75

76 //−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
77 // Beginning o f LFP

78 LFPPolicy : : LFPPolicy ( ) : Po l i cy ( ) {
79 f l ow t ab l e . head = f l ow t ab l e . t a i l = NULL;

80 quant i l ePkt s=new( Quant i l eClas s ) ; // Quant i l eC lass ∗ quan t i l e ;

81 }



Chapter 7: Appendix 81

82

83 //−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
84 LFPPolicy : : ˜ LFPPolicy ( ) {
85 struct f l ow en t ry ∗p , ∗q ;

86 p = q = f l ow t ab l e . head ;

87 while (p) {
88 p r i n t f ( "free flow: %d\n" , p−>f i d ) ;

89 q = p ;

90 p = p−>next ;

91 f r e e ( q ) ;

92 }
93 p = q = NULL;

94 f l ow t ab l e . head = f l ow t ab l e . t a i l = NULL;

95 }
96

97 /∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
98 void LFPPolicy : : applyMeter ( po l i cyTab leEntry ∗ po l i cy , Packet ∗ pkt )
99 Flow s t a t e s are kep t in a l i n k ed l i s t .

100 Record how many by t e s has been sent per f l ow and check i f t he re i s any f l ow

101 t imeout .

102 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗/
103 void LFPPolicy : : applyMeter ( po l icyTableEntry ∗ po l i cy , Packet ∗pkt ) {
104 int f i d , s rc Id , dstId , founded , expired , rtx , ack ;

105 struct f l ow en t ry ∗ f low , ∗new entry , ∗q ;

106 double ganancia , now ;

107 hdr cmn ∗ hdr ;

108 hdr ip ∗ iph ;

109 hdr tcp ∗ tcph ;

110

111 now = Scheduler : : i n s t anc e ( ) . c l o ck ( ) ;

112

113 ganancia = (double ) po l i cy−>c i r ∗ (now − po l i cy−>arr iva lTime ) ;

114 i f ( ( po l i cy−>cBucket += ganancia ) > po l i cy−>cbs )

115 po l i cy−>cBucket = po l i cy−>cbs ;

116

117 po l i cy−>arr iva lTime = now ;

118

119 hdr = hdr cmn : : a c c e s s ( pkt ) ;

120 tcph = hdr tcp : : a c c e s s ( pkt ) ;

121 iph = hdr ip : : a c c e s s ( pkt ) ;

122

123 f i d = iph−>f l ow id ( ) ;

124 dst Id = iph−>daddr ( ) ;

125 s r c I d = iph−>saddr ( ) ;

126

127 rtx = tcph−>reason ( ) ;
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128 ack = ( hdr−>s i z e ( ) == 40 ? 1 : 0) ;

129

130 // −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
131 // Revisamos l a cabeza de l a l i s t a , para de t e c t a r y marcar exp i red f l ows

132 // −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
133 f low = f l ow t ab l e . head ;

134 po l i cy−>f l ow s I n s t = 0 ;

135 founded = 0 ;

136 exp i red = 0 ;

137

138 while ( f low ) {
139 switch ( ( f low−>l a s t upda t e + FLOWTIME OUT < now) ? 1 : 0 ) {
140 case 0 :

141 po l i cy−>f l ow s I n s t++;

142 i f ( f low−>f i d == f i d ) {
143 founded = 1 ;

144 flow−>l a s t upda t e = now ;

145 flow−>pkts++;

146

147 i f ( ! r tx && ! ack )

148 flow−>by t e s s en t += hdr−>s i z e ( ) ;

149 }
150 f low=flow−>next ;

151 break ;

152 case 1 :

153 exp i r ed=1;

154 q=f low ;

155 i f ( f low == f l ow t ab l e . head && f low == f l ow t ab l e . t a i l ) {
156 f low = f l ow t ab l e . head = f l ow t ab l e . t a i l = NULL;

157 } else i f ( f low == f l ow t ab l e . head ) {
158 f low=flow−>next ;

159 f l ow t ab l e . head = f low ;

160 f l ow t ab l e . head−>prev=NULL;

161 } else i f ( f low == f l ow t ab l e . t a i l ) {
162 f low=flow−>prev ;

163 f l ow t ab l e . t a i l = f low ;

164 f l ow t ab l e . t a i l−>next=NULL;

165 } else {
166 f low=flow−>next ;

167 flow−>prev=q−>prev ;

168 q−>prev−>next=f low ;

169 } ;
170

171 quant i l ePkts−>addValuesHis tor i c (q−>pkts , po l i cy−>QnHistory ) ;

172 f r e e ( q ) ;

173 break ;
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174 }
175 }
176

177 // −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
178 // Flujo nuevo , por l o tanto , aqadir a l f i n a l

179 // −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
180 i f ( ! founded ) {
181 po l i cy−>f l ow s I n s t++;

182

183 new entry = new f l ow en t ry ;

184

185 new entry−>f i d = f i d ;

186 new entry−>s r c i d = s r c Id ;

187 new entry−>d s t i d = dst Id ;

188 new entry−>l a s t upda t e = now ;

189 new entry−>by t e s s en t = hdr−>s i z e ( ) ;

190 new entry−>count = 0 ;

191 new entry−>type = F SHORT;

192 new entry−>pkts = 1 ;

193 new entry−>next = NULL;

194 new entry−>prev = NULL;

195

196 i f ( f l ow t ab l e . t a i l ) { // always i n s e r t the new entry to the t a i l .

197 f l ow t ab l e . t a i l−>next = new entry ;

198 new entry−>prev = f l ow t ab l e . t a i l ;

199 } else f l ow t ab l e . head = new entry ;

200

201 f l ow t ab l e . t a i l = new entry ;

202 }
203

204 i f ( exp i r ed )

205 po l i cy−>Qn = quant i l ePkts−>computeQuantile ( po l i cy−>QnValue ) ;

206

207 po l i cy−>f lowsAvg = ( int ) round((1− po l i cy−>simultFlowsW ) ∗ po l i cy−>f lowsAvg\
208 + po l i cy−>simultFlowsW ∗ po l i cy−>f l ow s I n s t ) ;

209 return ;

210 }
211

212 /∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
213 void LFPPolicy : : app l yPo l i c e r ( po l i cyTab leEntry ∗ po l i cy , i n t in i t i a lCodePt ,

214 Packet ∗ pkt )
215−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗/
216 int LFPPolicy : : app lyPo l i c e r ( po l icyTableEntry ∗ po l i cy ,

217 po l i c e rTab leEntry ∗ po l i c e r , Packet ∗pkt ) {
218 int f i d , s i z e , pktId , newCodePt , newPktType , ack , r tx ;

219 struct f l ow en t ry ∗ f low ;



84 Chapter 7: Appendix

220 hdr ip ∗ iph ;

221 hdr cmn∗ hdr ;

222 hdr tcp ∗ tcph ;

223 double now , lapsus , bucketTotalTime ;

224 int BucketLevel , de l ta , FlowType ;

225

226 now = Scheduler : : i n s t ance ( ) . c l o ck ( ) ;

227

228 // Accediendo a cabeceras y datos de paquetes NS

229 iph = hdr ip : : a c c e s s ( pkt ) ;

230 f i d = iph−>f l ow id ( ) ;

231

232 hdr = hdr cmn : : a c c e s s ( pkt ) ;

233 s i z e = hdr−>s i z e ( ) ;

234 pktId = hdr−>uid ( ) ;

235

236 tcph = hdr tcp : : a c c e s s ( pkt ) ;

237 rtx = ( tcph−>reason ( ) ? 1 : 0) ;

238

239 ack = ( hdr−>s i z e ( ) == 40 ? 1 : 0) ;

240

241 f low = f l ow t ab l e . head ;

242 while ( f low && ( flow−>f i d != iph−>f l ow id ( ) ) )

243 f low = flow−>next ;

244

245 FlowType= ( flow−>pkts <= pol i cy−>th ? F SHORT : F LONG) ;

246 de l t a = ( flow−>pkts > po l i cy−>Qn) ? 1 : 0 ;

247 BucketLevel = ( int ) (100∗ po l i cy−>cBucket/ po l i cy−>cbs ) ;

248

249 int BucketMinLevel , BucketMaxLevel ;

250

251 i f ( ( BucketMinLevel=po l i cy−>BucketKappa − po l i cy−>BucketDelta ) < 0)

252 BucketMinLevel=0;

253

254 i f ( ( BucketMaxLevel=po l i cy−>BucketKappa + po l i cy−>BucketDelta ) > 100)

255 BucketMinLevel=100;

256

257 switch ( po l i cy−>BucketOpen ) {
258 case 0 :

259 i f ( BucketLevel >= BucketMaxLevel ) {
260 po l i cy−>BucketOpen = 1 ;

261 po l i cy−>BucketOpenTimeInit = now ;

262 }
263 break ;

264 case 1 :

265 lapsus=now−po l i cy−>BucketOpenTimeInit ;
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266 i f ( BucketLevel <= BucketMinLevel ) {
267 po l i cy−>BucketOpenTime += lapsus ;

268 po l i cy−>BucketOpenTimeInit = 0 ;

269 lapsus = 0 ;

270 po l i cy−>BucketOpen = 0 ;

271 }
272 break ;

273 }
274 bucketTotalTime=po l i cy−>BucketOpenTime + lapsus ;

275

276 switch ( po l i cy−>ve r s i on ) {
277 case 1 :

278 switch (FlowType ) {
279 case F SHORT:

280 flow−>type = F SHORT;

281 po l i cy−>cBucket = Ajusta ( po l i cy−>cBucket , s i z e ) ;

282 newCodePt = po l i c e r−>i n i t i a lCodePt ;

283 newPktType = P Type0 ;

284 break ;

285 case F LONG:

286 flow−>type = F LONG;

287 newCodePt = po l i c e r−>downgrade1 ;

288 newPktType = P Type2 ;

289 break ;

290 }
291 break ;

292

293 case 2 :

294 switch (FlowType ) {
295 case F SHORT:

296 flow−>type = F SHORT;

297 po l i cy−>cBucket = Ajusta ( po l i cy−>cBucket , s i z e ) ;

298 newCodePt = po l i c e r−>i n i t i a lCodePt ;

299 newPktType = P Type0 ;

300 break ;

301 case F LONG:

302 flow−>type=F LONG;

303

304 switch ( po l i cy−>BucketOpen ) {
305 case 0 :

306 newCodePt = po l i c e r−>downgrade1 ;

307 newPktType = P Type2 ;

308 break ;

309 case 1 :

310 po l i cy−>cBucket = Ajusta ( po l i cy−>cBucket , s i z e ) ;

311 newCodePt = po l i c e r−>i n i t i a lCodePt ;
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312 newPktType = P Type1 ;

313 break ;

314 }
315 break ;

316 }
317 break ;

318

319 case 3 :

320 switch (FlowType ) {
321 case F SHORT:

322 flow−>type = F SHORT;

323 po l i cy−>cBucket = Ajusta ( po l i cy−>cBucket , s i z e ) ;

324 newCodePt = po l i c e r−>i n i t i a lCodePt ;

325 newPktType = P Type0 ;

326 break ;

327

328 case F LONG:

329 i f ( ( ack && po l i cy−>ack ) | | ( r tx && po l i cy−>r tx ) ) { // ACK’ s & RTX’ x

promotion

330 newCodePt = po l i c e r−>i n i t i a lCodePt ;

331 newPktType = P Type0 ;

332 break ;

333 }
334 i f ( f low−>type == F vLONG) {
335 newCodePt = po l i c e r−>downgrade2 ;

336 newPktType = P Type3 ;

337 break ;

338 }
339 flow−>type = F LONG;

340 switch ( d e l t a ) {
341 case 0 : // NO es un e l e f a n t e

342 switch ( po l i cy−>BucketOpen ) {
343 case 0 : // Token bucke t CERRADO

344 newCodePt = po l i c e r−>downgrade1 ;

345 newPktType = P Type2 ;

346 break ;

347 case 1 : // Token bucke t BIERTO

348 po l i cy−>cBucket = Ajusta ( po l i cy−>cBucket , s i z e ) ;

349 newCodePt = po l i c e r−>i n i t i a lCodePt ;

350 newPktType = P Type1 ;

351 break ;

352 }
353 break ;

354 case 1 : // SI es e l e f a n t e

355 flow−>type = F vLONG;

356 newCodePt = po l i c e r−>downgrade2 ;
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357 newPktType = P Type3 ;

358 break ;

359 }
360 break ;

361 }
362 }
363

364 Pr intL ine ( po l i cy−>t race , ( int )now , f low−>type , f low−>f i d , pktId ,

365 newPktType , ack , rtx , s i z e , ( int ) po l i cy−>cBucket , f low−>pkts ,

366 po l i cy−>Qn, po l i cy−>f l ows In s t , po l i cy−>flowsAvg , newCodePt ,

367 BucketLevel , po l i cy−>BucketOpen , ( int ) bucketTotalTime ) ;

368

369 return ( newCodePt ) ;

370 }
371

372 /∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
373 doub le LFPPolicy : : Ajusta ( doub le bucket , doub le s i z e )

374−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗/
375 double LFPPolicy : : Ajusta (double bucket , double s i z e )

376 {
377 // bucke t −= s i z e ;

378

379 i f ( bucket−− < 0 )

380 bucket = 0 ; ;

381

382 // bucke t = (( bucke t < 0) ? 0.00000001 : bucke t ) ;

383 return ( bucket ) ;

384 }
385

386 /∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
387−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗/
388 void LFPPolicy : : Pr intL ine ( int t race , int now , int f type , int f i d , int pkt id ,\
389 int pkt type , int ack , int rtx , int s i z e , int cBucket , int

pkts ,\
390 int Qn, int f l ows In s t , int flowsAvg , int newCodePt ,\
391 int bucketLevel , int bucketOpen , int bucketTotalTime )

392 {
393 i f ( t r a c e ) {
394 p r i n t f ( "\nP %d %d %d %d %d %d %d %d %d %d %d %d %d %d %d %d %d" ,\
395 now , ftype , f i d , pkt id , pkt type , ack , rtx , s i z e , cBucket , pkts ,Qn, f l ows In s t ,\
396 flowsAvg , newCodePt , bucketLevel , bucketOpen , bucketTotalTime ) ;

397 }
398 return ;

399 }
400 // End of LFP

401 /////////////////////////////////////
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Acronyms

AF Assured Forwarding

AQM Active Queue Management

CIR Committed Information Rate

CBS Committed Burst Size

DiffServ Differentiated Services

EF Expedited Forwarding

ERED Effective RED

ETSI European Telecommunications Standards Institute

FIFO First In First Out

FSM Finite State Machine

HTTP Hypertext Transfer Protocol

IP Internet Protocol

ISP Internet Service Provider

IETF Internet Engineering Task Force

ITU International Telecommunication Union

LAS Least Attained Service

89



90 Chapter 7: Appendix

LFP Long Flow Promotions

LF Long flows

MPLS Multiprotocol Label Switching

NGN Next Generation Networks

NS2 Network Simulator 2

OSI Open System Interconnection

PDD Proportional Delay Differentiation

PDU Protocol Data Unit

PHB Per-hop behaviour

PQ Priority queuing

QoS Quality of Service

Q-SAPI Stable Queue-Based Adaptive Proportional-Integral

RED Random Early Detection

REM Random Exponential Marking

RIO RED with IN and OUT drop probability

RSVP Resource Reservation Protocol

RTT Round Trip Time

SDL Specification and Description Language

SFD Short Flow Differentiation

SHRED SHort-Lived flow friendly RED

SLA Service Level Agreement
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SF Short flows

SRED Subsidised RED

SRPT Shortest Remaining Processing Time

TCP Transport Control Protocol

www World Wide Web
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