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Resum / Abstract / Resumen 
Resum 
La mar Mediterrània és un dels mars més rics del món. No obstant això, és també un dels 

més amenaçats. En aquest mar, les poblacions de peixos litorals, particularment d´ espàrids 

i làbrids, juguen un important paper econòmic i ecològic. No obstant això, la perpetuació 

d'aquestes poblacions pot estar limitada, entre altres causes, per l´abastiment de juvenils, ja 

que els seus hàbitats, en contrast amb els habitat adults, es troben a la franja costaner de 

menor profunditat, on les pressions antròpiques són majors. La bibliografia identifica tres 

hàbitats molt comuns a les nostres costes com a zones de desenvolupament dels juvenils 

d'aquestes espècies: les praderies marines, els boscos d'algues erectes i les zones mixtes de 

sorra, còdols i roques.Davant l'amenaça de la transformació antròpica d'aquests hàbitats, 

aprofundir en el coneixement dels factors que influeixen en la distribució de densitats de 

juvenils en aquests hàbitats és fonamental. Amb aquest ànim, es va dur a terme el 

monitoratge dels peixos juvenils durant les estacions càlides de 2011, 2012 i 2013 a l'illa 

de Menorca (Illes Balears). Les anàlisis exploratòries i inferencials van indicar que a una 

escala menor del paisatge submarí, la variabilitat en els patrons de distribució de densitats 

dels juvenils dins de cada hàbitat podia ser explicada per l'estructura de l'hàbitat, tant de les 

praderies de Cymodocea nodosa, com dels boscos de Cystoseira spp. i dels fons mixtos de 

sorra, còdols i roques. Les diferents espècies de làbrids i espàrids van respondre de forma 

contrastada a aquest factor, presumiblement a causa de que cada espècie troba el millor 

compromís entre disponibilitat d'aliment i refugi (qualitat de l'hàbitat) en un diferent grau 

d'estructuració. Així mateix, en els boscos de Cystoseira spp., que a Menorca s'estenen fins 

als 15 metres de profunditat, les dades van indicar una preferència taxa- especifica per 

diferents rangs de profunditat. Finalment a una escala major, la configuració de la costa, 

determinada en primer terme per l'exposició, va influir notablement les densitats de 

juvenils, probablement afectant l'arribada de larves; en segon lloc, l'orientació de la costa 

respecte a la direcció dels vents forts va influenciar la seva dinàmica, impedint l'arribada 

de larves o expulsant dels hàbitats juvenils. Conseqüentment, aquesta tesi posa de manifest 

la importància de considerar factors que operen a diferents escales influenciant la densitat 

de juvenils. En paral·lel a aquest resultat global, aquesta tesi defensa la importància de 

tenir en compte les diferents escales del paisatge submarí per establir plans de gestió, i 

aprofundir en la problemàtica de la preservació de les poblacions de juvenils en els tres 

hàbitats. 
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Abstract 

The Mediterranean sea is one of the richest seas in the world. However, it is also one of the 

most threatened. In this sea, coastal fish populations, particularly sparids and labrids, play 

an important economic and ecological role. However, the perpetuation of these populations 

is limited, among other reasons, by juvenile settlement and recruitment. As juveniles 

habitats, in contrast to those of adults, are found in shallow coastal areas, they are more 

exposed to human impacts. Three very common habitats are identified in the literature as 

habitats for juveniles of these species in the Mediterranean: seagrass meadows, erect algae 

forests and shallow mixed areas of sand, pebbles and rocks. Faced with the anthropogenic 

transformations of these habitats, it is crucial a further understanding of the factors that 

influence the distribution of juvenile densities in these habitats. With this aim, juvenile 

fishes were monitored during the warm seasons of 2011, 2012 and 2013 in Minorca island 

(Balearic archipelago). Exploratory and inferential analyses of the data highlighted that at 

lower scales of the seascape, the variability of the juvenile density distribution patterns 

among a given habitat could be explained by variations of its structure, for Cymodocea 

nodosa meadows, Cystoseira spp. forests and shallow mixed bottoms of sand, pebbles and 

rocks. Different species of labrids and sparids responded differently to this factor, 

presumably because each species find the best compromise between availability of food 

and shelter (habitat quality) in different habitat structure conformation. Furthermore, in 

Cystoseira forests, which in Minorca extend until 15 meters depth, data highlighted some 

taxa-specific preferences for different depths ranges. Moreover, at larger spatial scales, the 

configuration of the coast, first in terms of exposure, shaped densities of juveniles, 

presumably affecting the initial larval input; secondly, coast orientation to strong winds 

influenced juveniles’ dynamics, impeding larval arrival or taking out larvae from juvenile 

habitats. Consequently, this thesis highlights the importance of considering forcing factors 

at different spatial scales in order to better explain the density distribution of juveniles. In 

parallel to this overall result, this thesis defends the importance of taking into account the 

different scales of the seascape in the management planning, and delves into the issue of 

preserving juvenile stocks of the three studied habitats. 
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Resumen 

El mar Mediterráneo es uno de los mares más ricos del mundo. Sin embargo, es también 

uno de los más amenazados. En este mar, las poblaciones de peces litorales, 

particularmente de espáridos y lábridos, juegan un importante papel económico y 

ecológico. Sin embargo, la perpetuación de dichas poblaciones está limitada, entre otras 

causas, por su reabastecimiento a través de los juveniles, cuyos hábitats, en contraste con 

los adultos, aparecen en las franjas costeras de menor profundidad, donde las presiones 

antrópicas se concentran. Tres hábitats muy comunes de nuestras costas son indicados en la 

literatura como hábitats donde los juveniles de dichas especies se desarrollan: las praderas 

marinas, los bosques de algas erectas y las zonas mixtas de arena, cantos y rocas. Ante la 

amenaza de la transformación antrópica de estos hábitats, ahondar en el conocimiento de 

los factores que influyen en la distribución de densidades de juveniles en éstos hábitats es 

fundamental. Con este ánimo, se llevo a cabo el monitoreo de los peces juveniles durante 

las estaciones cálidas de 2011, 2012 y 2013 en la Isla de Menorca (Islas Baleares). Los 

análisis exploratorios e inferenciales indicaron que a una escala menor del paisaje 

submarino, la variabilidad en los patrones de distribución de densidades de los juveniles 

dentro de cada hábitat podía ser explicada por la estructura del hábitat, tanto de las 

praderas de Cymodocea nodosa, como de los boques de Cystoseira spp. y de los fondos 

mixtos de arena, cantos y rocas. Las diferentes especies de lábridos y esparidos 

respondieron de forma contrastada a este factor, presumiblemente debido a que cada 

especie encuentra el mejor compromiso entre disponibilidad de alimento y refugio (calidad 

del hábitat) a distinto grado de estructuración. Asimismo, en los bosques de Cystoseira 

spp., que en Menorca se extienden hasta 15 metros de profundidad, los datos indicaron una 

preferencia taxa-especifica por distintos rangos de profundidad. Por último, a una escala 

mayor, la configuración de la costa, primeramente en términos de exposición, determinó 

las densidades de juveniles, probablemente afectando la llegada de larvas; en segundo 

lugar, la orientación de la costa respecto a la dirección de los vientos influenció su 

dinámica impidiendo la llegada de larvas o expulsándolas de los hábitats juveniles. 

Consecuentemente, esta tesis pone de manifiesto la importancia de considerar factores que 

operan a distintas escalas influenciando la densidad de juveniles. En paralelismo a este 

resultado global, esta tesis defiende la importancia de tener en cuenta las diferentes escalas 

del paisaje submarino para establecer planes de gestión, y ahonda en la problemática de la 

preservación de las poblaciones de juveniles en los tres hábitats estudiados. 
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Photo I-1. Estació d´Investigació Jaume Ferrer, Marine Station of the Centre Oceanogràfic de Balears (COB), 
Instituto Español de Oceanografía (IEO). July 2011. Photo: Adrien Cheminée. 
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Chapter I. General introduction 

I.1. CONTEXT OF THE STUDY 

I.1.1. Natural processes and the importance of spatial and temporal 

scales 
The main objective of natural sciences is to find patterns, i.e., particular configurations of 

the characteristics of a given system, or from a statistical point of view, the particular 

configuration of the response variable(s). Subsequently natural sciences aim to understand 

the causes of such patterns, i.e., the systematic series of actions which leads to this 

particular configuration, called processes (Wiens, 1992). And, finally, natural sciences try 

to detect possible factors (independent variables) which influence such processes and 

patterns. 

However, the patterns that we observe in nature and the processes or factors that cause or 

modify respectively those patterns change according to the spatial and/or temporal scale of 

our observations and experiments. For example, within a given region, temperature (i.e. the 

response variable) vary between vegetated areas, with less extreme temperatures, and 

denudated areas, with more extreme temperatures (i.e. the factor), due to the regulation 

produced by the canopy shadowing and evapotranspiration (i.e. the process) (Myers, 

1997). At larger spatial scales, temperature increase from the Poles to the Equator due to 

the different irradiation angle (factor) (Kottek et al., 2006). At the scale of the planet, the 

albedo surface or reflection surface (factor) influences global temperatures, increasing the 

greenhouse effect (process) (Foley et al., 2005; Gash and Shuttleworth, 1991). As regards 

to temporal scales, the mean atmospheric temperature increases quickly since the 1800s 

due to the increase of the strength of the greenhouse effect (process), because of the 

increase of the CO2 emissions and the increase of albedo surfaces due to the Industrial 

Revolution (factors). But when we observe the records of temperatures thought the history 

of planet Earth, cyclical changes in temperature happen because of the inter-glaciations 

and glaciations events every 100.000 years governed by cyclic orbital variations (process) 

(Farley, 2008). In the same way, plant transpiration also changes according to temporal and 

spatial scales. The variation of transpiration rates are a consequence of physiological 
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mechanisms (process). At the scale of a given leaf surface, transpiration rates are 

influenced by the stomatal distribution (factor). Whereas variations of transpiration rates 

among different regions of the world are consequence of climate (factor). As a regards to 

temporal scales, transpiration rates during one day are regulated by light and temperatures 

(factors). Seasonally, transpiration rates are regulated additionally by the seasonal 

variations of the leafs, since their birth until their senescence (factor) (Moro et al., 2004). 

Consequently, since patterns change with the spatio-temporal scale of our observation, 

there is not a single natural scale at which a given phenomena should be studied. However, 

it is not possible to encompass all spatio-temporal scale levels to study a given phenomena, 

and even more, patterns frequently do not change in every level of a given spatio-temporal 

scale. Indeed, in some cases the patterns must be understood as emerging from the 

collective behaviors of the assemblage of smaller scale processes (e.g. the building of 

mountains). To limit our spatio-temporal scales of study in order to describe and 

understand natural patterns, study processes and influencing factors, it is firstly important 

to take into account the nature of the investigated phenomena per se (see examples in Fig. 

I-1) (Wu, 1999). 
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Fig. I-1. Spatio-temporal scale at which different physical and ecological phenomena occur.Physical and ecological 
phenomena tend to line up, approximately, along the diagonal direction in the space-time scale diagram although 
variations may sometimes be large – modified from (Wu, 1999). 



Chapter I: General Introduction 
 
 
 

5 
 

I.1.2. The case of species density distribution patterns 

The importance of habitat, biological interactions and physical factors in the 

framework of life-cycles 

In the case of the density distribution patterns of any given species, their variability is the 

result of processes that operate at different spatial and temporal scales: dispersal, birth and 

survival rates (Collins and Glenn, 1991; Guo et al., 2005; Kareiva et al., 1990), but in the 

framework of multi-generational time scale and spatial scales large enough to encompass 

all stages of the life-cycle of such species (Cooper et al., 1998; Di Franco et al., 2013). 

Consequently, to delimitate the temporal scale in studying dynamics for a given species, 

the duration of its life-cycle must be taken into account. To delimitate the spatial scale in 

studying dynamics for a given species, the seascape or landscape “perception” of the 

species and more particularly the habitats were species occur in the seascape or landscape 

must be considered (Bostrom et al., 2011). 

Habitats are defined as the assembly of the biotope and biocenosis, which shapes a 

particular configuration (Chapman, 1995). In this definition, habitat concept is not 

organism-specific (but see other definitions, e.g. Hall et al. (1997), which defined habitat 

as “the resources and conditions present in an area that produce occupancy-including 

survival and reproduction-by a given organism”). Landscape or seascape is the assembly of 

a mosaic of habitats (terrestrial or marine respectively). In this mosaic, a “suitable habitat” 

for a given species, is an habitat within which the species can potentially or does occur 

(Delong and Gibson, 2012). The entire life-cycle of a species may take place in a given 

suitable habitat, or alternatively in various suitable habitats. For example, elephants spend 

the various stages of their life cycle in the same collection of habitats (Stokke and Toit, 

2002); whereas amphibians change of habitat throughout their life cycle (Vonesh and De la 

Cruz, 2002).  

Furthermore, among seascapes or landscapes, each habitat, and more particularly, each 

suitable habitat for a given species is characterized by its three-dimensional structure: that 

is the physical arrangement of objects in the space (Bell et al., 1991). This habitat structure 

is composed by complexity (absolute abundance of individual structural components) and 

heterogeneity (relative abundance of different structural components) under a determinate 

spatio-temporal scale (Beck, 2000; Bell et al., 1991; Byrne, 2007). 
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And at lower scale, within a given habitat, habitat display patchy variations of its three-

dimensional structure. The scales at which species density patterns respond to habitat 

structure depend on the scale at which organisms or life-cycle stages “perceive” the 

changes of habitat structure (e.g. an arachnid versus a rabbit, which inhabits in the same 

scrub; a butterfly larvae versus an adult butterfly which inhabits the same grassland); this 

in turn is related with the scale at which habitat provide conditions appropriate for 

individual and population persistence (Hall et al., 1997); such conditions, i.e. mainly food 

and shelter availability, define the habitat quality (Hindell et al., 2000). For many species 

more structured habitat are high quality habitats since they provide better refuges against 

predation and more food which facilitates rapid growth and consequently reduce predation 

risk according to the stage-duration hypothesis (Hyslop et al., 2012; Vigliola, 1998). For 

example, the endangered Bridled nailtail wallabies Onychogalea fraenata density 

distribution patterns reflect a preference for wooded edges versus open habitats since such 

habitat provide a good trade-off between shelter and food for such species (Fisher, 2000); 

for the same reasons the Mediterranean lizard Psammodromus algirus density distribution 

patterns reflects a preference for higher sized shrubs (Diaz and Carrascal, 1991). There are 

many examples which support the effects of habitat structure in determining density 

patterns of species (August, 1983; Dennis et al., 1998; Sanders et al., 2008; Stamps, 1983). 

Suitable habitats and habitat quality strongly influence density distribution patterns, since 

they influence dispersal, survival and reproduction success of a given organism (Bowler 

and Benton, 2005; Hall et al., 1997). Furthermore dispersal, survival and reproduction 

processes are influenced by biological interactions (competency, predation, parasitism, 

etc.), which may affect at local and/or broad scales (Wiens, 1989). For instance, the density 

distribution patterns of the bird Least Flycatchers (Empidonax minimus) and the American 

Redstart (Setophaga ruticilla) have a locally segregated distribution due to inter-specific 

competitiveness; however, at larger scales, habitat selection override the local effects of 

biological interactions, and both species occurs in the same regions (see such and other 

examples in Wiens (1989)). 

Finally, the environmental physical factors influence density distributions. Even for a 

given species, some responses will be to a narrow range of environmental influences, and 

others will be diffusely linked to a broad range of influences (Levin, 1992). Environmental 

physical factors may also act at local and/or broad scales: for instance, Wiens (1989) 

explained that “the relationships between climate and vegetation may disappear at finer 
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scales overridden by the effects of competition and other biological processes” (see 

reference and their examples therein). 

Let’s consider some examples of how suitable habitat is perceived at different scale 

according to organisms and life cycle stage, and how biological interactions and physical 

factors influence the density patterns distribution of different organisms at different 

temporal moments in the framework of their life cycles.  

The loggerhead sea turtle, Caretta caretta, is widely distributed in subtropical regions 

(Pritchard et al., 1997); among birds, the barn swallow (Hirundo rustica) is distributed in 

both north and south hemispheres and the mammalian Iberian lynx (Lynx pardinus) is 

restricted to the south of Iberian Peninsula (UICN, 2015). The loggerhead sea turtle 

develops its life cycle in seascapes; whereas the other two species develop their life-cycle 

in continental landscapes. The suitable habitat for these three species is different and 

changes throughout their life-cycle. The first one, Caretta caretta, occupies three different 

habitats during its life: beaches, neritic zone with seagrass meadows (nearshore coastal 

areas) and oceanic zones far from coastal areas. Life cycle starts when a female lays its 

eggs on a nesting beach (Heppell, 1998). Juvenile turtles move to neritic habitats before 

reaching sexual maturity, and adults migrate periodically between neritic foraging sites and 

nesting rookeries (Bolten, 2003). The life-cycle of one turtle until its first reproduction 

spends at least ~17-30 years. The barn swallow occupies two different habitats: the 

breeding habitats and the winter habitats. They breed across the northern hemisphere in 

warmer sessions, foraging mainly on farmland and nesting in old buildings, particularly 

those associated with livestock (Møller, 2001). During the northern hemisphere winter, 

they migrate to open fields of the southern hemisphere (UICN, 2015). The life-cycle of one 

barn swallow until its first reproduction spends at least ~1 year. The Iberian lynx mainly 

inhabits in Mediterranean scrubland habitat, however it may use other habitats throughout 

its life-cycle. Juveniles and adults without territory accomplish dispersal phases until they 

become stable in some areas (Palomares et al., 2000). During dispersal and after dispersal 

they occupy also Pine forests habitats. The life-cycle of one Iberian Lynx until its first 

reproduction spends at least ~2-3 years. As a conclusion, different species have different 

suitable habitats and display different life-cycle durations, consequently, a different spatio-

temporal scale is needed to study their dynamics and density distribution patterns. 
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The influence of biological interactions on density distributions changes according to 

species and its life cycle stage. For example, predation processes are very important 

influencing densities of Loggerhead sea turtle, but mainly during its early phases (Dodd, 

1988). Intra-specific competition interactions are important influencing density-

distributions of Lynx, mainly in its dispersal phases (both juveniles and adults) (Gaona et 

al., 1998). Parasitism and infanticide are mainly important influencing densities of the barn 

swallow in the breeding phases (parasitism affects nests of such species) (Møller, 1987). 

The influence of environmental physical factors on density distributions also changes 

according to species and their life cycle stages. For the Loggerhead sea turtle, currents 

have an important effect, mainly for immature individuals, which have limited swimming 

skills, and therefore, density distribution of immature individuals reflects mainly water 

masses circulation patterns (Carreras et al., 2006; Revelles et al., 2007). For barn swallow, 

adverse weather causes high depletion of its populations. It occurs due to storm episodes 

en route and cold weather after arrival or before departure from breeding areas (Moller, 

1989; Newton, 2007). For the Iberian Lynx the loss and fragmentation of its habitats are 

probably the most important forcing factor determining its density distributions, since it 

interferes during dispersal phases of such species (Ferreras, 2001). 

The salient point of these examples is that each organism considers a different habitat as 

suitable habitats, depending on its life stage, and the influence of biological interactions 

and physical environment in determining population dynamics varies specifically, spatially 

and temporally. To take into account the entire life cycle of species is determinant to 

understand the role of habitats and the processes or factors which control (and may limit) 

the replenishment of populations. 

In this sense, the carrying capacity of an habitat for a given species is considered as the 

maximum population size of the species that the habitat can sustain indefinitely, given the 

resources available in the habitat which fits with the necessities of each species (Hickman 

Jr. et al., 2013). However, the carrying capacity of a given habitat for a given species, as 

illustrated by the previous examples, may as well be shaped by processes occurring in the 

previous habitats. In this sense, for species which use separate habitats at juvenile and adult 

stages, juvenile habitats could be a bottleneck for the replenishment of adult populations 

(Halpern et al., 2005). For example, the snow geese (Chen caerulescens) dynamic is highly 

influenced by breeding habitats, which occur in arctic wetlands habitats. Populations were 
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self-regulated in traditional breeding areas, where the increase of population leaded to a 

degradation of its juvenile habitats, therefore causing a periodical declines on the 

production of juveniles (Cooch et al., 1993; Williams et al., 1993). However, the 

development of agriculture, which extends rice-culture fields, has caused a rupture in this 

equilibrium, providing greater availability of habitat for breeding and juveniles. As a 

consequence, population has grown dramatically (Cooch et al., 1993), and has been 

reported to cause an important destruction of its winter quarters in southern areas and in its 

traditional breeding areas (Gauthier et al., 2005; Kerbes et al., 1990; Peterson, 2013).  

I.1.3. The case of marine fishes and their juveniles 

As respect to our case of study, marine teleost fish species display various life strategies: 

they may be oviparous, viviparous, with internal or external fecundation. However, most of 

marine fish are oviparous with external fecundation (Hickman Jr. et al., 2013). Females 

spawn eggs into the water column or on the substratum, which are then fertilized by males. 

Eggs and subsequent larva, for many species, stay in the water column, and are dispersed 

by currents (Hannan and Williams, 1998; Jenkins et al., 1997). Some species stay in the 

pelagic environment for their entire life (Hickman Jr. et al., 2013). However, others present 

a bipartite life cycle consisting of such pelagic phase in which eggs and larvae are 

dispersed by currents and a subsequent and more site-attached phase in which juveniles 

develop into adults (Thresher et al., 1989; Vigliola et al., 1998). Such organisms are 

benthic species. For these organisms, the post-larval period is delimited by two landmark 

events: settlement and recruitment. Settlement is a biological period at which pelagic 

larvae become associated with benthic substrates. It occurs after larvae metamorphosis, 

marking the end of the pelagic larval phase. “Settlers” refers to these recently settled 

individuals or early juveniles. Upon survival and growth these early juveniles develops 

into late-juveniles that are, therefore, older juveniles already adapted to a benthic life and 

ready to join adult populations in a process called “recruitment” (Connell, 1985; Levin, 

1994; Macpherson, 1998; Thiriet, 2014). 

Furthermore, although there are some exceptions (Guidetti and D´Ambrosio, 2004), many 

marine fish, including both pelagic and benthic fish, present different habitats at adult and 

juvenile phases. For example, the Pacific sardine (Surdinops sugux cueruleus) in the Gulf 

of California present a cycle where juveniles concentrate in the Baja California coast, and 
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later on, when their development is accomplished, they migrate to the northern adult 

feeding grounds (Hammann et al., 1988). In other cases, tropical coral reef fish species 

present a cycle where juveniles develop among shallow seagrass beds and mangrove 

habitats, and hereafter migrate to deeper coral reef systems (Gillanders et al., 2003; 

Huijbers et al., 2013; Nagelkerken, 2009; Nagelkerken et al., 2000). In Mediterranean 

ecosystems, many juvenile fish also occupy a narrower depth ranges than adults and appear 

associated with specific coastal habitats (García-Rubies and Macpherson, 1995; Harmelin-

Vivien et al., 1995; Verlaque, 1990).  

Among habitats where juveniles of a given species may dwell, those habitat that have a 

“nursery role” are those which provide on average per unit area, the greatest amount of 

new individuals that effectively integrate adult populations, i.e. those which display a 

higher “nursery value” sensu Beck et al. (2001). For a given habitat, for a given species, in 

a given site, its nursery value is the result of various components including the initial 

juvenile density (i.e. settlers in benthic fish) and their subsequent survival, growth, and 

dispersion capacity (connectivity) (Beck et al., 2001; Heck et al., 2003). However, habitats 

that may have a small per-unit-area contribution to adult populations may be critical as 

well for sustaining adult populations, for example, because of their wide area. In this sense, 

Dahlgren et al. (2006) propose the term “Effective Juvenile Habitat” (EJH) to describe 

juvenile habitats that in terms of their overall contribution, are important for maintaining 

adult populations. Moreover, other authors supported that it is the contribution to the 

production of succeeding generations that determines real “nursery-ground value” (its 

fecundity), instead to just the numbers of adults individuals provided by a given habitat 

(Layman et al., 2006; Sheaves et al., 2006). Furthermore, Nagelkerken et al. (2015) argued 

that the nursery role or the EJH approaches fail to incorporate dynamic processes, such as 

ontogenetic habitat shifts, juvenile movement and spatially explicit usage of habitat 

patches and corridors, since these concepts are centred in the habitat as unit of study. 

Nagelkerken and his colleagues therefore introduced the term “seascape nurseries”, to 

incorporate such processes, and it is defined as a spatially explicit seascape consisting of 

multiple mosaics of habitat patches that are functionally connected.  

In spite of this lack of conceptual consensus, identifying juvenile habitats (i.e. habitats 

were juveniles potentially occur) is essential, since availability of juvenile habitats is a key 

issue determining adult population renewal. Indeed, availability of juvenile habitats at 

distances accessible to migrate to adult habitats has been reported to increase adult 
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populations (Huijbers et al., 2013; Nagelkerken et al., 2012). Besides, it must be 

understood the factors affecting the nursery value of a given habitat, i.e. shaping its spatial 

variability between sites; this includes understanding factors shaping initial density of 

settlers, their growth and survival, and latter dispersion (Beck et al., 2001). This is 

necessary to better understand if habitat transformations e.g. through human activities, may 

affect habitat nursery functions. More particularly, survival and growth within juvenile 

habitat are shaped by its biotic and abiotic characteristics, notably its three-dimensional 

structure. Indeed, as commented previously, habitat structure shapes food and refuges 

availability (Dahlgren and Eggleston, 2000), and then the “habitat quality”. Dramatic 

transformations (through human impacts) of habitat characteristics and thus of habitat 

structure may consequently lead to lower habitat quality and thus reduce the habitat 

capacity to sustain juvenile production.  

The case of Mediterranean labrids and sparids and their juvenile habitats 

Juvenile fish Mediterranean habitats 

Among the Mediterranean infra-littoral (i.e. subtidal) seascape mosaic (Musard et al., 

2014), several habitats are often reported in the bibliography as fish juvenile habitats: 

seagrass meadows on soft bottoms, erect macroalgae forest covering rocky reefs and 

shallow heterogeneous mixed bottoms composed by sand, gravels, pebbles and rocks 

(Bussotti and Guidetti, 2010; García-Rubies and Macpherson, 1995; Harmelin-Vivien et 

al., 1995) (Photo I-2). These habitats are characterized by contrasted tri-dimensional 

structure, notably because they are macrophyte-formed habitat or because they display 

heterogeneous and complex abiotic substratum.  

Seagrass meadows in the Mediterranean Sea are formed by various species of seagrass: 

Posidonia oceanica, Cymodocea nodosa, Zostera noltii, Z. marina, Ruppia maritima, R. 

cirrhosa and Halophila stipulacea. The most abundant seagrasses in the Mediterranean Sea 

are P. oceanica, Zostera spp. and C. nodosa. P. oceanica is the most common seagrass in 

the open sea, forming wide and quite continuous meadows along the coasts (Telesca et al., 

2015) whereas Zostera spp. and C. nodosa are more typical of shallow and sheltered to 

semi-exposed, marine or euryhaline, water masses. P. oceanica beds and, to a lesser extent, 

C. nodosa ones, are the most dominant in this region, since Z. marina is mostly found as 
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small isolated stands and Z. noltii mainly forms dense but sparse beds in the muddy sand of 

intertidal areas (Borum et al., 2004; Guiry and Guiry, 2015; Short et al., 2007). 

Among the Mediterranean biocenosis of the photophilic macrophytes of the infralittoral 

rocky reefs, erect macroalgae forests are formed more particularly by Fucales, notably of 

the genus Cystoseira. The Mediterranean basin is considered as a hot-spot of diversity for 

Cystoseira species, where they are especially abundant and diversified (Gianni et al., 

2013). They may dominate algal assemblages in the infralittoral and upper circalittoral 

rocky bottoms in un-impacted areas (Garreta and Martí, 2000; Giaccone, 1973; Sales, 

2010). In this sense, they are one of the possible Multiple Stable States (MSS) of the rocky 

bottoms (Bonaviri et al., 2011). C. brachycarpa var. Balearica and C. crinita form 

extended forests in the Mediterranean (Robvieux, 2013). Erected arborescent macro-algae 

or seagrass species display various structural parameters and biomass (Borum et al., 2004; 

Guidetti et al., 2002; Robvieux, 2013) and are considered biogenic habitat former 

(emergent three-dimensional organisms).  

Finally, the shallow heterogeneous mixed bottoms composed by sand, gravels, pebbles, 

boulders and rocks are distributed along all the coastlines of Mediterranean Sea, and their 

location is determined notably by the geomorphology of coast, i.e. usually in enclosed or 

semi-enclosed rocky coast-line, where the combination of terrestrial and subtidal erosion 

and water circulation leads to the deposition of products of mixed sizes (from sand to 

boulders).  
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Photo I-2. Three common habitats in the patchy seascape of the infra-littoral Mediterranean Sea reported in the bibliography as juvenile habitats: seagrass meadows, erect macroalgae forests and shallow 
mixed bottoms composed by sand, gravels, pebbles, boulders and rocks. a) seagrass meadows (top: Posidonia oceanica; bottom: Cymodocea nodosa), b) rocky reef with Cystoseira spp. erect macroalgae 
forests and c) shallow heterogeneous mixed bottoms composed by sand, gravels, pebbles, boulders and rocks. Minorca island. Summers 2012-2013. Depth: 1-5 meters. Foreground spans around 0.5-3 m 
wide in each picture. Photos: Adrien Cheminée y Amalia Cuadros. 
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Mediterranean labrids and sparids 

Many juveniles of different fish families have been reported to occur in such 

Mediterranean habitats: Atherinidae, Blenniidae, Gobiidae, Labridae, Mullidae, 

Moronidae, Pomacentridae, Serranidae, Scorpaenidae, Sparidae, Tripterygiidae (etc.) 

(Biagi et al., 1998; Bussotti and Guidetti, 2010; Crec´hriou et al., 2015; García-Rubies and 

Macpherson, 1995; Harmelin-Vivien et al., 1995). Much of these fish settle during summer 

(Fig. I-2), although the exact timing depends of each species (Table I-1).  

 
Fig. I-2. Seasonal richness of NW Mediterranean fish settlers according to various references. Percentage of the total 
species recorded in each paper which settles each month. References: G-R & M 1995 (García-Rubies and Macpherson, 
1995); B & G 2010 (Bussotti and Guidetti, 2010) and Biagi et al. 1998. All juveniles (15 mm TL to 1/10 of TL of each 
species) were included for B & G 2010 because the detailed settler’s presence data were not indicated in that paper. 
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Table I-1. Settlement seasonality in the NW Mediterranean for different fish species as recorded in the bibliography 
(Biagi et al., 1998; Bussotti and Guidetti, 2010; García-Rubies and Macpherson, 1995). All juveniles (15 mm TL to 
1/10 of TL of each species) were included for B & G 2010 because settler’s presence data were not indicated in that 
paper. x= García-Rubies and Macpherson, 1995; shaded area= Biagi et al, 1998; framed area= Bussotti and 
Guidetti, 2010. 

Family Species Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov 

Atherinidae Atherina spp.           
  

  
   

  

Blenniidae Aidablennius sphinx 
        

    
    Lipophrys pavo 

           
  

  Parablennius rouxi 
        

      
 

  
Parablennius 
sanguinolenthus 

      
  

     Gobiidae Aphia minuta 
 

      
    

  
     Goboius bucchichii 

       
    

     Goboius cobitis 
      

  
     Labridae Coris julis 

       
x x 

     Ctenolabrus rupestris 
       

x x 
     Labrus bimaculatus 

    
x x 

        Labrus merula 
    

x x 
        Labrus viridis 

    
x x 

        Symphodus cinereus 
       

x x 
     Symphodus doderleini 

       
x x 

   
  

Symphodus 
mediterraneus 

       
x x 

   
  

Symphodus 
melanocercus 

       
x 

      Symphodus ocellatus 
       

x x   
    Symphodus roissali 

     
  x x 

      Symphodus rostratus 
       

x x 
     Symphodus tinca 

     
    x   

     Thalassoma pavo 
     

    x 
   

  

Moronidae Dicentrarchus labrax 
   

              
  Mullidae Mullus surmuletus 

     
    x x 

   Pomacentridae Chromis chromis 
       

x x x   
 Serranidae Serranus cabrilla 

     
x x 

     Sparidae Boops boops 
    

      
       Diplodus annularis 

      
        

    Diplodus cervinus 
       

x 
      Diplodus puntazzo   

        
  x   

  Diplodus sargus 
     

x x     
     Diplodus vulgaris x x x x       

       Lithognatus mormyrus 
      

  x x 
     Oblada melanura 

      
  x x   

 
  

  Pagellus bogaraveo 
           

  

  Sarpa salpa   
 

      x   
   

x   

  
Spondyliosoma 
cantharus 

     
        

  
  

Tripterygiidae Tripterygion spp.                         
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Among these fishes, labrids (Labridae, wrasses) and sparids (Sparidae, sea breams) are two 

dominant groups of benthic species in the Mediterranean region (Biagi et al., 1998; 

Psomadakis et al., 2012). Both labrids and sparids have interest from a conservational point 

of view. Many species are directly subject to commercial exploitation and fisheries, or are 

of recreational and spear-fishing interest (Goñi et al., 2008; Lloret et al., 2008; Morales-

Nin et al., 2005). Furthermore, they have important ecological roles in Mediterranean 

ecosystems: they are included among the important preys of many marine top-predator 

fishes (Reñones et al., 2002) and top-predator seabirds (Velando and Freire, 1999), and 

some of these species (e.g. Diplodus spp.) exert a top-down control on invertebrate grazers, 

which allow avoiding the destruction of important Mediterranean marine habitats through 

over-grazing (Hereu, 2004). 

Previous works described that juveniles of these species display a spatio-temporal 

partitioning of the use of the previously mentioned habitats; species which share a given 

habitat at the same depth for settlement present a seasonal segregation in their settlement 

and vice versa (Biagi et al., 1998; Bussotti and Guidetti, 2010; García-Rubies and 

Macpherson, 1995; Harmelin-Vivien et al., 1995). 

Globally, sparids species settle at different times through the year, primarily in the 

shallowest zone (0 to 2 m), preferring different bottom-types according to species: 

Diplodus puntazzo, D. vulgaris, D. cervinus and D. sargus settle among sheltered shallow 

and gently sloping bottoms composed by sand, gravels, pebbles or boulders, respectively in 

autumn, winter and spring (Bussotti and Guidetti, 2010; García-Rubies and Macpherson, 

1995; Harmelin-Vivien et al., 1995) (Photo I-3). Contrastingly, D. annularis and 

Spondyliosoma cantharus juveniles are mostly associated to seagrass meadows (Photo I-3); 

D. annularis settles in summer, and S. cantharus starts its settlement in spring. They are 

specially associated with small-sized seagrasses (genus Cymodocea or Zostera) (Bussotti 

and Guidetti, 2010). However, such species has been also observed in high densities in 

P. oceanica beds in Italy and other areas (Bussotti and Guidetti, 2010; Francour and Le 

Direac’h, 1994; García-Rubies and Macpherson, 1995; Guidetti et al., 1997; Guidetti, 

2000). Sarpa salpa settles in spring and autumn as well in both mixed bottoms of sand, 

gravel and small blocks and seagrass meadows, but also in shallow rocky habitats (Bussotti 

and Guidetti, 2010; García-Rubies and Macpherson, 1995; Harmelin-Vivien et al., 1995; 

Verlaque, 1990) (Photo I-3). Other sparid species appears as well associated with rocky 

substratum, for example Oblada melanura has been recorded to settle in summer and 
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presents a preference for rocky overhangs and cliffs (García-Rubies and Macpherson, 

1995; Harmelin-Vivien et al., 1995), which may be covered by arborescent macroalgae 

(Bussotti and Guidetti, 2010). 
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Photo I-3. Some examples of sparids and labrids juveniles among four common juvenile habitats of the infra-littoral Mediterranean Sea.  
a) A group of Diplodus annularis (25 mm TL) and one Spondyliosoma cantharus (50 mm TL) in a Cymodocea nodosa seagrass meadow 
(July 2012); b) A shoal of Sarpa salpa (50 mm TL) in a Posidonia oceanica seagrass meadow (July 2013); c) A shoal of D. vulgaris (30 
mm TL) in mixed bottoms composed by sand, gravels, pebbles and rocks (July 2013); d) A group of D. sargus in the same habitat (15 
mm TL) (May 2013); e) A group of Symphodus ocellatus (30-35 mm TL) and one S. roissali (50 mm TL) in a Cystoseira erect 
macroalgae forest (September 2012); and f) A Coris julis in the same habitat (40 mm TL, September 2012). a-d) depth= 0-1 meters, e-f) 
depth=2-4 meters. Foreground spans about 0.5-1.5 m wide in each picture. Photos: Adrien Cheminée, Eva Vidal and Amalia Cuadros. 
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Globally, labrids species settle mainly in slightly deeper areas (3-25 m) than sparids; they 

are normally found associated with macrophytes, both seagrass meadows or erect algae 

covering rocky substrates. Symphodus cinereus has been reported to settle in Posidonia 

seagrass meadows (García-Rubies and Macpherson, 1995). Thalassoma pavo and Labrus 

spp. has been recorded to settle mainly in rocky habitats covered by arborescent erect algae 

(García-Rubies and Macpherson, 1995). Whereas, juveniles of other Symphodus species (S. 

ocellatus, S. rostratus, S. roissali, S. tinca) and C. julis appear associated to both seagrass 

meadows and rocky reefs with macroalgae at similar depths (Bussotti and Guidetti, 2010; 

Cheminée, 2012; García-Rubies and Macpherson, 1995; Guidetti, 2000; Lejeune, 1984; 

Thiriet, 2014) (Photo I-3). Moreover, Labrus spp. settle in spring, whereas S. roissali and 

S. tinca settle at the beginning of summer and S. ocellatus, S. rostratus, S. cinereus, C. julis 

or T. pavo settle at the middle or end of summer. Furthermore, species which settle with 

the same temporality display some degree of spatial partitioning according to depth (e.g. S. 

roissali versus S. tinca, C. julis versus T. pavo) and according to macrophyte features (e.g. 

macroalgae percent cover) (Biagi et al., 1998; Bussotti and Guidetti, 2010; Cheminée, 

2012; García-Rubies and Macpherson, 1995; Harmelin-Vivien et al., 1995). Additionally, 

some of the mentioned Symphodus species have been reported to settle also in drifting 

algae or “dead matte” (Cheminée, 2012; Raventos and Macpherson, 2005).  

The preferential settlement in a given habitat versus others, for each species, has been 

stated by comparing the juvenile densities of each species in different habitats. However, 

exhaustive comparisons were done in only a few studies and they are centred in NW 

Mediterranean Sea (Bussotti and Guidetti, 2010; García-Rubies and Macpherson, 1995; 

Harmelin-Vivien et al., 1995).  

Furthermore, although we have some bibliography which report where sparid and labrid 

settlers are more abundant, few is known about associated processes and factors 

influencing these juveniles’ density patterns (Thiriet, 2014). Among processes which may 

influence these habitat use patterns, growth and survival should be better understood in 

order to better assess the nursery role of such habitats (Beck et al., 2001).  
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I.1.4. Driving factors on settlement and post-settlement processes 

I.1.4.1. Pre- versus post-settlement processes 

For a given nursery habitat (sensu Beck et al (2001)) for a given species, although the 

nursery habitat is present, its nursery value can vary geographically (i.e. between sites). 

The apparent discrepancy in the importance of nurseries in different regions could be 

understood, by examining processes and factors that contribute to local variation in the 

nursery value. The ability of a given habitat to produce juveniles that will be recruited into 

adult population is shaped by pre- and post- settlement processes which are influenced by 

driving factors. During pre-settlement phase, various processes may act: the primary one is 

the effectiveness of the adult reproduction, which is influenced by fish condition and 

environmental factors such as temperatures and photoperiod (Vlaming, 1972). Then the 

larval supply to the juvenile habitat is another main pre-settlement process, it is mainly 

determined by larval survival in the pelagic environment and the structural connectivity 

between juvenile habitats in relation to the breeding areas. Such structural connectivity is 

influenced by the hydrodynamism: currents circulation must be coupled with coastal 

geomorphology where habitat are placed (Roy, 1998). These pre-settlement processes and 

factors determine the initial density of juveniles supplied to juvenile habitats in a given 

site. 

Hereafter, post-settlement processes and factors influence the nursery value of a given 

habitat and site. They act within the benthic juvenile habitat. Since fish species in their 

early juvenile phases are particularly vulnerable (Ware, 1975), the intolerance of physical 

extremes and the starvation and predation in the habitat are major causes of mortality 

(Sogard, 1997; Sogard and Olla, 1993). Hall et al. (1997) considered habitat quality as the 

ability of the environment to provide conditions appropriate for individual and population 

persistence. A high quality juvenile habitat must provide sufficient refuge and food for a 

given juvenile species. In this sense, high levels of habitat structuration (i.e. habitat 

complexity and heterogeneity) seem to increase both shelter and food availability for 

juveniles. This may facilitate juvenile survival and growth processes, which in turn will 

make them less vulnerable to predation in the habitat (Behrents, 1987; Connolly, 1994; 

Dahlgren and Eggleston, 2000; Heck et al., 2003; Hixon and Beets, 1989; Levin, 1994; 

Schulman, 1984; Tupper and Boutilier, 1997). Habitat transformations induced by human 
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stressors may modify habitat tri-dimensional structure and subsequent quality in terms of 

shelter/source of food for juveniles. Furthermore, survival and growth processes within the 

nurseries may be influenced by others factors, e.g. protection (i.e. no take areas) and 

consequent higher densities of predators and adults competitors (Arceo et al., 2012; Hereu, 

2004; Jones, 1987; Planes et al., 2000; Tupper and Boutilier, 1995; Tupper and Juanes, 

1999). Finally, connectivity between juvenile and adult habitats is essential to replenish 

adult populations (Gillanders et al., 2003; Huijbers et al., 2013).  

As a conclusion, such processes and factors have a high influence on the final production 

of juveniles of a given nursery habitat: understanding processes and factors which 

consequently shape the nursery value of a given habitat must be studied (Adams et al., 

2006; Beck et al., 2001; Manson et al., 2005; Sheaves et al., 2006).  

I.1.4.2. Factors threatening nursery habitat availability and quality 

Coastal habitats comprise some of the most productive and valued ecosystems of the world 

(Costanza et al., 1998), notably through the presence of essential habitats such as nurseries. 

However they are as well the most threatened marine areas worldwide because they are 

highly influenced by direct human pressures (Halpern et al., 2008). Consequently, the 

availability and the quality of juvenile habitats are threatened by the different stressors 

acting in such seascapes. Top human threats to coastal marine ecosystems are the direct 

destruction (e.g. via coastal engineering); the pollution from toxins or fertilizers from 

urban, agriculture and aquiculture development; the altered sedimentation by damming, 

diverting freshwater or tidal influence, the deforestation or land clearing and the 

overexploitation; additionally they are affected by the products of the globalization such as 

invasive species and disease; and by the products of global climate change, such as 

increase of temperatures, rates of sea-level rise, ocean acidification, and UV exposure 

(Crain et al., 2009).  

In the particular case of the Mediterranean Sea, it is one of the most endangered seas of the 

world due to its historical exploitation, and is suffering important loss of habitat along its 

coasts (Bianchi and Morri 2000, Coll et al. 2010, Mouillot et al. 2011). The European 

“Habitats” Directive aims at minimizing impacts on coastal habitats. Such policy insists on 

improving the knowledge of the habitats which are important for fish life-cycles and insists 
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in identifying high quality habitats (Ducrotoy and Pullen, 1999; European Commission, 

2011). 

I.1.4.3. How to identify high quality habitats for juveniles? 

To identify high quality habitats in general is difficult worldwide, since rigorous historical 

baselines worldwide are difficult to obtain or needs more attention by scientist (Sáenz-

Arroyo et al., 2006; Schrope, 2006). Furthermore, it is no longer possible to return to past 

ecosystems equilibriums because an important percentage of both the landscape and 

seascape has been transformed irreversibly, and many species which in the past had an 

ecological role (including in marine ecosystems) have disappeared or are in risk of 

extinction in different regions (Ferretti et al., 2008; Foley et al., 2005; Jackson et al., 2001; 

Vitousek et al., 1997). In this sense, our only way to identify healthy sea ecosystems at 

present is through the improvement of our knowledge in Marine reserves. Marine reserves 

provide us baseline data against which to compare present conditions in other regions and 

thus to evaluate the abundance of marine species or the structure of marine ecosystems 

(Dayton et al., 2000; Sala et al., 2012). In this sense, improving the knowledge of juvenile 

abundances harboured by Marine Protected Areas (MPAs), may provide a baseline data to 

recognize abundance levels that are typical of healthy ecosystems at present. However the 

results of protection in juvenile fish are ambiguous (García-Charton et al., 2008; Planes et 

al., 2000). Furthermore most of the marine protected areas are not designed to protect early 

life stages or juveniles (Roberts et al., 2001). In spite of this, improvement on the 

knowledge of nursery habitats of some species has allowed marine managers to begin 

monitoring juvenile populations and their habitats (Cheminée, 2012; Cheminée et al., 

2014) and to design protected areas taking into account early juvenile phases and habitats 

(Botsford et al., 2003). Improving the knowledge of processes and factors which affect 

nursery habitats and juveniles are required to allow us to feed future management 

practices. 

I.1.5. Aim of this thesis 

The aim of this thesis was to understand in Minorca island the influence of potentially 

important factors in determining the density distributions and dynamics of labrids and 

sparids juveniles among their juveniles habitats: seagrass meadows, arborescent 
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macroalgae forests and mixed bottoms of sand, pebbles and boulders. These factors were: 

1) the three-dimensional structure of the environment sensu lato, from the large scale coast 

configuration and depth to the lower scale habitat structure; 2) biological interactions in 

terms of presence of predators and adult con-specifics; and finally 3) physical constrains in 

terms of meteorological conditions. 

Such influence was studied by the examination of pre-settlement and post-settlement 

processes for various target species under the contrasted influence of selected driving 

factors. In chapters II and III we studied the full summer juvenile assemblage (i.e. 

comparative densities of all taxa) within two nursery habitats: C. nodosa meadows and C. 

brachycarpa forests, while the two following chapters focused on Diplodus sargus 

settlement and post-settlement processes in heterogeneous shallow mixed bottoms 

composed by sand, gravels and pebbles. Every chapter is written to be understandable 

independently of each other section. More precisely, this thesis has been structured as 

follow: 

-Chapter II focused on the study of the influence of Cymodocea meadows habitat structure 

(i.e. more or less structured through the presence of boulders) on juvenile density patterns 

at various spatial scales (from <1m, to 10 m, to 1 km).  

-Chapter III focused on the understanding of the patterns of juvenile fish densities and 

species-specific juvenile behavior within Cystoseira forests according to three possible 

drivers: i) habitat structure (i.e. canopy height and cover); ii) depth (considering three 

depth strata between 0 and 12 meters) and iii) protection levels (comparing no-take versus 

non-protected areas separated from 30 km), taking into account the spatial variability 

between sites separated by few kilometers. 

-Chapter IV analyzed settlement and post-settlement processes of Diplodus sargus within 

its nursery habitat, assessing the arrival of settlers, their growth, mortality rates and 

recruitment level in relation to environmental variables: hydrodynamics and temperature. 

-The objective of Chapter V was to quantify and compare Diplodus sargus settlement and 

post-settlement densities under the influence of contrasted seascape attributes at different 

spatial scales: coastal localization, cove configuration in terms of exposure levels, and 

microhabitats features.  

-In Chapter VI the results of all chapters were broadly discussed. 



Chapter I: General Introduction 
 
 
 

24 
 

-Chapter VII presents the general conclusions of the thesis. 

-Chapter VIII provides supplementary data related to some chapters. 
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I.2. MATERIAL AND METHODS EMPLOYED IN THIS 

THESIS 

I.2.1. Study Area, preliminary exploration, studied species and habitats 

I.2.1.1. Study area: Minorca island 

The different samplings of this PhD thesis were conducted through the coasts of Minorca 

island, in the Western Mediterranean sea. It is a West-East elongated island approximately 

44 and 17 km long and wide respectively. It is the easternmost and northernmost island of 

the Balearic Archipelago, located 39°47' to 40°00'N and 03°52' to 04°24'E (Fig. I-7). 

Minorca is characterized by the good quality status of its ecosystems. In fact it was 

declared “Biosphere Reserve” in 1989 (UNESCO, n.d.). Almost all of its coasts have been 

classified amongst the special status of the European Union classification system for 

exceptional natural habitats; under the Spanish jurisdiction they are therefore declared 

LICs (“Lugar de Interés Comunitario”, i.e. “SCI”: Site of Community Importance) and/or 

ZEPAs (“Zona de Especial Protection para las Aves”, i.e. “IBA”: Important Bird Areas) 

(Fig. I-3). Furthermore, the Marine Protected Area (MPA) “Reserva Marina del Nord de 

Menorca” was established in 1999 in the northern coast of Minorca (Fig. I-3); it covers 

5119 ha and most of it is classified as partial reserve, as some fishing is still allowed (Coll 

et al., 2012), and no take-areas cover only 1055 ha (Fig. I-3). Smooth reliefs dominate the 

island, and it display a contrasted north versus south landscape due to its geology (Fig. 

I-4). North landscape is mainly shaped by mixed metamorphic substratum, resulting in 

small hills and wide and shallow valleys. South landscape is made of carbonate 

substratum, and as a consequence the south part of the island has many small ravines 

(Sanuy and Díaz, 2002) and displays karstic erosive systems (Photo I-4). Both northern 

and southern coasts are characterized by the presence of numerous coves (i.e. 101 in total) 

interspersed along the shoreline.  
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Photo I-4. Minorca island landscapes: a-b) Small hills and wide and shallow valleys dominate the north island 
landscape; c-d) small ravines and karstic erosive systems dominate the south island landscape. Photos: Adrien Cheminée  
 

The climate of Minorca is typically Mediterranean, with warm average temperatures and 

seasonal rainfall regime. The most remarkable climatic phenomenon of Minorca is the 

“Tramontana”, a dry and virulent wind from the north-west, especially blowing at winter 

(Llompart et al., 1979). 

The Infralittoral of Minorca is dominated by seagrass meadows composed by P. oceanica. 

In areas protected from rough hydrodynamics, e.g. in the Fornells Bay or the Port of Maó, 

C. nodosa seagrass meadows are also present. The rocky reefs with photophilic macro-

algae, less abundant than seagrass meadows, are mainly present at the north of the island 

(Fig. I-5). 

 



Chapter I: General Introduction 
 
 
 

27 
 

 

 

Fig. I-3. Special status 
of the coasts and lands 
of Minorca island. 
Marine Protected Area 
(MPA) “Reserva 
Marina del Nord de 
Menorca”, no take 
zones (NTZ) inside the 
MPA, LICs (= “SCI” : 
Site of Community 
Importance) and 
ZEPAs (= “IBA”, 
Important Bird Areas) 
of the Island. Source: 
Visor IDE Menorca 
(Silme s.a., 2015). 
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Fig. I-4. Simplified 
geological map of 
Minorca island: the 
northern part of the 
island is mainly 
composed of 
Palaeozoic and 
Mesozoic mixed 
metamorphic rocks 
while Tertiary 
carbonate rocks are 
found in the southern 
region (Andreetta, 
2009; Rosell and 
Llompart, 2002). 
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Fig. I-5. Marine 
biocenosis of Minorca 
island. The infralittoral 
is dominated by 
Posidonia oceanica 
meadows. Modified 
from: U.T.E. Intecsa-
Inarsa, s.a., (2008). 
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I.2.1.2. Preliminary exploration of juvenile habitats 

Juvenile fish have been poorly studied at Minorca island until recently, apart from a few 

studies (Cardona, 1999; Thiriet, 2014). Consequently we accomplished a preliminary 

exploratory survey of thirty coves (~30% of Minorca island coves) at the beginning of 

this thesis in summer 2011 (June 10th - 20th 2011). This exploratory survey allowed us 

to identify shallow habitats and juvenile species present at Minorca island, as well as to 

identify some possible driving factors that may act on juvenile density patterns 

distributions. Preliminary results of this pilot study (unpublished data) indicated high 

spatial variability in the juvenile assemblages between sites spread around the island. 

The most abundant juveniles species belonged to the sparids, especially D. sargus. 

Other juveniles were also abundant but belonged to species which typically forms 

multitudinous shoals (Atherinidae, Mugilidae). Labrids were also present (Fig. I-6).  

Juvenile densities for various taxa varied according to habitats types within coves 

(personal observation), but as well according to cove orientation (north vs. south) and 

exposure level (Miller, 1985), human settlements and categories of use of coves by 

bathers (Juaneda and Roig, 2002). Indeed, richness increased for sites with human 

settlements or which were intensively used by bathers. These areas although impacted, 

 
Fig. I-6. Proportion of juveniles fish taxa recorded during the preliminary study accomplished in thirty coves of 

Minorca island 

. 
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still have a good water quality (Sales, 2010). In these areas we observed juveniles of 

species typical of two types of water quality: pristine, with juvenile Labridae, versus 

harbor waters, with notably juveniles of Mugilidae. However, the influence of such 

factors (positive, negative or not influence) depended on the species and sometimes 

varied spatially (personal unpublished data). 

Furthermore, this pilot study allowed us to identify and localize in situ some of the 

dominant habitats at shallow depths: C. nodosa seagrass meadows, C. brachycarpa 

forests and heterogeneous shallow mixed bottoms composed by sand, gravels and 

pebbles. Consequently, this pilot study enabled us to select the different regions and 

sites for our study designs (Fig. I-7). More particularly, it enabled us to take into 

account the possible influence of orientation, exposure, and water quality for avoiding 

sampling biases and selecting homogeneous sites in each chapter. 

I.2.1.1. Studied sites, associated habitats and juvenile species 

For each chapter, studied sites and corresponding habitats and species were (Fig. I-7): 

-Chapter II: Fornells Bay, located in the north of the island of Minorca, is part of the 

MPA “Reserva Marina del Nord de Menorca”. In this bay extensive C. nodosa 

meadows cover the bottom. We studied the whole juvenile fish assemblage associated 

to these meadows. 

-Chapter III: “Reserva Marina del Nord de Menorca” and adjacent un-protected north 

coastal areas. The rocky Infralittoral of the northern coast of the island is covered by 

extensive Cystoseira brachycarpa forests; conversely such habitats are scarce along the 

south coast (Sales, 2010). We studied the whole juvenile assemblages associated to such 

forests. 

-Chapter IV: two groups of coves with shallow bottoms dominated by a mix of sand, 

pebbles and rocks, and with similar configuration in terms of exposure and water 

quality were selected. One group of coves was placed at northeast, and the other at 

southwest. In these sites we studied the juveniles of Diplodus sargus.  

-Chapter V: we selected twelve coves widespread around the island, with shallow 

bottoms dominated by a mix of sand, pebbles and rocks, with similar water quality, and 
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with two possible configuration in terms of exposure. In these sites we studied the 

juveniles of Diplodus sargus. 
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Fig. I-7. The sampled sites of the different chapters of this thesis. Chapter II samplings were accomplished in Cymodocea nodosa meadows 
placed in Fornells Bay, Chapter III in Cystoseira brachycarpa forests placed in the MPA and through the north coast of the island, and 
samplings of Chapter IV and V were carried out in mixed bottoms of sand, pebbles, gravels and rocks both at north or south parts of the island. 
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I.2.2. Collection data methods 

Field surveys were conducted during the warmer months (from April to October) during 

three years from 2011 to 2013. This sampling period coincides with the presence within 

nursery habitats of juveniles of many Mediterranean littoral fish species (Biagi et al., 

1998; Bussotti and Guidetti, 2010; Félix-Hackradt et al., 2013a; García-Rubies and 

Macpherson, 1995) (Fig. I-2). 

For each chapter, abundance and size of juveniles were assessed by means of 

Underwater Visual Census (UVC) (Harmelin-Vivien et al., 1985) (Photo I-5). At each 

site, fish were counted and their size estimated during daylight (between 9 am and 4 

pm), by the same previously inter-calibrated and trained observers. The total length 

(TL) of individuals was estimated with the help of fish silhouettes of different sizes (5 

mm TL size-classes) on a plastic slate (Macpherson, 1998). Additionally, in Chapter III, 

behavior of fish were recorded (i.e. interaction type of fish with substratum, see details 

in this chapter). In each chapter, the area of the sampling units (replicates) was adapted 

to the characteristics of the habitat and the specific objectives of the study (see details in 

each chapter). In Chapter II and III, replicates were haphazardly selected by the diver 

during a preliminary exploration in each study site and located by a small mark. In 

Chapter II, to study the influence of habitat structure (through the presence of small 

boulders) at two different scales among a seagrass meadow, we employed random 

replicate belt-transects of 6 m x 3 m and random point-counts on 25 cm x 25 cm plots. 

At each point-count, the diver visualized an imaginary plot were abundances and TL of 

juvenile fishes were recorded during 5 minutes (Cheminée et al., 2013; Francour and Le 

Direac’h, 1994; García-Rubies and Macpherson, 1995; Harmelin-Vivien et al., 1985). In 

this chapter, all census were accomplished at depths ≤ 1 m and snorkelling equipment 

was employed. In order to record juveniles behaviors at different depths in Chapter III, 

5 minutes-counts in imaginary plots of 1 m² were accomplished by SCUBA divers at 

the three depth range considered: d1 (3-5 m), d2 (6-8 m), and d3 (10-12 m) (Cheminée 

et al., 2013; Francour and Le Direac’h, 1994; García-Rubies and Macpherson, 1995). In 

Chapter III the effect of protection was measured in terms of abundances, sizes and 

biomass of adult con-specific and predators. For that, we performed UVC recording 

their abundance and TL (±1cm) at each site and each depth strata in three replicate belt 
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transects of 10 m x 6 m (Harmelin-Vivien et al., 1985). Chapter IV and V focused on 

the temporal patterns of D. sargus juveniles densities, which use the mixed bottoms of 

the shallow part of coves as nursery; they distribute near the surface; consequently, 

census were accomplished by snorkelling along pre-defined transects running parallel to 

the shoreline (55 meters mean length) and covering the entire cove. The beginning and 

end of each transect were referred to some physical features of the topography of the 

coastline, to ensure accurate repeatability overtime independent of the observer. Such 

transects were placed at depths ranging from 0.5 to 3 m. 

Furthermore, in Chapters II, III and V, habitat descriptors were recorded with the aim to 

take into account habitat structure. In Chapters II and III, the structure of macrophyte-

formed habitat was described through macrophytes descriptors. We measured for each 

of the dominant macrophytes their percent coverage and maximum height (to the 

nearest cm) (Cheminée, 2012) ; this allowed us as well to describe the macrophyte 

composition when various macrophytes were present among the meadows (Chapter II). 

In Chapter V micro-habitat structure was described, differentiating transects according 

to the substrate type of the bottoms in terms of dominance of sand versus rocky 

substratum or mixed substratum of sand and rocks; furthermore depth was visually 

estimated for each kind of substratum. 

Other environmental parameters were obtained by different ways. In Chapter IV 

hydrodynamism data were provided by Puertos del Estado (Puertos del Estado, 2015) 

by its monitoring at two buoys. Meanwhile temperatures were recorded by Onset 

HOBO Water Temp Pro v2 sensors placed on the bottom at 5 m depth in each site. In 

Chapter V, exposure of coves was measured using Miller index (Miller, 1985). See 

further details and sampling designs in each chapter. 
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Photo I-5. Sampling methodology of this thesis: a-b) we used UVC belt-transects for fish counts and 50 cm x 50 cm 
quadrates for canopy descriptions in Cymodocea nodosa meadows (Chapter II); c-d) 5 minutes UVC in imaginary 
plots of 1 m² were accomplished in Cystoseira forests (Chapter III); e-f) UVC in pre-defined transects running 
parallel to the shoreline were employed in mixed bottoms of sand, pebbles and boulders (Chapters IV-V). Coves were 
mapped in order to delimitate each transects; g) fish silhouettes in a plastic slate to estimate TL of each observed fish. 
Photos: Adrien Cheminée, Eva Vidal, Jaime Sintes and Amalia Cuadros. 
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I.2.3. Data treatment and statistical analyses 

In Chapters II and III, for each taxa, every observed individual smaller than one third of 

adult maximum total length (Cheminée, 2012; Louisy, 2002) were considered for the 

juvenile analyses. In Chapters IV and V a given juvenile cohort was followed through 

time. In Chapters II and III density data were standardized to 1 m2 for further 

comparisons (Thiriet, 2014). Whereas for the chapters IV and V, where counts were 

made parallel to the shoreline, fish densities were standardised to one linear meter of 

shoreline (Cheminee et al., 2011; Harmelin-Vivien et al., 1985).  

Statistical analyses were made using different descriptive, exploratory and inferential 

approaches. The main methods used to describe data were numerical tables, percentages 

and the graphical representations: boxplots, barplots and smooth curves (see further 

details in each chapter). The main exploratory analyses consisted in ordination methods. 

We used Multidimensional Scaling (MDS): nMDS (non-metric Multi-Dimensional 

Scaling) and PCO (Principal Co-ordinates Analysis). Such methods allow us to project 

the data on a vector space, in order to have a visual representation of "closeness" 

(similarity) of the samples and allow us visualize the relationships between samples. 

nMDS is based on the relationships between ranks of dissimilarities and distances 

among samples. Which is very proper to ecological data since relationships on 

biological data are often non-linear (Anderson and Gorley, 2008; Clarke and Gorley, 

2006). nMDS were used to represent fish assemblages in Chapter II and III, and to 

represent habitat descriptors in Chapter II. However nMDS routines represent the points 

without trying to represent it better according to a specific factor. The PCO, also known 

as metric MDS, allow to represent samples according to selected factors (Anderson and 

Gorley, 2008). It was a better model to represent juvenile assemblages in Chapter II, 

since nMDS didn’t produced clear representations according to our factors of interest. 

Such methods work on objects rather than variables and give us only the representation 

of the samples. In Chapter III a PCA was employed in order to obtain a new variable 

(i.e. PC1 axis) as a single descriptor of the forest three-dimensional structure, because 

such analysis is based in variables (rather than in objects), allowing us to obtain a set of 

values (new variable) from the relationship established between the original variables 

(Anderson and Gorley, 2008; Clarke and Warwick, 1994; Fielding, 2015).  
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When convincing ordination of samples were obtained in the juvenile assemblages 

plots, individual species contributions to the separation of samples’ groups were 

examined by SIMPER (Similarity percentage breakdown) routines (Chapter III) 

(Anderson and Gorley, 2008; Clarke and Warwick, 1994). 

In complement to exploratory approaches, patterns and putative differences between 

groups were tested through inferential approaches. This was performed by using 

univariate and multivariate PERMutational Analyses Of Variance (PERMANOVA), 

which p-values are based on random permutations of the data, ignoring the factors being 

tested and thus such analyses are very powerful and flexible; it allows determining the 

influence of the factors of interest (Anderson and Gorley, 2008). Such analyses were 

made in Chapter II, III and V, in order to test the variation of the response variables 

according to our factors of interest; uni- and multi-variate response variables included: 

juvenile density (Chapter II, III and V), juvenile TL and juvenile behavior (Chapter III). 

PERMANOVA models were factorial, nested or crossed (see such models detailed in 

each chapter).  

Both exploratory and inferential approaches are based on the concept of resemblances 

between samples. Various indexes (distances, similarities or dissimilarities) are 

available in the literature to measure such resemblance and the choice relies on the 

nature of the data (Anderson and Gorley, 2008). The nMDS and multivariate 

PERMANOVAs were constructed based on Binomial deviance (scaled) resemblance 

measures. It emphasizes on species composition under null hypothesis that the 

compared communities are equal. It is theoretically able to handle variable sample sizes 

(Anderson and Millar, 2004). PCO was constructed based on Modified Gower 

distances, since the previous measure of dissimilarity didn’t display clear patterns in the 

plots since binomial measures may not be able to properly handle samples with no 

shared species. Modified Gower distances smoothly weights (e.g. log base 2) abundance 

information (Anderson et al., 2006). PERMANOVA on multivariate contingence tables 

of behavior were analyzed using Sogard resemblance matrix, which is a non-parametric 

alternative to the Chi-squared measure of distance (Clarke and Warwick, 2001). 

Euclidean distance measures were employed for univariate PERMANOVA analyses 

(Anderson and Gorley, 2008). SIMPER analysis routines are based on the use of Bray-

Curtis resemblance matrix. 
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Furthermore, in Chapters IV and V, ANCOVAS, which blends ANOVAs and 

regressions (Ellison and Gotelli, 2004), were employed to evaluate whether juvenile 

density or growth means were equal across levels of the categorical independent 

variable (e.g. “coves”) while statistically controlling for the effects of the covariate 

“time” (Ellison and Gotelli, 2004). Additionally, in Chapter IV, other inferential 

regression methods were employed: VIF (variance inflation factor), linear models and 

Spearman correlations. VIF was employed to quantify the increase of the variance of the 

coefficients of the regressions of hydrological and temperature data through time, in 

response to the multicollinearity among these environmental variables (Lin et al., 2012). 

These methods allow us to select not correlated environmental variables for further 

analyses. Among linear models used in this chapter, General Additive Model (GAM) 

analyses were employed to obtain the relationship among the selected environmental 

variables and the mean density or growth of juveniles. GAMs, which are a 

nonparametric extension of Generalized Linear Models (GLMs), were used because we 

haven’t a priori reasons for choosing a particular response function, and such strategy 

allow us to obtain the best adjusted modality functions (Guisan et al., 2002; Hastie and 

Tibshirani, 1990; Wood, 2003). Simple linear regressions were employed to obtain 

density or growth rates of D. sargus. Finally the non-parametric Spearman rank 

correlations were employed to additionally test correlation among VIF-selected 

environmental variables in Chapter IV. It was also employed in Chapter III to test 

possible correlations between Cystoseria height and cover, and as well in the nMDS and 

PCO plots of Chapter II and III, to superimpose arrows representing the correlations 

between biplot axes and variables. 

The methods used along this thesis were mainly non parametric (nMDS, 

PERMANOVAS, GAMs, Spearman rank correlations) and thus normality and 

homosedactisity of data were not strictly required. However, when data contained 

species much more abundant than others multivariate analyses were performed on 

transformed data (square root). When other routines were employed (PCA, PCO, linear 

models) data were explored in order to test its normality and homoscedasticity and were 

transformed if required.  

Exploratory analyses and inferential tests were performed using the PRIMER 6 and 

PERMANOVA + B20 package (Anderson and Gorley, 2008; Clarke and Gorley, 2006), 
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and “mgcv” package in R Environment (R Development Core Team, 2013). Graphical 

visualizations were also performed in R Environment using the library ggplot2 

(Wickham, 2009). 

 

 



 
 
 

41 
 

 

  



 
 
 

42 
 

 

 



Chapter II. Effect of the 3D structure of Cymodocea nodosa meadows on Mediterranean juvenile fish 
assemblages: the role of spatial scale 
 
 

43 
 

Chapter II. Effect of the three-dimensional structure of 

Cymodocea nodosa meadows on Mediterranean 

juvenile fish assemblages: the role of spatial scale 

 
Photo II-1. Cymodocea nodosa meadows in Minorca island , depth = 1 meter, July 2012. Foreground spans around 
0.3 m wide. Photo: Amalia Cuadros. 
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Chapter II. Effect of the three-dimensional structure of 

Cymodocea nodosa meadows on Mediterranean 

juvenile fish assemblages: the role of spatial scale 

II.1. INTRODUCTION 

II.1.1. Context of the study 

Seagrass meadows have declined worldwide as a result of human stressors, mainly the 

increase of nutrients and sediments runoff, the presence of invasive species, 

hydrological alterations, commercial fishing and global climate change (Delgado et al., 

1997; Duarte, 2002; Orth et al., 2006; Waycott et al., 2009). Seagrass losses are a matter 

of concern, since seagrass meadows serve many important socio-ecological functions in 

coastal waters and play an important role in marine ecosystems worldwide (Bertelli and 

Unsworth, 2014; Bjork et al., 2008; de la Torre-Castro and Rönnbäck, 2004; Jackson et 

al., 2015; McArthur and Boland, 2006). Seagrasses are considered foundation species 

(Dayton, 1972) and have an extremely high primary and secondary production rates 

(Balata et al., 2007; Borowitzka et al., 1990; Pergent et al., 1994; Pergent-Martini et al., 

1994; Sánchez-Jerez et al., 1999). In comparison with others marine habitats, seagrass 

meadows are characterized by a high degree of habitat structuration. Habitat structure is 

defined as the amount, composition and three-dimensional arrangement of structural 

components (both abiotic and biotic matter) at a location under a determinate spatio-

temporal scale (Beck, 2000; Bell et al., 1991; Byrne, 2007). They are therefore 

considered as habitat-formers: these meadows support a great abundance and diversity 

of organisms, including commercially and recreationally important fishery species (de 

la Torre-Castro and Rönnbäck, 2004; Guidetti and Bussotti, 2002; Pollard, 1984). 

Seagrasses are also essential for some threatened megafauna species such as sea turtles, 

dugongs and manatees, and other species of conservation concern, such as seahorses or 

pipefishes (Hughes et al., 2008).  
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Many authors have highlighted the nursery role of seagrass meadows for many fishes, 

due to their higher production of juveniles per unit of surface (nursery value, sensu 

Beck et al. 2001), as compared to less structured habitats, i.e., unvegetated bottoms 

(Beck et al., 2001; Heck et al., 2003; Pollard, 1984). Furthermore, it has been observed 

higher juvenile abundances within seagrass meadows, compared to less structurally 

complex macrophyte meadows, such as C. prolifera (Chlorophyta) meadows (Verdiell-

Cubedo et al., 2007). However, when comparing seagrass meadows with other 

structured habitats, such as mangroves, coral reefs, or rocky–algal reefs, all of them 

display high density of juveniles, with some species-specific variations (Guidetti, 2000; 

Nagelkerken et al., 2000). The positive correlation between habitat three-dimensional 

structure and juvenile fish density is probably due to the higher availability of food 

and/or shelter in structurally complex habitats (Thiriet et al., 2014; Verwey et al., 2006). 

Additionally, among a given meadow, it is reported a spatial variability of the meadow 

three-dimensional structure (Bell and Westoby, 1986a; Guidetti and Bussotti, 2000; 

Gullström et al., 2008). The meadow three-dimensional structure is the spatial 

arrangements of its structural components. It has been quantified notably through the 

measure of the vertical stratification of macrophytes (presence and height of the canopy) 

and the horizontal distribution of macrophytes (e.g. shoots density, % cover, patchiness) 

(August, 1983; García-Charton et al., 2004; Guidetti and Bussotti, 2002; Wilson et al., 

2007). Within seagrass meadows, the density of juvenile fishes has been reported to be 

correlated with the height and/or the density of seagrass shoots and the patchiness of the 

meadow (Bell and Westoby, 1986a; Guidetti and Bussotti, 2000; Gullström et al., 

2008). More particularly, the presence of abiotic structures among the meadow (such as 

intermingled boulders) may have an influence, as illustrated by studies among macro-

algae meadows (Cheminée et al., in press). However, the actual relationship between 

juvenile density and meadow structure is species-specific, since some species display 

life-strategies (e.g. anti-predator or foraging tactics) adapted to more structured 

meadows, whereas others prefer less structured ones or even opened areas adjacent to 

their edges (Horinouchi, 2007). Furthermore there are fishes whose densities are not 

influenced by seagrass meadow structure, such species are habitat generalist, residents 

or transients (Horinouchi, 2007; Orth et al., 1984). Additionally, the influence of the 

meadow structure on juvenile density may depend on the scales of study. Indeed, Bell 

and Westoby (1986a) found that leaf height and density have a significant effects on 
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juvenile densities among beds, but few effects between separated beds (>1-10 km 

apart). Similar results have been reported for other fish species inhabiting other 

structured habitats formed by other foundation species (Anderson and Millar, 2004). 

This bibliography supports the importance of the chosen study scales when assessing 

the influence of habitat structure on fish assemblages. The appropriate scale will depend 

on the behaviour and displacement capabilities of the studied organism (Beck, 2000; 

Bell et al., 1991; Byrne, 2007). In the case of juvenile necto-benthic fishes, 

microhabitats (i.e., habitats which are small or limited in extent and which 

characteristics differ from surrounding habitats) are thought to significantly influence 

juveniles’ assemblages (Harmelin-Vivien et al., 1995). However, the actual scale of this 

interaction is still unknown, since data about the mobility of juvenile fishes are scanty 

(Calò et al., 2013) and since it seems to be taxa- and size-dependent (Vigliola and 

Harmelin-Vivien, 2001). 

Cymodocea is a genus of seagrasses spread from the eastern Atlantic to the western 

Pacific Ocean (Guiry and Guiry, 2015). Cymodocea nodosa (Ucria) Ascherson 1870 is a 

very common seagrass in shallow (i.e. 0 to 20 meters) and sheltered to semi-exposed, 

marine, polyhaline or hypersaline water masses of the Mediterranean and western 

Africa (Borum et al., 2004; Guiry and Guiry, 2015; Mascaro et al., 2009), where it 

forms mono-specific or mixed meadows with Posidonia oceanica, Zostera noltii or 

Caulerpa prolifera over sandy-muddy bottoms. As highly resilient species (Malta et al., 

2006), it is considered as good indicator of water quality, since it displays faster 

responses to environmental changes or to anthropogenic stressors than other seagrasses 

(Olesen et al., 2002; Orfanidis et al., 2010). Due to its resilience, C. nodosa is still being 

considered under the category “Least Concern” for the International Union for the 

Conservation of Nature (IUCN) Red List, and its populations are still being considered 

stable (Short et al., 2011). However their populations has been recorded to suffer 

regressions in some localities (Ceccherelli and Cinelli, 1997; Delgado et al., 1997).  

Information about the juvenile fishes inhabiting C. nodosa meadows is scarce, but 

underlines their potentially high nursery value (Espino et al., 2011; Guidetti and 

Bussotti, 2002, 2000; Verdiell-Cubedo et al., 2007). Furthermore, C. nodosa meadows 

display a variable three-dimensional structure among its meadows; it is due for example 

to variable meadow shoot density (Barbera et al., 2005), and more particularly, to the 
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presence of intermingled boulders among C. nodosa, resulting in heterogeneous 

portions in the meadow. Boulders are usually located in the fringe close from the meso 

and supralittoral, where geological material inputs occur. In this context, there are no 

studies addressing the influence of C. nodosa meadow structure on the juvenile fish 

assemblage. 

II.1.2. Objectives of Chapter II 

In this chapter we aimed to study the influence of habitat structure within C. nodosa 

meadows on the assemblage of juvenile fishes at different spatial scales. First, at 

seascape scale (tens of meters square), we aimed to compare juvenile assemblages 

between shallow (0.5 - 1 meter depth) heterogeneous portions of the meadows, i.e. 

scattered with boulders, versus homogeneous portions of the meadows, i.e. without 

boulders. Secondly, at lower scale (< 1m2), within the heterogeneous portions of the 

meadows, we investigated the influence on juvenile assemblages structure of different 

microhabitats types: i) microhabitats with only C. nodosa; ii) microhabitats of 

C. nodosa with a boulder covered with structured, erected and perennial macroalgae 

(Cystoseira spp.); and iii) microhabitats of C. nodosa with a boulder covered with less 

structured and seasonal macrophytes (e.g. Dictyotales and Sphacelariales). 

II.2. MATERIAL AND METHODS 

II.2.1. Studied area 

The study was conducted in Fornells bay, located in the northern coast of Menorca 

island (Balearic Archipelago) (Fig. II-2). It is part of the marine protected area “Reserva 

del Nord de Menorca”(Coll et al., 2012). Previous works suggested that Fornells bay 

may be a settlement and recruitment area for many fishes (Manent and Abella, 2005). 

The bay is semi-enclosed, 4.4 km long, 1.5 km wide and with an average depth of 5.5 

m. It is connected to the Mediterranean Sea by a 300 m wide strait opened towards the 

north. Benthic communities are characterized by dense meadows dominated by the 
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seagrasses Posidonia oceanica and Cymodocea nodosa; although some green 

macroalgae (Chlorobionta) such as Halimeda tuna, Caulerpa prolifera, Dasycladus 

vermicularis, and Flabellia petiolata, are scattered within the meadows (Delgado et al., 

1997). The extensive areas of Cymodocea nodosa meadows thrive from 0 to 10 meters 

depth (Photos II-1 and II-2). In some portions of the meadows, boulders (sizing about 

15 cm x 15 cm -20 cm x 20 cm) are scattered within the C. nodosa meadows. Boulders 

are covered (about 60%) by perennial Fucales, mainly Cystoseira spp., or alternatively 

by shorter (< 3 cm tall), shrubby, seasonal macroalgae from the orders Dictyotales and 

Sphacelariales. 

II.2.2. Sampling design 

Sites were selected after a broad exploration of Fornells bay. In order to avoid possible 

confounding effects between our study variables and other environmental variables, the 

selected sites were similar in terms of depth (0.5 – 1 m) and slope (<15 º). We defined 

two types of meadow structure and three types of microhabitats. Among the meadow, 

the two types of meadow structure were defined and attributed to meadow portions, 

sizing several tens of meters square. They were: i) heterogeneous meadow portions (i.e 

where sparse boulders occupy 20-40 % cover of the total meadow area) or ii) 

homogeneous meadow portions (without boulders) (Photo II-2). Meadow structure was 

described by recording the percent cover of boulders and macrophytes and the 

maximum height (to the nearest cm) of the habitat components (i.e. boulders, seagrass 

and algae canopy) within the replicates were censuses were carried out (see below) 

(Cheminée, 2012) (see Table II-1). 
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Photo II-2. The two defined types of meadow structure within the Cymodocea nodosa meadows: a) heterogeneous 
seagrass portions, with 20-40 % of boulders in the meadow; b) homogenous seagrass portions, without boulders in 
the meadow. Depth = 1 meter, July 2013. Foreground spans around 1.0 m wide in each photo. Photos: Jaime Sintes. 
 

Secondly, various types of microhabitats (25 cm x 25 cm) were defined within the 

heterogeneous portions of the meadow (Fig. II-1): “cn”: Cymodocea meadow (25 cm x 

25 cm) without boulder; “cy”: Cymodocea with a boulder mostly covered (60%) by 

Cystoseira spp. (5-15 cm height); “sh”: Cymodocea with a boulder mostly covered 

(60%) by shrubby algae (<3 cm height). This two different design, at two different 

spatial scales (i.e. meadow portions and microhabitat types) were replicated at 3 random 

sites within Fornells bay (sites S1, S2 and S3 (Fig. II-2)). 

 
Fig. II-1. The three types of microhabitats sampled within heterogeneous portions of the Cymodocea nodosa 
meadows (25 cm x 25 cm): 1) cy: meadow microhabitats with a boulder mostly covered with Cystoseira spp. (5-15 
cm height); 2) sh: meadow microhabitats with a boulder mostly covered with shrubby algae (<3 cm height); 3) cn: 
meadow microhabitats without boulders. 
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Juvenile fish assemblages associated to C. nodosa meadows were sampled in three 

consecutive years (2011, 2012 and 2013). Surveys conducted in 2011 and 2012 aimed 

to test the putative effects on juveniles of the various microhabitat types within the 

heterogeneous meadow portions, in two sampling months (July vs. September). 

Conversely, surveys conducted in 2013 aimed to test the putative effects of different 

types of meadow structure (homogenous vs. heterogeneous) within the same meadow 

and sampling months (July vs. September). 

 

Fig. II-2. Location in Fornells bay (Minorca) of the three surveyed sites of Chapter II. Sites were: S1 (40° 1’52.17” N, 
4° 7’22.14” E), S2 (40°02’3.41” N, 4°08’15.66” E), and S3 (40°01’52.17” N, 4°7’22.14” E ). 

II.2.3. Data collection 

During each sampling year (2011, 2012 and 2013), we sampled 2 times, July (between 

13th and 29th July) and September (between 9th and 23th September). These two 

sampling months coincides with high occurrences within the meadow of juveniles of 

many Mediterranean littoral fish species (Bussotti and Guidetti, 2010; García-Rubies 

and Macpherson, 1995).  

Fish juvenile assemblages were surveyed by means of underwater visual censuses 

(UVC) techniques (Harmelin-Vivien et al., 1985). For each taxa, all individuals smaller 

than one third of adult maximum total length (Cheminée, 2012; Louisy, 2002) were 

considered as juveniles. Abundance and total length (TL) of juvenile fish were recorded 

during daylight (between 9 am and 4 pm) and moderate and rough sea states, as well as 

poor visibility days, were avoided. Census were carried out by three previously inter-

calibrated divers, using snorkels, and the TL of juveniles was estimated with the help of 
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fish silhouettes of different sizes (5 mm TL size-classes) on a plastic slate (Macpherson, 

1998). Censuses were performed at the two studied spatial scales, focusing on the two 

studied seascape features: the microhabitat types (associated with a small boulder) and 

the wider meadow portions. First, we censed juveniles in microhabitats within the 

heterogeneous portions of the meadows in 2011 and 2012. At each site, for each 

microhabitat type, 10 random replicates of 25 cm x 25 cm point-count UVC (Cheminée 

et al., 2013; Francour and Le Direac’h, 1994; García-Rubies and Macpherson, 1995) 

were carried out. At each point-count, the trained diver visualized an imaginary plot 

were abundances and TL of juvenile fishes were recorded during 5 minutes. This size 

and this duration were suitable to record the interaction occurring at this spatial scale. 

Secondly, to take into account seascape features at a wider spatial scale, in 2013, 

juveniles were censed at twelve random replicate belt-transects of 6 m x 3 m within 

heterogeneous and within homogenous portions. 

Furthermore, for subsequent analyses, due to the difficulty to identify underwater the 

species of juvenile fish, we decided to pool them by taxonomical groups that can be 

visually recognized and have similar ecological requirements (Harmelin, 1987; Lejeune, 

1984). Crypto-benthic fish (including different taxa belonging to Blenniidae, Gobiidae 

and Tripterygiidae), due to their apparent low densities, were pooled as a single group. 

Other groups were as follows: Symphodus spp. (including S. roissali, S. tinca and S. 

ocellatus); Serranus spp. (including S. cabrilla and S. scriba); Mullus spp. (M. barbatus 

and M. surmuletus); Pagellus spp.; and Mugilidae. Afterwards, in order to refer to such 

groups we denominate them as “taxa”. Taxa accounting in this study for more than 10% 

of the juvenile abundance were considered as “dominant”. All other species or taxa 

were considered “minority” species. 

II.2.4. Statistical analyses 

At seascape scale, first, we used PERMutational multivariate Analysis Of Variance 

(PERMANOVA) to assess the differences of habitat descriptors (cover and height) 

between meadows structure types, sampling month and site. PERMANOVA model 

included 3 factors: i) “meadow structure” was fixed and included two levels 

(homogeneous and heterogeneous); ii) “sampling month” was also fixed and included 2 
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levels (July and September); and iii) “site”, was random and included 3 levels (S1, S2 

and S3). In order to illustrate the PERMANOVA results, a non-metric multi-

dimensional scaling (nMDS) biplot of samples was employed (Clarke and Gorley, 

2006). We used arrows superimposed to nMDS biplots to represent the Spearman rank 

correlations between biplot axes and meadow characteristics (Clarke and Warwick, 

2001). For this analysis and representation, multivariate descriptors of meadow structure 

were previously standardized and Euclidean distance was used as measure of 

dissimilarity, due to the different nature and ranges of variation of the two descriptors 

used (cover and height) (Anderson and Gorley, 2008). 

At seascape scale, secondly, we assessed the effect of meadow structure types, sampling 

months and site on juvenile assemblage’s descriptors (univariate total density and 

richness, and the multivariate assemblage structure, i.e., comparative densities of each 

taxa), by means of PERMANOVAs with the same model as previously described. In 

order to represent dissimilarities between the juvenile assemblages, we employed a 

Principal coordinate analysis (PCO) ordinations plot of centroids of fish juvenile 

assemblage samples of the dummy factor combining the factors meadow structure, 

sampling month and sites (Clarke and Gorley, 2006). We used arrows superimposed to 

PCO biplots for representing the spearman rank correlations between biplot axes and 

taxa-specific densities (Clarke and Warwick, 2001). Euclidean distance was used as 

measure of dissimilarity for univariate response variables (total density and richness), 

and modified-Gower (base 2) was employed as measure of dissimilarity for multivariate 

juvenile assemblage structure. Indeed, it was well adapted to our data (see results) since 

this dissimilarity measure has the double advantage to both reduce heterogeneity of 

variance and down-weight the most abundant species without altering the data with any 

prior transformation (Anderson and Gorley, 2008). 

At seascape scale, thirdly we assessed the effect of meadow structure, sampling month 

and site on taxa specific univariate descriptors, using univariate PERMANOVAs with 

the same model as previously.  

Finally, at a lower, microhabitat scale, we tested if, on one hand, juvenile assemblage’s 

descriptors (univariate total density and richness, and the multivariate assemblage 

structure (comparative densities of each taxa)), and on the other hand, dominant taxa 

specific univariate densities, varied between: i) microhabitat types; ii) sampling month; 
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iii) sampling years and iv) sites, by means of PERMANOVAs. PERMANOVA models 

included 4 factors: i) “microhabitat type”, fixed and with 3 levels (cy, sh and cn); 

ii) “sampling month”, fixed with 2 levels (July and September); iii) “sampling year”, 

random with 2 levels (2011 and 2012); and iv) “site”, random with 3 levels (S1, S2 and 

S3).  

Sums of squares (SS) for these PERMANOVA designs were performed as a fully 

partial analysis (type III). P-values were obtained by 999 permutations of residuals 

under a reduced model. Monte Carlo P-values were considered when there were not 

enough possible permutations (<200). Terms were pooled as suggested by Anderson et 

al. (Anderson and Gorley, 2008). Due to the intrinsic variability of ecological data, tests 

were considered significant for p-values <0.1. 

Multivariate exploratory analyses and multivariate and univariate inferential tests were 

performed using the PRIMER 6 and PERMANOVA + B20 package (Anderson and 

Gorley, 2008; Clarke and Gorley, 2006). Data set manipulations and others graphical 

visualizations (univariate visualizations) were performed in R Environment (R 

Development Core Team, 2013) using the library ggplot2 (Wickham, 2009). 
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II.3. RESULTS 

II.3.1. Effect of meadow structure type and sampling month on 

meadow descriptors  

The nMDS plot revealed the trivial segregation between samples of different meadow 

structure (heterogeneous versus homogenous), because of differences in boulders 

presence and Cystoseira and shrubby algae cover (see PERMANOVA Table II-2, Table 

II-1 and Fig. II-3). 

 

 

 

 

 

 

 

 

 

 

Additionally, a significantly higher cover and height of the green macroalgae Caulerpa 

prolifera and a lower cover of C. nodosa were recorded in the samples from the 

innermost sites of the bay (S2 and S3). Furthermore, macrophyte structure varied 

according to sampling month in every site and meadow structure type, with the higher 

C. nodosa cover observed in July (see PERMANOVA Table II-2, Table II-1 and Fig. 

II-3). 

 

Table II-1.Recorded Cymodocea nodosa meadow characteristics in 2013 
 (mean ±se). Mean cover (%) and height (cm) of the components within each defined meadow 
structure types (homogeneous and heterogeneous) and according to sampling months (July and 
September) at 2013. Cover: covbo= boulders, covcn= Cymodocea nodosa; covcp= Caulerpa 
prolifera; covcy= Cystoseira spp.; and covsh= shrubby algae. Height: htbo=boulders, htcn= 
Cymodocea nodosa; htcp= Caulerpa prolifera; htcy= Cystoseira spp.; and htsh= shrubby algae. 
  Homogeneous 

  
Heterogeneous 
  

  July September July September 

Elements 
cover 

Covbo 0.00±0.00 0.00±0.00 30.57±1.92 36.00±1.48 

Covcn 57.06±2.74 51.83±3.46 45.76±2.35 29.86±2.25 

covcp 12.14±2.07 15.72±2.17 6.51±1.34 11.50±1.39 

covcy 0.36±0.29 1.69±0.62 11.38±1.13 19.95±1.38 

covsh 
 

0.00±0.00 
 

0.06±0.06 
 

18.73±1.92 
 

17.22±1.47 
 

Elements 
height 

htbo 20-30 20-30 20-30 20-30 

htcn 18.69±0.76 15.83±0.59  18.78±0.96  14.19±0.56  

htcp 7.06±0.93 8.83±0.68  6.54±0.90  8.56±0.57  

htcy 1.03±0.72 3.72±1.10 13.62±1.12 11.83±1.03 

htsh 0.00±0.00 0.08±0.08   2.92±0.53 2.31±0.45 
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Table II-2. PERMANOVA table of results: effect of Cymodocea nodosa meadow 
structure type and sampling month on habitat descriptors.Significance=. P≤0.1 ; * 
P ≤ 0.05 ; ** P ≤ 0.01 ; *** P ≤ 0.001. 
Source of variation Df MS Pseudo-F P(perm) 
Meadow structure (me) 1 3.69·10-5 10.26 0.007** 
Sampling month (sm) 1 25619 1.74 0.174 
Site (si) 2 1.10·10-5 62.59 0.001*** 
mexsm 1 9163.1 2.41 0.149 
mexsi 2 35976 20.54 0.001*** 
smxsi 2 14728 8.41 0.001*** 
mexsmxsi 2 3802.1 2.17 0.01* 
Res 133 1751.3   
Total 144    

 

 

 

 

Fig. II-3. nMDS ordination plot of macrophyte descriptors of the Cymodocea nodosa meadows, according to defined 
meadow structure types (heterogeneous and homogeneous), sampling months (July and September) and sites (S1, S2 
and S3). Correlation vectors (Spearman) of macrophyte cover and height (only correlations >0.4 are represented). 
Boulder cover: covbou; Macrophyte cover: covcn= Cymodocea nodosa; covcp= Caulerpa prolifera; covcy= 
Cystoseira spp.; covsh= Shrubby algae. Macrophyte height: htcn= Cymodocea nodosa; htcp= Caulerpa prolifera; 
htcy= Cystoseira spp.; htsh= Shrubby algae. 
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II.3.2. Effect of meadow structure type and sampling month on 

juvenile fish assemblage and taxa-specific trends 

II.3.2.1. Total density and species richness 

Total density and richness significantly differed between meadow structure types in 

both sampling months. Heterogeneous portions of the meadow had a higher total 

density and richness than homogeneous ones whatever the site. Additionally, the 

outermost site (S1) of the bay had always a higher species richness and juvenile density 

than the two innermost sites of the bay. Conversely, sampling month did not have any 

clear effect on total density pattern or species richness, although the interaction term 

meadow structure x sampling month x site was significant for total density 

(PERMANOVAs Table II-3, Fig. II-4). 

Table II-3. PERMANOVA table of results: effect of Cymodocea nodosa 
meadow structure and sampling month on univariate descriptors of juvenile 
fish assemblage (total density and richness) and multivariate juvenile 
assemblage structure. Significance=. P≤0.1 ; * P ≤ 0.05 ; ** P ≤ 0.01 ; *** P 
≤ 0.001. 
Response variable: total density 
Source of variation Df MS Pseudo-F P(perm) 
Meadow structure (me) 1 60.47 83.21 0.015* 
Sampling month (sm) 1 3.97 2.05 0.271 
Site (si) 2 21.30 16.00 0.001*** 
me x sm 1 0.57 9.36·10-2 0.785 
me x si 2 0.73 0.55 0.558 
sm x si 2 1.94 1.46 0.228 
me x sm x si 2 6.14 4.61 0.015* 
Res 132 1.33   
Total 143    
Response variable: richness 
Source of variation Df MS Pseudo-F P(perm) 
Meadow structure (me) 1 90.25 14.25 0.073· 
Sampling month (sm) 1 8.03 1.47 0.345 
Site (si) 2 83.53 51.32 0.001*** 
mexsm 1 7.11 1.92 0.320 
mexsi 2 6.33 3.89 0.021* 
smxsi 2 5.44 3.35 0.04* 
mexsmxsi 2 3.69 2.27 0.118 
Res 132 1.63   
Total 143    
Response variable: assemblage structure 
Source of variation Df MS Pseudo-F P(perm) 
Meadow structure (me) 1 19.37 3.80 0.064· 
Sampling month (sm) 1 19.61 3.14 0.084· 
Site (si) 2 3.58 2.20 0.039* 
mexsm 1 6.44 1.45 0.328 
mexsi 2 5.09 3.13 0.006** 
smxsi 2 6.25 3.84 0.001*** 
mexsmxsi 2 4.45 2.73 0.009* 
Res 132 1.63   
Total 143    
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Fig. II-4. Boxplots of total fish density and richness within sampled sites (S1, S2, S3) according to Cymodocea 
nodosa meadow structure types (heterogeneous and homogeneous) and sampling months (July and September). Box 
plots indicate the median (bold line near the center), the first and third quartile (the box), the extreme values whose 
distance from the box is at most 1.5 times the inter quartile range (whiskers), and remaining outliers (open circles).  

II.3.2.2. Differences in assemblage structure and taxa-specific trends 

In 2013, the juvenile assemblage structure significantly differed between meadow 

structure types and sampling months (see PERMANOVAs, Table II-3 and Fig. II-5). On 

one hand this reflected the taxa composition differences in both meadow structure types, 

and a higher taxa number (i.e. richness described above) in heterogeneous portions of 

the meadow: C. julis and Serranus spp. were observed only in heterogeneous portions 

of the meadow while L. mormyrus, S. viridensis and Pagellus spp. (a single individual) 

were only observed in homogeneous portions of the meadow (Table II-4). On the other 

hand this assemblage difference also reflected the higher density in heterogeneous 
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portions of the meadow of most of the species shared by both meadow structure types 

(Table II-4). Finally it also reflected sampling month trends for some species. More 

particularly, among the dominant taxa, D. annularis displayed similar densities in 

heterogeneous and homogeneous portions of the meadow and was more abundant in 

September than in July in the three sites. Symphodus spp. density also peaked in 

September, but they were more abundant in heterogeneous portions than in 

homogeneous ones in 4 of the 6 combination of season x site. Furthermore, although 

low frequency of S. salpa did not allow conclusive tests, it tended to be more abundant 

in July versus September and in heterogeneous portions of the meadow versus 

homogeneous ones (see PERMANOVAs, Table II-5, Table II-4 and Fig. II-6).  

 

Table II-4. Juvenile fishes observed in the Cymodocea meadows in 2013 : number of juvenile fish in heterogeneous portions 
of the meadows (n het), number of juvenile fish in homogenous portions (n hom), number of juvenile fish in July (n july), 
number of juvenile fish in September (n sept), number of juvenile fish in sites (n S1, n S2, n S3), total number of juvenile 
censed (n tot), dominance categories, mean TL (mm ± se), minimum (Min) and maximum (Max) TL (mm). Total sampled 
area = 2592 m². 
Species n het n hom n july n sept n S1 n S2 n S3 n tot Dominance Mean (TL ± se) Min TL Max TL 
Coris julis 27 0 14 13 27 0 0 27 minority 49.67±3.18 15 60 
Dicentrarchus labrax 7 2 9 0 0 5 4 9 minority 68.00±10.20 40 90 
Diplodus annularis 109 71 42 138 76 27 77 180 dominant 45.60±1.20 10 70 
Diplodus sargus  49 35 35 49 38 33 13 84 minority 58.09±2.51 25 90 
Diplodus vulgaris  41 27 33 35 40 14 14 68 minority 56.80±2.32 20 90 
Lithognatus mormyrus 0 2 2 0 0 2 0 2 minority 77.50±12.50 65 90 
Mugiilidae 7 5 7 5 0 0 12 12 minority 51.67±7.26 40 65 
Mullus spp. 18 9 18 9 26 1 0 27 minority 76.00±4.76 40 90 
Oblada melanura  48 10 0 58 58 0 0 58 minority 48.82±2.37 30 60 
Pagellus spp. 0 1 1 0 1 0 0 1 minority 50 50 50 
Pagrus 2 2 4 0 0 1 3 4 minority 78.33±21.67 35 100 
Sarpa salpa 132 69 192 9 56 43 102 201 dominant 50.00±2.91 15 100 
Serranus spp.  6 0 2 4 5 1 0 6 minority 71.67±4.01 60 80 
Sphyraena viridensis 0 6 6 0 6 0 0 6 minority 70 70 70 
Spondyliosoma cantharus 5 2 7 0 7 0 0 7 minority 52.50±10.31 30 70 
Symphodus spp.  187 19 34 172 148 45 13 206 dominant 49.58±1.31 15 65 
Sparus aurata 5 5 4 6 7 0 3 10 minority 87.86±8.85 45 120 
Blenniidae-Gobiidae- 
Tripterygiidae  

1 0 1 0 0 0 1 1 minority 45 45 45 
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Fig. II-5. Principal coordinate analysis (PCO) ordinations plot of centroids of fish juvenile assemblage samples within 
Cymodocea nodosa meadows according to meadow structure types (heterogeneous and homogeneous), sampling 
months (July and September) and sites (S1, S2, S3). Correlation vectors (Spearman) of taxa specific densities (in 
blue) are plotted (for correlations >0.4). Taxa: bg=Blenniidae-Gobiidae-Tripterygiidae; da=Diplodus annularis; 
dl=Dicentrarchus labrax; ds=Diplodus sargus; dv=Diplodus vulgaris; cj=Coris julis; lm=Lithognathus mormyrus; 
mu=Mullus spp.; om=Oblada melanura; pr=Pagrus pagrus; sa=Sarpa salpa; se=Serranus spp.; ss=Symphodus spp. 
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Table II-5. PERMANOVA table of results: effect of Cymodocea nodosa 
meadow structure type and sampling month on univariate taxa-specific 
densities of juvenile dominant species. Significance=. P≤0.1 ; * P ≤ 0.05 ; ** P 
≤ 0.01 ; *** P ≤ 0.001. 
Response variable: D. annularis density 
Source of variation Df MS Pseudo-F P(perm) 
Meadow structure (me) 1 3.05·10-2 3.18 0.239 
Sampling month (sm) 1 0.20 5.71 0.162 
Site (si) 2 5.40·10-2 5.62 0.004** 
mexsm 1 2.55·10-2 2.14 0.251 
mexsi 2 9.61·10-3 1.00 0.371 
smxsi 2 3.51·10-2 3.65 0.032* 
mexsmxsi 2 1.20·10-2 1.24 0.304 
Res 133 9.61·10-3   
Total 144    
Response variable: S. salpa density 
Source of variation Df MS Pseudo-F P(perm) 
Meadow structure (me) 1 7.69·10-2 0.54 0.533 
Sampling month (sm) 1 0.70 21.40 0.048 
Site (si) 2 6.76·10-2 2.50 0.069· 
mexsm 1 5.33·10-2 0.43 0.62 
mexsi 2 0.14 5.32 0.006** 
smxsi 2 3.25·10-2 1.21 0.304 
mexsmxsi 2 0.12 4.59 0.007** 
Res 133 2.70·10-2   
Total 144    
Response variable: Symphodus spp. density 
Source of variation Df MS Pseudo-F P(perm) 
Meadow structure (me) 1 0.61 3.57 0.174 
Sampling month (sm) 1 0.41 3.60 0.193 
Site (si) 2 0.32 22.29 0.001*** 
mexsm 1 0.33 4.85 0.161 
mexsi 2 0.17 11.82 0.001*** 
smxsi 2 0.11 7.96 0.002** 
mexsmxsi 2 6.88·10-2 4.78 0.004** 
Res 133 1.44·10-2   
Total 144    
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Fig. II-6. Boxplot of Diplodus annularis, Sarpa salpa and Symphodus spp. densities in Cymodocea nodosa meadows 
according to significant terms (see PERMANOVA Table II-5). Meadow structure types: het: heterogeneous, hom: 
homogeneous; sampling months: July, Sept: September; sites: S1, S2, S3. See Fig. II-4 for explanation of box plots 
elements. 
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II.3.3. Effect of microhabitats on juvenile assemblage and taxa-specific 

trends 

A total of 14 taxa of juveniles fishes were observed in the three microhabitats types 

within the heterogeneous portions of the meadow in 2011 and 2012 (Table II-6). 

 
Table II-6. Juvenile fishes observed in the three microhabitats within heterogeneous portions of Cymodocea nodosa 
meadows in 2011 and 2012. Total number (n), dominance categories, mean TL (mm ± se), minimum (Min) and 
maximum (Max) TL (mm). Total sampled area = 330 m². 

 2011 2012 
Species Dominance n Mean  

(TL ± se) 
Min  
TL 

Max 
TL 

Dominance n Mean  
(TL ± se) 

Min 
TL 

Max 
TL 

Dentex dentex minority 3 76.67±14.53 50 100 not recorded 0 - - - 
Diplodus annularis minority 8 51.25±6.93 10 70 dominant 102 42.25±1.44 15 75 
Diplodus sargus  minority 43 56.86±1.97 35 90 dominant 171 51.26±1.33 20 90 
Diplodus puntazzo minority 4 87.50±7.50 70 100 minority 7 67.14±5.33 45 80 
Diplodus vulgaris minority 43 65.23±2.16 40 90 minority 21 54.05±2.88 30 80 
Mullus spp. minority 1 30 30 30 minority 1 80 80 80 
Oblada melanura  minority 11 46.36±4.91 30 90 minority 9 53.33±4.86 25 70 
Pagellus spp. minority 2 95.00±5.00 90 100 minority 1 50 50 50 
Sarpa salpa dominant 72 54.03±1.25 30 80 minority 40 54.50±3.26 25 100 
Serranus spp.  minority 3 83.33±3.33 80 90 minority 7 60.00±6.07 40 80 
Sphyraena viridensis not recorded 0 - - - minority 1 70 70 70 
Spondyliosoma cantharus not recorded 0 - - - minority 4 82.50±18.87 50 120 
Symphodus spp.  dominant 58 41.90±1.45 15 65 dominant 73 43.42±1.12 20 65 
Blenniidae-Gobiidae-
Tripterygiidae  

minority 5 35.00±2.24 30 40 minority 7 40.00±1.54 35 45 

 

Total density, richness, assemblage structure or density of dominant taxa (D. annularis, 

D. sargus, S. salpa and Symphodus spp.) did not differ between microhabitats types or 

sampling months (PERMANOVAs, all p>0.1). 

II.4. DISCUSSION 

The presence of boulders within the seagrass meadow resulted into a higher density of 

juvenile fishes and a higher species richness at a scale of tens of meters but not at a 

lower scales, as no differences existed among microhabitats. This is probably because 

the home range of juvenile fishes was larger than the size of the microhabitats (25 cm x 

25 cm) but lower than that of the transects (6 m x 3 m). Furthermore, position within the 

bay may have had an effect on species richness and density, as both increased closer to 
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the mouth, although some species like S. sarpa and D. annularis, strongly associated to 

seagrass meadows, were more abundant at the innermost sites.  

The structure of the C. nodosa meadows at Fornells bay varied also between the 

outermost and the innermost sites, primarily because the cover of C. prolifera increased 

and that of C. nodosa decreased at the innermost sites (Delgado et al., 1997; Fàbregas, 

2007; this study). Competitive interactions between C. prolifera and C. nodosa have 

been reported in other studies (Pérez-Ruzafa et al., 2012; Tuya et al., 2013) and the final 

outcome is probably related to confinement. This pattern may respond to the strong and 

frequent north winds which determine the hydrodynamics of the bay, as evidenced by 

the sediment distribution (Fornos et al., 1992) leading to more sediment re-suspension 

in the inner (south) parts of the bay, decreasing light levels, and affecting the growth of 

the C. nodosa (Marba and Duarte, 1994). Furthermore, another plausible explanation is 

the low renewal of water in the inner parts of the bay, since water flow may play an 

important role for C. nodosa seagrass performance and survival in areas with low 

dissolved oxygen conditions (Binzer et al., 2005).  

Nevertheless, it is unlikely that the changes observed in the fish assemblage between 

sites are related to the relative cover of C. prolifera and C. nodosa. Site S1 was in the 

vicinity of the wide strait communicating the bay with the open sea, which may lead to 

higher supply of eggs and larvae, even more when taking into account that frequent 

north winds determine the hydrodynamics of the bay. In this sense, many authors 

suggested the importance of the position of the habitat in enclosed coastlines (Bell et al., 

1988; D’Alessandro et al., 2007; Jenkins et al., 1998; Martins et al., 2007) ; and the 

location of a seagrass bed within an enclosed landscape has been highlighted to have a 

more significant effect on abundances of juveniles of many species of fish and 

decapods, than the size, shape, leaf height or leaf density of the seagrass meadow (Bell 

et al., 1988). 

Independently on the location within the bay, fish assemblages varied between 

homogenous versus heterogeneous portions of the meadows, with higher densities and 

species richness of juvenile fish in heterogeneous portions. In this sense, our results 

support the importance of meadows structure at the scale of tens of meters in 

determining assemblage structure of juveniles. Dahlgreen and Eggleston (2000) state 

that the best juvenile habitat provides a trade-off between food availability and shelter 
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against predation, i.e. a high habitat quality. We can hypothesise that juvenile fishes 

inhabiting heterogeneous meadow portions may benefit from more diversified food 

and/or shelter resources (more ecological niches), provided by the different microhabitat 

types through their complementarities and/or synergy , i.e., edge effects (Dorenbosch et 

al., 2005; Horinouchi, 2007). Indeed, the small open spots provided in the meadow by 

boulders generate small ecotones, i.e., edges within the seagrass meadow (Kolasa and 

Zalewski, 1995). At the ecotones, organisms may regularly switch between habitats and 

therefore exploit alternatively the optimum micro-habitat as regards to the resource 

expected (food or shelter) (Cheminée, 2012). Edges may provide more food for 

omnivorous juveniles due to the greatest abundance of crustacean or other invertebrates 

at the seagrass boundaries (Macreadie et al., 2009; Tanner, 2005; Warry et al., 2009). 

Additionally, predation has been reported to be less effective in the edges (Hovel and 

Lipcius, 2001; Smith et al., 2011) (but see other studies (Thiriet, 2014)) In this sense, 

juveniles can forage efficiently in the risky habitat and switch when a predator is 

detected. Edge effect has been reported to influence density of fish in other studies 

(Jelbart et al., 2006; Macreadie et al., 2009; Smith et al., 2010).  

However, more structured meadows may not necessarily favor all the fish species. 

Symphodus spp. and S. salpa densities increased in more structured sectors in the 

meadows, whereas the density of D. annularis was similar in the two types of sectors in 

the meadow. These observations are in agreement with those of previous studies which 

reported that inside the meadow some species have adapted life-strategies (anti-predator 

and foraging tactics) for more structured seagrass meadows, whereas others may be 

adapted to sparser seagrasses or opened areas adjacent to its edge, or others even do not 

respond to changes in complexity in the seagrass (Horinouchi, 2007; Orth et al., 1984).  

Symphodus spp. juveniles are necto-benthic fish highly sedentary, with quite a small 

home range (Harmelin, 1987) and usually are associated with complex habitats 

(Cheminée, 2012) (see also Chapter III). They have a typical morphology of 

manoeuvrable epibenthic foragers. Juveniles of some species of this genus (e.g. 

S. ocellatus) have been reported to eat mostly planktonic, epibenthic and bentic 

meiofauna (e.g. copepods) commonly present near or on the boulder substratum (Levi, 

2004). In this sense they can profit the resources upon the boulders. Furthermore, 

Symphodus spp. juveniles (and Labrids in general) do not have a morphology of fast 
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speed swimmers (Hoar and Randall, 1979; Keast and Deirdre, 2011; Leis et al., 2011; 

Motta et al., 1995; Recasens et al., 2006); they are pale brown, which provide them a 

great camouflage and display cryptic behaviours hiding in the algae canopy 

(see Chapter III). In this sense, their anti-predator tactics are largely dependent on 

habitat structure. Such color patterns may be functional to camouflage in the seagrass or 

in the Cystoseira spp. upon the boulders. Furthermore it is plausible that they use holes, 

crevices and borders of small boulders to shelter. The presence of boulders in the 

meadow may favor both their foraging efficiency and safety.  

On the other hand, both S. salpa and D. annularis are better swimmers and are 

considered necto-benthic fish with medium lateral and vertical movements (Harmelin, 

1987; Jadot et al., 2006). S. salpa is silvery with yellow golden bands, and D. annularis 

is initially yellow and becomes silvery as grows up. Such colour patterns may favoured 

their camouflage in the seagrass meadows, were sun generate golden reflexion in the 

water; in this sense such species would not depend on boulders to shelter. Indeed, silver-

yellow colour patterns of fish has been often highlighted to strikingly match to 

backgrounds and bodies of horizontally viewed water providing the camouflage of 

species (Donnelly and Dill, 1984; Marshall, 2000; Marshall et al., 2003). Moreover, 

S. salpa juveniles feed seaweed fragments and photophilous epilithic algae, such as 

Halopteris, whereas they feed seagrass leaf when they are sub-adults or adults 

(Havelange et al., 1997; Verlaque, 1990). Contrarily, D. annularis juveniles are 

omnivorous but the most important component reported in their diet is Chlorophyte 

algae (Matić-Skoko et al., 2004). In the C. nodosa meadow at Fornells bay, C. prolifera 

is the most extensive Chlorophyte and it extends similarly in the two defined structural 

sectors within the meadow, whereas boulders epilithic algae belonged mainly to 

Dictyotales and Sphacelariales. In this sense, S. salpa may have had a trophic 

attachment with the boulders, whereas D. annularis may not. 

Although fish assemblages varied between homogeneous and heterogeneous portions of 

the meadows, they did not vary at a smaller spatial scale within heterogeneous portions 

of the meadows. These results suggest that the composition of the juvenile assemblage 

is related to seagrass meadow structure but that the factors structuring juveniles 

assemblages are scale-dependent, operating at intermediate spatial scale of tens of 

meters, but not at lower scales of less than 1 meter. Anderson and Millar (2004) 
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reported high variability between lower spatial scales, e.g between transects 5 m apart 

due to the larger scale mobility of fish. So, the non-significant effects of the three 

microhabitat types may suggest that habitat structure do not operate at such scales to 

determine fish juvenile densities, since mobility of fish is larger. We hypothesize that it 

is the emergent overall three-dimensional structure which resulted from the aggregation 

of various structures among the meadow (microhabitats) which influenced juvenile 

assemblages, resulting in different and richer assemblages of juveniles in heterogeneous 

portions vs homogeneous portions. In this sense, the influence of habitat structure 

should be studied at adequate scales according to the studied organisms.  

Finally, season might explain some variations between sampling months. The changes 

observed in juvenile assemblages between sampling months may respond primarily to 

the known settlement temporality of these species rather than to seasonal changes in 

seagrass structure, although meadow complexity decreased in September, when the 

cover of C. nodosa declined as a result of decreasing water temperature (Marba et al., 

1996). For instance, the density of Symphodus spp. were higher in September than in 

July, because S. roissali and S. tinca reproduce first in April and then start to settle in 

June-July while S. ocellatus reproduces in June and settles in August-September and 

usually in much higher densities (Lejeune, 1985 ; Garcia-Rubies and Macpherson, 

1995; Cheminée et al., 2013). D. annularis settles from June to September in the NW 

Mediterranean, which may explain why higher densities were recorded in September, 

when the settlement period comes to the end (Bussotti and Guidetti, 2010; Harmelin-

Vivien et al., 1995). Finally, S. salpa was more abundant in July than in September, 

which is logical since its first settlement pulse usually occurs early in May-June 

(Bussotti and Guidetti, 2010; García-Rubies and Macpherson, 1995). 

In summary, in agreement with the habitat quality trade off hypothesis, our results 

support a spatial partitioning of resources, which have been also highlighted in others 

habitats (Harmelin-Vivien et al., 1995) (see as well Chapter III).  
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II.5. CONCLUSIONS 

As a conclusion, variations of meadow structure and seasons had additive effects 

explaining changes in fish juvenile assemblages in C. nodosa meadows at Fornells Bay. 

However, the influence of meadow structure was scale-dependent: structurally different 

microhabitats inside the meadow did not conduce to differences in juvenile fish density 

distributions, but more structured portions of the meadow with small boulders 

determined variations of fish assemblages, leading to richer ones. So, we can conclude 

that it is the emergent overall three-dimensional structure, resulting from the 

aggregation of the patches, which influenced juvenile distributions. However, not all 

species were positively influenced by the more structured sectors. We argue that the 

optimum production of juveniles of different species in such seascapes is acquired 

through the intrinsic structural variability of seagrass seascapes, displaying a mosaic of 

various habitat characteristics, and therefore fulfilling the contrasted needs of different 

species. 
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Chapter III. Effect of depth and Cystoseira forest 

three-dimensional structure on juvenile fish 

distribution patterns and behaviors 

 
Photo III-1. Cystoseira brachycarpa var. balearica forests in Minorca island, depth = 8 meters, October 2013. 
Foreground spans around 3 m wide. Photo: Eva Vidal. 
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Chapter III. Effect of depth and Cystoseira forest 

three-dimensional structure on juvenile fish 

distribution patterns and behaviors 

III.1. INTRODUCTION 

III.1.1. Context of this study 

Chapter II showed how the three-dimensional structure of Cymodocea nodosa 

meadows, at various spatial scales, can influence juvenile fish assemblages. Here in 

Chapter III, we focused on the study of another infralittoral habitat important for 

juvenile fishes: the Cystoseira (Phaeophyceae) forests covering subtidal rocky bottoms.  

The Mediterranean basin is considered as a hot-spot of diversity for Cystoseira species 

(Gianni et al., 2013). They are important foundation species in the Mediterranean 

euphotic zone (Feldmann, 1937; Giaccone, 1973) and are very productive, holding a 

high phytal and invertebrates biodiversity (Ballesteros, 1990a, 1990b, 1988; Pitacco et 

al., 2014), as well constituting a preferential habitat for the different life cycle stages of 

many common coastal fish (Cheminée et al., 2013; Lejeune, 1984; Rodrigues, 2010; 

Thiriet, 2014). However, conspicuous historical declines of subtidal Cystoseira forests 

have been reported in many regions (Airoldi and Beck, 2007; Gianni et al., 2013; 

Thibaut et al., 2014, 2005). Different European initiatives emphasise the urgency of 

their protection. For example, five species are listed in Annex I of the Bern Convention, 

and the whole genus (except Cystoseira compressa) is included in The Action Plan for 

the Conservation of Marine Vegetation in the Mediterranean Sea, adopted within the 

framework of the Barcelona Convention, which identifies the conservation of 

Cystoseira forests as a priority. However, Cystoseira forests remain poorly considered 

in the European Habitats Directive. 

Cystoseira forests have been suggested to display a high nursery value (i.e. production 

of juveniles per unit of surface, sensu Beck et al. (2001)) for some Labridae and 
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Serranidae fish species (Cheminée et al., 2013). This is because Cystoseira forests 

present higher densities of such species than less structured habitats such as shrubby 

assemblages dominated by Dictyotales and Sphacelariales across large spatial scales of 

hundreds or thousands of kilometres (Thiriet, 2014). Habitat structure is defined as the 

amount, composition and three-dimensional arrangement of physical matters (both 

abiotic and biotic) at a location. It is composed by complexity (absolute abundance of 

individual structural components) and heterogeneity (relative abundance of different 

structural components) under a determinate spatio-temporal scale (Beck, 2000; Bell et 

al., 1991; Byrne, 2007). In other habitats comparisons, habitat structure has been proved 

as well to exert a great influence on juvenile fish assemblages (Guidetti, 2000; Jenkins 

and Wheatley, 1998; Laegdsgaard and Johnson, 2001; Levin and Hay, 1996; 

Nagelkerken and Van der Velde, 2002); usually most structured habitats harboured 

richer and more abundant juvenile fish assemblages (but see e.g. Grenouillet et al. 

(2002) and Guidetti and Bussotti (2002)). These differences have been attributed to the 

higher availabilities of both prey and shelter for juveniles in the more structured 

habitats, reducing starvation-and/or predation-induced mortalities compared with other 

less structured habitats (e.g. (Thiriet, 2014)). 

At scale of fish, for a given habitat, when considering the variables quantifying the 

structuration degree of a given structural component in the habitat, e.g. a given type of 

macrophytes, it has been sometimes used the verticality, i.e, the development of vertical 

strata (as a measure of complexity) and the patchiness or coverture (as a measure of 

heterogeneity) (August, 1983; García-Charton et al., 2004; Guidetti and Bussotti, 2002; 

Wilson et al., 2007). They both define the macrophyte three-dimensional structure. 

More structured versions of the same macrophyte meadow increase fish densities and 

sizes (Cheminée, 2012; Cheminée et al., 2013; Levin and Hay, 1996; Parsons et al., 

2014), and also influence the behavior of fish (i.e. the type of relationship with the 

bottom) (Cheminée, 2012; Lejeune, 1985); for example more structured macrophytes 

favoured a more resident behavior. Furthermore, behavior of fish is size dependent: in 

structured macrophytes, smaller fish of a given species display more resident behavior 

versus larger ones (Cheminée, 2012). Consequently, habitat structure may explain the 

reported variability of juvenile density distributions within a Cystoseira forest 

(Cheminée, 2012).  
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However, understanding the spatial variability of fish density requires notably to 

disentangle the part of it due to habitat structure from the part explained by other factors 

of the environment (Anderson and Millar, 2004; Friedlander and Parrish, 1998; García-

Charton et al., 2004; McCoy and Bell, 1991). In turn, since habitat structure is an 

important source of natural variability of fish density distributions, it interferes in the 

obtained conclusions when aiming to evaluate factors which contribute as well to the 

spatial variability of fishes for a given habitat, such as depth and protection level. 

Indeed, both depth and protection has been reported to exert a great influence on 

juvenile density distributions. Depth influences juvenile assemblage composition since 

juvenile depth distributions are taxa-specific (Francour, 1997; García-Rubies and 

Macpherson, 1995; Harmelin-Vivien et al., 1995; Vigliola and Harmelin-Vivien, 2001). 

For example, juvenile labrids concentrate in the shallowest 10 meters (García-Rubies 

and Macpherson, 1995; Letourneur et al., 2003). However, bibliography documenting 

fish juveniles depth distributions remains scarce in the Mediterranean. Furthermore, 

juvenile depth distributions are size-dependent in some cases, since for some species, 

the smallest juveniles present a narrower depth range distribution than larger ones 

(Vigliola, 1998). In marine organism, depth gradients are also characterized by 

significant differences in the intensity of trophic linkages. This may interact with any 

effects derived from other factors of interest, such as protection. For instance, Vergés et 

al (2012) found an increase in predation of sea urchins within MPAs but only in shallow 

waters, where their fish predators concentrate.  

The establishment of well-enforced marine protected areas (MPA) usually allows the 

rebuilding of the natural adult biomass of exploited species (Edgar et al., 2014; García-

Charton et al., 2008; Gaston et al., 2008; Halpern, 2003; Lester et al., 2009; Mora and 

Sale, 2011). This shapes the spatial distribution, including depth distribution, of adult 

predators and con-specifics of juveniles (Bell, 1983; Roberts and Polunin, 1993). 

Consequently, protection may indirectly shape juveniles spatial distributions within a 

given habitat, including depth distributions (Arceo et al., 2012; Hereu, 2004; Jones, 

1987; Tupper and Boutilier, 1995; Tupper and Juanes, 1999). Indeed, it has been 

observed that protection increases mortality of juveniles, not targeted by fishing, inside 

MPAs due to the favoured presence of larger and more numerous predators (Gruss et 

al., 2011; López-Sanz et al., 2011; Tupper and Juanes, 1999) ; however this is not a 
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generalised process (Macpherson et al., 1997; Planes et al., 1999) and effects of 

protection is still unclear for the early phases of fish. For example, it has been suggested 

that only bigger juveniles (recruits) may suffer a higher predation mortality inside 

MPAs, because smaller juveniles (settlers) are predated by smaller predators, which are 

not targeted by fishing and are therefore present in similar densities inside or outside 

marine reserves (Planes et al., 1999). Furthermore, as regards to con-specifics adults, it 

has been reported some competitive interactions among adults and juveniles, where 

juveniles decrease their growth or increase their mortality due to competitive 

interactions with adults (Jones, 1987; Tupper and Boutilier, 1995). In this sense, MPAs, 

whit larger and more numerous adults may intensify these competitive interactions. 

More studies are needed to elucidate the effects of protection on juvenile fish, taking 

into account possible depth changes in the intensity of trophic linkages, which remain 

still unstudied. 

In summary, previous studies (cited above) support that within-habitat variability in fish 

juvenile densities depends strongly upon habitat structure, depth and adult assemblages. 

However, little is known about the interactive or separated effects of habitat structure, 

depth and protection on juvenile fish distribution patterns within subtidal Mediterranean 

rocky reefs and more particularly within Cystoseira forests. 
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III.1.2. Objectives of Chapter III  

In this context, the purpose of this chapter is to study the juvenile assemblage (in terms 

of total densities, richness and assemblage structure), and the taxa-specific trends 

(densities, sizes and behavior) within Cystoseira forests according to three possible 

drivers: i) forest structure (i.e. canopy height and cover); ii) depth (considering three 

depth strata between 0 and 12 meters) and iii) protection levels (comparing no-take 

versus non-protected areas). Our main hypothesis states that juvenile fish assemblage 

associated to Cystoseira forests and taxa-specific trends of juveniles dwelling into this 

habitat are significantly influenced by both Cystoseira site-specific three-dimensional 

structure and depth. Moreover, we hypothesized that depth-related trends, for both the 

whole juvenile assemblages and taxa-specific descriptors, may also be influenced by the 

protection level (i.e. inside vs outside marine reserve) due to possible different vertical 

distributions of adult predators and con-specifics. This knowledge is important in order 

to design future management actions that assure a supply of juveniles and therefore an 

adequate replenishment of adult fish populations.  
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III.2. MATERIAL AND METHODS 

III.2.1. Studied area 

The study was conducted in the northern coast of Minorca island (Balearic Archipelago) 

(Fig. III-1), where rocky bottoms and seagrass meadows prevail in the infralittoral, with 

a few areas of bare sand. Rocks made of magnesium carbonate alternate throughout the 

whole region with non-carbonated rocks, mainly shale and some basalts (Rosell and 

Llompart, 2002). Over rocky bottoms, extensive areas of Cystoseira brachycarpa 

J. Agardh, 1986 forests thrive from 1 to 15 meters depth (Sales and Ballesteros, 2009) 

(Photo III-1). The MPA “Reserva Marina del Nord de Menorca” was established in 

1999 in the northern coast of Minorca (Fig. III-1). However, its enforcement and 

monitoring began only in 2000 (Coll et al., 2012). The MPA covers 5.20 km2 and most 

of it can be classified as partial reserve, as some fishing is still allowed (Coll et al., 

2012). Fishing has been totally banned in only two no-take areas, the first covering 

838 ha of rocky bottoms in the west and the second one covering 217 ha of soft bottoms 

in the innermost part of Fornells bay (Coll et al., 2012). Fish biomass, including fish 

predators, increased steadily both in the no-take and the partial reserve areas after the 

establishment of the MPA and was close to carrying capacity in 2005 (Cardona et al., 

2013, 2007b; Coll et al., 2012). 

III.2.2. Sampling design 
Sites were selected after a broad exploration of north coast looking for rocky bottoms 

covered by wide and dense Cystoseira forests, with a percentage cover higher than 50%, 

outside and inside the MPA and at the three depth strata considered in the study (i.e. 

d1: 3-5 m, d2: 6-8 m, d3: 10-12 m). In order to avoid possible confounding effects 

between our study variables and other environmental variables, the selected sites were 

similar in terms of rock surface (flat rock), slope (≥45º) and exposure (all locations were 

exposed to wave effects). Furthermore, selected Cystoseira bottoms were only 

intermingled with shrubby-turf algae (>2.5 cm). 

Juvenile fish assemblages associated to Cystoseira forests were sampled in two 

consecutive years (2012 and 2013). In 2012 the study design aimed to test the putative 
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effects of depth and Cystoseira forest three-dimensional structure on juvenile fish 

assemblage (total densities, richness and assemblage structure) as well as on taxa 

specific descriptors (densities, sizes and behavior). In order to state the within forest 

variability in these putative effects (their general consistency), the design was composed 

by 2 nested spatial scales (Fig. III-1). At broad spatial scale (~10-30 km), 2 locations 

were sampled (B and C). At fine spatial scale (~500 meters), 3 sites were studied within 

each location (B: sites 2, 3 and 4; C: sites 5, 6 and 7). In 2013 we redistributed our 

sampling effort in order to additionally test for the effect of protection on juveniles and 

adults fish by using an 'After Control-Impact' approach (Underwood, 1997) (Fig. III-1). 

We sampled 3 protected sites (Impact) within the location B (NTZ) (the same sites than 

previous year) and we sampled 3 unprotected sites (Control) outside the MPA. 

Protected and Unprotected sampling sites were not spatially interspersed since there is 

only one NTZ protecting Cystoseira forests in Minorca. Nevertheless, we sampled 

unprotected sites on both sides of the NTZ (westward: site 1; eastward: sites 7 and 8) in 

order to minimize possible confounding effects between putative protection effects and 

‘location’ effects (related to other natural environmental factors). 

 
Fig. III-1. Location of the sampled sites of Chapter III, the two consecutive years: 2012 and 2013. Thick line 
represents MPA limits. Thick dotted line represents no-take zone limit. Empty squares are study locations. Sites 
(black dots) were: 1 ( 40° 3’26.64 N, 3° 59’27.36 E), 2 ( 40°03’593 N, 4°00’099 E), 3 (40°03’554 N, 3°59’956 E ), 4 
(39°59’956 N, 4°15’748 E), 5 (39°59’971 N, 4°15’553 E, 6 (40°00´71 N, 4°14´250 E), 7 (40º3´28.07" N, 3º55´41.82" 
E), and 8 (39º55´34.07" N, 4º17´23.02" E). 
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III.2.3. Data collection 

Field surveys were conducted from September 23th to October 15th 2012 and from 

September 24th to October 15th 2013. This sampling period coincides with the presence 

within nursery habitats of juveniles of many Mediterranean littoral fish species, more 

particularly some labrid species such as Symphodus ocellatus and Coris julis (Froese 

and Pauly, 2011; García-Rubies and Macpherson, 1995; Lejeune, 1985, 1984; Raventos 

and Macpherson, 2001). This time of the year also coincide with the period when 

differences in fish densities (including predators) caused by recreational fishing are 

maximized (Cardona et al., 2007a) which may allow us to more easily detect differences 

between inside and outside reserve. Moderate and rough sea states as well as poor 

visibility days were avoided. 

In order to sample juvenile fish assemblages and taxa-specific trends, during daylight 

(between 9 am and 4 pm), 8 random replicates of 1 m² point-count UVC (Cheminée et 

al., 2013; Francour and Le Direac’h, 1994; García-Rubies and Macpherson, 1995) 

(scattered over ~50 m²) were carried out in each depth strata of each site, by previously 

inter-calibrated SCUBA divers. At each point-count, the trained diver visualized an 

imaginary 1 m² plot where abundances, total length (TL) and behavior of fish were 

recorded, during 5 minutes. Such surface for a replicate, combined with the chosen 

duration, allowed us recording fish juvenile interactions with the habitat and provided 

us an effective standard unit (Cheminée et al 2013). Cheminée (2012) demonstrated that 

7 or more 1 m² replicates provide an accurate estimate of juvenile fish densities. The TL 

of individuals was estimated with the help of fish silhouettes of different sizes (5 mm 

TL size-classes) on a plastic slate (Macpherson, 1998). Behavior of each fish individual 

was recorded as one of the 3 attitudes, cryptic, wandering and transitory, which were 

defined as follow: “Cryptic” individuals were those remaining hidden between thalli at 

least 30 consecutive seconds and then strictly associated with the canopy, never 

standing into the open water column (Photo III-2); “wandering” individuals remained 

less than 30 seconds hidden in the canopy, but remaining wandering inside the plot 

(Photo III-3); “transitory” individuals would spend only short periods of time in the 

plot, strictly less than 30 seconds (Photo III-4) (Cheminée, 2012).  
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Photo III-2. Cryptic 
behavior of a juvenile 
of Symphodus 
ocellatus  (45 mm TL, 
September 2013). 
Photo: Amalia 
Cuadros.  

 

Photo III-3. 
Wandering behavior of 
Symphodus ocellatus 
juveniles  (30-35 mm 
TL) and a Symphodus 
roissali (50 mm TL) 
juvenile (September 
2012). Photo: Eva 
Vidal. 

 

Photo III-4. Transitory 
behavior of a juvenile 
of Serranus scriba (40 
mm TL, July 2010). 
Photo: Adrien 
Cheminée. 
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For each taxa, all individuals smaller than one third of adult maximum total length 

(Cheminée, 2012; Louisy, 2002) were considered for the juvenile analyses. 

Moreover, in order to explore correlation between fish assemblage or taxa specific 

descriptors and forest structure, Cystoseira canopy was described within the same 1m² 

plots, by using percent coverage and maximum height (to the nearest cm) (Cheminée, 

2012). 

Some fish species occurred at very low densities and were pooled together for 

subsequent analyses as follows: Symphodus spp. (including S. roissali, S. tinca and 

S. ocellatus); Serranus spp. (including S. cabrilla and S. scriba); and crypto-benthic 

species (including different taxa belonging to families Blenniidae, Gobiidae and 

Tripterygiidae). Afterwards, in order to refer to such groups we denominate them as 

“taxa”. Taxa accounting for more than 10% of the juvenile density of a sampled 

location were considered as “dominant”. All other species or taxa were considered 

“minority” taxa. 

Finally, in 2013, adults were censed by means of UVC, recording their abundance and 

TL (±1cm) at each site and each depth strata in three replicate belt transects of 10 m x 

6 m (Harmelin-Vivien et al., 1985). Fish biomasses were obtained by using the length-

weight equations reported by Morey et al. (Morey et al., 2003) in Balearic Islands. For 

Thalassoma pavo and Oblada melanura the coefficients reported by Froese & Pauly 

(2011) in the Atlantic were used because their length-weight relationship were not 

available for the Mediterranean Sea. 

III.2.4. Statistical analyses 

Primary we analyzed forest structure to assess its spatial variability among our sampling 

design drivers. It was analyzed in terms of canopy height, cover and in terms of a single 

descriptor of three-dimensional forest structure built from both canopy height and 

cover. Subsequently, we analyzed fish assemblages and taxa-specific descriptors under 

the influence of both forest structure and our sampling design drivers. 

First, we tested if forest structure in terms of canopy height and cover varied 

(1) between locations, sites and depth strata (with 2012 dataset), and (2) between 



Chapter III. Effect of depth and Cystoseira forest 3D structure on juvenile fish distribution patterns and behaviors 
 
 
 

80 
 

protection levels, sites and depth strata (with 2013 dataset), by means of PERMutational 

univariate Analyses Of Variance (PERMANOVA) (see detailed models in Table III-1). 

Both Cystoseira-canopy height and cover showed significant variations among sites and 

across depth strata (see Results section). Furthermore, they were (moderately) correlated 

(Spearman rank correlation: 0.502< rho <0.293) (see Results section). Consequently a 

Principal component analysis (PCA) on normalized Cystoseira cover and height was 

performed in order to use the PC1 axis (74.9 and 67.2 % of explained variance for 2012 

and 2013, respectively) as a single descriptor of three-dimensional forest structure. 

Similarly, we tested if the univariate variable PC1 followed similar patterns than 

Cystoseira height and cover (see detailed models in Table III-1). 

Secondly, we tested if juvenile assemblages descriptors (total densities, richness and 

assemblage structure) varied (1) between locations, sites, depth strata and with forest 

structure (with 2012 dataset) and (2) between protection level, sites, depth strata and 

with forest structure (with 2013 dataset), by means of univariate and multivariate 

PERMANOVAs (see detailed models in Table III-1). The considered juvenile 

assemblage parameters were the univariate total density and richness, and the 

multivariate assemblage structure (comparative densities of each taxa).  

Thirdly we studied taxa specific univariate and multivariate descriptors. To accomplish 

this objective, only dominant species, with a necto-benthic spatial distribution, were 

considered. Other dominant species, if planktivores, were not considered (Harmelin, 

1987). We tested if univariate densities and TL distributions varied (1) between 

locations, sites, depth strata and with forest structure (with 2012 dataset) and (2) 

between protection level, sites, depth strata and with forest structure (with 2013 

dataset), by means of univariate PERMANOVAs (see detailed models in Table III-1). 

Besides we tested if multivariate contingence tables of behavior varied (1) between 

locations, sites, depth strata, and with TL and forest structure (with 2012 dataset) and 

(2) between protection level, sites, depth strata, and with TL and forest structure (with 

2013 dataset), by means of multivariate PERMANOVAs (see detailed models in Table 

III-1). 

Sums of squares (SS) for these PERMANOVA designs were performed sequentially 

(type I), the covariates were introduced in the first place into the models (without 
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including the interaction terms between covariates and factors). It allowed to assess the 

variations in the response variable(s) that are due to variations in forest structure 

(i.e. PC1) and/or TL, prior testing the putative effects of location, protection or depth 

levels (Anderson and Gorley, 2008). Due to colinearity between depth and PC1, when 

PC1 and depth had both a significant effect on univariate response variables, graphical 

representations of some linear models’ residuals were used. For visualizing the effect of 

PC1 once the effect of depth were removed, XY biplot was used, where X was PC1 and 

Y was the residuals of the linear regression fitting the response variable as a function of 

depth. The effect of depth was visualized in the same way, once the effect of PC1 were 

removed, XY biplot represented in X depth, and in Y the residuals of the linear 

regression fitting the response variable as a function of PC1. 

Finally, we tested for differences between multivariate adults assemblage structure (here 

comparative biomass of each taxa) in order to have a global image of adult distribution 

patterns according to protection, sites and depth strata for the year 2013 (see models 

details at Table III-1). Afterwards, we tested if univariate densities and TL distributions 

of predators and con-specifics varied according to protection, sites and depth strata for 

the year 2013 (see model details at Table III-1). Considered predators were piscivorous 

species. Considered con-specifics species where the con-specifics of the juvenile 

dominant species, excluding planktivores. 
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Table III-1. Univariate and multivariate PERMANOVA models employed with 2012 and 2013 datasets of juvenile 
fish within Cystoseira forests. 
Univariate forest models, to test if response variables varied 1) between locations, sites and depth strata  

(with 2012 dataset); and 2) between protection level, sites and depth strata (with 2013 dataset). 

Response variables 2012 design factors 2013 design factors 

-Canopy height (univariate). 

-Canopy cover (univariate). 

-PC1 (univariate). 

-Location (fixed, 2 levels (location 

B and location C)). 

-Depth (fixed, 3 levels (d1: 3-5 m, 

d2: 6-8 m, d3: 10-12 m)). 

-Site (random, nested in location, 

3 levels within each level of the 

factor location). 

-Protection (fixed, 2 levels (inside MPA 

and outside MPA)).  

-Depth (fixed, 3 levels (d1: 3-5 m, d2: 6-

8 m, d3: 10-12 m)). 

-Site (random, nested in protection, 

3 levels within each level of the factor 

protection). 

Univariate and multivariate assemblage models, to test if response variables varied 1) between locations, sites, depth 

strata and with forest structure (with 2012 dataset); and 2) between protection level, sites, depth strata and with forest 

structure (with 2013 dataset). 

Response variables 2012 design factors 2013 design factors 

-Total juveniles’ densities 

(univariate). 

-Richness (univariate). 

-Assemblage structure 

(multivariate). 

-PC1 (covariate). 

-Location (fixed, 2 levels (location 

B and location C)). 

-Depth (fixed, 3 levels (d1: 3-5 m, 

d2: 6-8 m, d3: 10-12 m)). 

-Site (random, nested in location, 

3 levels within each level of the 

factor location). 

-PC1 (covariate). 

-Protection (fixed, 2 levels (inside MPA 

and outside MPA)).  

-Depth (fixed, 3 levels (d1: 3-5 m, d2: 6-

8 m, d3: 10-12 m)). 

-Site (random, nested in protection, 

3 levels within each level of the factor 

protection). 

Univariate taxa-specific descriptors models (densities and TL distributions) for dominant species, to test if response 

variables varied 1) between locations, sites, depth strata and with forest structure (with 2012 dataset); and 2) between 

protection level, sites, depth strata and with forest structure (with 2013 dataset). 

Response variables 2012 design factors 2013 design factors 

-Taxa-specific densities 

(univariate). 

-Taxa-specific TL distributions 

(univariate). 

-PC1 (covariate). 

-Location (fixed, 2 levels (location 

B and location C)).  

-Depth (fixed, 3 levels (d1: 3-5 m, 

d2: 6-8 m, d3: 10-12 m)). 

-Site (random, nested in location, 

3 levels within each level of the 

factor location). 

-PC1 (covariate). 

-Protection (fixed, 2 levels (inside MPA 

and outside MPA)).  

-Depth (fixed, 3 levels (d1: 3-5 m, d2: 6-

8 m, d3: 10-12 m)). 

-Site (random, nested in protection, 

3 levels within each level of the factor 

protection). 
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Table III-1 (continued) 

Multivariate taxa-specific descriptor models for behavior of dominant species, to test if response variables varied 

1) between locations, sites, depth strata, and with TL and forest structure (with 2012 dataset); and 2) between 

protection level, sites, depth strata, and with TL and forest structure (with 2013 dataset). 

Response variables 2012 design factors 2013 design factors 

-Taxa-specific behavior 

(multivariate). 

-TL (covariate). 

-PC1(covariate). 

-Location (fixed, 2 levels (location 

B and location C). 

-Depth (fixed, 3 levels (d1: 3-5 m, 

d2: 6-8 m, d3: 10-12 m)). 

-Site (random, nested in location, 

3 levels within each level of the 

factor location). 

-TL (covariate). 

-PC1 (covariate). 

-Protection (fixed, 2 levels (inside MPA 

and outside MPA)).  

-Depth (fixed, 3 levels (d1: 3-5 m, d2: 6-

8 m, d3: 10-12 m)). 

-Site (random, nested in protection, 

3 levels within each level of the factor 

protection). 

Multivariate and univariate adult predators descriptor models, to test if response variables varied between protection 

level, sites and depth strata (with 2013 dataset). 

Response variables 2012 design factors 2013 design factors 

-Assemblage structure 

(multivariate). 

-Predator densities (univariate). 

-Predator TL (univariate). 

-Con-specifics densities 

(univariate). 

-Con-specifics TL (univariate). 

 

Not studied. -Protection (fixed, 2 levels (inside MPA 

and outside MPA)).  

-Depth (fixed, 3 levels (d1: 3-5 m, d2: 6-

8 m, d3: 10-12 m)). 

-Site (random, nested in protection, 

3 levels within each level of the factor 

protection). 

 

In these analyses P-values were obtained by 999 permutations of residuals under a 

reduced model. Monte Carlo P-values were considered when there were not enough 

possible permutations (<200). Terms were pooled as suggested by Anderson et al. 

(Anderson and Gorley, 2008). Due to the intrinsic variability of ecological data, tests 

were considered significant for p-values <0.1. 

Additionally, for the juvenile assemblage structure analyses, two complementary 

multivariate exploratory approaches were used: a nMDS biplot of samples and a 

SIMPER test. By analogy to the use of correlation circle with PCA, we used arrows 

superimposed to nMDS biplots for representing the spearman rank correlations between 
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biplot axes and taxa densities and forest structure (PC1). SIMPER test was used as 

analysis of species contributions to significant differences between sets of samples 

(Clarke and Warwick, 2001). SIMPER test were employed too for description of adult 

assemblages. 

For multivariate inferential and exploratory analyses of densities we used Binomial 

deviance dissimilarities (an improvement of the Bray-Curtis measure according to 

Anderson & Millar (2004)); Multivariate behavior composition (proportions) were 

analyzed through Sogard resemblance matrix, which is an alternative to the Chi-squared 

measure of distance (Clarke and Warwick, 2001). Univariate data (density or TL) were 

analyzed with Euclidian distances.  

Exploratory analyses and inferential tests were performed using the PRIMER 6 and 

PERMANOVA + B20 package (Anderson and Gorley, 2008; Clarke and Gorley, 2006). 

Graphical visualizations were performed in R Environment (R Development Core 

Team, 2013) using the library ggplot2 (Wickham, 2009). 

III.3. RESULTS 

III.3.1. Effect of location, protection and depth on forest descriptors 

In 2012, height and percentage cover of Cystoseira canopy were in average about (±se) 

8.29 cm (±3.35) and 75.86% (±10.88), respectively; in 2013 in average about 8.99 cm 

(±2.87) and 74.47% (±11.53), respectively. Both height and percentage cover showed 

significant spatial variations across depth strata, although magnitude of the depth effect 

varied significantly among sites (PERMANOVAs, Si(lo)xde p<0.05, see Supplementary 

data, Table VIII-1). Canopy height and cover increased with depth in most of the sites, 

in both 2012 and 2013, with d2 displaying intermediary values, but in some cases 

similar to d1 and in others to d3 (pair-wise results in Supplementary data, Fig. VIII-1). 

Additionally, there were statistically significant differences in Cystoseira height at 

larger spatial scales, between locations in 2012 and between inside and outside MPA in 

2013; but this was not the case for Cystoseira cover. Furthermore, a weak but positive 

correlation between Cystoseira height and cover was found in both years (2012: rho= 
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0.502, p<0.001; 2013: rho=0.293, p<0.001). Thus, a PCA with both normalized 

Cystoseira cover and height was executed in order to obtain a new variable (i.e. PC1 

axis) as a single descriptor of the forest three-dimensional structure. PC1 increased with 

depth or presented d3 displaying intermediary values, or similar values to d1 depending 

on sites (pair-wise results in Fig. III-2). Furthermore, PC1 displayed significant 

differences between locations in 2012 and between protection levels in 2013 

(PERMANOVAs p<0.05, Table VIII-1 of Supplementary data, and pair-wise results in 

Fig. III-2). Location-depth or Protection-depth interaction was not significant in any 

case for Cystoseira height, cover or PC1. 

 

 

 

Fig. III-2. Boxplots of 
Cystoseira forest 
structure (PC1 axis) 
within samples 
according to locations 
(2012)/ protection 
(2013), depth 
categories (d1: 3-5 m, 
d2: 6-8 m, d3: 10-
12 m) and sites. Box 
plots indicate the 
median (bold line near 
the center), the first 
and third quartile (the 
box), the extreme 
values whose distance 
from the box is at 
most 1.5 times the 
inter quartile range 
(whiskers), and 
remaining outliers 
(open circles). Pair-
wise tests between 
treatments are given 
in box plots (different 
lower case characters 
indicate significant 
differences between 
treatments). 
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III.3.2. Effect of habitat structure, location, protection and depth on 

juvenile fish assemblage trends 

III.3.2.1.Total density and richness 

For fish juveniles, a total of 9 and 11 taxa were observed in 2012 and 2013 respectively 

(Table III-2). 

Table III-2. Juvenile fishes observed in Cystoseira forests in 2012 and 2013: total number (n), dominance categories, mean 
TL (mm ± se), minimum (Min) and maximum (Max) TL (mm). Total sampled area per year = 288 m². 

 2012 2013 

Species Dominance n  Mean  

TL ± se 

Min  

TL 

Max  

TL 

Dominance n Mean  

TL± se 

Min 
TL 

Max 

 TL 

Chromis chromis  minority 15 50.33±0.33 50 55 dominant 205 37.05±0.51 30 50 

Coris julis  dominant 192 43.25±0.68 10 65 dominant 237 42.13±0.65 20 60 

Diplodus sargus  minority 54 67.41±1.91 25 90 minority 51 74.41±1.14 60 90 

Diplodus vulgaris  minority 36 50.56±5.21 10 90 minority 39 76.92±1.38 50 90 

Oblada melanura  minority 5 58.00±10.08 40 85 dominant 270 43.43±0.56 30 90 

Sarpa salpa  not recorded 0 - - - minority 38 82.11±1.42 70 100 

Seriola sp.  not recorded 0 - - - minority 21 280±0.00 280 280 

Serranus spp.  minority 5 82.00±3.74 70 90 minority 45 71.78±1.72 50 90 

Symphodus spp.  minority 29 36.72±2.14 20 60 dominant 271 34.02±0.57 20 60 

Thalassoma pavo  dominant 268 36.08±0.75 10 60 dominant 443 24.55±0.43 10 60 

Blenniidae-
Gobiidae-
Tripterygiidae  

minority 33 38.64±0.73 30 45 minority 17 37.94±1.29 25 45 

 

Globally, the total density and the taxonomical richness of the juvenile fish assemblage 

were not affected by depth and did not differ between locations or protection levels at 

any time (Fig. III-3). Only richness in 2012 displayed significant depth-site interaction 

(PERMANOVA, p<0.05, Table VIII-2 of Supplementary data) but with ambiguous 

pattern in the pair-wise tests. Location-depth or Protection-depth interaction was not 

significant in any case for total density or richness. 
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Fig. III-3. Barplots of mean total density and mean richness in Cystoseira forests within samples according to 
locations (2012) / protection (2013) and depth categories (d1: 3-5 m, d2: 6-8 m, d3: 10-12 m). Barplots include error 
bars (=s.e.). 
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III.3.2.2. Assemblage structure 

The structure of the juvenile assemblage did not differ between locations or protection 

levels. However, it was significantly affected by depth and forest structure (PC1) in 

both years (Table III-3, Fig. III-4, Fig. III-5). Depth effects varied significantly among 

sites. However, almost all sites displayed a different assemblage between d1 and d3, 

with intermediary patterns for d2, where assemblage was similar to d1 or d3 depending 

on sites.  

Table III-3. PERMANOVA table of results: influence of Cystoseira forest structure (PC1), location (2012), 
protection (2013) and depth on the multivariate descriptor of juvenile fish assemblage (juvenile fish assemblage 
structure). Significance: ·P≤0.1 ; * P ≤ 0.05 ; ** P ≤ 0.01 ; *** P ≤ 0.001. P-values were obtained by 999 
permutations of residuals under a reduced model. 
2012 
Source of variation Df MS Pseudo-F P(perm) 
PC1  1 31.29 26.85 0.001*** 
Location (lo) 1 5.56 2.66 0.104 
Depth (de) 2 12.85 5.18 0.004** 
Site (si(lo)) 4 2.27 2.73 0.007** 
loxde 2 0.39 0.16 0.885 
si(lo)xde 8 2.54 3.05 0.001*** 
Residuals 125 0.83   
Total 143    
2013 
Source of variation Df MS Pseudo-F P(perm) 
PC1  1 52.95 13.27 0.001*** 
Protection (pr) 1 5.65 0.65 0.843 
Depth (de) 2 35.64 7.92 0.001*** 
Site (si(pr)) 4 9.70 5.22 0.001*** 
prxde 2 3.98 0.90 0.515 
si(pr)xde 8 4.30 2.31 0.003** 
Residuals 125 1.86   
Total 143    
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Fig. III-4. Juvenile assemblage in Cystoseira forests for each depth (d1: 3-5 m, d2: 6-8 m, d3: 10-12 m, in 2012 and 
2013) in each site ; mean juvenile densities (ind.m-2) per taxa. Note that the y-axis scale vary between graphs. bg= 
Blenniidae-Gobiidae-Tripterygiidae spp.; ch= Chromis chromis; cj= Coris julis; ds= Diplodus sargus; dv= Diplodus 
vulgaris; om= Oblada melanura; sa= Sarpa salpa; sl= Seriola spp.; se= Serranus spp.; ss= Symhodus spp.; tp= 
Thalassoma pavo – error bares = s.e. Pair-wise tests between treatments are given (different lower case characters 
indicate significant differences between depths at a given site. The pair-wise results should be read horizontally). 
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Fig. III-5. nMDS ordination plot of fish juvenile assemblages within Cystoseira forests for both sampling years 
according to depth strata (from the shallowest d1 to the deepest d3; d1: 3-5 m, d2: 6-8 m, d3: 10-12 m). Correlation 
vectors (Spearman) of forest structure (PC1, in red) and taxa specific densities (in blue) are plotted (for correlations 
>0.2). Taxa: ch= Chromis chromis; bg=Blenniidae-Gobiidae-Tripterygiidae; dv= Diplodus vulgaris; ds= Diplodus 
sargus ; cj= Coris julis; om= Oblada melanura; sa= Sarpa salpa; se= Serranus spp.; ss= Symphodus spp.; 
tp=Thalassoma pavo. PC1: forest structure (= forest height and cover). 
 

Depth-related variations of juvenile fish densities are highlighted in the nMDS 

ordination plots (Fig. III-5). Multivariate differences in juvenile fish densities between 

depth strata were primarily driven by Thalassoma pavo and Coris julis in both years, as 

well as by Oblada melanura and Symphodus spp but only in 2013 (SIMPER analysis, 

Table I-4). T pavo and O. melanura densities tended to decrease with depth, while 

C. julis and Symphodus spp. densities tended to increase with depth (Fig. III-4, Fig. 

III-5, see also Fig. III-6 in the next section ‘taxa specific’). 
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Table III-4. Results obtained with the similarity analysis (SIMPER) of Cystoseira forest juvenile assemblage data 
between groups of assemblages according to depth d1, d2 and d3. 
Year Depth Depth  

dissimilarity (%) 

Contribution of species to dissimilarity (%) 

2012 d1-d3 79.48 Coris julis (39.55), Thalassoma pavo (32.49). 

d1-d2 66.81 Thalassoma pavo (45.31), Coris julis (18.30), Diplodus sargus (13.47) 

d3-d2 72.86 Coris julis (41.92), Thalassoma pavo (27.07). 

2013 d1-d3 83.74 Oblada melanura (24.21), Thalassoma pavo (21.90), Symphodus 

spp.(18.54), Coris julis (12.28). 

d1-d2 71.09 Oblada melanura (25.84), Thalassoma pavo (18.82), Coris julis (14.77), 

Symphodus spp.(10.33). 

d3-d2 70.59 Symphodus spp.(27.13), Thalassoma pavo (26.63), Coris julis (20.02). 

 

III.3.3 . Effect of habitat structure, location, protection and depth on 

juvenile taxa specific trends 

III.3.3.1. Density of the dominant taxa 

The taxa-specific density of the dominant taxa (not planktivores) C. julis, Symphodus 

spp. and T. pavo, were not affected by locations or protection levels at any time. Neither 

location-depth or protection-depth interactions were significant. 

C. julis densities significantly differed between depth strata in both years. Although 

depth effects varied significantly among sites, most of sites presented an increase of 

C. julis density from shallower to deeper depth strata, with intermediary densities for 

d2, which in some cases were similar to d1 and in others to d3. Independently of depth, 

C. julis density also significantly decreased with PC1 values, but only in 2012 (Fig. 

III-6A, PERMANOVAs in Table VIII-3 of Supplementary data). T. pavo densities 

significantly decreased according to both depth and PC1 the two years, although the 

pattern according to PC1 was clearer in 2012. Depth effects varied significantly among 

sites, but most of sites presented a decrease of T. pavo density from shallower to deeper 

depth strata, with intermediary patterns for d2, which were similar to d1 or d3 according 

to sites (Fig. III-6B, Table VIII-3 of Supplementary data). Finally, Symphodus spp., 

which were abundantly observed only in 2013, significantly increased in density 

according to both depth and PC1 (Fig. III-6C, Table VIII-3 of Supplementary data). 
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Fig. III-6. Respective effects 
(disentangled) of depth (Boxplots in left 
panels) and the Cystoseira forest three-
dimensional structure variable PC1 
(smoothed curves in right panels) on 
densities of the dominant juveniles: A) 
Coris julis, B) Thalassoma pavo, C) 
Symphodus spp. (see M & M section). 
Box plots indicate the median (bold line 
near the center), the first and third 
quartile (the box), the extreme values 
whose distance from the box is at most 
1.5 times the inter quartile range 
(whiskers), and remaining outliers (open 
circles). Shadow areas of curves represent 
s.e. Pair-wise tests between treatments for 
boxplots are given (different lower case 
characters indicate significant differences 
between treatments). Depth categories 
are: d1: 3-5 m, d2: 6-8 m, d3: 10-12 m. 
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III.3.3.2. Total lenght (TL) distributions of the dominant taxa 

The taxa-specific TL of C. julis and T. pavo were not affected by locations or protection 

levels at any time. Neither C. julis nor T. pavo TL display a clear pattern according to 

depth. However a significant influence of PC1 on T. pavo TL was consistent in the two 

years, although the pattern was clearer in 2013 (Fig. III-7). For C. julis TL, tests were not 

possible in 2012 due to the low number of individuals in the shallower depths. C. julis TL 

decreased according to depth outside reserve in 2013, but not inside reserve. T. pavo TL 

also decreased according to depth but only in 2012. T. pavo TL decreased significantly 

both years according to PC1; although it was less evident in 2012 (PERMANOVAs and 

pair-wise tests, Fig. III-7, and Table VIII-4 of Supplementary data,). Symphodus spp. TL 

patterns tests were not possible due to the low number of individuals in the shallower 

depths. 
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Fig. III-7. Boxplots and smoothed curves of residuals of mean TL (mm) of the dominant juveniles in 
Cystoseira forests once PC1 or depth linear model residuals were removed (in order to discern depth and 
PC1 influence on mean TL tendencies). Considered taxa: A) Coris julis (in 2013), B) Thalassoma pavo (in 
2012 and 2013) (see M & M section and Fig. III-6). Pair-wise tests between treatments are given in box 
plots (different lower case characters indicate significant differences between treatments). Depth categories 
are: d1: 3-5 m, d2: 6-8 m, d3: 10-12 m. 

 

III.3.3.3. Behavioral traits of the dominant taxa 

The taxa-specific behavior of C. julis and T. pavo were not affected by locations or 

protection levels at any time. Location-depth or protection-depth interaction was not 

significant or did not display clear patterns. 
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Both C. julis and T. pavo showed significantly more cryptic-wandering behavior for their 

smaller sizes, and they become more transitory as they gain size. Furthermore, T. pavo 

showed both years a significant effect of forest structure (PC1) on its behavior, as more 

complex forest favored a more cryptic behavior. Besides, depth-site interaction was 

significant for T. pavo behavior in 2012, but behavior patterns according to depth were 

inconsistent among sites. For C. julis in 2012 and for Symphodus spp., behavior tests were 

not possible due to the low number of individuals in the shallower depths (Fig. III-8, 

PERMANOVAs, see Table VIII-5 of Supplementary data).  
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Fig. III-8. Proportion of each behavior type according to significant terms for each considered dominant taxa in 
Cystoseira forests. Behavior types: c, cryptic; w, wandering; t, transitory. Considered taxa: A) Coris julis (in 2013); B) 
Thalassoma pavo (in 2012 and 2013). 

III.3.4. Effect of protection and depth on adult trends 

The adult assemblage structure didn’t display any effect of the protection level, neither 

protection-depth interaction. However, adult assemblage varied with depth 

(PERMANOVA, F=2.47, p=0.04; Fig. III-9, Table III-5, and Supplementary data: Table 

VIII-6, and Table VIII-7). The average of Bray-Curtis dissimilarities was the highest 
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between pairs of depths d1 and d3. The main species which typify each depth and 

explained up to 70% of the dissimilarity between pair samples were: Sarpa salpa, T. pavo, 

Symphodus spp., C. julis and Serranus spp. (SIMPER test, Table III-5). 

Table III-5. Results obtained with the similarity analysis (SIMPER) of Cystoseira forest adult assemblage data in 
terms of biomass between groups of assemblages according to depth d1, d2 and d3. 
Year Depth Depth  

dissimilarity (%) 

Contribution of species to dissimilarity (%) 

2013 d1-d3 68.31 Sarpa salpa (20.91%), Thalassoma pavo (19.10%), Symphodus spp. 

(16.06%), Serranus spp. (12.17%), Coris julis (11.51%) 

d1-d2 64.17 Sarpa salpa (25.40%), Coris julis (17.06), Symphodus spp. (15.41%), 

Thalassoma pavo (14.51%). 

d3-d2 58.43 Symphodus spp. (19.88%), Sarpa salpa (18.66%), Coris julis (17.44%). 

 

 
Fig. III-9. Mean adult biomass in Cystoseira forests for each depth, per taxa (g.m-2); cj= Coris julis; bg= Blenniidae-
Gobiidae-Tripterygiidae spp.; da= Diplodus annularis; dp= Diplodus puntazzo; ds= Diplodus sargus; dv= Diplodus 
vulgaris; lb= Labrus spp.; sa= Sarpa salpa; se= Serranus spp.; ss= Symphodus spp.; tp=Thalassoma pavo – error bares = 
s.e. Depth categories are: d1: 3-5 m, d2: 6-8 m, d3: 10-12 m. Pair-wise tests between treatments are given in bar plots 
(different lower case characters indicate significant differences between treatments). Depth categories are: d1: 3-5 m, d2: 
6-8 m, d3: 10-12 m. Data set of 2013. 

 

Density of possible predators of juveniles, represented in these observations only by 

Serranus spp., were very low and didn’t differ between protection or depth levels; the 

protection-depth interaction was not significant (PERMANOVA, p>0.1). TL distributions 

varied according to depth-site interaction, however pair-wise tests didn’t display a clear 

pattern among sites (Supplementary data Table VIII-6). 
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Density or TL of C.julis adults didn’t display any effect of the protection level. Protection-

depth interaction was not significant. However depth-site interaction was significant for 

C. julis densities and TL (PERMANOVA, p<0.05): densities tended to increase with depth 

in most of sites (PERMANOVA, pair-wise p<0.1 in every sites). TL did not display any 

clear patterns along depth in the different sites (see Supplementary data Table VIII-6 and 

Table VIII-7 for more details). 

Density or TL of Symphodus spp. didn’t display any effect of the protection level or depth, 

and protection-depth interaction was not significant (PERMANOVA p>0.1) (see 

Supplementary data Table VIII-6 and Table VIII-7). 

Density or TL of T.pavo didn’t display any effect of the protection level. Protection-depth 

interaction was not significant (PERMANOVA p>0.1). However, density decreased with 

depth (PERMANOVA, F= 4.93, p<0.01). Depth effect was not significant for T. pavo TL 

(PERMANOVA p>0.1). 

III.4. DISCUSSION 

The structure of the Cystoseira forests at northern Minorca varied between sites distributed 

a few hundred of meters apart, between locations distributed tens of kilometres apart, and 

also between locations situated inside and outside the MPA. This pattern may respond to 

differences in substrate type (carbonated, non-carbonated) and sun exposure, rather than to 

trophic cascades caused by protection, because the biomass of adjoining trophic levels, fish 

invertebrate-feeders, sea urchins, and erect algae, are uncorrelated in the Cystoseira forests 

of northern Minorca, either inside and outside the MPA (Cardona et al. 2007b; Cardona et 

al., 2013). Furthermore, forest structuration increased with depth: it might be related 

notably to a decrease of the biomass and grazing intensity of the herbivorous fish Sarpa 

salpa as depth increases (Tomas et al., 2005; Vergés et al., 2009). On the other hand, the 

composition of the juvenile fish assemblage differed between sites a few hundred of meters 

apart and changed with depth, but did not vary at a larger geographic scale or between 

locations situated inside and outside the MPA. These results suggest that the structure of 

the juvenile assemblage is related to both depth and forest structure but that the factors 

structuring juveniles assemblages operate at an intermediate spatial scale of hundreds of 



Chapter III. Effect of depth and Cystoseira forest 3D structure on juvenile fish distribution patterns and behaviors 
 
 
 

99 
 

meters. The results reported here confirm that the fish density distribution patterns are 

tightly related to the Cystoseira forest structure. But more structured forests may not 

necessarily favor all the fish species and size classes. 

The density of juvenile C. julis and T. pavo decreased sharply in highly structured forests, 

whereas the highest density of juveniles of Symphodus spp. were observed in such more 

complex forests. These observations are in agreement with those of a previous study which 

also reported the association of juvenile C. julis with sparse forests and that of juvenile 

Symphodus spp. to denser forests (Cheminée, 2012). 

Higher shelter availability (Cheminée, 2012; Riccato et al., 2009; Thiriet et al., 2014) and 

higher food supply for juvenile fishes (Chemello and Milazzo, 2002; Pitacco et al., 2014; 

Thiriet et al., 2014) have been suggested to increase the nursery value of dense Cystoseira 

forests. A trade-off between safety and foraging efficiency often exists for fishes and hence 

the optimal habitat optimizes low predation risk and higher food availability (Dahlgren and 

Eggleston, 2000). Shelter is particularly critical for juvenile fishes, because of their small 

size and high vulnerability to predators (Sogard, 1997) and hence cryptic behavior has 

been widely reported in the bibliography as a response to predation risk in juvenile fishes 

(Lehtiniemi, 2005; Shulman, 1985; Valdimarsson and Metcalfe, 1998). This may be also 

true for juvenile Symphodus spp. of any size and for the smallest juveniles of C. julis and 

T. pavo. On the other hand, the species considered here prey upon small invertebrates 

(Guidetti, 2004; Kabasakal, 2001; Thiriet et al., 2014) which may be more abundant in 

sparse Cystoseira forests, than in denser ones, at least gastropods and small sea urchins 

(Bonaviri et al., 2012; Kelaher, 2003), due to intense predation by hermit crabs, shrimps 

and other micro-predators (Bonaviri et al., 2012) in denser forests. In this scenario, dense 

forests certainly offer more shelter but sparse forests offer more food. 

In this apparent opposite scenario, the contrasting preferences in microhabitat use reported 

here for the juvenile C. julis, T. pavo versus Symphodus spp. may be explained by 

differences in morphology of fish. It allows fish to achieve a good avoidance of predators 

and to feed efficiently, independently of their preferred distribution on sparse or dense 

forest. This morphological differences are in terms of color patterns and locomotory 

efficiency due to differences in body shape (Hertel, 1966; Motta et al., 1995; Schmid and 

Senn, 2002). Juvenile Symphodus spp. are pale brown, which provide them with great 

camouflage in the canopy. On the contrary, juvenile C. julis and T. pavo have more 
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colourful patterns and hence less cryptic. Furthermore, a compressed, sub-gibbose body, 

with long and pointed pectoral fins and a subterminal mouth is typical of mobile and 

manoeuvrable epibenthic foragers inhabiting complex habitats whereas streamlined fishes 

are better adapted for fast swimming (Hoar and Randall, 1979; Keast and Deirdre, 2011; 

Motta et al., 1995; Recasens et al., 2006). Symphodus spp. have a much deeper body that 

C. julis and T. pavo which may favour their movements within the canopy and explain why 

the former are often observed in association with structurally complex habitats (Bussotti 

and Guidetti, 2010). Whereas C. julis and T. pavo are more streamlined, favouring their 

mobility in less complex habitats. Consequently, Symphodus spp. are able to manoeuvre in 

complex habitat, favouring their foraging efficiency, but are slower, relying more on 

shelter for escaping from predators. Whereas, C. julis and T. pavo are less able to 

manoeuvre in complex habitats, forced to explore less structured habitats, but faster, 

relying more on their speed to reach refuges for escaping from predators. 

Hence, it is not surprising that juvenile Symphodus, independently of body length, usually 

displayed a cryptic behavior and were abundant in the most complex forests; whereas C. 

julis and T. pavo are related with sparser forests (Cheminée, 2012). As regards to juvenile 

total length, cryptic behavior also prevailed in the smallest juveniles of C. julis and T. pavo 

and the highest density of small juveniles of T. pavo were also found in the denser forests. 

Furthermore, the juveniles of T. pavo displayed a more cryptic behavior in dense forests, 

whereas in the less complex forests they switched towards wandering or transitory 

behaviors. However, as both species grew up, they moved towards sparser forests and 

shifted to a wandering or transient behavior, probably as their swimming speed increased, 

allowing them to adventure further from refuges.  

Unfortunately, the results reported here do not allow to test the possible influence of 

predator and con-specific density inside and outside MPAs on the density of juveniles, as 

no differences were observed in the density of adult predators and con-specifics between 

sites inside and outside the MPA. Fish protection at the MPA of northern Minorca has 

resulted into a higher biomass of species vulnerable to spear fishing such as Diplodus spp. 

(Cardona et al., 2013; Coll et al., 2012) but not into a higher biomass of adult labrids and 

predators of juvenile, such as S. scriba (Cardona et al., 2013, 2007b). This is because none 

of the most abundant fish species found in this study is a target for commercial fisheries in 

the Balearic Island (Morales-Nin et al., 2005) and because recreational angling from small 

boats may certainly reduce their abundance locally but usually only in much deeper water 
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than the depth strata surveyed here (Cardona et al., 2007a). However, con-specific C. julis 

and T. pavo adult densities varied with depth, but displayed similar spatial patterns than 

juveniles, discarding a spatial partition of resources for avoiding competence between 

adults and juveniles and supporting the absence of evident ontogenetic shifts in bathymetry 

during the life history of these species (Guidetti and D´Ambrosio, 2004). 

Depth also influenced the juvenile fish assemblage composition and taxa specific density 

in our study, as in previous works (Francour, 1997; García-Rubies and Macpherson, 1995; 

Harmelin-Vivien et al., 1995; Vigliola and Harmelin-Vivien, 2001). However, unclear 

tendencies were found for taxa specific length distributions and behavior trends according 

to depth. Thus, assemblage composition but not species richness or total density, changed 

with depth, mainly because of the opposing trends of C. julis and T. pavo. Shallow 

assemblages were characterized by higher densities of T. pavo while deeper assemblages 

displayed greater density of C. julis. These depth patterns are in agreement with previous 

studies, where juveniles of T. pavo are mainly found in shallow waters, whereas C. julis 

juveniles dwell in deeper waters (García-Rubies and Macpherson, 1995; Guidetti and 

D´Ambrosio, 2004). Additionally, for both species, no patterns of TL was observed 

according to depth, even more confirming previous results that suggested the absence of 

evident ontogenetic shifts in bathymetry during the life history of these species.  

In summary, in agreement with the habitat quality trade off hypothesis (i.e. the highest 

quality habitat minimizes mortality rate by offering the trade-off between foraging and 

safety (Dahlgren and Eggleston, 2000), we can hypothesize that dense forest provides both 

shelter and food to juvenile Symphodus spp. of any size and for very small juveniles of 

C. julis and T. pavo. As they grow, predation risk of juvenile might decrease as their body-

size increase (refuge in size, maybe due to, at least in part, increase in velocity and 

manoeuvrability, preponderant ability in escaping attacking predators). This might allow 

large fish to spend less time hidden (cryptic) and to spend more time for foraging activity 

(wandering & transitory). Consequently, the nursery value of dense Cystoseria forests may 

vary among species. Whether such habitat preference is due to real active choice of the 

most favorable habitat (Dahlgren and Eggleston, 2000) or is due to differential mortality, 

remains still unclear (Thiriet et al., 2014). Finally, although juveniles of these three taxa (T. 

pavo, C. julis, Symphodus spp.) could be found in Cystoseira forests, inter-specific 

competition may be reduced by differences in microhabitat use. Indeed, Symphodus spp. 

may prefer complex forests, whereas T. pavo and C. julis both prefer sparse forests, the 
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T. pavo in shallow water and the C. julis in deeper areas, thus avoiding competition 

between them (Guidetti and D´Ambrosio, 2004). Such spatio (and also temporal) partition 

of resources for juveniles (refuge, food) has been also highlighted in others habitats 

(Harmelin-Vivien et al., 1995).  

 

III.5. CONCLUSIONS 

As a conclusion, the effect of protection could not be tested, since commercial or 

recreational fisheries do not operate at the depth strata considered and consequently no 

differences in studied adult distributions were found inside versus outside MPA. However, 

variations of depth and of forest structure had additive effects explaining changes in fish 

juvenile assemblages. On one hand, depth determined a taxa-specific distribution; on the 

other hand, habitat structure affected juvenile fish assemblages notably by inducing 

behavioral changes. We argue that the optimum production of juveniles of different species 

in such seascapes is acquired through the intrinsic patchy nature of forests, displaying a 

mosaic of various habitat characteristics, and therefore fulfilling the contrasted needs of 

different species. Future protection and management measures, as well as restoration 

projects, should take these outcomes into account in order to optimize management efforts. 

Thus, adequate spatial management strategies should act at a seascape scale and require a 

protection of a mosaic of various habitat types, including each of them with their own 

heterogeneity. 
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Chapter IV. Effect of weather conditions on the 

settlement and recruitment of Diplodus sargus in 

Minorca 

 
Photo IV-1. North coast of Minorca island. Photo: Amalia Cuadros. 
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Chapter IV. Effect of weather conditions on the 

settlement and recruitment of Diplodus sargus in 

Minorca 

IV.1. INTRODUCTION 

IV.1.1. Context of the study 

Chapters II and III focused on the influence of seascape attributes, at various spatio-

temporal scales, on juvenile fishes. Here in Chapter IV, we introduced a new potentially 

driving factor: the hydrodynamics.  

Many benthic marine organisms, belonging to multiple phyla, present a bipartite life cycle 

consisting of an initial pelagic phase in which eggs and larvae are dispersed by currents 

and a second and more site-attached phase in which juveniles develop into adults (Thresher 

et al., 1989; Vigliola et al., 1998). The replenishment of their populations is largely 

dependent on the transition process to the benthic environment, called settlement, and from 

the subsequent development within benthic areas, where juveniles already adapted to a 

necto-benthic life are growing and getting ready to join adult populations in a process 

called recruitment (Connell, 1985; Levin, 1994; Macpherson, 1998; Vigliola and 

Harmelin-Vivien, 2001). Two metrics allow to measuring the density of juveniles at these 

two sequential steps: the settlement success and the recruitment level. The “settlement 

success” is the maximum number of recently settled individuals, also referred to as 

“settlement peak” or “settlers peak density”. The “recruitment level” is the number of 

juveniles remaining after an arbitrary period of time following the main settlement event 

(Cheminee et al., 2011; Macpherson et al., 1997; Macpherson and Zika, 1999).  

Environmental variables related with hydrological conditions, such as currents, wind 

velocity and direction, flood tides, lunar cycles and water temperatures influence 

settlement rates, but the magnitude of their influence differs among species, space and time 

and remains subject to considerable uncertainty ((Raventos and Macpherson, 2005), and 

references therein). 
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In spite of this, hydrodynamics are often considered one of the most influencing factors on 

larval dispersal and hence determining the spatial distribution and the availability of larvae 

near settlement sites, i.e., the larval supply in a specific area (Asplin et al., 1999; Bell et al., 

1988; Cowen, 2002; Cowen and Sponaugle, 2009; Hannan and Williams, 1998; Jenkins et 

al., 1997; Peck et al., 2012) at a given time (Bertness et al., 1996; Brown et al., 2005; 

Garland et al., 2002; Jacinto and Cruz, 2008; Shanks and Brink, 2005). Dispersal can take 

place over large spatial scales (Di Franco et al., 2012) but local larval retention is also 

possible, as suggested by some studies based on modelling, otolith microchemistry, 

tagging and genetic markers (Cowen et al., 2006; Sponaugle et al., 2002). Once near 

settlement sites, larval supply is a constraining variable for settlement, since without larval 

supply, there is no settlement (Pineda et al., 2010). After larval supply is accomplished, 

flow velocities and turbulence determine settlement success for some organisms (Pineda et 

al., 2010). However, the influence of local flow velocities and turbulence in fish settlement 

has been less studied. Additionally, in the case of fish the influence of hydrodynamics on 

dispersal, larval supply and subsequent settlement may be modulated by the fish 

themselves. Primarily by spawners, through their distribution and reproduction-strategies, 

e.g. spawning often takes place associated with major current systems. And secondly by 

larvae, through larval swimming and orientation capabilities (Berumen et al., 2012; 

Bradbury et al., 2008; Gerlach et al., 2006; Montgomery et al., 2006; Mouritsen et al., 

2013; Norcross and Shaw, 1984).  

On the other hand, although the role of hydrodynamic processes on dispersal, larval supply 

and settlement for different organisms has been investigated for over five decades 

(e.g. Crisp (1955), the influence of hydrologic changes on post-settlement stages has been 

less studied (Lassig, 1983), and research has been usually more focused on the effects of 

high-magnitude environmental events (Walsh, 1983). In coastal necto-benthic fish species 

intense post-settlement mortality is often considered a demographic bottleneck determining 

the strength of a cohort which will be eventually incorporated into an adult population 

(Caley et al., 1996; Doherty and Fowler, 1994; Sano, 1997). However, there are still many 

uncertainties about the relative contribution of settlement and recruitment on the 

replenishment of adult populations (Caley et al., 1996; Félix-Hackradt et al., 2013b). 

Providing information about the relative contribution of these processes, and how they are 

affected by different environmental and biological factors on them is a pivotal issue. 
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The white seabream Diplodus sargus is one of the most abundant fishes in sublittoral rocky 

bottoms in the Mediterranean Sea (Sala et al., 2012). They spawn planktonic eggs in spring 

and larvae spend approximately 28 days among the plankton, close to the sea surface, until 

settlement, when body length is about 10 mm (Vigliola, 1998). Settlement habitat is 

limited to shallow (<2 m depth) gently sloping coves with mixed heterogeneous substrata 

of sand, pebbles and rocks (Photo IV-II) (Bussotti and Guidetti, 2010; García-Rubies and 

Macpherson, 1995; Harmelin-Vivien et al., 1995). Although post-settlement growth and 

survival is density dependent (Planes et al., 1999), the influence of hydrodynamics on their 

settlement and post-settlement is poorly known. 

 
Photo IV-2. Nursery habitat of Diplodus sargus. D. sargus settlers: 10-15 mm Total Length (Minorca island, depth= 
0.5 meters, April 2012). Photo: Amalia Cuadros. 
 

IV.1.2. Objectives of Chapter IV 

The present chapter analyses settlement and post-settlement processes of white seabream 

within nursery habitats, assessing the arrival of settlers, their subsequent growth, mortality 

rates and recruitment level in relation to hydrological variables (hydrodynamics and water 

temperature). Our aim is to improve the knowledge on the relative contribution of such 

factors in structuring fish populations, which is essential for management and conservation 

purposes of coastal fish species. 
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IV.2. MATERIAL AND METHODS 

IV.2.1. Studied area 

As in the rest of the Balearic Archipelago, coastal circulation in Minorca is mainly 

regulated by wind forcing (Balaguer et al., 2007; Canellas Moragues, 2010). Forcing by 

tides is almost negligible in the Mediterranean Sea. Breeze conditions are prevalent for 

most of the warm season, a regime that is occasionally disrupted by Tramontana episodes, 

a northerly wind with strong intensity (Llompart et al., 1979). The West-East elongated 

orientation of the island (approximately 44 and 17 km long and wide respectively) and the 

dominant northerly winds create two well defined hydro-dynamical areas, the more 

exposed northern coast, exposed to the strongest storm episodes, and the sheltered southern 

coast (Llompart et al., 1979). 

IV.2.2. Sampling design 

The study focused on two locations, placed on the northeast and the southwest coast of the 

island (here named respectively NE and SW locations), and was performed at six coves 

(three per location) characterized by the presence of suitable microhabitats for the 

settlement of white seabream (Fig. IV-1). Juveniles were monitored once or twice a week 

in 2012, from the 23th of April to the 20th of July, in order to encompass the whole 

settlement period (Bussotti and Guidetti, 2010; García-Rubies and Macpherson, 1995; 

Harmelin-Vivien et al., 1995). The three coves within each location were always 

monitored during the same sampling day, and always under suitable weather conditions. 
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IV.2.3. Data collection 

Abundance and size of white seabream juveniles were assessed by means of Underwater 

Visual Censuses (UVC) (Harmelin-Vivien et al., 1985). At each cove, juveniles were 

counted and size estimated along pre-defined transects running parallel to the shoreline (55 

meters mean length) and covering the entire cove. The beginning and end of each transect 

were referred to some topographical features of the coastline, to ensure accurate 

repeatability overtime independent of the observer. Censuses were carried out by two 

previously calibrated observers, who snorkelled slowly at depths ranging from 0.5 to 3 m. 

Only juvenile fish were recorded, i.e. individuals from 10 mm to 100 mm total length (TL) 

(Table IV-1). Their total length (TL) was estimated with the help of fish silhouettes of 

different sizes pictured on the slate (5 mm TL size-classes from 10-15 mm to 80-85 mm 

TL) (Cheminee et al., 2011; Cheminée et al., 2013; Pastor et al., 2013; Vigliola et al., 

1998). The precision of this size estimating method is ± 3.5 mm for Diplodus species 

 
 
Fig. IV-1. The two distinct sampling locations and the six sampled coves of Chapter IV.  
Sampling locations= black squares. Coves included in the northeast location (NE): 1= “Calderer” (39º59´45.34" N, 
4º13´45.78" E), 2= “S´Enclusa” (39º59´50.61" N, 4º13´11.26" E), 3= “Mongofre” (40º0´0.53" N, 4º13´3.14" S); and in 
the southwest location (SW): 4=“ Macarella” (39º56´12.02" N, 3º56´13.71" E)., 5= ”Turqueta” (39º55´56.28" N, 
3º54´54.04" E), 6= “Es Talaier” (39º55´33.43" N, 3º54´7.71" E ). 
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(Macpherson, 1998). All UVC were performed between 10 am and 4 pm. For subsequent 

statistical analyses fish densities were standardised to one linear meter of shoreline 

(Cheminee et al., 2011; Harmelin-Vivien et al., 1985). 

 

Table IV-1. Census of Diplodus sargus juveniles for Chapter IV. Number of sampling 
days (NSD), effective transects (ET), total number (TN) of Diplodus sargus juveniles 
censed during the study period, maximum juveniles censed per day (MNJ) and size 
ranges (total length, TL) recorded at each cove. The shoreline length of the coves (SL), 
and their location (NE: northeast, SW: southwest) are also indicated. 
Cove SL Location NSD ET TN MNJ TL 
Calderer 451.5 m NE 16 112 22432 5589 10-85 mm 
S´Enclusa 606 m NE 17 182 41986 6148 10-65 mm 
Mongofre 622.45 m NE 17 184 28833 4926 10-65 mm 
Es Talaier 408.69 m SW 15 132 21281 5150 10-85 mm 
Turqueta 324.95 m SW 15 89 21271 2844 10-85 mm 
Macarella 540.16 m SW 15 154 36386 3347 10-90 mm 

 

Wave and wind data were provided by Puertos del Estado (Puertos del Estado, 2015). 

These parameters were monitored at two buoys: placed northeast (SIMAR-44-2083040: 

40.00° N, 4.38° E), and southwest (SIMAR-44-2079039: 39.88º N, 3.88º E), of the study 

area, respectively. Additionally, at each cove, sea surface temperatures were recorded 

during the entire study using an Onset HOBO Water Temp Pro v2 sensor placed on the sea 

bottom at 5 m depth.  

IV.2.4. Statistical analyses 

IV.2.4.1. Physical forcing 

A correlation matrix between all physical variables obtained from buoys and HOBO 

sensors was constructed to check for collinearity-redundancy in environmental variables 

considering the data recorded during census days and 5 days prior to each census. This was 

done because fish censuses were carried out the days with better meteorological 

conditions, in order to assure an accurate count of fish inside the nursery. Using 5-days 

averages allowed to better characterise the environmental conditions occurring among 

consecutive sampling days. The environmental variables included in the correlation matrix 

are detailed in Table IV-2. Since temperature displayed the highest range of variation, we 

selected the less variable parameter (miT). For the other less variable parameters, we used 

mean values. 
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Colinearity between environmental variables was assessed by means of the Variation 

Inflation Factor (VIF). A cut-off VIF value of 3 was applied to reduce the number of 

environmental variables in the model (Zuur et al., 2009). Thus, variables with a value 

higher than 3 were excluded from further analyses. The final correlation matrix was 

constructed with the set of variables selected by VIF, but persistent correlated variables or 

variables with redundant information were excluded. Finally, temporal variations in the 

ultimate-selected variables were compared between both locations (NE vs. SW) by means 

of Spearman rank correlation analysis. 

Table IV-2. List of the environmental and biological parameters considered in the 
Chapter IV. The environmental variables include data registered during the same 
census days (“x”) and the average of the 5 days prior to each census (“x5”). 

Environmental parameters Biological parameters 

Date Julian date MD Mean density 

miT, miT5 Minimum temperature PP Maximum population peak 

P, P5 Wave Period DP Date of maximum PP 

Dwa, Dwa5 Wave Direction RL Recruitment level 

Hwa, Hwa5 Wave height ID Population density increase 

Hwi; Hwi5 Wind waves height DD Population density decrease 

Swi. Swi5 Wind speed MTL Mean total length  

Dwi, Dwi5 Wind direction   

 

IV.2.4.2. Juvenile population dynamics 

A. Juvenile population descriptors 

The different informative parameters calculated to describe juvenile population dynamics 

are detailed in Table IV-2. The 80-90 % of individuals of the maximum PP ranged between 

10-15 mm TL and consequently was considered as a proxy of the settlement peak 

(Cheminee et al., 2011). Recruitment Level (RL) referred to the number of juveniles 

remaining at the end of the sampling period after the main settlement event.  

Increases in population density (ID) were calculated from the initial sampling date until the 

day of PP, while decreases (DD) were calculated from this date until the last sampling 

date. ID and DD were analysed for the whole population taking into account that ID was 

mainly shaped by smaller individuals, which had recently arrived at the nursery (85-95% 

were individuals ranging from [10, 20) mm TL), and DD was mainly shaped by individuals 
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which were incapable of leaving the nursery (individuals with a TL lower than 40 mm 

(Vigliola 1998)). TL increase rates were calculated by means of daily mean TL (MTL), 

from the first to the last sampling day. 

The relationship between the response variables ID DD and MTL and Date were analyzed 

by means of least square regression analyses. Analyses of covariance (ANCOVA) was 

used to compare the slope of the regression lines by testing the effect of cove (included as 

a categorical factor in the model) on juvenile density (ID and DD) and MTL, as dependent 

variables, while adjusting for the effect of Date considered as a continuous covariate. The 

assumptions involved in the regression analyses were checked in terms of residuals 

(Christensen, 1996). Tukey HSD post-hoc comparisons between coves were performed for 

ID, DD and MTL when appropriate. 

 

B. Influence of physical forcing in juvenile dynamics 

Once population dynamics were described, the influence of physical forcing on the spatio-

temporal variation of juvenile mean density and life history (i.e., MTL trends), was 

analysed by means of Generalized Additive Modelling (GAM) (Hastie and Tibshirani, 

1990). GAMs are nonparametric regressions with the main advantage of not requiring a 

prior specification of underlying non-linear functional forms between dependent and 

independent variables. Thus, the data tell us what shape the functional relationships have 

(smooths).  

Physical forcing variables initially included in the GAM analyses were those previously 

selected by VIF analysis and correlation criteria. Additionally, the GAM model applied to 

analyse the variability in MTL included population densities (log-transformed, lD) as a 

factor to tackle for possible density-dependence processes (Planes et al., 1999). Wave and 

wind directions (0º-360º) were incorporated as circular variables in the models. Due to the 

large number of environmental variables considered in this study, a best-final models 

selection was applied based on the minimization on the generalized cross validation 

(GCV). The GCV of a model is a proxy of the out-of-sample predictive mean squared error 

(Wood, 2000). It penalizes a large number of parameters in the model and therefore, a 

model with lower GCV has more explanatory power, and hence is preferred, to a model 

with higher GCV. Degrees of freedom of the smooth terms (i.e. number of knots) were 
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then estimated by minimizing the GCV (Wood, 2003, 2004). We used variations of the 

GAM formulations, as implemented in “mgcv” (R Development Core Team, 2013) 

(i.e. GAMs with GCV smoothness estimation (Wood, 2003, 2000)). A step-forward 

selection was applied starting with all the covariates initially included in the models, 

removing one non-significant covariate at a time. We also included an interaction effect of 

each covariate per cove. After the series were fitted, residuals were checked for 

homogeneity of variance and violation of normality assumptions. 

IV.3. RESULTS 

IV.3.1. Physical forcing variability 

VIF analysis evidenced colinearity between factors Date and miT, because water 

temperature increased as the warmer season went on (Fig. IV-2). Furthermore, miT was 

correlated with miT5. Factors Hwa-Hwi and Hwa5-Hwi5 were respectively correlated with 

Swi and Swi5, because the height of waves or wind waves increased with wind speed. 

Factors Hwa and Hwa5 were correlated with P and P5, respectively, indicating that the 

waves with the smallest period were usually the highest ones. Accordingly, and to avoid 

colinearity, factors Date, Tmi5, Hwa, Hwi, Hwa5 and Hwi5 were excluded from the 

dynamics analyses. A correlation matrix was built with the remaining factors, namely: 

miT, P, Dwa, Swi, Dwi, P5, Dwa5, Swi5 and Dwi5. Wave and wind directions (Dwa-

Dwa5; Dwi-Dwi5) were moderately correlated, because wave directions were determined 

by wind blowing directions. Therefore, they were considered redundant and only wind 

direction was used for further analyses. P5 was highly correlated with Swi5, since wave 

period is a consequence of both wind speed and its blowing duration; thus, for further 

analyses period parameters (P-P5) were removed. In conclusion, in the end, only miT, Swi, 

Dwi, Swi5 and Dwi5 were considered for analyses (Fig. IV-2):  
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Fig. IV-2. Temporal variation of the selected environmental parameters recorded by NE (northeast) and SW (southwest) 
buoys and HOBO sensors during the sampling period. miT: minimum temperature (ºC), Swi: wind speed (m.s-1), Swi5: 
wind speed for the 5 day period (m.s-1), Dwi: wind direction (0°=North, 90°=Est) and Dwi5: wind direction for the 5 day 
period (0°=North, 90°=Est). The dotted frame represents the interlude where Diplodus sargus settlement occurs. Arrows 
indicate the rough hydrodynamic event which occurred during Diplodus sargus settlement. 
 

Variations in miT, Swi, Dwi, Swi5 and Dwi5 occurred relatively synchronized between 

NE and SW locations and presented a high correlation (r > 0.5). Representations of waves 

and winds during the period of study showed various “rough hydrodynamic events”, but 
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only one of them (characterized by winds of 10 m.s-1 from SE , and corresponding waves 

higher than 1.5 m, with periods of 10 s) overlapped with settlement, in the middle of May 

(Fig. IV-3).  

 
Fig. IV-3. Temporal variation of environmental parameters in May, illustrating the rough hydrodynamic event as 
recorded by NE (northeast) and SW (southwest) buoys during Diplodus sargus settlement. Swi: wind speed (m.s-1), Dwi: 
wind direction (0°=North, 90°=Est), H: wave height (m), P: wave period (s). 
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IV.3.2. Juvenile population dynamics and influence of physical forcing 

IV.3.2.1. Temporal and spatial variation of juvenile population descriptors 

 

Fig. IV-4. Temporal patterns of Diplodus sargus density at each cove and location NE (northeast) and SW 
(southwest). Fish density is represented independently for three different size classes: [10,20) mm; [20,30) mm and 
individuals larger than 30 mm TL. Density (ind.m-1), TL: Total length (mm). Arrows indicate the rough 
hydrodynamic event during settlement. 

 

Changes in juvenile density over time were highly synchronized at the six coves (Fig. 

IV-4). Density of juveniles shorter than 20 mm ([10, 20) mm) increased dramatically 

everywhere in early May, decreased in late May and peaked again in early June, except in 

Calderer, where density did not increase again in June. Actually, the late May decline in 

density was much larger in the NE coves than in the SW ones. A bimodal pattern was still 

obvious for the 20-30 mm size class ([20,30) mm); although juvenile density decreased 

sharply everywhere as they grew larger and density peaks were delayed two weeks when 

compared with those of the 10-20 mm size class (Fig. IV-4). Individuals ≥40 mm 

accounted only for 1 to 5 % of the juvenile population.  
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Despite the above reported similarities in phenology, coves often differed in fish density 

(Fig. IV-4, Table IV-3). MD at each cove ranged from 2.535 ± 0.525 ind.m-1 (in 

Macarella) to 5.935 ± 0.968 (in Es Talaier). PP ranged from 6.196 ind.m-1 (in Macarella) to 

12.379 (in Es Talaier) and took place by the end of May for all coves. RL was apparently 

higher in coves from the SW location, where it ranged from 0.541 to 1.568 ind.m-1. At the 

NE location RL ranged from 0.280 to 0.394 ind.m-1. 

Table IV-3. Juvenile Diplodus sargus population dynamic parameters obtained at coves situated in the NE (northeast) 
and SW (southwest) locations, respectively. MD: mean density ± standard error; PP: population peak; PD: population 
peak date; RL: recruitment level (considered as the number of juveniles remaining in the nursery on the last sampling 
date). D[10,20), D[20,30), D≥30 are mean density ± standard error of individuals of TL [10,20), [20,30), and ≥30 mm, 
respectively. MD, PP, RL and D[10,20), D[20,30), D≥30 are expressed as individuals per meter of shoreline (ind.m-1). 
 NE SW 
Cove Calderer S´Enclusa Mongofre Macarella Turqueta Es Talaier 
MD 3.105 ± 0.916 3.696 ± 0.799 2.725 ± 0.609 2.535 ± 0.525 4.364 ± 0.761 5.935 ± 0.968 

PP 12.379 10.15 7.9139 6.196 8.752 12.601 

PD 24/05/2012 25/05/2012 25/05/2012 01/06/2012 28/05/2012 28/05/2012 

RL 0.284 0.394 0.280 0.541 0.686 1.568 

D[10,20) 2.276 ± 0.836 3.186 ± 0.822 2.094± 0.612 1.482 ± 0.494 3.342 ± 0.894 3.989 ± 1.035 

D[20,30) 0.690 ± 0.191 0.753 ± 0.184 0.520 ± 0.146 0.712 ± 0.244 0.654 ± 0.202 1.355 ± 0.445 

D≥30 0.139 ± 0.044 0.136 ± 0.052 0.111 ± 0.034 0.432 ± 0.161 0.368 ± 0.145 0.592 ± 0.21 

 

The increase in population densities (from the first sampling date until the PD), the 

decrease in population densities (from the PD until the last sampling day) and the increase 

in MTL for the whole sampling period for each cove are shown in Fig. IV-5. The 

ANCOVA results comparing the regression lines between coves for ID, DD and MLT and 

Date indicate that no significant differences existed between the slopes for any of them 

(Table IV-4). By contrast, significant differences were found in ID and DD intercepts 

among coves, but not for MTL. For ID, higher density values were found in Es Talaier and 

significant differences were found between Es Talaier and Macarella and between the 

former and Mongofre. For DD, higher density values were also obtained in Es Talaier, 

while significant differences were found between this cove and the rest, except for 

S’Enclusa. Significant differences in the intercepts were also found between Macarella and 

S’Enclusa (Table IV-4). 
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Fig. IV-5. Predicted relationship between ID (density increase, ind.day-1.m-1) and DD (density decrease, ind.day-1.m-1), 
and MTL (Mean Total Lenght, mm) of juvenile Diplodus sargus with time at each cove placed in the NE (northeast) and 
SW (southwest) locations. 
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Table IV-4. Results of the predicted relationship between increases and decreases in population density and Mean total length 
trends of Diplodus sargus with time at each cove, and results of the analyses of covariance (ANCOVA) comparing the increase 
and decrease in population rate (ind.day-1.m-1) and Mean total length trends among coves (ID, DD and MTL trends, 
respectively). a: intercept: b: slope; r2: coefficient of determination; Df: degrees of freedom; MS: mean squared; F: F- statistic, 
with its Degrees of freedom (DF) and its significance (P). 
ID  
Lineal Regression a b r2 F P 
Calderer -2.475±3.237 0.331±0.149 0.497 4.949(1-3 DF) 0.113 
S’Enclusa 0.311±2.291 0.220±0.102 0.381 4.686(1-5 DF) 0.083 
Mongofre -1.071± 1.570 0.199±0.070 0.543 8.132 (1-5 DF) 0.036 
Macarella -0.545± 0.773 0.156±0.031 0.800 25.01(1-5 DF) 0.040 
Turqueta 0.640± 1.234 0.276±0.058 0.812 22.59(1-4 DF) 0.009 
Es Talaier 1.039 ±1.636 0.317±0.077 0.761 16.87(1-4 DF) 0.015 
ANCOVA Df MS F P  
Date 1 245.49 47.776 <0.001  
Cove 5 21.41 4.167 0.007  
Date *Cove 5 3.92 0.763 0.585  
Residuals 26 5.14    
DD  
Lineal Regression a b r2 F P 
Calderer 13.269 ±2.405 -0.174 ± 0.041 0.606 17.9 (1-10 DF) 0.002 
S’Enclusa 15.305 ±1.710 -0.191±0.028 0.816 45.39(1-9 DF) <0.001 
Mongofre 11.165 ±1.087 -0.139±0.018 0.8543 59.62(1-9 DF) <0.001 
Macarella 8.292 ±2.305 -0.087 ± 0.036 0.372 5.741 (1-7 DF) 0.048 
Turqueta 12.441 ±1.727 -0.142 ± 0.028 0.731 25.39 (1-8 DF) 0.001 
Es Talaier 3.593 ±0.541 -0.029 ± 0.009 0.519 10.71(1-8 DF) 0.011 
ANCOVA Df MS F P  
Date 1 436.4 125.699 <0.001  
Cove 5 14.5 4.182 0.003  
Date *Cove 5 4.1 1.185 0.330  
Residuals 51 3.5    
MTL trends  a b r2 F P 
Linear Regression      
Calderer 1.681±2.153 0.388±0.041 0.866 91.54(1-13 DF) <0.001 
S´Enclusa 5.947±1.856 0.275±0.036 0.792 58.06(1-14 DF) <0.001 
Mongofre 3.680±1.968 0.328±0.038 0.829 73.59(1-14DF) <0.001 
Macarella 3.557±1.868 0.356±0.035 0.885 101.3(1-12DF) <0.001 
Turqueta 2.315±2.379 0.347±0.045 0.818 59.38(1-12DF) <0.001 
Es Talaier 4.029±1.910 0.325±0.036 0.860 80.66(1-12DF) <0.001 
ANCOVA Df MS F P  
Date 1 5136 451.916 <0.001  
Cove 5 6 0.538 0.747  
Date*Cove 5 11 0.965 0.444  
Total 77 11    
Post-hoc Tukey HDS 
test 

ANCOVA  
ID 

  ANCOVA  
DD 

 

Macarella-Calderer 0.732   0.948  
Mongofre-Calderer 0.964   0.992  
S´Enclusa-Calderer 0.988   0.064  
Es Talaier-Calderer 0.276   0.003  
Turqueta-Calderer 0.776   1.000  
Mongofre-Macarella 0.987   0.723  
S´Enclusa-Macarella 0.262   0.012  
Es Talaier-Macarella 0.007   0.001  
Turqueta-Macarella 0.070   0.964  
S´Enclusa-Mongofre 0.622   0.232  
Es Talaier-Mongofre 0.033   0.018  
Turqueta-Mongofre 0.236   0.991  
Es Talaier-S´Enclusa 0.534   0.838  
Turqueta-S´Enclusa 0.971   0.078  
Turqueta-Es Talaier 0.940   0.005  
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IV.3.2.2. Influence of physical forcing in juvenile dynamics 

Influence of physical forcing in settlement and post-settlement dynamics of white 

seabream were summarised by two final GAM models describing fish MD and MTL. The 

final GAM model selected for MD was a model including miT, Swi, and Dwi without 

interactions with coves (Table IV-5). Water temperature was strongly correlated with Date 

and hence density GAM analysis revealed that the settlement peak coincided with 

intermediate values of miT, while density decreased hereafter as the warmer seasons 

advanced. More interestingly, the GAM analysis revealed that juvenile density decreased 

as wind speed increased and that winds blowing form the SE were also associated to lower 

density values (Table IV-5, Fig. IV-6). 

 

Table IV-5. Final GAM best formulations selected, proportion of variance explained (%DE), adjusted R2 (Radj2), and 
genuine cross validation (GCV) of the best models for dynamics (mean density, MD); and total length mean trends 
(MTL). All the terms included in these models were statistically significant (p <0.1); f1,f2 (…)f8 are smooth functions 
estimated by the model by maximum likelihood, ε is the stochastic component. miT: minimum temperature, Swi: wind 
speed, Swi5: wind speed 5 days before census, Dwi: wind direction, and lD: logarithm of mean density (log ind. m-1+1). 
Model Dependent variable Formulation %DE Radj2 

 
Final 
GAM 
Mean 
density 

MD D=cove+f2(miT)+f3(Swi)+f4(Dwi)+ ε 87.1 0.637 
 

Final 
GAM 
MTL 

MTL MTL=cove+ f5(lD) + f6(miT)+f7(Swi)+ f8(Swi5)+ ε 97.9 0.84 
 

 

 
 
Fig. IV-6. Summary of the significant forcing factors found to affect the density of Diplodus sargus. Obtained from the 
best GAM MD (mean density) model, including: miT (minimum temperature, ºC, p<0.001), Swi (wind speed, m.s-1, 
p=0.001) and Dwi (wind direction, 0°=North, 90°= Est, p=0.029). Fitted lines (solid line), 95% confidence intervals 
(areas between gray dotted line) and partial residuals (dots) are shown. 
 
 



Chapter IV. Effect of weather conditions on the settlement and recruitment of Diplodus sargus in Minorca 
 
 
 

122 
 

The final GAM model selected for MTL included lD, miT, Swi, Swi5 as additive effects 

without interactions with coves (Table IV-5). As expected, the lowest MTL corresponded 

to the highest juvenile density values recorded during settlement of early juveniles and 

MTL increased as temperature increased and the warm seasons progressed. More 

interestingly, high wind speed, either on the survey day or five days before, was associated 

to higher MTL values (Table IV-5, Fig. IV-7). 

 
 
Fig. IV-7. Summary of the significant forcing factors found to affect Diplodus sargus MTL (Mean Total Lenght). 
Obtained from the best GAM MTL (mean total length) model, including: lD (logarithm of mean density, log ind. m-1 

+1, p=0.004), miT (minimum temperature, ºC, p<0.001), Swi (wind speed, m.s-1, p=0.028), and Swi5 (mean wind 
speed 5 days before census, m.s-1, p=0.051). 
 

IV.4. DISCUSSION 

Processes driving settlement and post-settlement of white seabream around Minorca island 

seem to operate at island scale, as shown by the high synchrony observed in the dynamics 

of the juvenile population at coves which are tens of kilometres apart (~30 km), or on the 

same side of the island, much closer (i.e.: between ~500 m and 2 km apart). However, 

some variations in the different juvenile density population phases (arrival date, increase 

and decrease) were found. For instance, the first strong larval input was not detected or 
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was very slight at the NE coves (Calderer and Mongofre, respectively), where an apparent 

lag in settlement occurred.  

Spatio-temporal variability in fish settlement and recruitment has already been reported 

elsewhere (e.g. Cowen, 1985; Doherty and Williams, 1988; Victor, 1986). The settlement 

peak densities shown in this study ranged between 6 ind.m-1 and 12 ind.m-1, which are 

among the highest peak density values reported for white seabream in the Mediterranean 

(Table IV-6). All these studies were conducted on locations with suitable nursery habitats 

for white seabream, i.e.: shallow (<2 m depth) gently sloping coves with heterogeneous 

substrata of sand, pebbles and rocky bottoms (Bussotti and Guidetti, 2010; García-Rubies 

and Macpherson, 1995; Harmelin-Vivien et al., 1995). Consequently habitat-suitability 

should not be the reason explaining variations in peak densities among coves and locations. 

Rather, these differences could be the result of processes more related with larval 

processes, such as different distance from larval sources (spawning stocks), and/or 

differential larval dispersal and subsequent larval supply (Di Franco et al., 2012). In turn, 

these processes are influenced by a combination of explaining factors: i) behaviour of 

larvae (Pineda et al., 2010); ii) their swimming capabilities (Fisher, 2005; Fisher et al., 

2000), iii) hydrodynamics processes such as waves and turbulent fluxes (Pineda et al., 

2010); iv) positive stimulus such as biochemical (Gerlach et al., 2006) and physical 

stimulus (Montgomery et al., 2006; Simpson et al., 2005; Sponaugle and Cowen, 1996); v) 

biological interactions (e.g. predation, competition); vi) larval physiology (age, 

competency, energy reserves, growth) (Bergenius et al., 2002; Vigliola, 1998; Ware, 1975) 

and vii) habitat structure and topography (Cheminee et al., 2011; Félix-Hackradt et al., 

2013b), which may also have a bearing on final settlement densities. 
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Table IV-6. Different Diplodus sargus maximum settlement population peaks reported in 
several areas of the Mediterranean (ind.m-1). Locations: 1) Marseille (France); 2) Girona 
(Spain); 3) Banyuls (France); 4) Portofino (Italy); 5) Elba (Italy); 6) French Catalan coast 
(France); 7) Apulian Adriatic coast (Italy); 8) Cap Roux Fishery Reserve and adjacent areas in 
Saint-Raphaël (France); 9) Minorca island (Spain). 

Location PP (ind.m-1) Year References 

1 16 1993-1995 (Vigliola et al., 1998) 

 

   

2 7 1993-1995 (Vigliola et al., 1998) 

 
3 >2 1994-1995 (Vigliola et al., 1998) 

 
4 4 1994-1995 (Vigliola et al., 1998) 

 
5 >3 1994-1995 (Vigliola et al., 1998) 

 
6 >4 2005-2007 (Pastor et al., 2013) 
7 4 2009-2010 (Di Franco et al., 2013) 
8 >2 2011 (Arceo et al., 2012) 
9 12 2012 This chapter 
9 >5 2013 Chapter V 

 

Such explaining factors are notably supposed to shape the initial larval input in nurseries 

(Raventos and Macpherson, 2005; Vigliola et al., 1998). Ultimately, explaining factors 

such as habitat structure (Anderson and Millar, 2004; García-Charton et al., 2004) may as 

well shape behavior at settlement and post-settlement survivorship (Bell and Westoby, 

1986b; Thiriet et al., 2014; Tupper and Boutilier, 1997). 

In our case, all studied coves were in a distance range smaller than the larval dispersal 

range reported for the white seabream (Di Franco et al., 2012). Thus, the very high density 

reported for Es Talaier, situated in the SW location, may be due to differential larval 

supply related to its different seascapes attributes, e.g. in terms of cove shape and 

microhabitat heterogeneity, providing post-settlers more refuges and hence, higher 

survival. Indeed, Talaier had a more heterogeneous bottom per surface than the remaining 

coves. Differences in habitat structure may determine different mortality-growth processes 

generating site-specific differences between coves (Cheminee et al., 2011; Félix-Hackradt 

et al., 2013b; García-Charton et al., 2004; Macpherson et al., 1997; Planes et al., 1998). 

Furthermore, larval supply appears to be strongly influenced by local winds and currents 

(Félix-Hackradt et al., 2013b) and this was also true for white seabrams in Minorca. Our 

results showed that stronger winds were associated with lower juvenile densities and, more 

precisely, that strong SE winds were unfavourable for settlement in the NE area. The 

impact of the rough hydrodynamic event was stronger on the smallest fishes in all coves. 
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As a consequence, the increase in population density recorded since the onset of settlement 

was truncated and a general bimodal density pattern emerged after the rough 

hydrodynamic event. This bimodal density pattern could be detected throughout the post-

settlement period as fish grew but it is not clear to what extent this temporal interruption of 

larval arrival may influence recruits and the future adult population structure.  

Furthermore, the variation in density observed during the decreasing population phase 

found in the SW coves could be related with a higher mortality inside nurseries situated 

windward due to a major effect of the disturbance generated by the rough hydrodynamic 

event. Finally, higher mean TL were associated to higher wind speeds. It could be that 

smaller individuals were trying to avoid the disturbance generated by the high 

hydrodynamism caused by the wind, by moving a few meters deeper than their habitual 

depth range (Cheminee et al., 2011). Additionally, higher differences in decreasing 

densities were detected among NE coves probably related to a temporary interruption of 

the larval arrival because the downwind impeded or even pulled out larvae from the coast. 

Consequently, the final recruitment level, which was lower in the NE location, may reflect 

this larval input interruption and a higher larval supply at SW coves due to weather 

conditions. Thus, although no real differences between population increase and decrease 

rates were found between SW and NE coves, the rough hydrodynamic event of May, had 

different consequences for those coves situated windward (SW coves) or leeward (NE 

coves).  

The co-occurrence of both larval release and dispersal, with specific climatic conditions 

may strongly shape the settlement success and subsequent recruitment (match-mismatch 

hypothesis; Cushing, 1969). These results and the interpretation are in agreement with 

Vigliola (1998), which argued that winds regimes regulate white seabream settlement in 

Marseilles Bay (France), and that winds from sea to coast favoured settlement. 

Furthermore, Raventos & Macpherson (2005) found that calm weather also favoured 

settlement for another necto-benthic species with pelagic larvae (Symphodus spp.) in 

Spanish Catalan coast.  

In spite of the different values in settlement peaks found at the various coves in Minorca, 

the Recruitment Level (i.e.: the remaining juveniles) was very low in all cases. In our 

study, 87 to ~97 % of the juveniles died after 50-60 days from settlement peak, indicating 

high mortalities but with similar values as in other Mediterranean regions. For example, 
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Arceo et al (2012) found mortalities of up to 60 to ~ 99 %, after 50-60 days from the 

settlement peak in the Cap Roux Fishery Reserve and adjacent areas in Saint-Raphaël 

(France) in 2011. Similarly, Macpherson et al (1997) found mortalities from 50 to ~99%, 

after 50-60 days from the settlement peak in Gerona (Spain) and Marseille (France) in 

1994-1995. 

The importance of recruitment in front of other demographic processes determining adult 

local population densities is not clear (Caley et al., 1996; Holm, 1990) and only a few 

studies have simultaneously considered multiple life stages across multiple spatial scales. 

For instance, Di Franco et al. (2013), found no significant relationships between the 

density of adults, settlers, recruits and young of the year of white seabream, and attributed 

it to a possible decoupling in space between the sequential life history stages of fish caused 

by dispersal processes. Conversely, other studies found a significant relationship between 

the density of settlers or late juveniles and the recruitment level of Diplodus spp. (Planes et 

al 1998, Félix-Hackradt et al. 2013a). In any case, although prediction of adult population 

sizes is difficult based solely on juvenile stock data, they may determine in some way the 

availability of new individuals and the final replenishment of populations (Caley et al., 

1996). In the case of Minorca island, white seabream adult densities are very low 

compared with those in other Mediterranean regions (Cardona et al., 2007a; Coll et al., 

2012; Guidetti and Sala, 2007; Sala et al., 2012), in spite of the high settlement values 

reported here. Cardona et al. (2007) hypothesized that adult density of white seabram in 

Minorca was low because of the oligotrophy of the coastal waters around the island, but 

the results reported here indicate that post-settlement processes at nursery habitats are more 

likely the limiting factor. Nevertheless, further studies are necessary to assess the temporal 

and spatial relationships between juvenile and adult white seabream. 
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IV.5. CONCLUSIONS 

 
Similar dynamics were globally reported at the scale of the island for the settlement and 

recruitment of white seabreams, although differences in juvenile density were observed 

between some coves, suggesting the importance of site-specific conditions for their nursery 

value. The intensity of settlement peaks was particularly variable among coves, but 

juvenile density at the end of settlement period (i.e. recruitment level) was globally low in 

all coves, suggesting that density-dependent mortality levelled initial differences in 

settlement. Furthermore, a rough hydrodynamic event observed during the central 

settlement period, with moderate winds from the SE, dramatically affected larval supply in 

the NE location, resulting in lower recruitment level. Thus, it is plausible that areas with 

frequent rough hydrodynamic events display lower densities of white seabreams. Future 

research on the influence of environmental variables on fish life history should properly 

assess the related spatial and temporal variability at multiple scales and at multiple life 

phases in order to better account for their possible influences on final adult population 

replenishment.  



 
 
 

128 
 

 

 



Chapter V: Influence of landscape attributes at different spatial scales on the density of juveniles Diplodus 
sargus 
 
 
 

129 
 

Chapter V. Influence of landscape attributes at different 

spatial scales on the density of juveniles Diplodus 

sargus 

 
Photo V-1. Diplodus sargus juveniles: 15-20 mm Total Length. Minorca island, depth= 1 meter, May 2013. Photo: 
Amalia Cuadros. 
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Chapter V. Influence of landscape attributes at different 

spatial scales on the density of juveniles Diplodus sargus 

V.1. INTRODUCTION 

V.1.1. Context of this study 

Chapters II and III studied the influence of seascape attributes, at various spatio-temporal 

scales on the assemblages of juvenile littoral fishes. Chapter IV focused on the effect of 

weather conditions, mainly winds, on the density of the earlier stages of Diplodus sargus 

and suggested a relationship between seascape attributes and the effect of winds: a given 

coastal orientation shaped the off-shore direction of dominant winds, influencing 

negatively the settlement and post-settlement dynamics. Here in Chapter V, we aimed to 

gain a deeper insight on the influence of seascape attributes on the settlement and post-

settlement dynamics of this species, particularly broad scale location, site-specific cove 

exposure and within site variability of microhabitat types. 

Most marine species have a pelagic stage which is potentially dispersive (eggs, larvae) 

(Christie et al., 2010; Di Franco et al., 2012). Afterwards, an ontogenetic transition from 

the planktonic to the benthic habitats occurs in most benthonic species in a process called 

‘settlement’(Thresher et al., 1989). The initial density of individuals available for 

settlement is shaped by the number of planktonic larvae available near benthic habitat 

resulting of their dispersion, i.e. the larval supply (Asplin et al., 1999; Peck et al., 2012; 

Pineda et al., 2010; Victor, 1986; Watson and Munro, 2004). Settlement success is 

measured by the maximum number or “peak” of recently settled individuals or “settlers” 

(Levin, 1994; Macpherson et al., 1997; Macpherson and Zika, 1999). Hereafter adult 

populations are replenished with the “late juveniles” whom survived after settlement and 

developed in juvenile habitats, joining adult populations in a process called “recruitment”. 

“Recruits” are the juveniles already present in adult habitats (Thiriet, 2014). Frequently, 

the potential recruitment is measured by the number of late juveniles remaining after an 



Chapter V: Influence of landscape attributes at different spatial scales on the density of juveniles Diplodus 
sargus 
 
 
 

131 
 

arbitrary period of time following the main settlement event (i.e. “recruitment level”) 

(Levin, 1994; Macpherson et al., 1997; Macpherson and Zika, 1999).  

Consequently, various processes act at nested spatial scales shaping the recruitment level 

of benthic species: dispersal until larval supply in benthic habitats, at broad scale, and 

settlement and post-settlement processes in benthic habitats, at lower scale. 

Dispersal and subsequent larval supply to juvenile habitats are highly influenced by 

seascape connectivity, which in parallelism to landscape connectivity (Brooks, 2003) may 

be defined as the degree to which the seascape facilitates or impedes individuals’ 

movement among resource patches (Cheminée et al., 2014; Taylor et al., 1993). According 

to Calabrese and Fagan (2004), connectivity has two components: the functional 

connectivity (dispersal abilities between populations of individuals and species) and 

structural connectivity (the physical connection of populations). Regarding functional 

connectivity, biological processes have been highlighted as important for larval dispersal 

and subsequent larval supply. For example, spawners tends to take advantage of specific 

periods and areas of high productivity, special predator-prey relationships, and conditions 

affecting transport of spawning products (match/mismatch hypothesis) (Cushing, 1974, 

1969; Hjort, 1914; Norcross and Shaw, 1984; Vigliola, 1998; Vigliola et al., 1998). In the 

same sense, specific planktonic larval duration, pelagic versus demersal egg (Berumen et 

al., 2012; Bradbury et al., 2008), larval swimming capacities (Bellwood and Fisher, 2001; 

Stobutzki and Bellwood, 1997), and larval habitat selection among settlement areas (Bell 

and Westoby, 1986a; Gerlach et al., 2006; Leis and Carson-Ewart, 1998; Montgomery et 

al., 2006; Simpson et al., 2005; Stobutzki and Bellwood, 1997) regulate functional 

connectivity. Structural connectivity, maybe mainly determined by currents, weather 

conditions, and seabed topography and coast morphology (Bradbury et al., 2008; Cowen 

and Sponaugle, 2009; Gilg and Hilbish, 2003).  

Once larvae arrive near juvenile habitats, juvenile microhabitat availability (subsets of 

biotic and abiotic habitat components (Chapman, 1995)) is very important to accomplish 

settlement (Beck et al., 2001; Cheminée et al., 2014; Nagelkerken et al., 2015; Parsons et 

al., 2014). Often, fish juveniles have strict taxa specific microhabitat requirements for 

settlement (Bussotti and Guidetti, 2010; Cheminée et al., 2013; García-Rubies and 

Macpherson, 1995; Harmelin-Vivien et al., 1995; Macpherson and Zika, 1999, 1999), that 

http://en.wikipedia.org/wiki/Landscape
http://en.wikipedia.org/wiki/Natural_resource
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may change as early juveniles grow (Dahlgren and Eggleston, 2000; Macpherson, 1998). 

Finally, Post-settlement processes (juvenile growth and survival in benthic habitats until 

they acquire capacity to move, if required, towards adult habitats) depend on the habitat 

quality, i.e., the trade-off between food and shelter availability (Beck et al., 2001; 

Cheminée et al., 2013; Gibson, 1994; Hobbs et al., 2006; Thiriet et al., 2014). 

Since seascape attributes at different scales plays an important role in larval dispersion, 

larval supply, settlement and post-settlement, they may have an impact on the final late 

juvenile production. However, the relative importance of settlement and post-settlement 

processes on determining the amount of late juveniles available for recruitment is still 

poorly known (Félix-Hackradt et al., 2013a; Raventos, 2009; Vigliola et al., 1998); 

furthermore the seascape scale at which they operate is poorly known.  

Here we propose two extreme scenarios related to seascape. In one hand, variability of 

final late juvenile production among sites may depend mainly upon settlement processes 

(i.e. initial density variability) which in turn will be mainly shaped by larval supply. Larval 

supply variability may be influenced by landscape at larger scales. This initial density 

variability may persist in time because of a negligible effect of post-settlement processes. 

On the other hand, final variability of late juveniles could be shaped mainly by post-

settlement processes (e.g. growth and survival of juveniles in juvenile habitats) influenced 

in turn by habitat local features such as microhabitats characteristics. 

To quantify the relative importance of settlement and post-settlement processes in the 

recruitment success of Mediterranean reef fishes, we selected the white seabream, 

Diplodus sargus (Linnaeus, 1758). As mentioned in Chapter IV, D. sargus is particularly 

relevant. It is an abundant species (Froese and Pauly, 2011), with a commercial and 

recreational interest (Lloret et al., 2008) and with a functional role in Mediterranean rocky 

communities (Giakoumi et al., 2012; Guidetti, 2006). Populations of D. sargus have been 

suggested to be recruitment limited in some areas (Cardona et al., 2007b) and different 

authors reported high spatial variability on its settlement rates and recruitment levels 

(Arceo et al., 2012; Cheminee et al., 2011; Macpherson et al., 1997; Vigliola et al., 1998). 
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V.1.2. Objectives of Chapter V 

The objective of the present work was to quantify and compare D. sargus settlement and 

post-settlement densities under the influence of contrasted seascape attributes, at different 

spatial scales in Minorca island (NW Mediterranean; it aimed to better understand the 

causes of the spatial variability of juvenile densities reported for such species. Firstly, we 

tested the effect of coastal location by comparing coves facing contrasted hydrographic 

regimes (north vs. south coast of the island) and hence likely to experience differences in 

larval supply which may be reflected in settlement success and recruitment level. 

Secondly, and crossed with location, we tested the effect of cove configuration in terms of 

exposure level, which may also have an influence on larval supply and consequently in 

settlement success and recruitment level. Furthermore, within each cove we measured the 

importance of post-settlement processes (growth or survival), which may determine 

recruitment levels. Finally, within each cove we tested the effect of microhabitats features 

on juvenile densities. 

V.2. MATERIAL AND METHODS 

V.2.1. Studied area 

The study was conducted along the coast of Minorca island, at the center of the north-

western Mediterranean (Fig. V-1). The island spans about 50 km from west to east and 

about 20 km from north to south and its coastline measures 441 km (Sales, 2007). The 

island is an ideal study locality since its coasts presents contrasted exposure and orientation 

conditions. Indeed, the island coast can be divided into two differentiated regions (north 

and south, see Llompart et al.(1979)) with differentiated wind influences and facing 

different water masses: those from the Lion Gyre affect the north shore (López-Jurado et 

al., 2008) and those from the Algerian Basin affect the south shore (Bethoux, 1980; Millot, 

1999; Pinardi and Masetti, 2000). Furthermore all along the island coast, the shoreline 

displays series of coves more or less enclosed. 
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Based on a preliminary study (Chapter I and Chapter IV), sites were selected in the island 

according to the availability of suitable nursery habitats for D. sargus: shallow (less than 

2 m deep), gently sloping substrates of gravel, pebbles, or boulders (Bussotti and Guidetti, 

2010; García-Rubies and Macpherson, 1995; Harmelin-Vivien et al., 1995; Macpherson, 

1998) (Photo V-II). 

V.2.2. Sampling design 

The study was conducted in twelve coves selected according to crossed factors: location 

(two levels: north and south) and cove configuration in terms of exposure (two levels: 

exposed and sheltered) (see Fig. V-1). To define the two exposure levels we adapted 

Miller’s index of exposure (1985) to Minorca coves: sheltered and exposed coves were 

respectively without and with line of sight to the open ocean (Fig. V-1). Our quantitative 

exposure categories were in agreement with categories proposed by Balaguer et al (2007) 

and Canellas Moragues (2010). 
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Fig. V-1. The twelve sampled coves of Chapter V, according to crossed factors “location” (two levels: north and 
south) and “exposure” (two levels: exposed (gray squares) and sheltered (black squares)). 1= “Estancats” 
(40º2´46.65" N, 3º55´19.47" E), 2=: “Rotja” (40º3´44.06" N, 4º4´37.19" E), 3= “Cabra Salada” (40º3´18.31" N, 
4º8´30.76" E), 4= “S´Esmolador” (40º0´29.09" N, 4º0´29.09" E), 5= “Sa Mesquida” (39º54´55.43" N, 4º17´15.10" E), 
6= “Taulera” (39º52´40.92" N, 4º18´34.44" E), 7= “Sa Caleta” (39º58´52.38" N, 3º50´2.80" E), 8= “Es Talaier” 
(39º55´33.43" N, 3º54´7.71" E), 9= “Mitjana” (39º56´2.33" N, 3º58´19.68" E), 10= “Cales Coves” (39º51´51.13" N, 
4º8´41.37" E), 11= “Biniparratx” (39º 49´59.21" N, 4º12´11.47" E), 12= “Binibeca” (39º48´57.00" N, 4º14´23.87" E). 
 
 

We additionally differentiated three microhabitat types inside each cove (Macpherson, 

1998) (Fig. V-2): “beach area” (BA) usually characterized by a dominance of sandy 

sediments and a depth of 0-50 cm; “mixed areas” (MA) with heterogeneous substratum of 

rocks, boulders, pebbles and sand ranging 50-100 cm in depth (Photo V-II); and “rocky 

areas” (RA) with a dominance of rocky substratum ranging 50-300 cm in depth. Typically, 

beach areas are in the innermost part of the cove, rocky areas close to the mouth and mixed 

areas in between (Fig. V-2). 
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Fig. V-2. Example of microhabitats sampled 
among each nursery cove (here: Est Talaier 
cove). Line type corresponds to microhabitat 
type: “beach area” (BA, thick dotted line); 
“mixed area” (MA, continuous gray line); 
“rocky area” (RA, continuous black line). 
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Photo V-2. Nursery habitat of Diplodus sargus. Microhabitat type “Mixed areas” (MA) with heterogeneous substratum of boulders, pebbles and sand ranging 50-100 cm in depth. Foreground spans 
around 1.5 m wide. Visible juveniles in this shot are D. sargus settlers (a,b,c, 10-15 mm Total Length, marked with arrows), one D. vulgaris (a, 20 mm TL); Juveniles are found in mixed shoals 
with the invertebrate Mysidacea (b) (Minorca island, depth= 0.5-1 meter, April 2012). Photos: Amalia Cuadros. 
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V.2.3. Data collection 

Sampling was carried out from 17 th May to 18 th July, in 2013, i.e during the known 

D. sargus settlement period (Harmelin-Vivien et al., 1995). A total of 144 surveys were 

carried out (Table V-1). We sampled all coves at three different times, every two (or three) 

weeks. Additionally, exposed coves (which displayed higher juvenile densities, see results) 

were sampled weekly, when weather permitted, for the analysis of the microhabitat effect. 

Sampling days were randomly chosen among days presenting good weather conditions, 

since weather is known to affect density estimations (Harmelin-Vivien et al., 1985). 

Surveys were conducted between 7 am and 11 am, avoiding the time slots of higher 

frequentation by bathers (Juaneda and Roig, 2002; Munar and Xavier, 2003). 

Sampling was carried out snorkelling along pre-defined transects running parallel to the 

shoreline (50 meters mean length). Underwater Visual Census (UVC) were performed 

according to previously established methodologies and covering depth until 3 m 

(Cheminee et al., 2011; Harmelin-Vivien et al., 1985). The beginning and the end of each 

transect were referred to some physical features of the topography of the coastline, to 

ensure accurate repeatability along the time. Each time, the entire cove was completely 

sampled by the same diver snorkelling. The juveniles in each cove were counted and their 

total length (TL) was estimated with the help of fish silhouettes of different sizes pictured 

on the slate (5 mm TL size-classes from 10-15 mm to 80-85 mm TL) (Cheminee et al., 

2011; Cheminée et al., 2013; Pastor et al., 2013; Vigliola et al., 1998). The precision of this 

size estimating method was estimated about ± 3.5 mm for Diplodus species (Macpherson, 

1998). For the analyses, juvenile fish densities were standardised to one linear meter of 

shoreline (ind.m-1) (Cheminee et al., 2011; Harmelin-Vivien et al., 1985). 
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Table V-1. Diplodus sargus census of Chapter V. Number of sampling days (NSD), transects (T), total number (TN) of white 
seabream juveniles censed during the study period, maximum number of juvenile censed in one day (MNJ) and size ranges (total 
length, TL) recorded in each cove. The location (north, south), exposure (exposed, sheltered), shoreline length (SL), and % of 
each habitat type (BA: beach areas, MA: mixed areas, RA: rocky areas) for each cove are also indicated. 
Cove Location Exposure SL  

(m) 
BA 
(%) 

MA 
(%) 

RA 
(%) 

NSD 
(nº) 

T 
(nº) 

TN 
(nº) 

MNJ 
(nº) 

TL 
(mm) 

Estancats North Exposed 910.68 23.3 17.8 58.9 7 70 6 115 1 114 10-60 
Rotja North Exposed 365.58 0 43.3 56.7 8 48 5 068 937 10-70 
Sa Mesquida North Exposed 717.41 27.8 57.0 15.2 8 72 5 982 1 283 10-60 
Cabra Salada North Sheltered 315.38 26.3 22.4 51.3 3 24 43 28 15-70 
S´Esmolador North Sheltered 365.76 28.4 21.3 50.4 3 21 19 15 15-60 
Taulera North Sheltered 938.02 9.0 32.2 58.9 3 33 102 41 10-60 
Es Talaier South Exposed 408.69 8.6 46.0 45.4 7 27 15 385 3 683 10-60 
Mitjana South Exposed 475.4 29.5 45.5 25.0 7 77 10 076 1 987 10-60 
Binibeca South Exposed 495.18 18.7 19.8 61.5 7 63 4 080 903 10-60 
Sa Caleta South Sheltered 402.33 5.7 33.5 45.1 3 21 793 389 10-60 
Cales coves South Sheltered 312.23 26.3 22.4 51.3 3 18 100 58 10-60 
Biniparratx South Sheltered 516.45 5.1 22.9 72.0 3 27 89 49 15-60 

 

V.2.4. Statistical analyses 

In order to study juvenile population dynamics according to the three seascape attributes 

(i.e. location, exposure, and microhabitat type, thereafter named as treatments), five 

response variables were analyzed: 1) multivariate density temporal patterns; 2) univariate 

density at each of the three simultaneous surveys; 3) univariate daily mean total length; 

3) univariate daily mean total density; and 4) univariate mean juvenile density by size-

class. 

In order to test the crossed influence of location and exposure, fish large enough to 

immigrate or emigrate were excluded (i.e. for D. sargus, >40 mm TL; Vigliola (1998)) and 

only density data corresponding to the three surveys conducted simultaneous at all coves 

were considered (hereafter referred as “first”, “second” and “third” surveys). First, 

multivariate juvenile density patterns across the three surveys were compared by means of 

a PERMutational multivariate ANalysis Of VAriance (PERMANOVA) (Anderson, 2001) 

Type III, based on the Binomial deviance (scaled) measure of distance (Anderson and 

Gorley, 2008). Crossed terms included in the model were: location as a fixed factor (two 

levels: north vs. south) and exposure as a fixed factor (two levels: exposed vs. sheltered). 

Furthermore, when interactions of factors were significant we applied pair-wise 

comparison tests. Secondly, for each mentioned survey, a univarite PERMANOVA Type 

III, using Euclidean distances, was applied in order to compare density between treatments 

levels (location, exposure). First and second surveys corresponded respectively to census 
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from days 2/06 to 8/06 and days 20/06-23/06. The first survey was considered as a proxy 

of settlement peak (i.e. 10-15 mm TL fish peak density) since when sampling started, 

juveniles of 10-15 mm were already present (Cheminee et al., 2011). Third survey 

corresponded to days 16/07-18/07 and it was considered as a measure of the recruitment 

level (Macpherson and Zika, 1999). For these permutational analyses and to model our 

various response variables as a function of the treatments, P-values were obtained by 999 

permutations of residuals under a reduced model. Monte Carlo P-values were considered 

when there were not enough possible permutations (<200). Terms were pooled as 

suggested by Anderson et al. (2008). 

Since sheltered coves supported very low fish (see results), only exposed coves were 

considered for subsequent analyses. Daily juvenile mean total length (MTL) (mm) and 

daily total density (ind.m-1) of each cove were used in Least squared regression analyses to 

calculate regression slopes (“b”) and obtain respectively juvenile growth rates (mm day-1) 

and density decrease rates (ind.m-1.day-1) for each cove. These rates were used to describe 

the post-settlement population dynamics. Regressions were calculated using on one hand 

the daily MTL of all the juveniles present at each cove, from the first to the last sampling 

day ; and on the other hand density decrease rates were calculated considering the density 

of individuals from the first to the last day of sampling and excluding fish with possible 

immigration or emigration capabilities (i.e. for D. sargus, >40 mm TL, Vigliola (1998)). 

Analysis of covariance (ANCOVA) was used to test the effect of cove (included as a 

categorical factor in the model) on MTLs and densities, considered as dependent variables, 

while controlling for the effect of time, considered as a continuous co-variable. Tukey 

HSD post-hoc comparisons between coves were performed for MTL and density when 

appropriate. 

Finally, ontogenetic changes in habitat use were assessed by comparing the density of 

juveniles of different size-classes occurring at the three microhabitats within each cove. All 

the juveniles observed at the nurseries were considered and they were split in five size-

classes: (in mm TL): [10-25), [25-40), [40-55), [55-70). The [70-85) mm TL size class was 

not considered for further analyses due to the low number of fish (n<10). Each size class 

was analysed separately in a univariate PERMANOVA Type III, using Euclidean 

distances. In the model, factor microhabitat had three levels (BA, MA and RA) and was 

fixed; and factor cove had six levels (Estancats, Rotja, Sa Mesquida, Es Talaier, Mitjana, 
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Binibeca) and was fixed. Terms were pooled as suggested by Anderson et al. (2008). P-

values were obtained by 999 permutations of residuals under a reduced model. Monte 

Carlo P-values were considered when there were not enough possible permutations (<200).  

Since ecological data are by nature highly variable, in this work terms were considered 

significant for P-values < 0.1. All data treatment and analyses were performed using the 

R 2.15.0 statistical software (R_Development_Core_Team, 2013) and PERMANOVA+ 

add on package for PRIMER software (Anderson and Gorley, 2008; Clarke and Gorley, 

2006). 

V.3. RESULTS 

V.3.1. Effect of location and exposure on juvenile density temporal 

patterns 

 
Fig. V-3. Diplodus sargus juvenile density (ind.m-1) in each cove (coves 1 to 12) through time, according to location 
(north vs south) and exposure (exposed vs sheltered). Coves: 1= “Estancats”, 2=: “Rotja”, 3= “Cabra Salada”, 
4= “S´Esmolador”, 5= “Sa Mesquida”, 6= “Taulera”, 7= “Sa Caleta”, 8= “Es Talaier”, 9= “Mitjana”, 10= “Cales 
Coves”, 11= “Biniparratx”, 12= “Binibeca”. 
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Densities trends were different between exposed and sheltered coves, whatever the 

location, although the magnitude of the difference was greater in the south coves, which 

resulted in a significant interaction term (PERMANOVA, Table V-2). As a general pattern, 

a decreasing density trend was observed in the all exposed coves, from the beginning to the 

end of the sampling period (Fig. V-3). Conversely density remained close to zero ind.m-1 

through the whole sampling period in the sheltered coves (Table V-3).  

 
Table V-2. PERMANOVA table of results: effect of location and exposure on multivariate juvenile Diplodus sargus 
density time series (ind.m-1). Significance: ·P≤0.1 ; * P ≤ 0.05; ** P ≤ 0.01; *** P ≤ 0.001.  
Source of variation Df MS Pseudo-F P(perm) 
Location (lo)  1 0.58 2.03 0.131 
Exposure (ex) 1 6.26 21.94 0.003** 
lo x ex 1 0.91 3.18 0.052· 
Residuals 8 0.29   
Total 11    
 

Table V-3. Density of Diplodus sargus juveniles obtained in each cove at the three surveys for all 
coves (ind.m-1): first survey (proxy of settlement peak), second survey, and third survey (proxy of 
recruitment level). 

Location Exposure Cove First survey 
(ind.m-1) 

Second survey 
(ind.m-1) 

Third survey 
(ind.m-1) 

North 

Exposed 

Estancats  0.694 0.760 0.224 

Rotja 1.565 1.264 1.143 

Sa Mesquida 1.437 1.023 0.077 

Sheltered 

Cabra Salada  0.013 0.019 0.000 

S´Esmolador 0.038 0.005 0.000 

Taulera 0.041 0.039 0.005 

South 

Exposed 

Es Talaier 4.512 6.230 1.679 

Mitjana 2.920 3.241 0.452 

Binibeca 1.082 0.715 0.493 

Sheltered 

Sa Caleta 0.964 0.360 0.234 

Cabra Salada 0.032 0.080 0.042 

Biniparratx 0.031 0.041 0.002 

 

In every survey, density varied according to exposure and not according to location 

(PERMANOVA, Table V-4) and juveniles were systematically more abundant in exposed 

coves (Table V-3, Fig. V-4). 
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Table V-4. PERMANOVA table of results: location and exposure effect on univariate juvenile Diplodus sargus 
density of the three simultaneous surveys at all the coves (ind.m-1); the first survey is a proxy of the settlement peak 
and third survey a proxy of the recruitment level. Significance: ·P≤0.1 ; * P ≤ 0.05 ; ** P ≤ 0.01 ; *** P ≤ 0.001. 
First survey (proxy of settlement peak) 

Source of variation Df MS Pseudo-F P(perm) 
Location (lo)  1 2.76 3.19 0.105 
Exposure (ex) 1 10.25 11.86 0.009** 
Lo x ex 1 1.26 1.45 0.292 
Residuals 8 0.86   
Total 11    
Second survey     
Source of variation Df MS Pseudo-F P(perm) 
Location (lo)  1 4.76 2.47 0.151 
Exposure (ex) 1 13.42 6.96 0.019* 
lo x ex 1 3.77 1.95 0.184 
Residuals 8 1.93   
Total 11    
Third survey (proxy of recruitment level)   
Source of variation Df MS Pseudo-F P(perm) 
Location (lo)  1 0.18 0.84 0.384 
Exposure (ex) 1 1.19 5.72 0.039* 
lo x ex 1 6.86.10-2 0.33 0.576 
Residuals 8 0.21   
Total 11    
 

 
 

Fig. V-4. Diplodus sargus mean density (ind.m-1) in each exposure level (exposed vs. sheltered coves) the three 
sampled dates for all coves: first survey was employed as a proxy of settlement peak, and third survey was 
considered a proxy of recruitment level. Mean and standard error (SE) values are given. 
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V.3.2. Post-settlement dynamics in exposed coves 

V.3.2.1. Growth rates 

For exposed coves, MTLs changed through time similarly in all coves (ANCOVA, Table 

V-5 and Fig. V-5) and corresponding growth rates (b) ranged from 0.375±0.043 mm.day-1 

(in Mitjana) to 0.486±0.054 mm.day-1 (in Binibeca) (Table V-5). 

 
Fig. V-5. Observed data and predicted relationship of MTL (Mean Total Length, mm) of Diplodus sargus with time 
in each cove. Observed data=dots; predicted relationship =lines. 
 
 
Table V-5. Results of the predicted relationship between Mean Total Lenghts (MTLs, mm) of juvenile Diplodus sargus 
with time in each cove and results of the analysis of covariance (ANCOVA) comparing the MTLs (mm) according to time 
and coves (interaction cove-day was removed because not significant). a: intercept: b: slope; r2: correlation coefficient; Df: 
degrees of freedom; MS: mean squared; F: F statistic with its DF(Degree of freedom); and its significance (. P≤0.1 ; * P ≤ 
0.05 ; ** P ≤ 0.01 ; *** P ≤ 0.001). 
Exposure  Location Lineal Regression a b r2 F P 
Exposed North Estancats  8.557±1.576 0.438±0.038 0.956 131.9 (1-5 DF) <0.001*** 
  Rotja  9.558±1.387 0.400±0.037 0.944 119.4 (1-6 DF) <0.001*** 
  Sa Mesquida 11.938± 2.408 0.384±0.063 0.839 37.45 (1-6 DF) <0.001*** 
 South Es Talaier 8.248± 1.258 0.412±0.031 0.967 178.1 (1-5 DF) <0.001*** 
  Mitjana 10.709 ±1.763 0.375±0.043 0.924 74.26 (1-5 DF) <0.001*** 
  Binibeca 5.802± 2.163 0.486±0.054 0.931 81.94 (1-5 DF) <0.001*** 
ANCOVA Df MS F P  
Date 1 2645.8 483.31 <0.001***  
Cove 5 7.3 1.34 0.297  
Residuals 37 5.5    
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V.3.2.2. Density decrease rates 

For exposed coves, south coves “Talaier” and “Mitjana” presented significantly different 

density trends than the others, with higher decrease rates (b) (ANCOVA, Table V-6,Table 

V-7, and Fig. V-6). 

 
Fig. V-6. Observed data and predicted relationship of densities (ind.m-1) of Diplodus sargus with time in each cove. 
Observed data=dots; predicted relationship =lines. 
 

Table V-6. Results of the predicted relationship between densities of Diplodus sargus juveniles with time in each cove and results 
of the analysis of covariance (ANCOVA) comparing the densities (ind.m-1) according to time and coves. a: intercept: b: slope; r2: 
correlation coefficient; Df: degrees of freedom; MS: mean squared; F: statistic with its Degrees of freedom and its significance 
(· P≤0.1 ; * P ≤ 0.05 ; ** P ≤ 0.01 ; *** P ≤ 0.001). 
Exposure  Location Lineal Regression a b r2 F P 
Exposed North Estancats  1.156±0.151 -0.012±0.004 0.603 10.12 (1-5 DF) 0.025* 
  Rotja  1.460±0.293 0.003±0.008 -0.131 0.19 (1-6 DF) 0.678 
  Sa Mesquida 1.432±0.316  -0.019±0.008 0.367 5.05 (1-6 DF) 0.066· 
 South Es Talaier 8.894±1.201  -0.103±0.029 0.652 12.26 (1-5 DF) 0.017* 
  Mitjana 4.799±0.518 -0.060±0.013 0.777 21.87 (1-5 DF) 0.005** 
  Binibeca 0.952±0.378 -0.001±0.009 -0.198 0.01 (1-5 DF) 0.928 
ANCOVA Df MS F P  
Date 1 11.85 23.50 <0.001***  
Cove 5 21.33 42.32 <0.001***  
Date x cove 5 4.36 8.64 <0.001***  
Residuals 32 0.50    
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Table V-7. ANCOVA post-hoc Tukey HSD tests, comparing the juvenile densities of Diplodus sargus 
(ind.m-1) according to time between pairs of coves. Significance (P): · P≤0.1 ; * P ≤ 0.05 ; ** P ≤ 0.01 
; *** P ≤ 0.001. 
Pairs of coves P 
Rotja-Estancats 0.400 
Sa Mesquida-Estancats 1 
Es Talaier-Estancats <0.001*** 
Mitjana-Estancats <0.001*** 
Binibeca-Estancats 0.997 
Sa Mesquida-Rotja 0.330 
Es Talaier-Rotja <0.001*** 
Mitjana-Rotja 0.036 
Binibeca-Rotja 0.693 
Es Talaier-Sa Mesquida <0.001*** 
Mitjana-Sa Mesquida <0.001*** 
Binibeca-Sa Mesquida 0.994 
Mitjana-Es Talaier <0.001*** 
Binibeca-Es Talaier <0.001*** 
Binibeca-Mitjana 0.001 

 

V.3.3. Juvenile ontogenetic changes in microhabitat use  

Juveniles of most size-class differed in their density at the three microhabitats considered 

within each coves (PERMANOVA, Table V-8), except those in the size-class [55, 70). 

Furthermore, the interaction term between microhabitat and cove was not significant for 

each size class separately, thus indicated that tendencies of density distribution among 

microhabitats within the nursery coves were consistent across all coves (Fig. V-7).  

  



Chapter V: Influence of landscape attributes at different spatial scales on the density of juveniles Diplodus 
sargus 
 
 
 

147 
 

 

 
Table V-8. PERMANOVAs table of results for Diplodus sargus juvenile densities in exposed coves in different 
microhabitats inside the nursery, for each size classes (mm TL): [10, 25), [25, 40), [40, 55), [55, 70). Significance:·P ≤ 
0.1; * P ≤ 0.05; ** P ≤ 0.01; *** P ≤ 0.001. 
[10, 25) mm TL     
Source df MS Pseudo-F P(perm) 
Microhabitat (mi) 2 63.42 5.64 0.008** 
Cove (co) 5 36.01 3.20 0.016* 
mi x co 9 12.53 1.11 0.335 
Residuals 372 11.24   
Total 388    
[25, 40) mm TL     
Source df MS Pseudo-F P(perm) 
Microhabitat (mi)  2 12.39 4.86 0.008 ** 
Cove (co)  5 18.32 7.19 0.001*** 
mi x co  9 2.94 1.16 0.327 
Residuals 372 2.55   
Total 388    
[40, 55) mm TL     
Source df MS Pseudo-F P(perm) 
Microhabitat (mi) 2 1.40 3.92 0.024*  
Cove (co) 5  0.81 2.25 0.056· 
mi x co 9 0.47 1.30 0.218 
Residuals 372 0.36   
Total 388    
[55, 70) mm TL     
     
Source df MS Pseudo-F P(perm) 
Microhabitat (mi) 2 2.62·10-3 0.68 0.519 
Cove (co) 5 1.09·10-2 2.80 0.028* 
mi x co 9 2.00·10-3 0.51 0. 828 
Residuals 372 3.88·10-3    
Total 388    
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Fig. V-7. Patterns of Diplodus sargus juvenile densities among microhabitats (BA: Beach Area, MA: Mixed Area, 
RA: Rocky Area) of respectively size-classes: [10, 25), [25, 40), [40, 55) and [55, 70) mm TL; corresponding 
number of individuals (n) and pair-wise tests results between microhabitat levels are given (different lower case 
characters indicate significant density differences between micro-habitats). 

 

 
Pair-wise comparisons of juvenile density between microhabitats types (Fig. V-7) revealed 

that juveniles within the [10, 25) and [25, 40) size classes were more abundant in mixed 

areas (MA) than in the beach areas (BA) or rocky areas (RA) (pair-wise habitat tests, 

p < 0.05). Fish of the [40-55) size-class were more abundant in both MA and BA than in 

RA (p< 0.01). Finally, fish of the [55, 70) size-class were homogeneously distributed in the 

three microhabitats (pair-wise test p>0.1). 
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V.4. DISCUSSION 

According to our results, the settlement peak of D. sargus in Minorca is likely to be in 

May: indeed, peak density was clearly detected in 2012 in the mid-May, and in 2013 when 

we started our survey in the mid-May the density of 10-15 mm TL juveniles was already 

high. Conversely, it has been observed that settlement occurs mainly from June to July in 

the northern part of the western Mediterranean (Arceo et al., 2012; Bussotti and Guidetti, 

2010; Di Franco et al., 2013; Macpherson, 1998; Macpherson et al., 1997; Vigliola et al., 

1998) and in April in the south-west part of the basin (Félix-Hackradt et al., 2013a). This 

suggests a latitudinal variation in spawning and settlement, surely related to a latitudinal 

temperature gradient (Mouine et al., 2007). 

Although the north and south shores may presumably be under the influence of different 

water masses of contrasted origins (Bethoux, 1980; López-Jurado et al., 2008; Millot, 

1999; Pinardi and Masetti, 2000) we observed a synchronization of the settlement peak at 

both north and south coves both years (this chapter and see Chapter IV). One plausible 

explanation would be that settlers come from a common origin and reach nurseries 

synchronously because the mean distance between all the sampled coves was within the 

larval dispersal range reported for D. sargus (Di Franco et al., 2012). However in other 

areas, between sites separated by similar distances, such synchronization is less evident 

(Pastor, unpublished data). Currents coupled with the number and relative location of 

breeding areas as well as some environmental stimulus leading to a synchronous 

reproduction may play an important role in such synchronization patterns. Unfortunately, 

detailed knowledge of both coastal currents around Minorca island and natural Diplodus 

sargus breeding locations and biology are scarce (Vigliola, 1998). 

Independently on the precise timing of the settlement peak at a regional level, the results 

reported here demonstrate that some of the seascape attributes considered in this study had 

a significant effect on settlement and post-settlement processes, particularly differences in 

cove exposure. At the island scale (several tens of kilometres), location of the coves in the 

north or the south coast had no major impact on the settlement peak nor on the recruitment 

level or on the growth rate of juvenile D. sargus. Nevertheless, coves in the south coast 

exhibited a higher variability in the density trends than those in the north, because of the 
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very high settlement peak in two south exposed coves (“Es Talaier” and “Mitjana”). It is 

worth to note that we observed a site-specific consistency in settlement intensity for one 

location (“Es Talaier”) which displayed both in 2012 and 2013 the highest observed 

densities. Although this should be better investigated in Minorca island (i.e., more 

replicates are necessary), these kind of spatial consistencies of settlement peaks between 

years has been reported in other areas (Vigliola et al., 1998; Wennhage and Pihl, 2001). 

The site-specific variability (between coves) of the settlement peak has been attributed 

mainly to habitat structure although there are no studies which test it ((Cheminee et al., 

2011; Vigliola et al., 1998). The two coves in the south shore with the highest settlement 

peaks displayed a highly heterogeneous habitat, with the patches of the three microhabitats 

lying in close quarters. Since habitat complexity and heterogeneity (sensu August (1983)) 

determine shelter and food availability and hence subsequent mortality and growth, it is 

plausible that the observed differences in settlement peak were due to such variability 

(Anderson and Millar, 2004; Félix-Hackradt et al., 2013b; García-Charton et al., 2004; 

Thiriet et al., 2014). Furthermore, this differences may be also related to the relative 

location and availability of nurseries versus spawning sites, coupled with differences in 

local hydrodynamics (Pineda et al., 2010; Roy, 2012). Indeed, the south, where the higher 

settlement peaks were recorded both in 2012 and 2013, the coast display a smaller amount 

of available nursery habitat than in the north part (see Chapter VI). In the south, this may 

lead juveniles to concentrate in the few available habitats, leading to the observed high 

densities. 

At lower seascape scale (a few kilometers), settlement peak and density trends were 

controlled by exposure, as both the settlement and the recruitment peak were significantly 

higher at the exposed coves, independently on the location in the coastline. The density of 

juvenile D. sargus in the sheltered coves remained close to zero ind.m-1 throughout the 

whole sampling period. This suggested a positive influence of cove exposure on larval 

supply and subsequent settlement intensity. Although only a few studies have coupled 

hydrological regimes with bathymetry, topography and the distribution of fish eggs and 

larvae, available data indicate a match between the distribution of these spawning products 

and hydrodynamics (Brown et al., 2005; Jenkins et al. 1998; Martins et al., 2007; Pepin et 

al., 1995). It usually results into a low egg/larval supply to inner parts of the shoreline, e.g. 

the inner parts of the coral reefs systems (D’Alessandro et al., 2007), the upper reaches of 
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the estuaries (Bell et al., 1988; Martins et al. 2007) and the innermost part of bays. For this 

reason, settlement is favored in areas close to open waters, if suitable habitats exist (Brown 

et al., 2005; Jenkins et al., 1998; Pastor et al., 2013) This conceptual framework is 

consistent with the results reported here. Nevertheless, although a given degree of exposure 

may be favorable, it is worth notice that previous research on D. sargus also pointed out 

the preference of settlers for coast not only with gentle slope and heterogeneous boulders 

and pebbles bottoms, but as well protected from swell and strong hydrodynamics (i.e. 

coves) (Harmelin-Vivien et al., 1995). Vigliola’s data (1998) even suggested that survival 

of D. sargus juveniles was favored in the most enclosed coves, through enhanced water 

temperature and consequent faster growth. 

Once larvae have reached the nursery habitat and settlement is accomplished, post-

settlement processes determine their survival and growth (Vigliola, 1998). In our study, 

recruitment level was compared using a crossed analysis (location x exposure), but very 

low numbers of juveniles occurred in sheltered coves, so the analyses of post-settlement 

dynamics were conducted only at the exposed coves. There, the growth of juveniles was 

similar between north and south coves and within the range reported by previous research 

for this species (Planes et al., 1999; Vigliola, 1998). This indicates that juvenile growth 

rate was independent on juvenile density, since large differences existed among coves in 

settlement peaks but juveniles grew at a similar rate everywhere. This is consistent with the 

density-independent growth reported in the previous chapter, but in contrast with the 

density-dependent growth patterns reported by Planes et al. (1998) for this species. This 

lack of density dependent for growth may suggest that food resources for juveniles were 

not a limiting factor, discarding a possible intraspecific competence for food resources 

(Hazlerigg et al., 2012; Shephard and Jackson, 2009). 

Contrastingly, the rate of density decrease exhibited a strong density–dependent pattern, as 

juvenile density decreased faster in those coves where the settlement peak was the highest. 

As a result the recruitment level was similar at the six exposed coves. Density-dependent 

mortality has been described in previous studies about this species (Macpherson et al., 

1997; Planes et al., 1998). Competence for food resources is not a likely cause, because of 

the density-independent growth rate reported above, and hence mortality by predation 

combined with competition for shelter stands as the main causes for the density dependent 

depletion of juveniles (Anderson, 2001; Forrester and Steele, 2000; Hixon and Jones, 
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2005). Exposure to wave action has been suggested to be a major factor in determining 

post-settlement losses in some cases (Jenkins et al., 1997). However, the exposed coves 

considered in this study displayed a much higher recruitment level than the sheltered ones. 

This is a direct consequence of the lower settlement peaks reported in sheltered coves, 

where density remained close to zero ind·m-1 through all sampling period, compared with 

exposed coves.  

Previous research had reported a low density of adult D. sargus in suitable habitats in 

Minorca as compared with other adjoining regions (Cardona et al., 2013, 2007b; Coll et al., 

2012), attributed to the oligotrophy of the coastal waters of the island and a limited larval 

supply (Cardona et al., 2007b). However, the results here reported, reveal that in some 

exposed coves of the south coast, the settlement peak is very high. Decoupling between 

larval supply, settlement and recruitment, have been frequently reported but no consensus 

has already been reached regarding the relative importance of settlement and post-

settlement processes in determining recruitment (Di Franco et al., 2013; Félix-Hackradt et 

al., 2013a; Jenkins et al., 1998; Macpherson and Zika, 1999; Pineda et al., 2010). Available 

information (Planes et al. (1998); this study) indicates that, processes operating both at the 

settlement and post-settlement stage regulate the recruitment of D. sargus. However, 

topography may play a pivotal role by modulating the relative importance of both 

processes. Post-settlement processes such as density-dependent mortality may certainly 

result into major changes in juvenile density, but larval supply, determined in turn by cove 

exposure, stands as the main factor limiting the recruitment of D. sargus. Considering the 

scarcity of exposed coves along most of the south and northwest coast of Minorca (see as 

well Chapter VI), recruitment of D. sargus in the island might be limited not by 

oligotrophy, but because of the scarcity of nursery habitats in most of the coastline.  

Finally, at the nursery scale (tens of meters), juveniles of different size classes were 

distributed differently across microhabitats. Smaller juveniles (i.e. settlers and juveniles 

<40 mm TL) were mainly localized in the mixed areas. As they grew up, they used as well 

the beach area in the same proportion and finally sub-adult fishes larger than >55 mm used 

equally all the microhabitats present inside the nurseries, without any preference. Since 

“mixed areas” usually occur in the more sheltered parts of the coves, Macpherson (1998) 

suggested for D. sargus a larval distribution mechanism related to slower water flow, 

similar to that reported by Breitburg et al. (1996). However, for other species, Dalgreen 
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and Eggleston (2000) suggested that ontogenetic changes of microhabitats aim to switch to 

the habitat displaying the better compromise between food availability and predation risk. 

Our observations might consequently be related to shelter availability, especially important 

in early juvenile stages (Sogard, 1997): more shelter may be provided by the more 

structured habitat (i.e. the mixed areas) at the beginning of D. sargus development in the 

nurseries. Furthermore, early individuals has been reported to feed mainly on harparticoids 

(Christensen, 1978) and some of our own unpublished data (see Appendix) reported in 

juveniles’ stomach content and microhabitat food availability indicate a clear preference of 

smaller juveniles for harpacticoids usually found in the pebbles’ and rocks’ seaweeds, 

rather than interstitial harpacticoids which inhabit the sand. Furthermore, this stomach 

contents data revealed a presence of insects and mites which were probably eaten in the 

water column or at the water surface. Posteriorly, older juvenile fish, less vulnerable 

(>40 mm) may explore new habitat with less shelter (Anderson, 1988; Sogard, 1997). They 

may begin to move to other microhabitats inside the cove (such as beach or rocky areas), 

displaying a homerange expansion, habitat diversification, diet diversification, and starting 

their emigration out of the nursery (Christensen, 1978; Macpherson, 1998; Vigliola and 

Harmelin-Vivien, 2001). 

V.5. CONCLUSIONS 

To sum up, the results reported here indicate that factors and processes operating both at 

settlement and after settlement determine the density and growth of juvenile D. sargus. 

Exposure determines the magnitude of the settlement peak and, secondarily, a very low 

recruitment peak in those coves with a very small supply of settlers. Density-dependent 

mortality determines the recruitment peak in exposed coves with a high supply of settlers, 

thus resulting in partial decoupling between settlement and recruitment. From the 

management perspective, we may conclude that exposed coves are the main nursery 

habitats for D. sargus and that total recruitment might be limited by the scarcity of suitable 

habitats, mainly along the south coast of the island. 
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Photo VI-1. Sargantana I. Boat of Estació d´Investigació Jaume Ferrer at Fornells Bay, Minorca island. October 2012. 
Photo: Amalia Cuadros. 
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Chapter VI. General Discussion 

VI.1. DISCUSSION 

VI.1.1. Patterns 

This thesis has focused on the juvenile fish assemblage of three of the major shallow 

habitats occurring in the Mediterranean Sea: seagrass meadows, rocky bottoms with 

canopy forming macroalgae and mixed bottoms of sand, pebbles and rocks. These three 

habitats support more abundant and diversified juvenile fish assemblages as compared with 

others shallow infralittoral benthic habitats such as sandy bottoms (Guidetti, 2000), 

Chlorobionts meadows (Cheminée et al., in press), barren grounds (Thiriet, 2014), or 

shrubland (Cheminée et al., 2013; Thiriet, 2014). Furthermore, the present thesis used 

Diplodus sargus as a model species to understand the relative importance of the settlement 

and post-settlement processes at the species level. 

The results showed that habitat type is a major determinant of the composition of the 

juvenile fish assemblage, because the three considered habitats shared many species, but 

differed dramatically in the density of some dominant species. Nevertheless, the three 

considered habitats exhibited also a large amount of variability in their three-dimensional 

structure, which in turn was a second major source of variability for the density of juvenile 

fishes.  

Mediterranean seagrass meadows, including those formed by Cymodocea nodosa, have 

long been recognized as important nursery habitats for D. annularis, Spondyliosoma 

cantharus and Symphodus cinereus, whereas other species prefer other infralittoral habitats 

(Bussotti and Guidetti, 2010; García-Rubies and Macpherson, 1995). Actually the 

juveniles of other species occur in seagrass meadows at a much lower density than in rocky 

habitats covered by canopy forming macroalgae and indeed the presence of boulders 

scattered within the meadows is the major source of spatial variability within seagrass 

meadows, as it largely increased the abundance of some species typically associated to 

rocky bottoms. We argue that this small boulders improve the habitat quality of the 
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seagrass meadow, increasing the available resources and at the same time generating small 

ecotones, i.e., edges within the seagrass meadow where organisms may regularly switch 

between habitats and therefore exploit alternatively the optimum micro-habitat as regards 

to food or shelter (Cheminée et al., in press). Furthermore, although our sampling design 

did not enable us to test it, distance to open water systems is another major potential source 

of variability for the juveniles fish assemble inhabiting meadows in sheltered bays, because 

of differences in the input of larvae and eggs (Brown et al., 2005; Francour, 1997; Jenkins 

et al., 1998; Martins et al., 2007; Montgomery et al., 2001; Pastor et al., 2013).  

Rocky habitats with arborescent, erect and perennial canopy forming macroalgae are 

widely recognized to be important nursery habitats for many species worldwide (Jones, 

1984). In the Mediterranean Sea, the highest density of juvenile labrids is reported from 

Cystoseira forests (Bussotti and Guidetti, 2010; Cheminée, 2012; García-Rubies and 

Macpherson, 1995). However, the distribution of juveniles within Cystoseira forests had 

been poorly studied previously and the results reported in this thesis demonstrates that their 

juvenile fish assemblages changed according to both depth and canopy structure, with 

species differing in their depth and canopy structure preferences.  

Finally, shallow mixed bottoms of sand, pebbles and rocks within coves are known to be 

major nursery habitats for D. sargus, D. puntazzo, D. vulgaris and D. cervinus, since those 

species settle and are more abundant in those habitat than anywhere else (Bussotti and 

Guidetti, 2010; García-Rubies and Macpherson, 1995; Harmelin-Vivien et al., 1995). 

However, a large variability in the density of Diplodus spp. juveniles has been reported 

from sites sharing this kind of habitat (Arceo et al., 2012; Di Franco et al., 2013; Vigliola 

et al., 1998). Previous studies suggest that seascape features at different spatial scales may 

explain such spatial variability, notably, hydrodynamism, depth and habitat heterogeneity 

(Cheminee et al., 2011; Di Franco et al., 2013; Vigliola, 1998; Vigliola et al., 1998). In this 

thesis we demonstrated that three factors operated to determine the abundance of juvenile 

white sea breams in coves in Minorca island: regional coast configuration (north vs. south 

oriented), cove local configuration (exposed vs. sheltered) and availability of 

heterogeneous substratum. Furthermore, post-settlement processes within coves strongly 

influenced the spatial density patterns, as previously reported elsewhere (Macpherson et 

al., 1997; Planes et al., 1998). 
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Hence, this thesis shows that the spatial variability in the density of juveniles fishes in the 

shallow infralittoral habitats of Minorca island results not only from differences in habitat 

type but also from processes operating at various spatial scales within any habitat. Firstly, 

the general coastal configuration is the main determinant of the juvenile density occurring 

in regions more than 5 km apart, as shown by the differences in the density of D. sargus in 

coves in the north and south coast of the island. Secondly, the variation of the juvenile 

density between sites only 1-3 km apart is influenced both by local coast configuration and 

by differences on habitat structure. For example, in Fornells Bay, juvenile density 

variations between sites may be mainly due to the relative location of each site within the 

bay and the distance to the open sea (Chapter II). D. sargus density variations between 

closely located sites is explained by coast configuration (with or without line of sight to 

open sea) and also by the relative abundance of heterogeneous substrate within each cove. 

Finally, at a scale of less than 500 meters, habitat structure determined the spatial 

variability of juvenile densities and the composition of juvenile assemblages. This was 

illustrated in Chapter II Chapter III and IV by the influence of boulders on the juveniles 

fish community from seagrass meadows, by the responses of the juvenile fish assemblage 

to variations of the Cystoseira canopy structure and by the relationship between juvenile 

distribution within coves and the relative abundance of sand or rocks inside the coves. 

Finally, no patters in juvenile density were observed at scales lees than 1 m, which 

suggests that no process operates at that scale. 

VI.1.2. Underlying processes 

When observing these density patterns, we may try to understand what the underlying 

processes are. Larval dispersal is the main process which acts at the largest spatial scale in 

determining juvenile density distributions since it shapes initial settlers input (Cowen and 

Sponaugle, 2009; Peck et al., 2012; Pineda et al., 2010). Various processes influence larval 

dispersal, mainly larval features (behavior, swimming capabilities and physiology) and 

hydrodynamism (Fisher, 2005; Gerlach et al., 2006; Pineda et al., 2010; Simpson et al., 

2005; Ware, 1975). The relative importance of larval features and hydrodynamism are 

often disputed (Cowen and Sponaugle, 2009), since some authors supports that larvae 

could be considered mainly passive particles in the ocean (James et al., 2002; Lobel and 

Robinson, 1983), whereas others state that larvae could not be considered as mere particles 
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and are able to influence their transport (Berumen et al., 2012; Bradbury et al., 2008; 

Gerlach et al., 2006; Montgomery et al., 2006; Mouritsen et al., 2013; Norcross and Shaw, 

1984).  

Here, in Chapter IV, we highlighted the vulnerability of postlarvae to hydrodynamic 

conditions. Such hydrodynamic conditions are shaped by larger seascape features. The 

configuration of the coastline determines the influence of winds and the associated surface 

currents. Weak winds from sea to coast generate adequate currents which favored the 

larval supply at coast, according to previous works (Raventos and Macpherson, 2005; 

Vigliola, 1998). Furthermore, in semi-enclosed coves and bays with a low water turnover, 

surface currents may not able to guarantee larval supply processes (Chapter V). However, 

larvae should not necessarily be considered passive drifters; indeed, when currents may 

favor the settlement in a given bay, juveniles may select, or alternatively suffer lower 

mortalities, in areas near the mouth of the embayment as reported in previous works 

(Brown et al., 2005; Francour, 1997; Jenkins et al., 1998; Martins et al., 2007; 

Montgomery et al., 2001; Pastor et al., 2013) (see also Chapter V and discussion of 

Chapter II). 

Once larvae reach a given benthic area, density of juveniles changes according to habitat 

types and depth, as juveniles seem to be strongly associated to limited habitat types within 

narrow depth ranges (Biagi et al., 2011; Bussotti and Guidetti, 2010; García-Rubies and 

Macpherson, 1995). Furthermore, within a given habitat type juveniles may select patches 

of a given tri-dimensional structure among the selected habitat, e.g. a given level of 

macrophyte density (Bell and Westoby, 1986a; Cheminée et al., 2013). Such patterns 

(differential distribution of juveniles according to depth, habitat type or among a given 

habitat between patches of different structuration levels) may be explained by two 

alternative processes: active habitat selection or differential mortality rates. In fact, Thiriet 

(2014) showed that both types of processes act simultaneously in determining juvenile 

density patterns. 

Juveniles in early stages are the most vulnerable to predation (Sogard, 1997) since at such 

stages juvenile’s movement capacity is low, as compared with older stages of the fish life 

cycle, and their small size make them being suitable prey for a broad range of predators 

(Scharf et al., 2000). In this sense, being closely associated to a given habitat structure or to 

shallow depths may facilitate the sheltering of juveniles (Behrents, 1987; Hixon and Beets, 
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1989; Paterson and Whitfield, 2000; Shulman, 1985). Furthermore, highly structured 

habitats, such as seagrass meadows, seaweed forest and mixed bottoms are argued to 

proportionate high food availability (Ballesteros, 1990a, 1990b, 1988; Borowitzka et al., 

1990; Mazzella et al., 1998; Pitacco et al., 2014; Sánchez-Jerez et al., 1999)(see also Nina-

Larissa Arroyo et al in prep.). Such habitats may enhance foraging efficiency, which 

provide a fast juvenile growth that will make juveniles less vulnerable to predation or 

competition (Connolly, 1994; Tupper and Boutilier, 1995, 1997). Fish density patterns may 

consequently respond to the trade-off hypothesis, which states that the optimal habitat at a 

given life stage optimizes low predation risk and higher food availability (Dahlgren and 

Eggleston, 2000). However, we observed that not all species and not all juvenile stages 

preferred structured vs less structured habitats or patches among a given habitat. In fact, 

some species are morphologically adapted to forage or avoid predators in a more structured 

patches inside the habitat, whereas others are adapted to less structured, or even bare 

habitats (Hoar and Randall, 1979; Keast and Deirdre, 2011; Leis et al., 2011; Motta et al., 

1995; Recasens et al., 2006). In this sense, the morphology of the fish body is a key feature 

to understand such patterns. Deep bodies are adapted to forage and shelter within more 

structured habitats (e.g. Symphodus spp.), whereas streamlined bodies are adapted to 

forage in less structured habitats such as the the edge or the top of the macrophyte canopy 

(e.g Coris julis, Thalassoma pavo, D. annularis). Furthermore, colour patterns and also 

mobility strategies help fish differentially to better hide or forage in different habitats 

structure (Houtman and Dill, 1994; Main, 1987; Marshall, 2000; Tallmark and Evans, 

1986). For example juveniles of Symphodus spp. are pale brown, which fits with the brown 

colour of the Fucales canopy or substratum, although sometimes they are more green 

(personal observation) fitting with seagrass canopies. Many Gobiidae, Blenniidae and 

Tripterygiidae are present in denudated substrata, and their colour fits with the sand, 

moody or rocky substratum (Patzner, 1999). Its tactic to avoid predators is to remains quiet 

(Tallmark and Evans, 1986). Other species, even mobile ones, are golden coloured at early 

stages, e.g. Salpa sarpa, D. annularis, S. cantharus: such colour patterns may help to 

camouflage in the silvery-yellowish environment of shallow seagrass meadows, where 

golden reflex formed by the sun, and / or mixed with the seagrass colours difficult their 

detection. Other mobile species, such as D. sargus or D. vulgaris, are almost transparent or 

pale gray at early stages, and are difficult to detect in sandy environments where they use 

to settle. In any case, dependency on highly structured environments relaxes as juvenile 
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grow (Macpherson, 1998), probably because they become more mobile, and consequently 

they theoretically can escape more easily from predators. Nevertheless, more studies are 

needed to couple juvenile fish morphology and habitat use. 

Obviously, larval dispersal and supply operate at a much larger scale than habitat selection 

or differential mortality, which explains why juvenile fish densities also vary at different 

spatial scales depending on coast configuration and habitat structure. However the 

influence of such factors may depend on the seascape perception of fish, which changes 

according to species (Morris, 1987; Turner et al., 1995). For instance, S. ocellatus has a 

planktonic larval duration (PLD) of 9 days, whereas that of Lipophrys trigloides is up to 

71 days (Raventos and Macpherson, 2001); for the latter species, which dispersal is longer, 

seascape features at larger scales may be more important than for S. ocellatus. However, 

juveniles of Lipophrys present a reduced mobility (Faria et al., 1998), they seems to be less 

mobile than S. ocellatus (pers. observation), i.e. exploring daily a smaller areas, 

consequently they may perceive habitat structure at finer scales than S. ocellatus. 

Furthermore, this seascape perception changes as a function of the size of juveniles, as 

illustrated for example by the case of D. sargus juveniles (Macpherson, 1998) (see also 

Chapter V).  

Additionally to the influence of seascape at different scales on settlement processes, post-

settlement processes such as density-dependent mortality, strongly influences the final 

production of juveniles (Juanes, 2007; Macpherson et al., 1997). Density-dependent 

mortality processes has been explained by both competency and predation processes, 

which causes juvenile mortality (Hixon and Jones, 2005). It has been argued that this 

density-dependency is typical of site attached residents species (Planes et al., 2000). In the 

case of sea breams (Sparidae), previous work highlighted that density-dependent mortality 

is a major process shaping its juvenile populations (Félix-Hackradt et al., 2013a; 

Macpherson et al., 1997; Planes et al., 1998). Our results support this conclusion (see 

Chapters IV and V), but in Chapter V we highlighted that even if denso-dependent 

processes may strongly influence the final production of juveniles, the seascape 

configuration could be the major limiting factor in the final production of juveniles. 

Density-dependent mortality has been less studied in labrids but some species seems to 

present a density-dependent mortality whereas others may display a density independent 

mortality (Félix-Hackradt et al., 2013a). 
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Predation and competition are key factors influencing juvenile density (Jones, 1987; 

Sogard and Olla, 1993) and in chapter III we aimed to test if interactions with adults and 

predators had any effect on juvenile distribution. However the densities of predators were 

very low in the studied area and juveniles and conspecific adults didn’t display any spatial 

partitioning, thus suggesting that these factors were not relevant in this case (Chapter III). 

VI.1.3. Coastal management 

Juvenile densities are determined by the interaction of a large number of factors: spawning 

success, food availability, physical-chemical conditions, predation, competency, the 

relative location between adult and juvenile habitats, the influence of neighbouring 

habitats, fish behaviours and morphology, etc. (Beck et al., 2001; Horinouchi, 2007). From 

the coastal management point of view, in front of the vast number of factors which could 

influence nursery value of a given habitat, it is difficult to take all of them into account, 

especially considering the scarce knowledge that we have about the influence of most of 

them. From a management point of view, a reasonable starting point may be to take into 

account and guarantee at least the availability of essential habitats.  

Nevertheless, juvenile habitats are usually not considered in management practices, as 

illustrated by some examples. For instance, in Minorca island, according to the definition 

of Diplodus nursery habitat (Harmelin-Vivien et al., 1995), only ~9 % of all the coastline 

may be considered as potential nurseries for D. sargus, D. vulgaris, D. cervinus and 

D. puntazzo (Fig. VI-1 and Fig. VI-2; Cuadros et al., unpublished data), all of them of 

commercial and recreational interest and with an important ecological role (Giakoumi et 

al., 2012; Guidetti, 2006; Lloret et al., 2008). Furthermore, ~15% of these potential 

nurseries are coves without line of sight to open sea, expected to produce very low 

numbers of juveniles (Chapter V) and less than a quarter of these potential nurseries are 

located inside a protected area (Cuadros et al., unpublished data). In other regions where 

potential nurseries have been estimated, it is also reported a very low number of potential 

nurseries as respect to the entire shoreline. For example, in the Marseilles area (France), 

only ~10 % of the shoreline is considered as suitable nursery habitat for these species, and 

less than half of they are located in protected areas (Cheminée et al., 2014). Similarly, 

along the 300 km of Catalan coastline (from Roses to Leucate), only ~25% of the coast 
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displays nursery habitats for Diplodus spp. and only a quarter of it is located in protected 

areas (Zawadzki, 2015). 
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Fig. VI-1. Potential 
nurseries of Diplodus 
sargus, D. puntazzo, 
D. vulgaris and 
D. cervinus in Minorca 
island (coloured 
segments). Nursery 
habitats for these 
species: mixed 
bottoms of sand, 
pebbles and boulders 
(Bussotti and Guidetti, 
2010; García-Rubies 
and Macpherson, 
1995; Harmelin-
Vivien et al., 1995). 
Sheltered nurseries are 
highlighted (in 
orange). MPA: Marine 
Protected Area. 
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Fig. VI-2. Detail of the 
potential nurseries of 
Diplodus sargus, 
D. puntazzo, 
D. vulgaris and 
D. cervinus in Minorca 
island (coloured 
segments). A part 
(black rectangle) of 
Minorca island 
shoreline. Sheltered 
nurseries are 
highlighted (in 
orange). MPA: Marine 
Protected Area. 
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Consequently, in Minorca island and elsewhere, Diplodus nurseries (the shallow 

heterogeneous bottoms) represent a small proportion of the coast, and the most part of 

them are located outside marine protected areas. Besides, even if located within MPAs, in 

most of the MPAs, regulation managements in protected areas are centred in fishery 

banning. For the protection of juveniles, since they are not-targeted sizes for fishery 

(García-Charton et al., 2008), the physical protection of habitats should be the most 

important management action (Cheminée, 2012). Indeed, in the Mediterranean, these 

nurseries tend to be physically destroyed even in protected areas, due to coastal 

development project and physical construction on them (Cheminée et al., 2014; Meinesz et 

al., 2006). Furthermore, beach management planning through all Mediterranean coasts 

usually never take into account the nursery habitats of this species. Indeed, classical beach 

management is restricted to the protection of dune systems, and possible associated wet-

lands, the limitation of anchoring in seagrass meadows, and the removing by heavy 

machinery (tracks, tractors, etc.) of the cast material of seagrass deposited along the 

shoreline (Borum et al., 2004; Silva et al., 2007; Van der Meulen and Salman, 1996). 

Beach nourishment projects are an usual practice in Europe and worldwide (Davison et al., 

1992; Hanson et al., 2002) and may potentially affect broadly the replenishment of 

Diplodus spp. species, since homogenises the sea bed in coves, and consequently causes 

the disappearance of the juvenile habitat, i.e., the heterogeneous mixed bottoms with 

pebbles, boulders and rocks.  

As a regards to C. nodosa seagrass, in Minorca island, Fornells Bay is one of the areas with 

the most extensive C. nodosa meadows (U.T.E. Intecsa-Inarsa, s.a, 2008), intermingled 

with Posidonia oceanica meadows in the deepest parts of the bay. A reserve area was 

created in this bay due to the good conservation status of their meadows, but also due to 

their potential ecological value as nursery habitat for fishes (Manent and Abella, 2005). 

However, the most protected area is the innermost part of the bay, although the highest 

abundance and richness of juveniles were found near the entrance of the bay, as suggested 

by previous works (CAIB, 2015) and confirmed in the present thesis. Besides of this, in 

this case again, management in the bay is restricted to fishery banning, and thus juveniles 

are not a priory affected by this regulation measures since they are not targeted by 

fishermen (García-Charton et al., 2008). Furthermore, although anchoring in P. oceanica 

meadows is forbidden in the entire bay, it is still allowed in C. nodosa meadows, which 
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occupy at least one half of the bay (U.T.E. Intecsa-Inarsa, s.a, 2008). Besides, harbour 

development in the bay is a potential threat. 

Finally, as a regards to Cystoseira forests, in spite of their importance as nursery habitats 

for many labrids (Chapter III and previous studies e.g. Thiriet, 2014), it is still not being 

prioritized in the European Habitats Directive. 

These examples highlight that protection or management plans usually do not take into 

account juvenile habitats, or even if theoretically some plans are established to protect 

juvenile areas, such as in Fornells bay, management zoning and actions are designed 

without establishing measures which effectively affect juveniles. We still do not know to 

what extent the unprotection of juvenile habitats is influencing the replenishment of adult 

populations, but if management practices do not specifically protect juvenile habitats we 

face the risk to compromise the replenishment of adult populations, including 

economically and ecologically relevant ones.  

Furthermore, if future management practices are designed with the aim to protect juvenile 

habitats, it is important to take into account some issues for avoiding the preferential 

selection of some habitats versus others, without being fully aware of the underlying 

processes. For example, in Fornells bay, P. oceanica meadows are protected from 

anchoring, but C. nodosa meadows are not. However, studies which compare the nursery 

role of both habitats are scarce. We still don’t know the relative importance of each habitat 

for juveniles. A necessary first step in management actions will be the improving of our 

knowledge about juvenile habitats in Mediterranean Sea in order to avoid the exclusion of 

some potential and valuable nursery habitats in management plans. 

Moreover, since the Mediterranean seagrass meadows are preferential nursery habitats for 

a only a very few species, they have been considered less relevant than Cystoseira forests 

(Bussotti and Guidetti, 2010; Franco et al., 2006; García-Rubies and Macpherson, 1995), 

but see Guidetti (2000). This is sharp contrast with the relevance of seagrass as nurseries in 

other regions worldwide (Heck et al., 2003). We did not compare directly the abundance of 

juvenile fishes in Cymodocea meadows and Cystoseira forests, but we recorded much 

higher total abundances of juveniles in Cystoseira forests than in Cymodocea meadows 

(4.42 to 11.37 fish.m-2 in Cystoseira forests versus 0.35 fish.m-2 in Cymodocea meadows, 

all in September). Similarly, Guidetti and Bussoti (2000), in mixed meadows of C. nodosa 

and Z. noltii, recorded 0.22 juvenile fish.m-2. Le Direach et al (2015) recorded ~0.6 fish.m-
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2 in both Cymodocea and Posidonia, and ~2.2 fish.m-2 in Cystoseira forests. Cheminée 

(2012), in a study with artificial habitat mimicking dense Cystoseira forests, recorded 7-10 

juvenile fish.m-2. Thus, the overall evidence shows that Cystoseira forests harbour a higher 

total juvenile density than seagrass meadows. Besides, mixed heterogeneous bottoms seem 

to be as well important only for a low number of species, mainly Diplodus spp.), thus 

highlighting the relevance of Cystoseira forests. However, these must be taken with 

caution because of three reasons.  

Firstly, although several species seem to be more abundant in Cystoseira forest, when we 

compare this habitat with seagrass meadows, only in terms of presence of species, many 

species may be present in both habitats. Even more, seagrass meadows may display more 

number of taxa as observed in other works (Le Diréach et al., 2015). 

Secondly, seagrass and mixed bottoms seems to be essential at least for sparids, whereas 

Cystoseira forests seems to be essential for labrids (Bussotti and Guidetti, 2010; García-

Rubies and Macpherson, 1995). In this thesis 77-58 % of recorded taxa in Cystoseira 

forests belonged to labrids, whereas only 15-24 % belonged to sparids. Contrarily, in 

Cymodocea meadows 58.03% of the recorded taxa belonged to sparids whereas 37.15% of 

recorded taxa belonged to labrids. Usually, some species occurs primarily in one of two 

habitats (e.g. in this thesis juvenile D. annularis and L. mormyrus were only present in 

seagrass meadows and juvenile T. pavo were only present in Cystoseira forests). In this 

sense the un-protection of one of these habitats (instead of protecting all) would lead to the 

unprotection of the associated species, which even if may be only a few, are important 

from ecological and economical point of view. Since there is not one single habitat that 

includes all species, and since different species require different habitats, the protection of 

fish biodiversity requires, from a management point of view, to protect a diverse mosaic of 

habitats in the seascape of a given region. 

Thirdly, habitat availability in each region must be taken into account. Indeed, even if one 

habitat may display higher juvenile densities of some species, this habitat could be scarce 

in a given region and thus produce overall less juveniles than other habitats. For instance, 

in Minorca rocky reefs with photophilic algae, including Cystoseira forests, occupy only 

~16% of the infralittoral shallower than 25 m, whereas seagrass meadows occupy ~84% 

(~3% C. nodosa and 81% P. oceanica) of the same part of the infralittoral of the island 

(Fig. VI-3 and Fig. VI-4). If only areas shallower than 15 m are considered, rocky reefs 
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with photophilic algae are dominant over seagrass meadows (~60% vs ~40 %, 

respectively), although truly extensive Cystoseira forests occur mainly along the northern 

coast, in some areas (Sales, pers. comm.).  

In this sense, although seagrass may be less productive per unit area, they may have a net 

production of juveniles equivalent to that of the Cystoseira forests around the island. Thus, 

even habitats that may have a small per-unit-area contribution to fish recruitment may be 

critical for sustaining adult populations (Dahlgren et al., 2006). Consequently, when 

juveniles may be present in various habitats, the availability of each habitat in each region 

must be taken into account to elucidate the real importance of each habitat, in each area, in 

producing juveniles. In an extreme scenario, the protection of only the habitat which 

theoretically produces more juveniles, may lead to the unprotection of other more 

extensively present habitats, which disappearance may deplete significantly the production 

of juveniles. In this sense, the extrapolation of what happens in one site to another site does 

not necessarily works. 

Finally, from a management point of view it is important to consider that the fulfillment of 

the contrasted needs of the different species is reached by the availability of different 

habitats, but also by the natural structural variability among each habitat, which generates 

more or less structured patches (Chapters II and III). This natural variability favored 

species richness. Natural processes generate variations of habitat heterogeneity or 

complexity at very large scale or contrarily at lower scales. For example, in Cystoseira 

forests, geomorphology is constant over hundreds of years and generate variations of 

substrate complexity or heterogeneity at large scales along the northern coast of Minorca 

island, whereas overgrazing, generating barren grounds, adds an overlapping level of 

variability at a smaller and shorter spatial and temporal scales respectively (Cardona et al., 

2013, 2007b). Organisms take advantage of this natural variability as a function of both 

their seascape or habitat heterogeneity-complexity perception which change according to 

species and life cycle-stages (Cooper et al., 1998; Morris, 1987; Turner et al., 1995). For 

maintaining species biodiversity is not correct considering densest forest are the best 

ecosystem and that barren grounds are the worst ones (Cardona et al., 2007b). 
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Fig. VI-3. Biocenosis 
of Minorca island in 
the infralittoral from 0 
to 25 m depth. 
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Fig. VI-4. Detail of the 
biocenosis of Minorca 
island, in the 
infralittoral from 0 to 
25 m depth. A part 
(black rectangle) of the 
island shoreline to 
better appreciate each 
biocenosis. 
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Human stressors often homogenize and simplify seascapes, which may result in a scarcity 

of certain nursery habitats. For example, the presence of ports homogenised bottoms 

worldwide, generating muddy seascapes at ports and adjacent areas (Boudouresque et al., 

2006; Reise, 2005); in the same way, the invasive algae, Caulerpa taxifolia, has 

homogenised 131 km2 of benthos in the NW Mediterranean sea until 2000 (Meinesz et al., 

2001); pollution and associated habitat destruction caused the disappearance of wide 

Cystoseira forests along French and Spanish continental shores (Thibaut et al., 2014), thus 

simplifying them. In fact, many strong disturbances of natural ecosystems have a human 

origin (Foley et al., 2005; Jackson et al., 2001; Vitousek et al., 1997), and cause loss of 

biodiversity, whereas less intense disturbances, moderated, favoured biodiversity because 

it promotes greater landscape heterogeneity (Roberts and Gilliam, 1995; Roxburgh et al., 

2004; Townsend et al., 1997). These kinds of moderate disturbances, less intense, are 

usually of a natural origin (Connell, 1978).  

However, the rational use of sea resources by humans may as well generate less intense 

disturbances, having beneficial effects for the economy and the ecosystem, as it has been 

proved in continental landscape areas. In terrestrial ecosystems, e.g. although intensive 

agriculture and livestock cause significant losses in habitats, traditional, extensive 

agriculture and livestock husbandry can be beneficial (Olea and Mateo-Tomás, 2009) since 

they support a wide range of species, including those unique from natural habitats 

(MacDonald et al., 2000). Therefore it is essential to define the uses that are considered 

moderate to conduct proper management of natural areas, in order to protect biodiversity 

and ecosystems, and to continue being able to use natural resources through the future. 
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VI.2. PRELIMINARY CONCLUSIONS 

Juveniles replenish adult populations, and therefore they are essential for the preservation 

of biodiversity, and to ensure the conservation of species with both ecological and 

economic interest. Consequently, the interest in juveniles and their habitats has increased 

worldwide in action plans of coastal managers and among the scientific community. 

However, very few is known about the ecology of Mediterranean juvenile fishes yet. 

Essential habitats for juveniles are not fully investigated and the factors which influence 

the final production of juveniles are not well understood yet. The results of this thesis have 

contributed to the improvement of the knowledge of the ecology of juvenile fish, through 

the improved understanding of factors that influence the production of juveniles in three 

common Mediterranean habitats: Cymodocea nodosa meadows, Cystoseira forests and 

mixed bottoms of sand, pebbles, and boulders. 

Collected data either of juveniles’ densities or behaviors, in Chapters II to V -and results 

reported from the bibliography-, show the importance of the three-dimensional 

environment structure sensu lato at different spatial scales, from the three-dimensional 

configuration of the coast to the configuration of a given habitat. Consequently, from the 

juveniles point of view, in order to manage a given locality, a multi-scale approach is 

necessary. 

At larger scales, first, the coast configuration may be considered, since it may determine a 

lower number of juveniles. Secondly, at the seascape scale, areas with a heterogeneous 

mosaic of habitats must be selected; doing so will guarantee the fulfilling of the contrasted 

needs of different species, with different nursery habitats.  

Thirdly, in the given locality considered, it must be taken into account the relative 

availability of the habitats in the seascape. Indeed, in theory, the optimal production of 

juvenile must be achieved through including the adequate surface of each habitat in the 

seascape, taking into account the theoretical taxa-specific nursery value of each one, i.e. 

their relative per unit area productivity in the locality. 

At lower scales, among the mosaic of a given locality, each habitat should be protected 

including its intrinsic natural variability in its three-dimensional structure. Monotonous 

bottoms, e.g. artificially homogenized ones, should be avoided, since the optimum 
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production of juveniles of different species in a given habitat seems acquired through the 

intrinsic patchy nature of a given habitat, displaying a mosaic of various habitat 

characteristics (e.g. canopy cover), and therefore fulfilling the contrasted needs of different 

species which inhabit a given habitat.  

MPAs may be a tool to physically protect the essential habitats, if adequate regulation is 

applied. Besides, as a general rule for coastal management and in order to guarantee an 

optimal juvenile production, in or outside of MPAs, the intrinsic natural variability of 

seascapes and inside the seascape of the habitats which compose the seascape, should be 

preserved; this implies reducing the human stressors which usually lead to a 

homogenization of the environment. Indeed protection of habitat through MPAs may be 

not enough and management requires as well reducing indirect habitat transformations 

(e.g. impacts of pollutions, invasive species, etc.). 

This PhD thesis and future works gathering knowledge on juvenile habitats identification, 

and on factors affecting nursery value of habitats, will provide managers essential data to 

establish a multi-taxa seascape approach for the optimized design of management 

measures in order to protect biodiversity and associated ecosystem services. 
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VI.3. PERSPECTIVES 

The aim of this thesis was to understand in Minorca island the influence of potentially 

important factors determining the density distributions and dynamics of labrids and sparids 

juveniles among their juveniles habitats: seagrass meadows, arborescent macroalgae 

forests and mixed bottoms of sand, pebbles and boulders. These factors were: 1) the three-

dimensional structure of the environment sensu lato, from the large scale coast 

configuration and depth to the lower scale habitat structure; 2) biological interactions in 

terms of presence of predators and adult con-specifics; and finally 3) physical constrains in 

terms of meteorological conditions. 

To go further beyond the conclusions of this work, various challenging questions remain 

opened. First, even before studying the influence of factors on juveniles in their nursery 

habitats, a basic step is often missing for many habitats and fish species in the coastal 

Mediterranean: for many species, we still don’t know their main juvenile habitats (e.g. the 

emblematic Sciaena umbra). Indeed, juvenile studies in the Mediterranean, in general, are 

scarce and focused in its Western part (Bussotti and Guidetti, 2010; Cheminée, 2012; 

Felix-Hackradt, 2013; García-Rubies and Macpherson, 1995; Harmelin-Vivien et al., 1995; 

Macpherson and Raventos, 2005; Thiriet, 2014). Secondly, for many fish species, studies 

comparing juvenile densities are usually limited to a handful of habitat and fail to truly 

compare all the potential juvenile habitats available in a given site among the entire 

seascape mosaic. Consequently, more habitats comparisons are needed to state the 

importance of each habitat for each species, e.g. Cymodocea nodosa vs. Posidonia 

oceanica meadows, Cystoseira spp. forests vs. P. oceanica meadows, the different 

phytological Phaeophyceae assemblages in rocky bottoms (e.g. Sphacelariales, vs. 

Dictyotales, different species of Cystoseira), etc. Finally, other habitats have been poorly 

studied; e.g, the chlorophyta communities, such as Cladophora formations or Caulerpa 

spp. meadows. Consequently, as a general rule, more studies at different Mediterranean 

sites (western and eastern ones) and accomplishing more habitat comparisons are needed.  

This matches with another point of current interest: global changes are affecting the 

Mediterranean habitats and fish assemblages. For example, eastern sites are under the 

increasing pressure of invasive fish species (adult and juvenile stages) (e.g. Siganus spp., 

Fistularia sp.). These species may alter native juvenile assemblage through both direct 
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competition (juveniles) and predation (adults) and through indirect habitat transformation 

(e.g. over-grazing) (Sala et al., 2011). Besides, the spread of invasive species is facilitated 

by an increasing sea-surface temperature in the Mediterranean (Bodilis et al., 2011). There 

is consequently a gradient of influences from both invasive species (from east to west) and 

temperatures (oriented north-ward). This requires comparative studies among various 

habitats in invaded versus uninvaded sites, along this latitudinal gradient. 

Furthermore, many of the available studies about essential habitats for juveniles analyze 

only fish densities, i.e. only one of the four juvenile parameters (initial density, growth, 

mortality, connectivity) contributing to the real nursery value of a given habitats (Beck et 

al., 2001). Indeed, measuring juvenile density is only a proxy of settlers supply or in the 

best case a proxy of settlers supply combined with some mortality. The others components 

of the nursery value, i.e., growth, survival and movement to adult habitats should be also 

investigated (Beck et al., 2001). This is the key to truly assess the recruitment potential of 

coastal areas. Growth could be studied through otolimetry and biomass measures (Vigliola, 

1998), survival by means of temporal monitoring (Macpherson et al., 1997) or 

manipulative experimentations (Thiriet, 2014); movement to adult habitats could be 

studied through visibly deployed fluorescent elastomers (VIFE) (Calò et al., 2013). This 

last technique recently implemented for juvenile fish, combined with detailed cartography 

of habitats in the seascape, may also allow us to study the juvenile movement and spatially 

explicit usage of habitat patches and corridors (Nagelkerken et al., 2015) to better 

understand the usage of seascape by juveniles. In this thesis we mainly studied the 

influence of factors on the density patterns of juveniles, although we accomplished some 

efforts to better understand the influence of the studied factors on the other components of 

the nursery value (growth, survival, some ontogenic habitat shifts in Chapters III, IV and 

V), or on juvenile behavior (Chapter III). Consequently, the techniques mentioned above 

may also be essential to completely understand the influence of the studied factors on the 

final production of juveniles in the studied habitats. 

In this thesis we highlighted the importance of three-dimensional structure of the 

environment sensu lato at large scales (coast configuration, depth) and local scales inside a 

given habitat (habitat structure) in determining juvenile density distributions. Much of the 

density variations within differently structured patches or sites of a given habitat may be 

explained by the quality of habitats (the trade-off between shelter and food availability) 
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(Dahlgren and Eggleston, 2000). We argue that the effect of habitat structure we observed 

may be related to both food and shelter availability, although we were not able to 

distinguish the effect of both of them. Improving knowledge on diet of fish and food 

availability will help us to confirm such hypothesis. In the same sense, coupling studies of 

behaviors and functional morphology of fish may help us to improve knowledge about the 

morphological adaptations allowing successful foraging or sheltering (camouflage, 

mobility) in different habitats or patches within habitats. 

Besides, the influence of coast configuration was only tested for one species: D. sargus. 

The influence of coast configuration should be studied for more species. Indeed, in Chapter 

II we hypothesised that emplacement of sites in enclosed bay (near vs far from the opening 

toward the sea) influenced juveniles of C. nodosa meadows. It should be further 

investigated in order to test the hypothesis that areas near the open sea receive more 

settlers. Monitoring of plankton (catch nets) (Calò et al., 2013; López-Sanz et al., 2009) 

could be done in the different regions of such embayment during settlement events, or 

alternatively, ones may use temporal monitoring by means of UVC. 

Finally, it could be interesting to know at which point the intrinsic variability of juvenile 

density distributions among the seascape, or inside a given habitats is later on translated or 

not as variability in the density of adult population (e.g. homogeneous habitats, versus 

patchy habitats) or if adult mobility or post-settlement processes such as denso-dependent 

processes can reshape these patterns. 

As a regards to the other factors studied in this thesis, we failed in our aim to study how 

biological interactions in terms of presence of adult predators and con-specifics 

competitors may influence juveniles; indeed, studied predator were very scarce at 

considered depths and their putative spatial partitioning (in vs outside reserve) was not 

evident. It would consequently be advisable to accomplish studies in and out MPA were 

predators of juveniles are present at the same depths, in order to state the influence of 

predators. Laboratory experiments such as those accomplished by Thiriet (2014) for 

predators, may as well help to understand the competitiveness between adults and 

juveniles. Such studies should be tested also on the other components of the nursery value, 

such as growth and survival. Indeed, for example, some competitive effects of adults con-

specifics has been reported on growth patterns (Jones, 1987).  
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Finally, the physical factors in terms of meteorological influences showed the importance 

of hydrodynamics determined by winds, causing alternatively mortality or picking out 

larvae from coasts. To better understand such alternative responses to meteorological 

conditions, catches of plankton near the coast immediately previous and after rough 

hydrodynamic events, coupled with daily temporal monitoring of settlers will clarify and 

further test such hypothesis. Furthermore, otoliths microchemistry may help us to localize 

larvae origin, to better understand the differential influence of such hydrological 

conditions. Finally, VIFE techniques may allow us to understand the behavior of fish of 

different sizes under the influence of rough hydrodynamic events: do juveniles hide in 

deeper areas when sea is agitated? At what sizes they may occur? 

As a regards to physical meteorological factors, we failed to determinate if temperatures 

had an effect, since study sites displayed almost the same temperatures. Furthermore, we 

installed the temperature sensors in slightly deeper areas than nursery habitats for 

D. sargus. Surface waters have a more variable temperatures (personal observation). The 

installation of temperature sensors closer to the nursery juveniles habitats, at 1 meter depth, 

or alternatively, comparisons between contrasted areas with different temperatures, or 

more temporal series may help us to better understand how may the variation of surface 

waters temperatures affect the nursery value.  

Finally, Mediterranean management’s efforts must be centred in improving the knowledge 

of factors influencing nursery value and in improving the knowledge of the nursery role of 

different habitats. Furthermore it is necessary the implementation of direct measures which 

avoid the physical destruction of juveniles habitats. In order to assure the sustainability of 

biodiversity various juvenile habitats must be protected. Furthermore regional habitat 

availability must be taken into account and habitats with a lower production of juveniles 

must not be completely excluded of the management’s plans. Finally it is essential to 

define the uses that are considered moderate and which could be beneficial ecologically 

and economically, to provide a sustainable use of resources without depleting marine 

resources.
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Photo VII-1. Cala Taulera, Minorca island. April 2013. Photo: Adrien Cheminée. 
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Chapter VII. General Conclusions 

 

The main results of this thesis are as follows: 

1) Habitat type was a major determinant of the composition of the juvenile fish 

assemblages. 

2) Among the three studied habitats various seascape attributes operated at different 

spatial scales shaping juvenile density distributions. 

3) The juvenile fish assemblages of shallow (0-1 m) Cymodocea nodosa meadows 

responded to habitat structure at seascape scale, but not at microhabitat scale. 

4) The presence of boulders within these shallow seagrass meadows increased the total 

density and richness of juvenile fish. 

5) The juveniles of Symphodus species were more abundant when boulders were present 

in the seagrass meadows, whereas the abundance of Diplodus annularis juveniles was 

not affected by the presence or absence of boulders. 

6) Depth and canopy structure were the major determinants of juvenile densities in 

infralittoral (0-15 m depth) Cystoseira forests. 

7) Juveniles of Symphodus individuals preferred dense stands of Cystoseira forests 

whereas juveniles of Coris julis and Thalassoma pavo preferred sparser ones. 

8) Juvenile Symphodus species of any size and smallest juveniles of T. pavo displayed 

cryptic behavior in Cystoseira forests. 

9) Juveniles of T. pavo displayed a more cryptic behavior in dense forests, whereas in the 

less complex forests they switched towards wandering or transitory behaviors. 

10) Wind-induced hydrodynamics, configuration of the coastline (i.e., orientation, 

exposure), habitat structure, depth and density dependent mortality after settlement 

shaped the density of D. sargus juveniles in shallow mixed habitats of rocks, pebbles 

and sand. 

11) SE winds (of 10 m.s-1) shaping 1.5 m waves (10 s period), lowered D. sargus juvenile 

densities. More particularly, northeast orientation of the coastline associated with these 

SE winds, resulted in off-shore winds which were unfavorable for the larval supply. 

12)  Sheltered coves supported lower densities of D. sargus settlers than exposed coves and 

consequently displayed a lower recruitment level.  
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13) Smaller sizes of D. sargus juveniles preferred the most heterogeneous substratum 

among its nursery habitat.  

14) Post-settlement density-dependent mortality highly shaped the recruitment level of 

D. sargus juveniles. 

15) There is not a single habitat that serves as nursery to all the species of littoral fishes 

considered here. Thus, habitat heterogeneity at a scale of tens of kilometres is 

necessary to ensure the recruitment of a diversified fish fauna. 

16) In order to protect juvenile fish in a given locality, seascape attributes at different 

scales must be taken into account in management planning. They include: coast 

configuration and bathymetry, seascape habitat composition, habitat relative 

availability, local nursery value of each habitat for each species and intrinsic habitat 

structure variability. 

17) Management actions to protect juvenile fish must focus not only on the banning of the 

physical destruction of juvenile habitats, but as well on avoiding the transformation of 

their tri-dimensional structure. 
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Photo VIII-1.Es Talaier, Minorca island. April 2013. Photo: Adrien Cheminée. 
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Chapter VIII. Supplementary data 

 

VIII.1. Supplementary tables and figures for Chapter III 

Table VIII-1. PERMANOVA table of results: influence of location (2012), protection (2013) 
and depth on univariate habitat structure descriptors: forest height, cover and PC1- main 
tests.  
Factor location (lo): 2 levels (location B and location C); Factor protection (pr): 2 levels (inside 
MPA, outside MPA); Factor depth (de): 3 levels (d1: 3-5 m, d2: 6-8 m, d3: 10-12 m); Factor site 
(si) with 6 levels (3 sites by level of the factor location or protection). P-values were obtained by 
999 permutations of residuals under a reduced model. Significance: ·P≤0.1 ; * P ≤ 0.05 ; ** P ≤ 
0.01 ; *** P ≤ 0.001. 
Response variable 
considered  

Year Source of var. df MS Pseudo-F P (perm) 

Forest height 2012 Location (lo) 1 450.82 32.28 0.009** 
 Depth (de) 2 237.46 8.61 0.01* 
 Site si(lo) 4 13.97 7.12 0.001*** 
 loxde 2 33.78 1.23 0.343 
 Si(lo)xde 8 27.57 14.06 0.001*** 
 Residuals 126 1.96   
 Total 143    
2013 Protection (pr) 1 408.22 16.61 0.018* 
 Depth (de) 2 156.46 6.39 0.015* 
 Site si(pr) 4 24.58 20.48 0.001*** 
 prxde 2 18.57 0.76 0.511 
 Si(pr)xde 8 24.49 20.40 0.001*** 
 Residuals 126 1.20   
 Total 143    

Forest cover 2012 Location (lo) 1 383.51 1.02 0.35 
 Depth (de) 2 1568.9 6.16 0.025* 
 Site si(lo) 4 375.69 5.60 0.002** 
 loxde 2 79.34 0.31 0.735 
 Si(lo)xde 8 254.6 3.80 0.002** 
 Residuals 126 67.04   
 Total 143    
2013 Protection (pr) 1 262.56 0.62 0.468 
 Depth (de) 2 1635.8 2.94 0.117 
 Site si(pr) 4 420.3 6.52 0.001*** 
 prxde 2 95.68 0.17 0.84 
 Si(pr)xde 8 556.86 8.63 0.001*** 
 Residuals 126 64.49   
 Total 143    
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Table VIII-1. (Continued) 
PC1 2012 Location (lo) 1 35.2 10.90 0.035* 

 Depth (de) 2 34.47 7.45 0.019* 
 Site si(lo) 4 3.23 7.15 0.001*** 
 loxde 2 1.57 0.34 0.739 
 Si(lo)xde 8 4.63 10.24 0.001*** 
 Residuals 126 0.45   
 Total 143    
2013 Protection (pr) 1 35.35 9.34 0.032* 
 Depth (de) 2 21.55 3.53 0.084· 
 Site si(pr) 4 3.79 9.83 0.001*** 
 prxde 2 0.58 9.44·10-2 0.915 
 Si(pr)xde 8 6.11 15.86 0.001*** 
 Residuals 126 0.39   
 Total 143    

 
 

 
 
Fig. VIII-1. Boxplots of Cystoseira forest height, and cover within samples according to locations (2012)/ protection 
(2013), depth categories (d1: 3-5 m, d2: 6-8 m, d3: 10-12 m) and sites. Box plots indicate the median (bold line near the 
center), the first and third quartile (the box), the extreme values whose distance from the box is at most 1.5 times the inter 
quartile range (whiskers), and remaining outliers (open circles). Pair-wise tests between treatments are given in box plots 
(different lower case characters indicate significant differences between treatments). 
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Table VIII-2. PERMANOVA table of results: influence of habitat structure, location 
(2012), protection (2013) and depth on univariate juvenile assemblage descriptors: total 
density and richness- main tests. 

Factor location (lo): 2 levels (location B and location C); Factor protection (pr): 2 levels (inside 
MPA, outside MPA); Factor depth (de): 3 levels (d1: 3-5 m, d2: 6-8 m, d3: 10-12 m); Factor site 
(si) with 6 levels (3 sites by level of the factor location or protection). P-values were obtained by 
999 permutations of residuals under a reduced model. Significance: ·P≤0.1 ; * P ≤ 0.05 ; ** P ≤ 
0.01 ; *** P ≤ 0.001. 

Considered 
Response 
variables 

Year Source of var. df MS Pseudo-F P (perm) 

Total density 2012 PC1(covariate) 1 6.15 .10-2 6.87.10-3 0.924 
 Location (lo) 1 22.65 1.87 0.317 
 Depth (de) 2 11.54 1.14 0.327 
 Site si(lo) 4 12.74 1.63 0.186 
 loxde 2 7.46 0.74 0.486 
 Si(lo)xde 8 10.12 1.30 0.255 
 Residuals 125 7.81   
 Total 143    
2013 PC1(covariate) 1 317.93 2.27 0.143 
 Protection (pr) 1 11.54 4.47.10-2 0.765 
 Depth (de) 2 454.32 3.21 0.107 
 Site si(pr) 4 284.79 3.31 0.013* 
 prxde 2 15.74 0.15 0.858 
 Si(pr)xde 8 136.02 1.58 0.134 
 Residuals 125 86.17   
 Total 143    

Richness 2012 PC1(covariate) 1 1.26 1.48 0.233 
 Location (lo) 1 3.48 2.96 0.192 
 Depth (de) 2 0.91 0.54 0.621 
 Site si(lo) 4 1.24 1.69 0.144 
 loxde 2 0.72 0.42 0.684 
 Si(lo)xde 8 1.71 2.33 0.019* 
 Residuals 125 0.73   
 Total 143    
2013 PC1(covariate) 1 0.26 0.11 0.754 
 Protection (pr) 1 0.16 3.04.10-2 0.995 
 Depth (de) 2 4.37 2.23 0.161 
 Site si(pr) 4 6.02 5.27 0.001*** 
 prxde 2 3.05 1.59 0.294 
 Si(pr)xde 8 1.85 1.62 0.113 
 Residuals 125 1.14   
 Total 143    
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Table VIII-3. PERMANOVA table of results: effect of habitat structure, location (2012), 
protection (2013) and depth on juvenile densities per taxa. 
Factor location (lo): 2 levels (location B and location C); Factor protection (pr): 2 levels (inside 
MPA, outside MPA); Factor depth (de): 3 levels (d1: 3-5 m, d2: 6-8 m, d3: 10-12 m); Factor site 
(si) with 6 levels (3 sites by level of the factor location or protection). P-values were obtained by 
999 permutations of residuals under a reduced model. Significance: ·P≤0.1 ; * P ≤ 0.05 ; ** P ≤ 
0.01 ; *** P ≤ 0.001. 
Considered 
Response 
variable 

Year Source of var. df MS Pseudo-F P (perm) 

Coris julis 
densities 

2012 PC1(covariate) 1 56.92 14.15 0.001*** 
 Location (lo) 1 8.89 1.05 0.497 
 Depth (de) 2 51.62 7.93 0.008** 
 Site si(lo) 4 9.31 3.83 0.005** 
 loxde 2 6.76 1.00 0.394 
 Si(lo)xde 8 6.57 2.71 0.008** 
 Residuals 125 2.43   
 Total 143    
2013 PC1(covariate) 1 7.07 1.27 0.258 
 Protection (pr) 1 9.10 0.80 0.371 
 Depth (de) 2 37.10 5.66 0.024* 
 Site si(pr) 4 12.76 4.44 0.003** 
 prxde 2 13.90 2.10 0.204 
 Si(pr)xde 8 6.29 2.19 0.039* 
 Residuals 125 2.88   
 Total 143    

Thalassoma pavo 
densities 

2012 PC1(covariate) 1 73.45 33.00 0.001*** 
 Location (lo) 1 0.57 0.26 0.628 
 Depth (de) 2 22.17 5.58 0.021* 
 Site si(lo) 4 2.25 1.01 0.39 
 loxde 2 4.95 1.19 0.347 
 Si(lo)xde 8 4.07 1.83 0.077· 
 Residuals 125 2.22   
 Total 143    
2013 PC1(covariate) 1 55.01 3.68 0.069· 
 Protection (pr) 1 1.96 4.96.10-2 0.82 
 Depth (de) 2 121.54 12.77 0.002** 
 Site si(pr) 4 45.25 12.44 0.001*** 
 prxde 2 17.72 1.95 0.222 
 Si(pr)xde 8 8.63 2.37 0.02* 
 Residuals 125 3.64   
 Total 143    

Symphodus spp. 
densities 

2013 PC1(covariate) 1 434.93 33.87 0.001*** 
 Location (lo) 1 0.91 0.11 0.692 
 Depth (de) 2 56.30 6.90 0.018* 
 Site si(lo) 4 6.97 0.46 0.785 
 loxde 2 29.36 3.55 0.09· 
 Si(lo)xde 8 8.04 0.53 0.846 
 Residuals 125 15.04   
 Total 143    
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Table VIII-4. PERMANOVA table of results: influence of habitat structure, location (2012), 
protection (2013) and depth on juvenile total length per taxa. 
Factor location (lo): 2 levels (location B and location C); Factor protection (pr): 2 levels (inside 
MPA, outside MPA); Factor depth (de): 3 levels (d1: 3-5 m, d2: 6-8 m, d3: 10-12 m); Factor site 
(si) with 6 levels (3 sites by level of the factor location or protection). P-values were obtained by 
999 permutations of residuals under a reduced model. Significance: ·P≤0.1 ; * P ≤ 0.05 ; ** P ≤ 
0.01 ; *** P ≤ 0.001. 
Considered 
Response 
variable 

Year Source of var. Df MS Pseudo-F P (perm) 

Coris julis TL 2012 No test     
      
2013 PC1(covariate) 1 289.06 2.64 0.115 
 Protection (pr) 1 1.01 7.54.10-3 1 
 Depth (de) 2 631.55 3.86 0.024* 
 Site si(pr) 4 140.82 1.67 0.155 
 prxde 2 1026.8 7.18 0.023* 
 Si(pr)xde 7 113.01 1.34 0.195 
 Residuals 253 84.19   
 Total 270    

Thalassoma 
pavo TL 

2012 PC1(covariate) 1 1689.3 3.92 0.066· 
 Location (lo) 1 2647.1 2.77 0.158 
 Depth (de) 2 1268.7 6.41 0.014* 
 Site si(lo) 4 1020.1 8.77 0.001*** 
 loxde 2 163.6 1.23 0.358 
 Si(lo)xde 8 125.54 1.08 0.376 
 Residuals 249 116.27   
 Total 267    
2013 PC1(covariate) 1 4563.4 16.18 0.001*** 
 Protection (pr) 1 2203.9 1.74 0.258 
 Depth (de) 2 72.88 0.44 0.648 
 Site si(pr) 4 1122.4 20.02 0.001*** 
 prxde 2 519.62 4.40 0.062· 
 Si(pr)xde 8 93.80 1.67 0.135 
 Residuals 424 56.06   
 Total 442    

Symphodus spp. 
TL 

2013 No test     
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Table VIII-5. PERMANOVA table of results: influence of habitat structure, fish Total 
Lenght (TL), location (2012), protection (2013) and depth on juvenile multivariate 
behavior composition per taxa. 
Factor location (lo): 2 levels (location B and location C); Factor protection (pr): 2 levels (inside 
MPA, outside MPA); Factor depth (de): 3 levels (d1: 3-5 m, d2: 6-8 m, d3: 10-12 m); Factor site 
(si) with 6 levels (3 sites by level of the factor location or protection). P-values were obtained by 
999 permutations of residuals under a reduced model. Significance: ·P≤0.1 ; * P ≤ 0.05 ; ** P ≤ 
0.01 ; *** P ≤ 0.001. 
Considered 
Response 
variables 

Year Source of var. Df MS Pseudo-F P (perm) 

Coris julis 
behavior 
composition 

2012 No test     
2013 PC1 (covariate) 1 6469.7 1.85 0.169 
 TL (covariate) 1 1.08.105 39.72 0.001*** 
 Protection (pr) 1 5196.2 1.20 0.327 
 Depth (de) 2 7847 1.86 0.127 
 Site si(pr) 4 4540.8 1.71 0.102 
 prxde 2 2824.7 0.86 0.538 
 Si(pr)xde 7 3249.6 1.22 0.252 
 Residuals 218 2654.4   
 Total 236    

Thalassoma 
pavo behavior 
composition 

2012 PC1(covariate) 1 25904 5.27 0.01* 
 tl(covariate) 1 1.15.105 29.52 0.001*** 
 Location (lo) 1 302.55 3.61.10-2 0.97 
 Depth (de) 2 14405 3.26 0.014* 
 Site si(lo) 4 9068.3 3.47 0.001*** 
 loxde 2 2267 0.59 0.703 
 Si(lo)xde 8 3946.1 1.51 0.069· 
 Residuals 248 2615.2   
 Total 267    
2013 PC1(covariate) 1 27046 14.55 0.001** 
 tl(covariate) 1 79556 46.76 0.001*** 
 Protection (pr) 1 895.05 0.18 0.911 
 Depth (de) 2 665.6 0.20 0.862 
 Site si(pr) 4 5033.3 5.16 0.002** 
 prxde 2 7840.2 1.71 0.148 
 Si(pr)xde 8 3738.2 3.83 0.001*** 
 Residuals 423 975.27   
 Total 442    

Symphodus 
spp. 

2012 No test     
2013 PC1(covariate) 1 22617 0.56 0.61 
 tl(covariate) 1 12404 2.24 0.128 
 Protection (pr) 1 1496.5 4.10·10-2 0.943 
 Depth (de) 2 18290 0.53 0.579 
 Site si(pr) 4 28729 18.25 0.001*** 
 prxde 2 16287 1.24 0.383 
 Si(pr)xde 7 10525 4.96 0.001*** 
 Residuals 250 2122.3   
 Total 268    
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Table VIII-6. PERMANOVA table of results: influence of protection and depth on 
multivariate adult biomass assemblage and univariate densities, and TL of predators and 
con-specifics. 
Factor location (lo): 2 levels (location B and location C); Factor protection (pr): 2 levels (inside 
MPA, outside MPA); Factor depth (de): 3 levels (d1: 3-5 m, d2: 6-8 m, d3: 10-12 m); Factor site 
(si) with 6 levels (3 sites by level of the factor location or protection). P-values were obtained by 
999 permutations of residuals under a reduced model. Significance: ·P≤0.1 ; * P ≤ 0.05 ; ** P ≤ 
0.01 ; *** P ≤ 0.001. 
Considered  
Response 
variables 

Year Source of var. df MS Pseudo-F P (perm) 

Multivariate 
biomass 
Assemblage 

2013      
 Protection (pr) 1 8.89 1.52 0.285 
 Depth (de) 2 6.45 2.47 0.038* 
 Site si(pr) 4 5.83 2.84 0.005** 
 prxde 2 2.38 0.91 0.486 
 Si(pr)xde 8 2.61 1.28 0.262 
 Residuals 36 2.05   
 Total 53    

Serranus spp. 
density 

2013 Protection (pr) 1 2.30·10-18 3.58·10-15 1 
 Depth (de) 2 3.76·10-4 1.07 0.377 
 Site si(pr) 4 6.43·10-4 3.05 0.019* 
 prxde 2 4.63·10-5 0.13 0.878 
 Si(pr)xde 8 4.50·10-4 1.66 0.149 
 Residuals 36 2.11·10-4   
 Total 53    
      

Serranus spp. 
TL 

2013 Protection (pr) 1 83.70 0.30 0.589 
 Depth (de) 2 653.95 0.76 0.511 
 Site si(pr) 4 260.41 0.67 0.584 
 prxde 2 805.61 0.93 0.441 
 Si(pr)xde 7 910.46 2.36 0.062· 
 Residuals 41 385.8   
 Total 57    
      

C. julis density 2013 Protection (pr) 1 6.22·10-4 8.29·10-2 0.789 
 Depth (de) 2 4.13·10-2 6.45 0.023* 
 Site si(pr) 4 7.51·10-3 2.55 0.067· 
 prxde 2 2.72·10-3 0.43 0.641 
 Si(pr)xde 8 6.40·10-3 2.18 0.055· 
 Residuals 36 2.94·10-3   
 Total 53    
      

C. julis TL 2013 Protection (pr) 1 1724.5 0.70 0.437 
 Depth (de) 2 398.3 0.38 0.69 
 Site si(pr) 4 2492.4 6.88 0.001*** 
 prxde 2 1588.7 1.51 0.293 
 Si(pr)xde 8 1082.2 2.99 0.004** 
 Residuals 413 362.34   
 Total 430    
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Table VIII-6. (Continued) 
Symphodus spp. 
density 

2013 Protection (pr) 1 3.21·10-3 1.29 0.283 
 Depth (de) 2 1.30·10-3 1.35 0.304 
 Site si(pr) 4 2.49·10-3 3.85 0.021* 
 prxde 2 1.44·10-4 0.15 0.867 
 Si(pr)xde 8 9.59·10-4 1.48 0.174 
 Residuals 36 6.48·10-4   
 Total 53    
      

Symphodus spp. 
TL 

2013 Protection (pr) 1 51.91 4.73·10-2 0.786 
 Depth (de) 2 4398.4 3.47 0.138 
 Site si(pr) 4 863.73 0.51 0.748 
 prxde 2 945.15 0.75 0.511 
 Si(pr)xde 5 1111.5 0.65 0.675 
 Residuals 66 1698.3   
 Total 80    
      

T. pavo density 2013 Protection (pr) 1 1.09·10-2 1 0.345 
 Depth (de) 2 5.03·10-2 16.54 0.002 
 Site si(pr) 4 1.09·10-2 4.93 0.004 
 prxde 2 7.51·10-3 2.47 0.157 
 Si(pr)xde 8 3.04·10-3 1.37 0.224 
 Residuals 36 2.22·10-3   
 Total 53    
      

T. pavo TL 2013 Protection (pr) 1 1386.5 4.11 0.057· 
 Depth (de) 2 766.39 2.65 0.147 
 Site si(pr) 4 304.59 0.83 0.477 
 prxde 2 129.13 0.45 0.636 
 Si(pr)xde 7 250.96 0.69 0.668 
 Residuals 235 364.81   
 Total 251    
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Table VIII-7. Mean adult densities (ind. m-2) and biomass (g. m-2) for each level of the factors protection and 
depth. 
Depth: 3 levels (d1: 3-5 m, d2: 6-8 m, d3: 10-12 m); Species: cj= Coris julis; bg= Blenniidae-Gobiidae-Tripterygiidae 
spp.; da= Diplodus annularis; dp= Diplodus puntazo; ds= Diplodus sargus; dv= Diplodus vulgaris; lb= Labrus spp.; 
sa= Sarpa salpa; se= Serranus spp.; ss= Symhodus spp.; tp=Thalassoma pavo. 

Inside MPA Outside MPA 

Density 
 

sps 
d1 

 
d2 
 

d3 
 

d1 
 

d2 
 

d3 
 

 mean se mean se mean se mean Se mean se mean se 

cj 0.070 0.015 0.187 0.027 0.131 0.017 0.106 0.014 0.180 0.030 0.12 0.01 

da 0 0 0 0 0 0 0 0 0 0 0.002 0.002 

dp 0 0 0 0 0 0 0 0 0 0 0.002 0.002 

ds 0.006 0.003 0 0 0.002 0.002 0.024 0.017 0.009 0.006 0.007 0.004 

dv 0.019 0.015 0.017 0.009 0.009 0.006 0.019 0.007 0.015 0.003 0.015 0.009 

lb 0.002 0.002 0.002 0.002 0 0 0.002 0.002 0 0 0 0 

mu 0 0 0 0 0.004 0.004 0 0 0 0 0 0 

sa 0.076 0.039 0.024 0.022 0.011 0.006 0.011 0.011 0.074 0.074 0 0 

se 0.017 0.006 0.015 0.004 0.022 0.005 0.013 0.005 0.017 0.006 0.024 0.007 

ss 0.011 0.007 0.022 0.010 0.019 0.008 0.020 0.008 0.043 0.011 0.035 0.013 

tp 0.141 0.030 0.043 0.008 0.007 0.004 0.124 0.015 0.106 0.028 0.046 0.008 

Biomass 

cj 0.938 0.258 1.797 0.230 1.368 0.339 1.211 0.152 2.206 0.338 1.611 0.178 

da 0 0 0 0 0 0 0 0 0 0 0.501 - 

dp 0 0 0 0 0 0 0 0 0 0 1.074 - 

ds 0.703 0.134 0 0 0.347 - 2.824 1.273 1.039 0.639 0.923 0.337 

dv 4.470 3.436 2.967 2.381 3.163 2.036 1.601 0.481 0.844 0.218 1.656 0.668 

lb 0.525 NA 1.645 - 0 0 1.645 - 0 0 0 0 

mu 0 0 0 0 2.307 - 0 0 0 0 0 0 

sa 20.661 10.205 9.846 4.600 4.541 1.311 2.651 - 17.674 - 0 0 

se 1.538 0.310 0.569 0.099 0.755 0.169 0.675 0.166 0.834 0.202 1.323 0.343 

ss 1.800 0.937 0.890 0.240 1.346 1.008 1.951 0.733 1.464 0.328 2.386 0.854 

tp 1.640 0.565 0.420 0.089 0.156 0.036 1.671 0.323 1.574 0.496 0.575 0.173 
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VIII.2. Supplementary figures for Chapter V 

 
Fig. VIII-2. Boxplot of the different proportion of preys in the stomach content of Diplodus sargus juveniles (10-30 mm 
TL). 

 

 
Fig. VIII-3. nMDS ordination plot of stomach content prey assemblage for Diplodus sargus juveniles (10-30 mm). 
Different tones of gray and symbols represent different size class (sc) of fishes: s1: 10-16 mm TL; s2: 17-23 mm TL; 
s3: 24-30 mm TL. 

Resemblance: Binomial deviance (scaled)

sc
s1
s2
s3

2D Stress: 0.21
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Photo IX-1. Addaia, Minorca island. April 2013. Photo: Adrien Cheminée. 
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