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RESUM

L’augment del nombre de transistors en circuits integrats, seguint la llei de
Moore, ha portat a la miniaturitzacié dels xips fins a la nano-escala des dels
transistors originals, de la mida de centimetres fins als xips d’avui en dia de
fins a un nandmetre. Gracies a aquesta reduccié en mida, avui en dia exis-
teixen components més petits i més rapids per a ordinadors i smartphones.
Tot i els avantatges d’aquesta millora, tan en rendiment com en mida, aque-
sta també comporta problemes ja que el fet que aquests sistemes operin
a major velocitat comporta un major encalentiment dels circuits. Per tant,
quan s’estudien aquests sistemes cal tenir en compte no només la corrent
electrica que un desitja controlar siné també les corrents d’energia i calor,
tot sabent com es dissipa aquesta, juntament amb la relacié6 que guarden
electricitat i calor. L'estudi d’aquestes magnituds no és una tasca facil, ja que
en sistemes d’aquesta escala els efectes quantics poden tenir un paper rell-
evant i cal tenir en compte nous fenomens, propis de 'escala microscopica.
Llavors, 1'objectiu d’aquesta tesi és donar llum en aquest camp mitjangant
l'estudi de diversos sistemes de mida nanometrica, caracteritzant la seva
resposta, en termes de corrents electriques i de calor, a forces electriques i
termiques.

Per assolir dit objectiu, comencem al capitol 1 amb una introduccié als ti-
pus de sistemes que estudiarem en aquesta tesi. Majoritariament tractarem
sistemes confinats com punts quantics i sistemes Hall quantics i en de-
scriurem les seves propietats més rellevants. Per altra banda, en el capitol 2,
es descriuen breument les principals magnituds que usarem per descriure
els sistemes mencionats, és a dir, els fluxos d’electricitat i de calor. Finalment,
hi presentem els distints metodes que emprarem per calcular-los.

Els resultats de la tesi comencen al capitol 3, on considerem la corrent
més petita possible, un electré emes en cada periode, i estudiem una de les
propietats més intrigants de la fisica quantica, la dualitat ona-particula. Amb
aquest objectiu en ment, usem un interferometre Mach-Zehnder construit
en un sistema Hall quantic on els electrons emesos per un o dos emissors
d’electrons poden interferir i collisionar. D’aquesta manera, la interferen-
cia ens permet estudiar els comportaments com a ones i les col-lisions els
comportaments de tipus particula. Estudiant aquest sistema en termes de
corrents de carrega i de calor, els nostres resultats permeten afirmar que les
dues corrents es comporten de manera molt diferent i que la interpretacié
en termes de particules no serveix per explicar els resultats de la corrent de
calor, mentre que la basada en ones si que permet interpretar correctament
els resultats d’ambdues quantitats.

En el capitol 4, estudiem en més profunditat 'aparell usat per emetre
electrons d'un en un en el capitol 3: un condensador quantic. Sometem el
sistema a un voltatge que oscil-la rapidament en el temps, fet que ens permet
estudiar els efectes de processos assitits per fotons, aixi com els efectes de
la interacci6 en la dinamica de relaxacié de I'equivalent quantic del circuit
RC. Els nostres resultats ens permeten comprovar que la definicié tipica de
la corrent energetica no és del tot correcta, ja que s’ha de tenir en compte la
calor que es guarda i que es relaxa en les barreres per poder tenir un resultat
correcte.
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A continuacid, en el capitol 5 investiguem com el circuit que hi ha al
voltant del sistema afecta el transport de calor i de carrega a través d'un
transistor d'un sol electré (un punt quantic connectat a dos contactes). Per
aixo, estudiem els fluxos de carrega i de calor en el regim lineal i mostrem
que l'efecte ambiental pot causar una rectificacié de calor, fins i tot en el
regim lineal. A més, mostrem que quan s’usa el transitor com a motor ter-
moelectric, I'energia ambiental pot ajudar a millorar-ne l'eficiéncia.

Al capitol 6 seguim amb la idea d’usar un transistor d"un sol electr6 com
a motor termoelectric. Aixi, dissenyem un sistema format per un punt quan-
tic connectat a dos estats de vorera d'un sistema Hall quantic. En aquest
sistema, implementem un protocol de feedback en el que un ens extern, un
dimoni, és capag de controlar la quiralitat dels estats de vora mitjangant la
mesura de l'estat del punt quantic. Aixd permet a l'ens obtenir informa-
ci6 del sistema que llavors és usada per extreure treball del sistema sense
necessitat d’un gradient termic.

Finalment, les conclusions generals de la tesi es troben al capitol 7.



RESUMEN

El aumento del nimero de transistores en circuitos integrados, siguiendo
la ley de Moore, ha llevado a la miniaturizacién de los chips hasta la nano-
escala desde los transistores originales, que medfan unos pocos centimetros
hasta los chips de hoy de hasta un nanémetro. Gracias a esta reduccién en
tamafio, hoy en dia existen componentes mas pequefios y mas rapidos para
ordenadores y smartphones. Adn con las ventajas de esta mejora, tanto en
rendimiento como en tamarfio, esto también comporta problemas ya que el
hecho de hacer funcionar estos dispositivos a mayor velocidad implica que
se calientan mads. Por tanto, al estudiar estos sistemas, no sélo hay que tener
en cuenta la corriente de carga sino también las corrientes de energia y de
calor, estudiando cémo se disipa ésta, junto con la relacién entre electricidad
y calor. El estudio de estas cantidades no es una tarea facil, ya que en sis-
temas de esta escala los efectos cudnticos pueden tener un papel relevante
y hay que tomar en consideracién nuevos fenémenos, propios de la escala
microscépica. Por eso, el objetivo de esta tesis es aportar a esta cuestion,
mediante el estudio de diversos sistemas de tamafio nanométrico, describi-
endo su respuesta en términos de corrientes eléctricas y de calor, a fuerzas
eléctricas y térmicas.

Para conseguir dicho objetivo, empezamos con una introduccién a los
tipos de sistemas que estudiaremos en esta tesis en el capitulo 1. Tratare-
mos mayoritariamente con sistemas confinados como puntos cudnticos y
sistemas Hall cudnticos y describimos sus propiedades maés relevantes. Por
otro lado, en el capitulo 2, se detallan brevemente las principales magni-
tudes que utilizaremos para describir los sistemas mencionados, es decir,
los flujos de electricidad y de calor. Finalmente, presentamos los diferentes
métodos que utilizaremos para calcularlos.

Los resultados de la tesis empiezan en el capitulo 3, dénde consideramos
la corriente mds pequefia posible, un electrén emitido en cada periodo, y
estudiamos una de las propiedades mads intrigantes de la fisica cudntica, la
dualidad onda-particula. Con este objetivo en mente, usamos un interfer-
6metro Mach-Zehnder construido en un sistema Hall cuantico donde los
electrones emitidos por uno o dos emisores de electrones pueden interferir
y colisionar. Asi, la interferencia nos permite estudiar los comportamientos
cémo ondas y las colisiones los comportamientos tipo particula. Estudiando
este sistema a través de las corrientes de carga y de energia, nuestros re-
sultados permiten afirmar que ambas corrientes tienen comportamientos
muy diferentes y que la interpretacién de particulas no permite explicar
los resultados, mientras que la basada en ondas si que permite interpretar
correctamente los resultados de ambas cantidades.

En el capitulo 4, estudiamos en mds profundidad el aparato utilizado para
emitir electrones de uno en uno en el capitulo 3: un condensador cudntico.
Sometemos el sistema a un voltaje que oscila rdpidamente en el tiempo,
hecho que nos permite estudiar los efectos de los procesos asistidos por fo-
tones, asi como los efectos de la interaccién en la dindmica de relajacién del
equivalente cuantico del circuito RC. Con nuestros resultados comprobamos
que la definicién tipica de la corriente energética no es del todo correcta, ya
que hay que tener en cuenta el calor que se guarda y que se relaja en las
barreras para poder tener el resultado correcto.
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A continuacién, en el capitulo 5, investigamos cémo el circuito que hay
alrededor del sistema afecta al transporte de calor y de carga a través de un
transistor de electrén tinico (un punto cudntico conectado a dos contactos).
Para eso, estudiamos los flujos de carga y de calor en el régimen lineal y
mostramos que cuando se usa el transistor cémo motor termoeléctrico, la
energia ambiental puede ayudar a mejorar la eficiencia.

En el capitulo 6 seguimos con la idea de utilizar un transistor de electrén
tnico cémo motor termoeléctrico. Asi, disefiamos un sistema formado por
un punto cuantico conectado a dos estados de borde de un sistema Hall
cudntico. En este sistema implementamos un protocolo de feedback en el que
un ente externo, un demon, es capaz de controlar la quiralidad de los estados
de borde mediante la medicién del estado del punto cuantico. Eso permite
al ente obtener informacién del sistema que entonces es usada para extraer
trabajo del sistema sin necesidad de un gradiente térmico.

Finalmente, las conclusiones generales de la tesis son presentadas en el
capitulo 7.
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OVERVIEW

The fulfillment of Moore’s law, the doubling of number of transistors in inte-
grated circuits every two years [1], has led to the miniaturization of chips to
the nanoscale from the initially centimeter size transistors [2] to nowadays,
with transistors down to 1 nm [3]. As a consequence, faster and smaller com-
ponents for computers and smartphones are available nowadays. As good
as this sounds, this improvement in performance and size comes with some
associated problems since rapid operation means a stronger heat dissipa-
tion in the system. To overcome these problems one needs to characterize
not only the charge current that is used in these systems but also to study
its relation to heat currents and how they are dissipated. The investigation
of these currents is not an easy task since in such small systems quantum ef-
fects start to play a crucial role and many new phenomena emerge. The aim
of this thesis is to shed some light in this field by studying various nanoscale
systems and characterizing their response to electrical and thermal forces in
terms of charge and energy flows.

To this end, in Chapter 1, we start with an introduction of the systems that
we analyze in this thesis. In most of the cases we deal with confined systems
in the nanoscale such as quantum dots and quantum Hall systems. In this
chapter we describe some of their most relevant peculiarities. In Chapter 2,
we briefly discuss the main magnitudes that we are going to use to describe
those systems, namely the charge and energy flows, and we present the
different approaches and formalisms of quantum transport theory used to
calculate charge and energy currents.

We start, in Chapter 3, by considering the smallest possible current, i.e.
one single electron emitted in one period and we study one of the most
intriguing properties of the quantum world, the particle-wave duality. With
this purpose, we use a Mach-Zehnder interferometer built in a quantum
Hall setup where electrons emitted by one or two single-particle sources
can interfere and collide. Interference allows us to address the wave-like
properties of electrons, and collisions allow us to address the particle-like
features. By studying the charge and energy currents of these systems we
are able to show that charge and energy flows have different behaviors and
that the particle-like picture is only suited to explain the charge current
whereas the wave-like picture allows us to interpret correctly the results of
both quantities.

In Chapter 4 we study in more detail the setup used to emit single parti-
cles in Chapter 3, the quantum capacitor. By subjecting this system to a fast
AC-driving we can study the effects of photo-assisted events and of electron-
electron interaction on the relaxation dynamics of the quantum equivalent
to the RC-circuit. We check that the usual definition for energy currents is
flawed and that one needs to take the energy relaxed in the barriers for a
proper result, in terms of symmetry.

In Chapter 5 we study the effect of the surrounding circuit, an environ-
ment, on the transport properties of heat and charge through a single elec-
tron transistor, a gated quantum dot connected to two reservoirs. We study
the charge and heat currents in the linear regime and we show that the en-
vironment is able to produce heat rectification even in the linear regime and
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that it can help improve the efficiency of the single electron transistor when
it is used as a thermoelectric engine.

In Chapter 6 we follow the idea of Chapter 5 of using a single electron
transistor as a thermoelectric engine. We devise a setup consisting of a quan-
tum dot connected to two quantum Hall edge states. We implement a feed-
back scheme in which an external entity, a "demon", is able to control the
chirality of the edge states by reading the state of the quantum dot. The
demon does work on the system thanks to the information that extracts by
reading the charge dot state.

Finally, we present the general conclusions of this thesis in Chapter 7.
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INTRODUCTION






NANO-STRUCTURES

Nanoscale devices appeared as a consequence of the miniaturization of elec-
trical components, mainly used in computation. The search for faster and
more powerful devices lead to a search for increasingly small systems where
the usual electrical components of computer circuits could be implemented.
The performance of these components is measured basically in terms of elec-
trical currents, but faster electrical currents mean that a greater amount of
heat is dissipated in these type of systems. Hence, in nanoscale systems, the
heat dissipated (or flowing) becomes a relevant quantity that needs to be
characterized alongside the electrical current. Furthermore, a good charac-
terization of heat flows in nanostructures leads to the possibility of control-
ling such flows.

With this in mind, we define a nanoscale device as a structure of dimen-
sions in the nanometers which performs a useful task [4]. Many examples
of this are available nowadays, from nanoscale transistors to graphene, all
the way to quantum wires and carbon nanotubes. These kind of devices are
usually built using semiconductor materials.

Since the discovery of the solid-state transistor [2], a lot of progress has
been made, leading to the field of mesoscopics and nanoscale systems where
many relevant applications and effects have been described. Examples of
this are: the quantum Hall effect, graphene, electrical and optical applica-
tions for quantum dots.

In this chapter we introduce the basic notions about nano-structures needed
for the understanding of this thesis. We start by a short overview of different
types of nano-structures and their definition in Section 1.1. Once we have
introduced the nano-structures in general, we focus on the main example
which is the most prominent system that we are going to study throughout
this thesis, i.e. quantum dots, in Section 1.2. Finally, in Section 1.3, we dis-
cuss the quantum Hall effect and the ballistic and chiral nature of its edge
states that we use as building blocks for the systems studied in Chapters 3
and 6.

1.1 FROM TWO TO ZERO DIMENSIONS: CONFINED SYSTEMS

Of particular interest to this thesis are the nano-systems in which the motion
of carriers is restricted in some of the spatial directions, known as confined
systems. In the field of mesoscopic devices, any system in which the motion
of the electrons is forbidden in any direction is considered a confined system.
Examples of this type of systems, classified according to the number of
restricted dimensions of movement from two to zero dimensions, are: two-
dimensional electron gases, quantum wires and quantum dots.

Two-dimensional systems

The motion of electrons in condensed matter can be restricted so that elec-
trons can move only in a two-dimensional plane. This can be achieved either
by forming a very narrow interface between two different semiconductors



NANO-STRUCTURES

(e.g. GaAs and AlGaAs) or by construction of the material, as in mono-layer
materials such as graphene [5].

The electrons in the interface between two semiconductors are said to be
confined to a two-dimensional electron gas (2DEG). The 2DEG is one of the
most widely used setups in condensed matter studies concerning transport
properties of mesoscopic systems. Two dimensional electron gases are the
base to many applications, form the creation of Fabry-Perot interferometers
using quantum point contacts (QPC) [6], the creation of quantum dots and
quantum dot arrays to the possibility of implementing systems using the
quantum Hall effect, which was first observed in a 2DEG [7].

One-dimensional systems

One can further reduce the dimensionality of condensed matter systems
to one dimension by confining the motion of electrons in two dimensions,
allowing for movement in just one dimension. The reduction of dimension-
ality to one dimension (or quasi-one) is usually achieved by construction of
the system and thus the most relevant examples of one-dimensional systems
are nanowires and nanotubes (especially carbon nanotubes). These type of
systems have been used for many applications, e.g. nanowires are used to
create Majorana fermions [8], and carbon nanotubes can be used as super-
capacitors [9].

In this thesis, our interest in one-dimensional systems is reduced to the
fact that they can be used to build zero-dimensional structures with proper-
ties different to those created in two-dimensional systems. Quantum dots
created in carbon nanotubes can exhibit spin-orbit and valley couplings
which are hard to achieve in quantum dots implemented in 2-DEG.

Zero-dimensional systems

Finally, when movement of charges is constricted in all three directions we
obtain zero-dimensional systems. It is to be noted that they are not true zero
dimensional but rather quasi zero-dimensional. In a 2DEG one can further
confine the electrons in the two available dimensions or in a quantum wire
by using constrictions or gate voltages in order to achieve zero-dimensional
structures. It is also possible to directly grow such structures in the form
of nano-pillars directly on a substrate in a process known as self-assembly.
Being zero-dimensional, these systems receive the name of quantum dots.
In the next section we give a more detailed overview of quantum dots, since
they are the most prominent nanostructure in this thesis.

1.2 CONFINED SYSTEMS: QUANTUM DOTS

A quantum dot is a quasi-zero-dimensional nanostructure whose electronic
states are totally quantized. They are built by constricting the motion of
electrons in all three dimensions which results in a discrete spectrum of
energy levels similar to what happens in atoms. Therefore quantum dots
can be thought of as artificial atoms with a controllable energy spectrum.
Firstly introduced as such due to their discrete spectrum in the optics field,
quantum dots have evolved to be one of the most active fields of research
in condensed matter physics [4, 5, 10-15]. The great advantage of studying
physics in 0-D artificial atoms is that the system can be modified in a control-
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Figure 1.1: Scanning microscopy image of a quantum dot defined in a 2DEG via gate
depletion. Image taken from [16].

lable way and out-of-equilibrium states can be induced either by electrical
AC and DC potentials or thermals biases.

On top of that, quantum dots are of special relevance to this thesis since
they are the only nano-structure appearing in all chapters of this thesis.
They appear as single-particle emitters in Chapter 3, as quantum capacitors
in Chapter 4, as single electron transistors in Chapter 5 and as a localized
state in the bulk of a quantum Hall system in Chapter 6.

Many types of quantum dots are available nowadays, depending on the
method of fabrication or the type of system in which they are found: vertical
quantum dots are obtained by etching techniques through which metallic is-
lands are obtained, effectively trapping electrons, quantum dots can also be
obtained by confining electrons in two-dimensional electron gas through
gate depletion and quantum point contacts (QPC), see Fig. 1.1, recently
quantum dots have also been created in carbon nanotubes [4].

1.2.1  Applications

Our main focus on quantum dots is their use in transport of charge and
energy in condensed matter systems and their behavior when they are part
of a nano-scale circuit. Transport in quantum dots is a wide-ranging field
where all types of configurations using quantum dots have been envisioned,
from quantum capacitors (connected to one reservoir) and single electron
transistors (one quantum dot connected to two reservoirs) to double quan-
tum dots both in series and parallel, and quantum dot arrays. In each of
these configurations, different properties of the quantum dots emerge and
thus they all present their own interest and potential applications. In this
thesis we focus on two of these configurations, the quantum capacitors and
the single electron transistors.

1.2.1.1  Quantum capacitors

One of the most prominent applications of quantum dots is their use as
quantum capacitors which are the quantum equivalent of RC circuits [17].
In a typical application, the quantum dot plays the role of one of the “plates”
of the capacitor being the macroscopic back-gate the other plate of the ca-
pacitor. The quantum point contact defining the dot plays the role of a re-
sistor. In this type of application, quantum dots can be used to store charge.
Quantum capacitors subjected to AC voltages present a quantization of their
charge relaxation resistance [18], even in the presence of interactions [19].
We investigate the response of the heat current in such a device in Chap-
ter 4.

5
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The quantum capacitor is a type of quantum circuit that can be imple-
mented using a 2DEG and a QD defined via a QPC. This type of circuit not
only can store charge (as a capacitor) but it can also be used to emit charge
one by one, in other words, it can be used as an on-demand single-electron
emitter [20]. By driving the voltage gate, Vg (t), controlling the energy lev-
els of the dots above and below the Fermi energy with an amplitude similar
to the level spacing of the energy levels of the dot, the capacitor acts as a
single particle emitter, emitting an electron in one half of the period and a
hole in the other half of the period, see Fig. 1.2. This implementation of the
quantum capacitor is known as a single-electron source (SES).

These type of sources, implemented in a QH setup where no backscatter-
ing is possible serve as the equivalent of single-photon sources of quantum
optics, allowing for the reproduction of optics experiments using electrons
[21, 22].

o

O

Figure 1.2: Driving sequence on a quantum capacitor used as a single electron source
by moving the gate voltage V(t). Reproduced from Ref.[20]

1.2.1.2  Single-electron transistors

The single electron transistor configuration is widely used for transport stud-
ies in quantum dots [16, 23—25]. This setup consists of a quantum dot at-
tached to two leads, acting as source and drain for the charge current, as
the systems studied in Chapters 5 and 6. A prototypical example of such
setup is shown in Fig. 1.1 where an experimental image of such setup is pre-
sented. We model such a setup as two metallic contacts acting as electronic
reservoirs with a continuum of states connected via tunneling junctions to
the quantum dot, characterized by discrete states as shown in Fig. 1.3. The
discrete energy levels of the quantum dot can be controlled via a gate volt-
age Vi and transport of electrons is triggered by the application of a voltage
bias between source and drain Vg > Vp. Single-electron transistors can be
used as thermoelectric engines when the application of a thermal gradient
between source and drain induces a current against the applied voltage bias,
effectively being able to extract power from the system.

In this setup it is possible to observe how the discreteness of the energy
levels of the quantum dots affects transport and it is possible to observe
how the Coulomb repulsion between charges can block transport in what is
known as Coulomb blockade of transport which we introduce in the next
Section 1.2.2. Coulomb blockade peaks obtained from conductance measure-
ment in the SET of Fig. 1.1 are shown in Fig. 1.4.

We investigate how the environment (the surrounding circuit) affects trans-
port in a SET in Chapter 5.
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Figure 1.3: a) Sketch of a typical setup of a SET, two electronic reservoirs (in red
(source) and blue(drain)) in contact with a quantum dot (in green). b)
Energy representation of the SET, two reservoirs at different voltages rep-
resented as a continuum and the quantum dot (delimited by tunneling
barriers) represented as the discrete energy levels.

1.2.2  Charging energy: Coulomb Blockade

Due to their nature, electronic states in quantum dots are very sensitive to
the presence of multiple electrons due to the Coulomb interaction [4] result-
ing in frozen dynamics inside the dot and the appearance of charging effects
[12]. As a consequence transport through quantum dots has a rich variety
of phenomena, e.g. Coulomb blockade, Kondo resonances or Fano interfer-
ence. In this section we describe the Coulomb blockade effect, the blocking
of transport through a quantum dot due to electron-electron interactions.
This repulsion between charges, also known as charging effects, can become
of importance in small quantum dots when they are weakly coupled to the
leads through which transport happens.

As shown in Fig. 1.4, charging effects can be of importance, but it is not
ensured that this will be the case, some requirements must be met. Taking
the SET setup and removing the contacts, we would have a metallic island
occupied by N electrons, i.e. with a quantized charge eN. If then we add
the contacts and allow for particle exchange, the number of particles in the
island will adjust itself to minimize circuit energy. When particle exchange
occurs, the charge of the island changes by e and thus the electrostatic po-

tential is modified by the charging energy Ec = %, related to the total
capacitance of the dot, C. The charging energy will be of relevance if it is
greater than the thermal energy kg T. Another condition must be fulfilled in
order for the charge to be well quantized and that is electrons must be well-
localized which imposes a lower boundary in the tunneling resistance of the
dot R¢ which defines the typical discharge time of the island At = R C. It is
also needed for charge quantization that energy uncertainty AE is smaller
than the charging energy. By means of Heisenberg uncertainty relation we
have then: AEAt = R¢Ce?/C > h implying that the tunneling resistance
ought to be larger than the resistance quantum,i.e Ry > e—}} Summarizing,
charging effects (quantization of the charge) will only be important if the
following conditions are fulfilled:

h
R > 5 (1'1)
e
eZ
— > kgT. (1.2)
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These conditions can be achieved by a weak coupling of the dot to the reser-
voirs and by making a sufficiently small dot respectively. If charging effects
become strong enough, transport may be blocked and then the dot is said
to be in the Coulomb Blockade (CB) regime. Therefore Coulomb blockade
can be seen as a suppression of electrical current at low biases. If the bias is
smaller than the charging energy, current is strongly suppressed. Coulomb
blockade regime can also be seen by the appearance of very strong peaks in
the conductance of the system, see Fig. 1.4.
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Figure 1.4: Characteristic Coulomb blockade peaks in the electrical conductance G
of a quantum dot. Image taken from [16].

1.3 TOPOLOGICAL SYSTEMS: QUANTUM HALL

The quantum Hall effect is the quantum mechanical version of the Hall ef-
fect and is characterized by the quantisation of the Hall conductivity [7].
It is observed in two-dimensional electron gases, see Section 1.1, at low
temperatures subjected to strong perpendicular magnetic fields. When a
2DEG is subjected to a strong magnetic field, the electrons in the bulk of
the sample describe cyclotron orbits whereas the electrons near the bound-
aries describe skipping orbits that follow the edges, creating chiral edge
channels for transport, see Fig. 1.5 a). From a thoretical point of view this
is understood since, in this strong magnetic field regime, the Landau levels
describing the quantized cyclotronic orbits of the electrons are extremely
degenerate which allows all the electrons to be in just a few Landau lev-
els. Deep within the interior of 2DEG with well delimited boundaries, the
conduction band edge is essentially flat, independent of position, and the
corresponding Landau-level energies are similarly constant. The boundaries
of the sample correspond to those regions, however, where the conduction
band edge rises well above the Fermi level, to confine the electron system to
a finite area, see Fig. 1.5 b). Each Landau level that is occupied in the inte-
rior of the 2DEG therefore intersects the Fermi level at two different points,
located near the opposite edges of the sample, and therefore yields two
counter-propagating edge states that function as one-dimensional channels.
Under this conditions current flow is carried by these ballistic edge states
[4].

These edge states are ballistic since back-scattering is suppressed in the
edge channels through which this states travel. The suppression of backscat-
tering can be easily understood using a classical picture of skipping orbits,
since the Lorentz force pushes the electron back to the boundary and makes
it maintain its skipping motion [4], see Fig. 1.5 a). Therefore it is possible to
create one-dimensional channels where no back-scattering is present. This
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Edge states

Edge Bulk Edge

Figure 1.5: Quantum Hall effect. a)Top view of a 2DEG subjected to a strong mag-
netic field B. Electrons in the bulk follow circular orbits whereas those
in the outer part follow skipping orbits, forming chiral edge channels. b)
Landau levels in real space. The levels are essentially flat in the bulk of
the 2DEG but they rise up near the edges of the sample.

technique has proven to be very useful for the implementation of electronic
equivalents to the quantum optical experiments.

1.3.1  Quantum Hall bar

The quantum Hall effect was detected via the quantization of the Hall con-
ductivity. Measurements of this quantity are obtained by measuring the con-
ductance perpendicular to the applied current in a sample in the quantum
Hall regime, see Fig. 1.6. This kind of device, consisting of a 2DEG in a
strong magnetic field with contacts that allow the application of a current
in one axis and the measurement of conductances in the other is known
as a quantum Hall bar. The presence of edge states is clearly visible in a
quantum Hall bar from the measurement of the Hall conductivity.

If an impurity is present in the bulk of the 2DEG in the bar, it forms a
localized state that acts as a quantum dot. In Chapter 6 we explore such
device and its applicability to implement a Maxwell demon.

@

(1)
N\

Figure 1.6: Prototypical example of a quantum Hall bar, where the Hall conductance
can be measured.
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Figure 1.7: An electronic Mach-Zehnder interferometer. In the left side of the pic-
ture, a microscopic image of the experimental device and a correspond-
ing sketch of the interferometer. On the right side, the current measured
experimentally as a function of the magnetic field and the voltage mea-
suring the detuning of the arms of the interferometer. Images extracted
from Ref.[26].

1.3.2 Mach-Zehnder interferometer

The chirality and lack of backscattering of the edge states of the quan-
tum Hall effect can be used to realize optics experiments using electrons
in condensed matter systems. An example of such setup is the electronic
equivalent of the Mach-Zehnder interferometer (MZI), experimentally im-
plemented using the edge states of a quantum Hall system with two QPC
acting as beam-splitters [26]. The experimental setup and the results for the
electrical current are shown in Fig. 1.7.

In this setup, electrons are injected from S, which acts as a source of elec-
trons due to an applied voltage. Then, electrons are scattered at QPC 1 to
either of the arms of the interferometer and they are recombined at QPC
2, being finally scattered to leads D1 and D2, where they are detected. The
length of one of the arms can be controlled via a gate voltage Vg applied to
MG1 and MGa2. Due to the magnetic flux enclosed by the two arms of the
interferometer, electrons are subjected to the Aharonov-Bohm effect when
traversing the interferometer, which results in a magnetic-dependent inter-
ference pattern at the output of the interferometer [27, 28]. The interference
pattern, in the form of oscillations with the magnetic field in the charge
current, is clearly shown in Fig. 1.7 b).

An example of a MZI fed by SES is investigated in Chapter 3 where we
show the interference patterns of single electrons and how they can be af-
fected by two-particle effects.
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Transport in nano-strucutres is understood as the movement of carriers, car-
rying charge and/or energy, in systems with nano-scale dimensions. A nano-
device is a functional structure with nano-scale dimensions which performs
some useful operation, for example a nano-scale transistor (e.g. the single-
electron transistor of Section 1.2.1.2). We consider the prototypical setup for
studying transport as an active region connected to reservoirs, see Fig. 2.1.
There we show the system as a region (in green), possibly gate-controlled
via capacitive coupling, connected to two metallic-like electronic reservoirs,
acting as contacts. These two contacts act as a source and a drain for elec-
trons and transport is achieved by applying a voltage or temperature differ-
ence between the two contacts. This triggers the flow of carriers which can
be measured as a current which depends on the properties of the system
under study. These properties and hence the current can be controlled by
changing the gate voltage V.

Figure 2.1: Prototypical example of a transport setup for a nano-device. The active
region is represented by a green contour and is connected to two reser-
voirs: source (in red) at voltage Vs and drain (in blue) at voltage Vp.
Additionally, there is a back gate (in yellow) that allows to control the
energy levels inside the region via the voltage V.

The vision of the setup to study transport built using ideal separated
regions is a common and useful way of visualizing such systems. Even so,
the idea of having contacts acting as ideal injectors or extractors of carriers
and an active region that limits transport is limited to the cases where the
coupling between system and contacts is not too strong, since when the
coupling is strong the separation between regions might not be clear.

If inelastic scattering events are frequent as carriers traverse the active re-
gion of the device, carrier transport is diffusive in nature, and is reasonably
approximated by the semiclassical Boltzmann transport equation. Energy
dissipation occurs throughout the device, and the contacts are simply in-
jectors and extractors of carriers near equilibrium. In contrast, if little or
no scattering occurs from source to drain, transport is said to be ballistic,
and the wave nature of charge carriers becomes important in terms of quan-
tum mechanical reflection and interference from the structure itself, and the
overall description of transport is in terms of quantum mechanical fluxes
and transmission. Energy is no longer dissipated in the active region of the
device, rather, it is dissipated in the contacts themselves [4].

11
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It becomes clear then that when studying transport through nanostruc-
tures one needs to characterize the charge current in order to know how
the particles traversing the systems behave and also to study the energy cur-
rents to investigate how heat is dissipated in the system. As a consequence,
it is also of relevance to study the interplay between the two, that is, the
thermoelectric effects.

Therefore, thermoelectric effects have generated an immense interest for
quite some time already because they offer the possibility to convert heat
into electrical work [29—35]. Hence, they can be used for energy harvesting
in electric circuits in computers, to achieve both active cooling and energy
recovery. This harvested energy can then be used to recharge batteries. Un-
fortunately, even after decades of material research current thermoelectric
materials still have a very low efficiency in converting heat into electrical
work and deliver only moderate powers [36]. Due to this low efficiency,
thermoelectric energy recovery is restricted to very few applications.

Thermoelectricity, in short, can be understood from the base of two effects,
the Seebeck and Peltier effects. The Seebeck effect describes the flow of an
electrical current in response to an applied temperature gradient whereas
the Peltier is the thermal counterpart, the flow of energy caused by an elec-
trical voltage bias [37]. Both effects can be understood from the fact that
carriers carry both charge and energy, then a thermal gradient causes a flow
of carriers from hot to cold, causing both an energy and charge flows, simi-
larly, a voltage bias causes a flow of carriers from high to low voltage with
the corresponding energy flow.

Since usually materials with good electrical conductivity are also good
thermals conductors, it is difficult to create efficient thermoelectric devices.
Hence, the need for ways to create systems with high electrical conductance
and low thermal conductance remains one of the main challenges of the
study of thermoelectrics [36].

Quantum dots, or more generally confined systems, have been demon-
strated to exhibit large Seebeck coefficients due to the discrete nature of
their energy spectrum [30]. To properly characterize thermoelectric effects
in those systems, we study transport of electrons through confined systems
[4, 10, 11].

In this chapter we review the main concepts about transport of charge and
energy in nano-structures that are going to be used in this thesis. Firstly, in
Section 2.1, we present a brief overview of some basic concepts of transport
in nano-structures, including a short introduction to the concepts of charge
and energy currents and their relation through the Onsager matrix. Next
we introduce the formalisms used to describe the aforementioned quanti-
ties in the time-dependent regime, in Sections 2.2 and 2.3 we review the
microscopic Landauer or Landauer-Biittiker scattering theory for systems
of non-interacting electrons and the Green’s functions approach for systems
with electron-electron interaction. Finally, in Section 2.4, we introduce our
description for transport in time-independent (time-dependent systems in
the steady-state regime) systems based on the master equation approach,
which is well adapted to describe simple quantum systems with strong elec-
tron-electron interactions.
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2.1 BRIEF OVERVIEW
2.1.1  Charge currents

Nano- and meso- devices were invented with the purpose of manipulating
and controlling electrical currents. Still nowadays, the main purpose that
they serve is the control of electrical currents (in the form of transistors
in chips). Hence, electrical currents are the quantity most widely used in
the characterization of such devices. The work presented in this thesis is
no exception to that rule and one of the focuses of this work is to study
electrical currents in nano-devices.

Charge currents are usually induced by creating an electrical bias between
a source and a drain contacts, thus creating an energy imbalance between
the two contacts which favors the movement of charges from one side to the
other. A similar result can be obtained by applying a temperature difference
between the source and the drain, which is known as a thermoelectric effect
(more specifically it is the aforementioned Seebeck effect).

By virtue of continuity laws, the charge flowing out of all sources is the
same as the charge flowing into the drains. This means that charge is con-
served.

2.1.2 Energy and heat currents

As is known from thermodynamics, a temperature difference between two
contacts generates a flux of energy from the hot contact to the cold contact
which tends to equal both temperatures. Under such circumstances, parti-
cles with high energy flow from the hot lead to the cold lead, generating an
energy current. Similarly, an electrical bias can also be used to generate an
energy current, since particles with high energy flow from source to drain,
this phenomenon is known as electrothermal effect (also known as Peltier
effect).

This energy flow is not to be confused by the heating caused by the dissi-
pation of heat in a resistive circuit, known as Joule heating. When the heat
dissipated is taken into account with the flow of energy we talk about heat
currents instead of energy currents.

As a consequence of energy conservation, the sum of energy currents is
zero (there is no creation of energy). Therefore, the sum of heat currents
equals the Joule heating.

2.1.3  Conductances: Thermoelectrics

For the characterization of thermoelectric effects in nanostructures we in-
vestigate the conductances. They provide the system response, i.e., electri-
cal and energy currents, to the application of electrical and thermal biases.
Hence, these conductances can be obtained from the expansion of the cur-
rents {I;, Ji} in terms of the applied forces {V;, 0;}.

Firstly, we start from the well-known fact that applying a voltage bias
AV to a system drives a charge current I. The relation between the applied
voltage in contact j, Vj, and the electrical current at contact 1, I;, is given (at
first order) by the electrical conductance Gi; = g—\l}j Vo'

Similarly, applying a temperature bias AQ to a syétem will drive a heat

current ] and so a heat conductance can also be defined: Ki; = g—g,i_ 00" In
) j=

13
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the linear regime the electrical and thermal conductances follow Ohm’s and
Fourier’s laws respectively.

On the other hand there are the thermoelectric effects, i.e. driving a charge
current with a temperature difference (Seebeck effect) and creating a heat

current by applying a voltage bias (Peltier effect). These effects also allow us
2,

to define conductances, the thermoelectric conductance Li; = aT);- oo and
=
the electrothermal conductance My; = % .
11V; =0

=
2.1.3.1  Onsager relations

In the linear regime, these relations between currents and biases or fluxes
and forces with the four conductances can be conveniently expressed in a
matrix, formed by the conductances, known as the Onsager matrix:

(-G 20

When the system through which transport is studied has more than one
terminal, the Onsager matrix elements are in turn also matrices for all the
conductances between different reservoirs.

AR
Ji My Kyj/ \ 95

Onsager reciprocity relations state that thermoelectric (Peltier and Seebeck)
conductances, i.e. the off-diagonal terms of the Onsager matrix, are not in-
dependent quantities[38]. As in many physical systems, reciprocal relations
occur between pairs of forces (V, 0) and flows (I, ]). In this case:

Myj = O, Lj;. (2.3)

Where O, is the base temperature. Onsager’s relations are a direct conse-
quence of the principle of reciprocity or microreversibility, resulting from
the time-reversal symmetry. Thus, they are only valid in a situation of local
equilibrium, i.e. in the linear regime [38]. Later on, H.B.G. Casimir [39] enun-
ciated the Casimir-Onsager relations, generalizing such relations to the case
where time-reversal symmetry is broken due to the presence of a magnetic
field. In such case Eq. (2.3) is generalized to

M;;(B) = O Lyi(—B), (2.4)

or quite generally

A

OB)=0"(-B), (2.5)

where O is the Onsager matrix appearing in Eq. (2.2) where the tempera-
ture has been changed to the "normalized" temperature 0 — 0/0,.

Once we introduced the magnitudes that we want to describe and some
relations among them, we move on to describe the theoretical formalisms to
describe these transport properties. Firstly, we start by considering two ways
of describing time-dependent systems. The Landauer-Biittiker or scattering
formalism is well-suited for systems with non-interacting electrons and will
be used in Chapter 3 to describe transport through a Mach-Zehnder inter-
ferometer. On the other hand, the Green’s functions formalism allows us to
describe interacting systems.
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2.2 SCATTERING MATRIX APPROACH

In this section we introduce the Landauer-Biittiker approach to transport in
non-interacting systems. A generalization to include electronic interactions
based on generalized internal potentials is possible [40], however the sys-
tems investigated along this thesis treated with this technique can be safely
considered as non-interacting.

2.2.1 Scattering theory: from operators to currents

In this section we present a general overview on how the charge current
(and equivalently the energy current) is calculated from quantum mechani-
cal wave-functions using the scattering theory developed by Landauer and
Buttiker [41].

N—-1,N—-2,..3

Figure 2.2: Sketch of a mesoscopic sample connected to N reservoirs acting as a scat-
terer. The greek letter & denotes the reservoir number. The arrows to and
from the scatterer represent flows of incident and scattered electrons. Ex-
tracted from Ref[41].

In this section we derive the charge operator following closely the work
by M. Moskalets, see Ref.[41].

We start expressing the current flowing to lead « in terms of the eigen-
wave-functions of the propagating electrons. We assume without loss of gen-
erality that the current flows in the z direction which is different for each
lead since it is the direction connecting the sample and the reservoir. Then
the current at lead « is given by the expression:

falzat) = iz | ars (#1650 52-000 ~ (32900 ) D60 o
m 0Zy 0zy
In this equation m is the effective mass of the electron. The wave-functions
(¥, 1) describe electrons in leads. We assume that the wave-functions can
be separated in two parts, one in the direction z of motion (plane waves)
and a transverse one 1| (Xg(r1)):

. © _ikt/n Xe(ry) Cika(E)z ika(E)z
tb(r,t):J dEe S KB Taa(B)eHa(®)2 4 by (E)etka(®)2]
—0o0

(2mhv (E))1/2
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(2.7)

The electron velocity in reservoir « is v« (E) = hky(E)/m, ax(E) and by(E)
are amplitudes for incident and scattered particles respectively and k«(E) is
the wave number at energy E, defined by:

Ko (E) = LhmE (2.8)

From the normalization condition for the wave-function it follows that the
transverse part of the wave-function has to be normalized:

J dry |XE,oc(TJ_)|2 =1. (2.9)

We are interested in the regime of small bias compared to the Fermi energy.
Under this condition, we can approximate vy (E) &~ v(E’). Since we con-
sider leads with only one sub-band we can also approximate: xg «(r1) =
Xe’ «(71). This yields to a great simplification of the expression for the cur-
rent operator. In order to obtain the current operator in second quantization
we approximate in this way the wave-function expression, Eq.(2.7) and we
substitute the wave-functions with field operators expressed in terms of cre-
ation and annihilation operators a(E), b(E). Finally, taking a fixed z point
we obtain:

fo(t) :gr" dEro dE/eHE-ENt/n (bL(E)b(X(E’)—a(Tx(E)a(x(E/)).

h —00 —00
(2.10)

We have expressed the current in terms of the creation and annihilation oper-
ators for incoming and outgoing electrons from the scatterer. In this notation
we consider the current to be positive when directed to the reservoir.

2.2.2  Landauer-Biittiker formalism: Scattering matrix approach

The Landauer-Biittiker formalism for transport phenomena in mesoscopic

conducting systems treats the propagation of electrons as a quantum-mechanical

scattering problem. We consider a mesoscopic system connected to N reser-
voirs as shown in Fig. 2.2. The reservoirs are macroscopic and at equilibrium,
characterized by a given temperature Ty and a chemical potential ny. The
flux of particles does not change their equilibrium condition. A particle is
injected from one reservoir and it will scatter elastically at the central area
(the scatterer). It will be transmitted to the other reservoirs or reflected back.

All the transport properties of the system are described by its scattering
matrix [41] which stores the amplitudes for all the possible single-particle
scattering events. The matrix element Sy (E) is the amplitude of being re-
flected o« = 3 or transmitted o # 3 from reservoir « to reservoir 3 at energy
E.

In second quantization thus, the scattering matrix couples the operators
for particles incoming to lead « (b:rX(E),b(x(E)), with the operators for the
particles leaving lead 3 a}g (E), ag(E) as follows:

bo(E) =) Sap(E)ag(E), (2.11a)
B

bl(E) =) sh,(E)al(E). (2.11b)
B
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Due to conservation in the number of particles (current conservation) the
scattering matrix must be unitary:

Y SLa(E)Spy(E) = ay. (2.12)
B

Here 0« is the Kronecker delta.

2.2.2.1  Current for a stationary system

We start by characterizing the current through a stationary system to get
familiar with the formalism so that it is simpler to understand the time-
dependent case. The current is calculated from the quantum mechanical and
statistical average of Eq.(2.10) which can be interpreted as the difference in
spectral particle densities coming in and out of the contact «:

ch:@“):%r@ dEJOO dE/ e E-EI R ((af (E)ag (E') — (bl (E)ba(E")).

—0oQ0 —00

(2.13)

The creation (annihilation) operators of the electrons coming out of the

scatterer b&(btx), are related to the creation (annihilation) operators for the
electrons going to the scatterer al(aq) through the scattering matrix of the
system as shown in Eqs.(2.11a,2.11b).

Since the operators ak(ay) describe particles coming from the reservoir

at equilibrium, their quantum and statistical average is

(al(B)a(E")) = 8(E — E)falE), (2.14)
where f4(E) is the Fermi function of the lead «o:

1

fOC(E) - 1 +e|?>oc(E*lltx) ’

(2.15)
Here: f« = ﬁ, T« is the temperature of the lead, kg is the Boltzmann
constant and 1 is the electro-chemical potential of the lead «, ie. py =
Lo — eV, Ho is the Fermi energy and V the voltage applied to the reservoir.

With this relations and taking into account the unitarity of the scattering
matrix one obtains from Eq.(2.13):

Iy = %ro S 1Sapl? [fp(E) — fa(E)] dE. (2.16)
*© B

This result shows that the current can be calculated just by knowing the
electron states in the reservoirs and the scattering properties of the system.

2.2.3 Time dependence: Floguet Matrices

Periodic, time-dependent systems can be described via a scattering matrix
approach which is based on the Floquet theorem [41]. The Floquet theorem
assures that the solutions to a linear differential equation with periodic time
dependent coefficient are also periodic and with the same period.

As opposed to stationary elastic scatterers, dynamical elastic scatterers can
change the energy of the incident particles.

17
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The effect of the interaction of electrons with incoming energy E with a
periodic potential, with period T = 27t/Q), is the gain or loss of multiple en-
ergy quanta hQ. Therefore, the energy of scattered electrons is characterised
by the energies:

En =E+nhQ, (2.17)

with n an integer number. The Floquet theorem assures that this set of ener-
gies, composed by the incoming energy plus the absorbed Floquet quanta, is
the full set of energies for the outgoing particles. Thus the scattering through
dynamical scatterers can be described via the Floquet scattering matrix S,
with elements S, g (En, E) [42]. The amplitude Sy (En, E) for a carrier with
incident energy E, which absorbs an energy nhQ = E, —E, describes the
scattering of electrons by a time-dependent system. One must redefine the
unitarity condition for this kind of matrices, since current conservation is
only ensured if one considers all possible outgoing energies [42]. Then the
unitarity conditions for the Floquet matrices are:

> > Syp(Em En)Sha(E En) = Smoday- (2.18)
B n

Notice that compared to the unitarity of the stationary scattering matrix, in
this case a sum over energy states is needed.

The element S, (En, E) can be obtained as the Fourier transform of the
dynamical scattering matrix S(t, E):

dt’
SaB(En/E):J 7 gint’ Sap(t', E). (2.19)

Here T is the period of the dynamical scatterer which, as previosly men-
tioned, is related to the frequency Q) via the relation: 7 = 27t/Q). The matrix
S«p (t’, E) describes the scattering of an incident particle with energy E ex-
iting the scatterer at a later time t’. Expressing quantities in terms of this
dynamical scattering matrix makes it easier to understand and analyse the
time dependent features of transport. Thus, in what follows we will write
currents in terms of Floquet scattering matrices and dynamical scattering
matrices since the two equivalent expressions highlight different aspects.
We will show how this matrix is calculated for certain devices in Chapter 3.

2.2.3.1 Time-dependent current

The creation (annihilation) operators of the electrons coming out of the scat-
terer bL(b(X), can be related to the creation (annihilation) operators for the
electrons going to the scatterer al(aq) via the Floquet amplitude:

- Z Z Sap (B En)ap(En) (2.20a)
g n

(o)
il

ol ZZS (E,En)af, (En) (2.20b)

Using the relations from Eq.(2.20a) and Eq.(2.20b) in the expression of the
current, Eq.(2.13) as well as taking into account that the quantum mechan-
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ical average of the equilibrium operators is described by a Fermi function
(Eq.(2.14)), one obtains:

To (t) = %L dEY Y e OS] (B, B)Sap (Erim, E)(fp (E) = fo(Em)):

B Lm
(2.21)

Substituting Eq.(2.19) into Eq.(2.21) we obtain the current in terms of the
dynamical scattering matrix:

To(t) = %J dEJ th/ Y e ltIs (), E)Sap (t, E){fp (E) — fa(En)):
Bn

(2.22)

This is the current corresponding to electrons coming from all leads 3 with
energy E exiting the scatterer at time t through the lead o. Egs. (2.21)
and (2.22) are equivalent and define the time-dependent current arriving
to reservoir « after exiting a dynamical scatterer which is defined by a time-
dependent matrix.

In this expression we can see that one of the consequences of having
a time-dependent scatterer is that there can be current flow even in the
absence of bias (Vg = Vi — fg = f) due to the energy difference of the
Fermi functions:

To(t) = ﬂ dEJ d?t/ Y e QUTtIST (t, E)Sap (t, E)F(E) — f(En)).
pn

(223)

In contrast, in a stationary system current is always null whenever all the
Fermi functions of the contacts are equal. Once we have obtained the time-
resolved charge current we can easily obtain the time-averaged charge cur-
rent, which is the quantity that we study in Chapter 3 from:

p— J EIoc(t). (2.24)

This results in a compact expression for the charge current, similar to that
for the stationary case:

e

o= | dEY 3 ISup(En B (Fa(E) ~ fulEn). (2.25)
L2

In this case, the time-dependence is included in this expression through
the Floquet quanta E,, — E = nhQ, which change the energy of incoming
particles even in the absence of inelasticities.

2.2.3.2 Energy current

Important information on the transport features can be extracted from the
energy flow, as already stated in the introduction. As for the charge current,
we write the energy current as a function of the field operators:

19
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R h? cioe 2 0FD(E D) 0PT(F ) 0 (F 1)
Jalzaot) = =170 J dr [ll’ S TN TR ER— T
s ART(EY AD(F ) IR Y)
ey 0za0t  Ozg ot I

(2.26)

Then, inserting the operators, given by Eq. (2.7), into Eq. (2.26) we obtain
the expression of the energy current as usually employed [41—43], in terms
of creation and annihilation operators:

N I I AT CAGINIT BRI INE)

1
hlow

—0o0

(2.27)

Again, our interest lies in the time-averaged current since this is the quan-
tity studied in Chapter 3. The average energy current is obtained from

Jo = | 5 Ualv), (228)

yielding an expression similar to that of the charge current but weighted by
an energy E factor

- 1
Ioc:*

[ aee (tak®aa(E) — BLEbA(ED). (2.20)

—0o0

The energy is carried by the particles to the reservoirs. We assume the
reservoirs to be big enough to absorb this energy and stay in thermal equilib-
rium. Substituting Egs.(2.20a),(2.20b) and proceeding as done for the charge
current, we obtain:

1

Jo=p | dEY Y EnlSap(En BR(B(E)—fulEn).  (@30)
NN

This expression corresponds to the energy flow to the reservoir « carried by
scattered particles with energy E,, coming from reservoirs (3 with initial en-
ergy E. This expression can be rewritten in terms of the dynamical scattering
matrices via the Fourier transform in Eq.(2.19). One finally obtains:

= 1™ dt [ dt’
SIS DI

e 5 (4, E)ST g (t, ENF (E) — fo(En)). (2.31)

We see from this expression, similarly to the case of the charge current,
that the dynamical scatterer can cause energy flows even between reservoirs
at the same chemical potential, i.e. there can be energy flow even if the Fermi
functions are equal (fy = fg).

2.2.3.3 Spectral current

A quantity that is not usually studied but that is going to be useful for us
in Chapter 3 is the spectral current, or energy resolved particle current. This
current is defined from the operator

1x(E,E') =[] (E)ba(E") — al(E)an(E")] (2.32)
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that quantifies the difference between incident and emitted particles in reser-
voir « at possibly different energies E, E’. It is related to the electrical current
through the following relation

—e

Iq(t) = — T ae [T qEletlE-EIUN g (E,E) (2
o T (&, . -33)

—0o0 —00

Then, the excess-energy distribution function iy (E), which we also refer to
as the spectral current, entering the two current expressions is given by [43,

44]
~ (Tt [ e g /
in(E) = JO ?Jfoo dt’e t (la(E,E))
=D D ISap(EEn)IPIf(En) —f(E)]. (234)
p m=—o0

It describes the distribution of incident electron and hole excitations with
respect to the Fermi sea in reservoir «. The excess-energy distribution is
related to the time-averaged charge current via an energy integral

_ e [
T, = }—J dEiy (E). (2.35)
—00
The energy current can also be related to the spectral current via a relation
similar to that of the charge current which takes into account a weight factor
given by the energy E:

‘I o0
- J dEFiy(E) (2.36)

—0o0

Jo

By studying this quantity thus we have access to the energy-resolved prop-
erties of both charge and energy currents.

2.2.3.4 Noise for the charge current

More information on charge and energy transport can be inferred from the
study of their fluctuations. There are two main sources of noise [45]: ther-
mal noise, due to finite temperature effects causing only fluctuations of the
occupation number at the reservoir and shot noise due to the discreteness of
the charge combined with transmission probabilities at the scatterer smaller
than 1. The quantum noise power in the time domain of the current is cal-
culated from its correlation function [41, 46]:

2~ a

Pap(t,t') = %<Aio¢(t)ATB(t,) + Al (t)Al&(1)). (2.37)

Here Al = 1— (1) is the operator of the current fluctuations. The 1/2 factor
is used so that the autocorrelator Py« is properly normalized. In this thesis
we are interested in the zero-frequency noise, which is defined by:

00 Q/2 4¢

Pap = J d(t—t’)J —Pap(tt)) (2.38)
o 0 T

Now, we aim to express this zero-frequency shot noise in terms of scattering

matrices. We substitute the expression for the current in terms of operators,

given by Eq.(2.10). Once we have the expression in terms of incoming and

outgoing operators, one relates the incoming operators with the outgoing
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ones via the Floquet scattering matrices, see Eqs.(2.20a),(2.20b). Then using
Eq.(2.14) to evaluate the quantum statistical average we finally obtain:

e2

Pap = Lo GE [FaaE E) = 2 ShalE En)SpalEn ElFa(E/ )

(2.39)
—Zs (E,En)Sap (En, E)Fpp(E,E)

+ Z ZS Enr aé(ErEm)S}gé(Em/Ep)SBB(Ep/En)Fvé(En/Em)}'
pn,m y&

Here for notation simplicity we have introduced the function F, 5(En, Em) =

%(fV(En)(] - fé(Em) + fé(Em)(] - fy(F—n))-

In this work we are interested in the noise for a system at zero temperature

and with no applied bias to it. Then, under these conditions, the noise power

is reduced to pure shot noise:

eZ 00 i
Pop = | 4B 3 3 F(En, Em)Shy (En, E)Sas(E Em)Shy (Em, Ep)Sps (Ep, En)
pML,M o

(2.40)

Then, substituting the Floquet matrices by the corresponding Fourier trans-
form of the dynamical scattering matrices, Eq.(2.19), we obtain:

Ho dt [ dt’
= sign( dF_J J eltaQ(t—t’)
‘XB Z & JHo_qh-Q J J

Zs(xy t/F—q tx&(t/E)S.Eé(t//E)SBE(t//Eq)~ (2'41)

2.3 GREEN’S FUNCTIONS APPROACH

When interactions such as electron-electron interactions (known as Coulomb
interactions) have to be taken into account, one has to resort to a different
approach than for the scattering matrix. A very powerful and useful tool
to consider interacting systems subjected to time-dependent driving such
as those addressed in Chapter 4 is the use Green’s functions (GF’s) formal-
ism. In classical physics, Green’s functions are a powerful tool for solving
inhomogeneous differential equations. Similarly, when applied to quantum
many-body problems, one can introduce Green’s functions that obey a wave
equation with a single inhomogeneity. These Green’s functions are suited to
study both equilibrium and non-equilibrium in many-body physics prob-
lems [47, 48].

For illustration, we first consider equilibrium GF’s, using the second quan-
tization formalism. We start by considering generic Hamiltonian H for an
interacting system

H=Ho+V (2.42)

where Hy contains the non-interacting part and V is the interacting part of
the Hamiltonian. We start by defining a time-ordered (also called causal)
zero-temperature single-particle Green function

L (Wo T (x, ], (X, t))Wo)

G(x, t;x/,t") = i 2.
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Where H[W,) = Eo[¥,) is the ground state of the Hamiltonian H and
T{} is the time ordering operator. The time-ordering operator pushes the
operator with the earlier time to the right:

TA(x, O)B(x/,t")} = 0(t —t)A()B(t') —O(t" — t)B(t")A(t) (2.44)

The negative sign in front of the second term appears because of the inter-
change of fermionic operators caused by the time ordering.
The operators Pyy(x, t) are time dependent and evolve according to:

Yy (x, t) = MYy (x, 0)eTHYR (2.45)

Although in equilibrium, in principle, one Green’s function is enough to
describe the system, we define other GF’s that are useful when dealing with
non-equilibrium situations:

GT(x, t;x/,t') = —10(t —t/)({(¥(x, 1), YT (x/, t')}) (2.46)
Ge(x, t;x/,t') =10(t" — ) ((Y(x, 1), ¥ (x',t')}) (2.47)
G=(x, t;x/,t/) = (¥ (x, )W (x',t")) (2.48)
G” (x, t;x/,t) = —L(¥(x, ¥ (x/, 1)) (2.49)

These four functions are known respectively as retarded, advanced, lesser
(than) and greater (than) Green’s functions. The retarded function is only
different from zero if t > t’ (it describes the response at time t to an event
at time t’) and the advanced function is the opposite, i.e. is only different
from zero if t < t’. Their inhomogeneous differential equation is as the one
for the time-ordered function G(x, t;x’,t’). Furthermore, they are good tools
to calculate physical responses and they have a nice analytic structure. The
“lesser than” Green function is also called the particle propagator, while the
“greater than” Green function, in which the order of the creation and anni-
hilation operators are reversed, is called the hole propagator. Importantly,
their differential equations do not have the singular inhomogeneous terms.
They are directly linked to observables and kinetic properties, such as par-
ticle densities or currents [49]. In fact the lesser Green function is directly
related to the occupation number n(x):

(n(x)) = -G~ (x, t;x, t) (2.50)

One of the most important properties of equilibrium theory is that all four
functions G, G™?,G~'< are linked via the fluctuation-dissipation theorem
[49]-

The advantage of the time-ordered Green’s function is the fact that it
has a systematic perturbation expansion, as we show next. To realize the
perturbation expansion of the time-ordered Green’s function, we resort tot
the interaction picture where the time evolution of operators is governed
by the non-interacting part of the Hamiltonian whereas the evolution of the
wavefunctions evolves following the full Hamiltonian. Then, we have that
the wavefunctions evolve from time t’ to t according to

Y(t) = S(t, t)¥(t') (2.51)

where we dropped the position x for compactness. The time evolution is
then governed by the S-matrix

S(t,t/) =Texp (;: Jt V(T)dT) (2.52)

t/

23



24

THERMOLECTRIC TRANSPORT IN NANO-STRUCTURES

The S-matrix is a time-ordered operator that depends on the interacting
part of the Hamiltonian, written here as V(7). To obtain the ground state
for the interacting wave-function we resort to the wave function of the non-
interacting system ¢, and we evolve the system from time —oco, when the
system was in the absolute ground state, to tp, when the system is in the
ground state of the interacting Hamiltonian ¥,. That is, we evolve the sys-
tem from —oo to tg

N]0> = S(tO/ _OO)|¢0>- (2-53)

Equivalently we find

(Wol = ($olS(o0, o). (2.54)

With this in mind we are now able to rewrite the time-ordered Green’s func-
tion in terms of the non-interacting ground state and the S-matrix

i (ol T{S(c0, —00) (x, VYT (x/, ')} o)
h {$olS(o0, —00)do)

This expression is relevant because it allows for a systematic perturbation
expansion of the Green’s functions which leads to the Dyson equations. The
calculation now proceeds by expanding S(—oo,00) in powers of V(t). By
using Wick’s theorem we are able to get rid of the terms in the denominator
[49] which leads to

G(x, t;x',t") =

(2.55)

+o00
Gl tx/, V) =—1 ) (=" J_ dty..dtn (Dol TW0x, VBT (x/, t)V(t1).. V(tn)Ido),

(2.56)

where we sum over connected Feynman diagrams. This equation is the start-
ing point of many calculations involving Green’s functions.

2.3.1  Non-equilibrium Green’s functions

When dealing with non-equilibrium situations, that is, when the system is
subjected to a time-dependent perturbation, one needs to consider an extra
term in the Hamiltonian to account for this perturbation. Fortunately this
term can be treated in a similar fashion to what we did for the interaction
part of the Hamiltonian and the procedure to obtain the perturbation expan-
sion for the Green’s function in the non-equilibrium case resembles that of
the equilibrium case.

L
g 8
VH-

Figure 2.3: The time contour for the GF’s is modified in a non-equilibrium situation.

In the case of non-equilibrium situation, the contour has to be modified
and it does not run from —oo to +o0o but rather from —oo to —oo so that it is
assured that the final state is the same state as the initial state [48]. Hence,
the time evolution now occurs in two directions, first from —oo to t, and
then from t, to —oo, see Fig. 2.3, being t, an arbitrary time after the pertur-
bation of the system and thus is governed by S, (t,, —o0) and S_(—oo, to)
for the forward and backward in time, respectively. To this end one has to
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change from time-ordered quantities to contour ordered quantities so that
the order is not given by the time but rather the branch in the contour
(an earlier time can come later in the contour since it goes forward, in one
branch, and back in time in the other branch). With this transformation,
one obtains that the contour-ordered GF has the same Dyson equation than
the equilibrium GF. Then, the equilibrium and nonequilibrium theories are
structurally equivalent. The only difference is the replacement of real axis in-
tegrals by contour integrals [49] that run on the (complex) Keldysh contour,
see Fig. 2.3.

This has as a consequence that the Green’s functions that we need to
calculate are now defined over a contour and thus expressed in terms of
contour integrals. One must then apply Langreth’s rules, which are used to
convert contour integrals into real time integrals, in what is called analytic
continuation. Langreth theorem is used to solve the Dyson equation which
contains integrals over the contour of products of GFs. The Langreth rules
lead to the fact that we have to use the retarded, advanced, lesser and greater
Green’s functions in order to solve the Dyson equation and therefore to solve
whichever problem we study.

Taking all of this into account we finally reach the Dyson equation for
the contour-ordered Green’s function in terms of the unperturbed Green’s
function Gy and contour integrals:

G(x1,t1;x7,t)) = Go(x1,t1;%7, 1) (2.57)

+ J d3x2 J d3x3 J dt; J dt3Go(x1,t1;%2,72)E(T2,73)G(x3,T3; %], 7)),
c c

where X accounts for the effects of interactions. On top of that, we observe
that the time integrals run over the contour C.

We now apply Langreth’s continuation rules to convert the contour inte-
grals into time integrals and we obtain the equation for the lesser GE. Using
a compact notation, where the product of functions means an integration
over time we obtain:

G< =Gg +GHE"G=< + GHZ<G® + G5 ZG". (2.58)

We observe that the lesser GF is expressed in terms of itself, so we re-iterate
for G= and we finally obtain

G- =(1+GI"Gs(1+X%G*) +G"L£=G* (2.59)

Which is an equivalent to what one obtains following Keldysh’s method [49].
This equation is the time (not contour) defined Dyson equation for non-
equilibrium Green’s functions. One can go one step further by assuming
that the term with G g vanishes since in the initial state, the system is not
subjected to anything, it is totally in equilibrium, so its propagator must be
Zero:

GS=G"L<G“" (2.60)
2.3.2 lllustrative example: non-interacting resonant levels

To illustrate how the Green’s functions are used, we take a simple model
of a non-interacting resonant model and study how to obtain the different
Green’s functions in order to be able to characterize the charge current. In
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Chapter 4 we expand this by studying the energy current in a resonant
level model with interactions and a time-dependent driving. The following
example serves to get familiar with the techniques that we are going to use
later in the thesis, since the logical order is similar.

We start this example by writing the Hamiltonian of the system, which
we split in three parts, one for the leads H1, one for the tunneling Ht and,
one for the central region J{¢, similar to the division in Fig. 2.1. Therefore
we have

H =Ty +Hy +Hc. (2.61)

Considering that the leads are big reservoirs of electrons, the part corre-
sponding to the leads describes a continuum of electrons which we take to
be in equilibrium

He = Z EkaCl o Ckas (2.62)
k,x

hence, the operators cy, ch  describe the creation/annihilation of electrons
of momentum k in reservoir o with the corresponding energy ey. The
central region, the resonant levels, is described by

He = Z €md;rndm/ (2.63)
m

with dn, d;rn, the creation/annihilation operators for an electron in level m.
Finally the tunneling processes between leads and the resonant levels are
described by

Ht = Z (chx,mCL(xdm + h.c.) , (2.64)

k, ¢, m

where the coupling constants between regions are given by Vi m. We as-
sume that this constants are known.

We are able now to calculate the currents in the leads, with the charge
current given by the change in occupation at the leads [48]:

0 .e
I = —ea<Ns> = _lﬂ[j{’NS]' (2.65)

being N the occupation in lead s, given by
Ng = Z ch(xck‘x. (2.66)
k,x€s

We evaluate the derivative of the occupation by taking the commutator of
the Hamiltonian and we obtain

. € *

=iz Y (Viam{cladm) + Vigm(@heka)) (2.67)
k,x€s,m

We see that this expression for the current can be cast in terms of the hybrid

dot-reservoir GFs which are defined as:

Grralt—t) = i{cf (t)dm (1) (2.68)
Giran (t—t") = i(df, (t ) eru(t) (2.69)
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Once we have written the expressions for these GFs we notice that they
fulfill the following relation G, (t — t") = — |G, . (t—t')| . Thus, we

komn
can re-express the charge current in lead s as

2e
Is = —Re Z Vieam G ka(tt) | - (2.70)

h
k,xes,m

In order to obtain the charge current, we need to be able to obtain G k M AR
To this end we use the equation-of-motion technique. This techruque allows
us to obtain an equation for the contour ordered GF Gy, (T, T'). We start
by considering the equation of motion for the time ordered Green’s function
Gt (t—t):

n, ko

a Gn koc(t_t,) L [}C Gn koc( _t,)] (2.71)

which is cast in terms of the time-ordered GF of the central region G, (t —
t') = —i(Tdh (t)dn (1)):

9
<lat — eka> Gl o (t— Z Ghm(t—t)WVigm (2.72)

We notice that the factor (e o — i%) is equivalent to the inverse of the con-
tact Green function operator (gt )", acting from the right hand side. Then,
by multiplying by the corresponding Green function (g}, ) we find an ex-
pression for the time-ordered hybrid GF:

Gn ktx(t _t/) = Z J' dty Gam(t —t )Vlioc,mgioc(h - t/)' (2.73)

m

From the previous deduction on Green’s functions, we know that in non-
equilibrium, the expression is the same but defined in the contour and there-
fore

Gl ¥) = X [ 471 Grum (5,1 Vim0l 1,7, (2.74)

m

where we substituted all time-ordered GFs for contour-ordered GFs (T, T/, T7
run on the contour). From this expression, by applying the continuation
rules, we are able to obtain an expression for the desired GF:

G palt—t) = ZJdi{;“,m(G;m(t—u)g]fa(n —t)

m

+ Grm(t—t1)gra(ti —t).  (2.75)

With this expression we are able to express the hybrid GF in terms of the
central site Green function and the non-interacting lead Green functions
that are known. In this manner the current calculation is reduced to the
computation of the central part Green function (lesser and retarded) within
some approximation since interactions prevent the possibility of an exact
expression for it.

How to calculate these functions depends on the system details and we
do not cover it here. The corresponding details on how this is carried about
and how to proceed with the calculations when a driving is applied are
given in Chapter 4 where we also calculate the energy current.
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2.4 MASTER EQUATION APPROACH

We have studied how the scattering matrix and Green’s functions approaches
are used to characterize transport. Finally we expose the last formalism that
we employ in this thesis, the master equation approach. The main idea be-
hind this formalism is that one can characterize the system and its evolution
through the occupation probabilities of the different states of the system.
Then the rate equation describes the change in these probabilities through
transition rates between the states.

We have discussed how the quantities characterizing thermoelectric trans-
port are represented in the time-dependent case. Now, we change the focus
to systems in the stationary regime and describe stationary quantum trans-
port of charge and heat for a interacting quantum dot in Chapters 5 and 6.

When studying interacting systems in the Coulomb blockade regime, we
resort to the master equation (or rate equation) approach to transport. The
appeal of Coulomb blockade systems is that the electrons, under most gen-
eral circumstances, are transferred one-by-one. This follows from the fact
that the charge states are well defined, and most of the time the system is
in a well defined charge state. This state, however, may change as a result of
electron tunneling either to or from the leads from or to the quantum dot.
Most probable changes are those involving only one tunneling electron, i.e.
single-electron transfers [4].

When electron transport occurs as single-electron transfers, it is called
sequential transport. The range of applicability is then determined by two
scales: ' which is the level broadening due to the fact that the dot is tunnel-
coupled to the leads, and the temperature. Transport is then well described
by sequential tunneling when only tunneling events of order lower than I'?
matter, that is when hlI" < kgT.

2.4.1  General formulation

Let us consider a quantum dot with N electrons, coupled to (two) contacts.
When transport occurs sequentially, as in the case of the Coulomb blockade
regime, it is very useful to use the master equation approach. Since in this
regime the charge states of the system are well-defined, one can fully char-
acterize the system by using the charge states. Then, transitions between
states happen as electron transfers. These (random) transitions happen with
a certain probability, characterized by a rate I'*(N) with the + denoting
whether the electron jumped out of or into the quantum dot and N the
number of charges in the dot before the transition. This causes the dynam-
ics of Coulomb blockade systems to be random and thus they need to be
described by using a probabilistic approach, i.e. using probabilities of the
system to be in a state with N charges at time t: pn(t). The time-evolution
of this probabilities can then be obtained through a master equation [11] and
since we are in the sequential regime, only terms that change the charge by
one electron are present in the equation:

opn (t)
ot

=TT (N+DpNnp1 (O +T"(N=Dpn_1 () = (T (N)+TT(N))pn (1)
(2.76)
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Here, rates 't are the total tunneling of one electron out of(+)/into(-) the
dot, taking account transitions to the right (R) and to the left (L) reservoirs:

r =rf 4t (2.77)

If the parameters defining the system do not vary in time, neither do the
rates defining the transitions. Then one is able to obtain a stationary so-
lution to the equations (taking pn(t) = 0). This implies that the sum of
probabilities must be unity: )\ pn = 1, which can also be interpreted as
particle conservation.

In this stationary regime one can obtain the current flowing through the
system by simply “counting” electrons so that the current is just the differ-
ence between electrons flowing in one direction and the electrons flowing in
the opposite:

IL=e) (I(N)=T{ (N))pn(t), (2.78)
N

Ir =€) (Mg (N)—Tg (N))pn(t). (2.79)
N

By this definition, currents are positive when flowing out of the system
and negative otherwise. In the stationary case it is automatically fulfilled
that I} + Ig = 0 so that the current is conserved.

Heat currents can also be calculated using this method:

Ju=) (v (N)—v{ (N))pn(t), (2.80)
N

Jr =D (Y (N) =y (N)pn(b). (2.81)
N

One needs only substitute the corresponding transition rates for the charge
I" by transition rates for the heat y [35].

2.4.1.1  Tunneling rates

To fully characterize the system, once we have the occupation probabilities
and the current we are left only with calculating the transfer rates, which
we call tunneling rates since all electron transfer events are tunneling events.
Since the transitions considered here are between a discrete state of the dot
and a continuum of states in the reservoir «, Fermi’s Golden rule can be
applied to calculate the tunneling rates. Since Fermi’s golden rule attains
transitions between states rather than simply electron transfers, we changed
the notation (from I'*(N) to I'*..) to accommodate that fact but the rates

1—)
describe the same processes *. Then the transition rates are:

(o.¢]
=T | depile— uolpyle— ) (2.82)
—00
In this notation then, pi(e), pi(e) represent the electron and hole density
of states. If they represent a state of the dot, pi(e) = pi(e) = 5(e). When
they describe electronic states in the reservoirs the densities are pi(e) =
fal(€), Pi(e) = 1 —fy(€), with fy(e) the Fermi function. That is: fy(e) =

E.g. if i denoted a state of the dot and j a state of the reservoir, the rate that we are calculating
describes a tunneling out of the dot and is therefore a '
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1 . , .
Tre /e TTa) where kg is Boltzmann’s constant and Ty is the temperature of
the reservoir.

Similarly, we calculate the tunneling rate for the heat current:

o0
¥y = —Ta | dele—uadpile—wilpy(e— ) (2.83)
—00
In the case of the tunneling rate for the heat current we need to weigh the
integral with the corresponding energy € — L1y, being 1 the electrochemical
potential of the reservoir [35].

2.4.2 Master equation with an environment: P(E)-theory

Tunneling events are frequently affected by fluctuations of the electromag-
netic environment [50]. To fully account for such quantum fluctuations we
adopt the P(E) theory [50, 51] of dynamical Coulomb blockade, recently re-
visited to consider heat fluxes [31, 52]. The spirit of the P(E) theory relies on
the fact that individual tunneling events involve energy exchange processes.
The Dirac-delta accounting for energy conservation in the (Fermi golden
rule) tunneling rates is relaxed into a broadened distribution P(E). In the
context of this theory the environment of the systems is considered to be a
group of harmonic oscillators describing bosonic modes.

The function P(E) that gives name to the theory describes the influence of
the environment on the system. It can be interpreted as the probability that
a tunneling particle absorbs (E < 0) or emits (E > 0) an energy E from/to the
external circuit (i.e. the environment). Since P(E) is a probability function, it
has to fulfill some conditions:

ro P(E)dE =1, (2.84)
P(E) > 0. (2.85)

The function P(E) can be obtained from a circuit theory analysis of the
system. The system that we take into account, see Chapter 5, is a single
quantum dot, i.e. a double junction defining a Coulomb island, where each
of the junctions j has a specific capacitance C;. The role of the environment
is modeled as a circuit that has its own impedance. More specifically for
each junction j in a double junction the P(E) function reads

P;(E) = 271?1 J dt exp (szl(t) + ;Et) ) (2.86)

where k; = 1—C;/C is a measure of the asymmetry of the two junctions
with C =} ; Cj. We introduced the (phase-phase) correlation function

J(t) = i—? Jo dije[Z(w)]c(cu, To), (2.87)

that contains all the information of the environment fluctuations, with[51]:

c(w, Ty) = coth < ho

kel ) [cos(wt — 1) —isin wt]. (2.88)

For a realistic environment one usually has to evaluate P(E) numerically.
In Chapter 5 we restrict ourselves to a high impedance ohmic environment
for which the P(E) can be calculated analytically.
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To apply P(E) theory it is assumed that coupling between the different
electron systems is weak and that the temperature of the electrons of the
environment is high enough so that transport can be described by the lowest
order Fermi golden rule, i.e. in the sequential tunneling regime. Also, it is

assumed that environment relaxation is much faster than the tunneling rate.

Then, the effect of the environment modifies the tunneling rates (Egs. (2.82)
and (2.83)) as follows:

(6.9) (0.9

= rch deiJ dejpilei —ui)pjlej — 1j)Pulei —€j).  (2.89)
—00 —00

Again, in the case of the tunneling rate for the heat current we need to weigh

the integral with the corresponding energy €; /; — 1« S0 that €; /5 is always

the integrated energy and i, the electrochemical potential of the reservoir.

o0 o0
‘Yi[_xﬁjzi‘YOCJ dEiJ dej(ei; —Ho)pilei —mi)pjle) — Hy)Palei — ).

—o0 —0o0

(2.90)

Here the weighing energy factor (e;; — o) should be taken so that €y ; is
always the integrating energy corresponding to the reservoir, so that if we
take e.g. i to represent the reservoir, then €;; = €;. In this way, we are able
to model environmental effects by modifying the tunneling rates for charge
(Eq. (2.82)) and heat (Eq. (2.83)).
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TWO-PARTICLE EFFECTS IN AN INTERFEROMETER FED
BY SINGLE-PARTICLE SOURCES

3.1 INTRODUCTION

In this chapter we investigate the quantum interference effects detected as
a result of the injection of particles from a single particle source (SPS) into
a Mach-Zehnder interferometer (MZI). The signal detected at the output
shows intriguing features due to the energy-dependent transmission of the
MZI. Additionally, a second SPS is introduced injecting particles into one
of the interferometer arms only. The setup is chosen such that two-particle
effects, namely the collision and absorption of particles [53], can happen in
different parts of the interferometer.

Single particle sources are devices that coherently emit single particles
into a nano-electronic circuit. This coherent emission of single particles can
be achieved via a time-dependent modulation of mesoscopic structures. Re-
cent developments such as the creation of Lorentzian current pulses car-
rying exactly one electron charge [54-56], the realization of periodically
driven mesoscopic capacitors as single-particle sources by time-dependent
gating [20, 22, 57], the emission of particles from quantum dots with surface-
acoustic waves [58-60], as well as particle emission from dynamical quan-
tum dots [61-63] are prime examples of this type of sources. Nano-electronic
devices fed by these single-particle sources allow for the observation of con-
trolled and tunable quantum-interference and multiple-particle effects and
even for the combination of both [21, 22, 53, 64-75].

To observe quantum-interference effects we use the electronic equivalent
of a Mach-Zehnder interferometer (MZI), [26—28, 76] as sketched in Fig. 3.1 a),
which can be realized by edge states in Quantum Hall systems with the help
of quantum point contacts (QPCs). It has been shown that the investigation
of the output current of an MZI, when fed by a single-particle source (SPS),
such as the one realized by Feve et al. [20], see also Fig. 3.1 b), allows for
the extraction of an electronic single-particle coherence time. More gener-
ally, it carries interesting new features of coherence properties of the travel-
ing particles. [77-81] The combination of several of these sources makes it
possible to study controlled two-particle effects, for example the electronic
analogue of the Hong-Ou-Mandel effect [21, 66], which was realized exper-
imentally by Bocquillon ef al. [22] and Dubois et al. [56] The combination of
several MZIs and SPSs is a possibility to create and detect time-bin entang]le-
ment [67, 82, 83]. However, the impact of controlled multiple-particle effects
on the interference pattern detected in electronic interferometers was stud-
ied only sparsely [70, 84] and leaves a number of open questions concerning
the interplay of the two effects.

We use the setup shown in Fig. 3.1 a) to investigate the effect of particle
emission (and absorption) from the second source and find that it has a
tunable impact on the interference effects obtained from the signal of the
first SPS. In order to visualize this impact, we study the spectral properties
of the detected signal, the charge and energy currents, [85] as well as the
charge-current noise, [86] based on a Floquet scattering-matrix approach
[43]. This means that we neglect Coulomb interaction, which can lead to
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o
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Figure 3.1: a) Schematic of an electronic MZI. Transport takes place along edge states
(black lines; arrows indicate their chirality). Quantum point contacts,
QPCy, and QPCg, act as beam splitters. All the reservoirs are grounded
and particles are injected into the system by two single-particle sources
SPSa and SPSg. Charge and energy currents are measured at reservoir 4.
b) Schematic of an SPS, which is realized by a mesoscopic capacitor. It is
implemented as a circular edge state and periodically driven by a poten-
tial Uy (t), emitting one electron and one hole per period.

relaxation and decoherence [87] of the injected single particles and which is
expected to modify our results at most on a quantitative level [88].

This chapter is organized as follows. We introduce the system and the in-
vestigated observables, as well as the scattering matrix approach employed
by us in Sec. 3.2. The presentation of results starts with the spectral current,
the charge and the energy currents, and the charge noise for the case of an
interferometer fed by one SPS only, in Sec. 3.3. In Sec. 3.4, this is followed
by a study of the same quantities in an MZI where particles from two SPSs
can collide or where particles can get absorbed. Finally conclusions for this
chapter are given in Section 3.5. In Appendix A, all relevant analytic results
which are not presented explicitly in the main text are summarized.

3.2 MODEL AND TECHNIQUE
3.2.1 Mach-Zehnder interferometer with two single-particle sources

The electronic analogue of an MZI can be realized in a two-dimensional
electron gas in the quantum Hall regime [26—28] using the chiral edge states
for transport, as sketched in Fig.3.1 a), see also Section 1.3.2. Edge states are
represented as black lines with arrows indicating the chirality. Two quan-
tum point contacts, QPCy, { = L, R, with energy-independent transmission
(reflection) amplitudes t; (r¢) and the related transmission (reflection) prob-
abilities Ty = [t¢|® (R¢ = |r¢/*> = 1 —T;) act as beam splitters. The incoming
electronic signal is reflected or transmitted at QPCy,, into the upper arm (u)
or the lower arm (d) of the interferometer, with the respective length L, and
L4. At QPCg the signal from both arms is recombined and is finally reflected
or transmitted into reservoir 3 or 4. Assuming a linear dispersion with the
drift velocity vp, the traversal time of the interferometer arms is given by
Ty = Ly/vp and t4 = Lg/vp.
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The phase acquired by the electronic wave function due to the propaga-
tion along the upper and the lower arm is given by ¢, /q4 = ®y/q + Ety/q/h
with the energy-dependent dynamical phase Et,,q/h and the energy-independent
part, @, /4, including the magnetic-flux contribution @, i.e. the magnetic
flux penetrating the interferometer. The energy and charge currents ob-
served at the detector are known to depend on the difference between the
two phases, Ap(E, @) = O + EAT/h with & = O, — O4 and the detun-
ing, At = 1y — 14 of the traversal times of the interferometer, which is a
measure of the imbalance of the interferometer. We assume the extensions
of the MZI to be smaller than the dephasing length, which can be limited
due to environment- and interaction-induced effects. [89—93] The electronic
reservoirs, o« = 1,2,3,4, are at temperature 8 and they are grounded at the
equilibrium chemical potential p, which we take as the zero of energy from
here on.

Particles - electrons and holes - are injected into the MZI by means of
a controllable single-particle source, SPSy, situated at the channel incom-
ing from reservoir 1. A second single-particle emitter, SPSg, is placed at
the lower arm at Ly/2. Inspired by the experimental realization by Féve et
al. [20], we take the SPSs to be mesoscopic capacitors Section 1.2.1.1 sub-
jected to a time-dependent periodic driving as sketched in Fig. 3.1 b). These
SPSy, with k =A,B, consist of a quantum dot (acting as a capacitor) with a
discrete spectrum, weakly coupled to an edge state through a QPCy. The
energy levels of the quantum dot are controlled by a periodically oscillating
time-dependent gate voltage Uy (t), with period T = 27r/Q and frequency
Q, such that one of the levels is sequentially driven above and below the
electro-chemical potential p. This triggers the emission of an electron from
source k = A,B at time t}, during one half of the driving period, and the
emission of a hole (which is equivalent to the absorption of an electron) at
a time t}! during the other half of the period.

The current pulses injected from SPSp result in an interference pattern in
the detected observables at the output of the interferometer [72, 74]. Oppo-
sitely, those emitted from SPSg do not create an interference pattern on their
own since they only travel along the lower arm.

The synchronization of the two sources, obtained by tuning the emission
times ti/ M results in absorption processes (i.e. the overlap of a current pulse
carrying an electron with a current pulse carrying a hole) at SPSg or in
collisions of particles (i.e. the overlap of current pulses carrying an electron
(or hole) each) at SPSg or QPCg. It has been shown in Ref. [70] that these
collisions and absorptions add a non-trivial phase to the interference pattern
in the time-resolved current at the detector at the output of the MZI, which
can even lead to the full suppression of interference in the detected average
charge current.

3.2.2  Scattering matrix formalism

We describe the transport properties of the above introduced system with
the help of a Floquet scattering matrix formalism Section 2.2. Due to the
time-periodic modulation of the SPSs, coherent inelastic scattering can take
place. Thus the scattering matrix elements S, g (En, Ex ), connect the incom-
ing currents from reservoir 3 at energy E;;, = E+ mhQ to the outgoing
currents at reservoir « at energy En = E+nhQ differing from the incoming
energy by an integer multiple n —m of the energy quantum hQ given by
the driving frequency (Floquet quanta) [43].
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These Floquet scattering matrices thus relate the creation and annihila-
tion operators, BJ&(E) and b «(E), of particles incident in reservoir « to the
respective operators for particles emitted from reservoir (3 onto the scatter-

ing region, dE(E) and ﬁB(E) via

Z Z Stp(E En)d (En) (3-1)

f M=—o0

(and equivalently for the annihilation operators).
Furthermore, the Floquet scattering matrices can be conveniently written
in terms of the partial Fourier transforms,

T
dt i
Sap (Ens Em) :JO e TMAS, ol Em), (3.22)
7 dt —i(n—m)Qt
Sap(En Em) = | e Sout e (En 1) (3.2b)

Here, Sin «p (t, Em) is the dynamical scattering amplitude for a current sig-
nal incoming from reservoir 3 at energy Er, to be detected at a time t at
reservoir o, while Sou¢ og (En, t) is the dynamical scattering matrix for a cur-
rent signal incoming from reservoir {3 at time t to be found at energy E, at
reservoir «. [57]

In this chapter, we are interested in the regime of adiabatic driving, namely
where the dwell time of a particle in the mesoscopic capacitor constituting
the SPS is much smaller than the modulation period T of the driving poten-
tial. [53] Note that this is an assumption on the time-scales describing the
SPSs and their driving only, and does not concern the time-scales describ-
ing the traversal of the interferometer which can be of arbitrary magnitude.
The result is that time-dependent current pulses of Lorentzian shape are
emitted into the MZI. This is similar to the recently realized "levitons", [56]
which are of Lorentzian shape as well. In the adiabatic regime, the dy-
namical scattering matrices describing the subsystem of an SPS, Sy (t) for
k = A,B, are energy independent on the scale of the driving frequency and
Sink(t, B) = Sinx(t, ) = Soutk(E,t) = Soutk (i, t) = Sk(t). For weak cou-
pling and slow driving of the sources, these scattering matrices are given
by, [66]

o t—1t} +iok ht—tkﬁ—icrk

Si(t) = : nh—k %
k(1) = kt tf—iox  “t—th 4ioy

(3-3)

The emission times of electrons and holes, ti, and the width of the emitted
current pulses, oy, are directly related to the properties of the sources and
are thus tunable [53]. We introduced the variables ni in order to distinguish
whether the emission of an electron or of a hole is treated. This variable takes

the value ni/ h'_ 1 if a time-interval where an electron /hole is emitted from

source k is considered, and ni/ h"— 0 otherwise. We assume that electron
and hole emission happen at times which differ from each other by much
more than the pulse width oy, [t} — til > 0y, meaning that the different

current pulses emitted from the same source are well separated. The full
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system, comprising the sources and the MZI, is described by a scattering
matrix that contains the following elements:

Sina1(t,E) = Sa(t —y)rpe®e(Blrg 4+ Sa (t — 1)t Sp(t — %d)eid’d(E)tR,

(3.42)
Sinaz2(t,E) = tpet®ulBrp vy Sp(t— %d)ewd(E)tR, (3-4b)
Sin31(tE) = Sa(t — o) e (Bltg + Sa(t —g)tLSp(t— %d)ei(bd (Elrg,

(3-40)
Sin32(t E) = tet®(Bltg 4+ 1 Sp(t — %d)eid)d(E)TR- (3-4d)

All other matrix elements have no relevance for the quantities studied in
this chapter. Similar expressions are found for the corresponding elements
of the matrix Sout,«p (E, t), which are calculated following the same logic
and are not needed for the final results obtained here.

3.2.3 Observables

The charge current, the energy current, and their spectral functions, as well
as the zero-frequency charge-current noise are the observables that we use
to study our system. In this section we introduce their definitions.

We start from the time-resolved charge [45] and energy [94—96] current
operators in lead «, 14(t) and J«(t), defined as

1a(t) = %ej dEJ dE/eHE-EIVR T (E B, (3.5)
— 00 — 00

. 1 [® o0 . , E+EN].

Jolt) = EJ dEJ dE/e(E-EIt/h {(;)} ia(E,E) (3.6)
— 00 —00

with the electron charge —e, considering e > 0. Both quantities are defined
by the operator i (E,E’) = 65 (E)b&(E)) —al (F)aq (E/), that quantifies the
difference between incident and emitted particles in reservoir o. In turn, the
operators for incident particles in « are related to particles emitted from f3,
see Eq. (3.1).

We are interested in the time-averaged charge and energy currents, I
and ], which are given by the time integral over the expectation values of
Egs. (3.5) and (3.6),

- T dt .
Iy = JO 7<1a(t)>, (3-7)
- Tdt .
Joo= | Falt). (9

Here, (...) indicates a quantum-statistical average. The quantum-statistical
average of particles incoming from the reservoirs is given by the Fermi func-
tion f«(E) = [1+exp(E/ kg0a)l T, namely the equilibrium distribution func-
tion of the reservoirs, (dL(E)d“(E’D = f«(E)S(E —E’). Substituting Eq. (3.1)
into Egs. (3.5) and (3.6) and taking the time-average of the expectation val-
ues as given in Egs. (3.7) and (3.8), we find

Ta=" L dE i (E), (3.9)
_ 1 (*®
Joa = H J;oo dE E ix(E). (3.10)
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The excess-energy distribution function i (E), which we also refer to as the
spectral current, entering the two current expressions is given by [43, 44]

T 0
ix(E) :JO %L dE’e E-EIVR 4 (B, E)
=) > ISap(EEn)lPIf(En) —f(E)]. (3.11)
B N=—o0

It describes the distribution of incident electron and hole excitations with
respect to the Fermi sea in reservoir o. *

Finally, we are interested in the zero-frequency charge-current noise [86],
which is known to be sensitive to two-particle effects,

1 ‘Td ! oo . R . . . .
Pap = 3 JO Tt Loo dt—t) [(Ta®Ip(t") + I (t)Ia(t)) — 2(Ta(t))(Ia (t")].

(3.12)

In the following, we focus on the zero-temperature regime. The Fermi func-
tions are therefore replaced by sharp step functions, [f(En,) —f(E)] — [O(—En) —
O(—E)]. Then, the expression for the zero-frequency noise power assumes a
rather compact form. Substituting Egs. (3.1), (3.2) and (3.5) into Eq. (3.12),
we find

2 = 0 T at (T ar’ . /
Pop = ~— si n(m)J dEJ —J —eimO(t'—t)
B th;m & _ 0o Tlo T
Z [Sz(‘y(t/E)S(xé (t/ Em) E&(t// Em)SBY(t// E)] (313)
v,0

In what follows all currents are evaluated at the detector situated at reser-
voir o = 4. We thus suppress the reservoir index, taking i4(E) = i(E), I =1,
J4 = J. Furthermore, we are interested in the cross-correlation function of
charge currents, for which we have P34 = P43 = P. Note that the time
average over one period will always include electron as well as hole con-
tributions from the different time-dependently driven SPSs. In the next sec-
tions we will separate the contributions by adding superscripts e and h to
the considered quantities and by using the variables ni/ h previously intro-
duced in the context of Eq. (3.3), to highlight the origin of the different terms
stemming from electron and hole contributions.

3.3 SINGLE-PARTICLE INTERFERENCE - WAVE PACKET PICTURE

In order to get a better grasp on the physics and the behavior of the stud-
ied quantities, we start by considering the case where only source SPSp is
active, see Fig. 3.2. In this case, the injection of particles from A leads to
an interference pattern at the output of the MZI (measured in reservoir 4).
The excess-energy distribution function (or spectral current) at the detector
reads

inmz1,a(E, @) = 1§71 A (E) + ikiy; A (E, @) (3.14a)

The energy-resolved spectral current should not be confused with the time-resolved current
pulses studied e.g. in Ref. [70].
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Figure 3.2: Schematic of an electronic MZI. Transport takes place along edge states
(black lines; arrows indicate their chirality). Quantum point contacts,
QPCy, and QPCg, act as beam splitters. All the reservoirs are grounded
and particles are injected into the system by the single-particle source
SPS4. Charge and energy currents are measured at reservoir 4.

where the classical part and the interference part, which oscillates as a func-
tion of the magnetic-flux dependent phase ¢(E, @), are given by

iSiz1a (E) = (RLRR + TUTR) [15(E) + LA (E)], (3.14b)
i 4 (E, @) = 2y cos AG(E, @) [i5(E) + 4 (E)] . (3.140)

Here, we have defined y = t{ 7 tg1 = v/ IL TRRLRR. The excess-energy distri-
bution function contains both electron- and hole-like contributions from the
emission of the different types of particles from SPSu. The particles injected
by SPS, into the edge states are described by the excess-energy distribution
functions [65]

iS (E) = ©(E)n§2Qop e 2Eoa/M, (3-15)
il (E) = —O(—E)nh 200, e2F0n/M (3.16)

of electron-like and hole-like excitations, with contributions in the positive,
respectively the negative, energy range only. Note that, according to the
definition given in Eq. (3.11), the excess-energy distribution function of the
hole-like excitations, iy (E), is always negative, which is consistent with the
interpretation of a “hole" as a missing electron in the Fermi sea. *

The term if\}IZL A(E), see Eq. (3.14b), is of classical nature and it is given by
the sum of contributions from particles reaching the detector after traveling
the upper or the lower arm with a probability Ry Rg, respectively Ty Tr. In
contrast, ii‘}[tZL A(E, @), see Eq. (3.14¢), shows the wave nature of the emitted
signals. It is due to the interference between waves propagating along the
upper and the lower arms.

The interference effects on the electronic contribution to the excess-energy
distribution function, iﬁ/IZI, A(E, @), is shown in Fig. 3.3 a) as a flux depen-
dence for the almost perfectly balanced case, AT < oa. The excess-energy

When introducing the magnetic field, which determines the direction of propagation of the
chiral edge states, as an additional variable to the excess-energy distribution function, the
equality 1§, (E, B) = 712( (—E, —B) relates the excess-energy distribution function of electrons,
i, to the one of holes, il
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Figure 3.3: Electronic part of the excess-energy distribution function, if;,; 5 (E, @)
as a function of the energy E in units of h/o and the magnetic-flux-
dependent phase ®. a) Almost perfectly balanced interferometer, with
AT = 0.010a. b) Unbalanced interferometer, with At = 200. In all plots,
the transmission probabilities are given by Ty, = Tgr = 0.5.

E~0
E=h/20,4
E=h/oy
E=2h/cy4

Figure 3.4: Cuts through the 3D plot of Fig. 3.3 b) at different energies, E, and phases,
®. In all plots, the transmission probabilities are given by T, = Tr = 0.5.



3.3 SINGLE-PARTICLE INTERFERENCE - WAVE PACKET PICTURE

distribution is exponentially suppressed for increasing energies on the en-
ergy scale given by the inverse of the pulse width h/oa. In contrast, for a
strongly unbalanced interferometer, At >> o4, as shown in Fig. 3.3 b), also
the energy-dependent part EAt/h of the phase Ad(E, @) starts to play an
important role leading to exponentially damped, fast energy-dependent os-
cillations in the spectral current. This goes along with a phase shift between
the different energy contributions. In Fig. 3.4, where we show phase- and
energy-dependent cuts through the plot in Fig. 3.3 b), this behavior is clearly
visible.

a) b)
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lfq — Ar=504 b 4 e
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Figure 3.5: Electronic part of the average charge current, Ti/[ZI, A/ (full lines) and of the
average energy current, Ti,IZL A~ (dashed lines) as a function of the phase
O for different values of the detuning At. The transmission probabilities
are T, = T = 0.5.

The energy dependence of the interference part of the excess-energy dis-
tribution function is the electron analogue of the so-called channelled spec-
trum known from optics [75]. This energy dependence leads to dramatic dif-
ferences for the charge and energy currents — namely the energy-integrated
quantities — between the case of a balanced and a strongly unbalanced in-
terferometer. The analytic results for the time-averaged charge and energy
currents, obtained from the energy integrals of the spectral current as shown
in Egs. (3.9) and (3.10), are given by

Ivzia e h
iy (RLRR + TLTR) (TLA *TIA) (3-17)
; —2io 2io
— —i0 ( e A _h A
2YRe {e (“A At—2io,  AATY zwA) } ’
ImMziA e h
oy = (RURe+TLTy) (nA+nA) (3.18)

—2yRe e ' [ n§ _—2i0a ’ +nh _2loa ’
Y A\ AT —2ioy A\ AT+ 2ioa )

The equations show the sum of the electron and hole contributions, which
are indicated by factors n§ and nf stemming from different parts of the
driving cycle. When considering a full period, both n§ and nl} are equal to
one. By considering half-cycle we obtain the electronic part only, as shown
in Fig. 3.5. A full 3D plot as function of At and ® is shown in Figs. 3.10 a)
and b), equivalent results are found for the hole-like contributions.

Here we observe that the interference pattern observed in the excess-
energy distribution function is clearly visible also in the charge and energy
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currents. The amplitude of the oscillations is maximal when At < o and
it gets strongly suppressed for At > oa. This suppression of the flux de-
pendence can be understood as an averaging effect of the phase-shifted con-
tributions of the excess-energy distribution function at different energies
(clearly visible in Fig. 3.3 b)).

On the other hand, this suppression of interference is also a manifestation
of the particle nature of the injected signal, made of a sequence of well-
separated Lorentzian current pulses carrying exactly one electron or one
hole. The width in time of these current pulses, o,, is directly related to the
single-particle coherence time of electrons and holes, as shown in Refs. [72,
74]. The latter can be read out by measuring the visibility of the current
signal detected at the output of an MZI: whenever the detuning of the in-
terferometer, characterized by Ar, is much larger than the single-particle
coherence time oy, the interference in the charge (and energy) current is
suppressed. In this case the current pulses traveling along the upper arm
and the lower arm arrive at the detector in well separated time intervals
and the signals from the two different paths are thus distinguishable.

The coexistence of these two interpretations is consistent with the idea
that, in quantum mechanics, a particle is described by a wave packet, com-
posed of a superposition of plane waves at different energies.

Due to the energy-filtering properties of the MZI and to the different en-
ergies at which and electrons are emitted, we see from Egs. (3.17) and (3.18),
that the contributions for electrons and holes have different weights for fi-
nite detuning At. Then, although the total injected current is zero, the DC
charge current at each output is finite for finite detuning.

As an additional result of the finite detuning, a phase shift with respect to
the cos(®)-dependence is introduced. The energy dependence of the excess-
energy distribution function, namely the channelled spectrum, hence leads
to charge and energy currents which are in general out of phase. Therefore,
it is possible to tune the magnetic flux such that an electron is detected with
a higher probability in reservoir 4, while the energy detected in reservoir 3
is on average larger than the one detected in reservoir 4 (and vice versa).

The extra factor E in the integrand of ] =h~! [ dE E i(E) with respect
to the charge current makes it more sensmve to the energy dependence
of the distribution function i(E). Thus, it is also more sensitive than the
charge current to the variation of the interferometer imbalance, showing
interference suppression at smaller At values, see Fig. 3.5 for the electronic
contributions to charge and energy currents. The visibility extracted from
Eq. (3.17) for the charge current in the case of symmetric transmission of

the QPCs, namely & mI Zia/ I dI Al =20a/1/AT? +40% indeed decays slower
with At than the visibility extracted from Eq. (3.18) for the energy current,
namely [Jyio1 o/ Tvizsal = 403 /(AT +403).

It is to be noted that the results presented in this section are not entirely
new since works dealing with the same system have already been presented,
indeed an MZI fed by a non-adiabatically driven SPS has been studied by
Ferraro et al. [75] in the framework of Wigner functions. In that case the
excess-energy distribution function of emitted particles, i Z/h(E), is approx-
imated by a Lorentzian function. The system shows a qualitatively similar
behavior to the one described here. A closely related work by Hofer and
Flindt [84] focuses on the propagation of multi-electron pulses through a
Mach-Zehnder interferometer.
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3.3.1 Noise of an MZI with one source

As a final step for the characterization of the MZI fed only by SPSa, we
study the zero-frequency current noise as described by Eq. (3.13). The cur-
rent noise, for the half period in which an electron emitted from SPSy arrives
at the MZI outputs, can then be written as

= TRRR + TLRL — 4v? (3-19)

R
42y (TL —Ry) (Tg — Rg) Re {e‘q’ WA}

AT —2i0p
_3 —ZiO“A 2
— {2 io_ —4MA .
( V]Re{e AT—zwA})

A similar expression is found for the hole contribution; see the full expres-
sion in Appendix A 4.

Since the noise comes from a product of current operators, it has con-
tributions both from the first and second harmonics in the magnetic flux.
Given that only single particles are emitted into the interferometer per half
period it is quite intuitive that we should be able to understand the noise
as a simple product of currents. More precisely, it should be proportional
to a product of transmission probabilities to the contacts at which the two
currents are detected.

In order to show that, we consider the charge current in the detector, see

Eq. (3.17), and rewrite it in terms of effective transmission probabilities, Tzf]f’e
and Tﬁf]f’h, for electrons and holes respectively, Iz 4 = —e (neATZf]f’e + n&Tﬁf]f’h) /T,
with

ffe _id —Zi(YA
T3¢ =RLRR + T TR — 2YRe {e v At Ziox } (3-20)
; 2ic
TSR = _RIRR— Ty T +2yRe{e @24 L .
e LRR —TLTR +2yRe < e At 2ion (3-21)

Extracting in an equivalent manner effective transmission probabilities, Tgf]f’e

and Tgf]f 'h, from the current in contact 3, we are indeed able to show that the
noise of the MZI with a single source can simply be written as

2
€ eff ereff.e h —eff, hreff h
TMZI,A = 5 [TleAT4] T31 +TLAT41 T31 . (3.22)

This product form of the noise, shown in Eq. (3.22), is clearly not expected
to hold in the case where two particles are injected into the interferome-
ter from different sources and thus two-particle effects will contribute to
the noise. For a better understanding of the impact of two-particle effects,
as discussed in Sec. 3.4.4, the following interpretation of the classical part
of the noise, given in Eq. (3.19), turns out to be useful. The classical part
TRRR + TLRL —4v2 = (RLRR + T. TR)(RL TR + TLRR), stemming from the prod-
uct of the classical parts of the effective transmission probabilities, results
in the partition noise of the left and the right QPC, T Ry and TgrRg, and
a mixed contribution, —4y2. Furthermore this can be rewritten as TxRg +
TeRr —4y2 = TrRRr + TR (TR — RR)Z. It means that the classical part of the
noise is given by the partition noise of QPCg, TrRg, on one hand, and the
partition noise of QPCy, in the presence of QPCg, TRy (Tr — RR)Z, on the
other hand. The latter shows that, in the absence of interference, QPCy, only
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produces partition noise if QPCR is not symmetric. Indeed, if QPCr was
symmetric, the probability of particles from SPSp to be scattered into the
reservoirs 3 and 4 would be one half each, independently of the transmis-
sion probability of QPCy, and the partition noise of QPCy, would thus be
invisible.

3.4 SYNCHRONIZED PARTICLE EMISSION FROM TWO SOURCES

The influence of the particle emission from SPSg on the interference pattern
of the currents at the output of the MZI is studied in this section, using the
setup shown in Fig. 3.1. It has been shown in Ref. [70] that the interference
pattern in the time-resolved current, (I(t)), detected at the output of the
MZI is subject to a phase-shift, which can take values between 0 and 27,
depending on the emission time of electrons or holes from source B. This has
as a consequence that the interference effects in the time-averaged current, I,
detected at the output of the interferometer in every half period, get strongly
suppressed when the emission of the particles is synchronized such that
either particles emitted from SPSa can be absorbed at SPSg or that particles
of the same kind can collide at QPCr. This synchronization of particles
occurs as a perfect overlap of the time-resolved wave packets emitted from
the two sources. N N

The two time-differences At}, Aty are of particular relevance for these
synchronized two-particle events. The first one is the difference between
the time at which a particle i =eh emitted from SPSp traveling the lower
arm arrives at SPSg and the emission time of a particle j =eh at SPSg,
Atéj =t} — t% + 14/2. The second one is the difference between the time
at which a particle i emitted from SPS, traveling the upper arm arrives
at QPCRr and the time at which a particle j emitted from SPSg arrives at
QPCg, Atlilj = tk — t%l—f— Ty — T4/2. A full absorption thus can occur when
th +71a/2 = tg (or t} +14/2 = t§), which corresponds to Atgh = 0 (or
Atge = 0), together with o4 = op. A full collision of electrons (or holes) can
occur when t§ + 1y = t§ +714/2 (or tg + Ty = tg +14/2), which corresponds
to AtS® =0 (or Atﬂh = 0), together with o4 = op.

Interestingly, the conditions for the averaging of the time-resolved cur-
rents, leading to a full suppression of the interference effects in the detected
charge, allow for a particularly interesting interpretation, which has been
put forward in Ref. [70]. This interpretation is based on which-path informa-
tion which can be acquired in the case that particle collisions or absorptions
occur due to an appropriate synchronization of the two SPSs. In order to
introduce this interpretation in a nutshell, let us for the moment assume for
simplicity that the QPCs defining the MZI are both semi-transparent.

We first consider the situation where SPS, emits an electron and SPSg
a hole. Whenever the condition Atgh = 0 is fulfilled, no particle arrives at
any of the outputs when the electron emitted from source A takes the lower
arm of the MZI and gets absorbed. When the particle emitted from A takes
the upper arm, the average charge remains to be equal to zero, however;
fluctuations occur. This leads to which-path information suppressing the
interference effect: whenever an electron or a hole is detected in one of the
detectors, we can conclude that the electron emitted from SPSp took the
upper arm.

Equally, when both SPSs emit electrons and the condition AtS® = 0 is ful-
filled, these two electrons could collide at QPCg. When the electron emitted
from source A travels along the upper arm of the MZI, the two electrons
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- being in the same state - would have to be scattered to the two opposite
outputs of the MZI at QPCg; [66] in the case that the particle emitted from
A takes the lower arm of the MZI both particles can go to both outputs
randomly. This means that the average charge in each detector is always —e
independently of the traversed path, however only when the electron from
SPS4 took the lower arm, fluctuations can occur. This again leads to which-
path information leading to an interference suppression: whenever o or 2
electrons arrive in one of the detectors, we can conclude that the electron
from SPS, took the lower arm.

Note that this setup is very different from MZIs where an interference
suppression is reached by placing a voltage probe [97] in one of the interfer-
ometer arms [92, 98, 99]. A voltage probe acts as a which-path detector itself
and leads to dephasing. However, the presence of SPSg leads to a coherent
suppression of interference and which-path information can be acquired
only at the detectors at the outputs of the MZI, thanks to the synchronized
emission of particles from SPSg.

In the following, in addition to the charge current we will investigate also
the spectral current and the energy current of the emitted signals as well as
the charge-current noise with the aim to extend the understanding of the
impact of the above described multi-particle effects on the MZI signal.

3.4.1 Spectral properties

As we did for the case with only one source, we start by considering the
spectral current. We study the case where one source emits an electron and
one source emits a hole in the same half period, allowing for the absorption
of particles at SPSg, as well as the case where both sources, SPS4 and SPSg,
emit the same kind of particles, allowing for possible collisions between
particles in one half period.

The synchronized emission from the two sources goes along with inelas-
tic scattering processes. More specifically, scattering at the time-dependently
driven SPSp results in an energy increase or decrease in the scattering pro-
cess [68]. This leads to a deformation of the spectral distribution of the
current as will be shown in the following.

Absorption of particles

In the case where particles of opposite type emitted from the two sources
are detected in the same half period, absorptions can occur at source B and
the spectral current is given by

i (E, @) = RLRRiS (E) + Ry TRil(E) (3.23)

4
+TuTr (H5(6) +15.(B)) (1_ AT 2)
AtSh” + (o4 + o)

—2vi4 (E)Re e 1P iEAT/R [ 0 %IGB .
At +1i(oa + 0p)

From now on, for observables calculated for the MZI with two sources, we
drop the subscript indicating the presence of the MZI and the number of
working sources, the latter being evident from the superscript ij for the
type of particle i = e,h emitted from SPSx and the type of particle j = eh
emitted from SPSg. Here, we show the case where SPS, emits an electron
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and SPSg a hole (n§ = nl} = 1 and n} =n§ = 0); the opposite case is shown
in Appendix A.1.

When the two particles are emitted independently, such that the electron
emitted from SPS, is not in the vicinity of SPSg when a hole emission oc-
curs at the latter. Then, far away from the condition, At = 0 and o5 = op,
the expression given in Eq. (3.23) reduces to the sum of the separate con-
tributions of the two sources, namely for the hole emitted from SPSg and
transmitted at QPCg, TRi%(E), and the electron term containing interference
effects, as the one in the previous section, given in Eq. (3.14a).

The absorption of electrons emitted from SPSp at SPSg can occur when
the time difference Atgh is of the order of the width of the associated time-
resolved current pulses o4, 0p. It leads to a cancellation of the contribution
of the current traveling along the lower arm in an energy-independent man-
ner, depending only on how accurately the absorption conditions, AtS" = 0
and op = op, are fulfilled. Equally, the suppression of the interference
part of the current takes place in a way which is independent of the en-
ergy E. It becomes evident also from Fig. 3.6, where the electronic (posi-
tive energy) part of this spectral current is shown as a function of energy
and of the magnetic-flux dependent phase. Indeed, the amplitude of the
flux-dependent oscillations is suppressed with respect to the case where
Atgh > o0,,/p — the latter being equivalent to the case of an emission from A
only, while source B is switched off, as in Fig. 3.3 a).
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Figure 3.6: Energy-distribution function, i¢h(E, @), shown for positive values of the
energy E only, in the regime where absorptions of electrons emitted by A
are possible through the emission of holes from B depending on the time
difference Atgh. Here we take Atgh =0.10 and show i®"(E, ®) as a func-
tion of the energy E in units of h/oa and the magnetic-flux-dependent
phase @. The interferometer is almost perfectly balanced, AT = 0.010,,
the pulse widths are assumed to be equal, 0o = op, and the transmission
probabilities are given by Ty, = Tr = 0.5.
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Collision of particles of the same kind

In the case where particles of the same type emitted from both sources are
detected in one half period, we find for the electron part of the spectral
current

i*(E, @) = Ry RRij} (E) + T Trij (E) (3-24)
Red 1+ 4op08 _ Jiog Aty —i(oa + o) e LE(Atg+i(oa—0p)) /N
AtF? + (oa — 0p)? AtE? + (op — 0p)?

+ RLTRieB(E) + TLTRi%(E) X

ee 3
Rel 14+ 5 4(7AGB : 721_'0_A Atdz—l(o-A + UB)Z e_iE(Atge“‘i(o'B_U—A))/h
A2 1 (0 — op) A2 + (o5 — op)

; : 2i0 : ee_ i
_ 9a€ —i® ,—iEAT B _ —iE(AtE+i(oa—0p))/h
ZylA(E)IRe{e e |:]+At§e+i(0‘A—0'B) (1 e d )}} ,

the hole contribution is given in Appendix A.1.
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Figure 3.7: Classical part of the excess-energy distribution function, i°*<!(E), in the
regime where collisions between particles of the same kind are possible
depending on the time difference At$. We show the electronic contribu-
tion as a function of the energy E in units of /os. We take 0o = op and
the transmission probabilities are given by Ty, = Tg = 0.5.

The classical part, i°!(E), is given by the expression in the first two lines
of Eq. (3.24). Again, when Aty > 04,0, it reduces to the sum of the
single-particle contributions, namely the sum of Trij and of the expression
in Eq. (3.14b). The resulting exponential behavior of the spectral current
is represented by the red (dashed line) in Fig. 3.7. However, if the tuning
of the emission times from SPSs and SPSg is such that particles could col-
lide at SPSg, in other words, if there is an overlap of the time-resolved cur-
rent pulses emitted from the two sources and the difference of the emission
times, Aty is of the order of the width of the current pulses, then energy-
dependent oscillations occur in the classical part of the spectral current on a
scale given by the inverse of the time difference, h/At$. This oscillation on
top of the energy-dependent exponential decay of the spectral current is a
result of the complex exponential factor in the last term of the first two lines
of Eq. (3.24). Importantly, its amplitude gets suppressed for large time differ-
ences. Therefore the amplitude of the oscillations is largest close to the col-
lision condition At§® = 0, while the frequency of the oscillations is reduced.
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This behavior becomes apparent from the green (full) line in the plot shown
in Fig. 3.7 where damped oscillations are visible. The oscillations of the blue
(dashed) line are hardly visible due to the small oscillation frequency. It is
this complex energy dependence at the scale h/AtS?, which leads to the fact
that the classical part of the energy-integrated, average charge current is in-
sensitive to collisions of particles at SPSg, while an increase of the classical
part of the energy current is observed when two particles are emitted on top
of each other at SPSg. [68]

This behavior is very different from the energy-independent suppression
of parts of the spectral current in the regime of possible particle absorptions.
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Figure 3.8: Interference part of the excess-energy distribution function, i*¢"(E, @),
in the regime where collisions between particles of the same kind are
possible depending on the time difference AtS. We show the electron
contribution as a function of the energy E in units of h/os and the
magnetic-flux-dependent phase @ close to collision AtF = 0.104. The in-
terferometer is almost perfectly balanced, At = 0.010,, the pulse widths
are assumed to be equal, 05 = op, and the transmission probabilities are
given by T, = Tr = 0.5.
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Figure 3.9: Interference part of the excess-energy distribution function, jeednt(E @),
in the regime where collisions between particles of the same kind are
possible depending on the time difference At$®. We show the electron
contribution as a function of the energy E for three different flux values
and for At§® = 0.10a (full lines) and At$® = 20 (dashed lines). The
parameters are the same as in Fig. 3.8
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The interference contribution, 11" (E), is given by the third line of Eq. (3.24)
and it is shown in Fig. 3.8. Far from the collision condition, this contribution
stems from the signal emitted from source A only where it equals Eq. (3.14¢).
When the particles from SPSs and SPSp are emitted such that collisions be-
tween them are possible at SPSg, oscillations with two competing time-scales
appear, namely the time-scale of the collision condition, AtS, and the time-
scale related to the detuning of the interferometer, At. Again, oscillations on
the energy scale given by h/At$ are suppressed for large time differences
At$. Note once more, that this is however very different from the absorp-
tion case where the time-scale of the absorption condition enters in a fully
energy-independent manner. For an almost perfectly balanced interferome-
ter, AT < 04, the interference contribution to the spectral current is shown
as a function of the energy and the flux-dependent phase in Fig. 3.8, ex-
hibiting slow oscillations on the scale 1 /At%®, where we here chose the case
close to the collision condition, At§ = 0.104. In Fig. 3.9 cuts through the
density plot of Fig. 3.8 are shown as a function of energy for different val-
ues of the phase, ®. We compare these curves with the case slightly farther
away from the collision condition, where the modulation on the energy scale
given by h /At becomes more obvious. Interestingly, the areas enclosed by
the curves below and above the energy-axis (indicated by the shaded areas
in Fig. 3.9) close to the collision condition, Atge = 0.104, sum up to a value
close to zero independently of the value of the magnetic flux entering the
phase @. We will see in the following section, Section 3.4.2, that this leads to
a suppression of the interference in the (energy-integrated) charge current,
when the two sources are adequately synchronized. However, as soon as the
time difference Aty is increased while keeping the interferometer balanced,
At = 0, the sum of the enclosed areas becomes flux dependent, as can be
seen from the dashed lines in Fig. 3.9.

3.4.2 Charge current

The energy-dependent interference occurring in the previously studied spec-
tral currents is equivalent to what is known as a channelled spectrum from
optics. The behavior of the charge end energy currents, which are given by
the energy averages of the spectral currents multiplied by the charge, re-
spectively the energy, see Egs. (3.9) and (3.10), can therefore be understood
based on the previous investigations.

Absorption of particles

We start with the presentation of the charge current found in one half period
in which an electron emitted from SPSp and a hole emitted from SPSg are
detected in reservoir 4 (namely taking n§ = ni = 1 and n} = n§ = 0),
allowing for the absorption of particles if Atﬁh ~ 0. The charge current is
then given by

Teh
—e/T

: —2i 24
—2yRe eﬂ@L.A 1_ . ‘10'B ‘
AT —2icp At§ +1(oa + oB)

We find that only the interference part of the charge current (second line)
is affected by the synchronization of the particle emission from the two

=RLRR + T TR — Tr (3-25)
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sources. The dependence of the spectral current on the time-difference Atgh,
see Eq. (3.23), thus cancels out in the classical part.

The factor leading to the maximum of interference for the balanced case,
A;Ei%, in the absence of absorptions, and the factor suppressing the in-
terference in case of absorptions, Atfihﬁi(z;rog)
both leading to a Lorentzian-type structure together with a phase shift at
the maximum /minimum of their contribution. This similarity becomes also
obvious when comparing Figs. 3.10 a) and 3.11 a) which bring out the two
effects.

, are of very similar nature,
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Figure 3.10: Charge and energy current detected at reservoir 4 (output of the inter-
ferometer), with symmetric transmission of QPCy, and QPCg. a) Charge
current of an MZI fed by SPSp only, as a function of the MZI detun-
ing AT in units of the current-pulse width o and as a function of the
magnetic flux ®@. b) Energy currents for the same situation shown in a).

As for the case of the MZI fed by one source and as mentioned in the
beginning of this section, two interpretations can be given for our results,
based on the wave or particle nature of the particles emitted by the sources,
see also Ref. [70]. On one hand the insensitivity of the classical part of the
current to absorptions as well as the suppression of interference can be in-
terpreted as the result of an energy average of the spectral current given
in Eq. (3.23). On the other hand, a physically more insightful interpretation
can be given based on a particle picture of the injected signals.

The average charge current of each classical path is not affected by an
absorption - in other words, an electron and a hole carry in total no charge
independently of whether they recombine in an absorption process or not.

Even so, the absorption of an electron by a hole suppresses the fluctuation
in the charge current. Hence, there are fluctuations at the output depending
on whether the particle from SPS4 took the upper or lower arm which leads
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Figure 3.11: Charge and energy current detected at reservoir 4 (output of the inter-
ferometer), with symmetric transmission of QPCy, and QPCR. a) Charge
current of a slightly detuned MZI, At = 0.50, fed by an electron from
SPSp and a hole from SPSg as a function of the time difference Atgh
in units of the pulse width o5 = op and the magnetic flux-dependent
phase @. b) Charge current of a slightly detuned MZI, At = 0.504 fed
by an electron both from SPSp and SPSg as a function of the time dif-
ference Aty in units of the pulse width o4 = op and the magnetic
flux-dependent phase ®. c¢)-d) Energy currents for the same situations
shown in a)-b).

to which-path information thus suppressing the interference. This suppres-
sion of fluctuations in the case of absorptions is shown in a detailed study
of the noise in Sec. 3.4.4.

For completeness we report the case in which holes emitted from SPSa
can be absorbed at SPSg. The charge current detected in this half period
behaves similarly as the one for the previous case, described in Eq. (3.25),
and it is given by

The
—e/T

i ZiO‘A *ZiO‘B
+2yRele t® "2 |1 .
Y { AT+ 2i0p ( Atge—i(O‘A-FO'B))}

The difference with respect to Eq. (3.25), is given by a sign difference due
to the contribution of oppositely charged particles and by a different phase
which enters both through the factor stemming from the detuning proper-
ties of the MZI as well as from the factor describing the synchronization of
particles. As a consequence of this phase shift between hole and electron
contribution, the charge current detected at reservoir 4 during a whole pe-

= —Ri.Rg — TLTR + TR (326)
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riod, does not vanish (even though the total current injected by the sources
is zero) and it is given by

Teh+he 4o A Atz + 0.2 2
= 2ysin(®) ZGA Tz d A GBZ
—e/T AT? 403 At] + (04 + 0p)
_ 402 4opAt
+ 2y sin(®) A B (3-27)

AT? + 403 At2 + (o5 + 0p)°

Here we assume that Atgh = Atge = Aty for simplicity. Both contributing
terms depend on the energy-filtering properties of the MZI due to finite de-
tuning At and on the synchronized emission of multiple particles leading
to a modification of the channelled spectrum of the device. The first of these
terms is finite only for finite detuning, the other one occurs only when the
emission of the two particles of opposite type is slightly off, Aty # 0. Inter-
estingly, the latter term is finite also when the detuning is zero: in this case
the total charge current at the output of the MZI both due to SPS, alone
and due to SPSp alone would vanish. However, when the sources are syn-
chronized such that Aty ~ o4, 0p, the term survives showing features due
to two-particle effects in the DC charge current.

Collision of particles of the same kind

We now consider the case where an electron from each SPSs arrives at the
detector in the same half period. The average charge current in this case is

iee

—e/T

. —2io —2i0
—2vR —1i® A 1_ B .
Y e{e AT—ZiO‘A< A —1 (o + 0p)

Again, the classical contribution is independent of the synchronization of
the two sources; in contrast, the interference part of the time-averaged charge
current is sensitive to the collision of particles at QPCg, see Fig. 3.11 b).
This can again be understood as an energy-average of the synchronization-
dependent spectral current. Note however, that while the structure of the
expression given in Eq. (3.28) is very similar to the one for the absorption
case (see Eq. (3.25)), the corresponding spectral currents have very different
behaviors. In particular, the fact that the time-scale At$® (for the emission
of an electron at SPSg on top of the one from SPS,) introduces an energy-
dependent oscillation into the spectral current is important here: together
with the energy-dependent oscillation governed by the time-scale of the de-
tuning At it leads to features at the collision condition Aty ~ 0, when the
energy integration of the spectral current is performed to obtain the average
charge current.

The interpretation of these facts is again more intuitive when resorting
to an explanation based on a particle picture. As in the previous case, fluc-
tuations on the charge occur or not depending on the path traversed by
the electron from A under the collision condition AtS® = 0 (with oo = op).
Then, if the electron emitted from SPSp travels along the upper arm, it col-
lides with the electron emitted from SPSp leading to the transmission of
exactly one electron to each MZI output. But if the electron emitted from
SPS, takes the lower arm, the charge in the two MZI outputs fluctuates due
to the probabilistic transmission at QPCg. Despite not having an impact on
the average charge transmitted along each of the classical paths, this allows

=RLRR + Ty TR + Tr (328)
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to extract which-path information from the fluctuations in the transmitted
charge. The question whether one particle arrives in each reservoir on aver-
age or whether it is indeed exactly one particle in each period, can ultimately
be clarified by considering the noise, which we present in Sec. 3.4.4.

The full general expressions for the charge current in the case of collision
and absorption are given in Appendix A.2.

3.4.3 Energy current

As we did in Section 3.3 we study not only the charge current but also the
energy current. There, we have shown, see Figs. 3.5 and 3.10, that charge
and energy both have oscillations due to the interference but their behav-
iors are different. On top of that, the results of the last section show the
impact of absorptions and collisions on the charge current and how they
can be explained either based on the structure of the spectral current or
on the occurrence of two-particle effects. Both interpretations are clearly re-
lated to the energetic properties of the contributing current pulses, further
motivating the following discussion of the energy currents detected at the
output of the MZI.

Absorption of particles

In the case where a particle emitted by SPS5 can possibly be absorbed at
SPSg, the energy current in reservoir 4 is given by

- h
jeh (RLRR + T TR) +

=— Ty .
ZO'A(.T 20']37 R (3 29)
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We see that the synchronization of the two particle sources affects both
the classical and the interference part of the energy current. Let us start
by considering the classical contribution: in contrast with the charge which
has opposite sign for electrons and holes, independent electrons and holes
carry the same amount of energy related to the width of the current pulse,
f/204 /. Therefore the absorption of a particle (which can occur when the
particle emitted from SPS, takes the lower MZI path) leads to an annihi-
lation of the energy current. The classical part of the energy current thus
reduces to R Rrh/20a + R Trh/20p in the case of full absorption in the
lower arm, namely when Ath =0 and o = op.

Similarly, we see that the interference is suppressed under the condition,
Atﬁh = 0 and op = op. If the particle from SPSg is absorbed along the
lower path, the energy going along with it does not fluctuate any more at
the output and the same coexisting interpretations as for the charge current
can be employed, based on the wave and the particle nature of the injected
signal. Indeed, we find that the effect of the absorption is the suppression
of the factor (—2ioa)%/(At — 2ica)?2, which was found to be typical of the
oscillations on the energy current in the interferometer, see Eq. (3.18). The
energy current in the case of absorption is shown in Fig. 3.11 c) as compared
to the case of an MZI with a single working source shown in Fig. 3.10 b).
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Results for the absorption of a hole, namely the synchronized emission of a
hole from SPSp and an electron from SPSg are given in Appendix A.3.
Collision of particles of the same kind

The energy current in the regime where particles of the same type are in-
jected from the two SPSs such that they arrive in the detector in the same
half period is given by

h h
ee = R R T T *
J ZGA‘I( LRr +To R)+ZGBT R (3-30)
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As for the charge, here we show the electronic contribution only; the gen-
eral expression is given in Appendix A.3. The classical part of the energy
current shows an enhancement when a particle from SPSg is emitted on top
of a particle emitted from SPSy traveling along the lower arm, since the two
particles can not occupy the same energy state. This enhancement occurs
hence under the condition At§ = 0 and 0p = o = 0 and leads to the clas-
sical energy current (Rp + 4Ty Tr) h/20. In contrast, the interference part of
the energy current is not affected by this event.

However, like in the case of the charge current, the interference contribu-
tion to the energy current is sensitive to possible collisions at the interfer-
ometer output (at QPCR) taking place if Aty® ~ 0. The interference term
contains two contributions: the first is suppressed when the two emitted
particles can collide at QPCr and one could be tempted to say that is a sup-
pression as the one in the charge current with the corresponding amount of
energy of the colliding particles

However, there is an additional term which appears in the vicinity of
the collision condition, which stems from the additional oscillations of the
spectral current related to the energy scale associated to the time-scale AtS,
see the last term of Eq. (3.24).

Intriguingly, the energy current for two particles of the same kind hence
behaves rather differently from the charge current: it has features both at the
condition At$® = 0 (classical part) and at the condition At¥ = 0 (interference
part) and the interference effects in the energy current do not get suppressed
under the collision condition (neither at QPCr nor at SPSg). The collision at
QPCgR rather introduces a phase shift only, which can be seen in Fig. 3.11 d).
This behavior has the following important implications.

The continued existence of the interference in the energy current in the
case of possible collisions at QPCr can obviously not be explained within
one consistent particle picture, as it was done for the suppression of inter-
ference due to collisions in the charge current. Indeed, when particles can
collide at QPCg, fluctuations in the charge are suppressed while they per-
sist in the energy. Hence, if a particle picture could be used then it would
lead to an apparent separation of energy and charge of the particles, namely

+ 2y
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interference occurring in the energy current while the charge current is flux-
independent. This “paradox" in the particle-interpretation of the energy-
charge separation as well as its alternative description by quantum inter-
ference has recently been debated for spin-particle [100] and polarisation-
particle [101] separation under the name “quantum Cheshire cat" [102, 103].

Finally, we notice that the enhancement of the energy current when col-
lisions at SPSg can occur could be considered as a which-path information.
It however turns out that this does not influence the interference pattern
neither in the charge current nor in the energy current. Consequently, we
find that the coexistence of the interpretations of interference suppression
due to phase averages and due to multi-particle effects is to be questioned
when energy currents are taken into account.

Even so, the interpretation based on the wave picture is still valid in this
case. We saw that in the case of the charge current, the suppression of in-
terference was caused by the averaging of the spectral current (as shown
in Fig. 3.9). This averaging is not expected to hold for the energy since the
integral to obtain the energy current from spectral current is weighted by
an E factor.

3.4.4 Noise of an MZI with two sources

In the following, we will consider the impact of two-particle effects on the
charge-current noise. Since the interpretation of our results is not clear from
one-particle quantities such as the charge and energy currents, we resort to
a quantity where two-particle effects can be clearly seen, the noise.

Absorption of particles

Let us again start to consider the case where possible absorptions might
occur. In this situation, the two explanations based either on an averag-
ing effect of the spectral current or on the absorption of particles, carrying
charge and energy, could coexist to explain the occurrence or absence of
interference effects even when considering energy currents. In that case the
charge-current noise is given by

f})eh
—e2/T

4
— R T, — 4v% + 2R, TrRR + 2T, TRy (1 —OATD 2)
At + (oA + o)

AT —2i0p

+2y (T, —Ry) (Tr — Rr) Re {e”’ —2i0A <1 2i0p ) }

At 1 i(oa +0p)

2
_i —ZiO'A 210‘3
— [ 2yRe{ e ® : 1— . 31
(y { At —2iop ( Atgh+i(oA+oB)>}> (3:31)

The classical part of the noise, shown in the first line of Eq. (3.31), is partly
suppressed by the absorptions. In particular, if the particle from SPS4 took
the lower arm of the interferometer with probability T, and could hence get
absorbed, the partition noise at the right barrier created by particles coming
from SPSp and the opposite type of particle coming from SPSg, 2TRRgR, is
fully suppressed. What is then left from the classical part of the noise is
given by RiTr — 4‘}/2 + 2R TRRR = 2R TRRg + TRy, (T — RR)Z. It equals the
partition noise of the two particles at QPCp if the particle from SPSp took the
upper arm, 2Ry TrRR, and the additional noise of the particle from SPSx at
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QPCy, in the presence of QPCR, which can obviously not get affected by the
absorptions happening behind QPCp, Ty Ry, (Tr — RR)2 . Also the interference

part of the noise gets fully suppressed by the factor (1 — MM);

in the case of absorptions. The result for the noise thus fully confirms that
the absorption condition leads to a suppression of fluctuations at QPCg,
yielding information on the path that a particle emitted from SPS, took in
the MZI.

Collision of particles of the same kind

Finally, we consider the case where an electron emitted each from SPSx and
SPSg can reach the reservoirs in the same half period of the source operation.
The charge-current noise takes the form
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Equivalently to the absorption case, the behavior of the charge-current
noise corroborates the interpretation of the suppression of interference ef-
fects in the charge current based on two-particle collisions. Indeed, only
when the collision condition at QPCy is fulfilled, the classical part of the
noise gets suppressed by the contributions stemming from the partition
at QPCR, when the particle took the upper arm, allowing for collisions
at the output of the MZI. The remaining classical noise is then given by
2T TRRR + TLRL (TR — RR)Z. At the same time also a full suppression of the
interference part of the charge-current noise is found.

Again, the results for the absorption of holes by electrons emitted from
SPSg and the collision of holes at QPCg are shown in the Appendix A 4.

3.5 CONCLUSIONS

In this chapter we have studied interference effects on the charge, energy,
and spectral currents as well as on the charge current noise at the output of
a MZI fed by one or two single particle sources.

We have shown that when the MZI is fed only by source SPSy4, all quan-
tities show dependence on the flux through the interferometer, i.e. interfer-
ence effects. The interference effects, visible as oscillations with respect to
the magnetic flux, are strongly affected by the detuning of the MZI, given
by AT, due to the energy-dependence of the transmission through the inter-
ferometer. This results in a phase shift between the oscillations in the charge
and energy currents and in a finite DC current at both outputs despite the
fact that the injected DC current is zero. We have also shown that two in-
terpretations can be given for the suppression of the interference for large
detuning, based either on the wave-like properties of the injected signal (av-
eraging effect of the interference features occurring in the spectral currents
which represent the plane wave contributions of the injected signals) or on
the particle-like properties of the same (the limited single-particle coherence
length).



3.5 CONCLUSIONS

We continued our study by adding a second SPS in the middle of the
lower arm of the interferometer to investigate how the synchronization of
the two sources affects the interference effects in the MZI. The synchroniza-
tion of the sources, manifesting as collisions and absorptions of particles
introduces new relevant time scales. These new time-scales lead to a sup-
pression of the interference in the spectral current when the sources are
tuned to allow for absorptions of particles, or even to the occurrence of ad-
ditional energy-dependent oscillations when the possibility of collisions of
particles of the same type is given. As a result of the occurrence of these
new time-scales manifestations of two-particle effects are already visible in
the DC charge current.

The absorption of particles at SPSg, as well as the collision of particles
at QPCR lead to a suppression of interference in the charge current. We
demonstrated that this can be interpreted in two different manners: (1) the
suppression of interference can be understood as the result of an averaging
of the magnetic-flux dependent contributions of the spectral current. It can
on the other hand (2) be explained by the possibility of extracting which-
path information from reduced fluctuations due to two-particle effects. Our
investigation of the noise properties corroborates the possibility of a particle-
interpretation of the interference suppression by showing that the absorp-
tion and collision of particles indeed leads to a specific reduction of fluctu-
ations. However, this work also shows that the particle-interpretation does
not hold in the case of collisions, whenever the behavior of the energy cur-
rent is considered. We show that the energy current behaves fundamentally
different from the charge current of electrons and holes displaying signa-
tures of interference when the charge current does not.

It is to be noted that the theoretical quantities that we studied here are
experimentally accessible. Indeed, the charge current and charge-current
noise of SPSs in Quantum Hall devices have been measured [22, 69, 73, 104].
Interference effects in energy or heat currents were detected in a stationary
superconducting interferometer [105]. Also, measurements of the spectral
current in the stationary regime in edge states out of equilibrium have been
presented in Ref [44].

In this chapter we have used the single particle sources, implemented
using quantum capacitors, as mere tools, that is, as particle emitters. We
focused on the possibility of emitting and absorbing electrons from quan-
tum dots acting as quantum capacitors when subjected to low frequency
(adiabatic), strong, periodic driving gate potentials. In the next chapter we
explore a different regime of operation of quantum capacitors where they
are subjected to small-amplitude periodic driving gate potentials and we
study their thermoelectric transport properties.
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TIME-DEPENDENT HEAT FLOW IN INTERACTING
QUANTUM CONDUCTORS

4.1 INTRODUCTION

Our previous findings show clearly that charge and energy currents have
very different behaviors in nanoscale systems, therefore a thorough study
of both electrical and heat properties is needed for a good characterization
of this kind of systems. The expeditious advance of circuit miniaturization
thus requires the knowledge of heat flow in quantum devices in response to
electrical fields [106—108]. Due to this necessity, thermoelectrical transport
in quantum devices is a research field that has vigorously relaunched nowa-
days [109—-115]. Nevertheless, so far, the activity has focused on driving elec-
trical currents by oscillatory forces [18, 116] for charge qubit manipulation
[117, 118], quantum emitter generation [20, 119-121] or quantum tomogra-
phy purposes [122].

One of the most widely used quantum devices are quantum capacitors
(quantum RC circuits). In fact, the single particle emitters used in the pre-
vious chapter, Chapter 3, are quantum capacitors that emit and absorb elec-
trons due to an applied AC signal [20]. Low frequency measurements of the
electrical admittance in quantum RC circuits provide information about the
spectroscopic (Cg quantum capacitance) and resistive (Rg relaxation resis-
tance) properties of coherent conductors [17, 123, 124] in which Rg = h/2e?
takes an universal value [125-129] for zero temperature. Interactions, such
as charging effects [19] or Kondo correlations [130, 131] do not alter the uni-
versality of Rg, measured experimentally, in quantum capacitors [17, 123,
124, 132, 133], carbon nanotubes [134], superconducting junctions [135] and
quantum dots [136].

In contrast, time-resolved heat transport has been poorly investigated [68,
96, 137, 138]. Only stationary or time-averaged heat flows have been ana-
lyzed in more detail [105, 139, 140]. The understanding of time dependent
heat currents opens an avenue of creating circuit architectures where heat
absorption or emission events are finely tunable via electrical and thermal
time-dependent signals. Recently, the linear response for the charge and
heat fluxes to electrical and thermal AC signals was attained for a quantum
capacitor showing that heat flows can be delayed or elapsed with respect
to the AC pulse depending on the dot gate position [138]. Later on, Lu-
dovico, et al., [96] showed, for a slow AC modulation and for noninteracting
conductors, that time-dependent heat flow J(t) needs to explicitly consider
the energy stored and relaxed at the tunnel coupling region when a tunnel
Hamiltonian description is employed.

Our aim in this chapter is to improve the understanding of quantum RC
circuits by treating them from a perspective different from the previous
chapter where we consider interactions and we do not restrict ourselves to
the adiabatic regime but we restrict the amplitude of the driving. By includ-
ing interactions, we complement the work from Ref.[96] where electrical and
heat properties of non-interacting quantum capacitors in the non-adiabatic
regime were studied. Furthermore, by studying the heat properties of an RC
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circuit, we expand the results of Ref.[19] where only the electrical properties
of an interacting quantum capacitor were considered.

To this end we derive the time dependent heat flow for interacting multi-
level conductors and arbitrary AC frequencies. Since our heat formula holds
for arbitrary high frequencies, it is able to describe photon-assisted tunnel-
ing processes occurring in the heat transport. Our only limitation is that
we are restricted to the linear response regime, i.e., low AC driving am-
plitudes. We confine our interests to the Coulomb blockade regime, see
Section 1.2.2 of the introduction, and do not consider higher-order corre-
lations like Kondo effect, we implicitly assume a temperature higher than
the Kondo scale (Tx), i.e., T > Tk. For our calculations, we employ the non-
equilibrium (Keldysh) Green’s function formalism, see Section 2.3,which al-
lows us to include electron-electron interactions, charging effects, in a feasi-
ble way within the so-called Hartree-Fock regime.

)

Figure 4.1: Schematic of the multi-orbital interacting quantum capacitor. It is shown
two situations where the AC voltage is applied either a) to the dot or b) to
the reservoir. Both cases are equivalent by means of a gauge transforma-
tion. U(t) denotes the time-dependent internal potential of the dot as re-
sponse of the charge injected by the AC driving field V(t). We model such
response with a capacitance C. We illustrate in b) the induced photon-
assisted emission and absorption processes (shown by wiggle lines) in
the heat by the action of V(t). Qg, Op, and Qt are the energy change
rates in time at the reservoir, quantum dot, and tunneling barriers.

The obtained expression for the heat flow is applied to a prototypical
interacting multi-orbital quantum circuit— a quantum capacitor— formed by a
carbon nanotube quantum dot that is coupled to a single terminal being
modulated by an AC voltage, as shown in Fig. 4.1. Carbon nanotubes ex-
hibit charging effects due to the formation of quantum dots inside the tube
[141]. The valley degrees of freedom, corresponding to the K and K’ Dirac
points in graphene in addition to the spin indices, lead to a four-fold en-
ergy level degeneracy. Such degeneracy can be lifted by the presence of
an external magnetic field B [142]. Furthermore, the nanotube curvature
yields a spin-orbit interaction resulting in split time-reversal dot level pairs.
Therefore, carbon nanotube quantum dots act as multi-orbital interacting
conductors where Coulomb interactions give rise to Coulomb blockade phe-
nomena. Even more importantly, carbon nanotube quantum dots have been
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demonstrated to be perfect platforms to investigate the frequency-resolved
transport when they are embedded in electromagnetic cavities, [134] pre-
cisely the issue that our work addresses.

The chapter is structured as follows, in Sec. 4.2, we describe the theo-
retical model for an interacting multi-orbital quantum capacitor and the
Hartree-Fock decomposition of electron-electron interaction. We derive the
time-dependent heat flux for the reservoir in the linear response regime and
obtain the electrothermal admittance. For completeness we also discuss the
electrical admittance. In Sec. 4.3, we start by proving that our formalism can
exhibit Coulomb blockade phenomena. The observations for a single orbital
quantum dot are briefly discussed and then results for a multi-orbital one
are presented. Here, we consider a four level degenerated carbon nanotube
quantum dot which splits due to the presence of magnetic field and spin-
orbit interaction. For this system, we show the RC parameters and investi-
gate the electrical and electrothermal admittances. Our findings are summa-
rized in Sec. 4.4.

4.2 TIME-DEPENDENT TRANSPORT FORMULATION

The purpose is to derive the linear response heat current for an interacting
conductor coupled to a reservoir that oscillates with an AC voltage signal
in the Coulomb blockade regime. We first propose a model Hamiltonian
describing a multi-orbital quantum capacitor which is attached to a single
reservoir. Using the Keldysh formalism for nonequilibrium Green’s func-
tions, see Section 2.3; we have the linear response heat flux at the reservoir
subject to an oscillating electrical signal. Remarkably, the heat flux can be
cast in terms of the conductor Green’s function as it happens for its electrical
counterpart [19].

4.2.1  Model of Hamiltonian

The starting point of our derivation is the tunnel Hamiltonian description
of a quantum capacitor. The quantum capacitor Hamiltonian X is split into
three parts, namely the reservoir part ({r), the dot contribution (Hp), and
the tunneling term (H7), i.e.,

H=Hg+Hp +FHt. (4.1)

More concretely, the reservoir part reads

He =) lere — (n+eV(t)c] oo, (4-2)
k, o

where u = Ef + eVpc is the chemical potential with Ef the fermi energy,
Vpc the bias offset, e > 0 the unit charge, and V(t) the electrical voltage
modulation [see Fig. 4.1 b)]. As shown in Fig. 4.1, notice that this description
is equivalent to the situation where the AC voltage is applied to the dot since
a gauge transformation connects both situations and we thus employ two
situations interchangeably [47]. Without loss of generality, we set Vpc = 0.
The operator CL -(Ccko) creates (annihilates) an electron with wavevector k
and spin o in the reservoir. For the dot contribution describing an interacting
system with n levels, we have

Hp =) enodhodno+Ec Na+ N1, (4-3)

n,o
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where dlm(dmy) corresponds to the creation (annihilation) operator for a
dot electron in the nth level with spin o, ens denotes the single-particle
energies, and Ec = e?/2C is the electrostatic charging energy (C is the dot
geometrical capacitance). Here, the dot occupation operator reads Ngq =
2o dl¢dno and the polarization charge is given by N(t). Finally, the tun-
neling term hybridizes the reservoir and the dot subsystems according to

Ht = Z (’tnkgchcdmy +H.c.) . (4-4)

nk,o

where t, ks denotes the tunneling amplitude.

When charge is injected in the dot by an external source V(t), a polariza-
tion charge is created to keep the dot as a neutral charge object. In a simple
electrostatic picture, we model such polarization charge with a capacitance
C leading to [143]

eN(t) = CU(t), (4-5)

in which U(t) is the internal potential of the dot giving rise to a time-
dependent potential inside the dot. Then, the dot Hamiltonian in Eq. (4.3),
up to linear order in U(t), can be written as

Hp =) leno+eU(t)] dhgdno +EcNG. (4-6)

n,o

Since N3 = 2 mo 2o diﬂwdmgdiw, d o’ is a quartic operator, the Hamil-
tonian cannot be solved without introducing some proper approximation.

4.2.2  Hartree Fock approximation

We thus perform the Hartree-Fock approximation [47] in the dot Hamilto-
nian. For the Hartree approximation, de is decoupled in the form

[Né]Hartree =2 Z Z dLlode<dilgldnU’> ’ (4.7)

m,0n,o’

The problem with the Hartree approximation is that it does not take into
account possible spin effects and thus we need the Fock approximation for
which one has

[N?i]Fock =-2 Z Z dLmGdnU/<dJTrnGan"> . (4'8)

m,0n,o’

Considering Hartree and Fock approximations (HF) together, the dot Hamil-
tonian then becomes

:HD - Z Emnc(t)dingdncr (49)

mmn,o

where

Emnc(t) = 6m,n (emc + eU(t) +2EC Z <dIS dls>) _ZEC<d:[ncrdTIG>f
1,s
(#m,0)

(4.10)
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with 0 =1 / |. An important observation is in order when Eq. (4.9) is con-
sidered. We check that interactions are well described by our model by cal-
culating the static occupation (N4) and observing that it does not change
continuously but shows plateaus and discontinuous jumps, see Appendix B.
These jumps, or rather the fact that charge is frozen for a given value of eq,
are clear evidence of Coulomb blockade, confirming that interactions are
well captured by our approximations.

4.2.3 Heat current

Our main interest is focused on the rate of heat at the reservoir. For such pur-
pose, we evaluate the time derivative of each component of the Hamiltonian
which is given by

(1) = 5 (9s) = 1 36,3¢5) + (52 ) (41)

Tt ot
where S = {R, D, T} is referred to R reservoir, D dot, and T tunneling term.
Notice that in Eq. (4.11) the last term is the power supplied by an external
source and must be subtracted from the definition of the heat rate Qg(t).
Besides, since the Hamiltonian operator H commutes with itself it is fulfilled

i

h<[9f, HI) = Qr(t) +Qp(t) + Q7 (t) =0. (4-12)

As mentioned, our goal is to compute Qg (t). When Coulomb interaction
is taken into account, we obtain the rate of heat at the reservoir, Qg(t), in
terms of interacting dot Green’s functions. Since the direct calculation of
Qgr(t) is cumbersome, our strategy is first to compute the energy change
rates at the dot and tunnel barrier using Eq. (4.12)

Qr(t) =—(Qp(t) +9Qr(t)). (4.13)

We recall that our calculation applies only for the linear response regime
and thus we keep only the leading order contributions in the fields V(t) and
U(t). We employ the non-equilibrium Keldysh Green’s function formalism
for the calculation of the energy change rates in time [48]. We start with the
time derivative of Hp first,

Latpt) = Y BeEmno(t)] (dho(t)dne(t)

dt
mmn,o

+ Y Emne(00u(dl oW dno(t). (4.14)

mmn,o

The first term on the right hand side denotes the power developed by the AC
source and does not contribute to the heat flow. The second term represents
the energy flux going into the dot which can be written in terms of the dot
Green’s function

Qp (t) = —iTr [Edg(t)atcgmdg(t,t) . (4.15)

Hereafter, bold face symbols denote matrices such that their (m,n) compo-
nents are

[Edc(t)]m,n =€mno(t),

16
[GFoa0(ttNmm = i{dl 5 (t")dmo(t)) . (4.16)
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The trace means summations over energy levels and spin indices, i.e., Tr =
2 mmn 2o Secondly, from the definition of J(t, it can be shown that

(Hr) = =iTr [G o colt Vo + t5G g a0 (L V)] (4.17)

and thus the time variation of energy stored or relaxed at tunneling barrier
Q7(t) = 0¢(H7) is given by

Qr(t) = —idTr [tz;c;< (t,t) + G5 (t,t)t(,}. (4.18)

co,do do,co

Here, the reservoir-dot and dot-reservoir Green’s functions are given, re-
spectively, by

[Giga0(ttNin = i{dl o (t )exo(t)), (4.19)
[Giocolt ' Nnk = ilcl, (t)dno(t)), (4.20)

with [t5lnx =t and Tr=3 4 | .

Using the standard technique of equation of motion as explained in Sec-
tion 2.3, shown in Eq. (2.75) , the reservoir-dot Green’s function G2 4, (t, )
can now be recast in terms of solely the dot Green’s functions as follows,

t5G5o a0t ) = J d—,: [Z5(t11)G s a0t ) +Z5 (6, 11)G Gy a0 (t1, )]
(4.21)
Here, we have defined
&7 (1, 12) = £LRFS( — ta), (4.22)
I3 (ty,tp) = ile tovtita)f(y; — ) (4-23)

as the advanced/retarded and lesser self-energies [19] that contain the time-
dependent fields. We have assumed a momentum-independent tunneling
amplitude tp ks = tno leading to hybridization strength given by Iy n =
2mpoti, otne With po = 1/2D the density of states of the reservoir and D
the reservoir bandwidth. In such self-energies,

Y dt

dv(ts, 1) :L Leviy, (4.24)

is defined as the time-dependent phase due to the AC external potential and

f(ty —t2) = J e ety —t2)/My(e), (4.25)
21

where f(t; — ty) the Fermi-Dirac distribution function in the time domain.

Similarly, the dot-reservoir Green’s function Gd<01 co(t t)ts is given by

dtq

Giocolt e = J - (Glo,ac(tt1)Z5 (t1, 1) + GFg a0t t1)ZG(te, )]

(4.26)

Employing Egs. (4.21) and (4.26), we find Q is also expressed only in terms
of the dot Green’s functions.

Once the heat energy rates for the dot and the tunneling parts (Qp, and
Q) are expressed in terms of the dot Green’s function, the next step consists
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of computing such Green’s functions in the presence of the time-dependent
AC signal. For the dot’s retarded /advanced Green’s function, we have that
in the H-F approximation [19]

G2 (4, t)) = e T PulttIGI/@ea _y), (4-27)

where ¢y (t,t') = ﬁ/(d’q /h) elU(ty), and GB/;;;;’ (t; —t2) denotes the dot’s
retarded /advanced Green’s function in equilibrium, i.e., in the absence of
AC signal. Finally, the dot’s lesser Green’s function is obtained, from the
Keldysh equation Eq. (2.60), by means of

dtq dt,
GEc,da(t/t,):JT JT Ho,do (b5 (11, 12)GEg a0 (t2 t').

(4.28)

We proceed now inserting Eqgs. (4.21)-(4.28) into Egs. (4.15) and (4.18).
After some cumbersome algebra, involving an expansion to linear order in
V and U and a convenient Fourier transform into the frequency domain, the
energy change rates become

Op(w) = iewTr{ J % €qohi(e, hw)[V(hw) — U(’hw)]} , (4.29a)

Qr(w) = iewTr{ J % (he + 2€ — 28 40) A (e, haw) [V (ha) — U(hw)]} )
(4.29b)

where V(hw), and U(hw) are the Fourier transforms of V(t), and U(t) re-
spectively. Here,

Ale, hw) =T (hw, €)F(e, hw) (4.30)
with
do,do do,do

f(e + hao) — f(e) 431)
hw '

T(hw,e):[GT'eq (e + hw)FGYe9 (o),

F(e, hw) =

The dot’s retarded/advanced Green’s function in equilibrium and in fre-
quency domain is given by

1
Gr/a,eq _ _ ]
do,do (€) €*€do—:|:ir/2/ (4 32)

with

[Edc]m,n = 6m,n <€m(y + 2EC Z <dJ1rs dls>> - 2EC<dL10dTLU> .
l,s
(#m,0)

(4-33)

Although Eq. (4.32) has the same structure with its noninteracting retard-
ed/advanced Green’s function, the charging energy is included in the de-
nominator such that it can describe the Coulomb blockade effect as men-
tioned above [49]. To completely determine the dot Green’s function, the
diagonal and off-diagonal dot occupations need to be self-consistently cal-
culated using

1
(dhsdms) = = J delGiy ao(€)nm- (4.34)
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Finally, from Egs. (4.29) and (4.13), we obtain the expression for the energy
change rate at the reservoir

Qr(w) =—(Qp(w) +Qr(w)) =

= fiewTr{ J g—; (hw +2e — €44) Ale, hw)[V(hw) — U(hw)]} . (4-35)
Importantly, neither Qr(w) nor Qp(w) have a well defined parity when
the AC frequency is reversed, and therefore, within linear response theory,
these two magnitudes do not represent physical quantities [47] (see Sec. 4.3).
Based on these observations, the reservoir and dot frequency-dependent
heat current expressions must be thus modified to exhibit a proper parity
property when the AC frequency is reversed. We find that the expressions

Tk = Or(@) + 01(@), Jo = Op(@) + y0r(w) 436)

satisfy the parity property. Remarkably, the choice of the factor %QT(w) is

unique in order to ensure a well defined parity property in both Jg, and Jp.
After these considerations, the formulations for the the dot and reservoir

frequency dependent heat currents in the linear response regime read

Jo=—Jr = iewTr{ J % (hzw + e) Ale, hw)

x V(hw) = Uhw)l} . (437)

Therefore we have found the expressions for the heat currents in an inter-
acting quantum capacitor at arbitrary AC frequencies. This is the central
finding of our work.

Formally, these expressions agree with their noninteracting counterpart
for the time dependent heat currents [96]. However, it should be noted that
our theoretical analysis (i) goes beyond low AC frequencies in contrast with
Ref. [96] in which the heat rate was obtained up to second order in the
AC frequency using the Floquet theory, (ii) includes the effect of Coulomb
blockade, and (iii) is applicable to multi-orbital conductors in contrast to
previous time heat formulations.

Remarkably, our AC heat formula contains photon-assisted tunneling events
only possible for sufficiently high AC frequencies. Note that a similar def-
inition for the time-dependent heat, but applicable to a spin chain model
(using a tight-binding model), was proposed in Ref. [144]. In such work, the
heat flux connecting two sites, n and n & 1, was incorporated to the gen-
eral heat flow expression with a 1/2 factor in close analogy to Eq. (4.36).
However, caution is needed when this comparison is made. The results for
a chain of sites are not immediately generalized to our continuum model by
just keeping the factor one-half in front of the tunneling energy flow.

4.2.4  Electrothermal admittance

In the presence of a time-dependent driving force, it is quite general to
characterize the transport using the concept of admittance. The complex
electrothermal admittance is defined as

_ Jr(w)

M) = Vo)

: (4.38)
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Notice that Eq. (4.38) which can be obtained from Eq. (4.37) contains the
unknown function U(hw). Therefore, for a complete characterization of the
complex electrothermal admittance, we need first to determine the internal
potential U(hw). For such purpose, we note that the displacement current
Ip can be featured by a capacitance C in a simple model (here, we consider
the situation shown in Fig. 4.1 a))

Ip(w) = —iwCU(hw). (4-39)

Due to current conservation, the displacement current is equal to the tun-
neling current It [19] for a quantum capacitor, i.e. IT = Ip. The tunneling
current in the linear regime is

It (w) = g(w)[V(hw) — U(hw)], (4-40)

where (see Ref. [19] for its explicit derivation)

glw) —ieszr{Jg:[.A(e,hw)}. (4.41)

The internal potential is obtained when we impose current conservation
Ip = Iy, then U(hw) reads

Ulhw) — 9(@V(he)

= W . (4-42)

Inserting Eq. (4.42) into Eq. (4.37) completely characterizes the linear re-
sponse of the heat current to a time dependent voltage, i.e., the electrother-
mal admittance

—iwC

M(w) —m(w)m/ (4-43)

with
. de [(hw

m(w) = iewTr {J o (2 + €> Ale, hw)} . (4-44)

Similarly, the thermoelectrical admittance is defined as
_Ir(w)
L(w) = Tiw)’ (4-45)

with T(w) being the Fourier transform of a time modulated temperature
T(t). Remarkably, the thermoelectrical and the electrothermal admittances
are reciprocally related due to the microreversibility principle [38, 145]

M(w) = TL(w). (4.46)

Notice that microreversibility principle only holds at linear order in V(t),
and U(t). Hence, all results obtained for M(w) should be valid for £(w)
Finally, a second order expansion in the AC frequency for m(w)

m(w) = —iwCp + w?CERyy, (4-47)

allows us to obtain the RC electrothermal parameters, see Appendix C for
the full expression of Cy¢ and Ry¢. For comparison, we also calculate the
electrical admittance defined by

IT —iwC

5w = Ve =9 Swc gl

(4.48)
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The corresponding second order expansion of g(w) in frequency
g(w) :—ing—szCéRg, (4-49)

always yields positive RC parameters, i.e., IT is always delayed with respect
to V(w), see Appendix C.1. This is in clear contrast to the electrothermal ad-
mittance case in which both Cy¢ and Ry can be either positive or negative
as shown in Appendix C.2. The heat flow response is elapsed or delayed
with respect to the electrical signal depending on the system parameters.
Note however that the product of both quantities, the RC time, is kept al-
ways positive as expected. Similar results were obtained in Ref. [138] for the
non-interacting case.

0.50 ,
0.45
2, 0.40
~ 2E¢c
=
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~
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0.25 '
~ 5 10 15
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Figure 4.2: Charge relaxation resistance for a single orbital quantum capacitor versus
the Fermi energy. Parameters: eq =0, Az = 0.5, 2E¢c = 10T, and kg T =

0.04T.
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Figure 4.3: a) Real and b) imaginary parts of g(w) for a single orbital quantum capac-
itor as a function of the AC frequency. Photon-assisted excitations occur
at the transition rate energies +hw = [Ef — €45/ when kg T < I'. Parame-
ters: eq =0, Az = 0.625T, 2Ec = 10T, Ef =0, and kg T = 0.04T.
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Figure 4.4: a) Real and b) imaginary parts of m(w) for a single orbital quantum
capacitor versus the AC frequency. Photon-assisted excitations occur at
the resonant conditions. Parameters: eq = 0, Az = 0.625T, 2E¢c = 10T,
Er =0,and kg T = 0.04T.

4.3 APPLICATION: ILLUSTRATIVE EXAMPLES

Previously, we have derived the formal expressions for the reservoir heat
flow and the corresponding electrothermal admittance. Now, we apply these
formulas to the case of an interacting multi-orbital conductor. However, be-
fore addressing the multi-orbital case, for illustration purposes we first in-
vestigate a single orbital interacting quantum capacitor under the influence
of an AC potential. Later on, we will analyze a prototype of multi-orbital
conductor, a carbon nanotube quantum dot attached to a single reservoir. In
both cases, we show results for the electrical and electrothermal transport.

4.3.1  Single orbital quantum capacitor

We consider an interacting quantum dot with just one orbital contacted to
a single reservoir. The reservoir has an electrical potential that oscillates in
time. In accordance with our previous theoretical considerations, the pref-
actor g(w) of the electrical admittance G(w) can be expanded in powers of
the AC frequency up to second order as shown in Eq. (4.49). A very well
known result establishes that Rg = h/ (quz) becomes universal being ¢
the number of transport channels. Our example as shown in Fig. 4.2 con-
siders the presence of a Zeeman field to explicitly break spin degeneracy.
Rg takes the value of h/2e? when just one of the two spin-resolved levels
(eqy/), = Ef = Az/2) participates in transport, whereas it becomes h/4e?
when the opposite spin channel also contributes. Clearly, the two main
peaks observed in Rg are separated roughly by 2Ec the charging energy
(2Ec > Agz). Our results for Rg indicate the presence of charging effects
and the Coulomb blockade phenomenon.

More importantly, our major interest resides in the behavior of the electri-
cal and electrothermal admittances at arbitrary AC frequencies. Figure 4.3
shows the real [Fig. 4.3 a)] and imaginary [Fig. 4.3 b)] parts of the prefactor
g(w) in the expression for the electrical admittance §(w) [see Eq. (4.48)]. We

71



72

TIME-DEPENDENT HEAT FLOW IN INTERACTING QUANTUM CONDUCTORS

observe that fReg(w) = Reg(—w) and Img(w) = —Img(—w). The factor
—iwC/(—iwC + g(w)) in Eq. (4.48) then does not change the parity prop-
erty of §(w) with respect to w, hence for simplicity we consider only g(w).
Excitations occur when the AC frequency matches with the resonant condi-
tion thw =~ [€qs — Efl. We recall that €4 is the spin-dependent dot energy
level renormalized by electron-electron interactions according to

€do = €4+ 0Az + ZEC<dJ{-Td<—;) . (4.50)

For the parameters used in Fig. 4.3, we obtain €4, ~ 0.3I', 2.1T which agrees
with the resonant behavior found in g(w) with peaks at £hw ~ 0.3I', and
+hw =~ 2.1T.

Similar features are observed in the electrothermal admittance shown in
Fig. 4.4. Interestingly, the imaginary part of m(w) for w > 0 takes either
positive or negative values by tunning the AC frequency, which indicates
that time heat current can be either delayed or elapsed with respect to the
AC electrical time-dependent signal.

Now, we discuss the parity property of the response functions g(w) and
m(w) [thus §(w) and M(w)]. We write g(w) in the form

g(w) = Reg(w) +iImg(w), (4.51)

and express the real/imaginary part as

Reg(w) = [g(w)+g*(w)]:1j dt et [g(t) +g(—t)],  (452)

2]

N —

1 . 1 [ ;

Img(w) = 5= [g(w) — g"(w)] = f.J dt e [g(t) —g(—t)] . (4.53)
2i 2i ) _o

Here, we used the fact that the response function g(t) must be real to have a

real expectation value for the current I1(t). From Eq. (4.53), it is quite easy

to show that

1 [ ;
amg(—w) = 3 [ atetig— gl 4:54)
which implies Jmg(w) = —JImg(—w). Using a similar line of reasoning,

we can also prove that fleg(w) = Reg(—w). This argument also works for
m(w). It is worth noting that this parity property comes from the fact that
we have included the contribution due to the tunnel Hamiltonian in our
definition for the heat flow as shown in Eq. (4.36). Furthermore, this par-
ity argument goes beyond the simple site partitioning scheme explained in
Ref. [144].

4.3.2  Multi-orbital quantum capacitor

We now investigate a single reservoir carbon nanotube quantum dot as an
example of a multi-orbital interacting conductor. We regard the nanotube
quantum dot as a localized single particle level described by two quantum
numbers, the orbital quantum number T associated to clockwise (T = +1)
and anti-clockwise (T = —1) semi-classical orbits along the nanowire cir-
cumference (related with the K-valley degeneracy in graphene) and the spin
degree of freedom o. In the presence of magnetic field along the nanotube
axis, the dot energy level splits in the spin sector by the Zeeman field Az
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<)

Figure 4.5: Schematic representation of a quantum dot (blue circle) created in a car-
bon nanotube.

and in the orbital sector by an amount Ay, that depends on the nanotube
radius [142]. Besides, due to the nanowire curvature a non-negligible spin-
orbit interaction is present, yielding a Kramers splitting of magnitude Ag,.
All together yields the following carbon nanotube dot energy level:

€dotr = €4+ 0Az + TAorp + 0TAso. (4-55)

In the following, we show results that correspond to the realistic parameters:
[142] eq =0, Az = 0.625T", Ay = 5Az (orbital magnetic moments can be
5 — 20 times larger than its spin counterpart [142]), and As, = 0.5Az. The
charging energy is 2Ec = 2I" which lies in the strong interacting regime. We
restrict ourselves to the low temperature regime kg T = 0.05T".

First, we show our results for the electrical and electrothermal RC param-
eters in Fig. 4.6. In the low temperature limit (kg T < T') the RC parame-
ters exhibit universal values [125-127]. We recall that in the low frequency
regime the RC parameters characterize the electrical and electrothermal ad-
mittances (see Egs. (4.47) and (4.49)). Cg and Rg are displayed in Fig. 4.6 a)
and c) when Ef is varied. The electrical capacitance Cg shows oscillations
which peaks at the positions located roughly at the CNT resonances

€qa— Az —Aprp + Ago = —3.4T, (4.56)
€qa+Az —Aprb — Ao +2Ec =~ —0.8T, (4.57)
€qd—Az + Dorp — Aso +2(2E¢) ~ 6.2T, (4.58)
€q+Az +Agrb +Aso +3(2E¢) = 10T, (4-59)

As expected, at each nanotube level position, Rg takes the value of h/2e?,
while in the middle of two consecutive resonances (when two resonances
contribute to Rg) it diminishes to half of this value. Whereas Rg and Cg
display always positive values, the electrothermal capacitance Cy¢ and resis-
tance Ry can become positive or negative when Er is tuned, see Appendix C
for further details. This is shown in Fig. 4.6 b) and d). Indeed, Cj changes
sign whenever the Fermi energy matches with any of the nanotube reso-
nances. Heat current becomes delayed or elapsed with respect to the AC
signal depending on the Fermi energy position. The electrothermal resis-
tance Ry modifies its sign not only at the points when Ef coincides with
the nanotube resonances [see Eq. (4.56)] but also when the electron-hole
symmetry point occurs, just at the midpoint between two consecutive res-
onance points. The sign inversion in Ryt happens when the derivative of
the carbon nanotube quantum dot density of states vanishes[138]. Remark-
ably, both Cy¢ and Ry diverge around the resonance points, behavior that
is washed out by enhancing temperature. (Similar results were obtained for
the weak interacting limit, when E¢c < T see Ref. [138] for details).
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Figure 4.6: a) Electrical capacitance Cg and c) electrical relaxation resistance Rg ver-
sus the Fermi energy Er. b) Electrothermal capacitance Cy and d) elec-
trothermal relaxation resistance Ry versus the Fermi energy Ef. Nan-
otube parameters: e = 0, Az = 0.6251', Apyp = 5Az, Aso = 0.5AZ,
ZEC = 2F, and kBT = 0.05T.
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Figure 4.7: a) Real and b) imaginary parts of g(w) versus the AC frequency w. Pa-
rameters: eq = 0, Az = 0.625T", Agrp = 5Az, Aso = 0.5Az, 2Ec = 2T,
Er =0,and kg T = 0.05T".

We now discuss the case of arbitrary AC frequencies and analyze the pref-
actor g(w) of the electrical admittance in Fig. 4.7. The real and imaginary
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parts of g(w) versus the AC frequency are depicted in Fig. 4.7 a) and b). As
in the single orbital quantum capacitor, we observe that Jmg(w) has odd
parity with respect to w, while Reg(w) is an even function of w as a con-
sequence of being response functions of a real perturbating force. Img(w)
accounts for the dissipative part of the electrical conduction with resonances
roughly located at thw = |Ef —€44+|. For the HF approximation, these res-
onances coincide with the dot level positions that are renormalized by in-
teractions according to Eq. (4.10). These renormalized level positions (when
Er =0) are at €445 ~ —1.4T, —0.8T, 6.1T', 8.0T" leading to the observed reso-
nances in g(w). The resonant behavior of g(w) reflects the photon-assisted
tunneling processes in which transport through the nanotube occurs by
absorpting or emitting single photons. Furthermore, these resonances are
broadened mainly by I at very low temperatures. The fReg(w) corresponds
to the reactive part of the electrical conduction and has also a similar reso-
nant structure.
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Figure 4.8: a) Real and b) imaginary parts of m(w) versus the AC frequency w. Pa-
rameters: eq = 0, Az = 0.625T", Agrp = 5Az, Aso = 0.5Az, 2Ec = 2T,
Er =0,and kgT = 0.05T.

We turn to the analysis of the electrothermal admittance M(w) which is
given in Eq. (4.43). As before, it is convenient to examine m(w) defined in
Eq. (4.44) and we thus plot it as a function of the AC frequency in Fig. 4.8.
First, we observe m(w) displays the same parity property as g(w) which can
be explained in the same way. Furthermore, the real and imaginary parts of
m(w) are also characterized by features located at +hw ~ |EF — €44+ Re-
markably, the observed peaks indicate single photon absorption and emis-
sion processes for the transport of heat. It is worthy to emphasize that our
approach is able to capture such photon-assisted processes in contrast with
other calculations restricted to AC frequencies smaller or similar to the tun-
nel coupling T': the other calculations assume the AC frequency is small
such that only a second order expansion of m(w) in powers of w (character-
ized by the pairs Cy, Ryt) can be justified. However, since we do not have
such a restriction for the applied AC frequency, our results clearly exhibit
photon-assisted processes for the heat transport.

Remarkably, m(w) (either its real or imaginary part) takes positive or neg-
ative values depending on the AC frequency regime. We observe fRem(w) <
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0 for low and moderate w, whereas for large AC frequencies its sign is
reversed. We stress the importance of such result for the functionality of
quantum circuits, in which one could manipulate the sign of the heat flow
spectrum by properly tuning the AC frequency.

4.4 CONCLUSIONS

In closing, we have investigated the heat current spectrum in the linear re-
sponse regime for an interacting conductor coupled to a single reservoir and
modulated by an electrical AC signal. Our results, valid for arbitrary AC fre-
quencies, show that the heat current expression for the reservoir needs to
consider the heat stored or relaxed at the barrier. We illustrate our find-
ings with two prototype of interacting conductors, namely, a single orbital
quantum dot and a multi-orbital conductor, a carbon nanotube quantum
dot coupled to a single reservoir. We deal with the strong interacting limit
where Coulomb blockade phenomena applies. We highlight that (i) electri-
cal and heat transport displays photon-assisted transport features, and (ii)
the electrothermal admittance can be positive or negative and the sign can
be chosen by adjusting properly the AC frequency. This is an important
issue for engineering nanoelectronic circuits with optimal heat dissipation
performances.

We have thus seen that photon-assisted events caused by an AC-driving
have an impact both on the charge and on the heat currents in an interacting
conductor. In the next chapter we study the effect of photon absorption and
emission on transport through an interacting quantum conductor attached
to two reservoirs. We do so by taking into account the circuit in which the
conductor is embedded. The circuit acts as an electromagnetic environment
emitting and absorbing photons. Oppositely to what we studied here, the
environment in the next chapter is only of low frequency whereas here we
studied all possible frequencies.
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5.1 INTRODUCTION

An external time-dependent driving can cause the emission (or absorption)
of photons (in the form of energy quanta) into the system, as we have seen in
the previous Chapter 4. There we have also seen that the presence of photons
affects transport through photo-assisted events. In this chapter we present
a different approach were an electromagnetic environment exchanges pho-
tons with the system and we study how these photons (rather than those
emitted by a time-dependent source) affect the transport properties of the
system.

As mentioned before, the properties of electronic and heat transport in
nanostructures have recently attracted the attention of the scientific com-
munity for different reasons [112, 146, 147]. On one hand, the onset of
quantum effects in the mesoscopic regime opens the way to the investi-
gation of the impact of quantum mechanics on thermodynamics [148]. In
particular, heat engines based on purely quantum mechanical effects have
been recently proposed [149-154]. Complementary to this, there has been
a spectacular progress in the field of quantum thermoelectrics, both from
the theoretical and experimental sides. Exciting proposals like nanoprobe
thermometers [146, 155], energy harvesting devices [36, 156-159], refrigera-
tors [160-164], heat diodes [165], rectifiers [166—169], transistors [170, 171],
multi-terminal heat engines [34, 172—-174] among others have come up in the
last years.

In this respect, quantum dots [30, 175-184] have a prominent role for be-
ing good energy filters that improve the thermoelectric efficiency [185, 186]
due to the sharpness of their energy levels. The presence of strong interac-
tions introduces the Coulomb blockade regime where transport can be con-
trolled at the level of single-electron tunneling events [187, 188]. Different
functionalities such as heat engines [36], pumps [189-191] and diodes [165]
can be defined that use these properties.

Currents are small in nanostructures, and are hence sensible to external
fluctuations. The question arises of how the system behavior is influenced
by a noisy environment. On one hand, it leads to dephasing and decoher-
ence which are detrimental to quantum coherent processes. This is however
not necessarily a drawback [192, 193]. On the other hand, they may lead
to inelastic transitions which can contribute to the engine performance by
injecting or releasing energy in the conductor [194-196]. Indeed, non-local
thermoelectric engines exist that use an environment as a heat source in an
otherwise equilibrated conductor. The nature of the environment can either
be fermionic [34, 197] or bosonic [172, 198]. It can also consist of transport in-
duced fluctuations in a Coulomb coupled conductor [199-204] or be due to
quantum fluctuations in an electromagnetic environment [31, 205]. This last
effect has been observed in the form of the dynamical Coulomb blockade of
charge currents [50, 206—209].

The linear response of a two terminal nanodevice is defined on the grounds
of the Onsager-Casimir relations [39, 210, 211], as seen in the introduction,
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Section 2.1.3.1. The Onsager coefficients 0;; = 0J;/0A; relate the charge
and heat fluxes J; = {I¢, '} in terminal i to the applied voltages and tem-
peratures A; = {Vj,AT;} in terminal j. Shortly, the coefficients O;; can be
collected into the so-called Onsager conductance matrix which is a symmet-
ric and positively semi-defined matrix. [38, 145] Derived from the princi-
ple of microreversibility, Onsager reciprocity relations relate non diagonal
coefficients, e.g. Seebeck and Peltier responses. Notoriously, such relations
are also satisfied for quantum systems independently of the presence of
interactions. For quantum systems in which phase coherence is preserved,
additional relations for the Onsager coefficients are obtained from the uni-
tarity of the electron dynamics [85, 97] giving rise to highly symmetric On-
sager matrices. However, the interaction with an environment introduces
energy dissipation which prevents the dynamics from being unitary. In par-
ticular some relations among the thermoelectric coefficients are no longer
satisfied [32, 33]. The microscopic origin of such asymmetries has so far not
been discussed. Although a phenomenological approach based on voltage
probes has already been studied. Even so, studies based on voltage probes
are limited since they lack an structure, which the environment does have
[212].

a) b)

VL ) TL VR7 TR

Cr Cr

Figure 5.1: a) Schematic of a two terminal single-level quantum dot device in the
presence of an electromagnetic environment described by an external
impedance Zenv(w). Each terminal is electrically and thermally biased
with Vi, T, = Tp + ATy, (left contact) and Vg, Tr = Tp + AT (right con-
tact). The capacitance of each junction, C; with i = L, R, determines the
dynamical coupling to the environment. b) Inelastic tunneling into the
quantum dot is then described by a distribution P;(E) which is different
for each barrier.

In this work we explore this issue by using a microscopic model for the
coupling of a mesoscopic system to a dynamical environment introduced as
a circuit impedance [51]. We consider the simplest situation of a single-level
quantum dot tunnel-coupled to two terminals, L and R, via tunneling bar-
riers, cf. Fig. 5.1. Electrons tunneling through each of the barriers perceive
a different environment. This results in photon-assisted tunneling events
which on top of becoming inelastic, introduce left-right asymmetric rates.
As we show below, the occurrence of Onsager matrix asymmetries is due
to combination of these two effects. It leads to responses that do not only
depend on the global temperature gradient AT = T — Tg but rather on how
it is distributed with respect to some reference temperature Ty in the two
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leads, ATy = Ty — Tp. It affects the thermoelectric response and most partic-
ularly, it introduces an apparent thermal rectification in the linear regime.

The remaining of this chapter is organized as follows: in Sec. 5.2 our
model is described. Results for the single and double occupation regimes
are presented in Secs. 5.3 and 5.4, respectively, with conclusions discussed
in Sec. 5.5.

5.2 THEORETICAL MODEL

We consider a two terminal interacting conductor as illustrated in Fig. 5.1.
We use a spinful single level quantum dot described by four states |0), [u), |d)
and |2). They correspond to an empty dot (|0)), a singly occupied dot with
either spin up (Ju)) or down (|d)) polarization, and the doubly occupied dot
state (|12)). Our transport description is restricted to the sequential tunneling
regime for which hI' < kgTy (Tp is the temperature). In this regime, trans-
port events are predominantly of the first order in the tunneling coupling T".
To properly account for Coulomb interactions we employ the electrostatic
model schematically illustrated in Fig. 5.1. In such model, the electrostatic
charging energy is described with two capacitances Cy and Cg. The dy-
namics of the system is modeled by the time evolution of the occupation
probabilities p = {po, pu, P4, P2} described by the following master equation

d 0 [ _
% = Z __ZI}:BPO + rj,o(pu +pd)}

d(]igtg =3 [ (Rt ) po+ Tiopo +T51p2)] (5.1)

dp> [ or— +
F = ; _—er,ﬂ?z + rj/1 (pu +pd)} .

To which we have to add the normalization condition pg + pu +pq +Pp2 =
1. The transition rates F.is for electrons tunneling in (+) or out (-) of the
dot through contact j=L,R are given below. We do not consider a magnetic
field, so they do not depend on spin. They depend on the electrochemical
potential ps when the dot is empty s = 0 or singly occupied s = 1. A simple
electrostatic electrostatic model [12] yields

e?(1+2s)

T e(kp VL, + krVR), (5-2)

s =€q+
where e is the electron charge, €4 is the bare energy level of the quantum
dot, C = C + Cg is its total capacitance, and k; = 1 —C;/C, with j = L, R,
see Fig. 5.1.

5.2.1 Tunneling rates

Tunneling events are frequently affected by fluctuations of the electromag-
netic environment [50]. To fully account for such quantum fluctuations we
adopt the P(E) theory [50, 51] of dynamical Coulomb blockade, recently re-
visited to consider heat fluxes [31, 52]. The spirit of the P(E) theory relies on
the fact that individual tunneling events involve energy exchange processes.
The Dirac-delta accounting for energy conservation in the (Fermi golden
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rule) tunneling rates is relaxed into a broadened distribution P(E). More
specifically for each junction j in a double junction it reads

1 P i

P;(E) = I J dtexp (K]- J(t) + hEt) . (5.3)

where the function
2h (®dw_ 5

=3 |~ S RelZ(@lete To), (54

contains all the information of the environment fluctuations, with[51]:
hw ..
c(w, Tp) = coth [cos(wt—1) —isin wt]. (5.5)
2kpTo

If we consider a pure resistive or ohmic environment, i.e. we have
Zenv(w) =R > Rq = h/2e”. (5.6)

This situation corresponds to the case where the tunneling electron may
easily excite many electromagnetic modes. Thus, the total impedance seen
by the external circuit is

Z(w) = [lwCers + Zenv(w)]_]/ (5-7)

with the effective capacitance of the quantum dot C;Jf =Cp T+ Cr 1. Semi-

conductor quantum dots in the sequential tunneling regime are typically
affected by a high impedance environment [213, 214]. Under these consider-
ations one obtains a Gaussian distribution:

(EfK.ZEc)Z
1 et
Py(E) = pe TRk, (5.8)
(47TK).2ECkBTO>

where Ec = e?k kgr/2C. Remarkably, asymmetries in the system capaci-

tances translate in the P;j(E) functions having different mean, szEc, and
variance, ZKjZECkB To. They modify the transition rates expressions accord-
ing to

rjis = r]-JdEfi(E—evj,Tj)Pj(i(E—ps)). (5.9)

where f+(E, T) = 1/[1 + e¥/(k8T)] is the Fermi function, and f~ = 1 —f*.
The tunneling rates can be left-right asymmetric either for having barriers
with different transparencies, I, # I, or for P (E) # Pr(E), stemming from
different capacitances Cp # Cgr. We emphasize that having different P;(E)
introduces an implicit asymmetry in the energy exchanged by the electrons
with the environment in the tunneling processes. As we discuss below, the
impact in the system response shows up in the thermal transport coeffi-
cients.

Finally, the charge and heat currents through contact j are calculated
through

f=e| 3 (FoTih)pe—2opo+ 2, p2 (510)
o=u,d
1? - Z <y;0—y]7;) Po — Zy;fopo +2y;1pz, (5.11)

o=u,d
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where the transition rates for the heat current in Eq. (5.11) are given by:
Yie =N JdE(E —eVj)fE(E—eVj, T)Pj(£(E — us)). (5.12)

These rates take into account the heat transported in each particle transition.
In our setup, the tunneling rates in Egs. (5.9) and (5.12) describe inelastic
processes. Hence, they introduce energy exchange with the environment.
The energy of the two terminal system is hence not conserved, I! + IR =
I.(VL, — VR). To obtain the energy conservation relation one needs to take
into account the energy exchanged with the environment: I + I} + I =
IL(VL — VR), with the energy current to the environment IE given by an
expression like in Eq. (5.11) with Vji,s substituted by

ﬁfj =Tj J.dE(i(E — ) FE(E —eVy, T) Py (£(E — us)). (5-13)

On top of that, charge conservation ensures I = —If.
5.2.2 Linear regime

By linearizing the electrical I and heat I currents at the i-th reservoir in
response to the applied thermodynamical forces {V;, AT;}

£ =) (GyVj +LyAT), (5.14)
j
=3 (MyV;+KyATj), (5.15)
j
we obtain the four conductance matrices for each reservoir i that compose
the Onsager matrix. Onsager-Casimir reciprocity relations dictate Gi; = Gji,
Ki; = Kji, and Ly; = eM;i/To. Additional relations imposed to the cross-
conductances (Li; = L;;) arise in the case where transport occurs elastically
[85, 971
In the following we analyze the effect of inelasticity on the thermal coeffi-
cients, namely Lij (or Mj;) and Kj;.

5.2.3 Thermal coefficients

Thermal rectification in an isoelectric (V = VgR—V, = 0) two terminal con-
ductor occurs when the heat current becomes asymmetric on the reversal of
the temperature gradient. It has been discussed that this is not possible in
the linear regime for the heat current across the system, even in the presence
of an environment or a thermal bath [195]. One has to take into account that
energy is dissipated into the environment at the nanostructure. However in
an experiment this quantity is not easy to detect. One would rather measure
the heat current at each terminal.

In this case, the measured heat current might be L-R asymmetric with the
reversal of AT, i.e.

I = V=0, AT) — IR (V=0, —AT) # 0. (5.16)

It hence might lead to an apparent rectification of the measured heat cur-
rents. If we assume that the gradient is distributed between the two termi-
nals, i.e. AT = ATR — ATy, we get after linearizing the currents:

81k = (Kpr — Kgr) AT + (Kpg — Krp) ATk (5.17)
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The second term of the right-hand side of Eq. (5.17) vanishes due to the
fulfillment of the Onsager relations. This however does not apply to the
diagonal coefficients, Kpp and Kgrg in the first term. We will discuss below
in which conditions these two coefficients become unequal in the presence
of an environment, thus leading to asymmetric heat conduction.

In that case, we can define a rectification coefficient

INAT) — IR (—AT)

R —
INAT) + IR (—AT)

_ ’ (Kpp — Krr) ATy

18
(Ki + Krr) AT, + 2K rA TR (5.18)

which reflects a thermal diode behavior for R ~ 1. In the particular case
ATg = 0, it becomes:

Krr — Kgrr

, 1
ki T Keg (5.19)

R

independently of the thermal gradient.

5.2.4 Thermoelectric coefficients

Our system can act as an engine by using a thermal gradient opposed to
a voltage bias, in this case, our system acts as an engine which generates a
finite power when the thermally activated current flows against a voltage
gradient.

It has been discussed that asymmetries of the Li; coefficients might im-
prove the thermoelectric efficiency [215]. This is the case for instance for
broken time reversal symmetry in the presence of a magnetic field. Then,
the efficiency at maximum power depends on the ratio Li;b)/Lji(—B). In
our device L becomes asymmetric under “contact” inversion even in the
absence of magnetic field.

Important coefficients of performance are the maximum generated power
and the efficiency at maximum power. Let us specify, without loss of gener-
ality, a configuration where Ty, > Tg. The extracted power

P=-I{(V)V (5.20)
is maximized for some drop voltage V = Vy,, giving:

Vin = —(LLrATR + L ATL) /(2GR ), (5.21)
which results in a maximum power:

(LLRATR + LL ATL)?
max — 4GLR . (5-22)

Finally the efficiency at maximum power Mmqx is easily computable from

Pmax

o o (5.23)
IE(Vm) + Pmax

Mmax =

where one has to take into account that heat is injected from the left reservoir,
IE, and from the environment, IE. The total injected heat is hence —[I}L‘ (Vi) +
I}é(vm)] = IE(Vm) + Pmax-

In order to carry a more meaningful study of the setup efficiency, we also
study the Carnot efficiency for this setup. In our case we need to take into
account that heat is being injected by the environment and thus the Carnot
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efficiency is not simply nc = 1— Tg/T.. We define the Carnot efficiency
h

. . I m .
at t.he reversf?le point where - 4 & + 7. = 0 (zero entropy production),
which results in:

—1
M1-T, T
=1 L -0 ) )
ule +<IE T T (5-24)

This efficiency is a benchmark for the performance of our setup.

5.3 SINGLE OCCUPANCY

We can make some analytical progress by considering a simplified situation.
Let us assume the limit Ec > kgTp, such that the quantum dot can be
occupied by a single electron at a time. It will later help to understand
the numerical results for the general configuration presented in Sec. 5.4. In
this case we only have two possible states for the quantum dot: empty [0) or
occupied |1). This simplifies greatly the master equation which in the steady
state read:

P10 +Tro) —Po(lp +TRo) =0 (5.25)
Po+p1 =1 (5.26)

These can be easily solved and one obtains:

Po =5 Lo * ko —, (5.27)
ro T Tro+ 1o+ Ro
p1 = flotlko (5-28)
o +Tro T o+ Ko
In this case, the charge current simply reads:
I =e "LoRo = oMo (5.29)

T = = -
Mo+TroTTLo+TRo

We consider the isoelectric case (with Vi = Vg =0 and po = eq + €2/2C)
and compute the linearized charge current in contact 1 by linearizing the
tunneling rates as follows

0) , ATy
Mo =" (9{ '+ T 9{> (5-30)
- AT . (1
Mo = eto/keho <r1+ - T; Mo )> : (5:31)

where we have introduced the following integrals:

(n)__ E+po\ ™ +
g, =|dE Ty T (E+ 1o)Pr(E), (5-32)
B To
/ E+po\ ™ _
o= [ aE (T2} £ (Bl (E+uo)Py(E) (533)
kgTo

Note that they only depend on the corresponding terminal through the
P1(E) function, 1 = L, R. In the following, we write f£(E) for f*(E,T).
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5.3.1 Seebeck asymmetry

Replacing them into Eq. (5.29) we obtain the Seebeck coefficients:

B eFLFR
T« - (0
Tody FLQ{ :

The asymmetry in the thermoelectric coefficients, 5L = Ly r — Lgr, is hence:

Ly f(uo)g

(0) (1)
ij i 95 -

(5-34)

0 1 0 1 1
Lo g1 gr) — g o) =Xk, (5.35)

with

xin) = J.dEdE’ <E+”°> £ (Etpto)f (E/4110) [PL(E)Py (E) — P(E/)Py (E)L.

kgTo
(5.36)

We can then explicitly relate the asymmetry of the Seebeck coefficients
Eq. (5.35) to the inhomogeneous influence of the environment on the tunnel-
ing processes through each barrier, P{(E). This occurs when Cp, # Cg: both
the mean and variance of the distributions become different, cf. Eq. (5.8).
Hereafter, we parametrize the asymmetry of the tunnel barrier capacitances
with

K — ﬁ (5.37)
C

Then, for a finite « it follows that P (E) # Pr(E). Note that X{E) is indepen-
dent of the tunneling rates Iy, Ir.

The functions X{{L,) (and therefore the asymmetry) depend on the overlap-
ping of the Gaussian distributions Py (E) and Pr(E), whose mean and width
are in principle different and depend on C; and C. For very small capac-
itances, C — 0, the two distributions are narrow and they do not overlap.
In the opposite limit, they are so wide that their difference is tiny. Optimal
values of C for which the effect of the environment is maximal are found int
the intermediate regime.

These observations are reflected in Fig. 5.2. There we have represented 5L
for two different values of the total capacitance C = Cy [Fig. 5.2a)] and 2Cy
[Fig. 5.2b)], with Co = e2/10hT, as a function of the energy level of the dot
€q and k. We vary the symmetry of the capacitances described by k but not
the total capacitance C which is kept constant. As seen in Fig. 5.2 6L is zero
for k = 0. This means that an environment coupled symmetrically to both
barriers is not able to break this symmetry and therefore, inelastic scattering
is not a sufficient condition for breaking this symmetry in the Onsager ma-
trix. However, we observe that L g and Ly differ for finite k, see Fig. 5.2c)
and d). Both have the expected saw-tooth lineshape [188]. Remarkably, oL
changes sign when the asymmetry is inverted (i.e. when k changes sign)
and at the particle-hole symmetry point eq + Ec = 0, where also Li; = 0,
see Fig. 5.2.

The maximal value of 5L (at a finite value of k) depends strongly on the
total capacitance C. A plausible argument for such behavior is obtained by
looking at the integrand of Eq. (5.36) that depends on the overlap of the two
Gaussian functions P (E) and Pr(E), each one centered at energy positions
that depend on K%EC and KIZ{E(:. As discussed above, XI(JL) decreases for
small enough C, and so does 6L.



5.3 SINGLE OCCUPANCY

a) , C: C() , b) , 0220() ,
%9 0.004

' LERL
=
~
¢ 0 Il 0 <
L
2

-0.5! {1

-0.004

0029 ___

o=~
~ e

-
S -

LZ](BkB/h)

-0.02

—-10 0 10 —10 0 10
€4+ Ec(hr) €4+ Ec(hr)

Figure 5.2: Electrothermal asymmetry 5L versus dot energy level position eq + E¢
and capacitance asymmetry « for different values of the total capacitance
a) C = Cp, and b) C = 2Cy. ¢) and d) show cuts of Ly g, and Lg; when
k = 0.5, for the values of C considered above. We have taken kg Ty = 2hI"
and I = Tr = I'/2. We take hI" = 1 as the energy reference unit. Finite
asymmetries k # 0 give SL # 0.

5.3.2  Thermal asymmetry

A similar analysis is performed for the thermal coefficients. We start from
the expression for the heat current in the single occupancy case:

— (t + + —
n Yoolo +TRo) = ¥io(To + TRo)

L= T (5.38)
Mo +Tro o+ Ro
Expanding the heat rates we obtain:
1
v =N (kBTQ{ '+ 9{/kBAT1> (5.39)
_ 2
vy = eko/ksT (vf — g, )kBATl) : (5-40)

With these relations, together with Eq. (5.30), we get the expression for the
(diagonal) linear thermal asymmetry, 6K = Ky — Krgr. It can be separated
in two contributions, 6K = 8K + 6K, with:

kpf™

oK = Bi(u(%)) (rLz@L - FI%GR) (5-41)
Zl r191
kpf™

5K, = B Ho) (”(‘(’))) MLRX. (5.42)

Zl r191

85



86

DYNAMICAL COULOMB BLOCKADE OF THERMAL TRANSPORT

Here we have defined:

N\2 _ (2) (0
®1=(9{ )) -9”9”

= JdEdE’(E—E’)(E+Au°)f+(E+uo)f+(E’+Au°)P1(E)Pl(E’),
(5-43)

which depends on the tunneling events through a single barrier. This factor
is related to the thermal conductance for the energy exchange between a
single terminal | and the environment. Note that 5K can be finite in the case
where one of the barriers is closed I} = 0, i.e. when neither charge or energy
flows through the quantum dot. This term therefore describes asymmetric
energy exchange with the environment. On the other hand, $K« depends on
tunneling through both barriers.

We can hence distinguish two sources of rectification: 5Kr becomes non
zero when asymmetric tunneling barriers are considered, i.e. I}, # IR or
when k # 0. It relates to the different time scales that an electron stays in
contact with the environment when tunneling from the left or from the right
reservoir, as we discuss below. However, 0K, is is intrinsically dependent
on the dynamic coupling to the environment: it is only non zero when the
capacitances for each tunneling barrier are different.

The role of a capacitance asymmetry on the heat rectification 6K is plotted
in Fig. 5.3. There, we show 6K = Kp — Kgrgr versus the dot gate potential
g4 + Ec when the asymmetry in the capacitances « is tuned. We observe that
heat rectification reverses its sign at k = 0, as expected since k # 0 means
that more heat is being injected in one of the contacts. Importantly, we find
different behaviors depending on the total capacitance C. For large enough
C, 6K changes sign with the position of the level, cf. Fig. 5.3b). This is due
to a change in the relative contribution of the two terms, 6K and 6Ky, as
shown in the lower panels in Fig. 5.3. This effect introduces an additional
way of controlling the heat flows through the device, depending on the
position of the different mean values of the P;(E) distributions with respect
to the Fermi energy.

To assess how much the heat flows can be controlled, we study the relative
rectification Ry, see Figs. 5.3(c,d). We observe that it reaches values around
80 — 90% at configurations where 6K is maximal (lobes in Fig. 5.3a)). The
system then behaves as a thermal diode. Even larger rectifications close to
a 100% are reached for extreme values of the asymmetry k. However, heat
currents are almost vanishing there.

For small values of C, the asymmetry of the two P(E) functions is large
and therefore we find that 0K is enhanced (and negative for k > 0), see
Fig. 5.3e). Therefore for C = Cy, it dominates over 6K, which depends on
the overlap X&). Instead, for high values of C we showed that X{Tﬁ) increases,
and on top of that the contribution of 6K becomes smaller, see Fig. 5.3f).
Therefore, the competition between the two terms and its dependence with
k gives a nontrivial dependence of the heat rectification with C.

Asymmetric tunneling amplitudes also lead to a finite rectification. In this
case, it only depends on 6Kr. This is shown in Fig. 5.4 which plots oK for
symmetric capacitive couplings (k = 0) versus the dot gate potential e4 +E¢
when the asymmetry in the tunneling rate, parametrized as

_IL—1Tr
N IL+TR

(5-44)
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Figure 5.3: a), b) Thermal asymmetry 5K versus dot energy level position e4 and
capacitance asymmetry k for different values of the total capacitance
C = Cy,2Cp. Thermal rectification occurs for k # 0, i.e. (Cp, # CR). ©),
d) Relative thermal asymmetry Ry, for the corresponding configurations
a) and b). e), f) Total 6K (red line), tunnel 8K (dashed blue line) and
capacitance 5K (dashed green line) thermal asymmetries evaluated at
k = 0.5 for two different capacitances C = Co = 2Cy. The change of sign
of 5Kr which implies the change of sign of the total 5K is clearly observed.
Same parameters as in Fig. 5.2.

is tuned. Heat rectification stems purely from different kinetic couplings.
By allowing, e.g., I1, > I electrons traversing the left barrier spend shorter
times in contact with the environment (and therefore the time where energy-
exchange processes are possible is shorter) than electrons at the other bar-
rier. Therefore environmental assisted tunneling transitions are effectively
different for both junctions even though they are performed with the same
environment, with Py (E) = Pgr(E). Results for 6K at C;, = Cg = C/2, i.e.
k = 0, for different values of the barrier asymmetry A are shown in Fig. 5.4.
In this figure we observe that indeed for A # 0 there is an asymmetry of the
thermal coefficients which changes sign with A. It is also observed that the
shape of the asymmetry does not depend strongly on the total capacitance
C, as expected, since the source for such heat rectification depends essen-
tially on A and it does not have an electrostatic origin. Even so, the total
value of the rectification decreases with the capacitance.
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Figure 5.4: Thermal asymmetry 6K versus dot energy level position e4 and the bar-
rier asymmetry A for different values of the total capacitance C = Cy, 2Cyp.
Heat rectification 6K # 0 for A # 0, i.e. (I, # IR). Parameters are the same
as in Fig. 5.2.

5.3.3 Thermoelectric performance

Finally, we focus on how the thermoelectric performance of the device is
affected by the environment. Discrete levels in quantum dot systems are
known to give a high performance for being ideal energy filters. In terms of
efficiency at maximum power, they reach the Curzon-Ahlborn efficiency [186]
which in the linear regime is nca =nc/2 [216]. As discussed above, energy
filtering is harmed by the occurrence of inelastic scattering. Hence, the effi-
ciency is expected to be smaller [217].

This is indeed what we observe in most of the range in Fig. 5.5, which
shows the efficiency at maximum power Nmax [Eq. (5.23)] and the maxi-
mum power Pmax [Eq. (5.22)] as functions of the dot gate position e4 and
the asymmetry parameter k. Even so, we find there that the system reaches
efficiencies close to the nca bound, or even larger, cf. Fig. 5.5f). This hap-
pens for large values of the dot level position and at k > 0. The efficiency is
increased whenever Cp, > Cp since this coupling favors the injection of heat
from the environment to the right lead effectively helping electrons over-
come the bias potential, therefore less heat is needed from the left reservoir
to extract the same power. Unfortunately, at these configurations the out-
put power is strongly suppressed, as displayed in Fig. 5.5. Nevertheless, the
highest Pmax can be extracted at reasonably high efficiencies nmax ~nc/3,
see Fig. 5.5f). Therefore, we observed environmental enhanced efficiencies
(as compared with a perfect energy filter [186], which are bounded by the
Curzon-Ahlborn limit).

We also note that the efficiency is strongly dependent on the details of
the coupling to the environment, evidenced by the comparison of Figs. 5.5€)
and f). Larger C not only gives larger power, it also generates it at much
larger efficiencies, as compared with lower C. Hence, we expect that the en-
gineering of the environmental fluctuations (by considering e.g. non-ohmic
impedances) could result in devices with enhanced thermoelectric perfor-
mances.

5.4 DOUBLE OCCUPANCY

In the light of the results presented in the previous section for the reduced
state space with up to one electron, we come back to the general case al-
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Figure 5.5: Efficiency at maximum power Nmax in units of the Carnot efficiency nc
versus the dot level position €4 and the asymmetry «, for different capac-
itances: a) C=Cy and b) C=2Cy. A red-dashed line marks the Curzon-
Ahlborn efficiency, nca = nc/2. ¢), d): Maximum power Pmax corre-
sponding to the configurations shown in a) and b), respectively. Cuts of
the previous curves for k = 1/2 are presented in e) and f), for clarity.
Same parameters as in Fig. 5.2.

lowing for double occupancy. That is, now we consider |0), [u), |d) and [2).
This means that we now need to solve the full master equation, as given in
Eq. (5.1). As a consequence now we need to consider not only transitions
from or to an empty dot as in

No=T JdEfi(E—er,Tj)Pj(:I:(E—uo)) (5.45)

but also transitions to and from an already occupied dot, described by:
rjﬂj =T J' dEf™(E— eVj, Tj)P5 (£(E — p1)). (5.46)

Therefore, analytical results for the double occupancy case are cumber-
some so we restrict ourselves to present our numerical simulations. The
results presented in this section show the two differences: 6L and 6K.

First, we present the results for 5L in Fig. 5.6. As expected, a finite 5L
arises only with an electrostatic asymmetry coupling, i.e., when k#0. Then,
two sawtooth structures for 5L appear corresponding to the charging of the
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Figure 5.6: Double occupancy electrothermal asymmetry 3L versus dot energy level
position e4 + Ec and capacitance asymmetry k for different values of
the total capacitance C = Cp,2Cy. The crossed terms Ly g, and Lgy are
different for k # 0, i.e. (Cp # CR). Parameters are the same as in Fig. 5.2.

system with a second electron. The two sawtooth oscillations are separated
by the charging energy i — po = 10hl’, see Fig. 5.6a). Notice that when the
charging energy becomes sufficiently small, i.e. for C = 2Cy, the two fea-
tures come closer and the inner oscillations are no longer visible, Fig. 5.6b).
The behavior then resembles the one obtained for large charging energy
(single occupancy) in Sec. 5.3.
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Figure 5.7: Double occupancy thermal asymmetry Ky — Kgg versus dot energy level
position e4 and capacitance asymmetry « for different values of the total
capacitance C = Cp, 2Cy. Heat rectification 5K # 0 for k # 0, i.e. (Cp #
CRr). Same parameters as in Fig. 5.2.

The heat rectification for the double occupancy case is plotted in Fig. 5.7.
We observe the double peak structure for a low capacitance C = Cy due
to the two different energy levels available, so we observe a peak for each
resonance. As C increases there are two main effects (i) the overall double
peak tends to disappear since the charging energy diminishes, and (ii) sign
changes appear in the heat rectification (for fixed k) due a greater weight
of 0K against Kr when C increases. Therefore the sign of the heat rec-
tification is mainly given by 8K, for a large capacitance C whereas 6Kr
determines the heat rectification sign when C is small. This behavior is sim-
ilar to what we observed for the single-occupancy case but with a different
strucutre due to the double peak caused by the double occupancy.
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5.5 CONCLUSIONS

In closing, we have analyzed the effect of inelasticity introduced by an elec-
tromagnetic environment on transport through a conductor (a quantum dot).
We have found that even in the absence of a magnetic field, an asymmetric
energy exchange with the environment can break symmetries of the trans-
port coefficients, in particular in the thermoelectric and thermal Onsager co-
efficients. As a consequence an apparent rectification appears in the linear
heat currents. Rectification of around 80 — 90% is found for configurations
with significant heat conduction. This rectification due to the environment
can be caused both by an asymmetric capacitive coupling or by asymmet-
ric tunnel barriers for the dot. Furthermore, we have shown that heat in-
jected from the environment can either improve or diminish the efficiency
at maximum power output of the device when used as an engine. Efficien-
cies close to the Curzon-Ahlborn (or even larger) are attainable even if at
vanishing power output. This improvement in efficiency is attained when
the couplings of the system are chosen to promote charge transport in the
desired direction, effectively diminishing the required heat from the hot
reservoir.

We have considered here the case of a high-impedance environment. Other
kind of interactions will have different impact on the performance of the
system. The experimental ability to engineer the electromagnetic environ-
ment [218] opens the way to improve the control of thermal flows in meso-
scopic conductors.

It is clear then that a properly engineered environment can favor trans-
port through a quantum dot and improve its performance as a thermoelec-
tric engine. In an extreme case one could envision this environment to be
"intelligent”, i.e. it would act on the system according to the state of the
system, thus further improving its performance. Such a feedback scheme is
equivalent to a Maxwell demon type of feedback which we study in the next
chapter.
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CHIRAL MAXWELL DEMON IN A QUANTUM HALL
SYSTEM WITH A LOCALIZED IMPURITY

6.1 INTRODUCTION

As we have seen in Chapter 5 quantum dots are devices suitable for the
implementation of quantum engines or refrigerators. Besides, their perfor-
mance can be externally optimized. More precisely, we have seen that the
presence of inelastic effects by the environment helps improve the efficiency
and the output power of the quantum-dot-based engine. Quantum dots are
a good platform to implement quantum engines not only because of their
energy filtering properties but also because of the tunability of their ener-
getic properties. On top of that, we saw that an asymmetry in the system
helps further the increase in efficiency of the quantum engine.

The question now comes of how to further improve this increase in effi-
ciency. Since asymmetry plays a crucial role, a natural step is to resort to
a system with an intrinsic asymmetry. This is the case for a quantum Hall
system characterized by the formation of chiral edge channels [219, 220], as
we have seen in Section 1.3 of the introduction and in Chapter 3. Further-
more it has been shown [221] that in such a system, i.e. in a quantum dot
embedded in a quantum Hall bar, see Fig. 6.1; the reversal of the magnetic
field causes a change in the chirality of the edge states which means that
the time-reversal symmetry is broken. As a consequence and due to elec-
tronic interactions in the quantum dot, the local detailed balance (LDB), the
relation between forward and backward processes, is broken. This means
that we can possibly devise a clever way to use this system to act as a very
efficient engine since a Maxwell demon mechanism can take advantage of a
broken LDB [222].

Since Maxwell envisioned in a gedankenexperiment the possibility of an
entity, an intelligent agent (a demon to Lord Kelvin) capable of separating
warm and cold particles of a gas without performing work apparently violat-
ing the second law of thermodynamics, the idea attracted plenty of theoreti-
cal attention [223]. The apparent paradox was addressed on a basis in which
information and entropy must be related [224]. Information is then, a phys-
ical magnitude and it fulfills physical laws [225]. Erasing information im-
plies energy dissipation [226-228] that compensates the entropy reduction
suffered by a system in the presence of the demon and ensures the validity
of the second thermodynamic law. Such information-to-energy conversion
is regarded as the solution of the Maxwell demon paradox [225]. Nowadays
Maxwell’s demon is interpreted as a feedback control mechanism to con-
vert information into energy. Even though Maxwell’s idea was enunciated
as a gedankenexperiment, present technologies have made possible to build
it at small scales, for instance by using Brownian particles [229, 230], single
electrons [231], lasers pulses [232] and, most recently in a quantum spin
Hall system [233]. However, demons for quantum systems [234] are hard
to experimentally design and work and thus show a scarcer experimental
activity due to technical difficulty of implementing a truly quantum demon
[148, 229] despite the possibility of improved performance [235]. It is worth
mentioning that the great progress in the development of stochastic ther-
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modynamics, has resulted in theoretical proposals for stochastic Maxwell
demons [222, 236-241] and finally in an experimental implementation of
an autonomous Maxwell demon using coupled quantum dots [163] where
one of the dots is used to control, through capacitive coupling, the current
through the other dot, used as a SET.

A key ingredient for the performance of stochastic Maxwell demons is
the breakdown of detailed balance conditions [222] as direct consequence
of a clever feedback mechanism. The breakdown of such relations is usually
achieved through an asymmetry in the system [222, 238]. This asymmetry
is a necessary but not sufficient condition for the breakdown of the local de-
tailed balance (LDB) condition. The breakdown of the local detailed balance
requires that forward and backward relations are not related by an expo-
nential Boltzmann factor. Breaking the local detailed balance condition thus
creates an imbalance between forward and backward processes from which
the demon can profit.

The out-of-equilibrium LDB is broken in quantum Hall (QH) systems
with localized impurities due to a non-symmetric electrostatic response of
the system when the magnetic field is reversed [221]. Precisely we benefit
from this feature to devise a Maxwell demon feedback scheme in a QH bar
device with an impurity. We show how the chirality of the edge channels fa-
vors the operation of a demon that pushes an electrical current against a bias
or that extracts heat from a cold reservoir. The protocol requires two condi-
tions to be satisfied (i) electrostatic interactions must be asymmetric when
the magnetic field or edge motion is reversed and (ii) tunneling events be-
tween the edge modes and the localized level must be energy dependent.
Under these circumstances the demon is able to convert information into
work to drag an electrical current that moves contrary to the applied bias
or to extract energy from a cold reservoir. Below we describe the theoretical
framework for the chiral demon protocols.

850056

Figure 6.1: The device composed by two electronic reservoirs (Left and Right), the
QH bar with edge states represented with lines with arrows (representing
direction of transport) and the localized impurity of energy level e4 with
tunnel couplings T'y (2 and capacitive couplings Cy ;). In a) (for B > 0)
the upper (lower) edge state travels from L(R) to R(L), instead in b) (for
B < 0) the upper (lower) edge state travels from R(L) to L(R).

6.2 THEORETICAL APPROACH

As mentioned, our device is a topological setup consisting of a quantum
Hall bar defined between two reservoirs (L and R) with an embedded single
quasi-localized state of energy e4q and it can only be singly occupied since
we restrict ourselves to the Coulomb blockade regime with a sufficiently
strong Coulomb energy. Such level is tunnel coupled to chiral edge states
of the QH system at filling factor v = 1, see Fig. 6.1. The applied magnetic
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field defines the direction of transport (represented by arrows) in each of
the chiral modes. Tunneling events between chiral conducting states, i =

1,2, and the quasi-localized state are modeled by the tunneling rates Fio (M)
that depend on energy. Thus, tunneling rates are different depending on
the dot charge state, either empty (o) or filled (1). Electrons in the quasi-
localized state are capacitively coupled to those in the edge channels via the
capacitances C; [219, 220, 242]. Due to the chirality of the edges states, the
coupling of the quasi-bound state to the left and right reservoirs changes
by reversing the magnetic field that exchanges the direction of motion of
such modes, see Fig. 6.1. In this manner, for B > 0 [Fig. 6.1a)] the level is
coupled to the left (L) reservoir through the upper capacitance (C1) and to
the right (R) reservoir through the bottom capacitance (Cz). Under these
considerations the quasi-localized level for B > 0 has a chemical potential
given by

ni=eat (C1VL+ C2VR), (6.1)

_°
Ci+Cy
being Vi (r) the voltage in reservoir L(R) and e the electron charge. Chang-
ing the field direction (B < 0), [Fig. 6.1b)] leads to a reverse motion for the
conducting modes, with a chemical potential

Wy =eq+ (C2Vi +C1VR). (6.2)

_°
Ci1+C,
Note that the difference between both chemical potentials for B < 0, and
B > 0 becomes

Hg —HG =en(VR — V1), (6.3)

wheren = 8 ;8 measures the asymmetry between capacitances. As a con-

sequence, the difference between chemical potentials is finite only when the
setup is under non-equilibrium conditions (V. # VR) and the capacitances
are different, meaning n # 0. Then, electrostatic interactions are not sym-
metric when B is reversed [242].

To describe transport through the interacting level we employ the Master
equation framework, see Section 2.4, taking advantage of the fact that in
the Coulomb Blockade regime transport happens sequentially. We permit
two charge states, namely [0) and [1) whose occupation probabilities are
governed by the master equations

Po = —(Wio + Wpo + (Wg + W& 1, (6.4)
p1=—W§ + W )p1 + (Wi + Wi )po.

The transition rates between those two states are given by Wy,,, where m is
the final state of the dot, n is the initial state and, « is the reservoir to/from
which the electron comes. Due to the demon protocol, described below and
which needs to be taken into account in the master equation, the transition
rates that fill the dot (W7})) are always given for a situation in which B > 0
and those that empty the dot (W) occur for B < 0. This is the basis for our
Maxwell demon feedback scheme to work properly since both transitions
rates are not related to each other by a LDB condition[221] as we show
below. These previous transition rates, in the sequential tunneling regime,
are readily obtained from Fermi’s golden rule and read:

L(R
wigt) = M) fLr) (“g - uL(R)) / (6.5)

W&(R) = r1](z) [1 —fL(r) (HE - HL(R))} , (6.6)
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being fL(R)(u:;/_ —Hr(r)) = 1/(1 +exp BL(R)[LL;/_ — K (r)l) the Fermi
distribution function of the reservoir L(R) with electrochemical potential
up(r) and B gy = 1/kpTy(r) with Tj (g) the temperature of the respective
reservoir. As we remarked before, these rates depend on the orientation
of the magnetic field through their dependence on the quasi-bound state

chemical potential u:;/ . Due to the chirality of the system, the inversion of
the magnetic field changes the quasi-bound dot energy at which transport
is more favored which means that the LDB condition:

L
% :eiﬁ(edf#), (67)

is not fulfilled anymore in this system [221] since the relation between rates
is modified to:

Wio TP _p(eq—eav eAV eAV
200 1 —Blea—3%) (1|12 _eey «eev _
wh, e ( { fL (ed 5 )}Bn 5 ) (6.8)

with AV = VI — Vg being the applied bias. We also observe that an energy
dependent model for the tunneling rates 'Y # I'] breaks the LDB even if ca-
pacitances are equal. However, we show here that the demon works properly
solely when both requirements are met (i) asymmetric capacitances, and (i)
energy dependent tunneling rates with asymmetric barriers. It is to be noted
that a more complete model for the capacitive coupling, as the one in Ref.
[242], could lead to both requirements for the breakdown of the LDB to be
fulfilled solely by asymmetric barriers and with symmetric capacitances. We
take the tunneling rate energy dependence to be within the WKB approxi-
mation. Here, the energy dependence of the tunneling rates is exponential,
as shown experimentally [243]

/7
PO/ _p ekalig’ —Ea) (6.9)

where o« = 1,2 denotes the barrier, ko models the energy dependence and
Ey is the top energy of the barrier. We profit from the fact that in this ap-
proximation barriers are asymmetric whenever ky # k;.

6.3 PUSHING A CURRENT AGAINST A BIAS
6.3.1  Demon protocol

As explained before, LDB is broken, by reversing the magnetic field when
the barriers are asymmetric so that they favor certain transitions and re-
strict others. Under these circumstances we devise a working process for
the demon (see Fig. 6.2) and investigate if it would be able to drive a current
against a voltage bias (VL > Vg), in other words to drive a current from right
to left, in the absence of a temperature gradient Ty = Tr = T. Furthermore,
we take the demon to be at the same temperature, Tp = T. The process is as
follows:

Step 1: Starting with B > 0 and an empty dot, the process is triggered
when an electron enters the dot from the right contact (probability oc I'9).
Due to the orientation of the magnetic field, the energy of the electron in
the dot is p}.

Step 2: The demon detects that the dot is singly occupied and accordingly
it changes the direction of the magnetic field to B < 0, this raises the level
energy for the localized state up to uj.
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Step 3: Since now the energy of the electron inside the localized state
has augmented it becomes easier to tunnel out through the upper barrier
(probability oc T]) and as a consequence the dot is emptied. This leads to
transport of one electron from the right to the left reservoir even though
Vi > V.

Step 4: To finish, the demon detects the change in the localized state oc-
cupation and restores the initial magnetic field to B > 0.

This process is carried out without a thermal gradient but always at finite
temperature. This protocol can not work if any of the reservoirs is at zero
temperature since then there are no available electrons in excited states.

Note that the demon pushes electrons against a bias, this operation is
optimal as long as the localized state level energy is increased as much as
possible therefore helping charges climb against the applied bias. The en-
ergy difference after reversing the magnetic field is encountered in Eq. (6.3).
Then, we need to taken < 0, i.e. C; > Cy, given that Vi > Vg. Therefore the
feedback scheme is more effective whenever 1 is close to —1 or at the very
nonlinear regime (large Vi — VR).

Although tunneling processes in Steps 1 and 3 are against the bias and
thus less likely, this inconvenient can be overcome by cleverly engineering
the tunneling rates, see below and Eq. (6.12).

It is clear then that the demon’s action is to control the energy level inside
the dot through the magnetic field in a clever way. Since this has an effect on
the transition rates, the way to theoretically implement the feedback in the
transport description is to modify the rates in the master equation Eq. (6.4).
Then, the feedback scheme is taken into account by taking the transition
rates at the correct magnetic field orientations.

Step 1(B > 0) Step 2(B < 0)

Step 3(B < 0)

eud

Figure 6.2: Sketch of the performed action by the demon to push electrons against a
bias. The demon’s action is represented by yellow lightning (steps 2 and

4)-

Once the feedback scheme is incorporated to the master equation we are
ready to solve it (we restrict to the stationary regime p 1 = 0) and thus we
are able to study the demon protocol and assess whether it works. To this
end we characterize the action of the demon through the charge current, the
energy current to the demon and the information current that it is able to
extract from the system.
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6.3.2 Charge current

In order to characterize transport and to see whether the demon is able to
drive a current against the applied bias or not, we calculate the currents
using the probabilities from Eq. (6.4):

I = e(—Wropo +W5ip1). (6.10)

By this definition currents are positive when particles go into a reservoir and
negative otherwise and fulfill the particle conservation relation Iy + Igx = 0.
Then, solving Eq. (6.4) in the steady state regime, the probabilities are easily
obtained, yielding

e(W&W}Qo —W1L0W§1)

= . (6.11)
W§ + W5y + W, +Wr

I

We see from this expression that the first term accounts for particles enter-
ing the dot from the right and exiting through the left (positive contribution)
and the second term accounts for particles entering the dot from the left and
leaving through the right (negative contribution). In order to improve per-
formance of the Maxwell demon we want the first term to be bigger than
the second one since we want a current flowing from right to left.

From the expressions of the transition rates and the current, Egs. (6.5)
and (6.11) respectively, we see that to favor the first term of the current we
need to enhance I/ T with respect to I'T). From the expressions of the
tunneling rates we obtain their ratio:

rire
e

— e(ki—k2)(ug—ng) (6.12)

It is observed then that we are able to favor the numerator by taking
k1 >k, given that py —pd > 0.

In Fig. 6.3 we represent the charge current in reservoir L. Current is neg-
ative as long as it flows with the bias according to our sign criterion. In
Fig. 6.3 a) we observe that symmetric barriers lead to a current that always
follows the bias independently of feedback strength 1. However, in Fig. 6.3
b) when the tunneling barriers are different and for a sufficiently high n
value the current starts to flow opposite to the bias, becoming positive. This
notable fact is thanks to the action of the demon.

Noticeably, the ability of the demon to change the energy level is propor-
tional to the applied bias: p; —p} o« nAV. This means that by increasing the
applied voltage the current flowing against the bias enhances as well. The
bias which in principle is an obstacle that needs to be overcome becomes
rather a help because the action of the demon augments with it.

Even so, the fact that the demon is not able to push a current against the
bias for small asymmetry implies that this demon can not work in the ideal
limit. Indeed, the fact that the demon is not working for 1 < —1 means that
the demon can not operate under ideal conditions, where no heat is injected
since this would require symmetric couplings, 1 = 0 (see Eq. (6.14)).

6.3.3 Energy current to the demon

To fully characterize the demon and since it is not ideal, the energy flow
from the system to the demon is evaluated. The energy current is related to
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Figure 6.3: Current to (positive) or from (negative) the left reservoir Iy for different
values of ) as a function of AV = Vi — V. The current is negative when
it flows in the bias voltage direction. The parameters have been chosen
so that k1 = k, in a) and k; = 3k, in b). We have taken 7 =T, =T,
k7 = 0.1/hl" and, kg T = 10hT.

the energy change that the demon causes on the electrochemical potential of
the localized impurity. We calculate this current by measuring the number of
electrons going in and out of the dot times their respective energies, yielding

Jb =13 (Wio +Wio)po — g (War + W5 ). (613)
This expression can be simplified, using the solution to the master equation
Eq. (6.4) in the stationary regime:
(Who + Wi (Woy + W)
Wio + Wi+ Wy +W§ -

Jo = (] —1yg)

(6.14)

Hence, we see that this energy current is proportional to the energy differ-
ence of the electrochemical potentials caused by the demon times the activity
current which measures how many particles go in and out of the impurity.
Our findings for the energy current carried by the demon are shown in
Fig. 6.4. The energy injected by the demon increases with 1 and with the
applied voltage, as expected. Comparing the results for symmetric barriers
[Fig. 6.4 a)] and asymmetric ones [Fig. 6.4 b)] we show that the current en-
ergy does not change significantly. This indicates that the energy injected by
the demon although present and necessary is not the key factor in pushing
the current against the bias. Let us now move on to the information entropy.

6.3.4 Information current

The final step in the characterization of the demon is the key quantity of an
ideal Maxwell demon, i.e. the information that it can extract from the system
in order to perform [222]. We start from the system information [236] given
by Shannon’s entropy S = —kg }_,, Pm Inpm, where p, are the occupation
probabilities given by Eq. (6.4). Then the entropy balance, S = S + S;, can
be written as an entropy production S; and an entropy flow S, that satisfy
Si =—Se.

The entropy flow in the system can be separated in the standard form
of the entropy flow given by the exchanged heat in each reservoir (v) over
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Figure 6.4: Energy current (Jp) injected by the demon for different values of 1. The
parameters have been chosen so that k; = k; in a) and k; = 3k; in b).
Parameters are the same as in Fig. 6.3.

the temperature and an extra term accounting for the entropy flow to the
demon Sp:

Se= ) %+SD. (6.15)
v=L,R

The heat currents in each reservoir are given by an expression similar to that
of the charge with the rates modified to take into account the heat carried
in each transition:

Jv = (kg — v )WEp1 — (11§ — v )Wipo. (6.16)

The entropy flow to the demon, Sp, consists of two parts, the entropy flow
caused by the energy flux Jp and an information flow Iy that powers the
demon. This second term labeled I is the information flow extracted by the
demon in its application of the feedback protocol:

I]: = SD — _JI_7D (617)
D
This information current is the main characteristic of the Maxwell demon
since it measures the information that the demon extracts from the system
in order to be able to apply the necessary feedback scheme. Specially in the
case of an ideal Maxwell demon (Jp = 0), it is the only measurable quantity
associated to the Maxwell demon [222].

Fig. 6.5 represents the information current for the demon. In Fig. 6.5 a)
we observe that the information current is basically negligible. This corrobo-
rates that the demon is acting wrongly, being unable to extract information
from the system. However, when barriers depend differently on energy [see
Fig. 6.5 b)] the demon starts to be able to extract information from the sys-
tem. Noticeably, we observe that the cases in which the demon drags an
electrical current against the bias system coincide with the cases in which
the demon is able to extract information from the system, compare Figs. 6.3
and 6.5. This is the definitive indicator that the extraction of information is
the key to our demon’s operation.
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Figure 6.5: Information current (If) of the demon for different values of 1. The pa-
rameters have been chosen so that k1 = k; in a) and ky = 3k, in b).
Parameters are the same as in Fig. 6.3.

64 COOLING A COLD RESERVOIR

Another interesting application of the demon feedback, besides pushing a
current against a bias, is using it for cooling purposes. This was shown
experimentally in Ref. [163] where cooling was achieved using a double
quantum dot setup. They used the setup of Ref.[239], originally thought for
pushing a current against a bias.

In this section we investigate the possibility of using our setup for cooling
purposes, studying the ability of the demon to extract a heat current from a
cold reservoir.

To this end we use a configuration with Ty > T = Tp and we aim to
extract heat from R. Ideally, the demon should be able to perform this action
without the help of a voltage bias but unfortunately this is not possible
since, as previously discussed, the demon is not able to perform any action
at AV = 0. Therefore, we need a finite bias to observe this effect. Given that
our aim is to cause an energy flow out of the cold reservoir (R) we choose a
bias such that it helps achieve our goal, i.e. Vg > V1.

6.4.1 Demon protocol

The working process of the demon is very similar to the one used to push
a current against the bias but now instead of increasing the energy of the
electrons inside the dot we do the opposite, effectively extracting a hot elec-
tron from R and lowering their energy, before injecting it into reservoir L,
see Fig. 6.6. In this scenario the demon would work as follows:

Step 1: (Starting with B > 0 and an empty dot) An electron enters the
dot from the right contact (probability oc I'?). Due to the orientation of the
magnetic field, the energy of the electron in the dot is uj. In order to be
able to lower the energy of the electron in the feedback process it is needed
that 1 < 0 since Vg > V.

Step 2: The demon detects the occupation of the dot and changes the
direction of the magnetic field to B < 0, lowering the energy level of the dot

to py.



102 CHIRAL MAXWELL DEMON IN A QUANTUM HALL SYSTEM WITH A LOCALIZED IMPURITY

Step 3: The dot is emptied, with the electron traveling to the left reservoir
(probability o I'7).

Step 4: The demon detects again the change of state in the dot and restores
the initial magnetic field to B > 0.

All in all is a very similar procedure to that of pushing a current against
a bias and therefore we use the same description as before. In fact, we see
that the transition rates that we need to favor are the same as before. Also,
since we want the demon to lower the energy level we should take n < 0 as
before given that now we have Vg > V.

Step 1(B > 0) Step 2(B < 0)

Figure 6.6: Sketch of the performed action by the demon to cool the right reservoir.
The demon’s action is represented by yellow lightning (steps 2 and 4).

6.4.2 Heat current

In this second application of the Maxwell demon feedback we want to see
whether it can cool a cold reservoir, in other words if it can carry a heat
current against a thermal gradient. To this end we study the heat currents
in the system and observe if they flow from hot (L) to cold (R) or otherwise.
Therefore we need to calculate the heat currents in each reservoir:

Jv = (1g — B IWEP1 — (B — 1y )WiGPo- (6.18)

Our main interest is in the heat current in the right reservoir since it is
the cold reservoir and is the one that we aim to cool with the action of the
demon. In the steady state regime, this current reads as follows:

(eVR — mi )W WEy + (g — eVRIWToWE + (kg — mIWFWE,
WE§ + W5y + W, + Wi .

Jr =
(6.19)

We see that the heat current has three different terms. The first two terms de-
scribe the movement of an electron from one reservoir to the other whereas
the last term describes transitions at different energies (due to the action of
the demon) in the same reservoir. The first term is the one described in the
explanation of the protocol, so it is the one that the demon should enhance.
Even so, all three terms can be negative (meaning that they help cool the
cold reservoir). Hence, it is not so clear as it was with the charge current
which are the terms that matter the most for the action of cooling.
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It is important to note that the energy current is more sensitive to errors
than the charge current. Given the probabilistic nature of the events de-
scribed here, the protocol is not always correctly applied because undesired
transitions can happen. Tuning the barriers is the way to ensure that these
errors have a low probability of happening but it is not possible to make
them completely disappear. In the case of the charge current, the events
consisting of one error are not perceived since they involve the transport of
one electron in and out of the same reservoir which results in a null charge
current. Oppositely, in the heat current these errors are clearly visible and
appear as the third term in the energy current Jr. These processes, although
they help cool the right reservoir they are not a desired event since the
cooling comes purely from extracting energy from the system rather than
extracting information (or entropy) and thus are not demon-like processes.
As a consequence, it is impossible to have a purely information-powered
Maxwell demon in this setup.

This is observed in Fig. 6.7 where we see that indeed there is cooling
of the cold reservoir (Jr is negative, thus flowing out of R). Comparing
Fig. 6.7 a) and b) we see that the amount of heat extracted from R does
not change much when the barriers are asymmetric, unlike what happened
for the charge. Therefore we observe that there is cooling in both cases but
now we need to clarify the origin of this cooling and investigate if it really
comes from the extraction of information by the demon or if it is a direct
consequence of the energy extraction by the demon.

a) kl = kg b) kl == 3]{52

T T T T T T T 0.3
-0.2
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-0.15 ™
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Figure 6.7: Heat current flowing from the cold reservoir Jr, negative when flowing
out of the reservoir, positive otherwise. The parameters have been chosen
so that k; = k, in a) and k; = 3k, in b). We have taken I} =T, =T,
k1 =0.1/hIand, kgT = 10hT.

6.4.3 Energy current to demon

To know the origin of the cooling occurring in the setup we start by studying
the energy current to the demon. As we did for the case of the demon
acting against a voltage bias, we study the energy flow between demon
and system. The energy current to the demon is described by the same
equation as before, see Eq. (6.14). As shown in Fig. 6.8, the demon extracts
energy from the system when acting as a refrigerator. We observe there that
the energy extracted by the demon is bigger when barriers are symmetric
[Fig. 6.8a)] than when they are not [Fig. 6.8 b)]. This means that the demon
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is able to cool by the same amount despite needing to extract less energy
from the system which means that the energy extraction is not the only
mechanism acting to cool the system.

a) ]{31 = k‘z b) kl = 3]{32
0.6
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e AV(RT) e AV(hT)

Figure 6.8: Energy current ] injected by the demon. The parameters have been cho-
sen so that k; = k; in a) and ki = 3k, in b). Parameters are the same as
in Fig. 6.3.

6.4.4 Information current

Finally we look at the information current of the demon when performing
as a refrigerator which is described by the previously derived expression,
Eq. (6.17). In Fig. 6.9 a) we see that the demon is not able to extract informa-
tion when the barriers are symmetric and thus all cooling effects are due to
the energy extracted. On the other hand, for asymmetric barriers, see Fig. 6.9
b), information is flowing to the demon, meaning that it is able to cool the
R reservoir not only by extracting energy but also by lowering its entropy.

These results explain why there is no change in the cooling power Jr
despite a lower extracted heat by the demon Jp, showing that indeed the
demon is able to perform some cooling via information extraction.

Oppositely to what was observed for the case of pushing a current against
a bias, here the main cause of the cooling effect is not the information but
the direct extraction of energy by the demon. So, we conclude that our setup
despite being able of cooling is not a good candidate for the implementation
of a cooling feedback scheme.

6.5 CONCLUSIONS

We have shown that it is possible to mimic the action of a quantum en-
gine without a thermal gradient thanks to the effect of a non-ideal Maxwell
demon feedback on transport through a localized state in a quantum Hall
system. We proposed a working principle for a Maxwell demon based on
the chirality of the edge states. We showed that it is applicable under the con-
ditions: (i) asymmetry of the capacitive interactions as the magnetic field is
reversed under non equilibrium conditions, and (ii) energy dependence of
the tunneling probabilities through the barriers.

We show with a precise feedback protocol how a demon is able to push
electrical current against the applied bias voltage by extracting information
from the system. We demonstrate that this is effectively the case, the demon
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Figure 6.9: Information current If to the demon. The parameters have been chosen
so that k; = k; in a) and k; = 3k, in b). Parameters are the same as in
Fig. 6.3.

works satisfactorily whenever is able to extract information from the system.
Our scheme opens an important avenue for the design of Maxwell demons
that benefit from the topological properties of quantum matter in interacting
systems since any means of switching the chirality would be well described
by our theoretical description and would serve the same purpose as the
reversal of the magnetic field.

On the other hand, we apply a similar protocol in order to cool a cold
reservoir. We find that in this case the demon is not able to properly perform
the desired action of cooling by extracting information from the system. Or
at least is only partially able to perform such action, being the extraction of
energy the main mechanism of cooling.

It is to be noted that although the reversal of such high magnetic fields
dissipates a lot of heat and is hard to implement in the desired time scale of
few nanoseconds with the experimental techniques available nowadays, this
reversal is only meant as a reversal of the chirality of the edge states of the
quantum Hall system. This reversal could be achieved for example, using a
fixed magnetic field of a few T in one direction and then triggering a pulsed
high magnetic field on the opposite direction to achieve the reversal of the
magnetic field. These pulsed magnetic fields are triggered over typical time
scales of microseconds [244] which is a reasonable operation time for the
demon. Another possibility would be to move the sample between two well-
localized fixed magnetic fields configured in opposite directions, achieving
an effective reversal of the magnetic field. In both of these processes, the QD
state could be preserved by lowering its energy and restoring it afterwards.

This work is an attempt to open the path to the creation of Maxwell-
demon type of schemes in quantum systems. The discovery of new ef-
fects and new systems in the quantum world offer tools to be exploited
by Maxwell demon feedbacks. Here we studied the possibility of taking ad-
vantage of the topological properties of a system to favor the operation of
a demon but many not yet discussed quantum effects could be used to the
same end. Demons that could exploit effects such as coherence have not
been proposed until very recently [245].
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The interplay of energy and charge currents in systems in the nano-scale
is the main focus of this thesis. We have shown that the energy and charge
flows are fundamentally different despite the fact that some relations among
them can be found in nanosystems. We have also investigated the role of ex-
ternal agents in the behavior of these magnitudes and we have studied how
the relation between charge and energy can be exploited in order to imple-
ment thermoelectric devices. We have also seen the range of applicability
of the different formalisms that we used to describe the different systems
under study.

In Chapter 3 we have studied interference effects on the charge, energy,
and spectral currents as well as on the charge current noise at the output of
a MZI fed by one and by two single particle sources.

A dependence on the magnetic flux going through the interferometer, ob-
served as interference effects, has been shown for all studied quantities in
the MZI fed only by one source. We have shown that the interference effects
are affected by the detuning of the arms of the interferometer due to the
energy dependence of the transmission through the MZI. As a consequence,
energy and charge currents are out of phase and a finite DC current can
be observed at both outputs of the interferometer even if the total injected
current is zero. Two interpretations of these results were given, based either
on the wave nature of the signal or on the particle properties of electrons.

On a second step, we add a second single-particle source in the middle of
the lower arm of the interferometer. Hence, we are able to investigate how
the interference in the MZI is affected by two-particle effects. These effects,
either collisions or absorptions, stemming from the synchronization of the
sources introduce new relevant time scales. These new time-scales lead to
a suppression of the interference in the spectral current when the sources
are tuned to allow for absorptions of particles, or even to the occurrence
of additional energy-dependent oscillations when there is a possibility of
collisions of particles of the same type. These new time-scales lead to a
suppression of the interference in the spectral current when the sources are
tuned to allow for absorptions of particles, or even to the occurrence of
additional energy-dependent oscillations when the possibility of collisions
of particles of the same type is given.

As a result of the occurrence of these new time-scales, the absorption
of particles at SPSg, as well as the collision of particles at QPCg lead to a
suppression of interference in the charge current.

We show that two interpretations coexist for this: the averaging of the
magnetic-flux dependent oscillations in the spectral current leads to a sup-
pression of the interference in the charge current and, on the other hand,
it can be explained by the possibility of extracting which-path information
from reduced fluctuations due to two-particle effects. The particle interpre-
tation is corroborated by the behavior of the noise which shows that indeed
there is a reduction of fluctuations when the interference is suppressed.

Even so, we also show that when considering the behavior of the energy
current in the case of collisions, the particle picture does not hold. Hence, we
are able to show that charge and energy currents behave in a fundamentally
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different way when considering electrons and holes since the energy current
exhibits interference effects while the charge current does not.

As a further step in our research, it would be interesting to compute the
energy current noise to know how the fluctuations in it are affected by the
presence of two-particle effects.

In Chapter 4 we investigated an interacting conductor coupled to a sin-
gle reservoir and modulated by an electrical AC signal. This circuit corre-
sponds to a quantum capacitor, similar to that used in Chapter 3. We have
characterized the energy current spectrum in the linear response regime for
arbitrary AC frequencies and we have shown, with symmetry arguments,
that one needs to take into account the heat stored or relaxed at the barrier
in the expression of the heat currents. We have considered the strong inter-
acting limit, where Coulomb blockade is relevant. We used two prototypi-
cal interacting conductors, a single-orbital quantum dot and a multi-orbital
conductor- a carbon nanotube quantum dot coupled to a single reservoir—,
to illustrate our results for the energy current.

Our results show that photo assisted features appear in the electrical and
heat flows, and that the electrothermal admittance can be positive or nega-
tive and the sign can be chosen by adjusting properly the AC frequency.

In Chapter 4 we have thus developed a theoretical framework to study
interacting conductors coupled to one reservoir under AC-driving and we
have shown that photon-assisted events caused by an AC-driving have an
impact both on the charge and on the heat currents in an interacting con-
ductor which is an important issue for engineering nanoelectronic circuits
with optimal heat dissipation performances.

A natural next step to this work would be the completion of the Onsager
matrix for this system, by studying the response of charge and energy cur-
rents to a temperature AC driving.

The effect of considering an electromagnetic environment on transport
through a conductor (a quantum dot) and its impact in the form of inelas-
ticity was investigated in Chapter 5. The environment, the surrounding cir-
cuit, induces a dynamical Coulomb blockade in the transport of electrons
through the quantum dot. We have found that the energy exchange between
the electrons traversing the dot and the environment can break symmetries
of the transport coefficients, even in the absence of a magnetic field. This
breakdown of the symmetries happens when the energy exchange is not
symmetric in both barriers and is visible in the thermoelectric and thermal
Onsager coefficients and thus an apparent heat rectification appears even in
the linear regime.

The heat rectification that we found can be of relevance even in config-
urations with significant heat conduction. We have shown that there are
two possible origins for the heat rectification, either an asymmetric capaci-
tive coupling of the electrons in the dot to the electrons in the reservoirs or
asymmetric tunnel barriers for the dot. On the other hand, asymmetries on
the thermoelectric coefficients are only caused by asymmetric capacitances.

The performance of such a setup as a thermoelectric engine was also inves-
tigated and we found that the environment can either improve or diminish
the efficiency at maximum power output. Efficiency is improved when the
couplings of the system are chosen to promote charge transport in the de-
sired direction which effectively reduces the heat needed for such purpose.
In this case, efficiencies close to the Curzon-Ahlborn limit are reachable al-
though at vanishing power output.



CONCLUSIONS AND OUTLOOK

The results in Chapter 5 are valid for a high-impedance environment.
Hence, a natural way to expand them is to consider other environments
which could have different effects on the performance of the system. One
could then investigate which properties of the environment are best suited
for the performance of the system and try to engineer a proper environment
to try and take advantage of it.

In Chapter 6 we propose a working principle for a Maxwell demon that
profits from the chirality of the edge states in a quantum Hall system. The
proposed device consists of a localized state created by an impurity in a
quantum Hall system. We were able to show that the Maxwell demon can
reproduce the action of a quantum thermoelectric engine without the need
of a thermal gradient thanks to the extraction of information. The conditions
required for the demon to work are the asymmetry of the capacitive inter-
actions as the magnetic field is reversed under non-equilibrium conditions,
and an asymmetry in the energy dependence of the tunneling probabilities
through the barriers.

We proposed a precise feedback protocol that the demon can apply to
push an electrical current against an applied bias, therefore extracting work,
by extracting information about the state of the system and without the need
of a thermal gradient. We checked that the protocol is effective in extracting
work from the system whenever the demon is able to extract information.

Similarly, we propose a similar feedback protocol to use the demon as
a refrigerator. We find that in this case, although cooling is achieved, the
demon is not performing thanks to the extraction of information but rather
thanks to an extraction of heat. We showed that in this case the mechanism
behind the cooling is the extraction of energy, although improved by a cer-
tain amount of extraction of information.

Our scheme opens an important avenue for the design of Maxwell demons
that benefit from the topological properties of quantum matter in interacting
systems since any means of switching the chirality would be well described
by our theoretical description and would serve the same purpose as the
reversal of the magnetic field.

Nanoscale systems offer a variety of effects not available in macroscopic
systems that could be potentially exploited by a Maxwell demon. The work
in Chapter 6 is an attempt to open the path to the creation of Maxwell-
demon type of schemes in quantum systems. By trying to exploit the topo-
logical properties to operate the demon we took a first step to exploiting
quantum effects by a Maxwell demon, but many other effects might be used
to favor the operation of the demon.

In closing, we have shown how heat and charge currents behave in fun-
damentally different ways in the nanoscale. We have shown the interplay
of these quantities can be exploited to devise more efficient thermoelectric
quantum engines and how the different techniques can be applied to de-
scribe systems in the different regimes.
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SYNCHRONIZED TWO-PARTICLE EMISSION -
COMPLEMENTARY EXPRESSIONS

This appendix is devoted to present the expressions for the spectral, charge,
and energy currents as well as charge-current noise for the cases that were
not presented in the main text of Chapter 3. We complement the expressions
for the spectral current with the expressions for the cases that were not
presented in the main text and give the full expressions for the charge and
energy currents. For the charge-current noise we give the full expression
when only source A is working and give the expressions for the cases not
presented when both sources are working.

A.1 SPECTRAL CURRENT

In Section 3.4.1 we present the spectral currents detected at the output of
the MZI when both SPSs are working, leading to the collision of (or the
absorption of) electrons. Here, we complement this discussion by presenting
the analytic results for the spectral current in the case where a hole emitted
from SPS, encounters an electron emitted from SPSg

ih¢(E, @) = Ry Rgih (E) + RLTRI§(E) (A.1)
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Furthermore, we find for the hole part of the spectral current in the case of
possible collision of holes
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In order to find the limit in which either SPS5 of SPSg is switched off, it is
enough to set oo — 0 (respectively, og — 0). The same applies for Egs. (3.23)
and (3.24).
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A.2 CHARGE CURRENT

All expressions for the time-averaged charge current given in the main text
in the regime where particles of opposite type arrive in the detector from
the two SPSs can be obtained from the general expression

Teh+he
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by setting the respective particle numbers nt = 0,1. Here, we assume that
the time difference Atgh = Atge = Aty is equal for electrons and holes. How-

ever, different collision conditions At(ijj can be obtained straightforwardly
by adjusting them for each contribution ny. The result for the MZI with a
single SPS, is found by setting n§ = nh = 0 and by taking op = 0 if SPSp is
switched off.

The general expression for the charge current in the regime where parti-
cles of the same type arrive in the detector from both SPSs is
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Also here we took AtS® = Athh = Aty and At = Athh = At for simplicity.

A.3 ENERGY CURRENT

Similar to the case of the charge current, we only show a part of the dif-
ferent particle contributions to the energy current in the main text. In this
appendix we report the full expressions, where the same considerations for
the different contributing particles, n¢ and nf, and the time differences
characterising their synchronised emissions, AtY and At;j, apply, as it was
explained for the charge currents in Appendix A.2.

When the SPSs are tuned such that particles of different type emitted
from the two sources arrive at the detector in the same half period and
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hence absorptions can possibly occur, the general expression for the energy
current is
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For the regime in which collisions between particles can occur, we find
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A.4 ANALYTIC EXPRESSIONS FOR THE NOISE

Finally, we consider the charge-current noise, stemming from the current-
current correlator of the currents detected in reservoirs 3 and 4. If SPSp is
switched off and particles are emitted into the MZI only from SPSy, the
total noise stemming from electrons and holes is given by
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The noise for the case of a possible absorption of a hole emitted by SPSa
by an emission of an electron from SPSg is given by
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And finally, for the noise in the case of the collision of two holes we find

fphh
—e2 /‘T

4
=RyTL — 4’}/2 + 2T TRRR + 2R TRRR | T — > 9ATB 3
Athh” 4 (oA + op)

AT+ 2iop Athh 41 (04 + 0p)

2
o 2ion At 4 i(op —o0p)
—[2yR o u . A.

<Y e{e AT+ 2iop Athh 41 (op + 0B) (A-9)

o 2 Ath +1(0a —
+2v(TL—RL)(TR—RR)Re{e‘@ s St +1loa “B)}




OCCUPATION OF AN INTERACTING QUANTUM
CAPACITOR

This appendix is devoted to check that the Hartree-Fock approximation re-
alized in Chapter 4 (see Eq. (4.9)) is able to correctly describe Coulomb
interactions. To this end we calculate the occupation of the capacitor, Ng,
and show that it does not get doubly occupied immediately (as it would
happen for a single degenerate energy level) but that it has a plateau for
single occupancy Ng = 1 caused by Coulomb repulsion between electrons.
The occupation is calculated self-consistently from Eq. (4.34).

For illustration, we consider our quantum conductor, as described in
Fig. 4.1, and assume that there is only a single orbital (em¢s = €q¢). For
simplicity we consider the static case, in absence of AC signal. We allow the
presence of a small external magnetic field €435 = €4 + 0Az (Az the Zeeman
energy) in order to break explicitly the spin degeneracy, i.e., Ngs # Ngg-
For a single orbital, since the exchange interaction is absent between elec-
trons with same spins the Fock term disappears such that the dot’s energy
level can be simplified as

€do = ed+0AZ+2EC<dgd<—y). (B.1)

We envision the level is occupied by the spin o electron with energy eqg-
When another electron with opposite spin & enters the level, its energy is
increased by the charging energy 2E c. Therefore, as a function of the Fermi
energy Ef the dot occupation then does not change continuously, but shows
plateaus and discontinuous jumps. These jumps are the clear evidence of
Coulomb blockade phenomenon. We illustrate how HF approximation cap-
tures charging effects by considering a single orbital quantum dot and plot-
ting its total occupation Ng when the Fermi energy varies in Fig. B.1. The
dot occupation shows a plateau of Ng ~ 1 in the Coulomb gap region, i.e.,
€q S EF S eq + 2Ec. This result corroborates the fact that our HF descrip-
tion can reproduce charging effects and thus Coulomb blockade properly.
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Er/T

Figure B.1: Quantum dot occupation N4 versus the Fermi energy Er for a single
orbital dot in the Coulomb blockade regime. The dot’s energy level is
placed at €45 = €4 + 0Az with e = 0 and Az = 0.5T". Rest of parame-
ters: 2Ec = 10T and kg T = 0.04T.



CAPACITANCES AND RESISTANCES

The complete expressions of the electrical and electrothermal capacitances,
and resistances for the quantum capacitor of Chapter 4 are given in this
appendix. We also check that the electrical resistance and capacitance are al-
ways positive whereas their electrothermal counterparts are not necessarily
s0.

C.1 ELECTRICAL CONDUCTANCE

The electrical conductance of the capacitor was derived in Ref. [19], see also
Eq. (4.41), yielding:

g(w) :ieszr{Jj:[A(e,hw)}. (C.1)

where A(e, hw) is defined in the main text, see Eq. (4.30). For low frequency
driving we can approximate the conductance in terms of a characteristic
capacitance and resistance as

g(w) :—ing—i—wzCéRg. (C.2)

By expanding the expression in terms of the driving frequency w we find:

glaw) =~ (ie?) | 5 (~0eT(eNTr [ (€T GE5 (e)]

e?hw? [ de e 2
=+ —(— Ti GT, q Ga,eq C
2 JZ ( aef(e)) r [’ 0,0 (e)r 0,0 (€)| } . ( -3)

Thus, taking the terms to first order in w , we obtain the quantum capaci-
tance

Cg = e? J %(—aef(e))"ﬁ [GLSI(e)TGged(e)], (C.9)

and from the second order in w terms we obtain the charge relaxation resis-
tance:

h [ de(act(e)Tr |65 ()68 et (o]
2. (C.5)

77 26 ([ de(—0ef(e))Tr [GHS ()TGE5 (e)])

Both C4 and Ry are always positive, which can be seen from the equations
since (—¢f(€)) > 0 and G5 (e)TGo/gd (€) is a density of states and thus
positive as well.

C.2 ELECTROTHERMAL ADMITTANCE

Proceeding similarly to the electric case, we are able to obtain the electrother-
mal capacitance and resistance. We start from the full expression of the elec-
trothermal admittance, as given by Eq. (4.44)

m(w) = tewTr {J ;—; <’f12w + (—:> A(e,hw)} (C.6)
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To obtain the RC electrothermal parameters we use a second order expan-
sion in the AC-frequency on the electrothermal admittance:

m(w) = —1wCy + wzC%,[RM . (C»)

By performing an expansion up to second order in the electrothermal ad-
mittance we obtain

mlw) =~ iew | 3% (€)(Qef(e)) Tr [6457()rGEEd (e)]

hw? [ de 5
3 J E(e)(aef(e))Tr UGE’,%q(e)FGS;gq(eM } . (C.8)
The first order, in w, term clearly identifies the electrothermal capacitance

as
Cac = | Fole)(Ref(e)) T [G35(eregesie)], (o)

and the second order term leads us to the electrothermal resistance

’

 h [ de(@)@f(e)T [6EF (r6g s (o)
M7 2e ([ de(e)(@cf(e))Tr [GES (e)FGEET (e)])

(C.10)

These two quantities, opposed to what happened for C4 and Ry, are not
always positive but instead their sign can change due to the e factor in the
integrals. Despite that, since the factor changing their sign is the same for
both quantities, they change sign simultaneously which means that their
product Cy;Ryy, i.e. the RC time, remains positive.
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