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Abstract

This thesis deals with electronic transport in nanodevices driven by
temperature gradients or time-dependent potentials. Our emphasis
is on both spintronic effects arising from the influence of inhomoge-
neous spin-orbit couplings and charging effects originated from strong
electron-electron interactions in quantum dots.

Chapter 1 is a broad introduction aimed at nonspecialists. We
discuss the history of the subject paying attention to the latest de-
velopments. We explain the general concepts employed in the rest of
this thesis with the objective of offering a self-contained presentation
of our research.

In Chapter 2 we investigate the transport properties of a graphene
layer in the presence of Rashba spin-orbit interaction. We calculate
within the scattering approach the linear electric and thermoelectric
responses of a clean sample when the Rashba coupling is localized
around a finite region. We find that the thermoelectric conductance,
unlike its electric counterpart, is quite sensitive to external modula-
tions of the Fermi energy. Furthermore, we find that the junction
thermopower is largely dominated by an intrinsic term independently
of the spin-orbit potential scattering.

In order to investigate whether the previous results are similar for
a semiconductor heterostructure two-dimensional electron gas
(2DEG), in Chapter 3 we consider a spin-orbit-coupled 2DEG under
the influence of a thermal gradient externally applied to two attached
reservoirs. We discuss the charge, spin and magneto-Seebeck effects
also in the ballistic regime of transport at linear response. We find
that the charge thermopower (S) is an oscillating function of both
the spin-orbit strength and the quantum well width. We also observe
that S is always negative for normal leads. When the contacts are
ferromagnetic, we calculate the spin-resolved Seebeck coefficient and
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investigate its sign changes by tuning the Fermi energy. Addition-
ally, we determine the magneto-Seebeck ratio, which shows dramatic
changes in the presence of the Rashba potential.

Because the spin-injection efficiency between dissimilar materials
tends to be low, in Chapter 4 we investigate the transmission prop-
erties of a spin transistor coupled to two quantum point contacts
acting as spin injector and detector. Interestingly, the Rashba inter-
action can be tuned in such a way that nonuniform spin-orbit fields
can point along distinct directions in different points of the sample.
We discuss both spin-conserving and spin-flipping transitions as the
spin-orbit angle of orientation varies from parallel to antiparallel con-
figuration. Spin precession oscillations are clearly seen as a func-
tion of the length of the central channel. Remarkably, we find that
these oscillations combine with the Fabry-Perot motion giving rise to
quasiperiodic transmissions in the purely one-dimensional case. Fur-
thermore, we consider the more realistic case of a finite width in the
transverse direction and find that the coherent oscillations become
deteriorated for moderate values of the spin-orbit strength.

In Chapter 5 we consider an interacting quantum dot working
as a coherent source of single electrons. The dot is tunnel coupled
to a reservoir and capacitively coupled to a gate terminal with an
applied ac potential. We investigate the quantized dynamics as a
consequence of ac pulses with large amplitude. Within a Keldysh-
Green function formalism we derive the time dependent current in the
Coulomb blockade regime. We prove that the electron emission and
absorption resonances undergo a splitting when the charging energy is
larger than the tunnel broadening. Quantization of the charge emitted
by the capacitor is reduced due to Coulomb repulsion and additional
plateaus arise.

Finally, a summary and outlook of our results are included in
Chapter 6.



Resum

En aquesta tesi estudiam les propietats de transport de dispositius
electrònics que operen en presència de gradients de temperatura o
potencials dependents del temps. Param més atenció als efectes es-
pintrònics resultants d’acoblaments espín-òrbita inhomogenis i als de
càrrega originats per la forta interacció entre electrons en punts quàn-
tics.

El capítol 1 és una introducció adreçada a persones no especia-
litzades en el tema on se n’explica l’evolució històrica, sempre tenint
en compte els últims descobriments. A més a més, per tal d’oferir una
presentació autònoma de la nostra investigació, exposam els conceptes
generals que utilitzam en la resta de la tesi.

En el capítol 2 investigam les propietats de transport d’una capa
de grafè en presència d’una interacció espín-òrbita de tipus Rashba
localitzada en una regió finita. Utilitzant el formalisme de dispersió,
estudiam la resposta lineal elèctrica i termoelèctrica i obtenim que la
conductància termoelèctrica, a diferència del seu equivalent elèctric,
presenta variacions grans en funció de l’energia de Fermi (EF ). Sor-
prenentment, hem trobat que la termopotència, en funció de EF , està
dominada per un terme intrínsec que és independent del potencial
espín-òrbita de dispersió.

Per tal d’investigar si els resultats anteriors són similars per a
un gas d’electrons bidimensional (2DEG), en el capítol 3 consideram
un sistema com el del capítol 2 però reemplaçant el grafè per un
2DEG. Estudiam l’efecte Seebeck de càrrega, espín i magnètic també
en el règim balístic de transport en resposta lineal i obtenim que
la termopotència de càrrega S és una funció oscil·lant de la intensi-
tat espín-òrbita i de l’amplada del pou quàntic amb un valor sempre
negatiu per a contactes normals. Quan introduïm contactes ferromag-
nètics, el coeficient Seebeck d’espín deixa de ser nul i mostra canvis
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de signe en variar EF . Així mateix determinam el coeficient Seebeck
magnètic, el qual també experimenta canvis de signe en presència del
potencial de Rashba.

Pel fet que la injecció d’espín entre materials diferents té una efi-
ciència baixa, en el capítol 4 investigam les propietats de transmissió
d’un transistor d’espín en el qual els injectors i detectors magnètics
venen donats per contactes de punt quàntic, no contactes ferromag-
nètics com en el capítol 3. Curiosament, la interacció de Rashba pot
manipular-se de tal manera que el camp pot apuntar en diferents di-
reccions al llarg del sistema. Llavors, modificant l’angle d’orientació
del camp espín-òrbita des de la configuració paral·lela a l’antiparal·lela
estudiam la conservació i el volteig de l’espín. Observam clarament
oscil·lacions de precisió en funció de la longitud del canal central i,
notablement, aquestes es combinen amb el moviment de Fabry-Perot
i donen lloc a transmissions quasi periòdiques en el cas purament uni-
dimensional. Finalment, consideram un cas més realista (amplada
finita en la direcció transversal) i obtenim que aquestes oscil·lacions
coherents, es deterioren per a valors moderats de la intensitat espín-
òrbita.

En el capítol 5 consideram un punt quàntic interactuant que fun-
ciona com una font coherent d’electrons individuals. Aquest punt està
acoblat mitjançant una barrera túnel a un contacte i es troba subjecte
a un potencial ac aplicat a un terminal de porta. Utilitzant el forma-
lisme de funcions de Keldysh-Green, investigam la dinàmica quàntica
del sistema com a conseqüència de polsos ac de gran amplitud en el
règim de bloqueig de Coulomb. Obtenim que el corrent dependent del
temps mostra un desdoblament de les ressonàncies d’emissió i absorció
d’electrons quan l’energia de càrrega és més gran que l’eixamplament
de túnel. A més, la quantització de la càrrega emesa pel sistema es
redueix com a conseqüència de la repulsió de Coulomb i sorgeixen
plateaux addicionals.

Finalment, el capítol 6 conté les conclusions de la nostra tesi i
algunes perspectives dels nostres resultats.



Resumen

En esta tesis estudiamos las propiedades de transporte de dispositivos
electrónicos que operan en presencia de gradientes de temperatura o
potenciales dependientes del tiempo. Prestaremos atención a los efec-
tos espintrónicos debidos a acoplamientos espín-órbita inhomogéneos
y a los de carga originados por la fuerte interacción entre electrones
en puntos cuánticos.

El capítulo 1 es una introducción dirigida a personas no espe-
cializadas en el tema donde se explica su evolución histórica siempre
teniendo en cuenta los últimos descubrimientos. Además, con el fin
de ofrecer una presentación autónoma de nuestra investigación, ex-
ponemos los conceptos generales que utilizaremos en el resto de la
tesis.

En el capítulo 2 investigamos las propiedades de transporte de
una capa de grafeno en presencia de una interacción espín-órbita de
tipo Rashba localizada en una región finita. Utilizando el formalismo
de dispersión, estudiamos la respuesta lineal eléctrica y termoeléc-
trica, obteniendo que la conductancia termoeléctrica, a diferencia de
su equivalente eléctrico, presenta grandes variaciones en función de la
energía de Fermi (EF ). Sorprendentemente, hemos encontrado que
la termopotencia, en función de EF , está dominada por un término
intrínseco que es independiente del potencial espín-órbita de disper-
sión.

A fin de investigar si los resultados anteriores son similares para un
gas de electrones bidimensional (2DEG), en el capítulo 3 consideramos
un sistema como el del capítulo 2 reemplazando el grafeno por un
2DEG. Estudiamos el efecto Seebeck de carga, espín y magnético
también en el régimen balístico de transporte en respuesta lineal y
obtenemos que la termopotencia de carga S es una función oscilante de
la intensidad espín-órbita y del ancho del pozo cuántico con un valor
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siempre negativo para contactos normales. Al introducir contactos
ferromagnéticos, el coeficiente Seebeck de espín deja de ser nulo y
muestra cambios de signo al variar EF . También determinamos el
coeficiente Seebeck magnético, el cual también experimenta cambios
de signo en presencia del potencial de Rashba.

Debido a que la inyección de espín entre materiales diferentes tiene
una eficiencia baja, en el capítulo 4 investigamos las propiedades de
transmisión de un transistor de espín cuyos inyectores y detectores
magnéticos vienen dados por contactos de punto cuántico, no con-
tactos ferromagnéticos como en el capítulo 3. Curiosamente, la in-
teracción de Rashba puede manipularse de tal forma que el campo
puede apuntar en distintas direcciones a lo largo del sistema. En-
tonces, modificando el ángulo de orientación del campo espín-órbita
desde la configuración paralela a la antiparalela estudiamos la conser-
vación y el volteo del espín. Claramente observamos oscilaciones de
precesión en función de la longitud del canal central y, notablemente,
estas se combinan con el movimiento de Fabry-Perot dando lugar a
transmisiones cuasiperiódicas en el caso puramente unidimensional.
Finalmente, consideramos un caso más realista (anchura finita en la
dirección transversal) y obtenemos que estas oscilaciones coherentes
se deterioran para valores moderados de la intensidad espín-órbita.

En el capítulo 5 consideramos un punto cuántico interactuante
funcionando como una fuente coherente de electrones individuales.
Dicho punto está acoplado mediante una barrera túnel a un contacto
y se halla sujeto a un potencial ac aplicado a un terminal de puerta.
Utilizando el formalismo de funciones de Keldysh-Green, investigamos
la dinámica cuántica del sistema como consecuencia de pulsos ac de
gran amplitud en el régimen de bloqueo de Coulomb. Obtenemos que
la corriente dependiente del tiempo muestra un desdoblamiento de las
resonancias de emisión y absorción de electrones cuando la energía de
carga es mayor que el ensanchamiento túnel. Además, la cuantización
de la carga emitida por el sistema se reduce debido a la repulsión de
Coulomb y surgen plateaux adicionales.

Finalmente, el capítulo 6 contiene las conclusiones de nuestra tesis
y perspectivas de nuestros resultados.



1. Introduction

1.1 Spintronics

Spintronics is the branch of science that studies spin phenomena in
metals, semiconductors and semiconductor heterostructures. Its goal
is to determine the electric, optic and magnetic properties of solids
in the presence of nonequilibrium spin populations. More specifically,
spintronics aims at understanding spin-polarized transport phenom-
ena in metals and semiconductors to find an effective way to control
their electric properties through spin and magnetic fields or, inversely,
to manipulate the spin and magnetic properties with electrical cur-
rents or gate voltages.

Mott, in 1936, pioneered the study of spin dependent transport
in ferromagnetic (FM) metals [1, 2]. He proposed that the charge
current could be separated into two independent spin currents. As a
consequence, the conductivity could be written in terms of two inde-
pendent, although spin dependent, conductivities. In 1976, Aronov,
motivated by Mott’s predictions, proposed the idea of creating a
nonequilibrium spin distribution in nonmagnetic (NM) materials [3].
Stimulated by these studies, only a decade later, Johnson and Sils-
bee demonstrated the first spin injection transport process in alu-
minium [4]. As a result of these developments, new possible applica-
tions as for example devices based on the giant magnetoresistance [5]
and tunnel magnetoresistance effects [6] emerged. Magnetoresistance
effects are used to read and write nonvolatile information on magnetic
disks due to their ability to detect different magnetic states as high
or low voltage, depending on the magnetization direction. However,
in metals the spin diffusion length is short and the charge carrier con-
centration is fixed. Thus, the next step was to use semiconductors for
spintronic studies because of their variable concentration of carriers
by doping, their response to electric field via gating and their long
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FM NM

Figure 1.1: Schematic representation of a spin injection process where
spin is electrically injected from a ferromagnetic material into a non-
magnetic material. Reproduced from Ref. [7].

spin coherence times.
There are different ways to create spin accumulations electrically.

The most common one is using FM contacts to inject spin polarized
currents into a NMmaterial. In Fig. 1.1 we represent the simplest spin
injector comprising a FM material attached to a NM material. When
an electric current flows from the FM material, where the majority of
electrons has the spin pointing in the same direction, to the nonmag-
netic material, a nonequilibrium spin accumulation is created in the
latter. In other words, the application of a charge current transforms
the spin polarization in the FM metal into a spin polarized current
that can be detected or manipulated [7]. This is the method which
we will analyze in Chapter 3. However, the spin-injection efficiency
between dissimilar materials tends to be low. In Chapter 4, we will
use a pair of quantum point contacts (QPCs) as spin injectors and
detectors [8, 9]. In the point constrictions, the electric confinement
leads to an effective magnetic field that polarizes the electrons. Now,
our system relies on a semiconductor-only structure and the problem
mentioned above can be solved. Another important feature is that it
is fully nonmagnetic. Hence, we do not need ferromagnetic contacts
to polarize the electrons.

A key proposal in semiconductor spintronics is an analogue for
electronic devices that improves the existing semiconductor technol-
ogy: the spin transistor proposed by Datta and Das, in 1990 [10]. In
Fig. 1.2 we sketch the Datta-Das spin transistor. Two FM electrodes
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Figure 1.2: Schematic representation of a Datta-Das spin field effect
transistor (sFET) where a two-dimensional electron gas semiconduc-
tor heterostructure is attached to two ferromagnetic contacts. The
injected spins can be modulated by the gate electrode with an ex-
ternal electric field and, depending on the strength of the spin-orbit
coupling, the spin transistor is ON (nonzero current) or OFF (zero
current). In the same way, depending on whether the two electrodes
have antiparallel or parallel magnetization for a fixed spin-orbit cou-
pling strength one obtains the same effect.

are attached to a two-dimensional electron gas, which represents the
transport channel. As described in Fig. 1.1, a current flows from the
FM to the NM material and spins are injected in the NM material.
Then, in the central region, using the spin properties of the spin-orbit
coupling of the Rashba type (see Sec. 1.3.2.1), we can manipulate the
electron spin direction with an external electric field. Consequently,
the electrons feel an effective magnetic field perpendicular to the mo-
tion direction and the spins precess around this field with a single pre-
cession frequency, assuming that the transversal transport is ballistic
and one-dimensional. Manipulating this strength with a capacitively
coupled gate electrode the electrons can enter or bounce off the right
FM electrode, in which case we can say that the spin transistor opera-
tion point is ON or OFF, respectively. The possibility for the electron
to be transmitted into the right electrode depends on the relative ori-
entation between the impinging spin and the FM magnetization. The
Datta-Das transistor behavior has been partially confirmed due to a
number of problems, as for instance the low conductivity mismatch
between dissimilar materials (which we mentioned above), the pres-
ence of impurities in the two-dimensional electron gas that causes the
transport to be no longer ballistic and interference effects arising from
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multiple reflections.
In Chapter 4 we will study the Datta-Das effect in a two-dimensio-

nal spin transistor where, as we have mentioned above, the spin in-
jector and detector are QPCs. We will demonstrate that oscillations
arise due to the Datta-Das effect in the transmission probability. The
presence of these oscillations depends on the relative orientation be-
tween the QPC effective magnetic field and the spin-orbit interaction
in the central region.

1.2 Thermoelectricity
One of the main goals in condensed matter physics is the study of
waste-heat recovery systems [11] and here is where thermoelectricity
plays an important role [12] since thermoelectric devices are basi-
cally solid-state devices that convert energy between the electric and
thermal components of a system. Then, thermoelectricity studies the
relation between the generation of electric currents, or voltage differ-
ences, due to thermal gradients and vice versa.

During the first half of the 19th century thermoelectric effects were
primarily studied by Thomas Johann Seebeck, Jean-Charles Peltier,
and William Thomson [13]. They found a coupling of the electric
charge transport with the heat transport. However, it was not until
the late 1950s when the use of semiconductor materials, which provide
high performances, became popular, increasing the applicability of
these devices.

In the present thesis, we will focus on thermoelectric effects in low-
dimensional systems (e.g., two-dimensional electron gases and quan-
tum point contacts). This kind of systems were first proposed by
Hicks and Dresselhaus [14], who demonstrated that small conductors
could be more efficient for thermoelectric applications. Another im-
portant characteristic lies in the fact that in low-dimensional systems
at least one of the dimensions is restricted. This quantum confine-
ment leads to discrete energy levels. At these scales, such electronic
energy levels can be manipulated. This property provides great con-
trol over the device’s thermopower, which determines its ability to
generate a voltage difference due to a temperature bias.

The first thermoelectric effect was discovered by T. J. Seebeck in
1821 [16]. He observed that a circuit made of two dissimilar met-
als with junctions at different temperatures (see Fig. 1.3) deviated a
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Figure 1.3: Pictorial representation of a thermocouple with two differ-
ent metals, A and B, and junctions at different temperatures, T1 and
T2. ∆V is the voltage generated due to ∆T = T1 − T2. Reproduced
from Ref. [15].

compass magnet. The first hypothesis was that there should be mag-
netism induced by the temperature difference, ∆T , maybe related
to the Earth’s magnetic field. However, he quickly realized that a
“Thermoelectric Force” induced an electrical current, which by Am-
pere’s law deflects the magnet. In other words, an electrical potential
was created due to ∆T , driving an electric current in a closed cir-
cuit. Nowadays, this is known as the Seebeck effect. He also observed
that the generated voltage ∆V , also called thermovoltage Vth, was
proportional to ∆T . The proportionality constant is termed Seebeck
coefficient or thermopower, S.

From a fundamental point of view, the generation of ∆V in a metal
is due to the different carrier energies at the hot and cold ends. Indeed,
the charge carriers in the hot side have higher thermal velocities than
in the cold side and, as a consequence, they diffuse more quickly from
the hot side to the cold side than in the opposite direction. If the
thermal gradient is maintained, the flowing charge carriers accumulate
on the cold side and this separation of charge create a ∆V . This
voltage difference divided by the temperature difference across the
material is precisely the Seebeck coefficient, S, which is material-
dependent.

In 1834 a second thermoelectric effect was discovered by J. Peltier.
He observed that when a current flows through a circuit made of two
different metals a small cooling or heating effect appears in the junc-



12 Chapter 1. Introduction

tion depending on the current direction [16]. In metallic thermocou-
ples the reversible thermoelectric effects are always accompanied by
irreversible phenomena of Joule heating and thermal conduction. For
this reason, the best way to demonstrate the Peltier effect is by com-
paring that, when a current flows in one direction, the heating is lower
in the other direction. The proportionality constant between the heat
absorbed or created and the electrical current is dubbed Peltier coef-
ficient, Π. In 1838, Lenz showed that this heat could be used to freeze
water or, reversing the current, to melt ice.

It turns out that both the Seebeck effect and the Peltier effect obey
a reciprocity relation. In 1855 W. Thomson (who later became Lord
Kelvin) suggested that the thermopower and the Peltier coefficient are
indeed connected. A rigorous proof of this is due to L. Onsager, who
applied the microreversibility principle to show reciprocal relations
between a general class of thermodynamic forces and flows [17]. In
1945 Casimir discussed in detail the Onsager relations for the case
of electric transport [18]. The Onsager-Casimir relations represent a
cornerstone of modern transport theories [19] and are also verified in
the quantum regime [20, 21].

It is worth noting that in order to obtain high values of ther-
mopower we need that the transmission probability between the two
sides of the system depends strongly on energy, i.e., it is necessary
to have a system with asymmetric density of sates. If the density of
states is symmetric we do not have any thermoelectric effects due to
a perfect cancellation between electron- and hole-like fluxes, despite
electrical transport effects do exist.

Very recently, a new field called spin caloritronics investigates
the coupling between spin-dependent currents and temperature dif-
ferences [22]. The spin Seebeck effect was recently discovered in a
metallic ferromagnet [15], where a temperature difference generates a
spin flux that can be electrically detected using the inverse spin Hall
effect [23]. Therefore, in a spin caloritronic device heat is converted
into a magnetic current, which may lead to exciting prospects for low-
dissipation, fast electronic applications. Lately, the spin Seebeck ef-
fect has been also observed in spin ferromagnetic semiconductors [24]
and even nonmagnetic materials [25].

Quite generally, consider a conductor coupled to external elec-
trodes. These are described by electrochemical potentials and con-
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Figure 1.4: Sketch of the spin Seebeck effect, where the spin-up (↑)
and spin-down (↓) conduction electrons of a metallic magnet have
different Seebeck coefficients. Similarly to the Seebeck effect, when
we apply a temperature gradient through the metallic magnet a spin
voltage (µ↑−µ↓)/e proportional to the temperature difference ∆T =
T1 − T2 appears. Reproduced from Ref. [15].

tact temperatures. In the absence of spin biases, an applied thermal
gradient will create a bias voltage under open-circuit conditions (no
charge current). This is the Seebeck coefficient as discussed earlier
(see Fig. 1.4). The spin Seebeck coefficient, SS , is defined in a similar
way but assuming that the spin current vanishes in the conductor for
a given thermal gradient. Therefore, a spin imbalance is created be-
tween electrons with opposite spins at the sides of the sample. A new
effect shows up if we attach ferromagnetic electrodes to our system
and measure the thermopower for parallel and antiparallel magneti-
zation orientations. The difference between them is what we know as
magneto-Seebeck ratio [26], SMS . Then, the magneto-Seebeck effect
quantifies changes in S of a magnetic junction upon switching the
leads’ magnetic moments.

For a two-dimensional spin transistor, we will demonstrate in
Chapter 3 that the spin Seebeck coefficient and magneto-Seebeck ra-
tio are strongly modulated with a Rashba spin-orbit coupling, whose
strength can be externally tuned with a nearby gate contact. The ef-
fect is visible when the attached ferromagnetic electrodes have parallel
or antiparallel magnetization orientations. This opens up the path to
manipulate spin currents using a combination of applied electric fields
and temperature biases in a low-dimensional system.
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1.3 Nanodevices

We have already stressed the importance of nanoscale systems in spin-
tronic and thermoelectric setups. We now discuss their general prop-
erties in more detail.

Nanodevices or mesoscopic systems are artificial structures of nano-
meter size. During the last decades mesoscopic physics has evolved
into a rapidly progressing and exciting interdisciplinary field. Meso-
scopic conductors belong to a class of systems between microscopic ob-
jects, such as atoms, and macroscopic bodies, e.g., traditional conden-
sed-matter systems. The way to study macroscopic systems is in-
volved because, on the one hand, the theoretical approaches applied to
macroscopic systems need to account for quantum effects and, on the
other hand, microscopic approaches are too sophisticated for meso-
scopic systems due to their size and complexity. Then, nanodevices
frequently exhibit both classical and quantum behaviors.

Due to the interdisciplinarity of mesoscopic physics, the systems
that show a mesoscopic behavior can be found in different fields
of physics. We will focus on two-dimensional electron systems as
graphene or semiconductor heterostructures of reduced dimensionality.

Disordered metals were the first mesoscopic systems to be stud-
ied [27]. However, the confinement of electrons in nanostructures of
controllable geometry was possible only with the appearance of high-
mobility semiconductor heterostructures [28]. These form the basis
of two-dimensional electron gases (2DEGs), and facilitate the devel-
opment of lithographic techniques. In this kind of systems, impurity
scattering is almost negligible and transport is ballistic. The only
allowed scattering is from specular reflection at the boundaries.

Ballistic microstructures are very useful for studies on mesoscopic
physics. The first reason is related to the Fermi wavelength λF , which
is usually the lowest length scale. More precisely, λF is much shorter
than the typical system size a (including the extreme limit of zero-
dimensional systems, quantum dots). Another aspect to take into
account is that mesoscopic systems are influenced by different ef-
fects such as temperature, weak disorder, and electron-electron and
electron-phonon interactions. These introduce various characteristic
length scales:
• Thermal length scale LT = ~vFβ/π with vF the Fermi velocity

and β = 1/kBT . This represents the characteristic length over
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which the electron diffuses in the time scale corresponding to
the thermal broadening of the Fermi distribution function ~β.
• Elastic mean free path l with respect to impurity scattering.

It is the distance covered by an electron before losing its initial
direction by impurity collisions. “Elastic” means that the energy
is conserved during the process.
• Phase-coherence length lφ, which takes into account inelastic

processes. It is the scale over which an electron stays in a par-
ticular eigenstate and its phase coherence is maintained.

There are many methods developed to study quantum transport
in mesoscopic systems. The scattering approach, which is explained
in detail in App. A, is simple and elegant. We can solve with this
approach a great variety of problems with great accuracy. In this
thesis we use this approach in Chapter 2, 3 and 4. Another method
widely used to treat interactions is the Green’s function formalism.
In Chapter 5 we explain this framework in more detail.

We now discuss a few representative nanostructures relevant to
this thesis.

1.3.1 Graphene

Graphene is a monolayer of carbon atoms arranged in a two-dimensio-
nal honeycomb lattice, see Fig. 1.5. Theoretically, graphene has been
studied during more than seventy years with the objective of analyzing
its electric properties [29]. It was believed that all the bidimensional
crystals were thermodinamically unstable and, for this reason, free
graphene was believed to be a material impossible to grow. However,
in 2004, the group of A. Geim and K. Novoselov was able to syn-
thesize graphene layers and characterize its properties [30, 31]. Since
then this material has caused an enormous interest in the scientific
community [32–34].

Let us summarize the main properties of a single layer of graphene.
First, graphene is a two-dimensional structure and as a result, elec-
trons are strongly confined in the perpendicular direction. Then, elec-
tric conduction takes place only in the plane.

Graphene has four valence electrons, three of which form tight
bonds with neighboring atoms in the plane. Their wave functions
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Figure 1.5: Left: Honeycomb structure in a two-dimensional graphene
layer. Right: (a) Unit cell is shown as a rhombus; (b) first Brillouin
zone and the two nonequivalent valleys, K+ and K−.

have the following form

1√
3

(
ψc(2s) +

√
2ψc(σi2p)

)
, (1.1)

where ψc(2s) is the (2s) wave function for carbon and ψc(σi2p) are the
(2p) wave functions whose axes are in the direction σi with i = 1, 2, 3.
In graphene the orbitals are sp2-hybridized. This means that the
orbitals 2px and 2py, which lie in the graphene plane, mix with the
2s orbital to form three sp2-hybrid orbitals. The different carbon
atoms bind together via these three sp2-hybrid orbitals forming σ-
bonds in the plane. For this reason, these three localized electrons
will not contribute to the conductivity. Only the fourth electron,
which is free and occupies the 2pz state (perpendicular to the plane),
can contribute to the transport. When the 2pz orbitals of the adjacent
atoms in graphene overlap, they form π-bonds, leading to the π-band.
Electronic states close to the Fermi level are described well by a model
taking into account only the 2pz orbitals. This is the main ingredient
of the tight-binding model [see Eq. (1.6) below], in which there is only
one electron per atomic site in a 2pz state. The tight-binding model
considers that the atomic orbitals remain intact because the atoms in
the lattice are weakly interacting [35].

As stated before, the graphene structure is organized in a honey-
comb lattice with carbon atoms in the hexagonal points. The unit
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cell is a rhombus (two equilateral triangles) that contains two carbon
atoms. This is the reason why we have two sublattices A and B (see
Fig. 1.5). The lattice vectors can be written as

a1 =
a

2
(3,
√

3) , a2 =
a

2
(3,−

√
3) , (1.2)

where a ≈ 1.42
◦
A is the carbon-carbon distance and both vectors

start from an atom of the sublattice A. The reciprocal lattice can be
described from the first Brillouin zone (BZ), an hexagon with only
two points that are not equal by symmetry, K+ and K−, see Fig. 1.5.
The reciprocal-lattice vectors are

b1 =
2π

3a
(1,
√

3) , b2 =
2π

3a
(1,−

√
3) . (1.3)

The position of carbon atoms at the sublattice A is determined by
the position vector RA = n1a1 + n2a2. In the same way, the position
of carbon atoms at the sublattice B is given by the position vector
RB = n1a1 + n2a2 + δ1, where

δ1 =
a

2
(1,
√

3) , δ2 =
a

2
(1,−

√
3) , δ3 = −a(1, 0) , (1.4)

are the positions of the three nearest-neighbors in the real space, see
Fig. 1.5.

As mentioned above, the graphene’s BZ has two points at the
corners that are not equivalent by symmetry. These points are named
Dirac points because of the linear dispersion relation [see Eq. (1.9)
below] and their positions in momentum space are given by

K+ =

(
2π

3a
,

2π

3
√

3a

)
, K− =

(
2π

3a
,− 2π

3
√

3a

)
. (1.5)

The tight-binding Hamiltonian for electrons in graphene reads [29]

HTB = −t
∑
〈i,j〉,s

(
a†s,ibs,j + b†s,jas,i

)
, (1.6)

where we have considered that the electrons can only hop to their
first neighbors with hopping energy t ≈ 2.8 eV. These hopping occur
between sublattices because, as we can see in Figure 1.5, each atom is
surrounded by atoms of the other sublattice. In this relation as,i(a

†
s,i)
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annihilates (creates) an electron with spin s on site Ri of sublattice
A. For bs,j(b

†
s,j) we follow the same definition but for the sublattice

B.
The Bloch wave function can be built from a linear combination

of atomic orbitals

ΨBloch
k (r) =

1√
N

∑
R

eikR [Aφ(r−RA) +Bφ(r−RB)] , (1.7)

where R ≡ RA = RB−δ1 and A and B are unknown amplitudes. N
is the number of lattice sites in the crystal and φ(r) describes the wave
function of a pz-orbital in a sp2-hybridized carbon atom, as discussed
above.

Solving the eigenvalue problem using the Schrödinger equation
HTBΨBloch = EΨBloch we obtain the following dispersion relation [36,
37] ,

E±(k) = ±t

√
3+4 cos

(3akx
2

)
cos
(√3aky

2

)
+2 cos2

(√
3aky

)
,

(1.8)

where (kx,ky) are the momentum in the x- and y-direction respectively
and the positive (negative) sign indicates conduction (valence) band.

If we plot Eq. (1.8) we obtain Fig. 1.6. We observe that near the
K-points the gap between the conduction and valence bands is zero.
This is the region in which we are interested since at low energies the
dispersion relation can be simplified. If we make an expansion around
one of the Dirac points [36], k = K+ + q with |q| � |K+|, we obtain

E±(q) = ±~vF |q| , (1.9)

where q is the total momentum measured with respect to the Dirac
points and vF is the Fermi velocity which is given by vF = 3ta/(2~) '
1 × 106 m/s. A similar spectrum is obtained around K−.Here, at
low energies, the electrons behave as massless fermions traveling at
fixed velocity vF . This is the main difference with respect to the
electron free gas relation dispersion, E± = ~2q2/(2m), where m is
the electron effective mass, in which case the electron velocity, v =
~q/m =

√
2E/m, depends on energy [29]. The second difference is

that Eq. (1.9) is linear with the total momentum.
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Figure 1.6: Graphene band structure. Reproduced from Ref. [29]

The next step is to find an effective Hamiltonian around the Dirac
points. To do this we consider Eq. (1.6) and the following Fourier
transform of the electron operators,

ai =
1√
Nc

∑
k

e−ik·Ria(k) , (1.10)

where Nc is the number of unit cells. Using this transformation we
can write the operator an as a sum of two new operators that result
from Fourier expanding the sum around the two Dirac points, K+

and K−. This new way to represent the operator an can be written
as

ai ' e−iK
+·Ria1 + e−iK

−·Ria2 , (1.11)

bj ' e−iK
+·Rjb1 + e−iK

−·Rjb2 , (1.12)

where the subindex 1(2) refers to theK+(K−) point. These new fields
are assumed to vary slowly over the unit cell. Now, using this repre-
sentation in the tight-binding Hamiltonian, Eq. (1.6), and expanding
the operators up to linear order in δ we find the graphene Hamilto-
nian close to the Dirac points [38]. In the derivation, one uses the
fact that

∑
δ e
±iK+·δ =

∑
δ e
±iK−·δ = 0. After some straightforward

algebra we obtain

H ' −i~vF
∫
dx dy

(
ψ†1(r)σ ·∇ψ1(r) + ψ†2(r)σ∗ ·∇ψ2(r)

)
,

(1.13)
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where σ = (σx, σy), σ∗ = (σx,−σy) and ψn = (an, bn) with n = 1, 2.
We obtain that the effective Hamiltonian given by Eq. (1.13) consists
of two copies of the massless Dirac-like Hamiltonian, one around K+

and the other one around K−. Then, close to the K+ point, we
infer that the two-component electron wavefunction ψ1(r) obeys an
effective 2D Dirac equation

−i~vFσ ·∇ψ1(r) = Eψ1(r) . (1.14)

Then, the effective Hamiltonian near the K+ point reads

H = vFσ · k , (1.15)

where k = −i~∇ and σ describes the pseudospin, i.e., gives the
amplitude in the different places of the two sublattices.

Rashba spin-orbit interaction in graphene
The spin-orbit interaction is responsible for the coupling between the
electron’s spin and orbital degree of freedom. The interaction orig-
inates from a relativistic effect which can be derived from Dirac’s
model of the electron. In heavy ions the mixing is large. However,
as we know, graphene is made of carbon atoms and these are light.
Then, the intrinsic spin-orbit interaction is expected to be weak in
graphene monolayers [39, 40].

The spin-orbit interaction of the Rashba type, which is the focus
of this thesis book, arises from the breaking of the inversion symme-
try of the honeycomb lattice. This breaking arises when an external
electric field (E) is applied perpendicular to the graphene monolayer
or by interaction with a substrate. Recent works suggest large spin-
orbit strengths in graphene layers under the influence of metallic sub-
strates [41–46]. This finding is interesting in view of recent studies
that relate spin-orbit coupling of the Rashba type [47, 48] to topolog-
ical insulating behavior [49, 50]. Importantly, the Rashba coupling
strength can be externally tuned by modifying the electric field ap-
plied to a nearby gate [51]. This type of interaction leads to band
splittings and enriched spintronic effects [52, 53].

To obtain the Rashba Hamiltonian we have to take into account
the intra-atomic spin-orbit coupling (SOC) Hamiltonian given by

HSO = ξ L · S , (1.16)
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where S is the Pauli matrix vector that represents the real spin, L the
angular momentum operator and ξ the intra-atomic SOC strength [54,
55]. Expressed Eq. (1.16) in second quantization language, the SOC
exists only among the 2p orbitals [39]. To obtain the Rashba term,
we also have to consider the Hamiltonian corresponding to the per-
pendicular electric field: HE = eEz. This represents an atomic single-
particle Stark effect and couples s-orbitals with pz-orbitals within the
same atom.

Now, using a second order perturbation theory, we obtain, at lead-
ing order in ξ, the Rashba term [39, 40, 55]

Hgraphene
R = λ(σx ⊗ sy − σy ⊗ sx) , (1.17)

where the electron spin and pseudospin (sublattice) degrees of freedom
are taken into account with the Pauli s and σ matrices, respectively.
The interaction strength is given by λ [49] which depends linearly
with the electic field and the SOC strength [39]. We take λ as a
slowly varying function in a length scale larger than the graphene
lattice constant. Thus, the continuum model we consider remains
valid.

Combining Eq. (1.15), including the spin degree of freedom,
and Eq. (1.17) we obtain the total Hamiltonian of a graphene mono-
layer in the x-y plane with the presence of a Rashba spin-orbit inter-
action.

H = −i~vF (σx∂/∂x+ σy∂/∂y)⊗ so + λ(σx ⊗ sy − σy ⊗ sx) .
(1.18)

We now make a change of notation. Let k (q) be the wavevector
component along the x- (y-) direction. Then, the eigenenergies are
given by

El,n = l
√
λ2 + ~2v2

F (k2 + q2) + nλ , (1.19)

where l = ± labels states with positive or negative energies and n = ±
is the subband index. For λ = 0 we recover the Eq. (1.9) which, in
this new notation, can be written as

El = l~vF
√
k2 + q2 . (1.20)
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(a) (b)

Figure 1.7: Sketch of the energy bandstructure of a graphene layer
without (a) and with (b) spin-orbit interaction of the Rashba type.
Solid lines indicate propagating states while dashed lines depict the
energy associated to evanescent states.

The band structure for bare graphene and q = 0 is plotted in
Fig. 1.7(a) (projection of band structure of Fig. 1.6 for ky = 0). We
observe two branches, one for positive energies (E+) and another one
for negative energies (E−). As we can observe, there is no gap between
the conduction and valence band and the energies are spin degenerate.

The energy spectrum for a finite value of the spin-orbit strength
λ and q = 0 is plotted with solid lines in Fig. 1.7(b). Here we can see
how the energy bands split with a splitting given by 2λ for both the
positive and negative branches of the spectrum. The labels and the
difference between solid and dashed lines will be clarified in Chapter 2.

1.3.2 Semiconductor heterostructures

The fundamental properties of semiconductors are determined by
their band structure. At zero temperature the valence band is com-
pletely filled and the conduction band is completely empty. They also
exhibit a band gap that separates the conduction and valence bands
while the Fermi energy level, EF , lies in the middle.

The most important reason why semiconductors are ideal materi-
als for the implementation of nanodevices is due to the possibility of
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changing their electronic properties via doping. Doping is achieved by
introducing very small amounts of atoms with a number of valence
electrons different from those found in the pure crystal. With this
process we can, for example, improve the conductivity.

The band structure of a perfect semiconductor can be analyzed
by solving the Schrödinger’s equation. In the single-particle picture,
electrons are noninteracting but feel the presence of the periodic po-
tential of the crystal lattice.[

− ~2

2m
∆ + V (r)

]
ψ(r) = Eψ(r) , (1.21)

where the potential V (r) = V (r+R) has the period R, a translation
vector. Moreover, m is the free electron mass and E defines the band
structure.

The most relevant parts of the band structure in semiconductor
nanostructures are close to the lowest minimum of the conduction
band or close to maxima of the valence band. The best way to calcu-
late the band structure close to these points is by using the method
known as k · p perturbation theory.

We will use the following wavefunction that satisfies the Bloch’s
theorem,

ψnk(r) =
∑
k

eik·runk(r) , (1.22)

with

unk(r) =
∑
G

ck−Ge
−iG·r , (1.23)

where unk(r) = unk(r + R) fulfills periodic boundary conditions at
the boundaries of the primitive cell and the subindex n labels different
bands.

Inserting Eq. (1.22) into Eq. (1.21) we obtain,{[
p2

2m
+ V (r)

]
+

[
~
m
k · p +

~2k2

2m
)

]}
unk(r) = Enunk(r) ,

(1.24)

where p = −i~∇ is the momentum operator. Now we assume that we
can solve Eq. (1.24) for the special case k = 0 and find the energies
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En. These energies correspond to functions un0(r) ≡ |n〉 which form
a complete set of states. Then, we can use these functions to expand
unk(r) for arbitrary k

unk(r) =
∑
n

cn(k)un0(r) . (1.25)

Finally, introducing this expansion into Eq. (1.24) we obtain the
equations that determine the coefficients cn(k):∑

n

[(
En +

~2k2

2m

)
δn,n′ +

~
m
k ·
〈
n′|p|n

〉]
cn(k) = Ecn′(k) .

(1.26)

Now we apply the k · p perturbation theory. When |k| is small
we can treat the k-dependence in Eq. (1.26) as a perturbation and
calculate the eigenvalues using perturbation theory. As we shall see,
there will be no terms linear in k at the band extrema indicating that
the corrections of En (the solution for k = 0) vanish to first order. In
contrast, for nondegenerate En, we obtain the following expression

En(k) = En +
~2k2

2m
+

~2

m2

∑
n′,n′ 6=n

|k · pn′n|2

En − E′n
, (1.27)

which has second order corrections. The last term of Eq. (1.27) can
be simplified considerably if we take into account that many of the
matrix elements pn′n nullify. Now, we can join the two last terms and
write

En(k) = En +
~2k2

2m∗
, (1.28)

where m∗ is an effective mass which includes the band structure de-
tails. As we can see, the dispersion relation takes the same form as
for free electrons. However, the curvature of the parabola is modified
by m∗.

Once we understand a pure crystal, let us see what happens if the
periodic lattice potential is perturbed. This perturbation can occur
because of the presence of lattice defects, impurities, or doping atoms.
Additionally, other sources of perturbations are due to the interfaces
between different materials, external electric or magnetic fields. Here,
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we will restrict ourselves to small static perturbations with a spatial
range much larger that the lattice constant of the material, i.e., weak
and long-range perturbations. In this way, we can treat these pertur-
bations to the lowest order in perturbation theory. We will use Bloch
states to solve the problem and focus on a perturbation of a parabolic
conduction band with minimum at Γ.

The Schrödinger equation takes the following form

[H0 + U(r)]Ψ(r) = EΨ(r) , (1.29)

where H0 is the unperturbed Hamiltonian, Eq. (1.21), which we know
how to treat. The dispersion relation is En(k), Eq. (1.28), and the
Bloch functions are ψnk(r) = eik·runk(r). U(r) is the perturbing
potential and the wave function Ψ(r) can be expanded on the basis
of Bloch states:

Ψ(r) =
∑
n,k

Fn(k)ψnk(r) . (1.30)

If we substitute Eq. (1.30) into Eq. (1.29), multiply by ψ∗n′k′(r)
and integrate over r we obtain∑

n,k

[(En(k)− E)δnk,n′k′ + Un′k′,nk]Fnk = 0 , (1.31)

where Un′k′,nk are the matrix elements of the perturbing potential.
Using the following assumptions about the perturbation, we can sim-
plify these matrix elements. The first assumption considers that U
is relevant only on the scale of the lattice constant, i.e., for momenta
much smaller than π/a. The second is related to the magnitude of the
perturbation which is taken small compared to typical energy separa-
tions of bands in the crystal. The last one gives us information about
the coefficients Fn(k), which are significant parameters only for small
values of k.

Then, using these approximations we find that Un′k′,nk ≈ U(k′ −
k)δnn′ . This indicates that the perturbation does not mix states of
different bands. However, it does mix states with different momen-
tum near the band minimum. Introducing this simplification and
Eq. (1.28) into Eq. (1.31) and transforming the resulting equation
into the real space we arrive at[

− ~2

2m∗
∆ + En + U(r)

]
Fn(r) = EFn(r) , (1.32)
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where Fn(r) is a function of long range compared to the lattice period
and is termed the envelope function of the wave function. Observing
Eq. (1.32) we note that it represents an effective Schrödinger equation
[cf. Eq. (1.29)] where the periodic lattice potential Vr included in H0

has disappeared and, instead, we have replaced the free electron mass
with the effective electron mass. The two last terms in the left side of
Eq. (1.32) give rise to the local band edge energy, En(r) = En+U(r),
which acts as an effective potential where the n-band’s electrons move.

We have thus far studied the band properties of semiconductors
alone. But what happens if we combine different semiconductors in a
semiconductor heterostructure? Interestingly, the band structure can
be tailored with these structures.

Nowadays, different methods of growing materials with very dif-
ferent composition exist. One of them is by growing atomic layers
with molecular beam epitaxy. Using this method we can vary the
band structure in the growth direction and adapt it according to the
needs of our device. To grow a material on top of each other without
creating strain we require that both materials have the same lattice
constant and crystal structure. Then, the question is how the band
structure is changed at the interface.

The simplest way to answer the above question is to use a theory
based on the electron affinities χA and χB of the two materials A
and B to be combined, see Fig. 1.8(a). By definition, the electron
affinity is the maximum energy that one can obtain when we add an
electron at rest from a region far away from the crystal to an undoped
semiconductor. The energy of the electrons far away from the crystal
is called the vacuum level and it is the same for the two materials
which we want to combine. The electron gains the maximum energy
if it is filled into the bottom of the conduction band. Then, at the
interface of both materials, the difference of the electron affinities gives
the relative position of their conduction band minima. In other words,
a step appears in the conduction band edge. This is the conduction
band offset, of size ∆Ec = |χA − χB|.

We can distinguish three different types of heterointerfaces de-
pending on the relative position of the conduction and valence band
edges is both sites of the interface, see Fig. 1.8(b).

Another way to change the properties of semiconductor materials
is by means of the incorporation of relatively small concentrations
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Figure 1.8: (a) Relative position of the band edges at a heterointer-
face between two materials, A and B. (b) Band line-up of conduction
and valence band edges for the three different heterointerfaces. Re-
produced from Ref. [37].

of doping atoms on specific lattice sites. There are two big groups
of doping atoms: donors and acceptors atoms. The first ones are
atoms that have one valence electron more than the atom which they
replace. In contrast, the acceptor atoms have one electron less than
the atom which they replace. Another characteristic is that this kind
of dopants can release electrons (holes) through thermal activation
into the conduction band via n-doping (p-doping).

The way how the dopants are distributed is important. For ex-
ample, in volume doping the dopant atoms are equally distributed in
the crystal. In contrast, in the sheet doping or δ-doping technique
the dopants are incorporated in a plane. The method in which we
are interested is the remote doping. It is a combination of δ-doping
and a heterointerface and is the method that is used to generate a
two-dimensional electron gas.

1.3.2.1 Two-dimensional Electron Gas

In the remote doping technique, a doped layer is placed at a certain
distance from a type I heterointerface, see Fig. 1.9. This doped layer
is deposited on the wider band gap material. As we know, the donor
electrons (acceptor holes) move to the material with the smaller band
gap due to the conduction (valence) band offset. Then, the positively
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Figure 1.9: Pictorial representation of conduction band edge along
the growth direction of type I heterostructure with remote doping.
A two-dimensional electron gas forms at the interface. Reproduced
from Ref. [37].

charged donors (negatively charged acceptors) and electrons (holes)
attract themselves electrostatically and keep the charge carriers close
to the interface. Consequently, a two-dimensional electron gas forms.
In this kind of systems, the electrons are confined in the normal direc-
tion to the interface but are free to move along the interface. Similarly
to the quantum well case, in this region quantum confined states exist
along the growth direction. Then, the Hamiltonian for these electrons
which can move freely in the x and y plane and are strongly confined
in the z-direction takes the simple form

H = − ~2

2m∗

(
∂2

∂x2
+

∂2

∂y2

)
, (1.33)

where m∗ is the conduction-band effective mass of the electrons in
the 2DEG.

The corresponding eigenvalues take the general form [c.f.
Eq. (1.28)]:

E =
~2K2

2m∗
=

~2

2m∗
(
k2 + q2

)
, (1.34)
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where k and q are the wave numbers along x (longitudinal) and y
(transverse) directions, respectively. As we can see, this dispersion
relation is parabolic and independent of the electron spin. However,
this simple picture can be modified by the spin–orbit interaction and
its modifications depend on the particular semiconductor heterostruc-
ture where the 2DEG is realized. We can distinguish two kinds of
spin–orbit effects: one due to the lack of inversion symmetry of the
crystal structure (Dresselhaus term) and the other one due to the con-
finement potential created by the epitaxially grown structure (Rashba
term) which does not show inversion symmetry [48].

In this thesis, we will focus on the Rashba coupling since its
strength can be electrically tunable with an external gate. The com-
bined action of the structure inversion asymmetry and the mixture of
valence band states to conduction band states results in a net electric
field in the z-direction (normal to the 2DEG plane). The strength of
this electric field can be modified applying another external electric
field Ez in the same direction (e.g. with a capacitively coupled gate).
Then, to lowest order in k we can write the Rashba Hamiltonian (see
App. B) as

H2DEG
R = −iα(σx∂y − σy∂x) , (1.35)

where σx and σy are the Pauli’s spin matrices and α is the Rashba
strength which can be separated in a constant part that depends on
the 2DEG material and another part which is proportional to the
average of the external electric field in the z-direction. The interested
reader can find in Ref. [56] a more detailed discussion about how this
averaging is performed.

Finally, the dispersion relation given by Eq. (1.34) is modified as
follows

E± =
~2K2

2m∗
± αK , (1.36)

where K =
√
k2 + q2 and the signs ± indicate that now we have two

branches. In the two-dimensional model, the spin is not a good quan-
tum number and, for this reason, the two branches are not associated
with a well defined spin. Only in the one-dimensional case, where
the band structure are two parabolas displaced by a quantity m∗α/~2

with respect to the origin, each branch has an associated spin. In
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Figure 1.10: Sketch of the energy bandstructure of a 2DEG with
spin-orbit interaction of the Rashba type. The arrows on circles of
constant energy give the directions of the spin states on each branch.
Reproduced from Ref. [56].

Fig. 1.10 we depict Eq. (1.36) and we can observe how at a given
energy the direction of the spin state is different for each k, q point.
Therefore, the Rashba coupling induces a spin splitting but no net
polarization in general.

1.3.2.2 Quantum Point Contact

In order to further confine the electrons one introduces quantum point
contacts (QPC). These are formed in a nanoscale short and narrow
constriction, with a width of the order of the Fermi wave length (d ∼
λF ), between two large conducting regions which act as source and
drain electrons reservoirs, see Fig. 1.11. A well known method to
fabricate QPCs is the split-gate technique where two metallic gate
fingers are evaporated on the surface of the wafer leaving a narrow
channel in between. When we apply a negative voltage on the gate
electrodes, the 2DEG is depleted underneath the gates over a range
that depends on the applied gate voltage. Then, a narrow quantum
channel for electrons is built on the basis of a 2DEG with tunable
width, d. Importantly, when we apply a voltage difference, eV =
µ` − µr, between the reservoirs, electrons are forced to pass through
the constriction.

In Fig. 1.12(left) we show a schematic of a GaAs/AlGaAs semi-
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Figure 1.11: Pictorial representation of a QPC which consists of a
2DEG (grey area) with two metal gates (blue areas) deposited on
top. The voltage bias V is needed to drive electrons through the
constriction. With the gate voltage Vg1 and Vg2 we can tune the
number of modes active in the QPC. The transversal 2DEG width is
given by W while d is the QPC width of the constriction.

conductor heterostructure where the different layers are grown using
molecular beam epitaxy. Next, using the split-gate technique, two
metal gates (black region) are deposited on the heterostructure sur-
face and a QPC channel is formed by applying a negative voltage to
the gates, as indicated in Fig. 1.12(right). Due to the potential felt
by the electrons in this region the energy levels will be quantized in
the transverse direction.

The resulting system is confined in the z and y direction and is
translationally invariant in the x-direction. The system can thus be
seen as an electronic waveguide. Then, we can consider the Schrödin-
ger’s equation in the x- and y-direction separately and, as a conse-
quence, the total wave function will be written as

Ψnk(x, y) = χn(y)eikx , (1.37)

where we have a plane wave in the longitudinal direction, eikx, and
χn(y) represents the wave function of the one-dimensional modes (la-
belled by n = 1, 2 . . . ) in the waveguide. We do not take into account
the z-direction because the confinement in the direction perpendic-
ular to the 2DEG plane is much larger and typically only a single
energy level is populated.

Finally, the corresponding total energy for the asymptotic modes
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Figure 1.12: Left: Scheme of a GaAs/AlGaAs heterostructure where
different material layers are deposited in order to obtain a 2DEG.
Right: The same heterostructure with two metal gates on the top.
Thus, the 2DEG is confined in the y-direction and a QPC channel
thus forms.

is given by

En(k) = En +
~2k2

2m∗
, (1.38)

where the second term in the right-hand side is the single-particle
kinetic energy for motion along the propagation direction and the first
one represents the quantized energy levels in the transversal direction.
We assume that the confinement potential can be modelled as an
infinite quantum well. Then, En = ~2π2n2/(2m∗W 2) where W is the
width of the waveguide.

The transport properties of our QPC device can be described with
the linear conductance, G = (dI/dV )V=0. Then, we start from the
expression of the current in the scattering approach (see App. A for
details):

I =
e

h

N∑
n=1

∫ ∞
−∞

dE Tn(E)[f`(E)− fr(E)] , (1.39)

where Tn(E) is the transmission probability for one electron to cross
the constriction from the left to the right contact in mode n at energy
E. fc(E) = 1/[1 + e(E−µc)/kBTc ] with c = `, r is the electron’s Fermi
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distribution in the reservoirs where Tc and µc are the contact tem-
perature and chemical potential. Finally, N is the number of open
modes at a given energy in the quasi-one dimensional system and is
given by N = Int [KFW/π], where KF =

√
2m∗EF /~.

To obtain the linear conductance we need to apply a small voltage
difference between the reservoirs, V = µ` − µr, keeping the same
background temperature T` = Tr = T0. Then, we can Taylor expand
up to first order in V

f`(E)− fr(E) = −∂f(E)

∂E
eV . (1.40)

Inserting this expansion into Eq. (1.39) and performing the energy
integration at zero temperature, we obtain

I =
e2

h
V

N∑
n=1

Tn(EF ) . (1.41)

Hence, the linear conductance becomes

G =
e2

h

N∑
n=1

Tn(EF ) . (1.42)

When the transmission for a given mode n at energy EF is close to
one, this mode contributes with one full conductance quantum (e2/h)
per electron. We have to note that each mode is spin degenerate. This
means that each mode can be doubly occupied and it will contribute
with conductance 2e2/h. Ideally, the transmission for given mode is
zero until the mode is open. Then, G in Eq. (1.42) would show perfect
quantization G = 2e2

h N . Deviations from this quantization can be
attributed to temperature, adiabatic openings, quantum tunnelling,
etc. [57, 58].

1.3.2.3 Quantum dot
Finally, a full confinement of the electrons is possible using quan-
tum dots (QDs). In the same way as in the fabrication of QPCs, a
QD device can be built by evaporating six gate fingers on top of a
GaAs/AlGaAs heterostructure, 2DEG, see Fig. 1.13. Then, as in the
QPC case, applying a negative voltage on the outer metal gates, the
2DEG is depleted and the electrons will be confined. In Fig. 1.13 we
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Figure 1.13: Pictorial representation of a QD formed in a 2DEG (grey
area) with six metal gates (blue areas) deposited on top. As in the
QPC case (Fig. 1.11), the voltage bias V drives electrons through
the different constrictions. Applying a negative voltage to the finger
gates VL/R1 and VL/R2 one creates the QD (red area). Vg1 and Vg2 are
employed to control the position of the quantum dot energy levels.

observe how the separation between the central gate fingers, called
plunger gates, is greater than that between the two pairs of exterior
gate fingers. Due to this, the electrons can be localized on an island
between the gates and the electrons become confined to the three
spatial directions, obtaining effectively a 0-dimensional system. With
the plunger gates one manipulates the electron density in the region
between the outer QPCs. The coupling between the island and the
two reservoirs are determined by these two outer pairs of electrodes.
This kind of systems acts as an artificial atom with discrete energy
states.

Until now we have neglected the role of electron–electron inter-
actions. Nevertheless, in quantum dots the Coulomb interaction is
dominant because of their small dimensions, of the order of 100 nm.
In Chapter 5 we will focus on the Coulomb blockade effect, which is
one of the fundamental transport phenomena in semiconductor nanos-
tructures. This effect is visible only if the Coulomb energy, or charging
energy U , is large in comparison with the other energy scales. U is
the energy required to add one electron to the dot when the dot is
not empty. A classical electrostatic reasoning leads to the expression

U = e2/C , (1.43)

where C = 8εε0r is the dot self-capacitance. For a dot of radius
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r = 100 nm fabricated on top of as GaAs heterostructure, relative
dielectric constant is ε = 13, the charging energy is U ∼ 1.7 meV.
If we compare U with the mean spacing between successive energy
levels

∆ =
~2

m∗r2
∼ 110 µeV , (1.44)

where m∗ = 0, 067m0 for GaAs (we have used parabolic dispersion
relation), we can see that U is one order by magnitude larger than
∆. Then, the Coulomb blockade effect should be observable. More
generally, to have U � ∆ in GaAs heterostructures, we need a QD
with a radius,

r � 8εε0~2

m∗e2
∼ 7 nm . (1.45)

Another important quantity is the temperature, which has to be
smaller than the charging energy, U � kBT . In order to fulfill this
condition we need that the dimensions of the quantum dot should be
small since U ∼ 1/r, or equivalently one should use low temperatures.
However, if the temperature is also smaller than the single-particle
level spacing, kBT < ∆, only one quantized energy level contributes
to the transport through the QD and this is the regime in which we
will work in this thesis. This implies, using the above parameters,
that T < 1 K.

Finally, if the broadening hΓ of the energy levels in the dot due to
the coupling to the leads is much smaller than kBT , we can neglect
quantum fluctuations and charge is well defined. In other words, only
first order tunnelling processes are in this way taken into account.

Once we have defined the regime in which Coulomb blockade effect
is observable, we can explain one of its consequences, namely, the
conductance resonances as a function of plunger gate voltage. In
Fig. 1.14 we show the linear conductance reported in Ref. [59] when
a small bias voltage is applied across the quantum dot showed in
the left top inset. The linear conductance, and as a consequence the
current through the quantum dot, can be controlled with a plunger
gate voltage since the gate can tune the quantum mechanical energy
states in the quantum dot via capacitive coupling.

In Fig. 1.14 we observe sharp resonances at certain values of Vg.
This phenomenon can be explained taking into account that in QDs
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Figure 1.14: Linear conductance as a function of the plunger gate
voltage Vg. Inset: Quantum dot fabricated by split-gate technique.
Reproduced from Ref. [59]

the electron-electron interaction plays an important role. As discussed
above, if a new electron is added into the dot, we have to pay an extra
energy U (charging energy). Only when Vg takes an specific value for
which the dot electrochemical potential is in resonance with the reser-
voirs electrochemical potentials, the electron can tunnel through the
dot. In contrast, for intermediate values the electrons in the reservoirs
do not have enough energy to overcome the Coulomb repulsion and
transport is blockaded.

Now, if the voltage between reservoirs is larger, the current present
nonlinearities and we can measure the differential conductance, Gdc =
dI/dV , in addition to the linear conductance. The measurements of
the differential conductance as a function of V and Vg can be combined
to obtain the so-called Coulomb blockade diamonds. In Fig. 1.15 we
show these Coulomb blockade diamonds for the simplest model in
which there is only one dot energy level, ε0. Due to the spin degree of
freedom, this dot energy level can be occupied by two electrons. How-
ever, as we have mentioned before, the energy required for the second
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Figure 1.15: Schematic Coulomb blockade diamonds of a single-level
quantum dot. The current is only differs from zero in the grey ar-
eas. The black lines indicate for which values of V (voltage difference
between reservoirs) and Vg (plunger gat voltage) the electrochemical
potentials of reservoirs (µ` and µr) and quantum dot (µ0 and µ0U )
are aligned. Insets (a), (b) and (c) represents the energy diagram of
the above points in the main panel.

electron to hop into the dot is ε0+U due to Coulomb repulsion. In the
top panel of Fig. 1.15, we show a color plot of the differential conduc-
tance as a function of the voltage difference between reservoirs and
the plunger gate voltage, where white and grey areas represent respec-
tively zero and finite positive values. Black lines indicate alignment
between one of the reservoirs electrochemical potentials, µ` or µr, and
one of the dot electrochemical potentials, µ0 or µ0U . The position of
reservoirs and dot electrochemical potentials are modified by V and
Vg respectively. The energy diagrams corresponding to points (a) and
(b), represented schematically in the insets are the conductance peaks
of linear transport (V = 0) showed in Fig. 1.14. In between there is
a diamond shaped white region where due to the Coulomb blockade
effect the electron transport is forbidden. To better understand this
phenomenon let us see with more detail the inset in Fig. 1.15(a). µ`,
µ0 and µr are aligned and the electrons can flow through the QD.
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However, when we increase Vg the position of µ0, and consequently
µ0U , decreases and the electrons can tunnel on the dot but not off the
dot, see Fig. 1.15(b). Subsequently, a second electron can not enter
the dot since it has to surpass the Coulomb repulsion and does not
have enough energy. This is the Coulomb blockade effect, because
transport becomes blockaded due to the Coulomb interaction. If we
continue increasing the plunger gate voltage until µ`, µ0U and µr be-
come aligned, the transport is again permitted through the dot, see
Fig. 1.15(c).



2. Thermoelectric effects in graphene

In this chapter, we will study the influence of local Rashba spin-orbit
interaction on the electric and thermoelectric properties of graphene
(see Sec. 1.3.1)1. In graphene’s systems with an inhomogeneous spin-
orbit interaction previous studies have considered Fano lineshapes in
graphene junctions [60, 61], spin densities in nanoribbons [62] and
superlattice [63], spin dependent transmissions [64] and Klein (chiral)
tunneling [65]. Here, we are mainly concerned with the voltages gener-
ated in response to a temperature difference (the Seebeck effect) [35]
(see Sec. 1.2). Interestingly, recent results indicate enhanced ther-
mopower in graphene monoloyers [66–68], which paves the way for
promising applications to achieve efficient heat-to-energy converters
[69]. We here discuss the possibility of manipulating the thermopower
with a local spin-orbit interaction. In fact, we find that a spin-orbit
graphene monolayer is more sensitive to temperature biases than to
voltage differences. Furthermore, since the Rashba coupling splits the
graphene electronic bandstructure, the transmission thus depends on
the subband index. In analogy with spin caloritronic devices [22],
where a thermal gradient induces a spin-polarized voltage bias [15, 24],
we propose to use the Seebeck effect to generate a difference between
occupations with different subband indices.

2.1 Theoretical model

We consider a graphene layer in the xy plane with spatially varying
spin-orbit interaction along the x-direction, see Figure 2.1. Within the

1The contents of this chapter are based on M. I. Alomar and David Sánchez,
Phys. Rev. B 89, 115422 (2014) and M. I. Alomar and David Sánchez, in Dy-
namical Systems, Differential Equations and Applications, AIMS Proceedings, pp.
1–9 (2015).
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Figure 2.1: Pictorial representation of a graphene layer with a central
region of length L under the influence of a spin-orbit interaction of
the Rashba type. The system is invariant along the y-direction (width
W ). Electronic transport is induced along the x-direction with a bias
voltage V applied to nearby contacts or with a temperature difference
∆T between hot and cold terminals.

continuum limit, the total Hamiltonian is given by Eq. (1.18) where
the spin-orbit coupling strength takes a constant value in each region:
0 for x < 0 and x > L and λ for 0 < x < L. As we have mentioned
in Sec. 1.3.1, this model is valid when inter-valley scattering can be
safely neglected.

The energy spectrum is showed in Fig. 2.2 where in the central
region, 0 < x < L, we have plotted the dispersion relation given by
Eq. (1.19) for a finite value of the spin-orbit strength λ and q = 0.
Here, the energy bands become parabolic for energies small compared
to the spin-orbit strength. In contrast, the energy spectra in the
contacts, x < 0 and x > L, is given by Eq. (1.20) which is linear with
a constant slope.

The eigenstates of Eq. (1.18) are

Ψm
l,n(x) =

eimkxeiqy/2√
~2v2

F (k2 + q2) + E2
l,n


−in~vF (mk − iq)

El,n
−inEl,n

~vF (mk + iq)

 , (2.1)

where we explicitly indicate the propagation direction with the aid of
the index m = ±, which determines the sign of the momentum along
x. Since the scattering potential is invariant in the y-direction we
take q as a real quantity. However, the k momentum can be real or
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Figure 2.2: Pictorial representation of a graphene layer with a central
region of length L where spin-orbit interaction is active. We take x
as the propagation direction. We show the energy spectra both inside
and outside the central region. Solid lines indicate propagating states
while dashed lines depict the energy associated to evanescent states.

purely imaginary depending on whether one deals with traveling or
evanescent waves. A systematic method of finding evanescent states
in quantum wires with Rashba interaction is presented in Ref. [70].
Here, we notice that the energy of evanescent waves emerges from the
subband spectra and coalesces for E = ±λ (see the dashed lines in
Fig. 2.2).

In the absence of spin-orbit interaction the eigenstates take the
following form

Ψm
l,n(x, y) =

eimkxeiqy

2


−inme−imφ

l
−inl
meimφ

 , (2.2)

where φ is the wavevector angle defined as φ = tan−1 q/k. Therefore,
the states given by Eq. (2.1) [Eq. (2.2)] will be appropriate for 0 <
x < L (x < 0 and x > L).
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2.2 Wave matching method
We investigate the scattering problem sketched in Fig. 2.2 with three
distinct regions. While the side regions (left and right) are bare
graphene, the central region of length L is subjected to spin-orbit
interaction of the Rashba type. Since the problem is invariant in the
direction perpendicular to x, the y-component of the momentum does
not change and we can write it in terms of the wavevector angle,

q =
E

~vF
sinφ . (2.3)

We consider electrons with fixed energy E > 0. From Eqs. (1.20)
and (2.3), we obtain the wavevector component parallel to the trans-
port direction,

k = E

√
(1− sin2 φ)/~vF , (2.4)

valid for x < 0 and x > L. For 0 < x < L, k can be determined from
Eqs. (1.19) and (2.3):

kn =

√
E(E − 2nλ− E sin2 φ)/~vF . (2.5)

In the central region, we have two possible values for kn, one for
subband with n = + and one for subband with n = −, although a
more careful analysis is needed in terms of the subband index. First,
we notice that, in general, for any energy, the momentum is always
real if E − 2nλ− E sin2 φ > 0, i.e.,

sinφ <

√
E − 2nλ

E
. (2.6)

Now, for E > 0 and n = −, Eq. (2.6) is always satisfied since sinφ
is bounded between 0 and 1. In contrast, for n = + we have a critical
angle at which the momentum becomes pure imaginary. For angles
higher than the critical angle we have an evanescent wave. Then, for
0 < E < 2λ and n = + the momentum becomes pure imaginary since
Eq. (2.6) is never satisfied and the wave is evanescent for any value of
the angle φ. Similar critical angles have been invoked to discuss total
internal reflection effects in semiconductor interfaces with spin-orbit
interaction [71].
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We are now in a position to solve the scattering problem in Fig. 2.2.
We focus on the case E > 0 since our system exhibits particle-hole
symmetry, even in the presence of Rashba coupling. Therefore, we
take l = +1. We consider a most simple inhomogeneity, namely, λ = 0
for x < 0 and x > L, and λ nonzero and uniform for 0 < x < L. This
is not contradictory with the assumption that λ is a slowly varying
function in an atomic level because the scale over which this change
takes place is much bigger than the graphene lattice constant. The
matching method allows us to calculate all reflection and transmission
amplitudes for a given electron, which we take as impinging from the
left. In the following, we express the wave function at each region as
Ψm

+,n(x, y) = ψmn e
imkxeiqy where k and q are the x and y moment’s

module. We first specify left (`) wave function for x < 0:

Ψ(`)
n (x, y) = ψ+

n e
ikxeiqy + r−,nψ

−
−e
−ikxeiqy

+ r+,nψ
−
+e
−ikxeiqy , (2.7)

where the incident subband n can be taken as + or −. The reflec-
tion amplitudes r−,n and r+,n describe back scattering into − and +
modes, respectively. Then, we have an incident wave with positive
group velocity, v = k > 0, and two reflected waves with v = −k < 0,
the latter belonging to the doubly degenerate E+ branch in Fig. 2.2.

In the central (c) region we have four coexisting waves,

Ψ(c)
n (x, y) = a−,nψ

+
−e

ik−xeiqy + b+,nψ
+
+e

ik+xeiqy

+ c−,nψ
−
−e
−ik−xeiqy + d+,nψ

−
+e
−ik+xeiqy , (2.8)

where the coefficients a, b, c, and d are labeled with the incident
subband n and the wavevector with the index ± defined in Eq. (2.5).
Note that the propagating or evanescent character of the partial waves
is determined by the real or imaginary value of k±. Equation (2.8) is
valid for E > λ, but for 0 < E < λ we need to take into account the
evanescent states taking ψ+

+ and ψ−+ for l = −1.
Finally, in the right (r) region we only have transmitted waves

with positive group velocity and positive and negative n:

Ψ(r)
n (x, y) = t−,nψ

+
−e

ikxeiqy + t+,nψ
+
+e

ikxeiqy , (2.9)

where t±,n denotes the transmission amplitude from the n-th incident
subband toward the ± mode.
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Figure 2.3: Transmission probability as a function of the incident
angle φ for E > 2λ. The dotted curve represents the trasmision from
n = + to n = + and the solid curve the trasmision from n = − to
n = −. Parameters: λ = 10 meV, E = 80 meV and L = 100 nm.

At the boundaries x = 0 and x = L we impose continuity of the
wave function,

Ψ(`)
n (0, y) = Ψ(c)

n (0, y) , (2.10)

Ψ(c)
n (L, y) = Ψ(r)

n (L, y) , (2.11)

from which the eight coefficients r±,n, a−,n, b+,n, c−,n, d+,n and t±,n
are determined.

In elastic scattering, the probability current is conserved. Since
our system shows scattering along x only, the current conservation
condition is obtained from J

(`)
x = J

(r)
x with Jx = vFΨ†σxΨ (see

App. C) and leads to

1 = R+,n +R−,n + T+,n + T−,n , (2.12)

where R±,n = |r±,n|2 (T±,n = |t±,n|2) is the reflection (transmission)
probability. Due to the spin-chiral nature of the carriers [63], the
off-diagonal probabilities T+,− and T−,+, vanish altogether and the
spin-orbit interaction does not couple states with opposite subband
indices. Figure 2.3 shows T+,+ and T−,− for E > 2λ as a function of
the incident angle. At low angles (φ ' 0) the transmission is close
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to unity. This is a manifestation of Klein tunneling in graphene for
incident wave vectors parallel to the transport direction [72]. When
φ rotates from 0, the transmission departs from 1 due to scattering
at the boundaries. The situation is akin to a single-barrier potential
[72] but in our case the effect originates from a purely spin-orbit field.

Interestingly, in Fig. 2.3 we can see the emergence of a critical an-
gle for T+,+ beyond which the transmission probability vanishes (dot-
ted line). It occurs because when we surpass the critical angle given
by Eq. (2.6), the wave into the central region becomes evanescent
and the transmission drops. The transition is not abrupt since there
are tunneling contributions to T+,+ but this effect is very weak. Note
that T−,− (solid line) does not show any critical angle, as predicted by
Eq. (2.6). Additionally, we also observe in Fig. 2.3 transmission reso-
nances which we attribute to central waves interfering constructively
for specific values of the incident angles.

2.3 Electric Conductance
Within the scattering approach (see App. A) the electric current car-
ried by electrons in subband n is obtained from the transmission prob-
abilities integrated over the injecting energies E and the wave vector
angle φ,

In =
2eW

πh

∫ π/2

0
cosφdφ

∫ ∞
−∞

Tn,n(E, φ)K(E)

× [f`(E) − fr(E)] dE , (2.13)

whereW is the sample width in the y direction and fc(E) with c = `, r
are Fermi-Dirac distribution functions that describe the electronic
population in the left and right side, asymptotically far from the scat-
tering (central) region, as defined after Eq. (1.39):

fc(E) =
1

1 + e(E−µc)/kBTc
, (2.14)

where µc = EF + eVc is the contact electrochemical potential with
Vc a small voltage bias and Tc = T0 + θc the contact temperature
with θc a small temperature. The 2 factor in Eq. (2.13) is due to the
valley degeneracy and K(E) = E/~vF is obtained from the graphene
dispersion relation, Eq. (1.20). We also note that we do not need a
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Figure 2.4: Conductance as a function of Fermi energy. Parameters:
λ = 10 meV and L = 100 nm.

sum over the transmitted subband index n′ because the off-diagonal
probabilities transmissions are zero. The total current is thus I =∑

n In.
To obtain the linear conductance G = (dI/dV )V=0, a small volt-

age bias is applied across the junction, θr = θ` = 0, Vr = 0 and V` =
V . Then, we shift the left Fermi-Dirac distribution f` = f(E − eV )
fixing the right one fr = f(E) where f(E) = 1/[1 + e(E−EF )/kBT0 ] is
the equilibrium Fermi distribution function. After Taylor expanding
Eq. (2.13) up to first order in V , we obtain

In =
2e2WV

hπ

∫ π/2

0
cosφdφ

∫ ∞
−∞
Tn,n(E, φ)K(E)

(
− ∂f
∂E

)
dE .

(2.15)

At zero temperature we find G =
∑

nGn, where

Gn = G0

∫ π/2

0
Tn,n(EF , φ) cosφdφ , (2.16)

and G0 = 2e2WKF /πh = 4e2WEF /h
2vF is the maximum conduc-

tance of an ideal two-dimensional conductor since Int (WKF /π) is
the number of open channels of a sample with Fermi wave number
KF = K(EF ) (see Sec.1.3.2.2 and Ref. [73]).
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Figure 2.5: Conductance as a function of L. Parameters: EF =
15meV and λ = 10meV.

Figure 2.4 shows the conductance as a function of EF . We choose
the Fermi energy as the changing parameter since it can be easily
tuned in an experimental setup [30]. The conductance G+ (dotted
line) is small for energies between 0 and 2λ. This is because in this
energy range electrons from subband + can be transmitted only via
conventional tunnelling effect due to the center energy splitting. The
transmission probability is thus small. For EF higher than 2λ, G+

increases since travelling waves are now permitted in the central re-
gion. However, the increase is slow due to the persistence of the
critical angle above which the transmission probability is zero. The
conductance for the − subband (G−) is always close to the maximal
value G0 because for this mode there always exists a travelling wave
in the central region. In general, the total conductance G = G+ +G−
(dashed line) is a monotonically increasing function of the Fermi en-
ergy and tends to 2G0 at large energies where spin-orbit scattering is
less efficient.

The transmission probability, and therefore the conductance, de-
pends on the length of the central region, L, and the parameter of the
Rashba coupling, λ. Then, in Fig. 2.5 we show the electric conduc-
tance, G, as a function of L for a fixed Fermi energy. We find that
both G+ and the G− are trivially equal to unity if L = 0 because the
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Figure 2.6: Conductance as a function of λ. Parameters: EF =
30meV and L = 100 nm.

wave is completely transmitted. When L increases, we observe that
G+ decreases quickly. This is due to the fact that we are consider-
ing the case EF < 2λ, for which the states in the central region are
evanescent (see red dashed line in Fig. 2.2). The transmitted part is
due to electron tunneling, with a probability that quickly decreases
as L increases and becomes negligible for long spin-orbit regions. On
the contrary, the electric conductance with negative subband index,
G−, is always close to unity since the wave functions corresponding
to E+,− (see blue solid line in Fig. 2.2) are propagating states for any
incident energy E > 0. Our conclusion is reinforced by the oscilla-
tions seen in G−, which typically arise in scattering problems with
wave interference even for energies above the potential threshold.

In Fig. 2.6 we represent G as a function of λ for a fixed Fermi
energy and observe a similar behavior but in this case the nonzero part
of G+ is mainly due to states with EF > 2λ, which are propagating.
The transition is not abrupt since, although the states for EF < 2λ
are evanescent, they also contribute to transmission via tunneling.
Independently of the value of λ the conductance term G− is close to
one because there always exists an available channel for any λ > 0.

Clearly, our results show that by tuning the Fermi energy, the
spin-orbit region length or coupling strength, a subband polarization
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Figure 2.7: Subband polarization of the conductance as a function
of Fermi energy for λ = 10 meV and different values of the spin-
orbit region length. The subband polarization of the conductance as
a function of L and λ is plotted in the insets (a) and (b) respectively.
Parameters inset (a): EF = 15meV and λ = 10meV. Parameters
inset (b): EF = 30meV and L = 100 nm.

of the outgoing electronic states can be achieved for certain values of
EF , L or λ. To quantify this effect, we define the subband polarization
as

P =
G+ −G−
G+ +G−

. (2.17)

In Fig. 2.7 we represent the subband polarization as a function of
EF . Here, we can see that for λ < EF < 2λ most of the electrons have
negative polarization because for those energies the wave with positive
n becomes evanescent inside the central region and the transmission
probability is very small. This effect is more visible for wider regions of
the spin-orbit stripe. As we increase the Fermi energy, there are more
electrons with positive polarization since for EF > 2λ the states with
n = + are travelling waves and their transmission probability is larger.
Clearly, in the limit EF � λ electron scattering is insensitive to the
spin-orbit potential and the distinction between + and − subbands
vanishes, yielding P → 0.

If we now plot P as a function of L, we obtain the inset in
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Fig. 2.7(a). It shows that at low L the electron wave is unpolar-
ized because the tunneling probability is close to one for small L. As
we increase the width of the central region, less waves with n = +
are transmitted and the outgoing wave is negatively polarized. Fig-
ure 2.7(b) presents the subband polarization as a function of Rashba
coupling strength for fixed EF and L. When λ is small the outgoing
wave is not polarized because we have propagating states for each
subband index (EF > 2λ in Fig. 2.2). As we increase λ the states
with positive n becomes evanescent inside the central region and the
transmission probability is vanishingly small. Thus, for EF < 2λ
most electrons have negative polarization.

2.4 Thermoelectric conductance
The current generated in the linear regime in response to a small
temperature difference applied across the junction can be obtained
from Eq. (2.13) taking Vr = V` = 0, θr = 0 and θ` = ∆T , see
Eq. (2.14):

In =
2eW

hπ

∆T

T0

∫ π/2

0
cosφdφ

∫ ∞
−∞

Tn,n(E, φ)

× K(E)(E − EF )

(
− ∂f
∂E

)
dE . (2.18)

We are interested in the low temperature regime. Then, to lead-
ing order in a Sommerfeld expansion, the thermoelectric conductance
reads L = I/∆T =

∑
n Ln, where

Ln = L0

(∫ π/2

0
Tn,n(EF , φ) cosφdφ

+ EF
∂

∂EF

∫ π/2

0
Tn,n(EF , φ) cosφdφ

)
, (2.19)

where L0 = k2
BeWT0/3~2vF .

In Fig. 2.8, we represent the thermoelectric conductance as a func-
tion of the Fermi energy. Surprisingly, we observe strongly modulated
oscillations with a decreasing amplitude as we increase EF . This im-
plies that the thermocurrent is more sensitive than the electric current
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Figure 2.8: Thermoelectric conductance as a function of Fermi energy.
Parameters: λ = 10 meV and L = 100 nm.

to small variations of EF . Furthermore, we find that the position dif-
ference between consecutive peaks in L is approximately given by the
spin-orbit strength λ. Therefore, thermoelectric measurements can
be rather useful in the detection of local spin-orbit fields in graphene
single layers.

In Fig. 2.9 we show the thermoelectric conductance as a function
of L for fixed Fermi energy and Rashba strength. At zero L we find
that the two components of L are close to unity since all electrons are
transmitted. For larger L, L+ slowly decreases to zero. The effect
is similar to the conductance discussed above: for E < 2λ the states
with n = + are transmitted solely by conventional tunneling. As ex-
pected, the thermoelectric conductance with n = − is larger because
the states with n = − are propagating but we also observe a strong
variation with the central region length. L(λ), see Fig. 2.10, shows a
strong dependence with the value of the Rashba strength. Interest-
ingly, when we increase λ sufficiently we can even obtain a negative
thermoelectric conductance for a fixed L and EF . This means that
for those high values of the Rashba strength electrons will travel from
the cold to the hot side. These strong variations are a consequence of
the dependence of L on the transmission derivative [see second term
in the right-hand side of Eq. (2.19)] unlike the conductance, which
depends on the transmission only.
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Figure 2.9: Thermoelectric conductance as a function of L. Parame-
ters: EF = 15meV and λ = 10meV.
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Figure 2.10: Thermoelectric conductance as a function of λ. Param-
eters: EF = 30meV and L = 100 nm.
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2.5 Seebeck effect
By virtue of the Seebeck effect, we expect that a thermovoltage will
be generated when the junction is in the presence of a temperature
gradient under open circuit conditions (see Sec. 1.2). To keep our
discussion general, we consider different electrochemical potentials
µcn = EF + eVcn for each subband, where c = `, r. Both sides of
the junction are maintained at different temperatures, Tc, indepen-
dently of n. Then, the current flowing in the n mode in response to
small shifts µ`n − µrn and T` − Tr at low temperature is

In =
µ`n − µrn

e
Gn + (T` − Tr)Ln , (2.20)

where the transport coefficients Gn and Ln are given by Eqs. (2.16)
and (2.19), respectively.

We define [74]:

∆T = T` − Tr (2.21a)

µc =
1

2
(µc+ + µc−) (2.21b)

eV = µ` − µr (2.21c)
eVS = (µ`+ − µ`−)− (µr+ − µr−) , (2.21d)

where ∆T is the temperature difference, V the bias voltage and VS the
subband voltage that takes into account possible voltage differences
in the same lead between different subbands [75]. Using Eqs. (2.21)
in Eq. (2.20), we find the total current I ≡ I+ + I−,

I = (G+ +G−)V +
1

2
(G+ −G−)VS + (L+ + L−)∆T , (2.22)

and the subband current IS ≡ I+ − I−,

IS = (G+ −G−)V +
1

2
(G+ +G−)VS + (L+ − L−)∆T . (2.23)

We note that IS is a polarization current in the subband space. It
then plays the role analogous to a spin or pseudospin current since n
can take on two values only.

In Eqs. (2.22) and (2.23), the transport coefficients are given by
Eqs. (2.16) and (2.19). We define Tn as the the subband transmission
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summed over all transverse momenta. Since we consider transport
along the longitudinal (x) direction, we include the projection factor
cosφ,

Tn(EF ) = 2

∫ π/2

0
Tn,n(EF , φ) cosφdφ . (2.24)

We do not include the sum over the transmitted subbands since, as
we have mentioned earlier, the off-diagonal transmissions are zero.

Then, Eqs. (2.16) and (2.19) can be recast in the form

Gn =
( e

π~

)2 WEF
2vF

Tn(EF ) , (2.25a)

Ln =
ek2
B

3~2

WT0

2vF

(
Tn(EF ) + EF

∂Tn
∂EF

)
, (2.25b)

where ∂Tn/∂EF is the energy derivative of Tn evaluated at EF .
Interestingly, the low-temperature conductance is given by the

integrated transmission, in agreement with the Landauer picture of
transport, but the thermoelectric conductance contains an additional
term. This can be seen more clearly in the calculation of the charge
thermopower or Seebeck coefficient S = (V/∆T )I=0,IS=0, which de-
termines the voltage generated in the junction in response to a tem-
perature shift when both total and subband currents are set to zero.
From Eqs. (2.22) and (2.23) we find

S = −1

2

(
L+

G+
+
L−
G−

)
. (2.26)

Inserting Eqs. (2.25) in Eq. (2.26), we obtain the low-temperature
thermopower

S = −S0
kBT0π

2

6EF

(
1 + EF

∑
n

∂Tn/∂EF
Tn(EF )

)
, (2.27)

where S0 = kB/e.
We notice two contributions in Eq. (2.27). The second term in

brackets is the transport term Str. It is a single-particle result which
is satisfied in low dimensional systems such as quantum dots [76] and
quantum point contacts [77, 78], for which a sizable thermopower is
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detected only if the transmission strongly depends on energy. It is
thus a pure transport contribution. However, Eq. (2.27) shows an
additional term which is insensitive to transmission modulations, the
intrinsic term Sin. In fact, for a constant transmission probability
or when Tn shows a weak variation with energy on the scale of EF ,
Eq. (2.27) reduces to

S ' −π
2kB
6e

kBT0

EF
= Sin . (2.28)

This intrinsic contribution is independent of the sample details
and, more importantly, survives in the purely ballistic limit. It simply
states that in the highly degenerate limit (EF � T0, i.e., the range of
validity of the Sommerfeld approximation), the thermopower is given
by the entropy per unit charge (kB/e) associated to the fraction of
the electron density which is thermally excited (kBT0/EF ). Therefore,
Eq. (2.28) is completely general and does not depend on the nature
of the scattering potential. For EF = 1 meV and T0 = 1 K, a typical
value for the intrinsic thermopower yields S = 10 µV/K, a value
detectable with present techniques [67].

Using the Gn function defined in Eqs. (2.25a) we can rewrite
Eq. (2.28) as a Mott-like formula,

S = −S0
kBT0π

2

6

∑
n

∂ lnGn(EF )

∂EF
. (2.29)

The difference with the formula discussed in Ref. [79] is that our
Eq. (2.29) is valid in the ballistic regime of quantum transport.

We thus expect a competition between the intrinsic and the trans-
port terms in the Seebeck coefficient. We plot S in Fig. 2.11 as a func-
tion of EF for a nonzero value of the Rashba strength. We observe
that the junction thermopower is always negative, indicating that
when the left side is hotter than the right side, the system generates
a negative bias to compensate the excess of thermally activated elec-
trons. Furthermore, S is quite robust to variations of the spin-orbit
region size L. This fact can be explained taking into account that at
high energies the Rashba interaction is not effective and the transmis-
sions are weak functions of energy, as discussed in Sec. 2.3. Then, the
transport contribution to the Seebeck coefficient, S ∝ ∂ lnG/∂EF ,
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Figure 2.11: Seebeck coefficient as a function of Fermi energy for
different values of the spin-orbit region length. Parameters: λ = 10
meV and T0 = 1 K.

is negligible and S tends to zero as 1/EF . In contrast, at low ener-
gies the constant term exceeds the transport contribution due to the
kBT0/EF term2. Therefore, the transport term is relevant only at
intermediate energies, as shown in Fig. 2.11.

In Figs. 2.12 and 2.13 we present the Seebeck coefficient as a
function of L and λ, respectively. In both cases the intrinsic part of the
thermopower is constant since the Fermi energy is a fixed parameter.
In Fig. 2.12 we observe that S(L) never changes sign because λ, which
controls this effect, is fixed. However, we observe a strong modulation
of the thermopower with L, which may serve as a useful tool for tuning
S in a graphene layer. In Fig. 2.13 we show S(λ), which can now
change sign as a function of λ. Therefore, the generated voltage can
be tuned with the Rashba strength.

As we have mentioned in Sec. 1.2, applied temperature gradients
can also lead to spin accumulations in the attached leads, as recently
demonstrated in systems driven by spin Seebeck effects [15, 24]. Then,
it is natural to ask whether a local spin-orbit interaction in graphene

2The 1/EF divergence at very low energies below kBT0 is just an artifact of
our Sommerfeld expansion, which is exact up to (kBT0/EF )

4. Near the charge
neutrality point, EF is of the order of KBT0 and the Sommerfeld expansion breaks
down.
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Figure 2.12: Seebeck coefficient as a function of L. Parameters: EF =
15meV, λ = 10meV and T0 = 1 K.
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Figure 2.13: Seebeck coefficient as a function of λ. Parameters: EF =
30meV, L = 100 nm and T0 = 1 K.
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leads to different subband populations. We address this question by
calculating from Eqs. (2.22) and (2.23) the subband bias VS generated
when I = 0 and IS = 0 but ∆T 6= 0. The subband thermopower
SS = (VS/∆T )I=0,IS=0 then follows,

SS = −
(
L+

G+
− L−
G−

)
. (2.30)

Notice that to obtain this result, we need to apply a bias voltage:

V = −1

2

(
L+

G+
+
L−
G−

)
∆T . (2.31)

At low temperature, we can substitute Eqs. (2.25) in Eq. (2.30),
yielding

SS = −S0
kBT0π

2

3

(
∂T+/∂EF
T+

− ∂T−/∂EF
T−

)
, (2.32)

where S0 = kB/e.
Notably, the intrinsic thermopower of Eq. (2.28) drops out from

the subband Seebeck coefficient in Eq. (2.32). SS depends only on the
transmission probabilities to cross the spin-orbit region and is thus
a purely transport property. Therefore, we expect a stronger energy
dependence of the subband thermopower as compared with its charge
analog, Eq. (2.27). This is confirmed in our numerical simulations.
In Fig. 2.14 we represent SS as a function of EF . The energy varia-
tion of the subband thermopower becomes more pronounced for wider
spin-orbit regions because the subband resolved transmissions differ
strongly as the region size enhances. In addition, we observe a sign
change of SS , implying that for a positive difference of temperatures
a positive or negative subband potential is generated depending on
the Fermi energy. As expected, for high energies electrons are insensi-
tive to the Rashba scattering potential and the subband thermopower
tends to zero.

2.6 Conclusions
In this chapter we have investigated the thermoelectric properties of
a graphene system formed with a junction with a Rashba interac-
tion potential localized around a central region where the spin-orbit
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Figure 2.14: Subband-Seebeck coefficient as a function of Fermi en-
ergy for different values of the spin-orbit region length. Parameters:
λ = 10 meV and T0 = 1 K.

strength is nonzero and constant. Using matching methods for wave
functions with four components, we have found that the transmission
probabilities shows, for a given subband index, a critical angle beyond
which electrons cannot be transmitted across the junction. We also
have calculated the electric conductance and the subband polariza-
tion. We have obtained that the polarization rapidly changes in the
energy scale of the Rashba strength for sufficiently wide spin-orbit re-
gions. Finally, we have calculated the thermocurrent in response to a
small temperature shift and have obtained strong modulations when
the Fermi energy is tuned even to values much larger than the spin-
orbit strength. Surprisingly, the Seebeck coefficient is a smooth func-
tion of energy, an effect which we attribute to a background intrinsic
thermopower which is dominant for a wide range of Fermi energies.
We then have determined the subband thermovoltage generated in
response to a temperature bias and recover the strong variation with
energy, yielding positive or negative population imbalances depending
on the value of the externally tuned Fermi energy.

Now, in order to determine if these results are similar for a 2DEG
based on semiconductor heterostructure we will analyze in Chapter 3
the thermoelectric properties replacing the graphene monolayer with
a two-dimensional semiconductor layer. One of the results that we
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will find is the necessity to introduce ferromagnetic contacts in order
to obtain spin Seebeck effect.



3. Seebeck effects in 2D spin transistors

We recall (Sec. 1.2) that an external applied temperature difference
can generate a bias voltage (charge Seebeck effect), a spin imbalance
(spin Seebeck effect) of a thermovoltage that depends on the magneti-
zation (magneto-Seebeck effect). Our aim in this chapter is to exam-
ine these three Seebeck effects in a two-dimensional system (2DES)
spin transistor1. We consider a quantum well laterally coupled to
two ferromagnetic reservoirs kept at different temperatures ∆T , as
sketched in Fig. 3.1. Thermocurrent-induced spin polarization effects
in Rashba 2DES are discussed in Refs. [80–84] using semiclassical
approaches. In the same way as in Chapter 2 we consider the quan-
tum (ballistic) regime of transport and formulate a theoretical model
based on the scattering approach. We observe clear oscillations in the
charge Seebeck coefficient when the Rashba strength is varied even
when the 2DES is coupled to nonmagnetic reservoirs. Importantly,
in this case the transmission for up spins and down spins are equal
and hence the spin Seebeck coefficient is identically zero. This result
agrees with Ref. [84], which finds an absence of thermospin effects in
spin-orbit coupled 2DES. However, we below show that spin imbal-
ances can be created in response to temperature differences when the
electrodes are ferromagnetic. The effect is more prominent for larger
Rashba splittings.

Remarkably, the Seebeck coefficient shows sign changes as a func-
tion of the Fermi energy for the case of magnetic leads. This is one
of the main findings of this chapter, as it suggests the possibility of
controlling the thermoelectric current direction by varying the Fermi
energy with a nearby gate. Furthermore, the thermopower depends
on the relative orientation of the leads’ magnetization. Since the spin-

1The contents of this chapter are based on M. I. Alomar, Llorenç Serra and
David Sánchez, Phys. Rev. B 91, 075418 (2015).
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Figure 3.1: Pictorial representation of our system. A two-dimensional
semiconductor layer is formed inside a quantum well subjected to a
Rashba spin-orbit interaction of strength α. The length of the central
region where the Rashba coupling is constant is L (gray area) and W
the sample width. Then, α decays smoothly to vanish in the contacts
(colored areas). Electronic transport is induced with a bias voltage V
which is applied across the junction or with a temperature difference
∆T between the two contacts, hot and cold.

orbit field randomizes the spin direction of current-carrying states, one
would expect a quench of the magneto-Seebeck ratio when Rashba
interaction is turned on. However, we find significant changes in the
presence of spin-orbit coupling.

3.1 Theoretical model
We consider a two-dimensional semiconductor layer in the xy-plane
with a central region of width L subjected to a Rashba spin-orbit
interaction. This 2DES can be formed with the techniques discussed
in Sec. 1.3.2.1. In Fig. 3.1 we show a sketch of our system. The
Rashba coupling is spatially varying along the x-direction, which we
take as the transport direction. The Hamiltonian reads

H = H0 − i
(
α(x)σx∂y −

1

2
σy {α(x), ∂x}

)
, (3.1)

where H0 is given by Eq. (1.33) and the second term is the Rashba
spin-orbit interaction depending on the Pauli matrices σx and σy, see
App.B.

When the Rashba strength α(x) takes a constant value Eq. (3.1)
reduces to Eq. (1.35). In the left and the right contacts α(x) is equal
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to zero while in the central region, of width L, α(x) takes a uniform
value α(x) = α. In our numerical simulations, the variation of this
parameter at the interfaces is almost abrupt with a minor numerical
smoothing. We refer the reader to App. D for details of our smoothing
model.

The eigenfunctions in the leads are plane waves since the reservoirs
are assumed to be metallic with good screening properties. In those
asymptotic regions, the band structure takes the general form given
by Eq. (1.34).

The transversal q momentum is constant throughout the system
since the Hamiltonian of Eq. (3.1) remains invariant after translation
along y. Thus, the wave function in the central region can be written
in terms of the product of a plane wave in y-direction and an x-
dependent amplitude ψqs(x) for each channel labeled with (q, s). If
we sum over spins s and over all the transverse momenta the total
wave function reads

Ψ(x, y, η) =
∑
s=±

∫
dq ψqs(x)eiqyχs(η) , (3.2)

where s is a spin index that characterizes the spin function χs(η) ≡
〈η|s〉, with η =↑, ↓ the usual basis of the Pauli matrices.

To determine the channel amplitude equations we project the
Schrödinger equation (H− E)Ψ = 0 on a particular channel (q, s),

(
− ~2

2m∗
d2

dx2
+

~2q2

2m∗
− E

)
ψqs(x)

+
∑
s′=±

[(
α(x)q

〈
s|σx|s′

〉
+
i

2
α′(x)

〈
s|σy|s′

〉)
ψqs′(x)

+ i α(x)
〈
s|σy|s′

〉 d

dx
ψqs′(x)

]
= 0 . (3.3)

These channel equations show coupling between different spins due
to the spin-orbit interaction (the terms 〈s|σx,y|s′〉). However, channels
with different q remain uncoupled due to the translational invariance
along y-direction. This is a unique feature of 2DES devices since in
quantum wires the coupled channel method does connect adjacent
modes with opposite spins [85].
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In the contacts, the Rashba coupling vanishes and the wave func-
tions can be expressed with the aid of input a(c)

qs and output b(c)qs
amplitudes,

ψ(c)
qs (x) = a(c)

qs e
isckx + b(c)qs e

−isckx , (3.4)

where c = ` (c = r) for the left (right) lead and we take s` = +
(sr = −). Within scattering theory the output amplitudes are de-
termined from the input ones via reflection r(c)

s′s and transmission t(c)s′s
amplitudes,

b
(c)
qs′ =

∑
s

r
(c)
s′s a

(c)
qs + t

(c)
s′s a

(c̄)
qs . (3.5)

Here, c̄ denotes the opposite contact to c. We note that the ma-
trices t(c) and r(c) of Eq. (3.5) depend on q and they are found after
discretizing Eq. (3.3) on a grid and imposing the boundary condi-
tions given by Eq. (3.4) with the quantum-transmitting-boundary
algorithm [86]. This method gives us a simple and robust way to
obtain the reflection and transmission amplitudes since the boundary
conditions allow us to rewrite a discretized version of Eq. (3.3) as a
tridiagonal system of equations. Due to this, the numerical simula-
tions are very fast.

We define the transmission probabilities

Ts′s(q, E) =
∣∣∣t(r)s′s∣∣∣2 , (3.6a)

T ′s′s(q, E) =
∣∣∣t(`)s′s∣∣∣2 , (3.6b)

where Ts′s(q, E) represents the probability that an incident electron
in the left lead with spin s is transmitted to the right lead with spin s′.
Analogously, T ′s′s(q, E) is the transmission probability for an electron
injected from the right contact with spin s to arrive at the left contact
with spin s′. Figure 3.2 shows the total transmission, T =

∑
ss′ Ts′s,

as a function of the Fermi energy for the case q = 0 at fixed α and
different lengths of the Rashba region. The q = 0 mode is interesting
since it corresponds to normal incidence, thus dominating the total
transmission as we will demonstrate below.

We observe in Fig. 3.2 that T quickly reaches a maximum and
then oscillates. This behavior can be nicely understood from the one-
dimensional problem of electrons scattering off a square well where L
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Figure 3.2: Total transmission probability as a function of the Fermi
energy for transverse momentum q = 0, Rashba coupling α = 1.7α0

and different lengths of the central region L’s. Inset: Total transmis-
sion probability as a function of L for q = 0, α = 1.7α0 and EF =
0.5E0. We take L0 = 60 nm. Hence, E0 = ~2/(m∗L2

0) = 0.92meV and
α0 = ~2/(m∗L0) = 55.2meV nm for m∗ = 0.023me as in InAs. For
InAs the spin-orbit strength can be as larger as ∼ 100 meVnm [56].

is its width and α is proportional to its depth. To see this, we set
q = 0 in Eq. (3.3),(

− ~2

2m∗
d2

dx2
− E

)
ψ0s(x) +

i

2
α′(x) sψ0s(x)

+ i α(x) s
d

dx
ψ0s(x) = 0 , (3.7)

where we choose the quantization axis of the spin s = ± in the y-
direction. Clearly, the two spins are uncoupled. We now make the
gauge transformation

ψ0s(x) = eis
m∗
~2

∫ x α(x′)dx′ψ̃0s(x) . (3.8)

Then, Eq. (3.7) is written in terms of ψ̃0s(x)

− ~2

2m∗
ψ̃′′0s(x) + (V0(x)− E) ψ̃0s(x) = 0 , (3.9)
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where V0(x) = −m∗α2(x)/(2~2). For a piecewise constant α(x),
Eq. (3.9) corresponds to the Hamiltonian of a square well of depth
V0 = m∗α2/(2~2). We can readily write the total transmission (sum-
med over spins) as [87]

T =
2

1 +
V 2

0
4EF (EF+V0) sin2

(
L

√
2m∗(EF+V0)

~

) , (3.10)

where L is the width of the square well (the spin-orbit region length
in our case). Then, T is maximum whenever

L

~

√
2m∗(EF +

m∗α2

2~2
) = nπ , (3.11)

where n = 1, 2, . . .. The first maximum of T for EF > 0 corresponds
to n = 1. As we increase the width of the spin-orbit region the first
maximum shifts to lower energy, in perfect agreement with Fig. 3.2.
The maximum displacement occurs because EF should decrease to
maintain the condition of Eq. (3.11) as L increases. In the inset of
Fig. 3.2, we represent the total transmission as a function of L for
fixed values of α and EF . T presents maxima at equidistant values of
L. This can also be simply understood from the resonant condition
derived from Eq. (3.11).

In Fig. 3.3 we plot T as a function of the Fermi energy for q = 0 at
fixed length L and different Rashba magnitudes. Similarly to Fig. 3.2,
as α increases the first maximum shifts to lower energies. In this case,
the analogy with the problem of the square well is based on α, which
is proportional to the potential depth. Thus, as we increase the value
of α, the Fermi energy should decrease to fulfill the maxima condition
of Eq. (3.11). The inset of Fig. 3.3 shows T as a function of α for
fixed EF and L. Notice that the spacing between maxima increases
smoothly because the resonant condition

αmax =

√√√√2~2

m∗

(
1

2m∗

(
nπ~
L

)2

− EF

)
, (3.12)

shows a nonlinear dependence with n.
The transmission probabilities for q 6= 0 cannot be expressed in

closed analytical form because the spins become coupled as illustrated
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Figure 3.3: Total transmission probability as a function of the Fermi
energy for q = 0, L = 3.5L0 and different values of the Rashba
strength α. Inset: Total transmission probability as a function of
α for q = 0, L = 3.5L0 and EF = 0.5E0.

in Eq. (3.3). It turns out that the contribution of these modes to the
total transmission for a given energy is small as electrons are more
likely to be refracted from the junction interfaces if q 6= 0. To verify
this, let us define Ts as in Eq. (2.24) where we have replaced the
subband index n by the spin index s and introduced a sum over the
transmitted spin index

∑
s′ ,

Ts(E) = 2
∑
s′

∫ π/2

0
Ts′s(E, φ) cosφdφ . (3.13)

The total projected transmission is thus T =
∑

s Ts. In Fig. 3.4 we
compare T from Eq. (3.13) with its q = 0 contribution. Clearly, the
q = 0 mode contributes more than 75% to the full transmission for
most energies. This confirms that with the mode q = 0 we can un-
derstand the basic dynamics of the transmission through our system.
For completeness, however, in our calculations we take into account
all channels to carefully assess the transport coefficients.
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Figure 3.4: Total transmission probability as a function of the Fermi
energy for q = 0 (dotted line) and integred over all q’s (solid line).
Parameters: L = 3.5L0 and α = 1.7α0.

3.2 Current

To calculate the current, we proceed as in Chapter 2 and employ the
scattering approach for mesoscopic transport (see App. A). Then, the
current Is in the x direction for a fixed spin s is given by Eq. (2.13)
which can be written in terms of the transmission found in Sec. 3.1
[see Eq. (3.13)]:

Is =
eW

2πh

∫ ∞
−∞

dE Ts(E)K(E) [f`s(E)− frs(E)] , (3.14)

where K(E) is the momentum in the contacts derived from Eq. (1.34).
To keep Eq. (2.13) more general we introduce a spin dependence in the
Fermi distribution functions fcs(E) = fcs(E − µcs, Tc) with c = `, r
[see Eq. (2.14)] where the spin dependence is through the electro-
chemical potentials µcs = EF + eVcs. The main difference between
Eq. (2.13) and (3.14) is the absence of the 2 factor that comes from the
graphene valley degeneracy. The total current is, finally, I =

∑
s Is.

Following the same procedure as in Sec. 2.4, from Eq. (2.20) to
Eq. (2.23), we obtain the total current I and the polarization current
IS in linear response as a function of the electric and thermoelectric
conductances.



3.2 Current 69

The electric conductance is given by

Gs = G0
1

2π

∫ ∞
∞

dE K(E)

(
− ∂f
∂E

)
Ts(E) , (3.15)

where G0 = e2W/h is the unit of conductance for a 2DES of width
W along y. We note that this G0 is different from that obtained
for graphene [cf. Eq. (2.16)], because for ferromagnetic contacts (see
Sec. 3.4) K(E) will be spin dependent and we need this dependence
outside the scaling factor. Physically, Gs/G0 is thus a spin-resolved
conductance per unit of transverse length. Hence, the total conduc-
tance is G =

∑
sGs. In the zero temperature limit, the conductance

per spin reads

Gs = G0
KF
2π
Ts(EF ) , (3.16)

where KF = K(EF ) =
√

2m∗EF /~.
The linear thermoelectric conductance reads

Ls = L0
1

kBT02π

∫ ∞
∞

dEK(E)(E−EF )

(
− ∂f
∂E

)
Ts(E) , (3.17)

where L0 = ekBW/h is the natural scale of the thermoelectric re-
sponse of a 2DES of width W . For the same reason as before this
scaling factor is different from the L0 obtained in Chapter 2 [cf.
Eq. (2.19)]. The total thermoelectric conductance is L =

∑
s Ls.

At very low temperature, a Sommerfeld expansion [35] yields

Ls = L0
kBT0π

6EF
KF
(

1

2
Ts(EF ) + EF

∂Ts
∂EF

)
, (3.18)

where the derivative is defined as ∂
∂EF
≡ ∂

∂E

∣∣
E=EF

.
Figure 3.5 presents the total electric and thermoelectric conduc-

tances as a function of the Fermi energy from a calculation of Eqs.
(3.16) and (3.18), respectively. The transmission is determined from
a full evaluation of Eq. (3.13). We find that the electric conductance
(solid line) is a monotonically increasing function of EF . At suffi-
ciently large energy values, G goes as E1/2

F because the transmission
approaches its maximum value when EF � E0 (see Figs. 3.2 and 3.3).
Only at low energies G presents a small deviation from this behav-
ior, which is much more visible when we calculate the thermoelectric
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Figure 3.5: Electric conductance (left axis) and thermoelectric con-
ductance (right axis) as a function of the Fermi energy at low tem-
perature. Parameters: kBT0 = 0.01E0, L = 2.9L0 and α = 2.6α0.
The electric conductance as a function of L(α) is plotted in the left
axis of the inset (a)[(b)]. In the right axis of the same inset the
thermoelectric conductance is depicted. Parameters of inset (a)[(b)]:
kBT0 = 0.01E0, EF = 0.1E0 and α = 2.6α0(L = 2.9L0).

conductance (dotted line). While at high energies L approaches zero
as E−1/2

F as dictated by Eq. (3.18), the thermoelectric conductance
shows a peak at low values of EF .

The insets of Fig. 3.5 depict G and L as a function of the spin-orbit
region width (top panel) and the Rashba coupling intensity (bottom
panel). We observe that both responses are strongly modulated and
present maxima at fixed values. This originates from the transmission
oscillations discussed in Sec. 3.1 as a function of α or L. Interestingly,
our device works as a current modulator in response to voltage or
temperature biases applied to normal leads. This is in contrast with
the spin transistor proposal of Ref. [10]. Our system (both the leads
and the 2DES channel) is entirely nonmagnetic. It is precisely due to
this reason that G+ = G− and L+ = L− and no spin polarization is
possible.
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3.3 Charge and spin thermopower
In Eq. (3.18) we find that the thermoelectric conductance comprises
two terms at low temperature, in contrast to the electric conduc-
tance, Eq. (3.16), which consists of a single term. With the aim at
understanding more clearly this additional contribution we calculate
the charge thermopower or Seebeck coefficient, S = (V/∆T )I=0,IS=0,
given by Eq. (2.26). Inserting Eqs. (3.16) and (3.18) in Eq. (2.26), we
obtain the low-temperature thermopower,

S = −S0
kBT0π

2

6EF

(
1

2
+ EF

∑
s

∂Ts/∂EF
Ts(EF )

)
. (3.19)

The Seebeck coefficient is measured in units of S0 = kB/e. We ob-
serve two contributions in Eq. (3.19). The first term Sin = −S0kBT0π

2

/(12EF ) is constant and represents an intrinsic contribution to the
entropy per unit charge of thermally excited electrons. We already
found this factor in Chapter 2 [Eq. (2.27)]. Like graphene, the intrinsic
term is independent of the scattering potential and the sample details.
This suggest that Sin is unique to 2DES since in quasi-1D systems
(quantum point contacts) and quasi-0D systems (quantum dots) this
contribution is absent. Therefore, the intrinsic term can be explained
as a dimensionality effect. The only difference is that in graphene Sin
is doubled because its energy dispersion is linear, E ∼ K, unlike the
quadratic dependence in our semiconductor 2DES [Eq. (1.34)]. The
second term, Str = −(S0kBT0π

2/6)
∑

s(∂Ts /∂EF )/Ts, is a purely
transport contribution that arises from the energy dependence of the
transmission function.

In fact, as in Sec. 2.5, using the Gs function defined in Eq. (3.16)
we can write Eq. (3.19) as a Mott-like formula. The obtained expres-
sion takes the same form as Eq. (2.29) but replacing Gn by Gs given
by Eq. (3.16).

We analyze the relative importance between the intrinsic and the
transport terms. To visualize this, Fig. 3.6 shows the different con-
tributions as a function of the Fermi energy. In general, both have
comparable strengths and should then be treated on equal footing.
Note that S is always negative because the generated voltage tends
to counteract the thermal bias. Below, we will show deviations of this
behavior when the sample is attached to ferromagnetic contacts. In
Fig. 3.6 Sin grows as 1/EF and quickly goes to zero. On the other
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Figure 3.6: Seebeck coefficient at low temperature as a function of
the Fermi energy. Parameters: kBT0 = 0.01E0, L = 2.9L0 and α =
2.6α0. The two insets, (a) and (b), show S as a function of L and
α, respectively. Parameters of inset (a)[(b)]: kBT0 = 0.01E0, EF =
0.1E0 and α = 2.6α0 (L = 2.9L0).

hand, although the overall trend of Str is similar to the intrinsic term,
we observe in Str a stronger effect due to the potential scattering at
low energy. Finally, we recall that both G and L present oscillations
as a function of L and α, see insets (a) and (b) of Fig. 3.5. The
thermopower, which is the ratio between the thermoelectric and elec-
tric conductances, also presents these oscillations as seen in the insets
(a) and (b) of Fig. 3.6. Importantly, the oscillations are due to the
transport term since Sin is independent of α and L.

We note in passing that the main properties of S discussed above
can be also detectable in heat current measurements. Due to On-
sager reciprocity, the electrothermal conductance (Peltier effect) is
directly connected to the thermoelectric conductance (Seebeck effect),
see App. E. Moreover, we show in App. E that the Wiedemann-Franz
law holds at low temperature. Then, it is natural to ask to what
extent the Sommerfeld approximation is valid. To do so, we com-
pare the results of Eqs. (3.15) and (3.17), i.e., the exact calculation at
kBT0 = 0.01E0, with Eqs. (3.16) and (3.18), which are valid at very
low temperature. The difference between the exact and Sommerfeld
calculation of the thermoelectric conductance is shown in the inset of
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Figure 3.7: Thermopower as a function of the base temperature for
both the exact calculation and the lowest order Sommerfeld approxi-
mation. Parameters: EF = E0, L = 3.5L0 and α = 1.7α0. The inset
presents a comparison between the exact calculation of the thermo-
electric conductance and the Sommerfeld result as a function of the
Fermi energy. Parameters of the inset: kBT0 = 0.01E0, L = 3.5L0

and α = 1.7α0.

Fig. 3.7. At low energies, EF /E0 < 0.1, there exists a small deviation
between the exact curve and the Sommerfeld result. This confirms
that the Sommerfeld expansion is no longer valid when EF ∼ kBT0.
The main panel of Fig. 3.7 presents the deviation of the Sommer-
feld calculation (dashed line) for the Seebeck coefficient compared
with the exact value (solid line) as a function of the background tem-
perature. In the Sommerfeld expansion, S depends linearly with T0

as shown in Eq. (3.19). Therefore, for high temperatures such that
kBT0/EF > 0.1 the Sommerfeld approximation is not valid.

We end this section considering the spin Seebeck coefficient SS
given by Eq. (2.30). For normal leads the spin Seebeck is identically
zero since the system is nonmagnetic and the spin polarization is
not possible. We consider in the next section a 2DES coupled to
ferromagnetic leads, a system where SS does not necessarily vanish.
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3.4 Ferromagnetic contacts

The case of ferromagnetic contacts is relevant for spin-injection prob-
lems in ferromagnet-semiconductor junctions (see Sec. 1.1). We de-
scribe the contacts with the Stoner-Wohlfarth model for itinerant fer-
romagnetism. The electronic bands for opposite spins become split
due to exchange interaction between carriers. Then, the Hamitonian
reads

H∆(x) = ∆(x) n̂ · ~σ + |∆(x)| , (3.20)

where n̂ is the magnetization direction in which the leads are polar-
ized, ~σ is the spin vector and ∆(x) is the Stoner splitting, which is
finite in the x-positions of the leads only. For metallic electrodes,
∆ is of the order of a few eV, introducing serious conductivity mis-
maches at the junction [88], a problem which can be mitigated using
tunnel barriers [89]. For the present discussion, it is more convenient
to consider spin injectors made of diluted magnetic semiconductor
compounds, which show giant Zeeman splittings ∆ up to 20 meV
for moderate values of external magnetic fields [90]. For definiteness,
we consider in Eq. (3.20) an energy shift |∆(x)| that eases the spin
transport analysis. In particular, this shift eliminates the effect of a
potential mismatch and can be experimentally implemented with a
potential gating of the central region.

In the same way of the piecewise constant function α(x) in Sec. 3.1,
we take a uniform ∆(x) in each of the three parts of our system:
nonzero ∆c in the contacts and vanishingly small ∆ in the 2DES.
For the numerical implementations, the interfaces are described with
slightly smoothed functions, as explained in App. D. We investigate
two different orientation schemes: parallel (P) and antiparallel (AP)
configurations as sketched in the insets of Fig. 3.8. The case of parallel
polarization corresponds to ∆` = ∆r ≡ ∆ whereas the antiparallel
case results from ∆` = −∆r ≡ ∆, where ∆ is half of the absolute
Zeeman splitting. In what follows, we take the polarization in the
x-direction: n̂ · ~σ = σx. Thus, we define a potential in the leads,

vs(x) = s∆(x) + |∆(x)| , (3.21)

where s = ± labels the spin in the x-direction. Then, for the P
configuration the electrons with s = + (minority spins) are confined
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by a potential well of width d (the separation between contacts, see
App. D) while those with s = − feel no potential as they travel (ma-
jority spins). In the AP configuration, both types of carrier experience
a potential step but localized in opposite contacts. Due to the differ-
ing potential landscapes, we expect strong changes as compared with
the nonmagnetic case treated in the previous sections.

The dispersion relation on the contacts generalizes Eq. (1.34) con-
veniently modified to account for the Stoner field:

E =
~2K2

cs

2m∗
+ s∆c + |∆c| . (3.22)

Importantly, the total momentum Kcs now depends on both the con-
tact and the spin. As a consequence, since the q-momentum remains
invariant, we find

K2
cs = k2

cs + q2 =
2m∗

~2
(E − s∆c − |∆c|) . (3.23)

The channel amplitude equation expressed in Eq. (3.3) keeps the
same form, with the only addition of the spin dependent poten-
tial vs(x) and the replacement k → kcs in the asymptotic condi-
tions Eq. (3.4). From the resulting expression we calculate the
new probability transmissions and obtain, finally, the total current
in the propagation direction which is the same as Eq. (3.14) replacing
K(E) → K`s(E). Here K`s(E) follows from Eq. (3.23) with c = `
taken for convenience (the current conservation condition I` + Ir = 0
is always fulfilled). The electric and thermoelectric conductances in
the limit of linear response are obtained in the same manner as in
Sec. 3.2. At very low temperature, they read

Gs = G0
1

2π
K`s(EF ) Ts(EF ) , (3.24a)

Ls =
k2
BT0π

2

3e

∂Gs
∂EF

, (3.24b)

In Fig. 3.8 we present the total electric conductance, G = G+ +
G−, as a function of EF . We distinguish between P (a) and AP (b)
polarizations of the magnetic leads. Consider first the case without
spin-orbit interaction (α = 0). For parallel orientation the major-
ity electrons are not scattered back while the minority electrons feel
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Figure 3.8: Electric conductance as a function of the Femi energy for
P (a) and AP (b) polarizations along the x-direction at low temper-
ature. Solid and dashed curves represent the case with or without
spin-orbit interaction in the central region, respectively. The Stoner
field splitting ∆ = 10meV is taken as the energy unity. This way
L0 =

√
~2/(m∗∆) = 18.2 nm and α0 =

√
~2∆/m∗ = 182meV nm.

Parameter: L = 8L0.
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Figure 3.9: Spin components of the electric conductance for parallel,
(a) and (b), and antiparallel, (c) and (d), configurations as a function
of the Fermi energy at low temperature. Parameter: L = 8L0.

a potential well of depth 2∆. Then, when EF < 2∆ we only have
one propagating spin channel, s = −, and the conductance is given
simply by the number of open channels, which scales ∝ E

1/2
F as dis-

cussed in Sec. 3.2. For EF > 2∆ the s = + propagating mode
becomes active. Thus, the v+ potential causes the transmission to
oscillate with energy. These oscillations are akin to the Ramsauer
oscillations in electron scattering [91]. This can be more clearly seen
in Fig. 3.9(a), which depicts the behavior separately for G+ and G−.
The majority spins contributes to G with a E1/2

F -dependent function
while the minority spins do not attain a nonzero G until EF > 2∆.
Above this energy threshold, the electrons with spin s = + lead to
smooth oscillations of G due to the Ramsauer effect. In the antiparal-
lel case [Fig. 3.8(b)], the conductance is zero below the energy thresh-
old EF = 2∆ for both spin indices, see Fig. 3.9(c), since s = −
electrons are reflected back from the step potential at the right junc-
tion according to Eq. (3.21) while electronic channels with s = + are
not active for EF < 2∆ due to the step potential at the left contact.

Turning on the spin-orbit potential alters the previous picture.
For energies below the threshold, Fig. 3.8 shows a different type of
oscillation independently of the leads’ magnetic orientation. These are
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due to resonant Fano interference between the propagating spins and
the quasibound states of opposite spins trapped between the polarized
contacts [85, 92]. Figure 3.9(b) shows that the Fano oscillations in the
P case are only possible for electrons with spin s = − since for EF <
2∆ the electrons s = + are evanescent states. At higher energies
the two modes become propagating states and the Fano oscillations
vanish. In the AP case, the oscillations also appear for EF < 2∆
but these are now due to electrons with s = − undergoing multiple
reflections between the junctions since minority electrons are inactive
for transport until EF = 2∆ [92].

Figure 3.10 shows the thermoelectric conductance as a function
of Fermi energy for both P and AP configurations. According to
Eq. (3.24b), L can be written as a function of the energy derivative
of the electric conductance. As a consequence, the Rashba induced
oscillations for α 6= 0 become largely amplified for EF < 2∆. Re-
markably, the L curves cross the horizontal axis, taking positive and
negative values, whereas the case α = 0 always gives L > 0. There-
fore, the combined influence of ferromagnetic leads and spin-orbit
interaction can drive the electronic current either from the hot to the
cold reservoir (as in the normal case, see Fig. 3.5) or, notably, from
the cold to the hot reservoir. The latter phenomenon is independent
of the relative magnetic orientation (parallel or antiparallel), the main
difference being that below the energy threshold the thermoelectric
conductance vanishes in the AP case α = 0, similarly to the electric
conductance [Fig. 3.8(b)]. Finally, for high energies L smoothly de-
cays to zero since the transmission becomes weakly energy dependent
for EF � ∆. This demonstrates that the spin-orbit interaction in 2D
spin transistors leads to stronger effects for energies lower than the
Zeeman splitting.

We depict in Fig. 3.11 the spin-resolved thermoelectric conduc-
tances. As expected, the large amplitude oscillations in the P case
arise in the majority spin channel only [Fig. 3.11(a)]. For α = 0 the
Ramsauer-like oscillations are visible above the energy threshold in
the minority channel [Fig. 3.11(c)]. In the antiparallel case, the ther-
moconductances obey L+ = L− and attain their highest value when
EF reaches ∆ because the transmission variation is largest at that
point, as both spin channels become propagating [Fig. 3.11(d)]. In
Fig. 3.11(b) the Ramsauer-like oscillations are also visible for EF >
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Figure 3.10: Thermoelectric conductance as a function of the Femi
energy for P (a) and AP (b) polarizations along the x-direction at low
temperature. Parameters: L = 8L0 and kBT0 = 0.01E0.
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Figure 3.11: Spin components of the thermoelectric conductance for
parallel, (a) and (c), and antiparallel, (b) and (d), configuration as a
function of the Fermi energy at low temperature. Parameters: L =
8L0 and kBT0 = 0.01E0.

2∆.

The thermopower obeys Eq. (2.29) but now Gn is replaced by
the Gs function calculated from Eq. (3.24a). In Fig. 3.12 we plot the
charge Seebeck coefficient S, for both P (a) and AP (b) configurations.
For α = 0, S is almost zero. Only for energies slightly higher than 2∆
we observe a dip that correlates with the thermoelectric conductance
peak observed in Fig. 3.10. In contrast to the normal case depicted
in Fig. 3.6, here S oscillates and changes its sign for EF < 2∆. This
indicates that at given temperature difference, depending on the value
of EF we can generate positive or negative thermovoltages. This
is a very interesting effect since without ferromagnetic contacts the
thermopower is always negative. We need to introduce both a Zeeman
spliting and a spin-orbit interaction to generate the sign oscillations
in S, which are more intense for AP configurations. We emphasize
that although thermopower sign changes can be detected in quantum
dots [93, 94] or molecular transistors [95], the effect discussed here
occurs in an extended 2D system.

To determine the spin Seebeck coefficient SS at low temperature,
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Figure 3.12: Seebeck, (a) and (b), and spin-Seebeck, (c) and (d),
coefficient as a function of the Fermi energy for both P and AP con-
figurations of leads’ magnetic moments pointing along the x direction.
Solid and dashed curves represent the cases with and without Rashba
coupling in the central region, respectively. Parameters: L = 8L0 and
kBT0 = 0.01E0.

we introduce Eq. (3.24) in Eq. (2.30), obtaining

SS = −S0
kBT0π

2

3

(
∂ lnG+

∂EF
− ∂ lnG−

∂EF

)
, (3.25)

where the Gs function is given by Eq. (3.24a). Here, the spin indices ±
follow the quantization axis established by the leads’ magnetization,
i.e., the x-direction. Unlike the normal case, we now expect nonzero
values of SS since, quite generally, G+ 6= G−. Figure 3.12(c) shows
the results for the parallel configuration in the case with (solid line)
and without (dashed line) Rashba interaction. We observe that for
α = 0 the spin Seebeck coefficient presents a smooth behavior and
only at energies slightly larger than 2∆ the Ramsauer-like oscillations
arise.

When the Rashba coupling is active, SS changes its sign alter-
natively for EF < 2∆. This indicates that at fixed value of ∆T
depending on EF we can generate a positive or negative spin voltage
VS . The case for the AP configuration is plotted in Fig. 3.12(d). For
zero Rashba coupling SS = 0 since the spin components of the elec-
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Figure 3.13: Magneto-Seebeck coefficient as a function of the Fermi
energy at very low temperature. The solid and dashed curves repre-
sent the cases with and without spin-orbit interaction in the central
region, respectively. Parameters: L = 8L0 and kBT0 = 0.01E0.

tric and thermoelectric conductance are equivalent, see Figs. 3.9(c)
and 3.11(d). With nonzero value of α we recover the oscillations for
EF < 2∆, with an amplitude larger than for the charge case [Fig-
ure 3.12(b)]. The oscillations in SS are more intense for the AP
than for the P configuration. It is due to a spin valve effect, i.e., for
EF < 2∆ we do not find any active channel for the AP configura-
tion, while for the P configuration the mode s = − is open. Hence,
for EF < 2∆ the electric conductance takes lower values for the AP
configuration than for the parallel one. As a consequence, SS , which
is inversely proportional to G, attains higher values.

As we have mentioned in the introduction (Sec. 1.2) the magneto-
Seebeck effect is a spintronic phenomenon that gives rise to changes
in the thermopower of a magnetic junction upon switching the leads’
magnetic moments [26]. In Fig. 3.12(a) and (b) we found that the
thermopower significantly changes during the transition from P to
AP configurations. Then, it is natural to quantify this departure by
defining the magneto-Seebeck coefficient SMS as

SMS = SP − SAP , (3.26)

where SP and SAP are the thermopower in the parallel and an-
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tiparallel configuration, respectively. Figure 3.13 shows the magneto-
Seebeck coefficient as a function of the Fermi energy for α = 0 (dashed
line) and α 6= 0 (solid line). When the Rashba coupling is absent, SMS

is closer to zero and only for energies slightly exceeding 2∆ a peak
arises since the two spin channels are open and we have an increase
of the electric conductance. Conspicuously, for a finite value of α the
magneto-Seebeck coefficient presents oscillations and sign changes,
much like the thermopower oscillations discussed above. This sup-
ports the suggestion that the charge thermopower can be controlled
by changing the relative magnetization orientation. While the exper-
iment reports sign changes of SMS as a function of the base tempera-
ture [26], we here predict a similar effect by tuning the Fermi energy
of the 2DES device.

3.5 Conclusions
In this chapter we have found that for nonferromagnetic contacts the
charge Seebeck coefficient behaves similarly to the graphene device
studied in Chapter 2. The thermopower is always negative and only
at low energies the transport term Str shows a stronger effect due to
potential scattering. Additionally, we have observed thermopower os-
cillations when we tune the Rashba strength or the length of central
region. However, in contrast to graphene (Chapter 2), we have not ob-
served spin polarization in the electric or thermoelectric conductance
because of the different naature of the spin-orbit coupling in both sys-
tems. Only for ferromagnetic contacts we obtain spin polarizations
in a 2DES. Further, when we introduce ferromagnetic contacts, the
charge thermopower is an oscillating function of the Fermi energy and
change its sign. These sign changes suggest the possibility of control-
ling the thermocurrent direction using a gate that tunes the Fermi
energy. Moreover, we have observed that S depends on the relative
orientation of the leads’ magnetization and, as a consequence, we have
studied the magneto-Seebeck ratio which also shows sign changes.

Although the injection and detection of spin polarized currents
is possible attaching ferromagnetic terminals to the semiconductor
channel and employing nonlocal voltage detection, the spin-injection
efficiency between dissimilar materials tends to be low. An interesting
alternative is presented in Chapter 4 where we will use a pair of quan-
tum point contacts (QPCs) working as spin injectors and detectors.
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As we have mentioned in Chapter 3, here we will study the trans-
port properties of a really interesting system which is fully nonmag-
netic (neither ferromagnetic contacts nor external magnetic fields are
needed for its operation principle) and relies on a semiconductor-only
structure1. We consider a semiconductor layer with a Rashba spin-
orbit interaction in the central region and a pair of quantum point
contacts (see Sec. 1.3.2.2) that works as spin injectors and detec-
tors [8, 9]. The electric confinement in the point constrictions leads
to an effective magnetic field that polarizes the electrons in directions
perpendicular to the spin-orbit field present in the central channel.
Nonmagnetic spin transistors are attractive devices and have been
pursued in different proposals [96–101].

We are interested in observing the interplay between Fabry-Perot
and Datta-Das oscillations. We consider the case when the conduc-
tance of both quantum point contacts is set below the value corre-
sponding to a fully open mode. Then, the waveguide potentials can
be described as tunnel barriers and transport across them occurs via
evanescent states [70, 102]. Effectively, the system electronic potential
is globally seen as a double barrier with a quantum well of variable
depth. It is well known that these potential landscapes in general
support the presence of resonant scattering due to Fabry-Perot-like
oscillations arising from wave interference between the tunnel barri-
ers. But at the same time we have spin-orbit induced oscillations due
to the precession of spins traveling between the barriers. Therefore,
one would naturally expect a competition between resonant tunnel-
ing and spin precession oscillations in a system comprising two serially
coupled QPCs. Below, we show that this is indeed the case and that

1The contents of this chapter are based on M. I. Alomar, Llorenç Serra and
David Sánchez, Phys. Rev. B 94, 075402 (2016).
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the combination of both oscillation modes leads to rich physics not
only in the strictly one-dimensional case but also when more realistic
samples with a finite transversal width are studied.

The subject of resonant tunneling effects and spin-orbit fields has
been investigated in a number of works giving rise to interesting pre-
dictions. For instance, Voskoboynikov et al. find that the transmis-
sion probability significantly changes in the presence of the Rashba
coupling [103] while de Andrada e Silva et al. obtain spin polarizations
for an unpolarized beam of electrons impinging on a double-barrier
nanostructure [104]. Koga et al. analyze spin-filter effects in triple
barrier diodes [105] whereas Ting and Cartoixà examine the double
barrier case [106]. The dependence of the electronic tunneling on the
spin orientation is treated by Glazov et al. [107]. These structures
suffer from phase-breaking effects, as shown by Isić et al. [108].

As in previous chapters we consider a purely ballistic system where
scattering is elastic and the transmission probabilities are determined
within the quantum scattering approach. Scattering can take place at
the interfaces between the quantum point contacts and the quantum
well or due to interaction between the spins and the spin-orbit interac-
tion. Importantly and in contrast to previous works investigating spin
transistor transport properties, the spin-dependent transmission de-
pends on the relative angle between the spin-orbit fields in the QPCs.
This is an excellent property that allows us to tune the spin direction
of the electrons impinging on the quantum well [109]. For a null rela-
tive angle, within a pure one dimensional model we find that whereas
the spin-conserving transmission shows resonant tunneling peaks as
a function of the spin-orbit strength the spin-flip transmission always
vanishes.

Furthermore, for both types of transmissions the spin precession
oscillations as a function of the spin-orbit strength in the quantum
well appear only when the QPCs have effective spin-orbit magnetic
fields with an angle that differs from the spin-orbit coupling in the
well. This effect can be also seen when the quantum well length
is varied. However, we point out that the QPCs have an additional
effect as tunnel barriers that lead to Fabry-Perot resonances which can
compete with the Datta-Das oscillations in the transmission curves
yielding quasiperiodic patterns. Now, since a realistic sample has
a finite width, we also consider a quasi-one dimensional system, in
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Figure 4.1: Pictorial representation of our system. A semiconductor
layer (light gray) with metallic electrodes (blue) shows two quantum
point contacts in a series (QPC1 and QPC2) and a two-dimensional
cavity in between (QW). The spin-orbit coupling differs in each area
(α1 and α2) due to distinct electric fields applied to the electrodes
(lateral in the metallic electrodes, perpendicular in the QW). L1 and
L correspond to the width of QPCs and central region, respectively.

which case the spin-orbit intersubband coupling potential must be
also taken into account. Remarkably, we find that our results derived
from the one-dimensional model are also observable in two dimensions
for moderately low values of the spin-orbit strength. This implies that
the oscillation interplay discussed here can be probed with today’s
experimental techniques.

4.1 Theoretical model

We consider a semiconductor layer partitioned into five different re-
gions as in Fig. 4.1: two reservoirs, two QPCs and a quantum well
(QW). The blue areas are gate electrodes that form constrictions in
the QPC1 and QPC2 between the left and right reservoir and the
central well. We take x as the transport direction. The spin-orbit
potentials acting on the QPCs (both with strength α1) and the QW
(strength α2) are in general different [109]. Thus, our Hamiltonian
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reads

H = H0 +HSO1 +HSO2 , (4.1a)

H0 =
p2
x + p2

y

2m∗
+ V (x, y) , (4.1b)

HSO1 =
α1

~

(
(~σ × ~p)z cosφ+ (~σ × ~p)y sinφ

)
, (4.1c)

HSO2 =
α2

~
(~σ × ~p)z , (4.1d)

where H0 represents the free part of the total Hamiltonian H, with
pi = −i~∂/∂i (i = x, y) the linear momentum operator and m∗ the
conduction-band effective mass of the electrons in the semiconductor
heterostructure. V (x, y) confines electrons in the (transversal) y di-
rection and includes in x two identical constrictions that define an
intermediate region (the cavity or well) of length L. The spin-orbit
terms of H are HSO1 and HSO2, where the first (second) is active on
the QPCs (QW) only. Here, ~σ = (σx, σy, σz) and ~p = (px, py, 0) are
the Pauli matrices and the momentum vector, respectively. In the
central region, the α2 spin-orbit field [Eq. (4.1d)] arises from the con-
fining electric field perpendicular to the QW plane (the z-direction
see our discussion in Sec. 1.3.2.1). In the constrictions, there exists
in the α1 spin-orbit potential [Eq. (4.1c)] an additional contribution
from the lateral electric field applied to the QPCs along y. This
field couples asymmetrically to the electrodes in Fig. 4.1 (blue ar-
eas) and, as a consequence, a high spin-orbit interaction emerges in
the QPCs, as experimentally demonstrated in Refs. [8, 109]. The
spin-orbit strength can be further enhanced by electron-electron in-
teractions, doping potentials or exchange correlations [110, 111]. Our
goal is not to describe these effects microscopically but rather focus
on the transport properties. Hence, we lump these effects into the
parameter α1, which can be tuned with the lateral electric field [8].

A convenient way of quantifying the strength of the two different
components present in the QPCs (due to either lateral or perpendic-
ular electric fields) is with the definition in Eq. (4.1c) of the angle φ.
Therefore, we can turn off the lateral contribution by setting φ = 0
in which case HSO1 and HSO2 are identical except for the spin-orbit
strength. For φ = π/2 the lateral electric field contribution to the
spin-orbit potential dominates over that of the perpendicular elec-
tric field. Thus, the ensuing spin-orbit field in HSO1 is orthogonal to
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that in HSO2. This ability to manipulate the orientation of the spin-
orbit fields is crucial for the working principle of our system and has
been proven in the experiments reported earlier [109]. It is a prop-
erty that makes this device unique and that is absent from previous
spin transistor studies. Another advantage of the QPCs is to reduce
the wavevector spread of injected electrons in contrast to extended
interfaces [96]. Spin injection and detection with QPCs have been
discussed in Refs. [112, 113] in the context of ballistic spin resonance.
Here, we do not consider any external magnetic field and all the spin
dynamics originates from the effective magnetic fields due to the spin-
orbit interactions present in the system, which makes our system an
all-electric spin transistor.

4.2 One-Dimensional case

Let us for the moment disregard transverse channel effects and con-
sider a purely one-dimensional model. We expect that this is a good
approximation when the point contacts support evanescent states
only. We will later discuss the more realistic case where the elec-
tronic waveguides have a nonzero transversal width. In this limit we
describe the QPCs electrostatic potential, V (x, y), with a double tun-
nel barrier of width L1 and height V0 and the in-between cavity with
a quantum well of length L and bottom aligned with that of the reser-
voirs energy bands, see the sketch in Fig. 4.2. We then set py = 0 in
Eq. (4.1a). Since the potential is piecewise constant, the eigenstates
of H are readily found for the five regions defined in Fig. 4.2:

Ψ0
`s(x) ≡ ΨI

`s = ΨV
`s =

1√
2

( √
1 + s sinφ

−is
√

1− s sinφ

)
eik

(0)
` x, (4.2a)

Ψ1
`s(x) ≡ ΨII

`s = ΨIV
`s =

1√
2

( √
1 + s sinφ

−is
√

1− s sinφ

)
eik

(1)
`s x, (4.2b)

Ψ2
`s(x) ≡ ΨIII

`s =
1√
2

(
1
−is

)
eik

(2)
`s x, (4.2c)

where s = ± is the spin index. For instance, s = + corresponds to an
electron with a spin pointing along −y in the quantum well. We also
label the states with the index ` = ±, which denotes the two possible
momenta (i.e., the two possible wave propagation directions) for fixed
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Figure 4.2: Energy diagram of our system. The QPCs are described
with barrier potentials of height V0 and width L1 whereas the size of
the central region is denoted with L. We also plot the energy spectra
in each region. Due to the spin-orbit coupling the band structure
undergoes a spin splitting and an energy downshift ESO.

values of spin and energy E. The wave numbers read,

k
(0)
` ≡ k

I
` = kV` = `

√
2m∗

~2
E , (4.3a)

k
(1)
`s ≡ k

II
`s =kIV`s = `

√
2m∗

~2
(E + ESO1 − V0)− s kSO1 , (4.3b)

k
(2)
`s ≡ k

III
`s = `

√
2m∗

~2
(E + ESO2)− s kSO2 , (4.3c)

with ESOi = m∗α2
i /(2~2) (i = 1, 2) the downshift of the energy spec-

tra due to the spin-orbit coupling, which also causes a horizontal band
splitting ∆k characterized by the momentum kSOi = m∗αi/~2. Equa-
tions (4.3a), (4.3b), and (4.3c) depend on the energy of the incident
electrons, which in the following we set equal to the Fermi energy EF .
Finally, we observe that both Eqs. (4.2a) and (4.2b) have the same
spinor. Since the spin quantization axis in the reservoirs is not fixed,
we select it parallel to the spin direction on the adjacent QPCs.

We are now in a position to solve the scattering problem in Fig. 4.2.
We focus on the case 0 < E < V0 − ESO1. This indicates that we
are working with evanescent states in the QPC regions (II and IV).
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Hence, k(1)
`s acquires an imaginary part but generally also possesses a

real part. We emphasize that this differs from the case of tunnel bar-
riers without spin-orbit coupling [70]. On the other hand, both k(0)

`s

and k(2)
`s are always real numbers. The matching method allows us to

determine all reflection and transmission amplitudes for an incoming
electron, which we take as impinging from the left. The matching
conditions are

Ψ(ε)−Ψ(−ε) = 0 (4.4a)

Ψ′(ε)−Ψ′(−ε) =
−im∗

~2

[
−
(
α2(ε)− α2(−ε)

)
σy

+
(
α1(ε)− α1(−ε)

)(
sinφσz − cosφσy

)]
Ψ(ε) , (4.4b)

where ε is a infinitesimal quantity around each interface. Equa-
tion (4.4a) is a statement of wave function continuity. Equation (4.4b)
is derived from imposing flux conservation [114]. Notice that in the
absence of spin-orbit interaction we recover the condition of conti-
nuity for the wave function derivative. In the presence of spin-orbit
coupling, this condition must be generalized according to Eq. (4.4b).

Since transport is elastic, energy is conserved and the transmission
T s
′s and reflection Rs′s probabilities depend on a given E. However,

spin can be mixed after scattering and an incident electron with spin
s is reflected or transmitted with spin s′. First, we analyze in Fig. 4.3
the main properties of T s′s and Rs′s when we change the relative ori-
entation between the QPCs and the QW spin-orbit fields. We choose
the strength of the interaction in the QPCs (α1) and in the QW (α2)
from Ref. [109]. We tune φ from 0 (spins parallel-oriented along the
system) to π/2 (spin axes perpendicularly oriented). In Fig. 4.3(a)
we observe that, independently of the value of φ, the electrons are
reflected in the same spin state that the incoming one and that the
reflection probability is roughly constant as a function of φ. We under-
stand this effect as due to the spin orientation of electrons in regions
I and II of Fig. 4.2, which is the same. In contrast, the transmission
probability has both spin contributions for all values of φ except for
the parallel configuration, for which T−+ = 0 since there exists no
spin polarization. We also remark that as φ increases, i.e., as the
injected spin direction is rotated from −y to z, T−+ increases while
T++ decreases since for higher φ the perpendicular component of the
spin direction becomes larger and its contribution to the transmission
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Figure 4.3: Transmission and reflection probabilities as a function
of the relative angle φ between spin-orbit fields in the QPC and the
QW. T s′s (Rs′s) in the transmission (reflection) probability from an
electronic state of spin s = ± to spin s′ = ± along the −y direction.
Parameters (a): α1 = 20.16 meV nm, α2 = 25.18 meV nm, L =
440.83 nm, L1 = 28.02 nm, V0 = 4.94 meV and EF = 4 meV. In (b)
we remove the tunnel barriers (L1 = 0). In (c) [(d)] we cancel the
spin-orbit interaction in the QPCs (QW): α1 = 0 (α2 = 0).

thus increases.
Let us further clarify the effects discussed above considering a few

special cases. If we make L1 = 0 (no tunnel barriers), the reflection
probability is trivially zero, see Fig. 4.3(b), and the transmission func-
tions follow the same behavior as in Fig. 4.3(a) for which L1 is nonzero.
In Fig. 4.3(c) we observe that if we turn off the spin-orbit coupling on
the QPCs (α1 = 0), the transmission decreases as compared with the
values in Fig. 4.3(a). As a consequence, we infer that the spin-orbit
coupling enhances the transmission properties of our double-barrier
system. This may seem counterintuitive—when the spin-orbit interac-
tion is present, one would naively expect more scattering and smaller
transmission. However, we stress that the spin-orbit coupling lowers
the energy band bottom of the barrier, thus amplifying the role of the
evanescent states (their characteristic decay length increases) and re-
ducing consequently the reflection probability. Finally, when we take
α2 = 0 (no spin-orbit interaction in the quantum well) all transport
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coefficients become independent of the angle φ [Fig. 4.3(d)] since the
spin orientation in the central region is fixed. Furthermore, the re-
flection becomes higher due to the particular energy value, which lies
around a resonance valley (see below).

Before proceeding, we notice that the case φ = 0 can be consider-
ably simplified. The second term in the right hand side of Eq. (4.1c)
cancels out and we can write the projection of the Schrödinger equa-
tion (H − E)Ψ = 0 onto the spinor pointing along the −y direction
as (

− ~2

2m∗
d2

dx2
− is (α1 + α2)

d

dx
+ V0 − E

)
Ψs(x) = 0 , (4.5)

where α1 and V0 are nonzero in regions II and IV whereas α2 is nonva-
nishing in region III only (Fig. 4.2). Now, using a similar gauge trans-
formation as in Chapter 3 [see Eq. (3.8)]: Ψs(x) = Ψ(x) exp[−ism∗~2∫
dx′(α1 + α2)] we can recast Eq. (4.5) as(

− ~2

2m∗
d2

dx2
+ V1 − V2 − E

)
Ψ(x) = 0 , (4.6)

which is independent of the spin. Here, V1 = V0 − ESO1 in regions
II and IV and zero otherwise while V2 = ESO2 in region III. This
potential corresponds to a double barrier of renormalized height V1

and a quantum well of depth V2 in the central region. Clearly, the
spin-orbit coupling effectively lowers the top of the barrier potential as
discussed earlier. Solving the scattering problem, we obtain a resonant
condition that depends on all the parameters of our system,

k
(2)
`s L = nπ + f(α1, α2, L1) , (4.7)

where k
(2)
`s is the wave number in the central region [Eq. (4.3c)],

n = 1, 2 . . . labels the different resonances and f(α1, α2, L1) is a com-
plicated function of α1, α2 and L1 but independent of the QW length.
The condition given by Eq. (4.7) can be numerically shown to hold
also for the general case φ 6= 0. However, in this case spin precession
effects must be also taken into account.

Figure 4.4 shows how our system reacts to changes applied to the
spin-orbit strength in the central region, α2. The parallel configu-
ration (φ = 0) is plotted in Fig. 4.4(a), where we observe resonance
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Figure 4.4: Transmission probabilities as a function of the spin-orbit
strength in the central region, α2, for α1 = 20.16 meV nm, L =
440.8 nm, V0 = 4.94 meV and EF = 4 meV. The left panels (a), (c)
and (e) have L1 = 28.02 nm while the right panels (b), (d) and (f)
have L1 = 0. The orientation angle is varied from top to bottom:
φ = 0 for (a) and (b), φ = π/4 in (c) and (d), φ = π/2 for (e) and (f).

peaks for certain values of spin-orbit interaction and a fixed Fermi en-
ergy. As the spin-orbit coupling increases, the quantum well becomes
deeper and, as a consequence, there appear new quasibound states
between the two barriers that fulfill Eq. (4.7). When the energy of
the incident electron hits one of these states, the transmission prob-
ability is maximal. Therefore, the spin-orbit interaction acts in our
system as a gate voltage by shifting the resonances of the quantum
well [115]. Our system then behaves as an analog of a Fabry-Perot
resonator tuned with a spin-orbit potential. Note that the resonances
appear for T++ only since for φ = 0 the spins are parallel and one
obtains T−+ = 0 always. This can be better understood if we take
L1 = 0, in which case the double barrier potential disappears and we
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obtain an almost transparent system independently of the depth of
the quantum well [Fig. 4.4(b)]. Here, the energy of the electron is
sufficiently high that its wave is mostly unaffected by the well discon-
tinuity. Only for strong enough spin-orbit strengths the transmission
shows weak oscillations (Ramsauer effect). We also find that the off-
diagonal transmission coefficient is zero. This originates from the fact
in the parallel configuration the spin cannot be flipped, in agreement
with the case φ = 0 in Fig. 4.3(d).

In Figs. 4.4(c) and (d) we take φ = π/4, i.e., the wave is spin polar-
ized 45o with respect to −y. Let us first eliminate the double-barrier
potential (L1 = 0) and focus on the effects from the central region
only, see Fig. 4.4(d). We observe that both T++ and T−+ are nonzero
and oscillate out of phase. These oscillations are a consequence of the
spin transistor effect predicted by Datta and Das [10], see Sec. 1.1.
We find T++ = 1 and T−+ = 0 for α2 = 0 but then both transmis-
sions become modulated as we increase the spin-orbit strength since
the QW energy bands show a larger spin splitting ∆k = m∗α2/~2.
For certain values of α2, T++ (T−+) attains its minimum (maximum)
value of 0.5. Importantly, the nature of these transmission oscillations
fundamentally differs from the resonances in Fig. 4.4(a). To see this,
we next obtain the spin-precession frequency from the relation [10]

T++ ∝ cos2(∆kL) (4.8)

This expression implies that the maximum condition is reached at
∆kL = n′π (n′ = 1, 2 . . .). For the parameters of Fig. 4.4(d) this
corresponds to α2 ' 13.6n′ meV nm.

More interestingly, we now turn on the double barrier potential
and allow for the interplay between Fabry-Perot and Datta-Das oscil-
lations. The superposition of the two effects can be seen in Fig. 4.4(c).
We observe that (i) the resonance peaks for T++ become somewhat
quenched and (ii) the off-diagonal coefficient T−+ shows an irregular
series of oscillating peaks. The effect is more intense in the perpen-
dicular configuration (φ = π/2), see Fig. 4.4(e). Both transmissions
oscillate now between 0 and 1 with opposite phases [Fig. 4.4(f)] and
the combination of both types of oscillations yields the curves depicted
in Fig. 4.4(e).

It is now natural to ask about the effect of tuning the QW length
L. We show this in Fig. 4.5 for the same orientation angles as in
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Figure 4.5: Transmission probabilities as a function of the central
region width, L, for α1 = 20.16 meV nm, α2 = 25.18 meV nm, V0 =
4.94 meV and EF = 4 meV. The left panels (a), (c) and (e) have
L1 = 28.02 nm while the right panels (b), (d) and (f) have L1 = 0.
The orientation angle is varied from top to bottom: φ = 0 for (a) and
(b), φ = π/4 in (c) and (d), φ = π/2 for (e) and (f).

Fig. 4.4 but fixing the spin-orbit strength α2. When φ = 0, Fig. 4.5(a)
presents for T++ narrowly spaced oscillations since as we increase the
width of the central cavity there appear more internal modes that,
at fixed values of L, are resonant with the incident wave (Fabry-
Perot effect). The resonant condition from Eq. (4.7) implies that
the transmission is peaked at L ' (47.5n + 8.3) nm (n = 1, 2 . . .).
For φ = 0 spin flipping is not possible and T−+ = 0. When the
constrictions are turned off (L1 = 0), we have a completely open
system and the transmission stays constant at its maximum value,
see Fig. 4.5(b). As we increase the spin orientation angle [φ = π/4
in Figs. 4.5(c) and (d) and φ = π/2 in Figs. 4.5(e) and (f)], the spin
transistor effect begins to contribute as we observe a spin precession
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for both T++ and T−+, modulated by their characteristic frequency,
namely, L ' 237.6n′ nm (n′ = 1, 2 . . .). We find that when L1 = 0 (no
tunnel barriers) the Fabry Perot resonances disappear and only the
Datta-Das oscillations are present [Fig. 4.5(d) and (f)], as expected.

Remarkably, when both oscillation modes are present we find
that the transmission becomes quasiperiodic [Fig. 4.5(c) and (e)].
This effect arises from the combination of at least two oscillations
whose characteristic frequencies are incommensurate [116]. In our sys-
tem, the Fabry-Perot frequency is given by fFP = 1

π

√
2m∗

~2 E + k2
SO2

whereas that of the spin precession motion is expressed as fsp =
2kSO2/π. Clearly, its ratio fFP /fsp is quite generally an irrational
number. In related systems, quasiperiodic oscillations have been pre-
dicted to occur in double quantum dots with incommensurate capac-
itance couplings [117] and in ac-driven supelattices where the ratio
between the ac frequency and the internal frequency is not a rational
number [118]. Importantly, in our case the origin of both oscillations
is purely quantum (wave interference and spin precession).

4.3 Quasi-one dimensional case

The above discussion demonstrates that two types of transmission os-
cillations can coexist in a double-barrier spin-orbit coupled resonant
tunneling diode. However, the results were strictly limited to the 1D
case. We now consider the more realistic situation of a double QPC
embedded in a quantum wire of finite width. The problem is not
a mere extension that takes into account transverse channels since
these channels become coupled via the Rashba intersubband mixing
potential. This term causes spin-flip transitions between adjacent
channels and generally destroys the spin coherent oscillations [119].
Furthermore, it yieds Fano lineshapes [85] that dramatically alter the
conductance curves [85, 120–122, 115]. We note that there exists
another type of intersubband spin orbit coupling potential that oc-
curs in coupled wells with two subbands [123]. Here, we consider the
case of an intense confinement in the growth direction such that only
the lowest subband is populated. We consider the planar waveguide
formed in a 2D electron gas lying on the x–y plane as in Fig. 4.1.
This system was also studied in Chapter 3. The difference is that
here we consider QPCs as spin injector and detector. In the numeri-
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Figure 4.6: Sketch of the double quantum point contact system with
a finite width Ly. Electrons can move in the white areas whereas
forbidden regions are depicted in grey. The height of the constriction
barriers is L0

y. The rest of the parameters are defined as in the purely
1D case (Fig. 4.2).

cal simulations, we consider a hard-wall confinement potential along
y and two square QPCs in the x direction. The system parameters
are depicted in Fig. 4.6.

We take a given quantization axis n̂ for the spin in the left and
right contacts. The spin eigenfunctions are then denoted with χs(η),
with s = ± the eigenstate label and η =↑, ↓ the discrete variable. The
full wave function Ψ(x, y, η) is expanded in spin channels ψs(x, y) as

Ψ(x, y, η) =
∑
s=±

ψs(x, y)χs(η) . (4.9)

Projecting the Schrödinger equation on the spin basis, we obtain cou-
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pled channel equations,(
−~2∇2

2m
+ V (x, y)

)
ψs(x, y)

− i~
2

∑
s′

〈s|σy|s′〉
(
VA(x)

∂

∂x
+

∂

∂x
VA(x)

)
ψs′(x, y)

− i~
2

∑
s′

〈s|σz|s′〉
(
VB(x)

∂

∂x
+

∂

∂x
VB(x)

)
ψs′(x, y)

+
i~
2

∑
s′

〈s|σx|s′〉VA(x)
∂

∂y
ψs′(x, y) = 0 , (4.10)

where the potentials VA(x) and VB(x) are responsible for the coupling
between the different spin channels s = ±. In general, the Pauli-
matrix elements in Eq. (4.10) depend on n̂. To connect with the 1D
case discussed in Sec. 4.2 we take n̂ = −ŷ, which makes the σy term
diagonal, but those with σx and σz remain non diagonal. Coupling
between opposite spin states is, therefore, always present in the quasi-
1D case when (VA, VB) 6= 0 [52, 124].

In Eq. (4.10) the potentials VA and VB read

VA(x) = α1 cosφP1(x) + α2P2(x) + α1 cosφP3(x) , (4.11)
VB(x) = −α1 sinφP1(x)− α1 sinφP3(x) , (4.12)

where the projectors Pi(x) partition the x domain in regions i = 1
(left QPC), i = 2 (QW) and i = 3 (right QPC). These two potentials
yield qualitatively different spin-flip couplings, since VB only appears
with ∂/∂x, while VA appears with both ∂/∂x and ∂/∂y. As before,
φ is the angle defining the relative orientation of the Rashba fields.
Notably, VB(x) vanishes with φ = 0 and then, for quantization axis
along y, the only spin-flip coupling in Eq. (4.10) is via the last term
depending on ∂/∂y. To be effective, this spin-flip coupling requires
that at least two transverse modes (differing in the nodes along y)
are propagating in the asymptotic leads [85]. Otherwise, as we show
below, there is no spin-flip when n̂ lies along y.

Equation (4.10) is solved with the quantum-transmitting bound-
ary method [86] on a uniform grid. As discussed in Sec. 3.1 this algo-
rithm gives the transmission probability of an incoming electron from
the left to the right side. In Fig. 4.7 we show the transmission prob-
ability as a function of the middle spin-orbit strength α2. We recall
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Figure 4.7: Transmission probabilities for a quasi-one dimensional
double quantum point contact system as a function of the spin-orbit
strength in the central region, α2. Parameters: α1 = 20.16 meV nm,
L = 440.8 nm, L1 = 10.91 nm, L0

y = 39.29 nm, Ly = 87.29 nm and
EF = 4 meV. The left panels (a), (c) and (e) have L1 = 10.91 nm
while the right panels (b), (d) and (f) have L1 = 0. The orientation
angle is varied from top to bottom: φ = 0 for (a) and (b), φ = π/4
in (c) and (d), φ = π/2 for (e) and (f).

that the transmission is expressed in the −y direction basis. Similarly
to Fig. 4.4 we distinguish the case with the constrictions (left panels)
from the case without the QPCs (right panels). For φ = 0 [Fig. 4.7(a)]
we quench the spin precession oscillations since the injected spins are
parallel to the Rashba field. Then, the cross transmission T−+ van-
ishes identically. The resonant tunneling peaks qualitatively agree
with the 1D case [cf. Fig. 4.4(a)]. Likewise, the Ramsauer oscilla-
tions that arise when the QPCs are absent [Fig. 4.7(b)] are visible at
large values of α2 [cf. Fig. 4.4(b)]. The agreement in both cases is
good for small values of α2. This is reasonable since Rashba inter-
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subband coupling is negligible if α2 � ~2/mLy [10]. For larger α2 we
observe in Fig. 4.7(b) sharp dips that originate from the Fano-Rashba
effect [85] and that are unique to quasi-one dimensional waveguides
with nonuniform spin-orbit coupling as in our case. Strikingly enough,
as α2 increases we detect in Fig. 4.7(a) more resonant peaks than in
the strict 1D case. We explain this effect as follows. For α1 = α2 = 0
the cavity works as a resonator with multiple resonances. If the cavity
is closed, the bound levels can be described with a pair of natural num-
bers (n1, n2) since its potential corresponds to a 2D infinite well [125].
To a good approximation, the electronic scattering when the cavity is
open obeys a conservation law that fixes the transversal component of
motion [126]. Accordingly, n2 is conserved upon traversing the cavity
and the transmission shows less peaks than bound states in the closed
cavity. In the presence of spin-orbit coupling, the conservation law
does not have to hold and more resonances then emerge.

For φ = π/4 the injected electrons are spin rotated with regard to
the α2 field and spin precession oscillations of the Datta-Das type are
expected. This can be more distinctly seen in Fig. 4.7(d), where the
QPC widths are set to zero. Up to α2 ' 30 meV nm the oscillations
are smooth as in Fig. 4.4(d). For larger α2 the subband mixing po-
tential starts to play a significant role. As a consequence of the spin
mixing induced by the py term, the precession oscillations become ir-
regular [119] and the transmission curves can no longer be determined
by a single frequency. When combined with the Fabry-Perot oscilla-
tions, the transmission lineshapes are transformed into nonharmonic
functions of α2 [see Fig. 4.7(c)] and our previous 1D analysis in terms
of quasiperiodic oscillations does not hold. For completeness, we also
show the case φ = π/2 for which the Data-Das frequency is higher
(the spins are injected perpendicular to the Rashba field) but the spin
oscillations turn out to be nonuniform as α2 grows as illustrated in
Fig. 4.7(f). The overall transmission curves [Fig. 4.7(e)] qualitatively
follow the pattern observed in the case φ = π/4.

In Fig. 4.8 we analyze the dependence with the central cavity
width L. We set the spin-orbit strenght α2 to a moderate value to
highlight the effects due to the Rashba intersubband coupling term.
Figure 4.8(a) shows the transmission for L1 = 0 and φ = π/2. This
implies that only oscillations from the spin dynamics are present since
resonant tunneling effects are not allowed. Unlike Fig. 4.5(f) here
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Figure 4.8: Transmission probabilities for a quasi-one dimensional
double quantum point contact system as a function of the width
of central region, L. Parameters: α1 = 20.16 meV nm, α2 =
65.47 meV nm, L0

y = 39.29 nm, Ly = 87.29 nm and EF = 4 meV.
Additionally, we set in (a) L1 = 0 nm and φ = π/2, in (b) L1 = 10.91
nm and φ = 0, and in (c): L1 = 10.91 nm and φ = π/2.

the oscillations are not uniform for both transmission probabilities,
T++ and T−+. The Fabry-Perot peaks are more regular as shown in
Fig. 4.8(b), where L1 is nonzero and φ = 0 in order to forbid spin
precession oscillations. This suggests that the Rashba intersubband
potential has a stronger impact on the Datta-Das oscillations than on
the Fabry-Perot peaks. In Fig. 4.5(c) we show characteristic transmis-
sion curves for nonzero L1 and φ = π/2, in which case both oscillation
modes come into play. As compared to the 1D case in Fig. 4.5(e) the
oscillations are now more intricate: their amplitudes strongly fluc-
tuate with increasing L and their frequency cannot be described in
terms of combinations of individual frequencies.

In order to complete the analysis of our system we present in
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Figure 4.9: Transmission probabilities for a quasi-one dimensional
double quantum point contact system as a function of the position
of the Fermi level, EF . Parameters: α1 = 20.16 meV nm, α2 =
65.47 meV nm, L0

y = 21.82 nm, Ly = 87.29 nm and L = 440.8 nm.
Additionally, we set in (a) L1 = 0 nm and φ = π/2, in (b) L1 = 10.91
nm and φ = 0, and in (c): L1 = 10.91 nm and φ = π/2.

Fig. 4.9 the transmission probability as a function of the Fermi en-
ergy for the same parameters as above. In Fig. 4.9(a) we consider
the case without the QPCs (L1 = 0 nm) and apply a spin-orbit in-
teraction in the central region such that its direction lies orthogonal
to that of the leads (φ = π/2). We find an approximate transmission
quantization of T = T++ + T−+ (black line) whenever a new prop-
agating channel opens up as the Fermi energy surpasses the values
En = ~2π2n2/2m∗L2

y with n = 1, 2 . . . (recall that the confinement
along the transverse direction is described with a hard-wall poten-
tial). We also observe in Fig. 4.9(a) the spin dependence due to the
spin-orbit interaction in the middle region (solid red and dashed blue
lines). The Fabry-Perot peaks form when φ = 0 and L1 6= 0, see
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Figure 4.10: Seebeck coefficient as a function of the position of
the Fermi level, EF . Parameters: α1 = 20.16 meV nm, α2 =
65.47 meV nm, L0

y = 21.82 nm, Ly = 87.29 nm, L = 440.8 nm,
L1 = 10.91 nm, φ = π/2 and T0 = 1 K.

Fig. 4.9(b). Here, the transmission is zero until the Fermi energy is
such that the first propagating state is allowed in the leads, which
corresponds to EF > E1 = 1.23 meV. At the same time, in the QPCs
we have evanescent states below the energy value EQPC1 = 4.93 meV.
Then, the resonances ranging between these two energies are due only
to tunneling transmission across the QPCs. The second channel in
the leads opens up at E2 = 4.93 meV but the transmission does not
exceed 1 because we have just one open channel in the constrictions.
When the third channel in the leads opens up, EF > E3 = 11.10 meV,
we observe dips in the diagonal transmission probability which cor-
relate with peaks in the off-diagonal transmission. This effect orig-
inates from the coupling between propagating states in the system
and quasibound states in the cavity. Finally, Fig. 4.9(c) shows the
combination of Fabry-Perot peaks and Datta-Das oscillations when
the spin-orbit fields are perpendicular. Its behavior is similar to the
Fabry-Perot-Datta-Das oscillations discussed as a function of the spin-
orbit coupling [Fig. 4.7(e)] and cavity length [Fig. 4.8(c)].

Once we have studied the transmission probability in depth, it
is natural to ask what happens with the electric and thermoelectric
conductance and the Seebeck coefficient in analogy with the previous
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chapters. In the quasi-1D case the electric conductance is just e2/h
times the transmission probability [see Eq. (3.15)] while the thermo-
electric conductance can be written in terms of its energy derivative
[see Eq. (3.24b)]. Then, we expect that since T has share peaks as
we vary EF (see Fig. 4.9) the thermoelectric conductance will present
strong modulations. In order to summarize our results, we determine
the Seebeck coefficient from the Mott formula [see Eq. (2.29)] which,
taking into account that our system is nonmagnetic, can be written
as

S = −S0
kBT0π

2

3

∂ lnT

∂EF
, (4.13)

where S0 = kB/e.
In Fig. 4.10 we show S as a function of EF in the perpendicular

case for L1 6= 0 (solid line) and L1 = 0 (dashed line). The ther-
mopower obtained when the QPCs are not active (L1 = 0) is close
to zero from most of the EF values. Only at certain values of the
Fermi energy we observe small deviations. If we observe the dashed
line of Fig. 4.9(a), we note that it takes a constant value and only
increases its value when a new propagating channel opens up (these
are the same energies for which we observed deviations in S). Now we
include the QPCs (solid line in Fig. 4.10) and observe how S shows
dramatic sign changes at low energies. This is easy to understand if
we consider the fact that at these energies the transmission probabil-
ity has very narrow peaks that rapidly decay to zero [see Fig. 4.9(c)].
For higher energies the peaks and dips have lower amplitudes because
at this energies the transmission probability never reaches zero and
its variations are smoother.

4.4 Conclusions
In this chapter, we have studied the transport properties of a semi-
conductor layer with two quantum point contacts in series and a spa-
tially inhomogeneous spin-orbit interaction applied on the QPCs and
central region. In the strict one-dimensional limit, where we have a
double barrier potential modeling the two QPCs, we have observed
transmission oscillations as a function of the relative orientation be-
tween the QPC effective magnetic fields and the spin-orbit interaction
in the well, the strength of the spin-orbit coupling and the width of



106 Chapter 4. Nonmagnetic spin transistors

the middle cavity. We stress that, depending on the direction of the
spin polarization in the QPC regions, the transitions are dominated
by processes that conserve or flip the spin direction. We have also
analysed the combined effect of Datta-Das and Fabry-Perot oscilla-
tions and obtained their characteristic frequencies. We have found
that modifying the strength of the spin-orbit coupling and the width
of central region we can control the transmission probability for each
spin. Finally, our analysis of the quasi-one-dimensional case, is impor-
tant because it quantifies the role of spin-orbit intersubband coupling
effects in both the Fabry-Perot and the Datta-Das oscillation modes.



5. Interacting quantum capacitor

Real-time manipulation of electrons is one of the greatest achieve-
ments in modern nanoelectronics [127–129]. The characteristic setup
comprises a submicron-sized cavity or quantum dot (for a short in-
troduction to quantum dots, see Sec. 1.3.2.3) tunnel coupled to a
reservoir through a QPC. Then, a time dependent driving voltage is
applied to a electrostatically coupled metallic gate placed on top of
the dot. As a consequence, dc transport is impossible and the sys-
tem response is purely dynamical1. The low-frequency admittance
measured with cryogenic low-noise amplifiers can be understood from
the serial combination of a charge relaxation resistance and a quan-
tum capacitance [130, 131]. It turns out that in the linear regime
(small ac amplitudes) the charge relaxation resistance is quantized
for a single spin-polarized channel [132], a theoretical prediction that
was experimentally confirmed [127]. For drivings with larger ampli-
tudes (nonlinear regime), the system works as an on-demand single-
electron source [128], in analogy with single-photon sources [133, 134],
with alternate sequences of electron emission and absorption during a
driving period in the fast (GHz) regime. When the voltage pulse has a
Lorentzian shape [135–138], recent progress has shown that the holes
can be efficiently removed from the stream of excitations when the
pulse is applied to an Ohmic contact [139]. These phenomena imply
the observation of quantized currents ensured by charge quantization,
which might be useful in metrology applications [140] and quantum
computation designs [141–143].

Now, tunneling electrons feel repulsive interactions that yield Cou-
lomb blockade, a prominent effect in small capacitance conductors
which manifests itself as an increased resistance of a quantum dot

1The contents of this chapter are based on M. I. Alomar, Jong Soo Lim and
David Sánchez, Phys. Rev. B 94, 165425 (2016).
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junction at finite bias voltages [144]. In fact, the effect is quite ubiq-
uitous in nanoscale systems and arises not only in quantum dots but
also in carbon nanotubes [145], molecular transistors [146], and op-
tical lattices [147]. Therefore, it is natural to investigate the role of
Coulomb blockade effects in single-electron sources. This is the goal
we want to accomplish in this chapter.

We begin by noticing that electron-electron interactions have been
widely analyzed in the quantum RC circuit [148–165]. However, these
works have mostly focused on the linear regime (for an exception, see
Ref. [161]). The nonlinear regime is interesting because both the ca-
pacitance and the charge relaxation resistance acquire an explicit time
dependence [166]. This result was found for noninteracting electrons.
Here, we give full expressions for the capacitive and the dissipative
parts of the current valid in the case of strong interactions that lead to
Coulomb blockade effect. We predict that this effect should be visible
as a splitting of the dynamical current peaks for both emitted and
absorbed electrons. Importantly, the simultaneous emission of pairs
of electrons in the noninteracting case is modified to a subsequent
emission of two electrons.

The energy diagram of our system is sketched in Fig. 5.1. We
consider a single-level quantum dot (energy ε0) coupled to a Fermi
sea of electrons (Fermi energy EF ). The coupling region between
the dot and the reservoir is typically a pinched-off quantum point
contact (see Sec. 1.3.2.2) that we depict in Fig. 5.1 with a tunnel
barrier. This part represents the resistive component of the quantum
circuit, through which electrons can hop on and off the dot. The
position of ε0 can be tuned with a dc gate potential applied to the
point contact [128] (not shown in Fig. 5.1). Additionally, the dot is
coupled to a nearby gate terminal with an externally applied har-
monic potential εac(t). This is the capacitive part of the RC circuit.
Finally, a charging energy U is required to charge the dot with two
electrons having opposite spins. This situation is experimentally rele-
vant for small dots. The case of large dots with many quantum levels
was treated in Ref. [148], where a Hartree-Fock approximation was
employed to account for Coulomb interactions and screening effects.
Here, we consider the Anderson model with a single level and a con-
stant interaction energy. This model has been successfully applied to
the Fermi liquid limit connected to the Korringa-Shiba relation [157],
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Figure 5.1: Schematic representation of a single-electron source com-
prising a single-level quantum dot coupled capacitively to an ac oscil-
lating signal, εac(t). The dot can exchange electrons with an attached
reservoir (Fermi energy EF ) via a tunnel barrier. The dot energy level
is denoted with ε0 and Coulomb repulsion is given by the charging
energy U .

unveiling strong departures of the charge relaxation resistance from
universality [158].

5.1 Theoretical model

Our theoretical discussion starts with the Anderson Hamiltonian of a
mesoscopic capacitor, H = HR +HT +HD, where HR describes the
single reservoir, HT is the tunnel coupling between the reservoir and
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the quantum dot (QD) and HD models the QD:

HR =
∑
kσ

εkc
†
kσckσ , (5.1a)

HT =
∑
kσ

(
V ∗k d

†
σckσ + Vkc

†
kσdσ

)
, (5.1b)

HD =
∑
σ

εσ(t)d†σdσ + Un↑n↓ , (5.1c)

with nσ = d†σdσ the occupation number operator and εσ(t) = εσ +
εac(t) including both the QD energy level, εσ = ε0 + σ∆Z/2 (here
∆Z denotes the Zeeman splitting due to interaction with an exter-
nal magnetic field), and the oscillating potential applied to the gate,
εac(t) = εac cos Ωt, where εac is the ac amplitude and Ω is the driv-
ing frequency. We emphasize that ε0 and εac(t) can be tuned inde-
pendently, as experimentally demonstrated [128], with a dc and ac
voltage, respectively, applied to the quantum point contact and the
gate electrode: ε0 = −eVQPC and εac = −eVg. This allows us to treat
the position of the QD level relative to the Fermi energy and the ac
amplitude as separate parameters in our calculations. The sinusoidal
drive considered here is convenient because the derivative of the drive
is proportional to the frequency and thus easily Fourier decomposed.
Different drives such as a step function do not show this nice prop-
erty and add mathematical difficulties to the formalism. Hence, we
restrict ourselves to the monochromatic case.

In the Hamiltonian H, σ labels the electron spin and hereafter
we consider the nonmagnetic case (∆Z = 0). However, the magnetic
(∆Z 6= 0) situation can be easily included in our model but we focus
on the spin-degenerate case. This is an important difference with the
samples of Refs. [127, 128], which operate in the quantum Hall regime
to achieve single-channel propagation with no spin degeneracy.

In Eq. (5.1a), εk represents the reservoir energy dispersion with
momentum k and c†kσ(ckσ) creates (annihilates) a conduction band
electron. The tunnel hamiltonian given by Eq. (5.1b) contains the
tunnel amplitude Vk and the fermionic operator d†σ(dσ), which creates
(annihilates) a localized electron in the dot. Finally, U = e2/(Cg+CR)
in Eq. (5.1c) is the charging energy, which we also take as a tunable
parameter depending on the capacitive strengths with the coupled
gate, Cg, and eventually with the reservoir, CR.
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The time dependent field εac(t) induces a purely dynamical charge
current IR(t) that can be measured at the reservoir. Since H com-
mutes with the total charge, IR is determined from the change rate
of the dot occupation, I(t):

IR(t) + I(t) = 0 , (5.2)

where I(t) = e∂t
∑

σ〈d
†
σdσ〉(t) and IR(t) = e∂t

∑
k,σ〈c

†
kσckσ〉(t) with

e the unit of charge. Here, ∂t denotes the time derivative. Equa-
tion (5.2) thus represents the electronic charge conservation. In what
follows, we focus on I(t) because it can be directly expressed in terms
of the QD Green’s function without further manipulation, as shown
below. The physical current IR (since it amounts to a flux) can then
be obtained immediately from Eq. (5.2).

Let G<σ (t, t′) = i〈d†σ(t′)dσ(t)〉 be the lesser Green’s function [167,
168] for the dot operators. Clearly, the QD occupation 〈nσ(t)〉 =

〈d†σ(t)dσ(t)〉 can be written in terms of the lesser Green’s function.
The current is hence calculated as

I(t) = e∂t
∑
σ

〈nσ(t)〉 = e∂t
∑
σ

(
− iG<σ (t, t)

)
= e∂t

∑
σ

∫
dε

2πi
G<σ (t, ε) , (5.3)

where in the last line we express the lesser dot Green’s function in
a mixed time energy notation [169, 170]. This representation is es-
pecially useful for nonstationary scattering problems in the adiabatic
limit [171, 172]. Its connection with the original double time picture
and the corresponding Fourier transform is discussed in App. F.

Our regime of interest here is the adiabatic case (small frequency
Ω) but arbitrary values of the ac amplitude εac. In that case, the
Green’s function is expected to display small deviations around a
frozen state in time characterized by a stationary scattering matrix
with time dependent parameters. This approximation is good when
~Ω is the smallest energy scale of our problem. For a prototypical RC
circuit [127], ~Ω ' 0.2 µeV, which is at least fifty times smaller than
the tunnel coupling Γ ' 10 µeV. Therefore, the electron interacts only
weakly with the ac potential before tunneling into or out of the QD.
The frequency expansion reads,

G<σ (t, ε) = G<,fσ (t, ε) + ~ΩG<,(1)
σ (t, ε) +O(Ω2) , (5.4)



112 Chapter 5. Interacting quantum capacitor

where the superscript f denotes the frozen approximation and (1)
implies the first order in driving frequency Ω. Second-order terms and
beyond are neglected, which suffices for the purposes of this work.
(Inductive-like effects have been studied in Ref. [173]). We stress
that the zeroth-order (frozen) term in Ω is still time dependent. No
assumption has been made on the strength of the amplitude, which
can be arbitrarily large, driving the system into the nonlinear regime.

Substituting Eq. (5.4) into Eq. (5.3), we find similar expansions
for the occupation and the current,

I(t) ' e∂t
∑
σ

∫
dε

2πi

(
G<,fσ (t, ε) + ~ΩG<,(1)

σ (t, ε)
)

= e∂t
∑
σ

(〈nσ(t)〉f + 〈nσ(t)〉(1))

= I(1)(t) + I(2)(t) . (5.5)

From the definition given by Eq. (5.3), it follows that the leading
order for the current is first order in Ω. To be consistent, we therefore
keep the current terms in Eq. (5.5) up to second order in Ω. The phys-
ical implication says that I(1) represents a capacitive-like contribution
while I(2) is understood as a dissipative component [166].

This interpretation can be substantiated by introducing a quan-
tum RC circuit model (a capacitor and a resistor in a series with an
applied ac potential) with time dependent capacitance and resistance
functions,

eI(t) ' −C∂(t)∂tεac(t) +R∂(t)C∂(t)∂t(C∂(t)∂tεac(t)) . (5.6)

This relation is valid at low frequency for both the linear and the
nonlinear regimes. In Eq. (5.6) C∂(t) is the differential capacitance
and R∂(t) the differential resistance. Both depend on time because
they constitute a generalization of the linear-response quantum capac-
itance Cq and charge relaxation resistance Rq [130] to the nonlinear
ac transport regime [166]. Combining Eq. (5.5) with Eq. (5.6), we can
find expressions for C∂(t) and R∂(t). Therefore, our goal is first to ob-
tain an equation for G<σ (t, ε) in the presence of Coulomb interactions
and oscillating voltages.
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5.2 Decoupling scheme

The temporal evolution of the dot Green’s function is determined from
the commutator of dσ with H (Heisenberg equation of motion). It is
convenient to consider the time-ordered Green’s function Gσ(t, t′) ≡
〈〈dσ, d†σ〉〉(t, t′) = −i〈T dσ(t)d†σ(t′)〉. After some straightforward steps,
we find that the time-ordered Green’s function satisfies the integral
(Dyson) equation

Gσ(t, t′) = gσ(t, t′) +

∫
ds

~
Gσ(t, s)εac(s)gσ(s, t′)

+

∫
ds

~

∫
ds′

~
Gσ(t, s′)Σ0(s′, s)gσ(s, t′)

+ U

∫
ds

~
〈〈dσ, d†σnσ̄〉〉(t, s)gσ(s, t′) , (5.7)

where σ̄ = −σ. Σ0(t, t′) =
∑

k |Vk|2gk(t, t′) is the tunnel self-energy
with gk(σ)(t, t

′) the isolated reservoir (dot) Green’s function in the
absence of the ac driving potential. The retarded/advanced and lesser
Green’s functions can then be obtained from the Langreth’s analytic
continuation rules [168].

To consider the effect of U , we now generate an additional integral
equation for the correlator 〈〈dσ, d†σnσ̄〉〉(t, t′) in Eq. (5.7):

〈〈dσ, d†σnσ̄〉〉(t, t′) = 〈nσ̄(t)〉 gσ(t, t′)

+

∫
ds

~
〈〈dσ, d†σnσ̄〉〉(t, s)εac(s)gσ(s, t′)

+
∑
k

∫
ds

~

(
Vk〈〈dσ, c†kσnσ̄〉〉(t, s) + Vk〈〈dσ, d†σckσ̄dσ̄〉〉(t, s)

−V ∗k 〈〈dσ, d†σd
†
σ̄ckσ̄〉〉(t, s)

)
gσ(s, t′)

+ U

∫
ds

~
〈〈dσ, d†σnσ̄〉〉(t, s)gσ(s, t′) , (5.8)

where three new correlation functions arise. Since we are interested
in the Coulomb blockade regime, we can neglect charge and spin ex-
citations. This truncated equation of motion approach is good in the
weak tunneling regime or for not very low temperatures, in which case
Kondo correlations can be disregarded [174]. As a consequence, we
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neglect the spin-flip correlators in Eq. (5.8):

〈〈dσ, d†σd
†
σ̄ckσ̄〉〉(t, s) ' 0 , (5.9a)

〈〈dσ, d†σckσ̄dσ̄〉〉(t, s) ' 0 . (5.9b)

Next, we calculate the equation of motion for 〈〈dσ, c†kσnσ̄〉〉(t, t
′):

〈〈dσ, c†kσnσ̄〉〉(t, t
′) =

∫
ds

~
V ∗k 〈〈dσ, d†σnσ̄〉〉(t, s)gk(s, t′)

+
∑
k

∫
ds

~

(
Vk〈〈dσ, c†kσc

†
kσ̄dσ̄〉〉(t, s)

−V ∗k 〈〈dσ, c
†
kσd
†
σ̄ckσ̄〉〉(t, s)

)
gk(s, t

′) , (5.10)

where we neglect reservoir charge and spin excitations for the same
reason as discussed above,

〈〈dσ, c†kσc
†
kσ̄dσ̄〉〉(t, s) ' 0 , (5.11a)

〈〈dσ, c†kσd
†
σ̄ckσ̄〉〉(t, s) ' 0 . (5.11b)

Combining Eqs. (5.8) and (5.10) with Eqs. (5.9) and (5.11) we
obtain a closed expression for 〈〈dσ, d†σnσ̄〉〉(t, t′):

〈〈dσ, d†σnσ̄〉〉(t, t′) = 〈nσ̄(t)〉 gσ(t, t′)

+

∫
ds

~
〈〈dσ, d†σnσ̄〉〉(t, s)εac(s)gσ(s, t′)

+

∫
ds

~

∫
ds′

~
〈〈dσ, d†σnσ̄〉〉(t, s′)Σ0(s′, s)gσ(s, t′)

+ U

∫
ds

~
〈〈dσ, d†σnσ̄〉〉(t, s)gσ(s, t′) . (5.12)

We have thus derived two coupled integral equations, namely
Eqs. (5.7) and (5.12), which must be self-consistently solved because
Eq. (5.12) depends on 〈nσ(t)〉 and to calculate this quantity we need
to know G<σ (t, t) (see Eq. (5.7)), which depends itself on 〈nσ(t)〉 via
Eq. (5.12). Further progress can be made by expanding the equations
in powers of driving frequency Ω. It is worthwhile to emphasize that
Eq. (5.7) is exact while Eq. (5.12) is a quite reasonable approximation
that works fairly well in the Coulomb blockade regime.
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5.3 Noninteracting case
It is instructive to begin our discussion with the independent parti-
cle approximation. This is easy to accomplish by setting U = 0 in
Eq. (5.7). Thus, we obtain an integral equation that depends on the
dot Green’s function only,

Gσ(t, t′) = gσ(t, t′) +

∫
ds

~
Gσ(t, s)εac(s)gσ(s, t′)

+

∫
ds

~

∫
ds′

~
Gσ(t, s′)Σ0(s′, s)gσ(s, t′) . (5.13)

Importantly, we have changed our notation G→ G in order to distin-
guish between the Green’s function corresponding to the the Coulomb
Blockade regime (G) and that for noninteracting electrons (G). This
is done for later convenience since we will show that interacting results
can indeed be expressed using noninteracting quantities.

A frequency expansion of Eq. (5.13) yields (we refer the reader to
App. G.1 for details):

Gr/a,fσ (t, ε) =
1

ε− εσ − εac(t)− Σ
r/a
0 (ε)

, (5.14a)

Gr/a,(1)
σ (t, ε) =

i

Ω
∂tεac(t)Gr/a,fσ (t, ε)∂εGr/a,fσ (t, ε) , (5.14b)

G<,fσ (t, ε) = Gr,fσ (t, ε)Σ<
0 (ε)Ga,fσ (t, ε) , (5.14c)

G<,(1)
σ (t, ε) =

i

Ω
∂tεac(t)

(
Ga,fσ (t, ε)∂εG<,fσ (t, ε)

+G<,fσ (t, ε)∂εGr,fσ (t, ε)
)
, (5.14d)

where the superscript “r/a” labels the retarded/advanced Green’s
function and the tunnel self-energies read Σ

r/a
0 (ε) = ∓iΓ, Σ<

0 (ε) =
2iΓf(ε). Γ = π|Vk|2ρ is the hybridization width, which we take as a
constant parameter. This is a good approximation when the tunnel
probability |Vk|2 and the lead density of states ρ depend weakly on
energy, which is the experimentally relevant situation. As throughout
this thesis, f(ε) = 1/[1 + exp (ε− EF )/kBT ] denotes the Fermi-Dirac
distribution with EF the lead Fermi level and T the base temperature.

We consider the spin-degenerate case (∆Z = 0). Therefore, the
dot level fulfills

ε↑ = ε↓ ≡ ε0 , (5.15)
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and we can define a total dot occupation 〈n(t)〉f0 as

〈n↑(t)〉f0 = 〈n↓(t)〉f0 ≡ 〈n(t)〉f0 /2 . (5.16)

Here, the subscript 0 means “noninteracting”. Using the expressions
for the noninteracting Green’s functions given by Eqs. (5.14), the
current and mean occupation implied by Eq. (5.5) become

〈n(t)〉f0 = 2

∫
dε f(ε)D(t, ε) , (5.17a)

I
(1)
0 (t) = −2e

∫
dε (−∂εf(ε))D(t, ε)∂tεac(t) , (5.17b)

〈n(t)〉(1)
0 = h

∫
dε (−∂εf(ε))D2(t, ε)∂tεac(t) , (5.17c)

I
(2)
0 (t) = eh

∫
dε (−∂εf(ε)) ∂t

(
D2(t, ε)∂tεac(t)

)
, (5.17d)

where D(t, ε) ≡ D↑(t, ε) = D↓(t, ε) is the density of states written as

Dσ(t, ε) =
1

π

Γ(
ε− εσ − εac(t)

)2
+ Γ2

. (5.18)

Equation (5.18) is a Breit-Wigner-like density of states which in-
stantaneously changes with time. This is a physically transparent
result—in the adiabatic regime the dot spectral function is given by
the stationary density of states replacing the dot level ε0 with the
instantaneous variation of the dot potential as a function of time, i.e.,
ε0 → ε0 + εac(t). In other words, the electron adjusts its dynamics
to the slow ac potential. As a consequence, the frozen occupation
[Eq. (5.17a)] is simply given by the integral of the local density states
convoluted with the Fermi function. The next order in the Ω expan-
sion [Eq. (5.17c)] depends on the derivative of εac(t), as it should.
For small frequencies, this is a small correction to the frozen occu-
pation. Finally, the capacitive and dissipative currents [Eqs. (5.17b)
and (5.17d)] are just given by time derivatives of the frozen and the
first-order occupations, respectively. At very low temperatures, the
main contribution to both current contributions arises from the elec-
trons around the Fermi energy due to the −∂εf term in the equations.

The total current I0(t) = I
(1)
0 (t) + I

(2)
0 (t) is plotted in Fig. 5.2(a)

as a function of time for different εac amplitudes. The results are
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Figure 5.2: Noninteracting charge current (up to second order in the
ac frequency) as a function time for different ac amplitudes (a) and
temperatures (b). Parameters: ε0 = 0, ~Ω = 0.02 Γ, (a) kBT = 0,
and (b) εac = 10Γ.
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calculated for zero temperature and very small ac frequencies. In the
large amplitude case (pink dashed-dotted line), we observe a current
peak (dip) in the first (second) half cycle since in the first (second) half
cycle an electron is adsorbed (emitted) by the dot. This occurs when
the ac modulated dot level aligns with the Fermi level, ε0+εac cos Ωt =
EF (hereafter we set EF = 0). The amplitude of the current peak
(dip) is proportional to εac, as shown in Eqs. (5.17b) and (5.17d).
Therefore, the ac amplitude should be larger than Γ for the single-
electron source to produce well defined current peaks. This is within
experimental reach since εac ' 100 µeV [128] and Γ ' 10 µeV. On
the other hand, the ac frequency should be ~Ω = 0.02 Γ ' 0.2 µeV
and the resulting current peak, given in Fig. 5.2(a) in units of eΩ,
attains values of the order of I0 ' 0.3 nA, which is experimentally
measurable.

At nonzero temperatures, the peaks broaden due to thermal smear-
ing [see Fig. 5.2(b)]. The reason is clear—for large temperatures
(larger than Γ) and fixed ac amplitude the current pulse is distributed
among electronic states within kBT around the Fermi energy and the
pulse is not sharply peaked as in the kBT = 0 case. As a conse-
quence, low temperatures smaller than T ' 100 mK (=8.62 µeV) for
Γ ' 10 µeV are needed to observe single-electron injection into the
Fermi sea.

Figure 5.3 shows the total current for a fixed εac as a function of
time (horizontal axis) and the dot level position (vertical axis). The
peak and dip found in Fig. 5.2 are also visible in Fig. 5.3 within a value
range of ε0. The current resonances shift with time in order to satisfy
the resonant condition ε0 + εac cos Ωt = EF . Notably, for dot levels
such that |ε0| > |εac| the current is identically zero independently of
time, since at those energies the resonant condition is never met.

Now, using Eqs. (5.6), (5.17b), and (5.17d) we derive the following
expressions for the differential capacitance and resistance:

C0
∂(t) = 2e2

∫
dε(−∂εf)D(t, ε) , (5.19)

R0
∂(t) =

h

4e2

∫
dε(−∂εf)∂t

(
D2(t, ε)∂tεac(t)

)∫
dε(−∂εf)D(t, ε)

∫
dε(−∂εf)∂t

(
D(t, ε)∂tεac(t)

) , (5.20)

where the dot density of states D(t, ε) is given by Eq. (5.18). Clearly,
Eq. (5.19) can be interpreted as an instantaneous quantum capaci-
tance. The physical meaning of the resistance of Eq. (5.20) is less
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Figure 5.3: Noninteracting charge current (up to second order in the
ac frequency) as a function of dot energy level (vertical axis) and time
(horizontal). Parameters: εac = 10Γ, ~Ω = 0.02 Γ, and kBT = 0.

obvious. Only in linear response does R0
∂(t) reduce to the charge

relaxation resistance [166].
Figure 5.4(a) shows C0

∂(t) for three specific cases: εac = 0.1Γ (solid
green line), Γ (dotted orange line) and 10Γ (dashed blue line). In the
first case, C0

∂ is nearly time independent and takes on its maximum
value as a constant times e2/Γ. This occurs because in the low εac
limit the dot density of states has a constant value for any time. As
the ac amplitude increases, a strong time dependence becomes ap-
parent in terms of two well defined peaks when the aforementioned
resonant condition is fulfilled. We observe that the minima of the
dotted orange line never reaches zero since for intermediate values of
εac the dot energy level is close to EF and can therefore be popu-
lated. In the strongly nonlinear case (dashed blue line) the two peaks
become clearly resolved inasmuch as for large εac the dot level gets
fully depopulated (populated) after electron emission (injection).

In the linear regime (εac → 0) and zero temperature the quantum
capacitance given by Eq. (5.19) takes a simpler form, C0

∂ = 2e2D,
which is time independent and provides information about the dot
density of states as we tune ε0. In fact, the static density of states
becomes D = (Γ/π)/[(EF−ε0)2+Γ2], i.e., a Lorentzian curve centered
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Figure 5.4: Differential capacitance (a) and differential resistance (b)
as a function of time for different ac amplitudes. Parameters: ε0 = 0,
~Ω = 0.02Γ, and kBT = 0.
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at EF with half-width Γ. Hence, the value marked by the solid green
line of Fig. 5.4(a) is not universal and depends on the position of ε0

with respect to EF [149]. In particular, for ε0 = 0 the capacitance
is C0

∂ = 2e2/πΓ ' 0.64e2/Γ as shown in Fig. 5.4(a). In contrast, the
resistance in the linear regime and for kBT = 0 is not sample specific.
R0
∂ becomes time and energy independent [see the solid green line of

Fig. 5.4(b)], taking the universal value R0
∂ = h/4e2 = 0.25h/e2 (we

recall that we have two independent channels, one per spin). This
quantization of the resistance was earlier predicted by Büttiker et
al. in 1993 [130] and later demonstrated experimentally for the spin-
polarized case by Gabelli et al. in 2006 [127]. This resistance can
be also connected with an instantaneous Joule law for the dissipated
heat in the reservoir [175, 176].

Away from linear response [dotted orange line and dashed blue
line in Fig. 5.4(b)], the resistance quickly deviates from the quantized
value and becomes both time and energy dependent. With increas-
ing εac, R0

∂ shows two peaks as a result of the resonant condition
but, unlike the capacitance, the resistance peaks get higher and more
broadened as the ac amplitude increases. Therefore, the dissipation
enhances as εac grows, which is naturally expected. The enhancement
rate is, however, nonlinear and not easily derived from Eq. (5.20).

5.4 Coulomb Blockade Regime

Our aim now is to include Coulomb repulsion between electrons in the
quantum dot and to investigate how the noninteracting results dis-
cussed in the previous section change in the presence of interactions.
Before, we note that for metallic dots with good screening properties
a Hartree approach (see App. H) is a good approximation. In what
follows, however, we focus on small dots with strong electron-electron
interactions.

In the Coulomb blockade regime, the charging energy is typi-
cally a large energy scale in the problem and for small dots one has
U > πΓ [144]. We start from the main results of the equation-of-
motion method [Eqs. (5.7) and (5.12)]. The frequency expansion
can be performed after somewhat lengthy calculations detailed in
App. G.2. We find the frozen and dynamic (to leading order in Ω)



122 Chapter 5. Interacting quantum capacitor

lesser and retarded Green’s functions,

Gr,fσ (t, ε)=
(
1−〈nσ̄(t)〉f

)
Gr,fσ (t, ε)+〈nσ̄(t)〉fGr,fUσ(t, ε) , (5.21a)

Gr,(1)
σ (t, ε)=

(
U 〈nσ̄(t)〉(1) Gr,fUσ(t, ε)

+
i

Ω
∂tεac(t)

[(
1−〈nσ̄(t)〉f

)
∂εGr,fσ (t, ε)

+(1+U Gr,fUσ(t, ε)) 〈nσ̄(t)〉f∂εGr,fUσ(t, ε)
])
Gr,fσ (t, ε) , (5.21b)

G<,f
σ (t, ε)=

(
1−〈nσ̄(t)〉f

)
G<,f
σ (t, ε)+〈nσ̄(t)〉fG<,f

Uσ (t, ε) , (5.21c)

G<,(1)
σ (t, ε)=〈nσ̄(t)〉(1)

(
G<,f
σ (t, ε)−G<,f

Uσ (t, ε)
)

+
i

Ω
∂tεac(t)

((
1−〈nσ̄(t)〉f

)[
Ga,fσ (t, ε)∂εG<,f

σ (t, ε)

+G<,f
σ (t, ε)∂εGr,fσ (t, ε)

]
+〈nσ̄(t)〉f

[
Ga,fUσ (t, ε)∂εG<,f

Uσ (t, ε)+G<,f
Uσ (t, ε)∂εGr,fUσ(t, ε)

])
. (5.21d)

Here, we express the interacting Green’s functions (denoted by G)
in terms of the noninteracting Green’s functions [denoted by G and
explicitly written in Eqs. (5.14)]. We indicate with the subscript U
that GUσ is the noninteracting Green’s function with the replacement
ε0 → ε0 + U .

We focus on the nonmagnetic case as in Sec. 5.3. Notably, we find
that the interacting occupations derived from Eqs. (5.21c) and (5.21d)
can be also connected with the noninteracting densities of Eqs. (5.17a)
and (5.17c):

〈n(t)〉f =
2 〈n(t)〉f0

2 + 〈n(t)〉f0 − 〈n(t)〉f0U
, (5.22)

〈n(t)〉(1) = 2
〈n(t)〉(1)

0 (2− 〈n(t)〉f0U ) + 〈n(t)〉(1)
0U 〈n(t)〉f0

(2 + 〈n(t)〉f0 − 〈n(t)〉f0U )2
, (5.23)

where the subscript U again designates the substitution ε0 → ε0 +U .
From the latter equations we can immediately derive the capacitive
and dissipative currents,

I(1)(t) = 2
I

(1)
0 (t)(2− 〈n(t)〉f0U ) + I

(1)
0U (t) 〈n(t)〉f0

(2 + 〈n(t)〉f0 − 〈n(t)〉f0U )2
, (5.24)

I(2)(t) = e∂t 〈n(t)〉(1) . (5.25)
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Figure 5.5: Interacting charge current (Coulomb blockade regime)
as a function of time for different values of the charging energy U .
Parameters: ε0 = 0, εac = 10Γ, ~Ω = 0.02 Γ, and kBT = 0.

These are the central results of our paper. In particular, Eq. (5.24)
states that the leading-order current for interacting electrons is given
by a weighted sum of the noninteracting expressions [Eq. (5.17b)]
corresponding to two resonances, namely, ε0 and ε0 +U . This finding
is particularly appealing since it anticipates the main transformation
of the noninteracting results—the current pulses, for moderate values
of U , will split into two separate peaks. We will now confirm our
expectation with exact numerical results.

Figure 5.5 shows the behavior of total charge current, I(1)(t) +
I(2)(t), as a function of time for ε0 = 0, εac = 10Γ, and different
values of the charging energy U at zero temperature. For U = 0
(solid green line) we reproduce the curve from Fig. 5.2 for comparison
with the nonzero U results. Strikingly enough, for U = 4Γ (dotted
orange line) both the peak and the dip split into two resonances each.
Therefore, we have two consecutive electron emissions (absorptions)
whenever ε0 and ε0 +U cross above (below) the lead Fermi level thus
satisfying the resonant condition. Furthermore, the amplitude of each
resonance becomes reduced as compared with the noninteracting case.
This can be understood if one recalls that in the noninteracting case
the dot level is spin-degenerate while for interacting electrons each
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Figure 5.6: Interacting charge current (Coulomb blockade regime) as
a function of the dot energy level (vertical axis) and time (horizonal
axis). Parameters: εac = 10Γ, U = 4Γ, ~Ω = 0.02 Γ, and kBT = 0.

resonance can be occupied with at most one electron due to Pauli
blocking. The splitting gradually increases as U is enhanced [see the
transition to the dotted orange line (U = 4Γ) and the dashed blue
line (U = 8Γ)] because the second resonance shifts to higher (lower)
times as compared with the peak (dip) originally present for U = 0.
This second resonance decreases its amplitude until it vanishes for
U > εac = 16Γ (dashed-dotted pink line). This effect can be explained
if we notice that the resonance ε0 + U never crosses the Fermi level
if U > εac. In other words, the two resonances can be occupied (at
least partially) only if U < EF + εac − ε0.

In Fig. 5.6 we present the total current as a function of time and
the dot energy level position for a fixed charging energy (U = 4Γ)
and ac amplitude (εac = 10Γ). We see clear signatures of the peak
splitting for a wide range of energy levels since as we tune ε0 the
resonant condition is satisfied at different times, as explained above.

Importantly, electron-electron interactions affect the charge quan-
tization in a mesoscopic capacitor. From the total charge current we
can obtain the charge Q emitted for a half of a period in terms of the
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Figure 5.7: Charge (Coulomb blockade regime) as a function of the
ac amplitude εac. Parameters: ε0 = 0, ~Ω = 0.02 Γ, and kBT = 0.

occupation:

Q =

∫ τ/2

0
dt I(t) = e

(
〈n(t = τ/2)〉 − 〈n(t = 0)〉

)
, (5.26)

where τ = 2π/Ω is the ac period and 〈n(t)〉 = 〈n(t)〉f + 〈n(t)〉(1) is
the total occupation given by the sum of Eqs. (5.22) and (5.23) to
lowest order in frequency. Figure 5.7 shows Q as a function of the ac
amplitude for different values of the Coulomb strength, U . For U = 0
we recover a full charge quantization at large values of the harmonic
potential [166]. With increasing electron-electron interactions, a new
plateau emerges for intermediate values of εac. This phenomenon is
exclusively due to Coulomb repulsion effects since when U > Γ the
dot energy level is split into two resonances, ε0 and ε0 + U , which
are occupied sequentially as εac grows. It is worth noting that the
transition between plateaus shifts to larger values of energy as U
increases because when U > εac only the resonance at ε0 is able
to fulfill the resonant condition and the second plateau ceases to be
visible. Therefore, it is crucial to take into account electron-electron
interactions to give precise predictions on the charge quantization
amplitude and its domain.

Let us turn now to the differential capacitance and resistance. In
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Eqs. (5.19) and (5.20) we obtained their full expressions for noninter-
acting electrons. When interactions are present, we should combine
Eq. (5.6) together with Eqs. (5.24) and (5.25) to arrive at the following
relation:

C∂(t) = 2
C0
∂(t)(2− 〈n(t)〉f0U ) + C0U

∂ (t) 〈n(t)〉f0
(2 + 〈n(t)〉f0 − 〈n(t)〉f0U )2

. (5.27)

Remarkably, we again find the nice result that the Coulomb-blockaded
capacitance C∂(t) can be written in terms of a weighted sum of non-
interacting capacitances renormalized by interactions. The weight
factors depend themselves on shifted occupations calculated in the
absence (〈n(t)〉f0) and in the presence (〈n(t)〉f0U ) of interactions. Nev-
ertheless, the analytic expression for the resistance is too lengthy to
be included here. For the numerical calculations we shall use the
definition

R∂(t) = e
I(2)(t)

C∂(t)∂t(C∂(t)(∂tεac(t)))
. (5.28)

In Fig. 5.8 we plot Eqs. (5.27) and (5.28) as a function of time
for different Coulomb strengths. In the top panel [Fig. 5.8(a)], we
depict C∂(t) in units of e2/Γ. As expected, the capacitance, which
mimics the instantaneous density of states, undergoes a double split-
ting for finite charging energies (cf. the case U = 0 showed in solid
green line with the case U = 8Γ in dotted orange line). The four-peak
structure arises from multiple passings (upward and downward) of the
resonances ε0 and ε0 + U across the Fermi energy. Our calculations
predict that four peaks (two in each half cycle) will appear in the
Coulomb blockade regime (U > πΓ) and for sufficiently low temper-
ature. Further increase of U leads to a recovery of the two peaks but
with reduced amplitude. In general, for energies U > EF + εac − ε0

(with ε0 > 0) the resonance lying at ε0 + U is not able to fulfill the
resonant condition and we recover the U = 0 case but with half-height
peaks due to the 1/2 occupation (on average) of each spin level.

We show the differential resistance R∂ in Fig. 5.8(b). Already
for U = 0 we find departures from the universal charge relaxation
resistance value h/4e2. These deviations are stronger as U increases
and lead to negative values of R∂ for certain values of time. Therefore,
we cannot identify the product C∂R∂ with a delay time since this
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Figure 5.8: Differential capacitance (a) differential resistance (b) as
a function of time for different values of the charging energy U . Pa-
rameters: ε0 = 0, εac = 10Γ, and kBT = 0.
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interpretation is physically meaningful in linear response only. In
fact, at some points the resistance diverges. Analogous resistance
divergences have been found in the thermoelectric transport [163] but
here the effect is purely electric. Equation (5.28) dictates that the
differential resistance is inversely proportional to the derivative of the
differential capacitance. As a consequence, R∂ diverges whenever this
derivative vanishes. This implies that the resistance divergences are
correlated with the maxima or minima of C∂ , as can be easily inferred
from a close inspection of Figs. 5.8(a) and 5.8(b).

A natural question is then whether the strong fluctuations of the
nonlinear resistance away from its quantized value persist in the linear
regime. To examine this, we take the limit εac → 0 in Eqs. (5.27)
and (5.28). We find for kBT = 0 the expressions

C∂ = 4
D(2− 〈n〉f0U ) +DU 〈n〉f0

(2 + 〈n〉f0 − 〈n〉
f
0U )2

, (5.29)

R∂ =
h

8e2

D2(2−〈n〉f0U )+D2
U 〈n〉

f
0

(D(2−〈n〉f0U )+DU 〈n〉f0)2
(2+〈n〉f0−〈n〉

f
0U )2 , (5.30)

where D = Γ/[(EF − ε0)2 + Γ2] and DU = Γ/[(EF − ε0 − U)2 + Γ2].
Interestingly, Eqs. (5.29) and (5.30) depend on the mean frozen oc-
cupation. The capacitance is a weighted sum of densities of states
and will therefore show two peaks at ε0 ' EF and ε0 ' EF − U [see
Fig. 5.9(a) where we depict the capacitance as a function of the dot
level]. Even in the presence of interactions the capacitance can be
traced back to a spectroscopic measure of the dot spectral function.
However, the charge relaxation resistance is no longer constant as in
the noninteracting case. In Fig. 5.9(b) we observe a strong energy
dependence of R∂ with ε0. Only when the dot level is clearly off res-
onance (either ε0 � Γ or ε0 � Γ) do we recover the universal value
h/4e2. In both cases the reason is clear—either for ε0 well above
EF or for a deep level configuration, interactions play no role and
the noninterating result is restored. In the electron-hole symmetry
point [ε0 = (EF − U)/2] the system behaves effectively as a single
channel conductor because the occupation per spin is 1/2. For dot
energies in between the electron-hole symmetry point and the off-
resonant situation, the charge relaxation resistance acquires its max-
imum value, which is sample dependent. We attribute this resistance
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Figure 5.9: Quantum capacitance (a) and charge relaxation resis-
tance resistance (b) as a function of dot energy level in the lin-
ear regime, εac → 0, and for interacting electrons in the Coulomb-
blockade regime. Parameters: U = 10Γ, and kBT = 0.



130 Chapter 5. Interacting quantum capacitor

increase to the maximal charge fluctuations that operate around the
point ε0 ' −Γ and its symmetric counterpart ε0 ' U − Γ. We notice
that significant enhancements of R∂ have been previously reported in
the literature for interacting RC circuits [158, 157].

5.5 Conclusions
In this chapter we have studied the Coulomb blockade effects in a sys-
tem formed by a single-level quantum dot coupled to a reservoir via
one channel and capacitively couplet to an oscillating potential. We
have found, using the nonequilibrium Green’s function method, that
the current peaks become split with a reduced amplitude, which is
to half of the noninteracting case. This second peak becomes smaller
as the U increases until it disappears for U > εac. We have also ob-
served the presence of an additional quantization step in the emitted
charge as a function of εac. Importantly, our calculations are valid for
arbitrarily large amplitudes of the ac potential and small frequencies
in the Coulomb blockade regime.
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The goal of this thesis has been to formulate theoretical models to
study the electronic transport in a representative set of nanodevices
in which the electric current arises in response to externally applied
thermal gradients or ac potentials. The subject is interesting in view
of the recent advances that have been reached in quantum thermoelec-
tricity and in charge detection with temporal resolution. The charge
current can be manipulated in a variety of ways. In this thesis, we
have proposed to use the spin-orbit coupling in graphene and in two-
dimensional electron gases in order to investigate the spintronic effects
that give rise to polarized spin currents. Finally, the final objective
has been to analyze the role of charging effects in quantum capaci-
tors when electron-electron interactions dominate the physics of the
problem.

In Chapter 2 we have investigated the electric and thermoelectric
properties of a graphene monolayer with inhomogeneous Rashba spin-
orbit interaction patterned as a stripe along the sample. We have
discussed the energy splitting due to the Rashba coupling and their
effect in the transmission probabilities. Importantly, the existence of
a critical angle for only one of the two subband states leads to a finite
polarization when the externally modulated Fermi energy is of the
order of the spin-orbit strength.

We have found that our system is more sensitive to temperature
shifts than to potential difference. Moreover, we have shown that the
linear conductance is dominated by a given energy subband for large
enough spin-orbit strengths or region sizes. Interestingly, we have
obtained a strongly modulated thermoelectric conductance as a func-
tion of both parameters, which suggests useful applications of spin-
orbit graphene as a heat-to-energy converter. Surprisingly enough,
the thermopower as a function of Fermi energy is strongly influenced
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by an intrinsic term which is independent of the scattering potential.
In contrast, we have obtained highly tunable thermopower as a func-
tion of the Rashba coupling and the width of the spin-orbit region.
The strong energy variation is recovered when the thermopower is
calculated in the subband space. Then, an applied temperature bias
creates a subband polarization, which can attain significant values
(positive or negative) at low Fermi energies.

We have considered a system free of disorder or scattering centers
additional to the spin-orbit coupling. In a realistic sample, diffusion
processes should be taken into account. However, it is remarkable
that in the diffusive regime a similar intrinsic thermopower (S ∼
k2
BT0/eEF ) is obtained [67]. Therefore, further work is needed to

clarify the behavior of the Seebeck coefficient in the transition from
the diffusive regime to the ballistic (quantum) regime considered here.
Another interesting route would focus on the role of phonons [177].
However, we do not expect that our results will change qualitatively
since the phonon contribution is negligible at the low temperatures
considered in this chapter.

Our results might be tested in a suspended graphene sample with
a central section deposited onto a metallic substrate inducing a spin-
orbit interaction. The coupling between the monolayer and the metal
can be tuned with an external electric field. Then, thermovoltages
and thermocurrents would be detected upon local heating of a sam-
ple side. An alternative measurement would consider heating currents
generated in response to an applied electric current under vanishing
thermal gradients (Peltier effect). Due to reciprocity, the measured
response can be related to the thermopower. Finally, hot electrons
can originate from sample irradiation, as recently demonstrated in
Ref. [178]. Our results are thus relevant for the exciting area that
emphasizes the interplay between spin interactions and thermoelectric
effects in graphene and related nanostructures. Future works should
investigate the validity of this statement for nanoribbons [179], mag-
netic samples [180] or different spin-orbit two-dimensional systems
such as silicene [181].

In Chapter 3 we have discussed the quantum thermoelectric prop-
erties of a two-dimensional electron system with nonhomogeneous
spin-orbit interaction. When the device is attached to normal elec-
trodes, we find that the thermopower is strongly modulated by either
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the spin-orbit strength or the channel length at fixed Fermi energy.
In the case of ferromagnetic leads, we distinguish between charge,
spin and magneto-Seebeck effects. Interestingly, the thermoelectric
dynamics is dominated by quantum interference effects for energies
below the Zeeman splitting in the leads. These effects lead to large
amplitude oscillations of the different thermopowers that change their
sign as the Fermi energy increases. The number of observed oscilla-
tions can be tuned with the separation between contacts. Importantly,
the Seebeck coefficients depend on the relative orientation of the mag-
netic moments in the leads, causing sizeable values of the magneto-
Seebeck coefficient. In general, we demonstrate that a semiconductor
two-dimensional electron system offers quite remarkable capabilities
for the generation of highly tunable thermoelectric properties.

Our results may be also relevant for spin transistors built with two-
dimensional electron systems other than semiconductor heterostruc-
tures: silicon [182, 183], graphene [184–188] or metal dichalcogenides
[188]. Further extensions of our model should consider the quasi-one-
dimensional case, which is important for quantum wires and carbon
nanotubes. Another crucial aspect in modeling realistic ferromagnetic-
tunnel junctions is the presence of tunnel barriers, which might alter
the predictions discussed in this paper. Future works should also
consider disorder effects, which are relevant in 2D systems with low
mobility [189], and nonlinear features as those observed in the dc
resistivity of quantum Hall conductors [190]

In Chapter 4 we have investigated a spin-orbit quantum wire cou-
pled to quantum point contacts. We have found that both resonant
tunneling and spin precession oscillations combine into complex pat-
terns that can be explained with the aid of quasiperiodic modes in
the strict 1D case. For the more realistic setup where the conducting
channel has a finite width (2D case) we have discussed the impor-
tant role of the Rashba intersubband coupling term as the spin-orbit
strength increases.

We have used in our numerical simulations realistic parameters
taken from the sample and measurements of Ref. [109]. Therefore,
our predictions are within the realm of today’s techniques. The an-
gle between the spin-orbit fields in the QPCs and the quantum well
can be tuned with lateral electric fields while the spin-orbit strength
can be manipulated with a gate terminal on top of the middle cavity.
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We have focused on the transmission, from which the two-terminal
conductance G, which is experimentally accessible, readily follows in
the zero temperature limit. For finite temperatures we expect ther-
mal smearing effects but we have in mind low temperatures as in
Ref. [109] (0.03 K). Thus, phonon effects can be safely neglected. An-
other detrimental effect would be the presence of disorder since we
consider ballistic systems only and our predictions rely on quantum
interference. Therefore, samples with large enough coherence lengths
and mean free paths would be needed, which are now routinely avail-
able [191]. Measurement of diagonal and off-diagonal conductances
can be achieved, e.g., with ferromagnetic electrodes whose relative
magnetization can be changed from parallel to antiparallel orienta-
tion in response to a small magnetic field. The results regarding the
length variation can be tested with different samples. Finally, the
resolution of the conductance peaks would lie in the sub-meV range,
which can be achieved by tuning an external backgate electrode ca-
pacitively coupled to the sample.

Further extensions of our work could address high-field transport
properties, in which case inelastic transitions in three-dimensional
resonant tunneling diodes can change the current–voltage character-
istics [192, 193]. Another important issue for future works is the
role of electron-electron interactions, which may lead to instabilities
and hysteretic curves in double barrier systems [194]. Furthermore,
magnetically doped resonant tunneling devices are shown to be quite
sensitive to external magnetic fields [195, 90, 196]. In the presence of a
spin-orbit coupling beating patterns are predicted to occur in double-
barrier resonant tunneling structures [197]. Finally, we would like to
mention the closely related systems known as chaotic dots [198] since
they are built as semiconductor cavities between a pair of quantum
point contacts, similarly to the two-dimensional cavities considered
in the last part of our work. In contrast, our cavities have a regular
shape. Interestingly, closed chaotic dots exhibit Coulomb blockade
peak fluctuations [199] and subsequent discussions might then con-
sider how these fluctuations are affected by the presence of spin-orbit
interactions.

In Chapter 5 we have investigated Coulomb blockade effects in a
coherent source of single-electrons driven by a monochromatic exci-
tation. Using a nonequilibrium Green’s function approach valid for
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arbitrarily large amplitudes of the ac potential, we have found that
the current peaks associated to electron emission and absorption be-
come split in the Coulomb blockade regime. The effect is particularly
intense for the emitted charge, with additional quantization steps as
a function of the ac forcing. Our model is capable of describing the
noninteracting case (U = 0) up to strong interactions (U → ∞)
within the Coulomb blockade regime. While for U = 0 our theory
produces two-electron or two-hole pulses, for U →∞ our model pre-
dicts single-electron or single-hole pulses. For intermediate values of
U one may have two single-electron or single-hole pulses separated
in time. Our model system is a mesoscopic capacitor but our results
are equally relevant for different single-electron sources such as those
formed with dopant atoms in silicon [200–202] or dots embedded in
coplanar cavities [203–206].

Further investigations should address the role of cotunneling pro-
cesses which are dominant in the Coulomb blockade valley at temper-
atures kBT � Γ. One possibility is to relax the conditions given by
Eqs. (5.9) and (5.11) and to make a step further in the equation-
of-motion hierarchy. In particular, spin-flip cotunneling processes
would lead to Kondo correlations that would alter the picture dis-
cussed here. In general, we expect the minimum between current
peaks (dips) to rise (lower) due to the buildup of a many-body Kondo
resonance pinned at the Fermi energy. An additional peak should
then appear in the quantum capacitance since it is proportional to
the local density of states. However, a new energy scale (kBTK with
TK the Kondo temperature) would arise and a more careful analysis
should be carried out.

Another assumption of our model is the spin degeneracy in both
the dot level and the coupled reservoir. Introducing a Zeeman split-
ting ∆Z would lead to extra splittings that would compete with the
existing ones depending on the strength of ∆Z as compared with Γ, U
and kBT . We note that the original experiments by Fève et al. [128]
applied a strong magnetic field that drove the system into the quan-
tum Hall regime. Moreover, the dot coupled to a gate with a large
capacitance and charging effects were then negligible. To test our
predictions, we would need a smaller dot in the absence of magnetic
fields (or with Zeeman fields smaller than the characteristic energy
scales).
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Finally, we have focused on the adiabatic regime (low frequencies).
This approximation is valid if one is interested in the capacitance and
the charge relaxation resistance. Arbitrary frequencies are beyond
the scope of the present work but are certainly interesting (for U = 0
see, e.g., Refs. [207, 208]). In fact, for larger frequencies (larger than
the GHz scale considered in this work) photon-assisted tunneling takes
place [209, 210] and our frequency expansion breaks down. It would be
highly desirable to take into account large frequencies and amplitudes
in a unified framework for the purely ac transport of electrons in
nanostructures.



Appendices





A. Scattering approach

In this appendix we will discuss the charge current in the scattering
approach used in Chapters 2 and 3.

This approach, also called Landauer-Büttiker formalism, is very
useful to study mesoscopic transport. In this framework the current
through a conductor is determined in terms of the probability that an
electron can be transmitted through the sample. Then, the transport
properties of the system are related with the scattering properties,
which can be known by means of a quantum-mechanical calculation.

We consider a mesoscopic sample attached to two contacts, left
(`) and right (r) respectively. We assume that the contacts are
large enough to be able to define a characteristic temperature Tc
and chemical potential µc with c = `, r. Since each of them is in
thermal equilibrium separately, we can define the electron’s distribu-
tion in the contacts with the aid of the Fermi distribution function,
fc(E) = 1/[1 + e(E−µc)/kBTc ].

It is important to point out that, although there are no inelastic
processes in the sample, the only way to establish a strict equilibrium
state in the contacts is via inelastic processes. This can be understood
as follows: If one electron from contact ` with temperature T` and elec-
trochemical potential µ` travels across the system towards contact r,
in this contact the electron has to change its energy and temperature
to Tr and µr, and this is only possible via inelastic processes (ther-
malization). Then, we assume that the contacts are wide compared
to the typical cross-section of the mesoscopic conductor and, as a con-
sequence, this inelastic processes occur far form the sample so that
we can describe the local properties of the contacts in terms of the
equilibrium state.

Another important point is that far from the sample we can sep-
arate the transverse and longitudinal motion of the electrons. The
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longitudinal motion is referred to be the direction from the left to the
right contact and along this direction the system is open and has a
continuous wave number k. For future calculations it is helpful to
distinguish between incoming and outgoing states. This scattering
states are characterized by the longitudinal energy El = ~2k2/2m. In
contrast, the transverse motion across the contacts is confined by a
transverse potential. Because of that, the transverse energies states
are quantized by the discrete momentum qn and these can be differ-
ent in each contact, E`,r;n. In other words, not all the q-momenta
are allowed. Finally, the total energy of the electrons in the system is
given by the sum of both contributions (longitudinal and transverse),
E = El + En. Since El has to be positive in order for the current to
flow, for a fixed total energy E only a certain number of channels (or
modes) are open. Since it is possible that the number of open modes
will be different in each contact, we define the number of incoming
channels by n`,r in the left and right side, respectively.

Now we are in the position of defining our system, which consists
of a narrow conductor with a few transverse channels attached to
two wider contacts, ideally with infinite transverse channels. Then,
the contacts act as sources of carriers determined by their Fermi dis-
tribution. We also assume reflectionless contacts, which means that
the contacts act as perfect sinks of carriers independently of its en-
ergy with which they leave the conductor. Finally, we define the cre-
ation and annihilation operators of electrons in the scattering states
as â†`,r;qn(E) and â`,r;qn(E) with total energy E and transverse mo-
mentum qn in the left and right side, which are incident on the sample.
Following the same reasoning, b̂†`,r;qn(E) and b̂`,r;qn(E) create and an-
nihilate electrons in the outgoing states, respectively [211].

We define the quantum mechanical current operator from the left
contact as follows,

Î`(t) =
e

h

∑
qn

∫ ∞
−∞

dE

∫ ∞
−∞

dE′ei(E−E
′)t/~

×
[
â†`qn(E)â`qn(E′)− b̂†`qn(E)b̂`qn(E′)

]
, (A.1)

where n̂+
`qn

(E) = â†`qn(E)â`qn(E) is the incoming occupation num-
ber operator from the left contact in a channel characterized by the
transverse momentum qn and n̂−`qn(E) = b̂†`qn(E)b̂`qn(E) in the out-
going number operator. We integrate over all the energies E and E′,
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sum over all the allowed transverse momenta qn and multiply by e/h
where h is the Planck constant which comes from the definition of
carriers’ velocity v = (1/~)∂E(k)/∂k and e is the electron charge. As
a result, Eq. (A.1) has correct units.

Now, through the scattering matrix s we can relate the operators
â and b̂,

b̂`q1
· · ·
b̂`qn`
b̂rq1
· · ·
b̂rqnr


= s



â`q1
· · ·
â`qn`
ârq1
· · ·
ârqnr

 , (A.2)

where the s matrix takes the following form,

s =

(
r t′

t r′

)
. (A.3)

Here, the blocks r, of size n`×n`, and r′, of size nr ×nr describe the
reflection amplitude of electrons back to the left and right reservoirs,
respectively. Consequently, the blocks t, of size nr×n`, and t′, of size
n`×nr, are the amplitude transmission of electrons across the sample.
The matrix s is quite generally unitary due to the flux conservation
in the scattering process. Further, s is symmetric in the presence of
time-reversal symmetry.

Introducing Eq. (A.2) into Eq. (A.1) and using matrix notation
we obtain,

Î`(t) =
e

h

∑
αβ

∑
qmqn

∫ ∞
−∞

dE

∫ ∞
−∞

dE′ei(E−E
′)t/~

â†αqm(E)Aqmqnαβ (`;EE′)âβqn(E′) , (A.4)

where the indices α and β label the contacts ` and r. The matrix A
is defined as

Aqmqnαβ (`;EE′) = δmnδα`δβ`−∑
ql

s†`α;qmql
(E)s`β;qlqn(E′) , (A.5)



142 ChapterA. Scattering approach

where s`β;qlqn(E) is the scattering amplitude that relates b̂`qm(E) with
âαql(E).

In order to achieve the current flowing along x-direction for a
Fermi gas at thermal equilibrium we perform the quantum statistical
average of Eq. (A.4)

I = 〈Î`(t)〉 =
e

h

∫ ∞
−∞

dE Tr[t†(E)t(E)][f`(E)− fr(E)] , (A.6)

where we have used that

〈â†αqm(E)âβqn(E′)〉 = δmnδαβδ(E
′
E)fα(E) . (A.7)

In Eq. (A.6) the matrices t and t′ are the off-diagonal block of the
scattering matrix given by Eq. (A.3). We note that the matrix t†t
can be diagonalized obtaining

I =
e

h

∑
qn

∫ ∞
−∞

dE T (E, qn)[f`(E)− fr(E)] , (A.8)

where T (E, qn) is the transmission probability of one carrier injected
from the left contact with energy E and transverse momentum qn
arriving to the right contact.

In our calculation the transmission probability are spin dependent,
T (E, qn) =

∑
s′s Ts′s(E, qn). Then, the spin current flowing along x-

direction is given by

Is =
e

h

∑
s′

∑
qn

∫ ∞
−∞

Ts′s(E, qn) [f`(E)− fr(E)] dE , (A.9)

where
∑

s′ is a sum over the transmitted spin and
∑

qn
a sum over

all the possibles momenta on the y-direction. Here fc(E) with c =
`, r are the Fermi distribution functions defined above and Ts′s the
transmission probability from spin s to spin s′.

In the continuum limit valid fore wide samples, we make the re-
placement∑

qn

−→ W

2π

∫ ∞
−∞

dq , (A.10)
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where W is the width of the sample in the y-direction and q =
K(E) sinφ with K(E) the momentum magnitude and φ the incident
angle. Using this relation,

Is =
e

h

W

2π

∫ π/2

−π/2
cosφdφ

∫ ∞
−∞

∑
s′

Ts′s(E, φ)K(E)

× [f`(E)− fr(E)] dE . (A.11)

Using the fact that Ts′s(E, φ) cosφ is an even function and that
the contribution to the current of the states with negative energy is
zero, we find

Is =
e

h

W

π

∫ π/2

0
cosφdφ

∫ ∞
−∞

∑
s′

Ts′s(E, φ)K(E)

× [f`(E)− fr(E)] dE . (A.12)

This corresponds to Eqs. (2.13) and (3.14) in Chapter 2 and 3,
respectively.





B. Rashba spin-orbit coupling

In this appendix we derive the Rashba spin-orbit interaction for elec-
trons in a two-dimensional electron system. The spin-orbit coupling
is a relativistic effect. Therefore, we describe the electron motion with
the Dirac equation

i~
∂

∂t
ψ(t) = (c~α · ~p+ βmc2)ψ(t) , (B.1)

where c is the light speed, m the electron mass, ~p = −i~∇ the mo-
mentum operator,

~α =

(
0 ~σ
~σ 0

)
, β =

(
I 0
0 −I

)
(B.2)

and ~σ the Pauli matrix vector.
Since Eq. (B.1) is a matrix equation, ψ has four components

ψ(t) =


ψ1(t)
ψ2(t)
ψ3(t)
ψ4(t)

 ≡ ( ψ+(t)
ψ−(t)

)
, (B.3)

where ψ±(t) are vectors of two components.
Now, defining the time-dependent part of the wave function as

ψ(t) = ψe−iEt/~ , (B.4)

we can rewrite Eq. (B.1) and obtain

Eψ = (c~α · ~p+ βmc2)ψ , (B.5)

with E = ES + mc2 and ES is the energy that appears in the
Schrödinger equation.
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Then, in order to obtain the Rashba coupling term we include in
Eq. (B.5) the action of an electric field, see Sec. 1.3.2.1. With the aid
of the electric potential φ and substituting E → E − qφ,we find

Eψ = (c~α · ~p+ βmc2 + qφ)ψ , (B.6)

where q = −e (e > 0) is the electron charge.
Writing Eq. (B.5) in matrix form and decoupling the two resulting

equations we obtain[
(~σ · ~p )

c2

E +mc2 − qφ
(~σ · ~p ) + qφ

]
ψ+ = (E −mc2)ψ+ . (B.7)

Now, we expand Eq. B.7 to order (v/c)4 and obtain

ESψ+ =

[
~p 2

2m
+ qφ− ~p 4

8m3c2

− q~
4m2c2

~σ · (~p× ~E)− iq~
4m2c2

(~p · ~E)

]
ψ+ , (B.8)

where we have used ~pφ = −i~∇φ = −i~~E . In addition to the
free Hamiltonian ~p 2/(2m) + qφ, one finds three relativistic correc-
tions [212]. The fourth term describes the spin-orbit interaction, i.e.,
the action of an external electric field on a moving spin. We replace
the electric field ~E by −∇V (~r)/e where V (~r) = eφ(~r) is the poten-
tial energy. Then, the fourth term of Eq. (B.8) can be written (after
symmetrization) as

− ~
8m2c2

(~σ · [~p×∇V (~r)] + ∇V (~r) · [~σ × ~p]) . (B.9)

This is the general form of the spin-orbit interaction Hamiltonian.
We are interested in systems based on a 2DEG in which electrons

are strongly confined in the z-direction by a confining potential V (z),
see Chapters 3 and 4. This means that

dV

dz
� dV

dx
,
dV

dy
and then ∇V (~r) ∼ ẑ d

dz
V . (B.10)

Moreover, for inversion asymmetric heterostructures this V (z) is
asymmetric with respect to the reflection point z = 0 and, as a con-
sequence, the matrix element 〈Φ|(d/dz)V (z)|Φ〉 6= 0 where Φ(z) are
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the bound states in the z-direction. Taking into account all these
conditions, Eq. (B.9) reduces to the Rashba spin-orbit interaction
Hamiltonian

H2DEG
R =

1

2~
ẑ · [α(~σ × ~p) + (~σ × ~p)α] , (B.11)

where

α = − ~2

4m2c2
〈Φ| d

dz
V (z)|Φ〉 , (B.12)

is the Rashba coupling strength and depends on the material param-
eters. For a constant value of α we arrive at Eq. (1.35). When the
spin-orbit coupling is not homogeneous, we must use Eq. (B.11) as
discussed in Chapter 3. A more rigorous derivation of Eq. (B.11) can
be found in Ref. [56] where the conduction and valence bands are
taken into account.





C. Dirac current

In this appendix we derive the probability current for electrons in
a graphene monolayer. We describe the electrons in graphene as a
massless Dirac fermions that obey [Eq. (1.15)]

H = −i~vF~σ · ~∇ , (C.1)

where vF is the Fermi velocity and ~σ = (σx, σy) the Pauli matrix
vector.

The Schrödinger equation takes the following form,

i~
∂ψ(r̄, t)

∂t
= Hψ(r̄, t) , (C.2)

where ~r = (x, y) and the wave function expressed as a spinor of two
components is

ψ(r̄, t) =

(
X(r̄, t)
Y (r̄, t)

)
. (C.3)

For simplicity, we consider the one-dimensional case. Then, the
Hamiltonian readsH = −i~vFσx∂/∂x. When we substitute Eq. (C.3)
into Eq. (C.2) we obtain,

i~
∂

∂t

(
X(x)
Y (x)

)
= −i~VF

(
0 ∂

∂x
∂
∂x 0

)(
X(x)
Y (x)

)
. (C.4)

This matrix equation gives two coupled equations

∂

∂t
X(x) = −VF

∂

∂x
Y (x) , (C.5a)

∂

∂t
Y (x) = −VF

∂

∂x
X(x) . (C.5b)
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Then, in order to obtain the expression for ~J we consider the
right-hand side of the following continuity equation,

∂

∂t
ρ = −~∇ · ~J . (C.6)

In one-dimension, where we only have current along the x-direction,
we find

∂

∂t
ρ =

∂

∂t
|ψ|2 =

∂

∂t
ψ∗ψ =

∂(XX∗ + Y Y ∗)

∂t

= X∗
∂X

∂t
+X

∂X∗

∂t
+ Y ∗

∂Y

∂t
+ Y

∂Y ∗

∂t

= −VF (X
∂Y ∗

∂x
+X∗

∂Y

∂x
+ Y ∗

∂X

∂x
+ Y

∂X∗

∂x
)

= −VF
∂(Y X∗ +XY ∗)

∂x
= −∂Jx

∂x
. (C.7)

Therefore,

Jx = VF (Y X∗ +XY ∗) = VFψ
†σxψ . (C.8)

This expression can be straightforwardly generalized to:

~J = VFψ
†~σψ . (C.9)



D. Interfaces

This appendix contains the mathematical expressions of α(x) and
∆(x) employed in our numerical simulations for the interfaces. We
model the step-like character of these quantities using Fermi-like func-
tions

Fx0,σ(x) =
1

1 + e(x−x0)/σ
, (D.1)

where x0 is the junction position of the step and σ determines the
length around x0 where the transition takes place. Then,

α(x) = α
(
FL/2,σα(x)−F−L/2,σα(x)

)
, (D.2a)

∆(x) = ∆`F−d/2,σ∆
(x) + ∆r

(
1−Fd/2,σ∆

(x)
)
, (D.2b)

where the Rashba strength α and the Zeeman splitting ∆r,` are con-
stants. Here L is the region in between the contacts where the Rashba
spin-orbit interaction acts and d, which is smaller than L, is the
distance between the ferromagnetic contacts. For mode details see
Ref. [119]. Our results are independent of the interface details because
we take sharp transitions, i.e., σα � L. In our numerical calculations
we take σα = 0.1L0, σ∆ = 0.3L0 and d = 20L0.





E. Heat transport

In this appendix we will study the heat current which we use in Chap-
ter 3.

The stationary heat current (say, at the right contact) is given by:

Qr =
1

h

W

2π

∑
s

∫ ∞
0

dE Ts(E)K(E) (E − µrs)

× [f`s(E)− frs(E)] , (E.1)

where µrs is the chemical potential in the right contact at given spin
s. The sum of the right and the left heat current gives the dissipated
Joule heating, Qr +Q` = IV .

We apply a small voltage bias which, after Taylor expanding up to
first order in V , gives the electrothermal conductance
M = (dQ/dV )V=0

M =
eπW (kBT0)2

6hEF
KF
∑
s

(
1

2
Ts + EF

∂Ts
∂EF

)
(E.2)

at very low values of T0. Here, Ts = Ts(EF ). Comparing with
Eq. (3.18), we check that the Klein-Onsager relation, M = T0L, is
fulfilled as expected.

The thermal conductance, K = (dQ/d(∆T ))∆T=0, is obtained in
linear response when a small temperature difference is applied across
the junction. At low temperatures we find:

K =
πWk2

BT0

6h
KF T (EF ) , (E.3)

where T (EF ) =
∑

s Ts(EF ). Then, the Wiedemann-Franz law is sat-
isfied since K/T0G = π2k2

B/3e
2.





F. Fourier transform

This appendix contains a set of Fourier transformation relations which
we use in Chapter 5.

The double Fourier transformation and its inverse are defined as

G(t, t′) =
∑
m,n

∫
dε

2π
e−i(ε+m~Ω)t/~ei(ε+n~Ω)t′/~G(m− n, εn) ,

(F.1)

G(m− n, εn) =

∫ τ

0

dt

τ

∫
dt′

~
ei(ε+m~Ω)t/~e−i(ε+n~Ω)t′/~G(t, t′) ,

(F.2)

where m and n are intergers, τ = 2π/Ω is the ac period, and εn =
ε+n~Ω. Notice that only the states whose energies differ by interger
times ~Ω can be coupled. It is convenient to employ the mixed time-
energy representation

G(t, ε) =
∑
n

e−inΩtG(n, ε) . (F.3)

The Fourier transform can then be written in the form

G(t, t′) =

∫
dε

2π
e−iε(t−t

′)/~G(t, ε) (F.4)

and the corresponding inverse Fourier transforms are given by

G(t, ε) =

∫
dt′

~
eiε(t−t

′)/~G(t, t′) , (F.5)

G(n, ε) =

∫ τ

0

dt

τ
einΩtG(t, ε) , (F.6)

respectively.





G. Frequency expansion

In this appendix we will explain is detail the different steps needed to
obtain the frozen and first order in frequency dot Green function in
both the interacting and noninteracting case.

We begin by applying the double Fourier transform Eq. (F.2) to
Eqs. (5.7) and (5.12):

Gσ(n, ε) = gσ(n, ε) +
∑
p

Gσ(n− p, εp)[εacgσ](p, ε)

+
∑
p,q

Gσ(n− p, εp)Σ0(p− q, εq)gσ(q, ε)

+ U
∑
p

〈〈dσ, d†σnσ̄〉〉(n− p, εp)gσ(p, ε) , (G.1)

〈〈dσ, d†σnσ̄〉〉(n, ε) = [〈nσ̄〉gσ] (n, ε)

+
∑
p

〈〈dσ, d†σnσ̄〉〉(n− p, εp) [εacgσ] (p, ε)

+
∑
p,q

〈〈dσ, d†σnσ̄〉〉(n− p, εp)Σ0(p− q, εq)gσ(q, ε)

+ U
∑
p

〈〈dσ, d†σnσ̄〉〉(n− p, εp)gσ(p, ε) . (G.2)

The retarded/advanced and lesser Green’s functions then follow
from Eqs. (G.1) and (G.2) by applying the Langreth’s rules [168].

G.1 Noninteracting case

In the noninteracting case, we set U = 0 and therefore 〈〈dσ, d†σnσ̄〉〉(n, ε)
in Eqs. (G.1) and (G.2) is neglected.
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G.1.1 Retarded and advanced Green’s function
The retarded/advanced dot Green’s function is given by

Gr/aσ (n, ε) = gr/aσ (n, ε) +
∑
p

Gr/aσ (n− p, εp)[εacgr/aσ ](p, ε)

+
∑
p,q

Gr/aσ (n− p, εp)Σr/a
0 (p− q, εq)gr/aσ (q, ε) , (G.3)

with

gr/aσ (n, ε) =
δn,0

ε− εσ ± i0+
= δn,0gr/aσ (ε) , (G.4a)

Σ
r/a
0 (m− n, εn) = ∓iδm,nΓ(εn) = δm,nΣ

r/a
0 (εn) , (G.4b)

[εacgr/aσ ](n, ε) =
εac
2

(δn,1 + δn,−1)gr/aσ (ε) , (G.4c)

where Γ(εn) = 2π|Vk|2ρ(εn) and ρ(εn) =
∑

k δ(εn−εk) is the reservoir
density of states.

Introducing Eq. (G.4) into Eq. (G.3), we find

Gr/aσ (n, ε) =
(
δn,0 +

εac
2

∑
p=±1

Gr/aσ (n− p, εp)
)
G r/a
σ (ε) , (G.5)

where

G r/a
σ (ε) =

1

ε− εσ − Σ
r/a
0 (ε)

. (G.6)

We now expand in powers of ~Ω

G(n− p, εp) = Gf (n− p, ε)

+ ~Ω
(
p∂εGf (n− p, ε) + G(1)(n− p, ε)

)
+ . . . , (G.7)

and substitute it in Eq. (G.5) to find

Gr/a,fσ (n, ε) =
(
δn,0 +

εac
2

∑
p=±1

Gr/aσ (n− p, ε)
)
G r/a
σ (ε) , (G.8)

Gr/a,(1)
σ (n, ε) =

εac
2

∑
p=±1

(
p∂εGr/a,fσ (n− p, ε)

+ Gr/a,(1)
σ (n− p, ε)

)
G r/a
σ (ε) . (G.9)

Using Eq. (F.3) and taking into account the wide band limit
Γ(ε) = Γ, which is a good approximation for reservoirs with flat
densities of states, we arrive at Eqs. (5.14a) and (5.14b) of Chapter 5.
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G.1.2 Lesser Green’s function
The lesser Green’s function for the quantum dot electrons can be
obtained as

G<σ (n, ε) = δn,0g<σ (n, ε)

+
∑
p

(
Grσ(n− p, εp)[εacg<σ ](p, ε) +G<σ (n− p, εp)[εacgaσ](p, ε)

)
+
∑
p,q

(
Grσ(n− p, εp)Σr

0(p− q, εq)g<σ (q, ε)

+ Grσ(n− p, εp)Σ<
0 (p− q, εq)gaσ(q, ε)

+ G<σ (n− p, εp)Σa
0(p− q, εq)gaσ(q, ε)

)
, (G.10)

where

g<σ (n, ε) = 2πiδn,0δ(ε− εσ)f(εσ) = δn,0g<σ (ε) , (G.11a)
Σ<

0 (m− n, εn) = 2iδm,nΓ(εn)f(εn) = δm,nΣ<
0 (εn) , (G.11b)

[εacg<σ ](n, ε) =
εac
2

(δn,1 + δn,−1)g<σ (ε) . (G.11c)

Introducing Eqs. (G.4) and (G.11) into Eq. (G.10) and using
gr,−1
σ (ε)g<σ (ε) = 0 we find

G<σ (n, ε) =
(εac

2

∑
p=±1

G<σ (n− p, εp)

+ Grσ(n, ε)Σ<
0 (ε)

)
G a
σ (ε) . (G.12)

This is the starting point for a series expansion in powers of ~Ω.
The procedure is analogous to Eq. (G.7). Then, the frozen and first
order terms in Ω become, respectively,

G<,fσ (n, ε) =
(εac

2

∑
p=±1

G<,fσ (n− p, ε)

+ Gr,fσ (n, ε)Σ<
0 (ε)

)
G a
σ (ε) , (G.13)

G<,(1)
σ (n, ε) =

(
εac
2

∑
p=±1

(
p∂εG<,fσ (n− p, ε) + Gr,(1)

σ (n− p, ε)
)

+ Gr,(1)
σ (n, ε)Σ<

0 (ε)

)
G a
σ (ε) . (G.14)
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As discussed earlier, we can again use Eq. (F.3) and consider the
wide band limit, which leads to Eqs. (5.14c) and (5.14d).

G.2 Interacting case: Coulomb blockade regime

In order to describe the Coulomb blockade regime, we consider the
nonzero U case. Hence, Eq. (G.2) must be taken into account.

G.2.1 Retarded and advanced Green’s function

The retarded/advanced Green’s functions are simply derived from
Eq. (G.1) and (G.2), yielding

Gr/aσ (n, ε) = gr/aσ (n, ε) +
∑
p

Gr/aσ (n− p, εp)[εacgr/aσ ](p, ε)

+
∑
p,q

Gr/aσ (n− p, εp)Σr/a
0 (p− q, εq)gr/aσ (q, ε)

+ U
∑
p

〈〈dσ, d†σnσ̄〉〉r/a(n− p, εp)gr/aσ (p, ε) , (G.15)

〈〈dσ, d†σnσ̄〉〉r/a(n, ε) =
[
〈nσ̄〉gr/aσ

]
(n, ε)

+
∑
p

〈〈dσ, d†σnσ̄〉〉r/a(n− p, εp)
[
εacgr/aσ

]
(p, ε)

+
∑
p,q

〈〈dσ, d†σnσ̄〉〉r/a(n− p, εp)Σ
r/a
0 (p− q, εq)gr/aσ (q, ε)

+ U
∑
p

〈〈dσ, d†σnσ̄〉〉r/a(n− p, εp)gr/aσ (p, ε) , (G.16)

with [
〈nσ̄〉gr/aσ

]
(n, ε) = 〈nσ̄〉n g

r/a
σ (ε) , (G.17)

where we have used the Fourier expansion

〈nσ̄(t)〉 =
∑
n

〈nσ̄〉n e
−inΩt . (G.18)

We substitute Eqs. (G.4) and (G.17) into Eqs. (G.15) and (G.16)
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and find

Gr/aσ (n, ε) =
(
δn,0 +

εac
2

∑
p=±1

Gr/aσ (n− p, εp)

+ U〈〈dσ, d†σnσ̄〉〉r/a(n, ε)gr/aσ (ε)
)
G r/a
σ (ε) , (G.19)

〈〈dσ, d†σnσ̄〉〉r/a(n, ε) =
(
〈nσ̄〉n

+
εac
2

∑
p=±1

〈〈dσ, d†σnσ̄〉〉r/a(n− p, εp)
)
G r/a
σ (ε− U) , (G.20)

where G
r/a
σ is given by (G.6). The solution has poles at εσ and εσ+U

such that it properly describes the Coulomb blockade.
Let us now expand in powers of ~Ω. The expansion is based upon

Eq. (G.7), which leads to

Gr/a,fσ (n, ε) =
(
δn,0 +

εac
2

∑
p=±1

Gr/aσ (n− p, ε)

+ U〈〈dσ, d†σnσ̄〉〉r/a,f (n, ε)
)
G r/a
σ (ε) , (G.21)

Gr/a,(1)
σ (n, ε) =

(εac
2

∑
p=±1

[
p∂εG

r/a,f
σ (n− p, ε)

+Gr/a,(1)
σ (n− p, ε)

]
+ U〈〈dσ, d†σnσ̄〉〉r/a,(1)(n, ε)

)
G r/a
σ (ε) , (G.22)

where

〈〈dσ, d†σnσ̄〉〉r/a,f (n, ε) =
(
〈nσ̄〉fn

+
εac
2

∑
p=±1

〈〈dσ, d†σnσ̄〉〉r/a,f (n− p, ε)
)
G r/a
σ (ε− U) , (G.23)

〈〈dσ, d†σnσ̄〉〉r/a,(1)(n, ε) =
(
〈nσ̄〉(1)

n

+
εac
2

∑
p=±1

[
p∂ε〈〈dσ, d†σnσ̄〉〉r/a,f (n− p, ε)

+ 〈〈dσ, d†σnσ̄〉〉r/a,(1)(n− p, ε)
])

G r/a
σ (ε− U) . (G.24)

Expressing Eqs. (G.21) and (G.22) in the mixed time-energy rep-
resentation leads to Eqs. (5.21a) and Eqs. (5.21b).
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G.2.2 Lesser Green’s function

Applying Langreth’s rules again, the lesser Green’s functions become

G<σ (n, ε) = δn,0g<σ (n, ε)

+
∑
p

(
Grσ(n− p, εp)[εacg<σ ](p, ε) +G<σ (n− p, εp)[εacgaσ](p, ε)

)
+ U

∑
p

(
〈〈dσ, d†σnσ̄〉〉r(n− p, εp)g<σ (p, ε)

+ 〈〈dσ, d†σnσ̄〉〉<(n− p, εp)gaσ(p, ε)
)

+
∑
p,q

(
Grσ(n− p, εp)Σr0(p− q, εq)g<σ (q, ε) +Grσ(n− p, εp)

× Σ<0 (p− q, εq)gaσ(q, ε) +G<σ (n− p, εp)Σa0(p− q, εq)gaσ(q, ε)
)
,

(G.25)

〈〈dσ, d†σnσ̄〉〉<σ (n, ε) =
[
〈nσ̄〉g<σ

]
(n, ε)

+
∑
p

(
〈〈dσ, d†σnσ̄〉〉rσ(n− p, εp)[εacg<σ ](p, ε)

+ 〈〈dσ, d†σnσ̄〉〉<σ (n− p, εp)[εacgaσ](p, ε)
)

+ U
∑
p

(
〈〈dσ, d†σnσ̄〉〉r(n− p, εp)g<σ (p, ε)

+ 〈〈dσ, d†σnσ̄〉〉<(n− p, εp)gaσ(p, ε)
)

+
∑
p,q

(
〈〈dσ, d†σnσ̄〉〉rσ(n− p, εp)Σr0(p− q, εq)g<σ (q, ε)

+ 〈〈dσ, d†σnσ̄〉〉rσ(n− p, εp)Σ<0 (p− q, εq)gaσ(q, ε)

+ 〈〈dσ, d†σnσ̄〉〉<σ (n− p, εp)Σa0(p− q, εq)gaσ(q, ε)
)
, (G.26)

with

[
〈nσ̄〉g<σ

]
(n, ε) = 〈nσ̄〉n g

<
σ (ε) . (G.27)

Inserting Eqs. (G.4), (G.11), and (G.27) into Eqs. (G.25) and (G.26),
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and recalling that gr−1
σ (ε)g<σ (ε) = 0, we get

G<σ (n, ε) =
(εac

2

∑
p=±1

G<σ (n− p, εp)

+ U〈〈dσ, d†σnσ̄〉〉<(n, ε) +Grσ(n, ε)Σ<
0 (ε)

)
G a
σ (ε) , (G.28)

〈〈dσ, d†σnσ̄〉〉<σ (n, ε) =
(εac

2

∑
p=±1

〈〈dσ, d†σnσ̄〉〉<σ (n− p, εp)

+ 〈〈dσ, d†σnσ̄〉〉rσ(n, ε)Σ<
0 (ε)

)
G a
σ (ε− U) . (G.29)

The expansion in Ω yields

G<,fσ (n, ε) =

(
εac
2

∑
p=±1

G<,fσ (n− p, ε)

+ U〈〈dσ, d†σnσ̄〉〉<,fσ (n, ε) +Gr,fσ (n, ε)Σ<
0 (ε)

)
G a
σ (ε) , (G.30)

G<,(1)
σ (n, ε) =

(
Gr,(1)
σ (n, ε)Σ<

0 (ε)

+
εac
2

∑
p=±1

[
p∂εG

<,f
σ (n− p, ε) + Gr,(1)

σ (n− p, ε)
]

+ U〈〈dσ, d†σnσ̄〉〉<,(1)
σ (n, ε)

)
G a
σ (ε) , (G.31)

and

〈〈dσ, d†σnσ̄〉〉<σ (n, ε) =
(εac

2

∑
p=±1

〈〈dσ, d†σnσ̄〉〉<,fσ (n− p, ε)

+ 〈〈dσ, d†σnσ̄〉〉r,fσ (n, ε)Σ<
0 (ε)

)
G a
σ (ε− U) , (G.32)

〈〈dσ, d†σnσ̄〉〉<,(1)
σ (n, ε) =

(
〈〈dσ, d†σnσ̄〉〉r,(1)

σ (n, ε)Σ<
0 (ε)

+
εac
2

∑
p=±1

[
p∂ε〈〈dσ, d†σnσ̄〉〉<,fσ (n− p, ε)

+ 〈〈dσ, d†σnσ̄〉〉r,(1)
σ (n− p, ε)

])
G a
σ (ε− U) . (G.33)

Equations (5.21c) and (5.21d) then follow easily.





H. Hartree approximation

In this appendix we study the charge current and dot occupation of
the system of Chapter 5 using the Hartree approach1. This approx-
imation decouples higher-order correlators of Eq. (5.7) in the follow-
ing way: 〈〈dσ, d†σnσ̄〉〉(t, t′) ≈ Gσ(t, t′) 〈nσ̄(t′)〉. Hence, the equation
of motion for the Green’s function can be exactly solved. We find
that both frozen dot occupation and current to first order in ~Ω take
the same form as in Eqs. (5.17a) and (5.17b) but replacing εac(t)
with εac(t) + U 〈n(t)〉f . As a consequence, Eq. (5.17a) becomes a
self-consistent equation for 〈n(t)〉f and the dot occupation has to be
solved iteratively.

The inset of Fig. H.1 shows the results of our numerical evaluations
for the frozen occupation in the Hartree approximation at a fixed
value of the dot level varying the interaction strength. We keep the
ac amplitude with a large value (εac = 5Γ). In the frozen regime,
the electronic potential is instantaneously adjusted to the variation
of the ac field. As a consequence, 〈n(t)〉fH attains its maximum value
when Ωt = π + 2πm (m = 0, 1, . . .). In the inset of Fig. H.1 we
can observe how the frozen occupation increases during the first half-
cycle of the pulse (two electrons, one per spin, are absorbed) whereas
during the second half-cycle it decreases (two electrons, one per spin,
are emitted). For U 6= 0, in the Hartree approximation, we observe
that the peak maxima decrease while the minima stay constant when
U increases. We attribute this behavior to a repulsion effect that
hampers the process of emission and absorption of electrons since an
extra energy is to be paid in order to populate the dot.

The main panel of Fig. H.1 presents the total current to first order
in the ac frequency. We have checked numerically that the current

1The contents of this appendix are based on M. I. Alomar, Jong Soo Lim and
David Sánchez, J. Phys.: Conf. Ser. 647, 012049 (2015).
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Figure H.1: Time-dependent current in Hartree approximation as
a function of time for different values of the Coulomb interaction
strength U . In the inset, we plot the frozen dot occupation (also in
Hartree approximatioin) as a function of Ωt/π for the same values of
U as in the main plot. Parameters: ε0 = 2Γ, εac = 5Γ and kBT = 0.

to second order in the ac frequency is much smaller than the first
order and then it is enough to understand the current behavior to
leading order in Ω. What we observe is that the current presents
peaks (dips) during the absorption (emission) part of the process.
Between pulses the occupation remains roughly constant and the cur-
rent is close to zero. As expected, when U increases, the current
peaks are significantly lower. Comparing these results with those ob-
tained in the Coulomb blockade regime (see Fig. 5.5) we observe an
important difference. In the Hartree approximation our results sug-
gest that mean-field interactions can be understood as an effective
ac potential with a lowered amplitude. In contrast, in the Coulomb
blockade regime the current peaks (and dips) split indicating that
we have two one-electron (and two one-hole) pulses (see Sec. 5.4).
We must keep in mind that the Hartree approximation is valid for
weak electron-electron Coulomb interaction (U < πΓ) whereas the
Coulomb blockade is valid for strong electron-electron Coulomb in-
teraction (U > πΓ).
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