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Dr. Sebastià MASSANET MASSANET

Tutor: Dr. Sebastià MASSANET MASSANET
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Abstract

Fuzzy mathematical morphology is a set of tools to process grayscale images. It is based on
two operators, the dilation and the erosion, that respectively enlarge and shrink objects. We extend
these operators to deal with multivariate images by defining the soft color dilation and the soft color
erosion. They are designed for generic multivariate color spaces, but also to process natural images
consistently with regard to the notions of enlarging and shrinking objects. Besides being able to pre-
serve colors, other theoretical properties are transferred from the fuzzy mathematical morphology.
The soft color dilation and erosion can also be combined, in the same way as the fuzzy erosion and
dilation, to provide operators with a complex behaviour. Several of such combinations have been
designed for a variety of tasks, and can now be transferred to color images: noise filtering, contrast
enhancing, object segmentation and shape recognition, among others. In this thesis, we also pro-
pose a definition of curvilinear objects to unify the literature: several image processing problems
consider the task of segmenting tubular-shaped objects clearly different to their surrounding back-
ground. In particular, we study such problems to extract their common denominator. This state
of the art is synthesized by categorizing both the approaches to segment curvilinear objects and
the features they consider of interest. Besides, we design algorithms based on morphological ope-
rators to segment curvilinear objects. We use fuzzy mathematical morphology to segment vessels
in eye-fundus photographs and soft color morphology to detect hair in dermoscopic images. Both
morphologies consider different implementations of erosion and dilation. However, the dilation
and erosion of each morphology can be combined similarly. Both methods achieve high perfor-
mance compared to other published works. This has several implications: first, it indicates that
the soft color morphology is a comprehensible extension of the fuzzy mathematical morphology;
second, it is a promising example of the potential of the soft color morphology; and third, it implies
that the common denominator of both tasks is extensive enough to face them with similar tools:
curvilinear object detectors.
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Resumen

La morfologı́a matemática es un conjunto de técnicas de procesamiento de imagen en escala de
grises. Se basa en dos operadores, la dilatación y la erosión, que respectivamente agrandan y dismi-
nuyen los objectos. En esta tesis, generalizamos estos operadores para procesar imágenes multiva-
riadas, introduciendo ası́ la dilatación suave en color y la erosión suave en color. Estos operadores
están diseñados considerando espacios de color genéricos pero, al mismo tiempo, para procesar
imágenes naturales de acuerdo con las nociones de agrandar y disminuir los objetos. Además de
preservar los colores, otras propiedades teóricas son transferidas desde la morfologı́a matemática
borrosa. La dilatación y la erosión suaves en color pueden combinarse, tal y como se combinan
la dilatación y erosión borrosas, para crear operadores con un comportamiento complejo. Se han
diseñado muchas de estas combinaciones para afrontar tareas diversas, que pueden ser ahora utili-
zadas con imágenes en color: filtrado de ruido, corrección de contraste, segmentación de objetos o
reconocimiento de formas, entre otras. En esta tesis, además, proponemos una definición de objetos
curvilı́neos para unificar el estado del arte: muchos problemas de procesamiento de imagen consi-
deran la segmentación de objetos con forma tubular que se diferencian del fondo circundante. En
particular, estudiamos dichos problemas para extraer su denominador común. Sintetizamos este
estado del arte mediante la categorización tanto de las técnicas utilizadas para segmentar objetos
curvilı́neos como de las caracterı́sticas de éstos que se consideran de interés. Además, diseñamos
algoritmos basados en operadores morfológicos para segmentar objetos curvilı́neos. Utilizamos la
morfologı́a matemática borrosa para segmentar vasos sanguı́neos en fotografı́as del fondo del ojo
y la morfologı́a suave en color para detectar vello en imágenes dermoscópicas. Ambas morfologı́as
consideran diferentes implementaciones de erosión y dilatación. Sin embargo, la dilatación y la
erosión de cada morfologı́a pueden ser combinadas de manera similar. Ambos algoritmos pre-
sentan unos resultados satisfactorios en comparación con otros trabajos publicados en la literatura
cientı́fica. Esto tiene varias implicaciones: primero, la morfologı́a suave en color es una extensión
comprensible de la morfologı́a matemática borrosa; segundo, constituye un ejemplo prometedor
del potencial de la morfologı́a suave en color; y tercero, implica que el denominador común de am-
bas tareas es suficientemente ámplio como para afrontarlas con herramientas similares: detectores
de objetos curvilı́neos.



xi

Resum

La morfologia matemàtica és un conjunt de tècniques de processament d’imatge en escala de
grisos. Es basa en dos operadors, la dilatació i l’erosió, que respectivament engrandeixen i dis-
minueixen els objectes. En aquesta tesi, generalitzem aquests operadors per processar imatges
multivariades, introduint aixı́ la dilatació suau en color i l’erosió suau en color. Aquests operadors
estan dissenyats considerant espais de color genèrics però, al mateix temps, per processar imatges
naturals d’acord amb les nocions d’engrandir i disminuir els objectes. A més de preservar els colors,
altres propietats teòriques són transferides des de la morfologia matemàtica borrosa. La dilatació
i l’erosió suaus en color es poden combinar, tal i com es combinen la dilatació i erosió borroses,
per crear operadors amb un comportament complexe. S’han dissenyat moltes d’aquestes combina-
cions per afrontar diverses tasques, que poden ser ara utilitzades amb imatges en color: filtratge
de renou, correcció de contrast, segmentació d’objectes o reconeixement de formes, entre altres.
En aquesta tesi, també proposem una definició d’objectes curvilinis per unificar l’estat de l’art:
molts problemes de processament d’imatge consideren la segmentació d’objectes de forma tubular
que es diferencien del fons circumdant. En particular, estudiem aquests problemes per a extreure
el seu denominador comú. Sintetitzem aquest estat de l’art mitjançant la categorització tant de
les tècniques utilitzades per a segmentar objectes curvilinis com de les caracterı́stiques d’aquests
que es consideren d’interés. A més, dissenyem algoritmes basats en operadors morfològics per
segmentar objectes curvilinis. Utilitzem la morfologia matemàtica borrosa per segmentar vasos
sanguinis en fotografies del fons de l’ull i la morfologia suau en color per detectar pèls en imatges
dermoscòpiques. Totes dues morfologies consideren diferents implementacions d’erosió i dilatació.
No obstant això, la dilatació i l’erosió de cada morfologia poden ser combinades de manera similar.
Els dos algoritmes presenten uns resultats satisfactoris en comparació amb altres treballs publicats
en la literatura cientı́fica. Això té diverses implicacions: primer, la morfologia suau en color és una
extensió comprensible de la morfologia matemàtica borrosa; segon, constitueix un exemple prome-
tedor del potencial de la morfologia suau en color; i tercer, implica que el denominador comú de les
dues tasques és prou ample com per afrontar-les amb eines similars: detectors d’objectes curvilinis.
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Chapter 1

Introduction

Artificial intelligence is a set of emerging technologies that are changing the world we live in.
Although the term artificial intelligence was coined more than 50 years ago, in the Dartmouth Sum-
mer Conference of 1956, it is still emerging due to the fast evolution of science and technology. The
best simulations of human intelligence have always been based on the most sophisticated techni-
ques. Artificial intelligence is changing each and every aspect of our life: financial investment,
information broadcasting, transportation and even recruiting are nowadays supported by algo-
rithms.

Task automation is one of the most ambitious goals of artificial intelligence. Its development
will potentially have an exceptionally high impact: monotonous and hazardous labours will no
longer be required to be done with human’s hands. In the last years, task automation has matu-
red as a discipline in itself. For instance, computer algorithms are nowadays able to successfully
classify images based on their content, write short news reports based on twitter comments or add
color to grayscale photographs with outstanding results. These automation examples were out of
reach just ten years ago. They add up to other milestones previously reached, such as the recog-
nition of spoken digits, human-like automatic conversion via chat, autonomous car driving, the
recognition of handwritten digits or defeating the world chess champion. More of these problems
will become achievable as small, simple tasks are combined to provide more complex behaviour.

Image processing is playing a central role in this transformation. Let us emphasize that we
receive vasts amounts of information through the sight, and we greatly depend on it. Due to recent
developments, image processing has reclaimed its position as a major topic in the field of artificial
intelligence with regard to its value and development pace.

Despite the popularity of task automation in some fields, medicine is still reticent to adopt it.
Although this field typically adopts the latest technological developments, the central role of the
physician is indisputable. For instance, specially designed devices may be used to acquire and
reconstruct three-dimensional images which are, at the very end, manually analized to provide a
diagnosis. In this context, technology is used as a tool rather than as an automation mechanism. In
other words, articial intelligence is endorsed if, instead of deciding, it just helps.

The decision of a medical practitioner is undeniably preferred to automatic algorithms. The de-
velopment and deployment of articial intelligence-based systems encounters many barriers. From
a social point of view, they are not always accepted, as demonstrates the recent trend of creating ro-
bots less similar to humans to make them clearly different to people. A more philosophic criticism
argues on the impossibility of modelling intelligence as an information processing system, or on
the implicit assumption that we can internally represent all the information we acquire about the
world [120]. Regarding task automation in medicine, there is a rationale that outweights the rest of
them: the risk of being wrong. The consequences of a bad diagnosis are potentially very harmful.
Both the patient and the physician prefer the latter’s justified decision than that of a system whose
internal working mechanism may be opaque.

Medical data typically contains incomplete, vague or even contradictory information. This po-
ses as another factor that discourages the use of articial intelligence. Each patient has a different set
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of characteristics, and therefore it is very hard to standardize them to apply a series of sequential ru-
les to make a decision. For instance, some images are corregistered with standard models, known as
atlas, to locate macroscopic regions. This corregistration may be inaccurate or even completely fla-
wed whenever the patient had one anatomic region surgically removed. Besides, each device that
gathers patient information is affected by one or more different types of noise. Three-dimensional
volumetric images are reconstructed from physical measurements, histological diagnosis may be
wrong with a non-negligible probability, and so on. In addition to the above, a myriad of patho-
logies are responsible for even more variability. Therefore, the unreliability of biomedical imagery
may have a considerable impact in the outcome of automatic processing techniques.

Fuzzy logic is a tool specifically developed to deal with uncertainty and vagueness [198]. It
is an attempt to formalize knowledge while admitting that information may not be known in its
entirety. Fuzzy logic is a many-valued logic, in which propositions are not simply true or false, but
they are assigned a degree of truthfulness ranging from 0 to 1. In contrast to probability theory, in
which all events have a known numeric value of its likelihood, fuzzy logic may be used to model
ignorance: for instance, assigning a low truth value to both an event and its negation. In addition
to incomplete information, it can also model vagueness, contradiction and, of course, certainty.

Some computer vision techniques have been designed taking advantage of the underlying prin-
ciples of fuzzy logic [37]. They do so to deal with noisy images or to represent the information they
contain. In a grayscale image, each pixel is assigned a value in the range t0, 1, . . . , 2n´1u, typically
with n being 8, 16 or 24. However, from a theoretical point of view, they can be rescaled into the
interval [0, 1]. Some authors observe that this assignment falls into the definition of fuzzy set, and
interpret the value of each pixel as the degree of it representing a bright object. Following the same
line, the operations used with fuzzy logic values, such as fuzzy conjunctions or fuzzy disjunctions,
are used to process each pixel’s value. Also, other authors consider uncertainty when encoding the
information represented in the image. Vague statements may be extracted from a noisy image, such
as one object is above some other object; one object is big; or one object is convex. These vague statements
may be valid up to a certain point.

Fuzzy mathematical morphology is a computer vision tool which implements elements from
fuzzy logic [55]. It processes grayscale images based on two operations, the erosion and the dilation.
The former shrinks bright objects, whereas the latter enlarges them. Both operations provide a
modified version of the original image, and can be combined to design systems with a complex
behaviour. They can be combined either sequentially or iteratively, until a stop criteria is met.

In the literature, the same techniques ara adapted once and again to solve similar tasks. To
solve a specific problem (e.g. vessel segmentation), we usually split it into several simple tasks (e.g.
red spot detection), and then adapt a specific technique to address each task (e.g. linear filtering).
Nowadays, practitioners reuse techniques: instead of inventing brand new algorithms, the most
effective ones are adapted to solve different tasks. In contrast, task reusing is much less common.
Although different problems sometimes involve solving a similar task, all of them are faced inde-
pendently, and solved following similar paths accross different fields.

Curvilinear object detection is an example of a task found in many computer vision applicati-
ons [69, 113, 92]. Curvilinear objects are thin, elongated regions, clearly different from their back-
ground. They can have self-intersections or form a complex network. A great variety of objects
can be thought of as curvilinear objects: vessels in certain medical images, roads and rivers from
aerial images, road surface marking, cracks in industrial product manufacturing, etc. Considering
the common denominator of all such tasks is of paramount importance to keep standing on the
shoulders of giants.

1.1 Objectives of this Thesis

The motivation of this thesis arises from pursuing the automation of tasks using tools from the
field of image processing. More specifically, we focus on its applications to medical imagery and
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its mechanisms to deal with imprecise information. The thesis is aimed at fulfilling the following
milestones:

Objective 1. Extend the fuzzy mathematical morphology to multivariate images.
The operators of the fuzzy mathematical morphology are capable of dealing with
grayscale images. They are, as a matter of fact, an extension of the original morpho-
logy operators, envised to deal with binary images. Being able to process multivariate
images, like natural color images or corregistered PET/CT scans, would allow practi-
tioners to leverage their knowledge of these operators in a wider range of situations.

There is no successful definition of color morphology due to the difficulty of inter-
preting which objects must be enlarged (or shrinked) by the dilation (or the erosion).
Bright pixels in grayscale or binary images are assumed to represent objects. In both
cases we can decide which pixels have priority. Regarding color images, however,
there is no such priority: different colors become incomparable. We emphasize that,
in order to modify the objects, we must first differentiate them from their surrounding
background.

Objective 2. Design automatic algorithms for certain types of medical imagery taking into account
the uncertainty they contain.
This second milestone is aimed at applying the fuzzy and color mathematical opera-
tors to real problems. It is aimed at studying their efficiency, their performance and,
most importantly, their behaviour.

The purpose of extracting information from medical images is aiding the phyisician
or the researcher. This aid may have the form of automating a manually tedious task,
preprocessing images to uniformize or clean them or, in its highest form, exposing
correlations between features of the images and the pathologies they represent. We
are aware of the great complexity this may pose, but even designing and testing a
seemingly simple task may be challenging enough to test whether the techniques used
are appropriate or not.

Specifically, we consider two types of medical images:

(a) Fundus photographies. They are images of the retina, located at the back of the
ocular globe. The retina is a relatively visible region in which thin capillaries
can be observed. This may be one of the first places in which the symptoms of
some specific pathologies are revealed, such as in the case of diabetes. Although
they are taken with standard cameras in the RGB format, we only use their green
channel. Thus, we study them with fuzzy mathematical morphology operators.

(b) Dermoscopic images. Images of the skin taken with a specific device, the der-
moscope. They are magnified photographs of a small region of the skin taken to
study a single lesion. The dermoscope increases the accuracy of the diagnosis of,
among others, malignant melanoma. It produces natural color images and can be
processed with multivariate operators.

In both cases, we are interested in the underlying vagueness and uncertainty. First,
we must study the images: the types of noise they have, the anatomic structures and
pathologies they may contain, and what represents each pixel’s value. Second, the
techniques employed must be adapted to tackle each of the aforementioned sources of
imprecision: it is important to know how each specific imprecision is being addressed.

Objective 3. Working towards the use of task automation systems in real settings.
This thesis is motivated by a real world problem and, thus, has sense provided it is
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eventually transferred to the real situation in which it can have a salient impact. Even
though algorithms are designed by computer scientists, they are normally leveraged
by professionals from other fields. Thus, we must consider the constraints of a multi-
disciplinar project: professionals from different fields must work towards a common
goal.

A first route to consolidate knowledge for technology transfering is task reusing. Be-
sides splitting complex problems into several simple tasks, they must be solved just
once. Building on previous discoveries is, obviously, much easier than reinventing the
wheel many times.

Second, given the specific field of application of this thesis, a close interaction with
physicians is required. As previously discussed, introducing novelties in the clinical
practice is difficult due to legislation, adoption by practitioners and the time required
to employ it. Joint work between computer scientists and physicians is essential to
understand their needs and the problems they face.

1.2 Contributions

This thesis is organized from general-purpose concepts to more specific ones. Chapter 2 intro-
duces the common notation used throughout the thesis and some general concepts in computer
vision for the sake of completeness. The rest of the thesis is organized in several chapters, being
each of them a separate contribution. In the following, we enumerate them.

Chapter 3 is an extensive review of the task of curvilinear object detection. We found that cur-
vilinear objects are present in a variety of images, including retinal images (see Ch. 5). First, we
study which applications consider curvilinear objects. More importantly, we study how they mo-
del them and the disturbances they may present. Afterwards, we study and compare more than a
hundred of independent techniques to segment such objects. They are classified according to the
underlying mathematical technique employed to characterize curvilinear objects. This chapter con-
stitutes a contribution towards fulfilling Objective 3 by synthesizing the state-of-the-art knowledge
in computer vision with regard to segmenting curvilinear objects.

In Chapter 4, we introduce two curvilinear object detectors based on fuzzy mathematical mor-
phology. After studying the most successful models of curvilinear objects, we propose two fast
and generic algorithms to segment them. They are thoroughly examined to provide the practiti-
oners with as much information as possible regarding their usage. Also, they are compared with
other general-purpose curvilinear object detectors, showing the strengths and weaknesses of all the
alternatives. Again, aiming at task reusing, this contribution chases Objective 3.

Chapter 5 introduces algorithms to segment vessels in eye-fundus images. To do so, we first
consider the different methods studied in Ch. 3. After a comparison, we develop an algorithm
based on one of the curvilinear detectors introduced previously. We analyse its behaviour showing
that it is both fast and accurate. This contribution pursues Objective 2: it is implemented using
operators from the fuzzy mathematical morphology, taking into account the imprecision of pixel
values and the definition of vessels in this context, which is vague due to its subjective nature.

In Chapter 6 we introduce the operators of the soft color morphology, our proposal for exten-
ding mathematical morphology to multivariate images. Based on the fuzzy mathematical mor-
phology operators, we define both a dilation and an erosion operator to process color images. In
particular, we transfer to this setting the same mechanisms to deal with uncertainty: both encoded
in the pixels values and by considering non-binary structuring elements that can be used to express
loose concepts such as thin or to the right of. This chapter represents a contribution that, to the extent
of our ambition, completely attains Objective 1.

Chapter 7 is an application of the aforementioned color morphological operators to process der-
moscopic images. In particular, we propose a method to process them by removing hair and other
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artifacts that hinder the automatic lesion segmentation. This contribution is mainly focused on Ob-
jective 2. Also, the content in this chapter has been developed taking into account the features of
dermoscopic images and the information dermatologists obtain from them, pursuing also Objective
3.

We conclude this thesis with a series of lines of research to extend and apply the results obtained
with it. In particular, we list several interesting problems that have arised during the study that this
thesis represents. By analysing the contributions of this thesis from a higher perspective, we are at
a better position to detect its major strengths and weaknesses.
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Chapter 2

Preliminaries

In this chapter, we introduce all the required concepts that are used throughout this thesis. It
includes notation and concepts common to all chapters, and also techniques already developed
that are tightly related to the contributions of the thesis.

In Sect. 2.1, we introduce the mathematical notation to express colors, channels and images. A
particular case, the CIELab color space, is introduced in Sect. 2.2. In Sect. 2.3 and 2.4 we introduce
the fuzzy logic operators and the fuzzy mathematical morphology operators, which are based on
the former. Finally, Sect. 2.5 present the hysteresis and the CLAHE algorithm, two well-known
computer vision algorithms.

2.1 Formal Description of Images

To mathematically describe algorithms that deal with colors, channels and images, we first des-
cribe such concepts with a formal language.

Definition 2.1. — We define the following elements.

- A channel, C , is a set of real values, C Ă R.

- A color space, C, is the cartesian product of a series of channels C = C1ˆ . . .ˆCm.

- A C-encoded color is one element of the color space, c P C.

- A C-encoded multivariate image or simply a C-encoded image, A, is a map A : Zn Ñ C, where
n is its spatial dimension and C is its color space.

- Any image A is associated to its support dA Ă Zn, the spatial region where the relevant information
is found. That is, we will be only interested in the values A(x) for x P dA.

Some remarks must be mentioned. First, without loss of generalization, we will always consider
that the first channel is C1 = [0, 1]. Otherwise, since C1 Ă R, we can map it to [0, 1] with a monotonic
bijection—for instance, with the sigmoid function. Second, a grayscale image is a particular case of
multivariate image, which has only one channel. In this case, m = 1 and, therefore, its color space
is C = [0, 1]. Finally, the support of an image A is simply a region within the spatial location Zn

that indicates which part of the image is of interest. It can be assumed to contain no meaningful
information outside it.

We employ structuring elements whose values range in [0, 1] to compute the morphological
operators that will be used in this thesis. We also define operations to deal with movements in the
spatial domain.

Definition 2.2. — We define the following elements.

• A structuring element, B, is a grayscale image B : Zn Ñ [0, 1], where n is its spatial dimension.

• The reflection of a structuring element B is the structuring element B defined by B(x) = B(´x).
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• The spatial translation by a vector v P Zn, Tv, is a map from subsets of Zn to subsets of Zn such that

@d Ă Zn, @a P Zn, a P Tv(d) ðñ a´ v P d.

Similarly to multivariate images, a structuring element B is always associated to its support
dB Ă Zn. We will consider of interest the values of the structuring element B only within its domain
dB. We will always consider structuring elements with the same spatial dimension n as the images
we are processing. Typically, but not always, structuring elements have a value of one in the origin:
B(0) = 1.

2.2 The CIELab Color Space

CIELab, or CIE 1976 L˚ a˚ b˚, is a color space used to represent images in the visible spectrum. It
has three channels. The first one, L˚, matches the human perception of lightness, whereas the other
two, a˚ and b˚, conceil its chromatic information. Besides, it is perceptually uniform: the Euclidean
distance between two colors is proportional to their difference when perceived by humans [190].

Typical implementations of the CIELab color space consider the first channel to be L˚ = [0, 100].
Throughout this thesis, we divide such lightness values by 100 so that our first channel is exactly
[0, 1]. The two chromatic components, a˚ and b˚, are roughly in the range [´110, 110], although not
all combinations yield valid RGB colors. In Fig. 2.1 all RGB colors have been represented according
to their CIELab representation.

FIGURE 2.1: CIELab gamut obtained by representing all RGB colors in the CIELab color space.

Conversion between CIELab and grayscale is straightforward, as shown in the following defi-
nition.

Definition 2.3. (Conversion of CIELab to and from grayscale [190]) — The map π, that converts a
CIELab-encoded color (l, a, b) into a grayscale color, is defined as:

π : L˚a˚b˚ ÝÑ [0, 1](
l, a, b

)
ÞÝÑ l.



2.3. Fuzzy Logic Operators 9

The map ı, that converts a grayscale color G into a CIELab-encoded color, is defined as:

ı : [0, 1] ÝÑ L˚a˚b˚

G ÞÝÑ
(
G, 0, 0

)
.

That is, simply by reducing the CIELab-encoded image into the L˚ channel (i.e. forgetting the
channels a˚ and b˚) provides a grayscale version. Whenever non-grayscale colors are considered,
the conversion between RGB and CIELab is complex in order to achieve the perceptual invariance
of the CIELab color space. For more information regarding the CIELab color space and its relation
to other color spaces such as RGB and XYZ, see Wyszecki and Stiles [170, 190].

2.3 Fuzzy Logic Operators

The fuzzy morphological operators are based on the use of fuzzy operators, which play the
role in fuzzy logic of the corresponding binary operators in classical logic. They extend the binary
notions to a multi-valued setting, considering that their input—originally thought of as a truth
value—can take intermediate values between absolute truth and absolute falsehood. We briefly
introduce them here due to their use in the Fuzzy Mathematical Morphology, in Sect. 2.4, and in
its extension to multivariate images, the Soft Color Morphology, in Ch. 6, which is one of the main
contributions of this thesis. More information about aggregation functions can be found in [27] and
about fuzzy implication functions in [13, 12].

We start by defining a well-known general family of functions.

Definition 2.4. — A n-ary aggregation function, with n ą 1, is a function of the form f : [0, 1]n Ñ [0, 1]
such that:

• f (0, 0, . . . , 0) = 0 and f (1, 1, . . . , 1) = 1, and

• for all x, y P [0, 1]n such that x ď y, then f (x) ď f (y),

where x ď y is true if it holds for every component.

Next, we recall the definitions of the binary aggregation functions that have a conjunctive-like
behaviour.

Definition 2.5. — A fuzzy conjunction, C, is a bivariate aggregation function in which C(1, 1) = 1 and
C(1, 0) = C(0, 1) = 0.

Definition 2.6. — A semi-norm is a fuzzy conjunction C with neutral element 1. That is, for all x P [0, 1],
C(1, x) = C(x, 1) = x.

Definition 2.7. — A t-norm is a semi-norm that is associative and commutative.

Similarly, we also define the binary aggregation functions that present a disjunctive-like beha-
viour:

Definition 2.8. — A fuzzy disjunction D is a bivariate aggregation function such that D(0, 0) = 0 and
D(1, 0) = D(0, 1) = 1.

Definition 2.9. — A t-conorm S is a fuzzy disjunction that is associative, commutative and fulfills S(0, x) =
x for all x P [0, 1].

Another operator that plays an important role in both fuzzy and classical logic is the negation.

Definition 2.10. — A strong fuzzy negation is a decreasing map N : [0, 1]Ñ [0, 1] that satisfies N(0) = 1
and N(1) = 0, and that is involutive: N(N(x)) = x for all x P [0, 1].
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Given a t-norm and a strong fuzzy negation, we can define a t-conorm as follows.

Proposition 2.11. — Let T be a t-norm, let N be a strong fuzzy negation. Then, the operator ST,N , defined
as ST,N(x, y) = N(T(N(x), N(y))), is a t-conorm.

The operator above defined is called the dual t-conorm of T with respect to N.
Lastly, we recall the definition of a fuzzy implication function. It is the operator that plays the

role, in fuzzy logic, of the binary implication.

Definition 2.12. — A fuzzy implication function is a map I : [0, 1]ˆ[0, 1]Ñ [0, 1] that is decreasing in the
first variable and increasing in the second, and that satisfies I(1, 0) = 0 and I(0, 0) = I(1, 1) = 1.

A multitude of families of fuzzy implication functions have been defined in the literature [13,
12]. One of the most used ones is defined from a conjunction by residuation.

Proposition 2.13. — Let C be a fuzzy conjunction that satisfies C(1, x) ą 0 for all x ą 0. Then, its
residual operator, defined as I(x, y) = sup tt P [0, 1] | C(x, t) ď yu for all x, y P [0, 1], is a fuzzy implication
function.

In particular, we say that I is the residual implication (or R-implication) of C.

We also state some properties that are used throughout this article [143].

Property 2.14. — Let f be a bivariate aggregation function and let N be a strong fuzzy negation. Then:

(NC) f and N fulfill the Non-Contradiction principle whenever f (x, N(x)) = 0 for all x P [0, 1].

Property 2.15. — Let I be a fuzzy implication function. Then:

(NP) I fulfills the left neutrality principle whenever I(1, y) = y for all y P [0, 1].

(OP) I fulfills the ordering property whenever x ď y ô I(x, y) = 1 for all x, y P [0, 1].

Finally, we introduce the notion of adjunction, which relates the monotonicity of two operators.
Due to its nature, this notion is useful to prove the idempotence of certain fuzzy morphological
operators [167]. We introduce this notion for sets whose elements have a weak ordering relation
that is reflexive, antisymmetric and transitive—but does not need to be total.

Property 2.16. — Les X be a partially ordered set, and let f , g : X Ñ X be two mappings from the set to
itself. Then, f and g form an adjunction pair if for all x1, x2 P X ,

f (x1) ď x2 ðñ x1 ď g(x2).

In particular, semi-norms and implications form adjunction pairs with respect to the totally
ordered interval [0, 1] under certain constraints. This is reflected in the following proposition.

Proposition 2.17. (Adjunction pair [12]) — Let C be a left-continuous semi-norm and I the R-implication
of C. Then, for all x P [0, 1], the functions C(x, ¨) and I(x, ¨) form an adjunction pair. That is, for all
y1, y2 P [0, 1],

C(x, y1) ď y2 ðñ y1 ď I(x, y2).

Throughout this thesis we use the operators that appear in Tab. 2.1 jointly with the standard
negation (i.e. N(x) = 1´ x). They are the pairs of t-norms and their corresponding R-implications:
the minimum t-norm TM and the Gödel implication IGD, the product t-norm TP and the Goguen
implication IGG, and the Łukasiewicz t-norm TL jointly with the Łukasiewicz implication IL. In
Tab. 2.1, (NC)* denotes the Non-Contradiction principle with respect to the standard negation.
Also, to express piecewise functions, we use 1φ, that equals to 1 whenever φ is true, and to 0
otherwise. We remark that all R-implications fulfill (NP).
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TABLE 2.1: Each row contains a t-norm, its dual t-conorm with respect to N(x) = 1´ x, and its R-implication.

t-norms (NC)*
TM(x, y) = min(x, y) 7

TnM(x, y) = min(x, y) ¨ 1x+yą1 3

TP(x, y) = x ¨ y 7

TL(x, y) = max(0, x + y´ 1) 3

t-conorms
SM(x, y) = max(x, y)
SnM(x, y) = max(x, y) ¨ 1x+yă1 + 1x+yě1
SP(x, y) = x + y´ xy
SL(x, y) = min(1, x + y)

Fuzzy implication functions (NP) (OP)
IGD(x, y) = 1xďy + y ¨ 1xąy 3 3

IFD(x, y) = 1xďy + max(1´ x, y) ¨ 1xąy 3 3

IGG(x, y) = min(1, y/x) 3 3

IL(x, y) = min(1, 1´ x + y) 3 3

2.4 Fuzzy Mathematical Morphology

Mathematical morphology, introduced for binary images by by Serra and Matheron [79], embra-
ces a set of techniques to process images. It is based on two simple and local operations: the erosion
and the dilation. The former shrinks objects whereas the latter enlarges them, according to a spe-
cific template called structuring element. They can be combined sequentially or iteratively (i.e. until
a halt condition is reached) to design elaborated image processing operators. Mathematical mor-
phology is the set of these image processing techniques, including from simple operators to very
complex ones. Mathematical morphology was originally designed to deal with binary images. In
them, pixels having a value of 1 are interpreted as representing an object, whereas the background
is represented with the value 0. For more information on binary mathematical morphology, see
[157], and [158] for the lattice-based definition of erosion and dilation.

Fuzzy mathematical morphology [129, 55, 38] is an extension of binary mathematical morpho-
logy that processes grayscale images with grayscale structuring elements. It considers that grays-
cale values can be interpreted as fuzzy values, with which several types of imprecision in images
can be represented, such as imprecision in spatial location or in the membership of an object to a
class [36]. The structuring element, of the same nature, is also represented as a fuzzy set. In parti-
cular, each pixel’s value can represent the degree with which the pixel represents a specific entity.
For instance, in Ch. 3, we consider curvilinear objects as thin, elongated objects whose photome-
tric features are different from the ones of its neighbourhood. The geometric information, thin and
elongated, is encoded in the shape of the structuring element. The photometric information, on the
other hand, is encoded in the pixels’ values.

Grayscale images, thus, are interpreted as a fuzzy sets [36, 167]. The fuzzy mathematical erosion
reflects the degree with which the (shifted) structuring element fits into the image. On the other
hand, the fuzzy mathematical dilation reflects the degree of similarity between the image and the
(shifted) structuring element.

Fuzzy mathematical morphology is based on two operators, the fuzzy erosion and the fuzzy
dilation. They are introduced in Defs. 2.18 and 2.19.

Definition 2.18. — Let I be a fuzzy implication function and let A, B be grayscale images. Then, the fuzzy
erosion of A by B, EI(A, B), is defined as:

EI(A, B)(y) = inf
xPdAXTy(dB)

I
(

B(x´ y), A(x)
)
.
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Definition 2.19. — Let C be a fuzzy conjunction and let A, B be grayscale images. Then, the fuzzy dilation
of A by B, DC(A, B), is defined as:

DC(A, B)(y) = sup
xPdAXTy(dB)

C
(

B(x´ y), A(x)
)
.

As in the binary case, the dilation enlarges objects—regions with higher grayscale values than
their surroundings—, while the erosion shrinks them. We recall that dA denotes the support of the
image A, as introduced in Def. 2.1.

Proposition 2.20 extends the adjunction proposition from fuzzy operators (see Prop. 2.17). In
particular, fuzzy operators that form an adjunction pair in [0, 1] may be used to implement a dilation
operator and an erosion operator that form an adjunction pair with respect to the images they
process. We recall that Property 2.16 is a monotonicity property on a partially ordered set that
relates two mappings. In the case of grayscale images, the monotonicity is given in terms of image
inclusion: given two grayscale images A1, A2 with domain d, we say that A1 is lower than A2,
denoted as A1 Ă A2, if each corresponding pixel has a lower value. That is, A1 Ă A2 if and only if
for all x P d, A1(x) ď A2(x).

Proposition 2.20. (Adjunction pair [129]) — Let C be a left-continuous semi-norm and I the R-implication
of C. Let B be a structuring element. Then, the operators DC(¨, B) and the EI(¨, B) are an adjunction pair.
That is, for all grayscale images A1, A2,

DC(A1, B) Ă A2 ðñ A1 Ă EI(A2, B).

In the framework of De Baets [55] the fuzzy dilation and the fuzzy erosion do not always form
an adjunction pair since a general fuzzy conjunction and a general fuzzy implication function are
used to define the fuzzy morphological operators. On the other hand, as stated in Prop. 2.20, when
C is a left-continuous t-norm and I is its R-implication, the fuzzy erosion and the fuzzy dilation
form an adjunction pair. This is a desirable relation due to the theoretical properties that hold
when the erosion and dilation form an adjunction pair [167].

The fuzzy erosion and fuzzy dilation can be combined to design a wide variety of transformati-
ons. Two well-known examples of such combinations are the fuzzy opening and the fuzzy closing,
introduced in Defs. 2.21 and 2.22 as in the binary case [129].

Definition 2.21. — Let C be a fuzzy conjunction, let I be a fuzzy implication function and let A, B be
grayscale images. Then, the fuzzy opening, OC,I(A, B), is defined as:

OC,I(A, B) = DC(EI(A, B), B).

Definition 2.22. — Let C be a fuzzy conjunction, let I be a fuzzy implication function and let A, B be
grayscale images. Then, the fuzzy closing, CC,I(A, B), is defined as:

CC,I(A, B) = EI(DC(A, B), B).

Although they have an opposite behaviour, the fuzzy erosion and fuzzy dilation are not inverse
of each other. Similarly, the fuzzy opening and the fuzzy closing also have an opposite behaviour
given their definition. The fuzzy opening strongly affects small and bright objects, being similar
to the original elsewhere. Such objects completely disappear during the erosion and, thus, can not
be recovered by the dilation. The fuzzy closing has a similar behaviour with respect to small and
dark objects. Jointly with the fuzzy erosion and fuzzy dilation, they are monotonic operators when
using appropriate parameters, as is shown in Proposition. 2.23 [129, Prop. 45].

Proposition 2.23. (Extensiveness of Fuzzy Morphological Operators) — Let C be a semi-norm, let
I be an fuzzy implication function that satisfies (NP). Let A, B be grayscale images such that B(0) = 1.
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Then,
EI(A, B) Ă A Ă DC(A, B).

If, in addition to it, I is the R-implication of C, then,

EI(A, B) Ă OC,I(A, B) Ă A Ă CC,I(A, B) Ă DC(A, B).

We remark that all R-implications I of a given semi-norm fulfill the border condition (NP).
Another well-known morphological operation is the fuzzy white/black top-hat operator, intro-

duced in Def. 2.24. It captures the dissimilarity between the fuzzy opening/closing and the original
image.

Definition 2.24. — Let C be a left-continuous semi-norm and let I be its residual implication. Let A, B be
grayscale images such that B(0) = 1. Then, the fuzzy black top-hat, also known as fuzzy top-hat by closing,
BT HC,I(A, B); and the fuzzy white top-hat, also known as fuzzy top-hat by opening,WT HC,I(A, B), are
defined as:

WT HC,I(A, B) = A´OC,I(A, B), BT HC,I(A, B) = CC,I(A, B)´ A.

Finally, the fuzzy hit-or-miss is a more complex operator that aims at locating specific shapes.
It employs two structuring elements to enforce (i) the appearance of a specific shape and (ii) the
absence of another specific shape. As in [71], it is defined as follows.

Definition 2.25. — Let C be a fuzzy conjunction, let I be a fuzzy implication function, let N be a strong
fuzzy negation and let A, B1, B2, be grayscale images. Then, we define the fuzzy hit-or-miss operator,
FHMC,I,N(A, B1, B2), is defined as:

FHMC,I,N(A, B1, B2) = C
(
EI(A, B1), EI(N(A), B2)

)
.

The first term, EI(A, B1), measures the inclusion of B1 in the image A, whereas the second one,
EI(N(A), B2), measures the exclusion of B2 in A. Thus, the fuzzy hit-or-miss enhances the areas
that are, at the same time, fitted by B1 and excluded from B2.

It generalizes the binary hit-or-miss transform while admitting grayscale input images and
grayscale structuring elements. It is invariant to translations and, whenever B2 = N(B1) and the
implication I fulfills (OP), it outputs 1s only in the locations of A in which it appears exactly B1
[71].

2.5 Other Computer Vision Algorithms

Throughout this thesis, some other computer vision algorithms are used. For the sake of com-
pleteness, we describe their purpose and behaviour.

2.5.1 Hysteresis

Hysteresis is a well-known procedure to convert a grayscale image into a binary one. It is more
sophisticated than a simple threshold, since it also employs information about the connectivity of
the pixels. Hysteresis uses two thresholds, tlow, thigh P [0, 1], such that tlow ď thigh. It works as
follows: a pixel is classified as “positive” as long as it is placed in a connected region of pixels
greater or equal than tlow such that at least one of them is also greater or equal than thigh [122].

This procedure benefits pixels arranged in connected components, since a pixel may be selected
or not depending on its situation with respect to the other ones. Besides being fast, this operation
does not consider just a fixed-sized neighbourhood, since a pixel may be in the same connected
component that other very distant one. Throughout this thesis, we consider 8-connectivity pixels
due to the possible appearance of 1-pixel width objects whose obliquous direction would not be
captured by using the 4-connectivity.
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2.5.2 Contrast Limited Adaptive Histogram Equalization

Contrast Limited Adaptive Histogram Equalization (CLAHE), introduced by Pizer et al. [142],
is an algorithm to visually improve grayscale images, modifying them in order to equalize their
histogram. It re-maps the grayscale values of images so that their pixel values are more equidis-
tributed. Originally designed to deal with medical images, CLAHE is a fast algorithm that avoids
noise amplification in uniform regions.

The contrast limited behaviour is related to limiting the maximum slope of the re-mapping
function. This attempts to avoid amplifying noise in uniform regions by enforcing that two si-
milar pixels do not end up with very distinct values. It is controlled by a parameter called clip limit,
whose behaviour is shown in Fig. 2.2.

A B C D

E F G

FIGURE 2.2: Histogram equalization with and without contrast limit: (A) original image, (B) histo-
gram and clip limit, (C) cummulative histogram, (D) re-mapping of (A) according to (C), (E) clipped
histogram, (F) cummulative clipped histogram, and (G) re-mapping of (A) according to (F).

Without applying the contrast limit the re-mapping function would be proportional to the cum-
mulative distribution of the histogram within the region (see Fig. 2.2(D)), since this transformation
would redistribute pixels among all grayscale levels equally. However, the cummulative distribu-
tion of an arbitrary histogram may present very high slopes. To avoid them, we crop the histogram
at a value proportional to the clip limit, so the slope of cummulative histogram (and thus of the re-
mapping function) is limited (Fig. 2.2(E)). The values of the histogram that are cropped are equally
redistributed among all grayscale levels as a way to smooth and regularize the re-mapping function
[142].

The adaptive behaviour is responsible of properly handling regions with different gray distribu-
tions. We remark that the visual example depicted in Fig. 2.2 is not an adaptive equalization, since
just a single region was considered. To perform an adaptive equalization, the image is divided in
different regions and different re-mapping functions are computed. Bilinear interpolation is used
afterwards to avoid a blocking effect. That is, for each pixel we compute the re-mapping according
to each of its surrouding regions, and the final result is a weighted interpolation of these values
[204]. Specifically, let A be a gray-level image and (x, y) a pixel located among the centers of the
regions C1 = (α1, β1), C2 = (α2, β2), C3 = (α3, β3) and C4 = (α4, β4). Then, the CLAHE of A is

CLAHE(A)(x, y) =

4
ř

i=1
|x´ αi| ¨ |y´ βi| ¨mi

(
A(x, y)

)
4
ř

i=1
|x´ αi| ¨ |y´ βi|

,
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where mi denotes the re-mapping function in the i-th region. Pixels on the sides or on the cor-
ners are interpolated with only two or one regions respectively. We emphasize that we consider 4
regions since we are computing the bilinear interpolation of a two-dimensional image.
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Chapter 3

Review of Curvilinear Object
Segmentation

Curvilinear object segmentation is a common objective accross many applications, such as me-
dical image analysis, product defect detection or aerial image processing. In particular, vessel
segmentation in retinal images, detection of spiculated lesions in mammograms or extraction of
airways in CT scans provide essential information to experts to evaluate, diagnose and propose a
treatment. The significance of these applications has motivated important efforts to propose curvi-
linear object segmentation algorithms based on different techniques. The main objective of this re-
view is to clearly present the similarities and differences between curvilinear structures in different
applications and the different techniques used to segment them more effectively. To do so, we pro-
pose a general definition of curvilinear structures that encompasses the distinct models considered
in the literature. In addition, we analyse and classify the mathematical techniques used to seg-
ment the curvilinear structures found across all considered applications, studying their strengths
and weaknesses. In particular, we present the most relevant benchmarks related to curvilinear ob-
ject segmentation as well as the best algorithms according to several performance measures. By
doing so, a wider point of view is acquired to extend the results from some fields to others, and to
understand under which conditions some methodologies should be favoured over the rest of them.

The structure of the rest of this chapter is as follows. After a brief introduction motivating the
study of curvilinear objects, we introduce the models of curvilinear objects according to each appli-
cation in Sect. 3.2, where we also extract the common denominator of such models. In Section 3.3,
the selected methods are described and classified according to the mathematical tool with which
curvilinear objects are segmented. A comparison of the results provided by different methods is
given in Section 3.4, along with a discussion concerning which methods can be compared and how
to do such comparison. Finally, Section 3.5 concludes with a discussion, unifying the analysis scat-
tered over the previous sections.

3.1 Introduction

Several applications extract curvilinear objects from images with different purposes. Curvili-
near objects can be roughly defined as thin, long, line-like regions with different intensities than
their neighbouring pixels. Such structures are found in a wide variety of situations: vessels in me-
dical imaging, roads in satellite imagery or fingerprints from specialized acquisition devices are just
a few examples of them. Since these and other applications face very similar problems, the methods
that employ them tend to be based on the same techniques. However, researchers usually focus on
one or two applications, disregarding the results they could potentially achieve in other fields with
their own techniques. Besides not being developed in all their potential, the same mathematical
tools are rediscovered and fine-grained on many occasions.

There are a great number of published methods that deal with the segmentation of line-like
objects, and some highly detailed reviews of them. However, all these reviews are focused on just
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one specific application. Although all of them compare and classify methods with respect to dif-
ferent taxonomies, there is no single study that unifies these fields to the best of our knowledge.
Kirbas and Quek [92] studied and summarized techniques for vessel segmentation. More recently,
a survey focused on retinal vessel segmentation was published by Fraz et al. [69]. Lesage et al.
[108] presented a review of 3D vessel lumen segmentation techniques. Several methods aimed at
performing airway tree segmentation in chest Computed Tomography (CT) scans were collected
and compared in a study led by Lo [113]. Mena [124] published a qualitative survey of road ex-
traction algorithms. A brief review in road pavement assessment algorithms was provided by
Chambon and Moliard [46]. Other surveys on tightly related applications have also been presen-
ted, like palmprint line enhancement [97] or fingerprint classification [197]. In view of the lack
of an in-depth, common analysis of these related techniques, the present survey is aimed at pro-
viding a cross-application comparison of the different strategies employed to segment curvilinear
structures.

The methodology employed to study curvilinear structure segmentation has very important
consequences in our study. Regarding the nature of the method, we have focused on segmentation
methods to limit the field of work, which eases the comparison among methods and potentially
empowers a more specific analysis. Segmentation methods are the ones whose input is a two- or
three-dimensional image, and whose output is a binary mask indicating whether the pixel belongs
to the curvilinear object or not. In contrast, enhancement methods, which may be seen as pixel-wise
estimators of the belonging degree to a curvilinear object, are deliberately given a lower priority
in this review. Besides, we do not include algorithms concerned with edges or contours between
different objects. With regard to the studied algorithms, we find a vast amount of published works
along decades when considering several applications. To increase the coverage of the survey while
retaining the most relevant results, we have selected a subset of them based on, in order of rele-
vance, the following criteria: (a) their quantitative results in the most relevant benchmarks, (b) the
number of incoming cites according to Google Scholar, (c) the year of their publication, and, (d) the
singularity of the application or the mathematical approach used to segment, favouring methods
that segment curvilinear objects in infrequent settings. These four criteria are considered jointly
instead of as four independent scores. By doing so, we have selected articles that contribute to this
review due to their successful approach, their high impact on the field or their originality.

The objective of this review is to clearly present the similarities and differences between curvili-
near structures in different applications and how they are segmented more effectively. By doing so,
we can potentially acquire a wider point of view to extend the results from some fields to others,
and to understand under which conditions some methodologies should be favoured over the rest
of them.

Motivated by these two potential contributions, our goals are: (I) to select applications of curvi-
linear structure segmentation and study how the curvilinear objects present in them are modelled;
(II) to propose a general and broad definition that encompasses the curvilinear objects that are
found in all the selected fields of interest; (III) to summarize the mathematical techniques used to
segment the curvilinear structures found across all considered applications; and (IV) to study the
strengths and weaknesses of these techniques according to the type of curvilinear objects and to the
final objective that the segmentation contributes to fulfill.

3.2 Description of Curvilinear Structures

This section establishes the foundations of a coherent study of the different mathematical techni-
ques used to segment curvilinear structures. To do so, we should establish which objects can be
considered curvilinear structures, which is accomplished by studying different applications, the
algorithms that address them and their explicit and implicit models. We firstly introduce a Model
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for Curvilinear Structures, which covers the common characteristics that share all curvilinear ob-
jects as we understand them. Besides, we present a series of applications that contain curvilinear
structures, focusing on the most widely studied.

3.2.1 Model for Curvilinear Structures

Our model for curvilinear structures has been obtained as the common denominator of the
explicit and implicit models considered in the selected literature.

When dealing with image segmentation, a model can be thought of as a collection of high-level
features that define the object of interest, discriminating it from the rest of the image. These features
must be translated into a series of constraints such that, broadly speaking, a pixel will be tagged
as belonging to the object if it fulfills such constraints. Depending on their nature, such constraints
will be classified, in accordance with the literature [46, 108, 103], as either geometric, when the
restriction involves the spatial relations among the pixels, or photometric, in which the intensity
value of pixels are taken into account.

That said, we define a Curvilinear Structure as a region of pixels within one image that fulfills
the following geometric (G) and photometric (P) characteristics:

G1. Its pixels should be “mostly” connected.

G2. The region should be “thin” across a “long” path.

G3. The variation of width along the region should be “smooth”.

G4. It should have a specific structure. That is, the overall shape of the whole segmentation seen
as a binary mask. It can be a binary tree-like structure, a series of unconnected segments, a
grid, etc.

G5. It should have a specific local curvature profile. This covers the behaviour of the bends that
the tubular object may have. For instance, some objects may be mostly straight, others can
admit soft bends and others may be highly tortuous.

G6. It should present a specific amount of bifurcations. We define a bifurcation as a three-branch
joint. That is, a position of the curvilinear object where exactly three distinct branches collide.

G7. It should present a specific amount of intersections. An intersection, as we understand it, is a
joint with four or more branches.

P1. Its pixels should have a “significantly different” intensity distribution compared to the dis-
tribution of its neighbouring background. In multivariate images, different channels may
conceive independent information, capturing some of them more information than others.

P2. The variation of pixel intensities along the main direction should be “smooth”.

P3. Its cross-section profile—the intensity values transverse to the main direction—should follow
a specific distribution. In 2D images it is represented as a one-dimensional function, whereas
3D imaging has a cross section whose domain is a two-dimensional area. For example, a
flat profile, also referred to as a bar-like profile, assigns a single value to each point in the
cross-section.

A pixel is considered to belong to a curvilinear structure if it belongs to a region fulfilling the
constraints G1-G7 and P1-P3. While the contraints G1-G3 remain stable among the different ap-
plications, the features G4-G7 and P1-P3 should be further specified to improve the model for the
curvilinear structures of interest. This helps to discriminate curvilinear objects from other structu-
res, the background texture or noise in each particular application. Tables 3.1 and 3.2 detail such
features for the applications considered in this review.
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We highlight that curvilinear, one-pixel width segments are intentionally included in our de-
finition. However, this definition does not include contours or edges, since these regions do not
fulfill P1: their intensity is similar to either one of the two regions they divide. We remark that we
are not concerned with the limits between two objects, but with one tubular-shaped object placed
in the foreground of a uniform or non-uniform background.

We also highlight the subjective nature of our definition, which is explicited by containing some
vague words such as “mostly”, “thin”, etc. These vague concepts should be accurately established
in each specific situation. This lack of formality is unavoidable: there are pixels that some experts
may flag differently than others. Such vagueness is deliberately incorporated into our general
definition.

The meaning of the aforementioned vague concepts can be illustrated with the curvilinear struc-
tures found in Fig. 3.1, 3.2, 3.3, 3.4 and 3.5. For instance, the characteristic G1 expresses that pixels
are “mostly” connected, and it remains unchanged through all applications. As we can observe
across Fig. 3.2, 3.3, 3.4 and 3.5, the number of connected components is low, although not bounded
by a specific number. As another example, G5 states that the local curvature must be specific, and
it is a feature that can be particularized based on the specific type of images (see Table 3.1). We ob-
serve that rural imagery contains roads composed by segments that are mostly straight or present a
small local curvature (as in Fig. 3.3), whereas cracks in pavement imagery persistently suffer small,
randomly distributed bends (like in Fig. 3.1(D), 3.4).

3.2.2 Applications of Curvilinear Structure Segmentation

Each application considers similar but different types of curvilinear objects, as can be observed
in Fig. 3.1. For instance, vessels can be characterized as slightly tortuous tubular shapes that form a
tree-like structure, whereas urban roads may be modelled as mostly straight segments with several
intersections, most of them orthogonal.

A B

C D

E F

FIGURE 3.1: Samples from different datasets depicting
distinct types of curvilinear objects. (A) Eye-fundus
retinal image from the DRIVE database [162]. (B)
Low-flight video frame containing wires from the
South Florida Urban Dataset [44]. (C) Slice of a 3D
CT scan from the EXACT09 database [113], where
the cross-section of airways appear as black rounded
shapes. (D) Pavement defect in a sample image from
the CrackTree dataset [203]. (E) Wrinkles in human
face. Frontal face dataset collected by Markus Weber
at California Institute of Technology. (F) Fingerprint
from the CASIA-FingerprintV5 dataset, collected by
the Chinese Academy of Sciences’ Institute of Auto-
mation.

We consider of interest the problems that (i) make use of curvilinear object segmentation accor-
ding to the definition given in Section 3.2.1, and (ii) their segmentations can be contrasted against a
ground truth so that the performance of different solutions are comparable. To identify the features
that differentiate one application from others, we study the model of each algorithm individually.
Such models, which tend to be coherent when compared to the models of other algorithms facing
similar situations, are summarized in Tables 3.1 and 3.2. In the following, the applications conside-
red in this survey are introduced.
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TABLE 3.1: Geometric features G4-G7, according to the model for Curvilinear Structures from Sect. 3.2.1. We remark
that the features G1-G3 are stable through all applications.

G4. Structure G5. Curvature
G6.

Intersections
G7. Bifurcations

Vessel Seg-
mentation

Binary tree structure [11, 69]
formed by piecewise linear
segments [50], with the appea-
rance of close and tangent ves-
sels [98]. Complex loops and
branching segments [176], con-
nected tubular segments [67]
or tree-like structures [4].

Small maximum
curvature [69, 50].

Common and
randomly dis-
tributed [176].

Common [98],
highly randomly
[176].

Extraction of
Airways

Upside-down binary tree [144].
Non-principal cur-
vature close to zero
[144].

Not specified.
Common [113,
144].

Guide-Wire
Tracking

One single object [18, 140].

Modelled as a 2nd
or 3rd order curve
[18, 140]. A fixed
angle bounds its
local curvature
[35].

None [18,
140].

None [18, 140].

Road De-
tection

Approximable as a set of seg-
ments [177] with small width
variance [202]. Segments are
rarely small [202] or uncon-
nected [165].

The angle of orien-
tation changes is
limited [165, 173,
202, 174]

Urban roads,
orthogonal
and frequent
[165, 173]; ru-
ral roads, allo-
wed [63].

Allowed [165],
specially if their
orientation chan-
ges smoothly [63,
177].

Pavement
Crack De-
tection

Mostly longitudinal segments,
transversal segments or grid-
shaped structures [150, 111,
137]. They can appear uncon-
nected [111].

Sometimes they
present high curva-
ture [203], but ap-
pear straight more
often [150, 111].

Allowed [150,
111].

None [203].

Facial Wrin-
kles Ex-
traction

Several continuous segments
[19] with different length,
thickness and orientation [54],
usually segregated [19, 20].

The local curvatu-
res is bounded by a
fixed angle [19, 20].

Few [20]. None [20].

Vessel segmentation is a good example of curvilinear object segmentation. Vessel segmentation
can assist in the detection of a great number of pathologies [160, 68]. It can also be used for image
registration [92] and even as a biometric identifier [118]. In this type of images, both veins and
arteries are curvilinear objects that should be detected and distinguished from other tissues and
anatomical structures. They can be acquired with different devices. Eye-fundus images are 2D
depictions that capture the retina [11, 33, 149, 160, 42, 95, 68, 183, 58, 22, 131, 146, 151, 186, 118,
125, 161, 162, 110, 199, 83, 67, 50], and can be taken with standard color photography [95, 162, 83]
or with a fluorescent dye [161]. Their sizes vary from 500ˆ500 pixels [162, 83] to few megapixels
[42]. Digital Subtraction Angiography (DSA) [67], Computed Tomography Angiographies (CTA)
[29, 102] and Magnetic Resonance Angiograms (MRA) [61, 145, 104, 180, 154] provide 2D or 3D
representations of part of the human body. Confocal microscopy [2] and laser-scanning microscopy
[176] is used for in-vivo image acquisition. These images present several types of artifacts [69, 176].
They present low contrast [50] and non stationary noise (i.e. that varies over the image domain)
[176]. Besides, retinal images have an uneven illuminated background [11, 69, 125] and a non-flat
texture [42].

Another application is the extraction of airways from 3D Computed Tomography (CT) scans [24,
196, 113, 187, 144, 23, 40, 64, 65, 105, 112, 172, 179, 93]. The curvilinear objects of interest are, of
course, the airways. Some features of the bronquial tree structure, such as its cross-section area and
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TABLE 3.2: Photometric features P1-P3, according to the model for Curvilinear Structures from Sect. 3.2.1.

P1, P2. Channels and Intensity P3. Cross-Section Profile

Vessel Seg-
mentation

Intensity values do not change ab-
ruptly for retinal images [69], but
may change in other types of ima-
ges [176]. They are either brighter
[125, 67] or darker [176, 50] than
their background.

They present a wide range of width [11,
69, 176, 125, 67], always changing gradu-
ally along a vessel [50]. The cross-section
may be modelled as a Gaussian [4, 199,
98, 50], an elliptical cross-section [176],
a Difference of Offset Gaussians [125], a
bar-like convolved with Gaussian [98],
etc.

Extraction of
Airways

The intensity is variable [144], but
always brighter than the back-
ground [112].

The airway lumen has lower intensity
than its walls [112, 172], which are relati-
vely thin [172].

Guide-Wire
Tracking

It is either brighter [18, 140] or dar-
ker [35] than the background.

Not specified.

Road De-
tection

Dark lines in SAR imaging [173],
although can also appear as bright
segments. In RGB imaging they can
be either dark or road [177]. Higher
contrast in urban areas [173, 202],
whereas forest-like regions can be
characterized as planar areas in Di-
gital Elevation Models from laser
imaging [63].

The statistics of the pixels are different
from the statistics of the pixels situated at
both sides [165].

Pavement
Crack De-
tection

Appear as darker structures [111,
166], and tend to present a lower
average intensity than the back-
ground [150, 137] and a higher stan-
dard deviation [203].

Irregular [136, 203].

Facial Wrin-
kles Ex-
traction

They are darker than the back-
ground [20], and cause intensity
gradients [19]. They may be extrac-
ted from the red channel [54], or
from a grayscale projection [20].

They are subtle discontinuities in inhomo-
geneous skin texture [19].

A B

FIGURE 3.2: 6th test sample of the eye-fundus DRIVE
database [162] and a mask that indicates the location
of the curvilinear objects of interest, the vessels.

its wall thickness, help to detect the presence of some pathologies [130]. Their resolution is very
high, around 80 ¨ 106 voxels [113]. However, the lung tissue has similar intensity to airways [172],
and the constrast between airways and their walls is low [144, 112]. Besides, lung diseases may
magnify obstrusions [144].

During certain surgical operations, some tube-shaped devices may be inserted into tortuous
cavities. Guide-wire tracking [35, 82] provides useful information for the practitioner to localize it
within biological tissue [18, 60] or to monitor myocardial function [140]. Medical imaging provides
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a series of frames from which their position can be estimated [139]. These curvilinear objects are
found in 2D images [140], 2D video frames [82] or 3D images [18], and are acquired with ultra-
sound [18] or X-ray [35, 140] imaging devices. They are medium-sized images [82, 140] that present
speckle noise [18] and low dynamic range [35, 18, 140]. They have low contrast [140], even lower
when 2D images are used (since they accumulate information from the whole volume) [82]. Si-
milarity between guide-wire and certain anatomical structures [35, 82] and distortion [18] further
difficult the problem.

Road detection consists on extracting the roads, which can be modelled as curvilinear objects,
from either aerial or satellite imaging [119, 188]. Regarding the models they use, they can be di-
vided into urban [177, 165, 173, 174], rural [101, 202, 163] and forest [63, 45] regions due to their
significative differences. River extraction [94, 57] and bridge detection techniques [184] face a very
similar problem, and usually are complemented with each other and with road detection methods
[49]. The automatic extraction of cartographic and topographic objects is a major challenge for the
update of Geographic Information System (GIS) databases [124]. Besides, other structures such as
ship waves appear as curvilinear objects in aerial images [89]. These applications consider only
2D [165, 202, 174] images acquired as RGB [165], RGB plus near infrared [202] or with a Synthetic
Aperture Radar (SAR) [165, 173]. Forest road detection also considers the use of laser scanning
data [63]. Their spatial resolution is between 7 m [173] and 0.5 m [63, 101]. They present occlusions
due to vegetation or buildings [63, 177], in addition to the appearance of similar objects, like trees
by the roads or shadows [177] or the presence of non-road curvilinear objects [177, 173]. In urban
SAR imaging, the contrast is usually higher due to the double-bounce reflections of the buildings,
although excessively high constructions may hinder the correct location of roads [173].

A B

FIGURE 3.3: Aerial image in Mingan, Canada, and the
roads found in this rural scenario. Original image li-
censed under the Open Government Licence by the
Cadastral Information Service, Canada.

The defects in roads also appear as curvilinear objects. Road pavement assessment appears thus
as another application that leverages our general model for curvilinear structures [136, 203, 46, 150,
111, 137, 166]. The identification and classification of these cracks [150] from specific-purpose ima-
ging helps to automate a tedious process regarding road maintenance [166]. They are 2D images,
usually being RGB images [150] or grayscale images [136, 203]. These medium-sized [203] and
large [136, 150] images have a spatial resolution of approximately 1 mm [166]. They present several
disturbances that diminish the quality of the images: various pavement textures [166], which are
inhomogeneous [203], disadvantageous lighting conditions [150, 137] and shadows of trees or light
poles [203, 166]. Oil spots may also hinder the detection of other objects [136].

A B

FIGURE 3.4: Sample 6240th of the CrackTree dataset
[203] depicting a crack and its location. The cracks in
the ground truth have been enlarged 5 pixels for visu-
alization purposes.

Facial wrinkles detection is useful towards age estimation from 2D pictures [19, 21, 54, 20]. In
them, wrinkles appear as narrow, tortuous curvilinear objects that can be considered as a soft bio-
metrics [21] or as an age-related facial feature [54]. Images of all sizes have been considered in the
literature, from small images [20] to medium-sized [19] and large ones [54]. The main challenges
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are the inhomogeneuous skin texture [19, 20] and the presence of artifacts like pores, velous hairs
or irregular pigmentation [19, 54].

A B

FIGURE 3.5: Detail of the 74th sample from CaltechFa-
ces dataset, and the wrinkles found in it.

Power lines are a real threat to helicopters and small aircrafts, even in daylight [44]. Wire de-
tection in low-flight imagery is an easy to implement solution that provides acceptable results [169].
Once again, these wires appear as curvilinear structures in low or medium resolution video frames
[152, 43].

Neurite tracing in 2D or 3D imagery appears as another application of curvilinear structure de-
tection. Fluorescence microscopy scans can show neurons’ cell bodies and neurites: axons and
dendrites that can be both characterized as curvilinear objects. The segmentation and labelling of
neurites can help to study the morphology of neurons [25, 193] and axons [200, 185, 201], as well
as providing neuroscientists with information to understand the molecular mechanisms in many
biological activities such as neurite outgrowth and differentiation [123].

Other examples of applications that could leverage the general model for curvilinear objects
are the segmentation of biological cells or filaments, such as microglia [195, 147], astrocytes [100]
or microtubules [31], the detection of spiculated lesions in mammograms [205], fingerprint or palmprint
enhancement towards matching [97, 85], the study and segmentation of geophysical images [141] or
the detection of miscellaneous wary objects in natural images [107].

As can be observed in Fig. 3.1, the curvilinear objects of interest are quite diverse when conside-
ring different applications. A discussion on the model, the different applications and the features
summarized in Tables 3.1 and 3.2 is found in Sect. 3.5.1.

3.3 Approaches to Curvilinear Object Segmentation

The algorithms that employ curvilinear structures can be classified as segmentation methods,
which provide a binary mask to represent the segmentation; enhancement methods, that behave as
curvilinear-structure enhancement filters; or centerline-extraction methods.

Each curvilinear-structure segmentation method includes—implicitly or explicitly—these three
elements:

• The Model. The high-level constraints that describe, according to the method, what a curvi-
linear object is (for instance, dark and thin objects).

• The Feature Extraction. The numeric indicators that aim to capture one or more attributes
of the model (for instance, the pixel-wise response of the image when it is convoluted with a
linear filter).

• The Algorithm. The implementation that computes such features from the image and pro-
cesses them to provide a final result (following our example, performing such convolution as
a product in the Fourier domain).

This section summarizes the different mathematical tools employed by the methods that seg-
ment curvilinear objects. That is, we focus on what characterizes a method as such, which is usually
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related to both its feature extraction and its algorithm. Given the wide diversity of methodologies,
there is some overlapping between different categories, which are shown in Figure 3.6.

FIGURE 3.6: Categories and subcategories according to the mathematical tools that can be leveraged
to segment curvilinear structures.

Besides, we also classify the segmentation algorithms according to the strategy with which they
create such segmentations. This taxonomy, which is depicted in Fig. 3.7, divides the methods as:

FIGURE 3.7: Categories and subcategories according to the strategy with which the segmentation can
be carried out.

1. Based on Pixels. A method based on pixels computes a vector of features per each pixel
(using local or global information), and then labels each pixel based only on its features.
For instance, Huang et al. [85] computed several image transformations. Each pixel is then
independently classified based on the value provided by such transformations in the pixel’s
corresponding location. This may include multiscale strategies, in which several outputs are
computed depending on the size of the structure being detected and are then combined into
a single output.

2. Based on Edges. To extract a curvilinear object, a method based on edges will first estimate
the position of its borders and then fill the area within. A good example of edge-based method
is the road extraction method by Zhao et al. [202], in which edges are computed as a first
estimation. Afterwards, close pixels are assumed to belong to the same road and are, thus,
linked.

3. Based on Shapes. This category gathers the methods that have one or more predefined tem-
plates and base their results on the similarity between the input image and these templates.
Some shape-based algorithms detect a small portion of the object of interest (e.g. by studying
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its cross section) and recover the whole structure with a tracing procedure. Besides matched-
filtering methods, this approach is very well represented by the widely used “vesselness mea-
sure” [67] and similar variants [84, 155]. It consists on studying the eigenvalues of the Hessian
matrix to differentiate between flat regions, blob-like structures and curvilinear structures.

4. Based on Regions. It includes the methods that extract a whole area at once, possibly post-
processing the results afterwards. Frontwave propagation methods faithfully represent this
category. For instance, the work by Van Rikxoort et al. [179] segments human airways star-
ting from the trachea, which is easy to detect, and iteratively adds voxels that fulfill a series
of contraints designed to discriminate the airways from the rest of structures and noise.

5. Based on Artificial Intelligence. It encompasses the methods in which expert data is used to
infer predictions on previously unseen samples. All methods that require a learning stage fall
into this category, like for instance the retinal vessel segmentation algorithm by Soares et al.
[161].

6. User-Assisted. Finally, some methods require the participation of an active user, whose enga-
gement level may vary from selecting a few seed points [40] to continuously provide feedback
[172].

In the rest of this section, the methods are discussed and organized according to the first classifi-
cation (see Fig. 3.6). In each subclassification, the methods are presented following their publication
order.

3.3.1 Filtering

We include in this category all algorithms that convey information by using one or more filters.
Since we are dealing with image processing, we understand by filter a local operator that, given
one image as input, outputs another image of the same size. One filter, or a cascade of them, can
be used to enhance desired structures found within the image. We will consider separately linear
filters and the more complex edge-enhancement filters.

Linear Filtering

We will understand as linear filters those operations that can be implemented with the convo-
lution of a specific kernel. That is, linear and shift-invariant operations. They are local operations,
so they intend to detect objects with specific local properties (i.e. dark objects, rounded objects, ed-
ges) but they can not use global information like the position of the pixel or the image histogram.
Their computational complexity is low since they are usually computed as a convolution with a
given kernel. This is a fast operation when the kernel is small or separable, and can otherwise be
asymptotically optimized using the Fast Fourier Transform [66].

Koller et al. [96] introduced a method based on a non-linear combination of linear filters, with
an edge-detection approach. The local orientation is firstly estimated. Then, two linear filters are
applied, each of them aimed at detecting one of the two edges of the curvilinear object. These filters
are first derivatives of a Gaussian shape with an appropriate orientation. The minimum response
of both filters is taken as an indicator of the degree of a pixel belonging to a curvilinear structure.
This procedure is repeated at several scales, and the maximum output along them gives the final
estimation.

Azzopardi et al. [11] presented a shape-based algorithm that leverages the difference of Gaussi-
ans, which is defined as the subtraction of the same image blurred with different Gaussian kernels.
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They define a B-COSFIRE filter as the weighted harmonic mean of blurred and shifted Difference
of Gaussians (DoG). The weights are computed as the ones that ouput the maximum value when
processing a flat bar-shaped pattern. Multiple orientations are considered by rotating the pattern,
computing the weights and applying the corresponding filter. The pixel-wise maximum response
is stored across different orientations.

Matched Filter Response (MFR). MFR is a template-matching technique that leverages the fact
that linear filters enhance areas similar to the kernel reflected with respect to the origin. The kernel
holds, thus, the role of template. In MFR, a range of linear filters are applied, usually including
rotated versions of the same filters. Afterwards, their response is merged pixel by pixel into a
single result.

Chaudhuri et al. [50] presented a method whose filters are cropped 1-D Gaussian shapes along
a direction. Further, a constant is added so their mean is zero, and they consider 12 rotations of the
same kernel. Only the maximum response is retained. Hoover et al. [83] use this same methodology
and further postprocess the results by applying an iterative algorithm to select the best threshold
while facing uneven illumination, bridging gaps, preventing loops, etc. Both methods follow a
shape-based strategy given the use of MFR.

Panagiotakis et al. [141] published an enhancement algorithm that processes geophysical ima-
ges. Wavelet-based noise reduction preprocesses the original image. Their method leverages MFR:
multiple filters are applied and the pixel-wise maximum response is stored. An hysteresis-based
procedure is used to classify pixels as either (i) surely belonging to a curvilinear object, (ii) surely
not belonging to a curvilinear object and (iii) uncertain pixels.

Edge Enhancement Filtering

This category includes the methods that explicitly compute the edges of the image before seg-
menting the curvilinear structures. Since each edge detector captures slightly different types of
edges, the best one may differ depending on the situation.

Zhao et al. [202] segmented roads from satellite imagery with a user-assisted algorithm. Their
method processes grayscale images with the Canny edge detector, which provides a binary mask.
Edge pixels are linked if they are close, forming line patches. They are broken if there is a sud-
den change of direction, and linked together if their endpoints are close and their orientation is
similar. Afterwards, a user assisted procedure uses this information and a road-likeness estimation
provided by a commercial software to create the road map.

Candamo and Goldgof [43] segmented wires from low-altitude aircraft flight. They computed
edges as a combination between the Canny edge detector and a series of morphological operations.
Since wires are assumed to be straight, one-pixel width lines, this edge map is postprocessed with a
line-fitting procedure to extract the wires. The same authors extended their method by considering
the Hough transform as a postprocessing algorithm [44]. These two algorithms employ an edge-
based strategy given the importance of the edge detector. The line-fitting procedure and the Hough
transform are introduced in detail later in this section.

Lemaitre et al. [107] presented a general curvilinear region detector to detect wiry objects in
multiple types of natural 2D images. At multiple scales, the edges are detected and linked by
searching for pairs of edges taking into account their geometric properties. A series of postpro-
cessing operations remove potential false positives and duplicates on different scales. Bifurcations
and crossings of curvilinear objects are explicitly considered. This postprocessing ensures that the
selected regions have regular shapes.
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3.3.2 Mathematical Morphology

The operators of mathematical morphology are simple, local and non-linear operations that, when
properly combined, provide complex and elaborated results. We will consider as morphological
those methods that integrate these basic operations towards segmentating the objects of interest.
They are often based on two operators: the dilation D, that enlarges bright areas, and the erosion
E , that diminishes them. A wide variety of operators can be defined by composing them, either
sequentially or iteratively (e.g. until no changes are observed). Although the foundations of mat-
hematical morphology consist on simple operators, they provide complex results when properly
combined. Due to their local behaviour, they are suited to detect specific objects (like skeletons,
convex hulls, etc.) but they are limited with regard to the global information they can use. When
compared to linear filters, they have more expressive power but higher computational require-
ments.

Grayscale Mathematical Morphology

It is a natural extension of binary mathematical morphology, originally developed for two-
dimensional black-and-white images, to deal with single-channel grayscale images. One of its
most common extensions to deal with grayscale images is the threshold approach [129, Sect. 3.1], in
which flat structuring elements are used to define the grayscale erosion and the grayscale dilation.

Zana and Klein [199] presented a pixel-based method using grayscale mathematical morpho-
logy. Their algorithm enhances pixels belonging to linear segments by computing the sum of 12
directional top-hat operations, defined as the original image minus the dilation of its erosion. The
direction is encoded into the structuring element. They further enhance the curvilinear structures
by studying their curvature. Noise is removed with both a preprocessing operation and a postpro-
cessing filtering, both of them also based on morphological operations.

Mendonça and Campilho [125] introduced a shape-based algorithm that consists on (i) ridge de-
tection, (ii) morphological curvilinear-object enhancement and (iii) the reconstruction of curvilinear
objects. For (i), they impose the difference of offset Gaussian cross-section with a matched-filtering
like procedure. They search for maximums at multiple scales, obtaining the centerlines. For (ii),
they use a modified version of the top-hat transform. They firstly compute the closing (erosion of
dilation) of the image with a circular structuring element of radii equal to 1 pixel. From this result,
they compute the opening (dilation of erosion), with circular structuring elements of different sizes
to handle vessels at multiple scales. The modified top-hat is the subtraction of the original image
minus the opening of the closing, or zero if this provides a negative value. The top-hat transform
at each scale is processed with an hysteresis operation. In (iii), the results of (i) and (ii) are merged
by iteratively combining the centerlines with the vessels enhanced at multiple scales.

Fetita et al. [64] extracted airways from CT scans with a region-based morphological approach.
Their method uses the so-called flood size-drain leveling morphological operator. It generates a
brighter image and then applies a morphological reconstruction by erosion with the original one.
This procedure finds the curvilinear objects from their walls by filling the “holes” of the latter. The
segmentation is postprocessed, retaining only the segments connected to the trachea.

Fraz et al. [68] introduced a shape-based method in which centerlines are detected with a First
order Derivative of Gaussian (FoDoG) filter applied in four directions. Vessels are then recon-
structed by means of the top-hat transform and a region-growing reconstruction. The summation
of morphological top-hats with directional structuring elements (specifically, 8 rotations of a bar-
shaped mask) is used to create the map of blood vessels. Only the information of its two highest
bits is used, since they contain almost all the visual information. Finally, the pixel-wise segmenta-
tion is provided by a binary reconstruction procedure. The centerline pixels are the seeds whereas
the growing mask is composed of the pixels such that at least one of its two highest bits of the map
of blood vessels is equal to 1.
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Roychowdhury et al. [149] presented an iterative method based on region growing. They obtain
a first estimation by performing a top-hat transform (the opening subtracted from the original
image) of the inverted green channel, obtaining a rough estimation by thresholding it. The iteration
consists on selecting as seed points both (i) the whole previous iteration and (ii) some new pixels
from the top-hat transform (according to an iteration-dependent threshold). These seed points are
set to 1, and then a hysteresis is performed with thigh = 1 and an iteration-dependent tlow. The
stopping criterion tries to maximize the accuracy of the final estimation by predicting the number
of false positives, false negatives, true positives and true negatives from the previous and actual
iterations.

Fuzzy Mathematical Morphology

It is a paradigm that generalizes the binary mathematical morphology while dealing with the
uncertainty found in the acquisition or postprocessing of images [55]. Assuming that grayscale va-
lues range in [0, 1], it uses fuzzy logical connectives along with multivalued structuring elements to
perform the basic morphological operations. Specifically, the fuzzy erosion and the fuzzy dilation
are defined considering grayscale structuring elements, fuzzy conjunctions and fuzzy implication
functions [55]. For more details, see Sect. 2.4.

Bibiloni et al. [33] presented a method in which, following the work in [199], the curvilinear
structures are enhanced with a top-hat transform. In their method, they use a Gaussian-shaped
structuring element, the minimum operator as a fuzzy conjunction and its residual implication.
They use a local histogram equalization for contrast enhancement and a hysteresis procedure to
prioritize connected components. Due to the behaviour of the hysteresis, it becomes a region-based
algorithm.

Path Openings and Closings

They are morphological operators that were specially developed to detect and extract curvili-
near structures. Originally introduced by Heijmans et al. [81], path openings and closings extract
the pixels that are connected with at least L other pixels constrained to a directional adjacency
matrix (e.g., they restrict the possible connected pixels to the upper and right pixels in their 8-
neighbourhood). Besides, they have been adapted to detect incomplete paths and to be used in
high-dimensional settings [53, 168]. It is classified as a morphological operator since computations
are made locally and the results are indeed morphological openings and closings. They only allow
a small deviation with respect to a straight line. As an extreme example, a spiral would be recogni-
zed as a large number of tiny, nearly straight segments. Several algorithms have been developed to
compute them with an acceptable efficiency. However, several adjacency matrices should be used
to detect lines with different orientations.

Valero et al. [177] presented a road segmentation method based on morphological profiles. They
are pixel-wise vectors that represent different results obtained when sweeping a parameter. In
their case, the morphological profile represents the output of grayscale path openings and path
closings with different minimum lengths. It is used to extract an indicator of the length of the path
that crosses each pixel, which is thresholded to obtain the road pixels, becoming thus a pixel-wise
segmentation method. Such indicator is estimated as the minimum length such that the grayscale
level provided by the path opening or the path closing is below the median gray level of road pixels
in the image.

Sigurðsson et al. [160] extracted retinal vessels with a region-based algorithm. The preproces-
sing consists on a Contrast Limited Adaptive Histogram Equalization (CLAHE), a 3ˆ3 Gaussian
smoothing and a small opening intended to remove small and isolated points. Two features are
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extracted: the black top-hat, to extract locally dark regions, and the Difference of Gaussians, to en-
hance edges. A third feature is provided by a path opening algorithm, intended to recover oriented
and connected curvilinear objects. Finally, these features are interpreted as fuzzy sets and fusioned
into a single indicator based on the multiplicative class.

3.3.3 Image Transforms

Other approaches decompose the original image into a basis, yielding one coefficient per element
of the basis that, broadly speaking, indicates how much the basis element is found within the original
image. Although mathematically speaking they should always admit an inverse, we also include
some transformations that do not fulfill this property but just describe the image as a series of coef-
ficients. These coefficients can be seen as another representation of the original image that yields
in an abstract space, the transformed space. This representation may expose useful properties that
were hard to extract otherwise. Both their computational requirements and their expresiveness
depend on the actual transformation used, although both tend to be high.

Hough and Radon Transforms

The Radon transform computes its coefficients as the line integrals along each straight line, and
it is applied over two-dimensional functions with a continuous domain. The original Hough trans-
form, which handles discretized images, is tightly related to the Radon transform. It provides the
summations along each straight, one-pixel width line. The latter can be seen as a discretization of
the former, although it was independently designed to detect straight lines in black and white ima-
ges [70]. In both cases, the considered lines range over all the possible locations and orientations,
and are not bounded except for the image limits. The original Hough transform is efficiently com-
putable and a good estimator to detect straight lines, but it is not suited to detect curved structures
or short segments.

Palti et al. [140] use the Hough Transform to fit a second-degree curve in a sliding window,
providing a shape-based method to detect a guide-wire. After preprocessing the image, the Hough
transform is applied to find the curve of the form y = ax2 + bx + c that yields the greatest sum
along its pixels. This curve fitting mechanism is applied in a 71ˆ71-pixel window, and its result is
used to compute the solution in the next window, with which it overlaps partially.

Huang et al. [85] extracted the curvilinear wrinkles in human hands to calculate the simila-
rity between two palmprints with a pixel-based method. They introduce a version of the Radon
transform that they call the Modified-Finite Radon Transform (MFRAT) to avoid the periodicity
assumption of the Finite Radon Transform (FRAT). It considers bounded segments in a given grid
instead of lines. It provides a local best-line estimator, including its orientation and the energy of
each segment (i.e. a measure of the certainty with which the estimator is indeed a true positive).
Besides, a threshold and other postprocessing operations are applied.

Krylov and Nelson [99] published a shape-based algorithm to segment curvilinear structures.
They divide the image into an overlapping grid of square regions and use the finite Radon trans-
form to find segments in them. They define a pixel-wise energy term and remove weak candidates
by applying a threshold.

Continuous Wavelet Transforms

Continuous Wavelet Transforms (CWT) constitute a family of transforms that provide a diffe-
rent insight of the information contained within an image. These transforms are carried out with



3.3. Approaches to Curvilinear Object Segmentation 31

wavelets: functions that begin and end at zero—leading to a local behaviour—with a wave-like
shape that provides information about the “local frequency” of the images. Intuitively speaking,
information that explains how the image evolves in a certain neighbourhood. Although “local
frequency” may seem contradictory in itself, these transformations employ a sliding window, big
enough to contain frequency information but small enough to separate different parts of the image.
The Morlet wavelet is, essentially, a complex exponential windowed with a Gaussian function [10].
A more elementary version of it, often referred to as the Modified Morlet Wavelet or Gabor Wavelet,
is not invertible neither normalized [52], but is conceptually simpler. Other families are generated
with distinct mother wavelets, which can be seen as the prototype used to define the elements of
the basis.

Subirats et al. [166] detected cracks in pavement using the Continuous Wavelet Transform. Spe-
cifically, they use the 2D CWT rotated 0˝ and 90˝ at different scales with the Mexican hat function as
mother wavelet. At each scale, this setting provides two features with which they extract a maxima
location map. Afterwards, these maxima maps are merged into a single-scale map from the lowest
resolution to the greatest one. Finally, the binary output is computed by thresholding, providing
thus a pixel-based method.

Batool and Chellappa [19] presented an algorithm that enhances curvilinear structures with Ga-
bor filters to detect facial wrinkles. The output of each Gabor filter is normalized across the pixels
of the image. Then, the enhanced image is created by assigning to each pixel the maximum re-
sponse of the normalized Gabor filters. Afterwards, they use this enhanced image to trace wrinkles
in them with a region-growing approach, employing thus a region-based segmentation strategy. A
further refinement reduces false positives. Cula et al. [54] also used Gabor filters to detect wrinkles.
In their case, the local orientation is estimated in a local window. Only one Gabor filter is applied
at each location, oriented according to the local orientation and manually tuned.

Beamlet Transform

Another technique based on wavelets is the beamlet transform, introduced by Donoho and Huo
[59]. The beamlets are the elements of the basis of this non-invertible transform. They are a subset
of the segments contained within the image domain (the so-called beamlet dictionary). Each coef-
ficient is then computed as the integral over the corresponding segment. Instead of considering all
possible segments between all pairs of vertices (which would include a huge amount of segments,
adding up to O(n4) for nˆn-pixel images), in each scale only the segments that connect two close
vertices within a subgrid are considered (which yields O(n2) segments).

Berlemont and Olivo-Marin [30] used a region-based strategy with beamlets to segment curvi-
linear structures in noisy images. To compute the beamlets, they use a method based on the Fast
Fourier Transform after the use of steerable filters on the original images. They normalize the coef-
ficients and select the beamlets that provide more information. Afterwards, the significant beamlets
are linked to each other to obtain the final set of curvilinear objects.

3.3.4 Probabilistic and Statistical Models

This category embraces the methods that base the detection of curvilinear objects on the use of pro-
bability theory, statistical distributions or statistical tests. Although most methods use probabilistic
tools (e.g. when estimating the variance of an indicator), we only consider within this category the
ones whose nature is, almost entirely, probabilistic or statistical. Both their expressive power and
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computational requirements depend greatly on the specific technique. However, given that they
are theoretically well founded, they tend to be very expressive.

Marked Point Processes

A Spatial Point Process is a probabilistic model of the distribution of a (usually finite) number
of points in S Ď Rd. A Marked Point Process is a spatial point process in which each point has some
metadata associated with it, so instead of considering realizations as x Ă S, they will have the form
t(x1, m1), . . . , (xn, mn)u = (x, m) Ă SˆM. Typically, each point (xi, mi) corresponds to a segment,
in which xi is its center (so S Ă R2, that corresponds to the scene), and mi = (wi, li, θi) are its width,
length and orientation, respectively.

We assume that the real scene is digitized on a finite pixel lattice, the digital image. We consider
points as being segments in the scene (being the coordinates of the center, the length, the width
and the orientation real numbers) and decide which set of segments represents best the scene by
considering the only information we have about it: the discretized image. Marked Point Process
techniques pick the best combination (according to a probability measure) of marked points—or
segments—that represent the original scene. To do so, a solution is provided by minimizing an
energy function, which is composed of two terms: the data energy, which depends on the image,
and the interaction energy, which only depends on the marked points. This last term can be seen
as the prior probability model since it introduces the purely geometric constraints (e.g., specifying
how marked points may intersect with each other).

In [165], Stoica et al. use a Gibbs point process to segment roads from remotely sensed imagery.
That is, one in which the energy computed from the image is taken into account with a Gibbs
measure. As data energy term, they consider a segment to be part of the network of curvilinear
structures if the average intensity of the pixel’s segments are different from those situated at both
sides. The interaction energy term penalizes short, unconnected and overlapping segments. The
region-based solution formed by the selected set of segments is computed with the Reversible Jump
Markov Chain Monte Carlo (RJMCMC) algorithm. Lacoste et al. [102, 101] extended this work
by considering gradual coefficients to describe the satisfiability of a condition and an improved
data energy term that considers the homogeneity of regions. Ferraz et al. [63] also used the same
statistical model to segment roads in forests.

Batool and Chellappa [20] used a Gibbs point process to extract wrinkles from human faces
with the same region-based approach. The “data energy” they use is the output of a Laplacian of
Gaussian filter, and their “interaction energy” rejects congested areas. They also use the RJMCMC
algorithm.

Other Probabilistic and Statistical Models

Draper et al. [60] introduced a pixel-based method that localizes the needle in breast biopsies. To
face the speckle noise and enhance the needle, their method estimates the variance in each pixel’s
neighbourhood, which describes the nature of the whole method. Since the needle is much brighter
than the background, its pixels will present high variance. This variance is computed in a squared
window in which all pixels have the same influence. Some postprocessing operations, including a
binary closing to smooth the edges of the needle detected, provide the final segmentation.

Narasimha et al. [131] used statistical hypothesis tests to discriminate vessels in retinal eye-
fundus images. Their region-based method labels pixels as being part of a vessel according to a
hypothesis test, in which H0 indicates the absence of a vessel through the pixel, and H1 other-
wise. For doing so, they consider two features of the model of vessels: (i) they should be locally
linear with parallel edges along a particular orientation and (ii) their cross-section profile should
be specific. They consider a variety of cross-section profiles to detect vessels with central reflex—a
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disturbance by which a bright region appears in the centerline of the vessel. The Dual-Gaussian
model [110] is the profile that yields the best results. This model was rediscovered by Xiao et al.
[191] under the name of Bi-Gaussian function. It generalizes the Gaussian kernel and obtains a
behaviour more similar to that of a rectangle kernel. Besides handling the central reflex, it also
provides a good trade-off between noise suppression and separation of close structures. The cross
section profile is defined as a piece-wise continous function composed of two Gaussians, one for
points close to the center and another Gaussian shape, scalated to preserve continuity, describing
the rest of points.

3.3.5 Deformable Models

In this category we include all methods in which a model is adapted to fit the curvilinear structure
represented in the input image. Depending on the approach with which the model is adapted to
the image, they are further subdivided into Parametric Fitting techniques and Active Contours.

Parametric Fitting

It includes the techniques in which a usually small number of parameters control a predefined
model. Whereas some aspects of the model may be modified (e.g. size, eccentricity, etc.), others
remain fixed (for instance, its tubular appearance). Often, a local model is used to detect if a small
area of the image belongs to the object of interest. The whole segmentation is, thus, given as the
union of all chunks fulfilling the model, which are usually found with a tracing algorithm.

Abdul-Karim et al. [2] considered a model that generalizes 3D cylinders: those regions in which
the 2D cross-section profile present a specific behaviour in its four directions (´x,+x,´y,+y).
Local maximum intensity voxels provide seed candidates. They are the starting points for tracing,
which continues until the model is violated, following thus a shape-based strategy. Among other
features, the tracing procedure takes into account the distance between consecutive centerlines and
their angle.

Barva et al. [18] model a curvilinear object as a three-dimensional cubic curve and use the rand-
omized RANSAC algorithm [51] to find the best match. Repeatedly, four points are randomly
selected and interpolated with a cubic curve. This curve is used to estimate inliers and outliers,
and a curvature measure is taken into account to avoid excessive oscillations. The quality of each
solution is estimated, and the whole procedure ends when the probability of finding a better model
is low. Afterwards, they refine the method by estimating the endpoints based on statistic-based
parameters. It can be classified as a region-based algorithm.

Tyrrell et al. [176] segmented curvilinear structures with an algorithm based on shapes. The de-
formable model they use to extract such shapes is the Cylindroidal Superellipsoid: an explicit, low-
order parametrization that provides the centerline and border location of a curvilinear segment.
A generalized likelihood ratio test is used to distinguish superellipsoids that represent curvilinear
structures from the ones containing noise and artifacts. To combine local segmentations, a tracing
algorithm is executed in a greedy way while refining the cylindroid parameters.

Wang et al. [186] presented a shape based algorithm with an unusual but powerful multiscale
approach. Firstly, the image is divided as a series of nested grids, which provides overlapping
square regions. In each region they estimate the parameters of their model, f (x) = G(x) + B(x) +
n(x), where each segment of the curvilinear object G(x) is modelled as a 2-D bivariate Gaussian
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kernel, the background B(x) is thought of as a piece-wise linear region and n(x) is additive Gaus-
sian noise. A subset of disjoint regions are selected with a bottom-up approach from their over-
represented grid, prioritizing the scale at which the model best explains the subimage. The curvi-
linear binary tree is segmented with a Markov Chain stochastic process that maximizes a posterior
probability.

Padoy and Hager [139] used a spline derived from a set of points to create a region-based algo-
rithm in a sequence of stereoscopic video frames. More specifically, they use a non-uniform rational
basis spline (NURBS). They handle it as an energy minimization problem, with a term to enforce
the curvilinear shape (distance to closest ridge) and the texture (distance to closest pixel with speci-
fic color), and a second term enforcing the in-extensibility (constraining local changes of arc-length
in subsequent frames). This tracking procedure is a region-based algorithm.

Active Contours

This subcategory includes all those methods in which the solution is provided by means of
an elastic route obtained by iteratively minimizing a certain function. This function is thought
of as the energy of the solution, and it is typically affected by different terms (e.g. the amount of
connected components of the estimation, how they are related with the gray values, etc.). Snakes
[90] constitute a well-known example of active contours. They are active contours that are pushed
by several forces, both internal and external. The internal force only depends on the snake itself,
and usually enforces smooth contraints: they include tensile forces (to uniformly distribute the
nodes) and flexural forces (to control the snake’s bending). External forces are those that couple the
snake to the image.

Related approaches include active contours based on other vector fields, like the Gradient Vec-
tor Flow (GVF), which is classified as (0, 1)-tensors later in this section.

McInerney and Terzopoulos [121] introduced Topology Adaptive Snakes or simply T-snakes. A
T-snake is a set of nodes which, connected in series, form a closed 2D contour. Unlike traditional
snakes, a Topology Adaptive Snakes dynamically changes its nodes and interconnecting elements.
The image is decomposed into a grid of cells (the so-called ACID grid). The evolution of the snake
is divided into two phases, which are alternated. The first one corresponds to the Lagrangian
dynamics phase, and during the second one, the T-snake is reparametrized by computing the in-
tersection between the T-snake and the ACID grid. This last phase, the topological one, provides
the adaptability needed to segment complex structures. Besides, to avoid loops, the model is not
allowed to go backwards.

Al-Diri et al. [58] segmented vessels in retinal images with a related active contour: the ribbon
of twins. Each ribbon of twins contains four active contours, and tries to capture both edges of
a vessel. The two inner contours are linked with a force to maintain vessel width consistently,
whereas each of the outer contours move towards their respective inner one. Since this model only
works well with segments, they have to be joined afterwards with some postprocessing procedures.
Besides, the initialization of each ribbon of twins needs some clues about its approximate location,
needing thus a rough estimate of vessel centerlines as a preprocessing step. Given the nature of this
active contour, this constitutes an edge-based method.

3.3.6 Tensor-based Techniques

Tensors are a generalization of scalars (s P R), vectors (v P V) and linear maps of the form ` : V Ñ

R, also called covectors. In our case, we consider the vector space V = Rd when dealing with
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d-dimensional images. More formally, let V be a vector space and let V˚ be the set of covectors
of V. Then, we say that a (n, m)-tensor Tn

m (or n-contravariant, m-covariant tensor) is a multilinear
application Tn

m : (V˚)nˆVm Ñ R, as defined in [3]. That is, such tensor provides a scalar whenever
it is evaluated with n covectors and m vectors as arguments.

Mathematically, we can describe an image as a scalar-valued function f : M Ñ R, where M is a
2D or 3D discretized grid. In addition to the previous concepts, we define a (n, m)-tensor field on
M as an assignment of one (n, m)-tensor to each point in M [3].

The generalization that tensors represent helps us relating different concepts. For instance, a
vector field can be seen as a (1, 0)-tensor field, and the image itself is a (0, 0)-tensor field. Given
that first and higher-order derivatives are linear operations, the notion of tensor is appropriate to
describe them. For example, the first derivative is a (0, 1)-tensor field since, for each direction v P V,
it provides a scalar representing the sensitivity to change in such direction. The second derivative
can be similarly described as a (0, 2)-tensor field.

(0, 1)-Tensors

They are methods focused on a specific (0, 1)-tensor field. The gradient, which is an example
of (0, 1)-tensor field, can be approximated with the help of convolutions. Let G(x) be a smoothing
Gaussian shape and A an image. Then, the gradient can be approximated as

B

Bxi

[
A(x)

]
«

B

Bxi

[
A(x) ˇ G(x)

]
= A(x) ˇ

B

Bxi

[
G(x)

]
,

where ˇ denotes the convolution operation.
Since the derivatives of the Gaussian shape G can be precomputed, these operations are fast

and do not introduce further numeric errors. Besides, the variance of the Gaussian shape can
be incremented to remove the effects of noise, since more pixels contribute to compute the same
derivative; or diminished, so that sharp and close areas are easily detected. This is a tuneable
parameter to procure a good trade-off between exactitude and robustness.

Vasilevskiy and Siddiqi [180] defined a flow using the gradient of the image as a vector field, and
used it to extract vessels in different angiography image types. The segmentation is circumvented
by a closed curve. It evolves so that the inward flux, along with some regularization parameters, is
maximized. Since the segmentation is then set to be the inner part of the curve, it can be considered
an edge-detection based algorithm.

Sanders-Reed et al. [152] detected wires in low-flight imagery with a pixel-based algorithm de-
veloped in Boeing-SVS, Inc. After some noise-reduction preprocessing, the pixel-wise gradient is
estimated with two 5ˆ5 convolution kernels. Per each pixel, the method adds the gradient of its
neighbours weighted by their corresponding mask value Kn = ˘1. Depending on the resultant
vector, the pixel is classified as uniform gradient, line or noise area. To fill holes, 16 orientations of
a 41ˆ41-pixel bar-like kernel are considered. If enough pixels are found within some rotation of
the bar-like kernel, the central point is also set to 1. Besides, temporal and other spatial filters are
applied to further refine the results.

Pu et al. [144] segmented the human airway tree with a shape-based segmentation algorithm.
Firstly, the lung volume is estimated and kept as mask (with a histogram-dependant thresholding).
The nature of the method is given by the curvature of 3D airways, computed by means of the finite-
difference analysis of normal vectors, which yields reasonable accuracy and low computational
complexity. The curvature is used to discriminate objects that are not cylindrical. A postprocessing
step removes false positives and false negatives by reconsidering the labels of isolated regions with
respect to the whole segmented tree.

Zou et al. [203] segmented road cracks with a tensor voting algorithm. Firstly, they apply a
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texture-preserving illuminance compensation to compensate any shadows, a geodesic shadow-
removal algorithm (GSR). It consists on a morphological closing followed by a 2D Gaussian smoo-
thing, a generation of contour-lines with N thresholds, and an illumination compensation step.
Secondly, they perform detection with a local intensity-difference measure and tensor voting. The
former is achieved by comparing the intensity of one pixel with its 8 neihbourhood and extracting
those values lower than a threshold that depends on the global histogram. Tensor voting finds
principal directions according to surrounding pixels, considers an oriented cone at each point and
enhances curvilinear objects that may appear within the cone, being thus a shape-based approach.

Ferraz et al. [63] detected roads in forests using Digital Elevation Models (DEM). Their charac-
terization is based on the slope and the aggregated multi-scale slope, as well as in the homogeneity
of the regions. Using random forests and these three pixel-wise features, their method estimates
whether a pixel belongs to a road segment. The final estimation is computed by means of the global
statistical model from Stoica et al. [165], so the method provides region-based segmentations.

Gradient Vector Flow (GVF). Introduced by Xu and Prince [194], the GVF is a vector field obtained
by minimizing an energy functional over the whole image. It is a vector field similar to the gradient
but aimed at overcoming some of its weaknesses: the GVF has a wide range of capture (i.e. points
far from edges are still attracted to them) while is still influenced by pronounced concavities (i.e.
points with close edges are still slightly affected by further edges). It can be considered an edge-
preserving diffusion of the gradient vector. Besides, it requires an appropriate initial vector field
where the vectors point towards the centerlines of the structures of interest and whose magnitude
estimates the edge-likeliness.

Bauer and Bischof [22] use the GVF in their pixel-wise method. They compute the derivatives of
the GVF and estimate if a pixel belongs to a curvilinear structure using its eigenvalues, in a similar
way to [67]. A simple thresholding provides the centerlines of the curvilinear structures. Bauer
et al. [23] extended their work to reconstruct the whole curvilinear structure from the centerlines.
It consists on a region-growing procedure that uses the fact that the gradient magnitude increases
until the boundary of the object is reached.

(0, 2)-Tensors

Some methods use more information than just a vector per pixel. This subcategory includes
the techniques that use (0, 2)-tensors, which can be represented as a matrix per each pixel. Such
amount of information increases the computational requirements but potentially provides better
quality segmentations.

Hessian matrix and analysis of its eigenvalues. The Hessian, which may be estimated by con-
volving the image with the derivative of a kernel, conveys important information about a pixel’s
neighbourhood.

Steger [163] models lines as 2D curves with a specific profile. They detect the orientation of a
line from the eigendecomposition of the Hessian, and estimate its strength as the absolute value
of the second directional derivative across the detected orientation. They later link points to create
lines, based on the orientation of the line, its strength and the sub-pixel location of the potential
line. This is a greedy procedure that employs a shape-based strategy.

Frangi et al. [67] popularized the use of the Hessian matrix and the analysis of its eigenva-
lues. Such eigenvalues describe the principal directions in which the second-order structure of the
image can be decomposed. With 3D images, a tubular segment is characterized if and only if one
eigenvalue is small in absolute value and the other two are large in absolute value. They intro-
duce a measure, the so-called vesselness measure, which is based on the eigenvalues and captures
this behaviour, which is a pixel-wise estimator of the belonging degree to the curvilinear structure.
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Since they do not provide a binary segmentation, their method can not be classified according to
its segmentation strategy. It is a curvilinear object enhancement filter, and has been used by several
authors [100, 42, 193, 123]. The work is extended by Sato et al. [155], who provided a tightly related
curvilinear measure, and by Huang et al. [84], who used a single-scale filter to compute the Hes-
sian matrix, to address the problem of separating close tubular structures in noisy images. Xu et
al. [196] used the vesselness measure along with other information to improve the quality of their
segmentation.

Staal et al. [162] presented a shape-based method that locates the ridges and then reconstruct
the whole curvilinear structure. The ridges are situated where the sign of the gradient changes
along the direction of largest curvature, given by the eigenvector with largest eigenvalue, in abso-
lute value, of the Hessian matrix. They form ridges with a growing algorithm based on a scalar
field that takes ˘1 for ridges of local minima/maxima, and 0 elsewhere. Then, several pixel-wise
features basic photometric and geometric features are computed: R, G, and B values; estimation of
the region of the pixel being a vessel, etc. The binary output is obtained as the output of a kNN
classifier.

Zhang et al. [200] firstly detect centerlines with a gradient vector tracking procedure, using their
generalization of GVF. Afterwards, to refine the results, they use the eigenvalues of the Hessian
matrix to distinguish different but close curvilinear objects. To do so, they use the assumption that
different objects will have different shapes, which are distinguished by the aforementioned eigen-
values. Since this procedure provides the centerlines of the objects of interest, the Fast Marching
Algorithm [159] completes their region-based segmentation.

Optimally Oriented Flux (OOF). Introduced by Law and Chung [104], OOF is a (0,2)-tensor that
eases the computation of the inward flux in the direction in which it is minimum. Conceptually,
they define a sphere with a certain radii and study the flow across the sphere in each direction.
Computationally, however, it is reduced to several convolutions, which can be performed effi-
ciently. It intends to separate adjacent structures, which is a weakness present in the gradient or
Hessian matrix computed with the derivatives of Gaussian shape. A multiscale analysis is possible
by varying the radii of the sphere.

Law and Chung [104], besides introducing the OOF, introduced a method to segment curvi-
linear structures. They compute the eigenvalues of the 3ˆ3 OOF matrix that provides such flux.
Analysis of these values provides the pixel-based classification.

Benmansour and Cohen [29] segmented different types of tubular structures using the OOF
with a region-based strategy. They define a pixel-wise anisotropic metric based on the eigenvalues
of the OOF matrix, in a similar way to Frangi et al. [67]. Besides the original 2D or 3D domain, they
add an extra dimension that represents the radius of a line. Therefore, a curve in their extended
domain represents a curvilinear object in the original domain. The segmentation is provided as a
minimal path in the extended space with the anisotropic metric.

3.3.7 Other Approaches

In this last category, we group those methods that do not fall into any of the previous categories.
This includes methods based on artificial intelligence approaches, algorithms based on growing a
certain region with a wavefront propagation strategy, and finally a series of diverse methods.
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Learning Models

This last category encompasses the learning methods that base the segmentation on a pixel-wise
automatic classification. They often consider a massive number of features that, although being ex-
cesively large for an expert system, is suited to be used with an automatic learning approach. The
computational complexity depends on both the feature calculation—where the expressive power
lies—and the classifier itself. Therefore, each individual method achieves a different trade-off bet-
ween its ability to correctly detect curvilinear objects and its computation speed.

Soares et al. [161] introduced a method that leverages features based on oriented multiscale
Morlet wavelets and a Bayesian classifier called Gaussian mixture. In a pixel wise fashion, they
consider 18 orientations, two scales and one eccentricity. With each combination, they apply the
Gabor wavelet, obtaining a different feature, which is normalized afterwards. Each pixel is classi-
fied with a Gaussian Mixture Model, in which a linear combination of Gaussian functions describes
each class-conditional probability density.

Ricci and Perfetti [146] used Support Vector Machines (SVM) to segment vessels in retinal ima-
ges. The features they consider are (i) a basic line detector—a simple, non-linear operation along
a line-shaped structuring element at 12 different orientations—; (ii) same as (i) but with a cross-
shaped structuring element; and (iii) the gray level intensity of each pixel. Features are normalized
and used as input to a linear SVM. In addition, the cost of false negatives with respect to the cost of
false positives is compensated given the asymmetry of classes.

Salem et al. [151] published a human-assisted method that segments retinal blood vessels using
a clustering algorithm. The features considered are (i) the green channel intensity, (ii) the local max-
ima of the gradient magnitude at multiple scales and (iii) the local maxima of the largest eigenvalue
at multiple scales. The clustering algorithm employed is the Radius based Clustering Algorithm
(RACAL). Essentially, two samples are assigned to the same cluster as long as their distance, in the
feature domain, is lower than a given threshold. Their method constitutes an interesting human-
assisted strategy: with the clustering technique, they select only a reduced amount of significative
samples, reducing thus the amount of human interaction required.

Lo et al. [112] introduced an algorithm that uses the k-Nearest Neighbours learning procedure.
They consider several local features, including the spatial first and second order derivatives, the
eigenvalues of the Hessian matrix and several indicators computed from them. The rate of neig-
hbours classified as vessel, along with the orientation derived from the Hessian matrix, are taken
into account to segment the curvilinear structure in a region growing fashion.

Honnorat et al. [82] introduced an algorithm to extract a guide-wire from fluoroscopic video
frames. The learning algorithm they employ is called Gentle Adaboost to cope with the asymmetric
nature of their problem: only around 0.15% of pixels represent the guide-wire. The features they
consider are (i) steerable ridge detectors of third and fourth order at several scales, (ii) difference of
Gaussians at several couples of scales, (iii) the variance of (ii), (iv) the variance of the image minus
the same image in the previous frame. As postprocessing, line segments are obtained by clustering
and some of them are selected as being part of the guidewire, based on their rank and orientation.

Saar and Talvik [150] extracted and classified road pavement cracks with a supervised artificial
intelligence algorithm. They divide images in 96ˆ96-pixel blocks, which are divided into 12ˆ12-
pixel subblocks. Their supervised algorithm considers a neural network with 7 inputs, 4 outputs
and 21 hidden layers, and processes entire blocks. The features considered are (i) an indicator
of the ratio of subblocks whose mean intensity values is lower than the block one, (ii) horizontal
and vertical sums, (iii) median and maximum of the values corresponding to summing column-
and row-wise the pixels block, (iv) the summation of the subblock thresholded with a 11ˆ11-pixel
convolution mask, both with a horizontal and a vertical bar-shaped kernel. The four outputs corre-
spond to the three types of cracks and the non-crack output.

Becker et al. [25] presented an artificial intelligence based algorithm using a classificator based
on Gradient Boosting. It is, like AdaBoost, a cascade of weak learners. To focus on local features,
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the employed weak learners that are based on convolutions with square-windowed kernels.
Oliveira and Correia [136] presented an unsupervised artificial intelligence method to segment

and classify road cracks.They divide the image into 75ˆ75-pixel non-overlapping windows, since
this choice offers a good trade-off between low computational requirements and low false positive
detections. Their method extracts two features per window, the average intensity of its pixels and
their standard deviation, and normalizes them. Different clustering algorithms are employed to
label each window and to create a quadratic boundary decision between positive and negative
pixels. The clustering technique yielding the best results appears to be the mixture of two Gaussian
functions.

Wavefront Propagation

Some methods start with a seed and extract a region iteratively, by checking the neighbouring
pixels close to the ones already accepted, and including them or not based on specific criteria.
Their expressive power is tightly related to their acceptance criteria, although it tends to be low
since these algorithms often disregard global information like the position of pixels. They are often
based on local properties (e.g. the intensity of the pixel being checked), although can also take into
account information related to their neighbourhood (e.g. the amount of pixels in the parent branch).
They tend to be fast methods, often used in real-time applications. Some of them make use of a user-
provided seed point, being thus semi-automatic methods. Of course, the computational complexity
depends on the acceptance criteria, which can be very basic or extremely complex.

Wang et al. [185] segmented axons from 3D microscopic image stacks. After a preprocessing
step, a tracing algorithm provides the segmentation. It leverages three features of the curvilinear
objects of interest: (i) their smoothness: the centerline, which is estimated by the change of direction
of the eigenvector of the Hessian matrix with the largest eigenvalue, should only have subtle devi-
ations; (ii) their proximity: the euclidean distance between two consecutive pixels should be small;
and (iii) their continuity: the intensity along the central line should vary smoothly. To face the
situations in which more than one axon convey into the same vertex, a reverse tracing strategy is
employed. A similar approach is employed by Xu et al. [195] to segment astrocytes from confocal
microscope images, in which points are added iteratively one by one, according to a cost function
that takes into account a closely related criteria.

Van Rikxoort et al. [179] extracted airways from CT scans with a region-based method. Their
method uses a wave-propagating strategy that considers a large neighbourhood of 80 pixels and
starts at the trachea, which is relatively easy to detect. The voxels are accepted if (i) their intensity
is lower than an adaptive threshold, or if (ii) the average intensity of a 3ˆ3ˆ3 cube is below it. A
group of voxels is accepted as a segment if it fits a number of constraints that are concerned with its
shape, its radius with respect to that of its parents, its angle with respect to the previous segment,
etc. All of these constraints are designed to minimize leakage. Tschirren et al. [172] presented a
similar method in which the threshold was increased until a sudden flood was detected, which
was interpreted as a leakage.

Feuerstein et al. [65] presented a region-based method in which a wavefront propagation is per-
formed restricted to a local cube-shaped region. Firstly, a large branch is quickly detected and the
initial cuboid is placed with the appropriate orientation and size. Within it, a sharpening filter is ap-
plied and a wavefront propagation algorithm is executed from the seed point, selecting the voxels
greater than a threshold. Afterwards, bifurcations or trifurcations are detected by considering the
connected components in the boundary of the cuboid, and new cuboids are set to repeat the pro-
cess iteratively until no more child branches are found. Lee and Reeves [105] applied a similar idea
in their region-based method, in which a cylinder is considered instead of the cuboid. Instead of
considering only bifurcations or trifurcations, they allow multiple child branches and limit leaks
by considering childs only on the end of the cylinder. Their region growing process adds a new
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voxel if (i) it is the 6-connected neighbour of a tagged pixel, (ii) its intensity is below a threshold
and (iii) the intensity of at least half of its 26 neighbours is below a threshold. This last constraint is
intended to further prevent leakage.

Vlachos and Dermatas [183] presented a region-based method to segment retinal vessels. A
simple brightness rule provides some seeding pixels which are the basis of a tracking procedure
that ends when a cross-sectional model is violated. This tracking procedure is employed at diffe-
rent scales, and a confidence map is generated for each of them. The confidence map is used to
merge them into a single-scale response, which is postprocessed with a median filtering and some
morphological operations intended to regularize the output.

Miscellaneous

In the following, a series of methods that do not fall into any of the previous category are
introduced. Although they are not widely used, they may provide an original insight towards
segmenting curvilinear structures.

Several methods are based on rule merging, which are basic statistical measures usually contras-
ted with a fixed threshold. The merging process varies greatly, although it is usually implemented
by means of conjunctions and disjunctions. Tupin et al. [173, 174] used a line-detection rule and a
cross-correlation detector between pixels in two regions. Chaudhuri and Samal [49] extracted brid-
ges in multispectral satellite imagery by considering simple constraints such as “a bridge should
be a concrete structure”, “a bridge divides two water regions”, “a bridge should have a constant
width”, etc. Qian et al. [145] extracted vessels with a voxel-wise brightness indicator b(x) and a
voxel-wise tightness indicator v(x), to derive a voxel-wise curvilinear-object indicator: v(x) ¨ b(x).
We remark that the product operation may be seen as a generalization of the binary and operator.
Zwiggelaar et al. [205] detected spiculated lesions in mammograms using an orientation measure,
obtained by maximizing the gray-level summation of pixels within the tube-like line model; and a
strength measure, which is the mean gray-level intensities along a line minus the mean gray-level
intensities of its surrounding background. Given their nature, all of them employ a strategy based
on pixels.

Liu et al. [111] introduced a region-based approach to segment cracks in pavement by using
the properties of connected components. They used histogram equalization followed by spatial
filtering to obtain a rough binary estimation. Their main contribution is the transformation of this
intermediate result into a fine-grained segmentation. To do so, they studied the connected com-
ponents of the rough estimation, including their number of pixels, the area of their circumscribed
circle, their directionality, etc. Their method is complex and includes a lot of parameters in an at-
tempt to consider as many characteristics as possible.

Bismuth et al. presented a method to detect guide-wires. Similarly to [147, 45] they apply voting
to find curvilinear structures. In this case, they find a very large number of small segments, that are
considered potential chunks of the curvilinear object. Then, each segment contributes to each pixel
with a specific weight, and the pixels whose accummulated weight is higher are interpreted as part
of a curvilinear object. Besides, their method includes a top-hat transform to preprocess input data
and a pruning procedure as postprocessing to refine the final result. Since they use voting, the
strategy to provide a segmentation can be considered to be based on shapes.

Bauer et al. [24] segmented airways from CT scans with a technique based on graphs. Their
method outputs a graph that represents the centerline of the binary curvilinear tree. Firstly, a rough
estimation of the graph is given by a rough estimation of the centerlines. Then, it overcompletes the
graph by adding more potential centerlines between nodes based on the intensity of the voxels and
the orientation of the original centerlines. From this graph, they compute a directed and weighted
graph which is processed with a graph-based optimization algorithm to select the final estimation
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of the curvilinear object’s centerline. Their algorithm does not provide pixel-wise segmentations,
but graphs describing the centerlines of the curvilinear objects.

3.4 Metrics and Comparisons

This paper is aimed at studying the strengths and weaknesses of different mathematical techni-
ques to segment different types of curvilinear structures. To do so, we have already classified the
algorithms according to the technique they use in Sect. 3.3. In this section, a comparison of the
algorithms will be presented according to an appropriate methodology to do so.

Although our goal is to compare the different mathematical approaches, we can only compare
objectively the algorithms that employ them. We can assume that a better algorithm probably
considers a better mathematical formulation of the problem. This reasoning allows us to infer
which mathematical tools tend to be better depending on the specific problem.

3.4.1 On the Comparison of Algorithms

The visual comparison of results is useful as a first indicator, but it is not enough to decide
which method is better. Actually, the definition of better must be formalized, and it may be different
depending on the objective of the algorithm. The objective comparison of methods will depend
on the performance measure used and on the set of processed images. Once they have been esta-
blished, statistical tests must be used to provide confidence of the superiority of one method over
another.

To compare algorithms, each data sample should be associated with a ground truth, which is
the desired result after processing the image. Ideally, experts in the field generate the ground truth,
which is often a manual and tedious process. In cases where discrepancy between experts may
exist, more than one ground truth may be useful to measure such discrepancy.

In some situations, an edit-based validation may be considered to create, easily and quickly,
ground truths [176]. If a method provides results of enough quality, an expert may refine them
by iteratively changing specific parts (e.g. adding or removing pixels to the ground truth) with the
help of specifically designed tools [138].

A performance measure is an indicator of the similarity of an estimation with the desired result.
It should be defined according to the final task, which is not the segmentation itself but the further
extraction of information. Considering a series of performance measures complements our study
by showing the same results from different points of view.

Statistical tools, on the other hand, answer the question of whether an algorithm is better than
another one in the sense that it provides a significantly better statistical value (e.g. the mean, the
median, etc.) of the considered performance measures. The test in which we are interested is the
Wilcoxon Signed-Rank test [189], which analyses whether the mean of two statistical populations
differs. It assumes that (i) input images are independent and randomly selected and that (ii) the
samples are paired (i.e. each observation in one population is paired to an observation in the other,
which holds in our case since the input image used is the same). We say that a method is better than
another with confidence α if and only if the appropriate statistical test provides such result with
confidence α.

3.4.2 Performance Measures for Curvilinear Object Segmentation

In the considered literature, there appear many performance metrics. Each of them penalizes
deviation from the ground truth differently, and so all of them have advantages and shortcomings.
The right metric depends on how these deviations should be taken into account. All the measures
considered, along with their aim and weaknesses, are summarized in Table 3.3.
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TABLE 3.3: Metrics used in the literature to measure the performance of a curvilinear structure segmentation algorithm.
Performance Measures

Pixel wise Centerline based
Broad description Shortcomings

Sensitivity
Completeness

Branches detected
Amount of positives that are estimated as such.

They are not affected by incorrectly estimating as
positive any negative portion.

Specificity Amount of negatives that are estimated as such.
It is not affected by incorrectly estimating as
negative any positive portion.

Precision Correctness Relevance of estimated positives.
They can be artificially improved by identifying
only the parts that represent a positive with more
probability.

Accuracy Amount of correct estimations.
Class skewness may induce an undesirable
behaviour.

F1-score Harmonic mean of Sensitivity and Precision. It is a complex and non-commutative measure.

Root Mean Square Deviation of estimated centerlines.
It does not consider unmatched estimated segments
or multiple segments matched to the same portion
of ground truth.

Pixel-Wise Measures contrast the estimation against the ground truth in a pixel-wise fashion. We
consider several widely accepted performance metrics based on the amount of True Positives and
True Negatives (correctly labelled pixels as either belonging to the object of interest or not) and
False Positives and False Negatives (wrongly classified pixels, where false positives are the ones
estimated positives but actual negatives, and vice versa). False Positives are also known as type
I errors, whereas False Negatives are known as type II errors. These measures are the sensitivity
(also known as recall), the specificity, the accuracy and the precision:

Sen =
TP

TP + FN
, Spe =

TN
TN + FP

,

Acc =
TP + TN

TP + TN + FP + FN
, Pre =

TP
TP + FP

.

Given that each measure captures a different approach of the similarity between the segmenta-
tion and the desired result, all of them present shortcomings. Thus, in addition to visual inspection,
a combination of them is required towards infering veracious conclusions. For instance, the sensiti-
vity and the specificity are not affected by type I and type II errors, respectively, whereas accuracy
is not a faithful representation when one class is much more common than the other. The Precision,
which measures the relevance of the estimated positives, can be artificially increased by relabelling
as estimated negatives those pixels lacking a strong evidence of being positives. The F1-score tries
to capture both types of errors, FP and FN. In doing so, it assigns them the same weight, which may
not be the best approach. Although it can be generalized with the Fβ-score (the weigthed harmonic

mean with wSen = β2

1+β2 , wPre = 1
1+β2 , such weights are still necessarily fixed a priori. Besides, the

F1-score changes if the estimation is exchanged with the ground truth, which contrast with the idea
of it being a measure of similarity.

Other approaches evaluate the performance based on a higher level description of the curvili-
near segmented objects, like the Centerline-Based Metrics. Sometimes the representation of structures
is vectorized—so the centerlines are explicitly included—, but they have to be computed when the
estimations or ground truths are given as pixel-wise masks. This computation, which can be im-
plemented with the fast marching algorithm [113], may distort the metric. Besides, the metric may
be further twisted when the estimation and ground truth’s centerlines are matched. The matching
process splits both networks into small segments, and assigns each segment of the segmentation to
its best counterpart on the ground truth, if there is any [188]. We understand by a correctly identi-
fied centerlines those derived from the estimation that have been matched to a centerline from the
ground truth.

The Completeness [188] is concerned with how much of the object has been identified. It is
defined as the ratio between the total length of the correctly identified centerlines, and the total
length of the centerlines of the ground truth.
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The Correctness [188] is defined as the total length of the correctly identified centerlines divided
by the total length of the centerlines of the estimation.

Another high-level measure is the Ratio of Branches Detected [113]. The ground truth is divided
into branches, each one having a different, uninterrupted centerline. A branch is considered as
detected if is matched with a correctly identified centerline larger than a predefined threshold.
Then, we can define the ratio of branches detected as the ratio between the amount of branches
detected and the total number of branches.

Finally, the Root Mean Square (RMS) [188] is a measure of the goodness of matching the estimated
centerline network to the ground truth’s network. The RMS measures the average distance between
the correctly identified centerlines and their corresponding segments in the ground truth:

RMS =

g

f

f

e

1
l

l
ÿ

i=1

d (segmi, match(segmi))
2, (3.1)

where i ranges over all matched segments, and d (segmi, match(segmi)) is the distance between the
centerline of the i-th matched segment, segmi, and the centerline of the ground truth segment with
which it has been matched, match(segmi). We remark that it ignores the estimated segments that
have not been matched with any chunk of ground truth, and it is not affected if several portions of
the segmentation are assigned to the same part of the ground truth.

The choice of the best performance measure should be based on the final goal of the segmen-
tation. For instance, extracting the tortuosity of vessels towards a computer-aided diagnosis may
require a pixel-wise metric with high accuracy, whereas updating a map from the possible location
of roads may be fitted by a centerline-based metric that admits false positives. This choice potenti-
ally affects which is the best technique to approach the problem, since as previously said the notion
of best depends on the measure with which the performance is evaluated.

3.4.3 Datasets

In this section, we present the most representative benchmarks for each application along with
different segmentation methods by different authors. Specifically, we have selected the most wi-
despread benchmarks to cover as many segmentation strategies and, potentially, the leading algo-
rithms.

They are compared with the most used metrics, which depend on the application, and their
classification. When available, the computation time required to execute each segmentation is also
provided. Unless otherwise specified, the time has been obtained using a modern computer at the
original year of publication, which is also shown.

Vessel Segmentation in Retinal Angiography

Vessel segmentation in retinal images is a popular topic that has been addressed with a wide
variety of techniques. The DRIVE dataset [162] contains 40 colour, medium-sized images of mos-
tly healthy patients, along with two manual segmentations. One of them is used to compute the
metrics, whereas the other one—the 2nd ground truth in Tab. 3.4—is used to measure the variation
between experts. Usually, the methods are compared with pixel-wise measures, which are well
suited in the case of low and medium quality images. The metrics in Tab. 3.4 have been obtained as
the average for the 20 test samples, which are the ones having a second expert segmentations. The
mask representing the Field Of View (FOV) has been applied to remove background pixels from
both the ground truth and the estimations.

Another benchmark for retinal vessel segmentation is the STARE dataset [83]. It contains 397
images, 20 of them including two manual segmentations. These images show a greater amount of
pathologies and artifacts. Since there is no mask for the Field Of View (FOV) included in the dataset,
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TABLE 3.4: Results of the retinal vessel segmentation benchmark DRIVE [162]. The best automatic method according to
the mean of each metric appears in bold. All the others methods are compared against it with the Unilateral Wilcoxon
Signed-Rank (α = 0.05). The superscripts indicate whether„ the results are not statistically better/worse, : the results are
statistically worst, or ; the results are statistically better (in the case of human-assisted segmentations). No superscript
indicates that the individual segmentations were not available.

Year Method Sensitivity Specificity Accuracy F1 Score Classification Based on Time per sample
- 2nd GT 0.7760„ 0.9725: 0.9473; 0.7881; Human segmentation - „ 3 h
2001 Zana and Klein [199] 0.6695: 0.9831 0.9431„ 0.7475: Grayscale morphology Pixels „ 3 min
2004 Staal et al. [162] 0.7194: 0.9773: 0.9442„ 0.7644: Eigenvalue of Hessian Shape „ 15 min
2006 Soares et al. [161] 0.6735: 0.9822„ 0.9426„ 0.7483: Learning model AI „ 3 min
2006 Mendonça and Campilho [125] 0.7344 0.9764 0.9452 - Grayscale morphology Shape „ 2.5 min
2007 Wang et al. [186] 0.780 0.978 - - Parameter fitting Shape „ 5 min
2009 Al-Diri et al. [58] 0.7282 0.9551 - - Active contours Edges „ 11 min
2010 Vlachos and Dermatas [183] 0.747 0.955 0.929 - Wavefront propagation Region Unknown.
2012 Fraz et al. [68] 0.7152 0.9769 0.9430 - Grayscale morphology Shape „ 100 s
2015 Azzopardi et al. [11] 0.7618 0.9716: 0.9447 0.7758 Linear Filtering Shape „ 5 s
2015 Bibiloni et al. [33] 0.7490„ 0.9674: 0.9393: 0.7568: Fuzzy morphology Region „ 35 s
2015 Roychowdhury et al. [149] 0.6820: 0.9729: 0.9355: 0.7280: Grayscale morphology Region „ 4 s

those pixels have not been removed,1 so the values of Specificity and Accuracy are optimistic when
compared to those of the DRIVE benchmark. Table 3.5 contains the average of the most relevant
metrics using the 20 images with two manual segmentations.

TABLE 3.5: Results of the retinal vessel segmentation benchmark STARE [83]. The results of the statistical tests are
reflected in the superscripts as in Table 3.4.

Year Method Sensitivity Specificity Accuracy F1 Score Classification Based on Time per sample
- 2nd GT 0.8951; 0.9562: 0.9522: 0.7401„ Human segmentation - „ 3 h
2001 Hoover et al. [83] 0.6733: 0.9692: 0.9462: 0.6506: Matched Filtering Shape „ 5 min
2006 Mendonça and Campilho [125] 0.6996 0.9730 0.9440 - Grayscale morphology Shape „ 3 min
2006 Soares et al. [161] 0.6632: 0.9811: 0.9566: 0.6982„ Learning model AI „ 3 min
2007 Salem et al. [151] 0.8215 0.9750 - - Learning model User Unknown.
2007 Wang et al. [186] 0.752 0.980 - - Parameter fitting Shape „ 5 min
2009 Al-Diri et al. [58] 0.7521 0.9681 - - Active contours Edges „ 11 min
2012 Fraz et al. [68] 0.7311 0.9680 0.9442 - Grayscale morphology Shape „ 100 s
2015 Azzopardi et al. [11] 0.8192 0.9653: 0.9544: 0.7315 Linear filtering Shape „ 5 s
2015 Bibiloni et al. [33] 0.7500: 0.9704: 0.9539: 0.7093: Fuzzy morphology Region „ 35 s
2015 Roychowdury et al. [149] 0.6761: 0.9852 0.9618 0.7264„ Grayscale morphology Region „ 4 s

Airway Extraction in CT Scans

A short number of years ago, the database EXACT [113] was collected to build a framework
upon which algorithms facing airway tree segmentation could be compared. The high quality of
the input images, which are three-dimensional representations of the chest acquired with different
multi-slice Computed Tomography (CT) scans, enables the use of high-level metrics. Some regions
are not included in the calculation of the metrics, like the regions labelled as “unknown” in the
ground truth or the trachea. The most relevant results are shown in Table 3.6.

We remark that a great number of methods employ a wavefront propagation technique possibly
because the framework only accepted segmentations with a single connected component.

Road Detection

Although lots of methods in the literature deal with road segmentation, they are barely compa-
red with each other. This is probably due to the huge variety of images that may be used: they can
be either aerial or satellite images, represent urban or rural areas, have distinct spatial resolution,
collect information from different spectral bands, etc. Mayer et al. [119] proposed a comparison with
3 aerial images and 3 satellite images, along with some measures based on centerlines: correctness,

1 Estimating the FOV a posteriori could affect the fairness of the comparison, since different methods could consider
slightly different FOV. We have preferred not to include any while remarking that the performance metrics may be
biased.
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TABLE 3.6: Results of the airway extraction benchmark EXACT’09 [113]. No statistical tests were performed since only
the average of the metrics were known.

Year Method Branches detected Completeness Correctness Classification Based on Time per sample
2009 Fetita et al. [64] 0.628 0.559 0.9804 Grayscale morphology Region „ 5 min
2009 Feuerstein et al. [65] 0.765 0.733 0.8444 Wavefront propagation Region „ 5 min
2009 Lo et al. [112] 0.598 0.540 0.9989 Learning model Region „ 90 min
2009 Lee and Reeves et al. [105] 0.324 0.281 0.9989 Wavefront propagation Region „ 30 s
2009 Born et al. [40] 0.417 0.345 0.9959 Wavefront propagation User „ 25 s
2009 Bauer et al. [23] 0.630 0.584 0.9856 Gradient vector flow Region „ 6 min
2009 Tschirren et al. [172] 0.631 0.589 0.9881 Wavefront propagation User „ 60 min
2009 Van Rikxoort et al. [179] 0.672 0.570 0.9273 Wavefront propagation Region „ 10 s
2012 Lo et al. [113] 0.843 0.788 0.9878 Combination of other methods Unknown.
2012 Wang et al. [187] 0.507 0.456 0.9765 Statistical model Shape „ 45 s
2013 Xu et al. [196] 0.517 0.445 0.9915 Grayscale morphology Region „ 20 min
2015 Bauer et al. [24] 0.711 0.716 0.9025 Graph - 10 min

completeness and RMS. The low number of images and methods makes the comparison incom-
plete. Although some methods perform acceptable well, more work is needed to infer meaningful
conclusions regarding the most suitable methodology.

3.4.4 Other Comparisons

Other comparisons are now presented to convey more information regarding the adequacy of
the studied mathematical tools towards curvilinear object segmentation. Only a few reliable bench-
marks are available in the literature. Thus, lower-quality comparisons can help to complement such
information. This includes quantitative comparisons between a few methods or with a very small
amount of samples, several implementations by the same author or even qualitative comparisons.

We remark that these results do not have the same importance than publicly available bench-
marks, and this should be reflected when deriving conclusions from them.

Wire Detection in Low-Flight Imagery

Low and high altitude rotorcrafts provide low-resolution video from which wires can potenti-
ally be detected. Tanović [169] implemented three different methods and compared them:

(W1) A parametric, edge-based procedure based on the work by Candamo and Goldgod [43]. It
employs the Canny edge detector, a parametric line fitting over the edge map and some pos-
tprocessing to increase the accuracy.

(W2) Following the same line of research, it is introduced an Edge-Based procedure that leverages
the Hough transform. It substitutes the parametric line fitting and further postprocessing by
a windowed Hough transform.

(W3) The last implementation corresponds to a modification of the Passive Obstacle Detection Sy-
stem (PODS) [152], already classified as a (0, 1)-tensor based method.

The implementation of the algorithms, used to compute the performance measures, were based
on the original publications. Besides, the dataset used corresponds to images taken with a static
rotorcraft subjected to camera movements, whereas low-altitude wire detection commonly uses a
static camera in a moving rotorcraft.

The performance measures used are based on centerlines, since they tolerate small shift and
orientation deviations, and only take into account the amount of lines detected or not, ignoring
their length. The (W3) algorithm provides a Completeness of 77%, compared to a 72-74% provided
by the other algorithms. (W2) yields the greatest Correctness (66%) in comparison with (W1) (61%)
and (W3) (55%). Besides, (W2) is the faster algorithm (1 s/sample), being (W3) the slowest (3
s/sample).
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Human Wrinkle Detection

Although age estimation from pictures has been widely studied, only a few methods explicitly
segment the wrinkles. Batool et al. presented two methods and compared them. The first method,
(H1) [20], is a method based on Marked Points Processes; whereas the second one, (H2) [19], is
based on enhancement with Gabor filters.

The metrics used for comparison are pixel-wise, allowing 3 pixels of tolerance between the
estimation and the ground truth. They do not take into account the centerlines or their orientation.
(H1) obtains a good sensitivity („ 85%), and offers good specificity („ 95´ 98%), whereas (H2)
provides an average sensitivity („ 40´ 70%) but a very high specificity („ 99.5%). (H2) is much
faster (9 s/sample instead in contrast with 65 s/sample).

3.5 Conclusions

Lastly, we discuss the results shown in previous sections and conclude with the limitations of
this survey. The discussion intends to unify the most useful information and present it so practiti-
oners can extract useful and specific insights.

3.5.1 Discussion

First, regarding the categories in Fig. 3.6, there is neither a best algorithm to face all the situati-
ons nor a best mathematical approach to do so. Deciding which methodology is best may depend on
(i) the specific model of curvilinear objects—inferred both by the application and the specific da-
tabase used—, (ii) the evaluation metric and (iii) the computational requirements that will bound
our algorithm. However, when inspectioning the results, we observe that some simple techniques
achieve very good results. Linear filtering and mathematical morphology [11, 149] are two techni-
ques with which methods can achieve good performance according to all metrics simultaneously.
Specially important are these techniques when applications require quick responses or real-time
interaction. On the other hand, more complex mathematical tools can be used to pursue better
performance when the computational cost is not a constraint [24] or when a very complete model
for curvilinear objects is explicitly introduced [165].

Second, with respect to the taxonomy in Fig. 3.7, the strategy with which the best segmentations are
performed is usually region-based. It is clear that a pixel-based strategy is inadequate under certain
circumstances, like detecting roads occluded by trees or shadows [177]. The methods based on
edges and shapes can hardly leverage the global structure of the object, although some successful
instances have been published [11]. Although region-based algorithms can be seen as the most
powerful, they tend to cause large leakages [144] and are too sensitive to small threshold variations
[179]. Several approaches have been considered to deal with these problems, such as detecting leaks
as large increments when slightly increasing a threshold (the so-called explosion control [112, 172])
or by leveraging the specific model for curvilinear structures (for instance, forcing the diameter of
branches to be non-increasing [179] or iteratively limiting the pixels in which region-growing is
executed [105], among others).

Third, a series of observations may help to select the methodology that best fits their needs.
This, which is one of the goals of this survey, is related with several independent aspects of the
design of segmentation algorithms:

Simple Mathematical Models. The use of a model with few parameters tends to avoid overfitting
[186] and can face high levels of noise. For instance, guide-wire extraction may handle discontinui-
ties by leveraging the fact that there is only one curvilinear object, which can be modelled as a 2nd
or 3rd order curve [140]. On the other hand, complex methods may largely increase the compu-
tational requirements [26] and tend to overfit the training data. Of course, the model should be
appropriate, since violations of the model lead to misbehaviour [63].
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Multiscale. Different approaches are considered to deal with curvilinear structures that have
different sizes.

Most algorithms use a multi-step approach: they consider variations of the same operators and
aggregate the results afterwards. When spatial derivatives are computed by convolving the image
with the derivative of a Gaussian shape, multiple Gaussian shapes can be used by considering dif-
ferent standard deviations [154]. Linear filters, besides being rotated several times, can be enlarged
or shrinked [11].

Other strategies to handle multiple-width objects use a single operation. The Gradient Vector
Flow [194] is an edge-preserving diffusion of the traditional gradient, specially designed to capture
concavities and to present a large capture range. It allows the detection of centerlines of curvilinear
objects regardless of their width [22]. A clustering algorithm may also be used to consider several
widths at once [151]. However, this approach implicitly assumes a certain width distribution when
defining the distance between pixels and cluster centroids.

Closely Placed Curvilinear Objects. Some types of images present tubular-shaped objects near
others along a certain path. This situation is hard to handle. For instance, the approaches that
employ multiple-scale filters tend to present, in these regions, a response dominated by the large
scale filters [84], and the algorithms that smooth the images with Gaussian functions blur such
regions [191]. The Dual-Gaussian or Bi-Gaussian function [191, 110] has been introduced as a kernel
to face this specific problem. The use of specific active contours may also be used to face this
situation [58].

User-assisted methods. Although semi-automatic methods are considered, they do not tend to
produce better results. The algorithms in which the user provides a small number of seed points
provide similar results to the fully automatic ones [40], maybe because this operation can be robus-
tly implemented. In contrast, the algorithms in which the user constantly supervises the algorithm
tend to provide really good correctness but average completeness [112, 172].

Artificial Intelligence techniques. Similarly, the results provided by machine learning techniques
are comparable but not better than the other approaches in terms of performance measures [161].
We remark, however, that their usually costly learning stage and their lack of interpretability can
be compensated with the short time needed to process new samples.

Another important aspect of algorithms, barely mentioned in this survey, is their computational
requirements. Some strategies have been considered to decrease the computational requirements
of algorithms. A few mathematical techniques have been developed with this objective in mind:
instead of considering all segments in each image, as does the original Hough transform, they
consider only a subset of them by dividing the image into grids and subgrids. Both the Beamlet
transform [59] and the quad-tree structure [186] use this approach. An alternative to diminishing
computational requirements while maintaining robustness is the use of randomized algorithms.
They can be employed for parameter fitting [82, 18] or to fit complex statistical models [165].

Finally, we highlight two limitations of this discussion. On the one hand, the performance
measures are just indicators. Segmentation is usually a single step of a larger system, and the best
segmentation methodology is the one that provides the best results in such system when embedded
into it. Given the cross-application nature of this survey, the discussion is based on performance
measures, so slight deviations can be found when implementing end-to-end systems. On the other
hand, this discussion is limited by the availability of segmentation algorithms and datasets. More
information is needed to draw definitive conclusions. Specifically, more widely accepted bench-
marks in applications such as road extraction from aerial images, and more methods employing
statistical models and other underexplored techniques. Besides, statistical tests should be conside-
red a requirement to provide fair comparisons between different segmentation algorithms.
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3.5.2 Limitations of this Survey

Some limitations have been already mentioned in Sect. 3.5.1. Specifically, the limited amount
of methods and datasets, and the suitability of performance metrics to reflect the correctness of
algorithms. Although a lot of work has been done defining and using performance measures, more
connections should be established between the final goal of the segmentation (i.e. the end-to-end
system) and how to measure the correctness of the segmentation. This step is often forgotten by
the methods that face a particular problem, but it is of paramount importance in order to use them
in real applications.

Besides, the conclusions we draw regarding how well-fitted are certain mathematical techni-
ques or certain strategies to segment objects may be inaccurate. We have compared algorithms
that employ them and, then, we have assumed that the best algorithms faithfully represent their
capacities. Although it seems coherent and is unavoidable, this assumption should be explicited.

Finally, to further improve the state of the art in curvilinear object detection, more datasets
are needed to compare algorithms designed for some application. Examples of such applications
are road detection, guide-wire tracking or pavement assessment. The latter has been addressed and
some datasets are publicly available [203], but they are still not popular enough to compare different
approaches. Of course, the publication of more segmentation algorithms would also complete the
cross-application state of the art of curvilinear object segmentation.
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Chapter 4

Curvilinear Object Detection with Fuzzy
Mathematical Morphology

As discussed in Sect. 3.1, curvilinear object detection is the common denominator of many ap-
plications. Some illustrative examples are road detection from aerial or satellite images, human
airways from volumetric 3D scans or vascular structures in eye-fundus images. In this chapter,
we propose two general-purpose curvilinear object detectors that may serve as building blocks
for application-specific systems. To do so, we employ the fuzzy mathematical morphology ope-
rators, defined in Sect. 2.4, due to their robustness with respect to uncertainty and noise, and the
trade-off they offer between expressive power and computational requirements. The extraction of
curvilinear features is based on, respectively, the fuzzy hit-or-miss transform and the fuzzy top-hat
transform. To demonstrate their potential to extract curvilinear objects, the will be employed in
Chapter 5 to detect the curvilinear objects that vessels represent in retinal images.

Sect. 4.1 introduces the problem and the current state of the art of general-purpose curvilinear
object detectors. Then, we introduce our general-purpose algorithms in Sect. 4.2 and 4.3. In Sect. 4.4,
we compare these two algorithms with the best alternatives from the related literature. Our aim
is to highlight the characteristic of each of the algorithms to ease the problem of choosing the one
that best fits into each specific application. We conclude discussing such strengths, weaknesses and
limitations of our two algorithms in Sect. 4.5.

4.1 Introduction

Curvilinear structures are shapes found in a great variety of images. Instances of them include
hair in dermoscopic imagery, cracks in pavement and bronchi in volumetric computed tomography
scans. An application-grounded, general definition of curvilinear structures has already been pro-
vided in Sect. 3.2, where they are described as a thin and long region of connected pixels, whose
width and intensity levels vary smoothly and whose cross-section profile presents pixels with sig-
nificantly different intensities than the ones surrounding the curvilinear object. Curvilinear objects
are not contours (i.e. the limits between two regions), but tubular-shaped objects located in the
foreground of a uniform or non-uniform region.

General-purpose curvilinear object detectors have an important role to play. A great number
of works have been dedicated to just one specific application. See, for instance, the review by
Fraz et al. [69] of retinal vessel segmentation methods, or the survey by Lesage et al. [108] of 3D
vessel lumen extraction algorithms [113]. Other examples where extensive work has been done
include road pavement assessment through crack detection [46], road extraction algorithms [124],
palmprint line enhancement [97] or fingerprint classification [197]. These categories represent a vast
amount of algorithms that, essentially, pursue a similar goal. In spite of the amount of works that
segment curvilinear objects, few of them consider generic curvilinear objects or different situations
where they can be found. Instead of being used across different applications, the same techniques
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are rediscovered and fine-grained by researchers facing similar situations [32]. General-purpose
curvilinear object detectors can be of great help by providing efficient segmentations at the cost of
undemanding customizations.

Krylov and Nelson [99] introduced a generic curvilinear object extraction algorithm. They di-
vide the image into an overlapping grid of square regions and use the finite Radon transform to
find segments in them. Afterwards, a pixel-wise energy term is computed and weak, isolated can-
didates are removed by thresholding such energy indicator. This is done taking into account the
segmented regions themselves, by means of a template matching procedure; and how they are re-
lated, with the orientation they present and the distance between them. Their output is, due to
the nature of the Radon transform, a set of segments described by their position, orientation and
strength.

Bai et al. [14] presented a general-purpose curvilinear structure segmentation algorithm. It is
based on the grayscale hit-or-miss transform, which uses flat structuring elements. They employ a
bar-like structuring element at different scales and different orientations, obtaining several masks.
These masks are aggregated into a single binary result, in which a pixel is selected provided that it
had a positive value in any of the masks. Therefore, this method basically provides a binary result,
which is then postprocessed to capture the skeleton of the curvilinear structures.

Heijmans et al. [81] introduced path openings and closings. They are morphological operators
that are especially designed to detect curvilinear structures of at least L pixels connected according
to a directional adjacency matrix (that is, restricting the possible connected pixels to the upper and
right pixels in their 8-neighbourhood). They have been adapted to detect incomplete paths and
to be used in high-dimensional settings [53, 168]. Path openings and closings have been used to
detect vessels in retinal images [160] and to detect roads and rivers from satellite imagery [94, 177].
Merveille et al. [128] used path operators to design an operator called Ranking the Orientation Re-
sponses of Path Operators (RORPO). This new operator was developed to distinguish curvilinear
objects from blob-like and planar structures in 3D imagery, leveraging the fact that curvilinear ob-
jects output high values at a specific orientation (considered by the directional adjacency matrices).
Recently, a version of the RORPO algorithm for 2D imagery was proposed in [127].

The goal of this chapter is to present, study and compare two simple yet powerful general-
purpose curvilinear detectors. These operators, introduced in Sect. 4.2 and 4.3, output a grayscale
image that represents the pixels’ degree of belonging to a curvilinear object. They are designed to
be easily embedded into bigger systems but, at the same time, to be adaptable to a wide range of
specific situations. We aim at bridging the gap between different applications sharing the common
denominator of curvilinear object extraction or segmentation. As it is demonstrated in Sect. 4.4, the
two proposed curvilinear detectors are able to locate black and white curvilinear objects of varying
width while ignoring noise and blob-shaped structures. These detectors are able to differentiate
curvilinear structures based on their strength, and succeed at extracting thin curvilinear objects,
detecting bifurcations and crossovers and suppressing noise.

4.2 Curvilinear Object Detector based on the Fuzzy Hit-or-Miss

The first detector we present, inspired on the work by Bai et al., is based on the fuzzy hit-or-
miss operator. As explained in Sect. 2.4, the fuzzy hit-or-miss operator enforces the appearance of
a predefined shape and the absence of another predefined shape. Such shapes are (i) a bar-shaped,
with a certain width and orientation, and with a Gaussian cross-section profile to fit curvilinear
objects with gradual borders; and (ii) the complementary of (i). Due to its nature, besides processing
grayscale images, it outputs a grayscale image as a pixel-wise indicator of the pixel’s degree of
belonging to a curvilinear object. This soft response reduces the amount of noise introduced by the
algorithm and it is suitable for further postprocessing in order to tailor the result to each specific
application.
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This detector employs several structuring elements. Each of them has the same shape, a line-
like profile with a Gaussian decayment, and differ in terms of their size and their orientation. This
choice is made based on the behaviour of the hit-or-miss: similarly to [14], the hit-or-miss operator
is adequate to extract curvilinear objects in a given direction. Besides, the Gaussian decayment
profile, is based on the hypothesis that curvilinear objects have, approximately, a Gaussian cross-
section profile, a valid assumption in several applications, as shown in Table 3.2.

More formally, we consider pairs of structuring elements for a range of sizes s1, . . . , sn and orien-
tations α1, . . . , αm. For all i such that 1 ď i ď n, si indicates the side, in pixels, of the square-shaped
structuring element; and for all j such that 1 ď j ď m, αj measures, in degrees, the angle between
the horizontal and the centerline of the line. Each structuring element is mathematically described
as follows. Let us consider a line that crosses the point (0, 0) with orientation α. Then, the distance
of any point of the plane (x, y) to such line is dα(x, y) = tg(α)¨x´y?

tg(α)2+1
. To provide a Gaussian-like

decayment to a bar with orientation α, we consider our structuring elements of size s as:

B(s,α)
1 :t1, 2, . . . , su2ÝÑ[0, 1], B(s,α)

2 = 1´ B(s,α)
1 ,

(x, y) ÞÝÑe´
(

dα(x,y)
2σ

)2

,

where the variance has been manually adjusted to σ = s/7 so that the bar-like template properly
fills the structuring element’s area. Examples of such shapes can be seen in Fig. 4.1.

A B C D

FIGURE 4.1: Pairs of structuring elements for the hit-or-miss transform. (A) and (B) s1 = 5 and α1 = 30˝. (C) and
(D) s2 = 13 and α2 = 120˝.

We remark that the structuring element B(s,α)
1 is normalized (i.e. a linear re-mapping is applied

so that its minimum is 0 and its maximum is 1). This slightly changes its values but, as shown
below in Fig. 4.6, represents a great advantage since it helps to ensure that the fuzzy hit-or-miss
operators outputs zeros in flat regions, which is shown in Proposition 4.1.

Proposition 4.1. — Let C be a fuzzy conjunction, let I be a fuzzy implication function, let N be a strong
fuzzy negation and let A, B1, B2, be grayscale images. Let us assume that (i) A is constant in a neighbourhood
of x0, given by Tx0(dB1 Y dB2), (ii) B1 and B2 have, each, at least one pixel valued 1, (iii) I fulfills (NP), and
(iv) C and N fulfill (NC).

Then, it holds that FHMC,I,N(A, B1, B2)(x0) = 0.

Proof. In flat areas, we can assume that A is constant in a local neighbourhood. In particular, by
hypothesis we have that A(x0 + δ) = k P [0, 1] for any δ P dB1 Y dB2 . By definition, we have

EI(A, B1)(x0) = inf
xPdAXTx0 (dB1 )

I
(

B1(x´ x0), A(x)
)
= inf

xPT´x0 (dA)XdB1

I
(

B1(x), A(x + x0)
)

= inf
xPT´x0 (dA)XdB1

I
(

B1(x), k
)
.
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Since I is decreasing in the first variable and B1(x1) = 1 in some location x1, EI(A, B1) = I(1, k) = k,
where the last equality holds since I fulfills the (NP) property. Similarly, EI(N(A), B2) = N(k) and
FHMC,I,N(A, B1, B2) = C(k, N(k)) = 0 due to the (NC) principle (see Prop. 2.14).

Although the hypotheses are quite technical, a variety of common fuzzy operators fulfill them,
as can be seen in Tab. 2.1 (page 11).

The workflow of the curvilinear object detector based on the fuzzy hit-or-miss transform is il-
lustrated in Fig. 4.2. In order to cope with the differences in size and orientation of curvilinear
structures, several fuzzy hit-or-miss operators are computed. They are then aggregated into a sin-
gle output that estimates, for each pixel, its degree of belonging to a curvilinear object. Since the
detector is designed to extract light curvilinear objects, images that contain dark curvilinear objects
are inverted (i.e. A1(x, y) = 1´ A(x, y)) before being processed with the detector.

FIGURE 4.2: Workflow of the hit-or-miss curvilinear object detector applied at scales
ts1, . . . , snu and orientations tα1, . . . , αmu. We remark that FHM(A, si, αj) represents, in short,

FHMC,I,N(A, B
(si ,αj)
1 , B

(si ,αj)
2 ), where C, I, N should be specified, B

(si ,αj)
1 is a si ˆ si-pixel structu-

ring element with a bar-like shape at the orientation αj, and B
(si ,αj)
2 = 1´ B

(si ,αj)
1 (see Fig. 4.1).

The curvilinear detector based on the fuzzy hit-or-miss operator is formally specified as follows.
Let Agg1, Agg2 be two aggregation functions from [0, 1]r to [0, 1], for an arbitrary dimension r.
Let C, I, N be, respectively, a fuzzy conjunction, a fuzzy implication function and a strong fuzzy
negation. Let A be a grayscale image. Then, the curvilinear object detector based on the fuzzy hit-or-
miss operator, D1, is defined as:

D1(A) = Agg2
sPts1,...,snu

!

Agg1
αPtα1,...,αmu

 

FHMC,I,N(A, B(s,α)
1 , B(s,α)

2 )
(

)

. (4.1)
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where s1, . . . , sn and α1, . . . , αm denote the sizes and orientations of the structuring elements B(s,α)
1

and B(s,α)
2 , which are specified as before. We remark that Agg1 and Agg2 strongly influence the

behaviour of the detector, and their effects are discussed below, along with a visual representation
in Figure 4.5.

Unless otherwise stated, the parameters used when instantiating this detector are as follows.
The hit-or-miss operator is computed along 6 orientations (i.e. αk = 180˝

6 k for k = 1, . . . , 6), with
structuring elements of sizes 5ˆ5, 9ˆ9 and 13ˆ13, the Łukasiewicz t-norm TL as the conjunction
C, the Łukasiewicz implication IL as the implication I, the standard negation as N and the proba-
bilistic sum SP as both aggregation functions, Agg1 and Agg2. In the rest of the section we study
its behaviour with respect to these parameters. This analysis (i) motivates the election of the afo-
rementioned parameters and (ii) shows the practitioner the range of behaviours that this detector
can offer.

Different parameters can be customized. First, the sizes s1, . . . , sn determine the thickness of the
curvilinear objects of interest. The aggregation across scales ensures that we capture curvilinear
objects whose width is within a certain range. In Fig. 4.3, the method is executed with different size
ranges. As we can observe, the width of the detected curvilinear objects corrrespond to the size of
the structuring elements being used in each case. Moreover, the shape of the structuring elements
could be modified to enhance other cross-section profiles different than the Gaussian one.

A B C

D E

FIGURE 4.3: Fuzzy hit-or-miss curvilinear object detector employing structuring elements with different size. (A)
Vessels in a 104ˆ262-pixel image, processed with t3, 5u in (B); t5, 9u in (C); t9, 13u in (D); and t3, 5, 9, 13u in (E). The
rest of parameters remain unchanged: structuring elements at 6 orientations, C = TL, I = IL and Agg1 = Agg2 =
SP.

Second, the number of orientations is also customizable, which may be useful to obtain finer-
grained results at the cost of higher computational requirements. This is shown in Fig. 4.4, in
which structuring elements with more orientations provide more curvilinear objects in this finger-
print image, that includes curved ridges forming a circular shape. For m different orientations, we
compute structuring elements as αk =

180˝

m k for k = 1, . . . , m.
Third, an interesting parameter to customize is the aggregation across different scales and orien-

tations. We think of Agg1 and Agg2 as functions with a disjunctive-like behaviour, since we want
to add the results along several orientations and sizes. Among other possibilities, we employed
the maximum SM, the probabilistic sum SP and the Łukasiewicz t-conorm SL. We also used the
arithmetic mean in order to support the claim that Agg1 and Agg2 must have a disjunctive-like
behaviour. We remark that the arithmetic mean presents an averaging-like behaviour, whereas
the other operators are t-conorms. Besides, since t-conorms are associative, they can be extended
to aggregate n variables in a straightforward manner. From an intuitive point of view, one very
high output (both across orientations and scales) seems more important than several medium-level
outputs in order to detect a curvilinear object, since a strongly pronounced curvilinear object in a
specific direction should be favoured over averagely pronounced objects in several directions. In
our experiments, however, we found that the best results were obtained by aggregations with an
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A B C

D E

FIGURE 4.4: Different results of the detector for the 374ˆ388-pixel fingerprint image (A), with 2 orientations (B),
4 orientations (C), 6 orientations (D) and 8 orientations (E). The rest of parameters remain unchanged: structuring
elements of sizes s P t5, 9, 13u, C = TL, I = IL and Agg1 = Agg2 = SP.

additive behaviour (e.g. the probabilistic sum or the Łukasiewicz t-conorm). This is explained by
the limited resolution in both orientations and scales. For instance, since only a number of orienta-
tions can be tested, any curvilinear object may be partially captured by more than one orientation,
and thus a maximum operator would underestimate its real impact. As can be seen in Fig. 4.5, we
found that such additive behaviours led to an increased contrast of small curvilinear objects in the
final estimation. We decided to set the probabilistic sum as default. It provides good visual results
and is preferrable to the Łukasiewicz t-conorm due to its lower saturation when the number of
values to aggregate increases.

Lastly, the fuzzy operators C, I, N used are of paramount importance, since they control the
ultimate behaviour of the algorithm. This affects the degree with which the structuring element is
required to fit into the image, and the degree with which a brighter or darker background affects the
final estimation. In this work, we leverage Proposition 4.1 to avoid capturing flat regions or areas
with low-level noise and, thus, enhance even more the curvilinear structures. The hypotheses that
such proposition requires are fulfilled when processing (i) a flat region with (ii) B1 reaching both 0
and 1, (iii) using, for instance, the Łukasiewicz implication IL and (iv) employing the Łukasiewicz
t-norm TL. We remark that, when employing the Łukasiewicz implication IL, the fuzzy erosion
becomes a shifted version of the grayscale erosion based on the umbra approach truncated in [0, 1].
Thus, it would be possible to design the same hit-or-miss operator using other techniques. Howe-
ver, we keep using the fuzzy erosion due to its interpretability (e.g. to measure how much the image
contains the structuring element). Whenever any of these conditions is not fulfilled, the background
leaves a residual value that partly masks the location of curvilinear objects. For a depiction of this
effect, see Fig. 4.6.
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A B C

D E

FIGURE 4.5: Aggregation of fuzzy hit-or-miss with different aggregation functions. 480ˆ640-pixel image of tissue
exhibiting angiogenesis (A). For both Agg1 and Agg2, we employed the mean (B), the maximum (C), the probabi-
listic sum (D) and the Łukasiewicz t-conorm (E). The rest of parameters remain unchanged: structuring elements
of sizes s P t5, 9, 13u and 6 orientations, C = TL and I = IL.

A B1 B2

C1 C2

FIGURE 4.6: Fuzzy hit-or-miss curvilinear object detector with different structuring elements. Rings in a 132ˆ280-
pixel image of a wood plank (A), with normalized structuring elements, (B); and non-normalized ones, (C); em-
ploying the minimum t-norm, (1); and the Łukasiewicz t-norm (2). The aggregation function used is the maximum
to improve the visualization of this effect. The rest of parameters remain unchanged: structuring elements of sizes
s P t5, 9, 13u and 6 orientations, I = IL and Agg1 = Agg2 = SM.

We emphasize again that this method only detects bright curvilinear objects. In our experi-
ments, we applied the detector to the inverted grayscale image (i.e. A1(x, y) = 1´ A(x, y)) whe-
never we aimed at dark curvilinear objects. We also observe that this method was inspired by Bai
et al.’s work [14]. In contrast with it, we employed grayscale structuring elements and non-crisp
operators to produce a grayscale output instead of a binary one. A comparison between them is
found in Sect. 4.4.
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4.3 Curvilinear Object Detector based on the Fuzzy Black Top-Hat

The second curvilinear object detector we introduce is based on another fuzzy morphological
operator, the fuzzy black top-hat operator. As already commented in Sect. 2.4, such operator en-
hances the regions that can not be recovered by an erosion after a dilation. Since dark curvilinear
objects are relatively thin, they tend to completely disappear after a dilation. The erosion can not
recover such regions and, therefore, the fuzzy black top-hat operator captures them.

In contrast with the detector based on the fuzzy hit-or-miss operator, this operator extracts cur-
vilinear objects regardless of their orientation. Besides, there is no need to employ a multiscale
approach. One single fuzzy black top-hat operator, when using a circular-shaped structuring ele-
ment of size sˆs, enhances all objects thinner or equal than (s´ 1)ˆ(s´ 1). Such a rounded shape is
appropriate due to the behaviour of the top-hat operator: it extracts the regions that are completely
erased with a fuzzy morphological dilation, and so we erase them isotropically. Thus, to select all
curvilinear objects within a certain width range, s1 ď w ă s2 we need only two fuzzy black top-hat
operations, as depicted in Fig. 4.7. Since the detector is designed to extract dark curvilinear objects,
images that contain light curvilinear objects are inverted (i.e. A1(x, y) = 1´ A(x, y)) before being
processed with the detector D2(A).

FIGURE 4.7: Workflow of the top-hat curvilinear object detector for curvilinear objects of width
s1 ď w ă s2, where the subtraction step never outputs negative values, but a zero value instead.
We remark that BT H(A, si) represents, in short, BT HC,I(A, B(si)), where C, I should be speci-
fied and B(si) is a si ˆ si-pixel, Gaussian-shaped structuring element.

This detector also uses structuring elements as templates for the structures it aims to capture. In
this case, two structuring elements as the ones shown in Fig. 4.8 are needed to segment curvilinear
objects within a range.

A B C D

FIGURE 4.8: Structuring elements for the fuzzy black top-hat curvilinear detector, with size 3ˆ3 (A), 5ˆ5 (B),
13ˆ13 (C) and a 3D view of its Gaussian decay of the 13ˆ13 (D).

The curvilinear detector based on the fuzzy black top-hat operator is now formally specified.
Let C and I be, respectively, a fuzzy conjunction, and a fuzzy implication function. Let A be a
grayscale image. Then, the curvilinear object detector based on the fuzzy black top-hat operator, D2, is
defined as:

D2(A) = max(BT HC,I(A, B(s2))´ BT HC,I(A, B(s1)), 0) (4.2)
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where s1, s2 P R denote the length in pixels of the side of the structuring element; B(s) is a rounded
sˆs-pixel structuring element with a Gaussian decay, having σ = s/4 and a maximum value of 1.
The Gaussian decayment profile, similarly to the fuzzy hit-or-miss method, is based on the hypot-
hesis that curvilinear objects have, approximately, a Gaussian cross-section profile (see Table 3.2,
page 22). We remark that such value for the standard deviation has been manually chosen so that
the bell curve shape covers the entire structuring element, as can be observed in Fig. 4.8. We also
observe that negative values are set to zero. This is uncommon and does not affect regions that
appear as curvilinear objects, but the monotonicity of the fuzzy top-hat operators is not guaranteed
with respect to the used structuring element.

This detector can also be customized, both in terms of the fuzzy operators employed and on the
sizes s1 and s2 of the structuring elements. Firstly, from the myriad of fuzzy operators that can be
defined, we focus on the minimum t-norm TM, the product t-norm TP and the Łukasiewicz t-norm
TL due to their extensive use and the properties they fulfill (see Table 2.1, page 11). As we observe
in Fig. 4.9, the minimum t-norm is associated with stronger responses, yielding the Łukasiewicz
t-norm the weakest ones. In all the experiments, we use the R-implication of the corresponding
t-norm as the fuzzy implication function in order to guarantee that they do not yield negative
values. Although the method is robust with respect to the fuzzy operators used, the product t-
norm appears to be the one that provides the best contrast between the curvilinear objects and the
rest of the image.

A B C D

FIGURE 4.9: 50ˆ50-pixel image depicting axons (A), and the fuzzy black top-hat curvilinear detector, using the
minimum t-norm (B), the product t-norm (C) and the Łukasiewicz t-norm (D). The structuring elements remain
unchanged, having sizes s1 = 3, s2 = 13.

Secondly, the size of the structuring elements can be customized to detect exactly the desired
objects, since it captures curvilinear structures whose width w fulfills s1 ď w ă s2. Therefore, a
single computation detects a whole range of curvilinear objects. As can be observed in Fig. 4.10,
the objects detected with different structuring elements vary according to their size.

A B C D

FIGURE 4.10: 350ˆ550-pixel image of cracks in pavement (A), and the fuzzy black top-hat curvilinear detector,
using (s1, s2) = (1, 5) in (B), (s1, s2) = (5, 9) in (C) and (s1, s2) = (9, 13) in (D). The rest of parameters remain
unchanged: C = TP and I = IGG.

Unless remarked, the parameters used are the following ones: the conjunction C is the pro-
duct t-norm TP, the implication I is its residual implication, the Goguen implication IGG, and the
structuring elements have size 3ˆ3 and 13ˆ13.
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In this work, we use fuzzy mathematical morphology, but other grayscale morphologies have
been developed. One of them is based on the umbra approach [164]. In it, conjunctions and impli-
cations do not appear, and are replaced by the addition and subtraction of two numbers. Although
they do not provide results in the interval [0, 1], we can compute a top-hat operator from them. In
Fig. 4.11 we depict a comparison between the two approaches to study their differences. As we
can observe, their behaviour is quite similar. The fuzzy black top-hat enhances better the objects
whose gray levels are closer to those of its background (e.g. the spirulina found on the upper right
corner), and it detects better objects within a wider range of widths. On the other hand, it seems to
introduce slightly more noise.

A1 A2 A3

B1 B2 B3

FIGURE 4.11: (1) Original and curvilinear object detectors based on (2) the fuzzy black top-hat and on (3) the
umbra-approach top-hat of a detail of (A) spirulina algae through microscope and vessels in (B) a chicken chori-
oallantoic membrane. Both top-hat transforms use structuring elements of sizes s1 = 3, s2 = 13, and the fuzzy
top-hat transform also employs C = TP and I = IGG.

Lastly, this method presents two shortcomings that must be acknowledged. First, similarly to
the detector presented in Sect. 4.2, it only detects objects that are darker than their surroundings. If
the objects of interest are brighter than their background, the detector could employ the fuzzy white
top-hat operationWT H from Def. 2.24 (page 13), or we must invert the image before processing
it with the detector. However, to detect both dark and bright objects, we must process the image
twice, doubling the amount of resources needed. Second, this detector enhances thin objects, but
does not distinguish between elongated objects and isolated ones. Although this does not pose a
problem in the majority of situations, the output could be affected whenever very high levels of
noise create shapes larger than the first structuring element.

4.4 Comparison of General-Purpose Curvilinear Object Detectors

In the following, we compare the performance of the two algorithms presented in Sects. 4.2
and 4.3 with other state-of-the-art algorithms. Specifically, we employ four images to provide a
visual comparison. Additionally, a quantitative comparison between these algorithms is found in
Section 5.2. In it, the methods are employed to segment vessels from the retinal images of the
DRIVE dataset [162].
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4.4.1 Methodology

In this section we provide visual comparisons of general-purpose curvilinear detectors. We
do not include quantitative performance measures since we are not aiming at solving a specific
problem: we are comparing generic curvilinear detectors that may be used in different situations,
exhibiting thus a different behaviour. Since we are dealing with methods that can be customized
to specific situations, it would be unfair to compare them as long as they are not adapted to the
needs of each specific application. Instead, we rely on the visual comparison of the results when
processing images with different features to let the practitioner choose the approach that best fits
their needs.

We compare the two fuzzy morphological detectors presented in the paper, the curvilinear de-
tector by Bai et al. [14], the grayscale hit-or-miss method by Barat [16], the curvilinear detector by
Krylov and Nelson [99], the path openings operator [168] and the RORPO algorithm [128]. These
last two methods are computed with the source code provided by their authors, whereas the others
have been implemented in MATLAB R© following the steps described in the corresponding article.
In addition, a ground truth has also been manually delineated to provide a binary segmentation.
We remark the singularity of this task: edge detectors are not appropriate since we are not concer-
ned with the limits between two objects, but with a tubular-shaped, elongated object located on a
uniform or non-uniform background.

We remark that different methods provide results in different formats. Our morphological de-
tectors provide a grayscale output that can be interpreted as the degree of belonging of each specific
pixel to a curvilinear object. The method by Bai et al., based on the morphological skeleton, provides
a binary mask of the centerlines of the curvilinear objects found [14]. Krylov and Nelson’s method,
on the other hand, extracts line segments and represents them in terms of their position, orienta-
tion and strength due, again, to its nature, which relies on the Radon transform. The path openings
method, originally introduced by Heijmans et al. [81], provides a transformed image where the
curvilinear objects have been enhanced. For computing path openings we used the algorithm pro-
posed by Talbot and Appleton in [168]. The RORPO operator by Merveille et al. [128, 127] is based
on path openings and outputs a similar image, where structures with one clear direction are favou-
red. Since path openings and RORPO are designed to extract white curvilinear objects, we inverted
the image (i.e. A1(x) = 1´ A(x)) when the curvilinear objects to be detected were darker than their
background.

In addition to these published methods, we also compare our methods with a grayscale hit-
or-miss operator. Such a grayscale hit-or-miss operator, proposed by Barat [16], is an example of
grayscale hit-or-miss based on the umbra approach [164]. It has been used to implement a curvili-
near detector as in Sect. 4.2, in order to compare the fuzzy and grayscale version of the hit-or-miss.
We emphasize that a comparison with a grayscale operation is reflected in Fig. 4.11.

The methods are computed with the following parameters. Path openings are computed with
L = 60, K = 2; the RORPO operator with Lmin = 20, a single scale, and robustness parameter R = 1;
the fuzzy hit-or-miss curvilinear object detector is executed along 6 orientations (i.e. αk = k ¨ 30˝ for
k = 1, . . . , 6), with structuring elements of size s1 = 5, s2 = 9, s3 = 13, the Łukasiewicz t-norm
TL, the Łukasiewicz implication IL, the standard negation and the probabilistic sum SP as both
aggregation functions; lastly, the fuzzy black top-hat results correspond to the product t-norm TP,
its residual implication IGG and structuring elements of size s1 = 3, s2 = 13. Besides, the Contrast
Limited Adaptive Histogram Equalization (CLAHE) algorithm is used as a preprocessing step in
all images (see 2.5.2, page 14). It is an contrast enhancement technique that re-maps the grayscale
values of an image so that they are more equidistributed, providing good results in a variety of
settings, and in particular in medical imagery, for which it was originally designed. The CLAHE
has been applied with a clip limit of 0.01 and an 8ˆ8 subgrid to provide the adaptive behaviour.
No postprocessing step is applied in order to better visualize the behaviour of the detectors.
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4.4.2 Visual Results

The first comparison image, Fig. 4.12, is a clear fingerprint with a resolution of 349ˆ545 pixels.
Being the easiest image in this comparison, all methods except for Krylov and Nelson’s perform
reasonably well. Given the nature of the task (i.e. detecting the frequency or structure of ridges,
among others [197]), the best methods seem to be Bai et al.’s one and the fuzzy hit-or-miss based
method. Although the fuzzy black top-hat detector and the RORPO operator provide similar out-
puts, the latter one favours much more the curvilinear shapes (see, for instance, the blocking effect
due to the JPG compression). The grayscale hit-or-miss by Barat [16] provides low-contrast curvili-
near objects, besides detecting the borders rather than the curvilinear objects themselves. The path
opening of the original image results in an enhanced version: it lefts the image almost unaltered.
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FIGURE 4.12: Detail of a fingerprint (50ˆ50 pixels). Path openings are computed with L = 60, K = 2; the RORPO
operator with Lmin = 20, a single scale, and robustness parameter R = 1; the hit-or-miss methods employ structu-
ring elements of sizes s P t5, 9, 13u and 6 orientations, and the fuzzy one C = TL, I = IL and Agg1 = Agg2 = SP;
lastly, the fuzzy black top-hat method employs structuring elements of sizes s1 = 3, s2 = 13, C = TP and I = IGG.
(B) Detail of original image. (C) Ground Truth. (D) Bai et al. [14] (90.84 s). (E) Krylov and Nelson [99] (38.43 s).
(F) Grayscale hit-or-miss [16] (47.48 s). (G) Path Openings [168] (4.17 s). (H) RORPO [127] (57.64 s). (I) Fuzzy
hit-or-miss method (52.12 s). (J) Fuzzy black top-hat method (13.46 s).

Fig. 4.13 is a 339ˆ446-pixel medical image of a common carotid artery obtained with B-mode
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ultrasounds. A piece of valuable subjacent information in these images is the thickness of the
intima-media (i.e. the inner layer of the artery’s wall) [114]. To tackle this problem, the fuzzy black
top-hat based method seems adaptable enough to detect the walls of the artery and to measure its
maximum width. The RORPO operator successfully detects strong curvilinear objects, but does not
detect small curvilinear structures near strong ones. On the other hand, Bai et al.’s algorithm falls
short to identify either the thickness of the wall or to clearly differentiate the wall from the noisy
background, as does Krylov and Nelson’s algorithm. Lastly, the grayscale hit-or-miss by Barat and
the fuzzy hit-or-miss algorithm correctly detect the outer wall, but fall short to identify the inner
wall of the artery. Similarly to the previous case, the path opening transform slightly softens the
image but preserves its texture.
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FIGURE 4.13: Common carotid artery in a B-mode ultrasound image (339ˆ446 pixels). Path openings are compu-
ted with L = 60, K = 2; the RORPO operator with Lmin = 20, a single scale, and robustness parameter R = 1;
the hit-or-miss methods employ structuring elements of sizes s P t5, 9, 13u and 6 orientations, and the fuzzy one
C = TL, I = IL and Agg1 = Agg2 = SP; lastly, the fuzzy black top-hat method employs structuring elements of
sizes s1 = 3, s2 = 13, C = TP and I = IGG. (A) Original image. (B) Ground Truth. (C) Bai et al. [14] (71.84 s s).
(D) Krylov and Nelson [99] (59.77 s). (E) Grayscale hit-or-miss [16] (50.18 s). (F) Path Openings [168] (2.75 s). (G)
RORPO [127] (45.38 s). (H) Fuzzy hit-or-miss method (38.44 s). (I) Fuzzy black top-hat method (10.62 s).

The next sample is a 371ˆ446-pixel detail of a grayscale picture containing human wrinkles.
Human wrinkles detection has been applied to estimate the age of people or as a form of soft
biometric identification [175, 54]. As far as our experiments go, the method whose visual inspection
is better is the fuzzy hit-or-miss one, as can be observed in Fig. 4.14. We remark that the method by
Bai et al. falls short when processing flat but dark areas, since the estimation in such areas do not
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correspond to any curvilinear structures but to random noise. On the other hand, the grayscale hit-
or-miss operator by Barat [16] seems to reflect the texture of the image rather than the curvilinear
objects present in it. The fuzzy black top-hat based method presents a better contrast than the
method by Bai et al. between the actual wrinkles and the noise in the top-right region, but it is lower
than in the case of the fuzzy hit-or-miss method. The RORPO operator recovers wider regions,
accounting for the total width of the wrinkles. It also detects some regions that contain noise, but
outputs lower values than in the case of wrinkles. Again, Krylov and Nelson’s method completely
misses the extraction of curvilinear structures according to the goal of the task, which in this case
is detecting the wrinkles. In this case, the path openings detector shows the opening of the inverse
image, since we aim at detecting dark curvilinear objects. A lot of texture is preserved, and non-
uniform illumination is responsible of the very large outputs in flat regions.
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FIGURE 4.14: Wrinkles in a grayscale image of a human face, with an eye facing left (371ˆ446 pixels). Path
openings are computed with L = 60, K = 2; the RORPO operator with Lmin = 20, a single scale, and robustness
parameter R = 1; the hit-or-miss methods employ structuring elements of sizes s P t5, 9, 13u and 6 orientations,
and the fuzzy one C = TL, I = IL and Agg1 = Agg2 = SP; lastly, the fuzzy black top-hat method employs
structuring elements of sizes s1 = 3, s2 = 13, C = TP and I = IGG. (A) Original image. (B) Ground Truth. (C) Bai
et al. [14] (79.62 s). (D) Krylov and Nelson [99] (37.48 s). (E) Grayscale hit-or-miss [16] (51.37 s). (F) Path Openings
[168] (2.95 s). (G) RORPO [127] (42.03 s). (H) Fuzzy hit-or-miss method (41.18 s). (I) Fuzzy black top-hat method
(10.55 s).

Finally, the last application of curvilinear object detection with which we compare the algo-
rithms is wire detection in low-altitude flight imagery. These images must be quickly processed
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to detect high-voltage power lines that can pose a serious problem to aircrafts [152]. Despite their
almost straight appearance, their low diameter makes wires potentially hard to detect, especially
when projected on an irregular background. The fuzzy black top-hat method and the one by Bai et
al. provide acceptable results, being the first one the only method capable of retaining information
about the geometry of the objects from the original image. The grayscale hit-or-miss also provi-
des good results, although each curvilinear object has been detected twice. In any case, both of
them would require strong post-processing steps. The RORPO operator detects regions that are
too wide, but also provides a strong output in the wires, and is not affected by the scattered noise
that affects the fuzzy black top-hat method. While the fuzzy hit-or-miss method provides a weak
output, Krylov and Nelson’s method fails at capturing the segments of interest, which are too thin
for them to be highlighted. In this last visual example, we can observe how path openings do not
distinguish curvilinear objects from large uniform areas, such as the inner squares corresponding
to the balconies.
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FIGURE 4.15: Power wires in urban environment (240ˆ360 pixels). Path openings are computed with L = 60,
K = 2; the RORPO operator with Lmin = 20, a single scale, and robustness parameter R = 1; the hit-or-miss
methods employ structuring elements of sizes s P t5, 9, 13u and 6 orientations, and the fuzzy one C = TL, I = IL
and Agg1 = Agg2 = SP; lastly, the fuzzy black top-hat method employs structuring elements of sizes s1 = 3, s2 =
13, C = TP and I = IGG. (A) Original image (B) Ground Truth (C) Bai et al. [14] (41.18 s) (D) Krylov and Nelson
[99] (30.76 s) (E) Grayscale hit-or-miss [16] (29.08 s) (F) Path Openings [168] (1.42 s) (G) RORPO [127] (14.02 s) (H)
Fuzzy hit-or-miss method (22.21 s) (I) Fuzzy black top-hat method (7.97 s)

4.4.3 Analysis of the Comparison

In this section, we compare the proposed methods from Sects. 4.2 and 4.3 and the rest of the
state-of-the-art general-purpose algorithms based on the visual examples above. The method ba-
sed on the fuzzy hit-or-miss operator outstands when extracting wide objects in their entirety and
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produces highly contrasted estimations (see Fig. 4.12(D)). The method based on the fuzzy black
top-hat operator also succeeds in extracting thin curvilinear objects (see the inner layer of the lower
wall in Fig. 4.13(I)), which are clearly separated from the background even if they are close to big-
ger curvilinear structures. Besides, it detects bifurcations and crossovers more successfully than the
hit-or-miss method (see, for instance, the details in Fig. 4.12). However, it does not suppress noise
as well as the hit-or-miss based one, providing less-contrasted estimations. We emphasize that,
although these methods are highly customizable, they are also robust with regard to their para-
meters. All images in the comparison section have been obtained with the exact same parameters,
which gives an idea of the good overall performance of the algorithms, due to their well-grounded
theoretical foundations within fuzzy mathematical morphology.

In contrast to them, the rest of methods do not provide a pixel-wise indicator of its degree
of belonging to a curvilinear structure in the image. Bai et al.’s method outputs the centerlines
of the curvilinear objects. Krylov and Nelson’s method only provides the location, orientation
and strength of the most significative segments. Path openings provide images where curvilinear
objects are enhanced, but finer details are still present in the image. It suffers from non-uniform
illumination problems when it is used as a curvilinear object detector. Besides, it does not discern
between curvilinear objects and large blob-shaped objects. The same problems affect the grayscale
hit-or-miss method with the grayscale operator by Barat [16]. The RORPO operator successfully
discriminates curvilinear objects, and extracts them in their entirety (i.e. accounting for their full
width). Its robustness to noise is achieved with a pre-processing stage in which the image is dilated,
from which the path openings are computed. Such noise robustness, which is responsible of its
good results, also induces a potential shortcoming: it does not discriminate well small curvilinear
objects that are located near larger ones, in contrast to other methods such as the fuzzy black top-hat
algorithm.

We remark that all code is executed in the same machine (Quad-core@3.10 GHz, 16 GB RAM)
and using non-optimized MATLAB R© code, except for the path openings algorithm, which uses the
C implementation from Talbot and Appleton1 [168]. Krylov and Nelson’s method was also exe-
cuted with their publicly available implementation2. The method by Merveille et al. was executed
with their recent implementation, which they kindly sent us along with the corresponding paper
[127].

4.5 Conclusion

In this chapter, we have presented two curvilinear object detectors based on the fuzzy mathe-
matical morphology framework. They aim at capturing elongated, tubular-like objects—in contrast
with edge detectors, that capture the limits between two different objects.

The objective of this chapter has been to provide easy-to-use curvilinear detectors to be used
in a variety of situations. They are based on operators from the fuzzy mathematical morphology.
These include, but are not limited to, vessel segmentation, road and bridge location in aerial ima-
gery, crack detection in pavement and the ones presented in Sect. 4.4. This may prevent researchers
working in different problems from re-discovering the same tools and techniques (see, for instance,
the Dual-Gaussian model [110] and the Bi-Gaussian function [191], which specify the same mathe-
matical model).

The presented detectors are thought to be a single step into a larger system. Therefore, the
input can be firstly pre-processed to obtain uniform images, and the output can be post-processed
to refine the estimation and enhance thus the objects of interest. With regard to the former, we
employed the CLAHE algorithm [142] to enhance the contrast of images. When it comes to post-
processing, the method by Bai et al. searches for the object centerlines with a morphological thinning

1Available at https://github.com/path-openings, 06.06.2018.
2Available at https://sites.google.com/site/vlkryl/iciar2013, 06.06.2018.

https://github.com/path-openings
https://sites.google.com/site/vlkryl/iciar2013
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while Krylov and Nelson employed a clustering algorithm to extract the largest linear features by
combining several short, straight segments. These strategies could also be adapted to postprocess
the outcomes of the detectors introduced in Sects. 4.2 and 4.3.

The two presented detectors are compared with other state-of-the-art, general-purpose curvili-
near object detectors. Figures 4.12-4.15 visually depict their similarities and differences. According
to Sect. 4.4.3, our detectors are able to locate most curvilinear objects, and to supress both flat areas
and noise. We purposely leave out of the comparison fine-tuned pre- and post-processing steps.
They would have a deep impact on the curvilinear objects and would bias the comparison.

Finally, we highlight the grayscale nature of our detectors. Due to the use of fuzzy mathema-
tical morphology operators and to their design, their output can be interpreted as how similar a
structure is to a curvilinear object. This similarity is, of course, never crisp due to the existence of
noise, limited resolution and even the subjective nature of the definition of a curvilinear object, as
argumented in Sect. 3.2.





67

Chapter 5

Retinal Vessel Segmentation

This chapter studies the problem of detecting vessels in retinal images, which represent an
example of curvilinear objects. The detection of vessels is the first step towards an automatic di-
agnosis and in-depth study of retinal images to aid ophtalmologists. In particular, we design an
algorithm using a generic curvilinear object segmentation algorithm. To find the most appropri-
ate one, we consider all the curvilinear object detectors compared in Sect. 4.4. These results are
compared among them and also with a manual segmentation.

Due to technological advances, high volumes of data are being acquired and should be quickly
processed. Besides, the real-time nature of many applications, such as processing images while a
patient is being examined, also requires fast yet accurate algorithms. Besides comparing curvilinear
object detectors for the task of vessel segmentation, we propose a real-time algorithm. To do so,
we employ one the fuzzy black top-hat detector, introduced in Sect. 4.3. It is based on the fuzzy
mathematical morphology, which is able to handle the uncertainty present in this type of images
(see Sect. 2.4). The real-time algorithm processes images from the DRIVE and STARE datasets, in
average, in 37 ms and 57 ms respectively.

Sect. 5.1 introduces the problem of retinal vessel segmentation and the related literature in
which it has been considered. The two curvilinear detectors introduced in Ch. 4 are employed
in a more complex algorithm to segment vessels in retinal images in Sect. 5.2. Afterwards, we fine-
tune the best approach to design a real-time algorithm, presented in Sect. 5.3. Compared to the state
of the art, it presents an outstanding trade-off between performance and speed. Sect. 5.4 shows this
by comparing it with several published algorithms, which are analysed in Sect. 5.5.

5.1 Introduction

Retinal eye-fundus images can be used by experts to detect eye diseases. They are pictures of the
interior surface of the eye: the retina. Along with technological improvements and the decreasing
cost of eye-fundus cameras, an automated algorithm to estimate the influence of such conditions
can help to widespread their use. Being this the final goal, we focus on this chapter on an essen-
tial first step: the detection of vessels. The attributes of the tree-like vessel structure, such as their
tortuosity or width, provide information towards correctly diagnosing illnesses. In particular, re-
tinopathy of prematurity affects the morphology of the vascular tree; diabetic retinopathy may be
assessed by detecting microaneurysms, easier to detect after excluding the vascular tree; the vascu-
lar tree can also be used to localize the optic disc, which reflects glaucoma; and other pathologies
such as hypertension, stroke and arteriosclerosis can also be reflected on the retinal vasculature. We
emphasize that these are some of the features that curvilinear objects present, as studied in Sect. 3.2.

Vessel segmentation in retinal images has been a largely studied topic during the last years. As
introduced in Ch. 3, a number of techniques have been applied to vessel segmentation, including
wavelets and Gabor filters, matched filtering, variational methods and mathematical morphology.
Some of the methods that outstand are briefly introduced in the following for the sake of comple-
teness. Hoover et al. [83] detect vessels with matched filtering techniques and a local thresholding,
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besides introducing the STARE database (see Sect. 3.4 for a complete description). Chanwimaluang
and Guoliang [48] presented a method that also uses matched filtering, to later apply a threshold
based on local entropy. Niemeijer et al. [133] presented a method later improved by Staal et al. [162]:
they compute a number of features per pixel and, to decide if a pixel represents a vessel or not, they
use a k-Nearest Neighbors classifier. Besides, they published a public database, DRIVE (again, see
Sect. 3.4). Soares et al. [161] published a method that yields better segmentations than the previous
ones. They used multiscale Gabor filters to extract pixel-wise features that were processed with
different classifiers, such as the Least Mean Square Error (LMSE), the k-Nearest Neighbours (kNN)
and the so-called Gaussian Mixture Model (GMM). Regarding mathematical morphology techni-
ques, Zana and Klein [199] presented a method in which the sum of top-hat transformations is
postprocessed by means of the Laplacian operator. Mendonça and Campilho [125] detect vessel
centerlines with directional differential operators, followed by a region growing method. After-
wards, Azzopardi et al. [11] presented a powerful approach by using several filters based on Diffe-
rence of Gaussians. They aggregate those filter responses by using a weighted harmonic mean. The
weights are carefully crafted in order to maximize the response of the system to a bar-shaped pat-
tern. Roychowdhury et al. [149] used an iterative procedure to segment the vessels. They perform
a morphological top-hat transformation and reiterated hysteresis with different thresholds. The
halt condition is based on estimators of the performance measures from the current and previous
iterations. Maji et al. [117] used 12 convolutional neural networks whose results were aggregated
afterwards. Despite using specialized hardware (specifically, a Tesla R© K-20C GPU), their model
spent 55 seconds in average to estimate a single image. Although several methods have been pu-
blished, all of them tend to fail when detecting thin vessels. In the rest of the chapter, we will study
which curvilinear objects are more appropriate to do so, paying special attention to the uncertainty
caused due to the noise that typically affects eye-fundus images.

Few methods have been introduced taking into account not only their performance but also
their computational requirements. Alonso-Montes et al. [5] presented a method based on snakes
that lasted an average of 230 ms to process a single medium-sized image. They obtain a rough esti-
mation of the vessels by filtering, thresholding and shrinking by means of a morphological erosion.
Such estimation, along with the edges of the image, is processed to fed the snakes that provide
the final estimation. Bankhead et al. [15] introduced a simple and fast algorithm that needed just
66´ 81 ms to segment the vessels in similar images. They use a specific wavelet transform, and
obtain a vesselness measure by adding the responses of the better contrasted wavelet levels. The
vesselness measure is thresholded so that 20% of the pixels are retained in the binary image. After-
wards, Argüello et al. [9] extended the work by Alonso-Montes. They improved the algorithm by
adapting it to be efficiently executed in GPUs. Although their CPU implementation needs around
500 ms to process a single image, high speedups are achieved when being executed in a GPU..

5.1.1 Eye-Fundus Images

Firstly, we present a description of a typical eye-fundus image, shown in Fig. 5.1, focusing
our attention on the features that characterize vessels as such. In order to construct a method
that segments vessels we identify which features characterize a pixel as part of a vessel. Similarly
to Sect. 3.2.1, we include both geometric and photometric features—so we can infer information
regarding the shape of objects and their colour components. We emphasize that this description is
an extended version of the one provided in Ch. 3. Likewise, it is important to describe the noise
found in these images so it can be properly faced.

In this chapter we use eye-fundus images from two publicly available databases: DRIVE [162]
and STARE [83], both already introduced in Sect. 3.4. They were acquired operating in color pho-
tography, providing RGB images, without contrast dye. DRIVE is a retinal image database that
contains 20 training and 20 test images of mostly healthy patients, all of them compressed with
JPG. The vessels in each test image, of size 565ˆ584 pixels, have been manually segmented by two
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FIGURE 5.1: Annotated regions in the 14th image of the STARE database. The macula is hardly visible,
whereas the illumination is noticeably non-uniform.

experts. On the other hand, STARE contains 20 images manually segmented and a number of re-
tinal images without ground truth, stored in the lossless format PPM. Their size is 605ˆ700 pixels
and they contain more pathologies and artifacts than the images from the DRIVE database.

From a geometric point of view, vessels are connected regions that are thin, elongated 2D cur-
vilinear objects that form a tree-like structure, with common bifurcations and few intersections. In
the images considered, the width of vessels lies within a well-defined range, from sub-pixel reso-
lution to up to 7-8 pixels. Besides, their width tends to be monotonically decreasing along their
path. They start at the optic disc and grow towards the rest of the retina, surrounding the macula.
The maximum curvature can be assumed to be bounded. Apperance of close vessels and tangent
vessels occur frequently.

From a photometric point of view, vessels are always darker than their surrounding area, and
their intensity changes gradually. The cross-section profile that they present is not clear among
different researchers. It has been modelled as a Gaussian [199], a Difference of Offset Gaussians
[125], a flat bar [11], and a flat bar convolved with a Gaussian [98]. A characteristic trait is the
central vessel reflex, which causes the centerlines to be brighter than the rest of the vessel. It is
originated by the presence of oxygen in the blood, which makes it specially salient in the case of
arteries. We use the green channel due to the high contrast with which vessels outstand over the
non-uniform background, offering the red and blue channels less information [69].

A combination of noise and artifacts complicate the task of segmenting vessels, as can be seen
in Fig. 5.1. Retinal images have medium to low contrast, although technological improvements
are making larger and better-quality images available. This includes high resolution imagery [135]
and retinal videos [134, 62]. Moreover, these images are unevenly illuminated and often present
a non-flat background texture. Besides the aforementioned vessels, these images include several
differentiated regions: the macula, a darker circular region corresponding to the high-resolution
vision; the optic disc, a bright circle that corresponds to the termination of the optic nerve; mi-
croaneurysms and other types of hemorrhages, that are darker and reddish areas; hard exudates,
which appear as yellow points caused by lipid residues; cotton wool spots, being yellow/gray re-
gions produced by damage to nerve fibers; and several others. These artifacts present a variety of
features, and they should not be confused with vessels.

5.2 Curvilinear Detectors for Retinal Vessel Segmentation

In this section, we employ the general-purpose detectors designed in Ch. 4 to detect vessels in
retinal images. We also use general-purpose curvilinear detectors by other authors (see Sect. 4.4)
for the same task in order to provide an objective measure of their performance for this specific
task. The analysis of the behaviour of the different curvilinear objects is the basis of a real-time
vessel segmentation algorithm, which is introduced in Sect. 5.3.



70 Chapter 5. Retinal Vessel Segmentation

To compare general-purpose curvilinear objects, we design a methodology to segment vessels
from retinal images that uses a generic curvilinear detector. This procedure, depicted in Fig. 5.2,
works as follows. First, the RGB image is projected onto its second component, the green channel,
which is processed with the CLAHE algorithm (see Sect. 2.5.2). Second, a grayscale image con-
taining only curvilinear objects has been computed for each test sample with the general-purpose
curvilinear detector. Third, the pixels in the outer region, corresponding to the black area in the
retinal image, have been deleted from the estimations. This mask is computed with a simple pro-
cedure introduced in Sect. 5.3. Finally, a threshold t P [0, 1] has been applied to obtain a binary
image and, thus, to compute the performance measures. Such threshold has been obtained as the
one that maximizes the average F1-score (see Sect. 3.4.2) for all the training images simultaneously.
Of course, the performance indicator is biased, since we compute a parameter of the method, the
threshold, from the samples used to validate it. However, we can still compare different curvilinear
detectors, since all of them suffer a similar bias. We also remark that the F1-score has been selected
to avoid class skewness problems: only approximately 15% of pixels represent vessels.

FIGURE 5.2: Flow diagram of the vessel segmentation algorithm for a general-purpose curvilinear detector.

In order to compare the curvilinear detectors based on their performance measures, we use
all the training images in the DRIVE database [162]. The parameters of each method have been
set based on the respective author’s recommendations. In particular, path openings are computed
with L = 30, K = 5; RORPO with Lmin = 20, two scales (1 and 1.5) and robustness parameter
R = 1; the fuzzy hit-or-miss object detector with 6 orientations, s P t5, 9, 13u, C = TL, I = IL and
Agg1 = Agg2 = SP; and the fuzzy top-hat object detector with s1 = 5, s2 = 17, C = TP and I = IGG.

In Fig. 5.3 we can observe a comparison between different curvilinear detectors. In particular,
for each method we show the grayscale output, in Figs. 5.3(1); and its binarization, in Figs. 5.3(2).
It contains a sample with non-uniform illumination and that presents no pathologies. As we can
observe, only the curvilinear detectors based on RORPO and on the fuzzy top-hat operator extract
the whole tree of vessels. In particular, Bai et al.’s method and the fuzzy hit-or-miss object detector
provide thinner objects.

The performance measures obtained by the method with each of the general-purpose curvi-
linear detectors are summarized in Table 5.1. In this comparison, we include the accuracy, the
sensitivity, the specificity and the precision (see Sect. 3.4.2). To provide an insightful comparison of
their computational complexity, we computed all of them in the same hardware. In particular, the
system is an Intel R© CoreTM i5-3340 quad core @ 3.10 GHz with 16 GB of RAM, running Windows
10 Pro and MATLAB R© R2017b.

5.2.1 Analysis of the Results

As we can observe in Table 5.1, the RORPO operator [127] and the fuzzy top-hat method out-
perform the rest of them. We emphasize that these quantitative results must be taken with caution:
this is only one application where curvilinear objects must be segmented. Thus, the only valid
conclusion is that the RORPO and the fuzzy top-hat operator are the curvilinear detectors better
adapted to this specific task.
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FIGURE 5.3: Comparison of results for the 4th sample of the DRIVE database: (1) curvilinear objects detected and
(2) their binarization. (A1) original image and (A2) ground truth. (B) Bai et al. [14]. (C) Krylov and Nelson [99].
(D) Grayscale hit-or-miss [16]. (E) Path openings [168]. (F) RORPO [127]. (G) Fuzzy hit-or-miss object detector. (H)
Fuzzy top-hat object detector.

Besides comparing their performance, Table 5.1 also provides information regarding their com-
plexity. As we can observe, the fuzzy top-hat method is much simpler—and, thus, faster—than the
rest of options. We emphasize that all of the methods have been executed in the same computer.
The path openings [168] and the RORPO operator [127] have been executed with the code provided
by the authors, whereas the rest of them are implemented using non-optimized MATLAB code.

This comparison only represents the performance of the curvilinear object detectors as such,
without post-processing and without excessive parameter tuning. Methods specifically tailored
to one specific curvilinear detector may provide better results, such as the method based on path
openings by Sigurðsson et al. [160]. This is the motivation for the algorithm in Sect. 5.3, in which
the fuzzy top-hat operator is employed to achieve a very competitive method both in terms of
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TABLE 5.1: Results of methods with the 20 training samples of the DRIVE database [162], ordered by execution
time. The results are given as the mean (and standard deviation) of the corresponding metric. They are compared
against the 2nd ground truth results, in bold typography, using the Unilateral Wilcoxon Signed-Rank test with
α = 0.05 (see Sect. 3.4.1). The superscripts over the rest of results indicate whether „ the results are not statistically
better/worse, : the results are statistically better, or ; the results are statistically worse. No superscript or missing
values indicate that the individual segmentations were not available.

Method Time per sample Accuracy Sensitivity Specificity F1-score

2nd ground truth —
0.947
(0.005)

0.773
(0.059)

0.973
(0.008)

0.786
(0.020)

Bai et al. [14]
168.18 s
(0.360 s)

0.877;
(0.013)

0.208;
(0.017)

0.975„
(0.005)

0.301;
(0.021)

Krylov and Nelson [99]
29.088 s
(3.272 s)

0.669;
(0.013)

0.252;
(0.017)

0.729;
(0.012)

0.162;
(0.015)

Grayscale hit-or-miss [16]
15.378 s
(0.055 s)

0.866;
(0.012)

0.081;
(0.050)

0.980:
(0.007)

0.130;
(0.073)

Path openings [168]
16.212 s
(0.653 s)

0.840;
(0.093)

0.583;
(0.146)

0.878;
(0.122)

0.503;
(0.083)

RORPO [127]
20.465 s
(0.448 s)

0.934;
(0.007)

0.686;
(0.061)

0.970„
(0.010)

0.724;
(0.030)

Fuzzy hit-or-miss
18.645 s
(0.045 s)

0.880;
(0.008)

0.350;
(0.024)

0.957;
(0.006)

0.424;
(0.019)

Fuzzy top-hat
1.834 s
(0.011 s)

0.897;
(0.008)

0.616;
(0.087)

0.938;
(0.016)

0.600;
(0.042)

performance and speed.

5.3 Real-time Retinal Vessel Segmentation

In Sect. 5.2 we studied the vessel segmentation problem with different general-purpose curvi-
linear detectors, and we found the fuzzy top-hat based curvilinear detector to be very appropriate
for this task. Besides, the fuzzy top-hat is a very efficient operator in terms of its computational
requirements.

The popularization of fundus cameras and retinal images and other technological advances
provide an increasing amount information of the retina. These sources provide enormous amounts
of data that should be processed quickly and efficiently. The manual processing of these amounts of
data is unaffordable and, thus, automatic algorithms are required. Afterwards, this information can
be further processed to extract indicators for some pathologies. For instance, after the vessels are
identified, counting the red spots that characterize early diabetic retinopathy becomes an easier task
[87]. Also, inpainting the vessels in the optic disc can ease the measurements of the neuroretinal
rim to detect glaucoma [39].

This section is aimed at designing, implementing and optimizing a real-time yet accurate al-
gorithm to segment vessels. Based on our previous results, the algorithm presented is developed
taking into account both the utility of the operations used and their cost. We use operators from the
fuzzy mathematical morphology to extract vessels taking into account their geometrical and pho-
tometric features introduced in Sect. 5.1. In particular, we use a fuzzy top-hat operator to enhance
vessels. By reducing the computational cost of all the operations involved, we design an algorithm
with high performance measure values but with a low processing time.
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5.3.1 Description of the Method

Figure 5.4 depicts the steps carried out by our algorithm. It is a fine-tuned version of the digram
for general-purpose curvilinear detectors in 5.2. Each step is designed to leverage one or more of the
features described in the model for vessels. The stages of the algorithm are introduced as follows.

FIGURE 5.4: Flow diagram of the real-time vessel segmentation algorithm.

- Preprocessing. Firstly, the green channel of the RGB retinal image is selected. It is the one
containing a better-contrasted image [161, 162], being the red one oversaturated and the blue
one undersaturated.

Secondly, similarly to the previous case, the CLAHE algorithm, is used as an enhancement
step. In addition to further improving the contrast, it eases the uneven illumination problem
without worsening the effect of the non-flat background texture. The clip limit is set to two
and the subgrid in which we divide the image is 8ˆ8.

- Fuzzy Morphological Top-Hat. The fuzzy top-hat by closing, introduced in Sect. 2.4, is ap-
plied to the previous step as a curvilinear detector, in order to enhance the thin regions that
are darker than their neighbouring pixels. We emphasize that, to achieve a low processing
time, only one fuzzy top-hat operator is computed, in contrast with the curvilinear detector
in Sect. 4.3.

The fuzzy conjunction used is the nilpotent minimum t-norm, along with its R-implication,
the Fodor implication function:

TnM(x, y) =
"

0, if x + y ď 1,
min(x, y), otherwise,

IFD(x, y) =
"

1, if x ď y,
max(1´ x, y), otherwise.

(5.1)

Besides fulfilling several theoretical properties (see Table 2.1), these operators are fast to com-
pute and have provided good results in similar problems [74]. The structuring element, along
with the thresholds of the subsequent hysteresis (Fig. 5.5(F)), were selected experimentally,
obtaining the best results with a flat structuring element of size 9ˆ9.

- Background Estimation. The black padding background is detected to avoid any artifacts in
this region. Given the RGB original image, we compute its pixel-wise luminance [75], Y, as:

Y(x) = 0.2989 ¨ R(x) + 0.5870 ¨ G(x) + 0.1140 ¨ B(x), for all x P Z2. (5.2)

Afterwards, we perform a sweeping from the vertical border of the image (assumed to be
background) until we find a value greater than the mean luminance across the whole image,
in which we assume that the retina starts. Given the good contrast of the luminance channel,
this simple procedure provides very good results across all images.

Finally, the object of interest is slightly shrinked. This operation is aimed at avoiding the
border of the retina, where vessels are very infrequent but some artifacts may appear. To do
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so, we use a fuzzy erosion with the same fuzzy implication function and structuring element
that in the previous step.

- Border Removal. The pixels outside the retina mask are set to zero. To do so, we employ the
result from the previous step to differentiate between background and retina. In the image
generated by the fuzzy top-hat operator, all background pixels are set to zero.

- Hysteresis. Lastly, a hysteresis is applied to binarize the image while retaining connected
components. The lower and higher thresholds have been experimentally set to 0.060 and
0.105 respectively. This last step provides the final vessel estimation.

The behaviour of these steps can be visually inspected in Figure 5.5. In it, the processing flow
of a single image shows the effect and suitability of each step when processing retinal eye-fundus
images.

A B C

D E F

FIGURE 5.5: Intermediate steps of the real-time vessel segmentation method when processing the sample 235th
from the STARE dataset: (A) green channel, (B) CLAHE, (C) fuzzy top-hat operator, (D) background mask, (E)
border removal, (F) hysteresis.

We remark that the parameters used to obtain the segmentations are common to both DRIVE
and STARE. They have been obtained by (i) selecting good-performance settings (for instance, a
square-shaped structuring element instead of a circular-shaped one), and (ii) experimentally opti-
mizing the numeric parameters (such as the hysteresis’ thresholds). Such optimization has been
done by maximizing the mean accuracy of the performance measures, since this provides a good
trade-off between the amount of false positives and false negatives that our estimations contain.
If we had optimized the parameters independently in each database, the performance measures
would differ slightly with respect to the simultaneous optimization. In other words, the accuracy
of the proposed method is not sensitive to small changes in the parameters. This behaviour, rarely
found in the related literature [11, 9, 161], is a sign of the robustness of our method.

The algorithm is implemented in MATLAB R© 2017b and C. All the code was implemented except
for the CLAHE algorithm, for which we use the implementation by Zuiderveld [204].
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5.3.2 Impact of the Parameters

Given the simplicity of the method, required in order to diminish its computational require-
ments, fine-tuning each of its steps acquires paramount importance. The different parameters that
control the behaviour are the clip limit, the structuring element, the fuzzy conjunction and its resi-
dual fuzzy implication function used and the hysteresis thresholds.

The clip limit was set to 2 after empirical experimentation. Values within the range of 1.8 to
2.4 provide good results, both visually and in terms of the performance measures obtained with
the whole method. We fixed it to 2 due to its robustness with regard to the whole set of images
considered, both DRIVE and STARE samples.

On the other hand, the hysteresis lower and higher thresholds depend greatly on the preceding
steps. A different structuring element provides very different gray level distributions. The hyste-
resis’ thresholds are, then, obtained after fixing the remaining parameters: the structuring element,
the conjunction and its corresponding residual implication function that control the behaviour of
the fuzzy black top-hat transform. Once they are set, the thresholds are obtained as the ones that
yield, in average, better performance measures for both datasets. We acknowledge that using the
samples to tune parameters may bias its results. However, we remark that splitting the images
into disjoint sets would yield a very small test set, increasing the bias of the performance measu-
rements. In addition to it, the parameters are robust, so they should be very similar regardless of
which images are used to compute them.

The most fundamental parameters appear to be the ones influencing the fuzzy top-hat operator.
They control the geometrical and photometrical features of the objects that are enhanced, and,
afterwards, extracted. The vast amount of different conjunctions, fuzzy implication functions and
structuring elements make this step a very versatile one. For one thing, the conjunction and fuzzy
implication function used were selected as the nilpotent minimum and its R-implication, the Fodor
implication function. Other pairs of t-norms and R-implications (such as the ones in Table 2.1, page
11) also appear to work well in our situation. However, the nilpotent minimum was chosen due
to the good results obtained with it in other image processing applications, such as edge detection
[34].

The structuring element is defined by both its shape and size. The former affected the pixels
being segmented and, thus, the performance measures. Due to the nature of the problem, only
isotropic shapes were considered as structuring elements. More specifically, we considered several
2D Gaussian functions scaled so their maximum value is 1. As can be observed in Fig. 5.6, fewer
artifacts were segmented with higher-variance Gaussian functions.

We tested Gaussian-shaped structuring elements with different variances. For each of them,
the segmentation was obtained with the hysteresis threshold that provided the best performance
measures. At a certain point, approximately for σ = 75 pixels, the segmentation reaches a steady
response, as can be observed in Fig. 5.7(A). As a matter of fact, with structuring elements correspon-
ding to variances larger than σ = 75 the segmentations provided are almost identical, as shown in
Fig. 5.7(A). The shape of the structuring element was, finally, set to a flat surface (equivalently, a
Gaussian function with infinite variance) given its robustness and ease of use.

Varying the size of the structuring element, on the other side, affected both the performance
measures and the computational complexity of the method. Once the shape was fixed to a flat
structuring element, several sizes were considered and compared, as observed in Fig. 5.7(B). The
computational complexity always increases as the size of the structuring element increases, whe-
reas the best performance measures are clearly bounded. Similarly to the case of varying the shape
of the structuring element, each size was also used along with the best thresholds of the hysteresis,
so their comparison becomes fair. The trade-off we preferred was selecting a structuring element
of size 9ˆ9.

With these settings, the best hysteresis thresholds were tlow = 0.060 and thigh = 0.105.
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A1 A2 B1 B2

C1 C2 D1 D1

FIGURE 5.6: (1) Gaussian-shaped structuring elements with different variance σ2, and (2) the segmentation they
provide for the 4th sample of the DRIVE dataset, (x, y) P [100, 200].2. (A) σ2 = 1.0. (B) σ2 = 4.2. (C) σ2 = 75.0. (D)
σ2 = 8.

A B

FIGURE 5.7: Performance of the method for different structuring elements on the DRIVE database. (A) shows
the mean accuracy varying the variance of the Gaussian function that represents the structuring element. (B)
represents executions on different samples, where the marker type indicates the size of the structuring element.

5.4 Results

In this section we measure the results provided by our real-time algorithm according to several
pixel-wise performance measures, summarized in Table 3.3. Besides, they are compared with those
of other state-of-the-art methods, some of which were already compared in Table 3.4.

Comparing algorithms and determining which approach provides the best segmentation is a
hard task. The notion of best method could be defined as the one that provides more information
towards solving a major goal such as automatic diabetic retinopathy detection. However, due to
the complexity of such comparison, we use other indicators. Visual inspection, as the one shown
in Fig. 5.8, may be useful, but falls short when comparing similar methods or when the task is
rather subjective, which is our case. As in Sect. 3.4, to provide a plausible yet accurate comparison
between methods we rely on public datasets, objetive metrics and statistical tests.

Firstly, we use the DRIVE [162] and STARE [83] databases. Secondly, each segmentation is
assigned a series of numeric values assessing the similarity of such segmentation with the ground
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A1 A2 B1 B2

C1 C2 D1 D2

E1 E2 F1 F2

FIGURE 5.8: (1) Visual comparison of fast methods with the 14th sample of DRIVE, and (2) a detail corresponding
to x, y, P [100, 200]2 (upper left corner). (A) 1st Ground Truth: Acc: 1.00, Pre: 1.00. (B) 2nd Ground Truth: Acc: 0.95,
Pre: 0.83. (C) our method (0.039 seconds): Acc: 0.94, Pre: 0.72. (D) Bankhead [15] (0.069 seconds): Acc: 0.93, Pre:
0.67. (E) Arguello [9] (0.420 seconds): Acc: 0.95, Pre: 0.77. (F) Roychowdhury [149] (2.45 seconds): Acc: 0.94, Pre:
0.72.

truth. Lastly, each method provides a series of results, one per image, that can be thought of as a
statistical sample. They can be compared by means of a statistical test to answer the question of
whether one method provides better results than another one with a certain statistical significance.
In our case, we use the Unilateral Wilcoxon Signed-Rank test [189] with significance level α = 0.05,
as in Sect. 3.4.1. To recall, this test compares the hypothesis of whether the median of the difference
of one distribution minus the other is greater than zero or not. Although this test compares the
median instead of the mean, it is used due to its robustness against non normality, which is present
in our distributions.

Both DRIVE and STARE are used to compare the methods. The performance measures of dif-
ferent methods over these two benchmarks are shown in Tables 5.2 and 5.3. We remark that these
tables only depict the methods whose source code or segmentations were available so that metrics
are computed uniformly. In addition to it, the background pixels (provided by the authors for the
DRIVE dataset, computed for the STARE samples) have not been taken into account to compute
the performance measures.

When executed in a single-core CPU, the fastest method is the one we introduced in Sect. 5.3.
The performance measures that it presents are also remarkable, being in some situations statistically
better than the one provided by the second expert, especially for the measures of specificity and
precision. Besides, the metrics are balanced (i.e. there is no metric with very low values, in contrast
to, for instance, the method by Soares with LMSE). The best sensitivity metrics, specially for the
STARE database, are the ones provided by Azzopardi, whereas several methods, including ours,
present a high accuracy.

Regarding the time per sample, an extensive comparison is provided. Whenever possible, the
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TABLE 5.2: Results of methods with the 20 test samples of the DRIVE database [162], ordered by execution time,
compared against our results, in bold typography. The superscripts should be interpreted as in Table 5.1. * indi-
cates that the authors also executed their method in CUDA R© compatible GPU cards, with which they required in
average 14 ms per sample without taking into account the associated overhead, whose impact is specially impor-
tant when processing images one by one.

Method Time per sample System Accuracy Sensitivity Specificity Precision

2nd ground truth —
0.947:
(0.005)

0.776:
(0.059)

0.972„
(0.008)

0.807„
(0.044)

Our method
0.037 s
(0.008 s) 3.10 GHz, 16 GB RAM

0.938
(0.007)

0.721
(0.069)

0.970
(0.012)

0.786
(0.065)

Bankhead [15]
0.066 s
(0.004 s) 3.10 GHz, 16 GB RAM

0.931;
(0.008)

0.745:
(0.047)

0.958;
(0.008)

0.723;
(0.050)

Alonso-Montes [5]
0.193 s

SIMD parallel processor 0.918 - - -

Argüello [9]
0.421 s*
(0.001 s) 3.10 GHz, 16 GB RAM

0.943:
(0.006)

0.721„
(0.061)

0.976:
(0.008)

0.815:
(0.049)

Chanwimaluang [48]
1.830 s
(0.045 s) 3.10 GHz, 16 GB RAM

0.916;
(0.015)

0.671;
(0.082)

0.952;
(0.026)

0.686;
(0.084)

Roychowdhury [149] 2.45 s 2.60 GHz, 2 GB RAM
0.936;
(0.005)

0.682;
(0.047)

0.973„
(0.007)

0.786„
(0.048)

Roychowdhury [148] 3.11 s 2.60 GHz, 2 GB RAM
0.936;
(0.004)

0.717„
(0.057)

0.968„
(0.008)

0.767„
(0.052)

Azzopardi [11]
3.979 s
(0.116 s) 3.10 GHz, 16 GB RAM

0.945:
(0.005)

0.762:
(0.080)

0.972„
(0.012)

0.803„
(0.063)

Soares (LMSE) [161]
8.733 s
(0.296 s) 3.10 GHz, 16 GB RAM

0.929;
(0.009)

0.497;
(0.048)

0.992:
(0.003)

0.898:
(0.038)

Soares (GMM) [161]
9.592 s
(0.157 s) 3.10 GHz, 16 GB RAM

0.947:
(0.006)

0.728„
(0.047)

0.979:
0.005)

0.838:
(0.037)

Soares (kNN) [161]
28.542 s
(0.182 s) 3.10 GHz, 16 GB RAM

0.940„
(0.007)

0.728„
(0.046)

0.972„
(0.006)

0.789„
(0.041)

Staal [162] 15 min 1.00 GHz, 1 GB RAM
0.944:
(0.006)

0.719„
(0.070)

0.977:
(0.009)

0.825:
(0.053)

Zana [199] - -
0.943:
(0.008)

0.669;
(0.077)

0.983:
(0.008)

0.858:
(0.051)

same system has been used to compute all segmentations. As in Sect. 5.2, the system used is an
Intel R© CoreTM i5-3340 quad core @ 3.10 GHz with 16 GB of RAM, running Windows 10 Pro and
MATLAB R© R2017b. When such computation has not been possible, the time per sample is provi-
ded by the authors and using up-to-date hardware at their respective publication time [149, 15].

The only methods that could be used for real-time video processing are the one by Bankhead
(12´ 15 frames per second) and our method (18´ 27 frames per second). We remark that these
frame rates have been obtained with a single-core CPU execution. Given the ease of parallelization
of different frames, with the current quad core system they could be sped up around four times. We
also remark that Argüello optimized their method with CUDA R© to be executed in compatible GPU
cards. We have measured the execution time of their method based on the author’s CPU imple-
mentation in order to make the comparison fair, since all the other methods are only implemented
in CPU. The parallel nature of most of the methods, including ours, would provide similar speed
up factors if a GPU implementation was developed.

Some methods improve the objective metrics of our algorithm, being the method by Azzopardi
et al. [11] the one that provides better results when taking into account all metrics. However, none
of the methods that significatively improve the segmentations provided by our approach is compa-
rable in terms of its execution time, making them unsuitable for, among other uses, pre-screening
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TABLE 5.3: Results of methods with the STARE database [83] ordered by execution time, compared against our
results, in bold typography. The superscripts should be interpreted as in Table 5.1. * indicates that the authors also
executed their method in CUDA R© compatible GPU cards, with which they required in average 18 ms per sample.

Method Time per sample System Accuracy Sensitivity Specificity Precision

2nd ground truth —
0.952„
(0.005)

0.895:
(0.108)

0.956;
(0.018)

0.642;
(0.068)

Our method
0.057 s
(0.012 s) 3.10 GHz, 16 GB RAM

0.954
(0.011)

0.647
(0.214)

0.978
(0.005)

0.737
(0.106)

Bankhead [15]
0.081 s
(0.004 s) 3.10 GHz, 16 GB RAM

0.947;
(0.010)

0.812:
(0.044)

0.959;
(0.011)

0.617;
(0.093)

Argüello [9]
0.547 s*
(0.002 s) 3.10 GHz, 16 GB RAM

0.959:
(0.009)

0.730:
(0.169)

0.978„
(0.011)

0.748:
(0.093)

Chanwimaluang [48]
2.405 s
(0.045 s) 3.10 GHz, 16 GB RAM

0.935;
(0.023)

0.740:
(0.094)

0.951;
(0.026)

0.579;
(0.116)

Roychowdhury [149] 3.95 s 2.60 GHz, 2 GB RAM
0.962:
(0.010)

0.676„
(0.069)

0.985:
(0.007)

0.790:
(0.079)

Azzopardi [11]
5.105 s
(0.121 s) 3.10 GHz, 16 GB RAM

0.954„
(0.014)

0.819:
(0.082)

0.965;
(0.015)

0.671;
(0.095)

Roychowdhury [148] 6.7 s 2.60 GHz, 2 GB RAM
0.942;
(0.005)

0.694„
(0.076)

0.962;
(0.014)

0.610;
(0.066)

Soares (LMSE) [161]
10.894 s
(1.893 s) 3.10 GHz, 16 GB RAM

0.946;
(0.013)

0.412;
(0.074)

0.991:
(0.005)

0.781:
(0.114)

Soares (GMM) [161]
11.594 s
(0.186 s) 3.10 GHz, 16 GB RAM

0.945„
(0.024)

0.651„
(0.070)

0.969„
(0.023)

0.670„
(0.145)

Soares (kNN) [161]
37.777 s
(0.548 s) 3.10 GHz, 16 GB RAM

0.961:
(0.005)

0.676„
(0.084)

0.985:
(0.007)

0.782:
(0.084)

Hoover [83] 5 min SPARCstation 20
0.946;
(0.007)

0.673„
(0.055)

0.969„
(0.011)

0.644;
(0.109)

purposes or real-time response. When comparing real-time algorithms executed in CPU, the pro-
posed one achieves the best results in accuracy, specificity and precision.

5.5 Discussion

We conclude this chapter with a brief account of the main points of this work. We include some
remarks regarding the strengths and weaknesses of our proposed real-time vessel segmentation
algorithm, which represents one of the main contributions of this thesis.

In this chapter, we have focused on the problem of retinal vessel segmentation. This, which
can help ophtalmologists to detect eye diseases, is a tedious task when it is carried out manually.
First, we have developed an abstract implementation based on a curvilinear object detector. With
it, we have compared how appropriate is each of the detectors introduced in Ch. 4. Second, after
realizing that the fuzzy top-hat operator fits very well into this task, we have designed a real-time
retinal vessel segmentation based on it. To do so, we have tailored the original algorithm to lower
its processing time and, at the same time, take the most of the fuzzy top-hat operator—which is the
most time-consuming task of the whole algorithm. With the fuzzy black top-hat, we deal efficiently
with the uncertainty and vagueness present in these images, while leveraging the geometric and
photometric features of vessels presented in Sect. 5.1 as much as possible.

The optimized method, which is presented in Sect. 5.3, is composed of several fast steps. The
CLAHE algorithm processes the green channel of RGB eye fundus images. This pre-processing
step enhances the contrast, does not add noise and makes all images homogeneous. Without this
procedure, the performance drops at least 2% with regard to the accuracy of the whole dataset,
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but around 12% regarding its sensitivity. The fuzzy black top-hat is then applied to extract vessels.
After removing the outer padding, the image is binarized with a hysteresis. The parameters that
control each one of these steps have been obtained experimentally with a sistematic method, as
shown in Sect. 5.3.

The results obtained by our method position it among the state of the art, as reflected in Ta-
bles 5.2 and 5.3. Since visual inspection is a subjective comparison, several performance metrics
are computed: accuracy, sensitivity, specificity and precision. Our algorithm presents very high
values in all performance metrics, specially when compared to other real-time methods, which are
infrequent in the literature. Besides, we have executed all the methods at our reach to provide a
fair comparison between their computational requirements in practice. We emphasize, as develo-
ped in the rest of the chapter, that our focus is on the speed of the method, which makes it easily
embeddable into a high-complexity diagnosis solution.

The method that we have introduced is an example of how few, well-selected operations can
provide good results in a task which, a priori, seems hard to solve. Thus, the method not only
becomes valuable due to its results, but also due to its robustness: the same parameters work well
across two datasets with different characteristics. In short, its simplicity brings along both fast
processing times and ease of generalization.

This method is based on the curvilinear detector from Sect. 4.3, which has been highly optimi-
zed. In particular, several techniques have been used to reduce the computation time. Firstly, it is
programmed in C code. Secondly, we purposely chose structuring elements with very few unique
values—only two unique values in the case of flat structuring elements. This makes feasible the
precomputation of conjunctions and implications, which greatly increases the efficiency of mor-
phological operations. Lastly, all steps have been designed to be extremely fast: the hysteresis is
performed by traversing the image twice, whereas the rest of steps are local and can be parallelized.

Although the processing time is excellent for medium-sized images, processing high-resolution
video would require faster methods. For instance, the time that our implementation requires to
process a 2, 336ˆ3, 504 pixels image is between 1.53 and 1.61 seconds. Some strategies to incre-
ase the computational time are multi-core execution, GPU optimization [9] or downsampling the
images [15]. These would make our method very suitable to pre-screen large datasets in a short
amount of time or to generate a good vessel estimator nearly instantaneously. Providing this first
pre-screening, a more demanding algorithm could be executed to provide a final answer, which
would only need to process a fraction of the original samples.
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Chapter 6

Soft Color Morphology

In this chapter we extend the fuzzy mathematical morphology operators, introduced in Sect. 2.4,
to process multivariate images. We provide a general definition, for images of any color space and
spatial dimension. They have been designed taking into account a very important case: natural
images. Whenever they are encoded using the CIELab color space, our operators provide interpre-
table results. The soft color morphological operators are fast and provide smooth outputs from a
visual point of view. They can be easily customized while also being highly interpretable, which is
why they can be very helpful tools when dealing with some computer vision challenges. As a mat-
ter of fact, they are used in Chapter 7 to deal with a real application, hair removal in dermoscopy
images, obtaining very competitive results.

The problem of extending the morphological operators to color images is studied in Sect. 6.1,
along with the state of the art. In Sect. 6.2 we introduce the basic operators of the soft color morpho-
logy, which are studied from a theoretical point of view in Sect. 6.3. They are extensively compared
with other morphological paradigms for color images in Sect. 6.4. We finish the chapter with an
analysis of the operators and their behaviour in Sect. 6.5.

6.1 Mathematical Morphology and Color

Binary mathematical morphology was promptly extended to grayscale images [80]. One of such
examples is the fuzzy mathematical morphology, introduced in Sect. 2.4. However, dealing with
natural color images or with multivariate images has proved to be more challenging. In this section,
we study why this generalization is so hard and the approaches already proposed in the literature.

6.1.1 The Problem of Color Ordering

Mathematical morphology requires the color space to admit an order or, at least, a supremum
and infimum operation. The lattice-based definition of erosion (or dilation) is based on using the
structuring element to select some pixels in a neighbourhood, and then selecting the minimum (or
maximum) of the colors that such pixels contain. From a higher level perspective, we interpret
the dilation as the operation of enlarging a region that represents an object. To do so, the dilation
prioritizes the colors of such object over the colors of its surrounding background. Taking into
account either point of view, and regardless of the color space used, the colors must be comparable
somehow.

Although binary and grayscale values can be ordered easily, multivariate color spaces may not
admit a consistent order: different prior knowledge of the task at hand may suggest different color
orderings [181]. For instance, colors from the RGB color space have three components. More con-
cretely, a red pixel and a blue pixel may not be comparable, neither have a supremum or infimum
that is always consistent with human perception.

Besides not necessarily having a consistent order, we encounter what is known as the false color
problem: when processing color images, some pixels may get assigned colors that were not present
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in the original image. This is sometimes described as a problem to overcome, although it may not
necessarily be an undesired situation [77]. For instance, the fuzzy mathematical morphology (see
Sect. 2.4) comprises operators that may output pixels whose value did not appear in the original
image. However, the false color problem is more critical for multivariate images, due to, among
other factors, the correlation between channels. In other words, providing only pixels whose value
was present in the original image may be a desirable property for such multivariate image. For
instance, a corregistered pair of PET and CT scans may not have the same inter-channel correlations
as a natural RGB image.

The vast majority of color morphology paradigms can be divided into component-wise and
vector approaches [6]. The former ones split the image in channels, that are processed indepen-
dently. On the other hand, vector approches process all channels simultaneously. To do so, they
must order the vectors that represent colors, for which several alternatives have been proposed [6,
17]:

- Marginal ordering: sorting according to one component. For instance, when considering
different orders, one per component.

- Conditional ordering or lexicographical ordering: single-channel ordering applied sequenti-
ally to all components in a specific order, in which ties are resolved by the next component.

- Partial ordering: sorting the data according to partitions in the sample space. Each partition
is assigned a number that is used to compare its elements with samples from other partitions.
It takes into account the structure of the vectors in the space, such as geometric relations in
the sample space [6].

- Reduced ordering: sorting with an overall combination of all components. It can be thought
as a function that maps color vectors to real values, which are used to compare the original
multivariate data. If the function is not injective, the associated relation between vectors is
not a total order, but a pre-order [6]. This is the most general approach to define a total order
for multivariate data.

Besides, orderings may also be adaptive if they change depending on the original data. In
Sect. 6.1.2 we list several works that use these orders, emphasizing their strengths and shortco-
mings.

The color ordering that considers our soft color morphology operators also considers the spatial
location of such colors. In short, it favours colors with a higher first component (when considering
CIELab, bright colors), and with less priority the color of close pixels. It is formally specified in Def.
6.1 (see Sect. 6.2).

6.1.2 State of the Art

Several works have been proposed to extend mathematical morphology to color or multivariate
images. However, they are scarcely used by practitioners. In other words, there is no successful
definition for color mathematical morphology operators that is commonly accepted.

The component-wise approach, such as the one presented by Gu et al. [78], can be seen as a
marginal ordering in each component taken independently. It considers a multivariate image as
a stack of grayscale layers and processes each of them independently. It does not exploit spectral
correlations and it is prone to introducing new colors.

The vector approach to color morphology, on the other hand, encompasses the methods that
process all the channels of the image simultaneously. Sometimes, they specify a total order to then
apply the dilation and erosion according to the lattice-based definitions of erosion and dilation
[158], avoiding thus the creation of new colors. Aptoula and Lefèvre [7] explore the lexicographical
ordering with the RGB and HSL color spaces. This approach resolves almost all orders taking into
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account one channel, which we must expect to separate well the objects to be transformed. Cha-
nussot and Lambert [47] present a variation of the lexicographical ordering, in which they employ
an 8-bit RGB representation of images. In this case, the higher bits of each channel are given more
importance than the lower bits of the same or other channels. Although the behaviour provided by
this ordering is more aligned with human perception, it is arbitrary and not necessarily meaning-
ful. For instance, the human eye can distinguish more green shades than red ones. Moreover, the
channels of hyperspectral imagery may have different statistical distributions which makes them
incomparable. Another variant of the lexicographical order is employed by Louverdis et al. [116],
where the HSV color space is used, ordering the colors by minimizing their value, then maximi-
zing their saturation and finally minimizing their hue. Sartor and Weeks [153] present a method
that orders colors based on their distance with respect to a reference color, being thus a reduced
ordering. This approach provides results that match the expectations, specially when the reference
color has been carefully selected. Its drawbacks are the need of such user-supplied color (which
could also be thought as a desirable customization) and the theoretical instability: two very distant
colors may change their precedence due to small perturbations. Witte et al. [56] employ the fuzzy
mathematical morphology operators with multivariate images by extending the usual operations.
Specifically, they extend the notions of minimum, maximum, addition, negation and product for
colors encoded in several color spaces—RGB, HSV and CIELab. That is, instead of considering a
color ordering, they consider operations between colors. Accordingly, they consider structuring
elements encoded in the same color spaces. Bouchet et al. [41] use a fuzzy order to create a total
order between RGB triplets. It computes an aggregated value for each color, being thus a reduced
ordering approach. For each channel, they learn a pixel-wise fuzzy preference relation. The three
fuzzy preference relations are then aggregated with the arithmetic mean. Valle and Valente [178]
propose a total order in the CIELab color space, based on the distance with respect to a reference
color and their relative position. It can be seen as a conditional ordering in a CIELab-related color
space. They propose a binary operation between colors in the CIELab complete lattice that is asso-
ciative, commutative and has a neutral element. Employing it, they define morphological operators
that admit structuring elements also encoded in the CIELab color space.

A series of works also explore adaptive orderings. All of them follow the same strategy than the
previous algorithms—finding a total order between colors—but they do so in an image-dependent
fashion. Velasco and Angulo [181] study and compare several supervised and unsupervised met-
hods to reduce the dimensionality of the color space: principal component analysis, support vector
machine, reference color and others. These approaches typically assume that small objects are
located on the foreground, whereas large objects conform the background. One of such approa-
ches, also by Velasco and Angulo [182], is the random projection technique: they employ a one-
dimensional measure of the degree of centrality of a sample—known as a depth function—, and
maximize it for each possible projection of the multivariate data into a one-dimensional space. That
is, they assign each color to a single real value, being thus a reduced ordering. Benavent et al. [28]
also consider an adaptive partial ordering, which in this case is based on the image histogram. By
considering a smoothed version of the histogram, they obtain a measure of how frequent a certain
color is within the image. To decrease the computational complexity, they average the histograms
of multiple images to obtain a reference color ordering for new, similar images. Lézoray [109] in-
troduced a method that learns a color ordering from the image, being thus an adaptive reduced
ordering. It does so by learning a rank transformation on a complete lattice—which is equivalent
to a total order. Laplacian eigenmaps are used to learn a non-linear projection of the color space.

6.2 Soft Color Morphology Operators

We now formally introduce the Soft Color Morphology basic operators. To do so, we extend the
fuzzy mathematical morphology from Sect. 2.4 to deal with multivariate images. In short, our
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operators work by ordering using mainly the first channel, maintaining (and spreading) the values
of the rest of the channels accordingly.

We define here a method to totally order the colors of an image in a specific neighbourhood,
which is used to define a max and min of a set of pixels. Let us assume we are processing an
image A at the location y, and that we are comparing some colors A(x) for x in the neighbourhood
of y. We are interested in the information contained in the first channel, and so we first order
the spatial locations x by the first component of their color, A1(x). To deal with ties, which are
uncommon in natural images, we first select the spatial location x which is closest—with regard to
the Euclidean distance—to the location of the pixel we are processing, y. Further ties are resolved
with the lexicographical order. That is, ordering by the first channel, then by the second, and so on.
The following definition formally introduces these max and min operators.

Definition 6.1. — Let A : Zn Ñ C be a multivariate image. Let us consider a location y P Zn and a
neighbourhood of y, N Ă Zn. Then, the maximum and minimum of the colors A(x) with respect to y and
N, maxy

xPN
(A) and miny

xPN
(A), are defined as
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∆1 = arg min
xPN

A1(x),

∆2 = arg min
xP∆1

d2(x, y),

miny
xPN

(A) = min
xP∆2

lexicA(x),

where d2 : R2 Ñ R is the Euclidean distance and maxlexic and minlexic are the lexicographic maxi-
mum and minimum.

We emphasize that this ordering, in which ties are first resolved according to the spatial loca-
tion, is not appropriate to define idempotent opening and closing operations. However, any other
ordering would introduce some bias towards a particular color—and we consider that there is not
a consistent order among colors. Besides, resolving ties according to the spatial location is needed
to obtain the full color preservation property (see Proposition 6.9).

Once we have defined an order between colors, we can proceed to define the soft color dilation
and soft color erosion. They are the soft color counterparts to the fuzzy dilation and fuzzy erosion
from Defs. 2.18 and 2.19. They are not defined using the lattice-based definition of morphological
operators, but extending the fuzzy mathematical morphology definition to multivariate images.

Definition 6.2. — Let I be a fuzzy implication function, A : Zn Ñ C a multivariate image and B : Zn Ñ

[0, 1] a structuring element. Then, the soft color erosion of A by B, EI(A, B), is

EI(A, B)(y) = miny

xPdAXTy(dB)

"(
I
(

B(x´ y), A1(x)
)
, A2(x), . . . , Am(x)

)*
.

Similarly, we define the soft color dilation as follows.

Definition 6.3. — Let C be a conjunction, A : Zn Ñ C a multivariate image and B : Zn Ñ [0, 1] a
structuring element. Then, the soft color dilation of A by B, DC(A, B), is

DC(A, B)(y) = maxy
xPdAXTy(dB)

"(
C
(

B(x´ y), A1(x)
)
, A2(x), . . . , Am(x)

)*
.

Essentially, in the absence of ties, the definition selects the spatial location x at which C(B(x´
y), A1(x)) is maximum (of course, restricted to the appropriate domain, x P dA X Ty(dB)). Once the
location is selected, the other channels are simply dragged.
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The soft color morphology operators interpret the first channel as a measure to indicate with
which degree the pixels belong to the foreground or to the background. When processing natural
images with the CIELab color space, the first channel is already very informative, containing the
luminance of a color pixel and disregarding the chromatic information. Using such channel to
discriminate whether the objects belong to the foreground or the background provides a genera-
lization of the same procedure for grayscale and binary images, which is coherent with human
visual perception. In specific applications, practitioners must necessarily provide this information
in accordance with the task they are dealing with, since images from different problems can be of
a really different nature. Besides the luminance channel L˚ in natural images, other examples are
the green channel, in RGB-encoded retinal angiographies; or an artificial channel that orders the
colours according to their frequency, such as in Benavent et al. [28]. Our operators are designed to
easily handle these and similar cases.

Fig. 6.1 shows the soft color dilation and soft color erosion with the balloons image. As shown
in this first example, the soft color dilation makes bright objects larger, while the soft color erosion
diminishes them. We emphasize the behaviour when two objects clash: either one object is placed
over the other or they collide into a well-defined border.

A B C

FIGURE 6.1: Soft color erosion (A), the L*a*b*-encoded Balloons image (B) and soft color dilation
(C), with the minimum t-norm, its residual implication (the Gödel implication) and a 31ˆ31-pixel
Gaussian-shaped structuring element, with σ = 8 pixels and a maximum value of 1. We remark that
the irregular shapes of the eroded balloons reflect their irregular illumination.

Given these two definitions, other morphological operators are defined similarly to the corre-
sponding ones in binary or fuzzy mathematical morphology.

Definition 6.4. — Let A : Zn Ñ C be a multivariate image and let B : Zn Ñ [0, 1] be a structuring
element. Let C be a conjunction and let I be a fuzzy implication function. Then, the soft color opening of A
by B, OC,I(A, B), is defined as:

OC,I(A, B) = DC(EI(A, B), B).

Definition 6.5. — Let A : Zn Ñ C be a multivariate image and let B : Zn Ñ [0, 1] be a structuring
element. Let C be a conjunction and let I be a fuzzy implication function. Then, the soft color closing of A
by B, CC,I(A, B), is defined as:

CC,I(A, B) = EI(DC(A, B), B).

In Fig. 6.2, the soft color opening and soft color closing operators are visualized processing a
600ˆ600-pixel dermoscopic image in the CIELab color space. In it, the skin lesion has a globular
network pattern. The opening provides a darker image, in which small bright blobs disappear, but
the big ones remain. On the other hand, the closing operator has a similar behaviour on the dark
blobs, providing thus a brighter image.

In Fig. 6.3, we demonstrate the effect of using different t-norms. In it, the soft color dilation
and soft color erosion operators are visualized processing a 600ˆ400-pixel image in the CIELab
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A B C

FIGURE 6.2: Soft color opening (A) and soft color closing (C) of a dermoscopy image (B) depicting a
globular network, using the same configuration as in Fig. 6.1.

color space. Different t-norms are used to visualize their behaviour: the closer a t-norm is to the
minimum operator, the greater the impact in the final result. The minimum t-norm and the Gödel
implication provide a stronger response, whereas the Łukasiewicz pair provides the softer one.
This is specially noticeable in high-contrasted regions, such as the grapes, and in regions that pre-
sent texture, such as the pineapple. Although all examples are computed with a t-norm and its
respective R-implication (see Table 2.1, page 11), this does not need to be always the case. More
visual examples are found in Sect. 6.4.

A

B1 B2 B3

C1 C2 C3

FIGURE 6.3: Soft color erosion (B) and soft color dilation (C) of the L*a*b*-encoded,
600ˆ400 image (A), with the minimum t-norm (1), the product t-norm (2), the
Łukasiewicz t-norm (3) and their respective R-implications. It was used a 31ˆ31-pixel
Gaussian-shaped structuring element (σ = 8 pixels and a maximum value of 1).

In Fig. 6.4, different structuring elements are used along with the minimum t-norm and the
Gödel implication. In this 100ˆ100-pixel patch of the jellybeans image, we can visualize how
different structuring elements affect the erosion and dilation operations. Whereas the 1ˆ1 impul-
sive structuring element leaves the image unaffected (both in the case of the erosion and dilation
operators), crisp structuring elements highlight limits between objects and their shades. On the
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other hand, non-binary structuring elements show a smoother response in such limits. Also, a cir-
cular structuring element can be better approximated with a Gaussian decayment than with a crisp
boundaries.

A1 A2 A3 B1 B2 B3

C1 C2 C3 D1 D2 D3

E1 E2 E3 F1 F2 F3

FIGURE 6.4: (1) Soft color erosion and (3) soft color dilation for (2) several
structuring elements : (A) 1ˆ 1 impulsive; (B) 9ˆ 9 Gaussian-shaped; (C) 7ˆ 7
squared flat; (D) 13ˆ 13 bar-shaped with decay; (E) 7ˆ 7 diamond-shaped flat;
and (F) 35ˆ 35 right-neighbourhood structuring element. We remark that the
results of the impulsive structuring element are equal to the original image.

Besides, we can generalize the grayscale concept of pixel-wise difference between two images.
Since we will be using the CIELab color space—which is perceptually uniform, see Sect. 2.2—, we
can generalize such concept to the color framework by computing the pixel-wise Euclidean distance
between images.

We use this fact to also generalize the top-hat operators and the morphological gradient opera-
tor in Defs. 6.6 and 6.7.

Definition 6.6. — Let A : Zn Ñ C be a multivariate image and let B : Zn Ñ [0, 1] be a structuring
element. Let C be a conjunction and let I be a fuzzy implication function. Let d : RnˆRn Ñ R be the
n-dimensional Euclidean distance.

Then, the soft color top-hat by closing of A by B, BT HC,I(A, B), and the soft color top-hat by opening
of A by B,WT HC,I(A, B), are defined as:

BT HC,I(A, B) = d
(
CC,I(A, B), A

)
, (6.1)

WT HC,I(A, B) = d
(

A,OC,I(A, B)
)
. (6.2)

Definition 6.7. — Let A : Zn Ñ C be a multivariate image and let B : Zn Ñ [0, 1] be a structuring
element. Let C be a conjunction and let I be a fuzzy implication function. Let d : RnˆRn Ñ R be the
n-dimensional Euclidean distance.

Then, the soft color morphological gradient of A by B, GC,I(A, B), is defined as:

GC,I(A, B) = d
(
DC(A, B), EI(A, B)

)
. (6.3)
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Also, the internal gradient of A by B, G i
C,I(A, B), and the external gradient of A by B, Ge

C,I(A, B), are
defined as:

G i
C,I(A, B) = d

(
A, EI(A, B)

)
, (6.4)

Ge
C,I(A, B) = d

(
DC(A, B), A

)
. (6.5)

In Section 6.4, most of these operators are shown and are also compared with the corresponding
operators derived from other morphological frameworks.

6.3 Properties

In this section we study the properties of the soft color morphology operators from a mathema-
tical point of view.

6.3.1 Chromatic Preservation in CIELab

When dealing with natural images, it is natural to think that the erosion and dilation should
not introduce colors whose shade or chromatic value was not originally present. The soft color
morphological operators from Defs. 6.3 and 6.2 have been designed with this property in mind.
Therefore, they preserve the chromatic information of colors when the CIELab color space is used.

Proposition 6.8. (Chromatic Preservation in CIELab) — Let A be a CIELab-encoded image with spatial
dimension n, let C be a conjunction and I a fuzzy implication function, and let B be a structuring element.

Then, for all y P dA, there exist x1, x2 P dA such that the components a˚ and b˚ of DC(A, B)(y) and
EI(A, B)(y) are equal to, respectively, the components a˚ and b˚ of A(x1) and A(x2).

Proof. Recalling the definition of the soft color dilation, for a CIELab-encoded image,

DC(A, B)(y) = maxy
xPdAXTy(dB)

"(
C
(

B(x´ y), L˚(x)
)
, a˚(x), b˚(x)

)*
.

Thus, it is clear that the only channel that may have been modified is the first one: the com-
bination (a˚(x), b˚(x)) previously existed (as a matter of fact, in the spatial location x). Since the
chromatic information of a CIELab-encoded color is determined by the combination of the second
and third components, a˚ and b˚, and these channels are preserved, we conclude that such chro-
matic information is indeed kept.

The same argument holds for the soft color erosion.

Of course, this property also holds for the closing and the opening operators, since they are
combinations of dilations and erosions.

6.3.2 Full Color Preservation

In some settings, we should avoid creating colors that were not present in the original image—
not only preserving the chromatic components, but all of them. As already introduced in Sect. 6.1,
this is the so-called false color problem [77].

Our operators from Defs. 6.3 and 6.2 do preserve colors under certain conditions. Specifically,
whenever we are using a binary structuring element and either a semi-norm (for the soft color
dilation) or a fuzzy implication function that fulfills (NP) (for the soft color erosion). The following
proposition provides sufficient conditions to enforce color preservation.
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Proposition 6.9. (Full Color Preservation) — Let A : Zn Ñ C be a multivariate image and let B : Zn Ñ

[0, 1] be a structuring element. Let C be a semi-norm and let I be a fuzzy implication function that fulfils
(NP).

If B(x) P t0, 1u for all x P dB and B(0) = 1, then DC(A, B) and EI(A, B) only contain colors that
appear in A.

Proof. Let us see the case of the soft color dilation first. Since C is a semi-norm, C(a, 1) = a and
C(0, a) = 0 due to C(0, a) ď C(0, 1) = 0 for all a P [0, 1]. Thus, C

(
B(x´ y), A1(x)

)
is either A1(x) or

0. If any of such values is different to zero, then the dilation in the location y P Zn is the maximum
among those colors, all of which appear in A. Otherwise, if all values are 0, since B(0) = 1 we can
derive that A1(y) = 0 and, thus, DC(A, B)(y) = A(y) due to the choice procedure in case of ties.

The soft color erosion has a similar proof. All fuzzy implication functions are increasing in the
second variable, so I(0, a) = 1 for all a P [0, 1] since I(0, a) ě I(0, 0) = 1 for all a P [0, 1]. Since
the fuzzy implication function fulfils the left neutrality principle (NP), I(1, a) = a for all a P [0, 1].
Thus, I

(
B(x´ y), A1(x)

)
is either A1(x) or 1. The same argument that in the case of the soft color

dilation concludes that the color provided was already present in the original image A.

Again, the opening and closing do not create new colors provided the hypotheses of the propo-
sition are satisfied. This is true given that they are just combinations of dilations and erosions, and
neither of them can create new colors.

6.3.3 Generalization of the Fuzzy Mathematical Morphology Operators

Another interesting property of these operators is that they constitute a generalization of the
fuzzy mathematical morphology ones [38] when applied to CIELab-encoded images. In other
words, the soft color morphology operators, when applied to grayscale images encoded in CIELab,
coincide with the corresponding operators from the fuzzy mathematical morphology paradigm
using the same structuring element.

Let us recall the conversion between CIELab and grayscale colors from Def. 2.3. It is given by
the maps π, ı, defined as:

π : L˚a˚b˚ ÝÑ [0, 1](
l, a, b

)
ÞÝÑ l,

ı : [0, 1] ÝÑ L˚a˚b˚

G ÞÝÑ
(
G, 0, 0

)
.

Now, we can state the following proposition:

Proposition 6.10. (Generalization of Fuzzy Mathematical Morphology for grayscale images.) —
Let A : Zn Ñ [0, 1] be a grayscale image and let B : Zn Ñ [0, 1] be a structuring element. Let C be a
conjunction and let I be a fuzzy implication function. Then,

EFuzzy
I (A, B) = π

(
EI(ı(A), B)

)
, DFuzzy

C (A, B) = π
(
DC(ı(A), B)

)
.

where EFuzzy and DFuzzy correspond to the operators from Defs. 2.18 and 2.19.

Proof. To see this, we must prove that, when restricted to grayscale images, our new operators
provide exactly the same results.

We begin by considering the soft color dilation. The CIELab conversion of A is ı(A), where
ı(A)(x) = (A(x), 0, 0), and its support remains unchanged, dı(A) = dA.
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The soft color dilation of ı(A) by B is then:

DC(ı(A), B)(y) = maxy
xPdı(A)XTy(dB)

"(
C
(

B(x´ y), A(x)
)
, 0, 0

)*
.

Regardless the result of the choice procedure in case of ties, the grayscale projection of such
image is:

π
(
DC(ı(A), B)(y)

)
= max

xPdAXTy(dB)

"(
C
(

B(x´ y), A(x)
)*

,

which matches the definition of dilation from the fuzzy mathematical morphology paradigm. The
case for the soft color erosion is proved in a similar way, and it holds for any structuring element B
and fuzzy implication function I.

6.3.4 First Channel Monotonicity

The aforementioned generalization of the fuzzy mathematical morphology is an interesting pro-
perty because it can be leveraged to prove several properties, such as the monotonicity of the soft
color morphological operators. To argue about monotonicity, we must be able to compare both
C-encoded colors and C-encoded images.

This motivates the following definition of h-order [76]:

Definition 6.11. — Given a complete lattice L and a surjective mapping h : C Ñ L, the h-order is the
relation ďh defined as:

c1 ďh c2 ðñ h(c1) ď h(c2), @c1, c2 P C.

In the following, we order the colors according to the first component, induced by the map
` : C1ˆ . . .ˆCm ÝÑ C1. In particular, when considering the CIELab as the color space to be used,
the colors are ordered by their luminance. That is, for any CIELab-encoded color, (l, a, b), the map
` returns the luminance value: `(l, a, b) = l. The following definitions, although valid for any color
space, base their nomenclature on the fact that the first channel contains the luminance—which, in
particular, makes the naming accountable when using the CIELab color space.

Let us now consider the h-ordering given by the map `, denoted as ď` . For any two colors
c1, c2 P C we say that c1 is lighter or equal than c2 when c1 ď` c2. That is, if and only if `(c1) ď `(c2).
This relation lets us extend this notion to the whole image, as captured in the following definition.

Definition 6.12. (First channel order) — Given two images, A1, A2 : Zn Ñ C, we say that A1 is
(pixel-wise) lighter or equal than A2, denoted as A1 Ď` A2 if,

A1 Ď` A2 ðñ for all x P Zn, A1(x)ď` A2(x).

We remark that, although we introduce now an h-order, our mathematical morphology ope-
rators are not based on an h-order, but on the total order presented in Def. 6.1. This h-order is
introduced in relation with two properties: the first channel monotonicity and the first channel
adjunction.

Proposition 6.13. — The relation ď` for colors is a total preorder, and the relation Ď` for images is a
preorder.

Proof. Let us consider three colors c1, c2, c3 P C, and their first channels, li = `(ci) for i P t1, 2, 3u.
Then, either l1 ď l2 or l2 ď l1, so ď` is a total relation—and, therefore, also a reflexive one. Also, if
l1 ď l2 and l2 ď l3, then l1 ď l3, which implies that ď` is transitive. Thus, it is a total preorder.
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With regard to the relation Ď` , let us consider three images A1, A2, A3 : Zn Ñ C. First, since ď`

is reflexive, for all x P Zn, A1(x)Ď` A1(x), which implies that Ď` is a reflexive relation. Second,
if A1 Ď` A2 and A2 Ď` A3, then for all x P Zn, A1(x)ď` A2(x) and A2(x)ď` A3(x). Thus, A1 Ď` A3.
All of the above implies that Ď` is a preorder.

We remark that such relations are not partial orders, since antisymmetry does not hold. We can
now state the monotonicity of our operators as follows:

Proposition 6.14. (Monotonicity) — Let A : Zn Ñ C be an image and let B : Zn Ñ [0, 1] be a
structuring element such that B(0) = 1. Let C be a conjunction and I a fuzzy implication function. Then,

EI(A, B)Ď` AĎ` DC(A, B). (6.6)

Besides, if I is the R-implication of C, then,

EI(A, B)Ď` OC,I(A, B)Ď` AĎ` CC,I(A, B)Ď` DC(A, B). (6.7)

Proof. Since our operators generalize the ones of the fuzzy mathematical morphology (Prop. 6.10)
and the order only takes into account the first component (Def. 6.12), we can translate the result in
[129, Prop. 45] to our framework.

6.3.5 First Channel Adjunction

The fuzzy mathematical morphology, which we extend, has the property of being an adjunction.
That is, under certain constraints on the conjunction C and the fuzzy implication function I, A1 Ď

EI(A2, B) if and only if DC(A1, B) Ď A2 (see Prop. 2.20). We remark that we use the reflection of the
structuing element, B, given our specific definition of erosion and dilation, similar to the definition
by Kerre et al. [129, Def. 12].

Although we consider that the inclusion is not well defined between multivariate images, we
can transfer this property to our setting if we restrict the inclusion to the first channel as an h-
adjunction [76]. Thus, considering the first channel inclusion above defined, Ď` , we may state the
following property.

Proposition 6.15. (h-Adjunction) — Let C be a left-continuous t-norm, I its residual implication and
B : Zn Ñ [0, 1] a structuring element. Then, the operators EI(¨, B) and DC(¨, B) form an `-adjunction.
That is, for all images A1, A2 : Zn Ñ C,

A1 Ď` EI(A2, B) ðñ DC(A1, B)Ď` A2.

Proof. Again we use the fact that our operators generalize the ones of the fuzzy mathematical mor-
phology (Prop. 6.10) and the order restricted to the first component matches that of the fuzzy
mathematical morphology. Therefore, we can translate the result in [129, Prop. 52] to our frame-
work.

6.4 Comparison of Color Morphology Approaches

In this section, the Soft Color Morphology operators are compared with the morphological ope-
rators of other frameworks that deal with color images. They are compared both in terms of their
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characteristics and with visual examples. In particular, Table 6.1 collects practical information re-
garding the nature and application of each algorithm: whether they preserve colors, their compu-
tational complexity, and so on. Later on, the visual comparisons are meant to provide an insight
of their behaviour and compare it with the other frameworks. Since we are designing general ope-
rators, our aim is to make them as interpretable as possible, so practitioners know when and how
to apply them. We remark that a quantitative comparison is not possible: performance metrics can
only be used when facing a specific application, which is out of the scope of this chapter.

TABLE 6.1: Comparison of different approaches to color mathematical morphology. The superscript ˚ indi-
cates that the order is adaptive—that is, it depends on the image being processed, whereas the superscript
˚˚ indicates it depends not only on the color, but also on the spatial location of the pixel. The superscript :

indicates that the generalization is valid only if properly customized.
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1996 Component-wise [78] Marginal RGB ¨ 7 7 Binary [157] 7 7

1998 Bit mixing [47] Reduced RGB ¨ 3 3 Grayscale [75] 7 7

2001 Color reference [153] Reduced CIELab ¨ 3 3 Grayscale [75]: 7 3

2002 Lexic. order (VSH) [116] Lexic. HSV ¨ 3 3 Grayscale [75] 7 7

2012 Histogram-based [28] Partial* CIELab ¨¨¨ 3 3 None 7 3

2012 Random projections [182] Reduced* RGB ¨¨ 3 3 None 7 7

2017 Col. ref. (CIELab Quantale) [178] Reduced CIELab ¨ 3 3 Grayscale [75]: 3 3

2017 Soft color morphology Lexic.** CIELab ¨¨ 3: 3 Fuzzy [55] 3 3

During the rest of the section, we consider all the morphological frameworks contained in Ta-
ble 6.1. Among other features, it explains the type of order between colors, as previously introduced
in Sect. 6.1. The complexity of all of them is at least as high as computing the lattice-based defini-
tion of morphological operators, but it is higher in some situations: the histogram-based version
by Benavent et al. [28] requires computing a histogram of size 100ˆ100ˆ100 and filter it (or pre-
computing it to process images that are similar to a certain database); the random projections [182]
technique requires approximating a supremum over an infinite set of projections with a maximum
over a finite random projections uniformly distributed (specifically, 1000 projections are used in the
original paper). The color preservation, chromatic preservation in natural images and generaliza-
tion of more elementary mathematical morphology frameworks are interpreted as in Properties 6.8,
6.9 and 6.10.

We emphasize that our method uses structuring elements that can be encoded as grayscale
images, whereas the CIELab quantale approach [178] considers multivariate structuring elements.
Lastly, the customization classification goes beyond changing the structuring element: the color
reference [153] and the CIELab quantale [178] morphologies depend on a user-chosen color; the
histogram-based morphology [28] admits coarser or finer smoothings of the histogram, and the
soft color morphology depends on a fuzzy conjunction and fuzzy implication function that model
its behaviour for non-binary structuring elements.

Figures 6.5-6.9 are representations of the same morphological operator for the different methods
in Table 6.1. All methods have been executed with the values of the parameters recommended in the
original articles, using white as the color reference for the method by Sartor [153] and black as the
color reference on the CIELab quantale [178]. The soft color morphology method uses the minimum
t-norm as conjunction and its R-implication, the Gödel implication. To compare a method that
admits non-binary structuring elements with another one limited to binary structuring elements,
whenever a non-binary structuring element is considered, it is thresholded at the level 0.5 to be used
by the latter. On the other hand, for the method by Valle et al. [178], grayscale structuring elements
are mapped into the CIELab, based on the unity element. Lastly, all methods that employed an
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FIGURE 6.5: Erosion by different morphologies, being (1) original 512ˆ512 image,
(2) 7ˆ7 binary structuring element, (A) component-wise [78], (B) bit mixing [47],
(C) color reference for white [153], (D) lexicographical order for VSH [116], (E)
histogram-based [28], (F) random projections [182], (G) color reference in CIELab
Quantale [178], (H) soft color morphology.

adaptive ordering, did so the first time the original image was processed (not after each erosion or
dilation).

Figures 6.5 and 6.6 depict the basic operators: erosion and dilation. We remind that erosion
is meant to shrink objects, whereas dilation enlarges them. Color reference for white seems to
work in an opposite direction as the other frameworks, whereas random projections, being image
dependent, works counterintuitively in the first case, but intuitively in the second. It is noticeable
how the histogram-based technique provides a sharp result in Fig. 6.5 and blurs the original image
in Fig. 6.6, to the point of removing small objects, due to its image-dependent behaviour. The
method based on lexicographic order for the channels VSH provides a singular result: the erosion
contains large bright areas, such as the nose. Although the result of the component-wise operators
seems similar to the soft color operators, we remark that the colors generated are different from
those in the original image. This is not visually evident, but can be detected when comparing it
pixel-wise with the original image. This is specially relevant when using other operators such as
the top-hat or the morphological gradient. However, all of the techniques remove either the eyes
or the eyelashes in Fig. 6.6, since they are almost perpendicular to the non-isotropic structuring
element employed.

Figures 6.7 and 6.8 contain, respectively, the opening and the closing operators. These opera-
tors are meant to remove objects smaller than the structuring element and to remove holes between
objects that are smaller than the structuring element. This behaviour makes them flatten heteroge-
neous regions, transforming textures into more uniform areas. In addition to it, the opening and
the closing should keep the shapes of big objects.

In Fig. 6.7, we observe how the component-wise approach provides a visually similar image to
the original one. Again, the image-dependent morphologies, in Fig. 6.7(e, f), provide significantly
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FIGURE 6.6: Dilation by different morphologies, being (1) original 512ˆ512 image,
(2) 13ˆ13 bar-like structuring element, (3) binarization of (2), (A) component-wise
[78], (B) bit mixing [47], (C) color reference for white [153], (D) lexicographical order
for VSH [116], (E) histogram-based [28], (F) random projections [182], (G) color
reference in CIELab Quantale [178], (H) soft color morphology.

different results, modifying the blue region the former and the red region the latter. We remark that
only the soft color operators employ the non-binary structuring element, since it is the only para-
digm that can meaninguflly handle it. The soft response provided by the non-binary structuring
element provides both sharp contours and smooth regions.

With regard to the closing operator, in Fig. 6.8, most alternatives treat the white background as
the object to be closed, except for the color reference and the random projections algorithms. The
histogram-based method, as a matter of fact, is not able to deal with this artificial image and highly
distorts the boundaries of the objects. Some approaches, most notably the histogram-based closing
in Fig. 6.8(E), do not preserve the shape of the inner squares. The rest of them, including the soft
color operators, are able to deal with this artificial image.

Fig. 6.9 represents a more complex morphological operator, the morphological gradient compu-
ted, which aims at locating the boundaries between objects. To compute it, we do so by considering
the Euclidean distance between the CIELab-encoded dilation and the CIELab-encoded erosion for
each of the frameworks studied (as in Def. 6.7). In this case, the methods with adaptive orderings—
the histogram-based and the random projection ones—do not capture well the gradients near the
mouth. The component-wise method with non-binary structuring element changes the value of
pixels, and this has dramatic effects, since flat regions produce non-zero gradient values.

6.5 Analysis and Conclusions

In this chapter we formally presented the basic operators of the soft color mathematical mor-
phology: the soft color erosion and the soft color dilation (Defs. 6.3 and 6.2), and we also combined
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FIGURE 6.7: Opening by different morphologies, being (1) original image, (2)
50ˆ50 detail of the original image, (3) 9ˆ9 Gaussian structuring element, (4) bi-
narization of (3), (A) component-wise [78], (B) bit mixing [47], (C) color reference
for white [153], (D) lexicographical order for VSH [116], (E) histogram-based [28],
(F) random projections [182], (G) color reference in CIELab Quantale [178], (H) soft
color morphology.

them to create other morphological operators. Then, we studied their properties from a theoretical
point of view in Sect. 6.3, and compared them extensively to other color morphologies in Sect. 6.4.
We end the chapter with a discussion of the comparison and the strengths and weaknesses of the
soft color morphology.

6.5.1 Analysis of the comparison

Regarding color preservation, the only morphology falling short is the component-wise mor-
phology. It is not able to control whether new colors are created or not producing unexpected
results when combining erosion and dilation. The rest of methods, which deal with vectors instead
of independent channels, do not show this weakness.

With regard to interpretability, the soft color and the lexicographical order for VSH morpholo-
gies are interpretable: bright objects are enlarged with dilation and shrinked with erosion. This,
however, is not always the best solution, as can be observed in Fig. 6.8: the closing operator is
assumed to fill the holes within the objects. On the other hand, adaptive orderings fall short in
interpretability: depending on the image, they may produce completely different results. For in-
stance, the same object captured under two different backgrounds may be dealt with in a totally
different way. Besides, extra care should be taken when processing artificial images, such as in
Fig. 6.8, since they may alter unexpectedly the ordering.

Taking into account the visual appearance of results (that is, how natural the processed images
look), almost all methods provide acceptable responses, even the most basic ones. With a closer



96 Chapter 6. Soft Color Morphology
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FIGURE 6.8: Closing by different morphologies, being (1) original 611ˆ764 image,
(2) 7ˆ7 binary structuring element, (A) component-wise [78], (B) bit mixing [47],
(C) color reference for white [153], (D) lexicographical order for VSH [116], (E)
histogram-based [28], (F) random projections [182], (G) color reference in CIELab
Quantale [178], (H) soft color morphology.

look, as in the texture-flattening operator in Fig. 6.7, the soft color morphology operators provide
smoother outputs due to the possibility of using non-binary structuring elements.

Finally, the runtime of methods may also be important in some applications. All of them are
appropriate for off-line image processing, although not for real-time image processing. The fas-
test methods are the ones based on a non-adaptive total ordering—such as morphologies based on
bit mixing, color reference and lexicographical orders and the soft color morphology with binary
structuring elements. These can leverage the lattice-based definition of erosion and dilation. The
component-wise morphology consists on replicating this same operator once per channel, multi-
plying thus the computational complexity by a fixed constant. The soft color morphology operators
do not replicate the same operator several times, but whenever a non-binary structuring element is
used, we must evaluate the fuzzy conjunction (or fuzzy implication function) several times. Com-
putationally, this is roughly equivalent to multiplying the computational complexity of the lattice-
based definition by as many different values as the structuring element has. Lastly, the adaptive
orderings studied here are the most time-consuming methods. They spend the majority of time
creating the adaptive ordering, which has to be done once per image. The histogram-based met-
hod proposes a solution to this problem, consisting on reusing the same histogram if the processed
image is similar to a previously computed one from a statistical point of view.
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FIGURE 6.9: Morphological gradient by different morphologies, being (1) origi-
nal image, (2) 7ˆ7 structuring element, (A) component-wise [78], (B) bit mixing
[47], (C) color reference for white [153], (D) lexicographical order for VSH [116], (E)
histogram-based [28], (F) random projections [182], (G) color reference in CIELab
Quantale [178], (H) soft color morphology.

6.5.2 Strengths and Weaknesses of the Soft Color Morphology Operators

The interpretability of the operators is of paramount importance. Mathematical morphology
encompasses operators that manipulate the shape of objects, and thus they must implicitly define
what is object and what is background in an image. This distinction is harder in color or multivariate
images than in grayscale or binary images. Our approach is to consider that pixels that belong
to the background have higher values in the first channel. This is very intuitive for color images
encoded with the CIELab color space.

On the other hand, these operators can also process images encoded in other color spaces and
general multivariate images—like hyperspectral imagery with a large number of channels. Ho-
wever, in this case the practitioner must choose the channel that best distinguishes the objects of
interest, or estimate this information from a series of channels (for instance, with the histogram-
based approach by Benavent et al. [28]).

The soft color morphology operators fulfill several interesting theoretical properties. Firstly,
they preserve the chromatic information of pixels when using the CIELab color space for color
images. Secondly, they can be tuned to preserve full colors, simply by using a binary structuring
element. We remark that creating new colors may be desirable in some situations like morpho-
logical filtering, where smoothness is favoured over realism, although it may be unacceptable in
other application fields. If color preservation is pursued, the soft color erosion and dilation be-
come equivalent to the lattice-based definition of dilation and erosion, with an order that is highly
interpretable to deal with color images. Thirdly, these operators generalize the fuzzy mathemati-
cal morphology ones, which ensures the monotonicity/antimonotonicity of erosion and dilation,
among other properties. This is also responsible for the soft outputs achieved with non-binary
structuring elements. However, the soft color closing and opening do not inherit the idempotence
from the fuzzy mathematical morphology operators. This, which is due to possible ties when fin-
ding a maximum or minimum color (see Def. 6.1), is not a big problem in practice since ties are
infrequent in natural images.
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The computational complexity is comparable to that of the fuzzy mathematical morphology for
grayscale images, which is low but still greater than that of the lattice-based definition of mathema-
tical morphology. On a CPU Intel c© CoreTM i5 @ 3.10 GHz, the time to process one soft color dilation
or soft color erosion ranges from 81 ms (256ˆ256-pixel images) to 1.56 s (1024ˆ1024-pixel images)
with MATLAB R© code, using the minimum conjunction, the Gödel implication and a 5ˆ5-pixel
Gaussian-shaped structuring element. This performance could be greatly improved with paralle-
lization and GPU-optimized code, further achieving performances enough to be embedded into
real-time systems, as can be seen in Ch. 5 in which an equivalent complex operator achieves such a
real-time performance.
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Chapter 7

Hair Removal in Dermoscopic Images

Dermoscopic images provide useful information towards the diagnosis and classification of
skin lesions, such as dysplastic nevi, lentigo maligna or nodular melanomas, among others. Se-
veral computer vision algorithms have been developed to do so automatically, based on expert
knowledge. A first preprocessing step may be cleaning the image to be able to segment the lesion.
In this chapter, we introduce an algorithm to reduce the noise in dermoscopic images. This includes
the bubbles caused by the immersion fluid and, foremost, the skin hair that is occasionally present.
We remark that hairs in dermoscopic images can be interpreted as dark curvilinear objects accor-
ding to the definition given in Ch. 3. Thus, they can be detected with a similar strategy to the ones
used in Ch. 4.

In Sect. 7.1 we study the specifics of such task, such as typical image settings, and the related
literature. Sects. 7.2 and 7.3 introduce the building blocks for the hair removal algorithm, presented
in Sect. 7.4. We remark that the core of our proposed solution is exclusively based on the soft color
morphological operators introduced in Ch. 6. We conclude this chapter comparing this method
with other state-of-the-art algorithms in Sect. 7.5.

7.1 Introduction

Malignant melanoma, or simply melanoma, is the most dangerous form of skin cancer. Alt-
hough it only represents 4% of all skin cancers, it causes the 80% of deaths related to skin cancer
[86] and presents peaks of appearance between 20 and 45 years of age [88]. In Spain, approximately
5000 new patients are diagnosed each year, which is a quantity increasing around 7% yearly [86].

Dermoscopic imagery is a non-invasive and effective tool towards the clinical diagnosis of skin
lesions [115], both for superficial spreading ones but also in the case of vertically growing melano-
mas [8]. Such images are acquired with a dermatoscope, which is a camera specially designed to
capture small regions and to avoid the reflection of light on the skin surface. Besides employing
with appropriate optics, dermatoscopes avoid such reflections with polarized or non-polarized
light and an immersion fluid (e.g. alcohols or mineral oil).

Computer-aided image analysis technologies can be leveraged to design diagnosis support
tools and thus help practitioners. The impact of such tools is expected to increase due to the gro-
wing quality of dermoscopic devices along with their low cost and high availability. There are,
however, several difficulties when dealing with dermoscopic images. To automatically study the
objects they contain, one of the first steps is the reduction of the noise they present, which inclu-
des bubbles caused by the immersion fluid and skin hair. In this chapter, we present a procedure
that removes hair from dermoscopic images and also reduces the amount of artifacts caused by the
immersion fluid, while largely preserving the texture of skin lesions.

A variety of techniques have been proposed to remove hair from dermoscopic images. The
methods that effectively remove hair in the literature present a two-step pattern: segmentation and
inpainting. The first step, segmentation, is aimed at creating a binary mask tagging the pixels that
will be replaced in the second one, inpainting, with colors that mimick the original skin area.
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A first important algorithm is Dullrazor R©, proposed by Lee et al. in [106]. It uses single-channel
top-hat transforms by closing with three different orientations, followed by a pre-specified thres-
hold, to identify hair. Three binary masks are obtained, one per each of the RGB channels, and the
union of such masks is computed and further refined to avoid objects whose shape is significati-
vely different to a curvilinear object. Hair pixels are replaced by bilinear interpolation between two
close pixels, and further smoothed by an adaptive median filter. On the other hand, Xie et al. [192]
introduced a method that also employs grayscale morphological top-hat transforms followed by a
refinement based on a specific elongation measure. Their inpainting method is based on partial dif-
ferential equations. Inpainting is done with non-linear diffusion filters that preserve the contours
of the lesion by propagating linear structures. Nguyen et al. [132] employed matched filters to face
the same task. Their matched filtering approach uses 18 bar-like kernels with a Gaussian decay-
ment profile. The maximum response is computed out of 18 rotated kernels. This output is further
processed by filtering, binarization and skeleton extraction. The centerlines represented by the ske-
leton are fitted to a Gaussian cross-section profile to avoid false positives and include previously
rejected positives. Similarly to [106], the inpainting step consists on a linear interpolation based on
the neighbouring non-hair pixels. Abbas et al. [1] used Derivative of Gaussians (DoG) as the kernels
of linear filters to extract the curvilinear structures that hairs represent. After some morphological
processing including region linking, circular region removal and hole-filling, the selected pixels are
inpainted with a fast-marching based algorithm. It is a non-iterative algorithm that transports the
image values in a coherence direction, which is obtained as the eigenvector of minimal eigenvalue
of a structure tensor. Better results are achieved when the color space used is CIELab instead of
RGB. Kiani and Sharafat [91] used the Radon transform in grayscale dermoscopic images to detect
the local orientation, which is used as the orientation of the Prewitt edge detector. The removed
pixels are replaced with the average background value and several smoothing averages are perfor-
med to create the final result. Toossi et al. [171] presented a method that detects hairs by means of a
modified Canny edge detector and a morphological post-processing to dilate, remove blobs and fill
holes in the binary mask. Their inpainting procedure combines coherence transport inpainting—as
in [1]—with wavelet decomposition.

Table 7.1 contains a summary of the techniques classified according to their segmentation and
inpainting strategy.

TABLE 7.1: Detection and inpainting techniques employed in the literature to remove hair from dermosco-
pic images. The superscripts indicate whether the procedures use interchannel information, denoting Ñ

that only one channel is used; ” when all channels are processed independently; and V if all channels are
processed simultaneously.

Year Paper Hair segmentation Inpainting method Color space
1997 Lee et al. [106] Grayscale top-hat” Bilinear interpolation” RGB
2009 Xie et al. [192] Grayscale top-hat” Non-linear PDE” RGB
2010 Nguyen et al. [132] Matched filteringÑ Linear interpolation” RGB
2011 Abbas et al. [1] Derivative of GaussiansÑ Coherence transportV CIELab
2011 Kiani et al. [91] Prewitt edge detectorÑ Iterative smoothingÑ Grayscale
2013 Toossi et al. [171] Canny edge detectorÑ Coherence transportV RGB

This work Color top-hatV Morph. inpaintingV CIELab

Our goal is to propose and study a morphological algorithm to remove hair in color dermosco-
pic imagery. Both the segmentation of hair and the inpainting algorithms are designed taking into
account the nature of dermoscopic images: the presence of other sources of noise (i.e. bubbles), the
limited field of view and the need of maintaining the texture and other characteristics of the lesion
to further study it. We design both the segmentation and inpainting stages using the soft color
morphology operators from Chapter 6.
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7.2 Curvilinear Object Detector with Soft Color Morphology Operators

In this section, we introduce a curvilinear object detector for color images based on the soft color
morphology from Chapter 6. More specifically, it is a combination of soft color top-hat transforms
(see Def. 6.6, page 87).

The detector introduced in the following is based on the curvilinear detector from Sect. 4.3.
There are, however, some differences that must be emphasized. First, this detector is designed to
process color images, rather than grayscale ones. It must, therefore, use CIELab-encoded images.
Second, we consider the maximum of several outputs minus their minimum (compare Fig. 4.7, page
56 with Fig. 7.1, page 101). This operation is intended to discriminate isolated pixels. Taking into
account the task at hand, not considering the effect of isolated pixels would have a non-despreciable
impact on the final result.

Given the curvilinear appearance of hair in dermoscopic images, we observe that edge detectors
are not suited for this task. Although they may seem similar algorithms, we are not interested in
locating the boundary between two objects. Instead, our aim is to detect a thin, elongated object
placed in front of a somewhat uniform background. For more details on this difference, the reader
is referred to Sections 3.1 and 3.2.

The curvilinear object detector is based on a combination of soft color black top-hat operators
(see Def. 6.6, page 87). As previously discussed in Sect. 6.2, the black top-hat, or top-hat by clo-
sing, highlights the thin and dark regions that have completely disappeared during the dilation
operation. The formal definition of our detector D, visually depicted in Fig. 7.1, is:

D(A) = max
α

 

BT HC,I(A, Bα)
(

´min
α

 

BT HC,I(A, Bα)
(

(7.1)

where C is a conjunction, I a fuzzy implication function and α ranges over different orientations
of the structuring element Bα. The different top-hat operators differ only on the orientation of
the structuring element B. All of the structuring elements Bα are bar-like shapes with a Gaussian
decayment enclosed in a squared region. We remark that the maximum of the transforms outputs
a high value on both isolated dark pixels and dark thin regions, whereas the minimum only does
so in isolated dark pixels.

A B C
FIGURE 7.1: Two examples of structuring elements, B45˝ (A) and B112.5˝ (B), and workflow of the
curvilinear object detector (C).

We leverage the appearance of hairs in dermoscopic images by fine-tuning the orientations and
size of the structuring elements. Hairs appear as thin, elongated regions with clearly differentiated
photometric features than those of its local background, which is non-uniform. More specifically,
they are darker than the background, with possible brighter surroundings due to noise in acquisi-
tion and to lossy image formats. Besides, their width usually ranges between 4 and 9 pixels and the
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ratio of hair pixels can range from 0% to almost 40% in the images we consider [126]. Specifically,
the parameters used are the minimum t-norm as the conjunction C(x, y) = TM(x, y) = min(x, y);
and its residual implication, the Gödel implication I(x, y) = IGD(x, y) (See Sect. 2.3). We consi-
der structuring elements at 8 different orientations enclosed in 9ˆ9 regions. We remark that these
parameters have been experimentally set.

7.3 Inpainting with Soft Color Morphology Operators

In this section, we present an inpainting method for color images based on the soft color mor-
phology operators (see Sect. 6.2), which is inspired in the grayscale salt and pepper noise filter
presented in [72]. The algorithm iteratively applies a morphological operator to recover missing
pixels based on close ones, while maintaining non-missing pixels.

Inpainting is an image processing technique that consists on recovering the values of missing
pixels [73, 156]. That is, considering that some pixels have a corresponding color associated, whe-
reas others have not, inpainting the latter ones is assigning them a color so that the resulting image
is visually plausible. Inpainting is useful in a variety of situations: to filter noise, to recover printed
photographies that have been physically damaged or to design augmented-reality.

In each location x P Z2, the original image contains either a color (denoted as A(x) = c, which
is an element of the color space, c P C1ˆ . . .ˆCn) or a special symbol, denoting that this specific
value is missing (denoted as A(x) = K or, alternatively, stating that A(x) is missing). In this context,
the dilation and erosion from Defs. 6.3 and 6.2 are slightly modified: (i) pixels that are missing in
the original image are ignored when finding the maximum and minimum, and (ii) whenever there
is no candidate available for such maximum or minimum, the result asigned to the current location
is the value missing: K.

Before presenting the inpainting algorithm, we introduce a morphological operator, R, that
recovers missing pixels based on nearby ones that are not missing. Whenever a missing pixel is
overwritten, it is tagged as recovered and it is assigned the value provided by the operator. It is
defined as the arithmetic mean of the closing and the opening, where the underlying erosions and
dilations are modified as explained above. More formally, given an image An, we compute the
Recovery operator,R(An), as:

R(An) =
OTM,IGD(An, B5) + CTM,IGD(An, B5)

2

where B5 is a 5ˆ5, flat, rounded structuring element, and where the average of a missing value, K,
and any other value is defined as missingK. We remark that the combination of closing and opening
is intended to avoid amplifying just bright or dark objects, while retaining the shape of objects.

We can now define the inpainting of an image A. The algorithm rewrites the pixels that are still
missing as soon as enough information is available, while always maintains pixels whose value is
already known. More formally, the iterative inpainting of an image A is defined as the limiting case
of the following series:

A1 = A, @n P N, An+1(x) =

$

&

%

An(x), if An(x) ‰ K,
R(An)(x), if An(x) = K andR(An)(x) ‰ K,
K, otherwise.

The iterative inpainting of an image sucessfully recovers uniform or thin regions. Flat regions
with missing pixels are perfectly recovered. Gradient-like textures or thin missing regions tend
to be recovered successfully given the appearance of close, similar non-missing pixels in natural
images. Besides, two uniform regions with missing pixels in the boundary are recovered with a
small and soft transition. On the other hand, this inpainting procedure is not appropriate to fill
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large and rounded missing regions, since complex textures are not recovered. Given the reduced
thickness of hair, this does not pose a problem in our context.

Fig. 7.2 contains a visual example in which 90% of all pixels have been randomly tagged as
missing. The rest 10% of pixels are iteratively processed in order to recover the whole image in
the third iteration, where the shape of the objects and their photometric features are successfully
recovered. We remark that a low-resolution image (256ˆ256 pixels) has been used to help visualize
the impact and shortcomings of the method.

A B C

D E F

FIGURE 7.2: Morphological color inpainting of a 256ˆ256-pixel image with 90% of mis-
sing pixels: (A) original image, (B) structuring element in a 5ˆ 5 grid, (C) corrupted
image A0, and (D-F) three iterations of the inpainting procedure.

7.4 Hair Removal Algorithm

Once the two main building blocks have been introduced, the full hair removal algorithm is
presented. The course of the algorithm, composed by a series of sequential operations, is presented
visually in Fig. 7.3 and, more formally, as follows.

1. The original image is encoded according to the CIELab color space (see Fig. 7.3(A)). We emp-
hasize that we divide all values by 100 so that the first channel, L˚, is exactly [0, 1] (see
Sect. 2.2).

2. The image is preprocessed with the Contrast Limited Adaptive Histogram Equalization—or
CLAHE (see Sect. 2.5.2. In particular, the CLAHE is applied to the lightness channel, L˚, while
the chromatic channels a˚ and b˚ are preserved. (see Fig. 7.3(B)).

3. The preprocessed image is used as input to the curvilinear object detector introduced in
Sect. 7.2 (see Fig. 7.3(C)).

4. The output is filtered with a 9ˆ9 median filter to avoid large regions (see Fig. 7.3(D)) and it is
thresholded (with threshold t = 0.1 when working with CIELab images scaled by a factor of
100) to create a binary mask. This binary mask is enlarged two pixels in each direction.
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A B C

D E F

FIGURE 7.3: Hair removal algorithm on the sample IMD092 of the PH2 dataset [126].
(A) original image, (B) CLAHE, (C) curvilinear detector, (D) median filter, (E) binary
mask to inpaint, and (F) final result.

5. The pixels in the binary mask are removed from the original image and are tagged as missing
(see Fig. 7.3(E)).

6. Lastly, such missing pixels are assigned a color value according to the inpainting procedure
from Sect. 7.3, which provides the final result (see Fig. 7.3(F)).

It is designed for middle-sized dermoscopic images (approximately 600ˆ600 pixels) with diffe-
rent pathologies, like the ones in the PH2 dataset [126]. As can be observed in Fig. 7.3, our algorithm
detects and inpaints almost all hair. Besides, it also succeeds at maintaining the features of the le-
sion.

7.5 Experiments and Conclusions

In this section, we compare our algorithm with two state-of-the-art methods, which have been
selected due to their good performance.

Only visual comparison is feasible to compare the behaviour of different hair removal algo-
rithms. This is due to the lack of ground truth and to the fact that a hair removal algorithm should
maintain the lesion’s features, specially its shape, color and texture, which can not be automatically
evaluated. In Fig. 7.4 we show three original images (left), the result of the Dullrazor R© algorithm
[106] (center left), the result by Toossi et al. [171] (center right) and our algorithm (right).

As mentioned before, our algorithm effectively detects and inpaints almost all hair, while hai-
rless images remain almost unchanged, and it maintains the features of the lesion. The shape and
size are never affected due to the behaviour of the closing and opening when inpainting. The color
is not affected either: colors with new chroma can not appear due to the nature of the soft color
morphological operations. The texture of the lesion, on the other hand, is maintained in the ma-
jority of situations. In contrast with other procedures that employ smoothing filters or averages,
our inpainting procedure does not tend to blur lesions: it recovers uniform regions correctly, and
creates smooth but small transitions when inpainting the missing contours of different regions. The
method by Toossi et al. leaves a considerable amount of hair and does not respect textures in gene-
ral. Dullrazor R©, on the other side, removes a fair amount of hair. However, it fails at recognizing
hair within the lesion, and does not always preserve textures when it does so.
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A1 A2 A3 A4

B1 B2 B3 B4

C1 C2 C3 C4

FIGURE 7.4: Comparison of hair removal algorithms. (1) Original, (2) Dullrazor R©

by Lee et al. [106], (4) Toossi et al. [171] (3) and our algorithm; (A) sample IMD039,
(B) sample IMD047, and (C) a detail of sample IMD101 of the PH2 dataset.

The shortcomings of our procedure are mostly found when the occluded region is too large (i.e.
exceeding 30-40% of the whole image) or with extremely wide hair, situation in which all the algo-
rithms compared tend to produce inaccurate results. Besides, as noted by Abbas [1], hair removal
algorithms tend to fail in distinguishing hair and curvilinear structures within the lesion such as st-
reaks, which alters the lesion texture. Although this effect has been minimized, it is still noticeable
in some images.





107

Future Work

The contributions in this thesis represent an extension of some lines of research that are, of
course, not resoluted. First, it furthers the extent of some results, such as the accuracy of real-time
vessel segmentation in retinal images. Therefore, it contributes towards extending these specific
topics. Second, and not least, throughout this thesis some problems have not been fully addres-
sed. They are not the main focus of the thesis, but are side problems or extensions that would be
interesting to address due to different reasons. After developing the contributions in the previous
chapters, we can collect several such problems that, to our knowledge, have become viable and are
at the frontier of today’s knowledge.

We enumerate the challenges arised throughout the previous chapters in the following.

• Create a benchmark to compare curvilinear object segmentation algorithms.
A vast amount of methods have been developed to address a similar task (see Ch. 3). It is of
paramount importance to study their relative effectiveness with the task they are supposed
to face. To do so, we propose the creation of a well-tailored benchmark, associated to concrete
performance measures, such as the ones in Sect. 3.4.2.

An objective comparison between general-purpose curvilinear objects is not an easy task. It
would be naive to think that all the methods studied have been designed taking into account
the same curvilinear objects. Therefore, some of them will perform better in some situations,
such as segmenting objects with very limited curvature, or processing high-noise images.
An appropriate comparison should convey information about the performance of algorithms
with regard to this variability. With this benchmark, practitioners would be able to select the
method that best suits their needs.

• Study combinations of soft color morphology operators.
It seems worth of study whether the soft color morphology operators are as versatile as their
binary or grayscale counterparts. To do so, a first strategy is to combine the soft color erosion
and the soft color dilation into more complex operators. In this thesis, we employ a color
top-hat operator for pattern recognition (see Sect. 7.2) and a color inpainting algorithm (see
Sect. 7.3). Besides extending the erosion and the dilation to a multivariate setting, we have
studied the theoretical properties of the morphological operators that can be created with
them. Also, we have also extended the notion of distance between two natural color images
by using the Euclidean distance in the CIELab color space.

Many more combinations have been proposed for binary or grayscale images, either applying
them sequentially or iteratively. The hit-or-miss transformations poses as another example,
for which the notion of being included in a region must be extended to a multivariate setting.
Noise filtering can be implemented using sequences of opening and closing operations. Mor-
phological contrast mapping is defined as iteratively replacing each pixel’s color by the most
similar color of the corresponding pixel between its dilation and its erosion. More combinati-
ons of erosion and dilation can be found in [75, Ch. 9].

• Employ soft color morphology with n-dimensional and hyperspectral images.
We have studied the behaviour of the soft color morphological operators when dealing with
natural color images (see Sections 6.4 and 7.4). However, these operators are designed to



108 Future Work

process any type of color space (see Sect. 6.2). This line of work consists on studying the
feasibility of employing mathematical morphology with new types of images.

For instance, we could design segmentation techniques for corregistered PET/RM images.
Both PET and RM are single-channel, three-dimensional volumetric images. Thus, a corre-
gistered PET/RM can be regarded as an image of the form A : Z3 Ñ RˆR. Although each
modality is acquired based on a different underlying physical phenomena, they share the
same spatial reference when they are corregistered. We could consider, for example, the task
of segmenting a tumoral region provided its appearance in each of the imaging modalities.
Also, it seems very interesting the application of soft color morphology to extract regions
in kinetic PET images. In this case, they are images of the form A : Z3 ˆZ Ñ R, having
three physical dimensions and a discretized temporal axis. These images can be used to, for
instance, capture the evolution of tissues while absorbing a certain radiotracer.

• Analyse the impact of automatic hair removal in dermoscopic images.
Besides following the research line of further studying dermoscopic images, we are interested
in analysing the hair removal step (see Ch. 7). More specifically, we contemplate studying
how it improves the lesion segmentation and how it worsens the quality of the image. We
emphasize that the inpainting algorithm is generating new information by filling the skin
regions under the hair. The texture of the lesion is, thus, potentially distorted. This may pose
as a very serious problem: the practitioner will potentially see spurious imprecisions, which
could misguide his judgment. Studying this effect is an essential step towards validating it
for a potential clinical use or to limit its results to be used by automatic algorithms.

• Transfer computer science techniques to the medicine.
We recall that Objective 3 was aimed at bridging the gap between computer scientists and
physicians. Given its broad nature, this objective has just been partially addressed in this the-
sis. Chapters 3 and 4 are aimed at reusing work between professionals from different fields.
Ch. 7 was outlined taking into account the first outcomes of a collaboration with an expert
dermatologist, Dr. del Pozo, from the department of the dermatology of the University Hos-
pital Son Espases. Also, the author has been collaborating with Dr. Rubı́ and his team, from the
nuclear medicine department of the same hospital, to model how high-grade cerebral tumors
acquire a certain nutrient. Although this work in progress is not a constitutive part of the
thesis, it has notably contributed to the learning process that has culminated in this thesis.
All the above experiences have revealed the obstacles found when planning the deployment
of computer science techniques into a medical environment.

This future line of work aims at creating, locally, an appropriate environment to design, create
and deploy medical products. Such an environment requires a strong collaboration. Phyisici-
ans perfectly know their needs, whereas other researchers are more aware of what is doable
using the latest developments in their fields, and how to achieve it. We consider that de-
ploying scientific discoveries is not a technical requirement, but an integral part of science.



109

Bibliography

[1] Q. Abbas, M. E. Celebi, and I. F. Garcı́a. Hair removal methods: a comparative study for
dermoscopy images. Biomedical Signal Processing and Control 6.(4) (2011), 395–404 (cited on
pages 100, 105).

[2] M.-A. Abdul-Karim, K. Al-Kofahi, E. B. Brown, R. K. Jain, and B. Roysam. Automated
tracing and change analysis of angiogenic vasculature from in vivo multiphoton confocal
image time series. Microvascular research 66.(2) (2003), 113–125 (cited on pages 21, 33).

[3] R. Abraham, J. E. Marsden, and T. Ratiu. Manifolds, tensor analysis, and applications. Vo-
lume 75. Springer Science & Business Media, 2012 (cited on page 35).

[4] G. Agam, S. G. Armato, and C. Wu. Vessel tree reconstruction in thoracic CT scans with
application to nodule detection. IEEE Transactions on Medical Imaging 24.(4) (2005), 486–499
(cited on pages 21, 22).

[5] C. Alonso-Montes, D. L. Vilariño, P. Dudek, and M. G. Penedo. Fast retinal vessel tree ex-
traction: A pixel parallel approach. International Journal of Circuit Theory and Applications
36.(5-6) (2008), 641–651 (cited on pages 68, 78).

[6] E. Aptoula and S. Lefevre. A comparative study on multivariate mathematical morphology.
Pattern Recognition 40.(11) (2007), 2914–2929 (cited on page 82).

[7] E. Aptoula and S. Lefevre. On lexicographical ordering in multivariate mathematical mor-
phology. Pattern Recognition Letters 29.(2) (2008), 109–118 (cited on page 82).

[8] G. Argenziano, C. Longo, A. Cameron, S. Cavicchini, J.-Y. Gourhant, A. Lallas, I. McColl, C.
Rosendahl, L. Thomas, D. Tiodorovic-Zivkovic, et al. Blue-black rule: a simple dermoscopic
clue to recognize pigmented nodular melanoma. British Journal of Dermatology 165.(6) (2011),
1251–1255 (cited on page 99).
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