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Abstract

Current searches for gravitational waves from compact binaries neglect the higher order

modes (HOM) content of the emitted radiation. In this thesis, the consequences of this

neglection is evaluated in terms of events loss and parameter bias in the context of several

versions of the LIGO detectors. In order to do so, hybrid post-Newtonian/Numerical

Relativity waveforms are used as target signals. An algorithm for the construction of

such hybrid waveforms is presented along with an analysis of the error content and

sources of both post-Newtonian and numerical results. It is found that post-Newtonian

waveforms are mainly affected by truncation errors due to unknown PN corrections while

numerical error is dominated by the value of the radius at which the wave is extracted.

Regarding the effect of higher order modes, it is shown their neglection can cause event

losses in a wide range: from negligible for low mass ratio systems to 25% for high mass

and mass ratio for the shortcoming version of Advanced LIGO. Parameter estimation is

likely to be affected at high mass and mass ratio due to the large higher modes content

of the radiation from such systems.
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Resumen (en castellano)

Durante las últimas décadas, las colaboraciones cient́ıficas LIGO, Virgo y GEO600 entre

otras, han dirigido sus esfuerzos hacia la primera detección de las ondas gravitacionales

predecidas por la relatividad general de Einstein sin que, de momento, ninguna obser-

vación se haya producido . Durante este año y los siguientes, una nueva generación de

detectores diez veces más sensibles que los anteriores explorará nuevamente el cosmos en

busca de señales de ondas gravitacionales, lo que hace a la comunidad cient́ıfica confiar

en que estamos próximos a detectar dicho fenómeno por primera vez.

De las posibles fuentes de ondas gravitacionales, unas de las más prometedoras son

los sistemas compactos binarios (CBC), formados por parejas de agujeros negros y/o

estrellas de neutrones. El proceso de detección de dicha radiación se basa en la técnica

del filtro adaptado (matched filter en inglés) , la cual exige un modelaje preciso de la

señal que se espera detectar. Sin embargo, los modelos actuales empleados como filtro

de dichas señales ignoran su contenido en armónicos superiores, considerando sólo su

armónico dominante. En un śımil musical, ésto es equivalente a modelar una orquesta

considerando sólo, por ejemplo, los instrumentos de viento. Una CBC se divide en las

etapas de inspiral, merger y ringdown. La radiación emitida durante la primera etapa, se

puede calcular mediante técnicas anaĺıticas aproximadas, en el marco de la teoŕıa post-

Newtoniana. Sin embargo, los fuertes campos gravitatorios y altas velocidades presentes

durante la etapa de merger (en la que ambos objetos colisionan) hacen que sea necesario

resolver las ecuaciones de Einstein completas, lo que sólo es posible en el marco de la

relatividad numérica con la ayuda de superordenadores.

Esta tesis se centra en el estudio de las consecuencias de la no consideración de los

armónicos superiores en búsquedas actuales en términos de pérdida de eventos observa-

dos y errores en la medición de los parámetros de la correspondiente fuente. Para ello,

primero se procederá a la construcción de señales de ondas gravitacionales de sistemas

binarios incluyendo armónicos superiores. Ésto se realizará mediante la construcción

de formas de onda h́ıbridas, resultado de combinar modelos anaĺıticos y numéricos, in-

cluyendo en el proceso los armónicos superiores. Este proceso nos permitirá asimismo

estudiar la precisión de la teoŕıa post-Newtoniana y de las simulaciones numéricas a la

hora de calcular dichos armónicos superiores y las correspondientes fuentes de error. Se

obtiene que los cálculos post-Newtonianos están dominados por errores debidos a trun-

camiento mientras que el error dominante en las simulaciones numéricas es el debido a

la finitud de la distancia a la fuente a la que la señal es extráıda.
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En un segundo paso, usaremos las señales constrúıdas como modelos de la señal gravi-

tatoria real de sistemas binarios con esṕın y comprobaremos la eficiencia de los modelos

actuales a la hora de detectar dichas señales y estimar los parámetros del sistema. Los re-

sultados indican que en el marco del diseño final de Advanced LIGO, se esperan pérdidas

de un 10% de eventos para sistemas con cociente de masas q ≥ 6, no llegándose nunca a

un 20%, y los errores en la estimación de parámetros son dominantes para sistemas de

masa total M > 170M� para un signal-to-noise ratio de ∼ 8. Sin embargo, en el caso

de early Advanced LIGO, que entrará en funcionamiento este año, se esperan pérdidas

de hasta un 26% para sistemas de alto cociente de masas y alta masa y los errores en la

estimación de parámetros son dominantes para sistemas de masa total M > 80M�.
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Summary (in English)

During the last decades, a worldwide effort leaded by the LIGO, Virgo and GEO600

have pursued without success the first direct detection of the gravitational waves (GW)

predicted by Einstein’s general relativity (GR). During this year and the next ones, a

new generation of GW detectors up to ten times more sensitive than the previous ones

will explore the cosmos searching for GW signals. This makes the scientific community

to be confident that we are on the verge of the first direct observation of GW.

Among the possible GW sources, one of the most promising ones are the compact binary

coalescences (CBC). These consist of couples of inspiraling black holes and/or neutron

stars which eventually merge. The detection process of these systems is based on the

matched filter technique. This requires to have at our disposal precise models (or tem-

plates) of the signals we expect to detect, which are used as filters of the incoming

signal. However, the templates used in current searches neglect the higher order mode

content of the signal, considering only the contribution from its dominant harmonic. A

CBC can be considered to have three stages: inspiral, merger and ringdown. The GW

radiation emitted during the first stage can be analytically modeled in the framework of

the post-Newtonian (PN) approximation. However, the strong gravitational fields and

high velocities present during the late inspiral and merger makes necessary to solve the

full Einstein equations. This is only possible in the framework of numerical relativity,

with the help of supercomputers.

This thesis is focused on the study of the consequences of the neglection of higher order

modes in current searches in terms of loss of detections and errors in the measurement of

the parameters of the corresponding source. To this end, we will first build GW signals

including higher order modes, that we will eventually use as our model of the real signal.

This will be addressed by constructing hybrid waveforms, combination of the PN and

NR result, including in this process the higher harmonics of the signal. This process

will motivate a full study of the accuracy of the PN and NR higher order modes and the

corresponding sources of error. Results indicate that the dominant error source in PN

those due to the truncation of the PN series while NR errors are dominated by those

due to the finitude of the radius at which the signal is extracted by NR codes.

In a second step, we will use our hybrid waveforms as model of the real signal emitted by

equal spin CBC’s and check the ability of current templates for detecting these signals.
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Results indicate that for the case of the future Advanced LIGO detector, losses of more

than 10% of events will happen due to neglection of higher order modes for systems with

mass ratio q ≥ 6 and total mass M > 100M� and that parameter estimation is likely

to be affected by systematic biases due to neglection of higher order modes for systems

with total mass M > 170M� for a signal-to-noise ratio of∼ 8. However, the situation is

worse for the upcoming early Advanced LIGO, for which losses of 10% happen for q ≥ 4,

reaching values of 26% for the worst cases. Also, systematic parameter biases will affect

parameter estimation for systems of total mass M > 80M�.
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Preface

In the early 20th century, Albert Einstein published his theory of General Relativity

(GR), joining the concepts of space and time in an unique entity, the space-time in

which matter is hosted. Via the celebrated equation

Gµν = 8πTµν

GR states that the curvature of space-time determines matter’s motion as well as matter

determines the curvature of the space-time. Up to now, GR has been extremely success-

ful at describing the behavior of gravity: from the precession of the perihelion of Mercury

to the bending of light rays by strong gravitational sources, its predictions have been

tested with great accuracy. Among those predictions, there is the one that perturba-

tions of the space-time propagate as waves, the so called gravitational waves (GW). The

effect of such waves is to vary the proper distance between particles as the wave passes

through, perpendicularly to its direction. However, the amplitude of gravitational waves

is so tiny that only those produced in extremely violent events would have a chance for

being directly detected. In fact, Einstein himself predicted that gravitational waves

would never be directly detected.

In 1974, Hulse and Taylor provided the first indirect evidence of the existence of gravita-

tional waves via measuring the effect of its emission on the period of the binary neutron

star PSR B1913+16. However, direct detection remains being a challenge. During the

last decade, a worldwide effort lead by the LIGO, Virgo and GEO600 collaborations has

pursued the first direct detection of gravitational waves with not yet positive results.

Their work, however, has served to place limits on the existence of potential sources

and has provided unvaluable knowledge and technology development that makes the

scientific community believe that the first detection will be achieved during the next few

years. Starting this year, the next generation of gravitational wave detectors composed

by Advanced LIGO, Advanced Virgo and KAGRA will come online and eventually reach

sensitivities ∼ 10 times higher than any of its predecessors, multiplying by ∼ 1000 the

xviii



corresponding accessible volume. This generates high expectations for a first direct ob-

servation of gravitational waves and the opening of a new window to the study of the

Universe.

Among the events whose GW emission we hope to detect, the coalescence of two compact

objects (CBC) is one of the strongest candidates. These consist of combinations of

Neutron Stars (NS) and Black Holes (BH) orbiting around each other as they lose energy

in the form of gravitational waves and eventually merge, giving birth to a perturbed Kerr

Black Hole. The first stages of this process can be modeled analytically by means of

the post-Newtonian (PN) approximation. However, the full Einstein’s equations need

to be solved for describing the latter ones and eventual merger. Given their high non-

linearity, the equations need to be solved numerically in supercomputing clusters. This

is addressed in the context of Numerical Relativity (NR).

Searches for GW from CBC’s require having precise models of the signals we aim to

detect, otherwise the detection process will degrade and the parameters of the sources

can be misidentified. However, up to now, searches have used models that do only

consider the dominant part of the gravitational radiation, neglecting the contribution

of the so called higher order modes. In this thesis we will deal with the construction of

signal models that consider this contribution contribution and evaluate the impact of

its current neglection.

Structure of this thesis

The first three Chapters constitute a review of all the material used in the later ones.

In particular, Chapter 1 provides an introduction to general relativity and gravitational

waves, focusing finally in compact binaries. Chapter 2 is meant to be an overview of

most of the formalisms used for computing gravitational wave signals. It will make spe-

cial emphasis on the role of higher order modes and serve as a catalogue from where

current post-Newtonian formulas can be found in a single document. Last, Chapter 3 is

an introduction to GW data analysis. I have tried to provide a very direct exposition of

the different formulas and methods used for afterwards focusing on their intuitive inter-

pretation, which I think is the key for taking advantage of them. Only the very last part

of this chapter contains original results, when sine-Gaussian glitches are discussed.These

were obtained in collaboration with the LIGO group at the Albert Einstein Institute for

Gravitational Physics, AEI Hannover. As a summary, in these three chapters I have

tried to include all I would have liked to find when I was a first year graduate student.

They are directed to them.



The remaining chapters constitute original results obtained as a fruit of my research

in collaboration with the LIGO groups in UIB, the University of Cardiff. Chapters 4

and 5 are the core of [1], developed in collaboration with Dr. Alejandro Bohe (UIB &

AEI Golm), Profs. Sascha Husa and Alicia M. Sintes (UIB) and Prof. Mark Hannam

and Dr. Michael Puerrer (U. Cardiff) who kindly provided us with the BAM waveforms

employed. These results did also partially contributed to [2], leaded by Mr. Vijay Varma

(ICTS Bangalore & Caltech) and Prof. Parameswaran Ajith (ICTS Bangalore). Finally,

Chapter 6 constitutes the generalization to aligned spin searches and several detector

noise curves of the results in [2]. These two clearly distinguishable studies contain, in

Chapters 4 and 6 respectively, their own specific introduction, description of previous

studies, goals and methodology that completes and details the global basic notions

provided along the introductory chapters. Finally, Chapter 7 provides a summary of

final conclusions and possible ways in which the presented work could be extended.



Chapter 1

Introduction to Gravitational

Waves

1.1 Brief overview of General Relativity

In the framework of general relativity [3], the space-time consists of a 4-dimensional

manifold equipped with a Lorentzian metric g 1 which determines its geometry. In the

absence of any gravitational field, the metric g reduces to the Minkowski flat metric,

which defines the so called flat space-time. η2. In curved spacetime, a curve with

tangent vector X is a geodesic if ∇XX = 0, where ∇ is the covariant derivative given by

the Levi-Civita connection. This means that X is parallely transported along a curve

with tangent vector X, which is the statement that there is no acceleration along the

curve. A vector K is said to be a Killing vector if it satisfies LKg = 0, L denoting the

Lie derivative. In other words, this means that the metric g is constant along curves

with tangent vector K. If there exists a smooth, non vanishing vector field T that

satisfies TµT
µ < 0 then we can defined future (past) directed curves as the ones defined

by a tangent vector X such that XµTµ < 0(> 0), and time-like (space-like) or null if

XµXµ < 0 (> 0) or 0. In GR, physical trajectories follow future-directed causal curves,

i.e., time-like if it corresponds to massive particles and null in the case of massless ones.

Furthermore, free particles follow future-directed causal geodesics.

1Signature {-,+,+,+}
2η = diag{−1,+1,+1,+1}

1
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κµ

Causal trajectories

Future Directed Trajectories

xi

t

Figure 1.1: Left: Representation of Moon’s geodesic motion in the grav-
itational field of the Earth due to the curvature of the spacetime (Credit:
scienceblogs.com/startswithabang/2013/01/09/a-though-experiment-for- the-relativity
skeptics/. Rigth: 2D summary of trajectories in GR represented in flat spacetime:
the coloured cones represent the set of causal trajectories starting at the origin while

the upper green one represents the future directed (physical) ones.

The Einstein equation, which gives the relation between space-time curvature and matter

motion is given, in natural units 3 by

G = 8πT, (1.1)

where matter is described by means of the T stress-energy tensor and the curvature of

space-time is encoded in the Einstein’s tensor G, with components given by

Gµν = Rµν −
1

2
gµνR. (1.2)

Here R and Rµν are the Ricci scalar and the Ricci tensor, respectively defined as

R = gµνRµν (1.3)

Rµν = Rσµσν , (1.4)

where Rµνρσ is known as the Riemann curvature tensor. It can be computed as

Rµνρσ = ∂ρΓ
µ
νσ − ∂σΓµνρ + ΓτνσΓµτρ − ΓτνρΓ

µ
τσ, (1.5)

where Γµνσ are the Christoffel symbols of the metric g defined by

Γµνρ =
1

2
gµσ
(
∂νgσρ + ∂ρgνσ − ∂σgνρ

)
. (1.6)

3Newton’s constant G = 1 and speed of light c = 1.
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1.2 Linearized theory of General Relativity

The Einstein equations consists of a system of coupled non-linear partial differential

equations, for which very few exact analytical solutions are known. As an example,

the Friedmann-Robertson-Lemaitre-Walker (FRLW) solution, describes an homogenous,

isotropic spacetime. Closer to our interests, the Schwarzschild solution describes an

spherically symmetric stationary space-time, while the Kerr one describes an axisym-

metric one. Furthermore, they describe spacetimes respectively hosting an static and a

rotating blach hole.

Despite this lack of exact solutions, for many astrophysically relevant cases the gravi-

tational field is actually weak, which allows to express the metric g as a perturbation

to the flat metric η. This gives raise to a linearized theory of general relativity (LGR),

in which the equations we have to face are linear and can be explicitly solved in many

cases. Gravitational waves appear in the context of LGR and we will thus see how they

are obtained.

1.2.1 The linear Einstein’s equation

The assumption that the gravitational field is weak implies that for some coordinate

system, that we will call almost inertial coordinate system, the metric tensor g can be

expressed as a small perturbation to the Minkowski metric η as

gµν = ηµν + hµν (1.7)

|hµν | << 1. (1.8)

The inverse g−1 of the metric tensor g has components

(g−1)µν = gµρgνσgρσ = gµν . (1.9)

Then, to first order in h we can express

gµν = ηµν − hµν , (1.10)

where

hµν = ηµρηνσhνσ. (1.11)

This means that although index raising and lowering is performed by means of the metric

g, in the following derivation we shall do it using the Minkowski metric η. Next, the
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Christoffel symbols take the form

Γµνρ =
1

2
ηµσ
(
hσρ,ν + hνσ,ρ − hνρ,σ

)
, (1.12)

where hµν,σ ≡ ∂σhµν . As we only want linear terms in h, we can drop all the ΓΓ terms

in (1.5), so that the Riemann tensor takes the form

Rµνρσ =ηµτ

(
Γτνσ,ρ − Γτνρ,σ

)
=

1

2

(
hµσ,νρ + hνρ,µσ − hνσ,µρ − hµρ,νσ

)
.

(1.13)

The Ricci tensor becomes

Rµν = ∂ρ∂(µhν)ρ −
1

2
∂ρ∂ρhµν −

1

2
∂µ∂νh. (1.14)

where A(µ,ν) = 1
2(Aµν + Aνµ) is the symmetrization of the tensor A, being A[µ,ν] =

1
2(Aµν −Aνµ) the corresponding antisymmetrization and h ≡ hµµ = gµσhσµ = ηµσhσµ.

We can now proceed to write down the linearized version of the Einstein’s tensor as

Gµν = ∂ρ∂(µhν)ρ −
1

2
∂ρ∂ρhµν −

1

2
∂µ∂νh−

1

2
ηµν

(
∂ρ∂σhρσ − ∂ρ∂ρh

)
. (1.15)

As in the full theory, the Einstein tensor is related to the matter content by (1.1). Before

writing the corresponding linear version of Einstein’s equation, it is convenient to define

h̄µν = hµν −
1

2
ηµνh, (1.16)

with inverse and trace

hµν = h̄µν −
1

2
h̄ηµν

h̄ = h̄µµ = −h.
(1.17)

The linear version of Einstein’s equation can now be expressed, after a little bit of algebra

as

Gµν = −1

2
∂ρ∂ρh̄µν + ∂ρ∂(µh̄ν)ρ −

1

2
ηµν∂

ρ∂σh̄ρσ = 8πTµν . (1.18)

The gauge symmetry of linearized general relativity & the wave equation

A fundamental principle of GR is the statement that physics is invariant under general

changes of coordinates given by general diffeomorphisms xµ → φ(xµ). In other words, the

laws of physics are the same in any reference frame. This means that diffeomorphisms

are the gauge symmetry of GR or more mathematically, that in a manifold M with
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metric g and energy-momentum tensor T , physical laws take the same form as in the

same manifold M with metric φ∗(g) and energy momentum tensor φ∗(T ). Here φ∗(A)

denotes the pull-back of A by φ. However, in linearized theory, we do not consider

general metrics but only those that are small perturbations of the Minkowskian metric

η . We then have to restrict to diffeomorphisms such that φ∗(g) can be expressed as

(1.8).

Diffeomorphisms can be expressed as a function of a generator vector X and a parameter

t. For t� 1, the pull-back of a tensor T under a diffeomorphism φ can be expressed as

an expansion around the original tensor T as

(φ−t)(T ) = T + tLXT +O(t2), (1.19)

so for the metric g we have

(φ−t)(g) = g + tLXg + ... = η + h+ Lξη + .... (1.20)

where ξµ = tXµ � 1, so that we can neglect terms involving ξh. We deduce then that

the metrics h and h + Lξh describe physically equivalent metric perturbations. Hence,

while GR has the gauge symmetry g → φ∗(g), the linearized version has h → h + Lξh
for small ξµ. The Lie derivative of a 2-tensor can be expressed as (Lξη)µν = ∂µξν +∂νξµ.

Putting all together, we can write the gauge symmetry of LGR as

hµν → hµν + ∂µξν + ∂νξµ. (1.21)

Note that then, under a gauge transformation we get

∂ν h̄µν → ∂ν h̄µν + ∂ν∂νξµ, (1.22)

so that we can choose ξµ such that ∂ν∂νξµ = −∂νhµν , which imposes the gauge condition

∂ν h̄µν = 0. (1.23)

This gauge is known as the Lorentz, de Donder or harmonic gauge. In this gauge the

Einstein’s equation (1.18) becomes simply

∂ρ∂ρh̄µν = −16πTµν , (1.24)

which is a wave equation for the components of h̄ with a source described by the com-

ponents of the energy-momentum T . The solution can be then obtained as long as

appropriate conditions are given by means of the Green function.
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1.2.2 Gravitational Waves

Fundamental Properties

Although we will be interested in gravitational waves generated by a source with energy-

momentum tensor T , fundamental properties of gravitational waves can be deduced from

the study of the vacuum solution. In such a case we have Tµν = 0 and (1.24) reduces to

∂ρ∂ρh̄µν = 0, (1.25)

whose solution can be expressed as a superposition of plane wave solutions as

h̄µν = R(Hµνe
iκρxρ). (1.26)

From now on we will drop the real part R symbol. With this solution (1.25) reduces to

simply

κρκ
ρ = 0, (1.27)

which implies that the wavevector κµ is a null vector and gives the first fundamental

property of gravitational waves: they propagate at the speed of light. Substituting the

trial solution (1.26) in the gauge equation (1.23) reveals

κµHµν = 0, (1.28)

which gives a second fundamental property: the perturbations of the metric Hµν carried

by gravitational waves are transverse to their direction of propagation given by κµ.

Degrees of freedom of a gravitational wave

In order to find out the number of independent components of Hµν let us take advantage

of the eq. (1.23). Note that this equation, although allowing for the election of a gauge

does not fully determine ξµ. A transformation hµν → hµν + ∂µξν + ∂νξµ will preserve

the wave equation provided that

∂ν∂
νξµ = 0. (1.29)

This means that there are further degrees of freedom we can take advantage of for further

constraining the wave solution Hµν . Consider then

ξµ = Xµe
iκρxρ . (1.30)
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This trivially satisfies (1.29) because κ is null. Using that under a diffeomorphism h̄

transforms as

h̄µν → h̄µν + ∂µξν + ∂νξµ − ηµν∂ρξρ, (1.31)

we can deduce that we have the residual gauge freedom

Hµν → Hµν + i(κµXν + κνXν − ηµνκρXρ), (1.32)

that we can now exploit to impose conditions on the 4 components of X. These can be

chosen such that the resulting H satisfies

H0µ = 0 (1.33)

which imposes the longitudinal gauge condition and determines 3 components of X, and

Hµ
µ = 0, (1.34)

which determines the 4th component and imposes the so called trace-free condition.

From (1.17) we see that in this gauge hµν = h̄µν .

Altogether, we can count the total number of degrees of freedom we are left with. First,

the fact that Hµν is symmetric gives 10 initial degrees of freedom. The wave vector

equation (1.27) imposes 1 constraint and the transversality condition (1.28) imposes 3

more. Furhter, the 4 degrees of freedom used for imposing the longitudinal and trace-free

conditions (1.33) and (1.34) reduce the total degrees of freedom to 10 − 8 = 2. These

correspond to the two gravitational wave polarizations H+ and H×. For instance, taking

use of all of our constraints, a gravitational wave traveling along the z-direction with

propagation vector κµ = (1, 0, 0, 1) will be written as

Hµν =




0 0 0 0

0 H+ H× 0

0 H× −H+ 0

0 0 0 0




(1.35)

Effect of a gravitational wave

Now we get to the question of how one would measure the effect of a gravitational wave

with associated perturbation h of the flat metric η. A natural way of determining this

for a given observer at a point p would be to locally distribute a set of test particles and

observe any displacements S between the particles and p. These are governed by the
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geodesic deviation equation

ua∇b(uc∇cSα) = Rabcdu
bucSd, (1.36)

where S is the geodesic displacement vector and u is the four-velocity of the observer.

However, as this deviations are measured in some reference frame ,i.e., in some basis,

we need to discriminate whether these correspond to a change of basis or to actual

displacements of the particles.

In order to do so, let us consider an observer following some generic worldline with

four-velocity u. Now, at some point p in his worldline, consider a local inertial frame

whose local spatial coordinates are X, Y , Z. In this frame, the observer is at rest.

Now the observer places some measuring rulers along the X, Y , Z directions and some

test particles along the same axes at an initial distance of say 1 unit. This defines an

orthonormal basis {eα} on the tangent space at p where ea0 = ua and eai are space like

vectors which satisfy

uae
a
i = 0 (1.37)

gabe
a
i e
b
j = δij , (1.38)

we can extend this basis to the entire worldline of the observer by parallely transporting

the {eα} basis along the worldline with tangent vector u. Note that the time-like vector

e0 remains trivially constant while the remaining ones will satisfy ub∇beai = 0, which

uniquely determines the basis. Also, since parallel transport preserves inner products,

we know that the basis will remain orthonormal. We can then be sure that any changes

in the geodesic deviation vector S will be due to real increases in the distance from the

observer to a particle. Substituting values one can express (1.36) as

d2Sα
dτ2

= Rabcde
a
αu

bucedβS
β. (1.39)

Here τ is the proper time of the observer and note that Sα = eaαSa corresponds to one of

the components of Sa in our paralelly transported frame. We can further consider our

observer to be at rest, i.e., uµ = (1, 0, 0, 0) so that

d2Sα
dτ2

' Rµ00νe
µ
αe
µ
βS

β. (1.40)

and using (1.13) we get
d2Sα
dτ2

' 1

2

∂2hµν
∂t2

eµαe
µ
βS

β. (1.41)
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Choosing the spatial-like vectors of our orthonormal basis aligned with the x,y,z axis at

p then we simply get
d2S0

dτ2
=
d2S3

dτ2
= 0. (1.42)

which implies that the observer will not see any acceleration of the test particles in the

z directions along which the GW propagates. If the observer sets initial conditions by

which the derivative of S3 is zero initially then it will be constant for all time. The same

can be applied to both S0 and its derivative so that S0 = 0 always. However for the

remaining two coordinates this does not hold. Consider that initially xµ = (τ, 0, 0, 0)4.

Then for the + polarized component of the GW we get

d2S1

dτ2
= −1

2
ω2|H+| cos(ωτ − α)S1 (1.43)

d2S2

dτ2
=

1

2
ω2|H+| cos(ωτ − α)S2, (1.44)

(1.45)

where α = argH+. Since H+ is small we can solve perturbatively plugging a zero order

solution Si = S̄i into the RHS of (1.45) and then solve for Si in order to get

d2S1

dτ2
'
(

1 +
1

2
ω2|H+| cos(ωτ − α)

)
S̄1 (1.46)

d2S2

dτ2
'
(

1− 1

2
ω2|H+| cos(ωτ − α)

)
S̄2, (1.47)

(1.48)

the result being the same for H× but rotated π/4. Thus the effect of a perturbation

h to the flat metric η is to change the distance from the test particles to the observer

simultaneously in the x and y directions: it enlarges one while stretching the other at

the same time and viceversa as depicted in 1.2 for the two possible polarizations.

1.2.3 Gravitational Waves far from a source

The quadrupole formula

The previous discussion considered the case in which a perturbation of the metric η

propagates in vacuum, i.e., we considered Tµν = 0. In a real case however, there will be

a source described by a non-zero energy-momentum tensor T that will generate a grav-

itational field which far from the source will add a tiny perturbation to the Minkowski

metric η. This means that now the equation we need to solve is the original wave

4This means t = τ along the worldline described by the observer
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H� Polarization � Polarization

Figure 1.2: Effect of the two GW polarizations in a set of test particles set on a circle
around a locally inertial observer.

equation

∂ρ∂ρh̄µν = −16πTµν , (1.49)

which can be analytically solved using the retarded Green function

h̄µν(t, x) = 4

∫
d3x

Tµν(t− |x− x′ |, x′ |)
|x− x′ | , (1.50)

(1.51)

where at x far from the source, described by x
′
, we have |x| � |x′ | ∼ d 5 and we can

expand in r ≡
√
x− x′ . Integrating by parts, neglecting surface terms in the integrals

and taking into account the conservation of the energy momentum tensor, ∇µTµν = 0,

one gets to the equations for the metric h̄

h̄i,j(t, x) ' 2

r
Ïi,j(t− r) (1.52)

h̄00(t, x) =
4

r

∫
d3x

′
T00(t

′
, x
′
) ≡ 4E

r
(1.53)

h̄0i(t, x) =
4

r

∫
d3x

′
T0i(t

′
, x
′
) ≡ −4Pi

r
, (1.54)

where Ïij =
∫
d3xT00(t, x)xixj is the second moment of the energy density. We can

choose coordinates such that Pi = 0 and then we shall write E = M , M being the

rest mass (total mass in practice) of the system. Applying conservation of the energy-

momentum tensor on the equation for h00 shows that the energy of the system E is

constant. However, GW do carry energy out of the system. For seeing this, we need to

go beyond the linear approximation. As obtaining in detail the formula for the radiated

5Note that r is the source-detector distance and d gives the size of the source.
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energy would take us some more pages of algebra, we here will just state that the average

radiated power is given by the so called quadrupole formula (for details, see for instance

[4]).

< P >=
1

5
<

...
Qij

...
Qij >, (1.55)

where Qij = Iij − 1
3Ikkδij is known as the quadrupole tensor. This formula does give

us the clue for the kind of system we can expect to radiate GW. For example, for an

spherically symmetric body, Qij = 0 and thus such a system will not radiate. Also, a

body propagating at constant velocity in straight line will have Ïij = 0 and will also not

radiate.

Last, note that the value of the GW perturbation depends on the location it is evaluated

at not only via the distance r. This is, the radiation is not spherically symmetric. In for

example, spherical coordinates (r, θ, φ) centered on the source, the dependance on (θ, φ)

can be noted from the xixj term in Ïij =
∫
d3xT00(t, x)xixj . In the following chapters

we will see how of the strain tensor h on the location and the intrinsic parameters of

the source can be separated by decomposing h in a basis formed by the so called -2

spin-weighted spherical harmonics.

An example for a source: Compact Binary Systems

In this thesis we focus on the study the GW radiation emitted by the coalescence of

compact binary objects. During the first stages of this process both objects inspiral

each other describing quasi-circular orbits. Their separation is large enough that the

velocity of the objects v is much lower than the speed of light c and the gravitational

field that one body generates in the position of the other is low enough to allow for a

first description in terms of Newtonian theory. For simplicity, consider that each body

has a mass m = M/2, and that their separation is given by d � 4M . Making use of

Newton’s second law we obtain Mv2/d ∼ M2/v2 which gives v ∼
√
M/d. The typical

magnitude of the quadrupole tensor Q is Md2 so that
...
Q ∼ Md2/T 3 ∼ (M/d)5/2 and

P ∼ (M/d)5. This means that the more compact the radiating system is, the more

power it will emit. Note that in GR, an astrophysical body must satisfy that its radius

is not smaller than the Schwarzchild radius 2M and then (in the non-relativistic regime)

d > 4M . Furthermore, common stars are such that d � M and then the radiated

power will be quite low. However, for very compact objects like neutron stars (NS)

or black holes the magnitude of d will be comparable to that of M . Introducing the

corresponding values in the formula for the amplitude of the GW we get

h̄ij ∼
Md2

T 2r
∼ M2

dr
. (1.56)
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More concretely, in the center-of-mass frame, the non-zero component of the energy

momentum tensor T , T00 will be given by delta distributions corresponding to two

bodies A and B with total mass M

xiA = M3η
rd2

(
cos(ωorbt), sin(ωorbt), 0

)
(1.57)

xiB = −m1
m2
xiA = −qxiA, (1.58)

where again v2 = M/d and ωorb =
√
M/d3 = v/d. Here we have introduced the

assymmetric mass ratio η = m1m2/M
2 and the mass ratio q = m1/m2, where m1 and

m2 denote the individual masses of the compact objects. If we introduce the values in

the formula for h (1.54) and choose our observer to be along the z-axis of the system we

get

hi,j =
4M3η

rd2




− cos(2ωorb(t− d)) sin(2ωorb(t− d)) 0

− sin(2ωorb(t− d)) cos(2ωorb(t− d)) 0

0 0 0


 (1.59)

Looking at (1.59) we can see that the strain h produced by a binary system in a point p

at a distance r decays as 1/r, is proportional to the total mass M and to the compactness

of the system given by M/d, and that its frequency is twice the orbital one. The above

calculation corresponds to the Newtonian limit of the problem, when d→∞. In order to

obtain realistic estimates of the GW emission during the whole evolution of the system

we need to take into account the energy loss via GW, which is responsible for the orbit

to shrink. This is the starting point of the so called post-Newtonian (PN) expansion.

In order to get again a feeling of the magnitude of the perturbation that a GW will

cause, consider a binary black hole for which the individual masses are M = 10M�

located at 100Mpc with a separation d close enough such that the coalescence will take

place in 1 year. Plugging a value of d = 20M gives an estimate of h ∼ 10−21 for a GW

with a frequency of ∼ 100Hz. This is the kind of systems that the GW observatory

LIGO is more likely to observe.

Of course, these are not the only possible emitting systems. In general, very violent

systems with varying quadrupole moment are likely to emit GW radiation detectable by

future GW detectors. In particular, radiation from rotating neutron stars, supernovas or

remnants from the Big Bang are among the sources whose GW emission will be searched

for.
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Experimental evidence for gravitational waves: The Hulse & Taylor pulsar.

In 1974, Hulse and Taylor [5, 6] measured the variation of the period of the binary system

PSR B1913+16 and compared it to the one predicted by GR due to GW emission. As

mentioned before, as the system radiates, the size of its orbit decreases and the period

diminishes. One of the neutron stars of this system is what is called a pulsar: a very

rapidly rotating NS that emits a beam of radio waves periodically in our direction. This

period is extremely stable and can be measured to very high accuracy, which in turn

allows for a very accurate measurement of the period of the binary. Concretely GR,

predicts for this system a decrease of 10µs per year. This is measured nowadays with

0.2% accuracy, providing very strong indirect evidence for the existence of GW. Hulse

and Taylor were awarded the Nobel prize in 1993. The discovery in 2004, [7] of the first

double pulsar (PSR J0737−3039) has provided a new laboratory for the study of the

strong gravity regime whose results have so far agreed with GR predictions [8, 9].

Figure 1.3: Results obtained by Hulse and Taylor & for the PSR B1913+16 BNS.
Dots represent experimental data while the solid line represents the GR prediction due

to GW emission. Credit: [10].

1.3 The quest for the direct observation of gravitational

waves

1.3.1 Why gravitational waves?

All the information from the Universe that the human being has access to, comes ei-

ther in the form of photons in a wide wave-length spectrum or massive particles such
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as cosmic rays. These provide fundamental information about the physical processes

that happened during the evolution of our Universe such as Galaxy and Star forma-

tion, supernovas, Nucleosynthesis or the Big Bang itself. However, there are two clear

limitations on the information that these kind of messengers can provide us with.

First, there exist objects in the Universe that due to their nature are invisible in terms of

photons or particles such as black holes and the dark matter. In particular, black holes

are objects so dense that not even light can scape from their so called event-horizon.

However, precisely due to their high density, they constitute an excellent candidate for

GW emission, specially when two of them form a binary system. The proximities of

a black hole is an excellent example of a region governed by a strong-gravity regime,

in which GR can be tested in situations where it has not yet been and thus, where

alternative theories of gravity have a chance to be discarded or given some plausibility.

All current knowledge about the existence and properties of black holes are due to the

effects they generate on their surroundings. As an example, due to the conservation of

the angular momentum, gas falling to a black hole usually forms accretion disks that

get hotter the closer it is to the black hole. The most inner regions of the disk have

temperatures such large that vast emission of X-rays takes place. Also, astrophysical

black holes evaporate via radiating the so called Hawking radiation [11]. However, the

radiated power is so low that only that emitted during the very last stages would have

a chance to be detected. Since the lifetime of a black hole is comparable to that of

the Universe, only primordial black holes would be at that stage. Currently, there exist

experiments searching for such a radiation. [12].

Secondly, when we look at the Universe we look at its past. The light we detect unveils

how the Universe was in the moment it was emitted from the corresponding source and

allows us to study its evolution. Naively, this would allow us to receive information

from the beginning of the Universe itself. However, in the early stages of the Universe,

its high density caused photons to be continuously emitted and re-absorbed, making

impossible for them to freely travel. It was not until the Universe density decayed due

to its expansion, and became transparent, that photons of a certain energy were able

to freely move, during what is known as the last-scattering epoch. Such photons arrive

to us nowadays forming what is known as the Cosmic Microwave Background (CMB)

[see Fig.1.4]. This constitutes the oldest information from the Universe we currently

have access to. It was discovered by Arno Penzias and Robert Wilson [13] in 1964. The

CMB was a predicted consequence of the models of a non-stationary Universe which

considered the concept of a Big Bang, in contrast with the steady-state Universe model

defended by Fred Hoyle. On the other hand, the Universe has always been transparent

to gravitational waves, which in principle would allow to obtain information from earlier

stages of the Universe.
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Figure 1.4: Temperature map of the Cosmic Microwave Background. The color code
denotes the temperature of the CMB radiation as a function of the sky location. The

average temperature is 2.725K with fluctuations of ∼ µK.

1.3.2 Brief summary of gravitational wave detectors and sources.

Ground-based Interferometers

The scientific community has pursued during the last decades the first direct detection

of GW, which would be the starting point of the GW astronomy. This quest has been

led by the LIGO, Virgo, GEO600 and TAMA collaborations. The LIGO Scientific Col-

laboration (LSC) has operated three interferometric detectors: 2 co-located in Hanford

(Washington, USA), with arm-lengths of 4 and 2 km respectively and a third one located

in Livingston (Louisiana, USA), with an arm length of 4km. The Virgo collaboration

is a joint french-italian project which has operated a 3km interferomenter located at

Cascina (Italy). The GEO600 detector, located at Hannover (Germany), although not

being comparable in terms of its highest sensitivity to LIGO or Virgo, serves as a test

bank for the technology to be implemented in future GW detectors. It is also much more

sensitive in the high frequency band ∼ 1kHZ than LIGO and Virgo and it is the only

operational GW detector until early Advanced LIGO enters its first science run, sched-

uled for Fall 2015. GEO600 would be sensitive nowadays to nearby supernovae. Finally,

the 300m long TAMA-300 detector located in Tokyo (Japan), was for years the most

sensitive detector in the world, before LIGO and Virgo entered their operational period

in 2002 and 2006 respectively. The several science runs performed by these detectors

are summarized in Fig.1.5. Although none of them has provided a detection of GW, the

results obtained have allowed for setting upper limits on the number of astrophysical

sources emitting GW [14–17] and also for the development of more sensitive detectors

that will enter their operation period during the current year: Advanced LIGO [18, 19],

Advanced Virgo [20, 21] and also, the japanese observatory KAGRA [22]. It is expected
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that this new generation of detectors will increase their sensitivity by a factor of ∼ 10,

thus incrementing the sensitive volume by a factor of ∼ 1000.

Figure 1.5: Summary of the science runs performed by the LIGO, Virgo, GEO600
and TAMA detectors. Credit [23].

Ground-based interferometers are most limited by the seismic noise and by newtonian

gravity gradients at low frequencies and shot noise at high ones. The first can be miti-

gated by isolating the detector via improving the suspensions but the detectors cannot

be shielded from gravitational field changes, which is exactly what we intend to measure.

This has pushed the lower frequency cutoff of ground based detectors up to 40Hz for the

case of initial LIGO (20Hz for the case of Virgo) and is expected to get down to 10Hz for

the design version of Advanced LIGO. Terrestrial interferometers such as LIGO are sen-

sitive to the ∼ 10− 103Hz frequency band, achieving Advanced LIGO ∼ 104Hz. This is

the region of the GW spectrum in which mid-mass compact binaries such as binary neu-

tron stars, neutron star-black hole binaries and and low and intermediate mass binary

black holes are expected to radiate. Also, rapidly spinning NS and triggered supernovae

are expected to radiate in these frequency range together with some components of the

so called cosmological stochastic GW background. We will focus on these sources later.

Fig.1.6 provides a summary of the different sources and the frequency band they are

expected to radiate in.

Space-based Interferometers

Supermassive black hole binaries (SMBBH), extreme mass ratio inspirals (EMRI) or

young stellar-mass binaries are expected to radiate in the ∼ 10−5 − 1Hz range. This is

the domain of space-based detectors like the old LISA project and the current eLISA

mission [24, 25]. These consist of laser interferometers whose arm length is of the order of

106km, making them sensitive to signals orders of magnitude weaker than current ground

based detectors. The eLISA mission has been recently chosen as a L3 mission by the

ESA and is aimed to be launched by 2034. Meanwhile, the upcoming LISA Pathfinder



Chapter 1. Introduction to Gravitational Waves 17

mission, planned to be launched by the fall of 2015, will demonstrate the technology

necessary for eLISA. The extremely high sensitivity of a detector like eLISA adds the

extra-difficulty of confusion noise. While for ground based detectors, GW events are

expected to be transient events in a terrestrial background noise, space-based detectors

will be sensitive to a background GW produced by astrophysical sources among which

specially loud ones should be individually identified. For instance, the original LISA

mission was very likely to be affected by a background of signals coming from binary

systems in our galaxy. The lower sensitivity of eLISA makes it not sensitive to such a

background.

Figure 1.6: Summary of the GW spectrum and the detectors expected to be sensitive
to it. Credit: NASA.

Pulsar Timing Arrays

Pulsar Timing Arrays (PTA) aim to detect the effect of GW in the 10−7−10−9Hz range.

Detecting such a signals with interferometry techniques would require detectors larger
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than the Solar System itself due to their enormous wave-length. Instead, PTA’s measure

the periodic variances in the arrival times of pulsar electromagnetic signals. The passage

of a gravitational by the Earth distorts the space-time and thus our flow of time with

respect to the one in the location of the pulsar. This makes the rate of arrival of signals

to change from that expected when the effect of GW’s is neglected. The main source

PTA’s are expected to observe is an astrophysical background of signals coming from

SMBBH systems, among which some particularly loud signals might be isolated [26].

The extremely low frequency spectrum: BICEP-2 & Planck

Space based electromagnetic measurements like those performed by the satellite Planck

or the BICEP-2 experiment have among their goals to detect the effect of extremely

long wavelength GW waves, like those generated during the inflationary era [27, 28] (or

cosmological GW background). The expected effect of such a GW is the presence of

a particular polarization pattern in the CMB known as B-modes. On the early 2014,

the science team involved in the BICEP-2 collaboration claimed to have observed the

direct effect of this early GW in the polarization of the photons forming the CMB [29].

This statement was soon put into doubt and further results [30] obtained by the Planck

[31] mission pointed that the BICEP-2 measurement is very consistent with the effect

expected due to particular models of galactic dust by which the data is likely to be

contaminated.

1.4 The LIGO detector: brief overview

1.4.1 Gravitational Wave interferometry

Gravitational wave signals are extremely weak. In particular, the order of magnitude of

the expected strain for CBC’s is of the order of h ∼ 10−21. Recall that h is adimensional

and represents the fractional displacement ∆L/L that the proper distance L between

two test particles would vary as the GW passes through. If we consider L to be of the

order of L ∼ 1km ( as the LIGO detectors are ), then ∆L is of the order of ∆L ∼ 10−18m.

This means that we want to measure displacements of a length a thousand times shorter

than that of a hydrogen nucleus. The way LIGO addresses this challenge is based

on large laser interferometers. The spin= 2 nature of the gravitational field, makes

that the best approach that can be taken is to consider a Michelson L-shaped set-up

as the one depicted in Fig.1.7. With this design, the displacement generated on each

arm is Lx
y

= L ± ∆L and the total relative change on the length of the arms will be
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Figure 1.7: LIGO interferometer. Credit[CERNcourier]

∆LArms/L = 2∆L/L. Note that the larger the length L of the arms is, the larger ∆L

will be for a given GW strain h, thus the more sensitive the detector will be.

The way a GW interferometer works can be summarized as follows. A single laser beam,

which is emitted from “laser” (see, Fig.1.7, light green) is split into two secondary beams

at the beam splitter (in red). The resulting beams travel along the two arms and get

reflected by mirrors located at test masses (pink) at the end of each arm, returning then

to the intersection. The test masses can freely move and will thus vary by ∆L their

position if a GW wave signal passes through the detector. This will modify the length

of each arm by ±∆L, thus changing the original optical path that the beams would

have travelled. The set-up of LIGO is such that if no GW affects the detector, the

original optical paths are such that the beams arriving-back to B interfere destructively.

If however, a GW passes through changing the length of the arms, some light will be

detected. A given GW will produce a particular light pattern as a function of time. GW

templates describe the expected pattern that a particular source would generate. GW

searches consist then on comparing the incoming signal with a “catalog” of waveforms

at our disposal. Provided that these waveforms do really represent what they are meant

to, and that incoming signals are loud enough, one can then in principle identify the

parameters of the source that emitted the GW.

1.4.2 Noise sources

The passing of a GW is not the only reason why the detector might read data. There

are lots of different effects that can affect the detector, whose combined effect yields a

background noise in which an eventual GW might be buried. Several of these sources
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can create signals of a size orders of magnitude larger than the one due to the actual

GW. We here give a review of the most important ones.

• Seismic noise: among all the noise sources, seismic noise will have a crucial role

in this thesis. This consists of ground vibrations in the surrounding environment.

These can be due by either natural sources or to human ones like a train passing

near the detector. This causes the mirrors in the detector to need an extremely

good isolation. To this end, they are suspended from pendulums that act as me-

chanical filters above their intrinsic resonance frequency. Furthermore, the mirrors

are actively isolated by compensating their spurious movement using magnets that

correct their position. The lowest frequency at which the system can be isolated

from seismic noise is known as the seismic wall. This was located at 40Hz for

initial LIGO [32]. A value of 30Hz is considered for the 2015 version of Advanced

LIGO [33, 34] while the design version is expected to lower it down to 10Hz [19].

This will crucially affect the results obtained in Chapter 6.

• Thermal noise: this refers to the thermal vibrations affecting the mirrors and the

corresponding suspensions. This is tackled using materials of a high quality factor

Q, i.e., by confining vibrations in a small frequency band.

• Shot noise: is given by the statistical nature of the light quanta detection. The

uncertainty of this process can be reduced by incrementing the power of the emitted

laser. A way to tackle this issue, is the usage of the so called power recycling mirrors

which coherently re-inject into the beam light that was previously sent-back to the

laser source and that would otherwise be wasted.

• Radiation pressure noise: the quantum nature of lasers makes that the larger the

power is the larger uncertainty there is in the momentum transferred to the mirrors.

The usage of squeezed light [35] tackles this issue by reducing the uncertainty in

the momentum to the cost of increasing the one present in quantities that are

irrelevant for GW analysis.

• Gravity gradient noise: this is due to changes in the Newtonian gravitational field.

These have not affected measurements up to now but are expected to do so when

GW detectors are able to operate at lower frequencies, i.e., once the seismic wall

is lowered to 10Hz.

Altogether, Fig.1.8 shows the predicted curves for the three versions of LIGO used in

this thesis together with the strain h̃2,2(f) expected for a non-spinning q = 1 source of

total mass M = (15, 50, 100, 200)M� for an optimally oriented detector located 1Gpc

away from the source. The waveforms belong to the PhenomC family [36]. We consider
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the High-Energy-Power-Zero-Detuned noise curve [19], as this corresponds to the design

goal of Advanced LIGO whose seismic wall is located at 10Hz. However, the sensitivity

given by this noise curve is not expected to be achieved until ∼ 2018. For this reason,

in this thesis we also consider the so called Early Advanced LIGO noise which is the

one predicted for the shortcoming runs starting in 2015 [33, 34]. The sensitivity is a

bit lower and more important for our studies, the seismic wall is at 30Hz. Also, since

no detections were made in the past science runs performed with initial LIGO [32], we

dedicate some effort to elucidate how neglection of higher order modes HOM could have

affected these measurements. The noise curve of initial LIGO is quite similar to that of

Early Advanced LIGO: it has lower sensitivity and similar seismic wall.
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Figure 1.8: The three noise curves considered along this thesis together with the
amplitude of the Fourier transform |h̃2,2(f)| (accordingly re-scaled) of a signal from a
non-spinning q = 1 source of total mass M = (15, 50, 100, 200)M� (from bottom to
top) located at 1Gpc and for an optimally oriented detector. The two vertical lines
correspond to the 10Hz and 30Hz frequency cutoffs considered for Advanced LIGO and

the other two detectors respectively.

1.4.3 Astrophysical sources of Gravitational Waves for ground-based

detectors

GW associated to Gamma Ray Bursts

Gamma Ray Bursts (GRB) are the most violent electromagnetic events that take place

in the Universe. These can be produced when a NS-NS or NS-BH binary coalesces.

In particular, the detection of GW associated to GRB gives strong evidence that the

primogenitor of the GRB is a compact binary and helps to distinguish between NS-NS

and NS-BH. Another typical scenario is the collapse of rapidly rotating massive stars to
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eventually form black holes or neutron stars, which commonly happens after a supernova

explosion. A supernova generates GW emission provided it is not spherically symmetric.

Given the complexity and numerous physical processes involved in a supernova, there are

no templates of such a radiation. Searches for these sort of GW are based on coherent

techniques such as the X-Pipeline [37]. Coherent searches combine data from several

detectors before analysis, and create a single list of candidate events. In contrast, in

incoherent searches like ihope [38] or gstlal [39], candidate events are normally obtained

from each detector independently, and one looks for events of similar duration and

frequency band that occur that occur in coincidence in all detectors.

Continuous Waves

Compact rapidly rotating non-spherically symmetric bodies continuously emit GW as

they rotate [40]. This makes highly rotating neutron stars a perfect candidate for the

detection of such a kind of gravitational waves. In particular, defects on its surfaces such

as non-symmetric distortions and unstable oscillations of the fluid part of the star are

likely to contribute to the emitted radiation. In particular, measurements of GW from

NS are a perfect tool for testing the different proposals for the equation their equation

of state. Due to the weakness of the emitted radiation, the detection of this sort of

GWs requires measurements over long periods of time [41, 42]. Searches for continuous

gravitational waves can be classified in 3 categories, depending on our a priori knowledge

of the source. In targeted searches [43], the parameters of the source are assumed to

be known with great accuracy and the observation time can extend to the order of a

year. In directed searches [42], only the sky location of the source is known, while its

frequency and its time derivatives are unknown. Finally, all sky searches for unknown

pulsars cover the full parameter space of signals [44]. These are computationally limited

due to the wide range of parameters one has to look at and the long observation time

required to obtain enough signal power.

Compact Binary Coalescences

This thesis is dedicated to the study of Compact Binary Coalescences (CBC). These

consist on pairs of NS and BH that inspiral each other describing orbits which shrink

as they emit GW. Eventually, both objects coalesce during the merger phase and give

birth to a perturbed Kerr black hole that settles to a Kerr black hole during the so called

ringdown phase. Although GW are produced during the whole process, these increase

their amplitude and frequency as the orbit shrinks, generating a chirping signal that

reaches its maximum when the objects merge. The settling of the resulting perturbed
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Kerr black hole, during the so called ringdown stage, produces characteristic radiation

that can be expressed as a sum of quasinormal modes. Since we know the signal we

expect from a CBC, searches for them [17, 45, 46] are based on the matched filter tech-

nique [47], which consists on the filtering of the incoming data with the templates of the

radiation we expect to observe. This templates can be computed in different frameworks

that will be introduced in the next chapter. These range from analytical expressions

computed in post-Newtonian (PN) and Effective-One-Body (EOB) [48–51] formalisms

for the early emission to numerical results obtained by means of Numerical Relativity

[52–55] with the help of computer clusters. The latter allow for the description of the

late inspiral, merger and ringdown. There exist also combined waveforms such as hybrid

PN/NR waveforms [1, 36] and NR callibrated EOB, called EOBNR models that allow for

describing the whole coalescence by means of a single Inspiral-Merger-Ringdown (IMR)

waveform. Furthermore, continuous analytical families of IMR waveforms can be ob-

tained by fitting phenomenological models to a given discrete set of hybrid waveforms.

These are known as Phenom [36, 56, 57] models. Also, alternative theories of gravity

such as scalar-tensor field theories predict the triggering of scalar fields (or matter scalar-

ization) in the presence of strong gravitational fields. This would in particular impact

the shape of gravitational waves emitted by NS-NS and NS-BH systems in which the

NS would undergo scalarization [58, 59]. Also, burst searches can be sensitive to CBC’s,

especially for the case of high mass BBH.

Figure 1.9: Examples of the described sources of GW. A GRB, the Supernova Cas-
siopiea A, and a CBC. GRB Image credit: NASA / Swift / Cruz deWilde.



Chapter 2

Waveforms for Compact Binary

Coalescences

In Chapter 1, derived the expression of the GW strain h when the tensor Tµν is computed

using Newtonian theory, which is valid in the limit where the distance between both

compact objects tends to infinity. The computation of the waveform describing the GW

emission during the whole coalescence requires taking into account further effects like

the energy loss via GW, the flux of energy through the event horizons of the black holes

(if present) or the coupling between the spins of the individual objects with each other

and with the total angular momentum of the binary. Also, for the case of neutron stars,

the inclusion of effects like the tidal disruption, the presence of local asymmetries (or

mountains) and different equations of state (EOS) give a different prediction for the

resulting emission. During the last decades several techniques have been developed in

order to compute GW waveforms, each of them having different accuracy and different

computational cost. These can be roughly classified in the analytical post-Newtonian

(PN) expansions [60], perturbation theory [61] and self-force calculations [62–64], the

Effective One Body (EOB) formalism [48] and the more recently developed Numerical

Relativity (NR) solutions [53, 65, 66]. Together with these, one of the main objects

of this thesis, the hybrid waveforms, combine the PN and NR results into a single

object. Among other utilities, these serve for the posterior development of the so called

phenomenological waveforms. Also, hybrid waveforms can be injected into simulated

detector noise in order to test the ability of GW search codes like iHope [38], gstlal

[39],[67],[68] or pycbc [69] for detecting GW signals. In the present chapter we will give

a review of the PN and NR formalisms and solutions, whose accuracy we will discuss

in Chapter 5. For completeness, we will also give a brief overview of the remaining

mentioned models except for the hybrid waveforms, which we will describe in detail in

Chapter 4.

24
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2.1 Parameters of a CBC

Before discussing several possible approaches to the modeling of GW radiation, let us fix

frames of reference and notations. We will normally use a reference frame whose origin

is located at the source. The location of a point p in the sky of the source will be then

described in spherical coordinates (r, θ, ϕ). These will be chosen such that the z-axis,

defined by θ = 0, is aligned with the orbital angular momentum ~L of the binary. The

distance r between the source and a detector located at p will be eventually substituted

by the corresponding luminosity distance dL. With these conventions, a system will be

said to be face-on oriented to the detector if the latter is located at θ = {0, π} and

edge-on when θ = π/2. Once we place a detector at a point p, its response to a GW

will depend on the orientation of its arms with respect to the propagation vector of

the GW. This is encoded in the so called antenna patterns of the detector, that will be

introduced later in Chapter 3. In order to describe it, we will use a frame of reference

centered on the detector. The location of the source in the sky of the detector will then

be described in spherical coordinates (r, θ̄, ϕ̄). The arms of the detector will be aligned

with the positive x̄, ȳ axis defined by θ̄ = π/2, ϕ̄ = {0, π/2}. Both systems are depicted

in Fig. 2.1. Finally, the polarization angle ψ, determines relative rotation of the arms of

the detector with respect to the “+” and “×” components of the GW. We will choose

our conventions such that when the detector arms are normal to the propagation of

the waveform, the polarization angle ψ between the arms of the detectors and the “+”

polarization is ψ = 0. i.e, the arms coincide with the ‘+” component of the GW. This

uniquely defines the antenna pattern (3.3) of the detector, that we will introduce in

Chapter 3.

For completeness, let us now enumerate all the parameters that a GW signal will depend

on. We begin by the two component massesm1 andm2. These are usually encoded in the

total mass M = m1 +m2 and the mass ratio q = m1/m2. It is also common, especially

in post-Newtonian theory, the usage of the asymmetric mass ratio η = q/(q+ 1)2, which

allows to further define the so called chirp massMc = Mη3/5. Apart from their masses,

each component of the CBC will in general have a spin ~Si with three components. This

gives us a total of 6 more parameters. In this thesis we will pay attention to systems

whose spins are aligned (and anti-aligned) with the orbital angular momentum ~L 1, so

that we will only have two χi ≡ Szi /M spin components. Let us just recall that in

standard GR, the spin S/M of a black hole has to satisfy the Kerr condition S/M ≤ 1.

This is an imposition due to the Cosmic Censorship hypothesis, by which space-time

singularities are hidden behind event horizons. The Kerr solution describing a rotating

black hole would give raise to a naked singularity if S/M > 1. Nevertheless [70], showed

1That we will align with the z−axis of our reference frame centered on the binary.
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that the spin of a black hole can be made to exceed the Kerr limit if it is placed in a

bath of an scalar field with negative energy. The solution is however not stable and we

will thus consider that interesting astrophysical sources do satisfy the Kerr limit.
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�S2

�L
θ

ϕ
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m2

To detector

Orbital Plane
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ȳ
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θ̄

ϕ̄

To Source

Detector Plane

−k̂

Figure 2.1: Top: Source frame used in this thesis. The red solid arrow points to the
location (θ, φ) of the detector, so that it is parallel to the propagation vector ~k of the
GW. Bottom: Detector Frame. The solid green arrow points to the location of the
source. In other words, it is antiparallel to the propagation vector ~k of the incoming
GW. The two blue positive x̄ and ȳ axes are aligned with the arms of the detector. dL

denotes the luminosity distance between source and detector.
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It will be useful to also define an effective spin as χ = χ1m1+χ2m2

M . The “No Hair

Theorem” states that a black hole is specified by its mass, charge and spin [71].However,

a charged astrophysical black hole would automatically disperse its charge Q and thus

we will always consider Q = 0. Although in some moments we will find it convenient

to express results as a function of Mc or η, we will usually refer to the set of variables

(q,M, χ) that we will collectively denote as Ξ ≡ (q,M, χ). We will eventually denote

the set of extrinsic angular parameters (θ, ϕ, θ̄, ϕ̄, ψ) ≡ Λ.

2.2 The post-Newtonian Approximation

The post-Newtonian approximation consists of a weak-field, slow-motion approximation

to the true GR problem in which relevant quantities are expanded around the zeroth-

newtonian order ones as a sum in powers of (v/c)2n or (M/c2d)n, where n determines the

n-PN order. For example, the well known Kepler law (ωd)2 = GM/d is valid at zeroth

order. GR corrections add higher powers of the PN-expansion so that in a general form

we have

(ω2
orbd) =

GM

d
+
∑

n

an(θ, ϕ)

(
GM

dc2

)n
. (2.1)

The modifications to the Kepler formula are required for a description of the orbit that

predicts it to shrink. Note that at the zeroth-Kepler orbit regime, the two bodies would

orbit forever at a constant distance d, and GW emission would not make them coalesce.

2.2.1 Energy and Flux

Standard PN calculations consider quasi-circular adiabatic orbits. This is, both bodies

move in circular orbits whose radius decreases at a very slow rate, so that the radial

velocity is negligible compared to the orbital one. Asuuming that all the emitted power

is due to GW emission, this is what makes the orbit to shrink. One needs then a formula

that relates the energy loss rate of the system with the change of the frequency of the

orbit. This is given by the quadrupole formula (1.55),

− L =
dE

dt
=

1

5
<

...
Qij

...
Qij >, (2.2)

where L is the luminosity or flux of the binary. The zeroth order strain computed in

Chapter 1 was of the form

h(t) =
4Mηv2

r
e−i(2ωorbt+φ0), (2.3)
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This does not describe the entire radiation of the source but rather one of its compo-

nents: that for which its frequency is twice the orbital one. This is due to the expression

we have used for the tensor Q, which has been retained at quadrupolar order. In general,

the tensor Q is obtained as a multipolar expansion in which each term gives raise to new

components of the GW radiation. As we will see later in this Chapter, the GW emission

can be expressed in general as a superposition of several modes h`,m, with frequencies

∼ mωorb, weighted by the corresponding coefficients. In general, the contributions to the

total GW phase φ come from the ∼ mωorb contributions of each mode h`,m. Also, extra

corrections aPDF from complex parts of the amplitude of the h`,m modes. This said,

(2.3) corresponds to the zero PN order quadrupolar component of the total GW emission.

In order to compute the orbital frequency ωorb one needs expressions for the energy

and flux of the system. Once these are obtained, and assuming that the system evolves

adiabatically one can obtain t(v) by applying the chain rule

dE

dt
=
dE

dv

dv

dt
= −L(v)⇒ dv

dt
= − L(v)

dE/dv
, (2.4)

for afterwards obtaining an expression for the phase of the binary applying

φorb =

∫
ωorb(t)dt, Mωorb = v3. (2.5)

The PN approximation provides an expansion of these and related quantities in powers

of the expansion parameter v/c. The expression for the energy E(v) and the flux L(v)

are known up to 3.5PN order [72]. In order to express them, let us adapt the formalism

in [72] and define

x =

(
GMωorb

c3

)2/3

M = m1 +m2

δM = m1 −m2 ν = µ/M =
m1m2

M2

~S ≡ ~S1 + ~S2
~Σ ≡

( ~S2

m2
−

~S1

m1

)

S` = ~Sˆ̀ Σ` = Σˆ̀.

(2.6)
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The up-to-date expression for the energy including 3.5PN non-spinning corrections [72]

and 3.5PN spin-orbit [73] corrections reads then

E(x) =− µc2x

2

{
1 + x

(
− 3

4
− 1

12
ν

)
+ x2

(
− 27

8
+

19

8
ν − 1

24
ν2

)

+ x3

(
− 675

64
+

[
34445

576
− 205

96
π2

]
ν − 155

96
ν2 − 35

5184
ν3

)

+ x3/2

[
14

3
S` + 2

δM

M
Σ`

]
+ x5/2

[(
11− 61

9
ν

)
S` +

δM

M

(
b− 10

3
ν

)
Σ`

]

+ x7/2

[(
135

4
− 367

4
ν +

29

12
ν2

)
S` +

δM

M

(
27

4
− 39ν +

5

4
ν2

)
Σ`

]}
.

(2.7)

Corrections to the energy due to spin-spin interaction have been recently computed up

to 3PN order [74] and read

ESS(x) =− 1

2
Mνc2x

1

G2M4

{
x2

[
S2
` (−κ+ − 2) + S`Σ`(−

δM

M
κ+ − 2

δM

M
+ κ−)

+ Σ2
`

(( δM
M κ−

2
− κ+

2

)
+ ν(κ+ + 2)

)]

+ x3

[
S2
`

((
− 5 δMM κ−

3
− 25κ+

6
+

50

9

)
+ ν

(
5κ+

6
+

5

3

))

+ S`Σ`

((
− 5 δMM κ+

2
+

25 δMM
3

+
5κ−

2

)
+ ν

(
5 δMM κ+

6
+

5 δMM
3

+
35κ−

6

))

+ Σ2
`

((
− 5 δMM κ−

4
− 5κ+

4
+ 5

)
+ ν

(
5δκ−

4
+

5κ+

4
− 10

)

+ ν2

(
− 5κ+

6
− 5

3

))]}
.

(2.8)

However, during the development of this thesis, SS corrections where only used up to

2PN [75]. Here we have introduced the variables (κ+ = κ1 + κ2 and κ− = κ1 − κ2),

where κi measures the deformation of the corresponding compact object. It is equal to

1 for a black hole while for a neutron star it ranges in κ ∈ (4 ∼ 8) depending on the

equation of state considered [72]. The corresponding expression for the luminosity (or

flux) including 3.5PN non-spinning corrections takes the form

LNS(x) =
32c5

5G
ν2x5

{
1 +

(
− 1247

336
− 35

12
ν

)
x+ 4πx3/2

+ x2

(
− 44711

9072
+

9271

504
ν +

65

18
ν2

)
+ πx5/2

(
− 8191

672
− 583

24
ν

)

+ x3

[
6643739519

69854400
+

16

3
π2 − 1712

105
γE −

856

105
ln(16x)

+

(
− 134543

7776
+

41

48
π2

)
ν − 94403

3024
ν2 − 775

324
ν3

]}
.

(2.9)
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where γE denotes the Euler constant. Spin-orbit effect corrections are known up to

3.5PN order [73] and given by

LSO(x) =
32c5

5G
ν2

(
x13/2

Gm2

){
− 4S` −

5

4

δM

M
Σ`

+ x

[(
− 9

2
+

272

9
ν

)
S` +

(
− 13

16
+

43

4
ν

)
δM

M
Σl

]

+ x3/2

[
− 16πS` −

31π

6

δM

M
Σ`

)

+ x2

[(
476645

6804
+

6172

189
ν − 2810

27
ν2

)
S` +

(
9535

336
+

1849

126
ν − 1501

36
ν2

)
δM

M
Σ`

+ x5/2

[(
− 3485π

96
+

13879π

72

)
νS` +

(
− 7163π

672
+

130583π

2016
ν

)
δM

M
Σ`

]}
.

(2.10)

The corresponding spin-spin corrections have also been recently computed up to 3PN

order [74] and read

LSS =
32ν2

5

c5x5

G

1

G2M4

{
x2

]
S2
` (2κ+ + 4) + S`Σ`(2

δM

M
κ+ + 4

δM

M
− 2κ−)

+ Σ2
`

((
− δM

M
κ− + κ+ +

1

16

)
+ ν(−2κ+ − 4)

)]

+ x3

[
S2
`

((
− 41 δMM κ−

16
− 271κ+

112
− 5239

504

)
+ ν

(
− 43κ+

4
− 43

2

))

+ S`Σ`

((
− 279 δMM κ+

56
− 817

56
+

279κ−
56

)
+ ν

(
− 43 δMM κ+

4
− 43 δMM

2
+
κ−
2

))

+ Σ2
`

((
279 δMM κ−

112
− 279κ+

112
− 25

8

)
+ ν

(
45 δMM κ−

16
+

243κ+

112
+

344

21

)

+ ν2

(
43κ+

4
+

43

2

))]}
.

(2.11)

2.2.2 The zoo of PN approximants

Different ways of solving (2.4) and (2.5) give raise to different solutions for the GW

system phase φorb and thus to the GW phase φ. This results in the different PN-

approximants. All the possible solutions are physically equivalent but describe slightly

different final waveforms. In this thesis we will mostly use the so called Taylor T1

approximant (T1). This is obtained by integrating numerically (2.4) and (2.5). It was

first presented at 2PN order [76–79] and is currently known up to 3.5PN order [80–82].

The TaylorT4 (T4) approximant is instead computed by re-expanding L in terms of

v and truncating L/(dE/dv) at the appropriate PN order for numerically integrating

afterwards. This was introduced by [83]. The Taylor T2 (T2) approximant is obtained
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via inverting (2.4) and re-expanding (dE/dv)/L, from which t(v) can be then analytically

integrated. The phase φorb is then obtained by integrating dφorb
dv = v3

M
dt
dv .

In the framework of the Stationary Phase Approximation (SPA) [4, 60], the Fourier

transform of a chirping signal can be approximately computed. This is the starting point

of an interesting kind of PN approximants known as the TaylorF models. The TaylorF1

model is built by substituting the energy and flux functions by their PN expressions

without doing any re-summation. Instead, the TaylorF2 [60] model re-expands the ratio
F
E′

. This allows for the corresponding integral to have an explicit solution, providing an

explicit analytical waveform and allowing for a very fast waveform generation.

2.2.3 Spherical harmonics decomposition

Once φorb(t) and v(t) have been computed with a chosen PN approximant, it is conve-

nient to decompose the GW strain h = h+ − ih× onto a -2 spherical harmonics basis

[84] as

h(θ, ϕ; t) = h+ − ih× =
∑

`≥2

m=∑̀

m=−`
Y −2
`,m(θ, ϕ)h`,m(t). (2.12)

The harmonics Y −2
`,m(θ, ϕ) form a basis for functions defined on a sphere and due to their

transformation properties under rotations are particularly suitable for the description of

spin-2 fields as the gravitational field. Note that all the information depending on the

parameters of the source is now encoded into the h`,m(Ξ; t) modes, while sky-location

dependencies are described by the harmonics Y −2
`,m(θ, ϕ). These are given by the formula

Y −2
`,m(θ, ϕ) =

√
2`+ 1

4π
d`,m(θ)eimφ, (2.13)

with

d`,m =

min(`+m,`−2)∑

j=max(0,m−2)

(−1)j

j!

√
(`+m)!(`−m)!(`+ 2)!(`− 2!)

(j −m+ 2)!(`+m− j)!(`− j − 2)!

× (cos
θ

2
)2`+m−2j−2 × (sin

θ

2
)2j−m+2.

(2.14)

This allows to express the harmonics as Y −2
`,m(θ, ϕ) = A`,m(θ)eimϕ, A`,m(θ) being real.

Using the orthogonality of the harmonics given by,

∫
Y −2
`,m(θ, φ)Y −2∗

`′m′
(θ, φ) sin θdθdφ = δ``

′
δmm

′
, (2.15)
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the expression (6.1) can be inverted to yield

h`,m =

∫
[h+ − ih×]Y −2∗

`,m (θ, φ) sin θdθdφ. (2.16)

The resulting h`,m modes are usually expressed in two different ways. The one we will

mainly use in this thesis separates them into a real amplitude A`,m and a phase φ`,m as

h`,m = A`,me
iφ`,m . (2.17)

Normally, the total strain h is dominated by the (`, |m|) = (2, 2) modes and further
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Figure 2.2: Amplitude, phase and real part of the (2, 2) mode of a (q, χ) = (8, 0)
system during the last orbits of the coalescence. The waveform represented is a hybrid

T1-SXS waveform.

ones, known as higher order modes (HOM), are small corrections which are nowadays

neglected for practical purposes. Evaluating the consequences of this neglection in GW

searches will be the topic of Chapter 6. Fig. 2.2 shows the amplitude, phase and real

part of the (2, 2) mode of the GW radiation emitted by a CBC with mass ratio and spin

(q, χ) = (8, 0). As we will see in detail in Chapter 5, if one expresses the phase of each
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mode as

φ`,m = mφorb + Λ`,m, (2.18)

the latter term is much small than the first one during the most part of the evolution

of the binary, which yields the approximate rule φ`,m ' mφorb. Consequently, some

authors prefer to express h`,m as

h`,m = Ac`,me
imφorb , (2.19)

where Ac`,m is now complex. Expressing the PN strain h in terms of its modes h`,m is of

particular interest in the context of this thesis. In Chapters 4 and 5 we will accomplish

the task of glueing the PN results with those obtained by NR and eventually compare

their accuracy. The result of NR simulations is precisely given in terms of modes. Note

that the sum in (2.16) does not consider the ` = 0, 1 values. This is because here we are

only interested in the radiative components of h. The ` = 0 monopole components are

due to changes in the total mass M of the binary while the ` = 1 dipolar components

can always be gauged away by a suitable election of the reference frame. Note also that

although h is a complex quantity, the actual perturbation arriving at the detector is a

real quantity combination of the two polarizations h+ and h×. However h is suitable

for obtaining a compact expression that encompasses all the radiation arriving at a

given point. When restricting to the non-precessing case, the geometry is symmetric

with respect to the orbital plane, which is preserved in time. This equatorial symmetry

implies

h(t, θ, ϕ; Ξ) = h∗(t, π − θ, ϕ; Ξ). (2.20)

Provided that the polarizations are defined using some appropriate choice of triad/tetrad

where h is projected (which is usually the case in the literature), the individual modes

satisfy

h`,m(t,Ξ) = (−1)`h∗`,−m(t,Ξ). (2.21)

2.2.4 Brief summary of possible corrections to a waveform

In (2.19), it is a common practice to retain only the (l, |m|) = (2, 2) modes, or quadrupo-

lar modes. This is because (in the non precessing case) they carry the vast majority of

the power emitted by the source. In fact, up to now, searches for GW do only consider

these modes. We will call this the quadrupolar approximation and refer to waveforms

that do not include HOM as quadrupolar waveforms. Furthermore, it is also usual to

retain as high as possible PN corrections to the phase of the (2, 2) mode while leaving the
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amplitude at zeroth PN-order. This is known as the restricted waveform approximation.

The reason for this is that the search algorithms are extremely sensitive to the phase of

the GW, having the amplitude a very secondary effect.

As depicted in 2.2.1 the inclusion of effects like spin-spin and spin-orbit interactions gives

raise to new contributions to a given PN order. These are known as spinning-corrections,

which are classified in spin-orbit (SO) corrections and spin-spin (SS) corrections. These

are respectively, the result of taking into account the interactions between the spin of the

individual objects and the angular momentum of the binary and between the individual

spins themselves.

In order to compute the contribution to h of the higher modes h`,m one needs to com-

pute corrections not to the energy and flux expressions but rather add new terms to

the Qi,j to the quadrupolar tensor. The phase (i.e., energy and flux formulas) of all

modes is known with 3.5PN order non-spinning corrections [72] with 3.5PN order spin-

orbit corrections [73] and 2PN spin-spin [75] ones while for the amplitudes non-spinning

corrections are known up to 3PN order [85] with 2PN spinning corrections [86]. The

exception is the (3, 3) mode, for which 3.5PN order non-spinning corrections have been
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Figure 2.3: Summary of PN corrections divided into addition of modes, nPN cor-
rections and physical effects. The PN order n up to which corrections are known are
specified in general. Exceptions are denoted in red ((3, 3) mode) and orange (modes

other than (2, 2) and (3, 3).



Chapter 2. Waveforms for Compact Binary Coalescences 35

recently computed [87]2. All the corrections we will use are summarized in Fig. 2.3.

Also, in this figure, we do not include recent computed 3PN spin-spin corrections to the

energy and flux [74]. For a detailed expression of the mode amplitudes as a function of

the intrinsic parameters Ξ, see [72].

2.2.5 Visualizing the higher order modes

The dominancy of the (2, 2) mode during the coalescence of two compact objects can

be noted in Fig.2.4, where the amplitude A`,m of several modes h`,m is shown as a
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Figure 2.4: Amplitude of the (`,m) modes of a (q, χ) = (8, 0) system during the last
orbits of the coalescence in lineal (left) and logarithmic (right) scale. The waveform

represented is a hybrid T1-SXS waveform.

function of the time in the coalescence. Note t/M = 0 does not represent any special

time. The left plot is shown in linear scale in order to clearly show how dominant the

(2, 2) mode is: during the inspiral it is ∼ 2 orders of magnitude larger than the next

strongest mode. However, during the very late inspiral and eventual merger (located

at the peak) the ratio A`,m/A2,2 can get to the order of ∼ 0.3 for the strongest HOMs.

The more the binary tightens, the more the geometry of the system deviates from the

original quadrupolar symmetry, radiating a larger fraction of the power in the form of

higher modes, until these reach their maximum at the merger. This is best seen in the

logarithmic version of the plot in the right panel. Note also that since each mode has

an approximate phase φ`,m ' mφorb, their frequencies are roughly ω`,m ' mωorb. Recall

that the GW frequency scales with the mass M of the system as 1/M . This implies

that for massive systems for which the (2, 2) mode has a frequency lower than lower

frequency cutoff of the detector, higher order modes will be in band dominating the GW

signal arriving at the detector. As we will see in Chapter 6, this is a key point regarding

the effect that higher order modes can have in a GW search.

The ratio A`,m/A2,2, depends in particular on the intrinsic parameters (q, χ) of the

binary. Instead of giving the explicit expressions of the modes, in which evaluating the

2Unless specified, we will however use 3PN corrections for the (3, 3) mode.
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dependencies on the intrinsic parameters of the source might be cumbersome, and in

order to get a direct visualization of their dependencies, it is preferable to see the actual

modes plotted. To this end, the left panel of Fig.2.5 shows the ratio A3,3/A2,2 during

the evolution of the binary for several non-spinning systems. The right panel shows

the corresponding A4,4/A2,2 ratio. As a general trend, PN predicts a more important

contribution from HOM the higher the mass ratio is. Regarding the spin, in general,

contributions from higher modes are larger the more positive the spin is. The exception

is the (3, 3) mode, whose relative amplitude grows as the spin gets more negative. Note

this mode is also the strongest of the HOMs [see Fig.2.4]. This behavior is shown in Fig

2.6.

Finally, let us note that when constructing waveforms including HOM, we will include
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Figure 2.5: Relative T1 amplitude of the higher modes (3, 3) and (4, 4) relative to the
dominant (2, 2) mode as a function of the frequency for several non-spinning systems.
Note how the higher the mass ratio q, the larger the contribution from higher order

modes.

the most dominant ones, namely the (2, 1) , (3, 2), (3, 3), (4, 3) and (4, 4). For these, let

us give the explicit expressions of the corresponding harmonics and their profiles as a

function of θ, shown in Fig. 2.7. The various plots represent in dashed red the absolute

value of the corresponding (`,m) harmonic as a function of θ, while the corresponding

negative m harmonic is represented in dashed-blue. In order to give an idea of how

the contribution of each “doublet” of modes to the full signal depends on θ, the black

curve shows the absolute value of the quantity D`,m = a`,mY
−2
`,m + a`,−mY

−2
l,−m, where

a`,m = 1 + i and a`,−m = (−1)`a∗`,m = (−1)`(1 − i). The a functions have been defined

such that they behave as a sort of “fake modes”. Note that the (2, 2) doublet has its

minimum contribution at θ = π/2 (when the source is edge-on to the detector) while

m 6= 2 are relatively close to their maximums, conversely to what happens at θ = 0

(when the source is face-on). We can then give a first estimation that HOM will be

more important for data analysis purposes at edge-on orientations of the source, i.e., as

θ → π/2, particularly for large q, large M and large positive spin χ. A detailed review

of all factors regarding the effect of HOM will be given in Section 6, when this effect will

be quantified.
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Figure 2.6: Relative T1 amplitude of several higher modes relative to the dominant
(2, 2) mode as a function of the frequency for several q = 3 spinning systems. Except
for the (3, 3) mode, the contribution from higher modes is larger the more positive the

spin is. The (3, 3) mode is, however, the one having the larger contribution.

Reaching the limits of PN

Although being extremely useful for its analytical condition, the PN approximation loses

its accuracy as the binary evolves. When the binary tightens, velocities become com-

parable to c and strong gravitational regime effects appear. The expansion parameter

x = (GMωorb
c2

)2/3 is no longer much smaller than 1. Thus for a system such that only the

late radiation gets in the band of the detector, PN does not provide suitable waveforms.

Consider for example f = 130Hz, where advanced detectors are close to their maximum

sensitivity. For a 5M� system this corresponds to x = 0.215 and for 100M� we get

x = 0.58, which is inconsistent with the assumption that x � 1. In order to describe

the last few orbits of the coalescence, the resolution of the highly non-linear Einstein

equations is required, which can only be done via Numerical Relativity and with the

help of supercomputing clusters.

Also, it has been recently shown that PN approximants significantly disagree between

them when for low mass cases such as NS-BH systems where the BH has a moderate

spin χBH ∼ 0.4 and the binary has a mass ratio q ∼ 4, starting this disagreement at

v/c ∼ 0.2 [88] in the evolution of the system. This suggests that PN spin corrections

further than those currently known will be needed for searches and parameter estimation

of NS-BH.
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Figure 2.7: Absolute value, as a function of θ, of Y −2
`,m (red), Y −2

`,−m (blue) and the

doublet D`,m = a`,mY
−2
`,m + a`,−mY

−2
l,−m, in black with a`,m = 1 + i and a`,−m =

(−1)`a∗`,m. Note how the quadrupolar (2, 2) mode has its minimum and maximum at
θ = (0, π/2) respectively while m 6= 2 modes behave in the opposite way.

2.3 Numerical Relativity solutions

We will give here a brief review of the basic concepts of Numerical Relativity and describe

the main error sources of NR simulations, whose influence in the final waveform we will

study in Sec. 5.

In NR one aims to write Einstein’s equations in as a time evolution problem, in order to

iteratively integrate them. A natural way to to this is to distinguish between the time
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coordinate and the spatial ones. In NR, the 4-dimensional spacetime manifold M with

metric g is foliated in 3-dimensional sub-manifolds Σt with induced metric γ and normal

vector n. The foliations Σt are commonly chosen to be spacelike, i.e., with timelike nor-

mal vector. The lapse function α determines how time changes from one hypersurface

to the next one while the shift vector β determines the coordinates on Σt. Tensor fields

can be then expressed as a function of their time-like and space-like components. These

procedure is known as the 3+1 decomposition [52]. The remaining problem now does

consist in specifying the initial metric γ on an initial surface and the value of its extrinsic

curvature K3 (which can be interpreted as the time-derivative of the metric γ) and solv-

ing then for all time. The resulting set of equations (known as the ADM equations due

to by Arnowitt, Deser and Misner [89]), consists of two evolution equations and two con-

straint equations. The ADM equations form however a non-hyperbolic set of equations

which is numerically unstable. This makes them not suitable for their implementation

in simulations. However, several alternative formulations of GR provide an equivalent

numerically stable set of equations that can be implemented for numerical simulations,

as for example, the BSSN and GBSSN [90–92] or the Z4 [93–95] formulations. Instead

of directly measuring the GW as a perturbation of a flat background, normally NR

codes compute instead the outgoing transversal gravitational radiation by means of the

so-called Newmann-Penrose scalar ψ4 [96]. Once ψ4 is computed on a sphere of constant

radius R (or extrapolated to infinity [97–99]), it can be decomposed on a spherical har-

monics basis applying (2.16) for obtaining the corresponding ψ`,m4 modes. This quantity

is very convenient because ψ4 is directly related to the GW strain by ψ4 = ∂2h
∂t2

. The

strain h is thus obtained from Ψ4 by applying a double time integration (see [100] for a

discussion of the issues arising in this procedure). NR codes can be roughly classified by

the choice of the formulation of the Einstein equations, the treatment of the singularity

and the numerical methods employed.

• The SpEC code, used by the joint collaboration of the NR groups at Caltech, Cor-

nell, CITA (Toronto), Washington State, UC Fullerton, and others, [97, 99, 101–

103] employes the so called generalized harmonic formulation of the Einstein equa-

tions [104] and applies an excision treatment of the singularity [105]. This basically

consists in eliminating the interior of the BHs from the simulated spacetime. In

order to obtain the full solution, the Einstein equations are solved in finite spa-

tial regions called subdomains and it is expressed in a basis of spectral functions

which depends on the particular shape of the subdomain [101, 106]. This technique

provides exponential convergence to smooth problems.

3Kµν = 1
2
Lnγµν , n being the vector normal to Σt.
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• In contrast, the BAM code [107, 108] opts instead for a BSSN formulation of the

Einstein equations which are solved in cartesian coordinates via finite difference

numerical methods. The treatment of the BH singularities is based on the moving

puncture technique [107]. The puncture method consists on factoring the solution

into an analytical part (the puncture), which contains the BH singularity and a

numerical part, which is free from singularities. Originally, this method required

the puncture to be static. However, in BBH simulations one needs BH that orbit,

and thus the puncture must move. In 2005 [65, 109] the ability to simulate moving

punctures was demonstrated.

• The Llama code, originally developed at AEI Potsdam [98], combines the gener-

alized harmonic and excision techniques with finite difference methods. A partic-

ularity of this code, that we will mention afterwards, is the usage of the “Cauchy

characteristic”, which allows to analytically express the GW signal at null infinity.

This is achieved by the SpEC code via extrapolating results at finite radii r by

fitting them to a polynomial while the BAM code directly uses the finite radius

results. Also, recent work by [110], has used a treatment similar to that of SpEC,

the extrapolation being done in terms of an 1/rn expansion.

There will be some error in the result obtained for h not only due to the integration

process (which can lead to unphysical drifts) but also due to numerical errors in the

calculation of ψ4. Some of the main sources being:

• NR simulations do usually assume that the metric is flat at null infinity (conformal

flatness) which introduces an artificial initial radiation in the simulation known as

junk radiation (see bottom left plot in Fig.2.8) that quickly leaves the system once

it has started to evolve.

• GW signals as observed by GW detectors are to be extracted at null infinity.

However, NR simulations need to extract the data (ψ4) at some sphere with finite

extraction radius R. It is on this sphere that ψ4 is then decomposed on a spherical

harmonics basis and that the h`,m modes are then computed. As we will see (and

noted by for example [1, 111]) the finitude of R is a source of error for the resulting

modes. When simulations extracted at several R are available, the result can be

extrapolated to infinity via a polynomial expansion of order N , as done by the

SpEC [97] code. Recently, [110] has computed the wave at infinity as an expansion

in terms of 1/R. Also, a very elegant way of obtaining such a result is by means of

the so called Cauchy-Characteristic, used by the Llama code [98]. Finally, recent

work by Vañó-Viñuales et. al., is opening the gate for direct extraction at null

infinity using a compactified hyperboloidal foliation of the spacetime [112, 113].
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• NR simulations have a finite resolution determined by the grid in which ψ4 is com-

puted. The resolution needed is related to the wavelength λ of the GW extracted

and thus to its frequency ω. The lower λ (the larger ω), the less resolution will

be needed. We shall see how some of the finite radius errors are lower important

in the high frequency regime. In Chapter 5, we will pay special attention to the

analysis of the effect of the finitude of the extraction radius R of NR simulations

as well as to the effect of the resolution and the extrapolation order N and the

NR resolution.

• NR simulations are usually affected by residual eccentricity that generates period-

ical oscillations of the GW strain. The reason behind this is that initial data for

the simulation is computed via PN. Since the PN solution differs from the true

GR one, the conditions that PN predicts for circular non-eccentric orbits differ

from the true ones, yielding as a result an eccentric motion. The effect of residual

eccentricity for data analysis purposes has been studied in [111, 114] and we will

review it in the context of hybrid PN/NR waveforms in Chapter 4.

When available, NR waveforms can provide the closest description to the real GW emis-

sion. However, they are by far the most computationally expensive ones. Furthermore,

until the breakthrough in 2005 by Pretorius [65, 66], NR simulations could not evolve

more than a couple of orbits before the code would breakdown due to the instability of

the equations. Since then, NR simulations have become a common tool in GW science

and there has been a tremendous progress in the generation of longer NR simulations

(i.e., obtaining a larger number of GW cycles before merger) and in sampling larger

portions of the CBC parameter space. NR simulations are extremely computationally

expensive (∼ one month on ∼ 100 CPU’s) which is ∼ 8 orders of magnitude above the

cost of any of the other waveform models. Due to this, simulations would hardly cover

a few cycles before merger, being more challenging the larger the mass ratio q of the

simulated system is. The longest simulations available nowadays are due to the SXS

collaboration [115], formed by the groups in Caltech, Cornell, CITA and others. These,

publicly available, cover non-spinning systems ranging from q = 1 to q = 8 and spinning

ones up to χ = ±0.99 for the equal mass case. These longest of them covers up to

∼ 80 GW cycles. Remarkably, the work done in the context of the BAM code [105, 116]

has made possible to complete challenging simulations such as those corresponding to

q = 18 non-spinning and spinning systems. The corresponding waveform is shown in

Fig.2.8 together with some taken from the SXS catalogue. In this thesis we will show

results obtained using NR simulations from both the SXS and BAM codes. It is worth

to note that recently, a new waveform for a q = 7 non-spinning system covering 350 GW

cycles was presented by Szyagli et. al., [117] being the first time that a NR waveform
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covers the full sensitivity band of a GW detector. This will in principle allow to test

the accuracy of PN results in the low frequency regime, where PN is supposed to be

accurate enough.
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Figure 2.8: Examples of NR simulations. The red ones have been produced by the
SXS collaboration. The spinning case has been plotted so that the initial junk radiation
burst is clearly noticeable. The blue q = 18 waveform has been produced by the BAM

code.

2.4 The Effective One Body formalism

The Effective One Body (EOB) formalism provides an analytical framework in which

the calculation of the emitted radiation can be carried out up to the merger. It was

initially proposed in [48, 49] for solving comparable mass systems. In this formalism,

the problem of two objects orbiting each other is described in terms of the equivalent

problem of a single body moving in a background spacetime. Unlike in the PN formal-

ism, the assumption of the system being adiabatic is never done. The EOB calculation

can be carried out up to the merger and the eventual ringdown radiation is computed by

means of perturbation theory and then attached to the EOB solution. EOB facilitates

the definition of a minimal set of adjustable parameters of the waveform that can be

calibrated by comparison with NR results. This is the basis of the so called EOBNR

models. EOB and PN calculations agree up to the known PN terms. However, calibra-

tion of EOB using NR somehow helps to compute the higher unknown PN terms and

gives results in very good agreement with the actual NR ones. Once the calibration to a
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finite number of NR simulations has been done, one can interpolate over the parameter

space in order to obtain a continuous family. As an example, the so called SEOBNRv2

[50, 51](S-for spinning) model is calibrated up to q = 8 but it gives very good results

even for q = 18, as we will see in Chapter 4.

SEOBNR waveforms are much faster to generate than NR ones (∼ CPU seconds) but

still slow for being used in a search or parameter estimation studies, for which thousands

of waveforms need to be generated. However, recent work [118] has provided Reduced

Order Models (ROM) that allow for a very fast generation of SEOBNR waveforms. In

this framework, the original SEOBNR model is decomposed on a certain set of basis

waveforms. The original ones can be then obtained with very high accuracy performing

linear combinations of the basis waveforms, which is computationally much cheaper than

generating every single SEOBNR waveform. This is also the bases of the Singular Value

Decomposition (SVD) methods [68]. We will employ this kind of waveforms in Chapter

6.

2.5 Phenomenological Waveforms

Phenomenological waveform models [36, 56, 57] provide Fourier domain expressions de-

scribing the radiation emitted during the whole coalescence. Since these provide analyti-

cal expressions for the actual waveforms and not sets of equations that need to be solved,

the waveform generation is much faster than that of SEOBNR models. The first step

in the production of such models is the generation of hybrid PN/NR waveforms. These

are the result of gluing PN waveforms to the tail of NR ones, in order to cover the early

stages of the coalescence that NR simulations do not reach. After this, analytical models

depending on several adjustable parameters that are calibrated to a finite set of hybrid

waveforms. Pieces describing the amplitude and phase during the inspiral, merger and

ringdown stages are normally calibrated separatedly for afterwards constructing IMR

waveforms that are then interpolated along the parameter space, yielding a continuous

family of IMR Phenom waveforms. There exist several Phenom models that use differ-

ent calibration strategies. The inspiral stage is commonly described by a polynomial in

powers of the frequency f . For instance, the PhenomC model [36] uses:

φSPA2,2 (f) = 2πft0 − φ0
2,2 −

π

4
+

3

128η
(πf)−5/3

7∑

k=0

αk(πf)k/3, (2.22)

where t0 and φ0
2,2 are arbitrary constants. This is inspired by the SPA result for the

TaylorF2 approximant. Also, the corresponding expression for the amplitude is moti-

vated by the SPA behavior |h̃(f)| ∼ f−7/6. The late inspiral and merger phase are then
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modeled similarly including further powers of f as

φPM2,2 (f) =
1

η

(
α1f

−5/3 + α2f
−1 + α3f

−1/3 + α4 + α5f
2/3α6f

)
. (2.23)

Finally, the ringdown stage is described using by the ansatz

φRD2,2 (f) = β1 + β2f, (2.24)

and the total phase is built as φphen = φSPA2,2 (f)ω−f1 + φPM2,2 (f)ω+
f1
ω−f2 + φRD2,2 (f)ω+

f2
with

ω±f0 = 1
2

[
1 ± tanh

(
4(f−f0)

d

)]
while the amplitude is built in a similar manner. Dif-

ferent ansatzs give raise to different Phenom models. The Phenom C model describes

non precessing systems using an effective spin parameter χ ≡ 1+δM/M
2 χ1 + 1−δM/M

2 χ2.

While the PhenomC model considers corrections up to 3.5PN non-spinning and 3PN

spinning corrections, the previous PhenomB model [56] was also produced to describe

non-spinning and spinning including systems but including up to 2PN corrections. It has

been implemented in GW searches template banks as well as for testing the performance

of detection pipelines for the future detectors as in the NINJA-2 project [34] together

with SEOBNRv2. Finally, the recently developed PhenomP model [57] has opened the

gate for the phenomenological description of precessing binaries.

Further improvement of Phenom models could be performed via the inclusion of HOM.

If so, the discussion of them given in , suggests that one should focus on including the

(3, 3) mode due to its magnitude and its importance for edge-on systems and the (3, 2).

The latter, although not being as dominating as the (3, 3), can have important contri-

butions to the optimum SNR (mainly when the source is face-on) when the mass of the

source is such that the radiation emitted in form of the (2, 2) and (3, 2) modes is close

to the sweet-spot of the detector. Note that at that point, the amplitude of both modes

is comparable. Also, although the (2, 1) mode dominates the GW emission more than

the (3, 2), its low frequency content makes it to be largely dominated by the (2, 2) when

it is in band.



Chapter 3

Elements of gravitational waves

data analysis for CBCs

In this chapter we will see how the output of a GW detector is to be analyzed in order

to find whether or not there is a GW signal buried in the data. We will first give explicit

expressions for the signals expected for afterwards introduce to the reader the matched

filter formalism. We will in particular define and the concepts of signal-to-noise ratio

(SNR), overlap, match, horizon distance and fitting factor, which will be essential in this

thesis. Last, once mathematical concepts have been introduced, we will give explicit

expressions for the matched filter operation for general filter waveforms expressed as a

sum of spherical harmonics. This will allow us to show explcitly how the match filter is

to be optimized over different parameters of the incoming signal. Although this material

has already been widely studied in existing literature, expressions are mostly given for

the usual case in which only the quadrupolar (`, |m|) = (2, 2) modes are considered.

This the makes inclusion of HOM in this kind of analysis cumbersome and diffcults the

understanding of how maximization over several parameters of the GW signal is to be

carried out.

3.1 General expressions for the strain h: from signal to

template

In order to perform searches for CBCs, we need models of the potential GW signals

h we expect to be buried in the output of the detector. An outline of how these are

computed was given in the previous chapter. We also learnt how the GW strain h can be

expressed as either a couple of polarizations h+ and h× or as a function of modes h`,m.

45
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However, in this process we have not yet considered the influence of the orientation of

the detector with respect to the GW propagation vector ~k. We have only considered

its location p = (θ, ϕ). Adding this ingredient will be the final step in order to give

the final expression of the signal arriving to our detector. We will afterwards see how

this expression can be simplified and expressed as a simple sum of cosine functions, give

explicit expressions for the matched filter and show how analytical optimizations over

extrinsic parameters can be carried out when only quadrupolar templates are considered

in our search.

3.1.1 From the source to the detector

The GW signal at a given sky location

The GW radiation arriving at a point p on the sky of the source will depend on its

location, as shown in Chapter 2, as

hp(Ξ; r, θ, ϕ; t) = h+ − ih× =
1

dL

∑

`≥2

m=∑̀

m=−`
Y −2
`,m(θ, ϕ)h`,m(Ξ; t), (3.1)

where the dependence on the source-detector distance r is encoded in the luminosity

distance dL, the spherical harmonic modes h`,m and the Y −2
`,m factors, known as -2 spin

weighted spherical harmonics. Let us recall the property of the GW modes in the absence

of precession

h`,−m = (−1)`h∗`,m, (3.2)

that we will use in the following calculation in order to simplify the final expression for

the GW strain.

The GW signal as observed by the detector

The effect of the GW signal on a detector will depend on the location (dL, θ̄, ϕ̄) of

the source in its sky and on the polarization ψ of the GW. The exact response of an

interferometric detector to a weak, plane GW in the long wavelength approximation

(i.e., when the size of the detector is much smaller than the wavelength of the wave) is

well known [119]. This response its encoded by the so called antenna patterns (F+, F×)
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of the detector

F+ =
1 + cos2 θ̄

2
cos 2ϕ̄ cos 2ψ − cos θ̄ sin 2ϕ̄ sin 2ψ

F× =
1 + cos2 θ̄

2
cos 2ϕ̄ sin 2ψ + cos θ̄ sin 2ϕ̄ cos 2ψ.

and the observed real GW signal is simply

hD(Ξ; θ, ϕ; θ̄, ϕ̄, ψ; dL, t) =
1

dL

[
F+(θ̄, ϕ̄, ψ)h+(Ξ; θ, φ; t) + F×(θ̄, ϕ̄, ψ)h×(Ξ; θ, φ; t)

]
.

(3.3)

At this point, it is worth to note that there are situations in which a GW detector can

be blind to a GW signal. Consider for example the particular situation in which our

detector located on the equatorial plane of the source θ = π/2 and that ψ = π/2. It

would then be sensitive to only the h× polarization of the GW. However, Eq. (4.4)

reveals that h× = 0 at θ = 0 and no signal would be detected.

We will now obtain an expression for (3.3) where as many things as possible appear

as multiplicative factors. Although the reason for this will be clear at the end of the

chapter, we can anticipate some of it. In principle, one needs to filter the incoming signal

with templates corresponding to all the possible combinations of the parameters of the

incoming signal. This would give raise to an enormous template bank and it would take

too long. However, the result of this comparison 1 is not sensitive to the “norm” of the

template (i.e, to global amplitude factors). We will thus identify which parameters can

be factored out. In fact we will see how in the case that templates are quadrupolar, one

does only need to include templates for all the possible values of the intrinsic parameters

of the source Ξ = (q,M, χ). Let us show how.

With a little bit of algebra (3.3) can be reduced to

hD(Ξ; θ, ϕ; θ̄, ϕ̄, ψ; dL, t) =
F (θ̄, ϕ̄, ψ)

dL

[
cos(κ)h+(Ξ; θ, φ; t) + sin(κ)h×(Ξ; θ, φ; t)

]
, (3.4)

where

F =
√
F 2

+ + F 2
× (3.5)

tanκ =
F×
F+

. (3.6)

1We really mean the amount of Signal-to-noise ratio, which we will define later.
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Then F is simply a global amplitude factor and κ acts as an effective polarization angle.

Using (3.1) we get

hD(Ξ; θ, ϕ; θ̄, ϕ̄, ψ; dL, t) =

F (θ̄, ϕ̄, ψ)

dL

[
cos(κ)R

∑

`≥2

m=∑̀

m=−`
Y −2
`,m(θ, ϕ)h`,m(Ξ; t) + sin(κ)I

∑

`≥2

m=∑̀

m=−`
Y −2
`,m(θ, ϕ)h`,m(Ξ; t)

]
,

(3.7)

where R and I denote respectively the real and imaginary part. Making use of (3.2)

and expressing the harmonics as Y −2
`,m(θ, ϕ) = A`,m(θ)eimϕ we can express the sums as

sums over positive m modes as

∑

`≥2

m=∑̀

m=−`
Y −2
`,m(θ, ϕ)h`,m(Ξ; t) =

∑

`≥2

m=∑̀

m=0

(A`,m(θ)eimϕh`,m(Ξ; t) + (−1)`A`,−m(θ)e−imϕ(θ, ϕ)h∗`,m(Ξ; t)),

(3.8)

Where we need to redefine h`,0 → 1
2h`,0. From now on we will drop all the dependencies

in order to alleviate the notation. Also we will express
∑

`≥2

∑m=`
m=0 ≡

∑
`,m. Considering

now

h`,m = A`,me
iφ`,m

H`,m =
√
A`,m(A`,m + (−1)`A`,−m)

tanβ =
(−1)`A`,−m
A`,m

,

(3.9)

we get

h =
1

dL

∑

`,m

H`,m
[

cosβei(mϕ+φ`,m)h`,m + sinβei(−mϕ−φ`,m)h∗`,m)

]
. (3.10)

Finally using (3.10), expanding eiα = cosα+ i sinα and defining

γ`,m = β +mϕ+ κ, (3.11)

we reduce the observed strain hD to the simple expression

hD =
F

dL

∑

`,m

H`,mA`,m
[

cos γ`,m cosφ`,m + sin γ`,m sinφ`,m

]
, (3.12)
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which if we consider only the (2, 2) mode and define H̄2,2 ≡ F
dL
H(2, 2) we can express as

hD = H̄2,2A2,2

[
cos γ`,m cosφ2,2 + sin γ`,m sinφ2,2

]
, (3.13)

which coincides with the waveform expression given in [38]. This expression is very

convenient for data analysis because all the information about the polarization angle

κ and the azimuthal angle ϕ, also known as the coalescence phase is contained in a

unique effective angle γ`,m = β+mϕ+κ and all the dependance on the rest of extrinsic

parameters is contained in a common amplitude factor H̄2,2. As we will see later, this

allows to perform an analytical optimization of the basic quantities used in data analysis

over all the extrinsic parameters of the source represented by the template. Although

we will not take much advantage of it, let us express hD in the simplest possible form as

hD =
F

dL

∑

`,m

H`,mA`,m cos φ̄`,m. (3.14)

Hence, any GW signal can be expressed as a sum of real amplitudes A`,m(Ξ; t), which

depend on the intrinsic parameters of the source multiplied by factors H`,m and cosine

functions whose argument φ̄`,m depends on the orbital phase of the binary φ(Ξ; t), the

polarization κ and the polar angle θ.

3.2 The detection problem: extracting signals from back-

ground noise

The ability of a GW detector for detecting GW signals is mostly dominated by the

presence of noise in the data streams. The corresponding main sources of noise were

outlined in 1.4.2. In general, GW signals, if present, will be buried in a background

noise orders of magnitude larger than the one of the GW, from which we will have to

extract them. In this section we will define the power spectral density of the noise, for

later defining the concept of singal-to-noise ratio.

3.2.1 The background noise

The output s(t) of a detector will in general consist of a superposition of background

noise n(t) and a gravitational wave signal g(t). Then we have

s(t) = n(t) + g(t). (3.15)
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The noise n consists in general on a stationary component over certain periods plus

transients. The stationary Gaussian component of the noise can be modeled via the

noise power spectral density (PSD) function. This gives us a picture of the average

noise present in the detector and give an idea of its sensitivity. Let us denote the

background noise of the detector as by n(t) and take its Fourier transform

ñ(f) =

∫ ∞

−∞
n(t)e−2πiftdt, (3.16)

If n(t) is defined for all t, its total power is defined as

Pow = lim
T→∞

1

T

∫ T/2

−T/2
|n(t)|2dt. (3.17)

The above can be expressed, by virtue of the Parseval theorem as

Pow = lim
T→∞

1

T

∫ ∞

−∞
df

∣∣∣∣
∫ T/2

−T/2
n(t)e−2πiftdt

∣∣∣∣
2

≡
∫ ∞

∞
Pn(f)df, (3.18)

where Pn(f) is known as the power spectral density (PSD) of n. One can then identify

Pn(f) = lim
T→∞

1

T

∣∣∣∣
∫ T/2

−T/2
n(t)e−2πiftdt

∣∣∣∣
2

≡ lim
T→∞

1

T
ñ(f)ñ∗(f). (3.19)

It is common in data analysis to define quantities such that the power corresponds to the

integral of Pn(f) defined only over positive frequencies. This motivates the definition of

the one sided PSD, Sn(f) as
1

2
Sn(f) = Pn(f) (3.20)

Of course we cannot measure n(t) during infinite time. However, in the case of stationary

noise, the PSD can be estimated via finite time measurements. For this case, the PSD is

the Fourier transform of the so called auto-correlation function A of n. In the particular

case that the detector output has zero-mean, as we will suppose in this case, A is defined

as

A(t, τ) = 〈n(t)|n(t+ τ)〉 = lim
T→∞

1

T

∫ t+T/2

t−T/2
n(t

′
)n(t

′
+ τ)dt

′
. (3.21)

If the noise is stationary then the auto-correlation function does only depend on the

relative time τ and can be expressed as

A(τ) = lim
T→∞

1

T

∫ T/2

−T/2
n(t

′
)n(t

′
+ τ)dt

′
. (3.22)



Chapter 3. Elements of gravitational waves data analysis for CBCs 51

Taking T → ∞ for the integration limits, the Wiener-Khinchin theorem allows for

expressing (3.22) by means of Fourier transforms as

A(τ) = lim
T→∞

1

T

∫ ∞

−∞
ñ(f)ñ∗(f)e+2πifτdf, (3.23)

and then we can express the one sided PSD as a function of A as

1

2
Sn(f) = lim

T→∞

ñ(f)ñ∗(f)

T
=

1

T

∫ ∞

−∞
A(τ)e−2πifτdτ. (3.24)

This will be the model we will use for estimating the stationary component of the noise.

Neglecting low frequency periodicity allows for the PSD to be estimated via truncation of

the auto-correlation function to a finite time. This yields a discrete number of frequencies

that can be measured. However, the incoming data is to be digitized, which implies it

is already discrete in time steps which depend on the frequency sampling. The allowed

frequencies are determined by the sampling rate but the resolution is limited by the

duration τ of the sample. Under the assumption that noise is stationary, this quantity

to be computed for any start time. The PSD will thus be time independent for stationary

noise. Of course, in real searches it is impossible to isolate the background noise n from

GW signals and terrestrial transients known as glitches. For this reason, the PSD is

really estimated by substituting the noise n by the detector data stream s in all the

above calculation. In this process, the presence of low frequency transients and real GW

signals in the data may corrupt the estimation of the PSD. Also, simulated signals are

commonly injected in the data in order to asses the sensitivity of the search [38] which

can further affect the estimation of the PSD if they are too numerous. A technique for

alleviating these effects consists in estimating the PSD as the average (or rather median)

of different instances of the discrete PSD. This is known as the Welch method [120] and

has been commonly applied in GW searches like [38].

3.2.2 Basic waveform operations.

Given two complex functions h(t) and g(t), their inner product 〈|〉 is defined as

〈h(t)|g(t)〉 =

∫ ∞

−∞

h̃(f)g̃∗(f) + h̃∗(f)g̃(f)

Sn(f)
df, (3.25)

where ã denotes the Fourier transform of a(t) with respect to t and Sn(f) is the one-

sided power spectral density of the noise. In the particular case that both h and g are

real, the relation g̃∗(f) = g̃(−f) allows to rewrite

〈h(t)|g(t)〉 = 4R
∫ ∞

0

h̃(f)g̃∗(f)

Sn(f)
df. (3.26)
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The overlap O of h and g is then defined as their normalized inner product

O[h, g] =
〈h|g〉√
〈h|h〉〈g|g〉

. (3.27)

Where
√
〈h|h〉 ≡ ||h|| is the norm of h. In our particular case h and g will represent

gravitational waveforms and the variable t will denote time. However, in general both

h and g will be functions of several parameters {xi} like the total mass of the source

M , its mass ratio q or the polar angle θ. There could be also a time-shift t0 between h

and g. The overlap of two functions maximized over the parameters {yi} ∈ {xi} will be

called match and denoted by

M[h, g]{yi} = max
{yi}
O[h, g]. (3.28)

3.2.3 Detecting signals: The matched filter and statistics in Gaussian

noise.

The output s(t) of a GW detector consists in general of a superposition of a gravitational

wave signal g(t) and background noise n(t), so in general we have

s(t) = g(t) + n(t). (3.29)

The background noise n(t) can be assumed to consist of a superposition of stationary

zero-mean Gaussian noise represented by Sn(f) and transients of terrestrial origin known

as glitches. When the latter is neglected, the best possible filter in order to decide if a

signal h(t) is buried in s(t) is the well known matched filter. Its output, the signal-to-

noise ratio (SNR), can be expressed as

ρ[s, h] =
〈s|h〉√
〈h, h〉

. (3.30)

In Gaussian noise with zero mean, ρ is Gaussian distributed with zero mean and standard

deviation one, which means

f(ρ) =
1√
2π
e−ρ

2/2, (3.31)

where f is the probability density function for the pure Gaussian noise to generate a

value of the SNR equal or larger than ρ when filtered with the template h. Given this, if

the SNR crosses some threshold ρ0, it can be assumed that something else than Gaussian

noise is present in the data, in which case we will claim to have a trigger. Assuming

that data consists only of Gaussian noise and a GW signal, one can assume that the

signal h (or some GW signal with a large match) is buried in the detector data. In other
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words, the presence of a GW signal g in the data stream modifies the statistical Gaussian

distribution that the SNR has in pure Gaussian noise. In particular, the expected value

of ρ[n+ g|h] is given by

< ρ[s|h] >=< ρ[n+ g|h] >=< ρ[n|h] > + < ρ[g|h] >= 0 + ρ[g|h], (3.32)

where <> indicates averaging over realizations of n. One can check that ρ[g|h] will be

maximal when g is filtered with g itself, i.e, when h = g. We will thus define the optimal

SNR of a signal g as ρopt = ρ[g, g]. If however g is filtered with a template that has an

overlap of O with it then we have

ρ[h|g] =
〈h|g〉√
〈h|h〉

=
〈g|g〉〈h|g〉
〈g|g〉

√
〈h|h〉

=
〈g|g〉√
g|g

〈g|h〉√
〈g|g〉〈h|h〉

= O × ρopt. (3.33)

Thus the SNR will drop by a factor O and the probability that h of having a trigger will

decay consequently.

3.2.4 Optimized SNR, Fitting Factor and Horizon Distance

Since the parameters of an incoming GW are not known a priori, GW searches are

carried out filtering the incoming data s = g+n with a set of templates hB from a given

template bank B. The templates, hB(Ξ,Λ; t) aim to represent the signals emitted by the

sources we aim to detect. The fitting factor F of B towards a waveform g is defined as

the maximum of the overlaps O of g among all the templates forming B. Thus we define

FB(g) = max
Ξ,Λ,t0

O[g, (hB(Ξ,Λ, t0)]. (3.34)

This gives the maximum fraction of the optimal SNR FB(g)× ρ[g, g] that the template

bank B can recover from g when averaged over realizations of the Gaussian noise. The

fitting factor is also known as the effectualness of the bank towards g. It is worth

to recall that g depends on both the intrinsic parameters of the source Ξ and on the

extrinsic parameters Λ. Thus for the same Ξ, different values of Λ will give different

fitting factors. Looking at (3.14) it is clear that the SNR produced by a source will be

inversely proportional to the luminosity distance dL. If a given threshold SNR ρ0 is set

in order to claim a trigger, the horizon distance dH is equal to the maximum distance

dL at which a given source can produce an SNR ρ ≥ ρ0. If a signal g emitted from a

distance dL produces an SNR ρ when it is filtered with g itself we then have

ρ0

dH
=

ρ

dL
⇒ dH = dL

ρ

ρ0
. (3.35)
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If however g is filtered with a template bank with fitting factor FB(g) to g we have

instead

dBH = dL
FB(g)ρ

ρ0
= dHFB(g). (3.36)

Thus the maximum distance at which the source can be detected will decay to a fraction

of FB(g) and consequently the accessible volume in which g can be detected will decay

to a fraction of FB(g)3. In Chapter 6, we will see how averaging the fitting factor over

all the possible extrinsic parameters Λ of g allows for the definition of an effective fitting

factor and to its interpretation in terms of sensitive volume loss.

3.2.5 Causes of imperfect filtering

In an ideal situation, for any given signal g, a template bank would be such that FB(g) =

1 and then ρ = ρopt. However, there are various reasons why an incoming signal g may

not be optimally filtered. Let us summarize the main ones:

• Presence of noise: First of all, let B be a bank that contains all the perfect represen-

tations of all the possible GW signals. In the absence of noise n, we have s = g and

we could always filter g optimally, i.e, we would always find FB(s) = FB(g) = 1.

However, the presence of noise in our detector will make that in general FB(s) 6= 1

and ρ 6= ρopt. This can give raise to two situations:

1. The SNR just drops, and the probability of a detection decays.

2. The combination n+ g is detected by a waveform other than g, with ρ 6= ρopt

and so the parameters are wrongly estimated.

3. The glitches: Suppose there is no GW in the data. It is common that

noise transients gn present in the data produce an SNR large enough to

claim a trigger. These features, known as glitches, commonly consist on

very strong bursts that have a very large intrinsic SNR ρ[gn|gn] such that

ρ = ρ[gn|gn]×FB(gn) is larger than the required trigger threshold. If glitches

are not identified they may lead to false detections. When a trigger is found

in a search, several tests are applied to the data in order to discriminate

between GW and glitches. The most common are the various χ2 and bank

veotes and the r-test [38] [121].

• Wrong modeling of the GW signals: suppose now that the data cosists only on

a GW g. It is possible however that the templates in the template bank are not

accurate descriptions of the incoming signal. This will lead to FB(g) < 1. In

Chapter 6, we will study this effect for the case that signals contain HOM and

templates are quadrupolar.
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• Discreteness of the template bank: Template banks used in real searches are dis-

crete. Template banks are usually constructed such that no more than 10% of

signals will be missed due to the its discreteness. This means that the minimum

match of the template bank to any of the signals of the corresponding continuous

version has to be M≥ 3
√

0.9 ' 0.97.

3.2.6 Analytical optimization of SNR and overlap

The match of two waveforms and the maximization of the SNR over the parameters of

the template involves a maximization over the extrinsic parameters Λ of either one or

both of the waveforms and over relative time-shifts t0. The maximization over the t0 or

“time of arrival” is commonly performed analytically by means of the inverse Fourier

transform as

Mt(h, g) ≡ max
t
O(h, g) = max

t
4R
∫∞

0
h̃(f)g̃∗(f)
Sn(f) e−2πitfdf
√
〈g|g〉〈h|h〉

. (3.37)

The maximization over the extrinsic parameters Λ is however more involved and needs

to be carried out numerically, except in the special case that at least one of the two

waveforms is quadrupolar. Previously we showed that any quadrupolar waveform can

be expressed as

hD = H̄2,2A2,2

[
cos γ2,2 cosφ2,2 + sin γ2,2 sinφ2,2

]
, (3.38)

where A2,2 and φ2,2 depend on the intrinsic parameters Ξ of the source and the time,

and the dependencies on extrinsic parameters is encoded in H2,2 and γ2,2. The Fourier

transform of signals whose phase varies much faster than their amplitude (i.e., highly

oscillating signals), such as the chirping signals we deal with, can be approximately

computed by means of the stationary phase approximation (SPA) [122]. In this context,

the Fourier transforms of two signals a+(t) = A(t) cos(φ(t)) and a×(t) = A(t) sin(φ(t))

are related by

ã+(f) = −iã×(f), (3.39)

In the context of GW searches, this relation is noted and utilized in for instance [38].

In order to derive (3.39) we recommend to look at [123], pag. 65 and simply change the

factor (eiφ(t) + e−iφ(t)) in (3.30) by (eiφ(t)−e−iφ(t))
i .
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Given this, denoting h+
2,2 ≡ A2,2 cosφ2,2

2, the Fourier transform of h can then be ex-

pressed as

h̃ = H̄2,2h̃
+
2,2(Ξ; t)

[
cos γ2,2 − i sin γ2,2

]
= H̄2,2h̃

+
2,2e
−iγ2,2 . (3.40)

The overlap of two quadrupolar waveforms can be expressed as

O[h1, h2] = 4R
∫
H̄1h̃1

+
e−iγ1H̄2h̃2

+,∗
e+iγ2df

H̄1H̄2||h+
1 ||||h+

2 ||
= 4R

∫
h̃1

+
h̃2

+,∗
e−i(γ1−γ2)df

||h+
1 ||||h+

2 ||
, (3.41)

where maximization over the phase γ1 − γ2 can be done by taking the absolute value of

the integral instead of the real part, thus

max
γ1,γ2
O[h1, h2] = 4

|
∫
h̃1

+
h̃2

+,∗
e−i(γ1−γ2)df |

||h+
1 ||||h+

2 ||
= 4
|
∫
h̃1

+
h̃2

+,∗
df |

||h+
1 ||||h+

2 ||
. (3.42)

Optimizing also over time gives

max
γ,t0
O[h1, h2] = max

t0
4
|
∫
h̃1

+
h̃2

+,∗
e−i2πft0df |

||h+
1 ||||h+,∗

2 ||
. (3.43)

So the match of two quadrupolar waveforms optimized over time and phase is just the

normalized inner product or overlap their “+” components. Similarly, for the SNR, for

any incoming signal s we get

max
γ,t0

ρ[s, h] = max
t0

4
|
∫
s̃h̃+,∗e−i2πft0df |
||h+|| . (3.44)

The latter equation implies that in order to maximize the SNR ρ[s|h(Ξ)] over all the

possible templates h(Ξ,Λ; t) with common intrinsic parameters Ξ, it suffices to compute

(3.44) with h+ = h(Ξ,Λ0; t0). Once again, this holds if h is a quadrupolar waveform.

In a hypothetic search where HOM are included in templates, one would need to filter

the incoming signal with templates constructed for all the possible Λ and numerically

optimize over them.

Modification of SNR statistics in Gaussian-noise due to maximization over

phase and the False Alarm Rate.

The SNR of a single template, in Gaussian noise, is Gaussian distributed with probability

density function (PDF)

f(ρ) =
1√
2π
e−ρ

2/2. (3.45)

2One can write in general h`,m = h+
`,m− ih

×
`,m. Although this is a very common notation, it can lead

to a misunderstanding of what the GW polarization is and we will try to avoid it as much as possible.
For completeness, note that 〈h+

`,m|h
×
`,m〉 = 0.
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However, when we maximize the SNR over the extrinsic parameters of a template,

we really are looking for the maximum SNR among a family of templates, thus the

statistical distribution of the SNR must change. It is easy to obtain the distribution of

the maximized SNR taking advantage of the analytical formula we use to maximize it

[see (3.44)]. We just take the absolute value of

∫∞
0

s̃(f)h̃∗(f)
Sn(f) df

√
〈h|h〉

= x+ iy (3.46)

Thus the maximized SNR ρ is just equal to
√
x2 + y2. Since x and y are Gaussian

distributed in Gaussian noise we have

P (ρ > ρ0) = P (x > ρ1)P (y >
√
ρ2

0 − ρ2
1)

=
1√
2π

1√
2π

∫ ∞

ρ1

∫ ∞
√
ρ20−ρ21

e−x
2/2e−y

2/2dxdy.
(3.47)

Choosing polar coordinates x = ρ cosφ, y = ρ sinφ we can rewrite (3.47) as

1

2π

∫ 2π

0
dφ

∫ ∞

ρ0

ρe−ρ
2/2dρ = 2π

1

2π

∫ ∞

ρ0

ρe−ρ
2/2dρ (3.48)

so that the PDF for the maximized SNR is the so called Rayleigh distribution

f(ρ) = ρe−ρ
2/2, (3.49)

and the probability that we measure a certain SNR ρ0 or larger is,

P (SNR > ρ0) = e−ρ
2
0/2. (3.50)

Searches for GW are performed filtering the data with the N templates of the template

bank. If we assume them to be statistically independent, then the probability that n

templates produce an SNR larger than ρ0 out of N attempts is [124]

P (n;SNR > ρ0, N) =
N !

n!(N − n)!
e−nρ

2
0/2(1− e−ρ20/2)N−n. (3.51)

We can then compute the probability that at least one attempt out of N produces an

SNR larger than ρ0 by first evaluating the probability that no attempt does. We then

obtain that

P (SNRN > ρ0) = 1− P (0, SNR > ρ0, N) = (1− e−ρ20/2)N ' Ne−ρ20/2, (3.52)
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where the last equality holds as long as e−ρ
2
0/2 � 1 and for large N . This defines the false

alarm rate (FAR) of a search when the noise is assumed to be Gaussian with zero-mean.

The FAR is then directly related to the number of templates one filters with. A search

including only non-spinning templates will have less chances to detect a generic GW but

will in turn have a lower FAR than a template bank including aligned-spin templates. As

an example, the non-spinning template bank used in [69] contained ∼ 28000 templates

while the spinning version needed ∼ 150000 which in principle increments the FAR by

a factor of ∼ 6. A very naive first analysis shows that if we wanted to keep the same

FAR for the second search we would require a new SNR threshold ρS such that

FARNS = FARS ⇒ NNSe
−ρ2NS/2 = NSe

−ρ2S/2, (3.53)

where the subscripts NS and S denote non-spinning and aligned-spin search respectively.

Since ρNS = 8 and NS = 6NNS , one obtains ρS ∼ 8.22. A more detailed calculation

[69] [125], yields a value of 8.3. This means that we would need signals a ∼ 3% louder

in order to claim a trigger, reducing by a factor of ∼ 10% the sensitive volume achieved

if one could keep a threshold value of 8. Roughly, this means that a search including

spinning template banks would be more sensitive that a non-spinning one for the region

of the parameter space where the non-spinning template bank has a fitting factor < 0.97.

For instance, a spinning search will be less sensitive to non-spinning sources than a non-

spinning search but will be more sensitive to spinning sources for which the non-spinning

bank has a fitting factor < 0.97. In fact, [69] showed that for NS-BH targets with

spins uniformly distributed in (−1, 1), the sensitive volume of a search with aligned-spin

templates increases by ∼ 50% compared to the non-spinning search, while for signals

with aligned spins uniformly distributed in the range (0.7, 1), the increment is of a factor

of ∼ 10.

3.3 Gravitational Wave Searches: Real noise and identifi-

cation of glitches

The SNR has a clear statistical meaning when the background noise is assumed to be

Gaussian and with zero mean: it is directly related to the probability that a GW is

buried in the noise if one assumes that data consists on a combination of GW and

Gaussian noise. In real searches however, there are two main non-Gaussian sources of

triggers: gravitational waves and glitches. The presence of glitches makes background

distributions differ from those predicted in Gaussian noise at high SNR. The SNR is

then not enough to evaluate the probability of an event being a real GW and a more

detailed description is needed. In other words, an event is not univocally described by its
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SNR. To this end, searches use two approaches. Together with the SNR, GW searches

test the consistency of the signal with a GW via consistency test such as the χ2 or bank

vetoes [126] [121]. These aim to measure properties of the signal further than the simple

SNR. Their output are quantities whose statistical distribution can be computed both

under the supposition that the signal contains Gaussian noise or Gaussian noise plus

a GW signal. The χ2 can be then combined with the SNR to give a new definition of

the measured event and provide an event ranking statistic. If this is suitably chosen,

the larger it is, the larger the probability of having a GW will be. In particular, the

pycbc and ihope pipelines combine the ρ and χ2 numbers into the so called new SNR

(ρnew) [38]. The significance of the event is then evaluated by looking at the background

distribution of such ρnew. This is, one measures with which frequency the background is

able to produce events with a certain ρnew. Note that this probability would raise if one

looked at only ρ, since less information about the true GW signal would be used, and

less accurate reproduction of the searched signal by the background would be required.

Thus, the more detail one can describe events in, the less probable that the background

reproduces them, and the better GW’s and glitches will be discriminated.

3.3.1 Signal Based Vetoes

Signal based vetoes aim to measure whether the incoming signal is consistent with a

gravitational wave or not by looking at further properties than the plain SNR. A GW

signal can be thought of as a vector belonging to some a vector space W whose inner

product is just (3.26). With this description, the SNR is simply the projection of the

signal s along the direction defined by the template h. We are missing the angle they

form. A glitch is thus a signal that has a large projection over h but is not h, so the

angle between s and h is not 0. The χ2 tests provide effective attempts to measure this

angle or overlap.

The classic χ2 veto.

The classical χ2 veto [126] expresses h as a combination of p sub-waveforms hi such that

ρ[hi|hi]2 = ρ[hj |hj ]2 = ρ[h|h]2/p = ρ2/p ∀ i, j. Thus if s is really a GW represented by

h, in the absence of noise one should have ρi = ρ[s|hi] = ρj∀ i, j. In the presence of

Gaussian noise, the ρi values follow instead statistical distributions. We recall that the

SNR is the real part of a complex number, i.e., ρ[s|h] = Rz/σ, where sigma is the norm
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of the template, i.e.,

ρcomplex = 2
z

σ

z =

∫ ∞

f0

s̃(f)h̃(f)∗

Sn(f)
df

σ2 =

∫ ∞

f0

h̃(f)h̃(f)∗

Sn(f)
df.

(3.54)

Assuming that the template h does only contain quadrupolar modes, one can consider

the real part of ρcomplex as the SNR obtained when s is filtered with a template h0 and

the imaginary part as the SNR obtained when filtering s with h0 phase-shifted by π/2,

i.e., hπ/2. Due to this, it is usually written

ρcomplex = 2
(ρ[s|h0] + iρ[s|hπ/2])

σ
. (3.55)

The classic chi-square χ2
c is defined then as

χ2
c =

p∑

i

|zi − z/p|2, (3.56)

where zi = ρcomplex[s|hi]. In Gaussian noise χ2 is chi-squared distributed with 2p − 2

degrees of freedom and has an expectation value of [121]

〈χ2
c〉 = min{2δρ2, 2pδ2ρ2}, (3.57)

where δ is a measure of the possible mismatch between signal and template due to, for

example, the discreteness of the template bank. Recall that in current GW searches

from CBC’s, δ = 0.03. In practice, the N subtemplates that h is decomposed into, are

the result of chopping the Fourier domain expression of h into N pieces that have equal

optimal SNR. What we are measuring is if the amount of SNR produced by each piece

is consistent with what is expected from the true waveform. Real GW signals that are

really similar to h will give low χ2 values while glitches should produce significantly

larger ones. This veto has been used in GW search pipelines like ihope [38] and is

currently employed by the pyCBC toolkit [69].

The template bank veto

A more geometrical approach to the identification of glitches is the so called bank veto

[121], implemented in the gstlal pipeline. The templates hi that form a template bank are

correlated by their overlap Oij ≡ O[hi|hj ]. Suppose that hi is triggered by a signal s with

an SNR ρi = ρ[s|hi]. In the absence of noise one should expect ρj = ρ[s|hj ] = Oij × ρi.
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The bank χ2 veto is then defined as

χ2
B =

N∑

j=1

|zj −Oijρi|2
1− |Oij |

, (3.58)

Its expected value is given by

〈χ2
B〉 ≤ Nρ2

i

[
1

1− δ − 1

]2

' Nρiδ2, (3.59)

where the last equality stands for low δ.

Accounting for the χ2: the newSNR

The two described methods attempt to identify glitches by finding excesses/lacks of

power in determined regions of the waveform manifold that are inconsistent with s

containing h. Note that this does not necessarily mean that g does not contain a GW:

if such a GW is wrongly modeled by the template bank or is just not included 3 it

will have a large χ2 value and will be interpreted as a glitch. Also, a low value of the

χ2 does not guarantee that the data contains a GW. The χ2 vetoes explore a finite

number of the signal-vector-space dimensions and thus can only find excesses of power

in a limited number of them. In more geometric terms, χ2 tests are an attempt to

measure the the overlap between the incoming signal and the triggered template. The

SNR and χ2 are usually recombined in what is known as the newSNR (ρnew). The exact

expression for ρnew(ρ, χ2) is obtained after tunning. Such a tunning is done by injecting

simulated signals (injections) into data and looking for the expression of ρnew that best

discriminates triggers due to injections from those due to glitches. As an example [38]

used,

ρnew =





ρ if χ2 ≤ 2p− 2

ρ

[
1
2

(
1 + ( χ2

2p−2)3

)]−1/6

if χ2 > 2p− 2.
(3.60)

Fig. 3.1 shows SNR vs. χ2 results for both injections (red) and glitches (blue) and the

corresponding constant ρnew lines. Note how for this particular case, the green line gives

a reasonably good separation of injections and signals for ρ > 8.

The high mass problem with glitches.

The newSNR has been proven to be particularly efficient separating low mass-high SNR

signals from the background noise. However, high mass signals, which are shorter than

3For instance consider that the data contains a GW spinning signal and that the bank is non-spinning.
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Figure 3.1: SNR-χ2 plane for several triggers due to both injections (red) and glitches
(blue). Colored lines represent constant ρnew lines. Credit [38].

low mass ones, can be such that both signals and glitches give similar results when the χ2

test is performed, making them indistinguishable. In particular, for high mass signals,

the late part of the Fourier domain waveform, which corresponds to the merger-ringdown

stage, is particularly well imitated (see Fig. 3.2) by a concrete class of glitches known

as sine-Gaussian glitches [127]. In the Fourier domain these take the form

Sg(f) =

√
π

2
τe−π

2τ2(f−f0)+iφ0

[
1 + e

−Q2 f
f0
−2iφ0

]
, (3.61)

where Q is the quality factor and f0 the central frequency. The initial phase φ0 can be

neglected for practical purposes as long as Q > 1. Fig.3.2 shows the Fourier transform

of a q = 1 non-spinning waveform together with a sine-Gaussian glitch with (Q, f0) =

(5, 108). The waveform has been re-scaled so that it compares in amplitude with the

glitch. In order to estimate by eye how large the overlap is, the plot shows also the

early Advanced LIGO noise PSD multiplied by a factor of 1040. Note that in the region

where the PSD has its minumum (known as sweet-spot), both waveform and glitch

almost overlap each other. In fact their actual overlap is 0.886. Further, and in order to

get an estimation of how indistinguishable sine-Gaussian glitches and GW signals can

become as the total mass of the system grows, Fig.3.3 shows the Fitting Factor of a

set of SEOBNRv1 waveforms to a bank of sine-Gaussian glitches. Note that in general,

the larger the mass of the system is, the larger the overlap between sine-Gaussians and

signal is. This justifies that the performance of χ2 tests decays as the total mass of the
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Figure 3.2: The plot shows an SEOBNRv1 ROM waveform and a sine-Gaussian glitch
with the parameters specified in the legend. The waveform has been re-scaled such that
it has the same amplitude as the glitch. Since global amplitude factors do not affect
the match between waveform and glitch, this facilitates the by-eye estimation of their

overlap. Their actual match is 0.886.

triggered template grows. Note also how the lower frequency cutoff of Advanced LIGO

allows for a better distinction of GW’s and glitches, getting the largest match down to

∼ 0.6, in contrast with the ∼ 0.90 obtained for early Advanced LIGO. This suggest that

sine-Gaussian glitches should be much less relevant once the detector has reached its

design sensitivity.
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Figure 3.3: Fitting factor of a of bank sine-Gaussian glitches ranging in Q ∈ [1, 10],
f0 ∈ (20, 500) to SEOBNRv1 waveforms. We consider the noise curves for Early ad-
vanced LIGO with a 30 Hz cutoff (left), and the Zero Detuned High Energy Power
curve with a 10 Hz cutoff (Right). The axes correspond to the mass ratio q and total
mass M of the target waveform. Results show that for a given mass ratio, the larger the
total mass the more similar sine-Gaussian glitches are to the GW signal. This makes

them more difficult to identify via χ2−tests (and in general).
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3.4 Parameter Estimation of signals from CBC

3.4.1 Systematic biases

Let h(Ξ) be a waveform with intrinsic parameters Ξ and let B be a template bank built

of waveforms hBi (ΞBi ). The maximum fraction of SNR that B can recover from h is given

by the fitting factor of B towards h, FBh and the corresponding recovered parameters

ΞBmax are the ones of the template hBmax for which Mhh
B
max(ΞBmax) = FBh. In general

one has

ΞBmax = Ξh + δΞsys, (3.62)

and we call δΞsys the systematic parameter bias of B towards h. A systematic parameter

bias has its origin on the models describing both waveforms being different, i.e., the two

models give slightly different waveforms for the same parameters Ξ. These kind of biases

make in principle that model A cannot correctly estimate the parameters of a waveform

of the model B. However, if the error δΞsys is small enough, it is possible that it gets

dominated by statistical uncertainties due to the presence of noise in the data in which

h may be buried.

3.4.2 Statistical uncertainty

Consider that we now compute the fitting factor FBh of a bank made up of waveforms

of the same family as h. In the absence of noise, it is trivial that the template that

will have the best match with h will be h itself and that then FBh = Mhh = 1, so

that ΞBmax = Ξh, and the parameter bias will be δΞ = 0. However, in a real search the

presence of noise n makes the incoming data be s = h + n. This makes FB(h + n) 6= 1

and δΞ 6= 0. The size of δΞ depends on the particular realization of the noise n and

its standard deviation σ will be an indicative of the resolution of our detector. If σ

is such that δΞsys < σ, then our systematic biases will not influence significantly the

accuracy of the measurements and we shall assume that our waveform model is suitable

for parameter estimation.

Currently, there are several criterions for estimating σ. One of the most common ones

is the usage of the so called Fisher Information Matrix (FIM). In this formalism, a

template is first expressed as an expansion around some Ξ0 parameters up to first order

as

h(Ξ) = h(Ξ0) + δΞihi + · · · (3.63)
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Given a signal s, the likelihood p for given set of parameters Ξr = Ξ + δΞ being the

recovered ones is given by [128] [129]

p(s|Ξr) ∼ exp

[
− 1

2
〈s− h(Ξr)|s− h(Ξr)〉

]

∼ exp

[
− 1

2
〈n|n〉+ δΞi〈n|di〉 −

1

2
δΞiδΞj〈di|dj〉

]
,

(3.64)

where di ≡ ∂h
∂Ξi

. Note that p is a probability distribution over parameters Ξ that depends

on the detector output s. In [130] it is shown that this linear approximation is equivalent

to the leading term of p expanded as a series in 1/ρ. It is for this reason that this

calculation will be applicable in the high-SNR regime. The Fisher Information Matrix

is then given by

Fij = 〈di|dj〉. (3.65)

When we consider that δΞi are the displacements of the waveform parameters from

the best-fitting values Ξ0, (3.64) can be treated as a multidimensional Gaussian with

variance-covariance matrix Σij = (F−1)ij . This formalism thus assumes that for suffi-

ciently loud waveforms, p becomes a true Gaussian, and that Σii describes the uncertain-

ties in the measurement of the several parameters Ξi. In this limit, we thus expect that

the uncertainties returned by parameter estimation will coincide with those predicted

by the FIM. The standard deviations of the parameters are then given by

σi =
√

Σii. (3.66)

Computing the FIM of a family of waveforms can be cumbersome, especially if such a

family is non-analytical and derivatives need to be computed using limits. Also, the num-

ber of dimensions/parameters one includes in the analysis will modify its value. Based

on the same formalism [131] provide criteria for indistinguishability of two waveforms

based on the SNR of h(Ξ0) and the distance (overlap) between it and any other tem-

plate h(Ξ0 + δΞ). Further, [111] re-wrote this criterion as a function of their mismatch

ε = 1−O as

ε <
1

2ρ2
, (3.67)

which provides a very simple test for deciding when two waveforms are indistinguishable.

The threshold depends on the loudness of the signal (say h1): the louder it is, the less

likely it will be that the background Gaussian noise “makes it look” like something else.

Coming back to the problem of the separation between high mass signals and glitches (in

particular sine-Gaussians), the results shown in Fig.3.3 suggest that although matches

between signals and glitches are large, they are not that large that both waveforms are
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really indistinguishable. As an example, using , for an SNR of 8, one would need a

fitting factor of ∼ 0.992 between glitch and waveform for them being indistinguishable.

If this is true, then the results shown in Fig. 3.3, suggest that if sine-Gaussian glitches

were incorporated to waveform template banks, bayesian parameter estimation should

be able to distinguish between high mass signals and sine-Gaussian glitches.



Chapter 4

Modeling the full gravitational

radiation from Compact Binary

Coalescences: Construction of

multi-modal hybrid waveforms

4.1 Introduction

In Chapter 2 we mentioned the concept of “hybrid waveform”. A hybrid waveform is the

result of joining two different waveforms in a single one. The goal of this construction

is, in general, to obtain a waveform that can cover a lager period of the coalescence than

each its components. For example, in a PN/NR hybrid waveform, the early inspiral is

described by means of the PN approximation, which becomes inaccurate at late stages.

In order to describe the late inspiral and eventual merger and ringdown one usually

attaches the corresponding NR waveform (if available) which in turn is not long enough

to cover the stages described by PN. The result is a waveform that covers all the stages

of the coalescence described by the PN and NR waveforms. The very basic process of

hybridizing two waveforms that aim to describe the same system is composed by two

stages. First, one must correct for any different conventions that they might present 1.

Last, a piecewise function is constructed in which residual differences between PN and

NR are smoothed in the so called hybridization region. Of course, in order to be able to

perform such a construction, it is required that both waveforms describe some common

period of the coalescence. This was a caveat only a decade ago, when NR simulations

would cover so few cycles of the coalescence that in order to overlap them with the PN

1As for instance, different time domains or a different choice of the origin for ϕ.
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result, one needed to hybridize at frequencies at which PN was not reasonably accurate

anymore. A detailed study regarding the length of NR simulations needed for such a

construction is given by [111]. The recent developments of NR simulations, particularly

in the context of the SpEC code, have provided several simulations that can cover up

to 80 GW cycles. Furthermore, in early 2015, a q = 7 non-spinning simulation covering

350 GW cycles was presented in [117].

PN/NR hybrid waveforms are not suitable for being used in searches or PE studies

since one would need an enormous number of NR simulations that covers the searched

parameter space. However, hybrid waveforms are the basis of phenomenological models

[56] [36] and can be used as target signals (injections) to be injected in real detection

pipelines in order to test their sensitivity, such as in [34]. The study of the construction

of such objets when only the quadrupolar mode is considered, and the influence of the

different parameters that go into the construction has been extensively performed for

both constructions in time domain [111] and frequency domain [36] [132]. We note that

hybrid waveforms containing HM have been already produced (although not publicly re-

leased) in the context of the NINJA-2 project [34] by the SpEC, Gatech, Llama and RIT

groups and also in [2] for the purpose of testing the effect of higher order modes (HOM)

in non-spinning CBC searches, to which side work made in the context of this thesis has

contributed. Also, [133],[134], [135] have proposed several ways in which HOM can be

hybridized. We will describes their main particularities later. We describe an slightly

modified method for hybridizing HOM and proceed to the study of the main sources of

PN and NR results for HOM and the influence on the final waveform. The aim of this

chapter is to give a detailed procedure that can be followed for coherently constructing

hybrid waveforms including higher order modes. Such a procedure does not only provide

a standard framework but allows for the detection of errors or inconsistencies that might

be present in either the NR or PN results that will automatically stand out. Further-

more, one of the main outcomes are obtention of several figures during the procedure

that will yield new error sources and motivate the definition of new figures of merit that

will allow to test the influence of several parameters that go into the calculation of both

PN and NR waveforms. This will serve for testing not only the accuracy of the final

hybrid waveform, but that of the PN and NR waveforms themselves.

The rest of this chapter is organized as follows. Sec. 4.2 will describe the basic definitions

regarding waveforms and their possible ambiguities. This will be needed for “putting

into agreement” both the NR and PN sides. Section 4.3, will be devoted to discuss

the general principles of the construction of hybrid waveforms. In particular, we will

discuss the existence of three degrees of freedom required to align PN and NR waveforms.

Section 4.4 will provide a brief review regarding the construction of single-mode hybrid

waveforms and the corresponding sources of error will be identified and discussed. In
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In Section 4.5 a method for coherently constructing our hybrids with higher modes will

be described. Let us anticipate that the next chapter will be devoted to the study of

residual disagreements between PN and NR in the hybridization region after alignment

and identify their origin for afterwards evaluating the influence of NR extraction radius

(and extrapolation) on the hybrid in terms of waveform matches.

The numerical waveforms that will be used in this chapter and the next one have

been taken from the publicly available SXS catalogue [115] (computed by the SpEC

code [97, 101, 102, 104–106, 136–141]),and from a set of waveforms that have recently

been constructed with the BAM code [107, 108]. The illustrative examples will focus on

mass ratios 8 and 18, where contributions from HM are significantly stronger than for

roughly equal masses, but where it is computationally much more expensive to extend

NR calculations to low frequencies, where PN is reliable. The results presented in this

chapter and Chapter 5 are the basis of [1], which was done in collaboration with the

LIGO groups in UIB and Cardiff University, who kindly provided the BAM q = 8 and

q = 18 simulations.

4.2 Waveform definitions and ambiguities

The main goal here is to construct a hybrid waveform from two independently computed

pieces, or more generally to compare any two waveforms, such as the results of two

numerical relativity calculations. Consequently we then need to understand the different

conventions and possible ambiguities that went into the definition of both pieces. We

have already described general expressions for CBC waveforms in Chapter 3. However

we will here give a brief review and make emphasis in the possible ambiguities that

might appear in such a description. Since in particular we will deal with NR waveforms,

we will start defining them in terms of the Newman-Penrose scalar Ψ4, which is the

waveform quantity directly computed in many NR codes, and afterwards focus on the

strain h, which is the quantity directly relevant to the data analysis of current ground-

based gravitational wave detectors. Ψ4 is computed by contracting the Weyl tensor

Cαµβν with the appropriate elements of a suitable null tetrad `µ, mµ, m̄µ, nµ (see [96]

for a detailed description of the formalism). As an example, the BAM code uses the

definition

Ψ4 = −Cαµβνnµnνm̄αm̄β, (4.1)

where ` and n are ingoing and outgoing null vectors and −` ·n = 1 = m · m̄. The precise

choices made in this code can be found in Sec. III of [107]).
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The definition of Ψ4 carries with it several ambiguities, starting with the overall sign

convention for the Riemann and Weyl tensors (including metric signature). As examples,

in the BAM code [107] the conventions from Misner, Thorne and Wheeler [71] are used,

and the opposite sign is used in the SpEC code (see e.g. the comment above Eq. (2.100)

of [142]). In addition, the overall sign in (4.1) is a convention that may change between

different authors.

Furthermore, there is freedom in the choice of the tetrad. While `µ, nµ will coincide

between different codes in the limit r → ∞, there is no canonical choice 2 for the

complex null vector mµ which can be rotated by some angle σ (mµ → eiσmµ), leading

to a redefinition Ψ4 → e−2iσΨ4. The different choices in the definition of Ψ4 thus amount

to an ambiguity Ψ4 → eiψ0Ψ4, which in physical terms is simply the freedom in defining

the two gravitational wave polarizations.

The two real polarizations h+ and h× of a gravitational wave can be conveniently rep-

resented as a complex strain

h(t, θ, ϕ; Ξ) = h+(t, θ, ϕ; Ξ)− ih×(t, θ, ϕ; Ξ) , (4.2)

where t is an inertial coordinate at null infinity, θ is chosen as the angle between the

line-of-sight from the detector to the source and the total angular momentum of the

binary (which we choose as our z-axis), ϕ is an azimuth angle in the source frame, and

the intrinsic parameters of the source are collectively denoted as Ξ. This quantity can

be obtained from Ψ4 by applying a double time integration (see [100] for a discussion of

the issues arising in this procedure), or directly from projecting the metric perturbation

onto some orthonormal polarization triad as is usually done in the PN context. Different

choices of triad will again lead to a redefinition of the type h → eiψ0h (see for instance

Eq. (2.6) of [144]).

It is convenient to decompose the strain into spin −2 weighted spherical harmonic modes

h`,m as

h(t, θ, ϕ; Ξ) =
∞∑

`=2

∑̀

m=−`
Y −2
`,m(θ, ϕ)h`,m(t,Ξ), (4.3)

where Y −2
`,m(θ, ϕ) are the spin -2 weighted spherical harmonic basis functions.

We restrict to the non-precessing case, here the intrinsic parameters are thus the total

mass, the mass ratio and the two (dimensionless) spin projections onto the angular

momentum of the system, Ξ = {M, q, χ1, χ2}. In this case the geometry is symmetric

with respect to the orbital plane, which is preserved in time. This equatorial symmetry

2See e.g. the discussion below Eq. (29) [143]).
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implies

h(t, θ, ϕ; Ξ) = h∗(t, π − θ, ϕ; Ξ) (4.4)

(where a ∗ denotes complex conjugation) provided that the polarizations are defined

using some appropriate choice for the projection triad/tetrad, which is usually the case

in the literature. For the individual modes this translates into

h`,m(t,Ξ) = (−1)`h∗`,−m(t,Ξ). (4.5)

Therefore, we just need to focus on the m ≥ 0 modes, except when reconstructing the

whole waveforms. Finally, it is convenient to decompose each mode into a real amplitude

and phase as

h`,m(t,Ξ) = A`,m(t,Ξ)e−iφ`,m(t,Ξ). (4.6)

In the following we will omit the dependence on Ξ in order to simplify notation and

write h(t, θ, ϕ).

Note that during inspiral the phase of the (`,m) mode approximately follows the rule

φ`,m(t) ≈ mφorb(t), where φorb is the orbital phase, however this approximate relation

has to break down eventually during the merger, as it is violated during the ringdown,

as one can check by comparing the quasi-normal frequencies of the different modes. We

will return to this issue in the next chapter 5.2.

The strain hD seen by a detector located in the direction (θ, ϕ) of the source sky also

depends on the luminosity distance dL to the source, and the orientation of the detector

with respect to the source, which we parametrize using three angles (θ̄, ϕ̄, ψ). Here (θ̄, ϕ̄)

are the spherical coordinates of the source in the detector sky, and ψ is a polarization

angle. This dependence is encoded in the antenna patterns F+ and F× of the detector

as

hD =
F+(θ̄, ϕ̄, ψ)h+(t, θ, ϕ) + F×(θ̄, ϕ̄, ψ)h×(t, θ, ϕ)

dL
. (4.7)

where

F+ =
1 + cos2 θ̄

2
cos 2ϕ̄ cos 2ψ − cos θ̄ sin 2ϕ̄ sin 2ψ,

F× =
1 + cos2 θ̄

2
cos 2ϕ̄ sin 2ψ + cos θ̄ sin 2ϕ̄ cos 2ψ.

It is well known that this can be rewritten as

hD =
F (θ̄, ϕ̄, ψ)

dL
[cosκh+(t, θ, ϕ) + sinκh×(t, θ, ϕ)] , (4.8)

where κ acts as an effective polarization angle and F/dL is a simple overall amplitude

factor.
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We can now list the possible ambiguities in the definition of the waveform and its spher-

ical harmonic modes for two waveforms A and B, computed with different methods and

conventions. We use the superscripts A and B to refer to quantities derived from these

waveforms. For aligned-spin binaries we assume that computations A and B preserve

the manifest equatorial symmetry of the problem, in particular that the z-axis of the

coordinate system we use to define our spherical harmonic mode decomposition is par-

allel to the angular momentum of the system. The remaining conventions to choose are

the origin of the azimuthal angle ϕ of the spherical coordinates, a polarization angle

ψ0, and the origin of the time coordinate. The degree of freedom represented by ϕ has

been largely described in current literature, such as [135] or [132]. However, the angle

ψ0 is described in [134] [text below eq. (76)] and constrained to have a value of nπ/2, n

being an integer, in the context of comparing EOB and NR results. Neglecting for the

moment issues related to the accuracy of computations A and B, the strains hA and hB

computed by implementations A and B are related by

hA(t, θ, ϕ) = eiψ0hB(t+ τ, θ, ϕ+ ϕ0), (4.9)

where ψ0 and ϕ0 are two angles that encode the different choices in conventions. Of

course, the same relation applies to Ψ4. As a result, the hlm modes are related by

hA`,m(t) = ei(ψ0+mϕ0)hB`,m(t+ τ) (4.10)

Usually, conventions are chosen such that (4.5) holds for the individual modes. This

implies that ψ0 ∈ {0, π} and thus

hA`,m(t) = (−1)κ0eimϕ0hB`,m(t+ τ) (4.11)

with κ0 ∈ {0, 1}. In the case where one only considers the dominant (2, 2) mode,

equations (4.10) and (4.11) can be rewritten as hA22(t) = eiϕ
′
0hB22(t + τ) i.e. the whole

angular freedom amounts to a global phase shift. In the multi-mode case, comparing

waveforms without ensuring a consistent choice of ψ0 will lead to incorrect results.

In order to compare or hybridize two waveforms, we thus need to align them to resolve

the above ambiguities, i.e. either keep track of the differences in conventions or infer

these from the waveforms themselves via comparing the PN and NR pieces. We describe

in detail our procedure to do so in Sec.4.5. This requires to define some notion of distance

between the two waveforms and minimizing it over the parameters (ψ0, ϕ0, τ). Note that

ψ0 only depends on the difference in the definition of the polarizations between methods

A and B and therefore needs to be determined only once whereas τ and ϕ0 will differ for

each pair of waveforms. Inaccuracies in the waveforms will in general lead to residual
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discontinuities between the spherical harmonic modes even after alignment and these

are studied in detail in the next chapter.

4.3 NR and PN input waveforms

Let us give a brief reminder of the different properties of PN and NR waveforms that

we will use. For more detailed description, please go back to Chapter 2.

Post Newtonian expansions

PN expansions compute an approximate solution of Einstein’s equations up to a certain

order in the expansion parameter. Since only a finite (small) number of expansion

terms are known, it is not possible to perform a strict convergence test to estimate

the truncation error. In addition, the approximation breaks down at merger or shortly

before. Even at a given PN order for the energy and the flux, different treatments in the

derivation of the orbital phase from the balance equation give rise to a variety of “PN

approximants”, such as the Taylor approximants [79, 145], which are commonly used in

gravitational wave data analysis.

The main consequence of the PN truncation error is a phase evolution which progres-

sively deviates from the correct one as the binary evolves. This secular trend translates

into the key source of error for the estimation of the time-shift τ between PN and NR, as

shown in Fig.4.2, where the secular trend is also shown in comparison with oscillations

originating in residual eccentricity of the NR data. Since secular phasing errors in PN

grow with frequency, it is desirable to hybridize at low frequencies, or equivalently with

very long NR waveforms, to minimize such errors. Longer NR waveforms are however

significantly more expensive computationally.

In this chapter and the next one we use the Taylor T1 and T4 approximants including

(unless said explictly) 3.5 PN non-spinning [72] and spin-orbit [73] and 2PN spin-spin

[75] phase corrections, which we will just denote as T1 and T4 for brevity. We use 3PN

non-spinning amplitude corrections for the higher modes [85] and 3.5PN for the 22 mode

[146]. The spin corrections to the amplitudes are known up to 2PN [86].

Numerical Relativity

In NR, the expansion parameter of the PN approximation is essentially replaced by an

expansion in the resolution of the numerical grid, and at least in principle it is possible to
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provide error estimates through a convergence test. Unless the GW signal is calculated

at null infinity, e.g. employing the Cauchy characteristic method [100, 147], convergence

needs to be checked not only with respect to grid resolution but also extraction radius.

It is then possible to either extrapolate to infinity from a series of finite radii using

a given order N polynomials (e.g. for the SpEC simulations [97, 99, 101–103]), or to

directly use results from a single finite radius. Furthermore, systematic errors arise due

to imperfections of the initial data and initial orbital parameters, in particular residual

eccentricity, which generates oscillations in amplitude and phase (see e.g. the discussion

in [111]). Unphysical radiation content of the initial data manifests itself in a small GW

burst at early times, which is usually referred to as “junk radiation”.

For mass ratio q = 18, new NR simulations have been performed with the BAM

code [107, 108], and are summarized in Sec. III. A of [2]. GW strain is computed

from Ψ4 using the fixed-frequency-integration algorithm described in [100]. For a re-

cent comparative discussion of current numerical relativity codes for black hole binaries,

including SpEC and BAM see [148, 149]. Fig. 4.1 shows the amplitude of the most

important modes for the highest resolution BAM q = 18 waveform.
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Figure 4.1: Logarithmic plot of the mode amplitudes for the non-spinning q = 18
configuration. The modes with (`,m = `) (in black, with ` = 3, 4, 5 from top to
bottom) and (`,m = ` − 1) (in dashed blue, with ` = 2, 3, 4 from top to bottom) all
have a peak amplitude smaller than that of the (2,2) mode (on top) by a factor between
∼ 3 and 20. We show the clean part of the waveform after initial transients due to junk

radiation.
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4.4 Single mode hybrids

Idealized case

In order to illustrate some key points of the hybrid construction, we first consider a single

mode and assume that we have at our disposal two infinitely accurate general-relativity

computations of some spherical harmonic mode of the strain, hA(t) and hB(t), that

overlap over some portion of the evolution of the binary, i.e. that there is an interval

where they satisfy (4.10). Let us define for convenience the amplitude A(t) and the

phase φ(t) of waveform X (with X= A or B) as hX(t) = AX(t)eiφ
X(t) which we assume

to be defined over some interval [0, tXf ], as well as the frequency ωX(t) = dφX/dt which

is a monotonic function of t in the case of binaries on circular orbits (we will discuss

below the problems introduced by the oscillations due to some residual eccentricity in

the NR waveform; however, provided that the eccentricity is small enough, this remains

true). We can therefore define the inverse function tX(ω), which satisfies tX(ωX(t)) = t.

Our idealized infinitely accurate waveforms will satisfy

hB(t) = eiϕ0hA(t+ τ) (4.12)

for some τ and ϕ0, and t in the interval [tA(ωB(0)), tAf ], which implies ωB(t) = ωA(t+τ).

Determining τ and ϕ0 is then trivial: one chooses any frequency ω0 inside the range

[ωB(0), ωA(tAf )] and obtains

τ = tA(ω0)− tB(ω0), eiϕ0 =
hB(tB(ω0))

hA(tA(ω0))
. (4.13)

In this idealized case the time alignment and angle ϕ0 do not actually depend on the

frequency ω0 and no blending is required, both functions perfectly overlapping before

and after the matching point.

Realistic case

In practice both computations are affected by errors, and (4.12) is never exactly satisfied

over any interval. One rather has to find the best parameters τ and ϕ0 so that (4.12) is

the closest to being satisfied in some sense and over some matching window. We thus

now have to make some particular choices in our hybrid construction. We parameterize

our window by the initial time t0 or initial frequency ω0 (defined as ωPN (t0) = ω0) and

the length of the window in the time domain ∆t, i.e. our window is [t0, t0 +∆t]. In order

to avoid the influence of amplitude errors, we only take into account phase information
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when aligning the waveforms in time. We adopt the quantity

∆(τ ; t0,∆t) =

∫ t0+∆t

t0

(
ωPN (t)− ωNR(t− τ)

)2
dt, (4.14)

which has the advantage of not depending on ϕ0. Other authors have replaced ω by φ

or h [111] in the integrand (which then depends on ϕ0) and tested that their hybrid was

not affected much by this choice.

The appropriate time shift τ for a given choice of window [t0, t0 + ∆t] is then obtained

by minimizing ∆(τ ; t0,∆t). Once this is done, the optimal phase shift ϕ0 has to be

determined. Simple choices are to align the phases at a fixed time, e.g. the beginning

of the window, ϕ0 = φNR(t0 − τ) − φPN (t0), or to pick the phase shift that minimizes
∫ t0+∆t
t0

(
φNR(t− τ)− φPN (t) + ϕ0

)2
dt. We have checked that the resulting hybrid de-

pends very weakly on this particular choice. This is due to the fact that the phase has

one additional integration with respect to the frequency, so it contains less oscillations.

Once τ and ϕ0 have been determined, both waveforms are combined into a piecewise

definition

h(t) =





eiϕ0hPN (t+ τ) if t < t0 − τ
w−(t)eiϕ0hPN (t+ τ) + w+(t)hNR(t) if t0 − τ < t < t0 − τ + ∆t

hNR(t) if t0 − τ + ∆t < t

(4.15)

where, with the notation w±[t1,t2](t) for blending functions that monotonically go from 0

to 1 (or from 1 to 0) in the interval [t1, t2], we have defined w±(t) = w±[t0−τ,t0−τ+∆t](t),

i.e. we perform the blending over the same interval we used to determine τ and ϕ0.

Here again, different authors have made different choices for the exact shape of these

functions. For instance, [111] considers cosine functions, while we here use linear ones.

Note that multiplying the PN part by eiϕ0 is a redefinition of the conventions for the

PN waveform (change of the orbital phase): now the early part of the hybrid does not

exactly reduce to the original PN waveform. In the single mode case this is trivial (and

multiplying the NR part by e−iϕ0 would have been equivalent). As single mode matches

are always optimized over coalescence phase, this redefinition of conventions will never

have any practical consequence. As we will see, in the multimode case, things get more

involved.

In order to quantify the error in the time alignment of the waveforms, it is instructive to

look at the time shift τ as a function of matching frequency ω0 and window size ∆t (note

that the absolute value of τ for some ω0 is meaningless, what matters is its variation).

Fig.4.2 illustrates how our best choice for τ varies with our choices of window length ∆t,

and how the secular trend depends on the choice of PN approximant. In the present
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Figure 4.2: Top: relative time shift (τ − τ0)/M as a function of Mω0 for q = 3
non-spinning SXS NR data hybridized to T1 for various lengths ∆φ of the matching
window. The reference time shift τ0 is the one obtained for ∆φ = 7π and Mω0 = 0.043.
Note how for larger ∆φ the oscillations in the estimation of τ/M are smaller. Bottom:
same for several SXS data sets hybridized to T1 and T4 using ∆φ = 7π (smaller values

of q on top) and τ0 as above.

case, oscillations in the NR waveform are caused in particular by residual eccentricity,

which manifests itself at frequencies of the order of the orbital frequency (close to half

the frequency of the (2, 2) mode). Indeed, for ∆t significantly larger than the orbital

period, we see that most of the oscillations in the NR data average out, and for a ∆t

corresponding to at least ∆φ = φPN (t0 + ∆t) − φPN (t0) ∼ 5π oscillations are smaller

than the secular trend due to the phase evolution not being accurate. Unless specified

otherwise, we therefore choose ∆t such that ∆φ = 7π, i.e. 3.5 GW cycles. Another

possibility, proposed in [50] is to force the window extremities to lie at some maximum

of the modulation to ensure the cancellation of the effects due to the modulation over

the window.

In order to minimize alignment errors due to the secular dephasing between PN and NR,

the interval over which one aligns the waveforms should be chosen as early as possible

since the accuracy of the PN perturbative treatment degrades as the frequency increases,
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but not as early as to be affected by junk radiation or other early-time transient errors.

In addition, a comparison of PN approximants as in Fig.4.2 can be used to choose a PN

waveform with smaller error in the matching region.
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Figure 4.3: Effect of ∆τ on the final hybrid (2, 2) mode. We show the match
M[hτ0 , h∆τ ] optimized over time and phase between hybrids built from SXS q = 3
non-spinning data hybridized to T1 at Mω0 = 0.043 (solid) and 0.073 (dashed). An
artificial time-shift τ0 + ∆τ is applied when constructing h∆τ , while hτ0 has been built

using the optimal time-shift τ0 between PN and NR. See main text for details.

Now we address the question of how much this impacts the waveform in terms of quan-

tities useful for data-analysis. Fig. 4.3 shows the match between q = 3 non-spinning

hybrid waveforms constructed using artificial time shifts τ = τ0 + ∆τ with a reference

waveform for which τ = τ0. We use the Zero-Detuned High Power noise curve of Ad-

vanced LIGO [33] with a lower frequency cutoff of 10Hz in order to facilitate comparison

with [111]. Regardless of the intrinsic parameters of the system and the hybridization

frequency, the mismatch increases with ∆τ . When the hybridization region is in band,

the match decays by a few 10−3 for a value of ∆τ of a few M , which is consistent with

the results obtained by [111]. Note that ∆τ has a larger effect will have on the match

for larger frequency ω0, as expected from the fact that ∆τ is then a larger fraction of

the period.

4.5 Multi-mode hybrids

In this section, we describe our procedure to construct hybrid waveforms with higher

modes and define quantities that will be used in the error analysis of Sec.5. Higher

modes become increasingly relevant for binaries with large mass ratio, for this reason

we illustrate our procedure using a waveform produced recently with the BAM code for

a non-spinning binary with q = 18, which we have presented in Sec. 4.3.
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Step 1: Determination of τ, ψ0, ϕ0

As discussed in Section 4.2, in the presence of higher modes one needs three parameters

(τ, ψ0, ϕ0) to describe the possible differences in conventions between the PN and the

NR waveforms. The best choice of such parameters will depend on the matching time or

frequency, but it appears fruitful to not make different choices for different directions in

the source sky (it seems conceivable but not practical to do this ). Several strategies to

infer these parameters from the waveforms can be explored. One important ingredient

is how to weight the contribution of different modes in determining (τ, ψ0, ϕ0). One

natural choice, pursued in [2], is to define a single set of (τ, ψ0, ϕ0) by minimizing the

quantity ∫
dt
∑

`,m

|hNR`,m(t− τ)ei(ψ0+mϕ0) − hPN`,m (t)|, (4.16)

where the integral is performed over some window corresponding to the hybridization

region, and the contribution of each mode is naturally weighted with its amplitude.

However, this method does not restrict ψ0 to belong to the set {0, π}, and the resulting

modes do not in general follow the usual relation (4.5). Also, [133] proposed to apply

individual time-shifts to each of the modes. We agree with [134] and think that applying

individual offsets is quite unnatural since one of our goals is that the resulting NR and

PN of the hybrid waveform coincide with the original PN and NR results.

In this thesis, we take a different approach. We will try to constrain the 3 degrees

of freedom as much as possible using only the dominant (2,2) mode. The (2,2) mode

of hybrids constructed this way will thus coincide with hybrids constructed only for

the (2,2) mode, and two hybrids constructed with different sets of higher modes will

exactly coincide on their common modes, which facilitates comparisons and studies of

the contribution of some specific mode. In practice, our procedure is the following. As

in the single mode case, we parametrize how early (or late) in the evolution we perform

our hybridization using a “hybridization frequency” ω0, which defines the “hybridization

time” t0 through
dφPN

2,2

dt
(t0) = ω0, (4.17)

and the length of the time-window over which the waveforms are aligned in time as

∆t. Considerations on how to choose these two parameters have been described in the

previous section. The determination of τ can be then carried out by minimizing the

same quantity as in the single mode case,

∆(τ ; t0,∆t) =

∫ t0+∆t

t0

(
ωPN2,2 (t)− ωNR2,2 (t− τ)

)2
dt, (4.18)
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since only the frequencies enter in ∆(τ ; t0,∆t). This makes the determination of τ

decouple from that of the phase offsets (ψ0, ϕ0). Before moving on to the determination

of (ψ0, ϕ0), let us recall that given a code to generate PN waveforms and an NR code,

ϕ0 will depend on choices made to generate each individual waveform whereas ψ0 could

in principle be computed once and for all by comparing all the convention choices in

both codes. Since for all the PN and NR data we have used (4.5) holds, we assume that

ψ0 can only take the values 0 or π as discussed in Sec. 4.2. Let us define

∆φ`,m = φNR
`,m(t0 − τ)− φPN

`,m(t0). (4.19)

Then ideally (i.e. assuming that (4.10) holds), we have ψ0 + 2ϕ0 + ∆φ2,2 ≡ 0 mod 2π

i.e.

ϕ0 ≡ −
∆φ2,2 + ψ0

2
mod π, (4.20)

which gives 2 solutions for ϕ0 in the interval [0, 2π[ if ψ0 is previously known and 4

solutions if ψ0 is unknown but restricted to ψ0 ∈ {0, π}:

(ψ0, ϕ0) =

(
κπ,−∆φ2,2

2
+
(
κ′ − κ

2

)
π mod 2π

)
(4.21)

with κ ∈ {0, 1} and κ′ ∈ {0, 1}. To lift this degeneracy, we need information from at least

one of the higher modes, say (`∗,m∗), and we use the one with the largest amplitude,

typically the (3,3) mode unless it is zero for symmetry reasons. If again both waveforms

were infinitely accurate, (4.10) would imply

ψ0 +m∗ϕ0 + ∆φ`∗m∗ ≡ 0 mod 2π, (4.22)

but in the presence of waveform errors this will not hold for any of our four solutions.

However, we can choose the solution that is the closest to satisfying this equation, which

is uniquely determined only in the case where m∗ is odd. Note that in the case where

only even m modes are available, ϕ0 needs in fact only to be determined modulo π since

only the combination mϕ0 appears in the hybrid construction and the two solutions can

be discriminated using any even higher mode. We find that there is a relative ψ0 shift of

π between the BAM and SXS waveforms, and also between BAM and the conventions

used in the PN context by Arun et al [144] and Blanchet [72].

Fig 4.4, shows the solutions found using this procedure on the q = 18 case hybridized

with three different PN approximants as a function of the hybridization frequency. As

one would expect, the result corresponds to the lower plot of Fig. 4.2, which shows the

dependence of the hybridization time shift on frequency and PN approximant. In Fig 4.4
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Figure 4.4: Estimations for ϕ0 as a function of Mω0 for the case of q = 18 non-
spinning BAM NR data hybridized to PN T4, T1 and SEOBNRv2 (from top to bottom).
For T1, the estimation of ϕ0 changes by ∼ π over the frequency range shown here

(corresponding to ∼ 7 cycles in h2,2).

we see that both the standard T1 and T4 approximants exhibit large secular trends,

indicating a large difference in the orbital phase (or more precisely the phase of the

(2, 2) modes) between the PN waveforms and the NR result over the frequency range

shown here. In comparison, the SEOBNRv2 waveform [51] shows almost no secular

trend. Evaluating the secular trend of the PN approximant as compared to the NR

waveform is an important part of the hybridization procedure. Exactly as in the single

mode case, this secular trend translates into some “hybridization error” (for instance,

the phase of the (2,2) mode for two hybrids built using T1 but with Mω0 = 0.085

or Mω0 = 0.115 and aligned in the early inspiral will differ at the peak by almost

one gravitational wave cycle) but this error has nothing to do with the higher modes

themselves and controlling it is not our main focus here. Instead, we will try to identify

additional figures of merit for the hybrid that directly quantify the additional error due

to the higher modes.

As a final remark, and regarding our assumption that ψ0 ∈ {0, π}, note that if (4.5) did

not hold for either the PN and/or NR inputs, one could simply solve the system

∆φ2,2 = 2ϕ0 + ψ0

∆φ`,m = mϕ0 + ψ0

(4.23)

without imposing any restriction on ψ0. Whenever we have done this, we have chosen

(`,m) = (3, 3), as this is the most dominant HOM.

We can now provide a summary of the different methods proposed in the literature for

constructing hybrid HOM and the properties they do/do not satisfy.

Both [135] and [132] consider phase shifts ∆φ`,m = mφ0 (neglecting ψ0) for the (`,m)

mode and apply an unique time-shift t0 obtained from the gluing of the dominant (2, 2)
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mode. In contrast, [133] proposes to apply individual time-shifts t`,m0 to each mode,

which breaks the alignment in time of the original modes. In [134] and [2], the angle ψ0

is described and computed in different ways. On the one hand [2] obtains the parameters

(φ0, ψ0, t0) by considering all the modes at the time and without any restriction on ψ0 (see

(4.16)). Again, (4.16) makes that if the original mode sets satisfy (4.5), the resulting

modes will not do it in general. On the other hand, [134] follows an approach quite

similar to ours: (t0, φ0) are obtained by gluing the (2, 2) mode while ψ0 is constrained

to have a value of nπ/2. We refine this a bit: if (4.5) is satisfied by both sets of modes,

then we restrict ψ0 ∈ {0, π}m making the resulting modes satisfy also (4.5). If this is

not the case, ψ0 can be obtained using two modes applying (4.23).

Step 2: evaluate residual disagreement between PN and NR at the

matching point

We now investigate the residual phase and amplitude disagreements between PN and NR

at the matching point and define appropriate quantities to describe this disagreement,

while we postpone the analysis of the main source of this disagreement to Sec. 5.

In the idealized case, correcting for the differences in conventions using (ϕ0, ψ0) is enough

to guarantee that the phase of every mode is continuous between the PN and NR wave-

forms at the matching point. In other words, the quantities

ε`,m = ∆φ`,m + ψ0 +mϕ0, (4.24)

which are functions of the hybridization frequency ω0 are all zero. In practice, this is not

the case and we will use these quantities as measures of the residual phase disagreements.

The values for the example q = 18 case are shown for the most important modes in

Fig. 4.5 (left). These are typically of a few degrees for m = ` modes and 10−15 degrees

for m = ` − 1 modes. Apart from the values themselves, one important feature is the

fact that unlike for ϕ0, these remain roughly constant over the range of hybridization

frequencies explored here. This is a consequence of the fact that we are essentially

measuring phase differences between the higher modes after aligning the (2,2) modes at

ω0 via the term mϕ0 in Eq. (4.24), which effectively absorbs the secular dephasing shown

in Fig. 4.4. In other words, the ε`,m really quantify the residual differences between PN

and NR in the dephasings between the higher modes and the (2,2) mode, factoring out

the error in tracking the orbital phase (or equivalently that of the (2,2) mode) of the

system. In order to account for discrepancies in the amplitude, we define the quantity

r`m =
|hNR
`m (t0 − τ)|
|hPN
`m (t0)| . (4.25)
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This is plotted in Fig. 4.5 (right). Note that higher frequency modes (i.e., larger m)

show larger amplitude disagreements. We will perform a detailed analysis of the phase

and amplitude errors in Sec. 5.
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Figure 4.5: Top: Phasing errors ε`,m (in degrees) for the q = 18 non-spinning BAM
data hybridized with T1 as a function of Mω0. Note the lower values for ` = m modes
(black) as compared to ` 6= m (red). Bottom: Amplitude ratios r`,m for the same
hybrid construction. Note how modes with larger m, i.e. with larger frequencies, tend

to show larger amplitude disagreements.

Step 3: hybrid construction

We can finally proceed to construct the higher hybrid modes as piecewise functions in a

similar way as in Eq. (4.15). However, since the early part of higher NR modes might be

noisier that that of the quadrupole one, we let the blending windows span over different

time intervals. Defining [t`,m0 − τ, t`,m0 − τ + ∆t`,m] to be the blending window used for

each mode and w±`,m(t) ≡ w±
[t`,m0 −τ,t`,m0 −τ+∆t`,m]

(t) the associated blending functions, we

now define

h`,m(t) =





ei(mϕ0+ψ0)hPN (t+ τ) t < t`,m0 − τ
w−`,m(t)ei(mϕ0+ψ0)hPN (t+ τ) + w+

`,m(t)hNR(t) t`,m0 − τ < t < t`,m0 − τ + ∆t`,m

hNR(t) t`,m0 − τ + ∆t`,m < t

(4.26)

with t0 ∈ (t`,m0 , t`,m0 + ∆t). Fig. 4.6 shows some of the resulting hybrid modes. The

three modes shown are three examples of modes for which PN and NR agree well in

both amplitude and phase (2, 2), only amplitude (2, 1) and only phase (3, 3). As we will

see in detail in Chapter 4, PN truncation errors are the main source for the amplitude

disagreements whereas the finitude of the extraction radius of the NR waveform domi-

nates those regarding the phase. The vertical lines in the plots denote the limits of the

blending windows. As mentioned some lines above, note the usage of different windows

for the (2, 2) mode and the other two. Fig. 4.7 shows the real part of several q = 8
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non-spinning hybrid modes built out of extrapolated N = 2 SXS NR data and T1. The

length of the SXS simulations allows to perform the hybridization at lower frequencies

than that of the hybrids in Fig. 4.6. In particular, here Mω0 = 0.043, where we are still

far away from the junk radiation present at the beginning of the simulation. Although

we will focus on this later, it is noticeable how the accuracy of the amplitude of the

PN (blue) data decreases for increasing m. In particular, if one compares the (2, 1) and

(4, 4) modes, one can see how the blue PN data deviates strongly from the NR one from

t/M ∼ 3000 for the (4, 4) mode while the (2, 1) follows it well up to almost the merger.
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Figure 4.6: Amplitude (left) and real part (right) of non-spinning BAM q = 18 (2, 2),
(2, 1) and (3, 3) modes hybridized with T1, from top to bottom. We show PN (blue),
NR (red) and hybrid (black) modes and focus on the hybridization region. The (2, 1)
mode is a typical example of good amplitude agreement and large ε`,m, while the (3, 3)
mode is a typical example of small ε`,m and poor amplitude agreement. Note the usage

of different blending windows from the one used for the (2, 2) mode.
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Figure 4.7: Real part of non-spinning SXS q = 8 modes extrapolated to null infinity
to order N = 2 hybridized with T1. The plots show PN (blue), NR (red) and hybrid

(black) and the vertical lines correspond to the hibridization region.



Chapter 5

Analysis of the accuracy of

post-Newtonian and Numerical

Relativity higher order modes

In the previous Chapter, we introduced figures of merit that quantify the residual dis-

agreements between the PN and NR higher modes both for the phase (see Eq. (4.24))

and for the amplitude (see Eq. (4.25)), after correcting for the differences in conventions

by aligning the (2,2) modes. This Chapter is now devoted to the identification of the

main sources of these disagreements among the errors affecting both computations and

described in Sec. 4.3. In particular, we will see that the phasing errors ε`m have their

main source in the finite extraction radius of the NR simulations. Regarding the ampli-

tude errors r`m, we will see that extraction radius in NR simulations plays an important

role (dominant for some modes), but that PN truncation errors are the main source

for some other ones. For a detailed analysis of errors in higher modes for a simulation

of non-spinning q = 4 system, see [103]. One of the main conclusions obtained there is

that extrapolation of gravitational waveforms to infinite extraction radius is particularly

important for subdominant multipoles with ` 6= |m|, as we will confirm here for a large

variety of cases.

In this study, we pay attention to several physical systems (mass ratios, spins), and

focus on those ones for which NR simulations performed with several codes are avail-

able. The latter provides information about the influence of the different numerical

setups, gauge conditions and initial data that are chosen by each code. A particularly

interesting system is the the case of a q = 8 non-spinning binary simulated using the

BAM code [107, 108], and also available in the public SXS catalogue [115]. This phys-

ical configuration shows strong higher mode contributions due to the large mass ratio

86
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and for which waveforms are available at different resolutions for both codes, as well

as several extraction radii. Furthermore, SXS data sets are also extrapolated to null

infinity at several polynomial orders (see [97] for a discussion of different methods, and

[99] for a comparison with characteristic extraction results) and this will allow us test its

influence. Note that the SXS waveform is significantly longer than the BAM one. This

allowed us to hybridize at a frequency Mω0 = 0.043, while the BAM waveform requires

Mω0 > 0.080. This means hybridizing 40 and 9.2 gravitational wave cycles (in the 22

mode) before merger respectively.

5.1 Errors in the modes amplitude

The effect of the NR extraction radius

In the previous Chapter we defined in the amplitude ratios r`,m (Eq. (4.25)). These mea-

sure the disagreement between the NR and the PN calculations at their matching point.

We will start by investigating the effect of finite radius extraction on these quantities.

Fig. 5.1 shows the r`,m for several modes as a function of the hybridization frequency

ω0, and for different extraction radii for both the BAM and SXS codes, including the

SXS waveform extrapolated to null infinity with a polynomial of order N = 4. Note that

although curves are amplitude comparisons between NR and PN, by taking the ratio

of two curves, one obtains a direct comparison between two NR results. Note that the

amplitude of the waveforms extracted at finite radius commonly differs from that of the

extrapolated waveform by around ∼ 1% for the highest radii available. However, much

larger errors arise when waves are extracted closer to the source. Note also that the

ratio between the amplitudes computed at the innermost radius and the extrapolated

one is lower the larger m is (for same Mω0), i.e., the larger the frequency of the mode

is. This behavior is kept when looking at a single mode, i.e., the further in the evolution

the more similar the extrapolated and finite radius amplitudes are. This is however an

expected behavior. In order to perform an accurate extraction of the GW data, the cor-

responding grid needs to be placed at the so called wavezone, defined by r � λ. Thus,

the larger the frequency of the GW (the lower its wavelength λ) the closer to the source

the extraction can be carried out. The quantitative values are quite different for data

sets computed with different codes. With the exception of the (3, 2)-mode, e.g. r = 100

BAM data are significantly closer to the extrapolated result than the corresponding SXS

r = 100 curve 1. This is not surprising: finite radius errors depend on gauge conditions

chosen for each code, and the lapse and shift chosen for each code is indeed different.

Currently, no explanation has been obtained for justifying why the BAM (3, 2)-mode

1Note that the BAM results are plotted in a shorter range since the simulation is shorter.
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shows anomalous behavior as compared to the other modes. However, as we shall see

later, part of this errors could plausibly be due to an effective mode mixing due to the

finitude of the radius of the surface in which ψ4 is computed and decomposed into modes.

This might affect different modes in a different way.

0.05 0.06 0.07 0.08 0.09
0.9
1.0
1.1
1.2
1.3
1.4

MΩ0

r 2
,1

0.05 0.06 0.07 0.08 0.09
0.98
1.00
1.02
1.04
1.06
1.08
1.10

MΩ0

r 2
,2

0.05 0.06 0.07 0.08 0.09
0.85
0.90
0.95
1.00
1.05
1.10
1.15
1.20

MΩ0

r 3
,2

0.05 0.06 0.07 0.08 0.09
1.05

1.10

1.15

1.20

MΩ0

r 3
,3

0.05 0.06 0.07 0.08 0.09

0.85

0.90

0.95

1.00

MΩ

r 4
,4

0.05 0.06 0.07 0.08 0.09

0.85

0.90

0.95

1.00

MΩ0

r 5
,5

Figure 5.1: Ratio of the NR/PN amplitudes as a function of matching frequency
Mω0 for a q = 8 non-spinning binary for several NR waveforms matched to T1. The
simulations correspond to r = (100, 133, 190, 266, 307)M and extrapolated SXS data

(in color and downwards) and BAM r = (60, 80, 100)M (black and upwards).

The effect of PN truncation

Once that we have checked the impact of extraction radius on the NR amplitude, let us

now address the direct comparison between NR and PN results. Since we have shown

that NR results converge as the extraction radius increases, we will now restrict our

attention to the extrapolated SXS amplitude and consider it to be the best possible

NR result. For the (2, 1), (2, 2) and (3, 2) modes shown in Fig. 5.1, the ratio r`,m

remains almost constant and differs from 1 by less than 2 percent over the whole range
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Figure 5.2: Ratio of the NR/PN amplitudes as a function of matching frequency
Mω0 for a q = 4 non-spinning binary for several NR waveforms matched to T1. The
simulations correspond to rq=4 = (100, 154, 380)M downwards and extrapolated SXS

data in orange.
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Figure 5.3: Ratio of the NR/PN amplitudes as a function of matching frequency
Mω0 for a q = 6 non-spinning binary for several NR waveforms matched to T1. The
simulations correspond to rq=6 = (100, 174, 550)M downwards and extrapolated SXS

data in orange.

of frequencies considered. Instead, the ratio for the (3, 3), (4, 4) and (5, 5) modes shows

a strong secular trend, which largely deviates from 1 at high frequencies by a few 10%.

Some smaller (but still of the order of several percent) disagreements are visible at low

frequencies. In orther to check the generality of this behavior, we performed this same

study for the q = {2, 3, 4, 6} non-spinning cases, for which SXS simulations are available.

We observed the same behavior. The corresponding plots for the (3, 2) and (4, 4) modes

are shown in Fig. 5.2 and 5.3 for the q = 4 and q = 6 cases respectively. The agreement

between the different NR curves (extrapolated SXS and the outermost extraction radius

for BAM), to at least a much higher degree than the disagreement between PN and

NR, and the fact that this discrepancy grows with the frequency suggests that the main

source of error here is that caused by the PN truncation, which is enhanced by the

fact that the disagreement is stronger at high frequencies, when PN is expected to be

innaccurate precisely due to the lack of higher PN corrections. In order to analyze this

in more detail, it is illustrative to study how the variation of the amplitude ratio r`,m

(gray curves) changes when different PN orders are used to compute the GW modes.

Fig. 5.4 shows the ratio r`m for the (2, 2), the (3, 3) and the (4, 4) modes (which exhibited
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different behaviors in Fig. 5.1). The NR data used is SXS extrapolated and the PN

includes different PN corrections. When looking at this plots, the reader should bear in
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Figure 5.4: Ratio of NR and PN amplitudes of q = 8 non-spinning SXS NR data
extrapolated at N = 4 matched to T1 including different PN amplitude corrections as

a function of Mω0. We show the (2, 2) (left) and (3, 3) (right) modes.
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mind that the (2, 2) mode amplitude is known up to 3.5 PN while all the other modes are

known up to 3PN except that of the (3, 3) mode, which is known up to 3.5PN (Note that

however, unless explicitly said, we will use only 3PN for the (3, 3) mode, and again plots

in Fig.5.1 use only 3PN). As usual, studying the PN truncation error is more involved

than studying for instance the convergence with extraction radius since one does not

know a priori how the PN series converges and therefore extrapolating is not possible. In

particular, the convergence is not necessarily monotonic and consecutive corrections can

have very different magnitudes (note that they originate from or mix several physical

effects).

Due to this, the fact that adding a given correction barely changes the result does

not guarantee that the next one will be also negligible. In order to see this, look (for

instance) at the curves corresponding to (1,1.5,2) PN orders for the (4, 4) mode in Fig.5.4:

the first two are superimposed but the 2PN corrections changes the result completely.

Furthermore, assuming that extrapolated NR data gives the best result, it is also not

guaranteed that the larger the PN order one uses the better result will be achieved,

as is clear again from the (4, 4) plot in Fig.5.4. In summary, one cannot estimate the

truncation error by comparing the result at n PN and the one at (n+ 1/2) PN. Despite

these caveats, the spread between several consecutive curves gives a sense of how much

PN truncation affects the result and the comparison between different modes suggests

that this error is larger for larger m. Note that while all higher modes are shown up to

absolute 3PN order (with the convention that the leading order of the (2, 2) amplitude

is Newtonian), their leading order is (`− 2)/2 PN for even values of `+m and (`− 1)/2

PN for odd values of `+m so the number of relative corrections actually known for each

mode of course varies. However, we highlight that the differences that we observe are

not a consequence of a relative higher order knowledge for some modes: if we consider

3PN corrections, both the (2, 1) and the (3, 3) modes for instance are computed with

2.5 PN relative precision and show a very different behavior. The lack of apparent

error systematics regarding PN orders or modes is not untypical for PN results, where

contributions at different orders often come from very different physical effects, thus

their magnitude is hard to anticipate.

Highlighting the effect of a PN correction: the 3.5 PN correction for the

(3, 3) mode.

As mentioned above, the (3, 3) mode amplitude has been recently computed up to 3.5PN

order but we have only considered corrections up to 3PN order. Its contributions will not

be considered for waveforms used in thesis since all the qualitative behaviors obtained

will not change. However, it can be very illustrating to study the effects of such a
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further correction. The central plot in Fig.5.4 shows in dashed-red the result when such

correction for the (3, 3) mode is considered. It is noticeable that the PN result agrees

now to a much larger accuracy that when 3PN corrections were used. Also, Fig.5.5 shows

the r`,m values shown in Fig.5.1 when using both 3PN (left) and 3.5PN corrections. It

is very noticeable that not only PN agrees better with NR when using 3.5PN but also

that this improvement is much larger the larger the frequency is: at low frequencies the

improvement is from 4% to < 1% but at high frequencies it improves from > 20% to

∼ 2%. We recall that that since PN series are not monotonically convergent, the fact

that 3.5PN amplitude gives better result than 3PN is not guaranteed before “checking’.’

The conclusion is that it would be useful to include 3.5PN corrections when (3, 3) modes

are considered. for, for instance, building a phenomenological model including HOM.
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Figure 5.5: Same as in Fig.5.1 but only for the (3, 3) mode. The left plot shows the
result when the PN mode is computed with 3PN corrections while in the right one it

has been computed using 3.5PN corrections.

5.2 Comparison of PN and NR phases: analysis of the ε`,m

values

We will now investigate the sources of the residual phasing errors ε`m defined in Eq. (4.24).

As discussed in Sec. 4.5, these quantify the discrepancies between PN and NR in the

phase difference between the (`,m) mode and the (2, 2) mode, i.e. dephasing errors in

addition to the difference in tracking the orbital phase of the system. Eq. (4.24) can be

rewritten using Eq. (4.21) in order to obtain

ε`,m(ω0) =
(
φNR
`m −

m

2
φNR

22

)
−
(
φPN
`m −

m

2
φPN

22

)
(5.1)

where the phases have to be taken at the matching point corresponding to the hybridiza-

tion frequency ω0. Note that in principle the rhs of Eq. (5.1) should also contain an

additional term (2κ′m+(2−m)κ)π/2) originating from convention differences. In order
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to simplify the analysis, we will consider that these have been reabsorbed in the defini-

tion of one of the two waveforms. In other words, we adjust the conventions (but only

by integer factors of π/2 for ϕ0 and of π for ψ0) of say the PN waveform so that the

ε`m vanish in the limit where both the NR and the PN waveform would be infinitely

accurate. The ε`,m values are more intricate to study than the r`m since they not only

involve PN and NR but also two different modes. As a first step, it is useful to focus on

the simpler quantities

ΛX`,m(t) = φX`,m(t)− m

2
φX2,2(t), (5.2)

where X is NR or PN, which only involve either the NR or PN waveform. Note that

this quantities were already defined in (2.18) as the contributions to the total phase

of the mode from the complex part of the mode amplitudes. Note also that ΛX`,m is

insensitive to a redefinition of the angle φ, i.e. to a change in ϕ0. However, a redefinition

ψ0 → ψ0 + δψ0 affects (5.2) as ΛX`,m → ΛX`,m + δψ0(1 − m/2). In particular, these

quantities are defined bearing in mind that during the inspiral they should vanish as the

frequency decreases, which implies some particular convention for ψ0. In the rest of this

Chapter, in order to simplify the discussion, we assume that all the waveforms adopt

this convention. Note that the conventions adopted in Arun et al [144] and Blanchet

[72] differ from this by a shift of π in ψ0.

In the PN side, one finds that the ΛPN
`,m are small but non-zero during the inspiral, and

vanish in the limit of infinite separation. As a consequence, the PN phase of the (`,m)

mode approximately follows the rule φPN`,m (t) ≈ mφorb(t) where φorb is the orbital phase

of the system, as was described in Chapter 2. More precisely, in the non-precessing

case, the deviations to this expression are due to imaginary coefficients in the mode

amplitudes which only appear at high PN orders for the modes we consider (see Eq. (327)

of [72] for the non-spinning mode amplitudes; note that the spin corrections to the

mode amplitudes that are currently known, i.e. up to 2PN, contain no such complex

correction).

Thus, a plausible first assumption could be that the ε`,m have their source on PN not

providing an accurate estimation of Λ`,m due to the lack of higher PN corrections.

However, an excellent agreement is found between extrapolated NR and PN results

regarding the Λ`,m, i.e. in the NR data one finds consistently small but non-zero values

of ΛNR
`,m. However, errors arising from finite extraction radius can be large and in what

follows we will discuss the dependence of the quantities ΛNR
`,m on it. Note that these

quantities are functions of time. Due to this, we first need to align in time waveforms

extracted at different radii. To facilitate the comparison with PN, we pick a reference

frequency ω0 early in the waveform and align all the (2, 2) modes with the one with the

largest extraction radius using the same procedure as described in Sec. 4.4. Fig. 5.6
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Figure 5.6: Value of ΛNR
`,m for different extraction radii (100, 133, 190, 266, 307)M (from

pink to red) for SXS q = 8 non-spinning data and PN T1. We show here the (2, 1),
(3, 2) and (3, 3) modes. The vertical line denotes the location of the merger. The gray

and blue curves correspond to PN and extrapolated N = 4 data respectively.
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shows the (aligned in time) Λ`,m for the (3, 3), (3, 2) and (2, 1) modes for the q = 8

non-spinning waveform from the SXS catalog for different extraction radii as well as for

the N = 4 extrapolated numerical waveform and the PN T1 waveform. The alignment

has been performed at Mω0 = 0.043, and the time coordinate used for the plot has been

shifted so that t = 0 corresponds to Mω0 = 0.043 for the extrapolated waveform. For

the (2, 1) mode, the difference with the extrapolated waveform remains of the order of

15−20 degrees even for the outermost available radii, and the same behavior is observed

for all the (`, ` − 1) modes. On the contrary, for the (3, 3) mode (and the other (`, `)

modes), the larger finite radii curves only differ from the extrapolated one by of the

order of ∼ 2 degrees. More important for our analysis, in both cases, the extrapolated

waveform agrees to very high accuracy with the PN one, with a typical difference of only

one degree. This illustrates that the main source of disagreement in the Λ`m is the finite

radius extraction. Note also the oscillations present in the late part of the (3, 2) mode.

These are common for several modes and extrapolated data. In particular Fig.5.7 shows

the same quantities for the (4, 3) mode, for which these artifacts are of a larger size.
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Figure 5.7: Same as in 5.6 for the (4,3) mode. Note the larger oscillations for the
case of the extrapolated data in the bottom blue curve, which are of the order of 10

degrees.

In order to quantify further the effect of the extraction radius, we focus now on the

asymptotic behavior of ∆Λ`m = |ΛNR`m − ΛPN`m | (averaged in time over the interval

[1000M, 2000M ] to average out oscillations) as a function of the extraction radius by

fitting it to the power law 1◦(r/r0)n. The best fit values for n and r0 are shown in Table

5.1 and suggest an 1/r dependence.

Fig. 5.8 shows the corresponding values of the ε`,m as a function of frequency. As

expected from the analysis of the Λ`m, the errors are again dominated by the finite

wave extraction radius. The largest radii differ again significantly from the extrapolated
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(`,m) (2, 1) (3, 2) (3, 3) (4, 3) (4, 4)
n -0.967 -1.015 -0.941 -1.038 -0.947
r0 3199 4215 293 4182 598

Table 5.1: Results for (r0, n) for the fits ∆Λ`m = 1◦(r/r0)n for the case q = 8 non-
spinning SXS NR data matched to T1. The values suggest an asymptotic 1/r-falloff in

the inspiral region, where we hybridize.

waveforms, for which the agreement between NR and PN is of the order of only 1◦.

Again, the behavior of the (2, 1) mode is typical for the (`, `− 1) modes, while the (`, `)

modes behave similar to the (3, 3) mode shown here. We note that the finite radius

errors are strongly dependent on the gauge conditions used in the numerical relativity

code. Once again, while the BAM modes show lower ε`,m values those from SXS for

the (2, 1) and (3, 3) modes, this behavior is broken for the case of the (3, 2) mode (same

happened for the amplitude) and the (4, 3) mode added here.
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Figure 5.8: ε`,m values for a the q = 8 non-spinning system from the SXS catalog
for extraction radii r = (100, 133, 190, 266, 307)M (in color from top to bottom) and
extrapolated N = 2, 4 (black, respectively solid and dashed) and T1. We also show the

BAM r = 100 case in dashed blue.
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Once is clear that this effect has its source on the extraction radius of the NR simulation,

it is natural to ask how will it affect different systems. To this end, we have also analyzed

the non-spinning q = (3, 4, 6) and the aligned-spin (q = 3, χ = ±0.5) cases. We find that

for systems with different mass ratios and spins the quantities (r`,m,Λ`,m, ε`,m) behave

qualitatively the same as function of extraction radius. Furthermore, in Fig.5.9 it is

remarkable that the values of ε`,m for all the mentioned cases are almost the same for

equal extraction radius along all the studied frequency range. This suggests that the

influence on the ε`,m of the extraction radius r of NR waveforms barely depends on

the specific parameters of the simulated systems and that this effect is determined by

some systematic “error” affecting simulation setup. A plausible cause is an effective
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Figure 5.9: ε`,m values for several SXS catalog systems for r = 100M and extrapolated
N = 4 data (solid and dashed respectively). Non-spinning systems are shown in color
while we use black and grey for positive and negative spins respectively. Note that the
values of ε`,m are almost equal for all the systems, specially among the non spinning

ones.

mode-mixing generated when the `,m modes are obtained from the ψ4 scalar. As we

mentioned in Chapter 2, the individual modes are obtained by taking advantage of the
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orthogonality of the Y`,m(θ, φ) over a sphere via

ψ`,m4 =

∫
[ψ+

4 − iψ×4 ]Y −2∗

`,m (θ, φ) sin θdθdφ. (5.3)

However, the finitude of the extraction radius can make that the actual surface at which

on ψ4 is computed is not an actual sphere but something else: probably a “round”

metric sphere, but deformed due to both the curvature of the spacetime and coordinate

effects. It is then possible that the posterior decomposition of ψ4 into its modes ψ`,m4 (as

if it was extracted on a sphere) leads to slightly wrong modes and generates an effective

“mode mixing”.

5.3 Effect of NR extraction radius and extrapolation on

the match

In the previous sections, we have investigated the disagreement between PN and NR

in the region where we align and attach them. The discrepancies we observed illus-

trate inaccuracies in both waveforms at the typical frequencies where we perform the

hybridization which will contribute to the global error budget of the hybrid. However,

the accuracy of the full hybrid is of course also affected by the details of how these

discrepancies are smoothed in the hybridization window and most importantly by the

intrinsic error of the PN and the NR portions before and after the hybridization region.

There, the r`m and ε`m do not inform us about the accuracy. For instance, it could

be that the spurious relative dephasings between the NR modes that we have observed

may have disappeared around the merger where the higher modes are most important

for matches. It is therefore not possible to directly translate the values we observed for

the residual phase and amplitude disagreements into an overall error of the final hybrid.

In this section, we take a first step towards quantifying the error budget of the full hybrid

in terms of quantities useful for data analysis applications. As usual, we will replace the

unanswerable question of how much the hybrid differs from the true signal by a study of

the typical mismatch that one obtains when one varies the different ingredients in the

procedure. A systematic study, which properly addresses the different requirements for

the detection and parameter estimation problems across a significant portion of the black

hole parameter space, is beyond the scope of this thesis. Instead, we restrict the scope

of this study to understanding the effect of the extraction radius of the NR waves (and

their extrapolation) on the match. In doing this, we do not claim that this is the main

source of inaccuracy for the hybrid: using for instance a PN approximant that predicts

a phase evolution very different from the NR one (see e.g. T4 in Fig. 4.4) will certainly
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lead to larger mismatches. Rather, motivated by the observations of the previous section

that suggest that extraction radius can have a strong effect on the agreement between

PN and NR in the late inspiral, we illustrate here how much of an effect it makes on

the match between full hybrids. Comparing the results to other studies in the literature

can give a first impression of the relative contribution of different imprecisions for data

analysis applications and guide more systematic future investigations.

We illustrate our results with the q = 8 non-spinning case from the SXS catalog and

use the 2015 early Advanced LIGO noise curve [34]. We hybridize with T1 (the PN

approximant that gives the smallest secular trend between the PN and the NR (2, 2)

mode frequencies for this case) hybridized at ω0 = 0.073. With this choice, and given the

length of our blending windows, the NR (2, 2) mode covers the entire instrumental band

(say starting from 20 Hz) for total masses larger than ∼ 120M�. Here we have chosen

to hybridize at a relatively large frequency to facilitate comparisons with shorter NR

simulations. We focus for now on the highest resolution available (namely Lev. 5) and

on the waves extracted at r = 100M (innermost radius available) and 307M (outermost

one) as well as those extrapolated to null infinity using N = 2 and N = 4 polynomial

orders. We denote these waveforms h100, h307, hN=2 and hN=4 respectively.

Our hybridization procedure applied to each of these NR waveforms yields a hybrid

hX(θ, ϕ, κ) (with the notation of Eq. (4.8)) whose modes are defined in Eq. (4.26) and

slightly different values for the shift ϕ0 needed to adjust conventions 2 between PN and

NR. This is of course a mere consequence of the fact that our procedure to infer the

differences in conventions is affected by the inaccuracies in the original waveforms (here

we know that the conventions are the same for all the NR waveforms that we consider).

Since in the presence of higher modes, the dependence on ϕ is non trivial, one has to

be careful to compare waveforms at the same physical sky orientation (or optimize over

it depending on the application). In the general case, if two hybrids are built out of

different PN pieces and different NR pieces, comparing at the same angle ϕ makes no

sense in principle since the definitions of the origin of the azimuthal angle are a priori

independent. In the present case however, ϕ has the same meaning for all the numerical

waveforms that we consider (and therefore, with our choice of applying the ϕ0 rotation

to the PN part in Eq. (4.26), for the hybrids) and it makes sense to compute

max
t0
O [h1(π/2, 0, 0), h2(π/2, 0, 0)] , (5.4)

i.e. the overlap optimized over time-shifts only of the two waveforms at the same (source)

sky location (θ = π/2, ϕ = 0) chosen so that the higher modes contribute significantly to

2We find ϕX0 −ϕN=4
0 = .04◦, 7.19◦, 21.87◦ for X = (N = 2), 307, 100 respectively. We find the same

ψ0 for all these cases.



Chapter 5. Analysis of the accuracy of post-Newtonian and Numerical Relativity higher
order modes 100

the full waveform and at the arbitrary effective polarization κ = 0. This is the quantity

plotted in plain green in Fig. 5.10. Note however that the early inspiral portions of our

hybrids now differ by a shift in ϕ, i.e. despite the fact that we are using the same PN

input in all our hybrids, the quantity defined in Eq. (5.4) will not go exactly to 1 in

the limit of small masses where only the PN tail is in band3. Often in data-analysis

applications, it is also interesting to optimize this match over ϕ, reason why we also plot

in dashed-green the quantity

max
t0,ϕ
O [h1(π/2, 0, 0), h2(π/2, ϕ, 0)] (5.5)

in the figures below.
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Figure 5.10: Match of individual modes (optimized over phase and time) and full
waveforms at (θ, ϕ, ψ) = (π/2, 0, 0) optimized only over time (in solid green) and time
and phase (dashed green) for q = 8 non-spinning hybrid waveforms built out of T1 and
SXS NR waveforms produced during a single simulation but either extracted at finite
radius r = 100M and r = 307M or extrapolated with polynomial orders N = 2 and

N = 4.

Fig. 5.10 (beware of the different scale for the top left panel) displays the result of this

study for various couples of waveforms. In each panel, we additionally show the overlap

between the individual modes (in black and red) optimized over time and phase to check

to what extent the modes of both hybrids agree if we allow ourselves to align them one

by one independently. We first focus on the top plots. In order to interpret these,

3An equally valid point of view would be to modify Eq. (4.26) by applying the ϕ0 shift to the NR
portion, i.e. redefining the conventions of the NR waveforms to reproduce those of the PN (as always
up to errors in the determination of this convention shift). Then, when computed using the waveforms
evaluated at the same ϕ, the match goes to 1 for small enough masses since we are comparing the
original waveform against itself but differs from the match between the pure NR waveforms at masses
large enough that the hybridization region is out of band.
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one should keep in mind that for large masses, the hybridization window is pushed to

lower frequencies than those accessible to the instrument and this becomes a pure NR

comparison. In this region, the typical mismatch between hN=4 and h100 is of a few

0.1% and goes below 0.1% for h307. As we move to smaller masses and the hybridization

region enters the instrumental band, the match degrades and reaches a minimum around

40M�: while the mismatch there is above 1% in the R = 100 vs N = 4 case (this gets

reduced by a factor ∼ 2 after ϕ-optimization), it remains as low as 0.2% when using

R = 307. At even lower masses, the comparison becomes dominated by the PN tail (and

particularly by the (2, 2) mode) which is identical for both waveforms up to the ϕ shift

discussed above and the match grows again (the optimized one going to 1 exactly in the

low mass limit).

From this comparison, where the N = 4 waveforms has been used as a reference, one

can argue that for the NR data set studied here, extracting the waves in the SpEC code

at radii of O(300M) (as typically available in the SXS catalog) is sufficient to control

the error to the ∼ 0.1% level in terms of mismatch.

To check the effect of extrapolation orders on this study, in the lower right panel we

reproduce the upper right one but use N = 2 instead of N = 4. While the general

behavior and scale remains essentially unchanged, we note that the (4, 4) and (4, 3)

modes which were significantly disagreeing at high frequencies and dominating the total

mismatch between N = 4 and R = 307 now give much higher matches at high masses

(note also that after optimization over ϕ the matches between the hybrid become very

close to 1). This is consistent with the Ref. [97], where it is also observed that different

orders may show varying performance during the evolution, and higher orders may in

particular be problematic during merger-ringdown. Except for these discrepancies at

high mass which come from the presence of unphysical features in these two N = 4

modes and which remain on the order of ∼ 0.1%, the order of extrapolation therefore

does not seem to affect our previous conclusion, as also illustrated by the lower left panel

in which we directly compare the hybrids built with N = 4 and N = 2.

Finally, we perform a similar study to compare the effect of numerical resolution on

the match to the effect from different extraction radii. In Fig. 5.11 we plot matches

as in Fig. 5.10, but using hybrids constructed from numerical waveforms produced at

different numerical resolutions instead of extraction radii. For the faster than polynomial

convergence exhibited by spectral codes such as SpEC one typically quotes the difference

between the highest and next-highest resolution as an error estimate, see e.g. [149] for a

comparative discussion of the error analysis performed in spectral and finite-difference

numerical relativity codes. Here we conservatively use the highest available resolution

level (5) and a resolution two levels coarser (3), and we find mismatches smaller or at
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comparable level that the mismatches shown in Fig. 5.10 resulting from finite extraction

radius. In both cases, the mismatches are certainly not larger than what can be expected

in waveform models such as [36, 48, 51, 56]. In addition, any actual signal searches or

parameter estimation calculations will be based on discrete or continuous waveform

families and matches will effectively be optimized over all physical parameters.
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Figure 5.11: Match as in Fig. 5.10, but between hybrids constructed from numerical
waveforms produced at different numerical resolutions instead of extraction radii. We
use the highest available resolution level (5) and a lower resolution level (3) for R =

307M .

Complementary analysis: rotating NR

In the analysis performed above, the PN tails of the different hybrid waveforms disagreed

due to the different ϕ0 rotations applied when hybridizing them to NR. Since the PN

approximant used is always the same, these effect can in principle have two sources:

either different NR simulations show different frequency evolutions or they show, in

some effective way, different conventions for the ϕ0 angle. We in principle discard the

latter since all SXS simulations are supposed be performed using the same conventions.

In any case, if this effect was dominant we can get rid of it by rotating the NR modes

when constructing the hybrid waveform and investigate the effect of the other one. Fig.

5.12 shows the same results as 5.10 and 5.11 (except for the optimization in ϕ0, which

is not important for our purposes) when the modes are constructed by rotating the

NR modes. Since we know that the PN tail of all waveforms is now exactly the same,

we cannot argue that there might be ϕ0 shifts between the NR tails unless that was

originally the case (i.e., that different NR simulations performed at different extraction

radii have different conventions), which we have discarded. Keep in mind however,

that for these waveforms one finds different ε`,m values that, in particular, need to be
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Figure 5.12: Match of individual modes (optimized over phase and time) and full
waveforms at (θ, ϕ, ψ) = (π/2, 0, 0) optimized only over time (in solid green) and time
and phase (dashed green) for q = 8 non-spinning hybrid waveforms built out of T1 and
SXS NR waveforms produced during a single simulation but either extracted at finite
radius r = 100M and r = 307M or extrapolated with polynomial orders N = 2 and

N = 4. Here the mϕ0 + ψ0 rotation has been applied to the NR side.

smoothed over the hybridization region.

The ε`,m measure the difference between the rotation that should be applied for making

NR and PN conventions agree and the one needed for making two particular modes to

agree: so they imply that different modes are being represented at different values of ϕ

for the same simulation. Due to this, all plots show the following qualitative behavior:

at low masses matches are now high and would go to exactly 1 at very low ones due to

the PN tails being exactly the same. When the mass grows and the hybridization region

gets in band, the match decays due to two reasons. On the one hand each waveform

presents different ε`,m values which will introduce different artificial frequencies when

smoothed. On the other, the NR modes themselves might be slightly different. In

order to estimate how much the latter dominates, we again compute the match of the

individual modes optimized over ϕ0. The mismatch between the individual modes is

comparable to the total one in the case of the top right plot, where the N = 4 and

r = 307M waves are compared. In particular, and again, the mismatch at high masses

is dominated by mismatches of the (4, 4) and (4, 3) modes. Note also that these two

hybrids present the two lowest (and more similar) ε`,m values (see Fig. 5.8). However,

for the top left plot, where we compare N = 4 with r = 100 the match decays more

in the hybridization region and is not dominated anymore by the individual modes in

the high mass region, but rather by the fact that the several modes are describing the
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GW radiation at different effective ϕ0 angles. Exactly the same behavior can be noted

in the lower left panel. Finally, In the lower right plot, we compare again the two

r = 307 simulations computed with different resolutions. The ε`,m values of these two

NR simulations agree to a ∼ 0.1%. Note that both the individual and total mismatches

are comparable and much larger that for the other cases. Since we initially discarded

that different NR simulations extracted at different extraction radius have different ϕ0

conventions and the secular trend does not play a crucial role (individual matches are

large), what remains is the possibility of an effective mode mixing as a result of the finite

radius extraction: larger the lower r is.

Altogether, the finitude of the extraction radius clearly dominates the error budget of

both the individual modes and the total waveform, having it a larger impact when wave-

forms are to be described at edge-on locations and for high mass. The close relation

r ↔ ε`,m and the one ε`,m ↔ O, makes the ε`,m (which arise for free during the hy-

bridization process) provide a good diagnostic of the impact of r. Extrapolation can

also introduce secondary errors due to artifacts present at high frequency.

5.4 Discussion

The aim of this Chapter has been to evaluate the accuracy of both the PN and NR

results for the higher order modes and the study of their sources as well as the impact

they have on the final waveform.

Regarding NR amplitude errors, we find a strong dependence on the numerical code used,

which we attribute to the difference in coordinate gauge conditions. With the exception

of the (3, 2)-mode, e.g. r = 100 BAM data are significantly closer to the extrapolated

result than the corresponding SXS r = 100 curve. On the other hand, it also shows

larger oscillations. We also note that, for any given finite extraction radius, the error

becomes larger at lower frequencies. This is the expected consequence of the fact that

as the frequency increases (or equivalently as their wavelength decreases), the wave zone

(defined by r � λ) extends to smaller radii. We find good agreement between post-

Newtonian amplitude and those extrapolated to infinity from several extraction radii in

a numerical relativity calculation for the (2, 1), (2, 2) and (3, 2) modes, but significantly

larger errors of up to a few 10% for the modes (3, 3), (4, 3), (4, 4) and (5, 5), and we

find that these deviations are consistent with the spread between PN results at different

orders. Also, we have seen that the inclusion of the latest 3.5PN correction to the

amplitude of the (3, 3) mode enormously increases its accuracy.
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Regarding the phase differences ε`,m, we have found an excellent agreement on the order

of 1◦ of PN results with numerical relativity waveforms extrapolated to null infinity,

while deviations at finite radius can be as large as tens of degrees for (`, ` − 1) modes.

On the contrary, for the (`, `) modes, the larger finite radii curves only differ from the

extrapolated one by of the order of 2 degrees. In particular, we find that the influence

on the ε`,m values of the extraction radius r of NR waveforms depends on the specific

parameters of the simulated systems only rather weakly. The results shown imply that

during the inspiral, the complex part of the standard PN waveform amplitudes can be

taken as the correct value for practical purposes. This yields in particular a convenient

test for finite radius errors in numerical relativity (since a practically exact result is

known), and may serve to determine favorable coordinate gauge conditions for wave

extraction.

A systematic study of the effect of the phase and amplitude errors which we discuss on

gravitational wave data analysis, both regarding the detection problem and parameter

estimation is beyond the scope of this work. Instead we have performed simple match

calculations with the initial and design sensitivity advanced LIGO noise curve, evaluating

the match between waveforms resulting from different extraction radii or numerical

resolutions. This simplistic study can serve for comparisons due to mismatches resulting

from other effects, such as the choice of PN approximant, or waveform modelling errors,

and thus give a first impression of the relative importance of different types of waveform

imprecisions, and help guide more detailed investigations. This part of the Chapter

overlaps with other investigations such as [97–99] regarding the errors in finite radius

and extrapolated waveforms. Our results appear consistent with previous work, but add

the aspect of considering full hybrids and investigating how the match varies when the

hybridization region is in band and puts the focus on errors in higher modes. The close

relation between the mismatch found and the value of the ε`,m coefficients, makes the

latter a good diagnose of the quality of the higher order modes and the mismatch that

will be generated.

In particular, we have seen that the extraction radius can lead to significant phase and

amplitude errors. Corresponding mismatches as discussed in Sec. 5.3 are roughly at the

level of 0.1% for the cases we have considered. Mismatches at this level appear at least

negligible for GW searches. However, in principle this might affect parameter estimation

at very high SNR for high mass edge-on systems which in turn are the ones generating

the lowest SNR.

The larger importance of higher order modes for the case of precessing systems may

motivate the systematic application of this kind of analysis for precessing waveforms.

Also, the recent extrapolation to infinity method based on a 1/r expansion of the finite
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radius results presented in [110] will provide new sets of NR waveforms with which our

results should be checked.



Chapter 6

Impact of higher order modes in

aligned-spin searches for Binary

Black Holes

6.1 Goals and previous studies

Current GW searches for CBCs implement template banks whose waveforms do only

contain the quadrupolar (`, |m|) = (2, 2) modes of the GW emission, known as quadrupo-

lar waveforms, neglecting the HOM content of the incoming signal. This is justified by

the fact that, in the non-precessing case, most of the power emitted by the source is

carried by these two modes, as we discussed in Chapter 2 (see Figs.2.4, 2.5 and 2.6).

Also, as shown in Chapter 3, the usage of quadrupolar waveforms allows for an analytical

optimization of the SNR over the extrinsic parameters of the waveform, which is much

faster than the numerical optimization that would be needed if HOM were included.

The goal of this chapter is to study the consequences of this neglection in current and fu-

ture searches, both in terms of loss of detection rates and biases caused in the estimation

of the parameters of the source. We will focus on the case of non spinning BBH within

the mass range 50M� < M < 220M� and will add four spinning cases: a q = 3 system

with equal χ = ±0.5 dimensionless spins and a q = 1 system with equal χ = ±0.2. We

will consider the case of a template bank including a single effective spin parameter χ for

the case of two Advanced LIGO noise curves: the early version (eaLIGO) with a lower

frequency cutoff f0 = 30Hz and the design Zero-Detuned-High-Energy-Power version

(AdvLIGO) with f0 = 10Hz. Since no detections were made in initial LIGO (iLIGO)

data, for which searches have been performed using a non-spinning template bank, we

107
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will also pay attention to this case for which we will consider non-spinning targets, a

non spinning template bank and f0 = 30Hz.

The case of non-spinning targets and a non-spinning template bank for the case of

AdvLIGO has been widely studied. Pekowsky et al. [150] explored the mass range

M > 100M� noted that the match between BBH NR waveforms including HOM and

the corresponding ones including only quadrupolar modes is < 0.97 for most of the

orientations of the binary. They also noticed that however, these orientations coincide

with those for which the SNR is the lowest, mitigating the effect of HOM when av-

erage over orientations is considered. More recently, Brown et.al., [151] and Capano

et. al., [125] studied respectively the fitting factor FF of a non-spinning quadrupolar

template bank towards non-spinning waveforms including HOM for the total mass range

m1,m2 ≤ 25M� and m1,m2 ≤ 200M�. The result is that for total masses M < 50�

and mass ratios q < 4 one does not expect event losses larger than 10%, which is within

the commonly accepted limit in GW searches. Furthermore, [125] also computed the

χ2 and ρnew of the target signals towards their bank, simulating the effect of HOM

in a full search neglecting HOM and estimated the false alarm rate (FAR) of a search

including them. This allowed them to compare the sensitivity of both searches to sig-

nals including HOM. They concluded that inclusion of HOM in current template banks

would only be advantageous for certain regions of the parameter space for which the FF

of the bank towards their target signals were particularly low. In particular for q ≥ 4

and M > 100M�. These event loss results widely agree with those presented by Varma

et al., [2], to which work in the context of this thesis contributed. They also studied the

systematic parameter bias caused by the neglection of HOM and compared it with the

statistical uncertainty due to the presence of Gaussian noise in the data stream. They

concluded that the former dominate the latter for mass ratio q ≥ 4 and total masses

M > 150M� for a SNR ρ ∼ 8. This study was based on the Fisher information matrix

formalism, which allowed them to study a large number of points in the parameter space.

In contrast [152] studied the presence of systematic biases in the estimated parameters of

the CBC but compared them against the expected statistical errors using Markov-Chain

Monte-Carlo (MCMC) techniques. However, the large computational cost of this study

restricted it to a few points of the parameter space. They obtained that, for binaries

such that 1 ≤ q ≤ 6 and M < 60M� and fixing inclination angle to θ = π/3, systematic

errors introduced by the neglection of HOM are smaller than the expected statistical

errors at SNR ∼ 12. However, for larger masses (M = 120M�, q= 6), systematic biases

will dominate statistical errors at SNR ∼ 12.

As said above, we will extend the study performed in [2] to the case of a template bank

including a single effective spin χ and equal spin target signals and add the cases of the
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eaLIGO and iLIGO noise curves. This is motivated by the fact that it is expected that

at least single effective spin template banks will be used in the shortcoming searches and

it might happen that for the case of non-spinning targets, the presence of spin in the

template bank mitigates the effect of HOM in detection. We also want to understand

how neglection of HOM will affect spinning targets. Finally, the higher frequency cutoff

of the upcoming eaLIGO (30Hz) compared to the widely studied AdvLIGO (10Hz) could

in principle cause larger event losses and parameter biases, as elucidated in Chapter 3

and by [153].

The rest of this chapter is organized as follows. In Section 6.2 we will give an overview

of the situations in which HOM may be important/dominate the mode content of a GW

signal. In Section 6.3 we will describe the target and bank waveforms used and how

the relevant quantities for this study have been computed. The next two Sections 6.4

and 6.5 will show results regarding detection losses and systematic parameter biases due

to neglection of HOM and compare the latter to the statistical uncertainty due to the

presence of Gaussian noise in the detector data. In the next section, take advantage of

the hybrid modes used in this chapter and discuss the contribution of each “pair” of

them to the kick of the final black hole. Finally, in Section 6.7 will discuss the results

found along the chapter.

6.2 The role of higher order modes

Several factors determine the HOM content of the incoming GW signal. These can be

divided in three main groups: the nature of the source, the position of the detector on

the sky of the source (or orientation of the binary) and the actual sensitivity curve of

the detector.

The nature of the source: intrinsic parameters

The ratio between the amplitude of HOM and the quadrupolar (2, 2) mode, A`,m(Ξ; t) =
|h`,m|
h2,2

depends on the intrinsic parameters (q, χ) of the source. During the inspiral, this

behavior can be directly observed from the value of the post-Newtonian amplitudes [72],

which we showed in Chapter 2, Figs.2.5 and 2.6. Note how in the frequency range shown

in these plots, the amplitude of the (2, 2) mode is about 2 orders of magnitude larger

than that of the next most dominant mode (typically the (3, 3), when present) for all

the sources shown. However, Fig.2.4 shows that during the late inspiral and merger this

ratio can get up to ∼ 0.3 for the case of a q = 8 non-spinning system. As a general trend,
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the larger q is, the larger the contribution from HOM will be (see Fig.2.5). This will

translate into larger event losses due to neglection of HOM for larger q. The dependance

on the spin is more intricate. Fig. 2.6 shows that different modes have different behaviors

for a given mass ratio. It can be noted how all the modes shown contribute more for

the case of positive spin except for the (3, 3) mode, which is however the most dominant

HOM. This makes difficult to predict how losses due to neglection of HOM will depend

on the spin χ.

Geometrical facts: the orientation of the binary

The previous point dealt with the values of the h`,m modes themselves. However, when

constructing the full signal h

h(θ, ϕ; t) = h+ − ih× =
∑

`≥2

m=∑̀

m=−`
Y −2
`,m(θ, ϕ)h`,m(t). (6.1)

The modes h`,m are weighted by the Y`,m factors. This determines how much each

mode contributes at a given sky location (θ, φ) (or orientation of the binary). Fig. 2.7,

in Chapter 2, shows the values of the amplitudes of several spherical harmonics as a

function of θ. Note that |Y2,2| has its maximum at the pole θ = 0 and its minimum

at the equatorial plane located at θ = π/2, while most of the m 6= 2 modes behave in

the opposite way. This means that a waveform including only the (2, 2) mode should

be a good representation of the total signal if the system is face-on (detector located at

θ = {0, π}), getting its accuracy reduced as the system is closer to be edge-on (θ = π/2).

This was checked by [150], which also noted that the for the latter case the optimal

SNR of the signal is the lowest. Consequently, when event losses are averaged over all

sky-locations (all orientations), the net effect of the neglection of HOM gets mitigated

by the fact that the loudest signals are well recovered by quadrupole templates.

The detector noise curve

Finally, as noted in [153], there is a combined effect of the detector sensitivity curve

and the total mass M of the CBC. The frequency of each mode roughly scales with

the orbital frequency as ω`,m(t) =
dφ`,m
dt ' m × ωorb(t). Also, as the total mass M

of the source increases, ωorb(t) falls off as 1/M . When M is such that the (2, 2) is

below the detector band, larger m modes will dominate the incoming signal, which will

not be well filtered by quadrupolar templates. This can be noticed in Fig.6.1. Also, the

specific features of the curves will produce different effects. In the 200M� case, the HOM

dominate the signal content at the most sensitive point or sweet-spot for the three noise
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curves shown. Note however, that the AdvLIGO curve is much flatter than the other

two. Consequently, its sensitivity at frequencies for which the (2, 2) mode dominates the

signal is not much lower than at its sweet-spot, which makes that piece of the waveform

(which can be well filtered by quadrupolar waveforms) weight almost as much as the one

at the sweet-spot. This is clearly not the case for the other two curves, which will make

the quadrupolar template bank to have a lower FF towards the full signal, translating

this into larger event losses for the case of eaLIGO and iLIGO.

6.3 Analysis set up

Target signals & bank waveforms

The target signals employed in this study correspond to the hybrid waveforms containing

HOM described in Chapters 4 and 5, using SXS NR data extrapolated to infinity. Since

we want to pay special attention to the high frequency content of the signals (where

HOM dominate) we want to have as clean high-m modes as possible. Consequently, the

extrapolation order was chosen to be N = 2 since as shown in Chapter 5, it shows lower

oscillations at high frequencies in the (4, 3) and (4, 4) modes. The PN pieces of the target

signals are Taylor T1 waveforms with 3.5PN non-spinning and 2.5PN spin corrections

to the phase. The non-spinning amplitude corrections are 3PN for all modes. Spin-orbit

and spin-spin corrections have been included up to 2PN order. The corrections employed

here are in contrast with those used in Chapter 5. This is due to the fact that some of

the latest corrections were not implemented in the PN code employed when this work

was done. However, as HOM are not important until the late inspiral and merger of

the coalescence (where SXS NR waveforms do always extend to) this is not in principle

a caveat. Equal mass cases included the {(2± 2), (3± 2), (4± 2), (4,±4)} modes while

q 6= 1 targets include the {(2± 1), (2± 2), (3± 2), (3± 3), (4± 3), (4,±4)} ones.

For each NR simulation with parameters (qi, χi) Table 6.1 we constructed the corre-

sponding full hybrid waveform hi,j ≡ h(Ξi,Λj) for all the values of Λ and M described

in Table 6.2. Note that with the described grid in angles, we only cover the upper sphere

of the source of the sky and half of the polarizations. This however suffices to obtain

results for all the possible angles since it holds

h(π − θ, ϕ, ψ) = h(θ, ϕ, π − ψ)

h(θ, ϕ, π + ψ) = −h(θ, ϕ, ψ).
(6.2)
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Figure 6.1: The plots show the ratio 0.1×
√
Sn(f)√

minSn
for the three noise curves considered

in this thesis. The amplitude of the Fourier transform of the (2, 2), (3, 3) and (4, 4)
modes are shown in different styles of green and scaled by an appropriate factor. The
chosen source is a q = 8 non-spinning BBH. The panel above shows the modes for the
case of M = 100M� and the one below for the case of M = 200M�. Note how as we
increase the total mass, the (2, 2) mode, which is clearly dominant at low frequencies,
gets out of band while, the region where the different modes have comparable amplitudes
becomes more important. This effect is less dramatic for the case of AdvLIGO due to
the larger flatness of its noise curve and its lower frequency cutoff. This makes the
(2, 2) to be kept in band for larger total masses than for the other two noise curves.

The bank waveforms hB belong to the SEOBNRv1-ROM family [118], which do only

include the (2, 2) mode and which use a single effective spin parameter χ. These
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SIM ID q χ PN Mω
(2,2)
0

SXS:BBH:0168 3 0 T1 0.043

SXS:BBH:0167 4 0 T1 0.045

SXS:BBH:0166 6 0 T1 0.045

SXS:BBH:0063 8 0 T1 0.043

SXS:BBH:0150 1 +0.2 T1 0.035

SXS:BBH:0149 1 -0.2 T1 0.043

SXS:BBH:0046 3 +0.5 T1 0.038

SXS:BBH:0047 3 -0.5 T1 0.043

Table 6.1: Summary of hybrid waveforms used for testing the effects of HOM

Magnitude M cosθ φ ψ

Range [50,218]M� [0, 1] [0, 2π) [0, π)

Step 12M� 0.05 π/20 π/6

Table 6.2: Grid in Mass and angles Λ used for our studies.

cover the domain q ∈ [1, 80] χ ∈ [−1,+0.6] and Mf ∈ (0.001, 0.14). Note that the

(q, χ) = (3,+0.5) case is near the limit of the range of validity of the SEOBNRv1-ROM

model, which could in principle cause it to have lower FF or larger parameter biases

due to an intrinsic mis-modeling of its (2, 2) mode by the SEOBNRv1-ROM mode. Al-

though no effect was found in terms of fitting factors, it was observed that this system

showed the largest parameter biases when only the (2, 2) mode was included, as will be

highlighted afterwards. This was however one of the most interesting cases to study, as

it is the only NR simulation present in the SXS catalogue with reasonably large positive

spin and mass ratio.

Calculation of the fitting factor

For each full waveform hi,j one can compute the fitting factor Fi,j ≡ FBhi,j (see (3.34))

and the corresponding optimal SNR of the signal ρi,j together with the intrinsic pa-

rameters ΞBi,j of the best matching waveform hBi,j . The speed at which ROM waveforms

can be generated allowed for the usage of such a dense grid (∼ 2400 combinations of

(θ, ϕ, ψ) per each combination of (q,M, χ)), which would have been too computationally

demanding using the original SEOBNRv1 model.

Maximization of the fitting factor over time shifts t0 between target and template over

relative time-shifts t0 and extrinsic parameters Λ of the template was performed analyt-

ically using (3.43), discussed in Chapter 3. As also mentioned in Chapter 3, maximiza-

tion of the overlap over the extrinsic parameters Ξ = (q,M, χ) of the bank templates
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needed to be performed numerically. This was done using a Nelder-Mead simplex algo-

rithm as implemented in [154]. Provided some initial region of the parameter space, the

Nelder-Mead aims to find the maximums of a function f(~x) by successively evaluating

it at several points ~x. The algorithm considers to have found a maximum in a region

(~xi−n, ~xi+n) if the quantity δf = f( ~xj)− f( ~xk) is lower than a certain limit for all pairs

(j, k) ∈ (i− n, i+ n). Also, one can set a maximum number of evaluations Nmax. Run-

ning the Nelder-Mead algorithm several times from several starting points ~x0 proved to

be an effective method for finding the global maximum of our fitting factor. As can

be guessed, there is a certain probability that the Nelder-Mead will settle down in a

local maximum, depending on the initial evaluation region used and Nmax. In order to

prevent this, every fitting factor was computed running a minimum of 4 Nelder-Mead

algorithms from different initial points ~x0 = (q0,M0, χ0) of the parameter space and

choosing the maximum of the returned fitting factors as the “real fitting factor”. In

fact, for some cases, up to 18 Nelder-Meads were run. Also, since for a given (qi,Mi, χi)

system, the fitting factors Fi,j were successively computed for smoothly varying extrin-

sic parameters Λj , it was convenient to force one of the Nelder-Meads to always start

around the best parameters found for the Λj−1 case.

Computing event rate losses

The distance at which a signal described by hi,j can be detected is directly proportional

to the SNR ρi,j that it produces when it is filtered. If hi,j is filtered with a template hBi,j

that matches it with match Fi,j this distance will decay to a fraction Fi,j of the optimal

one. Bearing this in mind one can then compute the ratio of the optimal volume Vi,j in

which a signal could be observed if higher modes were included in the bank Vi,j and the

suboptimal volume V Bi,j in which it can be observed when higher order modes are not

included as

Ri,j =
V Bi,j
Vi,j

=

(
ρi,jFi,j
ρi,j

)3

= F3
i,j . (6.3)

For each system with parameters Ξi we can then compute the averaged volume loss over

all the possible extrinsic parameters Λj as

Ri =
∑

j

(
ρi,jFi,j
ρi,j

)3

. (6.4)
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Systematic and statistical parameter bias

Similarly, the averaged parameter recovery over the accessible volume can be computed

as

ΞBi =
∑

j

ΞBi,j

(
ρi,jFi,j
ρi,j

)3

(6.5)

and thus the averaged systematic bias will be given by

∆Ξi = Ξi − ΞBi (6.6)

Note that even in the case that the signal does not include HOM, the parameters re-

covered by the SEOBNRv1-ROM model will not in general match the ones of the signal

described by the hybrid waveform model. We denote the parameters recovered in this

case as ΞBi,0 and thus consider the parameter bias generated by the presence of HOM to

be

∆Ξi = Ξi,0 − ΞBi . (6.7)

This represents the systematic parameter bias averaged over Λj due to the presence

of HOM in the signal. In order to asses the significance of these biases, we compared

them to the corresponding statistical uncertainty that searches are affected by due to

the presence of Gaussian noise in the data. In order to evaluate this, we employ the

indistinguishability criterion for two waveforms with mismatch ε = 1−O given by [131]

and used in [111]. Two waveforms are indistinguishable at a given SNR ρ if ε < 1/2ρ2.

We will thus consider that parameter estimation1 is not compromised due to the presence

of HOM in the target if the best matching template hB(ΞBi ) and the one best matching

the injection with no HOM hB(Ξi,0) are insdistinguishable.

All the waveforms playing a role in this process are geometrically represented in Fig. 6.2.

The target template h(Ξ) is recovered by the bank template hB(ΞB) when it includes

HOM with a match of F . Since the waveform model describing the (2, 2) modes of the

target and template bank waveforms may differ, h(Ξ) is in general recovered by hB(ΞB0 )

when it does not include HOM, and not by hB(Ξ). The two recovering waveforms have a

mismatch of ε. The systematic bias due to the presence of HOM is then ∆Ξi = ΞB0 −ΞB.

If ε = 1−O(hB(ΞB)|hB(ΞB0 )) is lower than 1/2ρ2 there is a reasonably high probability

that hB(ΞB0 ) + n is best filtered by hB(ΞB) due to the presence of noise n in the data

stream. We will say then that these two waveforms are indistinguishable and that

statistical errors overcome systematic biases. Although this method does not provide a

complete parameter estimation study as the usage of Bayesian MCMC methods [152]

would do, it does provide a reasonable fast first estimation of the effect of higher modes

for PE purposes.

1Or measurement following the notation in [131].
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Figure 6.2: Representation of the waveform manifolds containing the target hybrid
waveforms and the SEOBNRv1 model.

6.4 Effect on detection

Fitting factor and signal-to-noise ratio

The effect of HOM in detection depends on both the optimal SNR that the target signal

hi,j produces and the fitting factor of our template bank to that particular signal. The

left column of Fig. 6.3 shows the fitting factor of our quadrupole-only template bank

towards hybrid waveforms corresponding to a non-spinning q = 8, M = 218M� system

as a function of the sky location of the detector (θ, ϕ) averaged over the polarization

angle ψ. Each plot corresponds to a different detector. As shown by [2] and [150] the

fitting factor is close to 1 when θ = 0 (face-on system) and it decays as θ increases.

As elucidated in Sec.6.2, this effect is due to the (2, 2) spherical harmonic Y −2
2,2 (θ, ϕ)

having its minimum at θ = π/2 where most HOM are close to their maximums (see

Fig.ex:fig:harmonicsprofile). As a consequence, the corresponding signal has larger con-

tributions from HOM and can not be well filtered with quadrupole templates. However,
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as also noted by [2] and [150] the θ angles for which the fitting factor is lower correspond

to those for which the SNR is also the lower, as can be noticed in the right column of

Fig. 6.3.

This mitigates the net effect of HOM in detection, which we compute by averaging the

fitting factor over all possible (θ, φ, ψ).
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Figure 6.3: Fitting factor (Left) and SNR (Right) for a (q,M) = (8, 218M�) system
as as a function of (θ, ϕ) for the 3 studied detectors. The factor ρmax corresponds to

the maximum SNR obtained along the sphere.
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The effect of the noise curve

We have started showing results for the most extreme target used (in terms of mass

ratio and mass) because is where the main differences depending on the detector we use

are the clearest. Let us summarize them:

• The main difference between AdvLIGO and eaLIGO is their different frequency

cutoff, which is respectively located at 10Hz and 30Hz. This allows AdvLIGO to

be sensitive to a much longer PN inspiral, in which HOM are negligible, and allows

for a better filtering of the full signal with quadrupole templates. Mainly due to

this, the fitting factor obtained with AdvLIGO is always equal or larger than the

one for eaLIGO. Note that for instance, in Fig. 6.3, the fitting factor for eaLIGO

decays down to ∼ 0.70 while for AdvLIGO the minimum value is ∼ 0.80. This

behavior has been observed for every source.

• Both eaLIGO and iLIGO use the same lower frequency cutoff. However for eaLIGO

we considered single-aligned spin bank waveforms while the ones for iLIGO were

non-spinning. This gives an extra degree of freedom than can be exploited by

quadrupolar templates for compensating the neglection of HOM non-spinning sig-

nals to the cost of a wrong estimation of the spin. In fact we large spin biases

are obtained for the case eaLIGO, as we will discuss later. Consequently, fitting

factors for iLIGO are in general lower to those obtained for eaLIGO.

• Since quadrupolar modes dominate the emitted radiation and the corresponding

spherical harmonics have their maximums at face-on orientations, one would expect

the maximum SNR to be always obtained when the source is face on. However, for

very massive systems, HOM can be as dominating as the quadrupole mode in the

detector band, This causes the maximum SNR to be obtained for a location other

than θ = 0, where the quadrupole mode and the HOM interact constructively. For

this reason, the peak of the SNR for the case shown for iLIGO case in Fig. 6.3 is

displaced from θ = 0.

The effect of the total mass and the mass ratio

Let us now focus on the dependance of the fitting factor on the mass ratio q and total

mass M of a given system. Fig.6.4 shows the value of the fitting factor for the (q,M) =

(8, 218M�) system and for a (q,M) = (4, 50M�) system. Notice the scale of the fitting

factors in each plot. It is clear that for every detector, fitting factors are always lower

the larger M and q are. Again, this is due to HOM being weaker for low q, as we shown

in Fig.2.5 and due to the (2, 2) mode being dominating in the band of the detector
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for low M . Notice also how in the left panel of each column ( which have lower M

and q) the fitting factors are almost axisymmetric, while for the lower case they are

highly non axisymmetric (except for the case of AdvLIGO). The reason behind this

is the different interaction between modes as a function of ϕ, which is only dominant

when HOM dominate the full signal. Consequently, this behavior is not observed for

AdvLIGO.
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Figure 6.4: Fitting factor for (q,M) = (4, 50M�) and (q,M) = (8, 218M�) systems
as a function of (θ, ϕ) for the 3 studied detectors.
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Event losses due to neglection of higher order modes

Let us now compute the event loss due to negelction of HOM. For this we will compute

the averaged fitting factors over all (θ, ϕ) using (6.3) and (6.4). The corresponding

results are shown in Fig.6.5 for the several systems we have studied. Again, as q and

M increase, the larger contribution from HOM to the total signal makes Feff decay

consequently. For the case of AdvLIGO losses never reach 20% for any of the studied

cases while 10% losses happen for q ≥ 6, M ≥ 100M� systems. However, losses notably

increase for the case of iLIGO and more importantly, the upcoming eaLIGO. Note how

the higher frequency cutoff of eaLIGO (and iLIGO) generates losses that reach values of

26% (36%) for the largest (q,M) studied. In the case of eaLIGO, losses of 10% happen

already for q ≥ 4. Also, losses of 20% happen for most of the studied (non-spinning)

cases for iLIGO.

The fact that the lower frequency cutoff is the main reason behind the different behavior

of eaLIGO and AdvLIGO is clear noticing that both curves have similar values up to

masses of M ∼ 110M�. Up to this point, the (2, 2) mode of the target waveform

dominates the full signal content in the band of the detector and can be well filtered

by a bank that only contains quadrupolar modes. However, at such masses, the (2, 2)

mode starts to be below the sensitive band of eaLIGO (f0 = 30Hz) while it remains in

band for AdvLIGO. The different behavior at initial masses is justified by the fact of the

AdvLIGO curve being flatter, which makes the PN piece of the waveform (where the

contribution of HOM is lower) to have a larger weight in the observed signal in the case

of AdvLIGO making the incoming signal be better filtered by quadrupolar waveforms.

The losses obtained for AdvLIGO are (as expected) a bit below those obtained by [2]

due to the inclusion of the effective spin parameter χ in our template waveforms, which

provides an extra degree of freedom that can be exploited by quadrupolar waveforms to

imitate signals containing HOM. This is also the main reason for the different results

obtained for iLIGO and eaLIGO, which have the same frequency cutoff.

Regarding the effect of spin, none of the q = 1 spinning cases reached losses even close

to 2% and is for this reason that they are not included in Fig.6.5. However, for the

(q, χ) = (3,±0.5) case, losses are very similar those obtained for corresponding non-

spinning case (see lower panel of 6.5). Note that for the two studied cases, losses are

larger for the aligned-spin case than for the anti-aligned one for low mass. Looking at

Fig.2.6 it is hard to check whether this behavior is to be expected. Note that as the

spin gets more positive, the contribution of HOM to the signal grows in all cases except

for the (3, 3) mode, which is however the most dominant HOM, as shown in Fig.2.4.

For high mass, PN results are not expected to be accurate and Fig.6.5 shows that

contributions from HOM become equally important in terms of fitting factors. Of course,
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Figure 6.5: Top: Fractional volume loss in % for non-spinning q = (4, 6, 8) systems
in (dotted, dashed, solid). Bottom: same for (q, χ) = (3; 0,±0.5) with the style code
indicated in the corresponding caption. Note that since we used a non-spinning template

bank for iLIGO, we did not consider spinning targets.

the study of only two spinning systems does not allow to obtain general conclusions about

the importance of HM for general spinning systems. We have however considered the

non-precessing cases present in the SXS catalogue that were HOM are plausibly most

dominating. These particular result seems to indicate that for high masses the effect

of HOM is rather dominated by the mass ratio q (and the total mass), so that results

obtained for non-spinning systems are a good clue of what will be obtained for equal spin
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ones. At low masses, this behavior is more complex but it seems that the losses obtained

for the non-spinning system are a good clue regarding the maximum ones obtained for

the corresponding equal spins ones. It would be very interesting to check that larger

losses are always obtained for the aligned-spin case, as suggested by 6.5.

6.5 Parameter Bias

We now move to the systematic parameter biases produced by the non inclusion of HOM

in the bank waveforms. Since at low masses the signal is dominated by the quadrupolar

mods, which explicitly depend on the chirp mass (defined by Mc = Mη3/5, where

η = q/(q + 1)2, we will express results not for (q,M) but for the chirp mass and the

total mass M . As mentioned before, these systematic biases will be a combination of

those of the SEOBNRv1-ROM model towards our hybrid (2, 2) modes (Ξi,0 in (6.7))

and those produced by the presence of higher modes in our hybrid target signals. It is

important to note that the former, except for the (q, χ) = (3,+0.5) case (which is in

the limits of the validity range of the SEOBNRv1-ROM model) were never larger than

(|∆M |, |∆Mc|, |∆χ|) = (2%, 2%, 0.04). For the (q, χ) = (3,+0.5) case, these reached

maximum values of (4%, 6%, 0.05).

Fig. 6.6 shows the fractional bias in % in the recovery of the total mass M for several

systems in the context of the eaLIGO and AdvLIGO detectors. As expected, when the

(2, 2) mode dominates the signal at θ = 0, the bias is very close to 0. As we move to

equatorial locations, the bias starts to grow to both negative and positive values. This

qualitative behavior coincides with that observed in [2]. Note that systematic parameter

biases can get as large as −30% for the (q,M) = (8, 218M�) case for AdvLIGO, while

for eaLIGO such a bias is already obtained for (q,M) = (8, 98M�) due to its higher

frequency cutoff. This difference in the magnitude of systematic parameter biases be-

tween both detectors is also observed for the case of the spin and chirp mass parameters.

In particular, Fig.6.7 shows the corresponding spin χ biases for the same systems and

detectors as before. Note how the estimation of the spin of a non-spinning system can

be as low as χ = −0.8 for the two cases highlighted before (bottom row of Fig.6.7).

Furthermore, for the M ≥ 150M� cases for eaLIGO, values of χ = −0.99 are commonly

recovered at edge-on locations. For low q and low M cases HOMs are intrinsically weaker

and the (2, 2) mode is well in band, systematic biases are tiny and comparable for both

detectors as can be noticed in top row of Figs. 6.7 and 6.6.
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Figure 6.6: Fractional mass bias ∆M in % for several systems as a function of (θ, ϕ)
for the case of AdvLIGO (Left) and eaLIGO (Right).

Averaged systematic biases and statistical errors

Fig.6.8 shows the averaged parameter bias over the observable volume for the studied

systems. As a general trend, neglection of HOM causes biases towards lower (χ, M ,Mc)
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Figure 6.7: Recovered spin χ for several systems as a function of (θ, ϕ) for the case
of AdvLIGO (Left) and eaLIGO (Right).

(thus, to higher q) which increase as M and q do. As expected, biases are much larger for

iLIGO and eaLIGO than for AdvLIGO. In particular, note that the lower seismic wall of

AdvLIGO allows for an excellent recovery ofMc for most of the mass range. Regarding

spinning cases, larger systematic biases were obtained for anti-aligned spin cases than
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Figure 6.8: Top: M , Mc, and χ systematic bias for the q = (3, 4, 6, 8) (from solid
to dot-dashed) nS cases. We use the same color-detector code as in Fig.2. Bottom:
Same for the (q;χ) = (3; 0,±0.5). We use dashed (dotted) for - (+) spin and add

(q, χ) = (1,−0.2) case in solid green for eaLIGO.

for aligned spin ones. For q = 1, only the eaLIGO cases are shown, which were the

only ones having systematic biases comparable to those of the other systems. Last, we

want to note that biases typically reach values of ∆(M,Mc, χ) = (−40%,−20%,−0.9)

for q ≥ 4 high mass edge-on cases for eaLIGO and (−30%,−20%,−0.5) for AdvLIGO.

Since these orientations the SNR is the lowest, they are the ones contributing the less

to the averaged biases. Recall this behavior was also observed for the case of event losses.

We now move to the comparison the sky-averaged systematic biases to the statistical

uncertainty we expect for each detector via computing the SNR ρ0 at which the for-

mer dominate the latter. However, unlike the volume loss Ri, note that ρ0 =
√

1/2ε is

extremely sensitive to tiny variations in the parameters recovered by the Nelder-Mead

algorithm, which has always a certain risk of settling in a local maximum. In particular,
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for an error ∆ε in the estimation of ε, using (3.4.2) we obtain ∆ρ0 ∼ ε−3/2∆ε. Conse-

quently, this will especially affect regions of the parameter space where systematic biases

are lower and regions where the parameter space is denser i.e., regions for which tiny vari-

ations ∆Ξi in the parameters Ξi cause large mismatches ε = 1−O(h(Ξi)|h(Ξi + ∆Ξi)).
2

Due to this, although some of the Nelder-Meads were run up to 18 times, Fig. 6.9 shows

several peaks that do only allow us to give a rough estimate of ρ0. Results suggest that

at an SNR of ρ ∼ 8, HOM would only be required for PE at M ≥ 180M� and for the

largest q for the case of AdvLIGO, which is consistent with [2]. However, for the case

of eaLIGO, HOM affect PE at M ≤ 80M� for roughly the same cases due to the larger

systematic biases. Regarding spin, we note that systematic biases are more (less) likely

to affect PE in the anti-aligned (aligned) spin case, for which again, systematic biases

are larger (lower).

The results suggest that, in average, systematic biases due neglection of HOM dom-

inate those due to statistical uncertainty at SNR ρ ∼ 8 for total masses larger than

(80, 170)M� for eaLIGO and AdvLIGO respectively. The latter is consistent with the

results found by [2] in the case of a non-spinning search. Again, the ultimate reason

behind the different results for the different two detectors is the fact that the lower fre-

quency cutoff of AdvLIGO makes it sensitive to a much longer PN tail of the incoming

signal totally dominated by the quadrupolar modes. This generates lower systematic

biases which do not dominate those due to statistical uncertainty.
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Figure 6.9: Comparison between (θ, ϕ, ψ)-averaged systematic errors and statistical
uncertainties. We show the minimum SNR ρ0 at which systematic biases due to the ne-
glection of HOM dominate those due to statistical uncertainties for the studied sources.
Note that for particular cases, like edge-on-high mass ones, the value of ρ0 would be

much lower and systematic biases would be more dominant.

2Low mass cases and AdvLIGO due to the tiny parameter bias expected and to the large density of
the parameter space. Also, for the latter reason, large mass ratio and positive spin cases should also be
affected.
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6.6 Higher order modes and binary black hole kicks

At the end of a coalescence, after both BH merge, it is known that the resulting perturbed

Kerr BH acquires a characteristic velocity ~vK , known also as recoil velocity or BH kick.

Several studies [155–157] have computed this characteristic velocity to be of the order

of ∼ 10− 100km/s for non-spinning binaries and ∼ 1000km/s for highly spinning ones.

In particular, [155] shows that a maximum kick happens for q ∼ 3 in the case of non-

spinning systems. Also, [158] studied which modes dominate the resulting kick for equal

mass binaries with opposite spins. In this section we will extend this last study to the

case of the binaries used in the previous part of this chapter. In the non-precessing

case, the reason behind the BH kick is the non-axisymmetry of the GW radiation, due

to the different interaction of the GW modes at different angles ϕ. The corresponding

momentum ~P can be computed as a function of the ψ4 scalar as

dPi
dt

= lim
r→∞

[
r2

16π

∫

Ω
li

(∫ t

−∞
ψ4dt̄

)2

dΩ

]
, (6.8)

where ~l = (sin θ cosϕ, sin θ sinϕ, cos θ). Note, as we will show later, that this velocity

would be exactly zero if one considers only the quadrupolar (`, |m|) = (2, 2) modes of

the GW radiation. Also, the symmetry with respect of the equatorial plane imposed in

the non-precessing case by (4.4) makes Pz to be zero. Hence, the kick of the resultant

BH will keep it within the original orbital plane. In this section we will investigate which

modes of the GW radiation dominate the value of the kick ~vK .

Mode hierarchy in black hole kicks

Equation (6.8) can be expressed as a sum over products of modes as

viK = lim
r→∞

[
r2

16πM

∑

`′ ,m′

∑

`,m

∫

Ω
liY`,m(θ, ϕ)Y ∗

`′ ,m′
(θ, ϕ)dΩ×

(∫ t

−∞

(
dh`,m
dt̄

)(
dh`,m
dt̄

)∗
dt̄

)]
,

(6.9)

which we might re-express as

viK = lim
r→∞

[
r2

16πM

∑

`′ ,m′

∑

`,m

Ψi
`,m,`′ ,m′

]
. (6.10)

The previous quantity can be regarded as the final velocity that the BH acquires when

only the (`,m) and (`
′
,m
′
) modes are considered. Due to the symmetry of the system,

all m = m
′

terms give a zero contribution to the final kick. This should not be surprising

since given that the radiation described by these doublets of modes is axisymmetric, thus
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no net final momentum should be obtained. Because of the symmetry relation between

positive and negative modes given by (4.5), the relation between positive and negative

m harmonics and their orthogonality (2.15), one gets

Ψi
`,m,`′ ,m′

= Ψi
`′ ,m′ ,`,m

Ψi
`,m,`′ ,m′

= Ψi
`′ ,−m′ ,`,−m

Ψi
`,m,`′ ,m′

= 0, m 6= m
′ ± 1

(6.11)

Hence, we can further simplify the expression of the final black hole kick to

viK = lim
r→∞

[
r2

16πM

∑

`,m>0,`′

Ψ̂i
`,m,`′ ,m+1

]
, (6.12)

where, for instance

Ψ̂i
2,2,3,3 = Ψi

2,2,3,3 + Ψi
3,3,2,2 + Ψi

2,−2,3,−3 + Ψi
3,−3,2,−2. (6.13)

Computing the individual Ψi
`,m,`′ ,m′

terms allows for determining which couples of modes

dominate the value of the BH kick. Table 6.3 shows the ratio

R`,m,`′ ,m′ =

√
(Ψ̂x

`,m,`′ ,m′
)2 + (Ψ̂y

`,m,`′ ,m′
)2

√
(Ψ̂x

2,2,3,3)2 + (Ψ̂y
2,2,3,3)2

. (6.14)

for two of the systems and the corresponding modes included in the fitting factor study,

where the lower limit of integration has been chosen to be ti = 500M before the end

of the waveforms. From the ratios shown in the table, it is clear that the BH kick is

dominated by the interaction of the (2, 2) and (3, 3) modest, the (2, 2) and the (2, 1)

and (3, 3) and (4, 4). This hierarchy should not be surprising since, as we discussed in

Chapter 2, these are the most dominant modes in the net GW emission (see.2.4). In

[158] it was obtained that the kick is largely dominated (by ∼ 2 orders of magnitude) by

the interaction between the (2, 2) and (2, 1) modes. However, since they consider equal

mass binaries, the symmetries of the problem highly suppress the rest of the modes, in

particular the (3, 3). For completeness, 6.3 also shows the value of the final kick |~vK |
obtained for the final BH and that obtained when all the modes are included, i.e., when

one includes the full ψ4 in (6.8), quoted from [115]. Note we have only included in our

calculation the most dominant HOM. Since the velocity of the center of mass of the

binary oscillates around zero during inspiral, there choice for ti will introduce a certain

error. Ref.[155] estimated this error to be of a 3% of the measured kick. Note also that

the artifacts observed in Chapter 5 for large m modes due to extrapolation, which are

not likely to affect the fitting factor studies due to the presence of a detector noise curve
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that alleviates them, may be another source of error for this calculation. These sources

of error are however not likely to affect the statement that the kick dominated by the

interference of (2, 2) and (2, 1) modes followed by that of the (2, 2) and (3, 3) modes

and the one corresponding to the (3, 3) and (4, 4) modes. This qualitative behavior was

observed for all the systems studied in this chapter although the exact values depended

on their particular parameters. In order to get a clear image of the contribution of each

(`,m) (`
′
,m
′
) (q, χ) = (8, 0) (3,+0.5)

(2, 1) (2, 2) 1 1
(2, 2) (3, 3) 0.4611 0.5536
(3, 3) (4, 4) 0.1961 0.2163
(3, 2) (3, 3) 0.0904 0.0473
(2, 1) (3, 2) 0.0169 0.0404
(2, 2) (4, 3) 0.0066 0.0126
(3, 2) (4, 3) 0.0126 0.0126
(4, 4) (4, 3) 0.0158 0.0065

Total Kick 90.69 84.06
Total Kick (SXS) [km/s] 88.10 80.01

Table 6.3: Hierarchy of the different modes regarding their contribution to the final
black hole kick. The upper rows show the value of R`,m,`′ ,m′ two of the studied systems.
In the lower ones, “Total Kick” denotes the value obtained for the kick using our
finite set of modes and “Total Kick (SXS)” is the value obtained in the original NR

simulations, which consider all possible modes.

couple of modes, Fig.6.10 shows the components of the partial kicks generated by each

mode-doublet and the total kick for a non-spinning q = 8 binary black hole. In the left

panel the dominancy of the (2, 1, 2, 2), (2, 2, 3, 3) and (3, 3, 4, 4) modes is clear while the

right one shows in detail the contribution of the subdominant ones.
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Figure 6.10: Left: Components in km/s of the partial kicks due to each couple of
modes (in color) and total kick (in black) for a non-spinning q = 8 binary black hole.

Right: Detail of the contribution of the subdominant doublets.

Finally, it is worth to note the close relation between the individual kicks of the modes

which dominate the radiation as seen by the detector and the dipolar structure of the

parameter bias plots in Figs. 6.7, 6.6 and 6.11. For masses such that the (3, 3) and

(4, 4) contribute enough to the signal, this structure appears to get aligned with the
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kicks due to the interaction of the (2, 2) and (3, 3) modes and that of the (3, 3) and

(4, 4). In particular, biases to large masses and positive spins happen for the direction

opposite to these two kicks. Note that since the (2, 1) mode is largely dominated by

the (2, 2) when it is in band, it has a negligible effect both in terms of event losses and

parameter bias and no structure appears at low masses. The evolution of the mentioned

pattern with the total mass is visible looking at the q = 8 plots in the figures mentioned

and clear in the plot series of Fig.6.11. Note that since the effect of HOM in AdvLIGO

gets shifted to larger masses due to its lower frequency cutoff, the dipolar structure

appears at larger masses than in the case of eaLIGO, for which this structure starts

to appear at M ∼ 100M�. This is precisely the region where the event loss curves of

eaLIGO in Fig.6.5 start to separate from those corresponding to AdvLIGO, thus where

the contribution of HOM (mainly the (3, 3) mode) starts to be important.
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Figure 6.11: Evolution of the dipolar pattern observed in the parameter bias for χ
and M as a function of the total mass M of a non-spinning q = 8 binary. The two upper
rows show results for eaLIGO while the two lower ones show results for AdvLIGO. Note

how the dipolar pattern forms at larger masses for the case of the AdvLIGO.
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6.7 Discussion

In this chapter we have studied the impact of the neglection of HOM in current searches

for CBC both in terms of event losses and parameter bias. The study performed for

the case of AdvLIGO (for the case of a single aligned-spin search) predicts losses > 10%

for the (q ≥ 6,M ≥ 100M�) region of the explored parameter space. This is in good

agreement with the results shown in [2] for the case of a non-spinning search, which

is in turn consistent with the results presented in [125]. However, we have shown that

these losses not only happen for a larger portion of the parameter space q ≥ 4 for the

case of eaLIGO and iLIGO but also reach values of 26% and 36% respectively for the

largest mass and mass ratio. In [125], they also estimated the increment of the FAR

of a search including HOM as well as the effect of signal based vetoes. They estimated

that the threshold SNR for such a search would need to be raised from 8 to 8.3 ( so,

by a 10%). Note that this implies that if we want to compute the event loss due to the

neglection of HOM in terms of search sensitivity, we would have to reduce the values in

6.5 by roughly a 10%. Ref. [125] concluded that a search including HOM would only

be more sensitive than a one not including HOM for the region of the parameter space

(q ≥ 4,M > 100M�), for which fitting factors of quadrupole templates towards full

target signals are particularly low. However, since we have found lower fitting factors

for the case of eaLIGO than for AdvLIGO for the same target parameters, the region

of the parameter space where a search including HOM would be advantageous should

certainly be larger for eaLIGO, which may motivate some effort towards the development

of such a search. Notice also that we have not considered the effect of signal based vetoes

used in real GW searches [38] such as the χ2 [126], which would further punish signals

with low FF and should increase the event losses when HOM are not considered.

Regarding parameter bias due to the neglection of HOM, for the eaLIGO case, averaged

systematic biases affecting parameter estimation are normally above (∆M,∆χ,∆Mc) =

(−5%,−10%,−0.1) for the most part of the explored parameter space and reach values

of (−15%,−25%,−0.5) for the largest (q,M) cases. As expected, systematic biases are

lower for the case of AdvLIGO due to its lower frequency cutoff. We compared these

systematic biases to the corresponding statistical uncertainties due to the presence of

gaussian noise in the data. Results for eaLIGO suggest that measurements with SNR' 8

would be affected by the presence of HOM at M ≥ 80M� for the largest q considered.

In the case of AdvLIGO, we estimate that PE is likely to be affected at ρ ∼ 8 for

M ≥ 180M� for the largest q studied, which is consistent with [2]. Finally, it is worth

pointing that an interesting extension of this work would be to consider the case of

precessing targets, for which the contribution of HOM is much stronger. Finally, taking

advantage of the hybrid waveforms used for this chapter, we have shown that for unequal
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mass ratio binaries the kick of the final black hole is largely dominated by the non-

axisymmetric interaction between the (2, 2), (2, 1) modes, and that of the (2, 2) and

(3, 3) modes.



Chapter 7

Conclusions

In this thesis we have studied the effect of the neglection of higher order modes in

gravitational wave searches in terms of reduction of observed events due to mis-modeling

and in terms of biases in the parameters estimated for the corresponding source. To this

end, we have first dealt with the construction of hybrid PN/NR waveforms containing

HM in Chapters 4 and 5. In Chapter 6 we have used these hybrid waveforms as models of

the true gravitational wave signal and filtered them with waveforms that do only consider

the quadrupolar modes [118] in order to obtain a first estimation of the performance

of a real search. Also, results obtained regarding the process of constructing hybrid

waveforms allowed us to perform studies of the accuracy and error sources of both PN

and NR calculations in Chapter 5. In particular, we payed special attention to the

effect of truncation in the PN results and to the effect of finite extraction radius and

extrapolation order in the NR results. The global results and conclusions of this thesis

are the following.

• In Chapter 4, we have described a method for the construction of hybrid waveforms

for non-precessing CBC including higher order modes. We have found that in

general, three sources of ambiguity in the description of both pieces of the hybrid

waveform must be fixed: a relative time-shift t0 and orbital phase-shift ϕ0 and a

“polarization” shift ψ0. The global phase shift applied to the (`,m) mode is then

∆φ`,m = ψ0 +mϕ0. The t0 and ϕ0 factors coincide with those described by [135]

and [132]. The need to correct for ψ0 was already noted by [134], who however

restricted ψ0 ∈ {0, π/2, π, 3π/2}. We note that in general ψ0 ∈ [0, 2π). However, if

as usual, the two independent sets of modes satisfy (4.5), then ψ0 ∈ {0, π} in order

for the resultant hybrid modes to satisfy the same equation. We have provided a

general method for finding the right t0, ϕ0, ψ0 choice.

133
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• In an ideal case, after having corrected for (t0, φ0, ψ0), one should expect to obtain

continuous phases for all modes at a given matching point. However, as shown in

the last part of Chapter 4, this is not the case. We have shown the existence of

phase offsets ε`,m between different modes h`,m which need to be smoothed along

a matching window together with amplitude disagreements r`,m between PN and

NR. This smoothing introduces artificial frequencies in the final waveform.

• In Chapter 5, we have studied the sources of both r`,m and ε`,m. Regarding the

former, we have found that its main error source is the truncation of the PN

series at a given PN order. The magnitude of the error incurred is highly-mode

dependent: different PN corrections have different consequences depending on the

mode studied. In general, a new PN correction does not imply a more accurate

result. We have however shown how the recently computed 3.5PN correction to

the amplitude of the (3, 3) mode greatly improves the agreement between PN and

NR results.

• Regarding the ε`,m values, we have demonstrated that their main source is the

magnitude of the extraction radius r in NR simulations. We have found that val-

ues of several tens of degrees are typical for the weaker modes for finite extraction

radius while a few degrees are found for the stronger ` = m ones. We have shown

that these converge with the extraction radius as 1/r. I fact, for the case of extrap-

olated data, ε`,m are never larger than a couple of degrees. Remarkably, we have

also demonstrated that the quantitative values of ε`,m do almost not depend on

the simulated system. We have shown this for non-spinning q ∈ {3, 4, 6, 8} systems

and (q, χ) = (3,±5) ones. The study of the ε`,m values has lead us to demonstrate

that current PN results compute with great accuracy the contributions to the total

phase φ`,m from the argument of the PN complex amplitudes Λ`,m even at only

few cycles before the merger.

• At the end of Chapter 5, we tested the effect of the finitude of extraction radius,

extrapolation order and numerical resolution in terms of matches of the resulting

hybrid waveforms. Qualitatively we found that high extrapolation order is likely to

generate artifacts in the high m modes at large frequencies, making this dominate

the mismatch for total masses such that the (2, 2) mode is out of band. More

importantly, we have shown that the lower the extraction radius, the higher the

mismatch with the corresponding hybrid built using extrapolated data is. This

mismatch appears in the hybridization region of the hybrid waveform due to the

large ε`,m values that need to be smoothed in the case of finite radius NR data. In

the late part of the waveform, the different ε`,m values of each waveform introduce

further mismatch. We computed these mismatches for the worst (edge-on) case and
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found matches always larger than 0.97 for the early Advanced LIGO noise curve,

which suggest that detection should not be affected by this kind of errors. However,

parameter estimation at large SNR could require the usage of only extrapolated

NR data. Resolution of NR shown to introduce negligible mismatches. Last, the

close relation between the ε`,m values and the corresponding mismatches makes

the former a good test of the quality of the final waveform and can be used for

diagnosing it.

• As the main result of Chapter 6, it has been shown that neglection of HM in CBC

searches can generate important detection rate losses and parameter biases whose

size strongly depends on the source and detector considered. We extended previous

studies by considering non-precessing BBH with total mass 50M� < M < 220M�

and an aligned spin template bank for the cases of AdvLIGO and eaLIGO. We

added the case of a non-spinning template bank and targets for iLIGO. For the case

of AdvLIGO, 10% event losses happen for q ≥ 6 and M ≥ 100M� and 20% is never

achieved for the studied cases. However for the upcoming eaLIGO the situation is

notably worse: maximum losses of 10% happen for already q ≥ 4 and maximum

losses of 26% are observed. Regarding parameter estimation, large parameter

biases can be generated for high-mass, edge-on systems that can reach values of

(∆M,∆χ,∆Mc) = (−40%,−20%,−0.9). These get lowered when one considers

the orientantion-averaged values. When comparing these systematic biases with

the statistical uncertainty, we found that the latter dominates for total mass M <

(80, 170)M� for an SNR of 8, for eaLIGO and AdvLIGO respectively. This suggests

that HOM could be needed for PE for cases with total mass M > (80, 170)M�

for eaLIGO and AdvLIGO respectively at an SNR of 8. The results obtained for

AdvLIGO are consistent with those obtained in [2] for the case of a non-spinning

search. A limitation of this study is the lack of proper parameter estimation using,

for instance, bayesian MCMC techniques. Also, we have not compared the actual

sensitivity of an aligned-spin search including only quadrupole modes and one

including higher order modes. However, results obtained by [125] suggest that the

corresponding gain/loss of events would in principle be a 10% lower than what

computed in Fig.6.5.

• At the end of Chapter 6, we have studied the phenomenon of black hole kicks as an

effect of the non-axisymmetric interaction between different modes. In particular,

we have shown that its value is by far dominated by the interaction between the

(2, 1) , (2, 2) and (3, 3) modes for the studied cases. We have also shown a close

relation between the parameter biases observed due to neglection of higher modes

as a function of the sky-location of the detector and the direction in which the

modes in the band of the detector contribute to the kick.
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• The results shown in Chapter 6, together with the description of higher modes

given in Chapter 2, suggest that in order to improve current waveform models

via the inclusion of higher modes, one should focus on the (3, 3) mode due to

its intrinsic magnitude and its importance for edge-on systems and the (3, 2).

The latter, although not being as dominating as the (3, 3), can have important

contributions to the optimum SNR (mainly when the source is face-on) due to its

lower frequency content. Note that EOB models do not include this last mode.

• Finally, BBH searches are especially affected by the presence of sine-Gaussian

glitches in the detector data stream. These are poorly identified by current signal-

based vetoes. However, the results shown in Fig.3.3 suggest that they should

be discriminated from real GW signals if they were considered as possible signal

models and a complete parameter estimation study (as for example MCMC) was

performed.

Current work, in collaboration with AEI Hannover, is dealing with the injection of the

hybrid waveforms developed in this thesis in simulated detector data, similar to what

was done in the context of the NINJA-2 project [34]. Based on the results presented

in Chapter 6, we want to measure the real efficiency of current detection pipelines

towards signals containing higher harmonics, like the ones we expect from nature. This

will account for further effects not investigated in this thesis such as the chi-square χ2

veto [126]. This should further punish the mis-modeling of real signals by quadrupole

waveforms.
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[112] Alex Vañó-Viñuales, Sascha Husa, and David Hilditch. Spherical symmetry as a

test case for unconstrained hyperboloidal evolution. 2014.



Bibliography 147
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