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Abstract

The last two decades have seen important advances in the Lagrangian description of
transport and mixing in fluid flows driven by concepts from dynamical systems theory,
and nowadays several approaches have been developed. Some of such techniques focus
on geometric objects - lines, surfaces - separating fluid regions with different properties
while others have focussed on computing stretching-like fields in the fluid domain,
such as different types of Lyapunov exponents or other Lagrangian descriptors. Finally,
there is a line of research focussing on the moving fluid regions themselves, the so-called
set-oriented methods.

On the other hand many real-world systems can be studied by using the Network
paradigm and in the last years Network Theory approaches have been successfully used
for geophysical systems in the context of climate networks in which the connections
among the different locations represent statistical relationships between climatic time
series from these locations, inferred from correlations and other statistical methods.

In this thesis we propose a new paradigm linking the network formalism with transport
and mixing phenomena in geophysical flows.

We analyze directly the network describing the material fluid flow among different
locations, which we call flow network. Among other characteristics this network is
directed, weighted, spatially embedded and time-dependent. We illustrate the general
ideas with an exemplary network derived from a realistic simulation of the surface
flow in the Mediterranean sea. We use network-theory tools to analyze them and gain
insights into transport processes from a general point of view. We quantitatively relate
dispersion and mixing characteristics, classically quantified by Lyapunov exponents,
to the degree of the network nodes. A family of network entropies is defined from
the network adjacency matrix, and related to the statistics of stretching in the fluid, in
particular to the Lyapunov exponent field. We use a network community detection
algorithm, Infomap, to partition the network into coherent regions, i.e. areas internally
well mixed, but with little fluid interchange between them.

We find interesting applications of this approach to marine biology of the Mediterranean
Sea. Oceanic dispersal and connectivity have been identified indeed as crucial factors for
structuring marine populations and designing Marine Protected Areas (MPAs). Larvae
of different pelagic durations and seasons could be modeled as passive tracers advected
in a simulated oceanic surface flow from which a flow network is constructed. By ap-
plying the Infomap algorithm we extract hydrodynamical provinces from the network
that result to be delimited by frontiers which match multi-scale oceanographic features.
By examining the repeated occurrence of such boundaries, we identify the spatial scales
and geographic structures that would control larval dispersal across the entire seascape.
Based on these hydrodynamical units, we study novel connectivity metrics for exist-
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ing MPAs. We also define node-by-node proxies measuring local larval retention and
exchange. From the analysis of such measures we confirm that retention processes
are favored along the coastlines while they are weak in the open ocean due to specific
oceanographic conditions. Although these proxies were often studied separately in the
literature, we demonstrated that they are inter-related under certain conditions and that
their integrated analysis leads to a better understanding of metapopulation dynamics,
informing both genetic and demographic connectivities.

We also consider paths in weighted and directed temporal networks, introducing tools
to compute sets of paths of high probability. We quantify the relative importance of the
most probable path between two nodes with respect to the whole set of paths, and to a
subset of highly probable paths which incorporate most of the connection probability.
These concepts are used to provide alternative definitions of betweenness centrality.
We apply these tools to the temporal flow network describing surface currents in the
Mediterranean sea. Despite the full transport dynamics is described by a very large
number of paths we find that, for realistic time scales, only a very small subset of high
probability paths (or even a single most probable one) is enough to characterize global
connectivity properties of the network.

Finally we apply the same analysis to the atmospheric blocking of eastern Europe and
western Russia in summer 2010. We compute the most probable paths followed by
fluid particles which reveal the Omega-block skeleton of the event. A hierarchy of sets
of highly probable paths is introduced to describe transport pathways when the most
probable path alone is not representative enough. These sets of paths have the shape of
narrow coherent tubes flowing close to the most probable one. Thus, as for the case of
Mediterranean Sea, even when the most probable path is not very significant in terms
of its probability, it still identifies the geometry of the transport pathways.



Resumen

En los últimos años ha habido grandes avances en la descripción Lagrangiana de los
fenómenos de transporte y mezcla en flujos de fluidos, impulsados fundamentalmente
por conceptos y métodos propios de la teorı́a de los sistemas dinámicos. Algunas
de estas técnicas se centran en objetos geométricos - lı́neas, superficies - que separan
regiones de fluidos con propiedades diferentes, mientras que otros se basan en el cálculo
de ritmos de separación de partı́culas de fluido, tales como los Exponentes de Lyapunov.
Por último, hay una lı́nea de investigación que se centra en el transporte de regiones
amplias de fluido, los llamados métodos “set-oriented”.

Por otra parte muchos sistemas del mundo real se estudian utilizando la teorı́a de redes,
y en los últimos años algunos sistemas geofı́sicos se están estudiando con éxito usando
este enfoque. Es el caso de las redes climáticas, en las que las conexiones entre los
diferentes lugares geograficos representan relaciones estadı́sticas entre series de tiempo
climáticas, inferidas de correlaciones y otros métodos estadı́stico.

En esta tesis se propone un nuevo paradigma que une el formalismo de las redes con
fenómenos de transporte y mezcla en flujos geofı́sicos.

Analizamos directamente la red que describe el flujo de material entre diferentes ubi-
caciones, que llamamos red de flujo. Entre otras caracterı́sticas, esta red es dirigida,
pesada, definida espacialmente y dependiente del tiempo. Presentamos las ideas gen-
erales con el ejemplo de una red derivada a partir de una simulación realista del flujo
superficial en el mar Mediterráneo. Utilizamos herramientas de teorı́a de redes para
analizarla y hacernos una idea de los procesos de transporte desde un punto de vista
general. Relacionamos cuantitativamente dispersión y mezcla, clásicamente cuantifi-
cados por exponentes de Lyapunov, con el grado de los nodos de red. Una familia de
entropı́as de red se define a partir de la matriz de adyacencia de esta, y se relaciona
con los exponentes de Lyapunov. Usamos un algoritmo de detección de comunidades,
Infomap, para particionar la red en regiones coherentes, es decir, áreas internamente
bien mezcladas, pero con poco intercambio de fluido entre ellas.

Encontramos aplicaciones interesantes de este enfoque en la biologı́a marina del mar
Mediterráneo. De hecho la dispersión de los Océanos y la conectividad son factores
cruciales para la estructuración de las poblaciones marinas y el diseño de áreas marinas
protegidas. Las larvas son modeladas como trazadores pasivos trasportados por las
corrientes oceánicas a partir de lo cual se construye una red de flujo. Aplicando el algo-
ritmo Infomap extraemos provincias hidrodinámicas que resultan estar delimitadas por
fronteras que coinciden con caracterı́sticas oceanográficas de diferentes escalas. Exami-
nando la aparición repetida de tales fronteras, identificamos las escalas espaciales y las
estructuras geográficas que controları́an la dispersión de las larvas a través del entorno
marino. A partir de estas unidades hidrodinámicas, estudiamos nuevos indicadores de
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conectividad para las áreas protegidas existentes. También definimos para cada nodo
medidas de retención local de larvas y de intercambio. Del análisis de estas medidas
confirmamos que se favorecen los procesos de retencióna lo largo de las costas, mientras
que son irrelevantes en océano abierto. Aunque estas medidas han sido estudiadas a
menudo por separado en la literatura, hemos demostrado que están, bajo ciertas condi-
ciones, relacionadas y que su análisis integrado conduce a una mejor comprensión de
la dinámica de la meta-poblaciónes, proporcionando información sobre conectividad
tanto genética que demográfica.

También estudiamos caminos en redes temporales ponderadas y dirigidas, para lo cual
presentamos herramientas novedosas que permiten calcular conjuntos de caminos con
alta probabilidad. Cuantificamos la importancia relativa de la trayectoria más probable
entre dos nodos con respecto a todo el conjunto de caminos, ası́ como para un sub-
conjunto de caminos altamente probable, los cuales incorporan la mayor parte de la
probabilidad de conexión. Estos conceptos se utilizan para proporcionar definiciones
alternativas de betweenness centrality. De nuevo aplicamos estas herramientas a la red
de flujo de transporte de la superficie del mar Mediterráneo. Encontramos que , para
escalas de tiempo realistas, sólo un pequeño subconjunto de caminos de alta probabil-
idad (o incluso el único más probable) es suficiente para caracterizar la conectividad
global de la red.

Finalmente aplicamos el mismo análisis al bloqueo atmosférico de Europa del este y
el oeste de Rusia que se produjo en el verano de 2010. Calculamos los caminos más
probables seguidos por partı́culas de fluido que revelan el esqueleto del tipo Omega-
block del evento. Una jerarquı́a de conjuntos de rutas altamente probables es necesario
para describir las vı́as de transporte cuando el camino más probable por sı́ mismo no
es suficientemente representativo. Estos conjuntos de caminos tienen la forma de tubos
coherentes y estrechos que fluyen cerca del camino más probable. Por lo tanto, como
para el caso de Mar Mediterráneo, incluso cuando el camino más probable no es muy
significativo en términos de probabilidad, todavı́a identifica la geometrı́a de las vı́as de
transporte.
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CHAPTER 1
Introduction

1.1

Lagrangian transport in fluid flows

1.1.1 Two points of view: Eulerian and Lagrangian

The description of fluid motion can be addressed following two different ways. One
can deal at any time with velocity at any spatial point in the fluid, or either, one studies
the trajectory of each fluid particle. The first approach is usually called Eulerian and
the second one Lagrangian. We can identify streamlines as lines tangent to the velocity
field in each point or trajectories as paths followed by ideal fluid particles. The first
represents a geometrical representation of the Eulerian point of view, the second of the
Lagrangian one and only for the time-independent case these two objects will coincide
(Vallis, 2006).

The link between these two descriptions is provided by:

dx
dt

= v(x, t) , (1.1)

x(t0) = x0 .

In these equations, t represents time and it is the independent variable, x(t) represents
the evolution of the initial condition x0 at time t, i.e. the Lagrangian trajectory. The
Eulerian vector function v(x, t) typically satisfies some level of continuity.

If a fluid is characterized by a velocity field v(x, t) and also another property ψ the
material (or advective) derivative provides another relationship among the Eulerian
and the Lagrangian point of view:

dψ
dt

=
∂ψ

∂t
+ v ·∇ψ . (1.2)

Thinking of a fluid particle as an infinitesimal, indivisible, element of fluid the material
derivative corresponds to the rate of change of a quantity ψ along the trajectory of the
particle.
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CHAPTER 1. INTRODUCTION

Figure 1.1: Stable and unstable manifolds (black continuous lines) intersecting at
one hyperbolic point. Trajectories diverging along the stable manifold (colored

dashed lines).

1.1.2 Dynamical systems approach

We can make a link between the Lagrangian description of fluid flows and dynamical
systems theory by interpreting the trajectories as the evolution in time of the state of a
system. Such dynamical system can be expressed by Eq. (1.1) where x(t) will represent
the state of the system at time t. As time evolves, solutions of Eq. (1.1) trace out curves,
or in dynamical systems terminology, they flow along their trajectory. Unless v(x, t) is a
linear function of the state x and independent of time t, and a few other cases, there is
no general way to determine the analytic solution of Eq. (1.1).

When v is independent of time t the system is known as time-independent, or au-
tonomous, and there are some standard techniques for studying it. We can understand
the global flow geometry of time-independent systems by studying invariant manifolds
of the fixed points of Eq. (1.1). In particular stable and unstable manifolds often play
the most important role since they form the skeleton of motion. These concepts are
described in the following. A fixed point of v is a point x f such that v(x f ) = 0. The
stable manifolds of a fixed point are all trajectories which reach the fixed point when
t → ∞. In a similar way, the unstable manifolds of the fixed point are all trajectories
which reach the fixed point when t → −∞. The term invariant manifold is the mathe-
matical notion of material curve. This means that the trajectory of any condition starting
on the manifold, must remain on the curve. Often, stable and unstable manifolds act
as separatrices, which separate regions of different motion (Hernandez-Carrasco, 2013;
Bettencourt, 2014).

Let us consider now the case of a stable and an unstable manifolds intersecting at
one fixed point, this point is called hyperbolic fixed point. In a system of differential
equations a stationary hyperbolic point is a point for which the eigenvalues of the
linearized system have non-zero real parts. We will see later that hyperbolicity plays
an important role in transport. Fig. 1.1 shows a generic hyperbolic point and their
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1.1. LAGRANGIAN TRANSPORT IN FLUID FLOWS

associated stable and unstable manifolds. If we integrate the trajectories of two points
initiated on both sides of a stable manifold, these points will diverge from each other
forward in time. In a similar way, if we initiated two points on either sides of an unstable
manifold, then these points will diverge from each other backward in time. This is the
reason why these manifolds are called separatrices, since they separate qualitatively
different trajectories.

Considering now time-dependent dynamical systems, we find that they also have re-
gions of dynamically distinct behavior which can be thought of as being divided by
separatrices. However, for such systems these regions change over time, and hence so
do the separatrices, and one should not read into the analogy between these separatrices
and traditional definitions of stable and unstable manifolds too much. These are the
so called Lagrangian Coherent Structures (LCS) and are material curves, which means
that represent curves that cannot be crossed by other fluid particle trajectories.

Nowadays the techniques used to detect these structures can be roughly classified as
follows. On the one hand, some approaches focus on the geometric objects - lines,
surfaces - separating fluid regions with different properties that are identified with
LCS (Mancho et al., 2003, 2004). On the other hand, another class of algorithms have
focussed on computing stretching-like fields in the fluid domain, such as different types
of Lyapunov exponents or other Lagrangian descriptors (Haller, 2001; Shadden et al.,
2005; Aurell et al., 1997; Lacorata et al., 2001). Ridges or singular lines in such fields
turn out to be related, under suitable conditions, to the LCS too. Finally, there is a line
of research focussing on the moving fluid regions themselves, the so-called set-oriented
methods (Dellnitz et al., 2001; Froyland and Dellnitz, 2003). The geometric approaches
are designed to follow specific structures during particular transport events, whereas
the coarse-graining inherent to the set-oriented methods makes them useful also to
estimate statistical properties in more extended space and time intervals. Stretching-
field methods can be used to follow particular events or, by simple averaging, also to
characterize dispersion and stirring statistics in large areas or long times.

1.1.3 Lyapunov Exponents

In 1963, Edward Lorenz described the behavior related to chaotic attractors occurring
in dissipative systems (Lorenz, 1963), and recognized the unpredictability of chaotic
behavior in connection with the numerical solution of an atmospheric model. Chaotic
motion is irregular in time, unpredictable in the long term and sensitive to initial condi-
tions, and complex, but ordered, in the phase space. In present day literature a system
with bounded trajectories is said to be chaotic if small i.e. infinitesimal perturbations
grow exponentially with time, and this is connected to a positive Lyapunov exponent.

The classical or global Lyapunov exponent is defined as the exponential rate of sepa-
ration, averaged over infinite time, of particle trajectories initially separated infinitesi-
mally. Consider x(t0) and x(t) = x(t0)+δx(t) as two particle trajectories separated initially
by a distance δx(t0). The global Lyapunov exponent is defined by:

λ = lim
t→∞

(
lim

δx(t0)→0

1
t

log
|δx(t)|
|δx(t0)|

)
. (1.3)

Negative Lyapunov exponents are characteristic of stable solutions of dissipative or
non-conservative systems (the damped harmonic oscillator for instance). Such systems
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CHAPTER 1. INTRODUCTION

Figure 1.2: FTLE snapshot for an unsteady ideal flow. Forward (red) and Backward
(blue) in time FTLE fields. (Figure from Comparative Visualization Group-ZIB)

exhibit asymptotic stability (the orbit attracts to a stable fixed point). If λ is positive,
the orbit is unstable and chaotic. Nearby points will diverge. For a continuous system,
the phase space would be a tangled sea of wavy lines like a pot of spaghetti. Whereas
the (global) Lyapunov exponent gives a measure for the total predictability of a sys-
tem, it is sometimes interesting to estimate the local predictability around a point x in
phase space. In this case, a generalization of the Lyapunov exponent, called the local
Lyapunov exponent (LLE), has been proposed to study the growth of non-infinitesimal
perturbations in dynamical systems. Recently the concept of a LLE has been applied to
study dispersion in turbulent flow fields (Barreira and Pesin, 2002). The LLE is a scalar
value which characterizes the amount of stretching about the trajectory of point x over
a time interval. For most flows of practical importance, the LLE varies as a function of
space and time. The LLE is not an instantaneous separation rate, but rather measures
the average, or integrated, separation between trajectories. This distinction is important
because in time-dependent flows, the instantaneous velocity field often is not very re-
vealing about actual trajectories, that is, instantaneous streamlines can quickly diverge
from actual particle trajectories. However the LLE accounts for the integrated effect of
the flow because it is derived from particle trajectories, and thus is more indicative of the
actual transport behavior. There are two types of LLE: FTLE and FSLE, distinguished
in the following.

1.1.4 Finite Time Lyapunov Exponents

Dealing with time-dependent flows taking a limit t → ∞ in Eq. (1.3) has no meaning
anymore. If we want to define a Lyapunov exponent for the time dependent case we
have to eliminate this asymptotic character. We define thus the Finite Time Lyapunov
Exponent (FTLE) as:

λ(x0, t0, τ) = lim
δx(t0)→0

1
|τ|

log
|δx(t0 + τ)|
|δx(t0)|

. (1.4)

The FTLE is a function of the initial position x at time t0, but if we vary t0, then it is
also a function of time (see Fig. 1.2 for a graphical representation of a FTLE field).
We assume δx(t0) is infinitesimal and the orientation is chosen so that λ is maximal.
To deal conveniently with the infinitesimal condition, one can obtain FTLEs using the
flow map φτt0

, defined as the function that takes the initial position x0 at time t0 of any
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1.1. LAGRANGIAN TRANSPORT IN FLUID FLOWS

fluid element advected by the flow to its final position φτt0
(x0). If we consider a small

perturbation q to the initial condition we have:

φτt0
(x0 + q) = φτt0

(x0) +
∂φτt0

∂x0
q + O(||q||2) . (1.5)

From this approximation, and assuming that the O(||q||2) term is negligible, we have
that:

δx(t0 + τ) = φτt0
(x0 + q) − φτt0

(x0) ≈
∂φτt0

∂x0
q = ∇φτt0

(x0)q , (1.6)

and the length of the perturbation after the integration time τ is given by the norm
(using the inner product):

||δx(t0 + τ)|| =
√
〈∇φτt0

(x0)q,∇φτt0
(x0)q〉 =

√
〈q,Cτt0

(x0)q〉 , (1.7)

where Cτt0
(x0) is the finite-time version of the Cauchy-Green deformation tensor defined

by (Haller, 2001; Shadden et al., 2005) :

Cτt0
(x0) = (∇φτt0

(x0))T(∇φτt0
(x0)) . (1.8)

In the case of maximum stretching of the perturbation, the vector δx(t0) is aligned with
the eigenvector associated with the maximum eigenvalue of Cτt0

(x0). If σ(x0, t0, τ) is such
largest eigenvalue, then the value of the FTLE at the point x0 at time t0 and depending
on the integration time τ is:

λ(x0, t0, τ) =
1
|τ|

log
√
σ(x0, t0, τ) . (1.9)

1.1.5 Finite Size Lyapunov Exponents

If we want to know instead about the predictability time with respect to a finite pertur-
bation, it should be determined by a quantity analogous to the Lyapunov exponent. The
natural starting point is the time it takes for a perturbation to grow from an initial size
δ to a given but arbitrary threshold value ∆. This is called the (δ,∆)-predictability-time
and denoted by T(δ,∆) (Aurell et al., 1997).

We define the Finite Size Lyapunov Exponent (FSLE) as an average of some function of
the predictability time, such that if both δ and ∆ are in the infinitesimal range, we will
recover the usual Lyapunov exponent. An obvious choice is then:

λ(δ,∆) =
1

〈T(δ,∆)〉
log

(
∆

δ

)
, (1.10)

where the average is over different initial conditions. In contrast to infinitesimal per-
turbations, for finite perturbations the threshold ∆ is typically not to be taken much
larger than the finite perturbation δ. In contrast with FTLE now we have relaxed the
limit δx(t0)→ 0. FSLE can be used to study dispersion of particles in flows. In this case
the perturbations are distances between particles, and the given threshold of tolerance
∆ can be defined to be proportional to the initial perturbation δ, and it is standard to
define FSLE in the following way (Lacorata et al., 2001),

λ(δ) =
log(r)
〈τ(δ, rδ)〉

, (1.11)
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Figure 1.3: A snapshot of the FSLE field in the Atlantic Ocean. (Figure from
(Hernández-Carrasco et al., 2012))

where 〈τ(δ, rδ)〉 is the average time (over the number of particles pairs) required to
separate from a distance of δ to rδ.

We can now define a local version of the FSLE following the same approach used for the
FTLE (d’Ovidio et al., 2004; Hernández-Carrasco et al., 2012, 2011; Bettencourt, 2014;
Hernandez-Carrasco, 2013). Focusing on the point x0 we can define the associated local
FSLE as:

λ(x0, t0, δ0, δ f ) =
1
|τ|

log
δ f

δ0
. (1.12)

where δi and δ f are now fixed parameters and τ is the variable that will determine
the FSLE at each point. It corresponds to the time needed for two initial conditions
separated by an initial distance δ0 at time t0 to reach a final separation δ f (see Fig. 1.3
for a graphical representation of the FSLE field in the ocean).

1.1.6 Lagrangian Coherent Structures (LCS)

In time-dependent turbulent flows, coherent structures tend to emerge. These are
dynamic regions where a flow quantity exhibits a high degree of correlation. In 2d
flows, coherent structures are identified with vortices embedded in a background of
weak turbulence. In between these vortices, thin filaments of concentrated vorticity
exist. From the Lagrangian point of view, visualizations of densely populated patches
of passive particles in 2d flows lead to the observation of distinct behaviors: continued
elongation and thinning of initially thick blobs of particles; coherent rotation of particle
patches or simple, correlated, translational motions of particles. From observations of
these kinds of coherent motions, distinct LCS can be educed:

• Local stretching in the flow appears to happen across LCS boundaries through
divergence of nearby particles.

8
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• Thinning and folding appears to happen along LCS boundaries, as particles follow
the curved boundaries

The first behavior is related to instability of particle trajectories due to which divergence
occurs while the second resembles the behavior of particle trajectories converging to-
wards an unstable manifold of the flow. For this reason LCS can be seen as material
lines that create smaller tracer scales through stability or instability (Haller and Yuan,
2000). Analytic criteria for the identification of such structures were derived for flows
in 2d in (Haller and Yuan, 2000; Haller, 2000). These criteria were based firstly on the
computation of the time interval during which a material surface would be stable or un-
stable, coherent structures being those that maximized this measure (the hyperbolicity
time approach). Another alternative method put forth was the identification of coherent
structures with the local extrema of the FTLE field. The rationale for this criteria is that
if coherent structures attract or repel particles for the longest in the flow, then, the net
growth of a disturbance normal to them should be the largest during the time interval
of interest (Haller, 2001). A third common approach is to use instead FSLEs, which are a
measure of the separation rate of fluid particles between two given distance thresholds
to identify LCS. Although a rigorous connection between the FSLE and LCS has not
been established, several works have shown that the ridges of the FSLE behave in a
similar fashion as the ridges of the FTLE field (d’Ovidio et al., 2004; Joseph and Legras,
2002; Branicki and Wiggins, 2010). Note that there are further methods serving similar
purposes like, for instance, the leaking approach (Schneider and Tél, 2003; Schneider
et al., 2005) but it is not the purpose of this thesis to provide a complete overview of
them.

1.1.7 Set-Oriented Methods

Until now we focused on the study of single trajectories or of the local rate of separation
of pairs of initial conditions. We have seen that this information is particularly helpful
in the investigations of geometric properties of a dynamical system. However there is
also important set-related information covering both topological and statistical aspects
of the underlying dynamical behavior, especially for the case of complicated dynamics.
With the aim to capture the global structure of a given dynamical system, we can set up
our analysis by using global set-oriented methods rather by an approach based on long
term computations of single trajectories. Objects of interest become thus invariant sets
and almost-invariant sets : collections of sets that behave in a very predictable way, in
spite of the fact that individual trajectories are entirely unpredictable (see Fig. 1.4 for a
three-dimensional representation of almost-invariant sets in a simple ideal flow). This
approach is based on a discretization of the dynamical system under study that allows
to introduce a probabilistic point of view and at the same time to use tools from graph
theory.

In a time independent system we can consider T : X → X to be a continuous mapping
that defines a discrete time dynamical system on its chain recurrent set X. We think of an
almost-invariant set as a set A ⊂ X such that T(A) is not very different from A (Dellnitz
et al., 2001; Froyland and Dellnitz, 2003; Froyland, 2005; Froyland and Padberg, 2009).
A way to quantify this is to consider the fraction of Lebesgue measure m, that stays
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Figure 1.4: Three-dimensional almost invariant sets extraction from a theoretical
flow. Different colors correspond to different almost invariant sets (Figure from

(Froyland and Padberg, 2009))

within A. We do this defining the ratio:

ρ(A) =
m(A ∩ T−1A)

m(A)
. (1.13)

With the goal of identifying regions of qualitatively different dynamical behavior we
seek a partition of the system in q almost-invariant sets A1, ...,Aq such that the ρ(Ak) are
all close to one. This corresponds to maximizing the quantity:

ρ(A1, ...,Aq) =
1
q

q∑
k=1

ρ(Ak) . (1.14)

Finding measurable sets A1, ...,Aq maximizing ρ is an infinite-dimensional optimization
problem. We reduce this to a finite-dimensional problem by creating a fine box partition
B = {B1, ...,Bn} of a covering of the chain recurrent set T. Switching to this discretized
representation allow us to define a weighted transition matrix for our dynamical system.
We think of discretizing the smooth dynamics to form a finite state Markov chain with
transition matrix Pi j given by:

Pi j =
m(Bi ∩ T−1B j)

m(Bi)
. (1.15)

We note that the matrix element Pi j can now be interpreted as a transition probability
from Bi to B j. Moreover the matrix P has a graph representation, where the nodes of the
graph correspond to states of Markov chain. When q = 2 our optimization problem can
be translated to the problem of finding a minimal cut for this graph. It is clear now the
link between graph theory and dynamical systems and many algorithms can be applied
to approximate the minimal cut solution.

When dealing instead with time dependent systems it is necessary to introduce the
concept of coherence. Sets indeed are now transported and deformed by the flow and
we aim to understand how much they remain coherent and nondispersive under the
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temporal evolution. These regions, called coherent sets, are robust to perturbation and
are carried along by the chaotic flow with little transport between the coherent sets and
the rest of state space (Froyland et al., 2010; Santitissadeekorn et al., 2010).

1.2

Complex Networks

1.2.1 Definition and basic properties

A graph is essentially a way to code a relation (physical links, interactions etc.) between
the elements of a system. The elements of the system identify the set V (set of vertices),
and the relations among those the set E (set of edges). Complex networks are graphs
which possess non-trivial topological features, as patterns of connections between their
elements that are neither purely regular nor fully random. With such a level of generality
it is easy to understand that a wide array of systems can be studied within the network
theory perspective (Caldarelli, 2007; Newman, 2009).

The graph indicated as G(V,E) can be drawn plotting the vertices as points and the edges
as lines between them. It is not important how they are actually drawn. Ultimately
the only thing that matters is to know which vertices are connected. Whenever a real
number can be attached to an existing edge between a pair of nodes (i, j) we have
that the edge is characterized by a weight wi j. The graph in this case is a weighted
graph. If wi j could be different from w ji we say that the graph is also directed i.e. links
can be characterized by a direction. Approaching many real systems we need to deal
with their intrinsic time-variability, from the network perspective this is translated in
studying a graph that is varying its connections in time. Thus, after a proper choice of the
time resolution, we can look at several snapshots of the graph at different moments as
parts of a time-dependent network describing the system over the whole time window
considered. We say in this case that we are dealing with a temporal network (Holme
and Saramäki, 2012).

A complete description of a graph of N vertices is provided by its N×N adjacency/weight
matrix A. If the graph is unweighted each element Ai j can be either 0 or 1 where 1 means
a link among nodes i and j and 0 no link. While if links are weighted we will simply
have Ai j = wi j.

From the information contained in A we can define measures helpful to understand the
importance of single nodes across the network. The degree of a node is the number
of first neighbors the node has. For the more general case of a directed network we
can distinguish between in-degree (referring at the number of in-coming links) and
out-degree (referring instead at the number of out-coming links) of the node i:

Kin
i =

N∑
j=1

Ã ji , (1.16)

Kout
i =

N∑
j=1

Ãi j .
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Where Ã is the adjacency matrix: Ãkl it is equal to one if wkl , 0 and zero otherwise.
While the degree is only the number of the connections of each node, we can take
into account also of the strengths of such connections defining the in-strength and the
out-strength of the node i:

Sin
i =

N∑
j=1

A ji, (1.17)

Sout
i =

N∑
j=1

Ai j .

Degree and strength represent the simpler centrality measures of nodes in the network.
High values will be characteristics of hubs and/or nodes crucially important in the
dynamics. Behind these first-order quantities we can define other measures such as
clustering coefficient, eigenvector centrality, Page Rank, etc. (Caldarelli, 2007; Newman,
2009).

Introducing the concept of path we can finally define more complex measures based on
path-connectivity like betweenness and closeness. A path between a pair of network
nodes is defined as a set of links connected between them and connecting the start
node with the final one. Among the several paths relating two nodes it is usual, for
unweighted networks, to pick up the shortest one i.e. the path composed by fewer links
(when dealing with weighted networks many choices are possible to define the length
of a path). With the complete set of paths at hand we can now define the betweenness
centrality of a node i as:

Bi =
∑
k,l

σi
kl

NP
, (1.18)

where σi
kl is equal to one if the shortest path connecting the pair k, l is passing across i

and zero otherwise. The betweenness is normalized to the total number of paths on the
networkNp. We define also the closeness centrality of i as:

Ci =
1∑

k d(i, k)
, (1.19)

where d(i, k) is the length of the shortest path connecting the pair i, j.

1.2.2 Community detection

While centrality measures can inform us about the local connectivity features of the net-
work (i.e. node-by-node linking properties), another long-standing question is about
understanding the global structure of the network trying to individuate big groups of
nodes with different dynamical/connectivity features. This means looking for a parti-
tion of the network in communities such that each of them results to be strongly linked
internally but with few connections with the others, this is commonly known as the
community detection problem. Finding communities within an arbitrary network can
be computationally difficult. The number of communities, if any, within the network
is typically unknown and the communities are often of unequal size and/or density.
Despite these difficulties, however, several methods for community finding have been
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developed and employed with varying levels of success. A commonly used algorithm
for finding communities is for instance the Girvan-Newman algorithm. This algorithm
identifies edges in a network that lie between communities and then removes them,
leaving behind just the communities themselves. The identification is performed by
employing the graph-theoretic measure betweenness (see Eq. 1.18), which assigns a
number to each edge which is large if the edge lies between many pairs of nodes (Gir-
van and Newman, 2002). Another standard method is, in spite of its known drawbacks,
modularity maximization (Newman, 2004). Modularity is a benefit function that mea-
sures the quality of a particular division of a network into communities. The modularity
maximization method detects communities by searching over possible divisions of a
network that has particularly high modularity. Since exhaustive search over all pos-
sible divisions is usually intractable, practical algorithms are based on approximate
optimization methods such as greedy algorithms or simulated annealing, with different
approaches offering different balances between speed and accuracy.

Approaching the same problem from the point of view of Subsection 1.1.7 we see that
communities can be interpreted as invariant (or coherent) sets of the dynamical system
represented by the network. The optimal cut principle will lead thus to a partition of
the network in communities with a minimal exchange among them. A standard way
to find such partition is the spectral method (Fiedler, 1975). It consists in using the first
eigenvectors (Froyland and Dellnitz, 2003; Froyland, 2005; Froyland and Padberg, 2009)
(or singular vectors for the time-dependent case (Froyland et al., 2010; Santitissadeekorn
et al., 2010)) of the transition matrix (or of the associated Laplacian matrix), they detect
indeed regions of the system of maximal invariance . By thresholding or clustering such
eigenvectors or singular vectors is possible thus to find a partition in sets of the whole
system.

1.2.3 The Infomap algorithm

We will focus now on one algorithm called Infomap that is the one used for the stud-
ies described in this thesis. Infomap (Rosvall and Bergstrom, 2008) is a community-
detection algorithm (Newman, 2009; Danon et al., 2005; Lancichinetti and Fortunato,
2009; Fortunato, 2010; Aldecoa and Marı́n, 2013) that retains both the “direction” and
“weight” information of each link in the network. Infomap does not require to specify a
priory the number of communities to be detected. It does not assume communities with
similar sizes (as for example spectral partitioning mentioned before (Froyland, 2005;
Froyland et al., 2007)) nor suffers from the ‘resolution limit’ (Fortunato and Barthélemy,
2007) which limits the minimum community size detectable by most algorithms. In
addition to these convenient properties, the minimization algorithm is efficiently im-
plemented in publicly available software. Infomap considers an ensemble of random
walkers in the weighted and directed network defined by A, moving with the transition
probabilities in that matrix. Then, the method considers from the information-theory
point of view the optimal coding of the ensemble of possible random walks. To this end
the network is divided in communities and each random walk is coded by sequences
of words that represent successive locations inside a community and jumps between
different communities (see Fig. 1.5). The information-theoretic lower bound to the
average length of the codeword used is given in terms of the transition probabilities
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Figure 1.5: Graphical representation of the Infomap algorithm. (A) The orange
line shows one sample trajectory of a random walk on the network. (B) The aim
is to give unique names to important structures of the network. (C) It is possible
to give a two-level compressed description of the random walk, in which major
clusters receive unique names, but the names of nodes within clusters are reused.
(D) Reporting only the module names, and not the locations within the modules,
provides finally an efficient coarse graining of the network (Figure from (Rosvall

and Bergstrom, 2008))

and of the specific partition in communities by the so-called map equation :

L = qyH(Q) +

c∑
α=1

pα�H(Pα) . (1.20)

Where c is the number of communities in the particular partition considered. The
first term involves the Shannon entropy associated to the transitions between different
communities α:

H(Q) = −

c∑
α=1

qαy
qy

log2

(
qαy
qy

)
. (1.21)

Where qαy is the probability to leave community α in one random-walk step, and
qy =

∑c
α=1 qαy. Expressions for these quantities in terms of the components of the

network matrix A are given in Rosvall and Bergstrom (2008). The second term in Eq.
(1.20) contains the Shannon entropies H(Pα) associated to the words used to codify the
position inside a community α and the word that denote the exit from that community:

H(Pα) = −
∑
i∈α

πi

pα
�

log2

(
πi

pα
�

)
−

qαy
pα
�

log2

(
qαy
pα
�

)
. (1.22)

The notation i ∈ α indicates sum over the nodes pertaining to community α. πi is the
stationary distribution of the random walk and pα

�
= qαy +

∑
i∈α πi. Again, expressions

for these quantities can be obtained from the elements in the network matrix A (Rosvall
and Bergstrom, 2008). Infomap finds the partition that minimizes the quantity in (1.20),
i.e. the partition that provides a shorter description of the ensemble of walks going
in and outside the communities. In other words, it finds the partition for which the
random walks remain most of the time inside the communities with few jumps between
them. This minimization process uses a deterministic greedy algorithm followed by a
simulated-annealing which is repeated several times to select the best partition.
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1.3

Networks in geophysics

1.3.1 The Climate system

Figure 1.6: A schematic representation of the several components of the climate
system and and their interactions.

The climate system is made up of building blocks which are based on elementary
physical principles, but which have surprising and profound collective behavior when
allowed to interact on the planetary scale. This is why we can say that the climate
is a complex system. Feedbacks and interactions among its many components make
this complexity hard to explain (see Fig. 1.6). Moreover climatic phenomena present
a strong variability in a wide range of spatial and temporal scales. Interactions among
several different scales make even more difficult to extract and isolate clear patterns
from the whole dynamics.

This complexity could be partially understood explaining how climate phenomena
in one geographical region affect the climate in other regions. It is widely accepted
indeed that climate in a region is not the result of local factors, as the atmosphere
connects far away regions through waves and advection of mass, heat and momentum.
These long-range couplings are called teleconnections and have been shown to be an
ubiquitous feature of atmospheric dynamics. In this context climate networks have
been introduced (Tsonis and Roebber, 2004; Tsonis et al., 2006; Yamasaki et al., 2008;
Donges et al., 2009a), representing a powerful tool to detect spatiotemporal patterns in
the climate system (Deza, 2015).
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1.3.2 Climate networks

The application of complex network theory to climate science makes possible to extract
relevant information about a system without yielding an oversimplification, or being
forced to handle the full-scale detailed model which can obscure the interpretations or
being computationally too expensive.

Figure 1.7: An example of grid of climate data. (Figure from (Yamasaki et al., 2008))

The vertices of a climate network are identified with the spatial grid points of an
underlying global climate data set. Due to the spherical geometry of the earth, a
latitude-longitude based nodes scheme will yield an inhomogeneous distribution of
nodes in physical space and this is why the connectivity is weighted with the area
associated to each grid point in the data set considered (see Fig. 1.7). Edges are
added between pairs of vertices depending on the degree of statistical interdependence
between the corresponding pairs of anomaly time series taken from the climate data
set. Commonly used variables to define the data sets are, for instance, near surface air
temperature (SAT) or sea surface temperature (SST). Data are typically obtained from
a data assimilation system i.e. a general circulation model (GCM) employed to fill in
the gaps, in space and in time, in real observed data. The analysis is usually performed
using data anomalies, which are calculated as the departure from the climatological
mean. This allows to extract properly the variability patterns in the data sets.

The climate network properties will depend on the methodology employed to infer the
presence of connections between two nodes, i.e., the similarity measure used to include
a particular link in the network and the procedure to filter out those correlations that
may have occurred merely by chance. In order to construct a climate network, lets sup-
pose there is a correlation measure and a method to assess the significance of the links.
A correlation matrix Ci j can be calculated and after an appropriate significance test,
an adjacency matrix Ai j, summarizing the connectivity of the network, can be finally
constructed. Many different similarity measures can be employed to calculate Ci j and
they are divided into two big families: linear and non-linear techniques. Linear anal-
ysis include Pearson cross correlation calculation. Non-linear information techniques
are mostly based on information theory principles. It is possible to perform entropy
calculations, which is a measure of the information content, or the lack of it, in a time
series. Mutual information could also be defined as a measure of similarity between
two time series, which takes into account the information shared by the two time series.
It is also possible to use symbolic ordinal analysis using ordinal patterns. Whatever is
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Figure 1.8: Examples of area weighted connectivity patterns of a node in central
Pacific (indicated with x) with the whole climate network. (Figure from (Deza et al.,

2013))

the measure that we use, it is fundamental then a study of statistical significance of the
inferred connections. It consists of determining whether the outcome of the analysis
would lead to a rejection based on a pre-specified low probability threshold called p-
value. This is translated in defining a null hypothesis for our system. It can be done
defining p-values only from observations or using surrogates (data not coming from
observations but responding to the null hypothesis) (Deza, 2015).

After constructing such networks it is possible finally to apply many powerful tools
from Network Theory to extract information from the system under study (see for in-
stance Fig. 1.8 and 1.9). In this network approach results extremely helpful giving at
the same time a robust coarse grained description of the phenomena from a complex
system point of view (i.e. an interacting and non-linear perspective) (Tsonis and Roeb-
ber, 2004; Tsonis et al., 2006; Tsonis and Swanson, 2008a; Yamasaki et al., 2008, 2009;
Donges et al., 2009b,a; Tsonis et al., 2010; Donges et al., 2011b). Climate networks have
been constructed from temperature data for “El Niño”, “La Niña” and neutral years,
and showed that during the Niño years many links were broken in comparison to the
other two cases. They further suggested that the number of surviving links could be
used as a measure for gauging “El Niño” events, and the stability of the system in the
various ENSO phases (Yamasaki et al., 2008; Tsonis and Swanson, 2008b). A multilayer
network of geopotential height (GH) at different heights was studied in (Donges et al.,
2011a). A measure called “cross-betweenness” was defined in order to help to identify
regions which are particularly important for mediating vertical wind field interactions
as interaction between the GH networks. It was found that within the different phases
of the North-Atlantic Oscillation (NAO) the correlation values of the links in a climate
network covering the North Atlantic for wintertime data was significantly different.
This was also proposed as a measure to track the NAO pattern (Guez et al., 2012). The
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Figure 1.9: Examples of communities extracted from climate networks. (Figure
from (Tantet et al., 2014))

interannual to multidecadal timescales variability patterns in sea surface temperature
was also studied through the community structure of interaction networks constructed
from SST. The community structure was interpreted using known dominant patterns
of variability, such as the “El Niño”/Southern Oscillation and the Atlantic Multidecadal
Oscillation (AMO). The study of the relationship between the communities and indices
of global surface temperature showed that, while ENSO was most dominant on inter-
annual timescales, the Indian West Pacific and North Atlantic may also play a key role
on decadal timescales (Tantet et al., 2014). Another use of Climate networks has been
also as predictors of regime change. New early warning indicators of the collapse of
the Atlantic Meridional Overturning Circulation (MOC) were proposed (Mheen et al.,
2013). These indicators are based on a climate network of spatial correlations in the time
series of the Atlantic ocean temperature field. A meridional-depth model of the MOC is
used for which the critical conditions for collapse can be explicitly computed. This net-
work is used to monitor changes in spatial correlations in the model temperature time
series as the critical transition is approached. The indicators were based on changes in
topological properties of the network, in particular changes in the distribution functions
of the degree and the clustering coefficient.

1.3.3 Flow networks

In this thesis we are interested in building networks from physical connections instead
than of statistical correlations. This means to focus our analysis on mass transport
driven by geophysical flows. The resulting networks will be called flow networks. The
main goal is, after fixing spatial and time scales, to give a clear description on how
transport is organized in space. We stress again that in geophysical flows turbulence
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and time dependance make difficult to extract clear and evident patterns.The network
representation permits to overcome this problem allowing us to coarse-grain the system
in order to evidence the skeleton of the transport dynamics. At the same time we are
still representing the highly non-linear dynamics characterizing these kind of flows. In
this thesis we will restrict our treatment to the case of 2-dimensional transport , but
generalizations to 3-dimensions are not conceptually different.

1.4

Plan of the thesis

Part I is devoted to the introduction of the concept of flow networks in geophysical
flows applied to the study of the surface circulation in the Mediterranean Sea. After
describing the method (Chapter 2), we focus on local network properties (in particular
defining a family of network entropies) and their relations with dispersion and mixing
processes (Chapter 3). Finally we characterize the community structure of the networks
comparing our results with the spectral partitioning method (Chapter 4) (Ser-Giacomi
et al., 2015a). In Part II we propose applications of our approach to marine biology and
ecology. We highlight the ecological importance of Marine Protected Areas (MPAs) for
biological processes (Chapter 5) and studying the linking properties of flow networks
in the Mediterranean Sea we provide novel metrics to understand population dynamics
and connectivity across the whole seascape (Chapter 6) (Rossi et al., 2014; Dubois et al.,
2015). In Part III we study long range connectivity patterns in flow networks by defining
most probable paths (MPPs) and highly probable paths (HPPs) in weighted temporal
networks (Chapter 7). By analyzing such sets of paths in networks describing water
transport in the Mediterranean Sea (Chapter 8) (Ser-Giacomi et al., 2015b) and air masses
transport in the Eastern Europe and Russian atmosphere (Chapter 9) (Ser-Giacomi
et al., 2015c) we gain insights on the main pathways of transport in time-dependent
geophysical flows.
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The flow network paradigm
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CHAPTER 2
Flow network construction

2.1

Discretization and Lagrangian trajectories

Since fluid flow is a process occurring in continuous space, a discretization procedure
involving a coarse-graining of space is needed to have access to the techniques of
network theory. Advantages of the discrete point of view have already been shown in
geophysical contexts (Froyland et al., 2007; Dellnitz et al., 2009; Santitissadeekorn et al.,
2010; Froyland et al., 2012, 2014). Here we enumerate the steps needed to construct the
discrete transport network starting from the continuous flow (Ser-Giacomi et al., 2015a).

Networks are composed of discrete building blocks: nodes. Being fluid flow a con-
tinuous system we need a discretized version of it to give a network representation.
To do this we subdivide the fluid domain of interest in a large number N of boxes,
{Bi, i = 1, ...,N}, so that network node j represents the fluid box B j. Although it is not
strictly necessary, we consider here the case in which boxes have the same area (in
two-dimensional flows) or volume (for three dimensions). Then each box will contain
exactly the same amount of fluid.

To complete the construction of our transport network, we need to establish the con-
nections between nodes (i.e. boxes in the fluid domain). We establish a directional link
between two nodes when an exchange of fluid occurred from one to the another during
a given time interval. The weight of this link will be proportional to the amount of
fluid transported. This quantity could be obtained from a Lagrangian point of view by
following trajectories of ideal fluid particles and keeping record of their initial and final
positions (i.e. starting and ending nodes) during the time interval considered.

More formally we integrate for a fixed time τ the equation of motion for each particle,
from initial condition x0 at time t0 until the final position x at t0 + τ, using a velocity
field v(x, t). This defines the flow map Φτ

t0
:

x(t0 + τ) = Φτ
t0

(x0) , (2.1)

which moves around single fluid particles. By considering the action of the flow map
on all the points contained in a fluid region A we define the action of Φτ

t0
on whole sets:

A(t0 + τ) = Φτ
t0

(A(t0)).
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CHAPTER 2. FLOW NETWORK CONSTRUCTION

2.2

Adjacency matrix construction

Applying the flow map to the discrete boxes, we will have an estimation of the flow
among each pair of nodes. More explicitly, given the collection of boxes {Bi, i =
1, ...,N}, we represent the transport between them by the discrete version of the Perron-
Frobenious operator P(t0, τ), obtained within the Ulam approach, whose matrix ele-
ments are given by (Froyland and Dellnitz, 2003; Froyland, 2005; Froyland et al., 2007;
Dellnitz et al., 2009; Froyland et al., 2010; Santitissadeekorn et al., 2010):

P(t0, τ)i j =
m

(
Bi ∩Φ−τt0+τ(B j)

)
m(Bi)

, (2.2)

m(A) is a measure assigned to the set A. In our case it is the amount of fluid it contains,
i.e. simply its area or volume. Other measures referring for example to heat or salt
content could be implemented for future applications. Eq. (2.2) states that the flow
from box Bi to box B j is the fraction of the contents of Bi which is mapped into B j.
We refer to the figure in Appendix A for a plot of the different sets involved. If a
nonuniform distribution of some conserved tracer is initially released in the system
such that {pi(t0), i = 1, ...,N} is the amount of such tracer in each box {Bi} at the initial
instant t0, the matrix P(t0, τ) gives the evolution of this distribution after a time τ as
p j(t0 + τ) =

∑N
i=1 pi(t0)P(t0, τ)i j. Writing the {pi} as row vectors: p(t0 + τ) = p(t0)P(t0, τ). A

probabilistic interpretation of Eq. (2.2) is that P(t0, τ)i j is the probability for a particle to
reach the box B j, under the condition that it started from a uniformly random position
within box Bi. The matrix P(t0, τ) is row-stochastic, i.e. it has non-negative elements
and

∑N
j=1 P(t0, τ)i j = 1, but not exactly column stochastic. The quantity

∑N
i=1 P(t0, τ)i j

measures the ratio of fluid present in box B j after a time τ with respect to its initial
content at time t0. This ratio will be unity, and the matrix doubly stochastic, if the flow
v(x, t) is incompressible.

As a standard way to evaluate numerically the matrix in Eq. (2.2) we apply the La-
grangian map to a large number of particles released uniformly inside each of the boxes
{Bi, i = 1, ...,N} (see Fig. 2.1). The initial number of particles Ni in each box, a proxy of
the amount of fluid it contains, should be proportional to its measure m(Bi) which, with
our choice of equal area or volume, results in seeding the same number of particles in
each box. The number of particles transported from box Bi to box B j gives an estimation
of the flow among these boxes, and a numerical approximation to Eq. (2.2) is then:

P(t0, τ)i j ≈
number of particles from box i to box j

Ni
. (2.3)

Because of the time-dependence of the velocity field, the results of the Lagrangian
simulations will depend on both the initial time t0 and the duration of the simulation
τ. Once these parameters are fixed, we can build a network described by a transport
matrix P(t0, τ) that characterizes the connections among each pair of nodes from initial
time t0 to final time t0 + τ. We interpret P(t0, τ) as the adjacency matrix of a weighted
and directed network, so that P(t0, τ)i j is the weight of the link from node i to node j.

The network constructed in this way characterizes the final locations of all fluid elements
a time τ after their release at time t0, but gives no information on particle locations at
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2.2. ADJACENCY MATRIX CONSTRUCTION

Figure 2.1: Transport matrix construction from tracer’s advection, following Eq.
(2.3). Picture from (Ser-Giacomi et al., 2015a).

intermediate times. Also, since each of the matrices P(t0 + kτ, τ), for k = 0, 1, ...,n − 1,
is a stochastic matrix, one can consider the discrete-time Markov chain in which an
initial vector giving occupation probabilities p(t0) =

(
p1(t0), ..., pN(t0)

)
for the different

boxes is evolved in time as p(tn) = p(t0)P(t0, τ)P(t1, τ)...P(tn−1, τ), where tk = t0 + kτ. This
time evolution will not be exactly equal to the true evolution p(tn) = p(t0)P(t0,nτ), but
a Markovian approximation to it in which the memory of the particle positions is lost
after a time τ. The Markovian approximation may be reasonable in some circumstances
and in fact it has been successfully used in geophysical flow problems (Dellnitz et al.,
2009; Froyland et al., 2012, 2014). Note that here we are (and through Parts I and II of
this thesis) not assuming any Markovian hypothesis and we work with the full matrix
P(t0, τ) covering our time interval of interest and describing only the initial and final
states of the transport process.

Despite not using any Markov assumption, replacing the continuous flow system by
a discrete network introduces discretization errors. Even if the integration is done
accurately, the initial and final locations of the transported particles are only specified
up to a precision ∆, given by the linear side of the boxes. This implies that our network
approach does not display explicitly fluid structures smaller than the box length-scale
∆.

The simulation provides the initial and final positions for each particle, allowing us
to compute the transport matrix P(t0, τ) from Eq. (2.3). A directed link is established
from node i to node j if and only if P(t0, τ)i j is non-vanishing. In that case its value
gives the weight of such a link. Due to numerical limitations, some trajectories end
up prematurely by “beaching” onto land areas outside of the partition {Bi}. Then, the
denominator Ni in Eq. (2.3) is taken as the number of particles still in the sea at the
end of the integration time τ. Since the beaching effect is small, affecting less than
5% of all particles in the longest simulations presented here (and only for near-shore
boxes), we still assume in the following that the convenient equal-area condition remains
approximately valid.
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CHAPTER 2. FLOW NETWORK CONSTRUCTION

Note that the Lagrangian integration is done under the full resolution of the velocity
field (see next Section). This means that particle trajectories contain the small-scale
features produced by the model during time τ. While such details are not explicitly
present in the network description P(t0, τ) after coarse-graining the initial and final
positions to the box size ∆, their effects have been incorporated in a statistical way.

2.3

Mediterranean Sea setup

We now apply the previous general procedures to build and analyze the flow network
associated to a realistic surface flow in the Mediterranean sea. The input velocity field
originates from the Mediterranean Forecasting System Model (physics reanalysis com-
ponent). It is a hydrodynamic model based on NEMO-OPA (Nucleus for European
Modelling of the Ocean-PArallelisé, version 3.2 (Madec et al., 2008)) with a variational
data assimilation scheme. It is a primitive equations model in spherical coordinates,
implemented in the Mediterranean at 1

16 deg horizontal resolution and 72 unevenly
spaced vertical levels (Oddo et al., 2009). We use here the ”Physics reanalysis” com-
ponent for years 2002 − 2011 downloaded from MyOcean website. The model covers
entirely the Mediterranean Basin and extends into the Atlantic in order to better resolve
the exchanges with the Atlantic Ocean at the Strait of Gibraltar. It is nested, in the
Atlantic, within the monthly mean climatological fields computed from ten years of
daily output of the 1

4 deg global model (Drévillon et al., 2008). Details on the nest-
ing technique and major impacts on the model results can be found elsewhere (Oddo
et al., 2009). The model uses vertical partial cells to fit the bottom depth shape. It is
forced by momentum, water and heat fluxes interactively computed by bulk formulae
using the 6-h, 0.25 deg horizontal-resolution operational analysis and forecast fields
from the European Centre for Medium-Range Weather Forecasts. Air-sea processes
predict surface temperature (Tonani et al., 2008), while the water balance is computed
as Evaporation minus Precipitation and Runoff. The evaporation is derived from the
latent heat flux; the precipitation and the runoff are provided by monthly mean datasets.
The Dardanelles inflow is parameterized as a river using climatological net inflow rates
(Kourafalou and Barbopoulos, 2003). The data assimilation system is the OCEANVAR
scheme (Dobricic and Pinardi, 2008). The background error correlation matrices, es-
timated from the temporal variability of parameters in a historical model simulation,
vary seasonally in the sub-regions of the Mediterranean Sea characterized by different
physical characteristics (Dobricic et al., 2007). The Mean Dynamic Topography is used
for the assimilation of Sea Level Anomaly (SLA) (Dobricic, 2005). The assimilated data
include: along track SLA, satellite Sea Surface Temperature (SST), in-situ temperature
profiles by eXpandable Bathy Thermograph, in-situ temperature and salinity profiles by
Argo floats, in-situ temperature and salinity profiles from Conductivity-Temperature-
Depth casts. Objective Analyses of SST data are used for the correction of surface heat
fluxes with the relaxation constant of 40 Wm−2K−1

We used daily horizontal velocity fields generated by the model in the whole Mediter-
ranean basin during 10 years of simulation (2002 − 2011) selecting only one layer at a
nominal depth of 7.9 m. This layer extends in fact between 4.58 and 11.55 m depth, so
that it has a vertical extension of 6.97 m. For the integration time scales used here (val-
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2.3. MEDITERRANEAN SEA SETUP

Figure 2.2: Snapshot of the surface (7.9 m) velocity field for February 5th 2002.
Background colors represent the modulus (ms−1) of the instantaneous velocity

field.

ues of τ always below three months) we can reasonably neglect motion to other layers
and consider only horizontal dynamics (d’Ovidio et al., 2004; Rossi et al., 2014). An
exemplary snapshot of the surface (7.9 m) velocity field generated by this configuration
and used to integrate Lagrangian particle trajectories is displayed in Fig. 2.2. Note the
realistic representation of both large- and small-scale oceanographic features.

To switch from continuous space to discrete nodes we partition the above-described
horizontal near-surface Mediterranean layer into 3270 two-dimensional square boxes.
We imposed the equal-area constraint defining the cells in a sinusoidal projection given
by coordinates x and y related to the standard longitude ϕ and latitude φ by

x = ϕ cosφ ; y = φ . (2.4)

In these x, y coordinates, boxes are squares of side 0.25 degrees, or ∆ = 27.78 km (see
Fig. 2.3). The area ∆2 of each box is 771.9 km2. The “amount of water in a box Bi” is
then related to its area ∆2 through a simple multiplication by the layer thickness (6.97
m), returning a value of 5.38 × 109 m3 per box. The resolution of the model-generated
velocity field is much finer than the discretization we use for network construction.
In this sense the dynamics represented in the flow network is a coarse-graining of the
simulated Mediterranean flow, keeping the effect of the small scales only in a statistical
sense. The most energetic features of the Mediterranean flow are mesoscale structures
(Millot and Taupier-Letage, 2005) ranging from 10 km to a few hundred km. With
the value of ∆ we use, our network description displays most of the mesoscale range,
and neglects submesoscales, which anyway are only marginally resolved by the NEMO
implementation.

To characterize the transport phenomena, Ni = 500 ideal fluid particles were released
in each box Bi. We simulated the motion of these 3270 × 500 = 1.635 × 106 particles
by integrating the trajectories in the velocity field using a fourth-order Runge-Kutta
algorithm. The velocity at any arbitrary point in the sea is computed with a bilinear
interpolation from the input data. We used a time step of 1 day (the same resolution as
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Figure 2.3: Discretization of the Mediterranean sea (blue region) into N = 3270
equal-area boxes {Bi, i = 1, ...,N}.

the data). We also tested shorter intervals using a cubic interpolation but no significant
improvement was found. The two key-parameters of the simulations are the starting
time t0 and the tracking time τ.
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CHAPTER 3
Local network properties

We now interpret the transport matrices P(t0, τ), for several values of t0 and τ, as the
adjacency matrices of directed and weighted flow networks. We can calculate for them
all the standard quantities characterizing the topology of networks, such as degree,
clustering, betweenness, etc. (Newman, 2009). But following the aim stated in the
Introduction, we will concentrate here in network quantities that can give insight in
(horizontal) dispersion and mixing processes, and in the identification of coherent
regions.

3.1

Dispersion and mixing

Important properties of geophysical flows depend on their dispersion characteristics,
i.e. how far away can the fluid be transported during some time, and how diverse
are the target regions. Mixing of fluid with different characteristics, another process
of great geophysical relevance, will occur at a particular place if fluid from different
origins arrives there at a particular time.

In dynamical systems approaches to flow processes, a standard way to quantify disper-
sion is by means of the finite-time Lyapunov exponent (FTLE). It is defined as (Shadden
et al., 2005)

λ(x0, t0, τ) =
1
|τ|

log
√
σ(x0, t0, τ) , (3.1)

where σ(x0, t0, τ) is the maximum eigenvalue of the Cauchy-Green strain tensor:

C(x0, t0, τ) =
(
∇Φτ

t0
(x0)

)T
∇Φτ

t0
(x0) , (3.2)

constructed from the Jacobian matrix∇Φτ
t0

(x0) of the flow map. MT means the transpose
of the matrix M. For τ > 0 this is the forward FTLE. By running the flow map backwards
in time (τ < 0) we get the backwards FTLE field, which quantifies the strength of mixing
into a particular location. The interpretation of (3.1) is that an initial circle of infinitesimal
diameter δ located at x0 at t0 will become an ellipse of major axis eτλ(x0,t0,τ)δ after being
advected by the flow during a time τ. The minor axis will be a decreasing function of τ,
contracting at an exponential rate related to a negative Lyapunov exponent that can be
computed from the second eigenvalue of C(x0, t0, τ).
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Figure 3.1: Degree of the nodes in the flow network defined by P(t0, τ), for t0=July
1st 2011 and τ = 15 days. a) The in-degree KI(i). b) The out-degree KO(i).

An obvious quantity in the network interpretation suitable to be related to dispersion
and mixing is the degree of a node. Since our network is directed, we should distinguish
between the in-degree KI(i), i.e. the number of links pointing to a particular node i, and
the out-degree KO(i), the number of links pointing out of it. Figure 3.1 displays these
quantities at the geographical locations defined by the nodes of the Mediterranean
network for particular values of t0 and τ. High values of the degrees appear associated
to the strong and unstable currents in the southern part of the basin (Millot and Taupier-
Letage, 2005). Low degree values are observed in regions where the circulation is rather
slow, such as the Tunisian continental shelf and the semi-enclosed seas (e.g. Adriatic
and Aegean). Generally, the values of the in- and out degree- tend to increase with τ.
With respect to the dependence on t0, degree values tend to be slightly higher in winter
than in summer.

A first problem in relating these network properties to the actual physics of dispersion
and mixing is that their values are dependent on the spatial scales chosen for discretiza-
tion (there is also a dependency on the numbers Ni of particles used to compute the
transport matrices, but it disappears for large Ni). This problem is easy to solve by re-
calling that every box has an associated area. Dealing first with the out-degree case for
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3.1. DISPERSION AND MIXING

definiteness, KO(i) is proportional to the total area of all nodes that received some con-
tents from the initial node i. This quantity has a well-defined meaning that can be related
to the continuous flow dynamics with only a minor dependence on the discretization
procedure. Since here all boxes have the same area ∆2, the area corresponding to the
out-degree of node i is KO(i)∆2. We can use generic ideas of chaotic dynamics to obtain
heuristically a more precise relationship between two quantifiers of dispersion: the
degree and the Lyapunov exponent. In regions dominated by hyperbolic structures,
each of the fluid boxes will be stretched into a long and thin filament after a sufficiently
long time τ (see Appendix A). If we want to compute the number of boxes reached by
it, it is enough to consider its length, since the width quickly becomes smaller than the
box size ∆. Let us consider an initial line of length L(t0) ≈ ∆ inside the initial box Bi. A
small segment of it, of length dl(t0) at position x0 ∈ Bi will become elongated by a factor
given by the local FTLE: dl(t0 + τ) = dl(t0)eτλ(x0,t0,τ). Integrating over the initial positions
along the line we get an estimation of the final length L(t0 + τ) of the filament. A better
estimation L̄(t0 + τ) of this length can be done by averaging over positions transverse to
the line, to take into account different locations of the initial line in the box:

L̄(t0 + τ) ≈
1
∆

∫
Bi

dx0eτλ(x0,t0,τ) , (3.3)

where the longitudinal and transverse integrations have been combined into the in-
tegration of x0 over the area Bi. The area of the boxes covered by the filament is
A(t0 + τ) ≈ L̄(t0 + τ)∆ so that the out-degree of the initial box will be

KO(i) =
A(t0 + τ)

∆2 ≈ ,

1
∆2

∫
Bi

dx0eτλ(x0,t0,τ)
≡

〈
eτλ(x0,t0,τ)

〉
Bi
. (3.4)

Thus, we have a useful relationship between a natural quantity in the network de-
scription of fluid flows and a standard characterization of dispersion in the dynamical
systems approach to such flows: the degree of a node associated to a box is the average
or coarse-graining of the stretching factor eτλ in that box.

We can check the validity of the above heuristic arguments by comparing directly the
values of KO(i) obtained from our flow network and the right-hand-side of (3.4). Figure
3.2 shows an example of FTLE field obtained at time t0 = July 1st 2011, and τ = 15 days.
Figure 3.3 shows the clear correlation between the two quantities. Three values of τ are
plotted to appreciate the general validity of the relationship. We attribute the deviations
with respect to the exact identity to the fact that the filament-type arguments are only
valid for sufficiently large τ and in regions dominated by strain. Also, our arguments
neglect the presence of filament foldings that sometimes would occupy the same box,
and of associated saturation effects. In addition quantization effects arising from the
discrete nature of KO are visible at small degree values.
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CHAPTER 3. LOCAL NETWORK PROPERTIES

Figure 3.2: An example of forward FTLE field λ(x0, t0, τ) at t0 =July 1st 2011, and
τ = 15 days. Color bar in day−1

3.2

Network entropies

Expression (3.4) suggests defining:

H0
i (t0, τ) ≡

1
τ

log KO(i) , (3.5)

so that: 〈
eτλ(x0,t0,τ)

〉
Bi

= eτH0
i (t0,τ) . (3.6)

From the convexity of the exponential function, we have H0
i (t0, τ) ≥ 〈λ(x0, t0, τ)〉Bi

. The
previous expressions are reminiscent of the properties of the topological entropy of a
dynamical system, as giving the exponential growth in time of the length of a material
line (Tél and Gruiz, 2006). Pushing forward the analogy, we can define a sequence of
Rényi-like entropies (Rényi, 1970) associated to a particular node i:

Hq
i (t0, τ) ≡

1
(1 − q)|τ|

log
N∑

j=1

(
P(t0, τ)i j

)q
, (3.7)

which we call network entropies. Due to their dependence on the finite-size of the
partition, they are related to the ε-entropies discussed by (Boffetta et al., 2002). Note
however that here the transport matrix involves only two states of the trajectories,
separated by an interval of time τ which remains finite, and the dependence on the
initial location, box Bi, is kept. The entropies H0

i and H1
i should be understood as

defined by the limits q→ 0 and q→ 1, respectively. All the network entropies measure
the diversity in the amounts of fluid received by the nodes connected to a given box, but
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Figure 3.3: Values of the out-degree KO(i) of each node i vs the average value of the
stretching factor eτλ in that node. t0 =July 1st 2011. Blue symbols are from τ = 15
days, green from τ = 30 days and red from τ = 60 days. Black line is the main

diagonal.

weighting them in different ways: In H0
i all nodes are counted equally independently

of the amount of water they receive, so that it informs only about the degree as seen
in Eq. (3.5); for increasing values of q nodes receiving more water are weighted with
increasing strength. Although the network entropies have been introduced here in the
particular context of flow networks, we note that they can be defined for any weighted
network, giving generalizations of the degree to quantify the unevenness of the weight
distribution towards the nodes connected to a given one.

Applying l’Hôpital’s rule to the definition of the network entropy of order q = 1 one
gets:

H1
i (t0, τ) = −

1
τ

N∑
j=1

P(t0, τ)i j log P(t0, τ)i j . (3.8)

It gives the amount of information (per unit of time) gained by observing the position
of a particle at time t0 + τ, knowing that it was initially (time t0) somewhere in box
Bi. This quantity is precisely the discrete finite-time entropy studied by (Froyland and
Padberg-Gehle, 2012). Figure 3.4 shows its spatial distribution in the Mediterranean sea
for particular values of t0 and τ.

The standard Pesin-like results relating the metric or Kolmogorov-Sinai entropy to
the sum of positive Lyapunov exponents (Boffetta et al., 2002; Castiglione et al., 2010;
Cencini et al., 2010) suggest that, at least for large τ, the entropy H1

i would give a good
approximation to the values of the FTLE field averaged over each box Bi: λi(t0, τ) ≡
〈λ(x0, t0, τ)〉Bi

≈ H1
i (t0, τ). Appendix A gives calculations supporting this claim in an

heuristic way. Figure 3.5 shows the geographical distribution of λi(t0, τ) and Fig. 3.6
compares both quantities for several values of τ. The entropies tend to be slightly larger
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Figure 3.4: The network entropy H1
i (t0, τ), for t0 =July 1st 2011, and τ = 15 days.

Color bar in day−1.

than the Lyapunov exponents for τ = 15 days, but both quantities approach each other
and become well correlated for larger τ.

For definiteness we have been discussing quantities related to the forward time evo-
lution: out-degree, forward Lyapunov exponents, etc. The network entropies can also
be defined for the backward time evolution. Construction of the backwards-dynamics
network can be achieved by redoing the launching of particles and running the La-
grangian integration for negative time, or much simpler, by recognizing (Froyland and
Padberg-Gehle, 2012) that the backward evolution is given by the matrix

P(t0 + τ,−τ)i j =
P(t0, τ) ji∑N

k=1 P(t0, τ)ki
. (3.9)

The network entropies in Eq. (3.7) can now be directly computed for the backward flow
network defined by P(t0 +τ,−τ), and they will be related to backwards Lyapunov fields,
which give a measure of mixing of fluid coming from different origins. As an example
we show in Fig. 3.7 the relationship between the backwards entropy H1

i (t0 + τ,−τ) and
the coarse-grained backwards Lyapunov exponent λi(t0 + τ,−τ). Again both quantities
are similar for sufficiently large τ and the same qualitative features as in Fig. 3.6 are
observed.

Summarizing this Chapter, we have defined a family of entropy-like quantities com-
pletely in terms of the transport matrix characterization of the flow network. At least
two of them, H0

i and H1
i , are related to standard dispersion and mixing quantifiers in the

description of fluid flows. The higher order entropies Hq
i are related to the generalized

Lyapunov exponents (Boffetta et al., 2002; Cencini et al., 2010) characterizing successive
moments of the Lyapunov field, as discussed in Appendix A. We do not claim that
these relationships are exact for finite values of τ and ∆. Instead, we find numerical
deviations from them (Figs. 3.3, 3.6 and 3.7) which decrease for increasing τ. We expect
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Figure 3.5: Coarse-graining of the Lyapunov field in Fig. 3.2 into the discretization
boxes: λi(t0, τ) ≡ 〈λ(x0, t0, τ)〉Bi

. t0 =July 1st 2011, and τ = 15. Color bar in day−1.

the same to happen when decreasing ∆. Recent works also showed similar results in
theoretical two-dimensional flows (Lindner, 2015) showing a striking matching when
using a sufficiently small ∆. The important point is that, once the network matrix P(t0, τ)
has been constructed, the entropies in Eq. (3.7) provide a computationally very cheap
way to assess quantities of geophysical interest such as local dispersion, stretching and
mixing. In fact the simplest network quantifiers such as the in- and out-degrees are
already suitable for that, being related to H0

i . The qualitative information displayed
in figures such as 3.1b and 3.4 or 3.5 is very similar. Also, even if we should have
H0

i ≥ H1
i ≈ λi, in our examples the numerical values of H0

i are only slightly larger than
those of H1

i . We have to mention that we have been working under the hypothesis of
boxes {Bi} of equal areas. Expression (3.7) needs indeed corrections when dealing with
differing area boxes (see Appendix B).
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Black line is the main diagonal.
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Figure 3.7: Values of the network entropy H1
i at each node i, computed from the

backwards-dynamics network given by P(t0 +τ,−τ) (Eq. (3.9)), vs the average value
of the backwards Lyapunov exponent in that node, λi(t0 + τ,−τ). t0 =July 1st 2011.
Blue symbols are from τ = 15 days, green from τ = 30 days and red from τ = 60

days. Black line is the main diagonal.
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CHAPTER 4
Community detection

4.1

Coherent regions as network communities

Most work in the dynamical systems approach to fluid transport aims at identifying
“barriers to transport” locating the borders of regions that do not exchange much fluid
among them. The set-oriented approach focusses on the regions themselves rather than
on the borders. Almost-invariant fluid regions have been defined as regions of the fluid
domain remaining relatively isolated (according to a suitably defined metrics) from the
rest of the fluid (Froyland and Dellnitz, 2003; Froyland, 2005). In generic time-dependent
flows these regions will not be fixed in space but they will be transported by the mean
flow, and the concept of coherent pairs, relating initial and final set positions has been
developed (Froyland et al., 2010; Santitissadeekorn et al., 2010; Froyland et al., 2012).
Formulating this problem in the context of network theory would require building
on techniques for bipartite graphs. In our present case study, the global flow in the
Mediterranean sea, land masses play an important role in restricting the flow, so that
coherent regions that remain fixed with respect to the coasts are the most relevant ones
for many applications. In particular, when considering environmental conservation
strategies and marine reserves (Nilsson-Jacobi et al., 2012; Thomas et al., 2014; Rossi
et al., 2014), one looks for the connectivity among marine zones, or provinces (Rossi et al.,
2014), occupying localized regions of the sea. Thus we focus here on finding a partition
of the sea into self-coherent, or almost-invariant regions, associated to relatively stable
circulation patterns, from the point of view of network theory. We want these regions to
be well-mixed internally, and with little interchange with the exterior. In the language of
networks this translates to partitioning the network into subgraphs with high internal
connectivity, and small connectivity among them. This is the standard problem of
community detection in networks (Newman, 2009; Danon et al., 2005; Lancichinetti and
Fortunato, 2009; Fortunato, 2010; Aldecoa and Marı́n, 2013), for which many different
and powerful techniques are available. In fact, most of the approaches used so far to
partition fluid motion into almost-invariant sets (Froyland and Dellnitz, 2003; Froyland,
2005; Speetjens et al., 2013) employ classical spectral techniques for graph partition
(Newman, 2009), which use the eigenvectors or singular vectors of the transport matrix
(or other matrices derived from it). We note that the methodologies in (Froyland and
Dellnitz, 2003; Froyland, 2005) find almost-invariant sets in the sense that loss and gain
of fluid is minimized. But the condition of strong internal mixing, which we consider
important in geophysical applications, is not imposed.
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Here we address the community detection problem with a state-of-art network-theory
approach, the Infomap algorithm (Rosvall and Bergstrom, 2008). The method is based
on the probability flow of random walks in the network moving with transition prob-
abilities given by the adjacency matrix P(t0, τ), and on exploiting the properties of
information compression in the description of that probability flow. Infomap finds
the partition of the network minimizing the average size of the codeword needed to
describe inter- and intracommunity transitions (a succinct description of the method is
provided in Section 2.3). We believe this methodology is specially suited to partition
flow networks for the following reasons: First, it takes into account the “direction”
and “weight” of each link, important characteristics defining our flow network. The
standard spectral methods and most modularity-optimization algorithms take as input
a symmetrized version of the network. Second, Infomap does not require to fix a pri-
ory the number of communities forming the domain partition. Third, Infomap does
not impose similar sizes to the communities so that it does not suffer from the “res-
olution limit” (Fortunato and Barthélemy, 2007) restricting the minimum community
size detectable by most algorithms, including spectral methods. This is important in
geophysical flow networks since ocean structures of different sizes coexist in the sea,
some of them arising from geographical accidents, bathymetry, etc.

The method has also some limitations. One of them is the “field of view limit” (Schaub
et al., 2012) due to the use of a single-step transition matrix P(t0, τ). In general this
imposes that the detected communities are only those with intense intracommunity
connections (clique-like). For our application this feature may become convenient since
Infomap will identify as communities only regions well mixed internally by the flow.

Since Infomap consider random walkers exploring the network with the transition
probabilities in the matrix P(t0, τ), one is tempted to confuse these walkers with the
Lagrangian particles advected by the flow. But this is not correct. P(t0, τ) contains
relationships between initial and final positions of particles after a time τ, but does not
describe in detail the trajectories at intermediate times. In addition it can not be used
beyond that time since in time-dependent velocity fields flow connectivity will change
with the initial time t0, defining the dynamic network. Infomap unveils the graph
structures present in the single matrix P(t0, τ) by releasing random walkers that evolve
in a virtual time not directly related to the physical time.

Hydrodynamical provinces delimited by Infomap in the Mediterranean surface flow
will be further studied in Chapter 8 (Rossi et al., 2014), where we will discuss also their
implications for the design of marine reserves. Here we concentrate in the technical
aspects and compare with alternative methods.

4.2

Quality parameters

A standard way to asses the quality of a network partition is by computing a modularity
parameter (Newman and Girvan, 2004; Newman, 2009). But this involves comparison
with a random null model that in the case of flow networks has no obvious meaning.
Then we prefer to use alternative quantifiers with a direct interpretation in terms of
fluid connectivity. Here we define a coherence ratio and a mixing parameter.
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If coherent regions A are understood as almost-invariant areas of fluid, this means that
they are mapped by the flow nearly into themselves after a time τ:

Φτ
t0

(A) ≈ A . (4.1)

To measure how well this is achieved one can introduce the coherence ratio (Froyland
and Dellnitz, 2003; Froyland, 2005):

ρτt0
(A) =

m(A ∩Φ−τt0+τ(A))

m(A)
, (4.2)

where, as before, m(C) is the area of set C, but it can be generalized to other measures.
We have ρτt0

(A) ≤ 1 and values close to unity indicate that A is a truly almost-invariant
set.

In our discrete set-up, we consider sets A made of our boxes {Bi, i = 1, ...,N}: A = ∪i∈IBi,
where I is the set of indices identifying the boxes Bi making A. The coherence ratio is
now (Froyland and Dellnitz, 2003; Froyland, 2005)

ρτt0
(A) =

∑
i, j∈Im(Bi)P(t0, τ)i j∑

i∈Im(Bi)
. (4.3)

For a partition of the fluid domain into p communities or provinces: P = {A1, ...,Ap}, a
global quality figure of the partition is

ρτt0
(P) ≡

1
p

p∑
k=1

ρτt0
(Ak) , (4.4)

where again a good partition would be indicated by a value close to 1. When commu-
nities are of very different sizes it may be appropriate to weight the average in Eq. (4.4)
with these sizes, but we keep the present definition to allow comparison with previous
works.

Physically we can say that ρτt0
(P) represents the fraction of tracers that at time t0 + τ are

found in the same province where they were released at time t0. The definition involves
the initial and final positions, but gives no information on the particle trajectories in
between. Note that coherence ratios measure fluid exchanges between provinces, but
do not quantify how strong the internal mixing is.

The second quantifier we use is a mixing parameter devised to assess how strongly
the flow mixes fluid inside communities. To define the mixing parameter Mτ

t0
(A) inside

a set A we first define a transport matrix conditioned to represent just the transport
occurring inside A (more precisely, transport by trajectories that start and end in A):

R(t0, τ|A)i j =
P(t0, τ)i j∑

k∈I P(t0, τ)ik
, i, j ∈ I . (4.5)

As before, I is the set of indices identifying the boxes Bi making A. The mixing
parameter is a normalized version of the sum inside A of the entropies associated to the
transition probabilities in R(t0, τ|A):

Mτ
t0

(A) =
−

∑
i, j∈IR(t0, τ|A)i j log R(t0, τ|A)i j

QA log QA
. (4.6)
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Figure 4.1: Infomap partition of flow networks in the Mediterranean sea, defined
by P(t0, τ), into communities or provinces for increasing values of τ. Each province
is colored by its coherence ratio value from Eq. (4.3), as given in the color bar. In
all panels t0 = July 1st 2011. a) τ = 30 days; the number of communities is p = 56,
the global coherence ρτt0

(P) = 0.76, and the global mixing Mτ
t0

(P) = 0.47. b) τ = 60
days; p = 33, ρτt0

(P) = 0.73, Mτ
t0

(P) = 0.54. c) τ = 90 days; p = 22, ρτt0
(P) = 0.80,

Mτ
t0

(P) = 0.59.
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4.3. COMMUNITIES IN THE MEDITERRANEAN SURFACE FLOW

QA is the number of boxes in A. The maximum value, Mτ
t0

(A) = 1, is reached when fluid
is dispersed from each box in A to all the others uniformly (Ri j = 1/QA,∀i, j ∈ I). A
global quantification of the internal mixing in a community partition P = {A1, ...,Ap} is
given by

Mτ
t0

(P) =

∑p
k=1 m(Ak)Mτ

t0
(Ak)∑p

k=1 m(Ak)
. (4.7)

Here, we have weighted the different communities according to their size.

4.3

Communities in the Mediterranean surface flow

The outputs of the Infomap algorithm applied to the flow network defined by P(t0, τ),
for increasing values of τ, are shown in Fig. 4.1. Each community Ak is colored with
the value of its coherence ratio ρτt0

(Ak). We see that most coherence values are rather
high. The global mixing parameter has only moderate values (see caption of Fig. 4.1),
but it increases with τ. The main coast-constrained regions appear clearly outlined
(the Tyrrhenian, the Adriatic, the Aegean, ...), but also other areas defined only by
persistent circulation patterns (the three-gyre system in the Adriatic, the Balearic front,
...). We refer to (Rossi et al., 2014) and to Chapter 5 for a thorough interpretation of the
hydrodynamic provinces in relation with surface circulation patterns and known eco-
regionalization of the Mediterranean basin. Note that there is no obvious relationship
between the size of a community and its coherence. Both large and small provinces may
have indeed moderate (< 0.6) or high (> 0.8) coherence ratios. The detection of small
communities confirms that Infomap is not affected by the “resolution limit” (Fortunato
and Barthélemy, 2007).

Communities merge and in average become larger with increasing τ, so that their
number decreases. Fig. 4.2a shows the growth of the mean area as a function of τ
for the same case t0 = July 1st 2011 shown in Fig. 4.1. The standard deviation of the
area distribution is also displayed as error bars. It shows a significant dispersion in
the area of the communities identified, especially for larger τ, revealing properly the
multi-scale character of oceanic transport processes. For small τ, community areas seem
mainly controlled by the time of integration (there is no sufficient time for the flow to
manifest highly inhomogeneous dispersion) but only marginally determined by the
intrinsic properties of the flow. As commented above, detecting communities of widely
different sizes is a great capability of Infomap, whereas other methodologies constrain
the communities to be of similar sizes. The inset Fig. 4.2b shows how the number of
communities decreases when τ increases.

4.4

Average community descriptions

Because of the turbulent nature of oceanic motions, the community decomposition
changes with t0. Some communities (even of small size) are repeatedly observed while

41



CHAPTER 4. COMMUNITY DETECTION

0 20 40 60 80 100

τ (days)

0

50000

100000

150000

200000

m
e
a
n
a
re
a
(k
m
2
)

a)

0 20 60 100
τ (days)

0

40

80

120

#
o
f
co
m
m
u
n
it
ie
s

40 80

b)

Figure 4.2: Panel a) shows the mean area (dots) of the communities detected by the
Infomap algorithm for t0 = July 1st 2011 as a function of τ. The straight line is a fit
to the diffusive-growth-like relationship Area = 8109.6 + 1173.8 ∗ τ. The error bars
indicate the standard deviation of the area distribution. Note the large dispersion
in community sizes. The upper left inset b) shows the decay of the number of

communities with τ.

some others appear and disappear when changing t0. In order to identify persistent
communities, i.e. those whose limits are relatively stable in space and time, we explore
two averaging procedures leading to a mean -“climatological”- community partition.
In a first approach we average a number of matrices P(t0, τ) corresponding to the same
starting date (e.g. January 1st) for the ten different years of the data set (e.g. January
1st 2002, January 1st 2003, etc. until January 1st 2011). Figure 4.3 shows the Infomap
partition of the network defined by the average matrix P(t0, τ) made with the ten matrices
P(t0, τ) using the same starting date for each of the 10 years (2002-2011). An example
of t0 in winter and another one in summer are displayed. The figure shows the most
persistent communities for a particular month, averaging out the variability occurring
over ten years. We remark than some communities have a rather small size (most of
them reflecting shallow oceanic regions such as continental shelves), and that there is
some inter-seasonal variability.

A second approach to obtain an average or climatological description of the community
partition is illustrated in Fig. 4.4. Instead of applying only once Infomap on an averaged
transport matrix, it is here applied 10 times separately on the 10 transport matrices
corresponding to the same starting date for each of the 10 years (2002-2011). The
color at a particular location of Fig. 4.4 indicates the frequency of occurrence (in these
10 partitions) at that location of a border between communities. Then, greener color
indicates a more persistent community border. The strongest lines would represent
true “barriers to transport” which remain fixed in space. Fuzzier lines may indicate
intermittent border appearance, but also a larger wandering amplitude. Figures 4.4a
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and b display the situation in the same winter and summer days as in Fig. 4.3. Figure 4.4c
shows a combination of them, equivalent to showing the barrier persistence sampled
twice a year during the ten years.
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Figure 4.3: Infomap communities obtained from the average networks given by
P(t0, τ), with τ = 30 days. Each community is colored by its coherence ratio.
a) The average is over the 10 matrices corresponding to t0 = January 1st in 10
years (2002-2011) of simulation; the number of communities is p = 34, the global
coherence ρτt0

(P) = 0.78, and the global mixing Mτ
t0

(P) = 0.68. b) The average is
over the 10 matrices corresponding to t0 = July 1st in the 10 years 2002-2011; p = 30,

ρτt0
(P) = 0.77, Mτ

t0
(P) = 0.69.

4.5

Comparison with spectral partitioning

Different methods based on the spectral properties of transport matrices have been
previously used to identify and locate almost-invariant sets in flows (Froyland and
Dellnitz, 2003; Froyland, 2005; Froyland et al., 2007; Dellnitz et al., 2009; Speetjens et al.,
2013). They exploit the fact that for a set to remain almost invariant after the effect
of the flow, it has to be related with eigenvectors of P(t0, τ) with eigenvalues close to
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Figure 4.4: Persistence of community borders over time: Color code indicates the
proportion of times one of the borders between communities has appeared at a
given location. τ = 30 days. a) t0 = January 1st of (2002-2011). b) t0 = July 1st of
(2002-2011). c) The average of the two previous panels, eliminating the seasonal

information.
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1. Here we compare our partitioning obtained by Infomap with the one from those
spectral methods. To be specific we consider the method described by (Froyland and
Dellnitz, 2003). The technique in this last paper obtains a partition P minimizing in
an approximate way the global coherence ρτt0

(P). To this end it computes eigenvectors
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Figure 4.5: Community decomposition by the spectral method with fuzzy c-means
clustering described in (Froyland and Dellnitz, 2003). The matrix used is the same
average P(t0, τ) as in Fig. 4.3 b), i.e. with t0 = July 1st, averaged in the ten
years 2002-2011, and τ = 30 days. Ten eigenvalues are used. a) The number of
communities is fixed to be p = 10; the global coherence is ρτt0

(P) = 0.85, and the
global mixing is Mτ

t0
(P) = 0.62. In the Aegean, the southern yellow community is

the only independent one: the portions of the Aegean further north are clustered
by the c-means algorithm as being part of the same province as areas in the central

Mediterranean with the same color. b) p = 14; ρτt0
(P) = 0.78, Mτ

t0
(P) = 0.64.

associated to nearly vanishing eigenvalues of the Laplacian matrix (Newman, 2009)
obtained from the symmetric part of P(t0, τ), and combines them using a fuzzy c-means
clustering algorithm (Froyland and Dellnitz, 2003). Note that this approach eliminates
any directionality information present in the transport network. Also, the c-means
clustering can define as a single community pieces of the ocean which are geographically
disjoint or in fact quite far apart, if this enhances the coherence defined in Eq. (4.4). In
the method, one has to specify the number of eigenvectors being combined (we choose
it to be 10) and the number of communities in the partition. Figure 4.5 shows the results
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using the same average matrix P(t0, τ) as in Fig. 4.3b, and imposing a partition in 10 and
in 14 communities. The change in the number of communities leads to rearrangements
in the Tyrrhenian, the central Mediterranean, the Aegean, and the Levantine basin.
In panel a) some of the communities are made of disjoint pieces. Larger number of
communities decreases the global coherence ratio (see caption of Fig. 4.5). If we try
to increase the number of communities approaching the one given by Infomap we
find that the clustering algorithm becomes unstable. Instabilities also occur when the
number of links in the transport network becomes too high (as occurring for example
when increasing τ beyond 1 month).

When compared with the Infomap decomposition we see that several of the boundaries
coincide. But there are important differences, such as the wider range of community
sizes and the sharper details revealed by Infomap. This is because a constraint of similar
sizes for the communities associated to the same eigenvector needs to be imposed in
the spectral method. When clustering several eigenvectors together this limitation
is partially bypassed but still not removed. The values of the coherence ratio are of
the same order or somehow larger for the spectral method, but note that the number
of spectral communities has been kept much smaller to avoid the instabilities in the
clustering algorithm. Since merging two communities into a single one increases the
global coherence, joining some of the Infomap communities in Fig. 4.3 until arriving
to 10 or 14 communities as in Fig. 4.5 would give rather large values of ρτt0

(P). As
expected, the global mixing parameter is larger for the Infomap partition, but only by
a small amount, reflecting that, even if internal mixing is not imposed in the spectral
method, it is achieved to a reasonable extent.

From the methodological point of view, Infomap presents the advantage of determining
itself the number of communities in the partition, whereas this needs to be fixed a
priori (as well as the number of eigenvectors to be clustered) in the spectral approach.
On the other hand, the spectral method is formulated as an algorithm to minimize
the global coherence ratio, a quantity with a clear physical meaning. The quantity
optimized by Infomap is a codeword length given in Eq. (1.20) of Section 1.2.3, an
abstract information-theoretic object without a clear physical meaning. The heuristic
interpretation of the optimization process leads to the ‘large internal-small external
connectivity’ property for the communities, but a more rigorous understanding of the
Infomap procedure is clearly needed (Rosvall and Bergstrom, 2008; Schaub et al., 2012).

The results of this section indicate that the Infomap methodology proposed here to
identify coherent fluid regions seem more appropriate than spectral methods when a
wide range of community sizes is expected, when internal mixing is a key parameter, or
to minimize user input (such as entering the number of communities). Spectral methods
seem appropriate when one is looking precisely for the sets defined mathematically
as almost-invariant, the coherence ratio describes well the desired properties of the
partition, and one expects a limited range of sizes.
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4.6

Conclusions

To conclude, we described the basic steps to construct a flow network from fluid velocity
data. We applied them to a surface flow field modeled for the Mediterranean sea. The
resulting network is studied to characterize dispersion and mixing in different regions.
One of the simplest network descriptors, the degree of a node, gives direct information
on local stretching properties, classically associated to the finite-time Lyapunov expo-
nents and their distributions. A family of network-entropy functions has been defined,
aiming at describing higher-order statistical properties of fluid stretching (and then of
dispersion and mixing) in terms of the network adjacency matrix. We find numerically
that it provides a good estimation of the coarse-grained finite-time Lyapunov exponent.

We apply the network community detection method Infomap to identify coherent re-
gions in the sea, well mixed internally but with little exchange among them. Our results
indicate that the Infomap methodology proposed here to identify coherent fluid regions
seems more appropriate than spectral methods when a wide range of community sizes
is expected, when internal mixing is a key parameter, or to minimize user input (such as
entering the number of communities). Spectral methods seem appropriate when one is
looking precisely for the sets defined mathematically as almost-invariant, the coherence
ratio describes well the desired properties of the partition, and one expects a limited
range of sizes.
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APPENDIX A
Relationship between network

entropies and stretching statistics

In this Appendix we derive heuristically relationships between the network entropies
and Lyapunov exponent statistics (in the two-dimensional case). Fig.A.1 illustrates the
basic ideas. The assumptions are that dynamics is mainly hyperbolic in the region of
interest, and that τ and the size ∆ of the fluid boxes {Bi, i = 1, ...,N} are such than the
image of the boxes by the flow after a time τ are thin and long filaments. Boxes in the
partition have been roughly aligned with expanding and contracting directions to make
easier the heuristic arguments.

The point is to estimate the values of the matrix elements P(t0, τ)ik given in Eq. (2.2):

P(t0, τ)ik =
m

(
Bi ∩Φ−τt0+τ(Bk)

)
m(Bi)

. (A.1)

The quantity in the numerator of Eq. (A.1) is the area of the doubly-dashed thin filament
in the left of Fig. A.1. If we assume that the forward FTLE λ(x0, t0, τ) is approximately
constant for x0 in this region, we have m

(
Bi ∩Φ−τt0+τ(Bk)

)
≈ ∆2 exp(−λikτ) (see Fig. A.1),

where λik is this constant value. In consequence, P(t0, τ)ik ≈ exp(−λikτ) if Bk is one of
the boxes containing part of the image Φτ

t0
(Bi) of Bi, and P(t0, τ)ik = 0 elsewhere.

Spatial features in typical forward FTLE fields are thin filaments with nearly constant
value λ. They are elongated along the expanding directions (Haller, 2001; Shadden
et al., 2005) and have widths of the order of l exp(−λτ), where l is the size of the velocity
field inhomogeneities, i.e. the size of the Eulerian structures driving the flow. Then, the
uniformity condition we are imposing is ∆ < l, i.e. discretization boxes smaller than
Eulerian structures. In our Mediterranean example, ∆ is smaller than the dominant
mesoscale structures in the sea, but some of the smaller features in the velocity field can
have some impact on the validity of the uniformity condition.

We can use our estimation of P(t0, τ)ik to compute the sum appearing in the network
entropies definition Eq. (3.7). The assumption of uniform FTLE inside region Bi ∩
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APPENDIX A. RELATIONSHIP BETWEEN NETWORK ENTROPIES AND
STRETCHING STATISTICS

Bi

Φ(Bi)

Φ-1(Bk)
ΔΔe-λikτ Bk

Δ

Figure A.1: Schematics of the stretching (forward and backwards in time) of fluid
boxes of sidelength ∆ corresponding to network nodes. Φ(Bi) is a shortcut for
Φτ

t0
(Bi), and Φ−1(Bk) is a shortcut for Φ−τt0+τ(Bk). λik is the value of the forward FTLE

λ(x0, t0, τ) in the doubly dashed region Bi ∩Φ−1(Bk).

Φ−τt0+τ(Bk) allows us to freely replace functions of λik by average values in that region:

N∑
k=1

(P(t0, τ)ik)q
≈

N∑
k=1

e−qλikτ ≈ ,

N∑
k=1

1
∆2e−λikτ

∫
Bi∩Φ−τt0+τ(Bk)

e−qλ(x0,t0,τ)τdx0 ≈ ,

N∑
k=1

1
∆2

∫
Bi∩Φ−τt0+τ(Bk)

e(1−q)λ(x0,t0,τ)τdx0 = ,

1
∆2

∫
Bi

e(1−q)λ(x0,t0,τ)τdx0 . (A.2)

Which, using definition (3.7), implies:

e(1−q)τHq
i (t0,τ)

≈

〈
e(1−q)τλ(x0,t0,τ)

〉
Bi
. (A.3)

This is the sought relationship between network entropies and moments of the stretch-
ing factor eλτ. For q = 0 we reobtain Eq. (3.6). In the limit q → 1 we get H1

i (t0, τ) ≈
〈λ(x0, t0, τ)〉Bi

= λi(t0, τ). The arguments above can be repeated to get the same relation-
ship (A.3) between network entropies in the backwards time direction and backwards
Lyapunov exponents.

All these expressions are similar to the ones presented for example by (Paladin and
Vulpiani, 1987) relating Rényi entropies and generalized Lyapunov exponents defined
from moments of the stretching factor eλτ. But here the moments are not by averaging
along a dynamic trajectory but inside a box Bi. In the same way as the value of any of the
network entropies at node i characterizes the inhomogeneity in the fluxes sent from i to
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other nodes, the difference between the different entropies (different q) at a single node
i characterizes the inhomogeneity of the FTLE inside box Bi. This is a way by which
small-scale features present in the Lagrangian trajectories get statistically represented
in the network description. Relationships such as (A.3) are not exact for finite ∆ and τ,
but we expect them to become more accurate for increasing τ and decreasing ∆.
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APPENDIX B
Computing network entropies with

nodes of differing area

We consider the problem of defining a family of network entropies where the node’s
area could vary arbitrarily. We start studying the motion of an initial concentration of
tracer in a box i assuming that after a sufficient long time it will evolve into a long and
thin filament. We can define the length of this filament as:

L̄ =
1
∆i

∫
dx0eτλ(x0,t0,τ) . (B.1)

Now we are interested in relating the number of nodes “touched” by the filament with
the real length of the filament (assuming a dynamics dominated by strain without
folding of the filaments). We can write:

KO(i) ≈
L̄

∆e f
, (B.2)

where KO(i) is the out-degree of the node i and ∆e f is the effective node’s size that should
be understood like the mean size of the boxes crossed by the filament. We find an exact
expression for it:

∆e f =

∑N
j ∆ jδ(P(t0, τ)i j)

KO(i)
. (B.3)

Where P(t0, τ)i j is the element i j of the transport matrix and δ(P(t0, τ)i j) is zero if
P(t0, τ)i j = 0 and equal to one otherwise. Using the last definition in the previous
equation we find:

KO(i) ≈
KO(i)∑N

j ∆ jδ(P(t0, τ)i j)
L̄ . (B.4)

From this, for consistence, we find the relation:

L̄ =
1
∆i

∫
dx0eτλ(x0,t0,τ)

≈

N∑
j

∆ jδ(P(t0, τ)i j) , (B.5)

dividing by ∆i we finally have:

1
∆2

i

∫
dx0eτλ(x0,t0,τ) = 〈eτλ(x0,t0,τ)

〉Bi ≈

N∑
j

∆ j

∆i
δ(P(t0, τ)i j) . (B.6)
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APPENDIX B. COMPUTING NETWORK ENTROPIES WITH NODES OF
DIFFERING AREA

We define now a generalized network entropies family in this way:

Gq
i (t0, τ) =

1
(1 − q)τ

log
N∑
j

[∆ j

∆i

(∆i

∆ j
P(t0, τ)i j

)q]
. (B.7)

We take now the limit q→ 0 of Gq
i and we find:

G0
i (t0, τ) =

1
τ

log
N∑
j

[∆ j

∆i
δ(P(t0, τ)i j)

]
≈ λ(x0, t0, τ) . (B.8)

That match exactly with Eq. B.6. Taking instead the limit q → 1 we have (using
l’Hôpital’s rule and the normalization constraint

∑N
j P(t0, τ)i j = 1):

G1
i = −

1
τ

[ N∑
j

[
P(t0, τ)i j log

P(t0, τ)i j

∆ j

]
+ log(∆i)

]
. (B.9)

That match exactly with the definition of Finite Time Entropy for an uneven discretiza-
tion grid given by (Froyland and Padberg-Gehle, 2012).
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Part II

Ecological applications
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CHAPTER 5
Marine Protected Areas (MPAs) and

oceanic ecological connectivity

5.1

Introduction

Oceanic ecosystems are impacted by multiple human-induced stressors, including habi-
tat destruction, pollution, overfishing and global climate change. Marine protected
areas (MPAs), used for the management and conservation of marine ecosystems, are
considered effective to mitigate some of these impacts (Lester et al., 2009). Successful
MPA design is however complicated primarily due to the difficulties in quantifying
the movements of organisms, especially at larval stage (Shanks, 2009), in resolving the
multi-scale variability of ocean currents (Siegel et al., 2008) and in apprehending the
spatial scales and biogeography of the seascape (Hamilton et al., 2010).

Marine population connectivity, i.e. the exchange of individuals among geographically
separated subpopulations, depends on numerous factors including spawning outputs,
larval dispersal, habitat availability, trophic interactions and adult movements (Cowen
and Sponaugle, 2009; Game et al., 2009). Among them, larval dispersal has been iden-
tified as a crucial factor for structuring oceanic populations (Cowen et al., 2006) and
for determining broad-scale ecological connectivity (Treml et al., 2012). It also plays a
major role in assuring population persistence in a MPA network, especially when target
species show long-distance dispersal (Shanks, 2009). As such, patterns and magnitude
of larval connectivity have been used to design MPAs (Lester et al., 2009) and assess
their efficiency (Pelc et al., 2010). This chapter focuses on the dispersion of larvae by
ocean currents at basin-scale in the Mediterranean Sea, assuming they are passively
transported by the flow (i.e. neglecting larval behavior), to inform the design of marine
reserves.

Many biophysical modeling studies (Cowen et al., 2006; Siegel et al., 2008), including
Lagrangian approaches, examined marine connectivity from the so-called “connectiv-
ity matrix” which represents the probability of larval exchange between distant sites.
Previous analyses were mainly limited to the strengths of pair-wise connections, i.e.
the links from one coastal site, or MPA, to another distant one (Corell et al., 2012; Vaz
et al., 2013). Another perspective to investigate connectivity is the analysis of dispersal
network topologies (Treml et al., 2012; Kool et al., 2013). Recent studies applied tools
derived from Graph Theory to document regional connectivity of near-shore MPAs in
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ECOLOGICAL CONNECTIVITY

the Baltic Sea (Nilsson-Jacobi et al., 2012), the Mediterranean Sea (Andrello et al., 2013)
and in the Great Barrier Reef region (Thomas et al., 2014). While our understanding
of connectivity at small- and regional-scales has improved, previous efforts focused
mainly on coastal/insular areas and did not provide a characterization of the seascape
connectivity.

The significance of this shortcoming is emphasized by the growing interests for the
implementation of MPAs in the pelagic ocean (Pala, 2013; Guidetti et al., 2013) which also
shelters biodiversity and important ecological processes (Game et al., 2009; Kaplan et al.,
2010a). Designing open-ocean MPAs is challenging partly because larval connectivity
and pelagic habitats are difficult to assess in such vast and dynamic environment.

We stress that the need for an ecosystem-based management of marine resources has
been emerging (Pikitch et al., 2004; Kaplan et al., 2010b), especially in the Mediterranean
basin (Coll et al., 2012, 2013; Guidetti et al., 2013). For instance, recent studies considered
an ecosystem-based approach to optimize the location of reserves for several species
based on multi-factorial analysis (Lagabrielle et al., 2012) or to inform MPA efficiency
by modelling trophic interactions within the whole ecosystem (Colleter et al., 2012).
In the context of assessing larval connectivity for MPAs design, it implies the need of
considering the ecosystem as a whole rather than focusing on a specific organism. This
is implemented here by studying a range of different Pelagic Larval Durations (PLDs)
and periods of spawning which are, under certain assumptions, biologically relevant
for a number of Mediterranean species.

A compilation of the mean PLDs of 62 littoral Mediterranean fishes revealed they span
10-70 days depending on the species considered, with large intra-species variability
(Macpherson and Raventos, 2006). Considering the ”basin-scale” angle of our study,
we focus on species with a wide geographical range and potential for large-distance
dispersal (see Tab. 5.1). These organisms are usually characterized by pelagic spawning,
long PLDs (≥ 20 days) and offshore larval distribution (although many combinations
of such early life traits exist). We retain a PLD of 30 days which is the best estimate
available for a few iconic species of the Mediterranean ecosystem, including some
demersal fishes (e.g. the groper Epinephelus marginatus, the blenny Lipophrys canevai,
the wrasse Labrus viridis, the goatfish Mullus surmuletus, the bream Sarpa salpa) and
invertebrates (e.g. the crab Pachygrapsus marmoratus). We also considered a PLD of
60 days since other Mediterranean fishes (e.g. the blenny Lipophrys trigloides ) and
most marine invertebrates (echinoderms like the sea-star Astropecten aranciacus, some
molluscs and many exploited crustaceans ) are characterized by long PLD.

Dispersal potential can also be influenced by other mechanisms than PLD, such as early
life traits. However, because the precise description of spawning strategy and larval
distribution of marine organisms remains elusive, a classification was proposed based
on its preferential season and location of occurrence. A large majority of the species
studied (e.g. Epinephelus marginatus, Lipophrys canevai, Mullus surmuletus) spawn
in late spring / early summer, so we assume that summer is the season of their planktonic
life. Some others (e.g. Sarpa salpa, Lipophrys trigloides) prefer a late autumn / early
winter spawning, resulting in the highest abundance of larvae observed in winter.
Concerning spatial preferences, the ”coastal spawners” (e.g. Labrus viridis) release
their eggs close to the bottom in shallow areas and then their planktonic larvae are
concentrated in the coastal ocean. In contrast, the ”pelagic spawners” (e.g. Epinephelus
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marginatus, Mullus surmuletus, Sarpa salpa) spawn in the open-ocean with their larvae
found widespread offshore (Macpherson and Raventos, 2006).

Marine species Taxonomy Category
(adults habitats)

Larval
distribution

Estimated
PLD
(days)

Larval
season

(following
spawning)

Blenny
Lipophrys trigloides

Vertebrate, Fish Littoral demersal (benthic) Inshore 67 Winter

Blenny
Lipophrys canevai

Vertebrate, Fish Littoral demersal (benthic) Offshore 30 Summer

Rainbow Wrasse
Coris julis

Vertebrate, Fish Littoral demersal
(benthopelagic)

Offshore 21-34 Summer

Green Wrasse
Labrus viridis

Vertebrate, Fish Littoral demersal
(benthopelagic)

Inshore 31-34 Spring/
Summer

Goat Fish
Mullus surmuletus

Vertebrate, Fish Littoral demersal
(benthopelagic)

Offshore 30 Spring/
Summer

Dusky Groper
Epinephelus marginatus

Vertebrate, Fish Littoral demersal
(benthopelagic)

Offshore 25-30 Summer

Salema Porgy
Sarpa salpa

Vertebrate, Fish Littoral demersal
(benthopelagic)

Offshore 32 Winter

Shore Rockling
Gaidropsarus mediterraneus

Vertebrate, Fish Littoral demersal (benthic) Offshore 43 Winter

Two-banded Seabream
Diplodus vulgaris

Vertebrate, Fish Littoral/Shelf demersal
(benthopelagic)

Offshore 29-58 Winter

White Seabream
Diplodus sargus

Vertebrate, Fish Littoral demersal
(benthopelagic)

Inshore 28 Winter

Gilthead Seabream
Sparus aurata

Vertebrate, Fish Littoral/Shelf demersal
(benthopelagic)

Offshore 40-50 Winter

Bullet Tuna
Auxis rochei

Vertebrate, Fish Shelf pelagic (epipelagic) Offshore 16 Spring/
Summer

Sandsmelt Fish
Atherina spp.

Vertebrate, Fish Littoral pelagic (epipelagic) Inshore 9-15 Spring/
Summer

Dolphin Fish
Coryphaena hippurus

Vertebrate, Fish Shelf pelagic (epipelagic) Offshore ? Spring/
Summer

European Anchovy
Engraulis encrasicolus

Vertebrate, Fish Oceanic pelagic (epipelagic) Offshore 37 Summer

Bluefin Tuna
Thunnus thunnus

Vertebrate, Fish Oceanic pelagic (epipelagic) Offshore 30 Summer

Ray Bream
Brama brama

Vertebrate, Fish Oceanic pelagic (epipelagic) Offshore ? Summer

Gilt Sardine
Sardinella aurita

Vertebrate, Fish Oceanic pelagic (epipelagic) Offshore 60 Summer

European Hake
Merluccius merluccius

Vertebrate, Fish Shelf/Oceanic demersal
(benthopelagic)

Offshore 40-60 Summer/
Autumn

Horse Mackerel
Trachurus mediterraneus

Vertebrate, Fish Shelf/Oceanic pelagic
(epipelagic)

Offshore ? Summer

European Seabass
Dicentrarchus labrax

Vertebrate, Fish Littoral/Shelf demersal
(benthopelagic)

Offshore 40 Winter

Sea Star
Astropecten aranciacus

Invertebrate,
Echinoderms

Littoral demersal (benthic) Inshore 60 Spring/
Summer

Marbled Crab
Pachygraptus marmoratus

Invertebrate,
Crustaceans

Littoral/Shelf demersal
(benthic)

Inshore 30 Spring/
Summer

Other crustaceans (e.g. Lobster) Invertebrate,
Crustaceans

Littoral/Shelf demersal
(benthic)

Variable ∼30-300 Variable

Other molluscs (e.g. Oyster) Invertebrate,
Molluscs

Littoral demersal (benthic) Variable ∼10-100 Variable

Table 5.1: Literature review of biological traits for some emblematic Mediter-
ranean marine species with wide geographical range and potential for large-scale
dispersal. With our parameter values and under our assumptions, the broad-scale
connectivity patterns evidenced in this paper are applicable for those organisms
that belong to different trophic levels of the Mediterranean food webs. Note that
the vertical positioning of eggs/larvae may vary but for simplicity, they are as-
sumed here to remain in the ∼ 50 − 150 m thick Mixed Layer Depth, thus seeing
relatively similar transport patterns. While considering the ecosystem as a whole
(rather than focusing on a specific organism) for an ecosystem-based management
of marine resources is now widely accepted, one could obtain refined analyses by
tuning our modeling framework to any target specie with well-known biological
traits and to any oceanic area. Category: Littoral ∼ 0 − 50 m; Shelf ∼ 50 − 200 m;
Oceanic ≥ 200 m. Larval distribution: Inshore ∼ 0 − 50 m; Offshore ≥ 50 m (i.e.

shelf and oceanic waters).
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5.2

Lagrangian bio-physical modeling for the Mediterranean

The Lagrangian approach is a natural perspective to characterize transport phenomena
affecting free-swimming larvae (Corell et al., 2012; Vaz et al., 2013). We use the method
described in Part I to simulate Lagrangian trajectories and build connectivity matrices
as adjacency matrix of flow networks.

We focus again on the upper-ocean dynamics over years 2002−2011 with the use of daily
horizontal flow fields at 8 m depth, representing the surface mixed layer in which lar-
vae are assumed to be homogeneously distributed. Lagrangian particles are dispersed
as two-dimensional passive drifters. Note that due to the non-fully incompressible
horizontal flow field, vertical velocities may become significant in regions of strong
divergence (e.g. coastal upwelling) and convergence (e.g. deep water formation). Ne-
glecting vertical movements is however a reasonable assumption here because most
particles remain in the selected layer over short time-scales (≤ 2 months) since horizon-
tal velocities are several orders of magnitude higher than vertical ones (d’Ovidio et al.,
2004). Another simplification is the passive character of the particles, the implemen-
tation of more complex larval behavior (e.g. vertical migration, mortality, settlement)
being envisaged for future work. Under these assumptions, larval dispersal is modu-
lated by the PLD, the period of spawning and the time-varying oceanic circulation.

Initial (t0) and integration (τ ∼ PLD) times are chosen according to the typical biological
traits of marine organisms. Given the limited knowledge of their life cycles (Shanks,
2009), we investigate basin-scale larval connectivity from an ecosystem-based approach
(Coll et al., 2012; Guidetti et al., 2013), rather than focusing on a particular target species.
To do so, we retain two different PLDs (τ = 30, 60 days) and both winter and summer
spawning by considering three successive starting times t0 for each season (t0 = 1st, 15th

and 31st of January and t0 = 1st, 15th and 31st of July) to account for episodic and variable
spawning events (Macpherson and Raventos, 2006; Shanks, 2009; Andrello et al., 2013)
over the years 2002 − 2011. These modeling choices are ecologically meaningful for a
number of Mediterranean organisms, especially those with wide geographical range
and potential for large-distance dispersal. Sensitivity of our results to the parameter
τ was tested by performing additional simulations for τ = 45 days for winter (t0 = 1st

Jan.) and summer (t0 = 1st Jul.). A total of 140 factorial experiments (with starting
times covering 2 seasons over 10 years, for 3 PLDs) allow the construction of 140 flow
connectivity matrices from which robust spatial patterns of larval connectivity in the
entire Mediterranean basin can be extracted.

5.3

Oceanographic characterization of hydrodynamic provinces

We apply the method described in Part I to extract communities from each constructed
network and we interpret them as time-dependent hydrodynamical provinces in the
sea. To evaluate the significance of the network partitioning, we use the coherence ratio
associated with each province ρk defined in Eq. 4.2. We perform this analysis retaining
three different PLDs (τ = 30, 45, 60 days) and consider winter (t0 = 1st Jan.) and summer

60



5.3. OCEANOGRAPHIC CHARACTERIZATION OF HYDRODYNAMIC
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(t0 = 1st Jul.) spawning over the years 2002 − 2011. A total of 60 factorial (with starting
times covering 2 seasons over 10 years, for each of the 3 PLDs) allow the construction
of 60 connectivity matrices from which hydrodynamical provinces are extracted (Rossi
et al., 2014).

The provinces and their boundaries are dynamical objects that evolve in space and time
with different dimensions, shapes and locations (e.g. Fig. 5.1), due to the important
variability of the ocean circulation (Millot and Taupier-Letage, 2005). The method
captures an elevated number of communities in the network, with 65 provinces using a
PLD = 30 days and only 32 for PLD = 60 days on the exemplary calculations displayed
on Fig. 5.1. Intuitively, the longer the tracking time, the lower the number of provinces
detected and the larger their mean area. On average over the ensemble of experiments,
community detection results in 61, 46, 36 provinces characterized by a mean area of
4.12 × 104, 5.5 × 104, 6.8 × 104 (in km2) for τ = 30, 45, 60 days, respectively. Because
of the time-varying flow (Siegel et al., 2008), both release time and tracking duration
(simulating respectively the initiation and duration of the pelagic larval phase) affect
the spatial partitioning.

Most province boundaries match very well the mean flow streamlines (Fig. 5.1), sug-
gesting high oceanographic relevance. While isolated streamlines are found in the cores
of provinces, dense ones usually coincide with the detected boundaries. Hydrody-
namical provinces are delimited by intense oceanic mesoscale structures such as jets,
meanders, fronts and eddies. These features, which influence the topology of the trans-
port network and thus the community detection, were recently reported to strongly
impact connectivity (Vaz et al., 2013). For instance, some mesoscale eddies are extracted
as quasi-circular single provinces (e.g. in the Alboran Sea and in the southern Levantine
basin), in good agreement with the flow streamlines (Fig. 5.1a). Other mesoscale struc-
tures are contained in larger provinces. The method allows the optimal detection of
coherent oceanic sub-regions originating from the ocean circulation and its multiscale
variability.

The coherence ratios are generally elevated (ρ ∈ [0.5, 1]) and variable (Fig. 5.1). Al-
though it depends on both the local leaking processes and the area of a given province,
there is no apparent relationship between the size of the sub-region and its coherence
ratio. Overall, ρ ≥ 0.8 are often seen in the Aegean and Adriatic Seas. The Alboran,
Balearic, Tyrrhenian, and Adriatic Seas are characterized by relatively large provinces,
whereas the Levantine, Aegean and south Ionian and Libyan Seas are subdivided in
rather small ones. Note also that some provinces are composed of non-contiguous
boxes. This occurs especially within the pathways of fast-flowing currents as the Alge-
rian Current, the Atlantic-Ionian stream (south Ionian, Libyan and south-east Levantine
sea) and the Liguro-Provencal Current (Ligurian sector).

We focus now on larval dispersal patterns examining the frequency of occurrence of
province boundaries (as explained in Part I) across the ensemble of experiments to
identify recurrent frontal systems and relatively stable hydrodynamical unit. Over
most coastal/shallow regions, boundaries occur in various locations and orientations,
resulting in no apparent structure (dark red patches in Fig. 5.2). These disorganized
patterns characterize oceanic environments with complex circulation in which spatial-
scales of connectivity are highly variable (Siegel et al., 2008). They are observed in most
insular regions (Balearic, Tuscan and Aegean archipelagos, Corsica, Sardinia, Crete,
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Figure 5.1: Hydrodynamical provinces extracted from the connectivity matrices of
a) Winter 2011 (t0 = 1st Jan.) using τ ' PLD = 30 days and b) Summer 2011 (t0 = 1st

Jul.) using τ ' PLD = 60 days. Each province is colored according to its ρ value
(ranging from 0.5 to 0.9). As already showed in Chapter 4, the number of provinces
decreases with τ. White streamlines represent the simulated flow averaged over
the period of integration (i.e. a) 1st-30thJan. 2011 and b) 1stJul.-29thAug. 2011) and

they match very well with province boundaries.

Cyprus), in the Tunisian-Sicilian strait (also punctuated by small islands) and over
narrow continental shelves (Italian, French, Catalan, Libyan-Egyptian and Israelian-
Lebanon shelves) (Fig. 5.2a). In contrast, wide continental shelves are organized as
coherent hydrodynamical units whose offshore limits match the 200 m isobath. The
gulf of Lion is delimited by a frontier coinciding with the Catalan front and associated
Northern current (Bouffard et al., 2010) (an extension of the Liguro-Provencal current)
. For long PLDs only, the Tunisian-Libyan shelf appears as two units in summer
(Fig. 5.2b), merging into a single one in winter. The oceanic frontiers constituted by
such currents/fronts are likely to prevent coastal larvae from escaping wide continental
shelves.

In the open ocean, clear hydrodynamical units emerge (Fig. 5.2), organized as large
“gyre” systems with rare occurrence of boundaries (white/yellow colors) in their center
and semi-persistent frontiers (light/dark red colors) aligned along their perimeters.
Elevated connectivity within each subdivision but little exchange between them are
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expected, thus providing basin-scale patterns of larval dispersal. Large hydrodynamical
units are found in the western Mediterranean basin, the Adriatic sea, the Tyrrhenian
sea (Fig. 5.2a and b) and only at longer time-scales in the north-Ionian and Levantine
seas (Fig. 5.2b). Most of these open-ocean frontiers are located along well-known
oceanographic features (Millot and Taupier-Letage, 2005), some of them recognized as
partial transport barriers. For instance, the so-called Oran-Almeria front separates the
Alboran sea from the rest of the Mediterranean Sea. It appears here rather extending
from Oran to Cartagena, some 200 km away than previously documented. The Balearic
front is another semi-permament transport barrier (Mancho et al., 2008) passing north
of the Balearic archipelago in the Balearic current (Bouffard et al., 2010) and elongating
eastward in winter. North of this quasi-zonal boundary, a large hydrodynamical unit
composed of the Lion gyre and Ligurian sea is separated from the Balearic sea at short
time-scale. The Tyrrhenian sea is consistently organized as a two-gyre system using
both PLDs. For the 30-day integration the Adriatic sea is subdivided by bathymetric
gradients (∼ 100 and 200 m isobaths, i.e. off the Gargano promontory) into a northern,
central and southern Adriatic gyres, the two latter units merging for PLDs of 60 days.

Surprisingly, some open-ocean areas, such as the Ionian, Levantine and Aegean basins
(Fig. 5.2a), are characterized by disorganized dispersal patterns and stochastic larval
connectivity (Siegel et al., 2008). They become more structured at longer time-scales
with the emergence of the Western Ionian gyre, the Shikmona gyre and a large system
encompassing the Rhodes, Ierapetra and Mersa-Matruh gyres (Millot and Taupier-
Letage, 2005). The eastern Aegean sea has disorganized dispersal patterns whereas
small hydrodynamical units appear in its northern and western parts, in good agreement
with its thermal structure (Poulos et al., 1997).

More generally, regions with no apparent spatial patterns at short PLDs see the emer-
gence of spatial structures for longer integration time. Oceanic areas already identified
as gyral systems for short time-scales have their diameter increasing with the integration
time, ultimately merging with their neighbors.

Note that most of these hydrodynamical units are quite consistent with the trophic
clusters obtained from satellite chlorophyll data (d’Ortenzio and d’Alcalá, 2009), sug-
gesting they also delimits specific biogeochemical provinces (Longhurst, 2006). Indeed,
although this study focuses on passive larvae, the unveiling of well-known oceanic
fronts and gyres hint that the spatial distribution of other tracers (e.g. salinity, tem-
perature, chlorophyll-a, dissolved nutrients) are also influenced by similar transport
patterns.

5.4

Implications for the design of MPAs

The geographical structure of larval dispersal in the seascape influences largely the con-
nectivity of marine reserves. The MPAs located within large and stable hydrodynamical
units (Fig. 5.2) are interconnected, in good agreement with (Andrello et al., 2013) who
identified similar MPA clusters in the Algerian, Balearic, Adriatic and Tyrrhenian seas,
respectively. Further information is obtained with the analysis of three complementary
proxies of connectivity defined as followed. We analyze the mean spatial scales of

63



CHAPTER 5. MARINE PROTECTED AREAS (MPAS) AND OCEANIC
ECOLOGICAL CONNECTIVITY

−5 0 5 10 15 20 25 30 35

30

32

34

36

38

40

42

44

46

b)

Longitude oE

La
tit

ud
e

o N

−5 0 5 10 15 20 25 30 35

30

32

34

36

38

40

42

44

46

a)

La
tit

ud
e

o N

0

0.1

0.2

0.3

0.4

0.5

0.6

Figure 5.2: Frequency of occurrence of province boundaries at each ocean node
from the ensemble of 20 experiments (all winters/summers of 2002 − 2011) for
each PLD: a) τ ' PLD = 30 days and b) τ ' PLD = 60 days. While in Chapter
4 we focused only on τ = 30 here we show differences among different PLDs.
Black ellipses in b) highlight the frontiers which have significant seasonality: plain
ellipses indicate a preferential occurrence in winter and dotted ellipses in summer.

Black contours represent the 200 m isobath.

larval dispersal (Fig. 5.3a) and the mean local coherence (inversely related to leaking,
Fig. 5.3b) by averaging over the ensemble of experiments the area and the coherence ρ,
respectively, of the time-dependent province encompassing each MPA. While these two
metrics are solely influenced by the flow, the mean number of interconnected MPAs (i.e.
temporally averaged number of MPAs encountered within the same time-dependent
province, Fig. 5.3c) depends also on the density of existing reserves.

Larval connectivity and dispersal potentials are highly variable among the Mediter-
ranean MPAs (Fig. 5.3). Reserves in the Adriatic and Aegean seas are characterized
by small dispersal surface (≤ 5 × 104 km2) and among the highest coherence (ρ ≥ 0.8).
This suggests a low connectivity which is also reflected in the few interconnected MPAs
(≤ 8) despite their relatively high density. MPAs located around isolated islands are as-
sociated with modest dispersal surface (∼ 4 − 8 × 104 km2) and low coherence (ρ ≤ 0.7).
Typical of these insular environments (Vaz et al., 2013), complex circulation patterns
(islands’ wake, eddies, retention...) result in a moderate connectivity and high tem-
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Figure 5.3: Spatial variability of MPAs connectivity derived from three complemen-
tary metrics averaged over all winter/summer experiments over 2002− 2011 using
τ ' PLD = 30 days. a) Mean area (in km2) and b) mean ρ of the province sheltering
the reserve of interest. c) Mean number of interconnected MPAs (i.e. number of
reserves situated within the same hydrodynamical province). Light grey contours
represent the 200 m isobath. Results using a PLD of 45 and 60 days are qualitatively
similar with a slight increase of the mean area and the number of interconnected
reserves. Note that non-contiguous areas belonging administratively to a given

reserve were treated here as a single MPA.
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ECOLOGICAL CONNECTIVITY

poral variability (not shown). MPAs implemented within narrow continental shelves
bounded by energetic currents are characterized by rather large provinces (≥ 7×104 km2)
and moderate coherence (0.65 ≤ ρ ≤ 0.8). These reserves are situated along the French
Côte d’Azur with the Liguro-Provencal Current, the Catalan coast with the Northern
Current, the Moroccan/Algerian coastlines impacted by the Algerian Current and in the
eastern Levantine basin with the jet-like intensifications of its gyre circulation (Millot
and Taupier-Letage, 2005). This elevated connectivity is driven by the adjacent currents
that regularly intrude onto the shelf, enhancing larval dispersal along the current axis,
as suggested by the numerous interconnected MPAs (≥ 15) along the French, Cata-
lan and Israelian coastlines. In contrast, MPAs situated within extended continental
shelves, such as the Gulf of Lion and the Tunisian/Libyan shelf, are characterized by
small dispersal area (≤ 6 × 104 km2) and large coherence (ρ ≥ 0.8). Unless exceptional
intrusion events (not shown), the inner-shelf is isolated by shallow bathymetry holding
the current off the shelf break, thus resulting in restricted connectivity. Note that most
MPAs associated with narrow shelves and sluggish circulation (such as the Tyrrhenian,
Corsican and Sardinian coastlines) behave quite similarly to the latter group with small
dispersal surfaces.

5.5

Conclusions

To conclude, we found that despite the stochastic nature of larval dispersal (Siegel et al.,
2008), the extraction of provinces organizing surface dispersion, allows to highlight
local oceanographic characteristics resulting in the emergence of connectivity regimes.
They should be in accord with the main conservation objectives to ensure successful
implementations of coastal and offshore marine reserves. For instance, the allocation
of MPAs within narrow shelves bounded by currents would favor larval export over
large distances (Pelc et al., 2010) whereas reserves created within internal seas or large
continental shelves would rather promote the restoration of local populations (Pineda
et al., 2007). Overall, the Mediterranean MPAs are not evenly distributed across the
spatial partitioning of the seascape revealed by our analysis. Moreover, the “size and
spacing” guidelines already studied theoretically, may differ depending on the local
dispersal behavior. Our results suggest the use of few large MPAs located in each
stable hydrodynamical unit of the western Mediterranean basin and the Adriatic sea
whereas numerous small MPAs evenly distributed across the fluctuating units might
be preferable in the Ionian and Aegean seas.
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CHAPTER 6
Local network measures and

population dynamics

6.1

Characterizing metapopulations and subpopulations in marine
seascapes

Marine populations are commonly structured as a ”metapopulation” in which discrete
”subpopulations” are linked to each other via the exchanges of individuals (adults, ju-
veniles, larvae, eggs...) (Cowen and Sponaugle, 2009; Calò et al., 2013). This population
connectivity (i.e. the exchanges of individuals among subpopulations) can be evalu-
ated with the study of genetic connectivity, defined as the degree to which gene flow
affects evolutionary processes within subpopulations. Another closely related concept
is the demographic connectivity which measures the impact of dispersal processes on
growth and survival rates of a subpopulation (Lowe and Allendorf, 2010). A good
understanding of population connectivity, together with the genetic and demographic
connectivities, are fundamental for predicting the replenishment of a given site after
disturbance (population persistence), for the maintenance of genetic diversity within
populations and overall for an efficient management of marine ecosystems (Palumbi,
2003; Cowen et al., 2006; Hastings and Botsford, 2006; Cowen and Sponaugle, 2009).

Depending on the rate of colonization, previous studies distinguished Open subpop-
ulation that receives/exports individuals from/to other subpopulations while Closed
subpopulation does not exchange individuals to an appreciable extent. This implies
that open subpopulations are primarily maintained through network persistence (i.e
the exchange of individuals with neighbouring subpopulations) while closed subpop-
ulations mainly survive through self-persistence (i.e local birth rate higher than death
rate). Another distinction among open subpopulations that are geographically isolated
was introduced by (Pulliam, 1988) with the concept of Source/Sink dynamics. It arose
from the spatial variability of habitat quality which leads to different demographic
and exportation/importation rates in each subpopulation (Roberts, 1997; Crowder et al.,
2000). (Pulliam, 1988) focused on terrestrial species with low dispersal so that the
source/sink character could be estimated by local demographics. Despite the high dis-
persal ability of early life stages of marine species and the tremendous heterogeneity
of oceanic habitats, (Cowen and Sponaugle, 2009) defined a source population as a
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subpopulation in which the net export of individuals is greater than the net import; the
reverse is a sink.

Estimating the extent to which subpopulations are open/closed or source/sink has lead
to define various local connectivity metrics that are directly or indirectly related to larval
transport. A particular attention was given to Self-Recruitment (SR), which measures
the proportion of all local larval recruits that originated from the source population (e.g.
Planes et al., 2009; Saenz-Agudelo et al., 2011). Other studies aimed at estimating the
Local Retention (LR): it is defined as the proportion of local larval production retained
on a site (Carson et al., 2011; Hogan et al., 2012). Because SR is a function of the number
of larvae arriving from elsewhere and LR depends on the number of those leaving, these
two metrics do not inform population connectivity similarly. Concerning the proxies of
exchange, (Crowder et al., 2000; Bode et al., 2006) showed the importance of appraising
source/sink dynamics for conservation purposes. Some authors proposed to simplify
the source/sink character of a given subpopulation by the directional movement of
larvae in the currents since larvae have been identified as the most dispersive stage for
many marine species. (Roberts, 1997) defined a source subpopulation when its larval
export is greater than larval import, the reverse is a sink. Coupling hydrodynamical
and population models, added the concept of population persistence by considering
that a source must persist without larval supply, contrary to the sink which depends
on it. Despite the crucial information brought by these open/closed and source/sink
proxies applied to larval transport, they have not been studied yet. Furthermore,
although they are often employed to describe the state of a local population or even to
make management recommendations, the link with oceanographic processes and their
inter-relationship remains unclear.

6.2

Defining local network measures as proxies of larval connectivity

Here we present a new modeling framework that allows characterizing larval dispersal
and its impacts on the spatial structures and dynamics of marine populations from a
large-scale perspective (Dubois et al., 2015). Although this framework is equally appli-
cable to any target specie with well-known biological traits and to any oceanic areas, the
connectivity patterns evidenced here are, under some assumptions, relevant for several
key organisms of Mediterranean ecosystems. Following the method explained in Part
I we are able to construct several networks from which various connectivity proxies
are extracted. We retained two PLDs of 30 and 60 days and both winter and summer
spawning by considering three successive starting times t0 for each season (t0 = 1st,
15th and 31st of January and t0 = 1st, 15th and 31st of July) to account for episodic and
variable spawning events. A total of 120 numerical experiments (6 starting times over
10 years for 2 PLDs) were performed to analyze robust basin-scale connectivity patterns
focusing on species with a wide geographical range and potential for large-distance
dispersal.

We aim here at describing the flow of larvae between all geographical sub-areas of the
surface ocean (i.e. single nodes of the network), focusing on both the pathways and
the fluxes. In our Network Theory perspective, this is equivalent to focus on centrality
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measures of single nodes. For each node, one can examine the number of links (degree)
and the sum of relative weights (strength ) emanating from it, referred to as the OUT-
degree and OUT-strength, and those arriving in it, called the IN-degree and IN-strength.
We define Pi j and Li j as the weight and the adjacency matrices of the transport network
under study.

Botsford et al. (2009) defined the Local Retention (LR) as the proportion of locally pro-
duced settlement to local larval release. Since the local larval release and the success of
recruitment are here assumed to be homogeneous in space, LR can be approximated by
the proportion of locally retained particles (i.e. the diagonal elements of the connectivity
matrix):

LRi = Pi,i . (6.1)

Botsford et al. (2009) defined the Self-Recruitment (SR) as the ratio of locally produced
settlement to settlement of all origins at a given site. With our assumptions, SR corre-
sponds to the ratio of retained particles to the total incoming particles from all origins
(including those produced locally):

SRi =
Pi,i∑N

x=1,x,i(Px,i) + Pi,i
=

Pi,i∑N
x=1(Px,i)

. (6.2)

For each node, we also compute the local OUT-strength which measures the proportion
of particles released locally that were transported elsewhere. It is calculated by summing
the rows of the connectivity matrix, excluding the diagonal element. Similarly, the local
IN-strength corresponds to the proportion of particles arriving in a given site originating
from elsewhere. It is computed by summing-up the columns of the matrix, excluding
the diagonal element.

OUTs
i =

N∑
x=1,x,i

(Pi,x) =

N∑
x=1

(Pi,x) − Pi,i . (6.3)

INs
i =

N∑
x=1,x,i

(Px,i) =

N∑
x=1

(Px,i) − Pi,i . (6.4)

We also computed the IN-degree (OUT-degree, respectively) which represents the num-
ber of incoming (outgoing, respectively) links into (from, respectively) a given site:

OUTd
i =

N∑
x=1,x,i

(Li,x) =

N∑
x=1

(Li,x) − Li,i . (6.5)

INd
i =

N∑
x=1,x,i

(Lx,i) =

N∑
x=1

(Lx,i) − Li,i . (6.6)

Then, we examine the relative importance of larval export versus import to inform the
local source/sink dynamics. The SourceSink (SS) metrics are thus defined by:

SSd
i =

INd
i

INd
i + OUTd

i

. (6.7)
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SSs
i =

INs
i

INs
i + OUTs

i
. (6.8)

By studying this ratio on both strength and degree variables, it evaluates the source/sink
character both in terms of the total amount of larvae (strength ) and in terms of the spatial
diversity of origins/destinations (degree). Note that these metric are restricted between
0 and 1 by construction and its negative/positive deviation from 0.5 allows us to identify
source/sink, respectively. A node characterized by SSs

i � 0.5 can be considered as a
net source of larvae whereas a node with SSs

i � 0.5 represents a net sink. Similarly,
a node characterized by SSd

i � 0.5 indicates that it exports larvae to many different
downstream nodes but it receives from just a few. A node with SSd

i � 0.5 represents a
site that receives larvae from many different upstream sites but that exports somehow
unidirectionally to just a few locations.

Spatial patterns of each connectivity metric in the Mediterranean basin are studied
through the mapping in geographical coordinates of their local (node-by-node) time-
averages across all 120 simulations. Since a significant intra-annual variability of the
oceanic circulation has been documented in the Mediterranean sea (e.g. Bakun and
Agostini, 2001; Pinardi et al., 2013), we also investigated how these spatial patterns
change depending on the season of interest. To do this, we computed temporal averages
over a subset of the simulations considering the two spawning seasons separately, i.e.
averaging the connectivity proxies using only winter or summer matrices.

To quantify the temporal variability of the local connectivity metrics, we measured the
amount of variation from the temporal means µ by computing the standard deviation
σ. We then relate locally the standard deviation to the mean to evaluate the confidence
to be given at the averages reported on the maps. The local mean is considered non-
significant if σ > µ (see the black crosses on Fig. 6.1 and 6.2). Those nodes are
indeed characterized by a particularly high temporal variability, indicating oceanic
regions where the stochasticity of the circulation prevent any robust characterization of
connectivity.

The main conclusions of this analysis are reported hereafter:

• There are more than 50% of nodes that always show null LR/SR and less than 3%
with LR/SR > 50%.

• For IN/OUT-degree, we find that on average 50% of nodes exchange larvae with
more than 35 upstream and downstream sites; about 20% of boxes are highly
connected with 70 or more upstream and downstream links.

• For IN/OUT-strength about 40% of all sites receive more particles than their initial
quantity, thus behaving always ”larval sink”.

• The PLD is the most important factor of variability, especially for retention indices.

• Long PLDs increase the dispersal potential, as evidenced by stronger larval
fluxes (strength ) and more anisotropic transport with higher diversity of des-
tinations/origins (degree).

• The seasonal and inter-annual variability of our proxies have similar magnitude.
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Figure 6.1: (a) Mean Local Retention (LR) for a PLD of 30 days averaged across 60
(winter and summer) connectivity matrices; (b) mean LR over the southern Ionian
sea averaged across 30 winter matrices and (c) 30 summer matrices. Note that
open ocean boxes are excluded from this variability analysis as their weak LR/SR

(< 10%) are not analysed here.

Despite significant variability, maps of mean LR and SR over the Mediterranean basin
(Fig. 6.1) reveal robust patterns of retention rates. The largest LR/SR (> 30%) are
observed along the continental and insular coastlines while moderate values (10% <
LR/SR < 30%) may be also find slightly offshore in boxes located over the continental
shelf (depths < 200 m). In contrast, most open ocean boxes (depths > 200 m) show on
average null or very low (> 1%) LR/SR (Fig. 6.1a).

While these global patterns are observed for all simulations, some noticeable seasonal
differences can be highlighted. For instance, elevated values of LR and SR are found
over the Tunisian shelf during summer whereas they are restricted to the near-coastal
boxes in winter (Fig. 6.1b and c).

All σ computed over 60 (global mean; Fig. 6.2) or 30 (seasonal mean; Fig. 6.3) connec-
tivity matrices are of the same order of magnitude for both PLDs and reveal that less
than 1% of boxes have σ > µ. Their locations do not show any consistent pattern, except
in the western Alboran sea which has been disregarded from our analyses 1.

SS − degree and SS − strength show very identical spatial patterns with slightly smaller
magnitude for for larval sinks in the SS− strength variable (Fig. 6.2); this is true for both
PLDs (not shown). As such, we only analyse the patterns observed in both SS − degree

1This methodological artefact is due to the lack of constant particles seeding despite the continuous
entrance of Atlantic water through the Gibraltar strait.
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Figure 6.2: (a) Mean SourceSink−degree and (b) mean SourceSink−strength averaged
across 60 (winter and summer) connectivity matrices for a PLD of 60 days.

and SS−strength using a PLD of 60 days (as longer dispersal tends to accentuate patterns
of exchange).

Some regions are characterized by relatively stable behaviour throughout the year (Fig.
6.2). For instance, the Ligurian sea is mainly marked by a strong export of larvae (source)
restricted to the near-shore areas (Côte d’Azur) in winter and extending offshore during
summer (Fig. 6.3a, b). The Gulf of Lion can be divided into two subregions: the
north-eastern areas which behave as a larval source with larval exportation higher than
importation whereas the south-western coastlines are larval sinks. These patterns of
SS− degree, as well as of SS− strength to a lesser extent, are quite similar in both seasons
but the distinct behaviours are emphasized during winter (Fig. 6.3a, b). The Adriatic
sea has a persistent larval sink along the southern Italian shores (Puglia coasts and
the gulf of Taranto). Coastlines of Lybia, Egypt, Israel and Lebanon behave mainly as
larval sinks throughout the year (Fig. 6.2), with an intensification along the Egyptian
coastlines in summer (Fig. 6.3a, c).

Others parts of the Mediterranean sea are marked by two very distinct seasonal patterns.
For instance, during summer most of the Balearic sea behaves as a large larval sink (Fig.
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Figure 6.3: (a) Mean SourceSink − degree averaged across 30 summer matrices and
mean SourceSink−degree averaged across 30 winter matrices (b) over the north-west

Mediterranean and (c) over the Ionian sea for a PLD of 60 days.

6.3a, b), whereas the winter results in a different pattern with a pathway behaving as a
clear larval source. The northern Ionian sea and the coastlines of Calabria and Sardinia
behave during winter as a source while the western Greek shores are sinks (Fig. 6.3c).
During summer, there is the opposite tendency with larval sources observed off Greece
(westward). The same pattern is observed in the Aegean sea (Fig. 6.3a, c): in winter
its eastern side acts as a larval sink while its western side is a source. The reverse is
observed in summer. At smaller scales, the Gulf of Taranto in wintertime acts as a sink
on its north-eastern coast and as a source on its south-western side but it appears as
a strong sink in summer. Another clear seasonality exists in the coast of Gulf of Sirte
which behave as sink in winter and source in summer (Fig. 6.3a, c).

Finally the central Ionian sea, central Levantine sea and Algerian basin are character-
ized by heterogeneous patterns of both SS − degree and SS − strength (Fig. 6.2), with
particularly weak signal close to 0.5, making it difficult for us to depict clear source or
sink in these open ocean regions.

Investigating the relationship between LR and SR is important because it is generally
easier to estimate empirically SR (which only depends on local estimates) rather than
LR (which depends on the highly uncertain larval production of both local and remote
subpopulations). When plotting LR versus SR when considering each box and each
simulation independently, we find a rather loose correlation (Fig. 6.4a) with a R2 of 0.69
indicating a significant spread of the cloud of points. However, by averaging locally the
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Figure 6.4: Relationship between LR and SR for a PLD of 30 days when (a) con-
sidering each box (3270) and each simulation (60) independently, and (b) when

averaging our proxies locally across all simulations.

LR and SR values over all simulations (for a fixed PLD), LR and SR appear positively
correlated through a more compact linear relationship (Fig. 6.4b). In this case, the R2

coefficient is 0.89, suggesting that LR and SR are in average almost equal at a given site
(under our assumptions of homogeneous larval production and mortality).

To investigate if there is a global relationship between retention and exchange metrics
we distinguished each point of the LR/SR scatterplots according to its value of SS−degree
and SS− strength (Fig. 6.5). We find that a sink site (receiving more larvae than sending
them) tends to have higher LR than SR whereas a source site is characterized by SR
higher than LR. A tight linear relationship between SR and LR (R2 of 0.96) is found for
the sites characterized by neutral SS (i.e. receiving as much larvae as sending them).

The basin-scale angle of our study allows highlighting common oceanographic condi-
tions which would favour retention processes in any other oceanic region. Extended
continental shelves and complex bathymetry (e.g. islands, capes, large bays) in associ-
ation with relatively weak coastal currents lead to high retention near the coast. Exem-
plary locations of enhanced LR and SR are the Gulf of Lion, the Gulf of Valencia/Ebro
delta, the Tuscan archipelago, the Croatian coastlines and the insular and near-shore sub-
regions of the Aegean sea. This is consistent with the elevated retention processes that
was documented in coral reef environments by small-scale bio-physical models (Treml
et al., 2012). It is due to a sluggish mean circulation associated with (sub)mesoscale
physical processes (e.g. topographically steered currents, trapped-eddies) whose char-
acteristics time-scales are smaller or comparable with the duration of larval drift, thus
limiting advection away from the shore. Retention is however diminished by large-scale
energetic currents flowing close to the shore (e.g. the narrow continental shelves of the
french ”Côte d’Azur”) and by long-lived mesoscale structures travelling offshore (e.g.
the Algerian coast). The seasonal change of LR/SR observed over the Tunisian shelf
illustrate well these two behaviours (Fig. 6.1b, c). The elevated LR observed during
summer decrease in winter due to the acceleration and intrusion over the shelf of the
Sicily-Strait-Tunisian-Current (Millot and Taupier-Letage, 2005).
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Figure 6.5: Inter-relationship among connectivity metrics for a PLD of 30 days.
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represent schematically the behaviour of a node according to its location on the

plot. ”Neutral” nodes have SS − strength or SS − degree ∈ [0.4, 0.6].

The variability of SS−degree and SS−strength metrics appears also primarily determined
by the oceanographic setting as most larval sources/sinks identified here match well
divergence/convergence zones (respectively). For instance, the ”sink” character of the
Balearic sea could be related to the dominant wind regimes that forces convergent
surface transport and downwelling in the centre of the gyre, especially in summer
(Bakun and Agostini, 2001). In contrast, atmospheric patterns change during winter
with the intensification of the Cierzo wind in the Ebro valley, resulting in a cyclonic
wind stress curl producing an area of Ekman divergence and associated upwelling
(Bakun and Agostini, 2001) in the southern part of the Balearic sea. The permanent
retentive character of the north-eastern Balearic sea is consistent with who documented
the highest residence times of surface drifters over 1992-2010 in this area. Other offshore
sources, such as in the Adriatic and Tyrrhenian sea, are also reasonably well explained
by the oceanographic context with the three cyclonic gyres in the Adriatic sea and the
summer strengthening of the northern Tyrrhenian cyclonic gyre.

The impact of the pathway and state of a boundary current on connectivity properties
is another relevant mechanism that is clearly evidenced in the north-western Mediter-
ranean. The dominant circulation pattern in the region is the Liguro-Provencal Current
(Ligurian sea) which then prolong into the Northern Current off the Gulf of Lion. This
current intensifies during winter with a narrowing and strengthening of its transport
(Millot and Taupier-Letage, 2005) that would favour larval export along its main axis.
This explains well the narrow larval source observed in winter along the French coast-
line as well as the blue vein (source) further west that sharply separates the Gulf of
Lion from the Balearic sea. In contrast during summer, the source region (Ligurian
sector) extends further offshore due to the slower and less defined boundary current, in
association with the ”Mistral” wind which tends to veer along the coast forcing coastal
upwelling (Bakun and Agostini, 2001).
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The Gulf of Lion is characterized by a shallow bathymetry that often maintains the core
of the Northern Current off the shelf-break. As such, the inner-shelf circulation is pri-
marily influenced by the ”Tramontane” and ”Mistral” winds which produce a divergent
zone associated with upwelling along the Provence/Camargue coastlines (north-eastern
parts of the Gulf) and a convergent zone with downwelling along the Languedoc-
Roussillon coast (south-western parts of the Gulf). These divergence/convergence zones
match very well the source/sink dynamics described previously. Note that the accen-
tuated source/sink pattern observed in the Gulf during winter is also consistent with
the seasonal intensification of ”Mistral” and ”Tramontane” winds. Similarly, other
”dipoles” of upwelling/downwelling forced by seasonal wind regimes are in accord
with our proxies (Fig. 6.2, 6.3). The source/sink dipole documented along the northern
Ionian and Aegean coastlines are both forced by summer southward Etesian winds
(Bakun and Agostini, 2001); the winter dipole observed in the Gulf of Taranto is due to
the winter southward Bora winds. The larval sinks observed along the Lybian/Egyptian
shores are due to the dominance of coastal convergence all year long and the seasonal
sources observed along the coastlines of the Gulf of Gabes and Sirte are related to the
spring/summer wind reversals (Bakun and Agostini, 2001).

Although relatively stable circulation can be consistently associated with larval sources/sinks,
it is worth mentioning that some oceanic regions such as the central Levantine sea and
the Algerian basin are characterized by chaotic and turbulent transport (Millot and
Taupier-Letage, 2005) preventing a clear depiction of their source or sink behavior.

6.3

Hydrodynamical and genetic connectivity for management pur-
poses

There is growing evidence that oceanographically-induced barriers or preferential con-
duits of larval transport play a key role in shaping the genetic structures of marine
organisms of different taxa (e.g. Banks et al., 2007; White et al., 2010; Mokhtar-Jamaı̈
et al., 2011; Schunter et al., 2011; Franchini et al., 2012; Soria et al., 2012; Teacher et al.,
2013). Nevertheless, no consensus has been yet reached about whether the observed
genetic structure reflects primarily gene flow patterns (supposedly mediated by larval
transport), genetic drift or local adaptation through mutations. We suggest that our
results, and more generally the tunable modeling framework we proposed here, offer
great opportunities to help addressing this long-standing controversy.

In particular, geneticists have been interpreting their datasets with the concepts of
”open/closed” and ”source/sink” populations but there is no universal agreement on
the genetic structures supporting these behaviors. Our basin-scale maps of larval re-
tention and exchange provide quantitative information to formulate and test improved
hypothesis about the dominant gene flow patterns and the subsequent categorization of
a subpopulation as ”open/closed” and ”source/sink”. Another important shortcoming
of genetic studies is the discrete sampling strategies. Sampling of individuals is often
opportunistic (i.e. where samples are available) or is designed to test a supposed barrier
to gene flow (e.g. the Oran-Almeria front). The maps presented here could be used to
plan intelligently the sampling of population genetic studies by targeting sub-regions
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with dissimilar connectivity behaviors (as predicted by our model) which could be then
evaluated based on the genetic dataset.

The persistent larval sources/sinks that we identified have the potential to impact the
genetic connectivity of local subpopulations. For instance, the genetic homogeneity
found among the sea-bream Diplodus sargus populations of the Italian, French and
Spanish coasts (Lenfant and Planes, 1996) could be related to the efficient gene flows
occurring among those source areas. In contrast, genetic samples originating from the
south-western part of the Gulf of Lion were found differentiated from the surrounding
areas for D. sargus (Lenfant and Planes, 1996) and the sessil specie Paramuricea clavata.
These authors hypothesized an oceanographically-induced gene flow to explain the
genetic differentiation observed in the south-western Gulf of Lion. It is confirmed by a
small-scale study (Guizien et al., 2012) and by our basin-scale model, both predicting a
marked larval sink in this region.

Note however that with our assumptions, which differ from those of Pulliam (1988), a
subpopulation is characterized as a sink under two contrasting situations. On one hand,
a subpopulation is classified as a sink when it sends almost no emigrant elsewhere (i.e.
weak exportation, high LR), suggesting it is genetically influenced by itself. In this case,
it is the genetic drift due to local adaptation that will result in a genetic differentiation
with its neighbouring subpopulations Hartl and Clark (1998); Jolly et al. (2009). On the
other hand, a subpopulation is a sink when importation from neighbouring source(s)
are particularly high (i.e. low SR), indicating a significant input of genetic materials
from surrounding subpopulations and possibly resulting in a weak genetic differenti-
ation between the connected source/sink subpopulations Gaggiotti (1996). Such sink
population can be further distinguished into those influenced by a single source or those
who received from several sources, potentially maximizing its genetic diversity (Pannell
and Charlesworth, 1999). Indeed subpopulations of the Balearic sea have been often
described as a ”mixed genes pool” with diverse genetic influences from the Alboran,
Catalan and Ligurian seas (Rozenfeld et al., 2008; Ledoux et al., 2010; Mokhtar-Jamaı̈
et al., 2011; Hamdi et al., 2012). Our results consistently suggest that the Balearic sea is
a basin of attraction for drifting larvae as evidenced by a strong influx (strenght) from
diverse origins (degree), potentially resulting in a mix between local genes and those
from the surrounding sources. Furthermore, Chaoui et al. (2009) documented a clear
subdivision between the French and Algerian coastlines for the highly dispersive specie
Sparus aurata. In that case, both the permanent larval sink in the north-western Balearic
sea and the presence of the Balearic front extending eastward (Rossi et al., 2014) could
act as efficient basin-scale barriers to gene flow.

Discussing further these issues is not the scope of this chapter. However it clearly high-
lights the importance to analyze together these complementary connectivity metrics at
large-scale, as is allowed by our method, to properly characterize marine subpopula-
tions.

As recently suggested by (Lett et al., 2015) (using a metapopulation model and the
genetic dataset of (Saenz-Agudelo et al., 2011)) and the population genetic study of
(Hogan et al., 2012), our results confirm that SR may be a good predictor of LR especially
when averaging the stochasticity of the oceanic circulation at each site. Considering
that previous similar conclusions were based on genetic dataset, it suggests that the
variability of larval dispersal does not impact strongly the genetic structure of marine
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metapopulation but it is rather the mean dispersal patterns that dominate the genetic
imprint.

Furthermore, our results further advocate that this compact linear relationship holds
when the local source-sink dynamic is relatively ”neutral”, i.e. when a site is not
identified as a strong larval source or sink. In this case LR, which can help assessing
population persistence (Burgess et al., 2014), can be well approximated by SR (generally
easier to measure by empirical approaches). In contrast, when a population is charac-
terized by large relative differences between its exportation and importation, LR and
SR are still linearly correlated but with a coefficient > 1 for the sinks and < 1 for the
sources. This is because a site characterized by high SR (i.e. low ”Openness” (Hixon
et al., 2002)) rarely receives any larvae from elsewhere (importation) and inversely, a
site with high LR would have very low exportation. Consequently, a subpopulation
with high SR and LR can be considered as ”closed” due to the limited upstream and
downstream exchanges it has with distant sites or subpopulations (see annotations on
Fig. 6.5). Similarly, ”open” subpopulation would be characterized by low SR and LR
suggesting high import and export, respectively.

In other words, the greater is the relative difference between SR and LR, the larger
are the deviations of SS − degree or SS − strength from 0.5, more pronounced is the
source or sink behavior. Indeed, almost all intermediate behaviors were observed in
our simulations, especially in the non-averaged case (Fig. 6.4.a). For instance, a site
presenting simultaneously SR < 0.5 and LR > 0.5 (upper left corner of the plots in Fig.
6.5a) will systematically import more particle than it export and will thus behave as a
sink. The inverse reasoning stands for the source sites. While these conclusions based
on SS − strength are straightforward, we show that they also hold when considering
SS − degree: a site which tends to import from distinct geographical regions but export
to only a few (a sink node in terms of degree) is also characterized by LR higher than SR,
having possibly consequences for the local genetic and phenotypic diversity.

The integrated interpretation of retention and exchange large-scale connectivity indices
has implication for the implementation of coastal and pelagic Marine Protected Areas
(MPAs). They all inform how subpopulations are connected through larval transport
so that they would help predicting the effects of protection measures or of external
perturbation on both local and surrounding subpopulations. For instance, the protec-
tion of a site whose larval supply originates from several non-protected ”upstream”
subpopulations may be inadequate. To assure the persistence of marine populations, a
fundamental objective of ecosystems conservation and fisheries management (Burgess
et al., 2014), MPAs could be located targeting source (divergent) areas (Roberts, 1997;
Crowder et al., 2000) with moderate retention, thus favoring both self- and network
persistence. Besides the identification of low threats - high diversity areas (Coll et al.,
2015) or favorable habitats (Anadón et al., 2013), depicting both local and broad-scale
connectivity of any oceanic area, as is allowed by our model, is a crucial pre-requisite
for implementing future MPAs.

Note that rather than developing a highly realistic model that would apply to a single
species, we selected here a range of parameters according to well-known ecological
traits of various Mediterranean marine organisms to propose a new model which al-
lows describing large-scale connectivity. The ”true” connectivity of marine population
depends however on numerous species-specific biological processes all of which are

78



6.4. CONCLUSIONS

also influenced by abiotic factors such as the variable oceanic circulation and the hetero-
geneity of littoral and pelagic habitats (Cowen and Sponaugle, 2009). Despite resolving
only some of these processes, we highlight specific oceanographic processes that control
larval connectivity and that would affect both demographic and genetic connectivities
of many marine organisms. Furthermore, it is worth emphasizing that the novel mod-
eling framework presented here is indeed adaptable to any species whose biological
traits and ecological preferences are precisely known.

Last, there exist numerical limitations associated with the resolution of the hydro-
dynamical model and of our transport network. Although near-shore areas are not
particularly well resolved by the basin-scale model we used, some patterns are found in
good agreement with regional studies based on dedicated high-resolution ocean model
(Guizien et al., 2012).

6.4

Conclusions

To conclude, we stress that describing the connectivity of marine subpopulations,
thought to be governed largely by the pelagic larval stage, has crucial ecological and
managerial implications. We proposeed here a new modeling framework including
Lagrangian simulations, tools from Network Theory and concepts of population dy-
namics, to better characterize marine connectivity at the scale of the Mediterranean
basin, allowing to bridge the gaps between the distinct approaches commonly used.
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Optimal paths in temporal flow
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CHAPTER 7
Characterizing paths in temporal

weighted networks

7.1

Posing the problem: transport and probability

Let’s consider a temporal weighted directed network where weights are representative
of transport of some quantity Q from one node to another. We suppose now that
we do not have any constraint on the conservation of this quantity to treat the most
general case. We define out-strength and in-strength of the i-node during a time interval
m = [tm−1; tm] as:

s(m)
outi

=
∑

j

A(m)
i j , (7.1)

s(m)
ini

=
∑

j

A(m)
ji . (7.2)

We consider the case of a single step, looking at the transport from the node I to the node
J for m = 1. The amount of transported quantity Q will be represented by the weight A(1)

IJ
To simplify the notation we take the discrete times to be integer: {t0, t1, ... } = {0, 1, ... }.
We can now pose two different fundamental questions:

1. What is the fraction of Q leaving I at time t = 0 that end in J at time t = 1 (taking
as reference the total quantity of Q present in I). Or equivalently, what is the
probability P(Jt=1|It=0) for a random walker to end in J at time t = 1 under the
condition of starting from I at time t = 0?

2. What is the fraction of Q present in J at time t = 1 that come from I at time t = 0
(taking as reference the total quantity of Q present in J). Or equivalently, what is
the probability P(It=0|Jt=1) for a random walker to come from I at time t = 0 under
the condition of being in J at time t = 1?

To address to these questions we need the information carried by s(m)
outi

and s(m)
ini

to
normalize the weight properly.
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1. We divide the weight by the total amount of Q exported from I during m = 1:

p(1)
IJ = P(Jt=1|It=0) =

A(1)
IJ

s(1)
outI

. (7.3)

2. We divide the weight by the total amount of Q imported to J during m = 1:

f (1)
IJ = P(It=0|Jt=1) =

A(1)
IJ

s(1)
inJ

. (7.4)

We stress that the two quantities are related by time-reversal transformation. If the
system is invariant under time-reversal we find indeed P(Jt=1|It=0) = P(It=0|Jt=1) and so
p(1)

IJ = f (1)
IJ .

To unveil the time-dependent connectivity features of our temporal weighted network,
we need some tools to describe transport dynamics across several temporal snapshots
of the network.

First, we introduce the concept of extremal path ηM
IJ , as the path of M-temporal steps

connecting the pair of nodes (I, J) maximizing some quantity relevant for the process
in study. If the classical concept of shortest path is related to the idea of minimizing
the distance connecting two nodes, here we are not anymore focused on a geometric
interpretation. We are looking instead at the most efficient way to connect two nodes
independently on the length of that connection.

Until this point we did not need any assumptions about the memory of the transport
processes across the network, but from now we will assume that such processes are
Markovian. Under this assumption and considering that both probabilities and fractions
are multiplicative quantities we could extend to an arbitrary number of steps M the
definitions for p(1)

IJ and f (1)
IJ . We note that probabilities and fractions are multiplicative

when:

1. Probabilities of paths are referred to the probability for a random walker moving
on the network of going across a specific path connecting two nodes. We assume
that the random walker is moving according the flow of Q but it represents an
independent subject and it could not be seen as a parcel of Q. In particular it is
not involved in the creation/destruction dynamics.

2. Fractions of exported Q refer to the fraction of the quantity Q belonging to a fixed
starting node that is present in a destination node after going across a specific
path. Here we assume that across each time step in every node the fractions of
Q are conserved i.e. creation/destruction dynamic conserves the proportions of Q
originated in different places.

Probabilities and fractions are the two quantities that will be maximized to identify
extremal path in our network.

Considering the time interval [t0, tM] divided into M-steps we define an extremal paths
as the (M + 1)-tuple of nodes among the set of all possible paths µ =

{
〈I, k1, ... , kM−1, J〉

}
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connecting those nodes, that maximize respectively:

(pM
I,J)µ =

A(1)
I,k1

s(1)
outI

[ M−1∏
m=2

A(m)
km−1,km

s(m)
outkm−1

]A(M)
kM−1,J

s(M)
outkM−1

. (7.5)

Or:

( f M
I,J )µ =

A(1)
I,k1

s(1)
ink1

[ M−1∏
m=2

A(m)
km−1,km

s(m)
inkm

]A(M)
kM−1,J

s(M)
inJ

. (7.6)

So the extremal path ηM
IJ will be characterized by M + 1 nodes in the network and the

associated probabilities/fractions PM
I,J = maxµ{(pM

I,J)µ} or FM
I,J = maxµ{( f M

I,J )µ}.

We also note that we can reconsider the concept of extremal path in the simpler case of
static networks. In this case, indeed, even if we lose the temporal meaning of each step,
the probabilistic interpretation remain valid.

Now we study how symmetries in the network allow us to find new relations between
the two definitions of paths introduced above. Let’s consider the case of local absence
of sources and sinks:

s(l)
outi

= s(l−1)
ini

, ∀ i, l .

It is easy to see that using this constraint we can express pM
I,J in function of f M

I,J and vice
versa:

pM
I,J = f M

I,J

(s(M)
inJ

s(1)
inI

)
, (7.7)

f M
I,J = pM

I,J

( s(1)
outI

s(M)
outJ

)
. (7.8)

This means that pM
I,J and f M

I,J are proportional and the constant of proportionality only
depends on properties of I and J and not on the path connecting them. The path among
I and J that maximizes the two quantities will coincide.

In the case of double-stochasticity we have:

s(l)
outi

= s(m)
out j

= s(p)
ink

= s(q)
inz

, ∀ i, j, k, z, l,m, p, q .

The relations become an identity:
pM

I,J = f M
I,J . (7.9)

So in constant double-stochastic network the two concepts of probability/fraction coin-
cide giving a connection with the concept of time-reversal invariance.

7.2

Most Probable Paths (MPPs) calculation

Here we will focus on the extremal paths maximizing the probability i.e. most probable
paths among two nodes (MPPs) (Ser-Giacomi et al., 2015b,c). Let’s write the probability
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(pM
I,J)µ as:

(pM
IJ )µ = T(1)

Ik1

[M−1∏
l=2

T(l)
kl−1kl

]
T(M)

kM−1 J , (7.10)

where:

T(l)
kl−1kl

=
A(l)

kl−1kl

s(l)
outkl−1

, (7.11)

is the single step probability.

To find the MPP and its probability we use an adaptation of the Dijkstra algorithm
(Dijkstra, 1959) which takes into account the layered and directed structure of our time-
ordered flow graph. In brief, we realize that for on-step paths the maximum probability
is P1

Ik1
= T(1)

Ik1
and then we apply recursively the formula:

Pl+1
Ikl+1

= max
kl

(
Pl

Ikl
T(l+1)

klkl+1

)
, (7.12)

for l = 1, 2,M − 1 until reaching the endpoint J = kM (see Fig. 7.1 for a detailed
explanation of the algorithm).

The cost of the computation is reduced by computing the accessibility (Lentz et al., 2013)
of each intermediate node at each intermediate time. Once we fix initial and final nodes I
and J we calculate at each intermediate time which are the nodes that are crossed at least
by one path during the dynamics. A given node kl at time tl is crossed if it is reachable
from I in l time steps, and at the same time, if from this node it is possible to reach node
J in M− l time steps. This information is collected in the so-called accessibility matrices
(Lentz et al., 2013), which are properly time-ordered products of the network adjacency
matrices A. Specifically, node k is contributing at time l to a path between I and J if and
only if: [ l∏

i=1

A(i)
]

Ik
, 0 and

[ M∏
i=l+1

A(i)
]

kJ
, 0 . (7.13)

Raising the number M of steps we observe a fast increase in the number of paths
connecting two given nodes. It is thus crucial to understand how much the MPP
is representative of the large set of possible paths joining two nodes. To assess in a
quantitative way this issue we introduce the following quantity:

λM
IJ =

PM
IJ∑

µ(pM
IJ )µ

, (7.14)

which determines the fraction of probability carried by the MPP with respect to the sum
of probabilities of all paths connecting nodes I and J. Note that the denominator can be
simply computed as the matrix-product entry

(∏M
l=1 T(l)

)
IJ

.
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Figure 7.1: Schematics of the algorithm to find the MPP of M steps between I and
J. a) First part: determination of the accessible nodes. Point A is reachable from I at
t = t2 but it is not possible to reach J from it in the rest of the time interval. Point C is
not reachable from I at t = tM−1 even if J can be reached from it. Point B satisfies both
accessibility conditions, therefore, in contrast to points A and C, it belongs to the
accessibility set and it will be considered in the calculation of the MPP. Systematic
identification of all accessible nodes is done by applying the criteria in Eq. (7.13).
The rest of the figure illustrates the recursive maximization procedure given by Eq.
(7.12): b) In the first time step one assigns to the links towards the nodes A1 and A2

(considered to be the only ones in the accessibility set U(1)
IJ ) the probabilities T(1)

I,A1

and T(1)
I,A2 , respectively. c) For node B1 one considers the links from A1 and A2,

evaluates the path’s probabilities T(1)
I,A1 T(2)

A1,B1 and T(1)
I,A2 T(2)

A2,B1 , and selects the
maximum one (in the figure the corresponding to the path I,A2,B1, red lines). One
repeats this for all nodes B1,B2,B3 in the accessibility set U(2)

IJ to obtain the MPPs
between I and these nodes, and then the procedure can be iterated again for the

accessible nodes at time t3.
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7.3

Sets of highly probable paths

For large values of M, the MPP progressively loses dominance and, on average, does not
carry a significantly high fraction of probability. However the dynamics, characterized
by a high number of paths connecting initial and final points, can be still described by
a few of them, which together have a non-negligible probability. To see this we can
relax the definition of MPP and define a family of subsets of highly probable paths
(HPP) holding most of the probability. In our formulation each subset KM

IJ (r, ε) is
characterized by a rank 0 ≤ r ≤ M − 1 and a threshold parameter 0 ≤ ε ≤ 1. Ideally
the sets would contain all the paths whose probability is larger than εPM

I,J. But since
exhaustive searching of all such paths becomes computationally prohibitive except
for very small M, the second parameter r is introduced to determine the number of
constraints imposed in the search for these relevant paths. Given the initial (I) and
final (J) points we fix r nodes at intermediate times and look for paths between I and
J made of segments which are MPPs connecting these intermediate nodes, by using
the algorithm above. Different locations and times for these r intermediate nodes are
scanned and paths with probability larger than εPM

I,J are retained and incorporated into
the set KM

IJ (r, ε). For ε → 1, independently on the rank (or for r = 0) only the MPP
is retained. KM

IJ (r = M − 1, ε) contains all the paths with probability larger than εPM
I,J.

However, evaluation of these sets of HPPs can be computationally costly for high values
of r, since the algorithm scales exponentially with r. Nevertheless interesting results
can be obtained considering already low-order HPPs, i.e. r = 1 and r = 2.

Once one of the subsets is computed we can establish its significance by defining an
extension of expression Eq. (7.14):

λM
IJ (r, ε) =

∑
ν(pM

IJ )ν∑
µ(pM

IJ )µ
, (7.15)

where the sum in the numerator is over all the paths in the subsetKM
IJ (r, ε) and the one

in the denominator is over all paths connecting I to J.

When we deal with spatially-embedded networks (and this is the case of the applications
that we will show later), another important aspect of the sets of HPPs is to establish
how close, spatially, are they with respect to the corresponding MPP. This is obtained
with an average distance function. Given two generic paths between initial and final
points I and J, µ1 = {I, k1..., J} and µ2 = {I, l1..., J}we define their average distance as

d(µ1, µ2) =
1

M − 1

M−1∑
i=1

d(ki, li) , (7.16)

where d(ki, li) is a metric determining the distance between two given nodes of the
network. For a geophysical transport network the geographical distance (on the sphere)
between the centers of the nodes is the most natural choice. For a given pair of nodes
(I, J) the average distance between the subsetKM

IJ (r, ε) and the MPP connecting them in
M time steps is defined as

D
M
IJ =

1
NM

IJ

∑
µ

d(µ, ηM
IJ ) , (7.17)
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where NM
IJ is the number of paths µ in the subsetKM

IJ (r, ε), and the sum is extended over
all paths in the subset (remember that ηM

IJ denotes the MPP). This quantity provides an
estimation of how much paths in the subset deviate spatially from the corresponding
MPP. A large deviation means that the probability to reach J from I is spatially spread
in a large region and indicates furthermore the importance of considering the HPP
subset instead of only the MPP. Small values of DM

IJ imply HPP sets with the shape
of coherent narrow tubes around the MPP, so that the MPP already characterizes the
spatial pathways, even if its probability is not large.
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Advection corridors in the

Mediterranean surface flow

8.1

MPPs in the ocean

We apply the previous concepts to the network describing surface water transport in
the Mediterranean Sea described in Part I (Ser-Giacomi et al., 2015b).

We perform the calculations using a time step of τ = 10 days, and considering M from 6
to 9 steps (i.e. in between 2 and 3 months, a time interval during which the horizontal-
flow assumption remains a good approximation). We build 10 temporal networks, each
one having t0 as January 1st of each of the years available in the simulation database
(2002 − 2011).

  

 

Figure 8.1: Paths of M = 9 steps (three months) in the Mediterranean flow network
with starting date January 1st 2011, represented as straight segments joining the
path nodes. Left: MPPs originating from a single node (black star) and ending in
all accessible nodes. Color gives the PM

IJ value of the paths in a normalized log-scale
between the minimum value (10−15, light turquoise) and the maximum (10−5, dark
pink). Center and right: all the paths in the KM

IJ (ε) set with ε = 0.1, initial point
marked by a cross and final point marked by a triangle. The center panel shows
the 18 HPPs, out of a total of 54276 paths between the two sites. The MPP, with
PM

IJ = 3 × 10−9, is displayed in dark pink, whereas the other paths are colored with
a normalized logarithmic scale according to their (pM

IJ )µ values in [εPM
IJ ,P

M
IJ ]. Right

panel shows the 39 HPPs, out of a total of 61 × 106, in a similar logarithmic scale
normalized in [εPM

IJ ,P
M
IJ ] with PM

IJ = 1.4 × 10−6.
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Figure 8.2: Normalized histogram f (λ) of coefficients λM
IJ for M = 5 (black curve)

and M = 6 (green curve), and λM
IJ (ε), with ε = 0.1 for M = 5 (blue curve) and M = 6

(red curve). The statistics is compiled from all connected pairs of nodes (I, J) and
the ten temporal flow networks corresponding to the first months of the ten years
of velocity data. The mean values are: 〈λ5

IJ〉 = 0.24; 〈λ6
IJ〉 = 0.16; 〈λ5

IJ(0.1)〉 = 0.52;
〈λ6

IJ(0.1)〉 = 0.42.

In Fig. 8.1 (left panel) we show on map the set of all the MPPs of M = 9 time steps
starting from a given node in one of our temporal networks (the one corresponding to
2011), and we notice how many different connections are possible from a single starting
node. The PM

IJ values span several orders of magnitude and this behavior is typical for
the distribution of probability across MPPs. We stress here that MPPs do not coincide
in general with fastest paths: the fastest connection among two nodes is not always the
most probable one stressing the importance of a weighted description of the network.

To assess how representative of the whole dynamics are MPPs such as the ones shown
in Fig. 8.1 we show in Fig. 8.2 the distribution of λM

IJ and λM
IJ (ε) for two values of M (see

Eq. (7.14) and (7.15)). The distributions are collected from the λ-values of the whole
set of accessible pairs (I, J) in our ten temporal networks. For small M most of the MPP
have significant λ-values, but as M increases the peak in the distribution of λM

IJ shifts
towards zero (we have checked that exponentially) as a consequence of the dramatic
increase with M of the number of available paths between two nodes. Then, it becomes
important to consider larger sets of paths such as KM

IJ (ε). For the cases plotted, i.e.
M = 5, 6 and ε = 0.1, the mean values of λM

IJ (ε) are around 0.5. This means that, despite
K

M
IJ (ε) may not contain the full set of paths which individually carry a probability larger

than εPM
IJ , it is large enough so that, for most of the (I, J) pairs, it contains globally over

50% of the connection probability. This result further gains meaning if we consider that
the number of paths inKM

IJ (ε) is on average well below 1% of the total number of paths
of M = 5 and 6 steps. Hence, despite the strong particle dispersion characterizing our
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flow networks it is true that only a small subset of paths contribute significantly to the
main transport features.

8.2

MPP-betweenness centrality and multistep approach

Equipped with the above definitions we can now characterize network properties that
are dependent on optimal paths in different ways. One of these is the concept of
betweenness centrality, which is generally defined as the proportion of shortest paths
passing through a node. We introduce here a definition based on the number of most
probable paths crossing a node. Specifically we define the betweenness of node K
after M steps as BM

K =
∑

IJ gM
IJ;K/NM, where the sum is over all pairs of initial nodes

I and final accessible nodes J, NM is the total number of connected pairs of nodes at
time step M (computable from accessibility matrices (Lentz et al., 2013)), and gM

IJ;K is
the number of times the node K appears in the most probable path connecting I and
J. The sum can be calculated considering (or not) the initial and final nodes in the
sum, and neglecting (or not) counts when paths are stopping in the same region for
more than one consecutive time step. In the example studied here, all these alternative
definitions lead to the same final result. Fixing the time interval M corresponds to
considering paths with the same temporal duration. In this way we ignore connections
that are occurring at shorter or longer times (Kim and Anderson, 2012) and that can be
significantly more probable. It is possible to overcome this limitation by performing a
multistep analysis: we can look at all MPPs with M in a given interval [Mmin,Mmax] and
choose the MPP, η[Mmin,Mmax]

IJ , with the highest probability. The multistep analysis leads to

an alternative definition of betweenness, i.e a multistep MPP-betweenness B[Mmin,Mmax]
K

which is calculated considering the multistep MPPs instead of the fixed-M one.
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Figure 8.3: Multistep MPP-betweenness B[6,9]
K at each geographical node K, com-

puted for each of our ten (2002-2011) temporal networks and then averaged over
them.
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Figure 8.4: Scatter plot of MPP-betweenness (x-axis) vs. HPP-betweenness (y-axis)
at 9-steps. The Pearson correlation coefficient is 0.92.

Starting date: 2011 Jan, 1.

In Fig. 8.3 we show the multistep MPP-betweenness B[6,9]
K , averaged over our ten net-

works. We have noticed that the distribution of the betweenness values decreases
exponentially so that there are not strong hubs in the network. Spatial patterns deter-
mined by the transport dynamics of the flow are clearly evident in the figure where high
betweenness areas are organized in one dimensional-like structures corresponding to
the main corridors of transport, i.e. narrow pathways that connect different regions of
the ocean. Main paths of the Mediterranean sea are observed like Cyprus and Rhodes
Gyres, surrounding the Ionian basin, the Algerian current and those along the Sicily
strait, etc. Note that because of the ten-years average, individual short lived mesoscale
features (eddies and fronts) are averaged out. We also found that MPP-betweenness
is highly sensible to the starting date t0. This highlights the seasonal and inter-annual
variability of the flow and justifies further our time-dependent approach.

We checked the robustness of our approach and evaluated the reliability of MPPs
testing the stability of MPP-betweenness under different conditions. Dealing with
temporal networks it is important to understand how much results are affected by
the choice of the the single time step duration (Ribeiro et al., 2013). We checked this
issue considering different M and τ values but the same total duration Mτ and we
obtained very similar results for the MPP-betweenness showing that it is robust under
variations of the temporal resolution. We also note that the MPP-betweenness does not
significantly change when considering only the 50% of MPPs with larger values of λ (i.e.
when we use a threshold to retain only the most significant MPPs). Finally, to support
our interpretation of most probable paths as main carriers of connectivity, we considered
also MPP-betweenness using subsets of paths, so that gM

IJ;K is now the number of times
node K appears in the setKM

IJ (ε) of HPPs between I and J, with ε = 0.1, without noticing
any qualitative or quantitative difference in the results. As shown in Fig. 8.4, values
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of betweenness in the two cases are very much correlated, and the Pearson correlation
coefficient is larger than 0.9. Hence, despite the MPPs represent a small portion of the
paths in theKM

IJ (ε) subsets (between 3 − 10% for ε = 0.1, depending on the value of M),
which is itself a very small fraction of the full set of paths in the network, they seem to be
representative of the main spatio-temporal structures describing the global dynamics.
Indeed, center and right panels of Fig. 8.1 show that most of the relevant paths remain
spatially close to the MPP. This observation is confirmed by calculations of the spatial
dispersion between paths in KM

IJ (ε), whose average turns out to be of the order of the
size of the boxes defining the nodes.

8.3

Comparing fastest and most probable paths

In the study of temporal networks, the concept of fastest path has been put forward
as a natural extension of the shortest path of static networks. In our work we define
and analyze a different type of relevant path which is the Most Probable Path (MPP).
It is important to address the differences between most probable and fastest paths,
here we illustrate them with data from the temporal network of surface flow in the
Mediterranean Sea.

  

Figure 8.5: We show the fastest -MPP (blue) and the absolute-MPP (red), between an
origin node I (black star) and a destination node J (black triangle). The considered
full set of paths ranges The fastest -MPP reaches the destination node in 4 steps
of τ = 10 days while the absolute-MPP needs 8 steps i.e. 40 days more. The
probability associated to the fastest -MPP is 5.9 × 10−7 and the probability of the

absolute-MPP is 6.7 × 10−6.
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Figure 8.6: Ranking plot in which P f ast
IJ correspond to the probability of fastest -

MPPs and PMPP
IJ correspond to the probability of absolute-MPPs. The range of

probability values can be read from the vertical axis (logarithmic scale). The total
number of optimal paths can also be read-off from the horizontal axis.

The MPP refers to the path transporting the maximum fraction of water (or of probabil-
ity) between two nodes, and the fastest path to the pathway linking the two nodes in the
shortest time. This second concept can not be implemented when the number of time-
steps is fixed. However we can reclaim the concept of fastest path within a multistep
approach, i.e. by looking at a time window specified by a range of values for the num-
ber of time steps M. We can then define the setM[Mmin,Mmax]

IJ of (Mmax −Mmin + 1)-MPPs

for the pair I, J for M ∈ [Mmin,Mmax], and the fastest -MPP as the MPP in M[Mmin,Mmax]
IJ

corresponding to the smaller M. On the other side we can also define an absolute-MPP,
i.e. the MPP in M[Mmin,Mmax]

IJ having the highest probability. By comparing the set of
absolute-MPPs with the set of fastest -MPPs we can address the question: is the fastest
path necessarily the most probable?

In Fig. 8.5 we show that the fastest -MPP among two nodes of the network is different to
the absolute-MPP and that its probability, in several cases, can be orders of magnitude
smaller. We considered for this example paths ranging from M = 3 to M = 9 steps of 10
days (i.e. a time scale of 1 − 3 months) with starting date January 1st 2011. The results
show the importance to distinguish between the connections realized in the shortest
time and the connections that carries most of the transported mass (the most probable).

To display in a more systematic way the differences between fastest and absolute MPPs
across the network we study the rank plot of the whole set of paths during ten years
(2002 − 2011) ranging from 3 to 9 steps of 10 days starting at January 1st of each year
(see Fig. 8.6). The rank plot displays of the probabilities of each path in one of the
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sets sorted in decreasing order. We see a gap in probabilities between the two sets of
about one order of magnitude in most of the range displayed. The fastest -MPPs have
probabilities significantly smaller than absolute-MPPs.

Finally, we also evaluate how these differences are reflected in the betweenness mea-
sures. We define the relative difference among the betweenness computed using the set
of fastest -MPPs and absolute-MPPs for the node K as:

∆K = 2
B

abs
K − B

f ast
K

Babs
K +B

f ast
K

, (8.1)

where Babs
K is the betweenness computed using absolute-MPPs and B f ast

K the between-
ness computed using fastest -MPPs. We consider once more paths ranging from 3 to 9
steps of 10 days with starting date January 1st 2011 and we compute the spatial-average
value for the module of the relative difference finding 〈|∆K|〉K = 0.32. This means that,
on average, the difference between the two measures is about 30%.

We stress that all the comparisons above are among paths that are already MPPs linking
a pair of nodes. Considering still fastest paths (for example the one by which the very
first particle from one node reaches the other) will lead to much stronger differences.
In summary, the results show the importance to distinguish between the connection
realized in the shortest time and the connection that carries most of the transported
mass. This gains even more relevance when considering possible applications such as,
rescue operations, pollutant-spreading or biological connectivity.

We considered paths in a temporal flow network describing surface flow in the Mediter-
ranean Sea. We quantifed the relative importance of the most probable path between
two nodes with respect to the whole set of paths, and to a subset of highly probable
paths which incorporate most of the connection probability. Despite MPPs represent
only a small fraction of the whole set of paths, we found that they suffice to highlight the
main transport pathways across our network. We provide an alternative definition of
betweenness centrality. High betweenness areas are organized in one dimensional-like
narrow pathways that connect different regions of the ocean. Finally we showed the
difference among fastest paths and MPPs stressing the different physical interpretation
of such paths in temporal networks.

8.4

Conclusions

To conclude, we considered paths in a temporal flow network describing surface flow
in the Mediterranean Sea. We quantified the relative importance of the most probable
path between two nodes with respect to the whole set of paths, and to a subset of
highly probable paths which incorporate most of the connection probability. Despite
MPPs represent only a small fraction of the whole set of paths, we found that they
suffice to highlight the main transport pathways across our network. We provide an
alternative definition of betweenness centrality. High betweenness areas are organized
in one dimensional-like narrow pathways that connect different regions of the ocean.
Finally we showed the difference among fastest paths and MPPs stressing the different
physical interpretation of such paths in temporal networks.
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CHAPTER 9
Transport pathways in an

atmospheric blocking event

9.1

Introduction

Eastern Europe and Western Russia experienced a strong, unpredicted, heat wave dur-
ing the summer of 2010. Extreme temperatures resulted in over 50000 deaths and
inflicting large economic losses to Russia. The heat wave was due to a strong atmo-
spheric blocking that persisted over the Euro-Russian region from late June to early
August (Matsueda, 2011). During July the daily temperatures were near or above
record levels and the event covered Western Russia, Belarus, Ukraine, and the Baltic na-
tions. Physically, the origins of this heat wave were in an atmospheric blocking episode
that produced anomalously stable anticyclonic conditions, redirecting the trajectories
of migrating cyclones. Atmospheric blockings can remain in place for several days
(sometimes even weeks) and are of large scale (typically larger than 2000 km). In par-
ticular, the Russian blocking of summer 2010 was morphologically of the type known
as Omega blocking that consists in a combination of low-high-low pressure fields with
geopotential lines resembling the Greek letter Ω (see Fig.9.1). Omega blockings bring
warmer and drier conditions to the areas that they impact and colder, wetter conditions
in the upstream and downstream (Black et al., 2004). Despite these type of events have
been well-investigated over the years, a complete understanding and prediction is still
missing.

Here we present a characterization of this flow pattern based on the study of fluid
transport as a Lagrangian flow network. The most probable paths linking nodes of
this atmospheric network reveal the dominant pathways traced by atmospheric fluid
particles. We study the concrete period extended from the July the 20th to July 30th
(Ser-Giacomi et al., 2015c).

99
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EVENT

Figure 9.1: Geopotential height at 500hPa (contours, in m) and temperature (color
code, in degrees C) on July 24th, 12:00 UTC.

9.2

Atmospheric setup

Atmospheric data were provided by the National Centers for Environmental Prediction
(NCEP) Climate Forecast System Reanalysis (CFSR) through the Global Forecast System
(GFS) (Saha and coauthors, 2010). This reanalysis was initially completed over the 31
year period from 1979 to 2009 and extended to March 2011. Data can be obtained with
a temporal resolution of 1 hour and a spatial horizontal resolution of 0.5◦ × 0.5◦. The
spatial coverage contains a range of longitudes of 0◦E to 359.5◦E and latitudes of 90◦S
to 90◦N. The variables needed as input to the Lagrangian dispersion model described
in the next section include dew point temperature, geopotential height, land cover,
planetary boundary layer height, pressure and pressure reduced to mean sea level,
relative humidity, temperature, zonal and meridional component of the wind, vertical
velocity and water equivalent to accumulated snow depth. All these fields are provided
by CFSR data on 26 pressure levels.

As mentioned, the idea is to obtain the effective velocity field felt by any fluid particle.
Then the Lagrangian dispersion model (see next subsection) will integrate it to provide
as output the three-dimensional positions of the particle at every time step. The numer-
ical model used to integrate particle velocities and obtain trajectories is the Lagrangian
particle dispersion model FLEXPART version 8.2 (Stohl et al., 2005, 2011). FLEXPART
simulates the long-range and mesoscale transport, diffusion, dry and wet deposition,
and radioactive decay of tracers released from point, line, area or volume sources. It
most commonly uses meteorological input fields from the numerical weather prediction
model of the European Centre for Medium-Range Weather Forecasts (ECMWF) as well
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Figure 9.2: The geographical domain considered and the discretization grid defin-
ing the nodes of our flow network.

as the Global Forecast System (GFS) from NCEP (the one used in our study). Trajectories
are produced by integrating the equation (the input velocity data are interpolated on
the present particle position):

dX
dt

= v(X(t)) , (9.1)

with t being time, X the vector position of the air particle, and v = v̄ + vt + vm is the
wind vector. FLEXPART takes the grid scale wind v̄ from the CFSR, but complements it
with stochastic components vt and vm to better simulate the unresolved turbulent pro-
cesses occurring at small scales. The turbulent wind fluctuations vt are parametrized
by assuming a Markov process via a Langevin equation, and the mesoscale wind fluc-
tuations vm are implemented also via an independent Langevin equation by assuming
that the variance of the wind at the grid scale provides information on the subgrid
variance. Variables entering the parametrizations are obtained from the meteorological
CFSR fields. For additional details we refer to (Stohl et al., 2005, 2011).

We focus our analysis on the domain in between 0◦E - 80◦E and 40◦N - 70◦N. In order
to define the nodes of the network we discretize this region in 626 equal-area boxes
using a sinusoidal projection. The latitudinal extension of each node-box is 1.5◦, the
longitudinal one varies depending on the latitude (see Fig. 9.2). The area of each box is
27722 km2, so that the typical horizontal size is of the order of 166.5 km. We take τ = 12
hours as time discretization. We uniformly fill each node with 800 ideal fluid particles
releasing them at 5000 m of height, a representative level in the middle troposphere.
FLEXPART trajectories are fully three-dimensional, but by initializing at each time-step
particles in a single layer we are effectively neglecting the vertical dispersion (which is
of the order of 800 m in the τ = 12 h time step) and focussing on the pathways of large
scale horizontal transport. Fully three-dimensional flow networks will be the subject of
future work.
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9.3

MPPs in the atmosphere

Equipped with the tools developed above we can now compute pathways of transport
during the atmospheric event described above. Figure 9.3a shows all the optimal paths
leaving a node in the Scandinavian Peninsula at July 25 and arriving to all nodes which
are reached in M = 9 steps (i.e. 4.5 days).

Figure 9.3: Paths of M = 9 steps of τ = 12 hours in our flow network with starting
date July 25th 2010 (panel a)) and July 20th 2010 (panel b)), represented as geodesic
arcs joining the path nodes. MPPs originating from a single node (black circle) and
ending in all accessible nodes. Color gives the PM

IJ value of the paths in a normalized
log-scale between the minimum value (deep blue) and the maximum (dark red).
Panel a): probabilities ranging from 10−3 to 10−14. Panel b): probabilities ranging

from 10−3 to 10−15.

The graphical representation joins with maximal arcs the center of the grid boxes iden-
tified as pertaining to the MPP. The actual particle trajectories between two consecutive
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boxes are not necessarily such arcs. The paths are colored according to their probability
value PM

IJ .

Figure 9.4: Optimal paths of 9 steps of τ = 12 hours with starting date July 20th
2010, entrained in the high- and in the two low-pressure areas of the blocking.
Same coloring scheme as in Fig. 9.3. Panel a): probabilities ranging from 10−3 to
10−16. Panel b): probabilities ranging from 10−2 to 10−16. Panel c): probabilities

ranging from 10−3 to 10−13.

The MPPs with highest probability (reddish colors) follow a dominant anticyclonic (i.e.
clockwise) route bordering the high pressure region (see Fig. 9.1, but note that this is
at a particular time, whereas the trajectory plots span a range of dates of more than
four days) without penetrating it. There is also a branch of MPPs with much smaller
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probabilities (yellow and bluish colors) that are entrained southward by a cyclonic
circulation.

Despite the persistent character of the Eulerian block configuration, sets of Lagrangian
trajectories become highly variable in time. See for example the set of MPPs starting
from the same initial location but five days earlier (Fig. 9.3b). The southward cyclonic
branch is now absent, all MPPs following initially the anticyclonic gyre. Remarkably,
the set of trajectories bifurcates into two branches when approaching what seems to
be a strong hyperbolic structure close to 40◦N 60◦E. A hint of the presence of second
hyperbolic structure is visible at the end of the westward branch, close to 50◦N 30◦E.
Figure 9.4 displays additional MPPs starting also at July 20th, but initialized inside the
main anticyclonic region of the blocking, and in two low-pressure regions flanking it.
Fig. 9.4a clearly shows the main anticyclonic circulation, highlighting also the escape
routes from the high-pressure zone, associated with the hyperbolic regions described
above. The other two panels show the cyclonic circulations at each side of the high,
in a characteristic Omega-blocking configuration. It is remarkable the compactness of
the trajectories inside the eastern low-pressure area, which form a very localized and
coherent set with practically no escape in the 4.5 days time-interval displayed.
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Figure 9.5: Ranking plot in which the PM
IJ values of all MPPs obtained for M = 6,8,

and 10 starting on July 25th in the whole area are plotted in decreasing order. The
range of probability values of the MPPs can be read from the vertical axis (from a
few percent to 10−15 for M = 6 or to less than 1020 for M = 10). The total number of

optimal paths can also be read-off from the horizontal axis.

We stress that the plots in Figs. 9.3 and 9.4 are different from spaghetti plots for which
many available trajectories are plotted from different or related initial conditions. For
our set of particles this will give 800 trajectories emanating from each box. Here we
are plotting just one path, the MPP, for each initial and final box pair, which strongly
limits the number of paths from each box but, as we will see more thoroughly, it is still
representative of the trajectories of many released particles.
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9.4

Relevance of MPPs

The range of colors in Figs. 9.3 and 9.4 indicates that, given an initial box, not all MPPs
leading to different locations are equally probable. This is quantified by the probability
PM

IJ which gives a weight to each MPP. Indeed PM
IJ takes a very large range of values.
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Figure 9.6: a) Normalized probability density f (λ) of the merit figure λM
IJ (r, ε)

of paths started on July 20th 2010 for M = 9 and ε = 0.1, with r = 0 (only the
MPPs, black curve), r = 1 (blue) and r = 2 (green). b) Mean value of the λM

IJ (r, ε)
distributions (paths’ starting date July 25th) as a function of the number of time
steps M for r = 0 (only MPPs, blue squares), r = 1 (red circles) and r = 2 (single

black star).

Figure 9.5 shows a ranking plot in which the values of all MPPs of a given M and
starting at a particular date are plotted in decreasing order. We see a huge spread on the
values of PM

IJ . Very low probability values arise because of the exponential explosion
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Figure 9.7: All paths in KM
IJ (r = 1, ε = 0.1) for different I, J, initial point I marked

by a circle and final point J marked by a square. Panel a): M=8 steps, with starting
date July 25th 2011. Panel b): M=12 steps, with starting date July 25th 2011. Panel
c): M=11 steps, with starting date July 20th 2011. Panel d): M=11 steps, with
starting date July 20th 2011. Same coloring scheme as in Figs. 9.3 and 9.4. For
panels a) and b) probabilities ranging from 10−5 to 10−6 while for panels c) and d)
from 10−7 to 10−8. The maximum probability in each panel (dark red) corresponds

to the MPP.

of the number of paths between two nodes with increasing M. Given these low values
of PM

IJ except for the smallest values of M, one should ask how representative are the
MPPs for the full set of paths. Figure 9.6a shows distributions of the parameter λM

IJ (r, ε)
giving the relative importance of the different types of paths (see Chapter 7). We see
that λ-values are small when considering only the MPPs (r = 0), but the distributions
shift towards higher values for HPPs sets of increasing r. Figure 9.6b gives mean values
of the λ distributions. They decrease with M, reflecting the lack of representativeness
of the smallest sets of paths for large M. However, already for r = 1 the set of HPPs has
a mean value higher than 0.5 for a relevant range of time steps.

Thus, for the values of M and ε discussed here, the set of HPPs with r = 1 seems to be
rich enough to represent the transport pathways. But how different is the geometry of
the different paths in this HPP set? And how different is it from the MPPs? We plot in
Fig. 9.7 examples of all HPPs with r = 1 and ε = 0 for particular (I, J) values and dates.
Changing M changes the shape of the path, but in all the cases the sets remain coherent
and narrow tubes of trajectories defining roughly the same pathway as the MPP.
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Figure 9.8: Plot of the mean distance DM
IJ (Eq. (7.17)) as a function of M for r = 1

and ε = 0.1. The quantity is further averaged over all the HPPs starting on July
25th. Units are kilometers.

A quantification of the width of the tubes can be done with the distance measure DM
IJ

in Eq. (7.17). An average of it over pairs of locations is shown in Fig. 9.8. Although
the tube width increases with M, it remains always below the typical linear box size of
approximately 166.5 km indicating that the tubes remain narrow. Thus we conclude
that, despite the decreasing probability of the MPPs for increasing M, they remain good
indicators of the dominant pathways in the transport network.

9.5

Conclusions

To conclude, we computed optimal transport paths for the atmospheric circulation
during a blocking event occurring in Summer 2010 (in particular we focus our study
for the period 20th July - 30th July) over Eastern Europe and Russia. This atmospheric
flow has very different temporal and spatial scales, and is much more diffusive, than
the oceanic flow analyzed in Chapter 8. As in the previous Chapter we found that
the significance of single MPPs decreases with the number of steps considered, but the
MPPs remain representative of the spatial geometry of the pathways, in the sense that
the sets of HPPs are coherent narrow tubes providing transport paths always close to
the optimal path.
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Conclusions and Perspectives

We have used the concept of flow networks to obtain a discretized view of transport
processes in geophysical contexts. Once the fluid motion is cast into the graph theory
framework, powerful techniques from this field become available to investigate the
fluid transport processes. In Part I we have improved, using network concepts, the
characterization of geophysical dispersion and mixing process, as well as the identifi-
cation of coherent fluid regions. One of the simplest network descriptors, the degree
of a node, gives direct information on local stretching properties, classically associated
to the finite-time Lyapunov exponents and their distributions. Thus the out-degree at
a particular node is quantitatively related to the fluid stretching at that location in the
time forward direction, and quantifies fluid dispersion. The in-degree is related to back-
wards stretching, and thus to the mixing of fluid from different origins (Ser-Giacomi
et al., 2015a).

A family of network-entropy functions has been defined, aiming at describing higher-
order statistical properties of fluid stretching (and then of dispersion and mixing) in
terms of the network adjacency matrix. One of them, H0

i is simply the logarithm of
the degree. Another one, H1

i , is the discrete finite-time entropy studied by (Froyland
and Padberg-Gehle, 2012). We find numerically that it provides a good estimation
of the coarse-grained finite-time Lyapunov exponent (Ser-Giacomi et al., 2015a). We
expect higher-order entropies to be related to the generalized Lyapunov exponents that
characterize successive moments of the Lyapunov field. Further work is needed to
assess the validity of these properties more rigorously.

We considered flow networks in the geophysical context, but it is anticipated that the
concepts are equally valid in more general fluid dynamics context, and even apply to
more abstract flows in the phase space of dynamical systems. Also, the network en-
tropies defined here can be used to characterize the local properties of general weighted
networks beyond the degree and the node strength. They represent indeed the way to
define and measure the local Lyapunov exponent in any weighted network (Ser-Giacomi
et al., 2015a).

As a second application in which the network representation provides useful insights
we have investigated the identification of coherent regions in the ocean flow, regions that
are similar to almost invariant sets but for which the presence of strong internal mixing
is also desired. We find in the network-theory toolbox a useful community detection
technique, Infomap (Rosvall and Bergstrom, 2008), that takes into account the directed
and weighted nature of the flow network, and that finds partitions of the geophysical
flow with the required characteristics without restricting the range of community sizes.
We have argued that these characteristics make it an interesting alternative to spectral
methods to identify the desired coherent regions, although we also recognize that a
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substantial clarification of the physical meaning of the minimization process involved
in Infomap is needed (Ser-Giacomi et al., 2015a).

This partition of the sea into coherent provinces is used in Part II to evaluate larval
connectivity and to inform the design of marine protected areas in the Mediterranean
Sea. The systematic detection of communities in the network extracts a set of hydrody-
namical provinces which organize the dispersion of larvae in the entire Mediterranean
basin. Their boundaries coincide with both mesoscale and regional-scale oceanographic
features, comprehending the multi-scale processes of ocean circulation. The repeated
occurrence of these frontiers allows separating the seascape into different hydrodynam-
ical units which provide the “backbone” of oceanic transport impacting larval dispersal
and connectivity within existing MPAs. While the role of such large-scale dispersal
patterns on the genetic structure of marine population remains to be determined, the
hydrodynamical units evidenced may be used to optimize the sampling strategy for
genetic studies (Rossi et al., 2014).

Various connectivity metrics and their spatiotemporal variability are then related to
local oceanography. We show that retention processes are favored along coastlines with
sluggish circulation and over extended continental shelves. We also demonstrate that
convergence/divergence areas generated by alongshore winds are often associated with
larval sinks/sources. Furthermore, studying the relationship among the connectivity
metrics sheds light on their integrated interpretation for conservation planning. Overall,
our results offer many opportunities such as (i) improving the sampling strategy of
genetic studies, (ii) formulating and testing hypotheses about the role of larval dispersal
in structuring spatially and genetically populations and (iii) depicting systematically
retention and transport processes which should help scientists and managers to optimize
the implementation of future MPAs, ultimately consolidating the present network of
reserves in the Mediterranean Sea, and elsewhere in the global ocean, to achieve a sound
management of marine ecosystems (Dubois et al., 2015).

In Part III we introduced tools to compute highly probable paths in weighted temporal
networks and to evaluate their relative importance. Until this point we did not need any
assumptions about the memory of the transport processes across the network, but from
here we assumed that such precesses are Markovian. Betweenness centrality measures
based on them have also been introduced. First we applied this approach to characterize
connectivity in the Mediterranean Sea from a network-theory perspective. Here, MPPs
correspond also to the set of paths that maximize the fraction of transported mass,
giving therefore a clear physical interpretation of connection probabilities. Despite
MPPs represent only a small fraction of the whole set of paths, we found that they
suffice to highlight the main transport pathways across our oceanic network, since most
of the HPPs remain geographically close to them (Ser-Giacomi et al., 2015b). Finally
we computed MPPs and HPPs for an atmospheric blocking event involving eastern
Europe and Western Russia. The computed optimal paths give a Lagrangian view of
the Omega-block configuration, with a central anti-cyclonic circulation flanked by two
cyclonic ones. Moreover they give additional insight on it, such as the variability of
the dominant pathways, and the identification of escaping and trapping regions. The
statistical significance of single MPPs decreases with the time interval considered, but,
as for the case of the Mediterranean, we find always that the MPPs remain representative
of the spatial geometry of the pathways, in the sense that the sets of HPPs are coherent
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narrow tubes providing transport paths always close to the optimal path (Ser-Giacomi
et al., 2015c). This seems to be thus a general characteristic of geophysical flow networks.

We believe that the study of fluid transport from the point of view of MPPs connectivity
will provide new tools and insights complementing standard Lagrangian methods. In-
deed most of these are devoted to the identification of barriers to transport or coherent
regions with small fluid exchange with the surroundings. Here we are instead address-
ing the opposite question: how to detect regions and pathways that maximize fluid
interchange across the network. Even though in principle pathways are simply given
by trajectories, it is almost impossible to extract clear and significant patterns from the
complex sets of trajectories that arise in all, except the most simple, time-dependent
flows. Our approach allows to quantify explicitly transport among two sub-regions of
the domain, highlighting the optimal path connecting them. In this sense MPP-analysis
differs from simply studying the evolution in time of tracer concentrations seeded in a
given region (Ser-Giacomi et al., 2015b,c).

We believe that the representation of fluid motion as a transport or flow network,
allowing the use of powerful techniques from graph theory, will continue to provide
novel insights into the nonlinear processes occurring in our planet, most of them related
to fluid transport.

The present implementation of the method deals only with regions fixed with respect
to geographic boundaries. Tools from the study of bipartite networks would be needed
to find moving coherent regions such as vortices and eddies.

The similarity between our flow-driven boundaries and major environmental gradients
commonly used to regionalize the Mediterranean seascape finally suggests they might
also define oceanic biomes or even faunistic units. Future developments may help
incorporating large-scale biogeography and dispersal patterns to improve MPAs design
for efficient management and conservation of marine ecosystems. Future developments
of our discretized model are also envisaged to resolve additional factors influencing
connectivity. Abiotic variables may affect many biological parameters. Realistic larval
traits such as an active swimming could be also implemented, but only large vertical
migrations are expected to change significantly the dispersal schemes. Concerning our
spatial discretization, on- going work indicates that smaller nodes return finer spatial
structures but do not change the patterns nor the magnitude of our connectivity proxies.

We believe that the study of fluid transport as a network will provide new tools and
insights complementing standard Lagrangian methods. Beyond the fluid dynamics
context, MPPs and the MPP-betweenness measure here introduced could be easily
transferred to other kinds of weighted temporal networks. This could be relevant, for
instance, in defining vulnerability metrics in disease spreading processes, or in detecting
bottlenecks of reaction chains in metabolic networks.
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Rényi, A. (1970). Probability Theory. North-Holland, Amsterdam.

Ribeiro, B., Perra, N., and Baronchelli, A. (2013). Quantifying the effect of temporal
resolution on time-varying networks. Scientific Reports, 3.

Roberts, C. (1997). Connectivity and management of caribbean coral reefs. Science,
278(5342):1454–1457.
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