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List of Symbols

Symbol Description

∆C Contact asymmetry of the heat current.
∆E Electric asymmetry of the heat current.

B Magnetic field.

C Anihilation operator of electrons in the
leads. Its creation operator will be C†.

D Bandwidth energy of a reservoir or a metal.
d Anihilation operator of electrons in the

quantum dots. Its creation operator will be
d†.

G Differential electrical conductance.
K Differential thermal conductance.
L Differential thermoelectrical conductance.
Π Differential Peltier coefficient.
R Differential electrothermal conductance.
S Differential thermopower.

εd Energy level of a single quantum dot or an
artifitial impurity.

εF Fermi energy.

f Fermi distribution function.
fα(ω) Fermi distribution function of the reservoir

α.
F Effective distribution function of the leads.

g̃0 Quantum electric conductance.
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Ga Advanced Green’s function.
Γ Hybridation functions (or constant).
Gt̄ Antitime-ordered Green’s function.
G> Greater Green’s function.
G< Lesser Green’s function.
Gr Retarded Green’s function.
Gt Time-ordered Green’s function.

H General Hamiltonian.

Ith Thermocurrent.
I Electrical current.

Jex Superexchange interaction.
J Exchange coupling constants in the s-d

model.

κ0 Quantum thermal conductance.
K̄ Potential scattering term of the Kondo

model.

G0 Linear electrical conductance.
K0 Linear heat conductance.
L0 Linear thermoelectrical conductance.
L̃0 Lorentz number.
Π0 Linear Peltier coefficient.
R0 Linear electrothermal conductance.
S0 Linear thermopower.

µα Electrochemical potential of the lead α.

n Occupation operator.
n̄ Expected value of the occupation.

Q Heat current.
QE Energy current.

α Fermionic reservoirs. Generally, there are
two reservoirs: left α = L and right α = R.
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ρ Density of states.

Σ Self-energy.
σ Spin.

T Background temperature of the system.
Tα Temperature of the lead α.
τ Dot-dot tunneling amplitude.
θ Thermal bias.
T̂ Time-ordering operator.
ˆ̄T Antitime-ordering operator.
TK Kondo Temperature.
T̃K Effective Kondo temperature.
T Transmission function of the nanosystem.

U Intradot electron-electron interaction.
Ũ Interdot electron-electron interaction.

Vg Gate voltage.
V Applied bias voltage.
Vth Thermoelectric voltage.
V Lead-dot tunnel amplitude.

∆B Zeeman splitting energy due to a magnetic
field B.

ZT Figure of merit.
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Abbreviation Description

2DEG two-dimensional electron gas

AB Aharonov-Bohm
AFM atomic force microscopy

BIC bound state in the continuum

CB Coulomb blockade

DOS density of states
DQD double quantum dot

EOM equation of motion

LED light-emitting diode

NEGF non-equilibrium Green’s function
NRG numerical renormalization group

QD quantum dot
QPC quantum point contact
QPT quantum phase transition

RKKY Ruderman-Kittel-Kasuya-Yosida

SAM self-assembled molecules
SBMFT slave-boson mean-field theory
SET single-electron transistor
STM scanning tunneling microscope
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SW Schrieffer-Wolf

WBL wide band limit
WF Wiedemann-Franz

ZBA zero-bias anomaly
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Abstract

The main goal of this thesis is to study the quantum transport of quan-
tum dot systems driven by voltage and thermal biases. Particularly, we
study interacting single and double quantum dots yielding Coulomb
blockade and Kondo effects giving an special emphasis at the thermally-
driven response.

The first part of the thesis gives a general introduction of the main
concepts of this thesis. Ch. 1 explains the fundamentals of a quantum
dot and gives an overview of the most relevant experimental and theo-
retical works. Ch. 2 focuses on the Kondo effect, a paradigmatic many-
body phenomenon which may appear in quantum dots at low tempera-
tures. Ch. 3 summarizes the basic concepts of thermoelectrics including
a discussion of state of the art involving quantum dots in the thermo-
electric transport.

The models and theoretical techniques are discussed in the second
part. Particularly, Ch. 4 introduces the nonequilibrium Green’s func-
tion formalism which will be used in the following chapters. Ch. 5 de-
fines the Anderson Hamiltonian and transforms it into the slave-boson
and Kondo Hamiltonians. In addition, we discuss the equation of mo-
tion technique for obtaining the retarded Green’s functions at several
regimes and the slave-boson mean-field theory. In Ch. 6 we determine
the current expressions required for the numerical calculations of the
results.

Finally, the third part reveals the quantum transport results obtained
for several quantum dot structures. Ch. 7 focuses on single quantum
dots. First, we consider the transport across a quantum dot in the Cou-
lomb blockade regime obtaining nonlinear thermoelectric effects such
as nontrivial zeros in the thermocurrent or heat current asymmetries.
Second, the Coulomb blockade theory is used to fit the results of a molec-
ular junction experiment and, comparing with a noninteracting model,
we propose the application of a magnetic field to distinguish between
interacting and noninteracting molecules. The third work studies the
thermally-driven response of a Kondo impurity using three different
approaches covering different temperature regimes. We find that the
Kondo resonance is quenched at large thermal biases implying nonlin-
ear effects in the thermoelectric transport.
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The works concerning double dot structures are explained in Ch. 8.
First, the transport across a parallel-coupled double quantum dot with
intradot Coulomb interactions is studied taking into account the forma-
tion of bound states in the continuum. We investigate how to detect
such states using the electric and thermoelectric conductances. Second,
we analyze the Coulomb drag effect in the Green’s function formalism
obtaining the conditions to obtain drag currents. Finally, we focus on
the nonlinear transport driven by thermal biases for a two-impurity sys-
tem in the Fermi liquid regime. We observe different regimes depending
on the coupling between impurities. Remarkably, the system decouples
at large thermal bias since one Kondo resonance vanishes.

Ch. 9 contains the general conclusions of this thesis with a discus-
sion about the limitations of the models used and suggesting further
extensions.

xvi
Abstract



Resumen

El objetivo principal de esta tesis es estudiar el transporte cuántico a tra-
vés de sistemas de puntos cuántico sometido a diferencias de voltaje y
temperatura. Particularmente, estudiamos sistemas de un o dos puntos
cuánticos interactuantes mostrando efectos de bloqueo de Coulomb y
Kondo, dando un énfasis especial a la respuesta térmica.

La primera parte de la tesis da una introducción general de los con-
ceptos principales de esta tesis. El Cap. 1 explica los fundamentos de
un punto cuántico y ofrece una visión de los trabajos experimentales y
teóricos más generales. El Cap. 2 trata del efecto Kondo, un fenómeno
de muchos cuerpos paradigmático que puede aparece en puntos cuánti-
cos a bajas temperaturas. El Cap. 3 resume los conceptos básicos de ter-
moelectricidad incluyendo una discusión sobre la situación actual del
transporte termoeléctrico en puntos cuánticos.

Los modelos y técnicas teóricas se discuten en la segunda parte. Con-
cretamente, el Cap. 4 introduce el formalismo de funciones de Green de
no equilibrio que serán usadas en los siguientes capítulos. El Cap. 5 defi-
ne el Hamiltoniano de Anderson y lo transforma en el Hamiltoniano de
bosones esclavos y Kondo. Además, comentamos la técnica de ecuación
de movimiento para obtener la funcion de Green retardada en algunos
regímenes y la teoría de campo medio de bosones esclavos. En el Cap. 6
determinamos las expresiones de la corriente requeridas para los poste-
riores cálculos númericos.

Finalmente, la tercera parte muestra los resultados de transporte
cuántico obtenidos para varias estructuras de puntos cuánticos. El Cap. 7
trata de puntos cuánticos simples. Primero, consideramos el transporte
a través de un punto cuántico en el régimen de bloqueo de Coulomb ob-
teniendo efectos termoeléctricos no lineales tales como ceros no triviales
en la termocorriente o asimetrías en la corriente de calor. Segundo, to-
mamos la teoría de bloqueo de Coulomb para ajustar los resultados a
un experimento de uniones moleculares y, comparando con un mode-
lo no interactuante, proponemos la aplicación de un campo magnético
para distinguir entre moléculas interactuantes y no interactuantes. El
tercer trabajo estudia la respuesta a gradientes térmicos de una impure-
za Kondo usando tres aproximaciones diferentes cubriendo varios ran-
gos de temperatura. Descubrimos que la resonancia Kondo desaparece

Resumen
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a grandes diferencias de temperatura implicando efectos no lineales en
el transporte termoeléctrico.

Los trabajos correspondientes a los puntos cuánticos dobles están
explicados en el Cap. 8. Primero, se estudia el transporte a través de
un doble punto cuántico acoplado paralelamente con interacciones de
Coulomb internas teniendo en cuenta la formación de estados ligados
en el continuo. Investigamos cómo detectar dichos estados usando las
conductancias eléctrica y termoeléctrica. Segundo, analizamos el efecto
de arrastre de Coulomb usando el formalismo de funciones de Green ob-
teniendo las condiciones necesarias para encontrar corrientes de arras-
tre. Finalmente, nos enfocamos en el transporte no lineal debido a dife-
rencias de temperatura en un sistema de dos impurezas en el régimen
del líquido de Fermi. Observamos diferentes regímenes dependiendo
del acoplo entre impurezas. Sorprendentemente, el sistema se desacopla
a grandes diferencias debido a que una resonancia Kondo desaparece.

El Cap. 9 contiene las conclusiones generales de esta tesis con una
discusión sobre las limitaciones de los modelos y sugiriendo posibles
extensiones.
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Resum

L’objectiu principal d’aquesta tesi és estudiar el transport quàntic a través
d’un punt quàntic sotmès a diferències de voltatge i temperatura. Par-
ticularment, estudiam sistemes d’un o dos punts quàntics interactuants
mostrant efectes de bloqueig de Coulomb i Kondo, posant un èmfasi
especial a la resposta tèrmica.

La primera part de la tesi dóna una introducció general dels con-
ceptes principals d’aquesta tesi. El Cap. 1 explica els fonaments d’un
punt quàntic i ofereix una visió general dels treballs experimentals i
teòrics més generals. El Cap. 2 tracta sobre l’efecte Kondo, un fenomen
de molts cossos paradigmàtic que pot aparèixer en punts quàntics a
baixes temperatures. El Cap. 3 resumeix els conceptes bàsics de termo-
electricitat incloent una discussió sobre la situació actual del transport
termoelèctric en punts quàntics.

Els models i tècniques teòriques es discuteixen en la segona part.
Concretament, el Cap. 4 introdueix el formalisme de funcions de Green
fora de l’equilibri que seran empleades als següents capítols. El Cap. 5
defineix el Hamiltonià de Anderson i el transforma al Hamiltonià de
bosons esclaus i Kondo. A més, comentam la tècnica d’equació de movi-
ment per obtenir la funció de Green retardada en alguns rangs i la teoria
de camp mitjà de bosons esclaus. En el Cap. 6 determinam les expres-
sions de les corrents requerides pels posteriors càlculs numérics

Finalment, la tercera part mostra els resultats de transport cuàntic
obtinguts per vàries estructures de punts cuàntics. El Cap. 7 tracta de
punts quàntics simples. Primer, consideram el transport a travès d’un
punt quàntic en el règim de bloqueig de Coulomb obtenint efectes ter-
moeléctrics no lineals com zeros no trivials en la termocorrent o asime-
tries en el corrent de calor. Segon, tornam el bloqueig de Coulomb per
ajustar els resultats a un experiment d’unions moleculars i, comparant
amb un model no interactuant, proposam l’aplicació d’un camp mag-
nètic per distingir entre molècules interactuant i no interactuant. El ter-
cer treball estudia la resposta a gradients tèrmics d’una impuresa Kondo
emprant tres aproximacions diferents cobrint diversos rangs de temper-
atura. Descobrim que la ressonància Kondo desapareix a grans diferèn-
cies de temperatura implicant efectes no lineals al transport termoeléc-
tric.
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Els treballs corresponents als punts quàntics dobles estan explicats
al Cap. 8. Primer, s’estudia el transport a través d’un punt quàntic doble
acoblat paral·lelament amb interaccions de Coulomb internes tenint en
compte la formació d’estats lligats en el continu. Investigam com detec-
tar aquests estats emprant les conductàncies elèctrica i termoelèctrica.
Segon, analitzam l’efecte d’arrossegament de Coulomb emprant el for-
malisme de funcions de Green obtenint les condicions necessàries per
encontrar corrents d’arrossegament. Finalment, ens enfocam al trans-
port no lineal a causa de diferències en la temperatura en un sistema
de dues impureses en el règim de líquid de Fermi. Observam diferents
règims depenent de la connexió entre impureses. Sorprenentment, el
sistema es desacobla a grans diferències, ja que una ressonància Kondo
desapareix.

El Cap. 9 conté les conclusions generals d’aquesta tesi amb una dis-
cussió sobre les limitacions dels models i suggerint possibles extensions.
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1. Quantum dots

Nanoscience has an important impact in our society both directly and
indirectly. One of the main reasons that makes nanoscience a relevant
topic is the fact that the scale of electronic systems such as transistors
is reducing very fast. We have almost arrived to the critical dimensions
where transistors can not efficiently operate because quantum effects
begin to play a crucial role and a quest for different systems is urged.

Nanotechnology is a cross-disciplinary field involving branches of
science like physics, engineering or chemistry, and delves with devices
which have a typical length of few nanometers. This thesis consid-
ers nanoeletronic systems, which have been traditionally treated within
condensed matter physics. These systems are called nanostructures or
mesoscopic devices, the latter because they are large enough to be con-
sidered complex and interacting, but small enough such that quantum
effects are not negligible as in the macroscopic world. Nanophysics uses
techniques borrowed from quantum mechanics, electromagnetism and
statistical physics in order to explain theoretically and experimentally
the properties of nanodevices.

One of the most paradigmatic examples of mesoscopic physics, which
is also the main system of interest for this thesis, is the quantum dot
(QD) [1]. In principle, conduction electrons in a metal behave as free-
motion particles in all dimensions of space. This motion can be re-
stricted by quantum confinement, yielding low dimensional systems.
Hence, when electrons are confined in the three spatial directions, a QD
is formed, characterized by a discrete spectrum of bound states. QDs
are atomic-like condensed-matter systems with effectively 0 spatial di-
mensions.

There are different types of quantum dots depending on the fabrica-
tion process: self-assembled [2], electrochemicaly assembled [3], QDs in
heterostructured nanowires [4], etc. However, in this thesis we mostly
focus on semiconductor QDs created via lateral confinement. Basically,
they are built in a two-dimensional electron gas (2DEG), a free-electron
layer located at the interface of two semiconductors with different en-
ergy gap (typically GaAs, InAs, etc). On top of the 2DEG (see the sketch
of Fig. 1.1a and the scanning tunneling microscope of Fig. 1.1b for com-
parison) electrodes are deposited acting as electron barriers when an
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Fig. 1.1. (a) Sketch of a lateral quantum dot built upon a semiconductor 2DEG (gray
area) and white electrodes (white parts). Due to doping in the semiconductor, we
consider that the 2DEG is a fermionic reservoir with a large number of electrons. The
QD is created by applying electrostatic potentials at the electrodes. However, they still
allow electron tunneling in and out the reservoirs. Between both electrodes, the QD is
created at the center (red circle) with whose electronic occupation may be tuned using a
gate electrode (blue rectangle). (b) Electron tunneling microscope image of a real QD
device. In comparison with (a) one may easily identify each part of the system. Image
extracted from D. Goldhaber-Gordon et al. [7].

electrical potential is applied. Thus, with a proper configuration of elec-
trodes, one may confine electrons in a small region of space (red dashed
circle in Fig.1.1a) that displays discrete levels in the density of states
(DOS). Notwithstanding, electrons may tunnel through the tunnel bar-
riers in or out of the QD from or to the electronic reservoirs (massive
regions to the left and right of Fig. 1.1a). Tunneling allows us to inves-
tigate electron transport across the dot giving us valuable information
about the QD electronic properties. Additionally, another electrode is
used as a gate which is able to tune the QD electronic levels. Therefore,
internal properties of the QD can be easily manipulated with electric
fields, which represents a huge advantage over real atoms. Thus, QDs
are now a well established area in experimental physics. Regarding the
details of the fabrication process, these are beyond the scope of our the-
oretical thesis. The interested reader is referred to, e. g., Refs. [5, 6].

The study of electron transport eases the characterization of the main
properties of semiconductor QDs. In a macroscopic system, carriers
moving in a metal collide with atoms changing their direction and veloc-
ity (Drude model). The typical length between collisions is called mean
free path le. When the length scales are larger than the mean free path
(L > le), as happens in macroscopic devices, transport is diffusive. In
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the case of QDs (and nanostructures, in general), the lengths of the con-
ductor does not overtake the mean free path (L < le) and carrier direc-
tions are modified only through boundary scattering. This is the ballistic
transport regime, the main behavior of the vast majority of mesoscopic
systems, including the QD structures analyzed in this thesis.

The mean free path le is not the only relevant length in the physics
of electronic transport in QDs. Additional scales must be taken into
account [8, 9]. Firstly, the mean distance for an electron to remain in a
definite quantum state without losing its phase coherence is called phase-
relaxation length lϕ or coherence length. Furthermore, the length associated
with the diffusion due to the temperature T of the system is the thermal
length lT . This covers the distance traveled by an electron before it gets
diffused in the system. Consequently, lT is proportional to the inverse
of T . QDs are confined systems at low temperature, therefore we expect
thermal lengths larger than the coherence length lT ≫ lϕ.

Some interesting applications of QDs have arisen in the last decades.
We highlight their implementation in quantum computation because
the electron spin in the QD can operate as a qubit (quantum bit) [1].
A combination of several QDs makes it possible to implement differ-
ent logical gates to control the qubits. Additionally, their optoelectronic
properties (not discussed in this thesis) facilitate the use of QDs as pho-
tovoltaic devices or light-emitting diodes (LEDs). Finally, the three ter-
minal configuration of QDs (see Fig. 1.1a) brings up the creation of
single-electron transistors (SETs) [1, 7, 10] which, in contrast with con-
ventional transistors, show a regime where transport is controlled by
the flow of electrons one by one. This operation mode is called sequen-
tial tunneling and will be further explained in Sec. 1.1.

In the following sections, we will discuss phenomena and systems
highly related with QDs. First, Sec. 1.1 introduces the Coulomb block-
ade (CB) effect, a phenomenon characteristic in small confined systems
with strong electron-electron interactions. We will explain different ex-
periments where the CB effect is present. Later, we consider the molec-
ular junctions in Sec. 1.2. These are hybrid systems where transport
occurs through a molecule instead of a QD, but with similar character-
istics. Finally, in Sec. 1.3 we study in detail the DQD system, focusing
closely on the parallel and serial configurations and giving special em-
phasis to the Coulomb drag effect.

1.1 Coulomb blockade
The usual size of semiconductor QDs is around 100 nm [6]. In addition,
we recall that electrons are charged particles which interact between
them via Coulomb potentials. This potential becomes more relevant in
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small-sized devices because the electrostatic energy of the confined par-
ticles can not be neglected, U∝ 1/r. On the other hand, we must take
into account that the level spacing ∆ of the dot also increases substan-
tially when the size is decreased ∆ ∝ 1/r2. Small dots satisfy ∆ ≫ U
and transport is thus limited to one single level which can be filled with
only one or two electrons. Another energy scale plays an important
role in the transport through the QD: the temperature of the system. As
known, large temperatures destroy the quantum behavior of particles
and reduce the impact of Coulomb interactions. Therefore, temperature
has to be a small energy scale of the system ∆ ≫ U ≫ kBT .

Charging effects are crucial in the study of transport through nanos-
tructures because the electrostactic potential is able to create an energy
gap in the distribution of the discrete states of the DOS. In other words,
conduction electrons need to overcome the intradot Coulomb interac-
tion energyU between charged particles occupying the nanodevice. This
phenomenon is called Coulomb blockade and appears in a large number
of mesoscopic systems. This effect was first observed by Scott-Thomas
et al. [11]. They reported a periodic oscillation of resonances in the linear
conductance G0 as a function of a voltage gate Vg. The effect is unique to
small conductors since fermionic reservoirs have good screening prop-
erties and strong interactions can be neglected.

The essence of the Coulomb blockade effect can be easily described
by means of the orthodox or electrostatic model. As it is necessary to deeply
understand the physics of this effect, we will now discuss the electro-
static model in detail. The structure of a QD system is depicted with
an electrical circuit (Fig. 1.2) in which each part of the configuration is
represented as an element in the circuit. First, the QD is indicated as
an island at the center of the circuit (brown rectangle in Fig. 1.2) . This
island will accumulate a charge proportional to the number of the elec-
trons confined inside (Q = Ne, N being the number of electrons and e,
the elementary electron charge). The tunnel junction that couples the
reservoir and the QD consists of a capacitor Cα, where α = {L,R} labels
left of right, and a resistanceRtα (blue rectangles). The tunnel resistance
Rt is required to be large enough in order to obtain opaque barriers.
Thus, we can estimate a lower bound of the resistance by applying the
energy-time uncertainty relationship [5, 6]

∆E∆t > h , (1.1)

where ∆E ≈ U = e2/C, C being the total capacitance of the system and
∆t ≈ RtαC is the charging time of the QD junction. The uncertainty prin-
ciple requires that the tunnel resistance has to beRtα ≫ h/e2 = 25.813 kΩ.
Otherwise, charging effects will not be visible experimentally. The gate
(pink rectangle) is connected capacitively to the dot. In this case there
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QDVL VR

Vd

Fig. 1.2. Equivalent circuit of a QD system or single electron transistor. The blue
rectangles represent the tunnel junctions between the reservoirs and the quantum dot
(see also Fig. 1.1).The tunnel junctions consist of a resistance Rt(α) and a capacitance
Cα with α = {L,R} indicating the left or right reservoir. The gate (pink rectangle) is
composed of the gate voltage Vg and a capacitor Cg . The quantum dot is located at the
node between tunnel junctions (red rectangle) characterized by a potential Vd. The other
red nodes correspond to voltages VL and VR. Finally, both reservoirs are controlled
with an applied voltage V .

is no tunnel resistance Rt because electron flow is not allowed between
the gate and the dot. This gate terminal is used to tune the QD levels
with the application of a voltage Vg. Finally, we apply between reser-
voirs a bias voltage V (green rectangle) to induce a current through the
dot.

First, we compute the charge of the island

Q = QR +QL +Qg , (1.2)

where QR = CR(Vd−VR), QL = CL(Vd−VL) and Qg = Cg(Vd−Vg) denote
the charge induced in the left, right and gate capacitors, respectively. VL,
VR, Vg and Vd are the voltage set at the nodes indicated in Fig. 1.2. For
simplicity, in this model we assume negligible tunnel resistances and
the charge is thus an integer number of electrons. We would like to
mention that real systems can contain random charges trapped at the
junctions generating an additional polarization charge Qp [5]. Never-
theless, this term is also neglected in the model. After a straightforward
calculation, one can determine the voltage at the island Vd as a function
of the charge:

Vd(Q) =
Q

C
+
CLVL +CRVR +CgVg

C
, (1.3)

where C = CL +CR +Cg is the total capacitance. The electrostatic energy
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of the QD is defined as the integral of Eq. (1.3) over the charge

Wd(Q) =
Q2

2C
+
CLVL +CRVR +CgVg

C
Q . (1.4)

The total energyEt(N) of the QD is obtained by adding the kinetic term
to the electrostatic energy

Et(N) =
N

∑
i=1

εN +
N2e2

2C
+
CLVL +CRVR +CgVg

C
Ne . (1.5)

In Eq. (1.5) we replaced Q = Ne where N is the number of electrons
confined in the island. Now, we should define the addition energy
µd(N) = Et(N) −Et(N − 1) which reads

µd(N) = εN +
(2N − 1)e2

2C
+
CLVL +CRVR +CgVg

C
e . (1.6)

The addition energy µd will give the position of the resonances along the
local DOS (see Ch. 5). Eq. (1.6) shows appealing physics. The distance
between consecutive resonances is ∆µd(N) = ∆N + e2/C where ∆N =

εN+1 − εN . This means that adding a new electron to the island always
requires that such electron has to reach at least an energy U = e2/C even
for degenerate levels ∆N = 0.

Now, the goal is to find the conditions for transport to be allowed.
This will happen when the addition energy is in between the lead elec-
trochemical potentials (µL > µd > µR and µR > µd > µL ). Applying
µα = εF + eVα, we obtain the following requirements

0 > εN + (2N − 1)U − εF −
CR +Cg

C
eVL +

CR
C
eVR +

Cg

C
eVg , (1.7a)

0 < εN + (2N − 1)U − εF +
CL
C
eVL −

CL +Cg

C
eVR +

Cg

C
eVg , (1.7b)

for the condition µL > µd > µR. The µR > µd > µL case is obtained by
replacing > by < in Eq. (1.7) and viceversa. We remark that the tuning
parameters are the applied voltage V and the gate voltage Vg. In order
to satisfy the relation V = VL−VR, we set VL = −VR = V /2 and then we de-
pict the boundary lines denoting the conditions of Eqs. (1.7a) and (1.7b)
in a V versus Vg plot forming the stability diagram shown in Fig. 1.3a.

We have set the capacitances at CR = Cg = CL = C0 and εN = εF for
simplicity. Dashed lines in Fig. 1.3a denote the boundary lines. Notice
that at low applied voltages these boundaries form a diamond shape.
Inside the diamond the tunneling conditions are not satisfied and, con-
sequently, transport is prohibited. This characteristic forbidden region
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Fig. 1.3. (a) Stability diagram of a QD in the case in which the capacitances CR = Cg =
CL = C0 and for εN = εF . Turquoise areas represent forbidden tunneling across the QD
at T = 0. Therefore, transport is not possible for electrons inside these regions. Each
of these regions is associated a certain number of electrons occupying the QD. These
regions are called Coulomb diamonds. (b) Differential electrical conductance G in a
logarithmic scale as a function of the gate and applied voltages in a QD. Dark colors
indicate absence of transport while the scale of grays denotes the strength of the carrier
flow. This illustrates the fact that the QD clearly is in the Coulomb blockade regime.
Figure (b) is taken from Lindermann et al. [12].

is called Coulomb diamond and is visible in a large variety of systems.
In experimental setups, the stability diagram is obtained by measuring
the differential conductance G = dI/dV i. e., the variation of electrical
current due to a change in the applied voltage. An illustrative exam-
ple is given in Fig. 1.3b where G is shown as a function of both gate
and bias voltages in a QD. The dark regions in the plot correspond to
the turquoise areas in the stability diagram of Fig. 1.3a. Hence, this
QD works in the Coulomb blockade regime. In this tesis, we will study
QDs and molecular junctions which show these particular patterns in
the conductance.

If we measure the linear electrical conductance [the conductance at
zero bias G0 = G(V = 0)], we observe a series of equidistant resonances.
Generally, when U ≫ ∆E the separation between peaks is given by the
electrostatic energy U = e2/C. At finite but low temperatures, the width
of the resonances is related with the background temperature kBT [13].
Furthermore, we highlight that Eq. (1.6) implies that the resonances of
the dot may be tuned easily by applying a gate voltage Vg. Eq. (1.6) is
also valid for molecular junctions and it will be crucial in the description
of these systems in Secs. 5.1.1 and 7.2.

The straightforward fabrication and implementation of QDs gives
rise to a plethora of quantum transport experiments. Y. Meir et al. [14]
compared experimental data obtained by Meirav et al. [15] with a theo-
retical model of a QD which shows a sequence of narrow equidistant
peaks in the linear conductance G0 as a function of the gate voltage

Quantum dots
7



(a)

(b)

(c)

Fig. 1.4. Experiments related to the Coulomb blockade effect. In (a) the electrical
conductance is plotted as a function of the gate voltage applied in a QD setup showing
a series of equidistant resonances which smear out at higher temperatures. This picture
is taken from Y. Meir et al. [14]. In (b), Kouwenhoven et al. [16] found the same
series of peaks separated due to the electron-electron interactions. Finally, (c) shows the
evolution of the peaks maxima as function of a magnetic field reported by Ciorga et al.
[19].

Vg with a smearing at higher temperatures (Fig. 1.4a). Kouwenhoven
et al. [16] also reported CB oscillations as shown in Fig. 1.4b and ap-
plied the orthodox model to explain this phenomenon . Additionally, they
found a staircase in the current I due to the addition of electrons to the
discrete levels of the QD. Nagamune et al. [17] observed similar results
in a QD which also exhibits Coulomb oscillations. Tarucha et al. [18]
studied the modification of these oscillations when a magnetic field is
applied. The CB resonances shift in pairs when a magnetic field is ap-
plied. The latter is strongly related with the results of Sec. 7.2. Ciorga
et al. [19] studied the transport in a lateral QD under magnetic fields
(Fig. 1.4c) obtaining a spin-blockade effect making it possible to find the
spin state by measuring the current. These are just a few representative
examples. The list we provide is by no means exhaustive.

The CB effect is a main topic of this thesis and we will discuss it prop-
erly in the results. First, we analyze the CB effect and the thermoelectric
properties (see Sec. 3 for more information about thermoelectricity) of
a single QD model in Sec. 7.1. Later, we closely examine the difference
between interacting and noninteracting molecular junctions (more infor-
mation about these systems in Sec. 1.2) in Sec. 7.2. Finally, we investigate
the role of interactions in parallel-coupled DQD in Sec. 8.1.
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1.2 Molecular junctions

As explained previously, QDs are not the only system exhibiting CB
features. This section concerns molecular junctions, systems where a
molecule controls the electronic transport between metallic reservoirs.
Additionally, these systems have characteristics similar to QDs. We can
classify these devices within a branch of science called molecular electron-
ics [20], which investigates electrical and thermal transport of individual
molecules or combination of them. This area emerged several decades
ago with a change of the perspective for molecules: They were not only
part of bulk materials, but they might also be useful components for the
electronic industry. Nowadays, the analytical tools and device architec-
tures have motivated many scientists from different disciplines to join
efforts in this interesting field.

Molecular electronics is important mainly for two different reasons.
First, the implementation of molecular devices into nanoelectronic sys-
tems serves as a complementary tool due to their novel functionalities
out of the scope of solid state devices. On the other hand, it offers new
fascinating physics in the description of how molecules behave out of
equilibrium. Concerning technological aspects of molecular electron-
ics, it has good advantages in comparison with the technology of reg-
ular transistors [21]: To start with, the size of the molecules is around
1 or 10 nanometers and provides good benefits in terms of cost and
efficiency. Another advantage is the speed of the molecules because
conduction may be favored in well-fabricated molecular wires. Addi-
tionally, the fruitful improvement in the technology of nanodevice ma-
nipulation makes both the self-assembly of molecular structures and
the tuning of its electrical properties easier. Finally, the large number
of molecule structures yield new technological insights which a usual
silicon-based technology may not achieve.

The first notion of molecular electronics appeared in the 1950’s by
Arthur von Hippel introducing the basis of bottom-up approach as molec-
ular engineering [22]. However, molecular electronics really started in
the late 1960’s when several groups studied experimentally the electric
transport through molecular monolayers. During the 1970’s Aviram
started the theory of electron transfer in single molecules. In fact, he
gave the first proposal of using a single molecule as an electronic com-
ponent called molecular rectifiers [23]. A huge progress occurred in the
1980’s with the invention of the scanning tunneling microscope (STM).
In fact, the first molecular electronic device appeared in 1985 [24]. More
recently, two different groups reported the first transport experiment in
single molecule junctions [25] in 1997, which helped molecular electron-
ics to become a well-established field.
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The fabrication process of molecular junctions is based on the cre-
ation of an atomic-sized contact into a metallic layer. In such contact
the molecule shall be placed allowing transport through it. There are
different ways to perform it: Employing an STM or an atomic force mi-
croscopy (AFM) in which the gap is created using a tip and they move
electrons via tunnel currents or electrical forces, respectively. Notwith-
standing, one of the most used fabrication processes is the electromi-
gration technique. The method consists of the assembly of a wire be-
tween metals which is burnt by applying strongly electrical currents
(see Fig. 1.5c). Then, the wire breaks yielding a nanoscale gap inside
which the molecule may be stacked.

The fabrication of tunnel junctions explained previously provide se-
tups where the molecule acts as a SET. The molecule energy levels per-
mit a sequential tunneling in the transport where only a single electron
may flow though the system at the same time. Nevertheless, there are
different molecular systems in tunnel junctions. For example, we high-
light the STM break-junctions [26, 27]: the molecule is attached to a
metal reservoir and the tip of a STM. A voltage difference is applied
between components giving rise to an electrical current through the
molecule. Finally, self-assembled molecules (SAM) are also common
examples of systems composed of molecular tunnel junctions [28, 29,
30, 31, 32, 33]. They consist of domains where molecules spontaneously
organize on top of a metal generating a surface. To induce currents, an-
other metallic material is connected on top of these SAMs.

1.2.1 Transport in molecular junctions

We now briefly review the state of the art in transport experiments con-
cerning molecular junctions. First, H. Park et al. [34] reported transport
measurements in molecular SETs. The current through the molecule
presented quantization of the molecular levels and at low voltages the
conductance was surpressed obeying the Coulomb blockade effect (see
Fig. 1.4b). Later, J. Park et al. [35] showed additional results for SET
for two different molecules. They also observed CB effects as the previ-
ous work. For strong interactions, a zero-bias anomaly appeared in the
electrical conductance as a signature of Kondo correlations (for more
information about the Kondo effect, see Ch. 2). The conformation of a
molecule in a tunnel junction has been demostrated to modify the shape
of the electrical conductance. Venkatamaran et al. [26] reported that
the conductance decreases as the twist angle between phenyl units in
a biphenyl molecule increases. They also observed a decrease of con-
ductance with the number of phenyl units in the molecule. Similar re-
sults were found by Ho Choi et al. [36] (Fig. 1.5a). They studied the
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Fig. 1.5. (a) Resistance versus the length of a molecular wire. Increasing the length of
molecule will increase its resistance and, consequently, the electrical conductance will
decrease. Figure extracted from Ho Choi et al. [36]. (b) Current as a function of the
voltage bias of a DNA molecule with different lengths. This is a clear example of a
molecule diode. This image is a slight modification of Livshifts et al. [39]. (c) Images
showing a junction during an electromigration process. Clearly, in the fourth image the
junction is broken and a small constriction has been created. This image is taken from
Cuevas et al. [20].

resistance of a molecule dependent on its length finding an increase at
higher lengths. More concretely, they found transport regimes for short
and long molecules. For each of these regimes, the resistance increases
with different exponential trends. The length dependence of the electri-
cal conductance was also studied by Lafferentz et al. [37]. Interestingly,
the I − V characteristics exhibit a molecular diode shape. Graphene
nanoribbons seems to show a similar length dependence in transport
than previous works as Koch et al. reported [38]. Surprisingly, DNA
molecules also exhibit molecular diode characteristics as explained by
Livshifts et al. [39] (see Fig. 1.5b).

In addition to the molecular diode characteristics, Yan et al. identi-
fied three different regimes depending on the thickness of a molecule.
At low thickness, the coherent tunneling controls the electrical current.
On the other hand, strong temperature dependence and hopping trans-
port appear for large thickness. Finally, for intermediate thicknesses
(around 3 − 20 nm) the electric current is tuned mainly by the volt-
age bias. Yuan et al. [40] concluded that control of the coupling be-
tween molecules and electrodes is essential to the fabrication of molec-
ular junctions. They found high rectification ratios when a ferrocene
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SAM is strongly coupled to the electrodes. Similar rectification effects
were also detected by Chen et al. [31]. They attributed the rectifica-
tion to Coulomb interactions which permits to switch electrostatically
the coupling between molecules and electrodes. Concerning thermal ef-
fects, Garrigues et al. [41] investigated the temperature dependence of
a Ferrocene molecule. They identified several transport regimes which
behave quite differently when temperature is increased. They fit the re-
sults using a model which does not take into account electron-electron
interactions.

A more detailed explanation of the work of Garrigues et al. [41] is
found in Sec. 7.2.1. We will compare such work with an interacting
model which is also able to fit the experimental results (Sec. 7.2.2). In
Sec. 7.2.3, we will discuss the possibility of distinguish between nonin-
teracting and interacting cases. Finally, for a more general overview of
molecular junctions one can read Refs. [20, 33, 42].

1.3 Double quantum dots
Since QDs can be considered as artificial atoms, the condensed matter
analogue of the molecule is the DQD. They consist of a combination
of two QDs which can be connected between them with a tunnel am-
plitude or capacitively (via Coulomb interactions). DQDs are fascinat-
ing devices which exhibit rich physics to be still understood and, conse-
quently, they are one of the pillars of this thesis.

Applying the fabrication techniques explained previously, the cre-
ation and manipulation of DQDs are as straightforward as the single
QD becoming a suitable device to investigate quantum coherence and
superposition states. In addition, there are multiple DQD structures de-
pending on the tunnel configuration between the different parts of the
setup (the reservoirs and the dots). Generally, we can distinguish two
clear configurations: Parallel-coupled DQDs (Fig. 1.6a) where the QDs
are connected to the same reservoirs, usually with a low dot-dot tunnel
amplitude, and serially-coupled DQDs (Fig. 1.6b) where each dot is cou-
pled to only one reservoir and electrons have to cross both dots in order
to generate transport.

In addition to the Coulomb blockade effect caused by intradot cou-
plings, we find that the electron-electron interaction between the dots
(interdot) may be also significant in the electronic transport. An electro-
static model similar to the Sec. 1.1 is used in order to obtain the stability
diagram of the system, i. e. , the regions of (Vg1, Vg2) where the number
of electrons occupying the dots is increased or decreased by one unit
(ni → ni±1 where i = 1,2 is the subindex determining the QDs). Fig. 1.6c
shows the most general electrostatic model for a DQD system, each dot
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Fig. 1.6. Schematics of the structure of a parallel-coupled DQD (a) and a serially-
coupled DQD (b). The former consists of two QDs coupled to the left and right
electronic reservoirs while in the latter each dot is attached to a single reservoir and the
opposite QD. (c) General sketch of a DQD electrostatic circuit: The tunnel coupling
between the reservoir α = L,R and the dot i = 1,2 is modelled with a resistance Rαi
and a capacitor Cαi. The dot-dot coupling is represented by Rt and Ct. Additionally,
the QD levels may be tuned by applying gate voltages Vgi.

attached to two reservoirs with tunnel and capacitive couplings charac-
terized by a resistanceRαi and a capacitanceCαi where α = L,R denotes
the reservoir. Besides, a voltage Vαi may be applied to each reservoir of
the system. The tunnel barrier between dots is characterized by Rt and
Ct. For interacting dots without tunneling, the resistance is assumed to
be largeRt →∞. Finally, the QDs level positions are tuned with the gate
voltages Vgi. With this model one can switch from the serial to the par-
allel configuration just with an appropriate change of the parameters of
the system.

1.3.1 Parallel configuration
When both dots are connected to the reservoirs but with small tunneling
between dots such as Rt ≪ RL1,RL2,RR1,RR2 in Fig. 1.6c, we deal with
the parallel configuration (Fig. 1.6a). In an electrostatic circuit the sys-
tem is usually described when VL1 = VL2 and VR1 = VR2 (see Fig. 1.6c).
The stability plot of the parallel DQD clearly shows hexagonal shape
(Fig. 1.7a) [43, 44]. Generally, the occupation of the QDs only varies by
one electron in sequential tunneling (gray lines in Fig. 1.7a). However,
cotunnel transitions are also possible in which two electron transitions
take place simultaneously (red lines in Fig. 1.7a).

This configuration is interesting because electrons may take multiple
possible paths the transport leading to a coherent superposition of them.
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Fig. 1.7. (a) Stability diagram for a typical DQD, VC1, VC2 are the gate voltages applied
to the dot 1 and 2, respectively. The plot data represent experimental values while
the solid lines display the expected diagram computed from an electrostatic model.
The solid red lines show the region where a cotunnel transition may occur modifying
(n + 1,m) → (n,m + 1), n and m being the occupation of the first and second QD.
This is a simultaneous two-electron transition. This plot is a slight modification of a
figure taken from Hofmann et al. [43]. (b) Ratio of transitions probabilities of a particle
between the unperturbed path of a continuum state and the perturbed path due to a
discrete level as a function of the energy ω and different values of the Fano parameter q
[Eq. (1.8)] in a DQD setup.

We now briefly discuss coherence induced effects:
• Aharonov-Bohm (AB) Interferometer. DQDs can act as AB inter-

ferometers [45]. These devices [46] are systems where an electron
can travel in two different ways (in a DQD setup, each possible
path crosses a QD) from left to right reservoir. Electrons display an
interference pattern dependent on the phase difference between
paths. The coherence strongly depends on the singlet or triplet
states of a pair of electrons flowing through the AB interferometer
[47]. Due to the AB phase, the electric conductance of the system
exhibits oscillations when the magnetic field is tuned [45, 48, 49].

• Fano resonances. Among the interference phenomena which may
manifest themselves in DQDs, we highlight the appearance of Fano
resonances [50, 51]. They are produced due to the existence of
a coupling between continuum and discrete quantum states [52].
Therefore, particles may perform two different transitions during
transport: a path which starts at the continuum, moves to the dis-
crete state and then returns to the continuum and a second one
where carriers are not perturbed by the discrete state. The in-
terference between these two amplitudes creates asymmetric line
shapes in the total density of states or transmission of the system.
In order to observe the asymmetric lineshape, we calculate the ra-
tio σr between the total and the unperturbed transition probabili-
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ties as a function of the energy ω and the Fano parameter q obtain-
ing,

σr =
(ω + q)2

1 + ω2
. (1.8)

We plot this ratio for different Fano parameters q in Fig, 1.7b. We
observe that when q = 0 the curve is symmetric and has an antires-
onance at ω = 0. As q increases, the shape of the curve becomes
more asymmetric. These antiresonances will be also shown in the
transmission function of a DQD denoting the existence of a bound
state in the continuum (BIC). The DOS ρ(ω) is now split into two
different components: a continuum function of the global spec-
trum and a discrete state indicated as a Dirac delta centered at the
BIC position ω0: ρ(ω) ≈ f(ω) + δ(ω − ω0). In Ch. 8.1, we will ex-
plain how BICs are influenced by Coulomb interactions and will
discuss their electric and thermoelectric effects.

• Dicke effect: Following with the coherence related effects, the
Dicke effect resembles the Fano effect in similar ways [53]. This
effect was first explained in the context of collisions of atoms in
a solid [54]. Dicke states that Doppler resonances which result
from the change of momentum due to spontaneous emission of a
photon in a pair of atoms generate a resonance in the DOS which
narrows in the absence of collisions. In comparison with the Fano
effect, the Dicke effect is its optics analogue. Since impurities in
metals and QDs can be treated as artificial atoms, the Dicke effect
is also expected to arise [55, 56].

Additional effects can be found in parallel-coupled DQDs. For in-
stance, Coulomb drag in QDs, a topic which will be deeply explained in
Sec. 1.3.2, is a very appealing effect which has attracted lots of attention
nowadays. Furthermore, an experiment was performed by Holleitner et
al. [57]. They reported that cotunnel effects between dots occur without
Coulomb charging energies (strongly related with Fig. 1.7a) and they
found that by increasing the interdot tunneling the conductance reso-
nances start to merge. Fuhrer et al. [58] reported Fano effect mesure-
ments due to magnetic fluxes and high temperatures. They discovered
vanishing Fano resonances at high temperatures. They were able to tune
the asymmetry with a magnetic field. Additionally Gustavsson et al.
[59] were able to detect in real-time electrons interfering in DQDs us-
ing a quantum point contact (QPC) as a charge detector. A promising
application of DQD setups is their functionality to work as qubits in a
quantum computer [60, 61, 62] due to their entanglement properties and
easy manipulation using quantum gates.
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1.3.2 Coulomb drag

A special case of a parallel DQD structure is described by VL1 = VR1 = 0
and Rt → ∞ in Fig. 1.6c yielding the Coulomb drag effect [63]. In this
setup we distinguish two different subsystems coupled to each other via
an interdot Coulomb interaction between electrons occupying the QDs
described by the capacitance Ct in the electrostatic model. Coulomb
drag is just one particular case of a broader topic known as the fric-
tional drag. The phenomenon consists of two isolated conductors with
a small separation: one conductor is driven out of equilibrium by an
applied voltage V which induces an electric current through this active
conductor. However, the passive system is also affected by the bias V of
the active layer although this second system is at equilibrium. An inter-
action between the carriers of the passive and active layers triggers the
generation of current at the equilibrium system. In other words, carriers
in the biased system drag carriers in the equilibrium system exchanging
energy and momentum. The interaction can be of any kind: electron-
phonon [64], plasmon [65] or Coulomb interactions, the latter being
the main interest in this thesis. Concerning conductors, the Coulomb
drag appears in a variety of systems such as 2DEGs [66], nanowires [67],
graphene heterostructures [68], etc.

We focus our attention on a capacitive-coupled DQD as sketched in
Fig. 1.8a: each layer is composed of a QD attached to two reservoirs.
The reservoirs of the active layer (drive system) are at different electro-
chemical potential generating a voltage bias V . In contrast, the leads of
passive layer (drag system) remain at the Fermi energy εF . The inter-
action between layers is basically an interdot electron-electron interac-
tion Ũ . The main cause of the induced current in this nanodevice is an
asymmetry in the drag system as reported by Sánchez et al. [69]. They
showed that the detailed balance condition has to be broken in order
to find mesoscopic drag in the DQD system. This prediction was con-
firmed experimentally by Shinkai et al. [70] and later by Bischoff et al.
[71]. In essence, the asymmetry arises from different tunnel coupling of
the drag QD to the leads (RL1 ≠ RR1 and CL1 ≠ CR1 in Fig. 1.6.). Re-
cent theoretical and experimental works [71, 72, 73] reveal that cotunnel
processes, in addition to sequential tunneling, are crucial to characterize
the generation of drag currents.

Several theoretical discussions of the drag effect have recently ap-
peared. Jauho and Smith [74] analyzed the mesoscopic drag current be-
tween two 2D conductors for diverse background temperatures. They
solved the Boltzmann equation with the goal of examining the change
of momentum between layers. They found that the momentum transfer
depends on T 2, in good agreement with previous experimental works
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Fig. 1.8. (a) Scheme of a capacitive-coupled DQD acting as a Coulomb drag system.
QD1 is attached to the top reservoirs at equilibrium while the QD2 is attached to leads
with a voltage difference V . The QDs are linked with an electron-electron interaction Ũ
when both dots are filled with one electron. The top system reacts to the applied bias of
the bottom system with an induced current at a preferential direction depending on the
tunneling amplitudes. (b) Energy diagram of the dominant cotunnel processes yielding
drag currents. The height is associated to energy values. Left and right brown squares
indicate the lead density of states denoted as Fermi seas controlled by the eletrochemical
potentials. The lines in the middle represent the QD energy level taking place in the
cotunnel process. Image extracted and slightly modified from Keller et al. [72]. (c)
Experimental stability diagram portraying the number of electrons of the drive N and
drag M QDs. (d) Experimental measurements of drag current as a function of the drive
ε1 and drag ε2 levels for a given electrical bias. One can observe a regime where the
drag takes place around the triple points indicated at (c). Images (b), (c) and (d) are
extracted from Keller et al. [72].

[75]. Kamenev and Oreg [76] reported results of drag physics in 2D nan-
odevices finding a rectification of the thermal fluctuations due to the
electric fields of the drive system. Levchenko and Kamenev [77] exam-
ined exhaustively the drag mechanism in a quantum circuit formed by
two QPCs coupled capacitively. The drag is produced by asymmetries
in the energy-dependent transmission probabilities of the QPCs. In the
linear regime of voltage bias, they observed that the device behaves like
a bulk 2D system and in the nonlinear regime, the drag is attributed
to the shot noise of the active layer. Later, Sanchez et al. [69] studied
fluctuation-dissipation relations emphasizing that they are still satisfied
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despite the violation of the detailed balance condition.
We want to stress two papers published almost simultaneously: Kaas-

bjerg and Jauho [73] and Keller et al. [72]. Both of them used a master
equation approach (for more information about the theoretical model
see Segal [78]) obtaining similar theoretical results. They reported that
lowest order cotunnel transitions, i. e. , transitions for one electron go-
ing out of (into) the drive QD while simultaneously another electron
goes into (out of) the drag dot (Fig. 1.8b), play an important role in the
Coulomb drag of DQDs. In accordance with previous reports, energy-
dependent transition probabilities are also needed in order to generate
drag. Particularly, Keller et al. showed measurements of a capacitively
DQD setup for interdot interactions larger than the lead tunnel rates.
They observed that the drag current is higher around the triple points
(Fig. 1.8c) corresponding with the range of parameters where the cotun-
nel transitions take place.

In Sec. 8.2, we also investigate theoretically the Coulomb drag effect
in a DQD setup using the Keldysh nonequilibrium Green’s function for-
malism (Ch. 4). We obtain good agreement with the previous experi-
mental results. We connect the Coulomb drag effect with the orbital
Kondo effect (for more information see Sec. 8.2) giving some qualita-
tive predictions. Finally, we would like to emphasize the applicability
of the Coulomb drag in the current technology. Since DQDs are good
candidates for quantum information and quantum computing, the drag
effect allows us to analyze deeply and detect the transport mechanism
through qubits.

1.3.3 Serial configuration
Now, we consider the case of RL1,RR2 → ∞ and CL1,CR2 → 0 in the
circuit of Fig. 1.6. Notice that carriers need to cross both dots in order
to generate non-vanishing currents. Thus, for disconnected dots (Rt →
∞), transport is prohibited. This corresponds to the serial configuration
of QDs. At low voltage bias, the stability diagram for serial DQDs is
similar to the one shown in Fig. 1.7a also exhibiting an hexagonal shape
when tuning the gate voltage of the dots [79].

For dots with a single level ε1,2 contributing to transport, the energy
levels of the artificial molecule can be expressed in a more convenient
form for negligible interdot Coulomb interactions (Ũ → 0). Thus, we
obtain a superposition of bonding and antibonding states:

ε± =
ε1 + ε2

2
±

√

(
ε1 − ε2

2
)

2

+ ∣τ ∣2 , (1.9)

where ε− (ε+) is the bonding (antibonding) energy level and τ is the
tunneling amplitude for an electron to hop between QDs. Notice that
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we have two energy levels separated at least by τ . Therefore, unless the
DQD is decoupled (which makes no sense because we would be dealing
with two single QDs systems), the bonding and antibonding levels will
never cross. Anyway, for separated energy levels ∆ε = ε1 − ε2 ≫ τ the
tunnel amplitude would be negligible.

Another intriguing effect may be encountered when we include spin
effects in a highly interacting serial DQD system with also high tunnel-
ing amplitudes. At large intradot interactions such that only one elec-
tron is occupying each dot, the system yields a superexchange interac-
tion Jex ≈ τ2/U which connects the electron spin of the dots. In this
situation, the DQD states turns out to be singlet and triplet states. The
former would be the ground state [61, 80] which allows the detection
and control of the electron spin with a simple detuning the dot energy
levels [81]. This result has fundamental importance for quantum com-
putation [60] because serially-coupled DQDs are prototypical examples
of entangled qubits. In fact, a large variety of discussions about quan-
tum computation in serial DQDs have been reported [62, 82, 83]. Fur-
thermore, electrons in a serial DQD may also interact with the electron
spins at the leads yielding two-impurity Kondo systems. This topic will
be explained carefully in Ch. 2.

In the thesis we discuss transport in serially-coupled DQDs in Sec. 8.3
for low temperatures leading to the Kondo effect. We study the thermo-
electric and heat transport of a two-impurity Kondo system observing
that the thermal bias is able to decouple the DQD. We also investigate
how the superexchange interaction Jex is modified by these thermal dif-
ferences.
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2. Kondo effect

Condensed matter physics harbors mysteries and unknown questions
yet to discover. It deals with structures embedded in metals, which con-
tain a large number of particles. Since these particles are charged, inter-
actions take place over the whole structure. Therefore, although some
effects may be well understood with statistical and mean-field methods,
the evidence that there exists complexity in metals is indisputable. The
field is thus a part of many-body physics. As an example, a many-body
physics problem might be the Coulomb blockade already explained in
Sec. 1.1 because even though Coulomb interactions involve two parti-
cles, the screening effect of an occupied QD clearly influences all elec-
trons flowing through the leads. On the other hand, when we consider
spin and magnetic impurities, metals may experience a very intriguing
phenomenon: The Kondo effect [84].

We understand magnetic impurities as the ones which contribute
with a Curie-Weiss term to the susceptibility X = C(T + θ̃)−1 where C
is the Weiss constant and θ̃ is a constant temperature. Basically, the im-
purities have localized spins which may interact with free conduction
electrons in the metal. The spin interactions are responsible of multiple
transport phenomena. The most clear manifestation is the appearance
of a minimum in the resistance at low temperatures. The first obser-
vation of this phenomenon was made by de Haas et al. [85] in 1934.
However, no rigurorous theoretical explanation appeared until 30 years
later when Kondo published his theory [86]. After Kondo’s work, the
effect behind the resistance minimum was still a topic of discussion for
30 more years since the effect was not totally understood in all regimes
of temperature.

It turns out that the birth of nanotechnology inspired a revival of
the subject during the last decades [87]. The possibility of simulating
the behaviour of magnetic impurities using a QD [7] opens a new win-
dow to test the Kondo effect experimentally, spurring a growing interest
in theoretical research. Additionally, the easy manipulation of the rele-
vant parameters of a nanodevice enables features and phenomena that
would be unfeasible to examine with normal metals.

In this chapter, we explain what the Kondo effect is and discuss the
state of the art of this paradigmatic effect. More concretely, we describe
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Fig. 2.1. Spin-flip process in an energetic diagram. Light blue rectangles represent
Fermi seas of a metal (reservoir) while the dark blue solid line symbolizes the energy
level of the magnetic impurity (QD). The electron spin is denoted with red arrows. We
observe how the electron flips due to two tunneling processes which empty the localized
state and then fill it with an electron of opposite spin.

in detail the effect in Sec. 2.1. We start explaining the appearance of the
resistance minimum (Sec. 2.1.1) and then we formulate the Kondo prob-
lem (Sec. 2.1.2). We distinguish the typical energies of the problem and
we explain the most widely used models which are able to explain the
phenomenon (Sec. 2.1.3). Then, we focus on the case when the Kondo ef-
fect appears in a QD paying attention of the response to an electric field
and we introduce relevant experiments in Sec. 2.2. In the last section,
we focus on two concrete cases concerning DQDs: The orbital Kondo
effect (Sec. 2.3.1) and the two-impurity Kondo system (Sec. 2.3.2).

2.1 Magnetic impurities in metals
The Kondo effect arises from the screening of a magnetic moment (or a
spin in a singly-occupied QD) due to the itinerant electrons in a metal
(fermionic reservoirs). An antiferromagnetic interaction results in the
emergence of a many-body singlet between the electrons in the con-
duction band of the metal and the electrons occupying the localized
state. High order spin-flip processes are essential to generate such anti-
ferromagnetic correlations. Additionally, strong electron-electron inter-
actions U and low temperatures T are also crucial for this effect to arise.

An example of a spin-flip process is depicted in Fig. 2.1. We observe
the metallic Fermi seas at the left and right sides of the diagram and a
discrete level with an energy lower than the Fermi energy εd ≪ εF (dark
blue solid line of the diagram). At the topmost occupied state (Fermi
energy εF ), an electron with spin σ =↑ is found in one side while an
electron of σ =↓ is situated in the localized level. The spin-flip process
takes place via two tunnel hoppings: First, the electron occupying the
localized state travels to the right Fermi sea. Afterwards, the electron
with opposite spin located at the left reservoir tunnels into the impu-
rity. Since both hopping are virtual transitions, we deal with a spin-flip
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cotunneling process which is dominant in the regime where the Kondo
effect arises.

2.1.1 Resistance Mininum
As temperature is decreased, the resistivity of a metal is expected to
diminish. Phonons are almost absent and the resistivity is generally
dominated by the electronic collisions with the impurities of the ma-
terial. For nonmagnetic impurities, the low-temperature resistance is
proportional to the concentration of impurities in the metal. In this case,
the total resistance gets lower with temperature until it becomes con-
stant at T ≈ 0. Nonetheless, it was shown experimentally in the 30s that
metals doped with magnetic impurities exhibit a fascinating difference:
the resistance reaches a minimum and starts to grow at lower tempera-
tures [85]. More experiments were reported in the following years after
its discovery. For instance, Sarachik et al. [88] clearly showed a resis-
tance minimum for dilute Fe alloys of Nb −Mo alloys. Previous results
were convincing enough to ensure that magnetic impurities play an im-
portant role in metals at low temperatures. Additionally, the minimum
depth is proportional to the concentration of magnetic impurities mean-
ing that this effect comes from the combination of the interactions of
each single impurity with conduction electrons in the metal.

Kondo [86] explained the resistance minimum using a perturbation
expansion of the s-d model up to third order in the antiferromagnetic
coupling amplitude J of the Heisenberg exchange interaction between
the localized level and the conduction electrons. He found that the re-
sistance of a metal increases logarithmically as

RK(T ) = cimpR1 log
kBT

D
, (2.1)

where cimp is the concentration of impurities, R1 a resistance which de-
pends of intrinsic parameters of the system i. e., the antiferromagnetic
coupling (R1 ∝ J ), and D is the energy bandwidth of the metal as-
sumed to be larger than temperature D ≫ kBT . Remarkably, Eq. (2.1),
including the phonon term and the constant impurity resistance, accu-
rately agrees with previous experimental results [89].

2.1.2 Fermi liquid and the Kondo Problem
Kondo’s prediction correctly describes the resistance minimum and the
increasing resistance at lower temperatures. Nonetheless, it has an im-
portant drawback: The resistance diverges at T → 0. This unphysical
result reveals that the theory is only valid at some regime, even after
taking into account higher order terms in the perturbation expansion
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of the susceptibility [90]. In fact, the logarithmic terms of the expan-
sion may overcome the constant terms yielding a non-physical result in
which one can identify a characteristic energy scale

kBTK ≈D exp(−
1

2J ρ) , (2.2)

where ρ is the density of states of the metal. This energy scale limits
the validity of the Kondo model: For T > TK , the Kondo theory is valid
and gives reliable results but for T < TK a nonpertubative approach is
needed to understand the physics behind this Kondo problem. In this
temperature regime, we can classify the metal to be in a Fermi liquid
state.

We understand Fermi liquid as the regime where the properties of
the conduction electrons can be described within the Landau-Fermi liq-
uid theory [91]. This theory assumes that the low-energy excitations are
equivalent to the excitations of a non-interacting system with renormal-
ized parameters. The effect of interactions depends directly on temper-
ature and at T = 0 the metal behaves as a non-interacting system. Now,
excitations act as noninteracting quasiparticles with a lifetime which
tend to infinity as the energy approaches the Fermi level εF due to the
Pauli exclusion principle [92]: We consider a metal at T = 0 with an
excited electron in an energy state ω1 > εF . The electron interacts with
another electron in the Fermi sea with energy ω2 < εF . The energy of
the interacting electrons is exchanged while the total energy has to be
conserved ω1 + ω2 = ω3 + ω4. Due to the Pauli exclusion principle, the
resulting states should be above the Fermi sea ω3,4 > εF . However, for
excitations at the Fermi energy ω1 = εF , all energies has to be the same
yielding infinite lifetimes for such excitations.

Therefore, an important advantage of the Fermi liquid theory is that
the Kondo problem can be understood with the noninteracting quasi-
particles at low temperatures. Good agreement with experiment is found
in the numerical renormalization group (NRG) calculations of Wilson
[93]. The NRG method consists of the recursive diagonalization of the
model Hamiltonian separated in a finite number of intervals. Each step
of the recursive calculation takes a new interval which should be diag-
onalized to find the resulting eigenenergies. When applying the Fermi-
liquid correspondence of the NRG calculation, the local DOS of the
Kondo model when T → 0 can be obtained in the particle-hole sym-
metry point:

ρK(ω) =
1

π

Γ

(ω − εF )2 + Γ2
, (2.3)

where Γ is the hybridation between the impurity and the excitations in
the metal. We observe that the DOS contains a resonance centered at
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Fig. 2.2. (a) Theoretical DOS of a Kondo impurity as a function of the energy ω for
different temperatures showing the Abrikosov-Suhl resonance at the Fermi energy, in
this case εF = 0. Image taken from Horvatik et al. [94]. (b) Energy scheme of the
different regimes which are found in the Anderson model. The orange line represents
the Fermi energy εF while the impurity states are described with red lines at the energy
level εd (solid line) and the interacting resonance εd + U (dashed line). Diagram 1
corresponds to the full orbital regime. Unlike 1, the scheme 5 shows the empty orbital
regime. Schemes 2 and 4 describe the intermediate valence regimes. Finally, the
localized moment regime is represented with diagram 3.

the Fermi energy εF instead of at the impurity energy level εd which
is located below the Fermi level. The new peak in the DOS is named
Abrikosov-Suhl resonance or Kondo resonance and will be broadly dis-
cussed in Secs. 7.3 and 8.3. NRG calculations relate the hybridation
function Γ at T = 0 with the Kondo temperature πΓ = 4kBTK/w [84]
where w is the Wilson number [93]. For this reason, the width of the
Kondo resonance can be understood as an effective Kondo temperature
TK at different background temperatures, which will be useful to study
the Kondo effect for systems outside the equilibrium. Due to the low
value of the Kondo temperature, we expect a very narrow peak in the
DOS of the impurity in comparison with the tunnel width of the discrete
state resonances. We remark that multiple methods are able to exhibit
Abrikosov-Suhl resonances such as Refs. [94] or [95] (Fig. 2.2a). The dis-
advantage is that the models generally predict a good qualitative, but
not quantitative, Kondo temperature.

Furthermore, in the Fermi liquid theory, the Friedel sum rule for
interacting electrons is also verified. The Friedel sum rule [96] associates
the electronic variations in the metal with the occupation of the impurity.
Mathematically, it takes the form [84]

n̄imp =
η(εF )

π
, (2.4)
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where η(εF ) is the phase shift of the system at the Fermi level and can
be calculated by evaluating the DOS of the impurity. Since the Kondo
models should obey the Friedel sum rule, Eq. (2.4) will be useful in this
thesis and will be redefined in Ch. 4 within the non-equilibrium Green’s
function (NEGF) formalism.

2.1.3 Models and regimes
We will now briefly introduce the theoretical models relevant for this
thesis which are broadly used to explain the Kondo effect. First, the
exchange s-d model characterizes the impurity as a magnetic moment
[97]. In other words, a spin operator Ŝ gives us the information of the
impurity while the conduction electrons moving inside the metal are de-
scribed with creation and annihilation operators. The local spin and the
conduction electrons experience a Heisenberg interaction term whose
amplitude is denoted by a coupling constant Jk,k′ where k, k′ are car-
rier wavenumbers. This is the model used by Kondo [86] in which he
applied a perturbative expansion until third order in Jk,k′ finding the
logarithm dependence of the resistance.

Another model which describes a magnetic impurity is the so-called
Anderson model [98, 99]. In this model, one considers free conduction
electrons and a localized state εd in which electrons can tunnel out and
in with amplitude V . The Pauli exclusion principle only allows two
electrons occupying the localized state due to the spin degree of free-
dom. Additionally, we need to consider the intradot electron-electron
interactions U when both electrons occupy εd. This model is the key to
this thesis and will be fully explained in Ch. 5.

Concerning the energies of the impurity, we can identify several pa-
rameter regimes in the Anderson model where the system behaves dif-
ferently:

• Localized moment: when the energy of the localized state is lower
than the Fermi energy of the metal εd < εF , cotunnel transitions
through the impurity are more favorable. On the other hand, the
Coulomb interactionU is large enough to prevent the level εd from
being doubly-occupied, meaning that εd + U > εF . Finally, the hy-
bridation constants Γ should be smaller than the distance between
the resonances and the Fermi level Γ ≪ ∣εd + U − εF ∣, ∣εd − εF ∣ in
order to clearly obtain discrete levels (Fig. 2.2b, diagram 3). In
this regime of energies, the impurity is singly-occupied and the
spin-flip processes of Fig. 2.1 are not negligible. Furthermore, the
parameter regime is also consistent with the s-d model enabling
the conversion from the Anderson model into the s-d model by
applying an Schrieffer-Wolf (SW) transformation [100] (see Ch. 5).
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• Intermediate valence: If the hybridization constant Γ is compara-
ble to ∣εd +U −εF ∣ and ∣εd −εF ∣ (Fig 2.2b, diagrams 2 and 4), charge
fluctuations are possible and the impurity occupation is no longer
constant. Therefore, this regime is not appropriate for applying
the SW transformation. This range of energies is also termed the
mixed-valence regime.

• Empty and full orbital regime: For a level far away from the
Fermi energy εF , the impurity has no electrons in the localized
state (εd ≫ εF and εd + U ≫ εF ), as in Fig. 2.2b diagram 5, or is
doubly-occupied (εd ≪ εF and εd + U ≪ εF ), as in diagram 1. In
both cases, if charge fluctuations are negligible, i. e., a constant
occupation, virtual transitions are not possible and the impurity
does not affect the quantum transport.

The SW tranformation permits to associate the parameters of the s-
d model to those of the Anderson model [100]. In fact, Haldane [101]
redefines the Kondo temperature of Eq. (2.2) including the intrinsic pa-
rameters of the Anderson model for U ≫ Γ.

kBTK =
√
UΓ exp(π

εd(εd +U)

2ΓU
) . (2.5)

Notice that in the localized moment regime the term inside the exponen-
tial in Eq. (2.5) has to be negative. Otherwise, the Kondo temperature
would take large values and the model would not be valid.

Although the previous models are widely used in the literature con-
cerning the Kondo effect, we still mention that there exist alternative
models decribing magnetic impurities in metals: When considering elec-
trons in d of f shells, the ionic model [102] would be ideal to describe
the physics correctly. The ionic model relates the interactions with the
low-lying configurations of an isolated ion in the metal. Additionally,
there exists a generalization of the s-d model called Coqblin-Schrieffer
model [103] which is important for impurities with a large quantity of
spin localized levels.

2.2 Artificial Impurities
As stated previously, QDs offer the possibility of revisiting the Kondo
physics because they can act as artificial impurities in a 2DEG [87]. In
fact, Glazman and Raikh [95] suggested theoretically that transistor-like
structures with a resonant tunneling barrier may exhibit a Kondo sin-
glet.

The easy manipulation of artificial impurities provides a new arena
to explore the Kondo effect. The QDs as shown in Fig. 1.1 offer a way to
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test the energy regimes by appropiately tuning the gate with an electric
field. Nonetheless, a few distinctions should be pointed out: the levels
of the QD are tuned with a gate voltage and we may distinguish regions
of an even or odd number of confined electrons. As a result, the total
spin of the discrete levels will be determined by the parity and only for
odd number of electrons the QD may have a free spin able to display
Kondo features [7]. The novelty of this property is that we can turn the
QD from a nonmagnetic to a magnetic artificial impurity. Another dif-
ference concerns the resistance minimum: the connection of the QD and
the electrodes mixes both states through the Kondo resonance. In other
words, electrons should cross the impurity to induce currents. In bulk
systems, electrons can travel without going through the impurity and
the localized state is thus blocking the transport. Consequently, in QDs
the linear conductance G0, instead of the resistance, exhibits a logarith-
mic increase [104, 105, 106].

2.2.1 Transport and non-equilibrium behavior

Apart from the equilibrium properties, the application of voltage (or
thermal) bias between electrodes allows one to study the properties of
artificial impurities in conditions out of equilibrium. When the differen-
tial conductance is evaluated, a clear sharp resonance emerges at zero
voltage (V = 0) at low temperatures [7, 105, 107]. Thus, a new channel of
transport has been generated due to spin-flip processes between the QD
and the fermionic reservoirs. The new resonance in G is called zero-bias
anomaly (ZBA) and is a hallmark of the Kondo effect in QDs. Actually, G
mimics the local DOS and the ZBA can be identified with the Abrikosov-
Suhl resonance mentioned above. We remark that the ZBA might also
be a signature of other diverse effects such as Majorana fermions [108,
109], so one needs to analyze the system carefully in order to know if
the resonance arises from Kondo correlations. Additionally, a magnetic
field B is able to split the ZBA in two different resonances at V ∝ ±B
[35, 107]. However, as the magnetic field increases, the resonances also
smear out and, at sufficiently large B, the Kondo channels disappear
(see Fig. 2.3a).

The differential conductance is also a convenient tool to detect re-
gions of odd and even number of electrons. As we explained in Sec. 1.1,
the conductance presents a diamond structure when depicted as a func-
tion of the gate Vg and bias V voltage. Each of these diamonds rep-
resents a different number of electrons and the transport is forbidden
inside. When Kondo correlations appear, the ZBA emerges and a non-
zero conductance line at V = 0 is shown inside the Coulomb diamond
only for an odd number of electrons [112, 113, 114] as shown in Fig. 2.3c-
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(a) (b)

(c)

(d)

Fig. 2.3. (a) Differential conductance G of a real QD acting as a Kondo impurity as a
function of the bias voltage V and for different magnetic fields showing a splitting of the
ZBA. Image extracted from Park et al. [35]. (b) Differential conductance measurements
of a Kondo impurity as a function of temperature normalized by the Kondo temperature
TK . The solid line represents theoretical calculations. Importantly, all curves seem to
coincide showing an universal behaviour. Image extrated from Kretinin et al. [110].
(c) Differential conductance as a function of both gate Vg and bias V voltages. We
observe lines of transport at V = 0 inside the diamond structures of the Coulomb
blockade corresponding to the ZBA, alternatively indicating that the QD level is singly-
occupied. Therefore, the Kondo effect allows transport at low voltages. (d) Linear
electric conductance as a function of the gate voltage Vg for different background
temperatures. One can notice how the CB peaks converge in a plateau yielding the ZBA
at low temperatures. Plots (c) and (d) taken from Svilans et al. [111]

d. At T > TK , the ZBA vanishes and we obtain the typical diamond of
the Coulomb blockade effect.

The presence of a voltage bias also modifies the local DOS of the QD.
In fact, the Abrikosov-Suhl resonance at the Fermi energy splits into two
peaks at finite bias [115, 116]. The reason behind the splitting is that the
lead DOSs consist of Fermi seas at unequal eletrochemical potential µα.
In addition to the resonance separation, the Kondo peaks also weaken
at higher voltages due to dephasing destroying the Kondo resonances
[117]. Experimentally, it is possible to observe splitting and dephasing

Kondo effect
29



in G of a QD using a third weakly-coupled terminal [113].
A remarkable consequence of the application of a voltage bias is that

the conductance G also obeys a logarithmic dependence [105, 116]

G ≈
e2

h̵

1

ln2 eV
kBTK

. (2.6)

Hence, Kondo correlations gradually disappear at high temperatures
and voltage biases. Previous works reported that the scaling properties
of the Kondo effect are universal [105, 116] with respect to T /TK and
eV /kBTK . Such universal features can be obtained by applying theoret-
ical and numerical renormalization group techniques. Later, Kretinin et
al. [110] reported measurements of an experiment with QDs confirming
the universality in G (Fig. 2.3b).

In Sec. 7.3 we investigate the case of a single artificial impurity and
we revisit the non-equilibrium features observed and measured previ-
ously. Additionally, we explore the case when the single impurity is in
contact to a hot and a cold reservoir simultaneously applying three dif-
ferent methods. Finally, we also analyze these effects in the electrical
and heat current transport.

2.3 Kondo effect in DQDs
The fabrication of DQDs provides insights of the Kondo effect in new
possible ways. Theoretically, the two-impurity Anderson model sug-
gests that the interdot coupling Ũ is also able to create Kondo features
[118, 119, 120]. In order to explain this, we return to the DQD struc-
tures sketched in Figs. 1.6a, 1.6b and 1.7a when tunneling is not al-
lowed between electrons. For large intradot eletron-electron interac-
tions U , the QDs can only be singly occupied and if the DQD presents
a non-negligible interdot interaction, the energy level of the QDs may
be treated as a pseudo-spin which also causes Kondo correlations. This
is the so-called orbital Kondo effect. On the other hand, both dots may
exhibit Kondo features at low temperatures and, in combination with
the dot-dot tunnel and intradot couplings, a quantum phase transition
(QPT) between the Kondo effect and an antiferromagnetic singlet in
the DQD is possible [121, 122, 123]. These setups are part of the two-
impurity Kondo systems.

2.3.1 Orbital Kondo effect
The orbital Kondo effect, in comparison with the regular spin Kondo
effect, does not vary significantly in a theoretical manner. However, it
offers fascinating experimental advantages that are not totally feasible
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(d)

(b)

(a)

(c)
(e)

Fig. 2.4. (a) Linear conductance G0 as a function of the gate voltage of a DQD.
An enhancement is shown at lower temperatures indicating Kondo correlations. (b)
Differential conductance G at zero bias as a function of the magnetic field. The intensity
of the exponencial decay determines whether the correlations comes from the orbital
Kondo effect or not. (c) Theoretical differential conductance as a function of the applied
voltage for different values of Jex/kBTK showing a QPT between the antiferromagnetic
singlet and the Kondo effect in a serial DQD (d) Experimental differential conductance
of an individual dot in a serial DQD system whose STM image is shown in (e). Each
curve represents different occupations of the second dot. Plots (a) and (b) extracted
from Jarillo-Herrero et al. [127], (c) from López et al. [128] and (d) and (e) from Craig
et al.[129].

in the regular Kondo effect. Explicitly, it provides new experimental
methods to investigate the phenomenon. Assuming a setup similar to
Fig. 1.6a, each QD may experience voltage or temperature biases. In
comparison with a regular Kondo impurity, the voltage-dependent sit-
uation would be equivalent to apply spin-dependent voltage biases to
the electrodes, which is a hard task to accomplish experimentally with
real spins but still achievable with ferromagnetic contacts which gener-
ate spin-polarized currents [124, 125, 126]. However, the induced spin-
dependent tunneling rates may also alter Kondo correlations. Hence,
these systems are unable to perfectly describe such situation and a dif-
ferent experimental setup is necessary. For the thermally-biased case,
it is not achievable in the regular Kondo effect because the heating af-
fects all conduction electrons indistinctively. Furthermore, in an orbital
Kondo impurity, the pseudo-spin may be controlled and measured by
using gates at the QDs which in a spin Kondo impurity only can be
possible to obtain with magnetic fields .

When the orbital Kondo effect is combined with the regular Kondo
effect, novel transport properties are possible. In particular, it has been
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shown that the regular Kondo temperature TK may be enhanced for
larger interdot interactions [130, 131, 132]. As a consequence, one may
observe Kondo features with higher symmetry due to the entanglement
between the orbital and spin degrees of freedom (simultaneous spin
and pseudospin flips). This combined effect was studied experimen-
tally in carbon nanotubes by Jarillo-Herrero et al. [127]. In Fig. 2.4a
the linear conductance of the system exhibits an enhancement when
the temperature is lowered as expected with the Kondo effect. They
distinguish the orbital Kondo resonances from the regular spin Kondo
effect by evaluating the exponential decay at applied magnetic fields
(Fig. 2.4b). Recently, Amasha et al. [133] reported interesting experimen-
tal results. They found the usual ZBA for strong interdot coupling prov-
ing that the system is in the orbital Kondo regime. When a pseudo-spin
Zeeman splitting is present, the individual conductances exhibit Kondo
resonances at the spin-dependent voltages. Nevertheless, the width of
the Kondo peaks are equal demonstrating that a general characteristic
Kondo temperature TK may be deduced.

In this thesis we investigate theoretically an orbital Kondo system in
which the Kondo correlations induce the Coulomb drag effect in Sec. 8.2.

2.3.2 Two-impurity Kondo system

In addition to the orbital Kondo effect, other effects may arise in DQD
systems. Here, we highlight the competition in a DQD at low tem-
peratures between the Kondo effect and the Ruderman-Kittel-Kasuya-
Yosida (RKKY) interaction [134]. The latter was first described by Ru-
derman [135] and consists of the interaction between nuclear magnetic
moments in metals. The work was extended later by Kasuya [136] and
Yosida [137]. The RKKY interaction is also visible in DQDs with large
intradot and tunnel couplings [138]. As explained in Sec. 1.3.3, both
couplings may result in an effective antiferromagnetic interaction Jex be-
tween dot spins. When the antiferromagnetic interaction is large enough,
a spin singlet between the electrons of the localized dots is created.

Notice that the interaction between the localized spin states of the
QDs competes with the Kondo effect and, consequently, yields a QPT
as explained by Craig et al. [129]. As shown in Fig. 2.4d, they depicted
the differential conductance of the left dot of the serial DQD system of
Fig. 2.4e. A Kondo resonance arises for even occupations of the right
QD when the left QD is filled with an odd number of electrons. Never-
theless, the resonance is absent when the right dot has odd number of
electrons (blue curve in Fig. 2.4d). The reason behind this effect is the
generation of a spin singlet from the RKKY interaction. López et al. [128]
studied theoretically such QPT, finding that is visible in the conductance
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due to the splitting of the ZBA at larger Jex (Fig. 2.4c). Such peak sep-
aration is also visible in the work of Aono et al. [139]. Additionally, a
QPT between ferromagnetic to antiferromagnetic coupling is visible in
the occupation of the system depending on the spin degrees of freedom
as reported by Zitko et al. [140].

We emphasize the amount of experimental work related to the char-
acteristic QPT. In addition to Schroer et al.. [134] and Jeong et al. [138],
DQDs in carbon nanotubes also display the transition between Kondo
and the antiferromagnetic spin singlet as reported by Chorley et al. [141].
On the other hand, Chen et al. [142] studied how the system is affected
by tuning the tunneling coupling τ . They observed a single Kondo peak
at low values of τ and a splitting of the resonance at large dot-dot tun-
neling.

In Sec. 8.3 we investigate theoretically the role of the tunneling am-
plitude finding similar results as in Chen et al. [142] and study how the
system responds when a thermal bias is applied. Furthermore, the elec-
tric and heat currents are calculated finding nonlinear characteristics. Fi-
nally, we discuss the Kondo-to-antiferromagnetic-singlet QPT and how
the critical value of the antiferromagnetic coupling Jex can be modified
with a temperature gradient.
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3. Quantum Thermoelectrics

So far, we have focused on how electric currents are induced by apply-
ing electric fields and have discussed experiments and theoretical works
concerning intriguing transport properties of QDs. For a more complete
understanding, different driving forces can be applied such as magnetic
fields, mechanical perturbations or additional electric potentials to ob-
serve and compare the response of nanodevices. Generally, tempera-
ture plays an important role. For example, nanostructured setups are
not able to operate at high temperatures because quantum coherence de-
cays with increasing temperatures. Besides, in the previous chapter we
have explained how low temperatures contributes to many-body phe-
nomena such as the Kondo effect. Furthermore, nanodevices can be
attached to more than one fermionic reservoir at different temperatures.
In such case, an electric current can also be induced even in the absence
of a voltage bias.

On the other hand, we remark that heat may additionally be trans-
ferred along a conductor (or the nanostructured device) yielding heat
currents Q. In fact, thermal gradients are able to cause heat flows via
phonons, photons or transfer of particles. In comparison with the elec-
tric current, applied voltages can be also responsible for generating heat
currents in the system. In summary, voltage biases V may induce heat
currents Q and thermal biases θ may produce electric currents I . These
effects are at the core of the field called thermoelectrics [143, 144].

The field of thermoelectrics was born in 1821 with an experiment re-
alized by T. J. Seebeck. He showed that when a junction connecting two
dissimilar metallic wires is heated, an electromotive force is produced
[145]. This effect yields a finite voltage induced in open circuit condi-
tions. Therefore, wires forming a thermocouple exhibits thermoelectric
voltages proportional to the temperature applied at the junction. This
effect is called Seebeck effect (more details in Sec. 3.1). Later, a second
discovery was made by J. Peltier in 1834. He found that the direction of
the electric current applied to a thermocouple may produce a small cool-
ing or heating [145]. This phenomenon is called Peltier effect. We shall
remark that this is a different effect from the Joule heating characteristic
of metals which quickly dominates in the system. The main difference
is that the Peltier effect comes from a reversible process while the Joule
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effect is an irreversible process which always dissipates energy at the
system. The nontrivial reciprocal relation between Seebeck and Peltier
effects was revealed by W. Thompson in 1855. The coefficients which
characterize both effects are related theoretically using the Onsager re-
lations derived from the microreversibility principle [146].

Hence, a thermocouple can act as a heat engine or a refrigerator if
we apply a temperature difference or a voltage bias, respectively. More
recently, Joffe reported that doped semiconductors are materials with
relatively high efficiency [147]. Such efficiency is often evaluated by the
figure of merit ZT in which normal devices are usually characterized by
ZT ≈ 1. Nevertheless, figures of merit of ZT > 3 are necessary to obtain
competitive heat-to-work converters.

Nanotechnology offered new prospects in the thermoelectrics field.
Hicks and Dresselhaus [148, 149] reported theoretical results showing
that low dimensionality systems might present high values of ZT . Par-
ticularly, Mahan and Sofo [150] demonstrated that narrow resonances
may give ZT → ∞ Therefore, nanodevices such as QDs are promising
setups to fabricate efficient converters of waste heat to work. Nowadays,
a large amount of works can be found about thermoelectric properties
of nanostructures [151, 152].

This chapter summarizes the physics and the state of the art of ther-
moelectrics. First, we explain the basic concepts in Sec. 3.1 which are cru-
cial to understand the theoretical works of this thesis: we introduce lin-
ear transport coefficients and the Onsager reciprocal relations in Sec. 3.1.1,
following a discussion of the connection with nanodevices in Sec. 3.1.2
and finishing with a summary of the heat transport properties in Sec. 3.1.3.
Later, an overview of rectification, asymmetries and nonlinear transport
is given in Sec. 3.2. Finally, in Sec. 3.3 we review recent theoretical and
experimental works on thermoelectrics in QDs.

3.1 Basic Concepts
Although the physics of thermoelectrics can be qualitatively understood,
we need to learn the basic concepts in order to properly analyze the QD
systems of this thesis. For this reason, we focus on the main parameters
concerning thermoelectrics and its relations in transport theory. Let us
now consider a system as skecthed in Fig. 3.1. It consists of a QD cou-
pled to two reservoirs at different temperatures Tα and electrochemical
potentials µα. Consequently, we define a voltage bias V = µL − µR and
a thermal difference θ = TL − TR for the system. We remark that even
though Fig. 3.1 is depicted with a QD, the definitions of the following
sections are general for conductors and other nanodevices.
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Left Lead Right Lead

QDTL TRµL µR

I Q

Fig. 3.1. (a) Scheme of a QD structure connected to two leads under non-equilibrium
conditions µL > µR and TL > TR. We illustrate the case when the electric (I) and heat
Q currents flow from the left to the right lead.

3.1.1 Linear Transport. Onsager relations
We begin with the definitions of the linear transport coefficients. We
identify two different flows through a conductor: the electronic flux de-
termined by the electric current I and the heat flow characterized by the
heat current Q.

It is well known that after applying a voltage bias V an electric cur-
rent will flow obeying the Ohm’s law I = G0V , where

G0 =
∂I

∂V
∣
eq
, (3.1)

with eq denoting V = 0 and θ = 0 (equilibrium). In this case, G0 is the
linear electrical conductance. In analogy with the Ohm’s law, the heat
current Q of a conductor increases linearly with a temperature gradient
θ following the Fourier’s law Q = K0θ:

K0 =
∂Q

∂θ
∣
eq
, (3.2)

K0 being the linear thermal conductance. However, there still exist two
more cases. When a thermal bias θ is applied to the system, an electric
current is also induced. In the absence of applied electric fields, this
current is regarded as thermocurrent Ith(θ) = I(V = 0, θ) from which
the linear thermoelectric conductance L0 is derived:

L0 =
∂Ith

∂θ
∣
eq
. (3.3)

Eq. (3.3) represents the changes in the electric current due to small ther-
mal differences. The last case is the generation of heat current due to the
application of a voltage bias to the system obtainingQ =R0V . Now, the
coefficient which governs the linear transport is the linear electrothermal
conductance,

R0 =
∂Q

∂V
∣
eq
. (3.4)
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Therefore, we have defined four different responses which fully deter-
mine the linear transport through the system. Near equilibrium, one
can express the currents as a function of both biases (a voltage V and a
thermal bias θ) simultaneously:

I = G0V +L0θ , (3.5a)

Q =R0V +K0θ . (3.5b)

With a proper manipulation of the parameters, the conductances form
the Onsager matrix [151, 153]. In addition, the second law of thermody-
namics imposes the conditions that the electrical and thermal conduc-
tances should be always positive (G0 > 0 and K0 > 0) [151]. The reason
behind these requirements can be understood with the power P = IV
which has to be always positive in the linear regime. Therefore follow-
ing Eq. (3.5a) for θ = 0 we observe that G0V

2 > 0 yielding the previous
condition. Similar arguments can be made for K0.

Additional relations may be established after applying the Onsager-
Casimir conditions [146]. When applying a magnetic field B, microre-
versibility relates the thermoelectric and electrothermal conductances:

R0(−B) = TL0(B) . (3.6)

Notice that for a zero magnetic field TL0 = R0. For the electric and
thermal conductances, a symmetry condition with the magnetic field is
demanded from microreversibility

G0(B) = G0(−B) , (3.7)

K0(B) = K0(−B) . (3.8)

Although L0 and R0 are good quantities to theoretically study the ther-
moelectric properties of small conductors, experimentally it is custom-
ary to work with different thermoelectric coefficients. First of all, let us
consider again the setup of Fig. 3.1. After applying a temperature dif-
ference θ, one may tune the electrochemical potentials µα in order to
compensate the electric flows obtaining zero net current I(V, θ) = 0. The
voltage corresponding to this situation is called thermovoltage V = Vth.
Using Eq. (3.5a), the thermovoltage can be written in terms of the con-
ductances allowing us to obtain the Seebeck coefficient or thermopower
S0:

S0 ≡ −
Vth

θ
=
L0

G0
, (3.9)

where the sign of S0 is chosen by convention. The Peltier effect is de-
scribed by the generation of heat currents due to applied electric cur-
rents, in the absence of thermal bias (θ = 0). Therefore, we define the
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Peltier coefficient Π0 as

Π0 =
Q

I
∣
θ=0

=
R0

G0
. (3.10)

The Peltier coefficient can also be understood as the transported entropy
by the electron flow of the system [151] because the entropy current
depends linearly on the heat current proportional to Π0/T . Note that
the Onsager reciprocal relation of Eq. (3.6) provides a correspondence
between the Seebeck and Peltier coefficients.

Π0(B) = TS0(−B) (3.11)

All previous relations are derived by using the standard thermodynam-
ics for irreversible processes. Nevertheless, results obtained within trans-
port theory, i. e., Boltzmann equation or the Landauer formalism, give
us additional relations for conductors at low temperatures. The approx-
imations would be generally valid for macroscopic conductors. How-
ever, they also offer good qualitative behavior for small devices. Firstly,
the thermal and electric conductances are related by the Wiedemann-
Franz (WF) law [154, 155]

K0

G0
= L̃0T , (3.12)

where L̃0 = π2(e/kB)2/3 is the Lorentz number. Generally, the WF law
can not always be applied and has a very specific range of validity. On
the other hand, the Mott’s formula [156] establishes a relation between
the thermopower and the electric conductance.

S0 =
π2

3

kB
e
kBT

d

dµ
lnG0(µ) , (3.13)

where µ denotes the chemical potential of the conductor (µ = εF ). These
relations are of fundamental interest for the study of thermoelectric prop-
erties of metals and are generally violated when considering nonlinear
effects (Sec. 3.2).

3.1.2 Connection with internal properties of nanodevices
An important advantage of the thermoelectric properties in nanodevices
is that we deal with measurable physical magnitudes. Other quantities
such as, the spectral ρ or the transmission T function, are internal prop-
erties of the system and, only under specific conditions, it is possible to
find relations between internal quantities and the conductances of the

Quantum Thermoelectrics
39



system. For the case of the transmission function, we highlight the Lan-
dauer formula [155]

G0 =
2e2

h
T (εF ) . (3.14)

This corresponds to the conductance of a quantum channel inside a nan-
odevice. The transmission T is the probability for an electron to cross
the system. Eq. (3.14) is valid at T → 0. After applying the Landauer for-
malism to the thermal conductance K0, a similar result is obtained lead-
ing to the expression of the WF law (Eq. 3.12). Additionally, Eq. (3.14)
has two different terms that are essentially positive which gives G0 > 0.
One is the already explained transmission function of the electrons at
the Fermi energy and the second is twice (due to spin degree of free-
dom) the quantum of electric conductance g̃0 = e

2/h.
On the other hand, the thermoelectric coefficients give us new oppor-

tunities for the study of the internal properties of nanodevices. The Mott
formula [Eq. (3.13)], also obtained from Landauer formalism, states that
the Seebeck coefficient is dependent on the first derivative of the trans-
mission function T ′(εF ) after replacing Eq. (3.14) into Eq. (3.13). Hence,
the Seebeck coefficient offers additional information about the internal
characteristic of the system. In this case, we observe that now S0 may
also give negative values. The sign of the thermopower determines if
the flow is dominated by electrons (positive) or holes (negative) [151].
To clarify, holes mean electrons traveling below the Fermi energy.

The previous results lead us to the discussion of the differences be-
tween the electric currents I(V ) and thermocurrents Ith(θ). First, the
electric current will present in single QDs a staircase shape as a function
of the applied voltage V and can not present sign reversals since the diss-
pated power IV must be positive. In contrast, the thermocurrent may
exhibit several changes of sign since the flow of holes and electrons may
be modified at higher gradients. Such sign reversals give points of finite
thermal biases θ and zero net currents. We call these points nontrivial ze-
ros of the thermocurrent and they were already predicted and observed
(see Sec. 3.3.2 for more details). Another difference concerns the theoret-
ical range of V and θ. The electrical current can be obtained at all values
of V whereas the thermocurrent gives unphysical values when θ < −T
because the temperature can not cross the absolute zero Tα = 0. We may
solve this problem in two terminal system by considering that negative
θ denotes a heating of the second reservoir with θR = −θ. Generally,
with this definition we also expect symmetric shapes of thermocurrent
around θ = 0 as happens with electrically-biased currents.
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3.1.3 Heat transport
Here, we discuss general aspects of heat transport. Typically, the heat
current behaves essentially different from the electric current. For this
reason, theoretical heat transport approaches may not be as straightfor-
ward as electric current models. Experimentally, measurements require
more stringent techniques in order to probe thermal properties of nan-
odevices and employ indirect methods [145]. This is related to the quan-
tum of thermal conductance κ0 [157, 158, 159] which takes the form

κ0 =
π

6h̵
k2
BT . (3.15)

In contrast with g̃0 which take values around 38.7 µA/V , the thermal
quantum conductance is dependent on the background temperature.
This implies a disadvantage for measurement since nanodevices work
at very low temperatures, where the thermal quantum may range from
κ0 = 3.35 pW/K at 4 K to κ0 = 84.9 pW/K at 100 K.

Furthermore, the thermal conductance has two different contribu-
tions in small-scaled systems: Kph associated to vibrations of the lattice
and K0 related to the carriers. In the former case, the vibrations cor-
respond to collective oscillations whose excitations are described with
bosonic quasiparticles called phonons. The phonon behavior is usually
studied with the Debye model [160]. From a thermoelectric perspective,
the goal is to reduce considerably the phonon contribution inside the
conductor in order to only deal with the carrier conductance. An addi-
tional Peltier coefficient may emerge as a result of the energy exchange
between phonons and electrons leading to the phonon drag effect [153].
Consequently, a Seebeck coefficient arises due to Eq. (3.11) yielding new
thermoelectric effects. Nevertheless, thermoelectric devices commonly
operate in a regime of parameters where the phonon drag effect is neg-
ligible.

The systems considered in this thesis work at very low temperature.
As a consequence, the motion of carriers governs the thermal conduc-
tance and, therefore, the phonon thermal conductance is assumed to be
negligible Kph → 0. Thus, we focus our attention on studying the effects
related to the electronic thermal conductance. Using first law of ther-
modynamics, the heat current may be separated in two different terms
[161]

Q = QE + IV , (3.16)

where QE is the energy current associated to the internal energy rate of
change in the system and IV is the Joule term coming from the dissipa-
tion of energy due to a flow of particles in the conductor. We remark
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that at low voltages the Joule term of Eq. (3.16) is second order in V .
This implies that the electrothermal conductance, and consequently the
Peltier coefficient, is originated from the energy current QE . Hence, the
thermal conductance K0 is determined from the energy current since the
first order in θ of the Joule term would also lead to a term proportional
to V θ. Therefore, the linear transport of heat is basically dominated
by the internal energy flow QE and corresponds to a reversible term
whereas the Joule effect is an irreversible process which dominates at
high applied voltages.

3.2 Rectification and nonlinear effects
When working with bulk systems, the applied gradients can not be
strong since the distances in the conductor are usually large. In this
case, the system properties are restricted to the linear regime. Neverthe-
less, nanodevices are characterized for their small size and, in this case,
the nonlinear effects are accessible. Additionally, such systems are char-
acterized by a transmission function highly dependent on the energy
T (ω), a feature that induces nonlinear transport phenomena.

Far from equilibrium, it is convenient to study the differential trans-
port coefficients of the system. They are defined in the following way

G =
∂I

∂V
, L =

∂I

∂θ
, R =

∂Q

∂V
, K =

∂Q

∂θ
, (3.17)

which are the differential electrical, thermoelectrical, electrothermal and
thermal conductances, respectively. The electrical conductance was al-
ready explained in Ch. 1. The rest of conductances were less studied
in literature, despite the fact that they became variables of interest dur-
ing the last decades [162]. In addition to the conductance, differential
Seebeck and Peltier coefficients can also be defined:

S =
∂Vth

∂θ
, Π =

∂Q

∂I
. (3.18)

Generally, the currents are measured at the fermionic reservoirs con-
nected to the nanodevices and we are not only restricted to the case
of two reservoirs. For this reason, we now consider the multiterminal
setup of Fig. 3.2. A QD system attached to N reservoirs denoted with
α = {1,2, . . . , j . . . ,N} (forN = 2 reservoirs α = {L,R}) and each of them
characterized by an electrochemical potential µα = εF + eVα and a local
temperature Tα = T + θα where εF is the Fermi energy and T the back-
ground temperature. Therefore, the electric Iα and heat Qα flows are
dependent on α and need to obey conservation laws: The conservation
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Fig. 3.2. Sketch of the most general QD system attached to N fermionic reservoirs
denoted as α = {1,2, . . . , j . . . ,N} and characterized by an electrochemical potential
of µα = εF + eVα and a temperature Tα = T + θα. Each of these reservoirs experiences
electric Iα and heat Qα currents.

of charge demands the following condition to the electrical currents in
the steady state:

N

∑
α

Iα = 0 . (3.19)

and the energy conservation law requires that in the long time limit

N

∑
α

Qα =
N

∑
α

IαVα . (3.20)

Every model must satisfy Eqs (3.19) and (3.20) even in the nonlinear
regime of transport. In the following sections we will briefly discuss the
present knowledge about nonlinear transport in nanostructures.

3.2.1 Second order conductances. Violation of linear relations
The most straightforward extension of the transport theory to the non-
linear regime is to include the second order corrections to the currents.
In this section we introduce the second order conductances and review
the most relevant works regarding this topic

Expanding the currents Ii and Qi as a function of each applied volt-
age and thermal bias one obtains

Ii = ∑
j

(GijVj +Lijθj) +∑
jl

(GijlVjVl +Lijlθjθl +MijlVjθl) , (3.21a)

Qi = ∑
j

(RijVj +Kijθj) +∑
jl

(RijlVjVl +Kijlθjθl + BijlVjθl) . (3.21b)

Notice that now in addition to the diagonal second order conductances
(Gijl, Lijl, Rijl and Kijl), Eq. (3.21) has two crossed contributions Mijl

and Bijl which appear in the case of simultaneous thermal and voltage
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(a) (b)

Fig. 3.3. (a) Probability distribution for the departures from the Onsager relation of the
electrical conductance of chaotic cavity connected to N conductor channels. Image
taken from Sánchez and Büttiker [163]. (b) Departures from the WF law as a function
of the energy of the discrete level of an interacting QD attached to two reservoirs at
different temperatures. Image taken from López and Sánchez [168].

biases in the electrical and heat currents, respectively. The first terms
in the expansions still obey the linear transport relations of Sec. 3.1 and
departures will only be visible in the second order conductances. Con-
sequently, we are interested in the violation of the relations for the dif-
ferential conductances.

Firstly, the electric nonlinear transport and its deviations from Eq.
(3.7) were studied by Sánchez and Büttiker [163]. They theoretically
investigated the electrical current under a voltage bias for a finite mag-
netic field and they calculated for the specific case of a quantum Hall bar
the Onsager asymmetry of the second order conductance (Φ = [G111(B)−

G111(−B)]/2 in Fig. 3.3a) finding that the nonlinear conductance is in-
deed asymmetrical due to electron-electron interactions. Spivak and
Zyurin [164] found similar results with a different approach. Later, Mar-
low et al. [165], Zumbühl et al. [166] and Leturcq et al. [167] confirmed
previous predictions with experimental measurements of phase-coherent
billiards, chaotic QDs and AB interferometers, respectively.

Thermal and thermoelectric rectification effects may also be present
in mesoscopic conductors. Kulik [169] investigated the thermoelectric
generation and cooling in metallic constrictions. He discussed the pos-
sibility of having nonlinear thermoelectric cooling (nonlinear Peltier ef-
fect). Dzurak et al. [170] reported measurements of the thermopower in
a one-dimensional constriction. They were able to approximate the re-
sults with a linear-response model. Bogachek et al. [171] studied the ther-
mal transport and Peltier effect in the nonlinear regime. They uncov-
ered that the Kelvin-Onsager relation given by Eq. (3.11) and the WF law
are not satisfied in the nonlinear regime. Thermal rectification effects
were also modelled in a mesoscopic conductor by Terraneo et al. [172].
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Additional experiments were realized by Chang et al. [173] in carbon
nanotubes and by Scheibner et al. [174] in QDs. Furthermore, Whitney
[175] analyzed theoretically refrigeration and heat engine circuits in the
nonlinear regime of transport for a QPC with electron-electron interac-
tions. He discussed the parameter regimes where ZT is no longer a
good variable to describe thermoelectric transport and one needs to re-
sort to the nonlinear transport calculations.

Very recently, Sánchez and López [176] used scattering theory in or-
der to compute the second order thermoelectric coefficients for meso-
scopic systems with electron-electron interactions. They applied their
approach to an interacting QD structure finding good agreement with
the full numerical calculations. They obtained high sensitivities of the
nonlinear thermopower and rectification effects in the second order con-
ductances. Similar results were provided by Meair and Jacquod [177].
Further results were discussed by López and Sánchez [168] concerning
heat current and Peltier effect. Applying scattering theory they also
found rectification effects in the heat flow and a highly nonlinear be-
havior of the Peltier coefficient. Finally, they investigated the WF law
observing departures from the Lorentz number (Fig. 3.3b).

Finally, we would like to mention that broken Onsager relations
were also experimentally observed by Mathews et al. [178]. In addition,
they also analyzed the deviation from the multiterminal transport rela-
tions predicted theoretically by Butcher [179].

3.2.2 Transport asymmetries
The previously discussed Onsager reciprocity relations and WF law gives
us information about the symmetries in transport. However, additional
transport symmetries are also interesting to investigate. Here, we return
to the two-terminal configuration of Fig. 3.1 and consider the following
asymmetries that may occur in the heat transport:

∆C = QL(VL, VR) −QR(VL, VR) , (3.22a)

∆E = QL(VL, VR) −QL(VR, VL) . (3.22b)

We identify two different asymmetries: ∆C is the contact asymmetry
which describes the difference of heat flow between terminals. ∆E is
the electric asymmetry and corresponds to the heat current difference
for reversed electric fields. These heat asymmetries were first measured
in molecular juctions by Lee et al. [180]. In the linear regime, such asym-
metries are related to electric and thermoelectric coefficients:

∆C ≈ 2G0S0TV , (3.23a)

∆E ≈ 2G0S0TV . (3.23b)
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These relations help the experimental measurement of heat transport
since G0 and S0 are accessible parameters. Following the previous ex-
perimental result, Argüello-Luengo et al. [181] explored theoretically the
role of inelastic and dephasing processes by including a probe terminal.
Deviations from Eq. (3.23) were found leading to nonlinear effects. Ad-
ditionally, they observed a breaking of the particle-hole symmetry in
the contact asymmetry in contrast with the electric asymmetry, which is
conserved. Inelastic and dephasing effects were also studied by Sánchez
and Serra [182] and Benenti et al. [151] in the thermoelectric transport.
They discovered asymmetries in the Seebeck coefficient under the influ-
ence of a magnetic field. In addition, they found an expression for the
quantum fluctuations of the thermopower.

In our thesis we investigate such relations in detail for the case of an
artificial Kondo impurity in the Fermi-Liquid regime (see Sec. 7.3.2). We
will also compare the results with the symmetries found in the energy
current and the Joule term.

3.3 Thermoelectrics in quantum dots
As mentioned, the interest in quantum thermodynamics has rapidly
grown during the last few decades and a vast number of works can
be found in the literature (see representative works in Refs. [151, 152,
162]). In this section we focus on the theoretical and experimental re-
search of thermoelectric transport in QD structures which is, by itself, a
broad topic.

3.3.1 Linear response
Research on the thermoelectric properties of a QD was first considered
with the linear response. Beenakker and Staring [183] proposed a the-
ory to evaluate the thermopower. The theory, which was based on the
orthodox model, predicted that the Seebeck coefficient oscillates with
the Fermi energy with the same periodicity as the CB resonances, but
displaying a sawtooth shape. This prediction was confirmed experi-
mentally in the work of Staring et al. [184] and Molenkamp et al. [185]
showing good agreement with the theory (Fig. 3.4a). Additional mea-
surements were reported by Dzurak et al. [186] finding similar results.

Later, Blanter et al. [188] studied theoretically the thermopower of
a QD embedded in an AB interferometer. They observed strong oscil-
lations in the thermopower with changs of sign when tuning the AB
flux. Godjin et al. [189] measured the thermopower of a chaotic QD
and compared the results with Monte Carlo simulations. They proved
that the fluctuations of the thermopower does not show a Gaussian dis-
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(b)

(a)

Fig. 3.4. (a) Thermovoltage (solid line) and electric conductance (dashed line) measure-
ments of a semiconductor QD as a function of the gate voltage. The sawtooth lineshape
of the thermovoltage is noticeable and the comparison with the electrical conductance
shows clearly CB periodicity. Image taken from Molenkamp et al. [185]. (b) Lorentz
function [Eq. (3.12)] showing the departures of the WF law for a Kondo-correlated
QD embedded in an AB interferometer. The WF law starts to deviate for values of the
temperature around TK . Picture extracted from Kim and Hershfield [187].

tribution. The thermoelectric response of the Kondo effect was studied
theoretically by Boese and Fazio [190] in the linear and nonlinear regime
(for discussion on the nonlinear results, see the following section). Log-
arithmic dependences were found in the thermopower at the Kondo
regime. The case of an AB interferometer under the presence of Kondo
correlations was investigated by Kim and Hershfield [187]. Besides the
crossover where the Kondo effect appears, they explained that the AB
oscillation amplitudes are enhanced for temperatures near the Kondo
temperature TK . Additionally, the WF law is not satisfied around the
crossover (Fig. 3.4b). Thermopower measurements in the Kondo regime
were presented by Scheibner et al. [114]. They observed departures to
the Mott formula and their results nicely agree with the previous theo-
retical results. Krawiec and Wysokinski [191] discussed the case when a
QD is coupled to ferromagnetic leads in the Kondo regime. They found
suppression of the thermopower at low temperatures and violation of
the WF law. NRG calculations were performed by Costi and Zlatic [192]
in order to understand the thermoelectrics of a QD. They studied depar-
ture of the linear relations, the figure of merit and efficiencies at every
regime of energies concerning Kondo.

Reddy et al. [193] experimentally found in a molecular junction the
sawtooth lineshape of the thermopower as in experiments with QDs.
The figure of merit of a DQD was investigated by Liu and Yang [194]
finding high values at room temperature. High ZT was also found
around the Fano resonances of a DQD by Zheng et al. [195]. Strong
thermopower was found in Kondo-correlated molecular junctions by
Cornaglia et al. [196]. The charge and spin thermopower in addition to
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the figure of merit was studied theoretically in a QD acting as a Kondo
impurity by Weymann and Barnas [197]. They discovered that both ther-
mopowers are influenced by spin polarization. A similar system was
also studied by Ye et al. [198] for both spin and orbital Kondo regimes.

Finally, we emphasize that this is only a short selection of relevant
works about linear thermoelectric transport in QDs. For further infor-
mation, we refer the reader to Refs. [151, 152, 162].

3.3.2 Nonlinear response
In comparison to the linear response, the literature concerning nonlinear
thermoelectrics is less extensive. Nevertheless, progress has been made
in the last decades, both experimentally and theoretically.

The experiment of Staring et al. [184] also included nonlinear trans-
port measurements. They observed that the thermovoltage as a function
of the thermal difference had a nonlinear trend with an intriguing result:
There exists a specific value of thermal bias where the thermovoltage is
zero. Afterwards, Boese and Fazio [190] also calculated the differential
thermopower observing that for several level positions S is also able
to change its sign as the thermal difference θ is increased. In addition,
they found that the Onsager reciprocity relation of Eq. (3.11) is broken
for differential Seebeck and Peltier coefficients at finite θ. Krawiec and
Wysokinski [199] presented theoretical calculations showing also that
the thermopower crosses the Vth = 0 line with almost unnoticeable de-
pendence on the tunneling asymmetry between leads. Azema et al. [200]
discussed the enhancement of the efficiency and power in the nonlinear
regime of a Kondo-correlated QD predicting an experimental optimal
operation point. As explained above, the second-order thermoelectric
response of a QD was also analyzed by Sánchez and López in Refs. [168,
176] finding departures from the Onsager reciprocal relations and the
WF law.

A very intriguing experiment was reported by Svensson et al. [201].
They measured the thermocurrent and thermovoltage of three different
nanowire QDs (Fig 3.5a). In addition to the sawtooth behavior in the
thermovoltage as function of the energy for several thermal biases, they
found that both the thermovoltage and the thermocurrent are absent
for an appropriate tuning of the thermal difference between reservoirs
(Fig. 3.5b). They fitted the experimental results with a simple model
which exhibits these nontrivial zeros. However, a complete understand-
ing of the behavior was still missing. Later, a CB model was employed
to explain this fascinating phenomenon [202]. As expected, we obtained
theoretically nontrivial zeros in Ith and Vth and we attributed them to
a compensation between electron and hole flows. For the sake of com-
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(c) (d)

Fig. 3.5. (a) STM image of a QD embedded in a nanowire. The red arrow represents
an electric current used with the goal of heating the left reservoir. (b) Thermovoltage
of the QD showed in (a) as a function of the thermal bias. We may identify nontrivial
zeros in the thermovoltage for some values of the gate voltage. (c) Experimental values
of the thermocurrent of a QD as a function of the gate voltage at a finite thermal bias.
We observe that a plateau is formed at increasing thermal difference. (d) Thermocurrent
as a function of the temperature difference for the same system as (c). We remark that
nontrivial behaviour is visible at large biases. (a) and (b) are taken from Svensson et
al. [201] while (c) and (d) are taken from Svilans et al. [205].

pleteness, we discuss in detail such results in Sec. 7.1 although this work
is not included in this thesis. At the same time, Zimbovskaya [203]
reported similar theoretical results and she extended the work by ap-
plying crossed gradients (both V and θ) [204] using scattering theory.
Furthermore, we highlight the experimental work of Svilans et al. [205].
They also measured the thermocurrent as a function of an applied ther-
mal bias of a QD obtaining similar results. The agreement of the ex-
periment with our theoretical results was surprisingly accurate show-
ing that our model is able to explain the thermoelectric properties of a
QD. Very recently, Svilans et al. [111] also reported thermoelectric exper-
iments of a Kondo-correlated QD. They found that a sawtooth shape
can be induced in the Kondo region at low background temperatures.

Additionally, different aspects and configurations of the thermoelec-
tric transport through a QD was also investigated. Koch et al. [206]
studied the thermoelectric properties of a molecular QD attached to two
leads and coupled to an optical phonon mode. At low thermal bias, the
Pauli blockade makes the phonon contribution negligible in the ther-
movoltage. Hwang et al. [207] studied the spin-polarized thermoelec-
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tric transport of an antidot coupled to normal and ferromagnetic leads.
They found a change of sign in the charge and spin currents with fi-
nite thermal biases. A subsequent work proposed that such system may
work as a spin thermoelectric diode [208]. The nonlinear efficiency and
electric power was also studied by Wang et al. [209] stating that a Zee-
man splitting is able to improve the performance of a QD engine. Such
engine properties were also studied by Gomez-Silva et al. [210] in a QD
with a T-shaped configuration predicting that their system can be an
efficient thermolectric device.

To conclude, we want to emphasize that one of the aims of this the-
sis is indeed to investigate the nonlinear thermoelectric features of QD
structures. First, the heat current and Peltier effect of an interacting QD
is studied in Sec. 7.1. Later, we calculate the thermal effects of a molecu-
lar junction under the influence of electron-electron interactions and fit
the results with previous measurements in Sec. 7.2. Such work will be
compared with a noninteracting model which also exhibits good agree-
ment with experiments. The thermal and thermoelectric responses of a
Kondo impurity at all regimes is discussed with detail in Sec. 7.3. The
role of interactions and its thermoelectric effects of DQDs are the main
topics of Sec. 8.1. Finally, the thermal and thermoelectric transport of an
artificial Kondo impurity is analyzed in Sec. 8.3.
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4. Green’s Functions Formalism

We recall that nanoscience usually faces complex many-body problems
in which interactions between electrons may play an important role and
the tools coming from the usual statistical physics are not enough to de-
scribe the fascinating effects that nanodevices hide. In previous chap-
ters we have already mentioned several of the most used theoretical
techniques in quantum transport physics, i. e., scattering theory which
describes the transport with wave fluxes [211] or the NRG calculations
introduced by Wilson [93] among others. In this thesis, our main tech-
nique is the NEGFs formalism, which is based on the computation of
Green’s function related to the Hamiltonian H which models the sys-
tem.

In mathematics, Green’s functions G(t, t′) are solutions of inhomo-
geneous differential equations of the form L̂(t)G(t, t′) = δ(t − t′) where
L̂(t) is a linear operator and δ(t − t′) is the Dirac delta. In quantum me-
chanics, they have a more particular definition but still obeying a simi-
lar type of differential equation. In fact, Green’s functions have compli-
cated expressions depending on the Hamiltonian.

Since most of the calculations of this thesis employ NEGFs, a proper
description of the formalism is needed in order to fully understand the
mathematical steps behind the physical models. For this reason, this
chapter is still an introduction of the current theory which summarizes
the most important concepts within the NEGFs formalism. Particularly,
in Sec. 4.1 we briefly explain the dynamical pictures of quantum me-
chanics giving an especial emphasis to the interaction picture. The equi-
librium Green’s functions are defined in Sec. 4.2 and the theory will be
extended to the nonequilibrium case in Sec. 4.3, which includes a dis-
cussion of the Dyson’s equation (Sec. 4.3.1) and the Langreth rules def-
inition required (Sec. 4.3.2) for the calculation of NEGFs integrals and
products.

4.1 Quantum mechanics pictures
In quantum mechanics, the dynamics of a physical system is described
with a Hamiltonian H. In the models of this thesis, we consider closed
systems described by H0 while interactions between the different parts
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of the isolated systems like the Coulomb interactions or the tunneling
transitions are represented by a perturbation W .

H =H0 +W(t) . (4.1)

Fundamentally, the parameters of interest are the expected values of ob-
servables Ô. Those expected values portray the physics of real systems
even when they evolve in time. Mathematically, we are free to include
the time evolution in the observables or in the quantum states. For this
reason, we are allowed to apply different representations (or pictures)
when we solve quantum mechanical problems.

The most basic concepts of quantum mechanics are normally ex-
pressed in the Schrödinger picture. In this case, wavefunctions, or quan-
tum states, represented by ∣φ(t)⟩ evolve in time obeying the Schrödinger
equation.

ih̵∂t∣φ(t)⟩ =H∣φ(t)⟩ . (4.2)

Eq. (4.2) is valid when the Hamiltonian is independent of time, that
means ∂tH = 0. At this moment, we define the evolution operator Û(t)
in order to include the time dependencies of the system. This operator
is an unitary transformation which turns the initial state ∣φ0⟩ into the
resulting state at time t following

∣φ(t)⟩ = Û(t)∣φ0⟩ . (4.3)

Taking into account Eq. (4.2), we remark that Û(t) depends on the total
Hamiltonian of the system. Therefore, in this picture quantum states
evolve with time with Û(t) whereas the operators are independent of
time.

Another possible representation is the Heisenberg picture. In this case,
Û(t) is applied to the operators, which now evolve in time following
Ô(t) = U†(t)Ô(0)U(t). Accordingly, operators in this picture obey

ih̵
dÔ
dt

= [Ô,H] , (4.4)

which is the Heisenberg equation of motion. In contrast to the Schrödinger
picture, operators now contain all the evolution of the system whereas
the states ∣φ0⟩ are time independent.

Although the Heisenberg and Schrödinger representations are broadly
used to solve quantum physics problems, for Hamiltonians like Eq. (4.1)
it may be more convenient to use a mixture of both interpretations: the
interaction picture. Now, both states and operators will evolve in time
following different unitary transformations.
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First, we assume that the Hamiltonian H0 of Eq. (4.1) is well-known
and is perturbed by W in such a way that the complete diagonalization
of H can not be found straightforwardly. Hence, we split the time op-
erator Û(t) properly following the terms of Eq. (4.1). Consequently, in
this representation, operators evolve with H0

Ô(t) = eiH0t/h̵Ôe−iH0t/h̵ , (4.5)

On the other hand, states depend on time as follows

∣Ψ(t)⟩ = eiH0t/h̵e−iHt/h̵∣Ψ(0)⟩ . (4.6)

Therefore, Eq. (4.6) allows us to define a new operator Ū(t) characteris-
tic from interaction picture. Its equation of motion reads

ih̵
dŪ

dt
=W(t)Ū(t) , (4.7)

whose solution depends explicitly on the perturbation Hamiltonian.

Ū(t) = T̂ e−
i
h̵ ∫

t
0 dt1W(t1) , (4.8)

where T̂ is a time-ordering operator which redistributes the product of
operators in increasing time:

T̂ Ô1(t1)Ô2(t2) = θ(t1 − t2)Ô1(t1)Ô2(t2) + θ(t2 − t1)Ô2(t2)Ô1(t1) . (4.9)

Using the evolution operator Ū(t), the change of a quantum state from
the time t′ to t is given by the S-matrix S(t, t′) = Ū(t)Ū†(t′). Applying
Eq. (4.8), the S-matrix also takes an exponential form in terms of the
perturbation.

S(t, t′) = T̂ e−
i
h̵ ∫

t
t′ dt1W(t1) . (4.10)

Eq. (4.10) yields the property S(t, t′′)S(t′′, t′) = S(t, t′) which will be
used in the following section. We remark that S(t, t′) is a key element
for the NEGF formalism and the time-dependent perturbation methods.

4.2 Equilibrium Green’s functions
Green’s functions are very powerful when many-particle systems are
considered for both thermal and nonthermal equilibrium. For the mo-
ment, we restrict ourselves to the T = 0 equilibrium case, which will
be extended in Sec. 4.3 to the nonequilibrium case. The single-particle
Green’s function is defined as

G(x, t;x′t′) = −
i

h̵

⟨Ψ0∣T̂ψ(t)ψ
†(t′)∣Ψ0⟩

⟨Ψ0∣Ψ0⟩
, (4.11)
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where ∣Ψ0⟩ is the ground state of the total Hamiltonian [Eq. (4.1)] and ψ
and ψ† are operators in the Heisenberg picture. Eq. (4.11) obeys an equa-
tion of motion which takes the form of an inhomogeneous Schrödinger
equation [212, 213].

We consider that at t→ −∞ the system is in a nonperturbed state ∣φ0⟩

of H0. Afterwards, the system evolves to the ground state ∣Ψ0⟩ of the to-
tal Hamiltonian at t = 0. Therefore, following the Gell-Mann and Low
theorem, the ground state obeys ∣Ψ0(−∞)⟩ = S(0,−∞)∣φ0⟩ [213]. Simi-
larly, the final state (at t → ∞) is assumed to return to the unperturbed
state ⟨Ψ0∣ = ⟨φ0∣S(∞, t). Then, we apply the properties of the S-matrix
to express Eq. (4.11) in the following way

G(x, t;x, t′) = −
i

h̵

⟨φ0∣T̂ψ(x, t)ψ
†(x′, t′)S(∞,−∞)∣φ0⟩

⟨φ0∣S(∞,−∞)∣φ0⟩
. (4.12)

Interestingly, a series expansion of Eq. (4.10) gives us the possibility of
studying the perturbation expansion for the Green’s function and, con-
sequently, any operator in orders of W . The terms of the expansion
encompass expected values of more than three or four field operators
ψ(ti) which may be split in pairs by using the Wick’s theorem [214].
Additionally, each term of this separation can be intuitively understood
with Feynman diagrams [213, 215]. Actually, only the fully-connected
diagrams play a role in the perturbation expansion because the discon-
nected diagrams cancels the normalization condition.

G(x, t;x′t′) = −
i

h̵

∞

∑
j=0

(−
i

h̵
)
n

∫

∞

−∞
dt1 . . . dtn × (4.13)

⟨φ0∣T̂ψ(t)ψ
†
(t′)W(t1) . . .W(tn)∣φ0⟩con .

This relation will be used in the evaluation of the current by using a
perturbative expansion up to third order in Sec. 6.2 .

Another important issue is the consideration of finite temperatures
in the system. A typical method for including temperatures is the use
of Matsubara Green’s functions [216]. Instead, we will employ Keldysh
Green’s functions (Sec. 4.3) because they take into account simultane-
ously thermal and nonequilibrium effects. Regarding temperature, the
Green’s function is redefined [213, 216]

G(x, t;x′, t′) = −
i

h̵
Tr [%T̂ψ(x, t)ψ†

(x′, t′)] , (4.14)

where % is the equilibrium density matrix coming from statistical physics.
From now on, the expected values of any operator O(t) will be com-
puted in the following form

⟨O(t)⟩ = Tr [%T̂OH(t)] (4.15)

where OH is the operator in the Heisenberg picture.
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Fig. 4.1. Sketch of the Keldysh contour. The time path starts at the + branch from
t→ −∞ to t→∞. At that point, the contour now returns along the − branch going back
in time until t→ −∞.

4.3 Non-equilibrium Green’s functions
When we deal with non-equilibrium processes, we face with the prob-
lem that the final state of the perturbed system at t →∞ may not be the
same as the initial one and the formalism of Sec. 4.2 is not valid. Conse-
quently, we need a more complete method to calculate the Green’s func-
tions of the system. Fortunately, the resulting theory is almost equiv-
alent to the equilibrium Green’s function formalism. In this case, we
need to extend the Hamiltonian of Eq. (4.1) with an additional transient
term H′(t) dependent on time which takes place at t0. Nevertheless, we
neglect the transient dynamics, which are beyond the scope of the topic
of this thesis, taking the perturbation time at t0 → −∞. In such case, the
Green’s function of Eq. (4.11) is transformed into

G(1,1′) = −
i

h̵
⟨T̂Cψ(1)ψ

†
(1′)⟩ , (4.16)

where (1) denotes (x, t) for simplicity. We stress that now the time-
ordering operator T̂ is transformed into contour-ordered operator T̂C
which may take a more general path. Particularly, we choose the Keldysh
contour sketched in Fig. 4.1.

The Keldysh path starts at t0 → −∞ and continues with increasing
times along the + branch. When the time t → ∞ is reached, the path
returns to lower times along the − branch until it ends in t → −∞ again.
In such case, the S-matrix corresponding to this contour becomes

Sc(−∞,−∞) = S−(−∞,∞)S+(∞,−∞) . (4.17)

Notice that now the final state is again the initial unperturbed state
of the system allowing us to properly calculate the expected value of the
nonequilibrium process. Importantly, one shall take care of the branches
when applying the perturbation expansion of the S-matrix. Actually, we
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deal with different types of Green’s function since t and t′ may be lo-
cated in different branches. For this reason, we are now going to define
each of them: When both operators are at the + branch, the contour-
ordering operator becomes a time-ordering operator T̂C → T̂ and we
obtain a Green’s function similar to Eq. (4.11)

Gt(1,1′) ≡ G++
(1,1′) = −

i

h̵
⟨T̂ψ(1)ψ†

(1′)⟩ , (4.18)

which is referred as the time-ordered (or casual) Green’s function. If the
operators act in the negative branch instead, Eq. (4.16) results in the
antitime-ordered Green’s function

Gt̄(1,1′) ≡ G−−
(1,1′) = −

i

h̵
⟨ ˆ̄Tψ(1)ψ†

(1′)⟩ , (4.19)

where ˆ̄T is the antitime-ordering operator. We also can obtain Green’s
function whose operators are in different branches. For t located at the
+ branch and t′ at the − branch, we define the lesser Green’s function

G<
(1,1′) ≡ G+−

(1,1′) = +
i

h̵
⟨ψ†

(1′)ψ(1)⟩ , (4.20)

and in the opposite case, we encounter the greater Green’s function

G>
(1,1′) ≡ G−+

(1,1′) = −
i

h̵
⟨ψ(1)ψ†

(1′)⟩ . (4.21)

Following Eq. (4.9), a relation between the Green’s function is satisfied,

Gt +Gt̄ = G<
+G> , (4.22)

meaning that the four Green’s function are not totally independent. For
the aim of this thesis, it is convenient to define two additional Green’s
function which are essential for the description of transport processes.
These are the retarded Green’s function

Gr(1,1′) = −
i

h̵
θ(t − t′) ⟨[ψ(1), ψ†

(1′)]
+
⟩

= θ(t − t′) [G>
(1,1′) −G<

(1,1′)] , (4.23)

where [. . .]+ denotes the anticommutator; and the advanced Green’s func-
tion

Ga(1,1′) =
i

h̵
θ(t′ − t) ⟨[ψ(1), ψ†

(1′)]
+
⟩

= θ(t′ − t) [G<
(1,1′) −G>

(1,1′)] . (4.24)
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Notice that now these Green’s functions obey

Gr −Ga = G>
−G< . (4.25)

Depending on the physics we want to investigate, some Green’s func-
tions are more appropriate than others. First, Gt and Gt̄ are useful for
computing a perturbative expansion. In fact, such expansion may be
performed using diagrammatics, which is a powerful tool. On the other
hand, G< and G> describe correlations and other physical properties in
the system. For instance, the lesser Green’s function is related with the
occupation density of a system in which the operators ψ and ψ† repre-
sent annihilation or creation of particles following ⟨n⟩ = −ih̵G<(1,1). In
the Fourier space, it obeys

⟨n⟩ =
1

2πi
∫ dωG<

(ω) . (4.26)

Integrals like Eq. (4.26) will be solved in this thesis. The last pair of
Green’s functions, Gr andGa, have the advantage of describing internal
properties of the system such as its local DOS defined as

ρ(ω) = −
1

π
Im[Gr(ω)] , (4.27)

where Gr(ω) is just the Fourier transform of the retarded Green’s func-
tion. We highlight that ρ acts as a probability density and, consequently,
obeys the sum rule

∫

∞

−∞
dωρ(ω) = 1 . (4.28)

Using the fluctuation-dissipation relation and Eq. (4.26), we can prove
that Eq. (4.28) corresponds to the Friedel sum rule of Eq. (2.4). Further-
more, the retarded and advanced Green’s functions are the essential in-
gredient to theoretically investigate the transport properties and other
physical magnitudes of mesoscopic conductors. For this reason, the re-
tarded Green’s function will be evaluated for the Anderson model in
Sec. 5.2 using the equation-of-motion technique and later their relation
with the currents will be discussed in Sec. 6.1.

4.3.1 Dyson’s Equation
The goal of this section is to derive the Dyson’s equation and explain
its applications. First, we separate the Hamiltonian W = W(1) +W(2)

where W(1) describes an external potential and W(2) accounts for inter-
action between particles in the system. Then, the Hamiltonian can be
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expressed in the following way [212]

H = ∫ d1ψ†
(1)H0(1)ψ(1) + ∫ d1ψ†

(1)W(1)
(1)ψ(1)

+∫ d1d2ψ†
(1)ψ†

(2)W(2)
(2,1)ψ(2)ψ(1) . (4.29)

When pair interactions W(2) are absent in the system, we may identify
the equation of motion of the Green’s functions as

[ih̵∂t −H0(1)]g(1,1
′
) = δ(1′ − 1) , (4.30)

[ih̵∂t −H0(1) −W(1)
(1)]G(1,1′) = δ(1′ − 1) , (4.31)

where g(1,1′) is the unperturbed Green’s functions fully governed by
H0. Combining Eqs. (4.30) and (4.31) with a little bit of algebra one
obtains

G(1,1′) = g(1,1′) + ∫ d2g(1,2)W(1)
(2)G(2,1′) , (4.32)

which is regarded as the Dyson’s equation. Actually, Eq. (4.32) may be
generalized adding two-body interactions W(2) with the Feynmann di-
agramatic technique to Eq. (4.16) yielding

G(1,1′) = g(1,1′) + ∫ d2g(1,2)W(1)
(2)G(2,1′)

+∫ d2d3g(1,2)Σ(2,3)G(3,1′) , (4.33)

where Σ(2,3) is the so-called self-energy and includes all possible combi-
nation of virtual interactions. Mathematically, such virtual interactions
can be understood as irreducible Feynman diagrams coming from W(2).
Along this thesis we will encounter equations similar to Eq. (4.33) and
different expressions for the self-energy Σ depending on dot-lead tunnel
couplings or electron-electron interactions.

4.3.2 Langreth Rules
Dyson’s equation [Eq. (4.33)] is composed of convolutions of several
Green’s functions or self-energies following in time

C(t, t′) = ∫
C0

dτA(t, τ)B(τ, t′) , (4.34)

where C0 represents the time contour we consider. Eq. (4.34) is valid
when each term is a casual Green’s functions. We ensure that the Dyson’s
equation [Eq. (4.33)] is indeed expressed with casual Green’s function.
The problem arises when it is necessary to find a different type of Green’s
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Fig. 4.2. Deformation of the Keldysh contour of Fig. 4.1. Each rectangle corresponds
to a time segment of the path integral. The path C+ is defined from the first τ → −∞ to
the second one (red dashed rectangle) while the remaining path corresponds to C− (blue
dashed rectangle). The solid green rectangle represents the path from τ → −∞ to τ = t
and the solid pink rectangle indicates the contour which goes from τ = t to τ → −∞.

function. Evidently, one may compute a similar equation following the
procedure of Sec. 4.3.1. Nevertheless, the Langreth rules [217] offer us
a straightforward method to find an equivalent equation for noncasual
Green’s functions.

The Langreth rules are derived by deforming the Keldysh contour
(Fig. 4.1). This deformation is feasible because the initial and final states
are not modified and, for this reason, the expected values are strictly the
same. We proceed with the calculation of the Langreth rule for a lesser
Green’s function C<. The path becomes the one shown in Fig. 4.2. In
this case, the path starts at τ = −∞ and increases until it reaches τ = t.
Afterwards, the time decreases to τ → −∞ and increases again. At τ = t′,
the path follows decreasing times until it ends at τ = −∞. For a better
comprehension, we define two different contours: C+ goes from the first
τ → −∞ to the second one. Right after, C− starts and follows the path
until the end. Therefore, Eq. (4.34) is split into two terms taking into
account the different contours

C<
(t, t′) = ∫

C+
dτA(t, τ)B<

(τ, t′) + ∫
C−
dτA<

(t, τ)B(τ, t′) . (4.35)

We observe that in the first integralB< is a lesser function because τ trav-
els along C+ and t′ is contained in C−. Similar arguments are applied for
A< in the C− integral. Now, we split both paths again.C+ is separated in
the path between τ → −∞ and τ = t (green solid rectangle in Fig. 4.2 )
and the contour which goes from τ = t to τ → −∞ (pink solid rectangle
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in Fig. 4.2). Thus, the first integral of Eq. (4.35) reads

∫
C+
dτA(t, τ)B<

(τ, t′) = ∫

t

−∞
dτA>

(t, τ)B<
(τ, t′)

+∫

−∞

t
dτA<

(t, τ)B<
(τ, t′)

= ∫

∞

−∞
dτAr(t, τ)B<

(τ, t′) , (4.36)

where Ar is obtained applying Eq. (4.23). A similar procedure is done
in order to derive the solution of the C− integral. Finally, the Langreth
rule for C< is

C<
(t, t′) = ∫

∞

−∞
dτ[Ar(t, τ)B<

(τ, t′) +A<
(t, τ)Ba

(τ, t′)] . (4.37)

The greater function C> takes a similar form to Eq. (4.37) with the re-
placement of < by >. By replacing Eq. (4.37) into Eqs. (4.23) and (4.24),
we are able to get the retarded and advanced functions of C.

Cr,a(t, t′) = ∫
∞

−∞
dτAr,a(t, τ)Br,a

(τ, t′) . (4.38)

We remark that the pair-interaction term of the Dyson’s equation is a
convolution of three functions. Therefore, we shall also define the Lan-
greth rules for D = ABC. Using repeatedly Eq. (4.37) and (4.38), the
Green’s functions of D read

D<
= ArBrC<

+ArB<Ca +A<BaCa (4.39)

Dr
= ArBrCr . (4.40)

Importantly, we have not written the integrals in time for simplicity but
one should be aware that they should be taken into account. In addi-
tion to the convolution, we will also face in this thesis with products of
Green’s functions evaluated at opposite times C(t, t′) = A(t, t′)B(t′, t).
Therefore, we compute its Langreth rules with the same method as above:

C<
(t, t′) = A<

(t, t′)B>
(t′, t) , (4.41)

Cr(t, t′) = Ar(t, t′)B<
(t′, t) +A<

(t, t′)Ba
(t′, t) . (4.42)

As an illustrative example, we now evaluate the Dyson’s equation
for the lesser Green’s function when the perturbation is only due to pair
interactions. We substitute Eq. (4.39) into Eq. (4.33) and, ignoring the
integrals, we obtain the following Dyson’s equation:

G<
= g< + grΣrG<

+ grΣ<Ga + g<ΣaGa . (4.43)
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An iterative replacement ofG< provides us an useful relation which will
be used in following chapters of this thesis:

G<
= (1 +GrΣr

)g<(1 +GaΣa
) +GrΣ<Ga . (4.44)

We identify the first term as a transient component which will be gen-
erally neglected [213]. The lesser Green’s function is thus written as
G< = GrΣ<Ga.

Finally, we want to emphasize that the NEGFs formalism is very
broad and we have only focused on the properties and methods of rel-
evance for this thesis. For instance, this formalism may be extended by
considering Green’s functions for bosonic particles as phonons or pho-
tons. For a more complete explanation, we refer the reader to Refs. [212,
213, 214].
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5. Anderson Model

One of the most relevant theories describing QD systems is the Ander-
son model. It was introduced by P. W. Anderson with the aim of defining
localized magnetic states in metals [98]. He proposed a Hamiltonian
whose terms represent different parts of the setup such as the leads and
the dots as well as the tunnel hoppings or the interaction between elec-
trons. Anderson’s theory was extended by the work of Alexander and
Anderson [218] in which they added two neighboring localized states
which interact with each other. They found that the exchange processes
leading to ferromagnetic and antiferromagnetic interactions are relevant
in the system. Recalling that QDs may act as artificial localized magnetic
states, the Anderson Hamiltonian is thus an important model to discuss
the physics in these nanoscaled systems.

We emphasize that the Anderson Hamiltonian is not the only model
which can address QD physics. As explained in Sec. 2.1.3, many models
exist in the literature able to describe the electronic properties of quan-
tum impurities. For instance, the s-d Hamiltonian proposed by Zener
[97] characterizes the spin-spin interactions between particles in the lo-
calized state with free carriers in the metal. In fact, we recall that this last
model was used by Kondo [86] to obtain theoretically the logarithmic
trend of the resistance with temperature. Nevertheless, it can be demon-
strated that any of these alternative models can be derived from the
Anderson Hamiltonian with an appropriate manipulation in the right
parameter regime, as is carried out with the Schrieffer-Wolff transfor-
mation [100].

The solution of the Anderson model can be explored with the aid of
the NEGF formalism explained in Ch. 4. Actually, Anderson’s papers
[98, 218] used this tool to find relevant physical magnitudes, i. e., the
occupation or the DOS. Importantly, the application of the equation of
motion (EOM) technique to the NEGF is widely used in order to find
the analytical expression of the Green’s function in different regimes.
In addition, the series expansion of the S-matrix may be also performed
although its validity reduces to small perturbations. Moreover, different
techniques can be found in the literature such as the NRG which is able
to correctly derive the DOS in the Kondo limit showing the Abrikosov-
Suhl resonance [219].
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The properties of the systems considered in this thesis are studied
with the Green’s functions computed from Anderson Hamiltonian via
either the EOM technique or a perturbation expansion. In Sec. 5.1 we
present the general Hamiltonian and transform it into different types of
Hamiltonian for more concrete cases and regimes. Later, we introduce
the EOM technique in Sec. 5.2 to obtain the expression of the retarded
Green’s functions using several approximations. Finally, we explain
the slave-boson mean-field theory (SBMFT) in Sec. 5.3 and compute
the mean-field equations for single and double QDs in the Fermi liquid
regime. This chapter introduces the models and techniques employed
for the results of this thesis and develops the theoretical calculations
needed for evaluating the Green’s functions, leading to the local DOS,
transmission functions and other interesting physical properties. There-
fore, it contains both well known results (Secs. 5.1, 5.2.1, 5.2.2 and intro-
ductory parts of Secs. 5.2 and 5.3) and original calculations (Secs. 5.2.3,
5.2.4, 5.3.1 and 5.3.2).

5.1 The general Hamiltonian
Since this thesis encompasses a large variety of QD setups, we first con-
sider the most general scenario to write its corresponding Anderson
Hamiltonian. Therefore, we revisit the structure sketched in Fig. 3.2.
The QD system is formed by Nd QDs which may be attached to N
fermionic reservoirs characterized with a given electrochemical poten-
tial µα and a temperature Tα. Conduction electrons of the reservoirs
thus follow the Fermi distribution function of energies

fα(ω) =
1

1 + exp (
ω−µα
kBTα

)
. (5.1)

Now, we proceed with the definition of the model Hamiltonian. We
identify three different terms in the general Anderson model

H =Hleads +HQDs +Htun . (5.2)

The first term is the Hamiltonian of the leads

Hleads = ∑
αkσ

εαkσC
†
αkσCαkσ , (5.3)

where C†
αkσ (Cαkσ) is the creation (annihilation) operator of electrons

located at the lead αwith energy εαkσ with k being the wavenumber and
σ the spin of such electrons. Notice that Coulomb interactions between
electrons inside the reservoirs are considered negligible, implying that
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electrons will behave as free particles. This approximation is valid when
the reservoirs are metals with good screening properties, which is the
experimentally relevant situation in most of the cases.

The second part corresponds to the Hamiltonian of the QDs which
may be split in three additional terms

HQDs = Hnint +Hintra +Hinter

= ∑
µνσ

Hµσ,νσd
†
µσdνσ +∑

µ

Uµnµ↑nµ↓

+
1

2
∑

µ≠ν,σµσν

Ũµ,νnµσµnνσν . (5.4)

Hnint is the Hamiltonian of the QD array in the absence of electron-
electron interactions. We identify d†

µσ (dµσ) as the operator which creates
(annihilates) electrons with spin σ at the dot µ. Hµσ,νσ are the energy ma-
trix elements of the noninteracting Hamiltonian whose diagonal terms
represent the energy levels of the dots defined as Hµσ,µσ = εµσ. The
nondiagonal terms correspond to tunneling transitions between levels
(e. g., for a DQD with µ ≠ µ̄: Hµσ,µ̄σ = τ ). Furthermore, we assume
spin-conserved tunneling meaning that Hµσ1,νσ2 ∝ δσ1σ2 .

The two additional terms of Eq. (5.4) are the intradot (Hintra) and
interdot (Hinter) interacting Hamiltonians. The former depends on the
occupation operators (nµσ = d†

µσdµσ for the dot µ) at different spins with
amplitude Uµ. This is a consequence of the Pauli principle because we
assume that there exists only one level in each dot in which the spin
degeneracy permits double occupation allowing electron-electron inter-
actions inside. On the other hand, the latter includes occupations of two
distinct QDs with Coulomb strength Ũµ,ν (for interactions between the
dots µ and ν). Note that we have inserted 1/2 in order to avoid double
counting.

So far, Eqs. (5.3) and (5.4) define two distinctive isolated subsystems,
namely, the reservoirs and the dots. The connection between them is
performed by including the tunneling Hamiltonian Htun

Htun = ∑
αkσµ

(Vαkσ,µC†
αkσdµσ + V∗αkσ,µd†

µσCαkσ) , (5.5)

where Vαkσ,µ is the tunnel hopping amplitude for an electron with spin
σ between the µ QD and the α reservoir.

If we compare Eq. (5.2) with Eq. (4.1), we can identify Hleads and
Hnint as the unperturbed Hamiltonians while Htun, Hintra and Hinter

could be treated, in principle, as perturbations of the system. There-
fore, in the NEGF formalism, from the Hamiltonians given by Eq. (5.3)
and Hnonint in Eq. (5.4) we obtain the unperturbed Green’s functions
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(App. A) and our goal here is to find valid NEGFs which comprise such
perturbations.

5.1.1 Single quantum dots and molecular junctions
In the previous section, we have defined the Hamiltonian for a QD sys-
tem with any number of dots Nd. However, we now focus first on a
simpler case: a single QD (Nd = 1). For this particular system, the most
significant modification is made to the dot Hamiltonian, which reduces
to

HQD = ∑
σ

εdσd
†
σdσ +Un↑n↓ , (5.6)

where εdσ is the energy level of the QD for an electron with spin σ. The
spin dependence may be originated from a Zeeman splitting due to a
magnetic field εdσ = εd + σ∆B , where ∆B = gµBB is the Zeeman energy
coming from B. Since we deal with a single QD, the µ label is unneces-
sary and the interdot interactions do not exist. We may classify several
energies depending on the number of electrons occupying the QD: ω = 0
for an empty dot, ω = εdσ when the QD is occupied by an electron of spin
σ and ω = 2εd+U when the dot is doubly occupied. This fact shows that
electrons have to overcome the intradot interaction energy U in order to
have two electrons inside the dot. We will observe below that the local
DOS will indeed exhibit resonances located at these energies yielding
the CB effect introduced in Sec. 1.1. The transport through a QD in the
CB regime will be studied in the nonlinear regime in Sec. 7.1.

For a Kondo system in the absence of magnetic fields B, we should
take into account several parameter regimes as explained in Sec. 2.1.3.
We will explain below that high Coulomb interactions, low tempera-
tures and strong couplings lead to Kondo correlations. Their impact on
transport will be analyzed in Sec. 7.3 for a QD attached to leads out of
equilibrium.

In order to compare with experiments, it is convenient to establish
a relation between the gate voltage Vg and the QD energy level εd. For
this reason, we resort to the orthodox model following Eq. (1.6):

εd = εN −
CLVL +CRVR +CgVg

C
e . (5.7)

Moreover, the Coulomb interaction depends on the total capacitance of
the circuitU = e2/C. These relations will be used in Sec. 7.2 with the goal
of fitting temperature-dependent experiments performed with molecu-
lar junctions.
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5.1.2 The slave-boson Hamiltonian
The Kondo problem can be described in the Fermi liquid regime by con-
sidering low temperatures T and strong interactions U as explained in
Sec. 2.1.2. Although the Anderson Hamiltonian is a useful model to
illustrate the Kondo effect, some methods are not valid enough for tem-
peratures below the Kondo temperature T < TK . For instance, the per-
turbation expansion and the EOM technique also applied in this thesis
provide Green’s functions that exhibit charge fluctuations in the system.
That implies that the results are restricted to T > TK . For the Fermi
liquid regime represented by T < TK , these fluctuations should be neg-
ligible (spin fluctuations are still allowed) and a different formalism is
thus needed.

With this goal in mind, we now discuss the slave-boson Hamilto-
nian, which can be derived from the Anderson Hamiltonian. The pro-
cedure, introduced by Coleman [220], inspired by Barnes [221, 222], be-
gins with the transformation of Eqs. (5.4) and (5.5) into a Hamiltonian
with Hubbard operators Xµσ,νσ = ∣µσ⟩⟨νσ∣ where ∣µσ⟩ = d†

µσ ∣0⟩ is the
quantum state of an electron with spin σ occupying the µ dot. After this
transformation, we find

HQDs = ∑
µνσ

Hµσ,νσXµσ,νσ , (5.8)

Htun =
1

√
Ns
∑
αkσµ

(Vαkσ,µC†
αkσX0µ,µσ + V∗αkσ,µXµσ,0µCαkσ) , (5.9)

where the subindex 0 in X0µ,µσ = ∣0⟩⟨µσ∣ and Xµσ,0µ = ∣µσ⟩⟨0∣ denotes
tunneling transitions involving an empty QD. This is an Ns-fold degen-
erate model where Ns is the degeneracy of the angular momentum (for
our setups Ns = 2). We remark that we have assumed large intradot
interactions U → ∞ and small interdot interactions Ũ → 0 even though
this model can be extended to a more general situation.

A substantial disadvantage of the Hubbard operators is that they do
not obey fermionic or bosonic commutation rules:

[Xµ1σ1,ν1σ1 ,Xµ2σ2,ν2σ2] = δσ1σ2 (δν1µ2Xµ1σ1,ν2σ1 − δν2µ1Xµ2σ1,ν1σ1) .
(5.10)

Hence, its perturbation expansion has to be implemented without em-
ploying the Wick’s theorem [84], a very arduous task when dealing with
more than one QD in the system. For this reason, Coleman [220] pro-
posed to transform the Hubbard operators Xµσ,νσ into a combination of
bosonic and fermionic operators

X0µ,µσ = b
†
µfµσ , (5.11a)
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Xµσ,0µ = f
†
µσbµ , (5.11b)

Xµσ,νσ = f
†
µσfνσ , (5.11c)

X0µ,0µ = b
†
µbµ , (5.11d)

where b†
µ (bµ) is a bosonic operator which creates (destroys) an empty

state in the µ QD and f†
µσ (fµσ) is a pseudofermion operator which cre-

ates (annihilates) a single-electron occupied state with spin σ in the µ
QD. After this transformation, Eqs. (5.8) and (5.9) become

HQDs = ∑
µνσ

Hµσ,νσf
†
µσfνσ , (5.12)

Htun =
1

√
Ns
∑
αkσµ

(Vαkσ,µC†
αkσb

†
µfµσ + V∗αkσ,µf†

µσbµCαkσ) . (5.13)

The infinite-U slave-boson forbids double-occupancy. Hence, we need
to include Lagrange multipliers λµ which restrict the system to a sub-
space of singly-occupied QDs.

HLag = ∑
µ

λµ (1 − b†
µbµ −∑

σ

f†
µσfµσ) . (5.14)

Later in this chapter, we will introduce the mean-field version of the
slave-boson theory (SBMFT) which gives reliable results for the systems
considered in this thesis. Particularly, we will employ this model in
Sec. 7.3.2 with the goal of analyzing the Kondo effect and transport
properties of a single artificial impurity in the Fermi liquid regime. Ad-
ditionally, we will also study thermal effects in a two-impurity system
in Sec. 8.3.

5.1.3 The Kondo Hamiltonian
As explained in Sec. 2.1.3, magnetic impurities can be modelled with
the so-called s-d model, which treats the impurity as a spin interacting
antiferromagnetically to the conduction electrons. This model was in-
troduced by Zener [97] and its relation with the Anderson Hamiltonian
was explained by Schrieffer and Wolff [100]. This section will focus on
the transformation of the Anderson Model into the s-d or Kondo model.

For the sake of simplicity, we perform the calculation for the case of a
single QD [Eqs. (5.3), (5.5) and (5.6)]. Firstly, we define the conditions for
a valid transformation: The QD should be filled with only one electron,
meaning εd < 0 and εd + U > 0. Hence, the doubly-charged state is not
allowed in the QD. Additionally, we assume narrow resonances such
that Γ/∣εd∣ ≪ 1 and Γ/∣εd+U ∣ ≪ 1 with Γ being the hybridization constant

Γασ = 2π∑
k

ρα(εαkσ) ∣Vαkσ ∣2 , (5.15)
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where ρα is the local DOS of the lead. The hybridization constant is
also understood as the lifetime of an electron occupying the QD. Under
these limits, the system is dominated by high-order tunneling transi-
tions V . For this reason, we apply an unitary transformation e−S̄ which
eliminates the first order in V of the Anderson model [Eq. (5.5)]. The
resulting Hamiltonian H̄ = eS̄He−S̄ approximately becomes

H̄ ≈H0 +Htun + [S̄,H0] + [S̄,Htun] +
1

2
[S̄, [S̄,H0]] , (5.16)

where H0 =Hleads+HQDs. Eq. (5.16) suggests that, for removing the first
order in V , the unitary transformation has to obey

Htun = [H0, S̄] . (5.17)

With this condition in mind, we apply a transformation of the form:

S̄ = ∑
αkσ

[w
(1)
αkσnσ̄C

†
αkσdσ +w

(2)
αkσ(1 − nσ̄)C

†
αkσdσ −H.c.] , (5.18)

where σ̄ denotes the opposite spin of σ. w(1)αkσ and w
(2)
αkσ are functions

of the parameters of the Anderson model which can be found solving
Eq. (5.17) (more details given in App. B) and read

w
(1)
αkσ =

Vαkσ
εαkσ − εdσ −U

, (5.19a)

w
(2)
αkσ =

Vαkσ
εαkσ − εdσ

. (5.19b)

Once the linear term in V is eliminated, Eq. (5.16) contains two terms:
the Hamiltonian H0 and the first nonzero component of the unitary
transformation HSW = (1/2)[S̄,Htun]. In App. B we carefully compute
HSW finding four parts: the s-d Hamiltonian

Hsd = ∑
αkσαβqσβ

Jασα,βσβ ŜlslσασβC
†
αkσαCβqσβ , (5.20)

where slσασβ are the matrix coefficients proportional to the Pauli matrices
2ŝl = σ̂l (with l = {x, y, z}) while Ŝl is the l-component of Pauli spin
operator of the QD. Jασα,βσβ is the amplitude of the antiferromagnetic
interaction between the electron occupying the QD and the conduction
electrons of the reservoirs:

Jασα,βσβ = (w
(2)
αkσα

−w
(1)
αkσα

)V∗βqσβ +([w
(2)
βqσβ

]
∗
− [w

(1)
βqσβ

]
∗
)Vαkσα . (5.21)
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The second term of the SW Hamiltonian describes simultaneous hop-
ping of two electrons inside or outside the QD:

Hch =
1

4
∑
αkσ

J̃ ασ,βσ̄C
†
βqσ̄C

†
αkσdσdσ̄ +H.c. , (5.22)

where now J̃ is

J̃ ασα,βσβ = (w
(2)
αkσα

−w
(1)
αkσα

)Vβqσβ + (w
(2)
βqσβ

−w
(1)
βqσβ

)Vαkσα . (5.23)

The following term is a direct s-d interaction with no spin exchange

Hdir = ∑
αkσβq

(W̄ασ,βσ −
1

4
Jασ,βσ[nσ + nσ̄])C†

αkσCβqσ , (5.24)

where

W̄ασ,βσ =
1

2
(w
(2)
αkσα

V∗βqσβ + [w
(2)
βqσβ

]
∗Vαkσα) . (5.25)

Finally, the last term only depends on the QD operators

H′
0 = − ∑

αkσ

(W̄ασ,ασ −
1

2
Jασ,ασnσ̄)nσ . (5.26)

The next step is to reduce the Hilbert space by eliminating the subspace
of the QD operators. Consequently, we transform 1 = nσ+nσ̄ and neglect
the two-electron contribution to end up with the Kondo Hamiltonian

HKon = ∑
αkσβq

K̄ασ,βσC
†
αkσCβqσ + ∑

αkσαβqσβ

Jασα,βσβ ŜlslσασβC
†
αkσαCβqσβ ,

(5.27)
where K̄ is the amplitude of the potential scattering term [84]

K̄ασ,βσ = W̄ασ,βσ −
1

4
Jασ,βσ . (5.28)

The potential scattering term is not significant around the particle-hole
symmetry point εd = −U/2 but is necessary for a correct computation of
the cotunneling processes taking place in the QD. Kaminski et al. [105]
used a modified Kondo Hamiltonian where the amplitude of the poten-
tial scattering term turns into K̄ → J /4 yielding

HKam = ∑
αkσαβqσβ

Jασα,βσβ (
1

4
δσασβ + Ŝls

l
σασβ

)C†
αkσαCβqσβ . (5.29)

Both Eqs. (5.27) and (5.29) will be employed along this thesis. In Sec. 7.3.1
we will study how Kondo correlations vanish due to increasing thermal
gradients.
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5.2 Equation of motion
Once the Hamiltonian of the system is determined, a mathematical tech-
nique is needed to obtain its physical properties as the local DOS or
the currents. Here, the goal is to calculate the Green’s functions for the
Hamiltonian given by Eq. (5.2) in the Keldysh NEGFs formalism. To
achieve that, we employ the EOM technique, which consists of calculat-
ing the dynamics of the Green’s functions via a system of differential
equations. Generally, it is necessary to truncate such equations in order
to obtain a closed set. Such truncation needs to be valid in some pa-
rameter regime because the solution has to properly model the physical
phenomenon we want to study.

Basically, the technique starts considering a retarded Green’s func-
tion [Eq. (4.23)]

⟪ψa⃗(t), ψ
†
b⃗
(t′)⟫ ≡ Gr

a⃗,b⃗
(t, t′) = −

i

h̵
θ(t − t′) ⟨[ψa⃗(t), ψ

†
b⃗
(t′)]

+
⟩ , (5.30)

where ψa⃗(t) are operators of the Anderson Hamiltonian (C or d) and a⃗
and b⃗ represent sets of quantum numbers. In this case, the Green’s func-
tion of Eq. (5.30) can be understood as a coefficient of a matrix which
collects of all possible individual Green’s functions. At this stage, the
next step consists of finding the EOM of Eq. (5.30) by calculating the
partial derivative in t such that

ih̵∂tG
r
a⃗,b⃗

(t, t′) = δ(t − t′) ⟨[ψa⃗(t), ψ
†
b⃗
(t′)]

+
⟩

+θ(t − t′) ⟨[∂tψa⃗(t), ψ
†
b⃗
(t′)]

+
⟩ . (5.31)

Eq. (5.31) has a term which depends on the anticommutator at equal
times and a second term which involves the evolution of the opera-
tor ψa⃗(t). Such operators will obey the Heisenberg equation [Eq. (4.4)]
which transforms Eq. (5.31) into

ih̵∂tG
r
a⃗,b⃗

(t, t′) = δ(t − t′) ⟨[ψa⃗(t), ψ
†
b⃗
(t′)]

+
⟩

+
i

h̵
θ(t − t′) ⟨[[H, ψa⃗(t)], ψ†

b⃗
(t′)]

+
⟩ . (5.32)

Clearly, we observe that the EOM of Gr
a⃗,b⃗

contains a function of addi-
tional Green’s functions depending on the form of the Hamiltonian H
and we will typically deal with an infinite set of coupled differential
equations. Due to this difficulty, we will truncate the set in the follow-
ing sections by applying physical arguments.
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Since one of our goals is finding the local DOS, we proceed to the
calculation of the EOM for the QD retarded Green’s function

Grµσ,νσ(t, t
′
) = −

i

h̵
θ(t − t′) ⟨[dµσ(t), d

†
νσ(t

′
)]
+
⟩ , (5.33)

whose EOM, applying the Anderson Hamiltonian of Eq. (5.2), reads

ih̵∂tG
r
µσ,νσ = δµνδ(t − t

′
) +∑

λ

Hµσ,λσG
r
λσ,νσ (5.34)

+∑
αk

V∗αkσ,µGrαkσ,νσ +Uµ⟪dµσnµσ̄, d†
νσ⟫

+ ∑
λ≠µ,σλ

Ũµ,λ⟪dµσnλσλ , d
†
νσ⟫ .

As expected, the retarded Green’s function depends on higher order cor-
relators: ⟪dµσnµσ̄, d

†
νσ⟫ and ⟪dµσnλσλ , d

†
νσ⟫ due to intradot and interdot

interactions, respectively. Eq. (5.34) is key to the results of this thesis
and we thus devote the following sections to solve it properly taking
into account different regimes.

5.2.1 Non-interacting solution
The simplest assumption is to consider that the Coulomb interactions
are negligible (Uµ = Ũµ,ν = 0). In this situation, the unknown functions
of Eq. (5.34) are only the dot and tunneling retarded Green’s function.
Since Eq. (5.34) corresponds to the former , we also compute the EOM
of the latter:

ih̵∂tG
r
αkσ,νσ = εαkσG

r
αkσ,νσ +∑

λ

Vαkσ,λGrλσ,νσ . (5.35)

Our next step is resorting to Fourier space, which transforms ih̵∂t → ω.
Additionally, the Green’s functions become energy-dependentG(t, t′) →
G(ω). After such transformation, Eq. (5.35) reads

Grαkσ,νσ(ω) = ∑
λ

Vαkσ,λ
ω − εαkσ

Grλσ,νσ(ω) . (5.36)

In this case, we encounter a closed system of algebraic equations whose
size depends on the number of QDs in the device. Combining Eq. (5.34)
in the Fourier space and Eq. (5.36) we obtain

Grµσ,νσ = [1ω −Hnint −Σr
]
−1
µσ,νσ , (5.37)

which is a very straightforward solution. As expected, the dot retarded
Green’s function depends in a trivial way on the noninteracting Hamil-
tonian Hnonint and the retarded tunneling self-energy Σr which is de-
fined as

Σr
µσ,νσ = ∑

αk

grαkσV∗αkσ,µVαkσ,ν = ∑
αk

V∗αkσ,µVαkσ,ν
ω − εαkσ

(5.38)
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In the wide band limit (WBL), Eq. (5.38) can be approximated to the
hybridization functions of Eq. (5.15) following

Σr
µσ,νσ ≈ −i

Γµσ,νσ

2
. (5.39)

Now, we discuss the case of a DQD with a dot-dot tunneling τ . The
Green’s function takes the following form

Grµσ,νσ =
(ω − εµ̄ −Σr

µ̄σ,µ̄σ)δµν + (τ +Σr
µ̄σ,µσ)δµ̄ν

(ω − εµ −Σr
µσ,µσ)(ω − εµ̄ −Σr

µ̄σ,µ̄σ) − (τ +Σr
µσ,µ̄σ)(τ +Σr

µ̄σ,µσ)
,

(5.40)
where εµ is the spin-independent energy of the µQD [Hµσ,µσ in Eq. (5.4)]
and µ̄ denotes {2,1} for µ = {1,2} the DQD being as sketched in Fig. 1.6a
or Fig. 1.6b. Eq. (5.40) will generate two resonances in the local DOS
which represent broadened bonding and antibonding states [223].

If we consider a single QD, Gr reduces to a function with a single
pole

Grσ,σ =
1

ω − εdσ −Σr
σ,σ

. (5.41)

If we insert Eq. (5.41) into Eq. (4.27), we obtain a Lorentzian resonance
in the DOS, which corresponds to the Breit-Wigner approximation.

5.2.2 Hartree Approximation
A common way to include the role of interactions is assuming that elec-
trons feel a mean-field potential which comprises all possible pair inter-
actions. Within this approach, we may approximate the higher order
correlators of Eq. (5.34) replacing the number operator to its mean occu-
pation:

⟪dµσnλσλ , d
†
νσ⟫ ≈ ⟨nλσλ⟩G

r
µσ,νσ . (5.42)

This is called Hartree approximation and is widely used in the literature
[94, 104, 223, 224]. Considering this approach, Eq. (5.37) turns out to be

Grµσ,νσ = [1ω −Hnonint −NHar
−Σr

]
−1
µσ,νσ , (5.43)

where NHar is a diagonal matrix whose elements correspond to the
mean-field values of the intradot and interdot interactions

NHar
µσ,µσ = Uµn̄µσ̄ + ∑

λ≠µ,σ′
Ũµ,λn̄λσ′ , (5.44)

where, from now on, we apply the notation n̄ = ⟨n⟩ for simplicity. Due
to the diagonal form of N , the mean-field interactions only shift the
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energy levels of the QD. For the single QD case, we clearly observe that
the level of the resonance [Eq. (5.41)] is changed by εd → εd +Un̄σ̄

Grσ,σ =
1

ω − εdσ −Un̄σ̄ −Σr
σ,σ

. (5.45)

Notice that now Eq. (5.45) depends on n̄σ̄ which is, at the same time,
dependent on the retarded Green’s function [see Eqs. (4.26) and (4.44)].
Consequently, we have to deal with a self-consistent calculation in order
to find the final solution. For the DQD case, we obtain

Grµσ,νσ =
(ω −Ωr

µ̄σ,µ̄σ −Nµσ̄)δµν +Ωr
µ̄σ,µσδµ̄ν

(ω −Ωr
µσ,µσ −Nµσ)(ω −Ωr

µ̄σ,µ̄σ −Nµσ̄) −Ωµσ,µ̄σΩµ̄σ,µσ
, (5.46)

where Ωµσµ,νσν = Hµσµ,νσν + Σr
µσµ,νσν and Nµσ ≡ NHar

µσ,µσ. Despite its
simplicity, this approach is unable to show characteristic features of CB,
i. e., the Coulomb Diamonds; or even the Kondo effect. Therefore, we
take an additional step in the EOM technique with the goal of finding a
more accurate approximation.

5.2.3 Hubbard-I Approximation
The next step consists of computing the EOM of the correlators involv-
ing the intradot and interdot interactions [last two terms of Eq. (5.34)].
Applying Eq. (5.32) to such correlators we obtain

ih̵∂t⟪dµσnλσλ , d
†
νσ⟫ = δµν n̄λσλδ(t − t

′
) +∑

η

Hµσ,ησ⟪dησnλσλ , d
†
νσ⟫

+∑
η

Hλσλ,ησλ⟪dµσd
†
λσλ

dησλ , d
†
νσ⟫

−∑
η

Hησλ,λ,σλ⟪dµσd
†
ησλ

dλσλ , d
†
νσ⟫

+∑
αk

V∗αkσ,µ⟪Cαkσnλσλ , d†
νσ⟫

+∑
αk

V∗αkσλ,λ⟪dµσdλσλCαkσλ , d
†
νσ⟫

−∑
αk

Vαkσλ,λ⟪dµσC†
αkσλ

dλσλ , d
†
νσ⟫

+ ∑
η≠µ,ση

Ũη,µ⟪dµσnησηnλσλ , d
†
νσ⟫

+Uµ⟪dµσnµσ̄nλσλ , d
†
νσ⟫ . (5.47)

This lengthy equation covers three simultaneous virtual transitions and
higher order interaction processes. We proceed with the truncation of
Eq. (5.47) by applying physical arguments to obtain a valid result [225].
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First, we neglect correlators involving hopping transitions among three
different states (thus neglecting Kondo correlations). These terms are

⟪dµσd
†
λσλ

dησλ , d
†
νσ⟫ ≈ 0 , (5.48a)

⟪dµσd
†
ησηdλσλ , d

†
νσ⟫ ≈ 0 , (5.48b)

⟪dµσdλσλCαkσλ , d
†
νσ⟫ ≈ 0 , (5.48c)

⟪dµσC
†
αkσλ

dλσλ , d
†
νσ⟫ ≈ 0 , (5.48d)

⟪dµσnησηnλσλ , d
†
νσ⟫ ≈ 0 , (5.48e)

when {µ,σ} ≠ {λ,σλ} ≠ {η, ση}. Now, we take Hartree-like approxi-
mations for the remaining unknown correlators in order to avoid the
calculation of additional EOMs:

⟪dησnλσλ , d
†
νσ⟫ ≈ ⟨nλσλ⟩G

r
ησ,νσ , (5.49a)

⟪Cαkσnλσλ , d
†
νσ⟫ ≈ ⟨nλσλ⟩G

r
αkσ,νσ , (5.49b)

⟪dµσnησηnλσλ , d
†
νσ⟫ ≈ ⟨nηση⟩⟪dµσnλσλ , d

†
νσ⟫ . (5.49c)

when again {µ,σ} ≠ {λ,σλ} ≠ {η, ση}. The approximation of Eq. (5.49c)
is only performed in the equation involving ⟪dµσnλσλ , d

†
νσ⟫. Otherwise,

we follow Eq. (5.48e). Finally, we achieve a closed set of differential
equations which can be solved. Now, Eq. (5.47) in the Fourier space
becomes

(ω − εµ −Uµ(1 − nµσ̄) −NHar
µσµσ)⟪dµσnµσ̄, d

†
νσ⟫ = n̄µσ̄Ξµν , (5.50a)

(ω − εµ − Ũµ,λ(1 − nλσλ) −NHar
µσµσ)⟪dµσnλσλ , d

†
νσ⟫ = n̄λσλΞµν , (5.50b)

with

Ξµν =
⎛

⎝
δµν + ∑

η≠µ

Hµσ,ησG
r
ησ,νσ +∑

αk

V∗αkσ,µGrαkσ,νσ
⎞

⎠
, (5.51)

Here, we have distinguished between the correlators of the intradot and
the interdot interactions [λ ≠ µ in Eq. (5.50b)]. Now, Eq. (5.34) in the
Fourier space reads

(ω − εµ)G
r
µσ,νσ = NHub

µσ,µσΞµν , (5.52)

where

NHub
µσ,µσ = 1 +

Uµn̄µσ̄

ω − εµ −Uµ(1 − nµσ̄) −NHar
µσµσ

+ ∑
λ≠µ,σλ

Uµ,λn̄λσλ
ω − εµ − Ũµ,λ(1 − nλσλ) −NHar

µσµσ

. (5.53)
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We remark that NHub is also a diagonal matrix and contains all the con-
tribution of the electron-electron interactions. With a proper manipula-
tion of Eq. (5.52), we end up with the following result

Grµσ,νσ = [ω[NHub
]
−1
−Ω − ([NHub

]
−1
− 1)diag[Hnint]]

−1

µσ,νσ
. (5.54)

where diag[O] denotes the diagonal matrix of O. For the single QD case,
we may rewrite the Green’s function as a two-pole solution

Grσ,σ =
1 − n̄σ̄

ω − εd −Σr
σ,σ (1 + Un̄σ̄

ω−εd−U
)
+

n̄σ̄

ω − εd −U −Σr
σ,σ (1 −

U(1−n̄σ̄)
ω−εd

)
.(5.55)

This is the Hubbard-I approximation. However, it is more convenient to
solve the single dot Green’s function by applying a different approxima-
tion. Instead of applying Eq. (5.49b), we compute the EOM of ⟪Cαkσnσ̄, d†

νσ⟫

neglecting correlators involving hoppings with more than two particles.
Interestingly, we now obtain a simpler solution

Grσ,σ =
1 − n̄σ̄

ω − εd −Σr
σ,σ

+
n̄σ̄

ω − εd −U −Σr
σ,σ

. (5.56)

Eq. (5.56), in comparison with Eq. (5.55), has numerical advantages which
facilitates the self-consistent calculation of the occupations offering sim-
ilar results for the parameter regime considered in this thesis. We ob-
serve that Eq. (5.56) consists of two resonances, one centered at εd and
a second (Coulomb) one located at εd + U , weighted by 1 − n̄σ̄ and n̄σ̄,
respectively. Hence, one resonance will be more relevant than the other
depending on the QD occupation. Eq. (5.56) will be employed for study-
ing the transport properties of an interacting single QD in Sec. 7.1 and a
molecular junction in Sec. 7.2.

Concerning DQDs, when interdot interactions are negligible, the
two-resonance Green’s function reads

Grµσ,νσ = hµν

⎡
⎢
⎢
⎢
⎢
⎢
⎣

1 − n̄µσ̄

ω − εµ − Σ̃r
µσ (1 −

Uµn̄µσ̄
ω−εµ−Uµ

)

+
n̄µσ̄

ω − εµ −Uµ − Σ̃r
µσ (1 −

Uµ(1−n̄µσ̄)
ω−εµ

)

⎤
⎥
⎥
⎥
⎥
⎥
⎦

, (5.57)

where

hµν = δµν + δµ̄ν
NHub
µ̄σ,µ̄σΣr

µ̄σ,µσ

ω − εµ̄ −NHub
µ̄σ,µ̄σΣr

µ̄σ,µ̄σ

, (5.58)

Σ̃r
µσ = Σr

µσ,µσ +
Σr
µ̄σ,µσΣr

µσ,µ̄σ

ω − εµ̄ −NHub
µ̄σ,µ̄σΣr

µ̄σ,µ̄σ

NHub
µ̄σ,µ̄σ . (5.59)
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Notice that Eq. (5.57) is the two-particle extension of Eq. (5.55). It is able
to describe accurately the DQD system of Sec. 8.1 and will be used to
analyze the role of intradot interactions in the generation of BICs and
studying its transport properties.

5.2.4 Beyond Hubbard-I
Although the Hubbard-I approximation correctly describes CB effects,
it is unable to exhibit Kondo features. For this reason, an approach be-
yond Hubbard-I is required. From now on, we restrict ourselves to the
single QD setup in view of the complexity of the problem. We follow
Lacroix [226] and Kashcheyevs et al. [227] and compute the remaining
correlators of Eq. (5.47)

(ih̵∂t − εαkσ)⟪Cαkσnσ̄, d
†
σ⟫ = Vαkσ⟪dσnσ̄, d†

σ⟫

+∑
βq

V∗βqσ̄⟪Cαkσd†
σ̄Cβqσ̄, d

†
σ⟫

−∑
βq

Vβqσ̄⟪CαkσC†
βqσ̄dσ̄, d

†
σ⟫ ,(5.60a)

(ih̵∂t − εαkσ)⟪dσd
†
σ̄Cαkσ̄, d

†
σ⟫ = ⟨d†

σ̄Cαkσ̄⟩δ(t − t
′
) + Vαkσ̄⟪dσnσ̄, d†

σ⟫

+∑
βq

V∗βqσ⟪Cβqσd†
σ̄Cαkσ̄, d

†
σ⟫

−∑
βq

Vβqσ̄⟪dσC†
βqσ̄Cαkσ̄, d

†
σ⟫ , (5.60b)

(ih̵∂t + δεαk)⟪dσC
†
αkσ̄dσ̄, d

†
σ⟫ = ⟨C†

αkσ̄dσ̄⟩δ(t − t
′
) − V∗αkσ̄⟪dσnσ̄, d†

σ⟫

+∑
βq

V∗βqσ⟪CβqσC†
αkσ̄dσ̄, d

†
σ⟫

+∑
βq

V∗βqσ̄⟪dσC†
αkσ̄Cβqσ̄, d

†
σ⟫ , (5.60c)

where δεαk = εαkσ − 2εd − U . Again, higher order correlators are found
in the EOMs. Hence, we close the system of equations by assuming the
relation proposed by Mattis [228] which follows the Wick theorem for
the case of a retarded Green’s function obtaining

⟪A†BC,D†
⟫ ≈ ⟨A†B⟩⟪C,D†

⟫ − ⟨A†C⟩⟪B,D†
⟫ (5.61)

After some mathematical arrangements, the retarded Green’s function
of the QD reads

Grσ,σ(ω) =
1 − ñσ̄

ω − εd −Σ0 +
UΣ1

ω−εd−U−Σ0−Σ3

+
ñσ̄

ω − εd −U −Σ0 −
UΣ2

ω−εd−Σ0−Σ3

, (5.62)
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where Σ0 = Σr
σ,σ, ñσ = n̄σ + δnσ and

δnσ = ∑
αk

V∗αkσ
ω − εαkσ

⟨d†
σCαkσ⟩ −∑

αk

Vαkσ
ω − δεαk

⟨C†
αkσdσ⟩ , (5.63a)

Σ1 = ∑
αkβq

V∗αkσ̄Vβqσ̄
ω − εαkσ̄

⟨C†
βqσ̄Cαkσ̄⟩ + ∑

αkβq

Vαkσ̄V∗βqσ̄
ω + δεαk

⟨C†
αkσ̄Cαkσ̄⟩ −Σ0δnσ̄ ,

(5.63b)
Σ2 = Σ3 −Σ1 , (5.63c)

Σ3 = ∑
αk

[
∣Vαkσ̄ ∣2
ω − εαkσ̄

+
∣Vαkσ̄ ∣2
ω + δεαk

] . (5.63d)

This solution was already derived by Meir et al. [14]. In their work they
assumed for the expected values inside Eqs. (5.63) that

⟨d†
σCαkσ⟩ ≈ 0 (5.64)

⟨C†
βqσ̄Cαkσ̄⟩ ≈ δαβδkqfα(εαk) , (5.65)

which is a valid approach for describing cotunneling at temperatures
T ≫ TK . However, at lower temperatures the model may display un-
physical results. For this reason, we will employ instead a modified
fluctuation-dissipation theorem [229]

⟨A†B⟩ = −
1

2πi
∫ dωF(ω) (⟪B,A†

⟫
r
− ⟪B,A†

⟫
a) , (5.66)

where F(ω) is denoted as a nonequilibrium distribution function which
reads

F(ω) = ∑
α

Γαfα(ω)

Γ
. (5.67)

Here, we have taken Γ = ∑α Γα. Before dealing with the general expres-
sion, we focus on the case of U →∞. Therefore, Eq. (5.62) becomes

Grσ,σ(ω) =
1 − ñσ̄

ω − εd −Σ0 −Σ1
, (5.68)

whose parameters also take a simpler form

Σ1 = ∑
αk

V∗αkσ̄
ω − εαkσ̄

⎡
⎢
⎢
⎢
⎢
⎣

∑
βq

(Vβqσ̄⟨C†
βqσ̄Cαkσ̄⟩ −Σ0⟨d

†
σ̄Cαkσ̄⟩)

⎤
⎥
⎥
⎥
⎥
⎦

, (5.69)

ñσ̄ = n̄σ̄ +∑
αk

V∗αkσ̄
ω − εαkσ̄

⟨d†
σ̄Cαkσ̄⟩ . (5.70)
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At this stage, employing Eq. (5.66) and following the procedure of Entin-
Wohlman et al. [230], Eqs. (5.69) and (5.70) turn into

Σ1(ω) = −i
Γ

4
+X (ω) [1 + iΓGaσ̄,σ̄(ω)]

Γ

2
, (5.71)

ñσ̄ = n̄σ̄ +
Γ

2
Gaσ̄,σ̄(ω)X (ω) (5.72)

where X (ω) is the solution of the integral of the nonequilibrium distri-
bution function expressed by

X (ω) = ∑
α

Γα
Γ
∫

D

−D

dω′

π

fα(ω
′) − 1/2

ω − ω′ + i0+

= ∑
α

Γα
πΓ

[
1

2
ln
D2 − ω2

2πkBT 2
α

− ψ (
1

2
− i

ω − µα
2πkBTα

)] , (5.73)

where ψ(. . .) is the digamma function, responsible for the logarithmic
divergences of the Kondo effect. The solution of such integral is dis-
cussed in detail in App. C. The final expression of the QD Green’s func-
tion is

Grσ,σ(ω) = g(ω) [p̄σ + i
P (ω)

X ∗(ω)
] , (5.74)

with

g(ω) =
1

ω − εd −Λ + i3Γ/4
, (5.75)

P (ω) = S(ω) −

√

S2(ω) + ∣X (ω)∣2 (
3

2
p̄σ − p̄2

σ) , (5.76)

S(ω) = z2
+

9

16
− zRe[X (ω)] + (p̄σ −

3

4
) Im[X (ω)] (5.77)

where p̄σ = 1− n̄σ and z = (ω−εd−Λ)/Γ. We identify two different terms
in Eq. (5.74): A Lorentzian-like function located approximately at the
mean-field resonance ω ≈ εd and an additional term which is in charge
of the emergence of the Abrikosov-Suhl resonance (more details given
in Sec. 7.3).

When we assume a finite Coulomb interaction U , the calculation be-
comes more cumbersome. After employing the same mathematical pro-
cedure as with Eqs. (5.71) and (5.72) with all components of the retarded
Green’s function [Eqs. (5.63)] we obtain

Σ1 =
Γ

2
(−i +X (ω)[1 + iΓGaσ̄,σ̄(ω)] −X ∗

(ω)[1 + iΓGrσ̄,σ̄(ω1)]) ,

(5.78)

Σ3 = Λ(ω) −Λ(ω1) − iΓ , (5.79)

ñσ̄ = n̄σ̄ +
Γ

2
[Gaσ̄,σ̄(ω)X (ω) −Grσ̄,σ̄(ω1)X (ω1)] , (5.80)
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where ω1 = −ω + 2εd + U . We highlight that now the retarded Green’s
function depends recursively on itself in a nontrivial way. For instance,
we observe that Σ1 from Eq. (5.62) depends on Gaσ̄,σ̄(ω) and Grσ̄,σ̄(ω1).
Therefore, we consider an approach which simplifies the problem: for
a large, but finite, Coulomb interaction we are allowed to safely neglect
the Grσ̄,σ̄(ω1) terms leading to the expression

Grσ,σ(ω) = gu(ω) [pu,σ + i
Pu(ω)

X ∗
u (ω)

] , (5.81)

which is similar to Eq. (5.74) with the difference that now each compo-
nent depends on u(ω)

u(ω) =
U

εd +U +Σ0 +Σ3 − ω
, (5.82)

following

Xu(ω) = u(ω)X (ω) , (5.83)

gu(ω) =
1

Γ(z + i(1 + u)/2 + X̄u)
, (5.84)

Qu(ω) = Su − (S2
u − ∣X̄ ∗

u pu,σ ∣
2
+ ∣Xu∣2 h1(ω))

1/2
, (5.85)

Su(ω) = z2
+

∣1 + u∣2

4
−

Im[X̄u(1 + u)]
2

+
∣X̄u∣2

4
− zRe[Xu]

−
Im[Xu(1 + u∗)]

2
−

Re[XuX̄u]
2

+ Im[Xupu,σ]
−zIm[u] + zRe[X̄u] , (5.86)

with X̄u = Xu(ω1) and

h1(ω) = (1 +Re[u] − Im[X̄u])pu,σ

−2(z + i
1 + u

2
+
X̄ ∗

2
) Im[pu,σ] , (5.87)

pu,σ = 1 − u(ω)n̄σ . (5.88)

Despite the amount of terms in the Green’s function, we emphasize that
the only self-consistent calculation is inside n̄σ. Therefore, the numer-
ical calculation can be computed straightforwardly giving good quali-
tative results. These theoretical results will be used to investigate the
transport across an artificial Kondo impurity in Sec. 7.3 for infinite and
finite values of the Coulomb interactions obtaining intriguing nonlinear
results.
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5.3 Slave-boson formalism
In this section we return to the slave-boson Hamiltonian (Sec. 5.1.2). The
presence of the boson field b makes the EOM technique of the previ-
ous sections partially inapplicable, at least for the theory explained in
this thesis. Nevertheless, it is still possible to use the EOM technique
if we move to the SBMFT. In this approach, the boson operator is re-
placed by its mean-field expected value b → ⟨bµ⟩ ≡

√
Nsb̃α, which in

general is a complex number. Under this approach, charge fluctuations
are totally neglected because we restrict to single-occupied QDs follow-
ing Eq. (5.14). Now, the aim is to evaluate b̃µ and λµ solving mean-field
equations. First, we determine the equation of motion of the boson op-
erator bµ.

ih̵
dbµ

dt
= −λµbµ −

1

N
∑
αkσ

Vαkσ,µC†
αkσfµσ . (5.89)

We assume that Eq. (5.89) is in the stationary limit meaning that ih̵dtbµ =
0. In the following step, we will compute the expected value to Eq. (5.89)
considering the mean-field approach. Multiplying the Eq. (5.89) by b̃∗µ
and using the definition of Eq. (4.20) we find

∑
αkσ

Ṽαkσ,µG<
fµσ,αkσ(t, t) = −

i

h̵
Nλµ ∣̃bµ∣

2 , (5.90)

where Ṽαkσ,µ = b̃∗µVαkσ,µ is the renormalized tunneling amplitude and f
in G<

fµσ,αkσ(t, t) denotes the pseudofermion fµσ subspace. The second
equation corresponds to the expected value of the Lagrange condition
[Eq. (5.14)]

∑
σ

G<
fµσ,fµσ(t, t) =

i

h̵
(1 −N ∣̃bµ∣

2
) . (5.91)

Hence, b̃µ and λµ will be found after solving Eqs. (5.90) and (5.91). For
the sake of simplicity, we renormalize the level position ε̃µ and the hy-
bridization constant Γ̃µ in terms of these unknown quantities

ε̃µ = εµ + λµ , Γ̃µ = ∣̃bµ∣
2Γµ , (5.92)

which represent the position and width of the Kondo resonance of the µ
artificial impurity, respectively. Concerning the local DOS, ρµσ(ω) also
contains a term due to the boson field

ρµσ(ω) = −
∣̃bµ∣

2

π
Im[Grfµσ,fµσ] . (5.93)

Although Eq. (5.93) obeys the relation πΓ̃ρdµσ(ε̃α) = 1, it does not sat-
isfy completely the Friedel sum rule [Eq. (4.28)] because the SBMFT is
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unable to capture the single-particle peaks. Nevertheless, it accurately
describes the Abrikosov-Suhl resonances and is a good approach to in-
vestigate the Kondo effect in the Fermi liquid regime (T ≪ TK).

5.3.1 Mean-field equations in single quantum dots
We continue with the development of the mean-field equations for the
case of a single impurity in order to obtain a self-consistent expression
to find the unknown parameters of the system. We highlight that the
slave-boson Hamiltonian in the SBMFT has the form of a noninteracting
Anderson Hamiltonian with renormalized parameters εd → ε̃d and Γ →
Γ̃. Accordingly, it yields Eq. (5.41) as the retarded Green’s function.

Using the effective fluctuation-dissipation relation [Eq. (5.66)] into
the Green’s function of Eq. (5.91) and resorting to Fourier, Eq. (5.91)
reads

∑
σ

1

2π
∫

D

−D
dω

Γ̃F(ω)

(ω − ε̃d)2 + Γ̃2

4

= 1 −N
Γ̃

Γ
. (5.94)

On the other hand, Eq. (5.90), after applying Eq. (5.66) and Eq. (5.36),
reads

∑
σ

1

π
∫

D

−D
dω

(ω − ε̃d)F(ω)

(ω − ε̃d)2 + Γ̃2

4

= (εd − ε̃d)
2N

Γ
. (5.95)

Both mean-field equations can be combined to a complex integral equa-
tion.

∑
σ

1

π
∫

D

−D
dω

F(ω)

ω − ε̃d + i
Γ̃
2

= w̃ , (5.96)

where

w̃ = (εd − ε̃d)
2N

Γ
. (5.97)

The integral inside Eq. (5.96) was already solved in App. C. As a result,
the mean-field parameters will be obtained by solving following equa-
tion

∑
ασ

Γα
πΓ

[ln ∣
2πkBTα
D

∣ + ψ (
1

2
+
i(ε̃d − µα) + Γ̃/2

2πkBTα
)] = w̃ . (5.98)

Applying Eq. (5.98), we will discuss how the mean-field parameters get
altered under the influence of voltage or temperature biases in Sec. 7.3.2.
Additionally, we will examine the transport through the impurity to
qualitatively describe the behavior of the system.
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5.3.2 Mean-field equations in double quantum dots
For a two-impurity slave-boson Hamiltonian, the calculation is slightly
more demanding. Nevertheless, we can obtain quite straightforwardly
the mean-field equations. In this particular case, the retarded Green’s
function takes the form of a noninteracting DQD system [Eq. (5.40)]. Ap-
plying again Eq. (5.66), Eqs. (5.89) and (5.91) assuming that each QD is
attached to only one reservoir α = µ = {L,R} read

1

π
∫

D

−D
dω

τ̃ατ̃ᾱΓ̃ᾱfᾱ(ω) + Γ̃αfα(ω)M(ω)

∣(ω − ε̃α + iΓ̃α/2)(ω − ε̃ᾱ + iΓ̃ᾱ/2) − τ̃ατ̃ᾱ∣
2
= 1 −N

Γ̃α
Γα

, (5.99a)

1

π
∫

D

−D
dω

(ω − ε̃α) (τ̃ατ̃ᾱΓ̃ᾱfᾱ(ω) + Γ̃αfα(ω)M(ω))

∣(ω − ε̃α + iΓ̃α/2)(ω − ε̃ᾱ + iΓ̃ᾱ/2) − τ̃ατ̃ᾱ∣
2
= (ε̃α − εα)N

Γ̃α
Γα

,

(5.99b)
where M(ω) = (ω − ε̃ᾱ)

2 + Γ̃2
ᾱ/4. We note that the tunnel coupling be-

tween dots follows τ̃α = τ ∣̃bα∣2. Nevertheless, Eq. (5.99) depends only on
the product of both τ̃ατ̃ᾱ meaning that no approximation has been made
for the decoupling of the slave-bosons. We perform several manipula-
tions to split Eq. (5.99) into integrals of the type

Jα(ωi) = ∫
D

−D
dω
fα(ω)

ω − ωi
, (5.100)

whose solution is computed in App. C and ωi (i = 1, . . . ,4) correspond
to the poles of the integrals

ω1,2 = ω
∗
3,4 =

2(ε̃α + ε̃ᾱ) − iΓ̃

4
±

¿
Á
ÁÀ(

2(ε̃α + ε̃ᾱ) − iδΓ̃

4
− ∣τ̃ ∣2) , (5.101)

where δΓ̃ = Γ̃α−Γ̃ᾱ and ∣τ̃ ∣2 = τ ∣̃bα∣
2 ∣̃bᾱ∣

2. Hence, the mean-field equations
now read

∑
i

AiαJα(ωi) +BiαJᾱ(ωi) = 1 −N
Γ̃α
Γα

, (5.102)

∑
i

CiαJα(ωi) +DiαJᾱ(ωi) = (ε̃α − εα)N
Γ̃α
Γα

, (5.103)

with

Aiα =
1

π

Γ̃αM(ωi)

∏j≠i(ωi − ωj)
, Biα =

1

π

∣τ̃ ∣2Γ̃ᾱ

∏j≠i(ωi − ωj)
, (5.104)

and Ciα = (ω − ε̃α)Aiα, Diα = (ω − ε̃α)Biα. Using the solution given by
Eqs. (5.102) and (5.103), we discuss in detail the quantum transport un-
der voltage and thermal biases through a two-impurity Kondo system
in Sec. 8.3.
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6. Transport

In previous chapters, we have shown that the Keldysh NEGF formal-
ism is a powerful tool to compute the response of nanoscale systems far
from equilibrium. In fact, we have found theoretical expressions for the
local DOS of QD systems modeled with the Anderson Hamiltonian at
different regimes. Notwithstanding, we have not yet explained the the-
oretical connection with the measurable variables such as the currents
and conductances. The description of the electronic transport across QD
setups is essential to obtain the results of this thesis and, consequently,
we fill the gap in this chapter.

We develop the quantum transport theory by defining the electric
and heat currents operators:

Îασ = −e
dnασ
dt

, (6.1)

Q̂α = −
dHα

leads

dt
−
µα
e
Îα , (6.2)

where Iα = ∑σ Iασ and

nασ = ∑
k

C†
αkσCαkσ . (6.3)

Hα
leads = ∑

kσ

εαkσC
†
αkσCαkσ . (6.4)

Eq. (6.1) represents the flow of electrons with spin σ measured at the
reservoir α while Eq. (6.2) describes the heat flow at the lead α. As is
usual in mesoscopics, positive flows are taken from the reservoirs to
the sample. As explained in Sec. 3.1.3, we point out that Qα has two
components: the energy flux QE,α = −dHα

leads/dt and the Joule heating
term QI,α ≡ −VαIα. In addition, we recall that both Iασ and Qα must
obey the conservation laws expressed as Eqs. (3.19) and (3.20).

We divide the chapter in two sections: First, we calculate the electri-
cal and heat currents finding expressions dependent of the QD Green’s
functions in Sec. 6.1. We will discuss the properties of the transmission
function and conductances in Secs. 6.1.1 and 6.1.2, respectively. Second,
we will perform the perturbation expansion of the electrical current in
terms of the Kondo Hamiltonian in Sec. 6.2 with the goal of finding the
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linear electrical conductance (Sec. 6.2.3) which allows us to obtain its
logarithmic dependence and, consequently, the effective Kondo temper-
ature of an artificial impurity.

6.1 Currents in non-perturbative approaches
This section explains the calculation which leads to the currents as a
function of the dot Green’s functions. We note that this section gives for-
mal results which can be found in Haug and Jauho [213] and Meir and
Wingreen [231]. We start by applying the Heisenberg equation [Eq. (4.4)]
to Eq. (6.1) and Q̂E,α [first term of Eq. (6.2)] using the Hamiltonian given
by Eq (5.2). Thus,

Iασ = −
ei

h̵
∑
µk

[V∗αkσ,µ⟨d†
µσCαkσ⟩ − Vαkσ,µ⟨C†

αkσdµσ⟩] , (6.5a)

QE,α = −
i

h̵
∑
µkσ

εαkσ [V∗αkσ,µ⟨d†
µσCαkσ⟩ − Vαkσ,µ⟨C†

αkσdµσ⟩] , (6.5b)

where Iασ = ⟨Îασ⟩ and QE,α = ⟨Q̂E,α⟩. We replace the expected values
with the Green’s function definition [Eq.(4.20)] and turn to Fourier space

Iασ =
e

2πh̵
∑
µk
∫ dω [Vαkσ,µG<

µσ,αkσ(ω) − V∗αkσ,µG<
αkσ,µσ(ω)] , (6.6a)

QE,α =
1

2πh̵
∑
µkσ
∫ dωεαkσ [Vαkσ,µG<

µσ,αkσ(ω) − V∗αkσ,µG<
αkσ,µσ(ω)] .

(6.6b)
The next step is to transform Eq. (6.6) such that we find a dependence
on the dot Green’s functions. However, finding the relation between
both tunneling and dot Green’s functions is also needed. To do so, we
employ Eq. (5.36) and follow the Langreth rules [Eqs. (4.37) and (4.38)]

G<
αkσ,νσ(ω) = ∑

µ

Vαkσ,µ[grαkσ(ω)G<
µσ,νσ(ω) + g

<
αkσ(ω)G

a
µσ,νσ(ω)] , (6.7)

where gr,a,<αkσ (ω) are the unperturbed Green’s functions which can be
found in App. A. A similar procedure may be realized for G<

µσ,αkσ(ω).
Therefore, employing the Langreth rules into Eqs. (6.6), we obtain

Iασ =
e

h
∑
µνk

Vαkσ,µV∗αkσ,ν ∫ dω ([Grµσ,νσ(ω) −G
a
µσ,νσ(ω)]g

<
αkσ(ω)

+G<
µσ,νσ(ω)[g

a
αkσ(ω) − g

r
αkσ(ω)]) , (6.8a)
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QE,α =
1

h
∑
µνkσ

Vαkσ,µV∗αkσ,ν ∫ dω ([Grµσ,νσ(ω) −G
a
µσ,νσ(ω)]g

<
αkσ(ω)

+G<
µσ,νσ(ω)[g

a
αkσ(ω) − g

r
αkσ(ω)]) εαkσ . (6.8b)

We now replace the tunneling amplitude by its self-energies Σtun given
by Eq. (5.38) and

Σ<
µσ,νσ ≈ i∑

α

Γα;µσ,νσfα(ω) , (6.9a)

Σ>
µσ,νσ ≈ −i∑

α

Γα;µσ,νσ[1 − fα(ω)] , (6.9b)

as the retarded, less and greater tunnel self-energies. Here, we have
included the subindex α in Γ denoting the hybridization function of
the reservoir. Hence, following the definitions of App. A we transform
Eq. (6.8) into

Iασ =
e

h
∫ dωTr[(Gr

σ,σ −Ga
σ,σ)Σ

<
tun,ασ +G<

σ,σ(Σ
a
tun,ασ −Σr

tun,ασ)] ,

(6.10a)

QE,α =
1

h
∑
σ
∫ dωωTr[(Gr

σ,σ −Ga
σ,σ)Σ

<
tun,ασ +G<

σ,σ(Σ
a
tun,ασ −Σr

tun,ασ)] ,

(6.10b)
where Tr[AB] = ∑µν AµνBνµ denotes the trace in the dot-dot subspace.
We would like to emphasize that the self-energies appearing in Eq. (6.10)
come from the tunneling Hamiltonian. This will lead to important con-
sequences for the expression of the current, which will be crucial to
model Coulomb drag systems (Sec. 8.2). In order to obtain general ex-
pressions for the currents, we rewrite them in terms of lesser and greater
Green’s functions following Eq. (4.25) (also valid for Σtun,ασ) [213]:

Iασ =
e

h
∫ dωTr[G>

σ,σΣ
<
tun,ασ −G<

σ,σΣ
>
tun,ασ] , (6.11a)

QE,α =
1

h
∑
σ
∫ dωωTr[G>

σ,σΣ
<
tun,ασ −G<

σ,σΣ
>
tun,ασ] . (6.11b)

We calculate G<
σ,σ and G>

σ,σ following Eq. (4.44) neglecting the transient
component. Then,

Iασ =
e

h
∫ dωTr[Gr

σ,σΣ
>
tot,σG

a
σ,σΣ

<
tun,ασ −Gr

σ,σΣ
<
tot,σG

a
σ,σΣ

>
tun,ασ] ,

(6.12a)

QE,α =
1

h
∑
σ
∫ dωωTr[Gr

σ,σΣ
>
tot,σG

a
σ,σΣ

<
tun,ασ −Gr

σ,σΣ
<
tot,σG

a
σ,σΣ

>
tun,ασ] ,

(6.12b)
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where Σ<
tot,σ is the lesser self-energy which accounts for every perturba-

tion of the Anderson Hamiltonian, i. e., tunneling, Σ<
tun,σ, and electron-

electron interactions inside the QD system, Σ<
int,σ. Each self-energy sho-

uld be computed by evaluating all possible Feynman diagrams. In the
case of a noninteracting single level, this can be exactly solved [213].
However, in the case of interactions, we still approximate Σ<

tot,σ with
Eq. (6.9) but considering the interactions inside the Green’s functions as
computed in Sec. 5.2. Therefore, we neglect the contribution of interac-
tions in Σ< in the reminder of this thesis because they are of a higher
order than Σ<

tun,σ [213, 231]. An exception will be treated in Sec. 8.2
owing to the fact that the drag system is at equilibrium giving zero net
current if we only consider the tunneling contribution.

Hence, applying Σ<,>
σ ≡ Σ<,>

tot,σ ≈ Σ<,>
tun,σ and Eqs. (6.9), we find

Iασ =
e

h
∑
β
∫ dω[fα(ω) − fβ(ω)]Tr[Gr

σ,σΓβσG
a
σ,σΓασ] , (6.13a)

QE,α =
1

h
∑
βσ
∫ dωω[fα(ω) − fβ(ω)]Tr[Gr

σ,σΓβσG
a
σ,σΓασ] . (6.13b)

This is a general expression which can be found in Meir and Wingreen
[231]. They identify Eq. (6.13) as the current in the noninteracting case.
This statement means that the interacting self-energy is neglected as we
explained above. Another important feature of Eq. (6.13) is the depen-
dence on the difference between the Fermi distributions of the reser-
voirs. This is a nice property that leads to a carrier flow only when there
exists a bias between reservoirs (θ or V ).

Now, we restrict ourselves to the single QD configuration. The matri-
ces of Eq. (6.13) will become scalar functions which, after some algebra,
yield the currents

Iασ = −
2e

h
∑
β
∫ dω[fα(ω) − fβ(ω)]

ΓασΓβσ

Γσ
Im[Grσ,σ] , (6.14a)

QE,α = −
2

h
∑
βσ
∫ dωω[fα(ω) − fβ(ω)]

ΓασΓβσ

Γσ
Im[Grσ,σ] , (6.14b)

where Γσ = ∑λ Γλσ. Eqs. (6.14) directly depend on the local DOS of the
QD [Eq. (4.27)]. This property is lost for multiple QD systems.

6.1.1 The transmission function
In comparison with the Landauer formalism, Eqs. (6.13) and (6.14) sug-
gest that the currents depend on a transmission function

Tασ,βσ(ω) = Tr[Gr
σ,σΓβσG

a
σ,σΓασ] , (6.15)
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which allows us to rewrite the electric I and heat current Q as

Iασ =
e

h
∑
β
∫ dω[fα(ω) − fβ(ω)]Tασ,βσ(ω) , (6.16)

Qα =
1

h
∑
βσ
∫ dω[fα(ω) − fβ(ω)](ω − µα)Tασ,βσ(ω) . (6.17)

Eqs. (6.16) and (6.17) are of the Landauer type since the transmission
T ranges between 0 and 1 for each transport channel. In any case, the
Fermi distribution functions inside Eqs. (6.13) are known [the reservoirs
are considered to be in local equilibrium following Eq. (5.1)] and, con-
sequently, the transmission becomes a very interesting function since
it offers relevant information about the transport along the systems we
consider. For instance, in the single QD case we observe that the trans-
mission is proportional to the local DOS. Therefore, one may infer the
spectroscopic properties of the QD by analyzing the electric current.

6.1.2 Conductances
This section discusses the relevant properties of the conductances ob-
tained from Eqs. (6.16) and (6.17) and their connection with the trans-
mission. Here, we consider the two-terminal configuration character-
ized by VL = −VR = V /2 and TL = T + θ, TR = T for θ > 0 (we set the
Fermi energy εF = 0). Therefore, the total currents read

I =
2e

h
∫ dω [fL(ω) − fR(ω)]T (ω,V, θ) , (6.18)

Q =
2

h
∫ dω [fL(ω) − fR(ω)] (ω − V /2)T (ω,V, θ) , (6.19)

where T (ω,V, θ) is the spin-independent transmission TLσ,Rσ in the two-
terminal configuration. Notice that now the transmission depends on
the external biases since Eq. (6.15) is a function of the dot NEGFs, which
are also bias-dependent. Now, we follow Eq. (3.17) in order to find the
differential conductances

G =
2e

h
∫ dω (−

e

2

∂

∂ω
[fL + fR]T + [fL − fR]

∂T
∂V

) , (6.20a)

L =
2e

h
∫ dω (

ω − V /2

TL
[−
∂fL
∂ω

]T + [fL − fR]
∂T
∂θ

) , (6.20b)

R =
2

h
∑
σ
∫ dω (−

e

2

∂

∂ω
[fL + fR] T̃ + [fL − fR]

∂T̃
∂V

) , (6.20c)

K =
2

h
∑
σ
∫ dω (

ω − V /2

TL
[−
∂fL
∂ω

] T̃ + [fL − fR]
∂T̃
∂θ

) , (6.20d)
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where T̃ = (ω − V /2)T (ω,V, θ). We identify two components in all con-
ductances: First, a term which depends on the energy derivatives of the
Fermi functions, which yield the linear conductances when applying
V → 0 and θ → 0:

G0 =
e2

h
∫ dω [−

∂f

∂ω
]T (ω) , (6.21a)

L0 =
e

h
∫ dω [−

ω

T

∂f

∂ω
]T (ω) , (6.21b)

R0 =
e

h
∫ dω [−ω

∂f

∂ω
]T (ω) , (6.21c)

K0 =
1

h
∫ dω [−

ω2

T

∂f

∂ω
]T (ω) . (6.21d)

The second term corresponds to the nonequilibrium response of the QD
system. Notice that for a transmission function independent of V and θ,
this second term vanishes with the exception of Rα due to the Joule term
component. This is important because transmissions highly-dependent
on V and θ can significantly modify the behavior of the differential con-
ductances yielding nontrivial results.

Another important feature is the symmetry of T . For an even trans-
mission function such that T (ω,V, θ) = T (−ω,V, θ), the first term in L
disappears yielding a thermoelectric conductance highly dependent on
the thermal derivative of T [232]. In fact, the off-diagonal linear con-
ductances nullify in this concrete case and the linear transport is thus
governed by G0 and K0.

Finally, at T → 0 the linear conductances exhibit simplified relations
with the transmission which are helpful to measure the internal proper-
ties of QD setups in experiments. Applying the Sommerfeld expansion
to Eqs. (6.21) [168, 179], we obtain

G0 =
e2

h
T (εF ) , (6.22a)

L0 =
eπ2

3h
k2
BTT ′

(εF ) , (6.22b)

R0 =
eπ2

3h
k2
BT

2T ′
(εF ) , (6.22c)

K0 =
π2

3h
k2
BTT (εF ) . (6.22d)

We remind that these expressions are only valid at very low temper-
atures. Hence, in Eq. (6.22), G0 and K0 are proportional to the trans-
mission function evaluated at the Fermi energy εF . The prefactors are
indeed the electric g̃0 = e2/h = 77.5 µS and thermal quantum of con-
ductance κ0 = 3.35 pW/K [Eq. (3.15)], respectively. On the other hand,
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L0 and R0 are proportional to T ′(εF ) becoming functions sensitive to
changes in the transmission. This will be useful for the dectection of
narrow resonances [233]. Additionally, one can immediately notice that
the WF law is satisfied for Eqs. (6.22).

Such properties will be revisited in the numerical results of Chs. 7
and 8 in which the expressions of the currents and conductances will be
used to investigate the quantum transport of QD systems.

6.2 Electrical current in the pertubative approach
When instead of using the Anderson Hamiltonian we employ the Kondo
Hamiltonian (Sec. 5.1.3), the expressions of the previous section are not
valid and they should be recalculated. Therefore, we start the procedure
treating Eqs. (5.27) and (5.29) as perturbations. Here, we extend the pro-
cedure given by Kaminski et al. [105] to spin-dependent amplitudes and
also taking into account the potential scattering term First, we apply the
Heisenberg equation [Eq. (4.4)] to find the current of Eq. (6.1) as a func-
tion of the exchange parameters of the Kondo Hamiltonian

Îασ = −
ei

h̵
∑

βkαkβ

(K̄βσ,ασC
†
βkβσ

Cαkασ −H.c.)

−
ei

h̵
∑

βkαkβσβ

(Jβσβ ,ασŜlslσβσC
†
βkβσβ

Cαkασ −H.c.) . (6.23)

In the case of Eq. (5.29) as the perturbation Hamiltonian we find

Îασ = −
ei

h̵
∑

βkαkβσβ

(Jβσβ ,ασx̃σβσC†
βkβσβ

Cαkασ −H.c.) , (6.24)

where x̃σ1σ2 = δσ1σ2/4 + Ŝls
l
σ1σ2

. These operators are the starting point
for acquiring an expression of the electric conductance by expanding
their expected values in terms of the perturbation (HKon or HKam) in
the interaction picture.

Before proceeding with the calculation, we would like to pay atten-
tion to the charge conservation law given by Eqs. (6.23) and (6.24). No-
tice that Eq. (3.19) is not accomplished per spin. The reason is that the
Kondo Hamiltonian includes simultaneous spin-flip transitions in the
QD meaning that ⟨Ṡz⟩, where Ṡ = dS/dt, can not be neglected. There-
fore, the conservation law can be now generalized by

∑
α

Iασ = eσ⟨Ṡz⟩ , (6.25)

where σ = {1,−1} for σ = {↑, ↓}. Therefore, the final expressions obtained
in this section must satisfy Eq. (6.25). Nonetheless, if we sum over spins,
we recover Eq. (3.19) for the full current Iα = ∑σ Iασ.
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6.2.1 First order
We follow with the perturbation expansion. We evaluate the expected
value of the electric current defined as

Iασ = ⟨S(−∞,0)ÎασS(0,−∞)⟩ , (6.26)

where S(t, t′) is the S-matrix [Eq. (4.10)] in which W is the Kondo Hamil-
tonian. For the sake of completeness, we will consider in this section
that the Fermi functions will also depend on the spin σ via the electro-
chemical potential µασ = εF +eVασ yielding fα(ω) → fασ(ω). This will be
relevant for the Coulomb drag system of Sec. 8.2. Additionally, we will
employ a simplified expression when we move to the s-d Hamiltonian
of Eq. (5.29). Particularly, we will consider Jασα,βσβ → Jαβ and we will
calculate the total current Iα = ∑σ Iασ.

Now, we evaluate the first nonzero term in the current by expanding
the S-matrix up to the first order

S(t, t′) ≈ 1 −
i

h̵
∫

t′

t
HKon(t1)dt1 . (6.27)

Following the straightforward calculation of App. D, the current reads

Iασ =
2πe

h̵
∑
β
∫ dωρασρβσ ∣K̄βσ,ασ ∣

2
[fασ(ω) − fβσ(ω)]

+
πe

4h̵
∑
β
∫ dωρασρβσ̄ ∣Jασ,βσ̄ ∣

2
[fασ(ω) − fβσ̄(ω)]

πe

8h̵
∑
β
∫ dωρασρβσ ∣Jασ,βσ ∣

2
[fασ(ω) − fβσ(ω)] . (6.28)

We identify three different components in Eq. (6.28): The transport in-
duced by the potential scattering term when an external bias is applied
between leads (first line), the transport induced by spin-flip processes
(second line) and a spin-conserved charge flow (third line).

It will be useful to consider the particle-hole symmetry point (εd =
−U/2). After replacing the spin-coupling terms with their definitions in
Eqs. (5.21) and (5.28), the electric current becomes

Iασ =
e

2h
∑
β
∫

D

−D
dωΓασΓβσ̄ ∣−

1

ω −U/2
+

1

ω +U/2
∣

2

[fασ(ω) − fβσ̄(ω)]

+
e

2h
∑
β
∫

D

−D
dωΓασΓβσ

⎡
⎢
⎢
⎢
⎢
⎣

∣
1

ω −U/2
∣

2

+ ∣
1

ω +U/2
∣

2⎤
⎥
⎥
⎥
⎥
⎦

×[fασ(ω) − fβσ(ω)] , (6.29)
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which is valid for U ≫ V,D, in which case the divergences in the inte-
gral are avoided. Eq. (6.29) agrees with the results obtained using a mas-
ter equation approach. We recall that Eq. (6.29) is still not valid in the
deep Kondo regime since it does not carry the logarithmic divergences
characteristic from the Kondo effect. Nevertheless, it correctly estimates
the first order cotunnel transitions of the system. Such situation will be
investigated in the Coulomb drag system in Sec. 8.2.

Now, we transform Eq. (6.28) considering the Hamiltonian of Eq. (5.29)

Iασ =
πe

2h̵
∑
β

ραρβ ∣Jαβ ∣
2
∫ dω[fα(ω) − fβ(ω)] . (6.30)

Here, we have assumed energy-independent DOS at the leads and εd +
U, εd ≫D such that

Jαβ ≈ −
2VαVβU
εd(εd +U)

, (6.31)

where we have neglected the dependence in k. For T = 0 and a two-
terminal configuration with ρL = ρR = ρ, the total current reads

Iα =
πe2

2h̵
ρ2

∣JLR∣2 V . (6.32)

Eq. (6.32) describes the regular cotunneling (order Γ2) of an artificial
impurity which will be necessary to obtain a formula for the effective
Kondo temperature in Sec. 7.3.1.

6.2.2 Second order
In order to recover the logarithmic divergences of the Kondo resonance,
we calculate the next order in the perturbation expansion. Therefore,
the S-matrix is expanded to second order

S(t, t′) ≈ 1 −
i

h̵
∫

t′

t
HKon(t1)dt1 + (

i

h̵
)

2

∫

t′

t

ˆ̄THKon(t1)HKon(t2)dt1dt2 .

(6.33)
We perform the calculation described in App. D which is also explained
in [233]

I(3)α = −
3eπ3

4h̵2
ρ3

∣JLR∣2 (JLL +JRR)∫
0

−∞
dt

k2
BTLTR sin (eV t/h̵)

sinh kBTLπt
h̵ sinh kBTRπt

h̵

.(6.34)

Eq. (6.34) represents exchange cotunneling which leads to the Kondo
logarithmic divergences. In contrast with Kaminski et al. [105], we have
distinguished when the reservoirs are held with different temperatures.
Therefore, Eq. (6.34) is subject to simultaneous voltage and thermal bi-
ases.
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6.2.3 Electrical conductance
Finally, we combine Eqs. (6.32) and (6.34) to write the differential con-
ductance at V = 0.

G(V = 0, TL, TR) =
πe2

2h̵
ρ2

∣JLR∣2 −
3e2π3

4h̵3
ρ3

∣JLR∣2 (JLL +JRR)

×∫

0

−τ0
dt

k2
BTLTRt

sinh kBTLπt
h̵ sinh kBTRπt

h̵ +D2
0

, (6.35)

where, in order to avoid divergences, we have included an energy band-
width D0 =

√
−εd(U + εd) at the denominator of the integral and we

have replaced the lower limit of integration to τ0 = h̵/
√
k2
BTLTR. The

solution, assuming t/h̵≪ kBT , is

G =
3e2π

4h̵
ρ2

∣JLR∣2 (1 −
ρ

2
(JLL +JRR) ln ∣

k2
BTLTR

D2
0

∣)

+
e2π

4h̵
ρ2

∣JLR∣2 . (6.36)

This formula gives the height of the ZBA due to the Kondo correlations
and will be relevant for the description of the effective Kondo tempera-
ture under thermal differences in Sec. 7.3.1.
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7. Single Dot structures

We have introduced so far all the necessary concepts and performed the
theoretical calculations in order to obtain and understand the results of
this thesis. Now we begin the discussion of our results with the simplest
configuration: a QD with a single level εd attached to two reservoirs α =

{L,R} as sketched in Fig. 3.1. As explained in Sec. 3.1, we consider that
each reservoir is characterized by an electrochemical potential µα = εF +
eVα, where the Fermi level is set as the energy origin εF = 0. The voltage
is applied symmetrically VL = −VR = V /2 and the reservoir temperature
is given by Tα = T + θα where θ = θL − θR denotes the thermal bias of the
system taking into account that for θ > 0, θR = 0 and for θ < 0, θL = 0.

This chapter analyzes the results for a single QD setup as reported in
Refs. [202, 233, 234, 235, 236]. We will consider different regimes such as
the CB or the Kondo regime. Particularly, we study the quantum trans-
port across a Coulomb-blockaded QD in Sec. 7.1 finding a nonlinear
response for both voltage and thermal biases. Later, we analyze theoret-
ically the thermal effects of a molecular junction, which can also be mod-
elled as a single energy level plus interaction, and we fit our results to
the measured current across a Ferrocene molecule. Finally, we compare
our results with a noninteracting model and propose a method to distin-
guish between both cases (interacting and noninteracting). In Sec. 7.3
we discuss the internal characteristics of an artificial Kondo impurity
due to voltage and thermal biases, but focusing on the latter. We show
results obtained using three different approaches which cover different
temperature regimes. Additionally, we also analyze the intriguing be-
havior of the emergence of several nontrivial zeros in the thermocurrent
associated to the Kondo resonance and the single-particle peaks in the
transmission.

7.1 Coulomb blockade
First, we consider the CB regime of a single QD. This regime is charac-
terized with large temperatures which allows us to neglect Kondo corre-
lations (T ≫ TK), but smaller than Coulomb repulsion U ≫ kBT,Γ. The
system is described by the Anderson Hamiltonian of Eq. (5.2) in which
Eq. (5.6) represents the single-level QD. The retarded Green’s function
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which satisfies this regime of energies is expressed in Eq. (5.56) :

Grσ,σ =
1 − n̄σ̄

ω − εd −Σr
σ,σ

+
n̄σ̄

ω − εd −U −Σr
σ,σ

. (5.56)

In this case, the local DOS exhibits two resonances centered at ω = εd
and ω = εd + U weighted by the mean occupation n̄σ. With the goal of
solving the self-consistent calculation, we manipulate Eq. (4.26) using
Eq. (4.44) obtaining

n̄σ =
1

2πi
∫ dωFσ(ω)ρdσ(ω) , (7.1)

where Fσ(ω) is the effective distribution function written in Eq. (5.67)
in which Γα → Γασ is the spin-dependent broadening. Additionally,
the term ρdσ(ω) is the local DOS [Eq. (4.27)]. Eq. (5.56) permits us to
avoid the self-consistent calculation separating the integrals transform-
ing Eq. (7.1) into an algebraical equation for the occupation whose solu-
tion is

n̄σ =
Aσ̄ −Aσ(Aσ̄ −Bσ̄)

1 − (Aσ −Bσ)(Aσ̄ −Bσ̄)
, (7.2)

where

Aσ =
1

2π
∫ dω

ΓσFσ(ω)
(ω − εdσ)2 + Γ2

σ/4
, (7.3a)

Bσ =
1

2π
∫ dω

ΓσFσ(ω)
(ω − εdσ −U)2 + Γ2

σ/4
. (7.3b)

Furthermore, we can observe that the current [Eq. (6.14)] can be also
split in two integrals. Following App. C, I ≡ ∑σ ILσ reads

I =
2e

h

ΓLΓR
Γ

[C1(1 − n̄)] +C2n̄ . (7.4)

Here, we have assumed that the QD does not present any Zeeman split-
ing yielding εdσ → εd and the leads are not ferromagnetic Γασ → Γα.
Hence, the occupation becomes spin-independent n̄↑ = n̄↓ ≡ n̄. There-
fore, the coefficients of Eq. (7.4) read

C1 = ∑
α

(1 − 2δαR)Im[ψ(
1

2
+

Γ

4πkBTα
+ i

εd − µα
2πkBTα

)] , (7.5a)

C2 = ∑
α

(1 − 2δαR)Im[ψ(
1

2
+

Γ

4πkBTα
+ i
εd +U − µα

2πkBTα
)] . (7.5b)

Following Eqs. (7.4), (7.2) and (6.19) we proceed with the numerical re-
sults of the transport across the Coulomb-blockaded QD.
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Fig. 7.1. (a) Electric current I vs applied voltage V for a single-level QD with different
energies εd and a charging energy U = 10Γ0. εd = 0 and εd = −10.0Γ0 curves are
overlapped. (b) Differential electrical conductance G as a function of the voltage bias V
and the level position εd. Parameters: the background temperature is set at kBT = 0.1Γ0

and Γ0 ≡ ΓL = ΓR = Γ/2.

7.1.1 Electric and thermoelectric transport
First, we analyze the electric current I due to a voltage bias V or a tem-
perature bias θ. The results of this section corresponds to Sierra and
Sanchez [202]. Although the paper is not part of this thesis, we summa-
rize it in order to give a complete picture of the system.

Fig. 7.1a shows the I − V characteristic curves for different level po-
sitions εd of the QD. In the linear regime V → 0, we find an ohmic be-
havior I ≈ G0V , as expected. The maximum values of G0 correspond to
the cases when the single-particle peaks are at resonance with the Fermi
energy (εd = 0 or εd + U = 0). At higher voltages, the current reaches a
plateau and increases again when the electrochemical potential realigns
with the single-particle resonances [V = 2εd and V = 2(εd +U)]. For this
reason, in the particle-hole symmetry point εd = −U/2 we do not find a
second plateau at higher voltages. Finally, at large voltages, the current
saturates.

As expected, we observe a diamond structure in the differential con-
ductance G in Fig. 7.1b. This result is in agreement with the phenomeno-
logical CB models of Meir et al. [14] and Beenakker [13]. Additionally,
we want to emphasize that G in Fig. 7.1 is a symmetric function with
respect to V = 0 since we are considering equal hybridization constants
ΓL = ΓR = Γ0. As a consequence, the current is antisymmetric as seen
in Fig. 7.1a. However, we have checked that this symmetry is lost when
ΓL ≠ ΓR. Only when εd = −U/2 the symmetry persists because the DOS
respects particle-hole symmetry.
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Fig. 7.2. (a) Thermoelectric current Ith vs thermal bias θ for a single-level QD with
different energies εd and a charging energy U = 10Γ0. (b) Differential thermoelectrical
conductance L as a function of the temperature bias θ and the level position εd. Param-
eters: the background temperature is set at kBT = 0.1Γ0 and Γ0 ≡ ΓL = ΓR = Γ/2.

On the other hand, the electrical response of the QD due to thermal
biases (Fig. 7.2) shows different features than the voltage bias case of
Fig. 7.1. For instance, we observe in Fig. 7.2a that the thermocurrent
does not exhibit Coulomb staircases. For εd = −U/2, Ith is exactly zero
since the transmission function is symmetric around εF yielding equal
electron and hole fluxes nullifying the charge transport. When the sys-
tem is at resonance (εd = 0 and εd = −10Γ in Fig. 7.2a), transport is dom-
inated by carriers crossing the non-resonant peak (Ith > 0 for εd = 0 and
Ith < 0 for εd = −U ). For single-level energies εd ∈ (εF − U, εF ) the sys-
tem responds in a counter-intuitive way yielding dramatic changes at
large θ. For instance, for εd = −3U/4, at low thermal bias the thermocur-
rent increases quite rapidly. However, further increasing of θ gives rise
to a maximum followed by a decrease of the thermocurrent which, at
some point, crosses the θ axis. In other words, the electronic flow has
reversed its sign by only heating one reservoir. Hence, we are dealing
with a purely nonlinear property of thermoelectric transport which is in
agreement with recent experiments [201, 205].

In Fig. 7.2b we depict the differential thermoelectric conductance L,
which, for a sign convention, is now defined as L = dI/d∣θ∣. We observe
a butterfly structure with changes of sign across the resonance points
at εd = 0 and εd = −U instead of the Coulomb diamonds of Fig. 7.1b.
Nevertheless, the butterfly structure in L is not a general pattern since
it gets deformed when including additional QDs as will be explained in
Ch. 8. As expected, L = 0 for the particle-hole symmetry point εd = −U/2.
Outside this symmetry, L is positive (negative) because electrons (holes)
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Fig. 7.3. (a) Thermovoltage Vth vs thermal bias V for a QD with a single level
εd and a charging energy U = 10Γ0. (b) Differential thermopower S as a function
of the temperature bias θ. The sketches A, B and C denote the energy diagrams
describing the electric transport across a QD system with εd = −3U/4 at a thermal bias
of kBθ = 3Γ0, 25Γ0 and 50Γ0, respectively. Parameters: the background temperature is
set at kBT = 0.1Γ0 and Γ0 ≡ ΓL = ΓR = Γ/2.

dominate the transport depending on the regime of θ and the position
of εd.

The nonlinear behavior of Ith and L can be easily understood with
the energy diagrams of the A, B and C panels of Fig. 7.3. These di-
agrams represent the energy distribution of particles in the system in
which the left reservoir (left red curve) is heated at different tempera-
tures TL = T + θ whereas the right reservoir (right blue reservoir) re-
mains cold at the background temperature T . The level position of the
QD is located at εd = −3U/4 (orange curve in Fig. 7.2a) and the charging
energy is set at U = 10Γ0. Therefore, we observe that the lower-energy
resonance is located below the Fermi energy (ω = −3U/4) while the sec-
ond resonance is above (ω = U/4). At kBθ = 3Γ0 (panel A in Fig. 7.3),
the Fermi distribution function of the left reservoir is a smoothed step
function allowing transport for carriers with energies around the Fermi
energy. In this case, the closest resonance of the local DOS to the Fermi
energy (ω = U/4) determines the transport, which is now dominated by
electrons. Increasing θ the left Fermi function becomes flat in such a way
that the second resonance starts to contribute to the transport allowing a
hole flow which exactly counterbalances the electron flux at kBθ = 25Γ0

(panel B) and gives rise to a nontrivial zero for the current. Further in-
creasing of θ favors the hole flux and Ith becomes negative as sketched
in panel C for kBθ = 50Γ0.

Another interesting thermoelectric magnitude is the thermovoltage,
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Fig. 7.4. (a) Heat current Q as a function of the applied voltage V of a QD with a single
level located at different energies εd. Inset: Detail of the heat current showing the Peltier
effect at low V . For clarity, we scale the heat current with a factor 10−5 and the applied
voltage with 10−2. (b) Differential electrothermal conductance R versus the applied
voltage V and the single-level energy εd. Parameters: the background temperature is
set at kBT = 0.1Γ0, U = 10Γ0 and Γ0 ≡ ΓL = ΓR = Γ/2.

which is determined at open circuit conditions I(Vth, θ) = 0 as defined
in Ch. 3. We depict the numerical results for Vth in Fig. 7.3a and the
differential thermopower S in Fig. 7.3b. At low thermal bias θ, the ther-
movoltage displays a linear behavior which results in a constant ther-
mopower. However, at larger temperature differences the thermovolt-
age becomes nonlinear and nontrivial zeros Vth(θ ≠ 0) = 0 also appear
for εd ∈ (εF −U, εF ). Therefore, one can easily observe a nice correlation
with the thermocurrent (Fig. 7.2a) because for the thermocurrent to van-
ish a voltage which favors the flow of carriers in the opposite direction
is needed. In the limit of large θ, the Seebeck becomes constant yielding
a linear Vth.

7.1.2 Heat conduction and Peltier effect
Once we have studied the electric current, we also investigate the heat
transport due to applied voltage and thermal differences [234]. Now we
follow Eq. (6.19) in order to find the numerical results for the heat flux.

The response of the heat current Q due to a voltage bias is depicted
in Fig. 7.4 for several values of εd. Quite generally, Q exhibits a lin-
ear behavior at low bias V characteristic from the Peltier effect. This
coincides with the Seebeck effect of Fig. 7.3b due to the Onsager reci-
procity relation as explained in Sec. 3.1.1. Note that the Peltier effect
does not appear when the QD levels are at resonance with the Fermi
energy (εd = 0 or εd = −10Γ0 in Fig. 7.4a) and in the particle-hole symme-
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Fig. 7.5. (a) Heat current Q as a function of the thermal bias θ for a QD with a single
level located at different energies εd. (b) Thermal conductance versus the thermal bias
θ and the single-level energy εd. Parameters: the background temperature is set at
kBT = 0.1Γ0, U = 10Γ0 and Γ0 ≡ ΓL = ΓR = Γ/2.

try point (εd = −5Γ0). When voltage increases, the Joule and higher
order effects quickly dominate the transport. Therefore, we identify
the reversible heat of the Peltier effect at low voltage bias and the ir-
reversible heat due to the Joule term at large voltage bias. Additionally,
Q is asymmetric with respect to V except at the particle-hole symme-
try point (εd = −U/2). This asymmetry appears when, at a given V , the
dot resonances align with the electrochemical potentials leading to dras-
tic changes in transport. Besides, we find that Q is invariant under the
change εd → −εd −U and V → −V .

The changes of curvature which are responsible for the asymme-
tries of Q are related to the maximum and minimum of the differen-
tial eletrothermal conductance R (Fig. 7.4b). In fact, when the QD res-
onances and the electrochemical potential of the right lead (εd = −V /2
and εd = −V /2−U ) aligns, R becomes extremal. This occurs because the
energy current at V < 0 has the same sign as the dissipation term and
therefore, the heat current will be increased when the QD is at resonance.
On the other hand, the energy current counteracts the dissipation term
when V > 0 and the heat current does not decrease rapidly. We observe
that there is a sign change of R which occurs at low values of V , but not
exactly at V = 0. For instance, the maximum of Q when εd = −3U/4 (see
inset of Fig. 7.4a) is located at eV ≈ 0.2Γ0. In addition, we demonstrate
that for large voltages the electrothermal conductance follows the elec-
trical current R(V → ∞) = −I/2. In order to explain this phenomenon,
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we differentiate Eq. (3.16) :

Q = QE + IV , (3.16)

taking into account that the transport flows across the α = L lead:

R =RE − GV
2
−
I

2
, (7.6)

where RE = dQE/dV . Notice that at high voltages the conductances
RE → 0 and G → 0 vanish whereas the electric current reaches a constant
value (Fig. 7.1a).

We now show the heat current as a function of temperature differ-
ences in Fig. 7.5a. We observe that Q is a monotonic function of θ inde-
pendently of εd. As expected, the linear behavior follows the Fourier’s
law, but higher-order terms quickly dominate when θ > T . However,
when the QD is at resonance the linear response is preserved in a longer
θ range. For large θ, the current increases in a logarithmic trend. This is
better observed in the thermal conductance K (Fig. 7.5b) which decays
as K → 1/θ at high thermal biases. Additionally, K is antisymmetric un-
der reversal of θ meaning that the hotter lead determines the direction of
the heat flow. When the QD is at resonance, we find that K reaches two
small maxima (for θ > 0) while around the particle-hole symmetry point
the thermal conductance presents one high maximum before the power-
law decay. Hence, we have numerically tested that the heat transport
driven by thermal biases is sensitive to variations of the external gate
potential.

Now, we focus our attention on the heat rectification effects pre-
sented in Sec. 3.1.3 and the Kelvin-Onsager relation of Eq. (3.6). We
first investigate the rectification of Q plotting ∆C and ∆E versus V in
Fig. 7.6a. Notice that ∆C = ∆E owing to the form of Eq. (6.19) and the
fact that the DOS is symmetric under V reversal. At resonance (εd = 0
and εd + U = 0), we find that the rectification does not take place until
V ≈ U and then increases or decreases monotonously. The reason is that
∆C,E only has the contribution of the energy current due to the fact that
the dissipation term IV is symmetrical with respect to V . Consequently,
the energy current will flow in the direction determined by the sign of
V . In this case, a resonance is located at the Fermi energy. Therefore,
Q(V ) and Q(−V ) will be similar yielding zero rectification. However,
at higher voltages the second resonance contributes to the heat trans-
port whose energy position (for instance ω = U when εd = 0) favors the
energy transport in a given direction. This picture changes when we
deal with levels εd ∈ (εF − U, εF ). We observe that the curves quickly
depart from ∆C,E ≈ 0 because the energy transport will flow through
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Fig. 7.6. (a) Electric ∆E and contact ∆C asymmetries as a function of the voltage
bias V of a QD system at energy levels εd. Both asymmetries exhibit the same curves
such that ∆E = ∆C . (b) Comparison between the differential electrothermal R (solid
curves) and thermoelectric L (dashed curves) as a function of the voltage V and
thermal θ biases, respectively. Departures are observed for values away from the
linear regime. Parameters: the background temperature is set at kBT = 0.1Γ0 and
Γ0 ≡ ΓL = ΓR = Γ/2.

the closest resonance to the Fermi energy whose position determines
the sign of the rectification (∆C,E > 0 for εd = −3U/4 in Fig. 7.6a be-
cause the resonance above εF favors energy flow from the left to the
right reservoir). When the voltage is increased, the second resonance
plays a role and the rectification changes its sign. In contrast, the recti-
fication is absent for εd = −U/2 because the DOS is symmetric yielding
QE(V ) = QE(−V ). Surprisingly, these findings are similar to the ones
found in the thermoelectric transport of the QD. Hence, the shape of the
transmission function T (ω) is a powerful tool which determines both
nontrivial thermoelectric transport and heat rectification.

Finally, we briefly discuss the Kelvin-Onsager relation. In Fig. 7.6b
we plot R(V ) and TL(θ) as a function of the voltage and thermal biases,
respectively. At equilibrium, we observe that both functions are equal
obeying Eq. (3.6). This was expected because this linear-response prop-
erty has an universal character. Notwithstanding, the relation is broken
when a bias is applied [237]. Therefore, the differential conductances
deviate from Kelvin-Onsager relation although it is satisfied in the limit
V → 0 and θ → 0.
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Fig. 7.7. (a) Schematic of the S-(CH2)4-ferrocenyl-(CH2)4-S molecular junction system
considered in Garrigues et al. [41].

7.2 Coulomb blockade in molecular junctions
In Sec. 1.2, we have argued that molecular junctions can be theoretically
modelled by a QD system. Therefore, we devote this section to the study
of one of these molecules applying the theory of Sec. 7.1 to the experi-
mental results of Garrigues et al. [41]. This section focuses on the results
obtained in Sierra et al. [236] and it is a part of the thesis which extends
the theory of the previous section.

7.2.1 The experiment. Thermal effects in Ferrocene.
First, let us summarize the work reported by Garrigues et al. [41], which
is the starting point of our results. They studied the thermally-dependent
charge transport through the molecule S-(CH2)4-ferrocenyl-(CH2)4-S (see
Fig. 7.7) forming a molecular transistor. Particularly, they measured the
electric current across such molecule shifting its levels with a gate (bot-
tom layer in Fig. 7.7) and applying a source-drain voltage bias with two
gold contacts (yellow parts). Finally, the data of the experiment was
taken at different background temperatures allowing them to study the
temperature-dependent behavior.

They found that G shows a diamond shape (Fig. 7.8a) when plotted
as a function of the applied V and gate Vg voltages and, for the T = 80 K
case, they found that the current showed two peaks when tuning Vg
(Fig. 7.8b). Furthermore, they also studied the electric response with
increasing temperatures T as shown Fig. 7.8c. They observed that the
peaks maxima decrease with T while the valleys increase and at some
points the electric current remains approximately constant with T . They
compared their measurements with a model based on Eq. (6.18) assum-
ing that the transmission T is a combination of Breit-Wigner resonances.
They found good agreement between the model and the experiment.

We highlight that in the transmission, although there exists good
agreement between the model and the experiment, there are some fea-
tures that may suggest that the system is indeed behaving as an inter-
acting impurity such as the diamond structure of Fig. 7.8a or the double
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Fig. 7.8. Transport measurements of a Ferrocene molecular junction performed by
Garrigues et al. [41] (a) Differential conductance as a function of the applied and
gate voltages. (b) Electric current as a function of the gate voltage Vg which controls
the DOS of the molecule for several source-drain voltages. The points indicate the
experimental measurements while the solid line denotes a theoretical model. (c) Electric
current versus the background temperature T for the molecular junctions at different
gate voltages and a bias voltage of V = 10 mV. As in (b), the points denote experimental
data whereas the solid lines show the results of a theoretical model.

resonance appearing in the current. Therefore, we begin our work by
trying to model the transport through the molecule using the system
and the theory discussed in Sec. 7.1.

7.2.2 Interacting model interpretation
We employ again the CB model of Sec. 7.1 and consider Eq. (5.56) as the
molecule retarded Green’s function. However, the energy level will be
now controlled with a gate voltage following Eq. (5.7) which we now
quote for clarity

εd = εN −
CLVL +CRVR +CgVg

C
e , (5.7)

where εN and Cα are determined from the experimental measurements
(Table 7.1). On the other hand, we slightly modify the broadening func-
tion transforming it into

Γα(ω) =

⎧⎪⎪
⎨
⎪⎪⎩

γα1 if ω < εd +U/2

γα2 if ω > εd +U/2
, (7.7)

where j in γαj denotes the hybridization constant around the level res-
onance (j = 1) or the CB resonance (j = 2). Therefore, Γα is now a step
function which takes on a different constant depending on the energy
region. In general, the hybridization is a function of energy Γα(ω) and,
hence, the step function of Eq. (7.7) gives a more appropiate description
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(c)

Fig. 7.9. (a) Experimental data of the electric current across a ferrocene-like molecule
as a function of the gate voltage and the theoretical curves using the parameters of
Table 7.1 for different background temperatures T . The curves at different temperatures
are vertically shifted in order to give a clearer view (offset: 5 nA). (b) Electrical current
calculated theoretically as a function of the gate and applied voltages for a temperature
of T = 80 K. The plot clearly shows the Coulomb diamond structure. (c) Electrical
current as a function of the temperature T for different gate voltages. The data points
show the experimental results given by Garrigues et al. [41] while the solid lines denote
the theoretical curves of the CB model.

of the tunneling process between the molecule and the reservoirs. In
the noninteracting model of Garrigues et al. [41], they take γαj as the hy-
bridization constant of the resonance j with energy εj . In comparison
with our model, the resonances of both theories are located at the same
energy positions such that ε1 = εd and ε2 = εd + U . In addition, γαj are
fitted with the experimental measurements (see Table 7.1).

U εN γL1 γL2 γR1

76 meV 27 meV 0.4 meV 0.4 meV 0.05 meV
γR2 Cg CL CR V

0.01 meV 0.525 e/V 5.78 e/V 6.83 e/V 10 mV

Table. 7.1. Parameters of the molecular junction system used in our theoretical model
fitting the experimental results of Garrigues et al. [41].

In Fig. 7.9a we show the measurements of the electric current for the
ferrocene molecule as a function of the gate voltage Vg (black curves).
We also include the calculations based on our theoretical model (blue
curves). We observe two resonances: one arises when the electrochem-
ical potential of the leads aligns with the level of the molecule µα = εd
and the second appears due to charging energy U . This fact suggests
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that the molecular junction is influenced by Coulomb repulsion in the
regime kBT < U . The numerical current as a function of the gate and
applied voltages is depicted in Fig. 7.9b. Clearly, the diamond signa-
ture of CB is also present. The current is approximately constant inside
the diamond meaning that the transport is blockaded. When the energy
level εd, which is tuned with Vg, aligns with the electrochemical poten-
tial of the dot the current increases until it saturates yielding again zero
electric conductance G.

The experimental data and theoretical curves of the electric current
due to variations of the background temperature is depicted in Fig. 7.9c.
We find different behaviors depending on the gate voltage: At the low-
energy peak (Vg = -0.3 V in Fig. 7.9c) we observe that the current de-
creases with T . On the other hand, the electric current is rather in-
sensitive to the background temperature when Vg = -0.7 V, which cor-
responds when the resonance is at half-maximum. Lastly, we find an
enhancement of the current with T around the CB valleys (Vg = -1.5 V
and Vg = 0.9 V). Comparing experimental data and theory, we find good
agreement in all cases (within the error bars, which are not shown here).
However, we would like to point out that at high temperatures our the-
ory breaks down since dephasing and inelastic scattering are expected
to occur. On the other hand, the model may also fail at very low tem-
peratures because cotunnel processes may appear yielding, for instance,
Kondo correlations when the molecule is strongly hybridized with the
electrodes.

7.2.3 Differences between interacting and non-interacting molecular junc-
tions

By taking a quick glance at Figs. 7.8 and 7.9, one identifies two com-
peting models which correctly describe the experimental results. The
main difference between these models is the nature behind the appear-
ance of the two resonances. In our theory, the double resonance is due
to a splitting of the molecular level due to electron-electron interactions
(Fig. 7.10b). In contrast, the noninteracting model attributes the reso-
nances to two different independent molecular levels (Fig. 7.10a). This
leads to the following question: How can we distinguish between these
two explanations in a real experiment?

We propose the application of an external magnetic field B to the
molecules inducing a Zeeman spliting in the levels as a tool to distin-
guish between both models. In principle, we expect a splitting of the
resonance in the noninteracting case (Fig. 7.10a) while in the interact-
ing case the resonances shift in opposite directions (see right panel of
Fig 7.10). Let us return to the electrostatic model introduced in Sec. 1.1,
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Fig. 7.10. Sketch of the molecular junction showing our proposal to evaluate the rele-
vance of electron-electron interactions in a molecular junction. (a) In the noninteracting
case the molecule contains two energy levels ε1 and ε2 which lead to two resonances in
the electrical conductance G0 (dashed blue lines). (b) The interacting model consists of a
single level εd and a charging energy U which also induce two resonances. Importantly,
a magnetic field B yields two different responses in G0 (red solid lines): the noninter-
acting peaks split at increasing B while the interacting resonances shift. Therefore, this
is helpful for characterizing the transport mechanism in molecular junctions.

but now insert the Zeeman term into Eq. (1.6):

µd(N) = εN +
(2N − 1)e2

2C
+
CLVL +CRVR +CgVg

C
e +∆S∆B , (7.8)

where ∆B = gµBB is the Zeeman splitting energy and ∆S = SNz − SN−1
z

with SNz being the total spin of the molecule. If the spin is augmented
after adding an electron to the level (∆S > 0), a negative voltage shift
is needed for the electrochemical level to remain constant. However,
if the spin lowers (∆S < 0), the gate voltage must shift to higher values.
Therefore, using this argument we are able to discuss the mechanism be-
tween two consecutive conductance peaks: We expect an attraction or
a repulsion between each other. In fact, the energy separation between
two interacting resonances is U + 2∆B and, in contrast, for different en-
ergy levels the separation shrinks with ∆ + U − 2∆B where ∆ = ε2 − ε1

is the energy separation between two noninteracting levels at zero mag-
netic field. In contrast, in the noninteracting model, where each peak
corresponds to an energy level, the resonances split symmetrically due
to Zeeman splitting generated by the magnetic field .

Now, we show the conductance for both cases illustrating the expla-
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Fig. 7.11. (a) Conductance G as a function of the gate voltage Vg at a background
temperature of T = 4 K for different values of the Zeeman splitting ∆B in the CB
model. In this case we consider two molecular levels with a spacing of ∆ = 140 meV,
each of them is also split due to the Coulomb repulsion. The black arrows at the top of
the resonances indicate how the peaks shift when ∆B is increased. (b) Same as (a) but
considering the noninteracting model with four single particle resonances located at the
same positions as the resonances of the interacting model. In this case, the resonances
split as ∆B enhances. Insets: Zoom of the conductance peak corresponding to ε1 for a
better visualization of the behavior of the main panel. Parameters taken from Table 7.1.

nation given by the electrostatic model in Fig. 7.11. In this case we con-
sider two different levels εµ in the molecule with a charging energy U
for the interacting model while in the noninteracting model we consider
four single-particle resonances. Since there exists no interlevel transi-
tions, we obtain a diagonal retarded Green’s function Grµσ,νσ. We in-
clude in both models a Zeeman term εµσ = εµ + σ∆B where σ = + (−) for
spins ↑ (↓). Finally, we assume that Γα follows Eq. (7.7).

After increasing the magnetic field and, consequently, the Zeeman
strength ∆B we encounter the expected physics. The peak separation
for two interacting particles (Fig. 7.11a) expands for εj and εj + U and
shrinks for εj +U and εj+1. The reason behind this effect is that the level
is already split due to the CB effect and, thus, the resonances only shift
in their appropriate direction. On the other hand, the noninteracting
model leads to peak splitting for each of the levels εj when the magnetic
field is increased for ∆B > Γ.

In order to test the previous arguments, we depict the results ob-
tained from an experiment in Fig. 7.11c. Here, a magnetic field is ap-
plied to a single-electron molecular junction with a similar Ferrocene
molecule at low temperature. In Fig. 7.11c we depict the electrical con-
ductance as a function of the gate voltage for vanishing magnetic field
(blue curve) and for B = 7 T (red curve). This experiment is performed
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at T = 4 K with a bias voltage of V = 80 mV at B = 0 T. We observe
two peaks at Vg = −0.95 V and 0.65 V. Both resonances approach to
each other when the magnetic field is applied. One could argue that
a drag of the molecule is induced by a magnetic field. This would dis-
tort the molecule and the couplings between electrodes and the gate
would change. Nonetheless, this effect would also change the transport
excitation slopes meaning that a large variation in potential energy is
very unlikely. Besides, alterations due to strain in the electrostatic cou-
pling do not take into account the spin value. Therefore, we rule out
this explanation.

We return to our previous theoretical predictions. We notice that the
peaks in Fig. 7.11c do not split due to the Zeeman effect under the ap-
pearance of a magnetic field. This is consistent with the Coulomb block-
ade behavior appearing at large charging energies U as explained above.
We find similar shifts for both peaks: The peak located at Vg = −0.95 V is
displaced +18 mV while the second peak is shifted −19 mV. Accordingly,
by applying Eq. (7.8) for the parameters of this experiment we find that
the difference in spin is ∆S = −1/2 for the left peak in Fig. 7.11c and
∆S = +1/2 for the right peak. This results from the addition of one elec-
tron to the molecule. Nevertheless, for this particular case, the distance
between peaks shrinks unlike the case of a single Coulomb-blockaded
level. The reason is that each level belongs to two different interacting
energy levels, whose corresponding levels lie beyond the gate voltage
window of this measurement. In other words, Fig 7.11c is equivalent
to Fig. 7.11a in a range which only comprises the central resonances.
Hence, this experimental observation allows the unequivocal associa-
tion of the peaks in G to charging effects in the molecule and confirms
that the magnetic field is a powerful tool to determine the nature of the
transport conductance peaks in molecular junctions.

7.3 Kondo effect
For the moment, we have investigated the CB properties of single level
QD systems or molecular junctions applying the Anderson model. Nev-
ertheless, we have also shown in Ch. 5 that the Anderson Hamiltonian
is also able to describe well the physics of artificial magnetic impurities
leading to the Kondo effect as discussed in Ch. 2. This would be vis-
ible at low temperatures in the localized moment regime explained in
Sec. 2.1.3. Although the Kondo effect is broadly studied in the literature,
this section includes the results of Refs. [233] and [235] which intend
to deepen our theoretical understanding of the thermally-biased effects
and thermoelectric transport properties of single artificial magnetic im-
purities.
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For the sake of completeness, we take three different approaches in
order to cover all temperature ranges. With this goal we consider three
different Hamiltonians: The Kondo Hamiltonian of Eq. (5.29), valid in
the localized moment regime and high temperatures T ≥ TK (Sec. 7.3.1);
the slave-boson mean-field theory (SBMFT) described in Sec. 5.1.2, which
is valid in the Fermi liquid regime meaning T ≪ TK (Sec. 7.3.2) and the
single-impurity Anderson Hamiltonian of Eq. (5.2) with Eq. (5.6) for de-
scribing qualitatively the local DOS and the conductance when T ≫ TK
(Sec. 7.3.3).

7.3.1 The thermally-dependent Kondo temperature
We consider the Kondo Hamiltonian HKam taking the coupling J as de-
noted in Eq. (6.31). This approach is only valid at T > TK , because at low
temperatures the logarithmic dependence dominates and diverges. In
the absence of thermal and voltage bias, Eq. (6.36) allows us to recover
the intrinsic Kondo temperature TK of Eq. (2.5):

kBTK =D0 exp [
πεd(U + εd)

UΓ
] , (7.9)

with the difference of Γ→ 2Γ due to our definition of Γ in Eq. (5.15) and√
UΓ → D0 because we truncate the perturbation expansion to third

order in J and higher orders are needed [105]. For finite temperature
bias (TL = T +θ and TR = T ), one can transform TK in an effective Kondo
temperature T̃K(θ)

T̃K(θ) =

¿
Á
ÁÀ

(
θ

2
)

2

+ TK
2 −

θ

2
. (7.10)

This is a central result of our work [233]. We understand T̃K as the en-
ergy scale when the perturbation expansion made in Sec. 6.2 fails in the
presence of a thermal bias. Although T̃K becomes TK when θ = 0, both
scales should not be confused because TK only depends on intrinsic pa-
rameters of the QD system, i. e., the charging energy U , the energy level
εd or the hybridization constant Γ whereas T̃K also depends on θ, which
is a tunable parameter.

In Fig. 7.12 we illustrate the normalized Kondo temperature T̃K/TK
(blue curve for this approach) as a function of θ from Eq. (7.10) in a log-
arithmic scale for clarity. As expected, T̃K = TK when the system is
at equilibrium and remains almost constant at low thermal biases indi-
cating that the system stays in the Kondo regime. When θ approaches
the intrinsic Kondo temperature TK , T̃K decreases (scaling region) and
vanishes at large thermal bias (Kondo quench). In contrast, for a DQD
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Fig. 7.12. (a) Normalized Kondo temperature T̃K/TK as a function of the thermal bias
applied by heating the left reservoir (TL = T + θ and TR = T ). Blue line corresponds to
the result from the perturbation analysis of Sec. 6.2 whereas orange line exhibits the
effective Kondo temperature as the width of the Kondo resonance [T̃K ≡ Γ̃ derived from
Eq. (5.98)] in the SBMFT. In both approaches, the intrinsic Kondo temperature can be
obtained by TK = T̃K(θ = 0).

system, the Kondo temperature survives at large θ as will be discussed
in Sec. 8.3.

7.3.2 Transport in the Fermi liquid regime

Here, we analyze the Kondo effect in the Fermi liquid regime, meaning
T < TK . We will employ the SBMFT solving Eq. (5.98) for the mean-field
parameters Γ̃ and ε̃d. We recall that the former represents the width of
the Kondo resonance while the latter is its renormalized position. Cer-
tainly, there exist different approaches that are able to describe Kondo
physics in the Fermi liquid regime such as the renormalized perturba-
tion theory [238, 239]. Nonetheless, the SBMFT gives accurate results in
the limit T → 0 and is thus an interesting approach to apply.

First, we analyze the resonances studying Γ̃ and ε̃d due to electrical
and thermal biases determining how the Abrikosov-Suhl resonance is
modified. Our analytical results are obtained in the deep Kondo or lo-
calized moment regime (∣εd∣ ≫ ∣ε̃d∣) and, at the same time, the Fermi liq-
uid regime ∣̃b∣2 ≈ 1. In addition, from now on, we consider Γα = πρ∣Vα∣2
(notice that this is a slightly modified convention of Γ → 2Γ as with
Eq. (7.9)). Performing these approximations and also applying the sum
over σ, Eq. (5.96) turns into
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∫

D

−D
dω

F(ω)

ω − ε̃d + iΓ̃
=
πNεd

2Γ
. (7.11)

Although in the previous approach we here defined the effective
Kondo temperature as the energy scale where the perturbation theory
breaks down due to the presence of θ, in this formalism the effective
Kondo temperature is defined as the width of the Kondo resonance
kBTK ≡ Γ̃.

Assuming that the system is in equilibrium at T = 0 and ε̃d → 0 in
Eq. (7.11), we recover the intrinsic Kondo temperature for U →∞ [101]

kBTK ≡ Γ̃(θ = 0) =D exp [−
π∣εd∣

Γ
] , (7.12)

where D is the energy bandwidth of the system.
We proceed with the analytical calculation of the mean-field parame-

ters when the system is electrically biased. In this configuration, we con-
sider the limit T → 0 which ensures that the approach taken is valid. The
advantage of this limit is that the nonequilibrium distribution function
F(ω) becomes a doubly-stepped function following fα(ω) → θ(µα − ω)
where θ(x) is the Heaviside function. Solving Eq. (7.11) we obtain the
following equations

Γ̃(V )ε̃d = 0 , (7.13a)

ε̃2
d − (

eV

2
)

2

− [Γ̃(V )]
2

= −(kBTK)
2 . (7.13b)

Therefore, for small voltages eV approaching 2kBTK , the width of the
Kondo peak drops to zero whereas its location is ε̃d ≈ 0 yielding b̃ → 0
and λ = −εd. Once eV = 2kBTK , the level position undergoes a bifur-
cation giving rise to a phase transition. In this transition, the Kondo
resonance splits in two resonances located at symmetric positions with
respect to εF = 0. Nevertheless, the width of the resonances follows
Γ̃ → 0. Our result is consistent with the calculations of Coleman et
al. [240] and Lopez et al. [241] and with the experiments reported in De
Francesci et al. [113]. Additionally, we recall that these calculations are
obtained in the limit of T = 0 whereas the SBMFT gives accurate results
for eV < 2kBTK , otherwise the phase transition is actually a crossover.

The numerical results corresponding to the voltage-driven case are
depicted in Fig. 7.13a and Fig. 7.13b for T = 0. We emphasize that these
results are presented without taking any of the approximations of the
analytical calculation. Even so, we find good agreement between the
analytical and numerical results, especially for the deep Kondo regime
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Fig. 7.13. (a) Width of the Kondo resonance following the SBMFT as a function of the
applied voltage at different single-level energies εd. (b) Same as (a) but for the position
of the Kondo peak. (c) Width of the Kondo resonance as a function of the thermal bias
between reservoirs for different values of εd. (d) Same as (c) but for the position of
the Kondo peak. In this case we take ε̃d0 = ε̃d(V = 0). Inset: Renormalized width
versus thermal bias at εd = −3.5Γ0 following the numerical calculation (solid line) and
the analytical expression given by Eq. (7.14). Parameters: D = 100Γ0, kBT = 0 and
Γ0 ≡ ΓL = ΓR = Γ/2.

(εd = −3.5Γ0). We observe a transition at eV = 2kBTK yielding the Kondo
resonance splitting [Fig. 7.13b]. When the QD is near the mixed va-
lence regime (εd ≈ −Γ), charge fluctuations take place and the transition
arises at lower voltage bias. On the other hand, Fig. 7.13a shows that
the Kondo resonance gets narrower for increasing V and becoming zero
after the transition.

For the analytical calculation of Γ̃ and ε̃d in the thermally-biased
case, we apply a Sommerfeld expansion in the integral of Eq. (5.96):

∑
σ

1

π
∫

D

−D
dω

F(ω)

ω − ε̃d + i
Γ̃
2

= w̃ . (5.96)

The leading order contribution yields Eq. (7.12), which is already known.
Hence, we need to calculate the second-order term to obtain the depen-
dence on θ:

ε̃d = 0 , (7.14a)

Γ̃ = kBTK exp [−
π2

12

T 2
L + T

2
R

TK
2

] . (7.14b)

Eq. (7.14) states that no splitting appears when a thermal bias is ap-
plied. Instead, it renormalizes the width Γ̃, which drops for high values
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of θ. In comparison with the numerical results (inset of Fig. 7.13c), this
approximation is valid only for TL, TR ≪ TK , which is the regime where
the SBMFT can be applied. Anyway, we arrive at the same conclusion
as in the perturbation expansion of Sec. 7.3.1: the Kondo resonance van-
ishes at large temperature biases.

The numerical calculations of Fig. 7.13c and Fig. 7.13d also agree
with the analytical results, mostly in the deep Kondo regime (εd = −3.5Γ).
Nevertheless, departures from the analytical calculation are found as εd
approaches the mixed-valence regime. Three different regions are visi-
ble for Γ̃(θ) in Fig. 7.13c: A constant width in the low temperature range
θ ≪ 0.1TK , an exponential decrease when the thermal bias is near the
intrinsic Kondo temperature θ ≈ TK and a decay to zero at θ ≫ TK . Re-
markably, this nicely agrees with our perturbative analysis as illustrated
in Fig. 7.12. Both models predict a decrease of the effective Kondo tem-
perature when the thermal bias increases. We highlight that both ap-
proaches agree even for values of θ away from the range of validity of
the SBMFT. Therefore, this fact reinforces the main result of this work.

Electric transport
Once we understand the out-of-equilibrium response of the Abrikosov-
Suhl resonance, we now turn to the electric and thermoelectric transport.
We employ Eq. (6.14) taking into account that the transmission function
is a Lorentzian peak located at ε̃d with width Γ̃. The electric current thus
become

I = I0Im [ψ(
1

2
+
i(ε̃d − µR) + Γ̃

2πkBTR
) − ψ(

1

2
+
i(ε̃d − µL) + Γ̃

2πkBTL
)] , (7.15)

where I0 = (8eΓLΓR)/(hΓ). Notice that Eq. (7.15) also depends on V
and θ via ε̃d and Γ̃. Therefore, the transport properties of the QD are not
strictly those of the noninteracting single level case.

In Fig. 7.14a we plot the electrical current across the artificial impu-
rity driven by an applied voltage for several gate positions. We observe
an ohmic response at low voltages as expected. The differential con-
ductance (inset of Fig. 7.14) is obtained from the results of the electrical
current. It exhibits at zero bias its maximum value which corresponds
to twice the quantum of conductance g̃0 due to the fact the artificial im-
purity is spin degenerate yielding two spin channels.

In comparison with Fig. 7.14a, the thermocurrent shown in Fig. 7.14b
has a very different behavior. First, the thermocurrent is more intense
for values approaching the mixed-valence regime, a regime in which
electron-hole symmetry breaking is more prominent. Second, I lacks
the linear response to a thermal bias. The reason is that there exists a
particle-hole symmetry which nullifies the current to lowest order (L0 ≈
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Fig. 7.14. (a) Electric current I versus the applied voltage V for different values of the
energy level εd of an artificial Kondo impurity in the Fermi liquid regime following the
SBMFT. Inset: Differential electric conductance of the artificial impurity as a function
of the applied voltage. (b) Thermocurrent Ith versus the thermal bias θ between
reservoirs in the system of (a) for several values of εd. Inset: Differential thermoelectric
conductance of the artificial impurity as a function of the thermal bias. Parameters:
D = 100Γ0, kBT = 0 and Γ0 = ΓL = ΓR = Γ/2.

0). Therefore, at low temperature differences the current follows I ≈

L1θ
2 whose leading order is

L1 =
4π2ek2

B

3h
Γ̃LΓ̃R

ε̃d

ε̃2
d + Γ̃2

. (7.16)

We point out that the sign of L1 in Eq. (7.16), and consequently Ith, de-
pends on the renormalized level position Γ̃α. In addition, we observe
that in the deep Kondo regime L1 ≈ 0 since the Kondo resonance is
located at the Fermi energy. This effect is illustrated in the inset of
Fig. 7.14b where we plot the differential thermoelectric conductance.
When the system is in the localized moment regime εd = −3.5Γ0, L devi-
ates little from the θ = 0 axis. However, as the energy level approaches
the Fermi energy, the thermoelectric conductance becomes larger. In-
terestingly, L exhibits a maximum at small values of θ followed with a
decrease and then a change of sign. This maximum grows as the dot
gate position enters the mixed-valence regime characterized by the lack
of electron-hole symmetry (ε̃d ≠ 0). In addition, the sign reversal in-
dicates whether the flow is electron-like or hole-like determining the
thermocurrent direction at large thermal biases. Besides, the position
of this sign reversal occurs at θ ≈ TK because the quench of the Kondo
resonance starts to be visible and the electron flow is thus less intense.
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Heat transport
In this part we study the heat transport and Peltier effect of an artificial
impurity in the Fermi liquid regime. Following the results shown in
Fig. 7.13, we plot in Fig. 7.15 the numerical result of Eq. (6.19) for an arti-
ficial Kondo impurity with a level located at εd = −2.5Γ0. We recall that
the heat current is separated in two terms according to which, following
Eq. (6.2), Eq. (6.19) can be separated in

QE =
2

h
∫ dω [fL(ω) − fR(ω)]ωT (ω,V, θ) , (7.17)

QI =
eV

h
∫ dω [fL(ω) − fR(ω)]T (ω,V, θ) , (7.18)

whereQE andQI are the energy current and Joule term, respectively. In
Fig. 7.15a we depict both contributions to the heat current finding dif-
ferent behaviors. First, the energy current QE is an increasing function
of V . Particularly, for V > 0 the energy flows from the left lead increas-
ing with V and QE is thus positive. However, for V < 0 carriers are
injected from the right lead yielding negative energy currents. In addi-
tion, QE presents an antisymmetric shape around V = 0. In contrast, the
Joule termQI is symmetric with V = 0 and always takes negative values
which means, in our sign convention, that the system suffers dissipation.
In order to deeply understand the physics inside these symmetries, we
focus our attention on each term in Eqs. (7.17) and (7.18). First, the differ-
ence of Fermi functions fL−fR is an odd function of V if no thermal bias
is applied between the reservoirs. On the other hand, the transmission
function is an even function of V such that T (ω,V ) = T (ω,−V ) since the
mean-field parameters are also even functions of the voltage (Fig. 7.13a
and Fig. 7.13b are invariant under V → −V ). This is an expected result
because the renormalized width has a non-preferential direction given
by the voltage bias whereas Γ̃ is a function which weakly depends on
V . As a consequence, QE in Eq. (7.17) is formed from the integral of an
odd and an even functions yielding an antisymemtric energy current.
Nonetheless, QI in Eq. (7.18) is a symmetric function.

Fig. 7.15b illustrates the total current arising from the combination
of both QE and QI . First, the energy current dominates the heat trans-
port at low V causing a linear dependence (dashed line in Fig. 7.15b):
the distinctive feature of the Peltier effect. Therefore, the total current
in this regime obeys Eq. (3.5b) for θ = 0 with a positive R0 > 0. The rea-
son behind this fact is that the Kondo peak is not exactly located at the
Fermi energy. In fact, the peak is slightly centered at positive energies.
This leads to an asymmetric transmission function T (ω,V ) ≠ T (−ω,V )

from which, taking into account Eq. (6.21c), we obtain a positive linear
electrothermal conductance. Thus, the artificial Kondo impurity may be
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Fig. 7.15. (a) Energy current QE (blue solid line) and Joule term QI (red dashed line)
as a function of the voltage bias V of a QD acting as an artificial Kondo impurity
with εd = −2.5Γ0. We remark that QE also describes the contact ∆C and electric ∆E

asymmetries of the heat current. (b) Heat current Q versus the voltage bias for the same
system as (a). The green dashed line shows the Peltier contribution Q ≈ R0V to the
heat current. The parameters are the same as Fig. 7.14.

used as a cooler at low V > 0. Nevertheless, this effect is lost at higher
voltages since Joule dissipation quickly dominates the heat transport
yielding a negative flow. Finally, we want to remark that now Q(V )

is also asymmetric under the transformation V → −V because Q arises
from the addition of symmetric and antisymmetric functions.

Now, we briefly discuss the asymmetries of Eq. (3.22) involving ∆C

and ∆E . The symmetry properties of QE(V ) and QI(V ) shown in Fig.
7.15a provide interesting physics. Straightforwardly, the contact asym-
metry obeys the relation ∆C = 2QE(V ). As a consequence, the behavior
of ∆C is also described by the blue curve of Fig. 7.15a. Remarkably,
the electric asymmetry is also proportional to the energy current in the
same way ∆E = 2QE(V ). This is a general result [181] which is satisfied
always for a system in a two-terminal configuration with a symmetric
applied voltage VL = −VR = V /2 characterized by a symmetric transmis-
sion T (ω,V ) = T (ω,−V ). In our case, namely, an artificial Kondo im-
purity in the Fermi liquid regime, such conditions are met as explained
above. Importantly, we expect that this result would facilitate the ex-
perimental detection of the energy current by measuring either the heat
current for different signs of the voltage or the heat current at different
reservoirs with a constant V .
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7.3.3 Transport at high temperature gradients
So far, we have investigated the Kondo effect by applying two differ-
ent approaches: the perturbation approach and the SBMFT. Although
these models gives intriguing results on the behavior of the Kondo res-
onance, they are not able to capture the transport properties at all en-
ergies. Actually, the electric and heat currents calculated in the SBMFT
only considers energies around the Abrikosov-Suhl resonance. For this
reason, we now employ the EOM technique to find a local DOS which
takes into account the single-particle peaks in addition to the Kondo
resonance. This approach allows us to investigate qualitatively the dy-
namical quantities of an artificial impurity and its transport properties
in the case of moderate temperatures.

Density of States
We remind that the local DOS [Eq. (4.27)] requires the computation of
the retarded Green’s function as observed. Unfortunately, the Green’s
function used in Secs. 7.1 and 7.2 are not enough to describe the ex-
pected physics since Eq. (5.56) was obtained by neglecting spin-flip cor-
relations. Therefore, in this section we consider Eqs. (5.74) [for U → ∞]
and (5.81) [for a finite but large U ] as the Green’s function describing
our system.

We begin considering the case when electron-electron interactions
are strong (U → ∞). In this model, we estimate the intrinsic Kondo
temperature from Haldane’s formula [101]

kBTK =
√
DΓ exp [−

π∣εd∣

2Γ
] . (7.19)

In this section, we keep the definition of Γ taken in the previous sec-
tion. Hence, we now calculate the local DOS of the impurity and study
how the Abrikosov-Suhl resonance is modified with the application of
a voltage and thermal bias. In Fig. 7.16a we present the voltage-driven
case. As expected, the Kondo resonance splits symmetrically in two res-
onances located at ω ≈ ±eV /2 (see inset of Fig. 7.16 for a clearer view).
Unfortunately, no dephasing effect is considered within the EOM tech-
nique although it should be actually present in the Abrikosov-Suhl res-
onance [241]. Several proposals has been realized to amend the lack of
dephasing by combining EOMs using a dot occupation computed with
the noncrossing approximation [115, 116, 229].

The thermally-driven case is depicted in Fig. 7.16b. We observe that
the Kondo peak is smeared out. However, the singularity does not dis-
appear for T ≫ TK as discussed previously. The explanation of such
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Fig. 7.16. (a) Spectral DOS of a system consisting of an artificial magnetic impurity
with a single level with energy εd = −3.5Γ0 in the infinite-U case for different values of
eV . Inset: Detail of the DOS around the Fermi energy εF = 0 for a clearer view of the
Abrikosov-Suhl resonance. (b) Spectral DOS for the same system as (a) for different
thermal bias θ. Inset: Detail of the DOS around the Fermi energy (εF = 0). (c) Spectral
DOS of an artificial impurity system with a single level with energy εd = −3.5Γ0 and
a finite charging energy U = 20Γ0 for different temperatures T . Inset: Height of the
Kondo resonance as a function of the background temperature. Parameters: D = 100Γ0,
Γ0 = 2ΓL = 2ΓR and T = 0.024TK in (a) and (b).

behavior can be found at Eq. (5.81) whose expression was

Grσ,σ(ω) = gu(ω) [pu,σ + i
Pu(ω)

X ∗
u (ω)

] . (5.81)

The sharp peak arises from X (ω), which contains the integral of the
Fermi functions of the leads [see Eqs. (5.73) and (5.67)]. When a reser-
voir is heated, its Fermi function stops contributing to the Kondo reso-
nance. However, the second reservoir remains cold and the resonance
persists at high temperature biases. This effect is an artifact of the EOM
technique. Despite this, the method gives a correct behavior at low θ:
The Abrikosov-Suhl resonance is gradually destroyed by a thermal bias,
in agreement with both the perturbative approach and the SBMFT.

When Eq. (5.81) is considered instead, we recover the second single-
particle peak as illustrated in Fig. 7.16c. We observe that the DOS has
the single-particle peaks centered at ω ≈ εd and ω ≈ εd+U and the Kondo
singularity at ω ≈ 0. In this model we also determine the Kondo temper-
ature using the Haldane’s formula for a finite U system [101]

kBTK =
√

2ΓU exp [−
π∣εd∣(U + εd)

2ΓU
] . (7.20)
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Fig. 7.17. (a) Electric current as a function of the applied voltage of an artificial Kondo
impurity at different level positions εd. Inset: Differential electric conductance as a
function of the applied voltage for different level positions. (b) Differential electric
conductance versus energy level εd and bias voltage V showing the Coulomb diamond
with the ZBA. Parameters: D = 100Γ0, T = 0.0001Γ0, U = 20Γ0 and Γ0 = 2ΓL = 2ΓR.

The effect given by an increase of the background temperature is visible
in Fig. 7.16c. As explained in Ch. 2, we find that the Kondo singularity
disappears at temperatures above TK . The inset of Fig. 7.16c exhibits
the height of the Kondo resonance as a function of T demonstrating
how the Kondo peak is gradually destroyed. Therefore, the Kondo peak
also vanishes for a finite charging energy. Concerning voltage and tem-
perature biases, we obtain the same tendencies as shown in Fig. 7.16a
and Fig. 7.16b: A voltage generates a splitting of the Kondo peak while
the thermal bias smears out the Kondo singularity. Similarly, the finite
U case also lacks dephasing at large V and the Kondo quenching for
θ > TK .

Electric Current

The DOS calculation explained in the last section can be used in Eq. (6.15)
to investigate the electric and thermoelectric transport features of the
system. First, we examine the voltage-driven response of the electric
current in Fig. 7.17a. The electric current shows a stair-like shape in
which, in comparison with Fig. 7.1a, a small change of slope appears
around V = 0. This is more clearly seen in the inset of Fig. 7.17a where
we compute the numerical derivative of I yielding G. We observe at
V = 0 a very narrow peak: The ZBA which characterizes the Kondo ef-
fect. Basically, we distinguish five different peaks in G: The resonance
due to the alignment of the single-particle peaks with the electrochemi-
cal potential of the fermionic reservoirs [eV ≈ ±2εd and eV ≈ ±2(εd+U)]
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Fig. 7.18. (a) Thermocurrent as a function of the thermal bias θ of an artificial Kondo
impurity at different level positions εd. (b) Differential thermoelectric conductance
versus energy level εd and the thermal bias θ. Parameters: D = 100Γ0, T = 0.0001Γ0,
U = 20Γ0 and Γ0 = 2ΓL = 2ΓR.

and the ZBA at V = 0. The electrical conductance G is also plotted as a
function of the dot level εd and the applied voltage V in Fig. 7.17b. We
observe differences with respect to the Coulomb diamond of Fig. 7.1b.
Around V = 0 a high conductance line appears as a consequence of the
ZBA. This is consistent with the explanation given in Sec. 2.2. Clearly,
our approach fails around the particle-hole symmetry point εd ≈ −U/2
and the effect of the Kondo resonance is barely visible.

Now, we proceed with the thermally-driven response of the Kondo
impurity system. The thermocurrent Ith when the left reservoir is heated
is shown in Fig. 7.18a. Each position of the single level εd shows the be-
havior of the thermocurrent for several regions: For εd > 0 and εd+U < 0
the system works in the empty orbital or in the full orbital regime as de-
fined in Sec. 2.1.3. Such regions represent a system with a monotonic be-
havior of Ith which either increases or decreases depending on whether
both resonances are located above or below the Fermi level. Otherwise,
when 0 > εd > −U , Ith changes its sign at a given θ. This is not surprising
because it was already found in the CB results discussed in Sec. 7.1. In
addition to this, the nontrivial zero can also occur due to Kondo correla-
tions. For instance, the case εd = −Γ0 gives a thermocurrent with a non-
trivial zero for kBθ ≈ Γ0 and another zero at kBθ ≈ 7.5Γ0. Such finding is
lost for T ≫ TK since the Kondo correlations are no longer a dominant
contribution to the quantum transport. The thermoelectric conductance
L of the Kondo system is shown in Fig. 7.18b. We observe a similar but-
terfly structure as Fig. 7.2b. However, below εd = 0 and above εd = −U
we find a region at small θ in which L changes sign once before the sign
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Fig. 7.19. (a) Thermocurrent as a function of the thermal bias for εd = −Γ0 as taken
from Fig. 7.18. Panels A, B and C are the energy diagrams corresponding to the current
states marked in the upper panel. Red (blue) line shows the Fermi-Dirac function of
the left (right) reservoir while the orange curve indicates the local DOS of the artificial
Kondo impurity in the cases of the three points of the top panel. The position of εd is
denoted with a solid line whereas the dashed lines indicate the energies ω = εF = 0 and
ω = εd +U which correspond to the Kondo singularity and the single-particle resonance
positions, respectively. Finally, the arrows indicate the direction and the strength of the
electronic flow through the corresponding resonance.

reversal at larger θ. This first nontrivial zero in the thermocurrent is at-
tributed to the Kondo resonance. We suspect that such sign reversal of
L would occur for εd ∈ [0,−U] but it is not shown in Fig. 7.18b because
of the breakdown of this model at the particle-symmetry point.

The mechanism behind the generation of the nontrivial zeros can be
explained with an energy diagram as in Sec. 7.1. In the top panel of
Fig. 7.19 Ith(θ) is reproduced for εd ≈ −Γ whereas in the bottom panel
we plot the configuration of system for the three thermal biases indi-
cated above. As explained before, the local DOS comprises three reso-
nances: The single particle peaks centered at ω = εd and ω = εd + U and
the Kondo resonance at ω ≈ 0. When the left reservoir is slightly heated
(case A of Fig. 7.19), the transport window is open around the Fermi
energy εF = 0 and the Abrikosov-Suhl resonance is the only peak which
plays a role in the transport. This peak is slightly located above the
Fermi energy since the system is away from the particle-hole symme-
try point and electrons will thus flow from the left to the right reservoir
leading to Ith > 0. If we increase θ, the difference between Fermi func-
tions enhances the transport window and the single-particle resonance
at εd, which is located below the Fermi energy, starts to contribute to
the electric current in opposite direction. At some point, the hole flow
of the single-particle peak compensates the electron flow generated by
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the Kondo resonance giving rise to a vanishing current and for higher
thermal biases, Ith < 0 (case B). Finally, the electron current crossing
the single-particle resonance at εd + U flows when further increasing θ.
This favors the current with opposite direction and, hence, the current
is again reversed at large thermal bias (case C).
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8. Double Dot structures

Although a single QD system shows interesting physics, DQD struc-
tures also give intriguing and rich phenomena that should be under-
stood. New tunable parameters such as the tunneling between QDs (de-
noted by τ ) or the additional gate (which modifies the level detuning
between the dots) increase the complexity of the system. Additionally,
several DQD configurations can be produced taking into account how
the electronic reservoirs and the QDs are coupled (see Sec. 1.3). As a
consequence, we deal with different transport behaviors worth to be
studied.

This chapter analyzes transport through double dot structures as re-
ported in Refs. [232, 242, 243]. Particularly, we study the local DOS and
quantum transport across a parallel-coupled DQD with a finite intradot
interaction U in which each dot is attached to two fermionic reservoirs
in Sec. 8.1. Such system generates BICs when the dot energy levels align.
This fact leads to important consequences in the electric and thermoelec-
tric transport. Later, we consider a different double-dot configuration
in Sec. 8.2: the Coulomb drag system. In this case we discuss a paral-
lel DQD whose dots are coupled with an interdot interaction energy Ũ .
This system requires to take into account the interacting self-energy Σint

neglected in Sec. 6.1 in order to study the transport through an unbi-
ased QD at equilibrium due to voltage bias in the second dot. Finally,
we analyze the role of the Kondo resonances arisen in a serially-coupled
two-impurity system in the presence of a thermal bias (Sec. 8.3). We ob-
serve different regimes depending on the tunneling between QDs and
find a decoupling of the double impurity at large temperature bias.

8.1 BIC in parallel-coupled quantum dots
First, we focus on the parallel DQD sketched in Fig. 1.6a. In this con-
figuration, we assume that the fermonic reservoirs are attached to both
dots. We consider negligible tunnel τ ≈ 0 and capacitive coupling Ũ ≈ 0
between the dots. Hence, the QDs can only feel each other indirectly
via the leads. As in previous works, the reservoirs may be subjected to
a symmetric voltage bias VL = −VR = V /2 and a thermal bias θ obtained
by heating one reservoir (TL = T + θ when θ > 0 and TR = T − θ for θ < 0).
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This section summarizes the results obtained in Sierra et al. [232].
We model the system with the Anderson Hamiltonian of Eq. (5.2)

and take τ = 0 and Ũ = 0 in the DQD Hamiltonian [Eq. (5.4)]. In addition,
we consider intradot Coulomb interactionsU and we thus take Eq. (5.57)
as the retarded Green’s function which reads

Grµσ,νσ = hµν

⎡
⎢
⎢
⎢
⎢
⎢
⎣

1 − n̄µσ̄

ω − εµ − Σ̃r
µσ (1 −

Uµn̄µσ̄
ω−εµ−Uµ

)

+
n̄µσ̄

ω − εµ −Uµ − Σ̃r
µσ (1 −

Uµ(1−n̄µσ̄)
ω−εµ

)

⎤
⎥
⎥
⎥
⎥
⎥
⎦

. (5.57)

We recall that Grµσ,νσ is a matrix whose coefficients µ, ν = {1,2} de-
note the QDs whereas σ represents the spin. Therefore, the occupation
[Eq. (4.26)], following Eqs. (4.44) and (6.9), reads

n̄µσ = ∫
dω

2π
∑

αλ1λ2

fα(ω)G
r
µσ,λ1σ(ω)Γα;λ1σ,λ2σG

a
λ2σ,νσ(ω) , (8.1)

where the hybridization matrices take the form

ΓL = Γ0 (
1

√
a

√
a a

) , ΓR = Γ0 (
a

√
a

√
a 1

) . (8.2)

We can control the coupling between dots and leads with a tuning of
the parameters Γ0 and a. This expression of Γα was already employed
by Hewson [225] and a is useful to parametrize the transition from the
fully decoupled (a = 0) to the symmetrically coupled case (a = 1).

8.1.1 Spectral and transmission functions
We begin our discussion analyzing the local DOS. In this case, Eq. (4.27)
is generalized

ρ(ω) = −
1

π
ImTr[Gr

] , (8.3)

where Tr[A] denotes the trace of the matrix A over spin σ and QDs
indices µ. Now, we substitute Eq. (5.57) into Eq. (8.3) in order to un-
derstand the emergence of BICs. For the sake of simplicity, we consider
the noninteracting case U = 0 with symmetrically-located energy levels
ε1 = −ε2 = ε. Therefore, we end up with the following expression

ρ(ω) =
(1 + a)Γ0

πD(ω)
[ω2

+ ε2
+

1

4
(1 + a)2Γ2

] , (8.4a)

D(ω) = (ω2
− ε2

)
2
+ [

Γ0

2
(1 + a)]

4

+
Γ2

0

2
[ω2

(1 + 6a + a2
) + ε2

(1 − a)2] .

(8.4b)
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With the goal of finding a simplified expression, we substitute a = 1 and
consider energies around the Fermi level (∣ω∣ < ε < Γ0). Thus, Eq. (8.4)
turns into

ρ(ω) =
1

π

2Γ0

ω2 + 4Γ2
+

1

π

ε2/(2Γ0)

ω2 + [ε2/(2Γ0)]
2
. (8.5)

Therefore, the spectral function now is a sum of two Lorentzian func-
tions centered at ω = 0. This means that the system consists of a superpo-
sition of two different states: a state strongly coupled to the continuum
[first term in the right hand side of Eq. (8.5)] and a second state which de-
pends on the distance between energy levels [second term in the right
hand side of Eq. (8.5)]. For ε < 2Γ0, the resonance is weakly coupled
to the continuum and, actually, the peak becomes a bound state when
ε→ 0:

ρ(ω) =
1

π

2Γ0

ω2 + 4Γ2
+ δ(ω) . (8.6)

This bound state is effectively decoupled only for a → 1 and when the
dot levels are met ε1 → ε2 and lies at the center of such levels. Therefore,
BICs may arise in a noninteracting DQD system [244, 245]. We highlight
that for a nonsymmetric tunneling to the leads (a ≠ 1) the delta function
in Eq. (8.6) smears out with a finite width γ(a) for aligned levels (ε→ 0).
Therefore, when ∣ω∣ < Γ0, the DOS reads

ρ(ω) ∼
1

π

γ(a)

ω2 + γ2(a)
, (8.7)

where γ(a) = Γ0(1 − a)
2
√

8(1 + 6a + a2) is the width of the resonance
which vanishes for a → 1, as expected. The noninteracting behavior of
the local DOS at T = 0 is illustrated in Fig. 8.1a for different energy lev-
els ε and lead-dot coupling symmetries a. We recall that a self-consistent
calculation has to be performed using Eqs. (5.57) and (8.1). When the dis-
tance between levels is large in the symmetric case a = 1 (red solid curve)
we find a resonance centered at ω = 0. Both Lorentzians in Eq. (8.5) over-
lap yielding a single resonance. In fact, in such case (ε = 1Γ0) the width
of the resonances take similar values and the resonances can not be re-
solved. As we move away from the symmetrically case by taking a = 0.5
(red dashed curve), two peaks located at ε1 and ε2 can be distinguished
in the local DOS. More interesting is the case when ε = 0.05Γ0 (blue
curves), a narrow peak is visible at ω = 0 which comes from the second
resonance in Eq. (8.5) and will be transformed to a dirac delta if ε → 0
indicating that a BIC is formed. Furthermore, the bound state is also
smeared out in the nonsymmetrical configuration (blue dashed curve).
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Fig. 8.1. (a) Local DOS of a noninteracting DQD coupled to leads at T = 0 for different
level positions ε1 = −ε2 = ε. The solid lines represent symmetrical coupling to the leads
a = 1 whereas the dashed lines denote the nonsymmetrical coupling with a = 0.5. (b)
Local DOS of a DQD with intradot Coulomb interactions U1 = U2 = U = 1.0Γ0. As
in (a), solid and dashed curves represent symmetrical and nonsymmetrical coupling to
the leads, respectively. (c) Transmission of the same noninteracting DQD in (a) for the
case of a symmetrical coupling a = 1. (d) Same as (c) but for the interacting case taking
U = 1.0Γ0.

We now discuss the interacting case shown in Fig. 8.1b assuming
U1 = U2 = U . In comparison with U = 0, the spectral function exhibits
several resonances instead of the single peak in the symmetric configu-
ration. The reason behind this phenomenon is that virtual levels appear
at εµ + U and, consequently, we find four resonances located at ±ε and
±ε +U . When ε = 0.05Γ0 we still observe the resonance of the BIC of the
noninteracting case but, remarkably, a replica comes out at ω = U . This
can be found analytically operating Eq. (5.57) in the case of equal occu-
pations n̄1σ̄ = n̄2σ̄ ≡ n̄ and symmetric coupling to the leads a = 1. Assum-
ing negligible contribution of the resonant states strongly coupled to the
continuum (∣ω∣, ∣ω − U ∣ ≪ Γ0) two poles appear in the spectral function,
weighted by the occupations, which in the limit ε→ 0 becomes

ρ(ω) = (1 − n̄)δ(ω) + n̄δ(ω −U) . (8.8)

This is in agreement with the numerical results: a replica of the BIC
emerges at ω = U . Eq. (8.8) represents two BICs weighted by the rela-
tive occupations. An important statement we make is that the BICs are
preserved even in the presence of Coulomb interactions (U ≠ 0). Again,
an asymmetric configuration (dashed curves) only smears out the reso-
nances and BICs.

We proceed with the analysis of the transmission function defined in
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Eq. (6.15). Again, a self-consistent calculation is needed to evaluate n̄µσ.
Additionally, we still restrict ourselves to equilibrium conditions V = 0
and Tα = T . With a similar calculation as with the DOS, the transmission
function becomes [245]

T (ω) =
4aΓ2

0ω
2

D(ω)
. (8.9)

Clearly, Eq. (8.9) vanishes at ω = 0 for D(ω = 0) ≠ 0. After some algebra,
one may obtain an equivalent expression to Eq. (8.5) for a system with
symmetric coupling with the leads a = 1 and detuned energy levels ε ≠
0:

T (ω) ≈
ω2

ω2 + ε4/(4Γ2
0)
. (8.10)

Here, we have considered ∣ω∣ < ε and negligible intradot interactions.
In comparison with Eq. (1.8), we notice that the transmission follows
a Fano resonance for the case of q = 0. The mechanism behind this
transmission shape is the coexistence of two different paths which give
rise to quantum interference. The first path crosses the DQD via the
strongly coupled state whereas the second path includes transitions in
and out the BIC. A destructive interference between both paths leads to
a Fano antiresonance. An illustrative example of this phenomenon can
be found in Fig. 8.1c where the transmission of the DQD is displayed in
the noninteracting case. We observe two resonances located at ω = ±ε
with an antiresonance at ω = 0 which is generated due to the Fano effect.

For asymmetric coupling to the leads a ≠ 1 and aligned energy levels
ε = 0, the transmission also shows a Fano antiresonance with a shape
dependent on a:

T (ω) ≈
ω2

ω2 + γ2(a)
. (8.11)

Despite the fact that T can exhibit strong resonances at some energies,
the DQD system never reaches full transparency for a ≠ 1. In addition,
when the QD levels approach to each other, the Fano antiresonance be-
comes narrower as shown in Fig. 8.1c for ε = 0.05Γ0 (blue curve). When
ε → 0, such antiresonance disappears yielding a transmission with a
Lorentzian shape:

T (ω) =
4Γ2

0

ω2 + 4Γ2
0

. (8.12)

In general, for a finely tuned system (ε = 0 and a = 1), the transmission
still shows a marked dip at ω = 0 due to the BIC.
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Fig. 8.2. (a) Diagram of energy levels showing the resonance lines corresponding to
the conditions eV = ±2εµ and eV = ±2(εµ + Uµ). Solid lines indicate the alignment
with the left resonance (µL = +eV /2) while the dashed lines represent crossings with
the right reservoir (µR = −eV /2). Additionally, the markers denote a crossing of lines
leading to maxima (open circles) and minima (solid circles). (b) Differential electric
conductances versus the voltage bias between reservoirs V and one of the QD levels
ε2. One may observe that the results agree with the diagram plotted in (a). Parameters:
ε1 = 2Γ0, U1 = U2 = 3Γ0, θ = 0, kBT = 10−3Γ0 and a = 1.

Finally, the transmission presents additional Fano antiresonances as
seen in Fig. 8.1d for ε = Γ0. In this case, the maximum values are lo-
cated at ω = ±ε and ω = ±ε + U . For this reason, when ε = Γ0 the system
shows a total transparency at ω = 0 instead of an antiresonance like the
nontinteracting DQD. Therefore, the number of antiresonances and reso-
nances are increased in the interacting case. Furthermore, for approach-
ing levels ε → 0, a very narrow antiresonance appears around ω = U
in addition to the antiresonance of the noninteracting case at ω = 0. As
expected, these positions correspond to the locations of the BICs shown
in Fig. 8.1b. Therefore, this is consistent with the results of the DOS and
confirms the robustness of BICs under Coulomb interactions. As a final
remark, we would like to emphasize that the replica of the BIC as well
as this second narrow antiresonance arise for equal charging energies
U1 = U2. When the intradot charging energies differ, the system will
only present the BIC around ω = 0. Nevertheless, it is possible to find a
new set of parameters where the BIC may emerge.

8.1.2 Electric transport

Here, we briefly discuss the impact of BICs on the electric response of
the DQD system. We follow Eq. (6.16) together with Eqs. (6.15) and
(5.57) in order to evaluate the electric current across the system. We
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remark that this system involves crossing of four resonances: εµ and
εµ + Uµ with µ = {1,2}. This will lead to important consequences in the
transport since any level alignment generates narrow antiresonances in
the transmission as a result of the BICs. Hence, we display the differ-
ential conductance G as a function of the voltage bias V and a gate of
one ε2 in Fig. 8.2b for a given set of parameters (ε1 = 2Γ0, U = 3Γ0

and TL = TR = T = 10−3Γ0). As expected, when one of these four reso-
nances aligns with the electrochemical potential of a fermionic reservoir
the conductance is maximal. Nevertheless, the alignment between two
resonances crossing ±eV /2 simultaneously causes G to abruptly drop
and, consequently, a minimum arises. This can be understood easily
with the diagram of Fig. 8.2a. Here, we plot the lines corresponding to
the resonant conditions eV = ±2εµ and eV = ±2(εµ + Uµ). Solid lines
denote a crossing of a resonance with +eV /2 whereas dashed lines de-
note alignment with −eV /2. Therefore, when two of these lines cross, a
maximum will be generated if the QD resonances are not aligned (open
circles). On the other hand, if the QD resonances are located at the same
position, a BIC emerges and, consequently, the conductance presents
a local minimum (solid circles). As observed in Fig. 8.2, the diagram
agrees with the numerical results of the differential conductance.

8.1.3 Thermoelectric transport

We now proceed to the thermoelectric transport response of the sys-
tem. We first analyze the linear thermoelectric conductance L0 com-
puted from Eq. (6.21b) when tuning the Fermi energy εF . We recall
that at low voltage L0 depends on the derivative of the transmission
[Eq. (6.22b)]. Hence, L0 is a magnitude sensitive to changes in the trans-
mission, which helps with the detection of narrow resonances.

First, we plot L0 for a DQD with close energy levels (ε = 0.05Γ0)
in Fig. 8.3a. The thermoelectric conductance exhibits asymmetric reso-
nances around εF = 0 and εF = Γ0 and a smooth variation at ε = 0.5Γ0.
Each of these asymmetric resonances is caused by the antiresonances of
the transmission (blue curve in Fig. 8.1d). Therefore, the narrow asym-
metric resonances are attributed to the Fano antiresonances generated
by the BICs and the resonance at εF = 0.5Γ0 is due to the central antires-
onance in T (ω). Besides, L0 reverses its sign each time that εF aligns
with an extremum of T (ω). Nevertheless, the contribution of the max-
ima is not noticeable in Fig. 8.3a since the minima, in comparison, in-
duce sharper variations. In contrast, we illustrate the case of ε = Γ0

in Fig. 8.3b. Since the resonances and antiresonances of the transmis-
sion (red curve in Fig. 8.1d) have comparable widths, all changes of
sign in L0 are visible. Another important fact is that L0 reaches values
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Fig. 8.3. (a) Linear thermoconductance L0 versus the Fermi energy εF of a DQD
system with energy levels ε1 = −ε2 ≡ ε = 0.05Γ0. The intradot charging energies of
the QDs are U1 = U2 = U = Γ0 and the background temperature is kBT = 0.001Γ0. (b)
Same as (a) but for ε = Γ0. (c) Differential thermoconductance L as a function of the
thermal bias θ and the level position ε2 for ε1 = 2Γ0 in the noninteracting case U = 0
with a background temperature kBT = 0.001Γ0. The black dashed line denotes the case
of ε2 = −ε1 which yields L(θ) = 0. (d) Same as (c) but for interacting QDs with intradot
charging energy U = 3Γ0. Here, the dashed line represents the case ε2 = −(ε1 + U)

which also yields L(θ) = 0.

of 0.12 ekB/h̵ (20 nA/K) when the BICs is present. Therefore, systems
with BICs are interesting devices for their thermoelectric applications.

More appealing results can be found when we compute the differen-
tial conductance L [Fig. 8.3c and Fig. 8.3d]. In comparison with Secs. 7.1
and 7.3, the DQD system may show more complex and diverse patterns
of L. The reason is that the tuning of any parameter can modify the
transmission function giving new thermoelectric behavior of the system.
Therefore, we expect strong departures from Fig. 7.2b and Fig. 7.9b. In
fact, Fig. 8.3c and Fig. 8.3d confirm our expectations by showing a differ-
ent pattern for a thermoelectric conductance as a function of the thermal
bias θ and the energy level of one dot ε2. In these plots we fix ε1 = 2Γ0

and consider both noninteracting U1 = U2 = 0 (Fig. 8.3c) and interacting
U1 = U2 ≡ U = 3Γ0 (Fig. 8.3d) QDs. For the noninteracting system, we
recall the configuration ε1 = −ε2 leads to a symmetric transmission such
that T (ω) = T (−ω) (see Fig. 8.1c as an example). Consequently, L = 0
for all values of kBθ because both terms appearing in Eq. (6.20b) are in-
tegrals of a combination of even and odd functions. In the regime when
ε2 = −ε1 and ε2 = 0, we find a nonlinear behavior of L as a function
of θ in which a change of sign can also occur. Such regime may be un-
derstood in the same way as with the thermocurrent in Secs. 7.1.1 and
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Fig. 8.4. (a) Thermocurrent versus the thermal bias θ of a DQD system with level
positions ε1 = 4Γ0 and ε2 = −1.05Γ0 in the noninteracting and interacting case. The
background temperature is kBT = 0.001Γ0. The arrows show the points of the ther-
mocurrent in which the transmission function is displayed in (b), (d) and (e) for thermal
biases θ = 0.2Γ0, 0.75Γ0 and 2.25Γ0, respectively. The color filling in the transmission
denotes the part of the transmission which contributes to the electric transport at the
given θ. The salmon (purple) color indicates electron (hole) flux around the DQD as
observed by the difference of Fermi functions in (b). The boundaries where the electron
or hole flux becomes negligible are given by the red dashed lines delimiting the range
of energies that should be considered.

7.3.3. The transmission has an asymmetric shape with two resonances
centered at ω = ε1 and ω = ε2, where the latter is closer to the Fermi
energy εF . Therefore, a small heating of the left reservoir causes an
electron flow from the right reservoir yielding a negative L. When we
further increase TL, the thermally excited electrons flow from the left
reservoir through the second resonance. Thereupon, transport in the
opposite direction is favored yielding a sign reversal. Since a negative
θ means a heating of the right reservoir, the thermoelectric transport is
reversed but giving the same physics. In contrast, the pattern of the in-
teracting system shown in Fig. 8.3d exhibits several sign reversals of L.
As observed in Fig. 8.1d, the transmission involves multiple resonances
around εF which appears to be a condition to find nonlinear effects in
the thermoelectric transport. Additionally, the case ε2 = −ε1 which in-
duces L = 0 gets slightly deformed and, the transmission function is
now exactly symmetric for ε2 = −5Γ0 [ε2 = −(ε1 + U)] also leading to
zero thermoelectrical conductance.

As in previous sections, the patterns found in the thermoelectric
conductance suggest that the thermocurrent may exhibit several non-
trivial zeros. A representative result of the thermocurrent is given in
Fig. 8.4a for the noninteracting and interacting cases. Interestingly, the
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thermocurrent displays two sign reversals in the interacting case (solid
curve). On the contrary, Ith does not cross the θ-axis in the noninteract-
ing case. In comparison with a voltage-driven case, we observe that the
current here presents a region of negative thermoelectric conductance
which would be comparable with the current-voltage characteristics of
Esaki diodes [246]. In this case, we obtain a peak-to-valley ratio (the
distance between the maximum and minimum of the currents divided
by the current peak) of the order of 1.7.

The mechanism which induces the nontrivial zeros of Ith(θ) is equiv-
alent to the previous sections. Nevertheless, we give an alternative
scheme in Figs. 8.4b-e which may give a clearer understanding. From
Eq. (6.18) we identify two different terms: the transmission function
T (ω) and the difference of Fermi functions fL(ω)−fR(ω). The tempera-
ture difference induces large changes to fL − fR which, as θ is increased,
has a larger effective energy range (filled areas in Fig. 8.4c). It ranges ap-
proximately between ±3kBθ. Additionally, fL − fR is an antisymmetric
function of the energy ω which is positive (negative) for energies above
(below) the Fermi energy. Since this term is multiplied by the transmis-
sion function, the shape of T (ω) would strongly influence the carrier
transport. When kBθ = 0.2Γ0, the electron contribution (salmon color)
is stronger than the holes (purple color). Therefore, the net current is
positive (first arrow in Fig. 8.4a). If θ increases, the window of ener-
gies opens and the shape of the transmission becomes more complex
(Fig. 8.4d). Clearly, the hole transport surpasses the electron flow induc-
ing a reversal of the net current. Finally, at larger thermal biases the ef-
fective energy area enhances and the transmission has a different shape
which now favors the electronic flow in the opposite direction inducing
an additional change of sign for Ith. In general, we believe that the sign
reversal of the thermocurrent is a generic phenomenon which appears
for systems characterized by a transmission function with more than
one resonance at opposite energy positions with respect to the Fermi
energy.

8.2 Coulomb drag and orbital Kondo effects
The parallel configuration can be used for investigating different intrigu-
ing phenomena. Previous section focused on the role of BICs to the elec-
tronic transport and the influence of intradot interactions. Instead, we
now study the Coulomb drag effect presented in Sec. 1.3.2. We recall
that the system (see Fig. 8.5) consists of two QDs, each of them with an
energy level εµ, where µ = 1,2, assuming large intradot Coulomb inter-
actions such a way that each dot can only be occupied by one electron.
Additionally, each dot is connected to two different fermionic reservoirs
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Fig. 8.5. Scheme illustrating a Coulomb-coupled DQD setup consisting of (1) a QD
attached to two reservoirs at equilibrium (drag system) and (2) another QD connected to
two reservoirs biased with an applied voltage V (drive system). Both systems interact
with each other electrostatically with Ũ being the interdot charging energy. No tunnel
coupling between the dots is considered in the setup.

whose hybridization matrices will be defined as

ΓL1 = (
ΓL1 0
0 0

) , ΓL2 = (
0 0
0 ΓL2

) , (8.13)

ΓR1 = (
ΓR1 0

0 0
) , ΓR2 = (

0 0
0 ΓR2

) . (8.14)

Instead of using the matrix notation, we will employ the coefficients
Γαµ with α = {L,R}. Here, we deal with two almost isolated systems: a
drive system (bottom panel of Fig. 8.5) where a voltage bias V is applied
symmetrically to the reservoirs and a drag system (top panel of Fig. 8.5)
which is at equilibrium. Both systems feel each other via an interdot
Coulomb interaction Ũ which appears when both levels are occupied.
This interaction will be responsible for inducing a current across the
unbiased drag system just due to the application of a voltage bias in the
drive system.

We consider the Anderson Model for a DQD [Eq. (5.2)] with single
levels neglecting the spin degree of freedom. Experimentally, a large
magnetic field B can be applied to obtain such setup. On the other
hand, the interdot Coulomb interaction is still present in the Hamilto-
nian. This allows us to view the DQD as a single QD where µ now
plays the role of a pseudospin operator following the change of notation
σ → µ. Additionally, the reservoirs are dependent of the pseudospin
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which implies a change of notation of the lead subindex α → αµ. There-
fore, we can still use the results given in Sec. 5.2 and employ Eq. (5.45)
as the retarded Green’s function of the system. The occupation n̄µ will
be also obtained by solving Eq. (7.1). Within this scheme, the stability
diagram shows regions characterized by different number of electrons
occupying the QDs. This can be seen in Fig. 8.6a where we plot the
charge susceptibility defined as

δεn̄ = ∑
µ

dn̄µ

dεµ
. (8.15)

When we tune the energy levels εµ when Ũ > Γ0, we distinguish lines
separating four different regions of (n̄1, n̄2) and in the intersection of
these lines (ε1 = ε2 = 0 and ε1 = ε2 = −Ũ ) we find the triple points
forming the shape of a honeycomb diagram as in Fig. 1.7a.

In order to study the transport flowing through both systems we de-
fine the drag Idg = (IL1 − IR1)/2 and drive Idv = (IL2 − IR2)/2 currents.
Due to the charge conservation law of Eq. (3.19), the current remains
unaltered and also follows Eq. (6.18) for both systems in Fig. 8.5. This
leads to dramatic consequences because Idg depends only on the dif-
ference between the Fermi functions of the drag system fL1 − fR1 and,
since the drag system is at equilibrium, Idg vanishes completely for any
Green’s function inserted in T . Thus, the Green’s function approach
seems to predict the absence of drag effect in DQDs, which is wrong.
The origin of the nonexisting current takes place in Eq. (6.12) which for
our configuration becomes

Iαµ =
e

h
∫ dω ∣Grµ,µ∣

2
[Σ>

tot,µΣ<
tun,αµ −Σ<

tot,µΣ>
tun,αµ] . (8.16)

When we assume that the total self-energy only has the contribution
of the tunneling processes (Σ</>

tot,µ ≈ Σ
</>

tun,µ), the terms in brackets of
Eq. (8.16) are nullified. This means that the tunneling transitions in
and out the reservoir αµ are equally likely yielding a zero drag current.
Hence, as explained in Sec. 6.1, the self-energy of the interacting Hamil-
tonian Σint,µ should also be considered.

8.2.1 The interacting self-energy
The aim of this section is to analyze the interacting self-energy Σint,µ

and its influence in the drag current. We apply a perturbation expan-
sion for Hinter [Eq. (5.4)] using Feynman diagrams. The lowest order in
the expansion gives the Hartree approach characterized by Σr

int,µ = Ũ n̄µ̄
where µ̄ = {2,1} for µ = {1,2}. However, the lesser and greater self-
energies are zero in this case Σ<,>

int,µ = 0 and the drag current is still absent.
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t t0
µ = 1

µ = 2

Fig. 8.6. (a) Stability diagram of the whole system indicating the most favorable dot
occupations (n1,n2) when tuning the level positions εµ. The bright colors indicate the
regions where the occupation varies given by Eq. (8.15). The honeycomb vertex formed
by the connection between the triple points is due to the interdot Coulomb interactions
Ũ between QDs. (b) Lowest order nonzero Feynman diagram for the interacting self-
energy Σint,µ(t, t

′). The solid straight lines indicate the Green’s function of the µ
layer. The arrow denotes whether the Green’s function is time-ordered (t → t′) or
anti-time-ordered (t′ → t). The sinusoidal lines denote the interdot charging energy Ũ .
(c) Hybridization function Γα1 of the drag system versus the energy. The solid (dashed)
line indicates the connection of the QD to the left (right) reservoir. We take realistic
parameters [72]: Ũ = 0.1 meV, γL1 = γR1 = 7 µeV, γL2 = γR2 = 25 µeV, Λ = 10 meV,
T = 21 mK, ε̃1 = 2.5 meV and ε̃2 = 0.

Consequently, we include the next-order Feynman diagram sketched in
Fig. 8.6b. Each line of the diagram denotes the Green’s function which
goes from time t to t′ or viceversa, following their corresponding arrows.
Additionally, the diagram represents three propagators, one in the drag
(µ = 1) and two in the drive (µ = 2) QDs. The layers denoted by µ are
connected with each other via the interdot interaction energy Ũ repre-
sented with sinusoidal lines. Reading off the diagram, the interacting
self-energy at this order can be extracted:

Σint,µ(t, t
′
) ≈ Ũ2Gµ,µ(t, t

′
)Gµ̄,µ̄(t, t

′
)Gµ̄,µ̄(t

′, t) . (8.17)

Note that now Eq. (8.17) comprises the contribution of both sys-
tems. This is important for obtaining a nonzero drag because Idg sho-
uld depend on the applied voltage of the drive system and Eq. (8.17)
fulfills this requirement. Remarkably, the product of Green’s functions
of the µ̄ system can be understood as a polarizability function Pµ̄(t, t′) =
Gµ̄,µ̄(t, t

′)Gµ̄,µ̄(t
′, t). Actually, this function gives the leading-order con-

tribution of the fluctuations in the occupation of the µ̄ system which at
all orders in the Fourier space is defined as
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Pµ̄(ω) = ∫ dωe−iωt⟨nµ̄(0)nµ̄(t)⟩ , (8.18)

which corresponds to the case where all possible intermediate transi-
tions in the bubble of Fig. 8.6 are considered. For simplicity, we restrict
ourselves to the solution of Eq. (8.17) which already gives appropriate
results. The lesser and greater Green’s functions are found by applying
Langreth rules [Eq. (4.41)]. An important feature of this interacting self-
energy is that it is also able to exhibit an Abrikosov-Suhl resonance in
the local DOS giving rise to an orbital Kondo system at low tempera-
tures when a voltage is applied both subsystems (drag and drive). Re-
placing Eq. (8.17) into Eq. (8.16) and resorting to the Fourier space, the
drag current can be split into Idg = I

+
dg + I

−
dg obtaining

I±dg = ±
eŨ

2h
∫ dω

dω1

2π

∆Γ1(ω)

Γ1(ω)
ρ1(ω)ρ1(ω − ω1)f

+
1 (ω)f−1 (ω − ω1)P

±
(ω1) ,

(8.19)
where f+αµ(ω) = fαµ(ω), f−αµ(ω) = 1 − fαµ(ω), P +(ω) = P >(ω), P −(ω) =
P <(ω) and ∆Γ1(ω) = ΓL1(ω) − ΓR1(ω). Eq. (8.19) provides intriguing
features about how the drag current is generated. In principle, one con-
dition to find drag current is to have different hybridization constants
ΓL1 ≠ ΓR1. However, the condition is actually more restrictive. A ma-
nipulation of Eq. (8.19) taking into account that P <

2 (ω) = P >
2 (−ω) gives

the following condition

ΓL1(ω)ΓR1(ω
′
) − ΓR1(ω)ΓL1(ω

′
) ≠ 0 . (8.20)

This expression gives the condition for the coupling between dots and
fermionic reservoirs. We would like to emphasize that constant hy-
bridization functions do not obey Eq. (8.20) and Γα1 must hence be en-
ergy dependent. In fact, we need nonproportional hybridization func-
tions (ΓL1(ω) ≠ CΓR1(ω) with C being a proportionality constant) in
order to guarantee a nonzero drag current. For this reason, we now
consider tight-binding tunnel self-energies defined by

Σαµ(ω) = γαµ (ω2 + sgn(ω2)θ(Λαµ[∣ω2∣ − 1])
√

ω2
2 − 1)

+iγαµθ(Λαµ[1 − ∣ω2∣])

√

1 − ω2
2 , (8.21)

where ω2 = (ω − ε̃αµ)/Λαµ. Here, γαµ is the amplitude of the tunnel-
ing self-energy. Additionally, ε̃αµ and Λαµ are its position and its band-
width, respectively. As explained previously, the hybridization func-
tion is defined as Γαµ(ω) = −2Im[Σαµ]. This definition for tunnel self-
energies corresponds to the so-called Newns-Anderson model with shif-
ted bands [247]. A tuning of the parameters involving Eq. (8.21) gives us
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Fig. 8.7. (a) Drive current as a function of the voltage V applied to the drive system for
different values of ε2. (b) Drag current as a function of the voltage bias V applied to
the drive system for different values of ε2. (c) Drive and drag currents as a function of
the voltage bias in a logarithmic scale showing that the currents follow Idg ∝ V 2 and
Idv ∝ V . All panels are taken following the hybridization function and parameters of
Fig. 8.6.

a setup where Eq. (8.20) is fulfilled. At this stage, we consider that the
left and right hybridization functions of the drag system are centered
symmetrically with respect to the Fermi energy such as ε̃L1 = −ε̃R1 = ε̃1

whereas the remaining parameters are equal in both leads meaning that
γL1 = γR1 and ΛL1 = ΛR1 ≡ Λ. As a result, Γα1 becomes shifted semiel-
lipses (see Fig. 8.6c) with equal width and height.

When Eq. (8.20) is satisfied, we are able to encounter a nonzero cur-
rent flowing through the drag system. One should notice that the volt-
age dependence of Eq. (8.19) is totally given by the polarizability term
P >,<

2 (ω). In addition to Eq. (8.19), we calculate the drive current using
Eq. (6.16) because when the system has a voltage or thermal bias, the
effect of the interacting self-energy is negligible over the tunneling self-
energy. Then, we depict the drive and drag currents driven by the volt-
age applied to the drive system in Fig. 8.7a and Fig. 8.7b, respectively.
For low voltages, we observe that both currents are almost zero until the
resonance of the drive system aligns with the electrochemical potentials
of the reservoirs µα2 and this level starts to play a role in the quantum
transport. As expected, we found that the drive current is antisymmet-
ric with V and at low voltages the system exhibits ohmic response (blue
line in Fig. 8.7c). In contrast, the drag current is symmetric with V fol-
lowing a parabolic shape at lowest order (orange line in Fig. 8.7c) with
a sign denoted by ∆Γ1. This happens for our set of parameters because
the drive system does not obey Eq. (8.20) replacing 1 → 2 and the linear
term vanishes when ΓL2 ∝ ΓR2. When this condition is satisfied, we

Double Dot structures
143



Fig. 8.8. (a) Drive current as a function of the energy levels ε1 and ε2 when a voltage of
V = 0.5 meV is applied to the drive system. (b) Drag current as a function of the energy
levels ε1 and ε2 when a voltage of V = 0.5 meV is applied to the drive system. In
both panels, the dashed lines indicate the change of occupation in the stability diagram
of Fig. 8.6 whereas the solid dots represent the triple points. Same parameters as in
Fig. 8.6.

also find a linear regime and a broken symmetry in the drag current.
More information can be extracted by analyzing the current with a

tuning of the energy levels of both QDs at a given voltage (Fig. 8.8). The
results of the drive system (Fig. 8.8a) are expected. When the energy
level is between the electrochemical potential of the reservoirs such as
∣V ∣ > ∣ε2∣, electrons flow through the system giving rise to a drive cur-
rent. Additionally, the drive current remains almost unaltered when ε1

is tuned except a shift of the transport window around the triple points.
Nevertheless, the drag current is sensitive for both energy levels. Idg de-
pends on ε2 because a current in the drive system is needed to generate
drag meaning that the condition ∣V ∣ > ∣ε2∣ has to be also satisfied. On the
other hand, the drag current will only be visible around the triple points
because the transport in the drag system depends on the fluctuations in
the occupation of the dot of the drive system. This means that cotunnel
transitions involving both QDs govern the drag current. These results
are in agreement with recent experiments [71, 72].

8.3 Two-impurity Kondo model
Contrary to the previous sections, we will now discuss a different sys-
tem which involves Kondo correlations. We return to the two-terminal
configuration, but now the DQD will be serially-coupled to the leads as
sketched in Fig. 8.9. Each QD will play the role of an artificial magnetic
impurity in the Fermi liquid regime T < TK with infinite intradot charg-
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Fig. 8.9. Sketch of the two-impurity Kondo system. The setup consists of two QDs
acting as artificial impurities connected to each other with a tunnel coupling of amplitude
τ . Each dot is also attached to a reservoir whose hybridization constant is denoted
as Γα where α = L (R) for the left (right) reservoir. The left reservoir is heated at a
temperature TL = T + θ whereas the right reservoir remains at background temperature
TR = T yielding a thermal bias in the system.

ing energy U → ∞. Here, we neglect the interdot Coulomb interactions
Ũ → 0 and we consider a finite tunnel coupling τ between QDs, which is
necessary for obtaining nonzero current in this system. Therefore, this
section discusses the thermally-driven transport generated across a two-
impurity Kondo system in the Fermi liquid regime and comprises the
results obtained in Sierra et al. [242]. This is relevant for characterizing
the response of two coupled Kondo impurities under thermal biases.

In this section, we recover the SBMFT for the U -infinite slave-boson
Hamiltonian of a DQD [Eqs. (5.12), (5.13) and (5.14) taking µ = {L,R}].
We want to emphasize that now the hybridization matrix takes the fol-
lowing form:

ΓL = (
ΓL 0
0 0

) , ΓR = (
0 0
0 ΓR

) , (8.22)

which means that each dot is only connected with one reservoir. For
this reason, from now on we change the notation α ≡ µ = {L,R}. This
configuration leads to the retarded Green’s function of a noninteracting
DQD given by Eq. (5.40) but for the renormalized parameters Γα → Γ̃α =
∣bα∣

2Γα and εα → ε̃α = λµ + εα. Thus, we have a new set of mean-field pa-
rameters which can be evaluated solving Eqs. (5.102) and (5.103) which
they read

∑
i

AiαJα(ωi) +BiαJᾱ(ωi) = 1 −N
Γ̃α
Γα

, (5.102)

∑
i

CiαJα(ωi) +DiαJᾱ(ωi) = (ε̃α − εα)N
Γ̃α
Γα

, (5.103)

where the coefficients were expressed as

Aiα =
1

π

Γ̃αM(ωi)

∏j≠i(ωi − ωj)
, Biα =

1

π

∣τ̃ ∣2Γ̃ᾱ

∏j≠i(ωi − ωj)
, (5.104)
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8.3.1 Kondo temperature
First, we discuss the response of the width of both Kondo resonances un-
der the application of a thermal bias. We restrict ourselves to the deep
Kondo regime by setting the energy levels at εL = εR = −3.5Γ0 where
Γ0 ≡ ΓL = ΓR, which is the range of parameters where the SBMFT is
valid. Following Eq. (7.12) and assuming D = 100Γ0, the Kondo tem-
perature for a single dot is TK = 0.0016Γ0. Nevertheless, we should
consider a global Kondo temperature of the system which takes into
account the tunnel coupling between artificial impurities [139]:

TK(τ) =
TK

√

1 + ( τ
Γ0

)
2

exp [
τ

Γ0
tan−1

(
τ

Γ0
)] . (8.23)

For simplicity, we denote TK ≡ TK(τ) for the remaining of this section.
Now, we study the Kondo resonance width Γ̃α due to a thermal bias by
solving Eqs. (5.102) and (5.103). As in Sec. 7.3.2, Γ̃α can be interpreted
as the effective Kondo temperature of the α Abrikosov-Suhl resonance.
Therefore, we can study the response of each Kondo impurity individu-
ally. In Fig. 8.10 we depict the width of the Kondo resonances for three
different τ . We distinguish three scenarios where Γ̃α behaves differently,
namely, (a) the weak coupling regime τ/Γ0 < 1, (b) the intermediate
regime τ/Γ0 ≈ 1 and (c) the strong coupling regime τ/Γ0 > 1.

In the weak coupling regime (Fig. 8.10a) each Kondo resonance shows
a different behavior. The Kondo temperature of the hot reservoir (Γ̃L) at
low thermal bias remains almost constant as expected from the Kondo
regime. When θ ≈ TK , Γ̃L drops abruptly following the scaling regime
and then, at higher temperature differences, the left Kondo resonance
is totally quenched. However, Γ̃R is almost unaltered when heating the
left reservoir and, at large θ, behaves as an independent single impurity
system. In contrast, both Γ̃L and Γ̃R are affected by the thermal bias in
the intermediate regime (Fig. 8.10b). In the scaling regime of tempera-
tures (θ ≈ TK), both widths decay with the thermal bias. Nevertheless,
the impurity connected to the cold reservoir has a Kondo temperature
that decays slower than the second one. In the end, Γ̃R reaches a con-
stant value whereas Γ̃L is quenched at large θ. Finally, the two-impurity
system behaves as a single dot at low thermal biases in the strong cou-
pling regime as sketched in Fig. 8.10c. Both Kondo temperatures follow
the same drop as θ is increased. Nevertheless, this does not hinder the
dot of the cold reservoir to fully decouple from the QD of the hot reser-
voir at very large θ. Therefore, Γ̃R reaches a constant Kondo tempera-
ture (dashed line in Fig. 8.10c) yielding a single-impurity system and Γ̃L
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Fig. 8.10. Renormalized hybridization constant Γα as a function of the thermal bias θ
for the three values of τ/Γ0 showing different parameter regimes: (a) weekly coupling
(τ = 0.25Γ0), (b) intermediate (τ = Γ0) and (c) strong coupling (τ = 2.5Γ0) regimes.
The subindex α = {L,R} denotes the left L and right R artificial impurity. We highlight
that Γα can be understood as effective Kondo temperatures TKα of the α impurity.
Parameters: εL = εR = −3.5Γ0, kBT = 10−5Γ0, D = 100Γ0, µα = εF = 0 and
ΓL = ΓR = Γ0.

decays to zero. Therefore, the decoupling of the two-impurity system
is always present at large θ for all orders of τ/Γ0 obtaining a Kondo res-
onance induced by the cold reservoir, in contrast to Sec. 7.3 where the
Kondo resonance of the single impurity fully quenches although the dot
is also attached to the cold reservoir.

8.3.2 Thermoelectric and thermal transport
We now proceed to the quantum transport response of the two-impurity
system driven by a thermal bias. The results are computed following
Eqs. (6.16) and (6.17) considering the retarded Green’s function given
by Eq. (5.40) for the renormarlized parameters (τ → τ̃ , Γα → Γ̃α and
εµ → ε̃µ). Remarkably, the thermocurrent I(θ) behaves differently for
each of the regimes explained above (Fig. 8.11a). In the weak coupling
regime τ̃/Γ̃ < 1 the transmission exhibits a single resonance partially lo-
cated at positive frequencies (see Fig. 8.11c). Therefore, an electron flow
is induced in the system and, at a given thermal bias, the thermocurrent
reaches a maximum and then quickly vanishes due to the fact that the
dots decouple at such values of θ. When the system is in the interme-
diate regime, the system still contains a single resonance but reaching
total transparency T = 1. This leads to a thermocurrent which gradu-
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Fig. 8.11. (a) Thermoelectric current I(θ) versus the thermal bias for different values
of the interdot tunnel coupling τ . For clarity, the curves are rescaled with the factors
10−6, 10−5, 2 × 10−5 and 10−4 for τ = 0.25Γ0, Γ0, 1.5Γ0 and 2.5Γ0, respectively. (b)
and (c) show the transmission function T (ω) at two different thermal bias θ for the
cases of τ > Γ0 and τ < Γ0, respectively. Same parameters as Fig. 8.10.

ally decays to zero. Nevertheless, we find intriguing differences in the
strong coupling regime τ/Γ0 > 1. Now, the transmission function ex-
hibits a combination of bonding and antibonding states (see Fig. 8.11b).
We highlight that T (ω) is not symmetric as observed from the position
of the minimum denoted as a dashed line in Fig. 8.11b. As a conse-
quence, we obtain a nontrivial behavior similar to the results discussed
in Secs. 7.1.1, 7.3.3 and 8.1.3. The peak closest to the Fermi level is lo-
cated at negative energies which induces a negative current. Increasing
the thermal bias favors the contribution of the resonance at positive en-
ergies yielding electron flow such that, at a given θ, generates a nontriv-
ial zero. After this point, the thermocurrent reverses its sign becoming
positive. Finally, the dots decouple at large thermal biases in which
I(θ) vanishes. We would like to note that each thermocurrent curve in
Fig. 8.11a has a different scaling. This scaling shows that larger currents
are found in the strongly coupled regime. This is an expected result be-
cause high values of the tunnel coupling between dots τ are required
for an electron to cross the whole DQD system.

In comparison with I(θ), the heat current Q(θ) does not vary signif-
icantly its shape when tuning θ at every coupling regime as observed
in Fig. 8.12a. The only difference is the magnitude of the current which
increases with the tunnel coupling τ/Γ0 giving high values of Q in the
strong coupling regime, as in the electric current. Generally, the ther-
mal bias causes two different and opposite effects in the heat transport.
On the first hand, the Fourier’s law plays a role and the heat current in-
creases with θ. On the other hand, the decoupling of the system at large
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Fig. 8.12. (a) Heat current Q(θ) versus the thermal bias for different values of the
interdot tunnel coupling τ . (b) Differential thermal conductance K as a function of the
thermal bias for several values of τ . (c) Linear thermal conductance K0 normalized with
the thermal quantum conductance κ0 as a function of the interdot tunnel coupling. This
result coincides with the transmission function at the Fermi level such as K0 = κ0T (0).
Same parameters as in Fig. 8.10.

temperatures decreases the heat current. This is also reflected in the sign
of the differential thermal conductance K shown in Fig. 8.12b. At low
temperatures, K increases linearly given by second and higher orders of
the current. Eventually, the thermal conductance inverts its sign indicat-
ing that the decoupling dominates at large θ impeding transport since
the setup turns into two totally disconnected artificial impurity systems.
Therefore, the decoupling of the two-impurity system induces a region
of negative thermal conductance. Additionally, the linear conductance
K0 describes the behavior of the transmission function T (ω = εF , τ) at
very low temperatures T → 0 as observed from Eq. (6.22d). In Fig. 8.12c
we depict K0 renormalized with the thermal quantum conductance κ0.
As expected from Eq. (6.22d) K0 completely coincides with T (0, τ). We
find a nonlinear behavior which can be understood as follows: in the
weak coupling regime the transmission shows a single peak (Fig. 8.11c)
which becomes larger until it shows total transparency in the intermedi-
ate coupling regime τ/Γ0 (maximum in Fig. 8.12b). At higher couplings
the peak splits in the bonding and antibonding states yielding a mini-
mum around ω = 0 (Fig. 8.11b) which becomes deeper as τ/Γ0 increases.
At larger couplings, K0 slightly increases because the minimum of T
shifts.
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Fig. 8.13. (a) Critical superexchange interaction Jc as a function of the thermal bias θ
for different tunnel couplings. The curve indicates the regions where the Kondo singlets
or the antiferromagnetic singlets dominate. (b) Critical superexchange interaction Jc as
a function of the tunnel coupling τ at a thermal bias of θ = 3.1TK . Same parameters as
in Fig. 8.10

8.3.3 Antiferromagnetic coupling
In Sec. 1.3.3 we explained that high intradot Coulomb interactions U
may lead to a superexchange interaction Jex = τ2/U between the spin
states of the QDs. This is important when considering systems of two
artificial impurities because at T = 0 a QPT can occur at a critical value
of the superexchange interacation Jc, as explained in Sec. 2.3.2. This
phase transition connects the state which generates two coupled Kondo
singlets at Jex < Jc, which is the case studied above for Jex = 0, and the
emergence of an antiferromagnetic singlet between the artificial impu-
rities at Jex > Jc. When the system is at a finite temperature T ≠ 0 the
QPT is transformed into a crossover. In our model, we obtain such tran-
sition including to the Hamiltonian of Eqs. (5.12), (5.13) and (5.14) an
additional term:

H = JexŜL ⋅ ŜR , (8.24)

where ŜL (ŜR) is the spin state of the left (right) QD. At this stage, al-
though one can study the phase transition by solving an additional
mean-field equation. We are only interested in how the critical value
of this crossover is modified with the temperature difference where the
only individual Kondo temperatures are required. In order to study
such phenomenon, we refer to Simon et al. [248]. They demonstrated
that the critical value of the superexchange interaction depends on the
Kondo temperatures of both artificial impurities

Jc
kBTKR

≈
4

π
(1 +

TKL
TKR

) , (8.25)
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for TKR > TKL. Therefore, we apply Eq. (8.25) considering that the
width of the Abrikosov-Suhl resonances may be understood as Kondo
temperatures Γ̃α ≡ kBTKα as above. Accordingly, we can study the ef-
fects of the thermal bias to Jc taking into account the results of Fig. 8.10.
Therefore, we plot in Fig. 8.13a the behavior of Jc as a function of θ
for different τ/Γ0 considering all coupling regimes. We observe a ten-
dency from Jc/kBTKR ≈ 8/π to Jc/kBTKR = 4/π. This means that the
crossover occurs sooner in the two-impurity system when one reservoir
is heated. An explanation to this phenomenon is that at large θ the
Kondo correlations of the left QD disappear making the transition to
the antiferromagnetic singlet more favorable. Additionally, we observe
that the Kondo correlations reinforce as τ/Γ0 increases. The reason is
that the Kondo resonances prevail for a longer regime of temperature
differences. Therefore, a high tunnel coupling requires a stronger anti-
ferromagnetic coupling in order to suppress Kondo correlations.
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9. Conclusions

The main topic of this thesis has been the investigation of the electric,
thermoelectric and thermal transport of QD systems out of equilibrium
by the generation of a voltage or thermal bias. A QD consists of a
small region in space where electrons are quantum confined yielding a
0-dimensional nanodevice. In the case of semiconductor QDs, they are
usually fabricated in the interface between two semiconductors where
a 2DEG is formed and, via voltages applied at electrodes, electrons get
trapped electrostatically. Nevertheless, the QD is not fully isolated be-
cause electrons can hop in and out of the electronic reservoirs allowing
transport across the nanodevice. Currents can be induced upon appli-
cation of thermal or voltage differences. The thermoelectric response of
a QD is interesting because these nanodevices are good candidates to
be efficient waste-heat-to-electricity converters. Hence, a deep theoret-
ical study of the thermoelectric effects of these systems is needed. In
addition, this thesis has been also concerned with the thermal response
of Kondo-correlated QDs. The Kondo effect arises when a spin-singlet
is created between an electron occupying the QD and the delocalized
electrons of the reservoirs. This is a paradigmatic phenomenon which
is worth to be studied due to the manifestation at low temperatures of
the ZBA in the differential electric conductance. Therefore, Kondo ar-
tificial impurities attached to a cold and a hot reservoir could lead to
unexpected consequences.

The theoretical techniques of this thesis have been based on the non-
equilibrium Green’s function formalism (Ch. 4), which is a quite power-
ful theoretical framework for studying strongly correlated systems such
as an artificial Kondo impurity. The Hamiltonian which describes the
QD has been basically the Anderson Model (Ch. 5). However, several
transformations can be applied to obtain different Hamiltonians like the
slave-boson or the Kondo Hamiltonian, which have been also relevant
in this thesis. The main methods have been the perturbation expansion
of the current using the Kondo Hamiltonian (Sec. 6.2), the evaluation
of the mean-field equations of the slave-boson Hamiltonian (SBMFT) or
the self-consistent resolution of a truncated set of EOMs. The two lat-
ter provide a Green’s function as a solution which has to be included in
the current expressions, which are obtained using the same formalism

Conclusions
155



(Sec. 6.1), in order to study the quantum transport. Each of these ap-
proaches are useful in different temperature regimes and offer relevant
information about several effects as the quench of the Kondo resonances
or the generation of nontrivial zeros in the thermocurrent.

Particularly, in Ch. 7 we have discussed the thermoelectric transport
through three different single-dot structures: a QD in the Coulomb-
blockade regime (Sec. 7.1), a molecular junction (Sec. 7.2) and an ar-
tificial magnetic impurity (Sec. 7.3). First, we have observed that the
Coulomb-blockaded QD shows a diamond structure in the differential
electrical conductance, as expected. More interestingly, a proper tuning
of the dot level gives rise to nonlinear behavior of the thermocurrent
which leads to nontrivial zeros. This phenomenon can be understood
with a change of flow between electrons and holes hopping across dif-
ferent resonances of the local DOS of the system. In addition, the heat
transport shows asymmetries when a voltage is applied because the en-
ergy current has a sign dependent on the position of the resonances in
contrast to the Joule dissipation which does not change sign. Surpris-
ingly, the rectification as a function of voltage shows a similar pattern as
the thermocurrent when tuning the thermal bias, suggesting that both
behaviors may come from the same origin: The existence of more than
one resonance in the DOS. Finally, we observe departures from the WF
law at out of equilibrium conditions.

Second, we have studied the thermal effects of a molecular junction
and have compared the results with the experimental measurements of
a Ferrocene molecule connected to gold contacts. We have applied the
theory of a single-level Coulomb-blockaded QD to describe the physics
of the molecular junction at different background temperatures. The
theoretical results nicely agree with the experiment. Nevertheless, Gar-
rigues et. al. [41] also found agreement by applying a noninteracting
model where each resonance in the molecular junction is given by a dif-
ferent energy level. For this reason, we have proposed the application
of a magnetic field in order to know if the resonances in the molecule
arise from different energy levels or are created by the Coulomb block-
ade effect. By analyzing the differential conductance we have observed
that each resonance in the noninteracting case splits into two different
peaks as expected from the Zeeman effect whereas the resonances in the
interacting case shift in different directions depending on the spin dif-
ference of the resonances of the molecule. The experimentally observed
shift of conductance peaks of a Ferrocene molecule is consistent with
the fact that the resonances are generated from charging effects.

Third, we have investigated the response of the Kondo resonance of
an artificial magnetic impurity due to voltage and thermal bias by em-
ploying three different techniques which cover all temperature regimes.
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With the perturbation expansion of the Kondo Hamiltonian (T > TK)
we extract an effective Kondo temperature which shows that the Kondo
resonance reaches a scaling regime followed with a quench at large ther-
mal biases. We have also discussed the voltage-driven effects with the
SBMFT (T < TK). We have observed a smearing of the Kondo resonance
at low voltages which leads into a splitting in two different resonances
at larger biases. Remarkably, in the thermally-biased response we have
found a trend in the effective Kondo resonance similarly to the perturba-
tion approach: The Kondo resonance decreases with increasing thermal
bias obeying a scaling regime and finally vanishes at large bias. Fur-
thermore, we have studied the electric and heat transport within this
approach. We have found an ohmic behavior at low voltage bias and a
maximum of thermocurrent which finally decays to zero due to the van-
ishing of the Kondo resonance. In the heat current we have observed
the Peltier effect induced by the energy current, which is finally dom-
inated by the dissipation of the Joule term. Within this approach, we
have also discussed the heat asymmetries finding a way to obtain ex-
perimentally the energy current by measuring the heat current at dif-
ferent leads or different sign of the voltage. We have also employed the
EOM technique which is able to recover the single-particle peaks as well
as the Kondo resonance although it lacks the behavior exhibited in the
previous approaches at large bias. Nevertheless, inside the Coulomb
diamond the ZBA at V = 0 emerges in the Kondo regime despite the
drawback of the model at the particle-hole symmetry point. Addition-
ally, the thermocurrent may present two different nontrivial zeros, one
due to the Abrikosov-Suhl resonance and one due to the second single-
particle peak.

Then, in Ch. 8, we have exploited the versatility of the DQD by con-
sidering three different configurations: a parallel-coupled DQD with
negligible Coulomb interaction and tunnel hopping energies (Sec. 8.1),
a parallel-coupled DQD with an interdot Coulomb interaction (Sec. 8.2)
and a serially-coupled two-impurity system (Sec. 8.3). In the first work
we have studied the emergence of BIC in a DQD with each dot attached
to two leads. We have observed that the BIC induces a narrow antires-
onance in the transmission function of the DQD. Additionally, we have
found that the BIC is not destroyed in the presence of intradot Coulomb
interactions. Instead it is replicated, at least, in the case of equal charg-
ing energies. Regarding the electric transport, the BIC nullifies the dif-
ferential electric conductance when aligns the BIC with the eletrochemi-
cal potential of one reservoir. Additionally, the thermoelectric response
becomes highly nonlinear yielding large variations of the linear thermo-
electric conductance around the BICs. These findings could be useful
for experimental detection of such states. On the other hand, the dif-
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ferential thermoelectric conductance presents complex patterns which
lead to several nontrivial zeros in the thermoelectric current caused by
different resonances in the transmission function.

The Coulomb drag effect has been studied in a parallel-coupled DQD
where each dot is coupled with an interdot charging energy (Sec. 8.2). In
addition, each dot is connected to two different terminals, one of these
dots is under the application of a voltage bias (drive system) whereas
the second dot stays at equilibrium (drag system). We have found that
the drag current can only appear theoretically in the Green’s function
formalism if we consider the first nonzero order of the interacting self-
energy. In fact, the drag current seems to depend on the fluctuations of
the occupation in the QDs. Furthermore, we have also found that non-
proportional energy-dependent hybridization functions for each lead
are needed. Using a tight-binding model to obtain shifted hybridization
functions between reservoirs, a drag current is induced when a voltage
bias is applied to the second system. The drag current shows a parabolic
behavior at low bias in contrast to the linear behavior of the drive cur-
rent. Nevertheless, the linear behavior can be also found in the drag
current if we consider nonproportional hybridization functions in the
drive system. Finally, we have observed that the drag occurs around
the triple points of the stability diagram meaning that the transport in
the drag system is generated by high-order cotunnel processes.

The thermal and thermoelectric responses have been analyzed in a
serially-coupled DQD acting as an artificial two-impurity system in the
Fermi liquid regime T < TK . First, we have investigated how the Kondo
resonances of each QD are altered due to a thermal difference between
reservoirs. We have distinguished three different regimes depending on
the ratio between the dot-dot and lead-dot tunnel couplings: the weakly
coupling regime in which the system is almost decoupled since the hot
reservoir causes a vanishing of the left Kondo resonance, the interme-
diate coupling regime where the dot connected to the cold reservoir
partially feels the heating of the hot reservoir, and the strong coupling
regime in which both dots behave as a single system. Nevertheless, the
system is always decoupled at large thermal biases independently of
the dot-dot tunnel coupling. These three regimes can be observed in the
behavior of the thermocurrent which is also able to exhibit nontrivial
zeros in the strong coupling regime. On the other hand, the heat cur-
rent shows a region of negative thermal conductance which arises from
the decoupling of the system at large thermal bias. Finally, we have
analyzed the Kondo-to-antiferromagnetic crossover observing that the
critical superexchange shifts in response of the temperature difference.

All these systems seem to exhibit similar physics despite the dif-
ferent configurations. An important common characteristic is the ap-
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pearance of nontrivial zeros in the thermocurrent (see Secs. 7.1, 7.3, 8.1
and 8.3). The explanation given for each nontrivial zero is essentially
the same. This effect occurs for an asymmetric transmission function
which contains at least two resonances: one located below the Fermi
level and another located above. The shape of the transmission func-
tion produces a flow of electrons and holes when a temperature differ-
ence is applied. First, a flow in one direction will occur due to the first
resonance and, as the thermal bias increases, the flow of the second con-
tributes to the transport yielding a reversal of the current. Therefore, we
can conclude that this thermoelectric phenomenon is rather general and
can appear for any system which accomplishes the previous conditions
for the transmission function. In addition, another important feature
is the quench of the Kondo resonance at large temperature gradients
(see Sec. 7.3). Remarkably, the system with two QDs (see Sec. 8.3) does
not show such a global quench because we would need the disappear-
ance of both Kondo resonances, instead of only one resonance vanishing.
This is a good example of a complexity enhancement when the number
of QDs is increased in the system. We believe that the parallel-coupled
DQD would exhibit a different behavior more similar to Sec. 7.3 because
this configuration is characterized by both QDs attached to both reser-
voirs, a more similar scenario to the single QD case.

Let us now discuss the benefits and drawbacks of the mathemat-
ical techniques explained in Chs. 4, 5 and 6. On the one hand, the
EOM technique offers good and reliable results in the Coulomb block-
ade regime. Nevertheless, this technique lies in the truncation of a sys-
tem of differential equations. Physical assumptions have been made in
order to guarantee a correct solution, but we should take into account
that it does not consist of an expansion in terms of a parameter. Con-
sequently, this technique is not well controlled and may fail at some
parameter regimes. An example can be found in Sec. 7.1, which cor-
rectly describes the transport of a QD in the Coulomb blockade regime.
However, the approximation is not valid to describe Kondo physics at
T < TK because such correlations have been neglected in the trunca-
tion. In fact, in Sec. 5.2.4 the system of equations is extended with a
truncation able to recover the Kondo resonance yielding good qualita-
tive results. Nonetheless, the result still fails describing dephasing and
the Kondo quench at large thermal biases. Additionally, the slave-boson
model introduced in Sec. 5.1.2 provides a nice representation of a Kondo
system at T < TK (see Secs. 7.3 and 8.3), but the approach is made for
U →∞ and, consequently, does not give information about the effects at
finite charging energies. To solve this issue, a slave-boson Hamiltonian
can be obtained with finite U [249, 250]. Hence, a solution of the system
considering this new Hamiltonian may be a nice extension of this thesis.
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However, we do not expect large variations from the results discussed
in Secs. 7.3.2 and 8.3 because strong charging energies are needed to
find Kondo correlations in the system. Another important drawback of
the SBMFT is that it is unable to show the single-particle peaks relevant
to the mixed valence regime. This could be important for characteriz-
ing transport because at large enough biases the system activates such
resonances and the SBMFT may fail. Nevertheless, the model can offer
good results in the particle-hole symmetry point since the energy level
is located in the deep Kondo regime. Furthermore, the perturbation
approach of the Kondo Hamiltonian has offered us intriguing analyti-
cal results like the effective Kondo temperature which is consistent with
previously discussed methods. Finally, we would like to emphasize that
a large amount of the results of this thesis has been achieved by apply-
ing a self-consistent calculation. This, in principle, is not important for
understanding the physics. However, one should know that an increase
of the number of unknown variables, which can be made by going be-
yond in our calculations of the EOM technique or increasing the number
of QDs in the system, requires more sophisticated tools to solve the set
of equations.

Further work could be the investigation of these systems by apply-
ing techniques different to the ones employed in this thesis. The scat-
tering approach [211] can offer interesting physics for QDs compara-
ble to the Green’s function formalism, even in the nonlinear transport
regime [176, 177, 204]. However, an important drawback is its inability
to handle strong Coulomb interactions. Another possible approach for
obtaining straightforward qualitative results of the quantum transport
is by means of quantum master equations [251]. Although the results
of this technique can be easy to interpret, the approach has a difficult
extension beyond cotunneling. Regarding the Kondo effect, renormal-
ization group approaches [93, 252] are very interesting because their
results of the ZBA are valid at any regime of temperature. However,
the implementation of voltage or thermal biases is not trivial [110, 253].
Additionally, the noncrossing approximation seems to provide valid re-
sults of the Kondo resonance which even exhibits dephasing effects [116,
254]. Interesingly, an analysis of the validity of these previous models
with the SBMFT has been reported previously [255]. Another technique
would be not to consider the mean-field approach in the slave-boson
Hamiltonian [84], but the model would be still valid only for T < TK .
The implementation of any of these other methods would extend the
validity of the results of this thesis. Finally, we highlight that these are
just the most representative extensions of our approaches but do not
cover all possible techniques applied in the literature.

Employing an additional approach is not the only way to extend
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our work. There are still phenomena to investigate in the systems con-
sidered in this thesis which can be obtained without using more sophis-
ticated techniques. An open question is the role of magnetic fields in
the thermoelectric response of the setups of Chs. 7 and 8. These effects
have already been reported in the literature, but for some concrete cases
[163, 256]. In particular, for molecular junctions we showed in Sec. 7.2
that magnetic fields determine if the resonances of a molecular junc-
tion are due to charging effects. Therefore, a nice extension would be
studying the thermoelectric response of molecular junctions. Further-
more, systems with asymmetric tunneling between leads and dots were
not considered in this thesis with an exception of Secs. 8.1, 8.2 and a
brief discussion in Sec. 7.3. This is important because generally the cou-
pling to the leads is not symmetric in experiments. Another extension
would be the study of heat transport in the parallel-coupled DQD of
Sec. 8.1. Apparently, the dependence of the heat current on the trans-
mission function can induce new phenomena which would give us ex-
tra information about the BICs and maybe it can offer additional ways to
detect them. The Coulomb drag system of Sec. 8.2 can be studied in mul-
tiple ways. For instance, it would be appealing to study the generation
of drag electric current due to thermal differences in the drive system
yielding thermoelectric drag. The thermal drag was already analyzed
[257] but only in the case of small biases. Therefore, the work can be
extended to the nonlinear regime of transport. The investigation of ther-
mal effects on the single-particle peaks in the two-impurity Kondo sys-
tem of Sec. 8.3 is needed to completely understand the physics beyond
the particle-hole symmetry point. Concerning DQDs, Ch. 5 provides the
analytical tools to study the case of comparable dot-dot hopping, intra-
and interdot charging energies, but we have only restricted ourselves
to specific cases. Therefore, the investigation of the most general DQD
setup would be a fascinating topic to discuss. Furthermore, we have not
given results for the thermovoltage and the differential thermopower in
any of the works of this thesis (an exception is Sec. 7.1). Since the ther-
moelectric conductance and the thermocurrent are partially related to
them, we do not believe to find any new physics in their study.

Previously, we have discussed extensions of our work for the same
configurations and applying the concepts defined in this thesis. One
could think of adding to our setup additional QDs yielding a QD array.
Theoretical analysis can be also perfomed using the Anderson Hamilto-
nian of Ch. 5 and even the Green’s function obtained in the Hartree or
Hubbard-I approximation. Therefore, the transport response of a QD
array can be straightforwardly obtained. Nevertheless, one should take
into account that the electrically-driven response is a really well studied
topic [258, 259], at least for the case of triple quantum dots [140, 260,

Conclusions
161



261]. Instead of adding QDs, one can consider to include additional
terminals to the system. This was previously discussed as an energy
harvester in which the temperature of the third reservoir is able to con-
trol the transport between the two additional reservoirs [262]. Further-
more, thermoelectrics was deeply studied in DQDs attached to three
terminals [263]. Another additional consideration is the case of a QD
attached to different type of reservoirs. In Sec. 8.2 we have considered
tight-binding leads, but we can still consider graphene leads [73], which
are interesting due to the linear dispersion relation, or superconducting
leads, which have been demonstrated theoretically to exhibit intriguing
features [208, 264, 265]. The field of spintronics is also interesting to dis-
cuss because additional concepts like the spin Seebeck [207, 266, 267]
or spin drag effect [268] can be introduced. For large temperatures, we
can not avoid the effect of phonons in the system. The thermoelectric ef-
fects of a QD including elecron-phonon contributions was investigated
recently [206]. A decrease of the lattice thermal conductivity has been
also studied due to the phonon contribution in QD superlattices [269].
In general, experiments in QD are performed at temperatures where
the effect of phonons is negligible. Nevertheless, one can also find ex-
periments at higher temperatures as shown in Sec. 7.2. The connection
between quantum noise and thermoelectric effects would also be a fas-
cinating topic that has been less studied. Several works can be found
combining QDs and Kondo correlations with noise [241, 270, 271, 272,
273], but the thermoelectric response is still an unexplored area. Finally,
the nonlinear transport of QDs with time-dependent fields such as ac
currents is now a very attractive topic because of the recent experiments
[274, 275, 276] and theoretical calculations [261, 277, 278, 279].

To conclude, we would like to emphasize that this thesis contributes
to the understanding of nonlinear thermoelectrics and Kondo processes
in QD systems. We have provided key theoretical predictions which
might be experimentally tested in this area of physics. In fact, Sec. 7.2
has already discussed in comparison with experiments. On the other
hand, some of our theoretical results agree with experiments perfomed
in QDs [72, 111, 133, 201, 205]. We expect that this thesis will inspire the
condensed matter community in the realization of future experiments
and new theoretical models.
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A. Unperturbed Green’s functions

The goal of this appendix is to give the expressions of the Green’s func-
tions of an unperturbed fermionic reservoir given by the Hamiltonian of
Eq. (5.3). These expressions are used in the evaluation of the perturbed
Green’s function for the QD setups considered in this thesis.

A.1 Lead Green’s function
The lead Green’s functions are obtained from the definitions of Eqs. (4.18),
(4.19), (4.20) and (4.21) for the operators C†

αkσ and Cαkσ given from
the Hamiltonian of Eq. (5.3). After a straightforward calculation, the
Green’s functions read

gtαkσ(t, t
′
) = −

i

h̵
e−

i
h̵
εαkσ(t−t

′)
[θ(t − t′) − fα(εαkσ)] , (A.1)

gt̄αkσ(t, t
′
) =

i

h̵
e−

i
h̵
εαkσ(t−t

′)
[θ(t′ − t) − fα(εαkσ)] , (A.2)

g<αkσ(t, t
′
) =

i

h̵
e−

i
h̵
εαkσ(t−t

′)fα(εαkσ) , (A.3)

g>αkσ(t, t
′
) = −

i

h̵
e−

i
h̵
εαkσ(t−t

′)
[1 − fα(εαkσ)] , (A.4)

Following Eqs. (4.23) and (4.24), we also obtain the expression of the
retarded and advanced Green’s function

grαkσ(t, t
′
) = −

i

h̵
e−

i
h̵
εαkσ(t−t

′)θ(t − t′) , (A.5)

gaαkσ(t, t
′
) =

i

h̵
e−

i
h̵
εαkσ(t−t

′)θ(t′ − t) , (A.6)

In the Fourier space, such functions become

gtαkσ(ω) =
1 − fα(ω)

ω − εαkσ + iη
+

fα(ω)

ω − εαkσ − iη
, (A.7)

gt̄αkσ(ω) = −
1 − fα(ω)

ω − εαkσ − iη
−

fα(ω)

ω − εαkσ + iη
, (A.8)

g<αkσ(ω) = 2πifα(ω)δ(ω − εαkσ) , (A.9)

g>αkσ(ω) = −2πi[1 − fα(ω)]δ(ω − εαkσ) , (A.10)
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where η indicates a small positive imaginary part. The retarded and
advanced Green’s functions in the Fourier space read

grαkσ(ω) =
1

ω − εαkσ + iη
, (A.11)

gaαkσ(ω) =
1

ω − εαkσ − iη
, (A.12)

which can be split in a principal value and an imaginary part in the limit
η → 0+

grαkσ(ω) = P 1

ω − εαkσ
− iπδ(ω − εαkσ) , (A.13)

gaαkσ(ω) = P 1

ω − εαkσ
+ iπδ(ω − εαkσ) . (A.14)
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B. Schrieffer-Wolff Transformation

The aim of this appendix is to explain the derivation steps for the trans-
formation of the single-impurity Anderson Hamiltonian [Eq. (5.2)] to
the Kondo or s-d Hamiltonian [Eq. (5.1.3)] performed by Schrieffer and
Wolff [100]. After this transformation, we obtain a Hamiltonian that
only includes cotunneling processes. We recall that we make the as-
sumptions εd < 0 and εd + U > 0, meaning that the dot is only filled
by one electron, and Γ/∣εd∣ ≪ 1 together with Γ/(εd + U) ≪ 1, which
provides two narrow resonances.

B.1 The unitary operator
As explained in Sec. 5.1.3, we should apply an unitary transformation
e−S̄ which, applied to the total Hamiltonian, leads to the following ap-
proximation

H̄ ≈H0 +Htun + [S̄,H0] + [S̄,Htun] +
1

2
[S̄, [S̄,H0]] . (B.1)

In order to eliminate the tunneling term in the total Hamiltonian,
Eq. (5.17) needs to be fulfilled. This makes us propose Eq. (5.18) as the
unitary operator for the transformation of the Hamiltonian where w(1)αkσ
and w

(2)
αkσ are the only unknown functions. This section calculates the

commutator of Eq. (5.17) and solves the corresponding equation obtain-
ing Eq. (5.19). Hence, the commutator of Eq. (5.17) may be separated in
the following commutators

Â1 =
⎡
⎢
⎢
⎢
⎣
∑
α⃗1

εα1k1σ1C
†
α1k1σ1

Cα1k1σ1 ,∑
α⃗2

w±
α2k2σ2

n±σ̄2
C†
α2k2σ2

dσ2

⎤
⎥
⎥
⎥
⎦

= ∑
α1k1σ1

εα1k1σ1w
±
α1k1σ1

n±σ̄1
C†
α1k1σ1

dσ1 , (B.2a)

Â2 =
⎡
⎢
⎢
⎢
⎣
∑
α⃗1

εdσ1d
†
σ1
dσ1 ,∑

α⃗2

w±
α2k2σ2

n±σ̄2
C†
α2k2σ2

dσ2

⎤
⎥
⎥
⎥
⎦

= − ∑
α2k2σ1

εdσ1w
±
α2k2σ1

n±σ̄1
C†
α2k2σ1

dσ1 , (B.2b)
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Â3 =
⎡
⎢
⎢
⎢
⎣
Un↑n↓,∑

α⃗2

w±
α2k2σ2

n±σ̄2
C†
α2k2σ2

dσ2

⎤
⎥
⎥
⎥
⎦

= − ∑
α2k2σ2

Uw±
α2k2σ2

n±σ̄2
nσ̄2C

†
α2k2σ2

dσ2 , (B.2c)

where w+
α2k2σ2

= w
(1)
α2k2σ2

, w−
α2k2σ2

= w
(2)
α2k2σ2

, n+σ̄ = nσ̄ and n−σ̄ = 1 − nσ̄.
After performing the sum ∑i Âi and making it equal to Eq. (5.5), we
obtain the following equations

(εαkσ − εdσ −U)w
(1)
αkσ − (εαkσ − εdσ)w

(2)
αkσ = 0 , (B.3)

(εαkσ − εdσ)w
(2)
αkσ = Vαkσ , (B.4)

whose solutions are found in Eq. (5.19).

B.2 The transformation
Now, applying the condition given by Eq. (5.17), Eq. (B.1) becomes

H̄ ≈H0 +
1

2
[S̄,Htun] . (B.5)

As can be seen from Eq. (B.5), an addtional commutator has to be
computed. We will separate such commutator in different components.
First, we apply

H2a =

⎡
⎢
⎢
⎢
⎢
⎣

∑
α1k1σ1

w±
α1k1σ1

n±σ̄1
C†
α1k1σ1

dσ1 , ∑
α2k2σ2

Vα2k2σ2C
†
α2k2σ2

dσ2

⎤
⎥
⎥
⎥
⎥
⎦

= ∓ ∑
α1α2k1k2σ1

w±
α1k1σ1

Vα2k2σ̄1C
†
α2k2σ̄1

C†
α1k1σ1

dσ1dσ̄1 . (B.6)

Here, in combination with its Hermitian conjugate, we obtain the Hamil-
tonian of Eq. (5.22). At this stage, we calculate the commutator

H3 =
⎡
⎢
⎢
⎢
⎣
∑
α⃗1

w±
α1k1σ1

n±σ̄1
C†
α1k1σ1

dσ1 ,∑
α⃗2

V∗α2k2σ2
dσ2C

†
α2k2σ2

⎤
⎥
⎥
⎥
⎦

(B.7)

which we split in three terms H3 =H3a +H3b +H3c:

H3a = ∑
α1β1k1k2σ1

w±
α1k1σ1

V∗α2k2σ1
n±σ̄1

C†
α1k1σ1

C†
α2k2σ1

(B.8)

H3b = − ∑
α1k1σ1

w±
α1k1σ1

V∗α1k1σ1
n±σ̄1

nσ (B.9)

H3c = ∓ ∑
α1β1k1k2σ

w±
α1k1σ1

V∗α2k2σ̄1
C†
α1k1σ1

Cα2k2σ̄1d
†
σ̄1
dσ1 . (B.10)
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These different Hamiltonians are combined to obtain the remaining terms
of the Schrieffer-Wolff transformations. In order to obtain Eq. (5.24), we
add to Eq. (B.8)

H3d = ∑
α1β1k1k2σ1

Jα1σ1,α2σ1C
†
α1k1σ1

Cα2k2σ1nσ . (B.11)

Additionally, Eq. (B.9) leads to Eq. (5.26). Finally, since we have added
Eq. (B.11) to Eq. (B.8), we need to substract the same expression to
Eq. (B.10) to keep Eq. (B.7) invariant. After a straightforward calcula-
tion Hsd = (H3c +H3d)/2 reads

Hsd =
1

2
∑

α1k1α2k2σ

Jα1σ,α2σ̄C
†
α1k1σ

Cα2k2σ̄d
†
σ̄dσ

+
1

4
∑

α1k1α2k2σ

Jα1σ,α2σ̄C
†
α1k1σ

Cα2k2σ̄(nσ − nσ̄) . (B.12)

Now, the next step is to transform the QD subspace into a spin subspace.
To do so, we rewrite the dot operators

nσ + nσ̄ = d⃗†1d⃗ , (B.13)

d†
σ̄dσ = sxσσ̄d⃗

†Sxd⃗ + s
y
σσ̄d⃗

†Syd⃗ , (B.14)

nσ − nσ̄ = szσσd⃗
†Szd⃗ , (B.15)

where Sl with l = {x, y, z} are the Pauli matrices, slσ1σ2
denotes its coeffi-

cients, 1 is the unitary matrix and d⃗ is the vector operator given by:

d⃗ = (
d↑
d↓

) , d⃗†
= (d†

↑ d†
↓) . (B.16)

We resort to the spin subspace by replacing d⃗†Sld⃗with the spin operator
Ŝl. This substitution transforms H3a +H3d into Eq. (5.24) and Eq. (B.12)
into the original s-d Hamiltonian of Eq. (5.20).
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C. Fermi function integrals

This thesis concerns transport of electrons, fermionic particles which
are distributed following the Fermi function occupation f(ω) [Eq. (5.1)].
Due to this fact, we may encounter integrals of the form

H(z) = ∫
D

−D
dω
f(ω − µ)

ω − z
, (C.1)

where z is, generally, a complex number and the Fermi function contains
the contribution of the electrochemical energy µ of a given reservoir. For
simplicity, we will assume that the bandwidth D is the largest energy in
the problem. Although Eq. (C.1) can be complicated, it has a straighfor-
ward result. First, we rewrite the Fermi function in a more convenient
way

f(ω − µ) =
1

2
[1 − tanh

ω − µ

2kBT
] . (C.2)

This relation allows us to split Eq. (C.1) in two termsH(z) = G(z)+F (z)
where

G(z) =
1

2
∫

D

−D
dω

1

ω − z
, (C.3)

F (z) = −
1

2
∫

D

−D
dω

tanh ω−µ
2kBT

ω − z
. (C.4)

The first integral has a simple solution

G(z) =
1

2
ln ∣

D − z

D + z
∣ . (C.5)

We should take into account that z is a complex variable. In the case that
Im[z] is vanishingly small, Eq. (C.3) has an additional contribution due
to the Dirac delta function:

G(z) = ς
iπ

2
+

1

2
ln ∣

D − z

D + z
∣ . (C.6)

Here, we define ς = sgn(Im[z]), where sgn(x) denotes the sign of x.
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Fig. C.1. Scheme of the complex plane for the complex energy ω. The red points are
associated to the poles of the hyperbolic tangent in Eq. (C.7) (ω = i(2n + 1)πkBT with
n = 0,1,2 . . .) whereas the blue point is the pole which comes from the denominator of
the integral (ω = z1). Finally, the square denotes the integration contour Cς delimited
by the vertices ω = ±D, ω = D̃1 =D − 2πςikBT and ω = −D̃2 = −D − 2πςikBT . One
can observe that there is only one pole inside the contour.

C.1 Integral F (z)
The integral F (z) is slightly more complicated, but one can still solve it.
To do so, we are going to employ complex analysis. Firstly, we change
the integration variable ω′ = ω−µ in order to eliminate µ from the Fermi
function. Additionally, we apply the assumption D ≫ µ obtaining

F (z1) = −
1

2
∫

D

−D
dω

tanh ω
2kBT

ω − z1
, (C.7)

where z1 = z − µ. Now, we notice that F (z) has one pole at ω = z1

(blue point in Fig. C.1). In addition to z1, the hyperbolic tangent has
an infinite number of poles given by ω = i(2n + 1)πkBT (red points in
Fig. C.1). In order to avoid the pole at z1, we choose a contour Cς (rect-
angle in Fig. C.1) that only contains the single pole ω = −iςπkBT . Then,
we separate the contour in four parts denoted by the lines delimiting
the contour Cς

−
1

2
∮
Cς
dω

tanh ω
2kBT

ω − z1
= F (z1) −

1

2
∫

D̃1

D
dω

tanh ω
2kBT

ω − z

−
1

2
∫

−D̃2

D̃1

dω
tanh ω

2kBT

ω − z1

−
1

2
∫

−D

−D̃2

dω
tanh ω

2kBT

ω − z1
, (C.8)
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where D̃1 =D − 2πςikBT and −D̃2 = −D − 2πςikBT . Here, one can easily
demonstrate with the change of variables ω′ = ω + 2πςkBT that

−
1

2
∫

−D̃2

D̃1

dω
tanh ω

2kBT

ω − z1
= −

1

2
∫

−D

D
dω′

tanh ω′
2kBT

ω′ − z1 − i2πςkBT

= −F (z1 + i2πςkBT ) . (C.9)

The contour integral can be solved by applying the residue theorem.
First, we evaluate the Laurent series of tanh s around s0 = −iςπ/2 (the
pole inside Cς )

tanh s =
1

s + iς π2
+

∞

∑
n=0

cn (s + iς
π

2
)
n

. (C.10)

Since we only need the expression for n < 0, we are not interested in the
evaluation of cn. Next, we proceed with the residue theorem which
states that an integral around a closed contour C of a function g(z)
which has a pole in z0 inside the contour can be evaluated as

∮ g(z)dz = 2πiRes[g; z0] , (C.11)

where Res[g; z0] is the coefficient of the s−1 term in the Laurent expan-
sion of g. For our case, we obtain the residue of Eq. (C.10). Then,

1

2πi
∮
Cε
dω

tanh ω
2kBT

ω − z1
= Res[fractanh

ω

2kBT
ω − z1;ω0 = −iπkBT ]

= −
ςkBT

z1 + iπkBTς
. (C.12)

Furthermore, we need to evaluate the two remaining integrals, which
will be solved in the limit of D ≫ ω. Hence, we obtain

−
1

2
∫

D̃1

D
dω

tanh ω
2kBT

ω − z1
≈ −

1

2
∫

D̃1

D
dω

1

ω − z1
(C.13)

=
1

2
ln ∣

D − z1

D − z1 − i2πςkBT
∣

−
1

2
∫

−D

−D̃2

dω
tanh ω

2kBT

ω − z1
≈

1

2
∫

−D

−D̃2

dω
1

ω − z1
(C.14)

=
1

2
ln ∣

D + z1

D + z1 + i2πςkBT
∣ .

(C.15)
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We insert the solutions into Eq. (C.8) and, after a little algebra, we find a
recurrence equation.

F (z1 + i2πςkBT ) = F (z1) +
2πiςkBT

z1 + iπςkBT

+
1

2
ln ∣

D2 − z2
1

D2 − (z1 + i2πςkBT )2
∣ (C.16)

We add an additional term in both sides of Eq. (C.16) to have a recur-
rence relation:

F (z1 + i2πςkBT ) +
1

2
ln ∣

D2 − (z1 + i2πςkBT )2

(i2πςkBT )2
∣ =

F (z1) +
2πiςkBT

z1 + iπςkBT
+

1

2
ln ∣

D2 − z2
1

(i2πςkBT )2
∣ . (C.17)

One can realize that F (z) can be written properly as F̃ (z − µ). If we
compare to ψ(x + 1) = ψ(x) + x−1, which is the recurrence relation of
the digamma function with x = 1/2 + z1/(2πiςkBT ), the integral F (z)
(applying z → z1) becomes

F (z) = ψ (
1

2
− iς

z − µ

2πkBT
) −

1

2
ln ∣

D2 − (z − µ)2

(2πkBT )2
∣ . (C.18)

We remark that at D → ∞, the logarithm term vanishes in Eq. (C.16)
yielding only the digamma function. This solution corresponds to the
integral of Eq. (5.73). Additionally, combining Eq. (C.18) with Eq. (C.5)
in the limit of negligible Im[z] we obtain

H(z) = ς
iπ

2
+ ln ∣

2πkBT

D + z − µ
∣ + ψ (

1

2
− iς

z − µ

2πkBT
) . (C.19)
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D. Perturbation expansion of Iασ

This appendix summarizes the calculation concerning the perturbation
expansion of the current operator [Eqs. (6.23) and (6.24)]. First, replac-
ing the S-matrix of Eq. (6.26) with the terms Eq. (6.33) the current is
expressed

Iασ = ⟨Îασ⟩ −
2

h̵
Im[∫

0

−∞
dt⟨HK(t)Îασ(0)⟩]

+(−
i

h̵
)

2 1

2
Re[∫

0

−∞
∫

0

−∞
dt2dt1⟨T̂ [HK(t2)HK(t1)Îασ(0)]⟩]

+(−
i

h̵
)

2

Re[∫
0

−∞
∫

0

−∞
dt2dt1⟨HK(t2)Îασ(0)HK(t1)]⟩] . (D.1)

We identify three different orders in Eq. (D.1): the expected value of the
current, which is zero ⟨Îασ⟩ = 0, the second order current I(2)ασ in the
coupling coefficients (second term in first line) and the third order I(3)ασ
(second and third lines). The solution of the two last components will
be found below.

D.1 Second order
Substituting Eq. (6.23) in Eq. (D.1), I(2)ασ becomes

I(2)ασ =
2e

h̵2∑
v⃗

(δ̃1K̄α1σ1,β1σ1K̄βσ,ασ + x̃1Jα1σ1,β1σβ1
Jβσβ ,ασ)

×Re[∫
0

−∞
dt⟨C†

α1kα1σ1
Cβ1kβ1

σβ1
C†
βkβσβ

Cαkασ⟩]

−
2e

h̵2∑
v⃗

(δ̃1K̄α1σ1,β1σ1K̄ασ,βσ + x̃2Jα1σ1,β1σβ1
Jασ,βσβ)

×Re[∫
0

−∞
dt⟨C†

α1kα1σ1
Cβ1kβ1

σβ1
C†
αkασCβkβσβ ⟩] , (D.2)

where v⃗ = {α1, kα1 , σ1, β1, kβ1 , σβ1 , β, kβ, σβ, kα}, δ̃1 = δσ1σβ1
δσσβ , x̃1 =

∑ll′⟨SlSl′⟩s
l
σ1σβ1

sl
′
σσβ

and x̃2 = ⟨SlSl′⟩s
l
σ1σβ1

sl
′
σβσ

. The next step is the as-
sessment of the expected values. First, we apply the Wick theorem to
the expected values of the lead operators

⟨C†
α⃗(t)Cβ⃗(t)C

†
γ⃗(0)Cλ⃗(0)⟩ = δβ⃗γ⃗δα⃗λ⃗⟨C

†
α⃗(t)Cλ⃗(0)⟩⟨Cβ⃗(t)C

†
γ⃗(0)⟩ , (D.3)
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where α⃗, β⃗, γ⃗ and λ⃗ are arbitrary sets of quantum numbers. Replacing
the resulting expected values with the unperturbed lead Green’s func-
tions of Eqs. (4.20) and (4.21), the current reads

I(2)ασ = 2e∑
β⃗kα

(δ̃1 ∣K̄βσ,ασ ∣
2
+ x̃1 ∣Jβσβ ,ασ ∣

2
)

×Re[∫
0

−∞
dtg>βkβσβ(t,0)g

<
αkασ(0, t)]

−2e∑
β⃗kα

(δ̃1 ∣K̄ασ,βσ ∣
2
+ x̃2 ∣Jασ,βσβ ∣)

×Re[∫
0

−∞
dtg>αkασ(t,0)g

<
βkβσβ

(0, t)] , (D.4)

where β⃗ = {β, kβ, σβ}. Applying ⟨SlSl′⟩ = δll′/4, the coefficients x̃1,2 read

x̃1 = x̃2 = ∑
l

1

4
∣slσσβ ∣

2 . (D.5)

Now, we replace the greater and lesser Green’s functions with Eqs. (A.9)
and (A.4)

I(2)ασ =
2e

h̵2 ∑

β⃗kα

(δ̃1 ∣K̄βσ,ασ ∣
2
+ x̃1 ∣Jβσβ ,ασ ∣

2
) fασ(εαkασ)

×[1 − fβσβ(εβkβσβ)]Re[∫
0

−∞
dt exp(−

i

h̵
[εαkασ − εβkβσβ ]t)]

−
2e

h̵2 ∑

β⃗kα

(δ̃1 ∣K̄ασ,βσ ∣
2
+ x̃2 ∣Jασ,βσβ ∣

2
) fβσβ(εβkβσβ)

×[1 − fασ(εαkασ)]Re[∫
0

−∞
dt exp(−

i

h̵
[εβkβσβ − εαkασ]t)] .

(D.6)

Now, we evaluate the following integral

Re[∫
0

−∞
dt exp(−

i

h̵
ωt)] = πδ(ω) . (D.7)

Therefore, Eq. (D.6) becomes

I(2)ασ =
2πe

h̵2 ∑

β⃗kα

(δ̃1 ∣K̄βσ,ασ ∣
2
+ x̃1 ∣Jβσβ ,ασ ∣

2
) fασ(εαkα)

×[1 − fβσβ(εβkβσβ)]δ(εαkασ − εβkβσβ)

−
2πe

h̵2 ∑

β⃗kα

(δ̃1 ∣K̄ασ,βσ ∣
2
+ x̃2 ∣Jασ,βσβ ∣

2
) fβσβ(εβkβσβ)

×[1 − fαkασ(εαkασ)]δ(εβkβσβ − εαkασ) .

(D.8)
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We transform the sums over kα and kβ into integrals obtaining

I(2)ασ =
2πe

h̵2 ∑
βσβ

∫ dωρασρβσβ (δ̃1 ∣K̄βσ,ασ ∣
2
+ x̃1 ∣Jβσβ ,ασ ∣

2
)

×[fασ(ω) − fβσβ(ω)] . (D.9)

Taking into account that sx,yσσβ = δσ̄σβ/4 and szσσβ = δσσβ/4, we find

I(2)ασ =
eπ

4h̵2∑
β
∫ dωρασρβσ̄ ∣Jβσ̄,ασ ∣

2
[fασ(ω) − fβσ̄(ω)]

+
eπ

8h̵2∑
β
∫ dωρασρβσ (16 ∣K̄βσ,ασ ∣

2
+ ∣Jβσ,ασ ∣

2
)

×[fασ(ω) − fβσ(ω)] , (D.10)

The solution of Eq. (D.10) is given by Eq. (6.29).

D.2 Third order
Now, we restrict to the s-d Hamiltonian of Eq. (5.29) considering spin-
independent reservoirs. This implies that Vασ → Vα and Jασα,βσβ → Jασ.
The third order of the electric current reads

I(3)α = −
1

h̵2∑
v⃗2

Jα1β1Jα1β1Re[∫
0

−∞
dt1∫

0

−∞
dt2

×(⟨ ˆ̄Txσα1σβ1
C†
α⃗1
Cβ⃗1

xσα2σβ2
C†
α⃗2
Cβ⃗2

Îα(0)⟩

−⟨xσα1σβ1
C†
α⃗1
Cβ⃗1

Îα(0)xσα2σβ2
C†
α⃗2
Cβ⃗2

⟩)] , (D.11)

where v⃗2 = {α⃗1, α⃗2, β⃗1, β⃗2} where γ⃗j = {γj , kγj , σγi} for arbitrary γ and j.
Now, we replace the current with Eq. (6.24). We employ again the Wick
theorem [Eq. (D.3)] and we substitute Eqs. (4.19), (4.20) and (4.21) into
Eq. (D.11) obtaining

I(3a)α = e∑
αβ

∣JLR∣2 JααζβLRe[∫
0

−∞
dt1∫

0

−∞
dt2

×(∑
σ⃗

⟨ ˆ̄Txσ1σ2(t1)xσ2σ3(t2)xσ3σ1(0)⟩

+⟨ ˆ̄Txσ1σ2(t2)xσ3σ1(t2)xσ2σ3(0)⟩)

×
⎛

⎝
∑

k⃗

gt̄βk1
(0, t1)g

t̄
αk2

(t1, t2)g
t̄
β̄k3

(t2,0)
⎞

⎠

⎤
⎥
⎥
⎥
⎥
⎦

, (D.12a)
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I(3b)α = −e∑
αβ

∣JLR∣2 JααζβLRe[∫
0

−∞
dt1∫

0

−∞
dt2

× − {(∑
σ⃗

⟨xσ1σ2xσ2σ3xσ3σ1⟩)

×
⎛

⎝
∑

k⃗

g>βk1
(0, t2)g

<
αk2

(t2, t1)g
>

β̄(t1,0)
⎞

⎠

⎤
⎥
⎥
⎥
⎥
⎦

+(∑
σ⃗

⟨xσ1σ2xσ3σ1xσ2σ3⟩)

×
⎛

⎝
∑

k⃗

g<βk1
(0, t1)g

>
αk2

(t1, t2)g
<

β̄k3
(t2,0)

⎞

⎠

⎫⎪⎪
⎬
⎪⎪⎭

⎤
⎥
⎥
⎥
⎥
⎦

, (D.12b)

where σ⃗ = {σ1, σ2, σ3}, k⃗ = {k1, k2, k3}, I(3)α = I
(3a)
α + I

(3b)
α and ζβL =

1 − 2δβL. Now, we sum over spins

∑
σ⃗

⟨ ˆ̄Txσ1σ2(t1)xσ2σ3(t2)xσ3σ1(0)⟩

+∑
σ⃗

⟨ ˆ̄Txσ1σ2(t2)xσ3σ1(t2)xσ2σ3(0)⟩ =
5

8
+

3

8
sgn(t2 − t1) , (D.13)

∑
σ⃗

⟨xσ1σ2xσ2σ3xσ3σ1⟩ =
1

8
, (D.14)

∑
σ⃗

⟨xσ1σ2xσ3σ1xσ2σ3⟩ =
1

2
, (D.15)

where sgn(t) denotes the sign of t.
We continue including the unperturbed Green’s function of Eqs. (A.9),

(A.4) and (A.1) obtaining

I(3)α =
e

8h̵3∑
αβ

∣JLR∣2 JααζβLIm[∫

0

−∞
dt1∫

0

−∞
dt2%(t2 − t1)

× exp(−
i

h̵
[εαk2 − εβk1]t) exp(−

i

h̵
[εβ̄k3

− εαk2]t)

×fβ(εβk1)[θ(t2 − t1) − fα(εαk2)][1 − fβ̄(εβ̄k3
)]

− exp(−
i

h̵
[εαk2 − εβk1]t) exp(−

i

h̵
[εβ̄k3

− εαk2]t)

×{fα(εαk2) − fβ(εβk1)fα(εαk2) − fβ̄(εβ̄k3
)fα(εαk2)

−4fβ̄(εβ̄k3
)fβ(εβk1) + 5fβ̄(εβ̄k3

)fα(εαk2)fβ(εβk1)}] .(D.16)

where %(t2 − t1) = 5 − 3sgn(t2 − t1). Here, we convert the sums over k
into integrals and perform the Fourier transform

∫

∞

−∞
dω

e−i
ωt
h̵

1 + e
ω−µα
kBT

=
πiei

µαt
h̵

sinh πkBTt
h̵

. (D.17)
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Therefore, the current becomes

I(3)α =
eπ3

8h̵2
ρ∑
αβ

∣JLR∣2 JααζβL∫
0

−∞
dt[3Bsββ̄(t) − Bsβα(t) + Bsαβ̄(t)]

−
eπ3

8h̵2
ρ∑
αβ

∣JLR∣2 JααζβL

×Re [∫

0

−∞
dt2e

− ie
h̵
(Vβ̄−Vα)t2

∫

0

−∞
dt1e

− ie
h̵
(Vα−Vβ)t2Tsβαβ̄(t1, t2)] ,

(D.18)

where ρ = ρL = ρR and

Bsαβ =
k2
BTαTβ sin [e(Vα − Vβ)t/h̵]

sinh πkBTαt
h̵ sinh

πkBTβt

h̵

, (D.19)

Tsαβγ =
k3
BTαTβTγsgn(t2 − t1)

sinh πkBTαt1
h̵ sinh

πkBTβ(t1−t2)

h̵ sinh
πkBTγt2

h̵

. (D.20)

After performing the sum over α and β the third order current reads

I(3)α =
eπ3

8h̵2
ρ3

∣JLR∣2 (JLL +JRR)∫
0

−∞
dt

k2
BTLTR sin (eV t/h̵)

sinh πkBTLt
h̵ sinh πkBTRt

h̵

. (D.21)
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