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Abstract

During the last century, microbes were studied as organisms that behave individually.
However, over the recent years they have become an important system to study the
evolution of collective behaviours in biological systems. The production of public goods,
substances that are secreted to the external medium and provide benefit to cells in the
vicinity, is one of these behaviours. The aim of this project is to propose a family of
models that can describe the growth of microbial populations when they produce public
goods. In particular, we will focus our description on those bacteria that use quorum
sensing. Quorum sensing is a cell-to-cell communication mechanism that can regulate
the expression of certain collective behaviours, like the production of public goods, in
response to changes in population density. It is proposed a mean-field description based
on consumer-resource ecological models. Therefore, as the simplest possible description,
our formalism intends to be a first step to develop a more elaborated theory to study the
production of public goods in microbes.

Resumen

Durante el siglo pasado, los microorganismos fueron estudiados como agentes que se com-
portan individualmente. Sin embargo, en estos ultimos anos se han convertido en un im-
portante sistema para estudiar la evolucion de los comportamientos colectivos en sistemas
biologicos. La produccion de bienes publicos, sustancias secretadas al medio externo y que
proporcionan un beneficio a las células adyacentes, es uno de estos comportamientos. El
objetivo de este trabajo es proponer una familia de modelos que pueda describir el crec-
imiento de poblaciones microbianas cuando producen bienes publicos. En particular, nos
centraremos en aquellas bacterias que utilizan quorum sensing. El quorum sensing es un
mecanismo de comunicacion entre células que puede reqular la expresion de ciertos com-
portamientos colectivos, como la produccion de bienes publicos, en respuesta a cambios en
la densidad de poblacion. Se propone una descripcion en campo medio, basada en mode-
los ecologicos consumidor-recurso. Por lo tanto, siendo esta la descripcion mds sencilla
posible, nuestro formalismo pretende ser un primer paso para desarrollar una teoria mds
elaborada para el estudio de la produccion de bienes piublicos en microorganismos.
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Chapter 1

Introduction

For decades, microbes were consider as organisms that behave individually, disregard-
ing the possibility of more complex behaviours. However, in the last years their social
behaviour has been recognized and increasingly studied [I]. Social behaviours are those
which have fitness consequences for the actor and the recipient [2]. In particular, cooper-
ation, as part of these social behaviours, is the one that provides a benefit to the recipient
[2]. This situation opens the possibility for the existence of non-cooperators (also known
as defectors, free-riders, non-producers or cheaters): individuals that do not pay the cost
associated to the cooperation but get the benefit.

Among all the collective behaviours present in microbes, we will focus on the pro-
duction of public goods (PGs), a costly resource that is available to others. Due to the
nature of this process, producers are often considered cooperators [3]. More specifically,
we are interested in those microbes that use a quorum sensing (QS) mechanism, as sev-
eral species of bacteria [4]. Quorum sensing is a cell-to-cell communication mechanism
that can regulate the expression of certain collective behaviours, such as the secretion of
enzymes, surfactants, antimicrobial, virulence factors and siderophores, or phenomena as
bioluminescence and biofilm formation [5].

It has been experimentally shown that bacteria with a QS mechanism behave collec-
tively once the population density reaches a threshold [6]. The way in which bacteria
monitor the cell density is through the so called ‘autoinducers’ (Als). These molecules are
released to the environment and their presence induces the production of more molecules
within the population. As the bacterial culture grows, Als are accumulated and once a
threshold concentration is reached, the expression begins [6].

In this thesis we aim to provide the first steps towards a better understanding of causes
and consequences of PG production in microbes. The main questions that we address
are: a) when and why is activated the production of PGs, b) which are the differences
between microbes that use a QS mechanism to regulate the production and those that do
not, and ¢) which are the conditions needed to have coexistence between cooperators and
cheaters. To this end, in Chapter [2| we describe the growth of microbes at a population
level including the presence of PGs as an additional resource. In particular, we focus
on bacteria that use a QS mechanism to regulate this production. Then, within the
established QS framework, we look for expressions for the population density threshold
and the value of the AI density threshold. After that, in Section we study the
differences between microbes that use a QS mechanism and those that do not, describing
a particular case. Finally, in Chapter [3| we incorporate non-producers into the model
to understand the conditions under which coexistence occurs between cooperators and
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1.1. ECOLOGICAL MODELS OF COMPETITION

cheaters.

To simplify the mathematical description, we propose a non spatial family of models in
which microbes only interact through the resources. To this end, we use classic consumer-
resource (CR) models [7]. We look for a macroscopic description because of the complexity
of the QS mechanism in a biochemical sense. A detailed description of the interactions
between all the molecules involved in this process requires several approximations [8, O]
that are beyond our goal. Instead, we will introduce the QS mechanism in an effective
way, considering, as I will explain later, the PGs as a new resource. Furthermore, the
time scale used in our formalism will be the ecological time, and evolutionary processes
such as mutations are neglected. Ecological time scales are between hours and days while
the evolutionary time scale oscillates between months and years for microbes, depending
on the species [I0]. The mutations could change the behaviour of the strains (from
cooperator to cheater or vice versa) and complicate the description.

In order to introduce our formalism, we need to take an overview of the CR models, in-
cluding the intraspecific competition (between the same species/strains) and interspecific
competition (between different species/strains).

1.1 Ecological models of competition

For many years, the main equations of this area have been the logistic equation [I1] and
those proposed by Volterra [12] and Lotka [I3]. The logistic model (LM) is a growth
model of intraspecific competition where the population grows until it reaches its maxi-
mum possible size (carrying capacity). The Lotka-Volterra (LV) competition model also
accounts for interspecific competition between several species.

The logistic equation is
. X
X=r{l—-—=|X 1.1
(1-%) (1)

where X is the size of the population, r is the growth rate and K is the carrying capacity.
The equations for the LV competition model for two species are

K, — Xi — appXy

X1 =r1X;
s (1.2)
> Ky — X9 —ag1 Xy
Xo =19Xy
K

where X; and X5 are the population size of the two species, K; and K5 the corresponding
carrying capacities, 1 and ry the corresponding growth rates, and a2 and a9y (2, ag; >
0 for LV competition model) are the per capita decline (per individual of species 2 and 1
respectively).

However, these models encapsulate the interactions between individuals in parameters
that do not show biological constraints from the resources. For this reason, CR models
were developed during the second half of the last century. They allow a more detailed
representation of the population growth depending on the availability of resources.

1.1.1 Intraspecific competition for resources and Herbert model

All organisms need resources to grow, and once they are taken by one individual, these
resources are unavailable to other organisms. Therefore, competition for resources is



CHAPTER 1. INTRODUCTION

something common in nature. CR models represent population growth and the con-
sumption of resources when the amount of nutrients is a variable of the system. A usual
model for describing this process in the case of intraspecific competition is [14] [7]:

X = f(R)X

. (1.3)
R=-pf(R)X

where X is the population density (individuals/volume), R the density of resources
(mass/volume), f(R) is the growth rate or consumption function (time™') and 3 is the
resource quota (units of R contained in one unit of X). Alternatively, we can work with
the yield coefficient S~ (population density produced by a unit of R).

Both equations from are related as

. 1.
X=——R 1.4
3 (1.4)

what gives us the conserved quantity
R(t) + fX(t) = Ry + Xy = constant (1.5)

since we have a closed system. It is the biomass available in the system. Using Eq. (1.5
and a linearization of f(R) we can recover the LM equation [I5]. We start from

X =dRX

. (1.6)

R=—-Bd'RX

where o is the growth rate per unit of density of resources. Substituting R(¢) from (1.5
i

in the equation of X in ([1.4)), we get:

K=oty 0% - ) x =% (B x) (1_%>X:r(1_£)x

g
(1.7)
where K = Ry/ + X is the carrying capacity and r = o/ K/5. In this way, we obtain
the parameters of the reduced system r and K as functions of the parameters related to
the consumption of resources.

CR models provide a general framework where we can study a more realistic dynamics
in which resources are relevant. In the LM case, we have not introduced more parameters
respect to the original logistic equation. There are two, r and K, that are now defined
by the new parameters o and 3, although it is true we need an extra initial condition
(Roy). However, we have to consider a couple of points. In a more complicated system,
as we will see later, the integration of the conserved quantity is not always easy. And on
the other hand, we will need to fit the parameters of f(R) and § in experiments.

Equations do not incorporate any process leading to population decays. The
Herbert model introduces the maintenance rate (endogenous metabolism), that accounts
for the effects of non-growth energy consumption processes, such as metabolism, produc-
tion of extracellular molecules or cell motility [I6, [I7]. The model is as follows:

aRR
X =[f(R) —m] _[KR+R_m}X s
R=6H(R)X = -5
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where f(R) is fixed as a Monod function [18], «v is the maximum growth rate, K is the
half-saturation constant (when f(R = Kg) = «/2) and m is the maintenance rate that
encapsulates all the costs. A detailed study of the dynamics of the Herbert model can
be found in the Appendix [B] where we also propose a general LM equation for the case
of having non-growth costs.

The Herbert model is often described accompanied by the Pirt and Compromise
models. The maintenance costs are in the biomass equation (X) in the Herbert model,
while Pirt’s model includes them in the resource equation (R). We will use Herbert model,
first, because Pirt’s model is not convenient. It predicts a negative value of resources in
the stationary state, what it is not reasonable. And second, because if one considers that
the maintenance term is consumed through resources when there are plenty of them, and
through the biomass when resources are scarce, this model, known as Compromise model
[T7], turns out to be a rescaled version of the Herbert model.

1.1.2 Interspecific competition for resources

In interspecific competition, the abundance of one species inhibits the growth of other
species. The main interest in this kind of competition is to study under which conditions
we can find coexistence between some them.

The LV competition model introduced in the previous section is one of the simplest
cases where we can find coexistence between two species. Mathematically, this property
is shown by the existence of a non-trivial fixed point (non-zero population). I show below
(Figure an example of this situation for the LV equations.

Lotka-volterra competition

dN,

dr

Stable coexistence
dN,
dr

N, gy

Figure 1.1: Nullclines in phase space of the Lotka-Volterra competition model for two
species. N1 and N, are the population of species 1 and 2 respectively. Figure obtained
from [19].

From Figure we can see that coexistence occurs when K; < Ks/ag and Ky <
K /ai9, where the meaning of these parameters was defined in the previous section. With
this result, it can be conclude that coexistence occurs if each species inhibits itself (with
the intraspecific competition) more than it inhibits the other species.

But, as I said before, we want to focus on CR models, where parameters are directly
related to observable traits of species and, therefore, are more easily measured. An
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increase in the density of one species leads to an increase in the consumption of the
limiting resources, lowering the levels of the resources and influencing the growth rates
of other species. The simplest case is the interspecific competition with a single limiting
resource [7, 15, 19]. In this situation we have n species sharing a single resource. The
dynamical system is as follows:

X = [fi(R) = mj] X;

= h(R) - Z B (R)X, (1.9)

where h(R) defines the habitat’s rate of supply of the resources, and, in general, f;(R) is
a Monod function. It can be noticed that this set of equations is a generalization of the
Herbert model.

Working with this description has a price: it is very complicated to obtain coexistence.
This is called the competitive exclusion principle or R* rule [20] and it reads: ‘n consumer
species cannot coexist in a stable equilibrium state with fewer than n resources’.

In order to visualize this statement, we can study the case of two species with one
resource:

Xl = ) —mi] Xy
X, = [o(R) = ma] X (1.10)
R = h(R) — ﬁlfl(R)Xl — 62f2(R>X2

mao

Independently of the number of terms in equation R, the fixed points of the system only
allow two possibilities. For both X; and X5, the two possible cases are either X = 0 or
fi(R*) = m,;. Since we are interested in the coexistence, we will not take X; = 0. Hence,
fi(R*) = m; gives us two values of R* that we will call R} and R5. In general, one of the
two R*-values will be smaller, having R} < Rj or R5 < Rj. In the first case, species 1
can sustain a stable population at a resource level that is too low for species 2, that goes
extinct. In the second case, we have the opposite situation. Therefore, the species with
the lowest value of R* outcompetes the other, driving it to extinction.

Generalizing for n species, the two possible situations for fixed points are identical:
either X} = 0 or f;(R*) = m;. Now the R* values can be ordered as R} < Ry < -+ < R,
surviving only the species with the lowest R*-value. The only case in which we can find
coexistence is when any of the R*-values are equal, but this condition is a very specific
case. It would mean that these species have the same parameters, so either they are the
same species or they sustain the population in the same way with the same costs.

From this point, the literature includes a wide variety of possible solutions to the
coexistence problem. One obvious case is to introduce more resources in the model [19)].
However one can condense all the resources in only one as the total available resources,
unless they follow different dynamics and each one needs a different differential equation.
Other possibilities contemplate population density dependence in the growth rates [21] or
heterogeneity in the limiting enviromental factors such as temperature, salinity or soil pH
in addition to a single resource [19]. This heterogeneity can be spatial [7] or temporal [22]
or both [23]. In our description, we try to solve the problem of the coexistence between
the cheater and the cooperator strains including a second resource derived form public
good production, in such a way that we can obtain coexistence under some conditions
for the parameters.



Chapter 2

A family of models for PG
production regulated by QS

The aim of our formalism is to describe the growth of microbial populations when they
produce public goods, in the context of consumer-resources models. Now we will focus
on the case that PG production is regulated by QS. We leave aside the situation where
the production is inconditional (no QS mechanism), that will be explained in section .

We start presenting the formalism for a single strain of cooperative bacteria, that is
the wild type strain. The dynamical system is as follows:

X = f(R)X —my X + (9(Q)X — myX) (R, — R)

Q = [km2X — q9(Q)X]0(R. — R) (2.1)
R=-Bf(R)X

Let’s explain all the terms one by one.

e The variables: X is the population density of cooperators, R the density of resources
from the medium (the initial food for bacteria) and @ the density of resources from
PGs. The first resource R is a limiting resource, while we will consider that ¢ could
be obtained by bacteria ad infinitum. This means that for the time scales that we
study (ecological time), the concentration of substances degraded by the PGs is
much higher than the initial available resources from the media.

e The functions: f(R) and ¢g(Q) are the growth rates or consumption functions of R
and @ respectively. 0(R.. — R) is the step function that introduces the dynamics
of the PG production.

e The parameters: [ and q are the corresponding resource quotas, and m; is the initial
metabolic cost before the activation of PG production, including the production of
Als. msy would be the additional cost that appears due to the new production of
PGs and Als after the activation, so mo > m;. k is the resource quota of production
from the PGs by bacteria. It shows us the fraction of energy from the cost ms that
was invested and ended as resource () after the whole process of generation.

The set of equations is a piecewise smooth dynamical system. We begin from the
Herbert model (Eq. ), reproducing the growth of populations with a maintenance
cost. Then we introduce the PGs as an effective resource using a new differential equation,
where the PGs are not the elements that bacteria consume. We will work with those PGs
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that are enzymes, released to the environment by cells to degrade complex molecules into
smaller ones that can be used by them. For instance, carbon sources as disaccharide are
degraded into monosaccharides, used as nutrient to promote growth.

The second part of the dynamical system is included in the dynamics by a step
function. This approximation is known as the logic approximation in system biology,
where it is used to simplify calculations for the activation of gene transcription [24]
and the step function approximates an abrupt behaviour. There are biochemical and
theoretical evidences that indicate that the QS activation function is abrupt, like a pulse
[25]. The activation comes from the change of state of bacteria from down-regulated to
up-regulated [8 [6], that is, before and after the activation of the cooperative behaviour
respectively. These names (up- and down-regulated) come from the fact that before the
threshold, the individuals produce fewer signalling molecules than after the threshold.

The threshold that will appear in the step function is the critical value of the resources
R... However, the variable that should be used as a threshold parameter is the population
density X. We have to remember that the regulation of cooperative behaviours with a
QS mechanism is activated with a cell density threshold. Using the R, as the threshold
is just a matter of facilitating the work. Besides, we will be able to relate both variables
in the cases that we study, so we will obtain the expression of the critical value of the
population. However, it is also important to remark that there are some evidences that
relate starvation with the QS response [20].

In order to study the dynamical systems of our family of models, we will follow the
next steps:

1. Find the fixed points that produce non-zero values of population (and coexistence
in the last section).

2. Study the stability of the fixed points.

3. Obtain conserved quantities (for those systems that allow us to do it) in order to
relate the critical values.

4. Reduce the dimension of the dynamical system using the conserved quantity.

The last step has an explanation. We have observed that the fixed points we look for ap-
pear as a line of marginal fixed points, characterized by a zero eigenvalue. The marginality
of these fixed points makes them to depend on the initial conditions. This is necessary,
since the final population density in an experiment will depend on the initial density of
resources and bacteria. Using the conserved quantity, we will see that we can obtain
a reduced dynamical system where the marginal fixed points shrinks to a single fixed
points. These single fixed points of the reduced system keep the information from the
original fixed points, eliminating the eigenvalue equal to zero.

To make it clearer, we recall the case of the LM system (Eq. (1.6)) described in the
introduction. Studying the nullclines, we can obtain a line of marginal stable fixed points
when R* = 0 (with eigenvalues A; = 0 and Ay = —a/X*), avoiding the case X* = 0.
Integrating the conserved quantity, we found a relation between R and X, used in Eq.
to reduce the system. In this way, we obtained the well-known logistic equation, and
the marginal stable fixed points change to a stable fixed point for X* = K = X+ Ry /[
(r > 0 in our case). Therefore, we can obtain a reduced dynamical systems where the
information of the resources is encapsulated in the parameters of the new system, and
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the fixed points that we want are totally stable. We will be able to apply this last step
in a couple of situations, obtaining for example, a generalization of the logistic equation
with a maintenance rate from the Herbert model.

The conditions needed to reduce a general dynamical system in 2D are shown in

Appendix [A]

2.1 Results

We begin the analysis of the dynamical system in the down-regulated phase, that is, when
R > R, (or X < X,,.). This phase is described by the Herbert model:

X = [f(R) — mi] X

. (2.2)

R=-Bf(R)X
The complete study of this model is done in the Appendix [Bl and we only show some of
the results here.

The simplest case is when f(R) is linear. The way in which we can explain this kind of
function is through the Monod function f(R) = aR/(Kgr+ R), where « is the maximum
growth rate and Kpg is the half-saturation constant. Taking Kr >> R, the function
can be approximated as f(R) ~ aR/Kr = o’ R. This approximation is consistent with
the fact that R is the limiting resource and it could be very small from the beginning.

Therefore, the system ([2.2)) becomes

X=[a'R—m|X
) (2.3)
R=—pBd'RX
This is very similar to the LM dynamical system explained before, but introducing m;
seems that can give us a more realistic behaviour. We find a line of marginal fixed points
for X* = 0, so our population always disappears at the end of the dynamics. However,
X presents a maximum, appearing when R = Ry = m; /o’ (d*X/dt* < 0 for R = Ry).
The initial condition Ry > Ry has to be fulfilled to see this behaviour (Figure [2.1f(a)).
Otherwise, we will not have a maximum and population will decay directly until zero
(Figure[2.1(b)). In addition, we find the first constraint. The fact that R << Kp implies
my < « to avoid contradictions, because m; > « would yield Ry, > Kg.

Henceforth, this maximum will be interpreted as the critical value of the population,
Ry = Re.. This election is supported by the results from [26, 27]. The authors from
these references state that the regulation of PGs production by QS generally occurs in the
transition from the exponential to the stationary phase. Actually, the threshold of our
description could be before or after the maximum, but taking this point, we simplify the
problem a lot. However, it may be thought that the initial model should be like the LM
equations in order to have an exponential phase and a stationary phase. But that is why
we use the step function. We separate the stationary phase from the exponential growth
including the second resource only for the last part. And using the Herbert model at the
beginning, we include a reason to activate the production. It is a matter of starvation:
once the population reaches the threshold, the population will decrease, so if bacteria do
not activate the production of PGs at this point, they will die.

11
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— Xt 0.10 — it
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t t

(a) (b)

Figure 2.1: Dynamics of X and R in Eq. (2.3) when: (a) Ry > Ry and (b) Ry < Ry
. The parameters and initial conditions used in arbitrary units are: o = 0.1, § = 0.5,
my = 0.001, Kr =1, Ryy = my/a/ =0.01, Xg = 0.1, Ry = 0.2 in (a) and Ry = 0.005 in
(b).

Returning to Eq. (2.3)), we can obtain a relation between X and R through a conserved
quantity. Dividing and integrating the equations, we find that:

R(t) _ mq
X(t) + 7 o

The conserved quantity itself does not have a clear biological interpretation because the
dynamical system is not complete. The biomass invested in those processes represented
by the maintenance rate disappears and we do not have any equation to see where. We
have to introduce a third equation to understand the role of the conserved quantity.

This third equation needs to be related to the maintenance rate m; and we know
that only part of this cost is expended in the production of Als. We can introduce the
dynamics of the Als just using a parameter that gives the part of m; invested in these
molecules. The whole dynamical system would be

In(Ro) (2.4)

In(R(t)) = Xo+ — —

X =[/R—m] X
R=—Bd'RX (2.5)
A=om X

where A is the density of Als and ¢ is the quota of the maintenance rate invested in
the production of Als. In our formalism, we are going to consider the mean lifetime
of the molecules much longer than the ecological time of the experiments. Hence, the
lifetime can be approxiamted as infinite, and we neglect any possible ‘death rate’ for Als.
Our description is thought for laboratory experiments. These laboratory experiments are
prepared to enable the growth of bacteria, so the Als are necessarily accumulated [§].
This dynamical system is equivalent to the SIR mean-field model [28], where the
susceptible population (S) would be the resources rescaled by f, the infected (1) would
be the microbes and the recovered (R) would be the Als rescaled by 6. For example, the
SIR mean-field model has a conserved quantity that is the total size of the population,

12
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S+ 1+ R = constant. In our case, we can obtain the corresponding quantity multiplying
the differential equations by some factors:

5BX+6R+BA:O:>X+§+?:B:constant (2.6)

This conserved quantity, B, is a constant with a real biological meaning: it is the total
biomass available in the system, composed out of biomass from individuals, resources
and biomass expended in maintenance, with the corresponding quotas. This result does
not depend on the form of f(R), so although we are studying the linear case, the total
available biomass is always conserved.

Now, we can understand the role of the conserved quantity of Eq. . Dividing
X / R and integrating we obtain a part of B, while the other part is obtained dividing
R/ A. This last operation leads to the following relation:

A(t) ma .
5 + wln(R(t}) =—+

Adding Eq. (2.4) and (2.7]), we recover B. In addition, we can use Eq. ((2.7)) at the
critical value of the resources to obtain the threshold of the Als:

/
A= Ay 2y (Roa ) (2.8)

pa’ my

In (Ro) (2.7)

This threshold appears when the velocity of production of Als (A) is maximum:
d*A/dt?| = dmy dX/dt| =0, where A pass from convex to concave. In this sense,
bacteria would activate the production of PGs when they perceive that the rate at which
Als are produced decreases. Using the conserved quantities, we can even obtain a dy-
namical system of a single equation for the dynamics of the Als:

A= % lBXO + Ry (1 — e‘%(AAO))] —my(A— A) (2.9)

All the previous results can be generalized to the case of the Monod function f(R) =
aR/(Kg + R), obtaining the following relations:

1 K
X:X0+—(1—ﬂ>(RO—R)—m1 Rln(@>

& a af R
(2.10)
_ PBaKr Ry Ba
A=A+ S In (E) +5—W(R0—R)

and the critical values are obtained substituting the critical value of the resource that
makes X = 0: R, = Kgrmy /(o — my). Here we see the constraint e > my in a clearer
way. It is needed in order to have R.. > 0.

Coming back to the system , we can employ the first conserved quantity of Eq.
to reduce the number of equations to only one, as in the case of the LM equations.
We have been able to do it using the Lambert W function W (x) [29], where it is the
inverse of the expression W (z)e"'®) = z, allowing to solve a number of transcendental

13
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equations related to that expression. The derivation is explained in Appendix [B] The
reduced dynamical system is:

X = —my [W_l ((—&) e—zfc‘le%j(x‘xf”) n 1] X R>R,

RCT‘
(2.11)

X =-m {WO ((—5—) e—ffﬁ»emX‘XO’) + 1} X R<R,
where the subscripts of the Lambert W function indicate the branch in which it is acting.
We have considered this set of equations as a generalization of the logistic equation.
It reproduces exactly the dynamics of the 2D dynamical system changing the line of
marginal fixed points into a single fixed point, as in the logistic case, and it allows us to
recover the logistic equation in the limit of m; — 0.

2.1.1 Production of public goods

Once the population density has reached the threshold (R < R..), bacteria start pro-
ducing PGs, introducing a new equation for resources () in the dynamical system. The
equations are:

):(: [f(R) —my + g(Q) —ma] X

Q =kme X — qg(Q)X (2.12)
R=-Bf(R)X

where we incorporate the new costs due to the production of PGs and Als in the up-
regulated state through ms, and the second resource available due to PG production
through kms.

When we seek the fixed points (X*, Q*, R*), we find two possibilities to get R = 0:
X* =0 or R* = 0. The later comes from the fact that f(R*) = 0 only when R* =
because there cannot be a growth rate when there is no resource (like linear or Monod
functions). For X* = 0, the population become extinct. As we are interested in a state
where X* # 0, we take R* = 0. It is reasonable to take R* = 0 since it is easier for
microbes to consume this resource. Besides, having passed the threshold of R = R, our
system will remain in the PG production state because R will not increase.

Taking R* = 0, the fixed points that do not imply X* # 0 are given by

X =0=g(Q") =mi+ms

- % k'TTLQ (2.13)
Q=0=y9(Q)=—
q
In order to have fixed points, g(@Q*) must be equal to both expressions in (2.13). Therefore,
we need a relation between the parameters:

ma

q=Fk (2.14)

mi + Mo
This relation is interpreted as a balance between the production and the consumption of
PGs in the stationary regime. The amount of resource ) needed to increase in one unit
the population density, ¢, is the amount of density of resources ) produced by bacterium,
k, weighted by the fraction of the cost that corresponds to ms.
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2.1. RESULTS

Under this condition, these fixed points are a line of marginal stable ones, as we can
see from their eigenvalues:

where (f')* = ag—(g‘) > 0 and (¢')* = 8%(52) o > 0 for any monotonically increasing
R* *

function. Any growth rate that depends on the resources will fulfill these conditions,
since the more amount of resources, the higher possibilities of growing.

One of the goals of this project is to reproduce, at least qualitatively, some experi-
mental figures for the growth of bacteria. The main experimental reference has been the
one from Diggle [27] where they studied the fitness and coexistence of different strains
of Pseudomonas aeruginosa. This bacterium is an opportunist pathogen responsible of a
large number of infections.

We are going to focus on the figure shown below (Figure. It shows the dynamics of
the population density of the different strains. It was carried out in a LB medium, where
bacteria initially have available resources before the activation of the QS mechanism.

1.8
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1.6 & Signal negative anu®
Signal negative + signal - an®

1.4 a— Signal blind .l..
s . Signal blind + signal ...ﬁl\_hﬂ_rﬂﬁ_‘*,,ﬁ--ﬁ-
Q ey Lol
2 12 F g oW
o F ¥ g YRR GGa,
e , > “ee
- t.,’:m-""
g 0.8 ‘;JI‘
o /4 4
— 0.6 e
[T] r s
[/ r

0.4 " ‘/"
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*q -,_."‘*;r
U .
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Time (h)

Figure 2.2: Plot of the dynamics of the different strains for Pseudomonas aeruginosa in
a LB medium. From reference [27].

There is a clear difference between those strains that activate the PG production and
those that do not. For instance, the dynamics of the wild type strain (black diamonds
in Figure is an exponential growth followed by a decrease to a stationary value,
smaller than the maximum of the population. This maximum gave us the idea of using
the maximum of the population as the threshold for the PG production. On the other
hand, the signal blind strains (triangles in Figure , mutants that do not produce PGs,
show a logistic growth. This means that the dynamics starts with an exponential growth
followed by a stationary phase where the population reaches its maximum value.

Since we are treating the case of a wild type strain in this section, we want to obtain
the conditions for reproducing its qualitative dynamics from Figure[2.2l We are interested
in finding an expression for the stationary value of the population in order to compare it
with the experimental results. It may possible to find this value since we know we have
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conserved quantities for this closed system. Again, these conserved quantities only would
make sense if we take a larger dynamical system incorporating the dynamics of the Als to
complete the system. The simplest case is when both f(R) and g(Q) are linear. A way of
deriving the corresponding dynamical system is starting from the Monod functions and
using the following approximations:

aR
f(R) = ey _KRR = dR o
R '
9(Q) = Kot Kot 0" g L Q=vq

This approximation is justified when there are few available resources, taking Kz >> R
and Ko >> (). In principle this approximation is suitable for f(R) since R is the limiting
resource. If Ry << Kg, f(R) will fulfill always the approximation because R always
decreases. However, () can vary in a wide range of values depending on the parameters,
so we cannot ensure that Ko >> () at any time. We will study the case of nonlinear
g(Q) later.

To get the first relation between variables, we need to obtain a conserved quantity.
Dividing Q / R from Eq. and integrating, we find the following equation:

Qry=""2 |1 - ( i )5 (2.17)

qy R,

where the initial conditions are Q(t.) = Qo = 0 and R(t.) = R. because the PG
production starts when we reach the critical population. The stationary value of @,

because R* =0, is Q* = qu;?, which agrees with the Q* that we obtain in Eq. (2.13).

Again, diving X /R from Eq. (2.12) and integrating (and also using Eq. (2.14)):

X(R) = X +

_ / o
R, — R kmyy _<R)5 (2.18)

B (Ba)? Rer

where X (t..) = X, is the initial condition for the population density. The stationary
value of the population would be:

Rcr k)mQW/
8 (Ba)?

In order to work with this value, we write it in function of the original initial coordinates
Xo and Ry before the activation of the production. Substituting X.. and R.. by its
respective expressions (remember that we are in the linear case):

Ry my Roa/ B kma~y'
my (Ba’)?

Written in this way, we can see that this stationary value is smaller than the corresponding
stationary value of LM equation (X* = X+ Ry/() with the same initial conditions. This
prediction is reasonable since the maintenance rates will produce a smaller stationary
value than in the case in which we do not have these costs. In addition, this stationary
value has to be smaller than the maximum of the population (following the dynamics of

X=X+ —

(2.19)

(2.20)
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the wild type strain in Figure . The later requires a couple of conditions derived from
Eq. (2.19):
Rcr < km27/

B (Ba)?
o kme R, (2.21)
T (Ba)? B

The first condition implies

my o’
e (2.22)

where my/my < 1 so the condition is reduced to fo’ < kv'. From the second inequality
we can obtain a sufficient condition:

kmayy/
(Be)?
Now, we show in Figure [2.3|the dynamics of bacteria and resources in the linear case.

The used parameters are in an arbitrary scale, but they have been selected to fulfill the
previous conditions.

X, > (2.23)

0.25 4 — Xit)
— R(t}
— it}
0.20
20.15
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-
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0.00 \/{r
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t

Figure 2.3: Dynamics of X, R and ) during the whole process. The parameters and
initial conditions used in arbitrary units are: a = 0.5, 8 = 0.2, 6 = 0.5, m; = 0.001,
me =001, Kp=1 Kg=1, k=04, 7v=04, Xy =0.1, Ry = 0.04, Qo = 0.

For X, We obtain something similar to the behaviour of wild type strain, but there is
an important difference. In Figure the shape of the exponential growth of X can be
modified, but the shape of its maximum (sharp top) cannot, at least with linear functions.
It is possible to see this analysing the curvature of the X line. The second derivative of
the variable X is:

X =(-Bff—adg+gkm)X*+[f +g— (mi+m)] X (2.24)

where [’ and ¢’ are the derivatives respect to the corresponding resources. Using linear
functions, R and @ are always very low, so we can approximate f(R) ~ 0 and ¢g(Q) ~ 0.
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With this approximation, the second derivative is
X ~ ¢'kmyX? + (my +my)*X >0 (2.25)

So X is always convex. Besides, using the previous approximation in X (X ~ —(my +
m2)X) , we see that the value of X always decreases. That is why we see this characteristic
shape of X in Figure 2.3

Following the idea of reducing the dynamical system using conserved quantities, we
want to see whether the marginal stable fixed points change to stable fixed points. We
can plug R(X, Q) (with my 4+ my = kmy/q) in X, reducing the dimension of the system.
Now we have a stable fixed point (instead of a line of marginal stable points) with the
following eigenvalues:

A = —Bd'X* Ny =—q¢v'X* (2.26)

These eigenvalues are the same as the non-zero eigenvalues of the complete dynamical
system. Therefore, it is reasonable to think that the assumption made in Appendix
(equality between the non-zero eigenvalues from the marginal fixed points and the
eigenvalues of the reduced dynamical system) can be extended to any dimension.

Apart from the linear case, there are not many possibilities to find conserved quantities
in the system. The next step is to consider f(R) ~ /R and ¢(Q) = 7Q/(Kg + Q), as we
said before, taking into account that R is the limiting resource and () should saturate if
there is an excess. Dividing Q / R and integrating we find the relation

KgavBa'
o (kmg—gqv)2
R(Q) = Repe 2@ [1 + (1 - —kq:bz) —I?Q} o (2.27)

Diving X / @ and integrating, we can obtain the following equation:

QARQ) +9(Q) =y —ma

X(Q) = Xor + / dQ (2.28)

0 kmy — (@)

which is not a trivial integral, although it is still a good result. However, if we take both
f(R) and g(@) as Monod functions, we will not be able to obtain an analytical expression
for X(R). Dividing @)/ R and integrating we would obtain

0 __Roav _ R _Kp
_Q qy (kmg—q7)2 Rer—R Ba

kmo—gqvy 1 1 _ _ — apB 229
‘ { +< ’fm2> KQ] ‘ (Rcr) (2.29)

which is a transcendental equation. For this case, we show again the dynamics of bacteria
and resources (Figure [2.4]).
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density
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t
Figure 2.4: Dynamics of X, R and () during the whole process. The parameters and

initial conditions used in arbitrary units are: o = 0.5, § = 0.5, § = 0.5, m; = 0.01,
me =0.02, Kp =02, Kg=1,k=0.5,7v=0.5, Xog =0.1, Ry = 0.4, Qo = 0.

Now, X is closer to the real behaviour, having the possibility of a concave shape at
the maximum. The change of time scale is significant when we use the Monod functions.
The order of magnitude of growth rates that we use can be compared with other works in
this line as [30]. The rates of this reference (obtained from Figure are between zero
and one in units of hours™. Our parameters are also in this interval so they are in the
same scale, in hours. This would fit to the time scale observed in Figure 2.2] Gathering
this result with the shape of the maximum, we can conclude that the Monod functions
provide a better description than the linear functions.

2.2 QS vs no QS

So far, we have focused on the growth of bacteria when they use a QS mechanism to
regulate the production of PGs. However, there are cases where the production of PGs is
not density-dependent. One of this cases can be seen in the experiment from Gore with
yeast [31].

The question is: can we distinguish between the two situations, having or not a QS
mechanism, within the formalism? Recalling the Herbert model, the critical value of
the resources (when we do not apply any approximation) is R. = Kgmy/(a — my).
Now, we define a new parameter R' = Ry/R... If R > 1, the population will pass
through a maximum, and then it will decay until zero. On the other hand, if R’ < 1,
the population decays until zero directly. Therefore, if the production is activated when
R = R,., the only way of avoiding the activation mechanism of QS is having always the
condition R’ < 1. It implies that the strain has to activate the production of PGs from
the beginning to survive, since they will never reach R = R,,.

It is important to remark that the threshold of the QS mechanism is in the population,
not in the resources. We use R, as an indicator of the level population, since high cell
population density will be accompanied by low density of resources. See, however, the
reference [26]. Our hypothesis is that the microbes without QS mechanism are always
described by the dynamical system of one consumer-two resources. Those that have a QS
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mechanism begin from the Herbert model (one consumer-one resource), and once they
reach R = R, they are described by the system of one consumer-two resources. Our
explanation for this behaviour is the following: the denominator of R.. is a — my. If
a >> my, R, would be small and it is likely to fulfill always R’ > 1. However, if a ~ my,
R., tends to a very large number, making very hard to fulfill R’ > 1. All this arguments
can be repeated for the linear approximation. When Kr >> R, the critical value is
R. = miKg/a. If o >> my, it is possible to obtain R' > 1. If &« ~my, R, ~ Kg >> R
so R’ < 1 is always fulfilled.

As an example, we are going study the differences between yeast and bacteria. In
particular, we want to compare the budding yeast Saccharomyces cerevisiae and the bac-
terium Pseudomonas aeruginosa. They represent the cases of activation without thresh-
old and QS mechanism respectively. For the maintenance rates, we know that my is much
larger for yeast than for bacteria. Yeast are eukaryotes, having specialized organelles such
as mitochondrions, while bacteria are prokaryotes and they do not have. These organelles
imply an additional energetic maintenance cost. Furthermore, the eukaryotes are bigger
than the prokaryotes. The volume of yeast before cell division is around the houndreds
of pm? [32], while bacteria are around the units of um? or less [33]. This volume requires
also a higher maintenance cost because of the growth of the cell and the maintenance
itself. The only point where bacteria could add a higher cost respect to yeast is the
production of Als. However, this molecules do not imply a significant cost. The mutant
strain that do not produce the Al signal molecule (signal-negative strain, black squares
in Figure have practically the same growth as the wild type strain in the exponential
phase.

For the maximum growth rate a we do not have a lot to say. Taking the measurement
of the doubling time (time needed to pass from N individuals to 2/N) as a reference, we find
that Pseudomonas aeruginosa has a doubling time between 30 and 60 minutes depending
on the medium [34], and yeast is around 90 minutes [35]. The experimental growth rate
is frequently measured as the inverse of the doubling time. Therefore, we can say that
the maximum growth rates of both species are, under the same experimental conditions,
in the same order of magnitude. Even we could consider that yeast has a smaller o than
bacteria (the doubling time is larger).

Under these assumptions, it is reasonable to suppose that (o — m1)pseudomonas >>>
(@ — M1 )yeast- This does not ensure that oo ~ m; for yeast, but at least we can see that
Reryeast >> Rer Pseudomonas, making harder the access to the activation mechanism by
yeast. Hence, comparing with Pseudomonas aeruginosa, it is a good approximation to
consider that yeast is described by the dynamical system of one consumer-two resources
from the beginning.

The set of equations that governs the dynamics of producers when there is no QS
mechanism is the following:

)_’< = [f(R) —m1 + 9(Q) — ma] X

Q = kmeX —qg(Q)X (2.30)
R=-Bf(R)X

The analysis of the previous section is still valid, but changing R.. — Ry and X, — Xj.
For example, in the linear case, the stationary value of the population density is

Ry kmoy
X* = X+ 2
"B (Bary?

(2.31)
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This value is smaller than the predicted by the logistic equation, but larger than the value
of the strain with the QS mechanism from Eq. (the difference between QS and no
QS mechanism is in my, not in my, so in principle it will be larger).

The hypothesis shown in this section could be used to explain why some microbes use
a QS mechanism. The idea is that organisms with high maintenance rates need an early
activation of the production of PGs, being more efficient. On the other hand, organisms
with low maintenance rates can use a communication mechanism to optimize the produc-
tion of PGs, waiting until having a sufficiently high cell density. This reasoning seems a
good approach but there is a counterexample. The yeast Cryptococcus neoformans uses a
signalling mechanism, very similar to the QS bacterial mechanism [36]. This mechanism
is used for the production of virulence factors, so it is not directly related with the PG
production. Therefore, we cannot ensure that being an eukaryote and high maintenance
rates (larger size and organelles) imply the absence of QS mechanisms.

21



Chapter 3

The effect of non-producers

So far, we have studied the case of a single strain with intraspecific competition. Now,
we will introduce another strain in the dynamical system, but with the difference that
this strain is of a non-producer type. These microbes, in general, are mutants of the
original wild type strain, and need to be differentiated from the producers through all
the possible parameters. In principle, we do not know if they share any of these rates.

We want to obtain under which conditions both strains can coexist. Following the
scheme of the previous section, we start from the Herbert model. And again, we fo-
cus on those bacteria with a QS mechanism. Encompassing the whole dynamics of the
populations, the system is:

X = [fx(R) = mix + (9x(Q) — max) 0(Rer — R)| X
C = [fo(R) — me + go(Q)8(Rey — R)| C

Q = [k’m2X - QXQX(Q)X - QCQC(Q)C] Q(Rcr - R)
R = —Bx fx(R)X — Bofc(R)C

(3.1)

where we have introduced the corresponding terms of C' (cheaters) in @ and R. We
have not put a new metabolic cost for C' after R < R, because this would be the main
characteristic of the cheater: non-producing the product but getting the benefit through

90(Q).

Before activating the production of PGs, the dynamical system is similar to the single
strain case:

(fx(R) —mix) X
(fo(R) —mc) C (3.2)
—Bx fx(R)X — Bofo(R)

The first thing that we must say about this set of equations is that, equalling all the
parameters, we can add both populations and use a reduced system of the variable X +
C, recovering the single strain problem. As we will see later, this situation does not
change the conditions for coexistence, so it could be a nice approximation to reduce
the number of parameters of the problem. The approximation itself is just to consider
that both mutant and wild type are differentiated only in the regulation of PGs and
its assimilation. However, we have to be careful once we are working on a particular
circumstance. For example, there are mutants that do not produce the signalling molecule

X
C
R

22



before the activation of production [27], although it is true that this strain produces PGs,
so the problem would be only in this stage. To avoid the lack of generality, we will always
use different parameters between the strains in this section.

Coming back to the problem, we begin looking for the fixed points (X*,C*, R*).
We soon realize that there is only a line of marginal fixed points in the R axis: if we
started having X* = 0 (from X) or C* = 0 (from (), it would imply the equations
fo(R)C* = 0 or fx(R*)X* = 0 respectively (from R), where R* would be the lowest
possible one (remember the competitive exclusion principle from the point . In
both cases the final situation is X* = C* = 0 because either the two populations are zero
using the previous conditions (having the line of marginal fixed points) or R* = 0. The
last equality would also lead to X* = C* = 0 using the third equation of the dynamical
system, so it belongs to the line of marginal fixed points.

The behaviour is similar to the case of one strain, but now we have two values of
R which maximize the populations: R);x for X and Ry;¢ for C, that are defined as in
the previous section for the different functions f(R). The dynamics of the populations
depends on the parameters and the initial value of the resource, as in the single strain
case, but we find more possible situations:

e Ryx > Ryc > Roor Ryc > Ryx > Ro: both populations decrease exponentially
to zero from the initial condition.

0.10 1 —_ Xt}
—_ [t}
0.08 ; —0
20.06
%]
-
< 0.04 1
0.02 -
0.00 —

0 20 40 60 80 100
t
Figure 3.1: Dynamics of X, C' and R in the Herbert model with Monod functions. The
parameters and initial conditions used in arbitrary units are: ay = 0.3, ac = 0.7,
ﬁX = 05, ﬁc = 05, mix = 003, mgc = 002, KRX = 08, KRC = 06, XO = 01, CO = 017

e Ry > Ryx > Rye or Ry > Rye > Ryrx: both populations reach their respective
maximum as in the single strain case, but the strain with the lowest critical value
reaches it later.
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Figure 3.2: Dynamics of X, C' and R in the Herbert model with Monod functions. The
parameters and initial conditions used in arbitrary units are: axy = 0.3, ac = 0.7,
,BX = 05, ,BC = 05, mix = 003, mgc = 002, KRX = 08, KRC = 06, XO = 01, C(] = 01,

R() =04 (RMX ~ (.09 and RMC ~ 002)

e Ryx > Ry > Rycor Ryje > Ry > Ryyx: only the population with the lowest crit-
ical value will reach a maximum, while the population of the other strain decreases

exponentially.
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Figure 3.3: Dynamics X, C' and R in the Herbert model with Monod functions. The
parameters and initial conditions used in arbitrary units are: ax = 0.3, ac = 0.7,
BX = 05, 50 = 05, mix = 003, mgc = 002, KRX = 08, KRC = 06, XO = 01, CO = 01,

The maximum that can be used as the critical value for activating the production of PGs
cannot be Ry;c because the cheater does not produce them. Therefore, the critical value
is R., = Ryx. However, we do not have a relation as X, = X..(R..), since now we
cannot integrate as straightforward as before.
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3.1 Production of public goods
After the critical value, the system is:

X = [fx(R) — mix + gx(Q) — max] X
C = [fe(R) — me + go(Q)] C (3.3)
Q = kmox X — gx9x(Q)X — qcge(Q)C '

R=—Bxfx(R)X — Bcfe(R)C

Studying the fixed points (X*, C*, Q*, R*), we start again looking at R and there are two
possibilities:

e RR* # 0: in this situation both populations have to be zero, since the only case that
they do not vanish implies that one of them has to be negative (due to the equation
of R).

e R* = 0: there are three possibilities.

1. Both populations are zero again.

2. A fixed value for the population of the cooperator X* # 0 while the population
of the cheater is zero (C* = 0). It happens when gx(Q*) = mi, + max =
kmaox /qx, where the condition gx = kmax/(mi, + max) has to be fulfilled.
This condition is the same as Eq. , obtained for a single wild type strain.

3. Coexistence between the two strains.

The fact that Eq. precludes coexistence agrees with experimental evidences. Mi-
crobes that show coexistence between cooperators and cheaters usually have some mech-
anisms to promote it. For example, cooperative strains of the bacterium Pseudomonas
aeruginosa and the yeast Cryptococcus neoformans use the privatization of some specific
PGs [37, 31]. These kind of mechanisms colud increase the yield coefficient of the coop-
erator (gx)~!, since they need to produce more cells with the same amount of resource
@ than where they were alone (without cheaters). Otherwise, cooperators will not be
able to sustain their population since they are feeding the cheaters as well. An increase
of (gx)~! is equivalent to a decrease of gx changing Eq. to this inequality:

Max
x < k————— 3.4
mix + Max (3:4)
Now, we focus on the case of coexistence for R* = 0, where the value of the fixed
points is given by

dcmc C*
kmox — qx(mix + max)

(3.5)
that is, again, a line of marginal fixed points. Implicitly, we are avoiding the competitive
exclusion principle (although there are two resources, we are in the case of R* = 0 so
basically there is only one resource). We use the same @* for both strains, obtaining
a relation between the maintenance costs and the parameters of g(@)). That is why
we cannot take the same parameters for wild type and mutant. Otherwise go(Q*) =
gx(Q*) = me = myx + max and the cheater would have the same cost as the producer,

R* =0 gx(Q")=mix+max ¢c(Q)=mc X' =
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not being a real cheater. But as I said at the beginning of this section, we are free to take
mix = me. The last equation of indicates that kmaox > gx(mix + mox) in order
to have X*, C* > 0. In this way, we obtain the inequality from Eq. .

The Jacobian of the fixed points of Eq. has the following eigenvalues:

A= =Bxfx X" = BefeCt A =0

—gx 9y X* — qcgeC* £/ (ax9x X* + qcg-C*)? + 4gemcC*(dy — gt) (3.6)
2

)\37)\4 =

Ofx(R) ofc(R)

where fi, = =5+ o’flc — 9clfi) r o 99x(Q) 1 09c(Q)

— - — 11
OR R*= OR ’R*ZO ' Ix oQ N ydo oQ . > O, and we

have used the relation between X* and C* in the second member of the square root.

The only way of obtaining negative eigenvalues is when ¢ < ¢r. This condition
means that the rate of the consumption function at the stationary state must be smaller
for the cooperator than for the cheater. A direct biological interpretation would be that
the cooperator receives fewer resources than the cheater. This result is connected with
the mechanisms that promote coexistence. If the cooperators receive fewer resources than
the cheaters, they need to increase the yield coefficient to avoid the extinction.

Now, we have to make sure to have real eigenvalues. The condition would be just to
impose a positive value inside the square root of the eigenvalues A3 and A\, (substituting
X* by its relation with C*):

( ax (9x)*gcme L dolge)” | 2qxg’x4o9c ) C*—4(gh—g) > 0
[kmax — qx(max + max)? meo kmax — gx(mix + max) (37)
where the only negative term is —4(g; — ¢ ), so this inequality seems to be fulfilled in a
large region of the parameter space.
Until here, it could seem that we have found all the conditions for coexistence. How-
ever, the problem depends on the functions ¢gx (@) and gc(Q) as well. T will show the

two cases studied over this report, that is the linear and Monod functions.

o 9x(Q) ~ 72-Q and go(Q) ~ 7=

~ Q.
Using the conditions from Eq. (3.5), we find the following relation between the
parameters:
O = (mix +max)Kox _ mceKqo N
X e
3.8
_ max +max Kgx (3:8)
Tx =
me  Kgc

Moreover, the condition ¢y < g, implies

Kqx
vx < KQ Yo (3.9)

QC
Gathering both things we reach the inequality mix +msx < m¢, which contradicts
one of our first statements. Therefore, we cannot have coexistence with linear

functions for gx(Q) and go(Q).

e gx(Q) ~ Kg);‘iQ and go(Q) ~ KggﬁQ.
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Using the conditions from Eq. (3.5), we find the following relation between the
parameters:

(mix +max)Kox  meKge

Q* — —

vx — (mix + max) Yo —me (3.10)
Kox _ mc ¥x — (Mmix + mox) '
Koc  (mix + max) Yo —me

where we get two conditions more, yx > mix + mox and o > m¢. The condition
g < g¢ implies

K m2
QX X c___ (3.11)
Kgc 7o (mix + max)
Gathering both things we get another condition for coexistence:

— < — 3.12
X (le + mQX) (le + mQX) (/YC mC) ( )

moc

The final list of conditions for coexistence (and for Monod functions) is:
(
qX < kml.:(njfnZX
Yx > Mix + Max > Mg
Yo > mc (3.13)

Yx — (mix +max) < Gt (Ve — me)

me Yx—(mix+meox)
(mix+max) Yo—mc < KQC

| Kox = Kqo

We show the dynamics of bacteria and resources (Figure , where all the parameters
fulfill the previous conditions.

0.4 - — Xt}
—_ it}
— RIt)
0.3 u}
oy
2 0.2
Q \\_______-__
=
0.1 -
0.0 -
0 500 1000 1500 2000
t

Figure 3.4: Dynamics of X, C, R and () during the whole process. The parameters and
initial conditions used in arbitrary units are: ax = 0.7, ac = 0.3, fx = 0.8, fc = 0.8,
mix — 003, Mmox — 005, mgo = 0.0Q,KRX = 08, KRC = 06, KQC = 05, k = 09,
gx =05, 90 =05 vx =01, =0.4, Xo=0.1, Cy =0.1, Ry = 0.4 ,Qy = 0.

In this case, the system presents coexistence, but the relaxation time until the sta-

tionary phase is much longer than for one strain alone.
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CHAPTER 3. THE EFFECT OF NON-PRODUCERS

Once we have defined the competition between strains with a QS mechanism, we can
propose, following the previous section again, the model for the case when there is no QS
mechanism. Repeating the argument used with a single strain, we know that microbes
that do not use QS always produce PGs, so the model can be applied forgetting the part
of the critical resource from the beginning:

X = [fx(R) — mix + g9x(Q) — max] X
C:jz [fe(R) —mc + go(Q)] C (3.14)
Q = kmax X — qxgx(Q)X — qcgc(Q)C
R = —fx[x(R)X = Bcfo(R)C
where the initial conditions that we would use here are not any critical value but the real
initial conditions of the strains.
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Chapter 4

Conclusions

In this Master’s thesis , we have proposed and analysed a family of models to study the
growth of microbial populations when they produce public goods. In particular, we have
focused on those bacteria that present a QS mechanism. Our formalism is based on a
mean-field description of consumer-resource ecological models and it constitutes the first
step to develop a more elaborated formalism. We have studied three cases: a single strain
of producers with QS mechanism, a single strain of producers without QS mechanism and
both cases including the presence of cheaters. Besides, we have obtained numerical results
to compare them with the analytical treatment.

The formalism contributes with some predictions. We have obtained equations for
the population density threshold and the Als threshold that depend on the parameters
and the initial conditions. To my knowledge, this is the first time that expressions for
these values are derived. Another prediction of our description is discriminating the cases
where the production of PGs is activated through a threshold. We are not very sure that
it can be generalized for any microbe, but it seems to work for the cases studied, bacteria
vs yeast. We have also demonstrated that the linearization of the growth rates gx (@) and
gc(Q) does not allow coexistence between cooperator and cheater. In the case of Monod
functions for these growth rates, we obtain several conditions for observing coexistence.

Leaving the biological interpretation on a side, we have also obtained new results from
a more theoretical perspective. We have defined a generalized logistic equation with a
maintenance rate. It was derived from the Herbert model, and in its linear version (f(R)
linear), it can be applied to the SIR mean-field model as well.

This result is connected with a common rule between the studied dynamical systems.
Finding a conserved quantity and using it to write one of the variables as a function of the
other variables, we can eliminate one equation of the system. If the system has marginal
fixed points (only for a single eigenvalue equal to zero), it is possible to reduce the
dynamical system keeping all the information about the marginal fixed points. The new
reduced system will have a single fixed point that has the same stability than the original
fixed points, eliminating the eigenvalue equal to zero. We have found the conditions that
a 2D dynamical system has to fulfill to exhibit this property. It would be interesting to
find the needed conditions for a n-dimensional dynamical system.

There are several directions for future work that depart from our results. The first
part would be theoretical. We did not have enough time to study the parameter space
of the dynamical systems to see all the possible behaviours that this formalism can offer.
Besides, we want to go beyond the mean-field approach and to use a spatial one. Includ-
ing the spatial structure, we will obtain a more complete description of the problem. It
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CHAPTER 4. CONCLUSIONS

is important to remark that we have not introduced any local effect experimentally ob-
served. Mechanisms such as privatization [37], policing [38], or generalized reciprocity [39]
have been observed in Pseudomonas aeruginosa for PGs production. These mechanisms
participate in the coexistence between cooperators and cheaters.

Experimentally, we propose ideas to prove some of the results. One could measure
the thresholds of the population density and density of Als varying the initial values of
the resource and bacteria in order to see whether it fits with our theoretical expressions.
Furthermore, it is known that the level of resources affects the activation of PGs produc-
tion, as in Pseudomonas aeruginosa [26]. It would be interesting to check if the critical
value of the resources is a real threshold for the activation. A possible experiment is to
use a chemostat (see chapter 4 of [I5] for the details of the dynamical system). Using
this approach and for a maximum possible concentration of resources of the medium suf-
ficiently large, the critical value of the resources R.. becomes a stable stationary value
R*. We can wait until obtaining the stationary value and to see if the production is
activated. The stationary value of the population density X* depends on the maximum
possible concentration of resources of the medium, while R* = R, does not. Therefore,
X* can be varied maintaining R,.. to see whether the production is activated. If there
is dependence respect to the limiting resources, the values of X* and A* (Als accumu-
lated in the medium) should fit with the critical values obtained in our formalism, X,
and A, respectively. In the opposite case, the Als will activate the production of PGs
without dependence in the resource concentration, and it would be necessary to review
our description to change these dependencies.

30



Appendix A

Demonstration of dynamical system
reduction in 2D

We want to show that it is possible to describe marginal fixed points (with only one
eigenvalue equal to zero) as a single fixed point in a reduced dynamical system. This
property has been observed in conservative dynamical systems, so we will explore only
this kind of systems. The single fixed point (in the reduced dynamical system) will have
the same non-zero eigenvalue as the marginal fixed points in the complete dynamical
system. In this way, we preserve the stability of the original fixed points, eliminating the
eigenvalue equal to zero.

The utility of this process consists in reducing the number of equations of the dy-
namical system, preserving all the information about the marginal fixed points. This
information is, for instance, the initial conditions that lead the system to the possible
final fixed points (if they are attractive).

In order to accomplish this task, we not only need a conserved quantity, but also a
non-transcendental relation between the variables. This means that we have to be able
to write one of the variables as a function of the others. Otherwise, we cannot eliminate
one of the equations from the dynamical system.

We present the demonstration for a 2D dynamical system. We start from:

Zy = f(r1, 1)

Ty = g(x1, xa)

(A.1)

For any fixed point of the system (f(z7,x3) = 0 and g(x7,z3) = 0), the Jacobian is the
following;:

of of
gl = | P leras O ety (A.2)
viry | g g '
ox1 Oza
Z1,To Z1,T2
The eigenvalues of this Jacobian are:
1] 9 0 9 0 T 9
yeo _ L) Of 99\ L ((or] L9 ofl 99
2 61’1 otk 6m2 @tk 61’1 @tk 6m2 @tk 61’2 @tk 8:701 otk
(A.3)
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APPENDIX A. DEMONSTRATION OF DYNAMICAL SYSTEM REDUCTION IN
2D

We want to have marginal fixed points. A sufficient condition would be 0f/0z4 . 0
or ag/6x1|xw§ = 0, obtaining
of 9y
NP=0 NP == — A4
z nz 8%1 2 8.1'2 2 ( )

where the subscript ‘2z’ means zero and ‘nz’ means non-zero. Once we have the eigen-
values, we want to see if we can keep the non-zero eigenvalue in a reduced dynamical
system (with only one equation). The reduction is accomplished by using a conserved
quantity that relates both variables x; and x,. Without loss of generality, we will take
the expression x; = z1(x2). Our reduced dynamical system is

Xg = 9[561(952),@] (A-5)

where the fixed points taken for the 2D system are also fixed points of this equation
(glx1(x3), 23] = g(x7, 25) = 0). The eigenvalue of these fixed points in the one dimensional
system is
o g
dCL’Q
In order to develop this expression, we need to know the dependency of g on ;. Something
common in the models studied in this thesis is the form g(x1, xe) = h(z1)l(x2), so we will
assume that g is separable. Now, the eigenvalue can be written as

1o _ d[h(z1)l(22)] o | dh(z1) dzq(22) o dl(z2)
A T $;:l(x2>{ dv,  da } @) =

Zo
The second term of Eq. (A.7)) is related with the non-zero eigenvalue of the complete
dynamical system:

(A.6)

«
Lo

(A7)

"
Lo

dl(2) Jg o Of
h(x] = —= = e — A8
(z1) dry |, 0T 0T | e e (4.8)
2 172 142
Introducing this equation in ([A.7)), the eigenvalues are related as
d[h(z1)l(z2)] dh(xy) dzq(z2) of
AID — = [(z* _ — AQD A.
dl‘g B (5(72) d[L‘l dl‘g B 61’1 otz * nz ( 9)
Finally, for obtaining the relation A\'” = \?2 we need the following equality:
of dh(xy) dzq(z2)
— =1(x3 Al
(3x1 ot (172) |: dl‘l dIQ B ( 0)

relating f and g¢.
Knowing that g(x7, z%) = h(x7)l(25) = 0, we have two possibilities, either h(z})) =0
or [(x3) = 0. The eigenvalues would be:

If h(z}) =0 = AP = \20 = 99

aml * .k
$17I2

1T (A.11)

If i) = 0 = AP = N2 — 22|
These two possible cases are reflected in the logistic model and Herbert model equations
(Eq. [L.6|and [L.8 respectively). For the logistic model we have that h(z}) = 0 = o/ R* = 0,
so AP = 2D = —qBX*. In the Herbert model we find the other case, where I(z}) = 0 =
X*=0,50 MP = NP = qR*/(Kr + R*) — m. And these models fulfill all the required

conditions exposed in this Appendix.
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Appendix B

Dynamics of the Herbert model

In this appendix we are going to study the 2D dimensional system of one consumer and
one resource with a maintenance rate for the consumer, in a closed environment without
adding resource. Then, we will reduce the system using the conserved quantity resulting
from dividing both equations and integrating.

The dynamical system is the following:

X =[f(R)—m] X

_ (B.1)
R=-Bf(R)X

where X is the population density (individuals/volume), R the density of resources
(mass/volume), f(R) is the growth rate or consumption function (time™') and 3 is the
resource quota (units of R contained in one unit of X). We can work with the yield
coefficient 37! (population density produced by a unit of R), and m is the maintenance
rate which encapsulates all the non-growth costs. The Herbert model is always associated
with the Monod function f(R) = aR/(Kg + R), where a is the maximum growth rate,
and Kpg is the half-saturation constant. However, we will start studying the case of a
general function f(R).

Computing the nullclines, we can quickly see that we only have one possibility for
finding fixed points: X* = 0 for both equations. Taking these nullclines, we have a line
of marginal fixed points with the eigenvalues

M=0 A=f(R)—m (B.2)

where f(R*) is evaluated depending on the initial conditions. Now we see an interesting
property of the system. X has a maximum if f(Rj;) = m where Ry; = R,, is named as the
critical value in the main text. Something that we have to request is that f(R..) = m has
only one root R.., and this is fulfilled by a monotonically increasing function f(R). The
consumption function must show this characteristic because it is a biological property:
the more amount of resource, the more capability of increasing the population, and vice
versa. Keeping this condition, it is also mandatory that f(R = 0) = 0 (no resource, no
growth), so f(R) = R - h(R). The functions that are used in these kind of models are
the Monod function or the linear function, both monotonically increasing functions with
zero value at R = 0.
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APPENDIX B. DYNAMICS OF THE HERBERT MODEL

f(R) ——
m ——

Figure B.1: Representation of a monotonically increasing function f(R). The blue line
represents the maintenance rate, so the intersection between the two lines defines the
critical value R,,.

Something important to remark is that this critical value only appears in the dynamics
if f(Ryg) > m, or due to the characteristic of increasing function, Ry > R, because R
decreases always (R < 0), so does f(R).

Once we have clarified this, it is easy to see that this point is a maximum:

X ~df(R)

W - = aR ﬁm(Xm«)2 <0 (Bg)

where dfd(R) > ( for an increasing function.

Let us start with the reduction to one dimension. We obtain the conserved quantity
dividing both equations and integrating. The general result is

Ro— R m [® dR

Xt)=Xo+ ——+— — B4
=%+ 5745 1) (B
To continue, we must specify a form for f(R). Let’s see different cases:
e f(R)= N+R ~ oj‘f = o/R, when N >> R. For this case, the integral yields:
Ry R(t) m R(t)
X(t)=Xo+— — 1 B.5
=X 3 - T0 on( B

The Lambert W function [29], which fulfills W (x)e"V®) = z, allows us to express R
as a function of X. Doing some algebra, we can get this formula:

R(X) = —R,W ((— go) e zéi%eﬂX—Xo)) (B.6)

We substitute R(X) in X, obtaining the new equation for the system:

X=-m {W((—go)e o (X X0)>+1}X (B.7)

Ccr
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This equation has two fixed points: X* = 0 and X* = X,.. This last point is
special because it is found when W(A|y._y ) = —1 where A is the argument of
our Lambert W function. Therefore, A(X* = X..) = —1/e at that point, which is
the one that separates the two branches of real solutions (fig. (B.2)).

44

Figure B.2: Plot of the real branches of the Lambert W function. Wy(z) is the dashed
line and W_;(z) is the continuous line. Figure from [29].

We can demonstrate that A(X* = X..) < A(X* =0), so —1/e < A(0) < 0. This
means that our system can be evaluated in the two real branches of the Lambert
W function, having —1 < Wy(A) < 0 and —oco < W_1(A) < —1.

The eigenvalue is:

W(A(X™))
1+ W(A(X"))

A=—-m—mW(AX™)) — X" (B.8)

Depending on the branch that we choose, the stability of the fixed points changes:
taking W_1(A), the fixed point X* = 0, is unstable (A > 0, because —oo <
W_1(A) < —1), and X* = X, is superstable (A = —oo, since W_;(A4) — 17).
Taking Wy(A), the fixed point X* = 0, is stable (A < 0, because —1 < Wy(A) < 0),
and X* = X, is superunstable (A = 400, since W_;1(A) — 17). And these results
does not depend neither the initial conditions nor the parameters. How do we decide
in which branch we are? It depends on the initial condition: W (A(Xy)) = —%.
So, if Ry > R, then W(A(Xy)) = W_1(A(Xp)) < —1 and if Ry < R, then
W(A(Xo)) = Wo(A(Xo)) > —1.

Summing up, if Ry > R, the dynamics of X starts from the branch W_;(A),
passes through the maximum X, (changing to the branch Wy(A)), and finishes at
X*=0. If Ry < Rer, X remains always in the branch Wy(A) and tends directly
to X* = 0. This is exactly the behaviour of the 2D system. Due to the change of
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36

branches, we can divide the system as follows:

X=-m [W,l ((— Ro > e_ffcore%a(x’x(’)) + 1] X R>R.

Rer
(B.9)
. Ry o
X = -m [WO ((—RR—) e_RcOreWB(X_XO)> n 1] X R<R,

This result is a generalization of the logistic equation in one dimension, introducing
a maintenance rate. From this system, we can recover the logistic case doing the
limit of m — 0. Using the iterative formula of the W function,

Wo._1(A) = In(—A) — In(— Wy, (A))

Cn(—A)—In(—In(—A)+In (—In(—A)+ ..)) A<o 10

we can perform the limit of the dynamical system:

lim X = lim [—mW, _1(A)] X — lim mX = lim [—mWo - (A4)] X
m—

m—0 m—0 m—0

= 7}1{?0 [—mIn(—A)] X + J}Lno Xmln(—In(—=A) +In(—In(=A4) +...))
= — lim [mIn(—A)] X

m—0

(B.11)

The last equality is due to the fact that In(—A) is of order O(m™!), so m will
dominate over In (—In(—A) +In(—1In(—A) 4 ...)). Continuing with the limit:

a'm

— lim [mIn(—A)] X = — lim

m—0 m—0 m

[B(X — Xo) — Ro] X — g}inmeln (R;a,)
=—a' [B(X — Xp) — R X
(B.12)

Finally, gathering terms:

Oé/

X

lim X = —a/ [B(X — Xo) — Ro] X = " Xo+ Ro/B

m—0 ﬁ

(-3)x

All the results from this section can be generalized for a general f(R) of the form
f(R) = aR"/(K} + R") (Monod). The study of the fixed points is the same.
The main difference is that the maximum of the population happens when R} =
mK7} /(o —m). In this context, the relation between X and R is the following:

(Xo + Ro/B) (1 ) X _

(B.14)

{ X(t):XoJrg(§—1)[R(t)—RO]+ma—f§%1n<%?> n=1

m mKp -n -n
X(t)=Xo+ 5 (% —1) [R(t) = Ro] + 55y [RV (1) = Ry™"] n>1
For n = 1, that is the Monod function, we can also apply the W function, and the
results are the same as in the case of f(R) = o/ R, changing some parameters in the
equations:

. Ry W_1(A)
X——[mij}X R > R,

(B.15)

Y aR:-Wo(A)
X = [—KR—RCTSVO(A) + m} X R<R.,



where R.. = Kgm/(a —m) and W (A) has the same equation as in the linear case
(changing R.,):

W(A) =W (<_§i) e_}fcorexolfm(x—xo)) - W ((_ 5;) 6—5& eo‘:f(X—Xo))
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