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ABSTRACT. High robustness of complex ecological systems in the face of species
extinction has been hypothesized based on the redundancy in species. We ex-
plored how differences in network topology may affect robustness. Ecological
bipartite networks used to be small, asymmetric and sparse matrices. We
created synthetic networks to study the influence of the properties of network
dimensions asymmetry, connectance and type of degree distribution on network
robustness. We used two extinction strategies: node extinction and link extinc-
tion, and three extinction sequences differing in the order of species removal
(least-to-most connected, random, most-to-least connected). We assessed ro-
bustness to extinction of simulated networks, which differed in one of the three
topological features. Simulated networks indicated that robustness decreases
when (a) extinction involved those nodes belonging to the most species-rich
guild and (b) networks had lower connectance. We also compared simulated
networks with different degree- distribution networks, and they showed impor-
tant differences in robustness depending on the extinction scenario. In the
link extinction strategy, the robustness of synthetic networks was clearly de-
termined by the asymmetry in the network dimensions, while the variation in
connectance produced negligible differences.

1. Introduction. During the last decade, improvements in computing and the de-
velopment of network analysis have allowed a qualitative advance in understanding
the structure, function and robustness of complex networks. In a seminal work, Al-
bert and Barabasi [1] evaluated the tolerance of two networks (Internet and WWW)
to the extinction of their nodes. They found high robustness when nodes were re-
moved at random (called ’errors’) but extreme fragility when node removal was
ordered from the most to the least connected node (called ’attacks’). They ex-
plained these contrasting results as a consequence of a highly heterogeneous degree
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distribution of links among nodes, corresponding to a power law function. Albert
and Barabasi’s work [1] encouraged the assessment of the relationship between de-
gree distribution and robustness of complex networks in several fields, from power
distribution [22] to genetics [21] or ecology [24]. Patterns shown by Albert et al.
[1] also apply to skewed degree distributions, not only to power law ones [6] and
robustness increases with increases in connectance [6, 7], i.e., the proportion of ob-
served interactions from the total possible in the network. Other works focus on
cascade-based attacks [17, 13] study the vulnerability of real unipartite networks
when the loads of nodes can be redistributed in case of intentional attacks. In
ecology, robustness of ecological networks is focused on species extinctions [16, 12].

Our interest is focused on robustness in ecological networks, in particular, in
mutualistic networks. Ecological mutualistic networks are formed by two type of
species. In these relationships both species benefit from the interaction, and it is
considered that there is not interaction between species of the same type. For ex-
ample, in plant-pollinator interactions a pollinator feeds on a plant and the plant
get its pollen dispersed by the pollinator. Thus, this type of ecological network is
bipartite. This type of networks can show special features different from unipartite
networks. For example, considering sexual contact network as bipartite (hetero-
sexual contacts) leads to different epidemic threshold in the spreading of sexually
transmitted diseases [10].

Despite a substantial increase in the understanding of the structure of empirical
ecological networks (reviewed in [3]), few studies have addressed the robustness and
its relation with the network structure [16, 12]. These empirical studies, based on
a few networks, have concluded that mutualistic networks were relatively robust
because of their asymmetry in network dimensions (for example, redundancy in
number of floral visitors per plant) and their nested interactions pattern.

Memmott et al. [16] and Kaiser-Bunbury et al. [12] constitute a very valuable
first step but fall short of allowing any general claim about pollinator network ro-
bustness. Among other gaps, understanding of how differences in network structure
may affect robustness is lacking for bipartite networks. Here, we provide a broader
assessment of robustness for pollination networks and explore how differences in
network structure may affect robustness.

In large unipartite networks one can study the ’diameter’, cluster distribution
evolution in the extinction sequence, or relative size of the largest cluster and iso-
lated clusters as a function of the fraction of removed nodes [1]. However, ecological
bipartite networks are represented by small (typically less than 100 nodes), asym-
metric and sparse matrices. For example, typical mutualistic networks have about
10% of possible links [19]. Moreover the degree distributions of rows or columns
are heterogeneous, mainly power-law or truncated power-laws [11]. In this work we
evaluate these ideas in simulated bipartite random networks controlling key struc-
tural features which allow us to directly assess their influence on bipartite network
robustness. A companion paper, to be published elsewhere, will address robustness
in empirical alpine plant-pollinator networks[23].

The overall aim of this study is to determine the effect of topology of bipartite
network structure on robustness and, in particular, the robustness of mutualistic
networks to species extinction and to interaction extinction.

2. Methods. In ecological mutualistic networks, robustness evaluation has been
carried out by assessing the proportion of ’secondary extinctions’ caused by the
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accumulation of 'primary extinctions’, following the tradition of simulation studies
in (unipartite) food webs [7, 2] and its adaptation to bipartite pollination networks
by Memmott et al. [16]. This approach assumes that a species becomes secondarily
extinct as a result of having lost all their mutualistic interactions. In this paper, we
quantified network robustness by modifying a common index for food webs, R50,
which should facilitate future comparisons. Adapted to (bipartite) plant-pollinator
networks, R50 is the percentage of primary species extinctions that have to occur in
order to result in 50% of secondary extinctions [6]. For example, in plant-pollinator
networks, R50 ranks from 100 (maximum robustness) to 100/A (minimum plant
robustness) or 100/P (minimum pollinator robustness), where A is the number of
animals species and P is the number of plant species. In addition, we introduce a
new method of assessing robustness, based on link, not node, extinction (see below).

2.1. Simulated networks. We created simulated bipartite networks which dif-
fered in one of three network structural features: (i) Asymmetry in network di-
mensions, (ii) Connectance and (iii) Degree distribution. A short description of
each feature and its relevance for networks follows. Asymmetry (A) is the ratio
between matrix dimensions, i.e., N,. : N, where N, is the number of rows and N,
is the number of columns. Connectance (C) is the percentage of non-zero values
in the distribution of the number of links which connect the elements in a system
[9] (equivalent to the occupation probability p in Random-Graph Theory). This
parameter has long been used as an indicator of ecological network complexity and
its influence on stability has been extensively discussed for food webs [6, 15, 14, 26].
Applied to bipartite networks, it is the fraction of actually observed mutualistic
interactions (I) of all possible N,. x N, interactions: C(%) = I/(N, x N.) x 100.
Although a high correlation between connectance and several other indices such as
nestedness, degree distribution, dependence asymmetry, and extinction slope has
been found for bipartite networks [5], the relationship between connectance and
robustness has been tested only for unipartite networks [6].

Degree distribution refers to the distribution of connectivity or degree (number
of links per node) in a network. Jordano et al. [11] found that most of the mutu-
alistic ecological networks show a power-law or truncated power-law species degree
distribution, differing from random assembled networks, which show Poisson degree
distribution. Numerous studies based on simulations of extinction sequences sug-
gest the existence of a relationship between degree distribution type and network
robustness [1, 24, 6, 16, 4, 25]. However this relationship have not been tested for
bipartite networks.

By way of null model, we created Poisson random bipartite networks with the
same size (10000 potential interactions) and modified either asymmetry in network
dimensions, or connectance, C. Firstly, we fixed C = 12% (the average of the 51
networks analyzed by Olesen et al. [20]) and explored seven values of asymmetries,
25:1, 4:1, 1.6:1, 1:1, 1:1.6, 1:4 and 1:25 respectively. Secondly, for symmetric ma-
trix dimension we explored five levels of connectance: 10, 20, 30, 60 and 90%. In
order to assess the effect of the degree distribution type on robustness we chose
power-law and exponential degree distributions, which represent the two extreme
cases found for empirical pollination networks [11]. In these skewed distributions,
size could not be fixed to 10000 potential interactions due to the impossibility of
simultaneously achieve a given degree distribution while keeping other network pa-
rameters unmodified. In total, we created 15 types of networks. Random networks
have been averaged over 100 simulations. This set of simulated networks includes
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the range of values for each feature which can take real mutualistic networks. They
also extended it so that it is possible to detect the effect of the bipartite network
structure on robustness beyond what it is possible using only realistic networks.

2.2. Extinction scenarios. Simulated networks were virtually subjected to two
different extinction scenarios with three different sequences to explore the possible
variability in mutualistic networks responses to robustness assessment.

Node extinction scenario. In node-extinction scenario we remove nodes, as
‘primary extinctions’ and evaluate the proportion of ‘secondary extinctions’ caused
by the accumulation of ‘primary extinctions’. In the ecological network, a node
extinction corresponds to a species extinction.

Link extinction scenario. An equally possible, yet previously untested, pro-
cedure to model an ecological network extinction is removing interactions instead
of nodes. In this scenario we removed links between species. The species will be-
come extinct when it loses all its links. The logic behind this scenario is that in
the gradual decline in both plant and pollinator species abundance links disappear
before the total extinction of the involved species. An interaction becomes extinct
when species do not maintain biotic relationships. In our model the species inter-
actions are presented by a matrix. In this way a species become extinct when all
its interactions are extinct.

2.3. Extinction sequences. We simulated three different sequences of node
(species) removal. In the first extinction sequence we remove species (from rows
or columns) ranked from the most-linked to the least-linked species (+ — —) and
represents the worst possible case [1, 24, 6, 16]. The second extinction sequence
simulates the opposite situation, i.e., species extinctions ranked from the least-linked
to the most-linked species (— — +) and it is considered the most likely case by
Memmott et al. [16]. The third extinction sequence removes species randomly and
it represents a null model against which the two above sequences can be compared
[15, 16]. These sequences will be referred to as most- to-least (+ — —), least-to-
most (— — +) and random sequences, respectively. The random sequence was
averaged for 100 iterations.

In the link extinction scenario we used the adjacency matrix of the network. Then
we removed links (change 1 to 0 in the matrix) according to species connectivity. In
the 'most-to-least’ sequence links are removed from the most connected species (in
both rows and columns) to the least connected one. In the least-to-most sequence
we started removing links from the least-connected species. As a null model links
are removed randomly.

3. Results.

3.1. Node extinction. In order to study the robustness of small bipartite net-
works we proceeded to remove nodes following the three sequences: most-to-least,
least-to-most and random in simulated matrices. In Fig.1, we illustrate the typical
robustness behavior of an empirical plant-pollinator network and compare it with
a random null model network with 80 x 125 dimensions. Fig.la shows extinction
patterns removing nodes in a empirical network and in Fig.1b we have plotted the
same sequences for random networks of similar dimensions (averaged over 100 real-
izations). In both figures, we have used squares for most-to-least sequence, triangles
for least-to-most and circles for random sequences. In both cases random is placed
between the systematic extinction sequences.
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FiGURE 1. Extinction patterns removing nodes with three dif-
ferent sequences: most-to-least, squares; random, circles; least-to-
most, triangles. a) Example of plant-pollinator network [8], data-
base in [18]. b) Random network with similar dimensions.

In order to study the effect of asymmetry in the matrix dimensions, we created
random matrices of different asymmetries, from 25:1 to 1:25. In all cases differences
between the three extinction sequences were similar to, although smaller than, those
for empirical mutualistic networks [23], and random sequence was always between
most-to-least and least-to-most. Consequently, in the following asymmetry analysis
we have focused the simulated networks on the random sequence. Fig.2a shows only
the random sequence for seven values of asymmetry, in networks with 10000 poten-
tial links and C' = 12%. These simulated networks exhibited the same behavior as
mutualistic networks: robustness increased with increases the asymmetry whenever
primary extinctions affected to shorter dimension of the matrix (secondary extinc-
tions began at higher primary extinctions). However, asymmetries greater than 4:1
only produced slight increases in robustness (Fig.2a).

Secondly, we have studied the influence of the connectance on the secondary
extinction. In Fig.2b the random extinction sequence is depicted for five different
connectances, from 10% to 90%. With connectances of 10%, the first secondary
extinction occurred after removing 40% of species respectively, while networks with
connectances of 60% and 90% remained intact until removal of more than 95%
of species.There was an increase in robustness with increases in the connectance.
Simulated networks confirmed that higher connectance leads to increased robustness
of bipartite networks (Fig.2b).

Finally, we have confirmed the importance of the degree distribution in the net-
work robustness. By contrast to Poisson networks, power-law (Fig.3a) and expo-
nential (Fig.3b) networks showed important differences in robustness depending on
the type of extinction sequence. Fig.3c and Fig.3d depicts a Poisson distribution
with similar asymmetry and connectance than Fig.3a, and Fig.3b, respectively.
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FIGURE 2. Extinction patterns removing nodes with a) different
asymmetries: squares 200 x 50, diamonds 125 x 80, circles 100 x 100,
left-triangles 80 x 125, stars 50 x 200; b) different connectance:

pluses 10%, down-triangles 20%, dots 30%, up-triangles 60%, and
asterisks 90 %.
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FIGURE 3. Extinction patterns removing nodes with different de-
gree distribution: a) Power law distribution; b) exponential distri-
bution; ¢) and d) Poisson distribution with similar asymmetry and

connectance than a) and b), respectively. Symbols have the same
meaning as in Fig.1.
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The simulated power-law network was less robust than its corresponding Poisson
network in the most-to-least extinction sequence (Fig.3a and Fig.3c). While in the
power-law network R50 was10%, in the Poisson network it was 80%. In the least-to-
most extinction sequence the opposite happened; the simulated power-law network
was more robust than its corresponding Poisson network. In the random sequence,
secondary extinctions were staggered, although R50 was 100%.

The simulated exponential network was less robust than its corresponding Pois-
son network (Fig.3b, Fig.3d), for the most-to-least and random extinction sequences:
R50 was approximately 30% in the exponential network, whereas in the correspond-
ing Poisson network it was approximately 90%. In the least-to-most extinction
sequence exponential network showed the maximal R50. In summary, the simu-
lated power law network was less robust than its corresponding Poisson network
in the most-to-least extinction sequence (‘attacks’). In the least-to-most extinction
sequence the opposite happened (natural evolution). The simulated exponential
network was less robust than its corresponding Poisson network, for the most-to-
least and random extinction sequence.
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FIGURE 4. Extinction patterns removing links of the same empir-
ical plant-pollinator network as Fig.la. Symbols have the same
meaning as in Fig.1.

3.2. Links extinction. Links extinction scenario produced extinction patterns
qualitatively different from the node extinction scenario. The main difference be-
tween node and link extinction is the uniformity in the three extinction sequences.
Although in the link-extinction scenario networks seem less robust than in the node-
extinction scenario (Fig.4), this effect is due to the axes used in the representation.
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This type of plot proposed by Memmott [16] depicts the fraction of survival species
when an increasing number of nodes are deleted in the other guild. However, in the
links extinction scenario removing a link may cause deletion of none or any of the
two guilds.

plants visited (%)

~ 40 60 80 100
pollinator extinction (%)

0 20

FiGURE 5. Extinction patterns removing links of simulated net-
works of different asymmetries: 500 x 20 squares, 200 x 50 pluses,
125 x 80 down-triangles, 100 x 100 circles, 80 x 125 diamonds,
50 x 200 stars, 20 x 500 up-triangles.

Furthermore the asymmetry effect was greater in this new scenario (Fig.5). In
this case the extinctions affect simultaneously both plants and pollinators because
a link removal may overcome a plant extinction, a pollinator extinction or both
(Fig.5).

Instead of plotting species remaining connected versus primary extinction, in the
following we have plotted secondary extinction versus primary extinction in log-
log scales because it is useful for finding cascades. In symmetric random networks
secondary extinctions follow primary extinction at the same rate. For example, in
Fig.6 extinction sequences of 100 x 100 Poisson networks are in the diagonal (note
the log-log scale).

In asymmetric random networks, (200 x 50) extinction sequences (+ — —,
— — +, rnd) follows a power-law starting at 40 (Fig.7a). At low connectance the
secondary extinctions occur regularly with the primary extinctions. However, at
high connectance, the secondary extinctions, for + - — and — — + (not random),
occurs preferentially in events (not uniformly) (Fig 7b).

4. Discussion. Extinction patterns in simulated networks confirmed the influence
on robustness of asymmetry in network dimensions, connectance and degree distri-
bution. Thus, they may shed light on the robustness evaluation of empirical bipar-
tite networks. Simulated networks clearly showed the protective effect of increasing
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FIGURE 6. Extinction patterns removing links of 100 x 100 Poisson
matrices and C' = 20%. Symbols have the same meaning as in
Fig.1.
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FiGURE 7. Extinction patterns removing links in 200x50 matrices
with different connectances: a) C' = 20%, b) C = 70%. Symbols
have the same meaning as in Fig.1.

asymmetry. In general, robustness was dependent on the extinction scenario and
decreased in the order least-to-most > random > most-to-least. Although the most-
to-least sequence yields the fastest evolution, however, this extinction evolution does
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not end up in a network collapse. The redundancy of ecological network leads to
a slow extinction process during all the sequence. This evolution can be seen in
Fig.8a, where the secondary extinction rate (normalized by primary extinctions) is
plotted against primary extinctions. On the other hand, random sequences lead to
a smaller extinction rates until the last high-connected nodes are removed (Fig.8b).
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FiGURE 8. Extinction rates removing nodes in a plant-pollinator
network [23]: a) most-to-least; b) random.

As with empirical networks, simulated networks were more robust to the ex-
tinction of nodes belonging to the most species-rich subset, i.e., the secondary ex-
tinctions are developed at higher values of primary extinctions. For all values of
asymmetry and connectance tested, robustness was consistently highest in the least-
to-most sequence, middle in the random sequence and lowest in the most-to-least
sequence. These simulated networks exhibited the same behavior as mutualistic
networks: robustness increased with increases in asymmetry and also with the con-
nectance. In Fig.2b the random extinction scenario is depicted for five different
connectances, from 10% to 90%. Therefore, in agreement with Dunne et al. [6],
network response to these extinction sequences is not restricted to power law de-
gree distribution, but greater differences between sequences coincide with the most
skewed distributions. This heterogeneous degree distribution will determine a ma-
jor interaction redundancy when node deletion begins from the least connected
species. The extinction patterns for empirical mutualistic networks (Fig.1a) more
closely resembled those of Poisson networks than those of power law ones (Fig 4a).
This finding supports the protective effect of truncated power law distributions to
most-to-least extinction sequence with respect to power law ones [11]. In the link ex-
tinction scenario the patterns change substantially. In this case primary extinction
values are not in linear progression but they depend on how many nodes become
extinct when a link is removed.

5. Conclusions. The robustness assessment of small empirical bipartite networks
(like mutualistic ecological networks) cannot be done in terms of evolution of diame-
ter or average path length of the largest cluster [1]. Instead of that, ecologists depict
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secondary extinctions versus primary extinctions. The present study indicates that
robustness of small bipartite networks dependent on the structure of each network.
In particular, our simulations show a large importance of three structural features:
degree distribution, connectance and asymmetry in network dimensions, which in-
fluence secondary extinctions by affecting interaction redundancy. The variability
in robustness found in empirical mutualistic suggests that robustness depends on
network structure. Simulated networks clearly showed the protective effect of in-
creasing asymmetry. Simulated networks confirmed that higher connectance leads
to increased robustness of bipartite networks, but greater differences between se-
quences coincide with the most skewed distributions. This heterogeneous degree
distribution will determine a major interaction redundancy when node deletion be-
gins from the least connected species.

Removing links (in random sequence) reveals the important effect of asymmetry
on the secondary extinction sequence. Plotting plant extinction versus pollinator
extinction one can observe their relations in the extinction sequences. In symmetric
networks the extinction patterns always follow the diagonal (Fig.6), i.e., species from
both guilds become extinct at the same rate. In asymmetric networks species from
the guild with a greater number of species become extinct at higher rate than species
from the other guild. This scenario, more realistic than node removal, involves more
dependence between the two subsets of species in the extinction sequence.
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