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UNIVERSITAT DE LES ILLES BALEARS

Summary

The direct detection of gravitational waves by LIGO and Virgo interferometric ob-

servatories has opened a new multi-messenger era to study some of the most energetic

phenomena occurring in the Universe. Although the detections are so far consistent with

the coalescence of binary black holes and the inspiral of binary neutron stars systems,

in the future we could detect gravitational waves from new binary systems composed of

different compact objects. These putative Exotic Compact Objects (ECOs) could exist

in theory but have not yet been found in Nature, since they are supposed to be too dim

to be detected by current electromagnetic telescopes.

In this Thesis we study, through full three dimensional numerical relativity simulations,

the dynamics of these ECOs and the gravitational radiation emitted during their coales-

cence, focusing in binaries formed by boson stars (i.e., self-gravitating objects modeled

with a complex scalar field), dark matter stars (i.e., astrophysical compact objects that

only interact with other stars through gravity) and neutron stars with a small fraction

of dark matter on their interiors (i.e., modeled by mixed fermion-boson stars).

Gravitational waves from the coalescence of compact objects play an important role

probing gravity in the strong-field regime. Hence, our studies are crucial to discriminate

whether future non-standard gravitational wave detections come from unknown sources

such as ECOs. Consequently, exploring the signature of these gravitational waves could

reveal their existence.
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Resum en català

La detecció directa d’ones gravitacionals a través dels observatoris interferomètrics LIGO

i Virgo obre una nova era de multimissatgers per estudiar alguns dels fenòmens més

energètics que ocorren en l’univers. Tot i que, fins ara, les deteccions són coherents

amb la fusió de sistemes binaris de forats negres i amb la col·lisió entre dues estrelles de

neutrons, en el futur es podran detectar ones gravitacionals provinents de nous sistemes

binaris composts de diferents objectes compactes. Aquests aparents objetes compactes

exòtics (ECOs) podrien existir en teoria, però encara no han estat trobats en la natura,

ja que se suposa que són massa tènues com per poder ser detectats pels telescopis elec-

tromagnètics actuals..

En aqueta tesi estudiam, a través de simulacions numèriques tridimensionals de rela-

tivitat, la dinàmica d’aquests ECOs i la radiació gravitacional emesa durant la seva

coalescència, enfocant-nos en sistemes binaris formats per estrelles de bosons (és a dir,

objectes auto-gravitants modelats amb un camp escalar complexe), estrelles de matèria

obscura (és a dir, objectes compactes astrof́ısics que només interactuen amb d’altres es-

trelles a través de la gravetat) i estrelles de neutrons amb una petita fracció de matèria

obscura en el seu interior (és a dur, modelades per estrelles mixtes de fermió-bosó).

Les ones gravitacionals de coalescència d’objectes compactes juguen un important rol

en l’estudi de la gravetat forta. És per això que el nostre estudi és crucial per dis-

criminar si futures deteccions d’ones gravitacionals at́ıpiques serien provinents de fonts

desconegudes, tals com els ECOs. Per consegüent, explorar la impromta d’aquestes

ones gravitacionals podria revelar la seva existència.
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Resumen en castellano

La detección directa de ondas gravitacionales a través de los observatorios interferomé-

tricos LIGO y Virgo abre una nueva era de multimensajeros para estudiar algunos

de los fenómenos más energéticos que ocurren en el Universo. Aunque hasta ahora las

detecciones son coherentes con la fusión de sistemas binarios de agujeros negros y con la

colisión entre dos estrellas de neutrones, en el futuro podremos llegar a detectar ondas

gravitacionales provenientes de nuevos sistemas binarios compuestos de objetos com-

pactos diferentes. Estos aparentes objetos compactos exóticos (ECOs) podŕıan existir

en teoŕıa, pero aún no se han encontrado en la naturaleza, ya que se supone son dema-

siado tenues para ser detectados por los telescopios electromagnéticos actuales.

En esta tesis estudiamos, a través de simulaciones numéricas tridimensionales de re-

latividad, la dinámica de estos ECOs y la radiación gravitacional emitida durante su

coalescencia, enfocándonos en sistemas binarios formados por estrellas de bosones (es

decir, objetos auto-gravitantes modelados con un campo escalar complejo), estrellas de

materia oscura (es decir, objetos compactos astrof́ısicos que solo interactúan con otras

estrellas a través de la gravedad) y estrellas de neutrones con una pequeña fracción de

materia oscura en su interior (es decir, modeladas por estrellas mixtas de fermión-bosón).

Las ondas gravitacionales de la coalescencia de objetos compactos juegan un importante

rol en el estudio de la gravedad fuerte. Es por ello que nuestro estudio es crucial para

discriminar si futuras detecciones de ondas gravitacionales at́ıpicas seŕıan provenientes

de fuentes desconocidas, tales como los ECOs. Por consiguiente, explorar la huella de

estas ondas gravitacionales podŕıa revelar su existencia.
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agradecer. A lo largo de estas ĺıneas quiero agradecer a todas las personas que estuvieron

en este camino, los cuales me han brindado su amistad, apoyo y hasta sus fuerzas para

poder finalizar esta cautivante etapa.

En primer lugar a mi amada esposa Any, la cual desde un comienzo no dudo en em-

prender este camino junto a mı́. Muchas gracias por tu altruismo, tu me acompañaste
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Preface

The recent detections of gravitational waves by the LIGO and Virgo interferometric

observatories, consistent with the merger of binary black hole systems – ten up to April

2019, see in Figure 1 and in Refs. [9–14]–, has opened a new era of gravitational wave

astronomy leading to unprecedented discoveries. The existence of gravitational radiation

was indirectly inferred since 1974 with the first indirect measurements by Hulse and

Taylor, who showed that the changes in the orbital motion of two pulsar in a binary

system PSR B1913+16 were consistent with the energy loss due to the emission of

gravitational waves [15]. Conversely, these new recent discoveries are the first direct proof

of the existence of gravitational waves, confirming that black holes exist and are able to

form binary systems. In particular, during the first advanced detector LIGO run from 12

September 2015 until 16 January 2016, usually called O1, gravitational waves from three

binary black holes were detected (GW150914, GW151012, GW151226). During the

second observing run from November 2016 to August 2017, O2, seven more binary black

hole merger were reported (GW170104, GW170608, GW170814, GW170729,

GW170809, GW170818 and GW170823). The total mass of these binaries ranged

from 18.6+3.1
−0.7M� to 85.1+15.6

−10.9M�, leading to a single rotating black hole after the merger

between 17.8+3.2
−0.7M� and 80.3+14.6

−10.2M�. The estimate distances range from 320+120
−110 Mpc

to 2750+1350
−1320 Mpc, see Table III in Reference [14].

More recently, during the observing run O2, the gravitational wave corresponding to the

inspiral of a binary composed by neutron stars has also been observed [16, 17]. This

signal was followed by a plethora of electromagnetic counterparts, including a gamma-

ray burst [18] and a thermal infrared/optical spectra consistent with a kilonova [19],

which was detected by both the Fermi and Integral satellites, starting a fruitful era of

multi-messenger astronomy, see Figure II in [17] that shows the time-line of that event.

The reason behind more than forty years between the measurements of Hulse and Taylor

and the direct detection by LIGO/Virgo interferometers is the intrinsically small am-

plitude of gravitational waves, which makes their detection extremely challenging. For

xxviii



Figure 1: An illustration of the ten mergers of binary black holes detected so far.
Figure from: SXS Collaboration/LIGO-Virgo Collaboration.

instance, the relative change in the local distances (strain1) produced in the detectors

due to the gravitational waves emitted by two black holes of masses M = 10M� orbiting

around each other with a separation of 600km at a distance of 100Mpc from Earth, is

only ∼ 10−21. This means that such an energetic event in our neighborhood only will

change the Earth detector geometry in one part of 1021 [20].

There are many different sources of gravitational waves. The strongest and most plau-

sible ones include: (i) binary coalescence of massive compact objects like black holes

and/or neutron stars [9, 16], (ii) continuous gravitational waves, which are produced by

non-axisymmetric spinning compact stars that rotates with a quite constant frequency,

typically pulsars [21, 22], (iii) gravitational waves bursts, which are coming mostly from

unknown or unexpected sources with a short-duration, as for example supernova core-

collapse supernova [23–25], and finally (iv) stochastic gravitational waves, produced from

a wide random number of independent events (i.e., such as those described above). They

form a stochastic background of gravitational waves made by the superposition of nu-

merous incoherent sources [26–28]. One of the expected stochastic gravitational waves is

the Big Bang, which could help us describe the Universe at its earliest instants [26, 29].

Undoubtedly, as the ground-detectors LIGO and Virgo improve their sensibilities and

new ground-based detectors like KAGRA in Japan [30] and IndIGO (LIGO-India) [31]

are included to the network, many more gravitational wave detections will be soon

available. In addition, the space-based detector LISA will be launched in the years

to come. This detector will give us the opportunity to observe the heaviest and most

diverse object in our Universe by detecting low-frequency waves that will probably never

be accessible from the Earth detector [32] (see Figure 2). These detections are inevitably

leading to breakthroughs in our understanding of some of the most exciting objects and

1 See Chapter 1 equation (1.32).



Figure 2: Gravitational waves detectors and sources. The plot shows the gravitational
wave sensitivity-curve plot using characteristic strain of different gravitational waves
sources. A source will be detectable if the characteristic strain is above of the detector

curve. Figure adapted from [1, 2]

phenomena in the Universe, as well as providing clues to fundamental physics, such

as the properties of matter at nuclear densities [33–36] and stringent tests of general

relativity [37–42].

One of the most prominent opportunities in this rising era of gravitational wave as-

tronomy is to study the strong-gravity regime through the signals produced during the

coalescence of compact objects. The anatomy of gravitational wave signals from this

coalescence can be divided in three stages, illustrated in Figure 3, namely:

(i) inspiral: the two compact objects are still far from each other such that the dy-

namics of the system (i.e., the amplitude and the phase of gravitational waves in-

creases as the orbit separation decreases) can be described by Post-Newtonian [43]

or Effective-One-Body approximation [44];

(ii) merger: once the compact objects pass the last stable circular orbit their sep-

aration quickly decreases until that they merge. Here, the relativistic effects are

important, non-linear effects are dominant the gravitational wave emission reaches

its peak in amplitude. The full solution of the Einstein equations are needed in

order to reproduce this stage, which can only be solved by numerical simulations;



Figure 3: Anatomy of gravitational wave signals. The three stages during the tempo-
ral evolution of a binary system. During the inspiral stage, the two object are orbiting
and approaching each other. During the merger phase, the two objects get close enough
colliding, here relativistic effects become important. During the post-merger phase the
resulting object dissipates energy away and tends to settle down to a new equilibrium

state. Figure from [3].

(iii) post-merger: the remnant of the merger, after a transient, settles down into a

quasi-equilibrium state. At that stage, the gravitational wave signal shows char-

acteristic frequencies called quasi-normal modes. Such modes can be studied by

using the perturbation theory [45–47]. For binary black holes this stage is known as

ring-down, since the amplitude of the signal decays exponentially as the remnant

(i.e., a perturbed black hole) settles down into a Kerr black hole.

More detections will surely increase our knowledge and understanding of compact ob-

jects in the Universe. Besides studying binaries made of black holes and neutron stars,

which now represent the standard compact objects, exploring the extent to which al-

ternatives differ in their gravitational waves signatures remains as an important test to

carry on. In addition to these standard sources, gravitational waves can allow us to

find unknown (and unexpected!) astrophysical compact objects which have not been

observed yet due to their low brightness. These alternative objects are known gener-

ically as Exotic Compact Objects (i.e., see Reference [48] for a review) and include,

for example, fuzzballs [49], gravastars [50], wormholes [51], anisotropic stars [52], boson

stars [53], Proca stars [54], etc.

Here, we will present our numerical studies on the mergers of binary Exotic Compact

Objects performed by solving Einstein equations with different types of exotic matter.

Our aim is to analyze the gravitational waves emitted during their mergers and identify

signatures which could help us to distinguish them from standard compact objects. We

will consider three different types of binaries:



(i) Boson Stars: solutions made of a complex scalar field with a time harmonic

dependence [53, 55], representing the macroscopic wave-function of a Bose-Einstein

condensate. The stability properties of a boson star resemble those of neutron

stars, and, in particular, they are stable below a critical mass. The discovery of

the Higgs boson in 2012 [56, 57] shows that at least one scalar field exists in Nature;

if other (stable) bosonic particles exist in the universe they might clump together to

form self-gravitating objects (i.e., Bose-Einstein condensates). Boson stars provide

a simple and useful model to study compact bodies in very different scenarios,

ranging from dark matter candidates to black hole mimickers, see [58, 59] for a

review.

(ii) Dark Stars: defined as self-gravitating astrophysical compact objects which only

interact through gravity with other stars. These regular objects may be thought

as a generalization of a black hole but without horizon and with a wider range

of compactness. Here we construct these objects by using bosonic matter, but

fermionic matter can be used as well [60].

(iii) Fermion-Boson Stars: Dark matter particles might cluster inside neutron stars.

This system can be modeled by using two types of matter, the neutron star matter

with a fermionic perfect fluid and dark matter as bosonic matter by using a complex

scalar field. The stationary compact solutions of this system are called fermion-

boson stars [61, 62].

Last but not least, Numerical Relativity is the key tool to explore the non-linear strong

regime of gravity, as we mentioned above, and in particular, the collision of binary

compact objects. With accurate numerical simulations we can decode the information

carried out by gravitational radiation. The success of a binary simulation relies on a

well-posed formulation at the continuum level combined with suitable numerical schemes

to achieve a stable and convergent solution at the discrete level [63].

Although each Chapter is well-motivated and summarized in the preamble, for reader

convenience we give a sum up of the structure of the Thesis. Chapter 1 is a brief overview

of some notions of differential geometry which are used throughout this Thesis, setting

the notation and conventions for the basic mathematical objects. In Chapter 2, the

so called 3+1 decomposition is studied. We present our modification of the covariant

conformal Z4 formalism and study its characteristic structure, showing that the evo-

lution system remains well-posed. Chapter 3 is based on the Einstein field equations

coupled to matter, focusing on models with either scalar fields or perfect fluids. Here we

present the relativistic Klein-Gordon equations and Relativistic Hydrodynamical equa-

tions, which are the evolution systems governing these two model. Finally, we explain



how to construct isolated boson and neutron stars. In Chapter 4, we study the numeri-

cal method used for solving the discretized Einstein field equations with matter sources.

Chapter 5 is focused in the coalescence of boson stars, investigating the properties of

the remnant resulting from the merger and the gravitational waves radiated during the

collisions. Chapter 6, we analyze the dynamics and gravitational waves produced during

the binary coalescence of equal mass dark stars composed by bosonic fields. We compare

our results both with Post-Newtonian approximations and with previous simulations of

binary boson stars. In Chapter 7, we present a recent study that consists in simula-

tions of binary fermion-boson star mergers. Finally, we present the concluding remarks

and future works. The Appendix presents some estimative of the total gravitational

radiation in the post-merger employed in Chapter 5 and Chapter 6 of this Thesis.

Conventions and Notation

Throughout this thesis, we are using the system of geometric units, where the speed

of light c and Newton’s gravitational constant G are set equal to one, unless otherwise

stated. Roman letters from the beginning of the alphabet a, b, c, . . ., denote space-time

indices ranging from 0 to 3, while letters near the middle i, j, k, . . . range from 1 to 3,

denoting spatial indices. The covariant derivative of a quantity T is noted as ∇aT and

the partial derivative as ∂aT = ∂
∂xaT. The Einstein summation rule applies, namely

repeated indices are summed over all their possible values.



Chapter 1

Some elements of General

Relativity

General Relativity is the modern theory of gravitation, formulated by A. Einstein in

1915 [64]. Einstein’s theory established that gravity was no longer to be considered a

force, but a manifestation of the curvature of spacetime itself. Therefore, the curvature

of spacetime (as a continuum space) can not be formulated in term of an Euclidean

space. Instead, it is required a sophisticated mathematical structure, based on differen-

tial geometry, called differential manifold.

This Chapter summarizes some basics concepts of differential geometry which are used

throughout this Thesis, presenting the mathematical language of General Relativity.

Therefore, in Section 1.1 basic mathematical concepts are described, emphasizing in: (i)

differential manifolds, which give us the structure where the objects of General Relativity

are defined, (ii) vectors and tensor fields, objects which encode the physical information

of this theory and (iii) derivatives onto differential manifold. In Section 1.2, the field

equations are presented. Finally, in Section 1.3, we study the weak field regime of

Einstein’s equations to obtain the quadrupole formula for gravitational radiation. This

Chapter is based on the books [63, 65–68].

1.1 Basics concepts of Differential Geometry

The foundations of General Relativity rely on some basic concepts and tools of differen-

tial geometry. We shall start defining a n-dimensional differential manifold M, that is a

topological space which can be covered by a collection of charts {Uα, φα}α∈A, where Uα

is an open subset ofM, for each α ∈ A and φα : U → Rn is a smooth injective mapping.

1
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Given a point p ∈ U, φα(p) = (x1, . . . , xn) =: (xa) are called the local coordinate on Uα,

for each α ∈ A.

A curve on M is a map γ : I → M, being I ⊆ R an interval, such that for each

chart (Uα, φα) the composition φα ◦ γ : I ⊆ R → M is a smooth map. In term

of local coordinates (xa) defined over a chart {Uα, φα} ⊂ M, the curve is written as

xa(λ) = (x1(λ), . . . , xn(λ)), where λ ∈ I ⊆ R is the parameter of the curve. Here, the

tangent vector to the curve xa(λ) is given by va = dxa/dλ. At every point p ∈ M,

we can associate a vector space TpM, called the tangent space at p, whose element are

known as vectors. The tangent space can be defined as a equivalence classes of curves

through p under a suitable equivalence relation. The collection of all tangent spaces on

M is called the tangent bundle TM = ∪p∈MTpM. The curve γ on M is the integral

curve of a vector v if the tangent vector of the curve coincides with v, and therefore, a

congruences curves is the set of integral curves of a vector field v on M.

A one-form (or covector) is real valued function of a vector. The set of covectors at

a point p ∈ M for a vector space named cotangent space T ∗pM, and we shall denote

ωa. The set of all cotangent spaces on M is the cotangent bundle T ∗M = ∪p∈MT ∗pM,

for further mathematical details see [65]. Using elements of TpM and T ∗pM, we can

construct higher rank objects called tensors. A tensor of type (m,n) is a real valued

function of m covectors and n vectors linear in all their arguments. From now on, we

use the abstract index notation [66], i.e., for example a (k, l)-tensor T will be denoted

by T abc... efg..., where the superindex are a list of k letters and are called contravariant,

while subindex are a list of l letters and are called covariant.

The metric tensor on M is defined as a (0, 2) non-degenerate symmetric tensor field,

usually called g. Therefore, a pseudo-Riemannian manifold is defined as a couple (M,g)

whereM is a differential manifold and g is a metric tensor onM. The metric gives us two

important geometric notions of: (i) measuring distances onM, (ii) define orthogonality

and norm concepts of vectors. The norm of a vector is given by ||v||2 = gabv
avb. In term

of a local coordinate (xa), the components of the tensor metric gab are a n× n1 matrix

and, at the same time defines an inverse matrix which are the component of the inverse

tensor metric gab, that is a (2, 0) tensor. Therefore, by definition the component of the

metric tensor and its inverse satisfies gacg
cb = δba, where δba is the Kronecker delta. One of

the most important properties of the metric tensor is that allows a one-to-one mapping

between vectors and covectors, namely va = gabv
b or va = gabvb, known as lowering and

raising of indices. The signature of gab is defined as the difference between the number

of positive and negative eigenvalues. If the signature is ±n, we shall said the metric is

Riemannian, otherwise if the signature is ±(n− 2) the metric is said Lorentzian. Given

1Recall that n is the dimension of M.
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a Lorentzian metric it is possible to classify vectors through its norm: va is timelike if

gabv
avb < 0, spacelike if gabv

avb > 0, and null if gabv
avb = 0.

Another important structure that can be defined is the covariant derivative, which allows

to relate tensors at different points on M. On a pseudo-Riemannian manifold M,

the metric gab allows to define a covariant derivative ∇a over M, called Levi-Civita

connection. This connection satisfies two conditions: it is torsion-free2 and the covariant

derivative of the metric tensor vanishes identically, ∇agbc = 0. In this Thesis, we shall

consider only this kind of connection.

Given a coordinate system (xa) on M and a natural coordinates basis {ec} on TpM,

i.e., ec = ∂c, the covariant derivative can be expressed as ∇bec = ∇eaeb = Γcabec. The

connection coefficients Γabc of the Levi-Civita connection with respect to the natural basis

are called the Christoffel symbols. Using the above relations, these Christoffel symbols

can be written in function of metric gab as:

Γabc =
1

2
gad (∂cgdb + ∂bgdc − ∂dgbc) , (1.1)

which is symmetric in the subindex. In the same frame, the covariant derivative of a

scalar field, vector, covector and (1, 1)-tensor can be expressed as follows:

∇af := ∂af , (1.2)

∇avb := ∂av
b + Γbacv

c , (1.3)

∇avb := ∂avb − Γcbavc , (1.4)

∇aT b c = ∂aT
b
c + ΓbadT

d
c − ΓdacT

b
d . (1.5)

Note that, every additional index needs its own Christoffel symbol. The covariant deriva-

tive is the generalization of partial derivative to a differential manifold.

It is possible to define other type of derivative onM which is independent of the tensor

metric g. For instance, the Lie derivative Lv measures the change of a tensor as it is

transported along the direction of a given vector field va. For example, a (1, 1)-tensor

can be expressed as follows:

LvT a b = vc∇cT a b − T c b∇cva + T a c∇bvc. (1.6)

Once again, note that, every additional index needs its own Christoffel symbol. The Lie

derivative is the generalization of the directional derivative to a differential manifold.

One of the most important properties of the Lie derivative is that allows to define the

2For any scalar field f, ∇a∇bf is symmetric bilinear form, which satisfies (in coordinates) ∇a∇bf −
∇b∇af = 0.
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concept of symmetry. We say that M has a specific symmetry if the Lie derivative of

the metric g with respect to a vector field ξ is vanish:

Lξgab = 0⇔ ∇aξb +∇bξa = 0 . (1.7)

If a vector field satisfies the equation (1.7) is called a Killing vector of the manifoldM.

One of the fundamental objects in our pseudo-Riemannian manifoldM is the Riemann

curvature tensor, which can be defined through its action on arbitrary vector va

∇a∇bvc −∇b∇avc = Rcdabv
d . (1.8)

Note that above equation (called Ricci identity) gives us the notion of curvature by

considering the non-commutativity of covariant derivatives. The Riemann curvature

tensor can be interpreted as the one measuring the deviation from Euclidean manifold

(or flat manifold, see definition below). The Riemann tensor Rcdab defined by (1.8) can

be computed in local coordinates (xa), in terms of the Christoffel symbols, as follows:

Rcdab = ∂aΓ
c
db − ∂bΓcda + ΓcaeΓ

e
db − ΓcbeΓ

e
da , (1.9)

We say that the manifold M is flat if the curvature tensor is identically zero, Rcdab = 0.

As a consequence of the Christoffel symbols definition, the Riemann tensor satisfies the

following symmetries

Rabcd = Rbacd = Rabdc = Rbadc . (1.10)

and the well-known first Bianchi identity

Rabcd +Racdb +Radbc = 0 . (1.11)

Note that, these symmetries identities imply that although the Riemann tensor in four

dimensions has 256 components, there are only 20 algebraic degrees of freedom3. Fur-

thermore, the Riemann tensor satisfies the following differential identity

∇aRbcde +∇bRcade +∇cRabde = 0 . (1.12)

known as second Bianchi identity. Contracting twice the second Bianchi identity (1.12),

we have the following important geometrical relation:

∇a
(
Rab − 1

2
gabR

)
= 0 . (1.13)

3In a n dimensional manifold the degrees of freedom are given by the following formula: n2(n2−1)/12.
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where we have introduced other important two tensors being Rab is the Ricci tensor

defined as Rab = Rdadb and R is the Ricci scalar give by R = gabRab. Note that, the Ricci

tensor is obtained from the Riemann tensor by contracting over two of the indices and

it is symmetric. Taking into account all the symmetries of these tensors, one can show

that the Ricci tensor has only 10 independent components.

1.2 General Relativity

Albert Einstein considered that gravity is not a force, but as a manifestation of the

curvature of spacetime, which is produced by the presence of matter. Therefore, to

describe gravitational interactions, it is necessary to postulate that spacetime is a four

dimensional manifold M endowed with a Lorentzian metric gab with signature +2, i.e.,

(−+ ++).

In addition, consistent with the theory of special relativity, the energy, momentum and

matter stresses of the spacetime can be described by a symmetric tensor Tab, called

energy-momentum (or stress-energy) tensor, satisfying

∇aT ab = 0 . (1.14)

Note that, equation (1.14) is the covariant generalization of the conservation law ∂aT
ab =

0 in special relativity [63, p.7]. The components of the energy-momentum tensor are

defined as: T 00 energy density, T 0i momentum density and T ij stress tensor.

By defining the Einstein tensor as Gab = Rab − 1
2gabR, the contracted second Bianchi

identity leads to the following conservation equation

∇aGab = 0 . (1.15)

Therefore, the simplest solution from the previous relations is the widely-known Ein-

stein’s field equations, namely

Gab = κTab , (1.16)

where κ is a proportionality constant. The system (1.16) describes the fundamental

equations governing General Relativity (GR), which relate the spacetime metric to the

distribution of matter. The constant κ is the Einstein gravitational constant, which is

related to Newtonian constant G and c light speed trough κ = 8πG/c4, where these

factors are required in order to recover the weak-field limit of Newtonian gravity.

Therefore, with the Einstein flied equations defined, spacetime is understood as a pair

(M, g) such that the metric gab satisfies (1.16). These equations determine how much
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space time is curved in the presence of a distribution of matter. There is a famous

quote made by John Archibald Wheeler which summarize entirely Einstein’s equations:

Spacetime tells matter how to move, matter tells spacetime how to curve. Finally, in the

absence of matter, i.e., Tab = 0, the Einstein equations (1.16) are reduced to the vacuum

field equations

Rab = 0. (1.17)

From a mathematical point of view, the Einstein tensor has a dependence on the metric

and its derivatives, namely Gab = Gab(gab, ∂cgab, ∂c∂dgab). Besides, due to the symmetry

relations, Gab only has ten independent components. It means that (1.16) form a system

of ten coupled nonlinear second order partial differential equations (PDEs) that must

be solved for the metric gab. In the next Chapter 2, we shall explain with more detail

the mathematical structure and meaning of the Einstein equations.

1.3 Linearized Einstein Equations

One of the most outstanding predictions of the theory GR is the existence of gravita-

tional waves (GWs) [69]. GWs are defined as perturbations of the spacetime, produced

by accelerated massive objects, which propagates at the speed of light. The existence of

GWs can be demonstrated by linearizing Einstein’s equations around a flat spacetime.

Let us consider a metric of the form

gab = ηab + hab , (1.18)

where ηab is the flat Minkowski metric and hab a small metric perturbation satisfying

|hab| << 1, meaning that the spacetime is quite close to the spacetime of special rela-

tivity. In addition, the index will be raised and lowered with the Minkowski metric ηab

and ηab. The inverse metric is given by gab = ηab − hab, where the second order term of

the metric contribution hab have been neglected. Using the metric (1.18) it is possible

to calculated the Christoffel symbols, Riemann tensor, Ricci tensor and Ricci scalar,

and therefore the Einstein tensor [67]. Then, at linear order, gravity is described by the

following equation

�h̄ab − ∂a∂ch̄cb − ∂b∂ch̄ca + ηab∂
c∂dh̄cd = 2κTab , (1.19)

where � := ηab∂a∂b is the d’Alembert operator. For convenience, it has been introduced

the trace-reversed metric perturbation h̄ab := hab − h
2ηab, being h := ηabhab = haa. Note

that, in the linearized Einstein equations (1.19) one assumed that the scale of Tab has

the same order of magnitude than the perturbation hab. Equation (1.19) can be further



Chapter 1. Some elements of General Relativity 7

simplified by a coordinate transformation, taking advantage of the gauge freedom in GR.

We can exploit this gauge freedom by choosing the well-known Lorentz (or Hilbert) gauge

∂ah̄
ba = 0 , (1.20)

such that equation (1.19) is simply reduced to a wave equation with sources term

�h̄ab = 2κTab . (1.21)

Far from the matter sources, in the vacuum region, it can be further reduced to

�h̄ab = 0 . (1.22)

Equation (1.22) shows that the metric perturbation propagates as waves distorting the

flat spacetime. These metric deformations are known as gravitational waves.

We can get a deeper insight onto the structure of these waves by analyzing one of the

simplest solutions of the equation (1.22), which is the plane harmonic wave, given by

h̄ab = Re(Aab exp(ikc x
c)), (1.23)

with a real wave covector4 kc and a symmetric amplitude tensor Aab. The plane harmonic

waves satisfies the linearized vacuum field equation if and only if kaka = 0, which

means that kc is a lightlike covector. In this solution, the plane wave travels along

the spatial direction ~k = (kx, ky, ky)/k
0. Moreover, the plane harmonic wave has to

satisfy the Lorentz gauge condition, i.e., kaAab = 0, implying that the amplitude of

the oscillations is transverse to the direction of propagation. Although Aab has ten

independent components, the Lorentz gauge conditions (1.20) impose four additional

scalar constraints, leading to six independent components. Furthermore, the Lorentz

gauge condition is preserved under coordinate transformation xa → xa + fa(x) with

�fa = 0. Therefore, the following claim is satisfied: assuming a plane harmonic wave

solution as (1.23) of the linearized vacuum field equation in the Lorentz gauge, and let

ua be a constant four-velocity. Then, a coordinate transformation can be made such

that the Lorentz gauge condition is preserved and such that

uaAab = 0

ηabAab = 0

}
transverse-traceless gauge ,

4Recall that, the wave vector in coordinates is given by kc = (ω,~k) where ω is the angular frequency

of the waves and ~k = (kx, ky, kz) is the wave number vector with the propagation direction of the waves,
being the component of the covector kc = (ω,−kx,−ky,−kz).
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in the new coordinates. The proof of this assertion can bee seen in [70, p.43]. This is

called transverse-traceless gauge or TT-gauge. In this gauge, the amplitude tensor Aab

has only two non-zero independent components, which means that the GW has only

two physical degrees of freedom that correspond to the polarization state, namely, plus

mode + and cross mode ×. Their names come from the effect of these GWs: the plus

mode polarization deforms a circle ring of test particles, elongated and compressed along

the axis x and y direction, while the cross mode polarization deforms in the same way

along the diagonal directions. Consequently, in the rest frame of the observer ua, for a

GW propagating along the z-axis, the tensor Aab can be written as:

Aab =


0 0 0 0

0 A+ A× 0

0 A× −A+ 0

0 0 0 0

 , (1.24)

where A+ and A× are the two independent polarization of GWs.

1.3.1 Generation of gravitational waves: Quadrupole formula

Let us consider now the linearized field equations with a non-vanishing source, i.e.,

Tab 6= 0. Recall that, choosing the Lorentz gauge, the weak field equations reduce to

�h̄ab = 2κTab (1.25)

∂ah̄
ba = 0, (1.26)

which can be easily solved by using the retarded potential from linear wave equation

theory. Therefore, for each component h̄ab one gets

h̄ab(t, ~r) =
1

4π

∫
R3

2κT ab(tret, ~r
′)dV ′

|~r ′ − ~r|
, (1.27)

where tret = t− |~r
′−~r|
c is the retarded time. In addition, ~r = (x, y, z) with |~r| = r and dV ′

is the volume element with respect to primed coordinates. Since we are only concerned

to some particular solutions, far way solution from the sources, we assume that T ab is

different from zero only in a compact region of space SR, namely, a sphere of radius R

(i.e., T ab(t, ~r) = 0 if r ≥ R) see Figure 1.1. We are interested in the field h̄ab at point ~r,

being r >> R. In this limit, terms of order O(r′/r) can be neglected and we get

h̄ab(t, ~r) =
κ

2π

1

r

∫
SR

T ab
(
t− r

c
, ~r ′
)
dV ′ , (1.28)
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Figure 1.1: Far zone regime. Compact region SR of the spacetime where Tab is
non-vanishing.

Equation (1.28) is known as the far-field approximation.

On the other hand, using the conservation law for Tab, which in the weak-field regime is

only ∂aT
ab = 0, it is easy to prove that∫

SR

T a0dSR = 0 , (1.29)∫
SR

T ijdSR =
1

2c2

d2

dt2

∫
SR

T 00dSR , (1.30)

where dSR is the volume element of the sphere SR. Finally, using the previous results,

we find that in the far-field approximation the solution of (1.28) is

h̄ij(t, ~r) =
2G

c4 r

d2

dt2
Qij

(
t− r

c

)
, (1.31)

where Qij =
∫
SR
T 00xixldSR is the quadrupole moment (or second mass moment).

Finally, GWs have to be extracted in the TT -gauge, in order to make explicit the

physical degree of freedom. Defining the TT -projector as Pijkl = PikPjl − 1
2PijPkl,

where Pij = δij − ninj is the projector operator5 and ~ni = ~r/r is the direction of the

unit vector orthogonal to the wavefront, one can obtain the famous quadrupole emission

formula of gravitational waves

h̄TTij (t, ~r) =
2G

c4 r
Pij

kl d
2

dt2
Qkl

(
t− r

c

)
, (1.32)

where Qkl = Qkl − 1
3δklQ

j
j . Some important observations can be made: (i) h̄TTij decay

as 1/r 6, (ii) the first non-vanishing contribution correspond to quadrupole radiation,

which means there are no contribution of monopole and dipole radiation [68, p.302]

and (iii) these equations have been derived in the weak-field regime and using the fact

∂aT
ab = 0, that does not contain information of the curved spacetime. For that general

frame derivation see [67, p.250].

5We will discuss about this projector in the Chapter 2.
6We will see this property when we study GW extraction in the Chapter 2.



aaaaaaaaaaaaaaaaaaaaaaaaaaa



Chapter 2

Continuum Problem

In this Chapter we describe briefly the mathematical theoretical background, used in

this Thesis, related to the continuum problem in Numerical Relativity. In particular, we

review the well posed formulations of Einstein’s equations and the important concept of

hyperbolicity. We do not go further doing a extensive review of these topics, since there

are plenty of bibliography dealing these topics.

The solution of Einstein’s equations (1.16) provides a solution for the four dimensional

metric gab in the entire spacetime or a certain domain defined D ⊂ M, given an ap-

propriate initial data and boundary conditions. As it was mentioned before, Einstein’s

equations are a system of ten nonlinear second order PDEs. Unfortunately, there are

not general methods to obtain exact solutions for most of the non-linear partial differ-

ential equations. Due to the complexity of the Einstein equations, analytical solutions

are known only for problems with many symmetries, such as the solutions for spher-

ically [71] or axially [72] symmetric black holes. Another important example would

be the cosmological solutions for studying the expansion of the Universe through the

Friedmann-Lemaitre-Robertson-Walker metric [73], that assumes that the three dimen-

sional space has constant curvature.

Otherwise, Einstein’s equations can be formulated as an initial value problem, which

allows us to study existence and uniqueness of more general solutions [74], i.e., not

assuming any symmetry.

Let us assume that the Einstein equations (1.16) can be written as the following second

order evolution system

∂2
t gab = Sab (∂tgab,Γ

c
ab, ∂cΓ

c
ab) , (2.1)

for all t > 0. The Cauchy problem for (2.1) consist on, given and initial data {gab, ∂tgab}
at initial time t = t0, finding the solution gab for t ≥ t0. At first glance, we know that

11



Chapter 2. Continuum Problem 12

there are ten independent metric coefficients gab, hence ten field equations are needed

in order to study their dynamical evolution. Nevertheless, the Bianchi identities (1.13)

∇t
(
G0a − κT 0a

)
+∇k

(
Gka − κT ka

)
= 0 , (2.2)

implies that the four equations G0a = κT 0a are first integral of the system, thus they

must be preserved for all time. Subsequently, these four equations do not contain any

additional information about the dynamical evolution of the fields. Rather, they are

constraints on the initial data {gab, ∂tgab}. This means that only six of the ten Einstein’s

equations are independent. Indeed, it is not a surprise, since the four remaining metric

coefficients are directly related to a choice of coordinate system on M, called gauge

conditions. Thanks to the general covariance in GR, it is always possible to choose the

coordinates, since the Einstein equations (1.16) are invariant under general coordinate

transformation.

The covariant nature of Einstein’s equations implies that there is not an a priori dis-

tinction between time and space. Therefore, an evolution system, namely of first-order

in time, can not be written in a simple way. There are different ways to recast Einstein

equations (1.16) as an evolution system. Here we will study the 3 + 1 formulation [75],

that will allow us to split space and time explicitly, leading to a evolution system with

partial derivatives of first order in time and second order in space.

This chapter is essentially divided in four parts. In Section 2.1, we review the 3 + 1

decomposition used in Numerical Relativity, by rewriting the field equations in General

Relativity as set of evolution equations plus four constraints. In Section 2.2, we give

an overview of some important concepts regarding PDEs, namely, well-posedness and

hyperbolicity. Then, in Section 2.3, we present the formalism used in this Thesis, namely

the conformal and covariant Z4 system (CCZ4). We also present the choice of gauge

(or slicing) conditions used to evolve our formalism. and we analyze the characteristic

structure of the CCZ4 formalism. Finally, the section 2.4 culminates with a description

of the most important analysis quantities computed in our simulations: the Arnowitt-

Deser-Misner (ADM) mass, the angular momentum, and the gravitational radiation.

2.1 Splitting Spacetime into time and space

In order to decompose the spacetime into time and space it is necessary to introduce

some mathematical concepts. The first one is a certain class of spacetime, called globally

hyperbolic spacetimes. This class of spacetime allows: (i) the existence of no closed causal

path, (ii)M has a Cauchy surface Σ, which is defined as a spacelike hypersurface Σ ⊂M
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such that each causal( timelike or null) curve without point intersects Σ once and only

once[66, 76] , (iii) the Cauchy surface Σ is described by a universal time function, i.e.,

its gradient is timelike and (iv) M has a topology given by R × Σ, [76]. Additionally,

a subset V ⊂ M is a spacelike hypersurface if V is the image of a three dimensional

manifoldW by an embedding ϕ :W →M such that ϕ(W) = V and the metric g induce

a metric γ on V with signature (+,+,+).

2.1.1 3 + 1 decomposition

Let us consider a globally hyperbolic spacetime M foliated by a one-parameter family

of three dimensional spacelike hypersufaces Σt. By a foliation of the spacetime M, it

is understood that there exist a family of disjoint of spacelike hypersurface {Σt}t∈R
covering M, i.e., M = ∪t∈RΣt and Σti ∩ Σtj = ∅ for i 6= j. Each Σti is called a leave or

slice. The foliation can be defined as a function of a scalar field Φ on M such that the

slices of the foliation correspond to a surface level of Φ, i.e.,

Σt = {xa ∈M : Φ(xa) = t} , for all t ∈ R , (2.3)

satisfying that the gradient of Φ never vanishes and is normal to the spacelike hypersur-

faces. Defining a timelike 1-form

Ωa = ∇aΦ , (2.4)

such that its normalization is given by

||Ω||2 ≡ gab∇aΦ∇bΦ = − 1

α2
. (2.5)

The function α(xa) is defined as the lapse function, which measures the proper time of

the observers moving along the normal direction and it is strictly positive for spacelike

hypersufaces. In fact, the lapse function allows to define the unit normal vector field na

to Σt as

na := −αΩa = −αgab∇bΦ , (2.6)

the minus sign is chosen in order to vector na be future-directed, i.e., the direction of n

corresponds to the direction to which t increases.

The metric gab induces a three dimensional Riemannian metric γab (or first fundamental

form) onto Σt as:

γab := gab + nanb , (2.7)

γab := gab + nanb . (2.8)
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The geometrical elements na and γab play a role as projectors, allowing to decompose

an arbitrary four dimensional spacetime tensor into its purely time and spatial parts,

respectively. The spatial projector is defined:

γba := δba − nbna , (2.9)

where naγab = 0 by construction.

Recalling that Ωa = ∇aΦ and naΩa 6= 1, the following time vector can be considered

ta = αna + βa , (2.10)

The time vector connects points with the same spatial coordinates between neighboring

slices Σt to another Σt+∆t and satisfies taΩa = 1. The vector βa measures the devia-

tions of the time lines with respect to the normal lines and it is called shift vector (see

Figure 2.1 for a intuitive interpretation of lapse function α and shift vector βi). In

fact, observers at rest in Σt following the congruence given by na are called Eulerian

observers. Introducing coordinates adapted to the foliation, i.e., on each hypersurface Σt

a coordinate system xi = (x1, x2, x3) can be introduced and a well-defined coordinated

system on M given by xa = (t, xi), where the natural basis of tangent space on M is

given by ∂/∂xa = (∂/∂t, ∂/∂xi). In this adapted coordinates we have that

βa = (0, βi), na =
1

α
(1,−βi), (2.11)

βa = γabβ
b, na = (−α, 0, 0, 0). (2.12)

Using equations (2.11)-(2.12), the four dimensional components of the metric (and its

inverse, respectively) in a 3 + 1 decomposition has the following form:

gab =

(
−α2 + βiβ

i βi

βi γij

)
, gab =

(
−1/α2 + βiβ

i βi/α2

βi/α2 γij − βiβj/α2

)
, (2.13)

such that, the 3 + 1 line element is given by:

ds2 = gabdx
adxb = −α2 dt2 + γij

(
dxi + βidt

)(
dxj + βjdt

)
. (2.14)

Finally, the determinant of four dimensional metric is related with the determinant of

the tree metric through
√
−g = α

√
γ.
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Figure 2.1: Foliation of the spacetime M by the hypersurfaces Σt. Intuitively, α
measures the proper time of the coming observers and βi measures the displacement of

the observes between consecutive hypersurfaces.

2.1.2 Projecting tensors and equations

The covariant derivative onto Σt, denoted as D, acting on a tensor T on Σ is defined by

DcT
a1...ar

b1...bl := γdc γ
a1
p1
. . . γarpr γ

q1
b1
. . . γqlbl∇dT

p1...pr
q1...ql (2.15)

and satisfies the following conditions: (i) it is a linear operator, (ii) it has torsion free,

(iii) it is compatible with the metric and (iv) Leibnitz’s rule holds. Any four dimensional

tensor can be projected onto Σt, as for example Riemann tensor. The three dimensional

Riemann tensor associated to metric γ in Σ is defined as:

(DaDb −DbDa)vc = vd
(3)Rdabc (2.16)

for any spatial vector va. Additionally, the second fundamental form on Σt can be defined

as follows:

Kab := −γca∇cnb = −Dcnb = −1

2
Lnγab , (2.17)

being na unit normal vector to Σt, which can be interpreted either as the change of the

normal vector under parallel transport, or as the rate of change of the three-metric as

measured by Eulerian observers. Since it provides a measure of how the hypersurface is

curved, it is called extrinsic curvature of Σt. From its definition (2.17) one can extract
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the following direct properties: it is purely spatial Kabn
b = 0, and it is a symmetric

tensor Kab = Kba.

Moreover, there exist some important geometrical relations between the Riemann ten-

sor in M and the hypersurface Σt. The first, called Gauss relation, relates to three

dimensional Riemann tensor (3)Rdabc with the four dimensional one, namely

γpaγ
q
bγ

r
cγ

s
d

(4)Rcspq = (3)Rrdab +Kr
aKbd −Kr

bKad . (2.18)

Furthermore, the covariant derivatives of the extrinsic curvature are related as well to

the four dimensional Riemann tensor through the Codazzi equation

γpaγ
q
bγ

r
cn

s (4)Rpqrs = DbKac −DaKbc . (2.19)

Note that the Gauss and Codazzi relations (2.18)−(2.19) represent integrability condi-

tions for which γab and Kab must be satisfied for any Σt embedded in the spacetime

M.

There are other useful relations, called Ricci equations, which are obtained projecting

twice onto Σt and twice on na

γpaγ
q
bn

rns (4)Rprqs = LnKab −
1

α
DbDbα+Kc

bKca . (2.20)

Proof of these relations can be found in detail in [77, p.29]

2.1.3 Evolution and Constraint equations

Here, 3 + 1 decomposition is applied to Einstein’s equations, leading to a system of

PDEs of first order in time. First of all, let us start with the energy momentum tensor,

which can be decomposed as

Tab = nanbτ + Sanb + Sbna + Sab , (2.21)

where τ := nanbT
ab is the energy density, Sa := −γcanbTab is the momentum density

and Sab := γcaγ
d
bTcd is the stress tensor. Now, the Einstein equations can be projected

as follows:
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(i) Full time-projection:

2nanbGab = 16πnanbTab ,

nanb (Rab − gabR) = 16πτ ,

γabγpq (4)Rapbq = 16πτ , (2.22)

where K = γabKab is the trace of extrinsic curvature. The left-hand side of (2.22)

is the double trace of Gauss relation (2.18), leading to the so-called the equation

Hamiltonian constraint

(3)R+K2 −KabK
ab = 16πτ. (2.23)

(ii) Mixed time-space projection:

γban
cGbc = 16πnanbTab ,

γbaγ
cdne (4)Rcbde = 8πSa , (2.24)

the left-hand side of (2.24) is the trace of Codazzi relation (2.19), therefore we

obtain the Momentum constraint

Db(K
b
a − δbaK) = 8πSa . (2.25)

Note that equations (2.23)-(2.25) do not have explicit time derivatives. Consequently,

they are not evolution equations but rather constraints on {γij ,Kij} which should be

satisfied at all times. The Hamiltonian and Momentum constraint equations (2.23)-

(2.25) form a set of four elliptic equations that are crucial in the construction of the

initial data: not all the components of the spatial metric and the extrinsic curvature can

be chosen freely as initial conditions. The solution should satisfy the constraints both

initially and during the evolution. Finally,

(iii) Full space-projection: Multiplying the Gauss equation (2.18) by γac and using

then the Ricci equation, we obtain

LnKab = − 1

α
DaDbα+Rab−2KacK

c
b +KKab−8π

(
Sab −

1

2
(S − τ)γab

)
, (2.26)

where S := γijSij .

Recalling the equations as a function of the time vector (2.10) and using the properties

of the Lie derivative (1.6), we obtain that the 3 + 1 decomposition of Einstein equations
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is given by:

(∂t − Lβ)γij = −2αKij , (2.27)

(∂t − Lβ)Kij = DiDiα+ α
(
Rii − 2KikK

k
j +KKij

)
− 8πα

(
Sij −

1

2
(S − τ)γij

)
, (2.28)

(3)R+K2 −KijK
ij = 16πτ , (2.29)

Dj(K
j
i − δ

i
iK) = 8πSi , (2.30)

where we have used that in adapted coordinates (LtF )a... b... = ∂tF
a...

b.... The PDE

system (2.27) − (2.30) is also called the ADM equations in reference of the work by

Arnowitt, Deser, and Misner [78], whose wrote a Hamiltonian formulation for GR.

Nevertheless, the evolution system above was developed by York [75].

The evolution ADM equations is a system of first order derivatives in time and second

order in space. They are six evolution equations that describes how the spatial geometry

changes from Σt to Σt+∆t, given by the relations (2.28), which are supplemented by the

relation (2.27) between the evolution of three-dimensional metric with the extrinsic

curvature. As we said before, the initial data {γij ,Kij} of these evolution equations

must satisfy the four elliptic constraint equations (2.29)-(2.30) at all times. Indeed, by

virtue of Bianchi identities, they will remain satisfied during the evolution if they are

satisfied at the initial time [79].

Eventually, in order to obtain the four dimensional metric gab on the whole spacetime

M, the equations (2.27)-(2.28) have to be solved satisfying (2.29)-(2.30). There are two

different approaches to solve numerically this evolution system. The first one consists on

starting with a solution of the constraint equations (2.29)-(2.30) and just evolve numer-

ically by solving the equations (2.27)-(2.28). This method is called free evolution [63,

p.49]. As the constraint equations are not solved during the numerical evolution, we

must carefully monitor the constraints violations at each time step because of the gen-

eration and propagation of numerical errors. The presence of large constraint violations

indicates that the physical state obtained numerically is not a physical solution of Ein-

stein’s equations. Another approach is known as constrained evolution and involves to

solve all the elliptic constraints at each time step for some of the components of (γij ,Kij),

while evolving the remaining components using the Ricci equations [80].
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2.2 Well-Posedness Problem and the hyperbolicity con-

cept

Let us consider a dynamical mathematical model that represents some interesting phys-

ical phenomena. Assuming that it is possible to formulate an initial value formulation

of this model, we will say that, according to Hadamard criteria [81], the problem is

well-posed if there exist a unique solution that depends continuously on its initial data.

Since any physical solution must satisfy these basic properties, one can conclude that

ill-posed mathematical models can not describe physical systems.

Since proving that an initial value formulation is well-posed could be quite difficult in

general, is more convenient to study the hyperbolicity of the system [63, 70, 82]. Hyper-

bolicity is a key property for the stability. In fact, whether we have strongly hyperbolic

system the initial boundary value problem (IBVP) is well-posed, and therefore, the so-

lution at a finite time is bounded. As a corollary, with suitable numerical methods [83],

stable numerical solutions can be obtained. Otherwise, for weakly hyperbolic systems

the IBVP is not well-posed, and the solution can grow faster than an exponential, im-

plying unstable numerical evolutions. This section is based on books [63, 70, 83] and

paper [84].

Let us be more precise on these concepts by considering the following system of partial

differential equations on a n−dimensional space:

∂tu = P

(
t, x,

∂

∂x

)
u, x ∈ Rn, t ≥ t0 , (2.31)

with initial data

u(t0, x) = f(x) . (2.32)

Here, u(t, x) ∈ Cm is a vector with m-components, and P (t, x, ∂/∂x) is a general differ-

ential operator given by

P

(
t, x,

∂

∂x

)
=
∑
|η|≤p

Aη(t, x)

(
∂

∂x1

)η1

. . .

(
∂

∂xd

)ηd
, (2.33)

of order p. In this case η is a multi-index with nonnegative integer elements, i.e.,

η = (η1, . . . , ηd) and |η| =
∑

i ηi. The coefficients Aη = Aη1,...,ηd are m × m matrix

functions. For simplicity, we assume that P
(
t, x, ∂∂x

)
= P

(
∂
∂x

)
and Aη are matrix with

constant coefficients. Mathematically speaking, we say that the problem (2.31) with

initial data (2.32) is well-posed if, for every t0 and every f ∈ C∞(x) :

(a) There exists a unique solution u(t, x) ∈ C∞(t, x), and
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(b) There are constants α and K ≥ 1, independent of f and t0, such that

||u(t, x)|| ≤ K exp(α(t− t0)) ||u(t0, x)|| , (2.34)

for a suitable norm || · || .

This would mean that, the problem (2.31)-(2.32) is well-posed: There exists a unique

solution u(t, x) and this solution depends continuously on the initial and boundary data

of the problem. As we said before prove the above definition for a IBVP could be tough.

Therefore, let us consider a first order system of evolution equations of the form:

∂tu+Ak∂ku = S(u) , (2.35)

where Ak are n×n matrices, with the index k running over the spatial dimensions, and

S(u) is a source vector that may depend on the function u but not on their derivatives.

Let us also define the principal symbol of (2.35) as P (sk) = Aksk, where sk is an arbitrary

spatial unit vector. We say that:

• The system (2.35) is strongly hyperbolic if the principal symbol has real eigenvalues

and a complete set of eigenvectors for all si.

• The system (2.35) is weakly hyperbolic if the principal symbol has real eigenvalues

but an incomplete set of eigenvectors for all si.

Therefore, with this definition, hyperbolicity of the system translates into a set of alge-

braic conditions [85]. Indeed, it is possible to prove that whether the system is strongly

hyperbolic guarantees well-posedness of the initial value problem posed [82, 84, 86],

providing by a suitable initial and boundary conditions.

Therefore, looking for strongly hyperbolic formulations to evolve the Einstein equations

in numerical relativity (NR) is a crucial issue. We would like to emphasize that, since

Einstein’s equations are highly non-linear, the arguments presented above could not be

adopted directly, but are only valid on the linearized solutions on a given background.

2.3 Evolution formalism

There are several well-know formulations in NR which have been shown to be strongly

hyperbolic, and therefore well-posed, like for example: Baumgarte-Shapiro Shibata-

Nakamura (BSSN) [87, 88] which is one of the most popular formulations used by

NR community. This formulation is a modification of the ADM formulation which
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introduces a conformal decomposition, a new evolved field for the contracted Christoffel

symbols and adds energy-momentum constraints to the evolution of the equations in

order to obtain a strongly-hyperbolic system. We would like to stress that there are

other formulations which does not use explicitly the 3+1 formalism, as for example, the

generalized harmonic formulation [89, 90] or the fully-constrained formulations [80, 91].

Here, we focus on describe in detail the CCZ4 [92] formulation that will be used in the

numerical simulations throughout this Thesis.

2.3.1 Z4 formulation

The Z4 formalism was first proposed as a covariant extension of Einstein equations to

achieve an hyperbolic evolution system free of elliptic constraints [93, 94]. The equations

of motion can be derived from a Palatini-type variation [93] using the Lagrangian

L = R+ 2∇aZa + LM , (2.36)

where Za is a extra vector added to the standard Einstein-Hilbert action and LM is the

Lagrangian representing the matter fields. Performing the variation with respect to the

metric, the Z4 equations are obtained [95]

Rab +∇aZb +∇aZb = 8π

(
Tab −

1

2
gab trT

)
, (2.37)

where Rab is the Ricci tensor associated to the spacetime metric gab and Tab is the

stress-energy tensor, with trace trT ≡ gabTab. The Za four-vector can be interpreted

as a four-vector which measures deviations from Einstein’s solutions. One convenient

way of enforcing a dynamical decay of the constraint violations associated to Za is by

including the additional damping terms proportional to κz as follows

Rab +∇aZb +∇aZb = 8π

(
Tab −

1

2
gab trT

)
+ κz (naZb + nbZa − gabncZc) . (2.38)

As it was shown in [96], the energy and momentum constraint modes are exponentially

damped if κz > 0. However, since the damping terms are proportional to the unit normal

of the time slicing na, the full covariance of the system is broken due to the presence of

a privileged time vector. Notice that, the full set dynamical fields consists now of the

pair {gab, Za}. It is also worth stressing that the solutions of the original field equations

can be recovered by imposing the vanishing of the additional terms, namely [63, p.68]

∇aZb +∇bZa = 0 , (2.39)
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which is the Killing equation for the four vector Za. In a generic case, the only solution

of this equation is the trivial one

Za = 0 . (2.40)

Taking the divergence of (2.38) and using the conservation laws for the Einstein and

stress-energy tensor respectively, we obtain

�Za +RabZ
b − κz∇b (naZb + nbZa − gabncZc) = 0 . (2.41)

Equation (2.41) has some important features. First, this equation plays the role of the

subsidiary system, that is, it describes the evolution equations of the constraints (2.23)-

(2.25). Furthermore, this subsidiary system (2.41) contains second order time derivatives

in Za [63]. Therefore, in order to preserve the algebraic constraint (2.40) during the

time evolution, both conditions Za|t=0 = 0 and ∂tZa|t=0 = 0 need to be imposed in the

initial slice. It means that, the initial data for the Z4 equations must satisfy the energy

and momentum constraint and have a vanishing value of the four-vector Za. Finally,

equation (2.41) has the form of telegraph equation 1 [97], which solution behaves as

Za ≈ e−κzt(F (x− t) +G(x− t)). It is clear then that κz plays a role of the attenuation

term.

The Z4 equations (2.38), as the Einstein equations, can be written as an evolution

system using the 3 + 1 decomposition, namely:

(∂t − Lβ)γij = −2αKij , (2.42)

(∂t − Lβ)Kij = −Di(Djα) + α
(
Kij(trK − 2Θ)− 2KkiK

k
j +(3) Rij

+ DiZj +DjZi

)
− 8π

(
Sij −

1

2
γij(S

i
j − τ)

)
, (2.43)

(∂t − Lβ)Θ =
α

2

(
α trK(trK − 2Θ) + (3)R+ 2DiZi −Ki

kK
K
i

− 2
∂kα

α
Zk − 16πτ

)
, (2.44)

(∂t − Lβ)Zi = α

(
DjK

j
i −Di trK + ∂iΘ−

∂iα

α
Θ− 2Kk

j Zk − 8πSi

)
, (2.45)

where we have introduced the scalar Θ as the projection of Za along the normal direction

to the spatial hypersurfaces:

Θ := naZ
a = −αZ0 = − 1

α
Z0 . (2.46)

1The telegraph equation is given by [97]

∂ttu− a2∂xxu︸ ︷︷ ︸
Wave equation

+ b ∂tu︸ ︷︷ ︸
Dissipation term

+ c u︸︷︷︸
Disppertion term

= 0 ,

where c play a role as an attenuation term or exponential decay depending of its sign.
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Therefore, the Z4 formalism lead to evolution equations for the evolved fields {γij ,Kij , Zi,Θ}
where the constraint equations has been naturally included in the evolution system.

2.3.2 Conformal and Covariant Z4 formulation

A conformal and covariant version of the Z4 formalism, called CCZ4, can be obtained

from the 3+1 decomposition of the evolution equations by using conformal variables [92]

(i.e., see also [98] for other conformal but non-covariant Z4 formulation called Z4c). We

shall briefly summarize the derivation of the equations, starting with the conformal

decomposition (in Cartesian coordinates) of the evolved fields. A conformal metric γ̃ij

with unit determinant and a conformal trace-less extrinsic curvature Ãij can be defined

as

γ̃ij = χγij , (2.47)

Ãij = χ
(
Kij −

1

3
γij trK

)
, (2.48)

where trK ≡ γijKij . These definitions lead to the following new constraints

γ̃ = 1 , tr Ã ≡ γ̃ijÃij = 0 , (2.49)

which will be denoted as conformal constraints from now on in order to distinguish them

from the physical constraints associated to Za. As a consequence, we have the following

relations γ̃ij = χ−1 γij and γ = χ−3 for the inverse and determinant of the induced

metric respectively. Notice that now the list of evolved fields is {χ, γ̃ij , trK, Ãij , Zi,Θ}.
Instead of using trK and Zi, it is more convenient to use the following quantities

trK̂ ≡ trK − 2 Θ , (2.50)

Γ̂i ≡ Γ̃i +
2

χ
Zi , (2.51)

so that the evolution equations are closer to those of the BSSN formulation [87, 88],

where the quantity Γ̃i = γ̃jk Γ̃ijk = −∂j γ̃ij is directly evolved. After some algebra, the
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evolution equations for the final list of evolved fields {χ, γ̃ij , trK̂, Ãij , Γ̂i,Θ} are:

∂tγ̃ij = βk∂kγ̃ij + γ̃ik ∂jβ
k + γ̃kj∂iβ

k − 2

3
γ̃ij∂kβ

k − 2α
(
Ãij −

λ0

3
γ̃ij tr Ã

)
− κc

3
αγ̃ij ln γ̃ , (2.52)

∂tÃij = βk∂kÃij + Ãik∂jβ
k + Ãkj∂iβ

k − 2

3
Ãij∂kβ

k − κc
3
α γ̃ij tr Ã

+ χ
[
α
(

(3)Rij +DiZj +DjZi − 8π Sij
)
−DiDjα

]TF

+ α
(

tr K̂ Ãij − 2ÃikÃ
k
j

)
, (2.53)

∂tχ = βk∂kχ+
2

3
χ
[
α(trK̂ + 2 Θ)− ∂kβk

]
,

∂t tr K̂ = βk∂ktrK̂ −DiD
iα+ α

[
1

3

(
trK̂ + 2Θ

)2
+ ÃijÃ

ij + 4π
(
τ + trS

)
+κzΘ

]
+ 2ZiDiα , (2.54)

∂tΘ = βk∂kΘ +
α

2

[
(3)R+ 2DiZ

i +
2

3
tr2K̂ +

2

3
Θ
(
trK̂ − 2Θ

)
− ÃijÃij

]
− ZiDiα− α

[
8π τ + 2κz Θ

]
, (2.55)

∂tΓ̂
i = βj∂jΓ̂

i − Γ̂j∂jβ
i +

2

3
Γ̂i∂jβ

j + γ̃jk∂j∂kβ
i +

1

3
γ̃ij∂j∂kβ

k

− 2Ãij∂jα+ 2α
[
Γ̃ijkÃ

jk − 3

2χ
Ãij∂jχ−

2

3
γ̃ij∂jtrK̂ − 8π γ̃ij Si

]
+ 2α

[
−γ̃ij

(
1

3
∂jΘ +

Θ

α
∂jα

)
− 1

χ
Zi
(
κz +

2

3
(trK̂ + 2Θ)

)]
, (2.56)

where the expression [. . .]TF indicates the trace-free part with respect to the metric γ̃ij

and the Lie-derivatives of β has been written explicitly. The non-trivial terms inside

this expression can be written as

(3)Rij + 2D(iZj) = (3)R̂ij + R̂χij , (2.57)

where

R̂χij =
1

2χ
∂i∂jχ−

1

2χ
Γ̃kij∂kχ−

1

4χ2
∂iχ∂jχ+

2

χ2
Zkγ̃k(i∂j)χ

+
1

2χ
γ̃ij

[
γ̃km

(
∂k∂mχ−

3

2χ
∂kχ∂mχ

)
− Γ̂k∂kχ

]
, (2.58)

(3)R̂ij = −1

2
γ̃mn∂m∂nγ̃ij + γ̃k(i∂j)Γ̂

k + Γ̂kΓ̃(ij)k + γ̃mn
(

Γ̃kmiΓ̃jkn

+Γ̃kmjΓ̃ikn + Γ̃kmiΓ̃knj

)
, (2.59)

DiDjα = ∂i∂jα− Γ̃kij∂kα+
1

2χ

(
∂iα∂jχ+ ∂jα∂iχ− γ̃ij γ̃km ∂kα∂mχ

)
, (2.60)
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The matter terms of this conformal approach are computed by contracting the stress-

energy tensor (2.21), namely

τ = na nb T
ab = α2 T 00 , (2.61)

Si = −naTai ≡
S̃i
χ
, Sij = Tij ≡

S̃ij
χ2

, (2.62)

S̃i = α γ̃ik

(
T 0k + βk T 00

)
, (2.63)

S̃ij = γ̃ik γ̃jm β
kβm T 00 +

(
γ̃ik βj + γ̃jk βi

)
T 0k + γ̃ik γ̃jm T

km , (2.64)

The evolution equations (2.52)-(2.56) are equivalent to those obtained in the original

work [92], by defining the conformal factor as χ = γ−1/3 instead of φ = γ−1/6, except

by two significant differences. First, there is a new term proportional to tr Ã. This

term, which was already suggested in [92], is crucial to obtain a well-posed evolution

system if the algebraic conformal constraints ln γ̃ = tr Ã = 0 are not enforced during the

evolution, as we shall illustrate in Section 2.3.4. Second, damping terms proportional to

κc have been included in order to control dynamically the conformal constraints, exactly

in the same way as it is done with the physical ones, as we shall show with some tests in

Section 4.5. A common feature of the current conformal formulations, like the different

flavors of BSSN[87, 88] and CCZ4 [92, 98], is that a subset of the constraints of the

system must be enforced after each time step of the simulation in order to obtain a

stable evolution. Although this feature does not present a problem when using explicit

time integrators, it might be not so straightforward for more sophisticated numerical

methods or for automatically generated codes [99–102]. Note that, with the new terms

introduced in the equations, it is ensured that the full system is strongly hyperbolic (and

well-posed), as we will show in the section 2.3.4, and that the constraints are dynamically

enforced during the evolution. Hence, our modified CCZ4 formalism does not require

the algebraic enforcing of any constraint.

2.3.3 Slicing conditions

Einstein’s equations do not impose any condition on neither the lapse function α nor

the shift-vector βi, which are directly related to the specific choice of time and spatial

coordinates. The choice related to lapse time coordinates function is called slicing condi-

tion, and for the spatial coordinates on the hypersurface Σt, shift vector, is called spatial

gauge condition. As a consequence of the general covariance in GR, there is infinite

possibilities to set the coordinate freedom.

The simplest choice would be to set some algebraic form for the lapse and shift-vector.

For instance, the geodesic slicing condition is recovered with α = 1 and βi = 0, so that
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the time coordinate coincide with the proper timer of the Eulerian observers. However,

this condition is not a good choice [103], since it leads to coordinate singularities, i.e.,

Eulerian observers will focus into a single point, or equivalently, the spatial volume
√
γ

will tend to zero.

Other ways of fixing the lapse and shift-vector would involve some geometrical property,

as for example, the maximal slicing condition trK = 0, which implies

DiDiα = α
(
KijK

ij + 4π(τ + S)
)
. (2.65)

This election of the lapse function is a singularity-avoiding condition [103], i.e., the lapse

function α goes to zero when the spatial volume
√
γ goes to zero [104, 105]. The maximal

slicing condition (2.65) is an elliptic equation. In the context of free evolution scheme,

this kind of equation is theoretically more involved and computationally expensive. In

order to circumvent these problems, one could transform this elliptic equation into a

parabolic one [106].

Another interesting choice is the so called harmonic slicing, which considers that the

harmonic condition2 holds for the x0 = t coordinate, leading to the following evolution

equation for the lapse function

∂tα = βi∂iα− α2 trK . (2.66)

The harmonic slicing contrast with both slicing conditions explained before, since it

involves a time evolution for the lapse. This time coordinate choice can be generalized

by defining a family of slicing conditions, called Bona-Massó gauge [105],

∂tα = βi∂iα− α2 f(α) trK , (2.67)

which has the desired properties for any f(α) ≥ 0: the lapse sector is strongly hyperbolic

and it can mimic the behavior of the maximal slicing condition. Note that the case

f(α) = 1 correspond to the harmonic slice condition, while that f(α) → ∞ allows to

recover the maximal slicing condition. For our numerical simulations, we shall use the

so-called 1 + log slicing condition, corresponding to3 f(α) = 2/α. This choice has very

good singularity avoidance conditions, since near the singularity α→ 0 and f(α)→∞,

behaving as the maximal slicing condition.

2 The harmonic condition for the spacetime coordinates (xa) is given by �gxa := gbc∇b∇cxa = 0.
3Changing trK by tr K̂.
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We can also define the shift-vector βi through a time evolution equation. In particular,

we use the hyperbolic Gamma-driver condition [107, 108], namely

∂tβ
i = βj∂jβ

i + g(α) Bi , (2.68)

∂tB
i = βj∂jB

i − ηBi + ∂tΓ̂
i − βj∂jΓ̂i , (2.69)

being g(α) an arbitrary function depending on the lapse function and η is a constant

parameter that was introduced as a damping term in order to avoid strong oscillations

during the shift evolution. In fact, these hyperbolic conditions can be deduced from a

geometrical elliptic condition called minimal distortion condition [77, 103], which tries

to minimize the stretching of the spatial coordinates. For our numerical simulations,

we shall use the values of g(α) = 3/4 and η = 2. In the following Section 2.3.4, we

discuss these values by analyzing the characteristic structure of CCZ4. As we will see,

the CCZ4 formalism used in this Thesis, when supplied with the 1 + log and Gamma-

freezing condition,will lead to a hyperbolic system, as we will see in the following section.

In that follows, we shall discuss the characteristic structure of CCZ4 formalism, showing

that there exist a completed set of eigenvectors and real eigenvalues.

2.3.4 Characteristic structure of CCZ4

The hyperbolicity of the evolution system (2.52)-(2.56) (in the absence of boundaries or

with periodic boundaries) can be studied for systems of first order in time and space.

Here, instead, we use the concept of pseudo-hyperbolicity [63, 109, 110], that generalizes

the hyperbolicity analysis to systems with second order derivatives in space. In particu-

lar, we reproduce in detail the analysis made in Ref. [111], which relies on a plane-wave

analysis applied to the linearized Einstein equations around a background metric. Notice

also the work in Ref. [112] that extend these ideas using pseudo-differential operators.

Hence, we consider the line element [63, p.42]

ds2 = −α2
0dt

2 + γ̃0
ij(dx

i + βi0dt)(dx
j + βj0dt) , (2.70)

and study the dynamics of perturbations over this background spacetime which propa-

gates along a given normalized direction si (i.e., such that γ0
ijs

isj = 1). The perturbation

for the metric fields {α, βk, γ̃ij , χ} has a generic plane-wave form,

α− α0 = eiω·~x ᾱ(ω, t) , βk − β̄k0 = eiω·~x β̄(ω, t) , (2.71)

γ̃ij − γ̃0
ij = eiω·~x γij(ω, t) , χ− χ0 = eiω·~x χ̄(ω, t) , (2.72)
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where ωk is the wavenumber and ω ≡ ωk s
k. An additional factor iω appears in the

perturbations of the fields {Ãij , K̂,Θ, Γ̂i, Bi}, which are first derivatives of the metric,

namely

Ãij = iωeiω·~x Āij(ω, t) , K̂ = iωeiω·~x K̄(ω, t) , Θ = iωeiω·~x Θ̄(ω, t) , (2.73)

Γ̂i = iωeiω·~x Γ̄i(ω, t) , Bi = iωeiω·~x B̄i(ω, t) . (2.74)

Replacing the above mentioned definitions in (2.52) - (2.56) one can obtain the following

system:

∂tγij = −i ω
(
−γ̃0

ik sj β̄
k − γ̃0

kj si β̄k +
2

3
γ̃0
ijskβ̄

k + 2α0

(
Āij −

λ0

3
γ̃0
ij Ā
)

−β̄s0 γij
)
, (2.75)

∂tĀij = −i ω
{[
α0 χ0

(
1

2χ0
γij −

1

2
γ̃0
ki sj Γ̄k − 1

2
γ̃0
kj si Γ̄k − 1

2χ0
sisj χ̄−

1

2χ2
0

γ̃0
ij χ̄

)
+ sisj

ᾱ

α0

]TF
− β̄s0 Āij

}
, (2.76)

∂tχ̄ = −i ω
(
−2

3
α0 χ0 K̄ −

4

3
α0 χ0 Θ̄ +

2

3
χ0β̄

s − β̄s0 χ̄
)
, (2.77)

∂tK̄ = −iω(ᾱ− β̄s0 K̄) , (2.78)

∂tΘ̄ = −i ω
(
α0

2

[
1

2
trγ̄ − χ0 Γ̄s − 2

χ0
χ̄

]
− β̄s0 Θ̄

)
, (2.79)

∂tΓ̄
i = −i ω

(
−γ̃0 jksjsk β̄

i − 1

3
γ̃0 ijsjsk β̄

k +
4

3
α0γ̃

0 ijsisj K̄ +
2α0

3
γ̃0 ijsjΘ̄

−β̄s0 Γ̄i
)
, (2.80)

∂tᾱ = −i ω
(
α2

0 f(α0) K̄ − β̄s0 ᾱ
)
, (2.81)

∂tβ̄
i = −i ω

(
−g(α0) B̄i − β̄s0 β̄i

)
, (2.82)

∂tB̄
i = −i ω

(
−γ̃0 jksjsk β̄

i − 1

3
γ̃0 ijsjsk β̄

k +
4

3
α0γ̃

0 ij sisj K̄ +
2α0

3
γ̃0 ijsjΘ̄

+ (λ4 − 1)β̄s0 Γ̄i − β̄s0 B̄i
)
, (2.83)

which can be easily written as follows

∂tū = −i ω(A− β̄s0I)ū , (2.84)

where ū is a vector containing the perturbation of the fields, A is the characteristic matrix

and I the identity one. The index s means a contraction with the propagation direction

si (i.e., β̄s0 = siβ̄
i
0). The projection orthogonal to si will be denoted by the index ⊥.

Following what was described in the previous section, we shall say that the system (2.84)

is pseudo-hyperbolic if and only if the characteristic matrix A has real eigenvalues and a
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complete set of eigenvectors. Therefore, with this definition, hyperbolicity of the system

translates into a set of algebraic conditions [85]. The analysis of the characteristic

structure can be simplified by splitting the perturbations in different sectors which do

not interact (i.e., or at least, not strongly) with the others.

It is instructive to analyze first the effect of the term proportional to λ0. There is a

sector, involving only the perturbations of γ̃ and trÃ, given by:

∂t

(
γ̃

trÃ

)
≈ α

(
0 2(λ0 − 1)

0 0

)(
γ̃

tr Ã

)
+ . . . , (2.85)

where ≈ means that only the principal part is considered. Obviously, for the original

choice λ0 = 0, there is not a complete set of eigenvectors4. Then, the system is only

weakly pseudo-hyperbolic system and, consequently, the problem is ill-posed. The same

problem appears for any other value except for λ0 = 1. Only for this choice both

{γ̃, Ã} are standing modes, implying that this sector has a complete set of eigenvectors.

As it is shown next, the other sectors are also complete, meaning that the full system

is strongly pseudo-hyperbolic. Notice that this lack of strong hyperbolicity (together

with the unbound growth of the conformal constraints) prevents to evolve directly the

unconstrained CCZ4, unless the conformal constraints are algebraically enforced during

the evolution [82].

We can now study the characteristic structure of the other modes. The lapse sector,

constituted by {ᾱ, trK̄}, has a complete set of eigenvectors with eigenvalues −β̄s0 ±
α0
√
f . The longitudinal shift and energy modes form another closed sector with a com-

plete set of eigenvectors including {χ̄, Θ̄, Γ̄s, β̄s, B̄s} with characteristic speeds given by

{−β̄s0,−β̄s0±
√

4 g/3χ0,−β̄s0±α0}. The transverse shift sector, including {β̄⊥, Γ̄⊥, B̄⊥}, is

also complete with characteristic speeds {−β̄s0,−β̄s0±
√
g/χ0}. The light sector also has a

complete set of eigenvectors including the projections {γ⊥⊥, Ā⊥⊥, γs⊥, Ās⊥}, with char-

acteristic speeds {−β̄s0±α0}. Finally, notice that the choice g(α) = 3/4 is especially del-

icate because the characteristic velocities of the longitudinal shift modes collapse to light

speed: no complete set of eigenvectors can be found, and the strong pseudo-hyperbolicity

of the system is spoiled. This might be a problem, at least around Minkowski spacetimes,

as it has been reported previously by several authors [110, 113, 114].

4Notice that the solutions of (2.85) are given by

γ̃ ≈ 2α(λ0 − 1) tr Ã0 t+ γ̃0

trÃ = tr Ã0 .

Clearly, this sector presents a linear mode.
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Finally, it is worth stressing that the main reason of the numerical instabilities found

when trying to solve the ADM equation with NR codes is due to the weakly hyperbol-

icity of the system, at least for the generic family of lapse-shift usually considered [63].

2.4 Analysis quantities

In order to monitor the evolution and analyze the results of our simulations it is in-

teresting to compute some analysis quantities like for example the Hamiltonian and

momentum constraint, ADM mass, angular momentum and gravitational waves. Here,

these quantities are written as a function of our evolution (conformal) variables.

Assuming that θ = Zi = 0, we have that the Hamiltonian and momentum constraint

are given by

H = R+
2

3
(trK)2 − ÃijÃij − 16πGρ , (2.86)

Mi = γ̃jk∂jÃki − Γ̃jkiÃ
k
j − Γ̃jÃij −

3

2χ
Ãji∂jχ−

2

3
∂itrK − 8πG

S̃i
χ
. (2.87)

Other interesting quantities are ADM mass and angular momentum [70, 77, 115]. As

it is well-known that the mass-energy of a system can not be defined locally in GR, but

only assuming an asymptotically flat spacetimes. The ADM mass measures the total

mass-energy of an isolated gravitating system at any instant of time [116]. It can be

computed by performing a surface integral at spatial infinity

MADM ≡
1

16π
lim
r→∞

∫
S
γij (∂jγik − ∂kγij) dSk =

1

8π
lim
r→∞

∫
S

(
γ̃ik∂kχ+

χ

2
Γ̃i
)
dSi ,

(2.88)

where dSi the surface element of S, for simplicity, it is convenient to consider S a two

dimensional sphere, therefore, the surface element is given by

dSi =
xi
r
χ−3/2r2 sin θdθdφ . (2.89)

Likewise, the angular momentum, in Cartesian coordinates, is

J iADM ≡
1

8π
lim
r→∞

∫
S
εijkxjKkldS

l =
1

8π
lim
r→∞

∫
S
φ̂jχ

(
Ãji +

γ̃ji

3
trK

)
dSi , (2.90)

where φ̂j = (−y, x, 0) is the Cartesian coordinate basis axial vector.
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2.4.1 Gravitational wave signal extraction

The most common techniques used to extract the gravitational radiation from numer-

ical simulations are either the Newman-Penrose scalar Ψ4 or the Regge-Wheller-Zerilli

theory, see [117] for a vast review of gravitational waves extraction. Here, in order to

analyze the gravitational radiation emitted during the coalescence of our binary systems,

we use the Newman-Penrose Ψ4 scalar as described in Ref. [117, 118].

The Newman-Penrose scalars are scalar quantities defined trough contraction of Weyl

tensor, defined over our four dimensional manifold M as

Cacbd := Racbd −
1

2
(gabRcd − gadRbc − gbcRad + gcdRab)

−1

6
R (gabgcd − gadgbc) , (2.91)

and an orthonormal null tetrad {la, m̄a, ka, m̄a} [66]. Therefore, the Newman-Penrose

scalar [119] are defined as

Ψ0 ≡ −Cabcdlamblcmd , (2.92)

Ψ1 ≡ −Cabcdlakblcmd , (2.93)

Ψ2 ≡ −Cabcdlambm̄ckd , (2.94)

Ψ3 ≡ −Cabcdlakbm̄ckd , (2.95)

Ψ4 ≡ −Cabcdkam̄bkcm̄d . (2.96)

As a consequence of the peeling theorem [120–122], some of components of the Weyl

tensor can be decomposed as follows:

Cabcd ≈
Ψ4

r
+

Ψ3

r2
+

Ψ2

r3
+

Ψ1

r4
+

Ψ0

r5
+O(r−6) , (2.97)

and, the information carrying out outgoing gravitational waves far from the source can

be calculated from the Newman-Penrose scalar Ψ4 [123, p.422] Actually, equation (2.97)

shows that the gravitational radiation falloff as 1/r. In our framework, we have con-

structed the null tetrad in Cartesian coordinates as follows [124]:

(a) Let us first define a orthogonal spatial triad

φi = (−y, x, 0) , si = (x, y, z) , θi = (xz, yz,−(x2 + y2)) . (2.98)
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(b) Using Gram-Schmidt orthogonalization procedure a orthonormal basis can be ob-

tained

φ̂i =
φi
√
ωφφ

, ŝi =
si − φ̂iωφs√

ωss
, θ̂i =

θi − φ̂iωφθ − ŝiωsθ√
ωθθ

, (2.99)

where ωab = viav
j
bγij , being via = {φi, si, θi}.

(c) With this triad and the normal navector to the hypersurfaces a null tetrad can be

constructed

la =
1√
2

(n̂a + ŝa) , ka =
1√
2

(n̂a − ŝa) , (2.100)

ma =
1√
2

(
θ̂a + iφ̂a

)
, m̄a =

1√
2

(
θ̂a − iφ̂a

)
. (2.101)

One of the important properties of the Weyl tensor (2.91) is that it can be calculated in

terms of 3 + 1 quantities [70], namely

Ψ4 = (Eij + iBij)m̄
im̄j , (2.102)

where the electric, Eij , and magnetic, Bij , parts of the Weyl tensor are

Eij = −Rij − trKKij +KikK
k
j ,

= −Rij +
1

χ
ÃikÃ

k
j −

1

3χ
trKÃij −

2

9χ
γ̃ij tr2K , (2.103)

Bij = εi
kl∇kKlj =

γ̃mi

χ5/2
ηmkl∇kKlj . (2.104)

In our numerical simulations Ψ4 is calculated on a spherical surface far from the sources

using (2.102). Then, it is expanded in terms of spin-weighted spherical harmonics (with

spin weight s = −2) [117, 124], namely

rΨ4(t, r, θ, φ) =
∑
l,m

Ψl,m
4 (t, r)−2Yl,m(θ, φ) , (2.105)

where Ψl,m
4 (t, r) =

∫
S2 Ψ4

−2Yl,mdΩ. Furthermore, the instantaneous angular frequency

of the gravitational wave can now be calculated easily from the Ψ4 as

fGW =
ωGW
2π

, ωGW = −1

2
=

(
Ψ̇l,m

4

Ψl,m
4

)
. (2.106)

A more direct quantity, related directly to the response of the detector is the strain

defined as h(t) = h+(t)− i h×(t), where (h+, h×) are the plus and cross modes of gravi-

tational waves, as described in Section 1.3 . The Newman-Penrose scalar Ψ4 (2.102) is



Chapter 2. Continuum Problem 33

related to the strain via [117]:

Ψ4 = ḧ+ − i ḧ×. (2.107)

We can calculate the strain through a direct double integration in the time domain,

leading to

h+ − i h× =

∫
t

(∫
t′

Ψ4(t′′)dt′′
)
dt′ +At+B , (2.108)

where the constant of integration A and B have to be fixed by the imposition of some

physical condition [125, 126]. However, this procedure has to be performed carefully to

prevent a contamination of the purely harmonic behavior of the strain. One way to avoid

the appearance of these constants is calculating the strain in the frequency domain [127].

The components of the strain in the time domain can be calculated by performing the

inverse Fourier transform of the strain in the frequency domain, hl,m(t) ≡ F−1[h̃l,m(f)],

which can be calculated as

h̃l,m(f) =


−F [Ψ4

l,m(t)]

f2
0

, f < f0

−F [Ψ4
l,m(t)]

f2
, f ≥ f0

, (2.109)

where f0 is the initial orbital frequency.

Finally, the GWs, the ADM mass, and the angular momentum are computed as spher-

ical surface integrals at different extraction radii in order to check the consistency of the

results.



aaaaaaaaaaaaaaaaaaaaaaaaaaa



Chapter 3

Matter Spacetimes

So far, we have not provided any prescription about the matter content that will produce

the spacetime curvature. As it was explained in Chapter 1, the energy, momentum

and stresses of matter can be defined through a symmetric tensor Tab, satisfying the

conservation law

∇aT ab = 0 . (3.1)

In this Chapter, we shall focus on the right-hand-side of the Einstein’s equations (1.16).

In particular, we present the two main matter models which will be studied in this

Thesis: complex scalar fields to describe macroscopic Bose-Einstein condensates and

perfect fluids to describe neutron stars.

A scalar field is probably the simplest model of matter. A complex scalar field, cou-

pled with the Einstein equations, allow us to study self-gravitating compact solutions,

representing Bose-Einstein condensates, known commonly as Boson Stars. The evolu-

tion of these complex scalar fields are governed by the Klein-Gordon equation, which is

just only a wave equation with sources. Therefore, from a mathematical point of view,

this equation is well-posed and does not develop shocks or discontinuities during the

evolution, given a smooth initial data.

Several astrophysical scenarios can be described by using fluids approximation, whose

evolution is governed by the relativistic hydrodynamics equations. Although these equa-

tions are also well-posed, they could generate shocks or discontinuities during the evo-

lution. There are different fluid models to describe, for instance, dust, radiation fluid

or perfect fluids. Here, we shall focus in perfect fluids, which allows us to model self-

gravitating astrophysical objects such as neutron stars.

This chapter is organized as follows. First, in Section 3.1, a generic matter field is

presented by using the variation principle in the Hilbert-Einstein action coupled to

35
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matter. Then, we focus in the 3 + 1 decomposition of the conservation law for the

energy-momentum tensor in Section 3.2. A short summary on the spherical symmetric

spacetimes is provided in Section 3.3. Complex scalar field model are discussed in detail

in section 3.4, describing also the Einstein-Klein-Gordon (EKG) evolution system and

how to construct boson stars. Finally, perfect fluids are discussed in Section 3.5, deriving

the general relativistic hydrodynamics equations and analyzing its conservative form,

which will be crucial to numerical simulations. We also show how to construct neutron

stars and discuss its properties. We have based this Chapter mainly on [58, 63, 77, 116,

123, 128–130].

3.1 Matter Field

As we have seen in Section 1.2, Einstein’s equations can be inferred from the conservation

law of the stress-energy tensor on one hand, and from the Einstein tensor on the other

hand. A more fundamental derivation of Einstein’s equations can be made trough a

variation principle from an appropriate action [66, p.450]. To obtain the Einstein’s

equation in presence of matter, we assume that there are matter field present besides

the gravitational field, and they are described by an appropriate Lagrangian density

LM .

The action is defined as the integral of the Lagrangian over a open set V ⊂M

S =

∫
V
d4x
√
−g (Lg + LM ) , (3.2)

where Lg = 1
16πR is the Einstein Lagrangian density associated to gravitational field.

The variation of the action with respect to the metric1 gab together with the proper-

ties [131]

δ(
√
−g) = −

√
−g
2

gab δg
ab , (3.3)

δ(
√
−gR) =

√
−g Gab δgab , (3.4)

leads to Einstein’s equations in presence of matter fields,

Gab = Rab −
1

2
gabR = 8π Tab =

−2√
−g

δ

δ gab
(√
−gLM

)
. (3.5)

1Recall that, δS =
∫
V

δS
δgab h

abdx4 = limε→0
S(gab+εhab)−S(gab)

ε
, where hab is an arbitrary metric in V.
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3.2 3+1 decomposition of matter equations

The conservation of the energy-momentum tensor Tab, equation (3.1), provides the equa-

tion of motion of the matter fields, corresponding to the conservation of energy and linear

momentum in GR. Furthermore, in section 2.1, we have seen that the energy-momentum

tensor can be decomposed as

Tab = nanbτ + Sanb + Sbna + Sab , (3.6)

where τ := nanbT
ab is the energy density, Sa := −γcanbTab is the momentum density and

Sab := γcaγ
d
bTcd is the stress tensor. Therefore

∇aT ab = ∇aT ab

= ∇a (nanbτ + Sanb + Sbna + Sab)

= ∇aSab − trK Sb + na∇aSb + nb∇aSa − SaKba − trKτnb

+Db lnα τ + nbn
a∇aτ , (3.7)

where we have used the useful relation ∇anb = −Kba−naDb lnα and some orthogonality

conditions. Projecting the equation (3.7) along the normal to the hypersurfaces Σt and

onto Σt, we have that:

nb∇aT ab = 0 ⇔ nb∇aSab + nanb∇aSb −∇aSa +Kτ − na∇aτ = 0 , (3.8)

γbc∇aT ab = 0 ⇔ γbc∇aSab − trKSc + γbcn
a∇aSb − SaKca +Dc lnα τ = 0 , (3.9)

or equivalently using [77, p.103]

na∇aSab = KabS
ab , (3.10)

∇ava = Div
i + viDi lnα , for all v ∈ TpΣt , (3.11)

∇b(αna) = −αKa
b −Da αnb + na∇bα , (3.12)

the projections are:

− 1

α
(∂t − Lβ)τ −DiS

i − 2SiDi lnα+ SijK
ij +K τ = 0 , (3.13)

1

α
(∂t − Lβ)Sj +DiS

i
j + SijDi lnα− SjK + τ Dj lnα = 0 . (3.14)

Equations (3.13) and (3.14) are the evolution equation of the energy and momentum

density respectively
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3.3 Stationary Spherically Symmetric solutions

Spherically symmetric spacetimes (SSSs) are very useful in GR [132], since these

symmetries allow to simplify the equations of motion and reduced the original four

dimensional problem to a two dimensional one. Furthermore, assuming also stationarity,

SSS allows us to construct equilibrium configuration for non-rotating self-gravitating

objects, as for example, boson stars (BSs) or neutron stars (NSs).

From a practical point of view, our strategy is going to be the following. First, calculate

the initial data using a 1D numerical code. Then, extend this spherically symmetric

solution into a 3D initial data, in Cartesian coordinate [128, 129], to study the evolution

of those configurations.

Let us start by considering the most general metric for a time-dependent spherical

symmetry in the 3 + 1 form, with coordinates (t, r, θ, ϕ), being θ and ϕ the polar and

azimuthal angular coordinates on the hypersurface,

ds2 = (−α2 + a2β2)dt2 + 2a2βdtdr + a2dr2 + r2b2dΩ2 , (3.15)

where α(t, r) is the lapse function, βi = (β(t, r), 0, 0) is the shift vector in a spheri-

cal basis, a(t, r) and b(t, r) represents the components of the spatial metric and dΩ2 =

dθ2+sin2 θdϕ2 is the metric of a unit two-sphere. By using Equation (2.17), it is straight-

forward to show that the extrinsic curvature has only two independent components in

this geometry, given by

Ki
j =


Kr
r (t, r) 0 0

0 Kθ
θ (t, r) 0

0 0 Kθ
θ (t, r)

 . (3.16)

Due to the symmetry, the other vectors behave as the shift one, namely Zi = (Zr(r, t), 0, 0).
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Putting the above ingredients in Equations (2.42)-(2.45), one can write the Z4 in spher-

ical symmetry as

∂ta = ∂raβ
r − aKr

rα+ a∂rβ
r , (3.17)

∂tb = ∂rbβ
r − bKθ

θα+
bβr

r
, (3.18)

∂tK
r
r = ∂ra

(
2∂rb α

a3b
+
∂rα

a3
+

2α

ra3

)
− 4∂rb α

ra2 b
− 2∂rrb α

a2 b
− ∂rrα

a2
+

2α∂r Z
r

a2

+ ∂rK
r
rβ

r + 2Kθ
θK

r
rα− 2Kr

rαΘ +Kr
r

2α+ 8πSθθα− 4πSrrα− 4πτα , (3.19)

∂tK
θ
θ = ∂ra

(
∂rb α

a3b
+

α

r a3

)
+ ∂rb

(
−∂rα
a2 b
− 4α

r a2 b

)
− ∂rb

2α

a2 b2
− ∂rrbα

a2b
− α

r2 a2

− ∂rα

r a2
+

α

r2 b2
+ ∂rK

θ
θβ

r − 2Kθ
θαΘ + 2Kθ

θ
2α+Kθ

θK
r
rα

+ 4πSrrα− 4πτα , (3.20)

∂tΘ = ∂ra

(
2∂rb α

a3 b
+

2α

r a3

)
− ∂rb

2α

a2 b2
− 6∂rbα

ra2 b
− 2∂rrb α

a2b
− α

r2 a2
+
α∂rZ

r

a2

− ∂rαZ
r

a2
+

α

r2 b2
− 2Kθ

θ αΘ +Kθ
θ

2α+ 2Kθ
θK

r
rα−Kr

rαΘ− 8πτα

− α
(
∂ra

a3
− 2

(
b+ r∂rb

ra2b

))
Zr + βr∂rΘ , (3.21)

∂tZ
r = ∂rb

(
2Kr

rα

b
−

2Kθ
θα

b

)
− 2∂rK

θ
θα−

2Kθ
θα

r
+

2Kr
rα

r
− 2Kr

rαZ
r

− 8πSrα− ∂rαΘ + α∂rΘ + βr∂rZ
r + ∂rβ

rZr , (3.22)

where {τ, Sr, Srr , Sθθ} are the non-vanishing components of the stress-momentum ten-

sor. In order to obtain equilibrium configuration for non-rotating self-gravitating object

in spherically symmetric, one needs to impose the condition of stationary solutions,

namely ∂tU = 0, where U = {a, b,Kr
r ,K

θ
θ ,Θ, Zr}. The resulting equations can be fur-

ther simplified if the maximal polar slicing condition is imposed, i.e., trK = Kr
r , which

transforms the line element (3.15) for stationary solutions in the so called polar-areal

line element [133]

ds2 = −α2(r̃)dt2 + a2(r̃)dr̃2 + r̃2dΩ2 . (3.23)

The name polar-areal is due to the fact that, in a given hypersurface, a fixed coordinate

r̃ defines a two dimensional sphere with surface area 4πr̃2. In these coordinates, the Z4

in spherical symmetry (3.17)-(3.49) reduces to a set of ordinary differential equations

(ODEs)

∂r̃a = − a

2r̃

(
a2 − 1

)
+ 4π r̃ a3τ , (3.24)

∂r̃α = − α
2r̃

(1− a2) + 4π r̃ α a2 S r̃r̃ . (3.25)

Note that the ODE system (3.24)-(3.25) must be supplemented with the equilibrium



Chapter 3. Matter Spacetime 40

equations for the matter. Therefore, the matter model considered, either boson star or

neutron star, will uniquely define the τ and S r̃r̃ quantities.

In order to obtain suitable physical solutions, appropriate boundary conditions have to

be imposed in order to ensure regularity at the origin and asymptotic flatness at large

distances, namely

a(r̃ = 0) = 1 , α(r̃ = 0) = 1 , (regularity at the origin) , (3.26)

lim
r̃→∞

a(r̃) = 1 , lim
r̃→∞

α(r̃) =
1

a(r̃)
, (asymptotic flatness) . (3.27)

Taking these into consideration, the problem can be solved integrating for r̃ = 0 toward

the exterior boundary r̃ = r̃out using a Runge-Kutta integrator, see Section 4.1.3. After

integration of the equilibrium equation, we can rescale α → cα at the same time satis-

fying the boundary condition (3.27) for α with the aim of obtaining limr̃→∞ α(r̃) = 1,

where scalar factor is c = 1/a(r̃out)α(r̃out). Furthermore, note that the metric (3.15)

is related to Schwarzschild metric through the relation a2 = (1− 2M/r̃)−1 , where M

is the ADM mass. Therefore, the total mass enclosed in a sphere of radius r̃ can be

expressed as:

M(r̃, t) = lim
r̃→∞

r̃

2

(
1− 1

a(r̃)2

)
. (3.28)

Once the solution is found, a coordinate transformation can be performed, from areal

polar-coordinate to maximal isotropic coordinates, which is given by the following ele-

ment line

ds2 = −α2(r) + ψ4(r)(dr2 + r2dΩ2) , (3.29)

where ψ is the conformal factor. As shown in detail in [128, p.140], this transformation

consist of solving backward numerically the following ODE

dr

dr̃
= a

(r
r̃

)
, (3.30)

with the boundary condition given by Birkhoff of theorem, i.e., the spacetime far away

from the self-gravitating object is Schwarzschild solution, therefore:

r(r̃out) =

[(
1 +
√
a

2

)2
r̃

a

]∣∣∣∣∣
r=r̃out

. (3.31)

Once the solution is computed, the conformal factor is ψ =
√
r̃/r. These kind of co-

ordinate can be transformed to Cartesian ones [129, p.96], since the spatial part of
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metric (3.29) is conformally flat, namely

(dr2 + r2dΩ2) = δijdx
idxj , (3.32)

which will be used in our numerical evolution from now on.

3.4 Complex Scalar Field

One of the simplest non-vacuum spacetimes is the one where the matter content is

described by a scalar field. We consider physical systems described by a complex scalar

field satisfying the Klein-Gordon (KG) equation under the effect of some potential

V
(
|Φ|2

)
. The dynamics of the spacetime curvature and the complex scalar field Φ are

described by the following Lagrangian density:

LKG =
R

16π
+ LMΦ , (3.33)

where LMΦ is the matter Lagrangian for the scalar field given by

LMφ = −gab∇aΦ∗∇bΦ− V
(
|Φ|2

)
, (3.34)

where Φ∗ is the complex conjugate of Φ. Note that the dependency of |Φ|2 of the

potential is required to be consistent with the invariance of the Lagrangian (3.34) under

unitary group U(1). The variation of the action associated with the Lagrangian (3.33)

with respect to the metric gab leads to field equations given by (3.5), where Tab is the

stress-energy tensor of a complex scalar field

Tab = ∇aΦ∗∇bΦ +∇bΦ∇aΦ∗ − gab
(
gcd∇cΦ∗∇dΦ + V

(
|Φ|2

))
. (3.35)

As we said before, the Lagrangian (3.34) is invariant under unitary group of degree one,

U(1), that is, :

Φ→ eiθΦ , Φ∗ → e−iθΦ∗ . (3.36)

According to Noether’s theorem [58, 129], these symmetries imply that there exist a

conserved current density, namely Noether current, given by:

Ja = igab(Φ∗∇bΦ− Φ∇bΦ∗) (3.37)
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and satisfying the conservation law ∇aJa = 0. As a consequence, its time component

represent a conserved charge associated to the system. This Noether charge is given by

N ≡
∫

Σt

(−naJa)
√
γ d3x , (3.38)

where Σt is a three dimensional hypersurface associated to the foliation of the spacetime

M.

3.4.1 Klein-Gordon equations

The evolution of the complex scalar field Φ is described by the Klein-Gordon equation,

which is obtained by performing the variation of the action related to the Lagrangian

(3.33) with respect to the scalar field Φ, leading to

�gΦ = V ′
(
|Φ|2

)
Φ , (3.39)

where �g := gab∇a∇b is the d’Alembert operator and we have defined V ′(|Φ|2) := dV
d|Φ|2 .

The Equation (3.39) can be written as an evolution system by using the 3+1 decompo-

sition (2.14) and introducing

Π ≡ −LnΦ = −(1/α)(∂t − Lβ)Φ , (3.40)

as a evolved field. The d’Alembert operator can be expanded as

�gΦ = gab∇a∇bΦ = (gab + nanb)∇a∇bΦ− nanb∇a∇bΦ ,

= γabDaDbΦ−
(
na∇a(nb∇bΦ)− na∇anb∇bΦ

)
,

= γabDaDbΦ + na∇aΠ + gab∇b lnα∇bΦ , (3.41)

where we have used the useful relation na∇anb = ∇b lnα. Finally, the KG equa-

tion (3.39) can be written as the following evolution system

∂tΦ = βk∂kΦ− αΠ , (3.42)

∂tΠ = βk∂kΠ + α
[
−γijDiDjΦ + Π trK + V ′(|Φ|2)Φ

]
− γijDiΦDjα , (3.43)

for the evolved fields {Φ,Π}. These equations can be expressed also as a function of the

conformal fields of the CCZ4 formalism, namely

∂tΠ = βk∂kΠ + α

[
−χγ̃ij∂i∂jΦ + χΓ̃k∂kΦ +

1

2
γ̃ij∂iΦ∂jχ+ Π trK + V ′(|Φ|2)Φ

]
−χγ̃ij∂iΦ∂jα . (3.44)
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Finally note that, since Φ is a complex scalar field, it can be decomposed as:

Φ = ΦR + iΦI , (3.45)

Π = −(1/α)(∂t − Lβ)(ΦR + iΦI) = ΠR + iΠI , (3.46)

where ΦR is the real part and ΦI is the imaginary part of Φ respectively. Therefore, the

KG equation constitutes four hyperbolic scalar field evolution equations for {φR,ΠR}
and {ΦI ,ΠI}. The characteristic decomposition of the system (3.42)-(3.43) can be found

in [63, p.174].

3.4.2 Boson Stars: initial data and some properties

Boson stars (BSs) are solutions of Einstein equations coupled to a complex scalar field,

that represent a self-gravitating Bose-Einstein condensate. This family of solutions yields

to useful models of dark matter, black hole (BH) mimickers and simple generic compact

objects, see [58, 130] for a review.

Initial data for BS can be constructed considering spherically symmetric solutions of

EKG equations. As we explain in detail in the above section 3.3, the first step is to

considerer the most general metric for a time-dependent spherical symmetry (3.15). In

this geometry, the KG equations (3.42)-(3.43) can be written as:

∂tΦ = βr∂rΦ− αΠ , (3.47)

∂tζ = ∂r(β
r∂rΦ− αΠ) , (3.48)

∂tΠ = βr∂rΠ−
∂rα ζ

a2

+ α

(
−
ζ
(
2a
(
∂rb
b + 1

r

)
− ∂ra

)
a3

− ∂rζ

a2
+ V ′(|Φ|2) + Π trK

)
, (3.49)

where ζ ≡ ∂rΦ. The equations for the equilibrium configuration further simplify by using

the maximal polar slicing condition (3.23).

On the other hand, the harmonic ansatz is adopted for the scalar field

Φ(t, r̃) = φ0(r̃) e−iωt , (3.50)

where ω is a real frequency and φ0(r̃) is a real-value spatial function. The time-harmonic

dependence for the scalar field in the ansatz (3.50) is a consequence of Derrik’s theo-

rem [58], that shows that no regular, static, non-topological localized solutions are stable

in three dimensional flat space or in higher dimensions. There is another argument re-

lated to boson stars proven by Friedberg T. et in the pioneering work [134], which state
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that a boson star to be in a ground state – a necessary condition for stability – Φ must

have an harmonic time dependence.

Using this ansatz and under the assumption of spacetime stationarity, the EKG system

in spherical symmetry is reduced to the following set of ODEs,

∂r̃a = − a

2r̃

(
a2 − 1

)
+ 4π r̃ a3τΦ , (3.51)

∂r̃α = − α
2r̃

(1− a2) + 4π r̃ α a2 SΦ r̃
r̃ , (3.52)

∂r̃φ0 = ζ , (3.53)

∂r̃ζ = −(1 + a2 + 4π r̃2 a2)(SΦ r̃
r̃ − τΦ)

ζ

r̃
−
((ω

α

)2
− V ′(|Φ|2)

)
a2φ0 , (3.54)

where

τΦ =

(
ω φ0

α

)2

+

(
ζ

a

)2

+ V (|Φ|2) , SΦ r̃
r̃ =

(
ω φ0

α

)2

+

(
ζ

a

)2

− V (|Φ|2) . (3.55)

The boundary conditions (3.26)-(3.27) are imposed to regularized the equations at the

origin and ensure asymptotic flatness at infinity. In addition, for the scalar field we

assume the following conditions

φ0(0) = φc , (3.56)

ζ(0) = 0 , (3.57)

being φc the central value of scalar field and at infinity limr̃→∞ φ0(r̃) = 0. Before solving

Eq. (3.51)-(3.54), it is worth to stress some important points:

1. for a choice of interaction potential V (|Φ|2), the solution of the equilibrium equa-

tions form a one-parameter family for φc.

2. giving values of {φc} and using boundary conditions (3.26)-(3.27)-(3.56)-(3.57),

the solution is fully defined by the fields {a, α,Φ, ω}. This means that one have to

solve an initial-boundary eigenvalue problem for ω = ω(φc).

3. for a specific value of φc there exist solutions for a discrete set of ω. We are inter-

ested on the solutions with the lowest binding energy, i.e., an initial equilibrium

configuration without nodes called ground state. This translates into the condition

that the solution must have no zero-crossings.

This eigenvalue problem can be solved by integrating from r̃ = 0 towards the exterior

boundary using a shooting method. Once the solution is computed in polar coordinates,

we can proceed as explained before: by rescaling the lapse function, and the frequency ω,
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namely ω → c ω. Finally, we make a (numerical) coordinate transformation into isotropic

coordinates, which can be written in Cartesian ones in order to perform numerical 3D

simulations.

It is worth stressing that the asymptotic condition of the scalar field is completely

different to other matter solutions like neutron stars. Since the scalar field φ0(r) has

no-compact support, it is not possible to define a hard surface as in neutron stars.

Nevertheless, the radius of a BS is usually defined as the radii R99 within which 99% of

the total mass is contained, i.e., MADM (R99) = 0.99MADM . Finally, we can define the

compactness of the star as C = MADM/R99.

Until now, we have not said anything about the scalar self-potential of V
(
|Φ|2

)
. Different

BSs models are classified according to their potential. The simplest one is called mini-

boson star, whose scalar potential is giving by mb|Φ|2, where mb is a parameter which can

be identified with the bare mass of the field theory. Massive boson stars include a fourth

order self-interaction term (λ/2)|Φ|4, where λ is a dimensionless coupling constant. A

more complicated potential is the one that we will use most in this Thesis,

V
(
|Φ|2

)
= m2

b |Φ|2
[
1− 2|Φ|2

σ2
0

]2

, (3.58)

leading to non-topological solitonic star, where σ0 is a free parameters. We shall revisit

this scalar field potential in the section 5.2 since it has very important features regarding

its astrophysical applications. For reviews of different scalar potential see [58, 130].

Interestingly, BSs have the same kind of stability behavior as neutron stars. For exam-

ple, the solutions (3.51)-(3.54) for the potential V
(
|Φ|2

)
= mb|Φ|2, lead to a sequences

of equilibrium configurations, represented in the top panel of Figure 3.1. On the top left

panel, the ADM mass is shown as a function of the central value of scalar field φc. The

stable branch is localized in the left-hand side of the curve satisfying ∂M/∂φc ≥ 0, [63].

On the top right panel, the ADM mass is shown as a function of the radius. The blue

circular mark on both panels represents the maximum stable mass, which corresponds

to MADM = 0.633, and the green circular mark correspond to a BS inside of the stable

branch. The profiles of this stable BS, the conformal factor of metric (3.29) and scalar

field, are shown in the bottom panel of Figure 3.1. Notice that, in the mass-radius dia-

gram (on the top right panel) the stable branch is at the right-hand side of the maximum

mass.

The maximum compactness of stable boson stars depends on the non-linearities of

the self-interaction potential V (|Φ|2), and ranges from O(10−3) for mini-boson stars

to O(10−1) for non-topological solitonic BS [135, 136].
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Figure 3.1: Isolated mini-boson star. (Top left) ADM mass as a function of the
central value of the scalar field φc. (Top right) Mass-Radius diagram. (Bottom left and
right) Radial profile of the conformal factor and the scalar field in isotropic coordinates.
The blue circle marker corresponds to the maximum stable mass Mmax = 0.633. The
green circular marker refer to the stable equilibrium configuration displayed at the

bottom.

Finally, notice that the Noether charge defined by the equation (3.38) can be interpreted

as the number of bosonic particles [58, 130].

3.5 General Relativistic Hydrodynamics

In this section, we shall introduce the equations of general relativistic hydrodynamics

(GRHD). These equations describe the dynamics of a fluid, coupled to Einstein Equa-

tions, in a four dimensional manifold. The equations of GRHD can be derived from

the conservation of the energy-momentum tensor (1.14) and the baryonic number (i.e.,

the continuity equation)

∇a(ρua) = 0 , (3.59)



Chapter 3. Matter Spacetime 47

where ρ is the rest mass density and ua is the fluid four-velocity. In the next sections

we will perform the 3 + 1 decomposition to the of general relativistic hydrodynamics

equations, following [77, p.102].

3.5.1 Perfect Fluids

Here we will consider only perfect fluids, which means that there are neither viscosity

nor heat transfer in the fluid. The energy-momentum tensor for a perfect fluid is given

by

Tab = [ρ(1 + ε) + P ]uaub + P gab , (3.60)

where ρ is the rest mass density, ε is internal energy. The pressure P is given by

an equation of state (EoS), which relates the pressure with the other fluid quantities,

typically the rest mass density and the internal energy [137], namely P = P (ρ, ε). The

EoS provides the connection between the microscopic properties and the thermodynamic

quantities of the fluid with them [63, p.189]. The most classical EoS are:

(a) Ideal-Gas:

P = (Γ− 1)ρε , (3.61)

where Γ is the adiabatic index and it assumed to be a constant.

(b) Polytropic:

P = κρΓ , (3.62)

where κ is the polytropic constant which depends on the entropy.

Notice that all the physical quantities described above to describe the fluid are measured

by a co-moving observer. Finally, the fluid four-vector velocity ua defines how the

fluid moves with respect to a local frame. We can define other quantities, also in the

local rest frame, like the total energy density of the fluid µ = ρ(1 + ε) or its enthalpy

h = µ+ P = ρ(1 + ε) + P . There is a derivation of the energy momentum tensor (3.60)

trough a Lagrangian just like complex scalar field, we will not expand on the details

here, but the interested reader can consult [138, 139].

3.5.2 Conservative Formulation

The GRHD equations are a set of PDEs highly non-linear with a tendency to produce

shocks during their time evolution, even from an initial smooth data [63, 140]. In order
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to deal with these shocks numerically, the GRHD equations need to be written as a

conservation law, namely

∂tu + ∂kF
k(u) = S(u) , (3.63)

where u is a vector of conserved densities quantities, which will be defined below. Ap-

plying a 3 + 1 decomposition to the vector ua, i.e., writing it down in terms of a parallel

and orthogonal part to the vector na respectively, it follows that

ua = W (na + va) , (3.64)

where W = −naua is the Lorentz factor and va the three velocity vector, both of them

measured by Eulerian observers. Imposing the classic normalization relation of time-like

four-vectors, we have that

− 1 = uaua = −W 2 + γijuiuj . (3.65)

Therefore, after a simple algebra, the components of the fluid vector ua measured by a

Eulerian observer in 3 + 1 decomposition are just:

u0 =
W

α
, ui = W

(
vi − βi

α

)
, (3.66)

u0 = W (−α+ βiv
i) , ui = Wvi , (3.67)

where W = (1 − γijvivj)−1/2. The equation of continuity (3.59) can be easily put in a

conservative form:

∇a(ρua) =
1√
−g

∂a(
√
−gρua) = 0 ,

∂t(
√
γD) + ∂j(

√
γ(α vj − βj)D) = 0 , (3.68)

where we used that
√
−g = α

√
γ and have defined the conserved quantity D = Wρ.

Using the following identities:

∂t
√
γ =

√
γ
(
Diβ

j − α trK
)
, (3.69)

DjT
j
i =

1
√
γ
∂j(
√
γ T ji )− ΓkijT

j
k , (3.70)

DjT
j =

1
√
γ
∂j(
√
γ T j) , (3.71)
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the evolution equation of the energy density (3.13) and momentum density (3.14), re-

spectively, can be easily put it in a conservative form

∂t(
√
γτ) + ∂j(

√
γ(αSj − βjτ)) =

√
γ(αSijKij − Sj∂jα) , (3.72)

∂t(
√
γSi) + ∂j(

√
γ(αSji − β

jSi)) =
√
γ(αΓjkiS

jk + Sj∂iβ
j − τ∂iα) , (3.73)

where

τ = hW 2 − P, Si = hW 2vi, Sij = hW 2vivj + P γij . (3.74)

The balance-law equations (3.68)-(3.73) can be written using the conformal variables

of the CCZ4 formalism with the formulas described in Section 2.3.2 and the following

relations

Skj Γjik =
1

2χ
Sjk (∂iγ̃jk − γjk∂iχ) =

1

2χ

(
Sjk∂iγ̃jk − trS∂iχ

)
, (3.75)

γjkΓijk = Γi = χΓ̃i +
1

2
γ̃ki∂kχ . (3.76)

Finally, defining the following conserved densities D̄ =
√
γD, τ̄ =

√
γτ and S̄i =

√
γSi,

we have that (3.68)-(3.73) can be written in terms of the conformal variables as

∂tD̄ + ∂k[D̄(αvk − βk)] = 0 , (3.77)

∂tτ̄ + ∂k[αS̄ − βkτ̄ ] =
α

χ
S̄ijÃij +

α

3
trS̄ trK − S̄j∂jα , (3.78)

∂tS̄i + ∂k[αS̄
k
i − βkS̄i] =

α

2χ

(
S̄jk∂iγ̃jk − trS̄∂iχ

)
+ S̄j∂iβ

j − τ̄ ∂iα , (3.79)

where trS̄ = γjkS̄jk = χγ̃jkS̄jk. Summarizing, the equations (3.68) together with (3.72)-

(3.73) are the evolution equations for the GRHD written in a conservative form with

flux conservative quantities (D, τ, Si), called conserved variables, or alternatively (3.77)-

(3.79) in conserved densities (D̄, τ̄ , S̄i). Furthermore, to recover the physical variables

(ρ, ε, P, vi), also called primitives variables, and close the evolution system, we have to

impose some EoS.

The GRHD equations form a hyperbolic system of equations which, with the addition

of EoS, can be solved given an initial data and suitable numerical methods [141]. Due

to the strong non-linearities shocks might be produced during the evolution. At the

shock the solution is not differentiable. Therefore, it is not possible to use numerical

approximations of the derivatives based on Taylor approximation, i.e., finite differences.

Instead, one needs to use methods which might deal with shocks that solve the integral

version of the equations, like for instance, the High Resolution Shock Capturing methods

that will be described in detail in Section 4.2.2.
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Despite its complicated structure, the characteristic structure of the GRHD equations

can be solved analytically [141]. This is an advantage when applying HRSC methods,

which usually rely at least on the eigenvalues of the system, see Section 4.2.2.

Finally, note that given an initial data of physical variables (ρ, ε, P, vi) onto an hypersur-

face Σt, the conservative quantities are evolved (D, τ, Si) up to the hypersurface Σt+∆t.

Then, one can recover the physical fields on this hypersurface by using a specific EoS.

The procedure to transform the conservative to primitive fields is not trivial because

the inverse transformation is not explicit, and a numerical root-finder is usually needed.

Here, we explain briefly the recovery procedure by using an Ideal-Gas EoS (3.61). Let

us defined the variable x ≡ hW 2, being h the enthalpy and W the Lorentz factor. From

the definitions of conservatives quantities, the following relationships are obtained:

vi =
Si
x
, W =

x2

x2 − SiSi
, (3.80)

from (3.61), we get

P =

(
Γ− 1

Γ

)
(h− ρ) , (3.81)

thus

τ = hW 2 − P , (3.82)

= hW 2 −
(

Γ− 1

Γ

)
(h− ρ) , (3.83)

= hW 2 −
(

Γ− 1

W 2Γ

)
hW 2 +

(
Γ− 1

Γ

)
ρ . (3.84)

Then, the function

f(x) = x−
(

Γ− 1

W 2Γ

)
x+

(
Γ− 1

Γ

)
ρ− τ , (3.85)

should vanish for physical solutions. The roots of equation f(x) = 0 can be found

numerically by a numerical root-finder, as for example Newton-Rapshon method. Once

the physical solution is found, namely x = xsol, the primitives values are constructed as

follow:

ρ =
D

W
, P = xsol − τ , vi =

Si
xsol

, (3.86)

where W = x2
sol/(x

2
sol − SiSi) . For further discussion see [63, p.191]
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3.5.3 Neutron Stars: initial data and some properties

Equilibrium configuration for a non-rotating neutron star (NS) can be constructed in a

way analogous to BSs, bearing in mind that Einstein equations are now coupled to the

hydrodynamic equations. Let us start again assuming the most general line element in

spherically symmetric given by the equation (3.15). The GRHD (3.68)-(3.73) equations

in this geometry are simply

∂t(
√
γD) + ∂r(

√
γD(α vr − βr)) = 0 , (3.87)

∂t(
√
γτ) + ∂r(

√
γ(αSr − βrτ)) =

√
γ(α (SrrK

r
r + 2SθθK

θ
θ )− Sr∂rα) , (3.88)

∂t(
√
γSr) + ∂r(

√
γ(αSrr − βrSr)) =

√
γ

[
α

(
∂ra

a
Srr + 2

(
1

r
+
∂rb

b

)
Sθθ

)
,

+Sr∂rβ
r − τ∂rα

]
, (3.89)

where τ = hW 2 − P, Sr = hW 2vr, S
r
r = hW 2vrv

r + P and Sθθ = P. Once again,

let us consider static solutions with the maximal polar slicing condition, such that the

line element is given by the equation (3.23). Notice that the hydrostatic equilibrium

of the star implies trivially vr = 0. Therefore, Einstein equations in spherically sym-

metric (3.17)-(3.22) coupled to hydrodynamics (3.87)-(3.89) leads to the following set of

equilibrium equations

∂r̃a = − a

2r̃

(
a2 − 1

)
+ 4π r̃ a3τ , (3.90)

∂r̃α = − α
2r̃

(1− a2) + 4π r̃ α a2 S r̃r̃ , (3.91)

∂r̃P = −[ρ(1 + ε) + P ]
∂r̃α

α
. (3.92)

In order to solve the system of ODEs (3.90)-(3.92), an EoS must be supplemented.

Here, a polytropic (3.62) EoS is adopted, which is a good approximation for cold star

with Γ = 2 and κ = 1 [63, p.192]. Therefore, (3.90)-(3.92) can be easily integrated

from the center of the star up to its surface, which is defined as the radius where the

pressure vanishes. Similar to the case of BS, boundary conditions (3.26)-(3.27) have

to be imposed by ensuring regularity at the origin and asymptotic flatness at infinity.

Furthermore, for the pressure, we adopt the following conditions

P (0) = κρΓ
c , (3.93)

lim
r̃→∞

P (r̃) = 0 , (3.94)

where ρc the central value density. Finally, for a given value of ρc the system above

can be numerically integrated from r̃ = 0 outward using a Runge-Kutta algorithm, see

section 4.1.3. Once again, the lapse function is rescaled, as we explained in section 3.4.2.
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Figure 3.2: Isolated non-rotating neutron star. ADM mass as a function of the central
density ρc (top left), mass-radius diagram (top right), radial profile of conformal factor
(bottom left) and density (bottom right) in isotropic coordinate of an isolated non-
spinning NS with a polytropic EoS with Γ = 2 and κ = 1. The green circular marker
represents this stable equilibrium configuration. The blue circle marker corresponds
to the maximum stable mass, which is MADM = 0.1634. The blue solid lines on the
bottom display the profiles for the conformal factor of metric (3.29) and the density for

a NS well inside in the stable branch.

Lastly, the same procedure for BSs is applied, that is, the lapse function is rescaled

and a coordinate transformation into isotropic coordinates is performed, to finally write

them in Cartesian coordinates in order to perform numerical 3D simulations. For a

discrete family of values of {ρnc }n∈N and the polytropic EoS with Γ = 2 and κ = 1 the

solutions of (3.90)-(3.92) lead to a sequences of equilibrium configurations, as we can

see in both panels on the top of Figure 3.2. On the top left panel, the ADM mass

is shown as a function of the central density ρc. The stable branch is the localized in

the left-hand side of the curve, satisfying ∂M/∂ρc ≥ 0. The blue circular mark on both

panels represents the maximum stable mass, which corresponds to MADM = 0.1634, and

the green circular mark correspond to a NS inside of the stable branch. The profiles

of this stable NS, the conformal factor of metric (3.29) and density, are shown in the

bottom panel Figure 3.2.
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Discrete Problem

The Einstein and matter equations, written as an evolution hyperbolic system in Chap-

ter 2 and Chapter 3, describe a non-linear set of partial differential equations in the

continuum space. As we discussed in previous section, exact solutions for this system

are only known assuming some simplifications, as for example in [142]: existence of

symmetries, some algebraic conditions for Riemann or Weyl tensor or some non-vacuum

solution related to the energy-momentum tensor (electrovacuum, fluid, scalar field).

Therefore, in order to solve these equations in generic physical scenarios, it is manda-

tory to use numerical approximations. In this Chapter the numerical schemes used to

solve hyperbolic PDEs are presented.

There are different numerical schemes to solve Einstein equations. If only the spacetime

and the scalar field evolution are considered, the most common ones are finite difference

and spectral methods, which take advantage of the smoothness of the metric components.

If there is a fluid coupled to the geometry, the dynamics will be highly non-linear and

shocks might be produced even from a smooth initial data. In these cases, numerical

schemes able to deal with non-smooth solutions should be used, as for instance finite

volume methods.

Here, we summarize the numerical techniques used to solve Einstein equations coupled

with matter. Evolutions of binary systems, either of boson or neutron stars, will be

presented in the next Chapters.

This chapter is organized as follows. In Section 4.1, some basic concepts of discretization

for PDEs are introduced. Then, the Method of Lines together with a standard third

and fourth order RungeKutta time integrator are presented, which are essential to evolve

our evolution system. In Section 4.2 high-order spatial discretizations for smooth and

non-smooth solutions are presented. We explain briefly the boundary conditions in

53
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Section 4.3. Section 4.4 is devoted to the computational code infrastructure used for our

numerical simulations. In Section 4.5, we perform some standard numerical spacetimes

–robust stability test, gauge waves and isolated boson and neutron star, respectively – to

test our evolution system. Finally, a discussion of the results is presented in Section 4.6.

This Chapter is based mainly on books [63, 70] and the works [101, 111].

4.1 Numerical discretization

Heretofore, we have only studied analytical properties of Einstein’s equations at the

continuum level. In particular, the strong hyperbolicity condition has been crucial to

formulate a well-posed initial-boundary value problem. However, all these interesting

properties in the continuum do not translate directly to the discrete level. Here we will

discuss how to preserve the properties of the continuum, mainly the well-posedness, into

the discrete level.

We consider a system of PDEs described by

Lu = S(u) , (4.1)

where u := u(t, x, y, z) is the set of evolution fields, L is some differential operator and

S(u) a some source function. This continuum problem (4.1) can be transformed into a

semi-discrete one by:

(i) discretizing space positions as follows: xi = i∆x, yj = j∆y and zk = k∆z, where

∆x, ∆y and ∆z are the mesh size on each coordinate respectively, such that the

solution is only defined in a grid of discrete points, U = u(t, xi, , yi, zi).

(ii) substituting in Lu and S(u) a discrete operator L (U) and S(U) respectively, that

replaces the continuum spatial partial derivatives by a suitable discrete one, as we

will see in Section 4.2.1.

There are different methods in order to solve PDEs through numerical techniques,

as for example: finite difference, finite volume, finite elements and spectral methods.

An important observation is that finite difference and finite volume methods are based

on the idea of a discretized space domain: while finite difference methods replace the

continuum with a set of discrete points xi which form a mesh, finite volume mesh divide

it into a set of cells, centered at the grid points with interval (xi−1/2, xi+1/2), as we can

see in Figure 4.3.
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4.1.1 Basic concepts of discretization of PDEs

We introduce some basic concepts of discretization schemes of PDEs. Let us start

considering a spatial interval I = [a, b] ⊂ R. Notice that it possible to extend the

following discussion to a generic domain Ω ⊂ Rn. As it was mentioned before, the mesh

in the interval is defined by the grid points xi = i∆x, where i ∈ N, and ∆x = (b− a)/N

is the mesh size, see Fig. 4.1. Let us consider now the system of PDEs described by

Equation (4.1) for a function of one space variable and time, namely u := u(t, x).

Figure 4.1: Grid points. Uniform mesh grid of the interval I = [a, b].

The finite-difference approximation (FDA) of (4.1) is defined by

L∆u∆ = S∆ , (4.2)

where u∆ is the discrete solution, S∆ is the source evaluated on the finite-difference

mesh, and L∆ is a FDA operator of the differential operator L. Now, we shall define

some concepts which are crucial in order to quantify how much the discrete solution u∆

differs from the continuum solution u.

(1) The truncation error is defined as τ∆ = L∆u−S∆, where u satisfies the continuum

PDE (4.1).

(2) The approximation converges if and only if lim∆→0 u
∆ = u.

(3) The order of convergence measures the rate at which the error converges to

zero. The discrete solution converges to the continuum solution with order p

if lim∆→0 τ
∆ = O(∆p), for some integer p.

(4) The FDA is said consistent if lim∆→0 τ
∆ = 0.

(5) Finally, the FDA is stable if the numerical solution itself should remains uniformly

bounded, with respect to a suitable norm in the discretization space.

Consistency, stability and convergence are required to ensure that the numerical solu-

tions represents a solution of the continuous problem. A fundamental theorem of finite

difference is the Lax-Richtmeyer equivalence theorem [143], stating that the numerical

approximation of well-posed problems is convergent if and only if the scheme is stable

and consistent.
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It is worth stressing that one can show that a numerical solution converges to the

continuum one, even if this continuum solution is not known a priori. Let us consider

three resolutions ∆1 > ∆2 > ∆3, such that ∆1/∆2 = ∆2/∆3 = r. The discrete solution

converges to the continuum one with a convergence order p if

lim
∆→0

u∆1 − u∆2

u∆2 − u∆3
= rp. (4.3)

This is a basic test which we perform in our implementation.

4.1.2 The Method of Lines

Le us considerer now the evolution systems with only first-order time derivatives, i.e,

systems of PDE given by Equation (4.1) which can be written as

∂tu = P (u) , (4.4)

where P (u) is an operator containing arbitrary space derivatives of these fields.

The method of lines (MoL) [63, p.112] is a technique for solving PDEs by discretizing

all spatial dimensions and then integrating in time the semi-discrete problem as a system

of ODEs. Therefore, at each point of the grid, the evolution system (4.4) is converted

into a semi-discrete ODE

∂tU = P(U) +Qd(U) , (4.5)

where P is a discrete operator and Qd is an artificial dissipation operator included to

achieve stability. The artificial dissipation is designed to remove the high frequency

modes of the solution that can not be accurately resolved in the mesh.

Note that this method to integrate evolution systems decouples the treatment of space

and time, that is, the right-hand side and left-hand side of (4.5) respectively1. In a

way, this means that the MOL keeps the same framework than the 3 + 1 decomposition

studied in Chapter 2: a continuous spacetime is approximated by a series of continuous

time slices, labeled by a time index n. Each slice represents a space-like hypersurface

which is approximated by a 3D grid, labeled by (i, j, k).

Then, the system can be fully discretized by choosing discrete time snapshots tn = n∆t,

such that the fully discrete solution at the current time can be represented as Un :=

u(tn, xi, yi, zi), see Figure 4.2.

1Notice that the right-hand side of Eq. (4.5) can be treated by using either finite difference, finite
volume or spectral methods, depending on the current problem being solved.
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Figure 4.2: Method of lines. Schematic representation of the MoL. Note that the
same framework of 3 + 1 decomposition of the Einstein equations is kept, but at the

discrete level.

We will consider here only explicit time integrator schemes for which the future solution

can be written in terms of the current one, namely

Un+1 = I [P(Un +Qd(U))] , (4.6)

where I can be a complicated operator depending on the specific integrator chosen

to solve the ODE. The discrete system is stable, consistent and convergent to the

continuum solution if the continuum problem is well-posed and a locally stable time

integrator is employed for the time evolution, for example a Runge-Kutta (RK) of at

least third order [83]. Notice that the numerical scheme will be stable as long as the

Courant-Friedrichs-Lewy (CFL) condition ∆t ≤ ∆x/ch is fulfilled in hyperbolic systems,

being ch the spectral radius, i.e., the absolute value of the maximum eigenvalue.

4.1.3 The Runge-Kutta time integrator

As we said before, locally stable integrators ensure the stability and convergence of

the solution of the evolution system (4.4). An explicit RK scheme with s stages, ap-

plied to system (4.5), allows us to express the solution at the next time-step Un+1 as a

combination of several auxiliary steps [144], namely

U (i) = Un +
i−1∑
j=1

bijkj , kj = ∆t
(
P(U (j)) +Qd(U)

)
,

Un+1 = Un +
s∑
i=1

ciki ,

where U (i) are the auxiliary intermediate values of the RK with s stages. The matrices

B = (bij), with bij = 0 for j ≥ i , are s × s matrices such that the resulting scheme

is explicit and of order p, i.e, the error in a single RK iteration is O(∆tp). A RK is
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characterized by this matrix and the coefficient vector ci, which can be represented by

a tableau in the usual Butcher notation [144] as follows

a B

cT

where the coefficients c used for the treatment of non-autonomous systems are given

by the consistency relation ai =
∑i−1

j=1 bij . These schemes can be denoted as RK(s, p),

where the doublet (s, p) characterizes the number of s stages of the explicit scheme and

the order p of the scheme. The frequently used third and fourth order RK, which remain

stable under quite large time-steps, are given in Table 4.1.

0 0 0 0
1 1 0 0

1/2 1/4 1/4 0

1/6 1/6 4/6

0 0 0 0 0
1/2 1/2 0 0 0
1/2 0 1/2 0 0
1 0 0 1 0

1/6 2/6 2/6 1/6

Table 4.1: Tableau for a very standard explicit RK(3, 3) (on the left) and RK(4,4)(on
the right).

Therefore, the explicit implementation of the RK(3, 3) is:

U (1) = Un (4.7)

U (2) = Un + k1 (4.8)

U (3) = Un +
1

4
k2 +

1

4
k3 (4.9)

Un+1 = Un +
1

6
(k1 + k2 + k3) (4.10)

and the explicit implementation of the RK(4, 4) is:

U (1) = Un (4.11)

U (2) = Un +
1

2
k1 (4.12)

U (3) = Un +
1

2
k2 (4.13)

U (4) = Un + k3 (4.14)

Un+1 = Un +
1

6
(k1 + 2k2 + 2k3 + k4) (4.15)

where ki = ∆t
(
P(U (i)) +Qd(U)

)
.
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4.2 Space derivative discrete operators

Here, we present the operators use to discretized the derivatives appearing on the right-

hand side of (4.5) in Cartesian coordinates. Note that, since P (u) is an operator con-

taining arbitrary spatial derivatives of the fields, its discretization representation will

depend on the smoothness of the solution.

4.2.1 Finite difference operators for smooth solutions

Suitable high-order discrete derivative operators for the operator P(U) = P(U , D U , . . .)
can be found by using a Taylor expansion of the (smooth) solution around a specific

position xi of the discrete grid. By default, we will consider standard fourth-order

centered finite difference such thatDiU ≈ ∂iu+O(∆xi
5). In 3D, the first-order derivative

operators have the form

DxUi,j,k =
1

12∆x
(Ui−2,j,k − 8Ui−1,j,k + 8Ui+1,j,k − Ui+2,j,k) , (4.16)

DyUi,j,k =
1

12∆y
(Ui,j−2,k − 8Ui,j−1,k + 8Ui,j+1,k − Ui,j+2,k) , (4.17)

DzUi,j,k =
1

12∆z
(Ui,j,k−2 − 8Ui,j,k−1 + 8Ui,j,k+1 − Ui,j,k+2) , (4.18)

where Ui,j,k = u(xi, yi, zi). Second-order derivative operators can be constructed by

applying twice the first-order ones. This is a convenient choice for the (commutative)

cross-derivatives, for example

DxyUi,j = DyxUi,j = Dy (DxUi,j) . (4.19)

However, the grid points required for the second-order derivative along a single co-

ordinate direction (i.e., the stencil) would be twice larger than the one of the cross-

derivatives. Therefore, with scalability in mind, it is preferable to change to a different

fourth-order operator which keeps the original stencil. For instance, along the x-direction

the second derivative operator would be:

DxxUi,j,k =
1

12∆x2

(
−Ui−2,j,k + 16Ui−1,j,k − 30Ui,j,k + 16Ui+1,j,k − Ui+2,j,k

)
. (4.20)

4.2.1.1 The Dissipation

Discrete numerical solutions might also contain unphysical high-frequency modes with

a wavelength smaller than the grid size ∆x that can grow rapidly and spoil the real
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physical solution. These modes can be suppressed by including a small artificial Kreiss-

Oliger (KO) dissipation along each coordinate direction [145]. For instance, along the

x-direction, the KO dissipation operator is given by:

Qxd = σ(−1)r−1∆x2r−1
(
Dx

+

)r (
Dx
−
)r

, (4.21)

where

Dx
+Ui,j,k =

Ui+1,j,k − Ui,j,k
∆x

, Dx
−Ui,j,k =

Ui,j,k − Ui−1,j,k

∆x
, (4.22)

and σ ≥ 0 is dissipative parameter. If the accuracy of the numerical scheme without

artificial dissipation is q, choosing 2r − 1 ≥ q ensures that the accuracy is not affected.

This means that, for a fourth order scheme, we must use r = 3, leading to an operator

for the x-direction

QxdUi,j,k = σ(∆x)5
(
Dx

+

)3 (
Dx
−
)3 Ui,j,k

=
σ

64∆x

(
Ui−3,j,k − 6Ui−2,j,k + 15Ui−1,j,k − 20Ui,j,k + 15Ui+1,j,k

− 6Ui+2,j,k + Ui+3,j,k

)
+O(∆x5) . (4.23)

4.2.2 Finite difference operators for non-smooth solutions

In case of non-smooth solutions, it is more convenient to decompose the operator P from

Equation (4.4) as a divergence term plus source terms as follows

P (u) = −∂kF k(u) + S(u) . (4.24)

where some of the terms, containing only first derivatives of the fluxes F k(u), are ex-

plicitly separated in order to take advantage of the existence of weak solutions. Notice

that the fluxes F k and the sources S might be non-linear, but depend only on the fields.

This split allow us to define different discretization operators to deal with the fluxes and

with the sources. In particular, finite difference schemes seen in the previous section,

suitable for smooth solutions, will be applied to the generalized sources terms.

However, the possible appearance of shocks require High-Resolution-Shock-Capturing

(HRSC) methods to discretize the fluxes [146] and find consistent solutions, as we

explained in the Section 3.5.2. We shall therefore use a conservative scheme to discretize
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the fluxes. For instance, in three dimensions:

P(U) = − 1

∆x

(
Fxi+1/2,j,k −F

x
i−1/2,j,k

)
− 1

∆y

(
Fyi,j+1/2,k −F

y
i,j−1/2,k

)
− 1

∆z

(
Fzi,j,k+1/2 −F

z
i,j,k−1/2

)
+ S(U) , (4.25)

where Fxi±1/2,j,k, F
y
i,j±1/2,k, F

z
i,j,k±1/2 are the set of fluxes along the x, y, z-direction eval-

uated at the interfaces between two neighboring cells, located at xi±1/2, yi±1/2, zi±1/2.

The crucial issue in HRSC methods is how to compute the fluxes at the interfaces

such that no spurious oscillations appear in the solutions. For simplicity, we restrict our

discussion to the one dimensional case, but higher dimensions can be obtained repeating

the same procedure on the other dimensions and adding them up. This calculation

consists in two steps:

Figure 4.3: The computational uniform grid xi. The left (L) and right (R) states
reconstructed at the interfaces xi±1/2 are required to evolve the solution Ui.

• reconstruct the fields, using points from the left (L) and from the right (R), in

the interfaces between points. For instance, to evolve the field Ui we need to

reconstruct the fields from left and right at the neighboring interfaces xi±1/2, that

is, ULi±1/2 and URi±1/2 (see Fig. 4.3).

• use a flux formula to compute the final flux at the interface, Fi±1/2, that approx-

imately solves the Riemann problem. One popular choice is the Harten-Lax-van

Leer-Einfeldt (HLL) flux formula [146, 147], which does not require the charac-

teristic decomposition of the system

F =
1

SR − SL
[
SRFL − SLFR + SRSL(UR − UL)

]
, (4.26)

where FL = F(UL), FR = F(UR) and SL, SR are the fastest speed traveling to

the left and to the right at that interface, respectively. They can be estimated as

a function of the largest positive and negative velocities (±)λ, namely

SL = min((−)λL, (−)λR) , (4.27)

SR = max((+)λL, (+)λR) . (4.28)
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A simplest and more robust choice assumes that SL = −SR = S. Substituting

this expression into the HLL flux one can obtain the Local-Lax-Friedrichs (LLF)

flux

FLLF =
1

2

[
FL + FR − S(UR − UL)

]
, (4.29)

that we will consider as the standard choice in our implementations.

A important step on the discretization scheme is the reconstruction of the fields from the

grid points xi into the interfaces located at xi±1/2. The reconstruction can be performed

to the evolved fields, to the fluxes or to a combination of both. All these choices have

advantages and disadvantages [101].

There are several reconstruction procedures, which can be performed to achieve different

order of accuracy and robustness. The most commonly reconstructions methods are, for

example: PPM [148] (explain above) and MP5 [149]. Other interested reconstruction

methods are the Weighted-Essentially-Non-Oscillatory (WENO) reconstructions [150,

151], for their flexibility (i.e., they can achieve any order of accuracy) and robustness.

The detailed implementation of the WENO methods can be found in the Appendix

of [101], while that details of the other methods can be found in a recent review [152].

We will present in the next section two standard method of reconstruction (i.e., linear

and parabolic) applied to the fields.

4.2.3 Linear reconstruction

A very common standard reconstruction is the piecewise linear [152]. The reconstructed

fields in the cell i at neighboring interfaces xi+1/2 can be approximated as

ULi+1/2 = Ui + σi
∆x

2
, (4.30)

URi+1/2 = Ui+1 − σi+1
∆x

2
, (4.31)

where σi is the slope representing the linear variation of Ui within the cell. In order to

avoid oscillations, these slopes must be limited, namely

σi = Limiter

(
Ui+1 − Ui,Ui − Ui−1

)
. (4.32)

One of the safest choice is probably the minmod limiter

minmod(a, b) =
1

2
(sgn(a) + sgn(b)) min(|a|, |b|) . (4.33)
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Another popular choice, much less dissipative, is the Monotonized Central limiter

MC(a, b) =
1

2
(sgn(a) + sgn(b)) min(

1

2
|a+ b|, 2|a|, 2|b|) . (4.34)

Notice that the simplest zero-th reconstruction, consisting on just copying the neighbor,

ULi+1/2 = Ui , (4.35)

URi+1/2 = Ui+1 , (4.36)

can be recovered setting a vanishing slope σi = 0.

4.2.4 Piece-wise parabolic reconstruction

The next order of reconstruction involves the piecewise parabolic method (PPM) [148,

153–155]. The main idea of this method is to construct an interpolating parabola, said

p(x), inside each cell

p

(
x− xi−1/2

∆xi

)
= a2

(
x− xi−1/2

∆xi

)2

+ a1

(
x− xi−1/2

∆xi

)
+ a0 , (4.37)

where x ∈ [xi−1/2, xi+1/2] and ai are vectors of constant coefficients to be determined [153].

The procedure is at follows:

(i) We construct the limited slopes in each cell

σ(Ui+1) = MC

(
Ui+2 − Ui+1, Ui+1 − Ui

)
, (4.38)

σ(Ui) = MC

(
Ui+1 − Ui, Ui − Ui−1

)
, (4.39)

(ii) then, we calculate ULi+1/2 and URi+1/2 in that cell by using

ULi+1/2 =
1

2
(Ui+1 + Ui)−

1

6
(σ(Ui+1)− σ(Ui)) , (4.40)

and URi+1/2 = ULi+1/2 .
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• Finally, enforce the monotonicity conditions resetting URi−1/2 and ULi+1/2 in each

cell as follows

ULi+1/2 = URi−1/2 = Ui if (ULi+1/2 − Ui)(Ui − U
R
i−1/2) ≤ 0 ,

URi−1/2 = 3Ui − 2ULi+1/2

if
(
ULi+1/2 − U

R
i−1/2

)(
Ui −

1

2

(
ULi+1/2 + URi−1/2

))
>

1

6

(
ULi+1/2 − U

R
i−1/2

)2
,

ULi+1/2 = 3Ui − 2URi−1/2

if −1

6

(
ULi+1/2 − U

R
i−1/2

)2
>
(
ULi+1/2 − U

R
i−1/2

)(
Ui −

1

2

(
ULi+1/2 + URi−1/2

))
.

4.3 Boundary Conditions

Since we are interested on isolated systems, we will consider radiative boundary condi-

tions [70]. It means that, the main part of the radiative boundary conditions assumes

that there is an outgoing radial wave with some speed v,

u = u∞ +
f(r − vt)

r
, (4.41)

where u is the sef of evolved fields, u∞ its value at infinity and f a spherically symmetric

perturbation that moves at velocity v. Notice that {u∞, v} depends on the particular

field (for example, u∞ = 1 for the lapse function). Accordingly, the time derivative can

be written as

∂tu = −vi∂iu− v
(u− u∞)

r
, (4.42)

where vi = v xi/r and ∂i is evaluated using centered finite differencing where possible

and one-sided elsewhere.

4.4 Infrastructure: HAD and SAMRAI

One way to use efficiently the computational resources is increasing the grid resolution

only on the localized regions of the simulation domain where the dynamics is more

demanding and higher resolution is required to improve the accuracy of the solution. A

mature and well-established strategy is the adaptive mesh refinement (AMR), which

introduces new additional grid levels with higher resolution on specific regions which

might change dynamically with the solution.

A necessary condition for the stability of explicit numerical schemes of hyperbolic sys-

tems is that the time step must satisfy the CFL condition ∆t ≤ λCFL∆x, with λCFL a
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factor depending on the dimensionality of the problem and the specific time integrator.

When there are multi-levels l = 0 . . . L, the solution on each refinement level can be

evolved in a stable way by using the time-step corresponding to the finest grid reso-

lution ∆xL, ensuring that all the grids satisfy the CFL condition. This is however a

very inefficient choice, since coarser grids are evolved with a time-step much smaller

than the one allowed by their local CFL condition. A common way to avoid such a

restriction is by evolving the solution with sub-cycling in time, meaning that each grid

uses the largest ∆t as set by its local CFL condition. This means that the finer grids

must perform two or more time-steps for each one of the coarse grid. There have been

several well motivated strategies to fill in the missing information at the boundaries of

the refined grids: Tappering [156], Berger-Oliguer style [157], Berger-Oliger with dense

output interpolator [158] and Berger-Oliger without order reduction [159, 160]. Further

details of the numerical implementation of these strategies can be found in Ref. [101].

The AMR algorithm works as follows:

(a) First of all, it calls a subroutine, namely refinement criteria, to decide which

regions need additional levels with smaller grid sizes to obtain an accurate solution

see Figure 4.4. Once the solution is defined in all levels the simulation can start.

(b) The procedure to integrate a time-step is repeated over and over until reaching the

final simulation time. The fields must be evolved in all grids each timestep, starting

from the coarsest level l = 0 to the finest one l = L. Each time integration is

performed by using a RK with S sub-steps. Therefore, the intermediate auxiliary

states U (i) and the final one Un+1 must be computed at each level. The right-

hand-side of the evolution equations, which involves spatial derivatives, need to

be computed at each of these sub-steps, by using the discrete spatial operators

described in the previous section.

(c) The neighboring zones outside the boundary of the fine levels must be filled with

points of the same resolution in order to accurately evolve the solution. This

procedure is called prolongation and it usually involves interpolation from the

coarse grid level into the fine one.

(d) After computing each intermediate RK-step the fields need to be synchronized

among the different processors on level l in order to fill the boundaries of the

domains splatted in each processor with the correct updated data.

(e) Finally, after completing all the steps of the RK, we need to inject the solution of

the fine level l into the coarse one l − 1, a procedure known as restriction. After

the values on the coarse grids have been updated, the information on the level l−1

must be again synchronized among processors.
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In this Thesis, the distributed AMR infrastructure is provided either by HAD [161, 162]

or SAMRAI [163–165]. Both of them use the message passing interface (MPI) for

distributed parallelism. Some of the features of each infrastructures are described below:

(i) HAD: computational toolkit developed since 2006 at Louisiana State University,

providing distributed AMR for partial differential equations, and in particular,

Numerical Relativity applications. This infrastructure is based on Berger-Oliger

style AMR with full sub-cycling in time, together with an improved treatment of

artificial boundaries [156]. It has a modular design, which allow to solve differ-

ent sets of evolution equations with the same computational infrastructure, using

different programing languages as F77, F90 and C++. Previous work with this

code [111, 166–170] established that it is convergent and consistent for the evolu-

tion of boson stars and neutron stars.

(ii) SAMRAI: patch-based Structured Adaptive Mesh Refinement Application In-

frastructure developed over more than fifteen years by the Center for Applied Sci-

entific Computing at the Lawrence Livermore National Laboratory for generic ap-

plications, as for example hydrodynamics problems, electronic structures, etc. The

evolution equations are introduced by using the platform Simflowny [100–102, 171]

to automatically generate parallel code for the SAMRAI infrastructure [163–165].

Through Simflowny, Berger-Oliger without order reduction is implemented with

an improved treatment of artificial AMR boundaries when there is sub-cycling in

time [159, 160]. Further details of the numerical implementation and convergence

tests performed with this new platform can be found in Ref. [101, 172].

4.5 Some Numerical Relativity tests

Finally, in this section, we perform few standard NR tests by evolving some numerical

spacetimes: (i) robust stability test and gauge waves (some of which are included as

standard testbeds [173] ), and (ii) a single boson star and neutron star. These simple

tests will be also useful to check our modification of the CCZ4 formalism.

For the tests presented in this Chapter, we adopt finite difference schemes, based on

the MoL [63], on a regular Cartesian grid. A fourth order accurate spatial centered

discretization –satisfying the summation by parts rule– is used for Einstein equations,

see Section 4.2.1, while the relativistic hydrodynamics equations are discretized using

HRSC method based on the HLL-flux formula with PPM reconstruction, see Sec-

tion 4.2.2. Finally, either a third or fourth order accurate RK time integrator is used
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Figure 4.4: Adaptative Mesh Refinement. Structure of computational domains for
simulating a binary of boson stars in an AMR algorithm. The left-had side panel cor-
respond to had infrastructure and the right-hand side SAMRAI. Note that the region
with smaller grids are located within the boson stars, ensuring sufficient resolution and

accurate solution.

to achieve stability of the numerical implementation and to integrate the equations in

time [174].

To ensure sufficient resolution, we employ AMR via the had computational infrastruc-

ture that provides distributed, Berger-Oliger style AMR [161, 162] with full sub-cycling

in time, together with an improved treatment of artificial boundaries [156]. We adopt

a Courant parameter of λc ≈ 0.25 such that ∆tl = λc ∆xl on each refinement level l to

guarantee that the Courant-Friedrichs-Levy condition is satisfied.

Notice that, besides these solutions, this code has been used extensively for a number

of other projects and it has already been rigorously tested [111, 166–170].

4.5.1 Robust stability test

We first carry out the robust stability test-bed [63, 175]. This test consists on a

Minkowski background metric plus a small random perturbation in each of the evo-

lution fields (see one of them in Figure 4.5). Since both the matter terms and all the

damping coefficients are set to zero in this test, only the principal part of the evolution

equation and the linear terms are significant. The element line is given by

ds2 = −(1 + δα)dt2 + (ηij + δγij)dx
idxj (4.43)

where δα and δγij are small Gaussian random perturbations. A linear growth on any

field indicates a weakly hyperbolic system. Therefore, the solution depends strongly on
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Figure 4.5: Robust stability. Component Ãxx of conformal trace-less extrinsic curva-
ture at t = 0.

the characteristic structure of our system (2.52-2.56) and, in particular, it confirms its

(strongly) hyperbolicity.

We set a 2D domain [−0.5, 0.5]2 with periodic boundaries conditions and N = 100 grid

points in each direction. No artificial Kreiss-Oliguer dissipation is included for this test.

As it was shown in subsection 2.3.4, the hyperbolicity of the system depends on the

parameter λ0, so we analyze the effect of this parameter on the solutions. Besides, we

use f = 2/α, g = 3/4 and η = 2, that is, the 1 + log slice with standard values for the

Gamma-driver shift condition.

The L2-norms of some constraints are displayed in Fig. 4.6 for three different cases. In the

first one the conformal constraints are algebraically enforced after each timestep (CCZ4e),

as it is currently done in all the flavors of BSSN and conformal Z4. The other two

cases (CCZ4) corresponds to λ0 = 0 and λ0 = 1 without any algebraic enforcing. Our

simulations show a linear growth on ||γ̃ − 1|| that propagates to ||Zx|| and, eventually,

to all the other fields. This linear growth indicates a lack of strong hyperbolicity of the

system for λ0 = 0. All the norms are constant both for CCZ4e and for CCZ4 with

λ0 = 1, as it is expected for a well-posed system. Henceforth, we are going to use the

choice λ0 = 1 for all the forthcoming simulations with CCZ4.
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Figure 4.6: Robust stability. L2-norm of |γ̃−1| (top panel) and |Zx| (bottom panel) as
a function of time -in crossing time units-. Some modes increase for the CCZ4 system
with λ0 = 0 (blue dashed line), showing that this choice leads to a weakly pseudo-
hyperbolic system. These modes (and all others) remain constant –a sign of the strong
hyperbolicity of the system– in the other two cases; CCZ4 with λ0 = 1 (black solid
line) and CCZ4e (red dotted line), where the conformal constraints are algebraically

enforced.

4.5.2 Gauge waves

A family of non-trivial exact solutions can be constructed from Minkowski spacetime

by performing a coordinate transformation on (x, t). The resulting line element can be

written as [63, 92, 173, 175]

ds2 = −H(x− t)dt2 +H(x− t)dx2 + dy2 + dz2,

where H(x− t) is an arbitrary plane wave function propagating along the x axis. Note

that this solution is exact within an harmonic slicing, α =
√
γ, and zero shift, βi = 0,

corresponding to the choice f = 1 and g = 0 in our gauge conditions. We will consider

H(x−t) = 1−A sin [k(x− t)] and set an amplitude A = 0.1 with wave number k = 2π/L,

being L the size of the domain. The domain for this one-dimensional test is [0, 1] with

periodic boundary conditions and 100 grid points. This test allows us to study the

stability of our formulation in the non-linear regime.

The L∞-norm for some constraints are shown in Fig. 4.7 for four different cases, which

can be compared with Figure 1 in [92]. In the first two cases (i.e., BSSN and CCZ4e),

the conformal constraints are algebraically enforced after each time step. The other two
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Figure 4.7: Gauge waves. L∞-norm of |γ̃ − 1| (top panel) and |H| (bottom panel)
as a function of time -in crossing time units -. The BSSN system (red solid line) and
CCZ4 with κc = 0 (green dotted line) display an unbound growth in some constraints.
Both CCZ4e (black solid line) and CCZ4 with κc = 1 (blue dashed line) maintain the

constraints under control at least for 100 crossing times.

cases correspond to CCZ4 with either κc = 1/L or κc = 0 (in both cases κz = 1/L).

It is clear that the BSSN formulation fails in this test, as both the conformal and the

Hamiltonian constraint suffer an exponential growth. In contrast, all the constraints

remain under control when using the CCZ4e. The most important outcome of this test

is the fact that the CCZ4 formulation with κc = 1 is also stable, meaning that it is not

required to enforce algebraically the conformal constraints to keep them under control.

The last case, CCZ4 with κc = 0, presents a linear growth in the conformal constraint

|γ̃ − 1|, which unavoidably will lead to a failure due to the propagation to other fields.

The same behavior is observed in simulations on generic spacetimes, indicating that

the choice of the damping coefficients {κz, κc} is crucial to achieve accurate and stable

solutions.

4.5.3 Evolution of single boson star

As we discussed in the Section 3.4.2, the initial data for complex scalar field configu-

rations in spherical symmetry can be solved numerically for the static metric (3.23) by

adopting the harmonic ansatz (3.50) for the scalar field. Within these assumptions the

EKG system reduces to a set of ordinary differential equations that can be solved by

imposing appropriate boundary conditions(3.26)-(3.27) (i.e., regularity at the origin and
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asymptotically flat at large distances). The equations are further simplified by using

polar-areal coordinates. Therefore, the standard procedure is to solve the equations

in these coordinates and then perform a (numerical) coordinate transformation into

isotropic coordinates, which can be transformed to Cartesian ones [129].

Different interaction potentials V (|Φ|2) lead to boson stars with different compact-

ness [58]. We are interested in a particular family of very compact boson stars, commonly

known as nontopological solitonic boson stars2 [135, 136], where the potential is given

by

V
(
|Φ|2

)
= m2

b |Φ|2
[
1− 2|Φ|2

σ2
0

]2

. (4.44)

Here σ0 is a constant that determines the compactness of the star and mb is related to

the scalar field mass. Therefore, depending on the model parameters, solitonic BSs can

be as massive as (super)-massive BHs and, when σ0 � 1, they can be slightly more

compact than ordinary neutron stars [135]. Following the definition made in Chapter 3,

the effective radius RM is defined as the radius within which 99% of the total mass is

contained, i.e. m(RM ) = 0.99M . In the model under consideration, since the scalar field

is very steep, choosing a higher threshold does not affect the radius significantly. As we

said before, solitonic BS is a specific family with a potential that yields compactness

comparable or even higher than that of neutron stars. In particular, stable configurations

can reach a maximum compactness of Cmax ≈ 0.33. As a reminder, the compactness for

a Schwarzschild BH C = 0.5 and for a NS is C ≈ 0.1− 0.2.

Here, we test our implementation using strongly self-gravitating scalar fields, i.e., soli-

tonic BSs. By setting σ0 = 0.05 and the scaling factor mbσ0

√
8π = 1, the most massive

stable star has a mass Mmax ≈ 1.84. A suitable stable equilibrium configuration for our

test can be obtained by setting φ0(r = 0) = 0.0364 and ω = 1.0666. The resulting star

has mass M = 0.36 and radius R = 3.08, so its compactness is C = 0.118. This con-

figuration is well inside the stable branch. The profiles of α(r), ψ(r) and φ0(r) for this

particular solution are plotted in Fig. 4.8. Note that, due to the very steep profile (see

Figure 4.8 or Figure 5.1) of the scalar field, the numerical integration of the equilibrium

equations becomes quite challenging, requiring very fine-tuned shooting parameters [59].

This configuration is evolved in a domain [−16, 16]3 with radiative boundary conditions.

There are 60 grid points in each direction and three refinement levels, such that the

highest resolution is ∆x = 0.1. The simulations are performed by using the CCZ4

formulation (see section 2.3.2) coupled with the KG equations written in conformal

variables (3.42)-(3.44) with κz = 0.1 and either κc = 1 or κc = 0. We also include the

solutions obtained with the BSSN formulation for comparison purposes.

2From now on, we will use Φ instead of φ (as was used in the Chapter 3).
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Figure 4.8: Solitonic boson star. The top panel displays the metric components α(r)
(blue solid line) and ψ(r) (red solid line) for the typical solitonic boson stars with
compactness C ≈ 0.118 used here, compared to the Schwarzschild solution (dashed
lines) in isotropic coordinates. The bottom panel shows the scalar field profile φ0(r),
which is almost constant in the interior and decays rapidly at the surface of the star.

The evolution of the scalar field real part ΦR(t, r = 0) is displayed in Fig. 4.9, together

with the expected analytical behavior φ0(r = 0) cos(ωt). The solutions for all the cases

considered, either with BSSN or CCZ4, show a very good agreement with the analytical

expectation. Differences arise however in the L2-norm of some constraints, plotted in

Fig. 4.10. Both the conformal and the physical constraint remain under control by using

either BSSN or CCZ4 with κz = 0.1 and κc = 1. However, notice that the errors of

the physical constraints obtained with the CCZ4 and this parameter choice are several

orders of magnitude smaller than the ones obtained by using BSSN.

4.5.4 Evolution of single neutron star

Another interesting numerical test is based on the evolution of an isolated neutron star.

The initial data can be constructed as explained in Section 3.5.3. We calculate a family

of equilibrium configuration by considering a polytropic EoS with Γ = 2.5 and κ = 8980,

such that the most massive stable star has mass Mmax ≈ 2.6. The specific equilibrium

configuration solution for our test is obtained by setting ρc = 1.223 × 10−2, leading

to a stable equilibrium configuration with mass M = 1.35 and radius R = 11.23, and

therefore, a compactness of C = 0.12. The radial profiles of α(r), ψ(r) and ρ(r) for this

particular solution are displayed in Fig. 4.11.
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Figure 4.9: Solitonic boson star. Evolution of the real part of Φ at r = 0. The solid
red line illustrate the analytically expected value φ0(r = 0) cos(ωt) with ω = 1.0666.
The blue circles show the numerically solution obtained with different evolution systems

(i.e., BSSN and CCZ4), which can not be distinguished by eye in this plot.
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Figure 4.10: Solitonic boson star. L2-norm of |γ̃ − 1| (top panel) and |H| (bottom
panel) as a function of time. The solution obtained with BSSN (red solid line) shows
a small |γ̃ − 1| constraint as a result of enforcing constraint in each integration time-
step, but the Hamiltionian constraint increase over time. The solutions obtained with
CCZ44 are stable if we add the damping terms for the conformal constraints (black
solid line) –otherwise there is a linear growth in |γ̃ − 1| that will lead to a unstable

evolution (blue dashed line).
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Figure 4.11: Neutron star. The top panel shows the metric components α(r) (blue
solid line) and ψ(r) (red solid line) for the equilibrium configuration of a non-rotating
neutron star with mass M ≈ 1.35 and radius R = 11.23 used here, compared to
the Schwarzschild solution (dashed lines) in isotropic coordinates. The bottom panel

displays the central rest mass density ρ(r).

This configuration is evolved in a cubic domain [−100, 100]3 with radiative boundary

conditions. There are 120 grid points in each direction and four refinement levels, such

that the highest resolution is ∆x = 0.2. The simulations are performed by using the

CCZ4 formulation coupled with the relativistic hydrodynamical equations written in

conformal variables (3.77)-(3.79) with κz = 0.1 and κc = 1.

The dynamical evolution of some interesting quantities are displayed in Figure 4.12. In

particular, the spatial integral of the globally conserved baryonic number D is showed

in the first panel. This quantity has been rescaled by their initial values. Notice that it

remains approximately constant during the evolution, confirming that the initial equilib-

rium configuration is stable. Finally, the L2-norm of Hamiltonian constraint is displayed

in the bottom panel, showing that it remains under control with our selection of the

damping terms κz = 0.1 and κc = 1.

4.6 Discussion

To summarize, we have showed that our novel modification of the CCZ4 formalism,

which does not require the algebraic enforcement of the conformal constraints after each

step of the numerical integration, behaves in a stable and robust way with a variety
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Figure 4.12: Neutron star. (Top) Evolution of the spatial integral of the global
conserved quantities D. It remains roughly constant during the evolution, showing
that the star is stable. (Bottom) L2-norm of the Hamiltonian, H, as a function of time.
These results confirm that the solution with CCZ4 is stable and the constraints remain

under control by setting κz = 0.1 and κc = 1.

of known solutions, including the evolution of isolated boson and neutron star. These

simulations have been performed by solving the Einstein equations coupled to matter

fields, described either with a scalar field or a perfect fluids. We have used AMR via the

had computational infrastructure in order to guarantee sufficient resolution. Finally, let

us stress that our formulation treats the conformal constraints in the same way than the

physical ones, and they are also kept under control by including damping terms.
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Chapter 5

Collisions of Boson Stars

Here we study binary mergers of very compact boson stars. Our aim is to investigate

the properties of the remnant resulting from the merger and the gravitational radiation

produced in these scenarios by means of numerical evolutions. We consider several types

of binaries by varying different parameters either of the boson star, namely the phase

shift and the direction of rotation in the complex plane, or of the binary, like the angular

momentum. The analysis of the gravitational waves radiated during the coalescence of

such a binary will be crucial to distinguish these events from other binaries by using

LIGO and Virgo observations.

These simulations, performed by using the modified CCZ4 formalism 1 introduced in

Section 2.3.2, reveal a rich phenomenology that can be summarized as follows:

(i) the final state after a head-on collision of low-mass boson stars is, in general,

another boson star. However, almost complete annihilation of the stars occurs

during the merger of a boson-antiboson pair.

(ii) the merger of orbiting boson stars form either a rotating bar that quickly relaxes

to a non-rotating boson star or a black hole, depending on the initial compactness

of the stars.

(iii) the remnant’s gravitational wave signature is mainly governed by its fundamental

frequency as it settles down to a non-rotating boson star, emitting significant

gravitational radiation during the post-merger state.

In this Chapter we review the research presented in [6, 111] and it is organized as follows.

In Section 5.1, a brief introduction and motivation about binary boson stars systems is

1Which does not require the algebraic enforcing of any constraint.
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presented. Then, in Section 5.2, we revisit the Einstein-Klein-Gordon (EKG) equations

considering the specific potential leading to solitonic boson stars. The procedure to

construct initial data consisting for binary boson star systems is described in Section 5.3.

We study the dynamics of binary boson stars in Section 5.4 by analyzing our numerical

simulations of head-on and orbiting cases. In Section 5.5 we study the coalescence

of binary boson stars for different compactnesses, focusing on the dynamics and the

corresponding gravitational waves signal. Finally, we present a discussion of the results

in Section 5.6.

5.1 Motivation

Currently, the only known astrophysical compact objects able to source strong gravita-

tional waves are BHs and NSs [39]. Nevertheless, there might be other non-standard

low-brightness stars, called generically exotic compact objects (ECOs) (see [176] for a

review), which might be too dim to be observed by current electromagnetic telescopes.

However, if they are massive and compact enough, it might be possible to detect them

trough the gravitational waves (GWs) radiated during their coalescence.

Among the many exotic alternative compact objects that have been proposed (e.g.,

fuzzballs [49], gravastars [50], wormholes [51], etc), boson stars (BSs) [53] are arguably

among the better motivated and very likely the cleanest to model (see Ref. [48] for a

recent review on exotic compact objects). There are two theoretical arguments that

supports the possibility of self-gravitating objects made by bosonic particles in the Uni-

verse. First, the discovery of Higgs boson [56, 57] confirmed the existence of scalar fields

in Nature. Second, the existence of a formation mechanism, dubbed as gravitational

cooling [177], to produce BSs from a generic scalar field configuration.

Despite the simplicity of these smooth solutions, there are only few studies on binary

boson star collisions within General Relativity (GR). Preliminary head-on collisions

of mini-boson stars were first studied in [178] within a 3D code. The dynamics of the

merger, which showed an interesting interference pattern, was further analyzed in [128]

with and axisymmetric code. Ultra-relativistic collisions were considered in [179], and

head-on and orbital mergers of non-identical boson stars in [166, 167]. Other related

works include the study of the orbital case within the conformally flat approximation

instead of full GR [180], and head-on collision of oscillatons [61], a solution analogous

to boson star but using just a real scalar field. Much more recently, collisions of solitonic

boson stars have been numerically performed [61, 181, 182], leading to dynamics qual-

itatively similar to the observed for mini-boson stars, and head-on and orbital collision
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of Proca stars [183], a solution modeled by a massive complex vector field (see Ref. [184]

for dynamical formation of Proca stars).

Motivated by the existent and future GW observations of compact-object binary merg-

ers, we study the dynamics of BSs mergers and, in particular, the coalescence of a

binary system in a tight, quasi-circular orbit. The remnant of this merger can generally

be either a BS or a BH. For the merger to result in a long-lived BS, however, it is

required that (i) the remnant star be stable, which in turn implies that its mass is less

than the maximum mass allowed for the model, and (ii) the angular momentum left over

after the merger satisfy the quantization condition for boson star [58] and hence either

vanish (i.e., k = 0) or be larger than the minimum angular momentum (i.e., k = 1)for a

rotating BS.

In the same framework, we are interested in these BSs signals within the context of

binary BHs and binary neutron stars. We will therefore consider that range of compact-

nesses for the initial binary components. For increasing compactness, the gravitational

wave signal of a BS binary is expected to resemble more closely that of a BH binary.

For small compactness, the structure and tidal deformability [7, 8] of the star will play

a significant role, similar to the signals from binary neutron stars.

5.2 Evolution equations

Recall that, as was explained in the Chapter 3, BSs are described by EKG theory,

whose action is S =
∫
d4x
√
−gLKG, where Lagrangian density LKG is given by (3.33).

Variations with respect to the metric and the scalar field yield to the following evolution

equations

Rab −
1

2
gabR = 8π

(
∇aΦ∇bΦ∗ +∇aΦ∗∇bΦ− gab

[
∇cΦ∇cΦ∗ + V

(
|Φ|2

)] )
(5.1)

gab∇a∇bΦ =
dV

d|Φ|2
Φ , (5.2)

The compact solutions considered here are the solitonic boson stars model [135] with

a self-interaction potential given by equation (4.44). In particular, here we restrict

ourselves to σ0 = 0.05 which is chosen because it allows for very compact, stable con-

figurations. Following [59], we can rewrite the equations for the initial data Equations

(3.51)–(3.54) in terms of the following dimensionless quantities

M(mbλ), N(mbλ)2, r(mbλ), ω/(mbλ) , (5.3)
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C φc/σ0 Mmbλ N(mbλ)
2 (RM , RN )mbλ ω/(mbλ) mb M N (RM , RN ) ω I/M3 ktidal

0.06 1.045 0.1238 0.0605 (2.0334, 1.8288) 1.545745909 0.9880 0.5 0.9867 (8.21, 7.38) 0.3828 84.9 8420
0.12 1.030 0.3650 0.2551 (3.0831, 2.8360) 1.066612350 2.9124 0.5 0.4785 (4.22, 3.88) 0.7787 27.8 332
0.18 1.025 0.7835 0.7193 (4.2572, 3.9960) 0.790449025 6.2514 0.5 0.2929 (2.71, 2.54) 1.2386 12.5 41
0.22 1.025 1.0736 1.1147 (4.9647, 4.7068) 0.685760351 8.5663 0.5 0.2417 (2.31, 2.19) 1.4725 8.34 20

Table 5.1: Characteristics of solitonic BS models with σ0 = 0.05. The table shows:
compactness, central value of the scalar field, ADM mass, Noether charge, radius of
the star (i.e, containing 99% of either the mass or of the Noether charge for RM or
RN , respectively) and angular frequency of the phase of φ in the complex plane, in
dimensionless units on the left and in units such that M = 0.5 on the right. Note
that high-compactness configurations require a very fine tuning in ω. Here we show
only the first nine decimal figures. In the last two columns, we give the normalized
Newtonian moment of inertia (where I =

∫
dmL2, L being the distance from the

axis of rotation) and dimensionless tidal Love number (ktidal) of the corresponding
configuration as computed in [7, 8]. As a reference, ktidal ≈ 200 for a neutron star with

an ordinary equation of state, and ktidal = 0 for a BH.

where λ = σ0

√
8π. Doing so produces equations independent of mb, and hence mb

serves to set the units of the physical solution. As such, we choose mb so that the BS

mass is M = 0.5, and the total mass of binary systems constructed with these solutions

(described in the following sections) is roughly unity for any compactness of the binary

components. Note that while the scaling with mb shown in Eq. (5.3) is exact, the scaling

with respect to λ is not. Only in the σ0 � 1 limit does the scaling hold. For the value

σ0 = 0.05 considered here, the scaling is only approximate.

A sequence of isolated BS solutions can be characterized by the central value of the

scalar field φc. In Fig. 5.1, a number of relevant adimensional quantities of this family

of solutions are shown. Among these, we show the compactness C as a function of

φc (top left) and as a function of the mass (top right), which achieves a maximum of

roughly Cmax ≈ 0.33. The markers shown in Fig. 5.1 denote the four representative

initial configurations which will be studied in detail in Section 5.5.3 to investigate the

gravitational wave radiation during the coalescence. Radial profiles of φ0(r) for these

representative cases are displayed also in Fig. 5.1(bottom left panel), while that their

mass-radius diagram is showed in the bottom right panel. The relevant parameters of

these solutions are given in Table 5.1.

It is worth mentioning that in numerical simulations, it is more practical to estimate the

radius of the final remnant through the radius containing 99% of the Noether charge,

RN , so we will also adopt this definition when needed.
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Figure 5.1: Compactness as a function of the central value of the scalar field φc (top
left), compactness-mass diagram (top right), radial profile of the scalar field φ0(r) for
each compactness (bottom left), and mass-radius diagram (bottom right) of an isolated
nonspinning BS in the solitonic model (4.44) with σ0 = 0.05. Circular markers refer to
the initial equilibrium configurations considered in this Chapter to construct initial data
for BS binaries (see Table 5.1), whereas squared markers in the right top panel refer to
the final remnant produced by the merger of stars in an initial configuration indicated
by the same color (see Table 5.2). Two squares corresponding to two configurations are
not shown; the remnant of the black configuration is not well-enough resolved and did
not reach a quasi-stationary state, and the green configuration produces a BH (with
C > 0.5) instead of a BS. The radius RM is defined as that containing 99% of the
mass of the star, except for the radius of the remnant which is instead defined as that

containing 99% of the Noether charge, RN .

5.3 Initial data of binary solitonic Boson Stars

Here, we describe how to construct initial data for a binary boson star system with

generic angular momentum, by extending the procedure described in [185] to construct

accurate boosted initial data from a spherically symmetric solution.

First of all, we will begin by performing a Lorentz transformation to the coordinates of

a static BS solution, in order to get a boosted BS star along the x-axis.
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As we know, the line element for spherically symmetric solutions can be easily written

in Cartesian coordinates from the isotropic coordinates, namely

ds2 = −α2
0dt

2
0 + ψ4

0(dx2
0 + dy2

0 + dz2
0) = −α2

0dt
2
0 + ψ4

0(dr2
0 + r2

0dΩ2) , (5.4)

where α0 = α0(r0) and ψ0 = ψ0(r0), being r0 =
√
x2

0 + y2
0 + z2

0 . By performing a Lorentz

transformation along the x-direction

t = Γ(t0 + vx0) , (5.5)

x = Γ(x0 + vt0) , (5.6)

where Γ = 1/
√

1− v2 is the usual Lorentz factor, one can obtain the following line

element for the boosted solution

ds2 = −Γ2(α2
0 − ψ4

0v
2)dt2 + 2Γ2 v (α2

0 − ψ4
0)dtdx+ ψ4

0(B2
0dx

2 + dy2 + dz2). (5.7)

The lapse function and the non-zero component of the shift vector βi are given by

α =
α0

B0
, βx =

(
α2

0 − ψ4
0

ψ4
0 − α2

0v
2

)
v , (5.8)

withB0 = Γ

√(
1− v2α2

0

ψ4
0

)
. Notice that r0 can be written in terms of the new coordinates,

namely r0 =
√

Γ2(x− vt)2 + y2 + z2. Now we only have to perform the Lorentz trans-

formation to the scalar field quantities. First, the harmonic ansatz given by eq. (3.50)

can be generalized, to allow for non-identical boson stars, by including a phase shift θ

and the direction of rotation ε = ±1 [58], namely:

Φ(t0, r0) = φ0(r0) e−i(εωt0+θ) . (5.9)

Besides, we can compute the field Π(t, r0) from its definition Equation (3.40), calculated

in the boosted frame. The final expressions, evaluated at t = 0, are

φR(r0) = φ0 (r0) cos(θ − Γvxεω) , (5.10)

φI(r0) = −φ0 (r0) sin(θ − Γvxεω) , (5.11)

ΠR(r0) =
Γ ε ωφ0 (r0) (βxv + 1) sin(θ − Γvxεω)

α

+
Γ2x(βx + v)φ′0 (r0) cos(θ − Γvxεω)

αr0
, (5.12)

ΠI(r0) =
Γ ε ωφ0 (r0) (βxv + 1) cos(θ − Γvxεω)

α

− Γ2x(βx + v)φ′0 (r0) sin(θ − Γvxεω)

αr0
. (5.13)
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We are mainly interested on binary systems. Along the lines described in [111, 129, 185],

initial data for binaries can be constructed as the superposition of two single solitonic

boson star solutions. With the isolated BS boosted configurations in hand, the method

can be summarized as follows:

(i) construct the initial data for two identical spherically symmetric BSs, as dis-

cussed in the previous Section 3.4.2. We denote the metric and scalar field as

{g(i)
ab (r),Φ(i)(r)}, where the super-index (i) indicates each solitonic star

(ii) extend the solution to Cartesian coordinates, with the center of the star is located

at a given position xjc. After that, perform a Lorentz transformation to the solution

for each BS with a boost velocity ± vx along the x-direction, namely

{g(i)
ab (xj − xjc, vx),Φ(i)(xj − xjc, vx)} , (5.14)

(iii) finally, superpose the solutions for each of the two stars:

Φ = Φ(1)(xj + xjc,−vx) + Φ(2)(xj − xjc, vx) , (5.15)

gab = g
(1)
ab (xj + xjc,−vx) + g

(2)
ab (xj − xjc, vx)− ηab , (5.16)

where ηab is the Minkowski metric.

It should be noted that this superposition of boosted binary BSs in only an approximate

solution at the initial time that does not satisfy exactly the constraints. However, as

it is shown in Fig. 5.6 for one of our typical simulations below, these initial constraint

violations, in one of our typical simulations, are rather small and decay exponentially in

a short time scale.
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5.4 Numerical Simulations of Boson Stars mergers

Here the dynamics of binary boson stars is studied, focusing on the final state of the

system after the merger. After describing the numerical setup, we present the results of

our simulations, where we consider both head-on and orbiting binary systems.

5.4.1 Numerical setup

We adopt the covariant conformal Z4 formulation CCZ4, explained in Section 2.3.2,

to write down the Einstein equations as a time evolution system. These equations are

supplemented with suitable gauge conditions for the lapse and shift, namely the 1 + log

slicing condition [105] and the Gamma-driver shift condition [107] (see section 2.3.3).

Furthermore, the same numerical setup from Section 4.5 is used. In order to ensure

sufficient resolution within the BSs, we employ AMR via the had computational in-

frastructure, see section 4.4.

In the two scenarios considered (i.e., binary BS systems with/without angular momen-

tum) the cubical domain is given by [−60, 60]3 with 120 grid points along each axis,

leading to a coarsest resolution ∆x0 = 1. We set five refinement levels such that the last

one, covering both stars, has a resolution ∆x4 = 0.0625 (i.e., there are approximately

96 points covering each star). Besides the constraints, additional analysis quantities are

evaluated in our binary boson stars simulations: the Noether charge or boson number,

given by the volume integral eq. (3.38), the ADM mass (2.88) and the angular momen-

tum (2.90), described in the Section 2.4. All these quantities are computed in a sphere

located at Rext = 40.

5.4.2 Head-on collisions cases

We consider initial data of binary equal-mass BSs which are initially at rest2. This

solution is constructed as a superposition of isolated BSs, as it was described previously,

with the ansatz (5.9) for one of the stars, namely

Φ = φ
(1)
0 e−iωt + φ

(2)
0 e−i(εωt+θ) , (5.17)

gab = g
(1)
ab + g

(2)
ab − ηab . (5.18)

2This means that we are considering vx = 0 in Equation (5.14).
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Note that, even for a particular solution for an isolated BS (i.e., the one described in

section 4.5.3), located at fixed initial positions xc, there is an infinite family of configu-

rations depending on the parameters {θ, ε}. Here, each solitonic BS is initially centered

at (±4, 0, 0).

We focus our study of equal-mass binaries in two essentially different scenarios:

(i) two boson stars, that is, with the same phase direction of rotation (within the

complex plane), i.e., ε = +1, but allowing for a phase shift θ, which will be

denoted as B-B(θ) . We consider four different cases for B-B(θ) with phase shifts

θ = {0, π/2, π, 3π/2}.

(ii) and, a binary formed by a boson and an anti-boson star( still with a phase shift),

denoted as B-aB(θ). Since their phases have opposite rotation direction (i.e.,

ε = −1), their Noether charges will also have opposite sign. We consider two for

B-aB(θ) with θ = {0, π}.

Let us start by describing the dynamics of the head-on binaries. Some time snapshots

of the Noether charge density –for all cases– are displayed in Figure 5.3, while that the

evolution of the ADM mass and the Noether charge are presented in Fig. 5.2.

Note that, since the binary systems considered here have no initial boost velocity, their

initial behavior is marked by their gravitational attraction. As the evolution progresses,

the resulting final object will depend on each case:

(a) B-B(0), B-B(π/2), B-B(3π/2): during the first stage of the evolution, the dy-

namics is governed mainly by their gravitational attraction. They approach quickly

and, at around t ≈ 28, the merger occurs. It this stage, both the scalar field and

gravitational interactions play a fundamental role on the dynamics by forming a

massive and perturbed BS. Finally, the collision of these cases leads to a merger,

resulting into a single solitonic BS with roughly the same total initial mass and

Noether charge (i.e., except a small fraction that is emitted by gravitational waves

and scalar field radiation, see Fig. 5.2).

(b) B-B(π): in the same way as the previous case, their initial approach is quick

due to gravity. However, the scalar field interaction between the two stars pro-

duces a repulsive force that overcomes the gravitational attraction and repels the

two compact objects. When they separate again, the repulsion force vanishes and

gravitational forces dominates again, leading to another collision. Therefore, the

binary suffers several inelastic collisions before relaxing to a system with two touch-

ing stars –which do not merge into a single one. As it can be noted from Fig. 5.2,
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Figure 5.2: Head-on binary collisions. ADM mass and Noether charge as a function
on time for the different cases studied. The boson-boson binaries merging into a single
one losses approximately a 5% of their initial mass and Noether charge. In contrast,
the boson-antiboson binaries annihilate during the merger, radiating most of the scalar
field (and the corresponding mass). The total Noether charge for the boson-antiboson

cases is zero through all the evolution.

for these cases the ADM mass and Noether charge remain roughly constant during

the evolution.

(c) B-aB(0), B-aB(π): the dynamics is initially similar to the other cases, until that

the stars make contact. The scalar field interactions of a boson-antiboson anni-

hilates each other during the merger for the two opposite phase shifts considered

here. This can be explained from the total conservation of the Noether charge.

As the binary is formed by a BS with boson particles and another BS with bo-

son anti-particles, their initial Noether charge is zero. Therefore, the only way

to conserve the Noether charge during its merger is to annihilate each other. As

it is diplayed in the top panel of Fig. 5.2, the ADM mass quickly decreases its

value after the merger, indicating that the system losses all its matter: most of

the scalar field is radiated away to infinity, and only a small fraction remains near

the region of the collision (i.e., see the last panels of 5.3).

5.4.3 Orbiting collisions cases with angular momentum

The initial data for the orbiting cases is constructed as described in section 5.3 for

boosted identical stars. It means, once the solution is written in Cartesian coordinates,
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Figure 5.3: Head-on binary collisions. Time snapshots of the Noether charge in the
plane z = 0. Each row corresponds to the different B-B(θ) and B-aB(θ) cases studied
here. The collision of the stars happens approximately at t = 28. The result of the
B-B is a single boson star except in the case of B-B(π). The stars in the B-aB case

annihilate each other during the merger.
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centered at some position xc, we perform a Lorentz transformation to each BSs solution

along the x-direction with velocity vx, namely {g(i)
ab boost ≡ g

(i)
ab (xj − xjc, vx),Φ

(i)
boost ≡

Φ(i)(xj − xjc, t, vx)}. Finally, superpose the two boosted solutions for each of the two

stars:

Φ = Φ
(1)
boost + Φ

(2)
boost, (5.19)

gab = g
(1)
ab boost + g

(2)
ab boost − ηab . (5.20)

They stars are centered at (0,±4, 0) and we consider different Lorentz boost velocities

v = {0, 0.05, 0.10, 0.15} along the x-direction, i.e, we induce an initial angular momentum

into the system. The last case corresponds to a binary almost in quasi-circular orbit.

We will describe the dynamics of the orbiting binaries. Few snapshots of the evolutions

are displayed in Fig. 5.5, whereas the ADM mass, the Noether charge and the angular

momentum are shown in Fig. 5.4.

(a) vx = {0, 0.05, 0.10}: these three cases behave in a similar way. As the evolution

proceeds, the stars approach to each other. Furthermore, as the initial velocity

(and the angular momentum) increases, the stars orbit around each other for a

longer time, merging into a rotating remnant that loses its angular momentum

and settle down to a non-rotating boson star.

(b) vx = 0.15: here, the system is in quasi-circular orbit. The prompt radiation

of angular momentum here is most extreme due to the following reason: after

the merger, two blobs of scalar field are ejected from the system at speed 0.6c,

carrying a small fraction of the mass and boson number but a large amount of

angular momentum (i.e., see t = 80 of the v = 0.15 in Figure 5.5, and the sudden

drop of angular momentum in Fig. 5.4).

In summary, all these cases with angular momentum merge and form a rotating bar that

quickly losses angular momentum and settles down to a non-rotating BS. Although the

system only losses a small fraction of the mass during the coalescence, all the angular

momentum is emitted by gravitational waves and scalar field radiation soon after the

merger.

This behavior of the remnant, which approaches quickly to a non-rotating BS, might

be a consequence of two combined effects:

(i) the quantization of the angular momentum Jz = kN (being k an integer) of ro-

tating BSs, that prevents stationary solutions with an arbitrary angular momen-

tum [186]. Moreover, the resulting star from the merger should have at least
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Figure 5.4: Orbital binary collisions. ADM mass (top pannel), angular momentum
Jz (middle panel) and Noether charge (bottom panel) as a function on time for the
different tangential boost velocities. During the coalescence approximately 5% of the

mass and Noether charge is lost, and almost all the angular momentum.

Jrotz (k = 1) ≈ 0.62 in order to correspond to a stable rotating boson star (see

the bottom panel of Fig. 5.4 at t ≈ 50). Although the (adimensional) angular

momentum of the system Jz/M
2 ≈ 0.78 is larger than Jrotz (k = 1), the system

does not relax to that state but instead it prefers to decay to the one with the

lowest angular momentum k = 0.

(ii) the rigid structure of the remnant may present difficulties for the scalar field to

organize itself into a stable, rotating boson star configuration. In particular, the

rotating boson star is harmonic both in time and azimuth angle with the level sets

of its magnitude being toroidal. This structure contrasts with a rotating neutron

star which can have a range of either rigid or differential rotational profiles.

Also, another possibility is that the first rotating configuration (k = 1) is unstable in the

high-compactness regime explored here (see Ref. [187] for a discussion of the stability of

less compact rotating BSs). As it is shown in Fig. 5.1, the mass and the compactness are

very steep functions of the central scalar field, and it is therefore possible that spinning

solutions exceed the maximum mass when their non-spinning counterparts are close to

such a maximum. If this is the case, the unstable spinning solution would not be formed

dynamically and we expect the outcome to be a non-spinning BS or a BH, in agreement

with the results of our simulations.
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Figure 5.5: Orbital binary collisions. Noether charge in the plane z = 0 for the
different boost velocities v = {0, 0.05, 0.10, 0.15}. The merger between solitonic boson
stars happens approximately at t ≈ 30 for the cases v = {0, 0.05, 0.10} and at t ≈ 40 for
the quasi-circular orbit case v = 0.15. For the latter case, after the merger two blobs
of scalar field take away a large fraction of the angular momentum from the system.

Although this seems in contradiction with the results in [167], where a rotating boson

star seemed to be produced, there are two important differences. First, these stars are

much more compact, so the dynamics might be more dominated by non-linear effects.

Second, due also to the high compactness, the dynamics is faster (i.e., the crossing time

is shorter), so we can follow the evolution until a stationary state is achieved, which

might not had been possible with the mini-boson stars.

Finally, the evolution of some constraints is displayed in Fig. 5.6, showing that they are

small and kept under control during all the simulation.
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of time. With our choice of the damping parameters, all the constraints are perfectly

under control during all the simulation.
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5.5 Gravitational waves from binary Boson Stars

In this section we analyze the dynamics of binary BSs, initially in quasi-circular orbits,

as a function of their individual compactness. For concreteness, we consider four binary

systems composed of BSs on the stable branch with compactness ranging from C ≈ 0.06

to C ≈ 0.22 (i.e., see Figure 5.1 and Table 5.1). Notice that all the stars have been

rescaled as described in Subsection 5.3 such that their individual masses in isolation

are M = 0.5, so that the binary has approximately a total initial mass M0 ≈ 1. The

positions and velocities of each binary system considered in this work, together with

other parameters of our simulations, are presented in Table 5.2.

5.5.1 Numerical setup

We adopt the same numerical setup and infrastructure explained in the previous Sec-

tion 5.4.1. Our simulations are performed in a domain [−264, 264]3 with a coarse res-

olution of ∆x0 = 4 and either 7 or 8 levels of refinement, the last one only covering

each star, such that the finest resolution is ∆x7 = 0.03125. Again, we analyze several

relevant physical quantities from our simulations, such as the ADM mass, the angular

momentum, and the Noether charge. Additionally, we compute the gravitational radia-

tion emitted during the coalescence considering the Newman- Penrose scalar Ψ4 (2.105)

defined in section 2.4.1. GWs, the ADM mass, and the angular momentum are com-

puted as spherical surface integrals at different extraction radii.

C y
(i)
c v

(i)
x M0 J0 tcontact remnant Mr RNr fr Mrωr Erad/M0 Erad/M0

0.06 ±9 ±0.140 1.07 1.32 950 BS 0.90 8.9 0.0207 0.117 0.075 0.029
0.12 ±5 ±0.210 1.18 1.24 300 BS 0.98 4.6 0.0311 0.203 0.085 0.057
0.18 ±5 ±0.214 1.29 1.40 330 BS 1.07 2.5 0.0489 0.329 0.120 0.086
0.22 ±5 ±0.220 1.46 1.65 218 BH 1.42 – 0.0560 0.500 0.030 0.10

Table 5.2: Characteristics of binary BS models and properties of the final remnant.
The entries of the table are, respectively: the compactness C of the individual BSs in

the binary, the initial positions y
(i)
c , the initial velocities of the boost v

(i)
x , the initial

total ADM mass M0, the initial total orbital angular momentum J0 of the system, the
time of contact of the two stars tc, the final remnant, the final total ADM mass Mr, the
averaged final radius of the remnant star RN

r (i.e., containing 99% of the total Noether
charge), the frequency fr of the fundamental mode of the remnant, its dimensionless
value Mrωr (where ωr = 2πfr), the total radiated energy in gravitational waves for each
simulation Erad (i.e., integrated from the beginning and extrapolated to large times
after the merger) and the one estimated analytically Erad as described in appendix A.1.
The final angular momentum of the BS remnant tends to zero quite rapidly. The
final (dimensionless) angular momentum of the BH obtained in the C = 0.22 case is

Jr/M
2
r ≈ 0.64.
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Figure 5.7: Coalescence of binary BSs. Snapshots in time of the Noether charge
density in the orbital plane. Each row corresponds to the different compactness (from
top to bottom, 0.06, 0.12, 0.18, and 0.22). The collision of the stars happens at different
times due to the different initial conditions and compactness of each case. Note the

emission of two scalar blobs in the third panel of the C = 0.12 case.

5.5.2 Dynamics

Some snapshots of the Noether charge density and the norm of the scalar field during

the binary coalescence are displayed in Figs. 5.7 and 5.8, respectively. The early part of

the inspiral is qualitatively similar for all cases, with the stars completing at least one

orbit before they make contact.

Notice that, the initial boost velocities, required to set the binary system roughly in

a quasi-circular orbit, are different for each case due to several reasons. The largest

difference appears for the case with C = 0.06 because the radius of the stars (i.e., and,

consequently, their initial separation) is significantly larger than in the other cases, im-

plying a lower boost velocity. Since the separation in all the other binary configurations
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Figure 5.8: Coalescence of binary BSs. Time snapshots of ||Φ|| in the plane z = 0 in
log-scale. Each row corresponds to the different coalescence of BSs cases studied here.
In each case the scalar field emitted during the evolution increases after the merger.

is the same, discrepancies on the boost velocities arise from slight differences on the

star’s compactness and total mass of the system. Consequently, the GWs produced

during the earlier stages of the inspiral will be weaker than the corresponding stage of

the larger compactness cases.

Once the stars make contact, scalar field interactions play a significant role in the dynam-

ics of the remnant and nonlinear effects due to the scalar potential becoming significant.

The combination of gravity forces and matter interactions produces a compact, rotat-

ing remnant immediately after the merger. The final fate of this remnant will depend

both on the potential and on the location of the solution within the stable branch, that

is, on how far from the unstable branch this specific configuration is. This distance

can be parametrized in different ways, such as the fraction M/Mmax (where Mmax is



Chapter 5. Collisions of Boson Stars 95

the maximum allowed mass on the stable branch) or, equivalently, on the initial stellar

compactness.

Our results indicate a transition between binaries with small compactnesses with those

of larger compactness. In particular, the critical compactness, CT , appears to be some-

where in the range of 0.18− 0.22. This transition is roughly estimated by the fact that

twice the individual BS mass above the critical value exceeds the maximum stable BS

mass, suggesting that any remnant (less any radiated scalar field) would be unstable. We

can distinguish two different behaviors depending on the initial compactness, separated

by this transition value:

• C . CT : the remnant is a largely perturbed BS, the angular momentum of which

decreases through dispersion of scalar field and gravitational radiation, settling

down into a non-rotating BS. Furthermore, for the case with C = 0.12, as already

observed previously in Section 5.4.3 (see [111]), the angular momentum of the

remnant is further reduced through the ejection of two “rather cohesive” scalar

field blobs soon after the merger (see third panel, second row in Fig. 5.7).

• C & CT : the remnant mass exceeds the maximum mass and promptly collapses to

a BH with approximately the mass and angular momentum of the system at the

merger time. There is some scalar field surrounding the BH that carries angular

momentum and is being either slowly dispersed to larger distances or falling into

the BH.

The evolution of the ADM mass, angular momentum, and Noether charge are illustrated

in Fig. 5.9. The binaries show only a significant loss of ADM mass near the merger due

to scalar field dispersion/ejection and energy carried away by GWs. Similar behavior

is reflected in the total Noether charge, when the remnant does not collapse to a BH.

Since the Noether charge is a conserved quantity, the fact that it remains mostly constant

further supports the reliability of our simulations.

Notice however that the case C = 0.18 shows peculiar behavior in its mass and angu-

lar momentum after merger when compared to the other cases. A close inspection of

the dynamics of this case shows that large gradients develop that are not accurately

tracked by the finest resolution we have allowed our adaptive grid to achieve. Indeed,

it appears the system explores a near-threshold regime which is not correctly captured

by our simulations and we consider the post-merger period of this case to be unreli-

able. Nevertheless, for reference and comparison purposes we include it in the overall

discussions since, in any case, its pre-merger behavior is informative.
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Angular momentum during the early inspiral is radiated mainly through GWs. Near

the merger stage there is dispersion (and in some cases, also ejection) of scalar field,

which also carries away a significant fraction of the angular momentum (notice the

sharp decrease in the middle panel of Fig. 5.9). After the merger, the final object is

much more compact than the initial stars and rotates rapidly, emitting GWs more

copiously than the late inspiral. When the remnant is not a BH, the system radiates

angular momentum until settling down to a non-rotating BS.

Of particular interest is the case C = 0.12 due to the presence of two blobs of scalar

field that are ejected from the remnant at speed v ≈ 0.6c, as already mentioned in the

previous section 5.4.3. The formation of two peaks in the Noether charge density during

the merger is common for all studied cases, but only for this compactness are they able

to detach from the star while maintaining – at least temporarily – their character (i.e.,

its Noether charge). As can be surmised from Fig. 5.9, these blobs carry away little

mass (Mblob = mbNblob ≈ 0.025) but a significant fraction of angular momentum. A

Newtonian estimate, assuming the distance from the blobs to the plane of symmetry is

L ≈ 7.5, yields Jz ≈ 2MblobvL ≈ 0.2, consistent with the additional decrease of angular

momentum displayed in the C = 0.12 case with respect to the C = 0.06 configuration,

as shown in the middle panel of Fig. 5.9.

We can gain some insight into the ejection of these blobs by examining some charac-

teristic speeds in the problem. A simple calculation shows that the Newtonian angular

orbital frequency Ωc when the two identical stars first make contact is

Ωc ≈
C3/2

2M0
, (5.21)

where C is the compactness of the individual stars and M0 is the total initial mass of the

system. Notice that the blob velocity (0.6c) is considerably larger than the maximum

velocity vc = Ωc(2R) ≈ 0.35c predicted by this rotational rate for solid body rotation.

Similarly one can compute the velocity associated with rotation at the angular frequency

of the remnant3. By using the values of Table 5.2 for the case C = 0.12 one can obtain

that the orbital frequency of the remnant is Ωr = πfr = 0.098 and its radius is Rr = 4.6.

The velocity of the remnant, vr = ΩrRr ≈ 0.45c, also does not reach the level of the

blob velocity.

However, these blobs are ejected during the time when the binary is transitioning from

first contact to quasinormal ringing. As such, the characteristic angular frequency and

radius change Ωc → Ωr and 2R→ Rr. At some point during this transition the frequency

and the radius might be large enough so that some of the scalar field might move with

3Remember that there is a factor two between the orbital frequency Ωc and the gravitational one ωc,
namely ωc = 2Ωc
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Figure 5.9: ADM mass (top), angular momentum Jz (middle) and Noether charge
(bottom) as a function on time for the different binaries. During the coalescence the
less compact cases (i.e., C = 0.06 and C = 0.12) lose only a small percentage of their
initial mass and Noether charge, but almost all their angular momentum. The case
C = 0.18 as discussed is suspect. The most compact case C = 0.22 case collapses to a
BH after the merger, so the mass and angular momentum do not change significantly.

a speed larger than the escape velocity vesc =
√

2C of the star. If this occurs, then it is

conceivable that some amount of scalar field may be ejected from the remnant at such

a speed.

5.5.3 Gravitational wave signal

The merging binaries produce GWs measured by the Newman-Penrose Ψ4 (2.102)

scalar, as displayed in Fig. 5.10. In Fig. 5.11 we also show the corresponding strain.

Notice that the amplitude and the time scale of the strain has been rescaled with the

total initial mass, and the time has been shifted such that the contact time 4 occurs at

t = 0.

With these waveforms, we can look for the effect of compactness on the gravitational

wave signal. Starting with the least compact case (C = 0.06), it radiates the least in

the inspiral. The weakness of its inspiral signal results because its stellar constituents

have the largest radii and thus they make contact at the smallest frequency of these four

4Defined as the time at which the individual Noether charge densities touch for the first time, roughly
at a distance 2RN between the stars centers.
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Figure 5.10: (Top panel) The real part of the main l = m = 2 mode of the Ψ4

describing the gravitational emission of the different binaries, as a function of time.
(Bottom panel) The energy radiated by the main gravitational wave modes m = ±2.

cases. As the compactness increases, the late inspiral occurs at higher frequencies and

the signal becomes stronger.

Once the stars make contact, both scalar field interactions and gravitational forces de-

termine the dynamics and tend to homogenize the scalar field profile. This period is

very dynamical, producing a rapidly rotating compact remnant that radiates strongly in

gravitational radiation with an amplitude and frequency much larger than during the in-

spiral. This contrast between pre-merger and post-merger signals is particularly marked

for the two low compactness binaries, but becomes less so with increasing compactness.

This trend indicates that this contrast likely results from the disparity between the ini-

tial compactness of the boson stars and the compactness of the remnant (see Table 5.2).

Notice also that the strain amplitude (Fig. 5.11) does not show such disparate scales as

the Newman-Penrose Ψ4 scalar (Fig. 5.10) due to the additional frequency dependence

(see Eq. (2.109)).

A simple estimate of the maximum amount of total energy the system can radiate

follows from a model of energy balance presented in [188], and discussed in detail in

Appendix A.1. Within some approximations, when the final object is a non-rotating

BS, the total radiated energy in GWs is estimated to be

Erad ≈ 0.96CM , (5.22)
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Figure 5.11: The main mode of the strain for the different binaries. The time has been
rescaled by the initial total ADM mass M0 and shifted such that t = 0 corresponds
to the maximum of the norm of the mode. The amplitude has been also rescaled with
the mass of the system. We have chosen the same range in the axes to make clear the
increase in frequency as the stellar compactness also increases. The different cases are
qualitatively compared with a recent version of the effective one body (EOB) approxi-
mation of a quasi-circular binary BH coalescence [4] by matching the waveforms at the
early inspiral (i.e., notice that an accurate quantitative comparison with EOB would
require initial data for binaries in quasi-circular orbits with much smaller constraint
violations). For the highest compactness C = 0.22 we have also matched to the EOB

waveform at the merger time (dotted red curve).

where M and C are the mass of the system and compactness of the initial stars respec-

tively. This estimate is largely consistent (i.e., within a factor of two) with the results

of our simulations, given in Table 5.2, obtained by integrating the gravitational wave

luminosity displayed in the bottom panel of Fig. 5.10. Notice that the energy emitted

in gravitational waves for the case with C = 0.12 exceeds the ' 5% of the total mass

M0 emitted during the analogous coalescence of a binary BH system; thus, boson star

binaries within suitable range of compactness, can be considered super-emitters in the

terminology of [188], i.e., the system emits more than the analogous binary BH system.

The most compact cases considered here are also interesting in the context of the recent

observations of GWs by the LIGO detectors. A simple Newtonian calculation shows

that the GW frequency at the contact of the two stars is fc ' Ωc/π. This relation

can be contrasted to the frequency at which the analogous case of binary BHs would

make a transition from inspiral to plunge. This frequency is well approximated by

the innermost stable circular orbit (ISCO) frequency of the resulting BH produced

through the merger [189]. For non-spinning binary BHs, a handy expression for the
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Figure 5.12: Fourier transform of the main mode of the strain in the post-merger
phase, calculated as h̃2,2(f) ≡ F [h22(t > tmerger)]. Note that peak frequency increases

with compactness (similar to neutron stars).

ISCO frequency is provided in [188], which indicates that non-rotating BSs would have

a contact frequency higher than the corresponding ISCO frequency for binary BHs

provided C & 0.27 (i.e., a compactness higher than any of the ones considered in this

work).

For cases not collapsing to a BH the gravitational waveforms of the remnants have a

rather simple structure with principal modes which can be tied to quasi-normal modes

(QNMs) of boson stars (see appendices A.1.2 and A.1.1). For cases collapsing to a

BH, the post merger gravitational wave signatures are captured well by the familiar

ring-down behavior of a BH. We however note that the angular momentum of the

remnant BH is slightly less than that of the analogous binary BH merger. Because

the BH pair merges well within the system’s ISCO, much of the angular momentum is

trapped within the remnant. In contrast, the BS binary, being less compact and merging

at a lower frequency than the BH binary, allows for the radiation of more angular

momentum during the merger. Recall also that tidal effects introduce modulations in

the (late) inspiral waveforms (e.g. [8, 190]) but such modulations become smaller for

higher compactness (see the tidal Love numbers in Table 5.1).

To examine in more detail the after-merger behavior, we analyze the strain in the fre-

quency domain. The Fourier transform of h22(t > tmerger) is shown in Fig. 5.12, where

tmerger is defined as the time where the strength of the GW is maximum. For C < CT
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the final remnant rotates and oscillates while settling down to a (non-rotating) station-

ary configuration, producing GWs at certain frequencies. Clearly, the frequency of the

main peak increases with the compactness of initial objects in the binary. These post-

merger frequencies, reported in Table 5.2, can be fit in terms of the contact frequencies,

namely

Mrωr = 0.064 + 1.72M0ωc . (5.23)

On the other hand, we can compare with the fit obtained for neutron stars [5, 191], that

in the same units reads

Mrωr = −0.136 + 2.96

(
M

2.7M�

)
M0ωc , (5.24)

These relations (i.e., with M = 2.7M� in Eq. (5.24)), together with the observed fre-

quencies, are displayed in Fig. 5.13. The best fit lines have quite different slopes and

intercepts, but for high compactness stars they produce similar frequencies. The dif-

ference in these frequencies implies that remnant BSs and NSs are potentially dis-

tinguishable with GW spectroscopy if either (i) a large enough SNR is achieved by

increasingly sensitive detectors or (ii) a sufficient number of events can be combined

(i.e., stacked) [192, 193].

Quite interesting is the comparison of the main gravitational wave mode (i.e., l = m = 2)

with the quasi-normal modes of single isolated stars, displayed in Fig. 5.14 and discussed

in more detail in Appendix A.1.2. Clearly, the frequencies of the remnant agree very

well with the frequencies of the fundamental quasi-normal mode of single non-rotating

boson stars, providing further evidence that these cases produce non-rotating, remnant

BSs.

For C > CT the final remnant is a rotating BH, and its post-merger signal shows the

characteristic ring-down signal. For such a case, a significant amount of energy corre-

sponding to the rotational energy of the BH is retained after merger, which contrasts

with the cases producing a remnant non-rotating boson star. For the BH case we can

calculate both the frequency and the decay rate of the gravitational wave signature,

which can be obtained by fitting the post-merger strain signal to

h22(t) ≈ e−σt cos(2πft) . (5.25)

We find that σ = 0.049 ± 0.003 and f = 0.056 ± 0.002. The final mass and angu-

lar momentum of the BH, calculated asymptotically at a spherical surface of radii

R = 50, are Mr ≈ 1.42 and Jr ≈ 1.3 respectively. Therefore, one can also cal-

culate from linear theory the quasi-normal-mode frequencies for a BH with final di-

mensionless spin ar = Jr/M
2
r ≈ 0.64. For this spin, a perturbative calculation yields
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and the (gravitational) angular frequency of the fundamental mode of the remnant ωr

for the BS binaries considered here. For comparison, we include the neutron star cases
studied in [5]. The case C = 0.18 is included for reference as an unfilled square.
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Figure 5.14: Comparison between the frequencies of the fundamental quasi-normal
mode of single BSs in isolation (circles) and the gravitational frequencies of the merger
remnant (squares), as a function of the compactness C ≡M/RN (the case C = 0.18 is
included for reference as an unfilled square) where RN is the radius containing 99% of
the Noether charge. The good agreement between these frequencies suggests that the

remnant is indeed a perturbed non-rotating BS ringing down to a quiescent one.
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MrωQNM = 0.50819 − 0.082748i [194, 195], in very good agreement with the value ob-

tained from the fit Mr(2πf− iσ) ≈ 0.5−0.07i. The small deviations might be due either

to inaccuracies in the extraction of the final BH mass or to a sub-leading effect of the

scalar field during the post-merger.

5.6 Discussion

In this Chapter, we have studied binary solitonic boson stars systems with and without

angular momentum by performing 3D numerical simulations (using our modified version

of the CCZ4 studied in Chapter 2 coupled to KG evolution equation seen in Chapter 3,

and the numerical methods explained in Chapter 4. All the binary systems considered

were constituted by two equal-mass solitonic boson stars.

• Head-on cases: we allowed for non-identical boson stars with different rotation

and shift phase. Our simulations show that the merger of a boson-boson binary

leads, in general, to another solitonic boson stars. However, when the phase shift

approaches π, the scalar field interaction is repulsive and stronger than gravity,

preventing the merger of the two stars. The merger of a boson star and an anti-

boson star completely annihilates each other for any of the phase shifts considered.

This behavior, combined with the results described in [166, 167], allow us to hy-

pothesize that the generic behavior during the collision of a boson and an antiboson

star is the annihilation of both, independently on the interaction potential and the

phase shift, producing large amounts of unbound scalar field that is radiated to

infinity.

• Orbital cases: our studies with identical boson stars revealed that the merger

always lead to the formation of a black hole for massive ones and for low massive

a rotating bar which sheds quickly all its angular momentum by emitting scalar

field and gravitational waves, to finally relax into a non-rotating boson star. This

inability to form a rotating boson star from a merger might be due to the angular

momentum quantization of the rotating solutions. Of particular interest is the

case with the highest angular momentum considered, leading roughly to a system

in quasi-circular orbits. In this case, soon after the merger, two blobs of scalar

field, carrying away small amount of Noether charge but a large fraction of angular

momentum, were expelled from the remnant at fraction of speed of light, v = 0.6c.

• Gravitational radiation: Gravitational waves emitted during the coalescence

of these binaries show that for low-compactness BSs (C < CT ), the maximum

strength achievable in the inspiral phase is rather weak but it rises rapidly during
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merger with a significant amount of radiated energy during that phase. For high-

compactness BSs (C > CT ), a more monotonic transition of the radiated power

–as judged in the rate of upward frequency sweep– is observed between inspiral and

merger phases. The final object promptly collapses to a BH and the post-merger

gravitational wave is dominated by the typical ring-down of a spinning BH.

For the less compact cases with C < CT , the main mode in the post-merger

gravitational radiation is given by the fundamental quasi-normal frequency of the

non-rotating boson star. This is in contrast with the behavior manifested in binary

neutron stars (that do not collapse promptly to a BH), where the main mode is

linked to the rotation of the newly formed (hyper) massive neutron star. Nev-

ertheless, in both cases, the main mode can be linked to the contact frequency

by a rather simple linear relation. Importantly for efforts to try and distinguish

binary boson stars from binary neutron stars with gravitational waves, the rela-

tion is sufficiently distinct to be probed by third-generation detectors and/or the

combination of multiple events in aLIGO/Virgo.



Chapter 6

Dark Stars

Gravitational wave astronomy might allow us to detect the coalescence of low-brightness

astrophysical compact objects which are extremely difficult to be observed with current

electromagnetic telescopes. Besides classical sources like black holes and neutron stars,

other candidates include exotic compacts objects (ECOs), which could exist in theory

but have never yet been observed in Nature. Among different possibilities, here we

consider Dark Stars (DSs), astrophysical compact objects made of dark matter such

that only interact with other stars through gravity. We study numerically the dynam-

ics and the gravitational waves produced during the binary coalescence of equal-mass

Dark Stars composed by bosonic fields. These results are compared both with Post-

Newtonian (PN) approximations and with previous simulations of binary boson stars,

which interact both through gravity and matter. Our analysis indicates that Dark Boson

Stars belong to a new kind of compact objects, representing stars made with different

species, whose merger produces a gravitational signature clearly distinguishable from

other astrophysical objects like black holes, neutron stars and even boson stars.

In this Chapter we review the work done in [196]. It is organized as follows. In Sec-

tion. 6.1 the model for Dark Boson stars (DBSs) binaries is introduced, describing equa-

tions of motion, numerical implementation, analysis quantities and the construction of

initial data for both isolated and binary DBSs. In Section. 6.2, we study numerically

the coalescence of binary DBSs for different compactness, focusing on its dynamics and

the gravitational radiation emitted. Particular attention is paid to the comparison be-

tween DBSs and BSs binaries. In Section. 6.3, we summarize our results and present

our discussion.

105
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6.1 Model for Dark Boson Stars binaries

The merger of binary BSs has already been studied in several works: head-on and or-

bital collisions of mini-BSs [166, 167], head-on collision of oscillatons [61, 182], head-on

collision of Proca stars [183] and orbital collision of solitonic BSs [6, 111]. All these

studies have in common that both stars are represented by the same complex scalar

field, a feature typical for classical fluid stars. However, it might not be the most re-

alistic model to describe unconnected Bose-Einstein condensates, where the complex

scalar field could represent distinct quantized wave functions. Therefore, here we are

interested in a different scenario where each star is described instead by an independent

complex scalar field. This model generically represents DSs, which can be defined as

any self-gravitating astrophysical compact objects which only interact through gravity

with other stars. Notice that these regular objects behave as black holes, in the sense

that they also interact only gravitationally, but present a wider range of possible com-

pactness [48]. Although DSs are modeled here with BSs, almost any kind of matter,

i.e., either fermionic or bosonic, can be used to construct these objects, as far as the

stars are represented with different matter species [60]. It is important to stress that

any binary formed by stars made with different non-interacting species would behave as

Dark Stars –objects that only interact gravitationally–, like for instance the collisions

of neutron and axion stars studied recently [197, 198]. Only the tidal properties of DSs

might depend strongly on its composition.

In the present Chapter, we aim to study the dynamics and the gravitational radiation

produced during the coalescence of two DSs made by bosonic fields. These binary Dark

Boson Stars (DBSs) consist on two BSs described by two different complex scalar

fields, one for each star, satisfying the EKG equations. Since the scalar fields of each

star are different and there are no potential coupling them, there are only gravitational

interactions between both DBSs. Our simulations reveal not only the GW signature

produced during the merger of DBS binaries as a function of the star compactness, but

also that the final remnant is always either a non-rotating superposition of independent

BS (i.e., a multi-state BS [199]) or a spinning BH. For comparison purposes, we employ

the potential and the same configurations C ∈ [0.06, 0.22], used in previous Chapter 5

([6, 111]) for non-topological solitonic BS [135, 136], to construct our DBSs.

6.1.1 Equations of Motion

An arbitrary number of DBSs can be modeled by using a collection of N complex scalar

fields (i.e., one for each star) interacting only through gravity. The dynamics of such a
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system can be described by the following action 1

S =

∫
d4x
√
−g

(
R

16π
−

N∑
i=1

[
gab∇aΦ̄(i)∇bΦ(i) − V (i)(|Φ(i)|2)

] )
, (6.1)

where R is the Ricci scalar associated to the metric gab with determinant g. There are

N minimally coupled complex scalar fields Φ(i), being Φ̄(i) their complex conjugate and

V (i)(|Φ(i)|2) the scalar field potential.

We shall considerN = 2 in order to study binary systems. The EKG evolution equations

are obtained by taking the variation of the action (6.1) with respect to the metric gab

and each scalar field Φ(i), namely

Rab −
1

2
gabR = 8π

(
T

(1)
ab + T

(2)
ab

)
, (6.2)

gab∇a∇bΦ(i) =
dV (i)

d
∣∣Φ(i)

∣∣2 Φ(i) , (6.3)

where T
(1)
ab + T

(2)
ab is the total scalar stress-energy tensor, being

T
(i)
ab = ∇aΦ(i)∇bΦ̄(i) +∇aΦ̄(i)∇bΦ(i) − gab

[
∇cΦ(i)∇cΦ̄(i) + V (i)

(∣∣∣Φ(i)
∣∣∣2)] . (6.4)

Henceforward, we will consider a self-potential for each scalar field given by

V (i)(|Φ(i)|2) = m2
b

∣∣∣Φ(i)
∣∣∣2(1−

2
∣∣Φ(i)

∣∣2
σ2

0

)2

, (6.5)

where mb is related to the scalar field mass and σ0 is a constant setting the compactness

of the star. As we explain in Chapter 4 and Chapter 5, this kind of potential yields

to non-topological solitonic boson stars [135, 136], which might have a compactness

comparable or even higher than neutron stars [6]. Notice that, with this choice for the

potential, each scalar field is explicitly decoupled from the others. Therefore, the scalar

field corresponding to each star interacts only with itself through its KG equations (6.3),

and with all the others through gravity by means of the spacetime metric described by

Einstein equations (6.2). This class of astrophysical compact objects behaves as stars

made of dark matter (whence the name of Dark Boson Stars), in the sense that they

interact only gravitationally with other compact objects [60].

1Notice that, although the context is different, this action is the same that describes multi-state
BS [199], where the super-index (i) would denote each state of the scalar field.
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6.1.2 Numerical implementation and analysis quantities

These equations have been introduced in the platform Simflowny [100–102, 171] to au-

tomatically generate parallel code for the SAMRAI infrastructure [163–165], see sec-

tion 4.4.

We have used the same numerical scheme explained in Chapter 5, i.e, the numeri-

cal discretization of EKG equations has been performed by using the MoL. We use

fourth-order accurate finite-difference operators for the spatial derivatives, together with

a fourth order accurate Runge-Kutta time integrator. A sixth-order Kreiss-Oliguer dissi-

pation is also included to eliminate unphysical high-frequency modes from our solution.

Our simulations use Courant factors λc ∈ {0.357, 0.15}, such that ∆tl = λc ∆xl on each

refinement level l to guarantee that the Courant-Friedrichs-Levy condition is satisfied.

We use a domain [−280, 280]3 with 7 levels of refinement, each one with twice the

resolution of the previous one, such that ∆x0 = 4 on the coarsest grid and ∆x6 = 0.0625

on the finest one.

Several quantities have been computed in order to analyze the dynamics of binary DBSs

during their coalescence: (i) Noether charge (3.38), (ii) the ADM mass (2.88) and the

angular momentum (2.90), and (iii) the gravitational radiation through the Newman-

Penrose scalar Ψ4 (2.105) (described in the Chapter 2 section 2.4.1). These global

quantities are calculated in spherical surfaces at different extraction radii, although we

only show the results obtained at Rext = 50.

6.1.3 Initial data

Single Dark BS. Initial data for isolated DBSs is exactly the same as for BSs explained

in detail in the Section 3.4.2.

In the present Chapter, we consider the same configurations investigated in the previous

Chapter 5 ( [6] ). Therefore, we restrict ourselves to the choice σ0 = 0.05, which lead to

highly compact BS, and construct four stars with compactness C = {0.06, 0.12, 0.18, 0.22}
belonging to the stable branch (i.e., equilibrium configurations which are stable under

small perturbations). The radial profile of the scalar field for each compactness is dis-

played in the Fig. 6.1 (see the top panel). As it is shown in Fig. 6.1 (see the bottom

panel), all these initial configurations are well inside the stable branch, which is the

curve on the left of the maximum compactness Cmax = 0.33. Furthermore, each star

has been rescaled, by a suitable choice of mb, such that MADM = 0.5.
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Figure 6.1: Initial data of DBS. (Top panel) Radial profile of the scalar field φ0(r)
for each compactness. Notice that it is nearly constant in the interior and then falls
off exponentially at the surface of the star. This fall off is steeper as the compactness
increases. (Bottom panel) Compactness as a function of the central value of the scalar
field φc with σ0 = 0.05. Circular markers refer to the initial equilibrium configura-
tions considered both here and in previous Chapter 5 ([6]) to construct initial data for

binaries.

Binary Dark BS. Initial data for binary BS can be constructed in the same way that

it was explained in Section 5.3, i.e, by using a superposition of two boosted isolated BS

solutions. Since we are interested on modeling DBS binary systems, which only interact

through gravity, we proceed as follows

• the solution of each BS is written in Cartesian coordinates {g(i)
ab (x, y, z),Φ(i)(x, y, z)}.

• the spacetime of binary DBS is obtained by a superposition of the isolated space-

times of two BSs, centered at positions (0,±yc, 0) and with a boost ±vx along the

x-direction. The scalar field of each boosted star is not modified by the other star.

The full solution can be expressed then as:

gab = g
(1)
ab (x, y − yc, z; +vx) + g

(2)
ab (x, y + yc, z;−vx)− ηab , (6.6)

Φ(1) = Φ(1)(x, y − yc, z; +vx) , (6.7)

Φ(2) = Φ(2)(x, y + yc, z;−vx) , (6.8)

where ηab is the Minkowski metric in Cartesian coordinates.
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Notice that a fine-tuning of the initial orbital velocity is required to set the binary in

a quasi-circular orbit. It is also worthwhile to emphasize that this superposition does

not satisfy the energy and momentum constraints due to the non-linear character of

Einstein’s equations. However, our evolution formalism enforces dynamically an expo-

nential decay of these constraint violations (for instance, see Figure 5.6 in section 5.6).

Nonetheless, convergence tests performed on the most stringent case indicates that our

initial data is accurate enough to allow us investigate the problem at hand.

6.2 Coalescence of Dark Boson Stars

The coalescence of binary identical DBSs obtained from numerical simulations is an-

alyzed in detailed, focusing on the dynamics and the gravitational radiation produced

with different star’s compactness. Furthermore, in order to infer the effect of matter

interactions, these results for dark BS binaries (i.e., only gravity interactions) are con-

trasted with those for standard BS binaries (i.e., both gravity and matter interactions)

studied in the Chapter 5. We have chosen the parameters such that the individual mass

of each star in isolation is M = 0.5, so the binary has approximately a total initial mass

M0 ≈ 1.

6.2.1 Dynamics

First of all, as already stressed in section 5.5.2, the initial orbital velocities differ among

the binaries, mainly due to the star’s compactness and total mass. More detailed infor-

mation regarding the initial parameters is available in Table 6.1, together with the main

properties of each binary DBS and its final remnant.

Some snapshots of the Noether charge density for each case, at different representative

times of the coalescence, are displayed in Fig. 6.2. The conformal factor of the metric

used in the CCZ4 formalism, which represents roughly the gravitational potential, is

displayed in Fig 6.3 at the same times. As stated above, the interaction between DBSs

takes place only through gravity, even when there exists an overlap between the stars, as

shown in Fig. 6.2. Therefore, the first feature that one can observe is that the transition

between inspiral and merger stages depends on the star’s compactness. For low compact

stars C . 0.12, the inspiral phase does not finish suddenly at the contact time tc (i.e.,

defined as the time at which the individual Noether charge densities make contact for

the first time) but smoothly continues to the merger phase. The final remnant is a

superposition of two coexisting orbiting DBSs that, at late times, are expected to settle

down into a stationary spherically-symmetric configuration equivalent to a multi-state
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Figure 6.2: Dynamics of DBS coalescence. Noether charge densities, corresponding
to the individual stars, in the equatorial plane at several illustrative times. Each row
corresponds to a different star’s compactness (from top to bottom, 0.06, 0.12, 0.18, and
0.22). First column illustrates a time in the early inspiral, the second one is roughly at
contact time, the third one is during the merger stage and the fourth one at the end of
our simulation. Notice that the final remnant for C . 0.12 is composed by two rotating
co-existing DBS, while that for C & 0.18 is a rotating BH (i.e., the black sphere at

late times represents the apparent horizon).

BSs [199]. For high compact stars C & 0.18, the transition is quite abrupt and clearly

distinguishable. The final remnant is too compact and inevitably collapses to a rotating

BH. Therefore, the final object also depends on the initial compactness of the identical

stars. We can identify a critical transition compactness CT such that below that value

the remnant relaxes to a multi-state BS and above it collapses to a BH. From our

simulations we can infer that 0.12 < CT < 0.18.

As discussed before, the most compact cases lead to the formation of a rotating BH, a

process that is common to other binary mergers. Then, we shall focus our analysis to

the more peculiar and distinctive scenario where the merger does not produce a BH.
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Figure 6.3: Dynamics of DBS coalescence. Conformal factor, which gives a rough
description of the gravitational potential, in the equatorial plane at the same time
snapshots as in Fig. 6.2. Each row corresponds to a different compactness (from top to

bottom, 0.06, 0.12, 0.18, and 0.22).

Instead, the two stars keep rotating around each other while emitting GWs, despite a

significant overlap between the individual Noether charge densities. In contrast to the

inspiral phase, after the contact time the two stars can not be modeled as point sources,

since the distance between their centers of mass is comparable or smaller than their ra-

dius. The evolution of angular momentum is displayed in Fig. 6.4 for these low-compact

cases. Angular momentum is radiated slowly during the coalescence through gravita-

tional waves, increasing rapidly its emission rate after the contact time. Meanwhile, the

mass only decreases by roughly 10% at most, which means that the final multi-state BS

has approximately the total initial mass of the binary system. For comparison purposes,

the angular momentum evolution of the corresponding binary BSs have been added to

the same plot. The behavior of BS after the contact time is clearly different, showing

a sharp decay due to the interaction between the scalar fields modeling each star. A
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Figure 6.4: Dynamics of DBS coalescence. Angular momentum Jz as a function of
time for DBS with initial compactness C = 0.06 and C = 0.12. This quantity, for the
remnants of DBS mergers, decays to zero in a much longer timescale than those of BS
mergers, especially for the lowest compactness C = 0.06. Notice that the sudden decay
of the binary BS case with C = 012 was enhanced by the ejection of two blobs of scalar

field during the merger [6].

C y
(i)
c v

(i)
x M0 J0 tc remnant EDBSrad /M0 EDBSrad /M0 remnant EBSrad/M0 EBSrad/M0

0.06 ±8 ±0.142 1.07 1.16 1200 BS+BS 0.068 0.06 BS 0.075 0.029
0.12 ±5 ±0.210 1.18 1.24 471 BS+BS 0.127 0.12 BS 0.085 0.057
0.18 ±5 ±0.214 1.29 1.40 335 BH 0.014 0.18 BS 0.120 0.086
0.22 ±5 ±0.220 1.46 1.65 218 BH 0.030 0.22 BH 0.030 0.1

Table 6.1: Characteristics of binary of DBS models. The entries of the table are,
respectively: the compactness C of the individual DBSs in the binary, the initial

positions y
(i)
c , the initial velocities of the boost v

(i)
x , the initial total ADM mass M0,

the initial total orbital angular momentum J0 of the system, the time of contact of
the two stars tc, the final remnant, the total radiated energy in gravitational waves
for each simulation Erad (i.e., integrated from the beginning and extrapolated to large
times after the contact time) and the one estimated analytically Erad as described in
in Appendix A section A.2. We also included previous results corresponding to binary

BSs for comparison purposes.

deeper discussion of the differences between DBS and BS will be given in Section 6.2.3.

6.2.2 Gravitational Radiation

The main mode l = |m| = 2 of the Newman-Penrose scalar Ψ4 (see eq. (2.105)), encoding

the gravitational radiation produced during the coalescence, is displayed in Fig. 6.5.
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Furthermore, the same mode of the strain, near the contact time, is shown in Fig. 6.6.

Notice that time has been rescaled with the initial total mass M0 of each binary, and

shifted such that contact time occurs at t = 0.

Let us start with the less compact cases, C . 0.12, whose merger leads to a superposition

of two co-existing BSs as a final state. As it might be expected, gravitational radiation

produced during the early inspiral is weak, since the stars have large radii and therefore

collide at a low frequency. After making contact, the binary enters smoothly to the

merger stage, with both stars orbiting around each other for a long time and yielding

to stronger gravitational waves than during the inspiral. Losses of energy and angular

momentum occur mainly during this stage, while the remnant formed by the two co-

existing stars rotates at a faster frequency, radiating more intense GWs. Although the

cases with C & 0.18 share the same behavior in the early inspiral, soon after the contact

time the remnant becomes unstable and collapses to a rotating BH. The exponential

decay of the gravitational wave signal observed for these cases in Fig. 6.5 and Fig. 6.6

is a clear evidence on this final BH state.

Furthermore, we have included the comparison with an EOB approximation that de-

scribes the adiabatic coalescence of quasi-circular binary BHs [4]. Interestingly, al-

though the signals show a good agreement during the inspiral phase, they are quite

different as they get closer to the contact time: analogous to NSs, binaries composed

by DBSs are strongly affected by tidal interacting forces only when they are in a close

orbit. This means that, even though DBSs only suffer gravitational interactions, they

behave yet rather different than BHs. The most compact case, C = 0.22 shows that

even when the final fate of the remnant is a BH, DBSs and BHs are still different in the

late inspiral and merger. An accurate quantitative comparison of our simulations with

the EOB approximation would require initial data for DBS binaries in quasi-circular

orbits with much smaller constraint violation, which is not yet available.

It is also illustrative to analyze the instantaneous GW frequencies fGW of DBS binaries

and compared them to: (i) BS binaries, (ii) a PN-T4 approximation for point parti-

cles(i.e., BHs) [200], and (iii) a PN-T4 approximation including also the lowest order

tidal effects [201, 202], whose strength can be measured by the tidal Love number [7, 8].

Fig. 6.7 displays these four models (i.e., DBS, BS and T4 with and without tidal ef-

fects) for each compactness. Again, all models behave similarly during the inspiral, with

differences arising near the contact time. While the DBS binary with C . 0.12 exhibits

a smooth and soft increase on the frequency, the corresponding BS binary shows an

abrupt rise as a consequence of the stronger dynamics of the remnant, induced by scalar

field interactions. The PN-T4 approximation, either with or without tidal effects, leads

to different frequencies than the DBS binary after the contact time, such that fGW of
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Figure 6.5: Gravitational waves. The real part of the main l = m = 2 mode of Ψ4

describing the gravitational emission produced by DBS and BSs binaries as a function
of time.
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Figure 6.6: Gravitational waves. Main mode of the strain for DBS binaries with
different compactness near the contact time. All cases are compared to the EOB
approximation of a quasi-circular binary BH coalescence [4] by matching the waveforms

at early inspiral.
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Figure 6.7: Gravitational waves. GW wave frequency fGW = ωGW /2π as a function
of time, where ωGW is the instantaneous GW angular frequency from the main l =
m = 2 mode. The frequencies calculated numerically for DBS and BS are displayed in
thick solid and dashed lines, respectively, while that frequencies calculated by Taylor
T4 approximation with and without tidal effects are plotted in thin solid lines. Notice

that significant differences arise just after contact time.

DBS is somewhere in between these two approximations. This means that, although

including tidal effects at the lowest order might be acceptable during the inspiral phase,

it is not accurate enough after the contact time when the effects of extended bodies

become important. Notice also that the frequencies calculated from PN-T4 are closer

to those of the BS binary when tidal effects are activated, probably because both matter

interactions and tidal effects accelerate the dynamics of the system.

The post-merger frequency of DBS and BS reach roughly the same value in the case

C = 0.12. We presume that in the case C = 0.06 both models will also reach the same

frequency at the end state, although the time scales for the remnant to settle down

are much longer than considered on this work. In the most compact cases, C = 0.22,

there are no significant differences between BS and DBS frequencies, as we have seen

in the waveform as well. These high-compact cases are noticeably different than the T4

approximations (i.e., with and without tidal effects), showing again that such merger is

still different from the one of a binary BH. Notice that the case C = 0.18 is not directly

comparable since the remnants of binary DBS and BS are different.

Finally, the luminosity and total radiated energy produced by the main gravitational

wave modes l = 2 are displayed in Figs. 6.8 and 6.9, with the specific values listed
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Figure 6.8: Gravitational waves. Luminosity of gravitational waves radiated during
the coalescence of DBS and BS binaries.

in Table 6.1. The total energy obtained disclose that the cases C . 0.12 are super-

emiters [188], since the system emits more than the analogous binary BH system (i.e.,

about 5% of its initial total mass). Following [6, 188], we can estimate the amount of

energy radiated by DBS binaries as

Eacrad ≈M0C, (6.9)

which is roughly in agreement with the results of our simulations for the low compact

cases (i.e., not collapsing to a BH). The detailed calculation can be found in Appendix A

section A.2.

6.2.3 DBS versus BSs

In order to analyze the effect of scalar field interactions, most of the previous plots

included not only the analysis of our binary DBS simulations, but also previous binary

BS results in Chapter 5([6]). Let us here stress some of the most significant differences

which have not been discussed yet.

An unexpected behavior was recognized in the binary BSs case with compactness C =

0.12: the formation of two scalar field blobs which were ejected during the merger,

carrying away little mass but an important amount of angular momentum. However,

none of the DBS binaries show any evidence of such scalar field blobs. A snapshot at
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Figure 6.9: Gravitational waves. Total GW energy radiated during the coalescence,
calculated by integrating in time the quantities displayed in Fig. 6.8

t = tc + 60 of the Noether charge density for DBS and BS binaries with C = 0.12

is displayed in Fig. 6.10 to illustrate the different dynamical behavior. The evolution

of angular momentum in Fig. 6.4 also shows considerable losses in the BS case (i.e.,

resulting into a sudden decrease after the contact time) as a result of the matter ejection.

It is also quite interesting that, in the BS binary with compactness C = 0.18, the

remnant settles down to a non-rotating BS, while that the remnant of the correspond-

ing DBS binary collapses to a rotating BH. Therefore, one of the effects of matter

interactions is to induce an additional pressure that supports the collapse to a BH,

increasing effectively the critical transition compactness CT . Consequently, the range of

0.12 < CT ≤ 0.18 valid for DBS is increased to 0.18 < CT ≤ 0.22 for BS.

The gravitational radiation also show interesting differences. During the inspiral phase,

the gravitational radiation of DBS and BS binaries are exactly the same, as it is ex-

pected. The main difference appears near the contact time. On one hand, binary BS

coalescence is governed by scalar field and gravitational forces, which accelerates the

dynamics of the system and reduces the time for the remnant to settle down. In this

case, after the contact time the two boson stars merge into a rotating BSs which radiate

stronger GWs and at a higher frequency than during the inspiral phase. On the other

hand, binary DBSs dynamics is driven only by gravitational interactions and there is

a smooth slow transition from inspiral to merger, which can also be appreciated on the

GW frequency displayed in Fig 6.7.
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Figure 6.10: Comparison of DBS vs BSs. Noether charge densities of DBS and BS
binaries, roughly at time t = tc + 60, for the stars with compactness C = 0.12. Notice
that there are two scalar blobs in the BS merger which do not form in DBS collisions.
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6.3 Discussion

In the present Chapter we have studied, through full numerical simulations, the dynam-

ics and the gravitational radiation produced during the coalescence of binary DBSs

− self-gravitating compact objects composed by bosonic matter that can only inter-

act through gravity −. We have considered four initial compactness, given by C =

{0.06, 0.12, 0.18, 0.22}, of the identical stars forming the binary. For the less compact

cases, C . 0.12, the dynamics showed a smooth transition from inspiral to merger, lead-

ing to a superposition of two close-orbiting DBSs. Gravitational radiation emitted on

these cases is quite weak during the inspiral phase, although it increases considerably

after the contact time. For the highest compactness cases C & 0.18, the transition from

inspiral to merger is quite abrupt. After the merger, the remnant is excessively compact

and it inevitably collapses to a BH. GWs on this post-merger stage are given by the

classical BH ring-down. Therefore, our research reveals that binaries composed by these

dark bosonic objects form either; (i) a multi-state BSs for C < CT , which emits GW

continuously for a long time, or (ii) a rotating BH for C > CT with its typical ring-down

signal after the collapse.

We have also compared these DBS mergers with previous simulations of BS collisions,

see Chapter 5 ( [6] ), where the scalar field behaves as a fluid (i.e., there exists interac-

tion between the stars through both gravity and the scalar field), leading to important

differences. Despite presenting the same dynamics during the inspiral phase, scalar field

interactions precipitate the plunge of the stars after the contact time and accelerates

the dynamics of the remnant. For the DBS binary with compactness C = 0.12, there

is no ejection of blobs, contrary to what happened in the BSs case. Finally, DBS

with a compactness C = 0.18 collapses to a rotating BH after the merger, while the

corresponding binary BSs case settles down to a non-rotating BS.

Finally, the comparison of the instantaneous GW frequencies of DBSs binaries with

standard BS binaries and the PN-T4 approximation reveals, in the cases when the

remnant is not a BH, a very particular and distinguishable signature of these compact

objects made of dark matter. All these results indicate that, if they exist, the coalescence

of dark stars would produce gravitational waveforms clearly different and potentially dis-

tinguishable from other astrophysical objects like BHs, NSs or even BSs. These distinc-

tive waveforms could be interesting to contrast future observations of aLIGO/Virgo.
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Neutron star binaries with dark

matter cores

The coalescence of binary neutron star has been recently observed both via gravitational

waves by the LIGO/Virgo interferometric detectors and via electromagnetic waves. In

this last Chapter, we present the results of recent work done in [203] which aims to

model, through numerical simulations, the merger of binary neutron stars with dark

matter particles trapped on their interior. We study gravitational wave signatures due

to the possible presence of these dark matter particles. Comparison of this emission

from our simulations with future observations might allow us to constraint different

dark matter models.

This final Chapter is organized as follows. In Section 7.1 a brief motivation about

neutron stars mergers including dark matter is presented, stressing that these objects

can be modeled with mixed fermion-boson stars. In Section 7.2 the evolution equations

of fermion-boson stars are introduced, followed by the numerical implementation in

Section 7.3. The construction of initial data to fermion-boson stars, either isolated or in

binaries, is described extensively in Section 7.4. In Section 7.5, we study the dynamics

and the gravitational radiation during the coalescence of binaries of mixed fermion-boson

stars. Finally, we discuss our results in Section 7.6.

7.1 Motivation

Recently, GWs from the coalescence of a binary neutron star system (GW170817)

have been observed by LIGO [16, 204], followed by several electromagnetic counter-

parts: a gamma-ray burst GRB170817A [18] and a thermal infrared/optical spectra

121
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consistent with a kilonova [19]. These electromagnetic (EM) and GW observations

start a fruitful era of multi-messenger astronomy, which will inevitably lead to break-

throughs in our understanding of some of the most exciting objects and phenomena in

the universe.

On a much larger scale, there is overwhelming evidence of the existence of dark mat-

ter (DM) in the Universe, like for instance the observation of missing mass in galaxy

clusters and the precise measurements of the cosmological baryonic fraction [205]. Mea-

surements of the matter density and its baryonic component imply that the DM density

contribution is about 25% of the total content in the Universe [206]. Most models in

particle physics require dark matter particles to be weakly interacting with mass range

from 100 GeV to several TeV.

Despite the poor knowledge of the dark matter-baryon interaction (see for instance the

experimental upper limits constraints for weakly interacting massive particles in [207]),

these DM particles will more easily cluster in a dense astrophysical object. Due to its

orbital motion, a star will sweep through the Galactic dark matter halo and eventually

capture some particles on its way. Despite the surface area of a typical NS being much

smaller than other stars, two properties make it very efficient in capturing galactic DM

particles [208]. First, the high baryonic density inside a NS provides a much higher

probability for DM particles to interact and lose energy, compared to other stars. As a

matter of fact, for a given star, the particle will interact if the cross-section of the dark

matter-baryon interaction, σDM is at least of the order of the typical area occupied by

each baryon, σDM & mpR
2
?/M?, where the latter values decreases with density and for

a neutron star is ∼ 6× 10−46 cm2 (while for the Sun is ten orders of magnitude larger).

Second, the strong gravitational force prevents most DM particles from escaping from a

NS once it loses some of its energy through interactions. It may be only a matter of time

for a neutron star to capture enough number of DM particles to affect its observational

properties, which may then be used to constrain the nature of dark matter.

On one hand, if DM particles are self-annihilating, this process modifies the thermal

evolution of the NS and could be observed as a bright EM emission of old NS, since

the released energy due to the annihilation inside the NS can increase the temperature

beyond its natural value [209]. On the other hand, if DM particles do not self-annihilate,

they will cluster in a small region at the center of the neutron star, increasing their

compactness and changing its internal structure. Ultimately, this clustering could even

lead to a gravitational collapse [210]. Either way, NSs may be therefore sensitive to

indirect probes of the presence of DM, and can be used to set constraints both on the

density and on the physical properties of DM.
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Recent studies [211] investigate possible changes in the structure of the star by the pres-

ence of (non self-annihilating) DM by using a two-fluid model. We find more accurate

to describe these systems by modeling the neutron star matter with a fermionic perfect

fluid and the bosonic dark matter with a complex scalar field [61, 62]. The resulting

objects, known as fermion-boson (FB) stars, allow only a coupling between the boson

and the fermion particles through gravity. Notice also that current observations already

set some bounds on the amount of DM particles inside NSs for different DM mod-

els [61, 62, 212]. The effect of weakly-interacting DM on the structure of the star will

be stronger in non-linear dynamical scenarios like the coalescence of two NSs. As we

will see later, our simulations reveal that the presence of DM cores leaves a distinct

imprint in the GWs during the post-merger phase.

7.2 Evolution equations of Fermion-Boson Stars

In order to study binary neutron stars with dark matter clustered inside, we use binaries

made of FB stars. FB stars are modeled by an energy momentum tensor which have a

contribution from a perfect fluid and a complex scalar field [62], namely

Tab = κ
(
TΦ
ab + TMab

)
. (7.1)

Notice that, as we are interested in dark matter cores inside of neutron stars, we assume

that the bosonic matter is composed by two independent complex scalar fields, one for

each star, which only interact gravitationally, as we studied in Chapter 6.

The evolution equations of FB stars are then governed by the Einstein-Klein-Gordon-

Hydrodynamics system of equations, which are

Gab = κTab , (7.2)

gab∇a∇bΦ(1) =
dV (1)

d
∣∣Φ(1)

∣∣2 Φ(1) , (7.3)

gab∇a∇bΦ(2) =
dV (2)

d
∣∣Φ(2)

∣∣2 Φ(2) , (7.4)

∇aTMab = 0 , (7.5)

∇a(ρua) = 0 , (7.6)

being TΦ
ab the energy-momentum tensor considered in Dark stars models given by the

equation (6.4), and TMab is the energy-momentum tensor for a perfect fluid one (3.60).
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Here, we consider a self-potential for each scalar field given by

V
(
|Φ|2

)
= m2

b |Φ|2 , (7.7)

where mb is a free parameter related to boson mass. Recall that this interaction potential

lead to mini Boson stars, as we studied in Section 3.4.2. Finally, it is worth stressing

that the scalars fields are coupled to each other and to the perfect fluid only through

gravity.

7.3 Numerical implementation

The Einstein-Klein-Gordon equations can be written as a time evolution system by

using the formulation studied in Chapter 6. The hydrodynamical (HD) equations of

motion (7.5)-(7.6), describing the perfect fluid, are written in balance law form

∂tu + ∂kF
k(u) = S(u) , (7.8)

where u is a set of conservatives variables {D, τ, Si}, defined in Section 3.5.2. Finally,

the HD evolution system in conservative form are given in equations (3.77)-(3.79).

Furthermore, the primitive quantities {ρ, ε, P, vi} are recovered from the conservative

ones by solving a system of nonlinear equations, as described in Section 3.5.2.

The numerical setup to be considered here it is the same used from Section 4.5, i.e.:

we employ AMR via the had computational infrastructure, which ensure sufficient

resolution within the FB stars, see Section 4.4. We use finite difference schemes, based on

the MoL, on a regular Cartesian grid, see Section 4.1.2. A fourth order accurate spatial

centered discretization –satisfying the summation by parts rule– is used for Einstein

equations, see Section 4.2.1. The relativistic hydrodynamics equations are discretized

by using HRSC method based on the HLL-flux formula with PPM reconstruction, see

Section 4.2.2 and 4.2.4 respectively. Finally, a third order accurate Runge-Kutta time

integrator is used to achieve stability of the numerical implementation and to integrate

the equations in time [174], see section 4.1.3.

Note that, our numerical approach to solving Einstein equations combining hydrody-

namical fluid and complex scalar field is developed by using two widely tested codes: (i)

to solve the Einstein-Klein-Gordon equations [6, 111, 166, 167, 196] and (ii) the general

relativistic hydrodynamic [168–170].
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7.4 Initial data

Here, we explain in detail how to construct initial data for equilibrium configuration of

non-rotating isolated FB stars by using the methodology explained in Reference [62].

We also explain the procedure to construct initial data for binary FB star.

7.4.1 Single Fermion-Boson stars

The equilibrium configuration equations for a single FB can be obtained by combining

the procedures to obtain isolated non-rotating neutron and boson stars respectively,

explained in detail in Chapter 3. The method is summarized as follows: assuming a static

metric as in Equation (3.23), imposing the harmonic time dependence Equation (3.50)

and the static fluid condition vi = 0, the Einstein-Klein-Gordon-Hydrodynamics system

equations in these coordinates lead to the following system of ODE :

∂r̃a = − a

2r̃

(
a2 − 1

)
+ 4π r̃ a3τ , (7.9)

∂r̃α = − α
2r̃

(1− a2) + 4π r̃ α a2 S r̃r̃ , (7.10)

∂r̃φ0 = ζ , (7.11)

∂r̃ζ = −(1 + a2 + 4π r̃2 a2)(S r̃r̃ − τ)
ζ

r̃
−
((ω

α

)2
− V ′(|Φ|2)

)
a2φ0 , (7.12)

∂r̃P = −(ρ(1 + ε) + P )
∂r̃α

α
, (7.13)

where

τ =

(
ω φ0

α

)2

+

(
ζ

a

)2

+ V (|Φ2|) + h− P , (7.14)

S r̃r̃ =

(
ω φ0

α

)2

+

(
ζ

a

)2

− V (|Φ2|) + P . (7.15)

An EoS, relating P = P (ρ, ε), is necessary to close the system (7.9)-(7.13). For cold

neutron stars, the polytropic EoS P = κρΓ is a good approximation. The above system

can be solved numerically by using boundary conditions guarantying regularity at the

origin and asymptotic flatness, namely

a(0) = 1, α(0) = 1, φ0(0) = φc, ζ(0) = 0, P (0) = κρΓ
c , (7.16)

lim
r→∞

φ0(r̃) = 0, lim
r→∞

α(r̃) =
1

a(r̃)
, lim
r→∞

P (r̃) = 0 , (7.17)

where φc is the central value of scalar field and ρc the central value of density.
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Notice that the final ODE system is an eigenvalue problem for ω as a function of

{φc, ρc}. Therefore, a shooting method can be used in order to integrate the system (7.9)-

(7.13) from r̃ = 0 towards the outer boundary. In addition, we can add two differential

expressions to help on the characterization of the solutions, namely the fermionic rest-

mass and the bosonic rest-mass

∂NB

∂r̃
= 8πmb ω

φ2
0 a r̃

2

α
, (7.18)

∂NF

∂r̃
= 4πρr̃2 , (7.19)

with boundary conditions NB(0) = NF (0) = 0. Notice that, since NB = N mb, by

setting mb = 1 both the total Noether charge and the total bosonic mass have the same

value. The radius of the boson star will be denoted as RB
1 and the neutron star one as

RF
2. Finally, in the same way as we did with BSs and NSs in Chapter 3, after the

equilibrium configuration is found, a coordinate transformation from polar to isotropic

coordinates is performed. Then, the solution can be written in Cartesian coordinates to

perform numerical 3D simulations.

As it was already mentioned, the equilibrium configurations of FB depend on two pa-

rameters, the central values of the scalar field φc and the density ρc. By varying these

parameters, together with the EoS and the potential of the scalar field, it is possible to

find star solutions composed mostly either by fermions (i.e., NF >> NB) or bosons (i.e.,

NB >> NF ). Solutions can be characterized then by the boson-to-fermion ratio [62]:

YB =
NB

NF
. (7.20)

For a fixed value of the total mass of the star, the mass of bosons NB grows as φc (or ρc)

increases, reaching a maximum and decreasing afterwards. The mass of fermions NF has

the complementary behavior to NB, i.e., decay reaching a minimum and then increases.

It is worth stressing that the stability of FB can be quite complicated due to the freedom

of these two parameters {φc, ρc}. The stability theorems for single parameter solutions

might not be applied directly, for further discussion see [62] and references therein.

By considering a fixed total mass MADM = 1.35, and taking a polytropic EoS with

Γ = 2.5 and κ = 8980 (in geometric units), a family of equilibrium configurations can be

found. The behavior of NF and NB explained above for this particular family is shown in

the top panel of Fig. 7.1. A specific solution is obtained for the choice φc = 1.223×10−2

and ρc = 5.0244 × 10−4, leading to a stable equilibrium configuration with YB = 10%,

1Recall that, RB is the R99 radius defined in Section 3.4.2.
2Recall that, RF is the radius of the neutron stars defined as the radius where the pressure vanishes,

as was studied in Section 3.5.3.
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Figure 7.1: Initial data of an isolated FB star. (Top) The mass of fermions NF and
bosons NB for the equilibrium configurations with a fixed total ADM mass M = 1.35,
as a function of the central value of scalar field φc (left) and rest-mass density ρc (right).
(Bottom) The metric component radial profiles α(r) and ψ(r), together with the ones
for scalar field φ0(r) and density ρ(r) (right), for a specific stable equilibrium with

boson-to-fermion ratio YB = 10%.

compactness C = MADM/RF = 0.12 and RF = 11.2. The profiles of α(r), ψ(r), φ0(r)

and ρ(r) are displayed in the bottom panel of Figure 7.1.

The implementation of our evolution equations can be tested by evolving these stationary

solutions. This configuration is evolved in a domain [−100, 100]3 with radiative boundary

conditions by using 120 grid points in each direction and four refinement levels, such

that the last one has a resolution of ∆x3 = 0.21. Finally, the same damping terms of

the Section 4.5 are used for this test, namely κz = 0.1 and κc = 1 .

The dynamical evolution of some interesting quantities are displayed in Figure 7.2. In

particular, the evolution of the real part of the scalar field at the center ΦR(t, r = 0)

is displayed at the top panel and compared to the expected analytical behavior φ0(r =

0) cos(ωt), showing a perfect agreement. The spatial integral of globally conserved quan-

tities, namely the rest-mass density D and the Noether charge N , are showed in the

second and third panel. These quantities have been rescaled by their initial values. No-

tice that they remain roughly constant during the evolution, confirming that the initial

equilibrium configuration is stable. Finally, the L2-norm of Hamiltonian constraint is

displayed in the bottom panel, showing that it remains under control with the selection
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Figure 7.2: Evolution of an isolated Fermion-Boson star. In the first panel, the evo-
lution of the real part of Φ at r = 0 . The solid black line shows the analytically
expected value φ0(r = 0) cos(ωt), being ω = 1.0878. The red circles are the numerical
solution obtained by using CCZ4 evolution systems, which illustrates the good agree-
ment between the numerical and analytical solutions. In the second and third panel,
the evolution of the integrated rest-mass density D and the Noether charge N, showing
that they remain roughly constant during the evolution. This suggest that the star is
stable. Finally, in the fourth panel, the L2-norm of the Hamiltonian, H, as a function
of time, showing that the solution with CCZ4 is stable and remain under control by

setting κz = 0.1 and κc = 1.

of the damping terms used in Section 4.5, and it is comparable to its initial value, which

is given mainly by discretization errors.

7.4.2 Binary Fermion-Boson stars

Initial data for binary FB can be constructed by using a superposition of two boosted

isolated FB stars solutions, as was explained in Section 6.1.3. So far, in the Section 5.3,

we have explained in detail how to boost a static spherically symmetric solution and the

scalar fields quantities along of x-axis with a velocity v. Here, we extend this procedure

to the hydrodynamical fields. From Chapter 3, we know that the fluid four-velocity can

be decomposed as

u0 = W (−α+ βiv
i) , (7.21)

ui = Wvi , (7.22)
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where W is the general relativistic Lorentz factor related to the fluid. Then, performing

the Lorentz transformations (see equations (5.5)-(5.6)) to equations (7.21)-(7.22), at

time t = 0, we obtain

ũt = −Γα , ũx = Γ v α , ũy = ũz = 0 , (7.23)

where Γ is the general relativistic Lorentz factor related to the transformation. There-

fore, the final expression for the hydrodynamics fields of the boosted star, evaluated at

t = 0 are:

ρ̃ = ρ , ṽx =
ũx

W̃
, ṽy = ṽz = 0 , (7.24)

where W̃ 2 = ũiũ
i + 1.

The method to construct initial data for FB star binaries can be summarized as follows:

• the solution of each FB star is written in Cartesian coordinates, namely

{g(i)
ab (x, y, z),Φ(i)(x, y, z), ρ(i)(x, y, z), v

(i)
j (x, y, z)} . (7.25)

• the spacetime and the hydrodynamics fields of binary FB stars are obtained by a

superposition of the isolated spacetimes and hydrodynamics variables of two FB

star, centered at positions (0,±yc, 0) and with a boost ±vx along the x-direction,

namely

gab = g
(1)
ab (x, y − yc, z; +vx) + g

(2)
ab (x, y + yc, z;−vx)− ηab , (7.26)

ρ = ρ(1)(x, y − yc, z; +vx) + ρ(2)(x, y + yc, z;−vx) , (7.27)

vj = v(1)(x, y − yc, z; +vx) + v(2)(x, y + yc, z;−vx) , (7.28)

where ηab is the Minkowski metric in Cartesian coordinates.

• we are interested on modeling FB stars binary systems in two different scenarios

in which: (i) the bosonic matter of each star only interact through gravity with

the bosonic matter of the other one, and (ii) the bosonic matter allows for gravity

and scalar field interactions. Therefore, the full solution for these cases can be

divided in two cases:

(a) Non-interacting scalar field (NIST):

Φ(1) = Φ(1)(x, y − yc, z; +vx) , (7.29)

Φ(2) = Φ(2)(x, y + yc, z;−vx) . (7.30)
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(b) Interacting scalar field: described by a Single Scalar field (ISF):

Φ = Φ(1)(x, y − yc, z; +vx) + Φ(2)(x, y + yc, z;−vx) . (7.31)

As in BSs and DBS cases, a fine-tuning of the initial orbital velocity is required to

set the binary in a quasi-circular orbit. Notice that the superposition explained above

does not satisfy the energy and momentum constraints due to the non-linear character

of Einstein’s equations. Nevertheless, the CCZ4 formalism used enforces dynamically

an exponential decay of these constraint violations, see Section 5.6.

7.5 Coalescence of Fermion-Boson Stars

In the present section, binaries of neutron star, with different fractions of bosonic

dark matter in their interiors, are modeled by using FB stars. We evolve numeri-

cally three different binary FB stars belonging to the stable branch, with individual

mass of MADM = 1.35, compactness C = 0.12 and the following boson-to-fermion ra-

tios YB = {0%, 5%, 10%}. These equilibrium configurations are constructed by using a

polytropic EoS with Γ = 2.5, but varying the polytropic constant κ to achieve solutions

with the same total mass and compactness.

The radial profiles of some relevant quantities (i.e, the metric components α(r) and ψ(r),

the scalar field φ0(r) and the density ρ(r)) for these three configurations are displayed

in Figure 7.3. Obviously, the number of boson increases with the scalar field.

The characteristics of our isolated FB stars models are summarized in Table 7.1: the

boson-to-fermion ratio YB, central value of the density ρc, central value of the scalar field

φc, polytropic constant κ, angular frequency in the complex plane ω, boson and fermionic

radius of the star RB and RF , and bosonic and fermionic masses. We also include some

quantities of the coalescence: merger time, defined as the maximum of the norm of the

Ψ2,2
4 , and the frequency of the dominant peak in the Fourier spectral power distribution,

calculated as the Fourier transform of <(Ψ2,2
4 ) during the post-merger stage.

Our simulations are performed in a domain [−480, 480]3 with a coarse resolution of

∆x0 = 6.8. There are 6 levels of refinement, the last one only covering both star during

their coalescence, such that the finest resolution is ∆x5 = 0.21. Furthermore, each FB

star is initially centered at (0,±16, 0) and have a boost velocity vx = ±0.173, leading to

a binary system in a tight quasi-circular orbit. During the evolution, we employ an ideal-

gas EoS (3.61), which is able to capture the fluid heating due to strong shocks produced

in the merger stage [63, 123]. Additionally, the gravitational radiation emitted during

the coalescence, described by the Newman-Penrose scalar Ψ4 (2.105), see Section 2.4.1
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Figure 7.3: Initial configuration for each FB star considered in the binary system.
The metric component profiles of α(r) and ψ(r) (top panel), and the radial scalar field
φ0(r) and radial density profiles (bottom panel) respectively, for each boson-to-fermion
ratio. As the boson-to-fermion ratio grows the radial profile of the scalar field increases.
The dashed black lines show the Schwarzchild solution with the same mass of the FB

star.

YB Model ρc φc κ ω RB RF NB NF tmerger fpeak[kHz]

0 NS 5.0525×10−4 0.0 7405 0 0 11.23 0.0 1.44 1650 1.62
5 NISF 5.0989×10−4 8.838×10−3 8136 0.814704559507 10.37 11.16 0.0721 1.37 1626 1.81
10 NISF 5.0244×10−4 1.223×10−2 8980 0.811068278806 10.15 11.20 0.1262 1.32 1606 1.87
10 ISF 5.0244×10−4 1.223×10−2 8980 0.811068278806 10.15 11.20 0.1262 1.32 1616 1.93

Table 7.1: Summary of the binary FB star configurations. The table shows: boson-
to-fermion rate YB , central value of the scalar field, polytropic constant κ, angular
frequency of the phase of Φ in the complex plane, bosonic radius (containing 99% of
the Noether charge), fermionic radius (i.e, the radius where the fluid pressure vanishes),
bosonic and fermionic masses. All models have ADM mass M = 1.35 and compactness
C = 0.12. The last two columns are related to the simulation results: merger time,
defined as the one corresponding to the maximum of the norm of the Ψ2,2

4 , and frequency
of the dominant peak in the power spectral density of the Ψ2,2

4 , evaluated during the
post-merger stage.
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Figure 7.4: Dynamics of FB stars coalescence. Rest-mass densities for the fermionic
components are represented in colors, while Noether charge densities are displayed in
white-to-black contours, in the equatorial plane (z = 0), at different representatives
times. The rows correspond to the cases (from top to bottom) NS, NISF with YB =
{5%, 10%}, and ISF with YB = 10%. The first column illustrates a time in the early
inspiral, the second one is roughly at merger time, the third one is during the post-

merger stage and the fourth one at the end of our simulation.

is analyzed. Recall that, GWs are computed as spherical surface integrals at different

extraction radii.

7.5.1 Dynamics

The main dynamics can be inferred from the snapshot on the equatorial plane of the

rest-mass densities and the Noether charge densities for each case, at relevant times of

the coalescence, displayed in Figure 7.4.

All the binaries behave quite similar during the inspiral stage, completing at least two

full orbits before the merger. Both the fermionic and the bosonic part of each star moves
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perfectly synchronized during this stage. After roughly two orbits, the fermionic com-

ponents of both stars collide and form a new object, which can be described basically as

a differentially rotating massive neutron stars with a shape dominated by a quadrupolar

structure, as can be seen in the second and the third panel, first row in Figure 7.4. This

rotating remnant produces gravitational waves in the dominant modes l = |m| = 2, see

Reference [213] and references therein.

This behavior changes as the bosonic matter core inside of the neutron stars is increased.

Although the dark cores inside of the NSs during the inspiral phase follow the same

trajectory of the baryonic matter, differences appear at the merger for the cases YB = 5%

and YB = 10% studied here: while the neutron stars are plunging and forming a rotating

remnant with a quadrupole structure which bounces radially back and forth, the bosonic

cores remain in a tight orbit until the contact time, defined as the same way as in

the previous Chapter 6. Thereafter, the bosonic cores overlap in space and forming a

superposition of two coexisting orbiting dark boson cores, see previous Chapter 6 ([196]).

During the post-merger stage, in the case NISF with YB = 10%, the dark matter in the

remnant excites the one-armed spiral instability [214–216] that breaks the quadrupolar

structure of the system. Figure 7.5 displays the differences on the density profile in the

equatorial plane (z = 0) between the cases YB = 0% and YB = 10% in the post-merger

phase, showing the symmetry breaking of the quadrupole structure when there is a

significant amount of bosonic component inside the NS. Once this single baryonic over-

density appears, the scalar field clusters in that region and then the two matter fields

(i.e., the fluid and the dark matter) rotate together. This lack of quadupolar symmetry

is also found in the case YB = 5%, although the full development of the |m| = 1 over-

density can not be seen as clearly within the time reached by our simulation.

For comparison purposes, we also evolve the case with ratio YB = 10% with ISF.

In this particular case, the dynamics during the inspiral is similar to the case NISF

YB = 10%. Differences arise after the merger: in this stage, the scalar field interactions

play an important role by forming a single largely-perturbed bosonic core inside the NS

remnant. Nevertheless, the one-armed spiral instability is seen anyway, probably because

it is triggered by the initial presence of four components, which are strongly coupled only

two by two (fermionic cores between them, and bosonic components between them).

As it was discussed in [216], this instability can develop gravitational radiation with a

significant l = 2, m = 1 component at frequencies in which the sensitivity of the detector

is higher [217], which can be relevant in future observation of gravitational waves from

neutron stars mergers.
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Figure 7.5: Comparison of YB = 0% versus YB = 10%. Rest-mass fermionic densities
in the equatorial plane in the post-merger stage (i.e., roughly at t ' 4440) of the
YB = 0% (top panel) and NISF with YB = 10% models. The Noether charge densities

are added as white-to-black contours in the case YB = 10%.
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Figure 7.6: Gravitational waves. The real part of the main l = m = 2 mode of Ψ4

describing the gravitational emission produced by FB binaries, as a function of time
on from the merger, for all models (top to bottom).

7.5.2 Gravitational wave radiation

The main mode l = |m| = 2 of the Newman-Penrose scalar Ψ4 is displayed in Figure 7.6

for the four different cases considered previously, where the time has been shifted such

that the merger time occurs at t = 0.

The gravitational radiation produced during the early inspiral is roughly the same for all

the cases, with differences arising at and after the merger. As the boson-to-fermion ratio

YB increases, the strength of the gravitational waves achieves a slightly larger amplitude

maximum at the merger time. In all cases, strong oscillations are present soon after

the merger, but notably they decay quickly in the case with largest DM cores YB =

10%, both for NISF and ISF models. As the ratio YB decreases, these oscillations are

stronger with a larger amplitude. This huge difference could be possibly due to a quick

redistribution of the density profile on the remnant, such that the quadrupole moment

transfers energy to the m = 1 mode (i.e., for instance by the one-arm instability [218]).

As discussed in [216], to develop of m = 1 one-arm instability a mechanism is needed in

order to break the symmetry allowing odd modes.

To analyze this symmetry breaking, the strength of the dominant l = 2 modes of the

GWs are displayed in Figure 7.7 for all cases. As we can observe, the mode m = 1 has

a similar behavior for all the cases, achieving roughly the same saturation level after the
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Figure 7.7: Gravitational waves. The norm of a given mode (l = 2,m) of the grav-
itational radiation described by the Newman-Penrose scalar Ψ4 as a function of time

from the merger for the different cases.

merger. However, significant differences arise in the mode m = 2 : while the strength

of this mode is roughly constant for the cases YB = {0%, 5%}, the other cases with the

largest DM cores (i.e. YB = 10% and ISF YB = 10%) display an exponential decay

soon after the merger.

In order to check if there is any transfer of energy through others m-modes, the strength

of the total gravitational radiation is compared with the main mode l = |m| = 2 in

Figure 7.8. Clearly, the main radiative contribution comes from the main mode. Thus,

we can conclude that the loss of quadrupole symmetry does not induce a significant

additional radiation in the modes m = 1.

Finally, we can learn further information about the properties of the FB stars by an-

alyzing the gravitational waves after the merger [170]. The power spectral density of

the Fourier transform for the Ψ4 modes (l = 2,m) at this stage is displayed in Fig-

ure 7.9. The frequency of the dominant mode corresponds to the double of the orbital

period at the merger time, and it is associated to a mixture of the rotational motion

and the quadrupolar structure. The values of these peak frequencies are presented in

Table 7.1. The peak in frequency spectrum for the |m| = 1 mode is more than one order

of magnitude weaker than the |m| = 2 mode. However, as already previously noted

for unequal binary NS mergers [191, 216], for the model with YB = 10%, in which the
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Figure 7.8: Gravitational waves. The norm of the total gravitational radiation emitted
during the coalescence and the norm of the l = |m| = 2 dominant modes, as a function
of time from merger, for the different cases. They basically overlap, showing that the

main contribution to GW emission always comes from the l = |m| = 2 mode.

one-arm instability fully develops, the peak of the |m| = 1 mode is at half the frequency

of the one corresponding to the |m| = 2 mode. Quantitatively, for that case we obtain

fm=1 = 0.935 kHz and fm=2 = 1.87 kHz, when the one-arm instability fully develops.

The exact value depends on the chosen EoS, and for a realistic one, the typical value

of fm=2 are found to be between ∼ [2 − 3.5] kHz, see Refs. [170, 191]. Regardless on

the specific value, for frequencies corresponding to the |m| = 1 mode, the Earth-based

detectors are more sensitive and might be able to distinguish these features, for close

enough events. In particular, finding a peak with f ∼ 1 kHz in equal-mass low-spinning

binaries could be a signature of DM presence.

7.6 Discussion

In this last Chapter, we have studied by using full 3D numerical simulations, the dy-

namics and gravitational radiation emitted during the coalescence of binary NSs with

DM clustered in their interior. These objects have been modeled by using FB stars,

i.e, compact stellar objects made with a mixture of a perfect fluid and a complex scalar

field. In our model, we have considered that in each star the fermionic matter interacts

with the bosonic matter cores only through gravity. In particular, we have considered
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Figure 7.9: Gravitational waves. Fourier transform of the real part of Ψ4, considering
from the merger time on, for the models NS and NISF with YB = {5%, 10%}. We
show the (l = 2, |m| = 1) mode, amplified by a factor 15 for visualization purposes, and
the dominant (l = 2, |m| = 2) mode. The dominant radiation mode after the merger
is given by (l = 2, |m| = 2), achieving peaks at frequencies fpeak = {1.62, 1.81, 1.87}
kHz respectively. The only significant (l = 2, |m| = 1) mode corresponds to the case
YB = 10%, with a peak at fm=1 = 0.935 kHz, at half the frequency of the |m| = 2 one.

binaries formed for stars with the same individual ADM mass M = 1.35 and compact-

ness C = 0.12, but with three different boson-to-fermion ratio YB = {0%, 5%, 10%}, to

study the dependence on the amount of DM in the stars.

We have found that, during the inspiral, both the dynamics and the GWs radiated in

these three cases are roughly the same, making it very difficult to distinguish differences

with respect to a canonical binary NS with YB = 0%. At the merger stage differences

arise in the dynamics for the cases YB = 5% and YB = 10%: while the NSs merge

and form a rotating remnant, the boson components keep orbiting maintaining its in-

dividual shape for longer times. In the late post-merger differences grow larger with

respect to the case YB = 0%, where the dynamics is governed by a massive NS which

rotates differentially with a dominant quadrupolar shape, and producing GWs in the

l = |m| = 2 modes. In the case YB = 10%, the dark bosonic cores cause a redistribu-

tion of the fermionic matter, breaking the quadrupolar symmetry of the remnant and

forming an |m| = 1 over-density through the one-arm instability, which is excited by

the asymmetries introduced by the three-body interaction (i.e., fermionic matter plus

two bosonic cores coupled only through gravity). In this case, the dominant GW mode

l = |m| = 2 decay exponentially much faster than for YB = 0%. For comparison pur-

poses, we have also considered a binary where the bosonic DM interacts through both
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gravity and scalar field interactions, obtaining roughly the same results as before. This

seems to indicate that the one-arm spiral instability develops generically in the merger

of NSs with DM cores due to the many-body-interaction after the merger.

Let us stress the differences of our results with respect to the ones obtained in Ref-

erence [219], where they introduce a Lagrangian with four coupled objects (i.e., two

NSs and two DM cores) to describe the post-merger dynamics. They pointed out the

presence of supplementary peaks at higher frequencies than the |m| = 2 mode in the

post-merger spectrum of NSs mergers, but could not anticipate the lower frequency

peak due to the one-arm instability.

As it was also notice in [216], although the |m| = 1 modes strength in our case is at

least fifteen times smaller, it becomes more relevant as a contributor to the post-merger

GW signal since it occurs at a frequency half of the dominant mode |m| = 2, where

the GW detectors are more sensitive. Notice however that there is some degeneracy,

since this instability has also been observed to happen in several binary NS merger

simulations [217], especially with spin and/or eccentricity [214, 218] and for unequal

mass stars [191, 216]. There are two distinct features of our case with respect to those

ones. First, the one-arm instability strongly develops even for equal mass no-spinning

objects, a feature that could be measured from the GW during the inspiral. Therefore,

the waveform before the merger might contain enough information to break partially the

degeneracy and discard some of the asymmetries which could produce a strong one-arm

instability. Second, although the exponential decay affecting the |m| = 2 mode also

occurs in unequal mass or highly spinning binaries, it shows a faster attenuation in our

cases. Therefore, possible detection of these modes with current or future detectors,

combined with a detailed analysis of the signal during the inspiral, could constraint the

presence of DM cores inside NSs and enhance our understanding of its nature.
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Concluding remarks

In this Thesis, I have studied the gravitational waves produced during the binary coa-

lescence of Exotic compact objects, by solving numerically Einstein equations coupled

with different types of matter. The main new results presented on this manuscript are

the following.

We have modified the CCZ4 formalism, see Chapter 2, such that it does not require

the algebraic enforcement of any constraint after each step of the numerical integration.

Furthermore, the pseudo-hyperbolicity of the resulting evolution system has been ana-

lyzed by using a linear plane-wave analysis to show that, for a specific choice of some free

parameters, the system is strongly hyperbolic (i.e., it has a complete set of eigenvectors

with real eigenvalues). Therefore, the linearized system is well-posed. In addition, in

Chapter 4, we have performed some NR test to check the robustness of our implementa-

tion of the modified CCZ4 formalism, including the evolution of isolated solitonic boson

stars, an non-rotating neutron star and a mixed fermion-boson star (see Chapter 7). Our

numerical results – stable evolutions with small and bounded constraints – confirm the

analytical analysis.

Solitonic boson star binaries are studied in Chapter 5. Recall that solitonic BSs are

a specific family of BS with a potential leading to solutions with compactness that is

comparable or even higher than that of neutron stars. The first part of the chapter

studies the dynamics of these systems, focusing on binaries where each star has a fixed

compactness C = 0.12 but with different phases and signs in their harmonic time depen-

dence. We have found that the head-on collision of two BSs, differing only by a relative

phase, generically produced a massive and significantly perturbed BS. However, a BS

that collides with an anti-BS (i.e. another BS with the opposite frequency but oth-

erwise identical), annihilates the Noether charge of the system and most of the scalar

field disperses to infinity. Surprisingly, the addition of angular momentum does not

seem to change this qualitative picture. Although the merger of a pair of orbiting BSs

produces a rotating remnant, the final object eventually settles down into a stationary
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non-rotating BS by radiating all its angular momentum via GW radiation and scalar

field dispersion.

The second part of Chapter 5 is based on the dynamics and the gravitational radiation

produced by the coalescence of solitonic BS binaries, where we have considered four

different initial compactnesses C = {0.06, 0.12, 0.18, 0.22}. Here, we have found a critical

compactness, CT , belonging to the interval CT ∈ (0.18, 0.22) where the dynamics behaves

in a different way. For instance, for C . CT (low compactness) the remnants loss angular

momentum and decay to non-rotating BSs. The signal is really small during the inspiral

phase, but it rises quickly at the merger. Otherwise, for C & CT , the remnant collapses

to a BH, being the signal in the post-merger stage dominated by the shape of the typical

ring-down of a spinning BH. Therefore, the results of this numerical study suggest that

binary boson stars generically merge into either a black hole or a non-rotating boson

stars.

In the Chapter 6, we have considered dark stars, astrophysical compact objects made of

dark matter such that they only interact with other stars through gravity. Here, we have

studied binaries of dark stars made by bosonic scalar field considering the same range of

compactness as the Chapter 5. The dynamics and the gravitational radiation generated

during its coalescence have been analyzed, contrasting both with previous simulations

of binary BSs (where there exists interaction between the stars through both gravity

and the scalar field) and with Post-Newtonian T4 approximation with and without tidal

effects. Our numerical simulations have shown that dark boson stars define a new kind of

compact objects whose merger produce a gravitational signature noticeable from black

holes, neutron stars and boson stars.

Finally, in Chapter 7, we have studied binaries of neutron stars with a small fraction

of dark matter on their interiors, modeling them through mixed fermion-boson stars.

We have investigated the dynamics and gravitational radiation emitted during their

coalescence. We have found, as the amount of dark matter cores within the neutron stars

increases, some noticeable differences appear in the post-merger regime. In particular,

our results have revealed the presence of a strong m = 1 mode in the waveforms during

the post-merger stage, together with redistribution of the fermionic matter, which causes

a break the quadrupolar symmetry of the remnant by forming an |m| = 1 over-density

through the one-arm instability.

a break of the quadrupolar symmetry, generating a over-density . Certainly, we will

extend our analysis of those binaries studying, for example, the lifetime of the remnant

and the ejected mass during the merger.
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All these studies might be important to distinguish these events from other binaries with

current/future detection by either LIGO and Virgo ground-based interferometers or

LISA space-based interferometer, as well as to set constraints on some dark matter

models.

There are natural research lines to be extended and further studied. For instance, one

could consider binaries with unequal masses and see the differences with respect to

the equal mass case. One of the most interesting projects would be to repeat some

of the coalescences of binary systems composed by exotic objects mentioned above,

but starting from an accurate initial data in quasi-circular orbit. This would allow us

to construct reliable gravitational waves templates for the entire coalescence, namely,

inspiral, merger and post-merger. Another interesting work is to study the tidal Love

numbers of the mixed fermion-boson stars considered in Chapter 7 in order to compare

their gravitational waves frequencies with the neutron stars, black holes or even boson

and dark boson stars.
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Appendix A

Some estimation for Boson Stars

and Dark Stars

A.1 Estimate of the gravitational radiation in the post-

merger stage for boson stars

A simple estimate of the amount of energy the system can radiate can be obtained

following the model presented in [188]. Aided by the results from numerical simulations

of Chapter 5, we can further refine such a model for the behavior observed in the merger

of binary BSs. Namely, we observe that, in the case where collapse to a BH is avoided,

the final result is a BS remnant with no angular momentum and with radius Rr having

mass Mr that is roughly the total initial mass M0 (i.e., Mr ≈ M0 = M1 + M2) . The

merger takes place at “contact”, that is, when the stars are separated by R1 +R2. Thus,

the energy of the system at such an instant is roughly

Econtact = Epot
12 + Ekin

12 + Epot
1 + Epot

2 ,

= − M1M2

R1 +R2
+

1

2
IcΩ

2
c −

3M2
1

5R1
− 3M2

2

5R2
, (A.1)

where we have included the binding energy of each star and have assumed that the stars

have constant density. The moment of inertia Ic with respect to the center of mass,

assuming the stars are irrotational, can be written at contact time as

Ic ≡
M1M2

M1 +M2
(R1 +R2)2. (A.2)

Notice that at contact time the orbital frequency can be estimated as Ω2
c = M1+M2

(R1+R2)3 .

Following the discussion in [188], for the equal mass case (M1 = M2 = M and R1 =
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R2 = R ) this energy can be expressed as a function of the compactness C = C1 = C2

as

Econtact ≈ −
29

20
MC . (A.3)

As the collapse takes place, the system ultimately settles into a non-rotating BS. The

energy left in the system (beyond the rest mass) is given by the potential energy of the

BS which, assuming a spherical object of uniform density, can be estimated as

Efinal = −3M2
r

5Rr
,= −12

5
MC

R

Rr
, (A.4)

where we have considered an upper bound Mr ≈ 2M . Assuming no scalar radiation, we

can now estimate the radiated energy in gravitational waves during different states of

the system. In particular, the total amount of energy radiated Erad and radiated after

contact Eacrad are,

Erad = −(Efinal − Einitial) , (A.5)

≈ 6

5
(2
R

Rr
− 1)CM , (A.6)

≈ 0.96CM = 0.48CM0 , (A.7)

and

Eacrad = −(Efinal − Econtact) , (A.8)

≈ MC

20

(
−29 + 48

R

Rr

)
, (A.9)

≈ 0.71CM = 0.36CM0 , (A.10)

and we have estimated the ratio R/Rr ≈ 0.9 from our simulations (alternatively, as-

suming the effective density of the individual BSs is similar to that of the merged BS,

one has R/Rr = 1/21/3 ≈ 0.8). Notice that for C ' 0.1, if no collapse to a black hole

takes place, this implies that highly compact binary boson star systems are examples of

“super-emitters,” in the terminology introduced in [188] (as the analogous BH binary

system emits ≈ 5% of their total mass).

A.1.1 Estimate of after-merger frequency of gravitational waves

We can also attempt to estimate the frequency of gravitational waves soon after merger

has taken place. For this, we begin assuming angular momentum is nearly conserved

around the moment where the collision (contact) takes place. For the case of irrotational
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binaries, the angular momentum at contact can be approximated by the expression

Lc = IcΩc , (A.11)

with Ic and Ωc as defined in Appendix A.1. Soon after contact, we have instead

Lr = IrΩr , (A.12)

where Ir is the moment of inertia of the newly formed object (i.e, the remnant) assuming

no prompt collapse to a BH takes place. Let us now assume a relation of these angular

momentum given by Lr = κLc with κ ∈ [0, 1] a factor introduced to account for loss of

angular momentum during the merger. Now, since the angular frequency of gravitational

waves ω = 2Ω, we have (specializing to the equal mass case)

Irωr = κ2MR2ωc ,

M3
r (Ir/M

3
r )ωr = κ2M3C−2ωc , (A.13)

with C denoting the compactness of the individual stars, M their individual masses, and

Mr and Ir the mass of the remnant and its moment of inertia respectively soon after

contact. Rearranging, the gravitational wave frequency soon after contact implies

ωr =
κ

4

C−2

Īr
ωc , (A.14)

where we have defined Īr = IrM
−3
r .

In the case of binary neutron star mergers, extensive studies already indicate a small

amount of angular momentum is radiated during the merger, so we can adopt κ ' 1.

For realistic equations of state, we can make use of thorough investigations of the values

of Īr for isolated stars for a wide range of compactness and mass (e.g. [220]) to evaluate

Eq. (A.14). This gives ωr ≈ 2.8ωc, in excellent agreement with results from numerical

simulations (e.g. [191]). This is not surprising since the angular momentum in the system

right before contact is primarily transferred to the object formed after merger.

This is not the case for binary boson stars. As opposed to the case for neutron stars,

general values of Īr for boson stars are not available but we can estimate them either

from our isolated BS solutions or by considering that they behave as constant density

spheres, namely I = (2/5)MR2. Since the result will not change significantly, we use

the latter approximation which yields

ωr = κ
5

2

(
R

Rf

)2

ωc ≈ 2κωc , (A.15)
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where again we estimated R/Rf ≈ 0.9 from our simulations. The corresponding estimate

would give an upper bound factor (taking κ = 1) in [2− 2.5] which is higher than the fit

in Eq. (5.23). However, as we have seen, a large amount of angular momentum is lost

through the merger. From Fig. 5.9 one would expect κ ≈ 1/4 making the “expected”

frequencies from this naive estimate much too low when compared with the measured

peak frequency in gravitational waves. This is in strong contrast to what is observed in

the case of binary neutron star mergers.

As the next section illustrates, the after-merger radiation of boson stars is determined

by the quasi-normal modes of the produced boson star or by the BH in the case of

collapse. This is a consequence of our observation that the merger of boson stars does

not produce a rotating boson star and that the speed of propagation of perturbations

in boson stars is faster than that in neutron stars.

A.1.2 Quasi-normal modes of isolated solitonic boson star

Quasi-normal modes for isolated solitonic boson stars can be computed by evolving

numerically a perturbed star and analyzing the gravitational wave radiation. The for-

malism and numerical schemes are the same as the ones used in Chapter 5 for binaries,

such that only the initial data differs. We have chosen stable boson stars with total

mass M = 1 for different compactnesses ranging from C = 0.06 − 0.22. These equi-

librium configurations are deformed by adding a small perturbation on the conformal

factor which introduces constraint violations below the truncation error of the unper-

turbed configuration, and so we need not re-solve the constraints. In order to ensure the

excitation of gravitational modes, the perturbation has a toroidal shape with a m = 2

dependence in the axial direction.

The top panel of Fig. A.1 shows the Fourier transform of the main gravitational wave

mode (i.e., l = m = 2) as a function of frequency. Although there are several peaks in

the spectra, we focus only on the two strongest modes at the lowest frequencies. Clearly,

the frequencies of the fundamental and the secondary quasi-normal modes increase with

compactness. The bottom panel displays the adimensional frequency of these two modes

as a function of the compactness. We have also included the frequencies of the remnant

after the merger of the case studied here, given in Table 6.1. There is a good agreement

between the QNM of the single stars and the fundamental mode of the remnant of the

binary.
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Figure A.1: (Top) Fourier spectrum of the main mode of the strain h̃2,2(f) ≡ F [h22(t)]
for several isolated solitonic boson stars. (Bottom) The circles and the diamonds cor-
respond,respectively, to the frequencies ω0

QNM and ω1
QNM of the lowest quasi-normal

modes (i.e., fundamental and secondary peaks), as a function of the compactness
CN ≡M/RN . Squares represent the gravitational frequencies of the remnant resulting
from a binary merger with that initial compactness. Notice that we have included the
case with C = 0.18, which we do not trust completely, and the case C = 0.22 that
ends up in Kerr BH. For comparison purposes, we have included also the QNM of a

Schwarzschild BH (triangle).
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A.2 Estimate of the gravitational radiation in the post-

merger stage for DBSs

Following previous works [6, 188], we can estimate the amount of energy radiated by

DBS binaries during their coalescence. This energy has been calculated for binary BSs

in the previous section A.1 (or appendix of Ref. [6]). Considering the same assumptions

for the equal mass case (M1 = M2 = M and R1 = R2 = R ), the energy when both

stars make contact can be expressed as:

Econtact = Epot
12 + Ekin

12 + Epot
1 + Epot

2 ≈ −29

20
MC .

As the merger takes place, the system ultimately settles down into a non-rotating rem-

nant composed by two coexisting DBSs. Therefore, the final energy in the system (be-

yond the rest mass) is just given by the binding energy, that for a spherical object with

uniform density is:

Efinal = −3M2
r

5Rr
= −12

5
MC

R

Rr
, (A.16)

where we have considered an upper bound Mr ≈ 2M . Assuming no scalar radiation,

we can now estimate the radiated energy in gravitational waves radiated after contact

Eacrad :

Eacrad = −(Efinal − Econtact) ≈M0C , (A.17)

where we have estimated the ratio R/Rr ≈ 1.4 from our simulations. Notice that this

energy estimate for DBS mergers is almost twice than the one obtained for BSs [6]

(i.e., Eacrad ≈ 0.48M0C). The main difference comes from the ratio R/Rr, that in the

remnant of BSs mergers was 0.9 but for DBS mergers is 1.4.
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[154] José M. Mart́ı and Ewald Müller. Extension of the piecewise parabolic

method to one-dimensional relativistic hydrodynamics. Journal of Computational

Physics, 123(1):1 – 14, 1996. ISSN 0021-9991. doi: https://doi.org/10.1006/

jcph.1996.0001. URL http://www.sciencedirect.com/science/article/pii/

S0021999196900017.

[155] Phillip Colella and Michael D. Sekora. A limiter for ppm that preserves accuracy

at smooth extrema. Journal of Computational Physics, 227(15):7069 – 7076, 2008.

ISSN 0021-9991. doi: https://doi.org/10.1016/j.jcp.2008.03.034. URL http://

www.sciencedirect.com/science/article/pii/S0021999108001435.

[156] Luis Lehner, Steven L. Liebling, and Oscar Reula. AMR, stability and higher

accuracy. Classical and Quantum Gravity, 23(16):S421–S445, jul 2006. doi:

10.1088/0264-9381/23/16/s08. URL https://doi.org/10.1088%2F0264-9381%

2F23%2F16%2Fs08.

[157] Marsha J. Berger and Joseph Oliger. Adaptive mesh refinement for hyperbolic

partial differential equations. Journal of Computational Physics, 53(3):484 – 512,

1984. ISSN 0021-9991. doi: https://doi.org/10.1016/0021-9991(84)90073-1. URL

http://www.sciencedirect.com/science/article/pii/0021999184900731.

[158] Ernst Hairer, Syvert P. Norsett, and Gerhard Wanner. Solving Ordinary Differen-

tial Equations I. Springer-Verlag Berlin Heidelberg, 1987. ISBN 978-3-662-12607-3.

[159] Peter McCorquodale and Phillip Colella. A high-order finite-volume method for

conservation laws on locally refined grids. Commun. Appl. Math. Comput. Sci., 6

(1):1–25, 2011. doi: 10.2140/camcos.2011.6.1. URL https://doi.org/10.2140/

camcos.2011.6.1.

[160] Bishop Mongwane. Toward a consistent framework for high order mesh refinement

schemes in numerical relativity. General Relativity and Gravitation, 47(5):60, Apr

2015. ISSN 1572-9532. doi: 10.1007/s10714-015-1903-7. URL https://doi.org/

10.1007/s10714-015-1903-7.

[161] Had. http://had.liu.edu/.

https://doi.org/10.1007/s41115-017-0002-8
http://www.sciencedirect.com/science/article/pii/S0021999196900017
http://www.sciencedirect.com/science/article/pii/S0021999196900017
http://www.sciencedirect.com/science/article/pii/S0021999108001435
http://www.sciencedirect.com/science/article/pii/S0021999108001435
https://doi.org/10.1088%2F0264-9381%2F23%2F16%2Fs08
https://doi.org/10.1088%2F0264-9381%2F23%2F16%2Fs08
http://www.sciencedirect.com/science/article/pii/0021999184900731
https://doi.org/10.2140/camcos.2011.6.1
https://doi.org/10.2140/camcos.2011.6.1
https://doi.org/10.1007/s10714-015-1903-7
https://doi.org/10.1007/s10714-015-1903-7
http://had.liu.edu/


Bibliography 167

[162] Steven L. Liebling. Singularity threshold of the nonlinear sigma model using 3d

adaptive mesh refinement. Phys. Rev. D, 66:041703, Aug 2002. doi: 10.1103/

PhysRevD.66.041703. URL https://link.aps.org/doi/10.1103/PhysRevD.

66.041703.

[163] Richard D. Hornung and Scott R. Kohn. Managing application complexity in the

samrai object-oriented framework. Concurrency and Computation: Practice and

Experience, 14(5):347–368, 2002. ISSN 1532-0634. doi: 10.1002/cpe.652. URL

http://dx.doi.org/10.1002/cpe.652.

[164] Brian T.N. Gunney and Robert W. Anderson. Advances in patch-based adaptive

mesh refinement scalability. Journal of Parallel and Distributed Computing, 89:65

– 84, 2016. ISSN 0743-7315. doi: https://doi.org/10.1016/j.jpdc.2015.11.005. URL

http://www.sciencedirect.com/science/article/pii/S0743731515002129.

[165] Samrai project website., 2015. URL https://computation.llnl.gov/project/

SAMRAI/.

[166] Carlos Palenzuela et al. Head-on collisions of boson stars. Phys. Rev. D, 75:

064005, Mar 2007. doi: 10.1103/PhysRevD.75.064005. URL https://link.aps.

org/doi/10.1103/PhysRevD.75.064005.

[167] Carlos Palenzuela et al. Orbital dynamics of binary boson star systems. Phys.

Rev. D, 77:044036, Feb 2008. doi: 10.1103/PhysRevD.77.044036. URL https:

//link.aps.org/doi/10.1103/PhysRevD.77.044036.

[168] Matthew Anderson, Eric W. Hirschmann, Luis Lehner, Steven L. Liebling,

Patrick M. Motl, David Neilsen, Carlos Palenzuela, and Joel E. Tohline. Sim-

ulating binary neutron stars: Dynamics and gravitational waves. Phys. Rev. D,

77:024006, Jan 2008. doi: 10.1103/PhysRevD.77.024006. URL https://link.

aps.org/doi/10.1103/PhysRevD.77.024006.

[169] Matthew Anderson, Eric W. Hirschmann, Luis Lehner, Steven L. Liebling,

Patrick M. Motl, David Neilsen, Carlos Palenzuela, and Joel E. Tohline. Mag-

netized neutron-star mergers and gravitational-wave signals. Phys. Rev. Lett.,

100:191101, May 2008. doi: 10.1103/PhysRevLett.100.191101. URL https:

//link.aps.org/doi/10.1103/PhysRevLett.100.191101.

[170] Carlos Palenzuela, Steven L. Liebling, David Neilsen, Luis Lehner, O. L. Caballero,

Evan O’Connor, and Matthew Anderson. Effects of the microphysical equation

of state in the mergers of magnetized neutron stars with neutrino cooling. Phys.

Rev. D, 92:044045, Aug 2015. doi: 10.1103/PhysRevD.92.044045. URL https:

//link.aps.org/doi/10.1103/PhysRevD.92.044045.

https://link.aps.org/doi/10.1103/PhysRevD.66.041703
https://link.aps.org/doi/10.1103/PhysRevD.66.041703
http://dx.doi.org/10.1002/cpe.652
http://www.sciencedirect.com/science/article/pii/S0743731515002129
https://computation.llnl.gov/project/SAMRAI/
https://computation.llnl.gov/project/SAMRAI/
https://link.aps.org/doi/10.1103/PhysRevD.75.064005
https://link.aps.org/doi/10.1103/PhysRevD.75.064005
https://link.aps.org/doi/10.1103/PhysRevD.77.044036
https://link.aps.org/doi/10.1103/PhysRevD.77.044036
https://link.aps.org/doi/10.1103/PhysRevD.77.024006
https://link.aps.org/doi/10.1103/PhysRevD.77.024006
https://link.aps.org/doi/10.1103/PhysRevLett.100.191101
https://link.aps.org/doi/10.1103/PhysRevLett.100.191101
https://link.aps.org/doi/10.1103/PhysRevD.92.044045
https://link.aps.org/doi/10.1103/PhysRevD.92.044045


Bibliography 168

[171] A. Arbona et al. Simflowny: A general-purpose platform for the management of

physical models and simulation problems. Computer Physics Communications,

184(10):2321 – 2331, 2013. ISSN 0010-4655. doi: http://dx.doi.org/10.1016/j.

cpc.2013.04.012. URL http://www.sciencedirect.com/science/article/pii/

S0010465513001471.
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