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Unveiling noiseless clusters in complex quantum networks
Albert Cabot1, Fernando Galve1, Víctor M. Eguíluz 1, Konstantin Klemm1, Sabrina Maniscalco2 and Roberta Zambrini1

The transport and storage of quantum information, excitations, and entanglement, within and across complex quantum networks is
crucially affected by the presence of noise induced by their surroundings. Generally, the interaction with the environment
deteriorates quantum properties initially present, thus limiting the efficiency of any quantum-enhanced protocol or phenomenon.
This is of key relevance, for example, in the design of quantum communication networks and for understanding and controlling
quantum harvesting on complex systems. Here, we show that complex quantum networks, such as random and small-world ones,
can admit noiseless clusters for collective dissipation. We characterize these noiseless structures in connection to their topology
addressing their abundance, extension, and configuration, as well as their robustness to noise and experimental imperfections. We
show that the network degree variance controls the probability to find noiseless modes and that these are mostly spanning an
even number of nodes, like breathers. For imperfections across the network, a family of quasi-noiseless modes is also identified
shielded by noise up to times decreasing linearly with frequency inhomogeneities. Large noiseless components are shown to be
more resilient to the presence of detuning than to differences in their coupling strengths. Finally, we investigate the emergence of
both stationary and transient quantum synchronization showing that this is a rather resilient phenomenon in these networks.
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INTRODUCTION
The growing experimental ability in the design, control, and probe
of ever larger and increasingly complex coherent quantum
systems has recently fueled a newly emerging field combining
tools and approaches of complex networks theory with quantum
information theory. This cross-disciplinary field aims at under-
standing static and dynamical properties of complex quantum
networks in relation to their topology. Formally, complex quantum
networks are distinguished from complex classical networks by
the physical nature of the nodes and links composing them.1

Specifically, complex quantum networks can be grouped into two
main classes eventually occurring in the same platform: the first
class entails quantum systems whose connections are represented
by entangled states,2–6 while the second class groups networks
wherein the nodes are quantum systems and the links are physical
forces or interactions between them.7–16 The main application of
the first class of complex quantum networks is secure quantum
communication,7,8,17–19 while the study of networks of the second
type is of relevance for understanding quantum transport in both
biological and artificial complex systems.9,20–27

One of the key features of complex quantum networks, as
opposed to classical ones, is their potential to encode, preserve
and exploit crucially quantum properties. Several questions have
been raised and investigated in this framework: can we exploit
quantum correlations to improve security in network commu-
nication?7,8,17–19 Does quantum coherence play a role in excitation
transfer through networks?21,25,26 Can we use a local quantum
probe to extract global information on a complex quantum
network?28–30 Can we use complex quantum networks as
quantum simulators of nontrivial open quantum systems?28,30,31

How do emergent phenomena known in classical complex
networks arise into the quantum regime?32–35

Moving toward scalable multi-component architectures of
increasing complexity, it is imperative to understand how resilient
are complex quantum networks to the presence of external
perturbations. It is well known that quantum-enhanced protocols
and devices are extremely sensitive to the presence of noise
induced by the surrounding environment,36 though depending on
their symmetries quantum systems can display degrees of
freedom immune to decoherence.13,37–58,59,60

An extended system, consisting of many components, dis-
sipates into a common bath37 when it is small, so seeing a unique
point of the environment.38,39 Furthermore, this occurs also for
larger systems interacting with different parts across structured
environments under some conditions (of components position
and frequency).44,54,59,60 Collective dissipation and decoherence
are known to enable phenomena like superradiance38–43 and
synchronization,32,61,62 allowing for asymptotic entanglement,45–
48,63,64 and have recently been explored in the context of quantum
computation,37,49–53 metrology,55 communications,13 and thermo-
dynamics.56–58 These phenomena, even when addressed in
extended systems, are generally associated with highly symmetric
structures, such as pairs of identical components or regular
lattices.
Our aim is to assess the resilience of these phenomena and,

more in general, of noiseless subspaces in complex networks. We
address the existence of noiseless subspaces focusing on the
effects of the topology in the paradigmatic example of random
Erdös–Rényi quantum networks2,12 and also in small-world
networks.65 We then extend our analysis beyond topology by
looking at the resilience for inhomogeneities in parameters.
Random quantum networks are shown to support noiseless
clusters where quantum coherences can survive indefinitely,
allowing one to either store or transport quantum states,
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excitations or, e.g., entanglement in a virtually error-free way even
in the presence of environmental noise. The abundance, the
extension and the composition of these decoherence-free sub-
structures are analyzed in different topological regimes. We show
(Sect. II.) and discuss (Sect. III.) the presence of a persistent
(breathers) feature in the extension of these noiseless structures.
We further establish that random quantum networks can embed
not only noiseless components, but also a clearly identifiable
family of quasi-noiseless ones. We finally address how common is
their synchronizability in the transient and asymptotic dynamics.
These findings are analyzed and interpreted in connection to the
specific characteristics of the complex network topological
regimes, discussing their generality, and possible extensions (Sect.
III. and Supplementary Information).

RESULTS
We consider a model of interacting quantum harmonic oscillators
(nodes) with linear interactions (links), so our system belongs to
the second class of complex quantum networks as described
above. Reconfigurable and controllable complex quantum net-
works can be experimentally realized with optical30 as well as
circuit QED16 set-ups, paving the way to new investigations on the
interplay between topology and dynamical properties.

Erdös–Rényi quantum networks in a common environment
Erdös–Rényi (ER) random graphs (Fig. 1a) constitute a stochastic
mechanism for network generation. Despite being based on
minimal assumptions, they exhibit rich phenomenology.66,67

Fixing natural N and 0 < p < 1 as parameter values, the ER
statistical ensemble GðN; pÞ is over networks with exactly N
nodes, assigning probability

pMð1� pÞNðN�1Þ=2�M (1)

to a network with M connections. In practice, one draws a network
from the ensemble by independently considering each of the N(N
− 1)/2 unordered node pairs {i, j} and establishing the connection
between i and j with probability p. For not too small N, this
random and uncorrelated creation of connections typically
produces a network without obvious symmetries. In the small-
world model by Watts and Strogatz,65 properties of real networks
have been reproduced by an interpolation between the two
extremes of random networks and regular lattices.
For the present context, connectedness is a crucial network

property. A network is connected if it consists of a single
component: for all nodes i and j there is a path or walk from i to j.
In ER random graphs, the probability of connectedness Pconn(N, p)
increases with p, see Fig. 1a. In fact, the increase of Pconn is
steepest around pc= N−1 ln N. For large N, the p-dependence of
Pconn is close to a step function with a value close to zero for p < pc
and close to 1 for p > pc. Here, random networks are introduced to

reveal how the complexity of the connectivity influences the
decoherence across medium size networks of N nodes.
Our analysis is valid for physical systems modeled by networks

either of harmonic oscillators or coupled spins in presence of a
single excitation (Sect. III and Supplementary Information). Here
we formally introduce the bosonic Hamiltonian:

Ĥ ¼ 1
2

XN
i¼1

p̂2i þ ω2
i þ 2km

� �
q̂2i

� ��XN
i¼1

XN
j¼1

λij 1� δij
� �

q̂i q̂j ; (2)

where q̂i and p̂i are position and momentum operators of the
quantum harmonic oscillators with frequencies ωi. The applic-
ability to tight-binding Hamiltonians is discussed in Supplemen-
tary Information. Inhomogeneity of frequencies and couplings will
be also considered: ωi=ω0+ Δωi, λij= λji= λ+ Δλij or (for
disconnected nodes) λij= λji= 0, where Δωi (Δλij) are zero mean
Gaussian numbers with standard deviation σω(σλ). Finally, we have
introduced the frequency shift 2km to ensure that the eigenfre-
quencies of Hamiltonian (2) are always positive. A sufficient
condition adopted here is to set km equal to the largest degree of
a given network times λ.
Within the formalism of open quantum systems, we consider

the complex network dissipating globally into a common bath37

(fully spatially correlated dissipation), leading to cross-damping
effects.59 Within a microscopic approach, we assume all network
nodes (oscillators) identically coupled to a thermal bath. Therefore,
the center of mass q̂cm of the network channels collective
dissipation. If there are network normal modes perpendicular to
q̂cm, these define noiseless clusters. Similarly, for purely dephasing
noise and tight-binding Hamiltonian of interest for biological
networks,68 they define decoherence-free clusters. In order to
characterize the details of the full dynamics of the network, for
instance to establish the presence of quasi-noiseless clusters or
transient synchronization, a master equation (ME) formalism in the
weak dissipation limit is considered (sect. IV and refs.32,64). We
anticipate that the characterization of noiseless subspaces of the
network follows from a symmetry of the total Hamiltonian (i.e.,
Ĥ þ ĤB þ ĤSB given by Eqs. (2), (3), and (7), respectively), thus its
validity is not constrained by approximations introduced when
describing the reduced network dynamics with ME (see Sect. IV).
In the following, we study how collective dissipation and the

topology of the open network can concur in shielding part of the
latter form decoherence. This will enable decoherence-free
subspaces (DFSs), noiseless subsystems (NSs) (see for example69

and the references therein), or information-preserving structures
(IPSs).70 Well-known examples are the simplest cases of two or few
qubits45–48,71–73 and oscillators.63,64,74,75

Noiseless clusters: abundance and structure
We start our analysis by addressing the simplest case of a network
with homogeneous parameters (i.e., σλ= σω= 0) and focusing on

Fig. 1 a Realizations of Erdös–Rényi (ER) random networks with 15 nodes, and for different probabilities of connection p. For p= 0.05, and p=
0.10 the networks are composed by many components, while for p= 0.30 and p= 0.80 there is only one component spanning all the nodes. b
Motifs with less than five connections. For small probabilities of connection, the motifs with few connections dominate
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the network topology. A convenient property of this model is that
the particular values of ω0 and λ do not influence the shape of the
eigenvectors. (This follows from the fact that the constant
diagonal elements do not affect the diagonalization of the
Hamiltonian, and the remaining λ can be factorized out of the
adjacency matrix. Hence our analysis is independent of the
couplings strength, and these system parameters only play a role
in determining the eigenfrequencies). Our results are therefore
determined solely by the topology of the underlying Erdös–Rényi
network, which depends only on p and N. Furthermore, the same
analysis holds for a tight-binding Hamiltonian with uniform
parameters and ER network topology, as the adjacency matrix,
in this case, is defined in an equivalent way (Supplementary
Information).
Important limit cases are those in which the Hamiltonian matrix

is in a shifted Laplacian form (i.e., the sum of every element of any
column or row takes the same constant value) as this leads to the
center of mass (c.m.) being always an eigenvector of the
Hamiltonian (2). Then for shifted Laplacian Hamiltonians, there
are always N− 1 normal modes perpendicular to the c.m. and thus
uncoupled from the bath. Each of these eigenvectors constitutes a
NS. It can be easily shown that this is the case for systems
described by Hamiltonian (2) with uniform parameters in either
fully connected networks or regular lattices. In general, however,
the problem of the existence of NSs beyond these highly
symmetric configurations is not trivial. This motivates the study
of abundance and structure of NSs in random networks for 0 < p <
1.

In Fig. 2a, we encode in the color scale the probability to find at
least one NS in a network, varying the probability of connection p
and the network size N. We remind that in ER networks the
average degree is given by the product pN. For small networks
there is a significant probability to find a NS for all the range of p’s
(bright regions), however, as we increase the size of the networks
this region shrinks and it remains significant only at the extreme
values of p. The case of p= 1 corresponds to the fully connected
network limit anticipated above (with N-1 noiseless eigenvectors),
while for independent oscillators (p= 0) the system is fully
degenerate and can be always initialized to evolve in a NS. These
features are robust when looking at the total fraction of NSs with
respect to the N degrees of freedom and we find similar results in
Fig. 2b. An interesting issue is about the relation between the
underlying topology and the abundance of noiseless normal
modes. The green dashed line in Fig. 2a indicates the transition
probability to a one large component. In particular, we numerically
determine a threshold ~pc as the value of p for which Pconn(N, p)=
1/2. For networks of N= 15 nodes, we observe ~pc � 0:23
(Supplementary Information). White dashed lines in Fig. 2b
represent contour plots of the variance of the degree distribution,
with inner lines corresponding to higher values. Both quantities
give insight on the relevant topological features to have NSs as
discussed in detail in Sect. III. In particular, the green line separates
the parameter region in which NSs are made of disconnected
motifs, from the one in which they are embedded in a large
component. The white contours are an indicator of topological
disorder (the bigger the variance the less degree homogeneity)
which seems to be the key detrimental feature for the abundance
of NSs.
For the NSs that are not degenerate, we can characterize their

features starting from their extension, i.e., their number of nodes
within the network. Thus we introduce the noiseless subsystem
size (NS size) as the number of oscillators spanned by a given
noiseless eigenvector. Due to the non-degeneracy and with each
component’s submatrix diagonalizable separately, each NS spans
oscillators inside only one connected component. The distribution
of sizes of connected components is an important characteristic of
ER random networks with fixed p as it indicates different
topological regimes (Fig. 1a). In Fig. 3, we represent the probability
to find a NS of a particular size (vertical axis) embedded in a
network component of a given size (horizontal axis) below the
connectedness transition (p= 0.05 (a)) and for a connected
network (p= 0.80 (b)).
For small p, NSs with few nodes predominate as expected, Fig.

3a, while for p= 0.80 there is only one component spanning all
the oscillators, Fig. 3b. What is surprising is the abundance of NSs
spanning over an even number of oscillators (e.g., 2, 4, 6 in Fig. 3a)
with respect to the scarce ones that span over an odd number of

Fig. 2 Probability to find at least one NS (a) and fraction of noiseless
normal modes out of the total (b) as a function of the probability of
connections in ER network p and its size N. Increasing values appear
in lighter color. Green dashed line corresponds to the transition
probability above which the probability of connectedness over-
comes 50%. White dashed lines are contour plots of the variance of
the degree distribution. Parameters are fixed to: ω0= 2, λ= 1. Each
point is evaluated over 105 realizations

Fig. 3 In color: probability that a NS of a given size (vertical axis) is located in a component of a particular size (horizontal axis), with N= 15,
and p= 0.05 (a) or p= 0.80 (b). Both in a and b, we have not taken into account degenerate subspaces. Both insets show the distribution of
sizes of NSs, obtained by summing all the contributions from different component sizes to the same NS size
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oscillators. This happens independently from the parity of the size
of connected components (look for instance at components of
sizes 4 and 5 in Fig. 3a) and of N (not shown). In the case of
components of odd size (for example of size 5), this implies that at
least one of the oscillators is not involved in its largest NS (with 4
nodes in this example). Interestingly, this characteristic parity
symmetry in the NS size distribution is rather robust, and also
observed for large probabilities of connection, as in (b) and also in
small-world networks (Supplementary Information). The origin of
this parity feature of NSs will be shown to be related to the
presence of breathing modes and discussed in Sect. III.

Resilience in presence of imperfections
The study of homogeneous networks—with identical local
frequencies and coupling strengths—allows to isolate the
importance of the topological features for the existence of NSs.
Here, we consider their resilience in the presence of not uniform
parameters, as they would occur for instance in biological
complexes or any experimental set-up, inevitably characterized
by inhomogeneity and imperfections. We consider Gaussian
distributions either in frequencies or couplings (σω,λ ≠ 0). Very
small inhomogeneities (σω,λ ~ 10−10) are enough to remove
degeneracy in normal modes, while the probability to find NSs
does not significantly change. In Fig. 4a, b, we show the results of
increasing differences on frequencies (a) and couplings (b) for the
probability to find at least one NS. NSs can be very fragile even for
small deviations from the uniform parameters. Important excep-
tions occur for inhomogeneous couplings that do not affect NSs
for small components (Fig. 4b for p≲ 0.2). Otherwise, large
components are more resilient to the presence of detunings across
the network, Fig. 4a.
Also, the structure of NSs is strongly influenced by inhomoge-

neous parameters (Fig. 4). Looking at the regime where small
components dominate (for p= 0.05, Fig. 4c), detuning (blue) leads
to the disappearance of NSs of just pairs of nodes, as expected;

decoherence-free normal modes spanning over four oscillators are
the most common (even if embedded in motives of five
oscillators, not shown). In the regime of one large component
(for p= 0.8, Fig. 4d), NSs can have different sizes spanning from
four oscillators to the whole network. In both cases, detuning
removes the even–odd asymmetry. In networks with nonuniform
coupling strengths (red histograms in Fig. 4), NSs of two oscillators
survive and predominate for small p (c), while for high p the
decoherence-free mode is extended over almost all the network
(d).

Quasi-noiseless clusters
We have seen that in general inhomogeneity in the parameters
across the network is detrimental for NSs. On the other hand, for
practical purposes, it can be more interesting to establish if there
are some modes with very long (even if not infinite) decoherence
times. In this spirit, we ask whether in spite of inhomogeneity
there is still a well-defined set of modes which, although not
perfectly decoupled from the bath, dissipate more weakly than
the rest, being then effectively frozen over long time scales.32,64

We introduce then quasi-noiseless clusters that can be
identified looking at their overlap, named κ, with the lossy mode
q̂cm (see Sect. IV). Figure 5 represents the probability to have
quasi-noiseless modes depending on detuning (σω on the vertical
axis) and on their overlap κ (horizontal axis). Then decoherence-
free modes do correspond to the first column (κ ≤ 10−13, our
numerical zero), and the uniform ER network case to the lowest
row. We observe that uniform networks exhibit two very well-
defined sets of normal modes (left and right in Fig. 5), separated
by a huge gap in their respective dissipation rates (as quantified
by κ): this gap allows to properly distinguish (and characterize
even numerically) NSs with respect to the others.
As we increase the spread in detunings σω, NSs tend to become

slightly more noisy, with predominance of modes for κ ~ σω
(diagonal in Fig. 5). The gap between quasi-noiseless and

Fig. 4 a, b Probability to find at least one decoherence-free normal mode for N= 30, for inhomogeneous frequencies with different σω values
(a), for inhomogeneous couplings with different σλ (b). c, d Probability distribution of NSs of different sizes (i.e., number of nodes of the
noiseless eigenvector) for nonuniform frequencies (in blue, for σω= 10−10) and couplings (in red, for σλ= 10−10), in purple uniform
parameters. Parameters N= 15 and p ¼ 0:05<~pc (c), p ¼ 0:80>~pc (d)
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dissipating normal modes decreases. Despite strict decoherence-
free modes tend to disappear for increasing inhomogeneity, two
well separate sets of normal modes (with a significant gap in κ)
survive up to a certain strength σω. This allows to identify quasi
NSs up to a certain degree of disorder in frequencies. Analogous
results are found for nonuniform couplings, i.e., for non-zero σλ.

Synchronization
In this section, we focus on the emergence of synchronous
dynamics induced by collective dissipation.61 Several coupled
qubits or harmonic oscillators can exhibit persistent and
synchronous oscillations in presence of dissipation in a common
environment, as different dissipation rates are induced in the
system normal modes. This synchronization mechanism was
already described in refs. 32,33,74: after a transient in which each
node oscillates irregularly in a superposition of eigenfrequencies,
all normal modes, except the one with the slowest decay, relax to
equilibrium. Then, this slowest mode fixes the common rhythm of
the corresponding nodes within the network either during a long
transient or—when the slowest mode is actually noiseless—
asymptotically. Synchronization can be identified also in quantum
systems comparing the dynamics of local observables (for a
review of different approaches see ref. 61). In particular,
dissipation-induced synchronization has been addressed for arrays
of oscillators,32,33,74,76 spins,34,62,77 self-sustained oscillations in
optomechanical systems,78 and also reported for random topol-
ogy in harmonic networks.32 Nevertheless, the role of the network
structure has not been addressed before.
For this analysis, we assume that the oscillators follow the

Born–Markov master Eq. (8). Building on previous works, we can
focus on the normal modes decay rates to determine the
emergence of mutual synchronization in the oscillators array.61

We recall the conditions for which a motif of any network of
harmonic oscillators synchronizes as reported in refs. 32,33,74: (i)
when one of the normal modes covering the particular subset of
oscillators is coupled more weakly to the bath than the others
(significant separation of dissipative time scales), leading to
transient synchronization,33 or (ii) when there is only one
decoherence-free normal mode covering the particular subset of
oscillators, leading to stationary synchronization.32,74 In case (i) we
set as a significant separation of dissipative time scales when the
smallest and second smallest dissipation rates are separated by an
order of magnitude,32 i.e., their ratio, R, takes values at most of
order R ~ 0.1 (see section IV. for definitions). When this condition is
satisfied, after most normal modes dissipate out, there remains
only the slowest one, i.e., the one with the smallest coupling to the

bath, and the oscillators spanned by this normal mode
synchronize and can retain robust quantum correlations.32,33,74 If
R is small there is a significant time period in which the network is
synchronous before full thermalization. Conditions (i) and (ii) refer
to a particular subset of the network, and of course in the whole
network there might be parts of it in which there is synchroniza-
tion due to mechanism (i) and parts of it in which it is due to (ii),
since both mechanisms are not excluding as long as the
synchronizing normal modes span over different subsets of
oscillators or oscillate at the same frequency.
In Fig. 6, we analyze dissipative synchronization for ER networks,

both with uniform parameters and with detuning σω ≠ 0. The
appearance of stationary synchronization shown in Fig. 6a (green
line) behaves similarly to the abundance of NSs (see Fig. 4) except
for p close to 1 where a dip appears. On the other hand, transient
synchronization (Fig. 6a, purple line) is a rather robust feature of
the network, present with a significant probability (about in one
over three networks) in all the range of p’s except for a dip
appearing again at p close to 1, where stationary synchronization
dominates. In panel (b), we look at the effect of detuning, both for
a specific average degree (for p= 0.5) and on average overall
values of p. Transient synchronization is found to be rather
resilient to detuning (purple line) while stationary synchronization
(ii) is more fragile, as expected knowing results about NSs
resilience reported in previous sections. Analogous results are
found for nonuniform couplings.
What about the structure of the synchronous modes?

Decoherence-free synchronized normal modes (ii) tend to span
a small number of oscillators and the even–odd asymmetry
reported before persists (Fig. 6c, green histogram). More surprising
is the fact that transient synchronization (i), beyond being a rather
frequent phenomenon for several p and detunings, it does also
tend to span all the network (Fig. 6c, purple), which means that a
large set of oscillators synchronize and will, therefore, as
previously reported in refs. 32,33, share enhanced quantum
correlations. The time scale to observe this phenomenon can be
assessed through the decays ratio R: the fastest rise of
synchronization corresponds to smallest R values.32 A significant
synchronous transient is predicted before thermalization: in Fig.
6d, the distribution of ratios R for σω= 0 shows, in fact, significant
fractions of networks with more than two orders of magnitude of
separation between the slowest decaying modes. This is weakly
influenced by the network structure and displayed aggregating
data for different p values.

DISCUSSION
Insight about our results on the abundance and structure of NSs
(Figs. 2 and 3) can be gained, considering the underlying network
topology and regimes, dominated by small and large size
components (small and larger p’s in Fig. 3). Above a certain value
of p, networks are composed predominantly by a single
component (see Supplementary Information for distributions of
component sizes for different p’s). The corresponding disappear-
ance of small components is what crucially hinders the existence
of noiseless modes for small p as clear by the comparison in Fig.
2a: below the threshold probability ~pc (green dashed line), several
small components exist. Furthermore, the most abundant linear
motifs (such as m1, m2, m4…) in ER networks, Fig. 1b represent in
this case noiseless modes,74 determining the abundance of NSs.
What about networks with larger average degree? The degree

distribution of Erdös–Rényi networks is known to be binomial,
with variance (N− 1)p(1− p). A spread of the degree distribution
is a good measure of the inhomogeneity of the network topology
being maximal at p= 0.5 (with maximum value increasing with
the size of the network N) and minimal at 0 and 1 (see also SI). The
comparison of this variance with the NSs abundance in Fig. 2b
(with inner contours corresponding to larger values of this

Fig. 5 Probability to find a normal mode with a certain overlap with
the dissipative mode (κ) and in presence of detuning across the
network with variance σω. The values for κ are binned according to
their order of magnitude, i.e., the column 0.01 corresponds to
normal modes with κ of the order of 0.01. The results have been
obtained for networks of size N= 30 and p= 0.9
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variance) allows to establish a clear quantitative connection. The
network topological uniformity is indeed found to be a crucial
ingredient for the abundance of noiseless modes also when
looking at other networks. Small-world networks, for instance, also
display a transition to disorder starting from a regular lattice with a
certain degree and randomly rewiring the nodes until becoming a
random network (Supplementary Information). Also in this case, as
disorder in the topology increases, noiseless mode abundance
diminishes, indicating a robust relation between homogeneity in
network topology and presence of NSs. A further measure that
could be explored would be a distance between the actual
Hamiltonian of the system and the “nearest” Hamiltonian in
shifted Laplacian form, for which we have pointed out that NSs are
predicted.
A main and intriguing feature of NSs in uniform ER networks is

the parity of their sizes, that is the fact that decoherence-free
normal modes tend to be composed by an even number of
oscillators, Fig. 3a, b. The absence of NSs with odd sizes,
independently on the odd or even size of the embedding
component, can be traced back to the fact that for small values of
p string-like components of the network prevail, like motifs m1,2,4,8

in Fig. 1b. In these kinds of motifs, we can actually identify
stretching or breathing normal modes which are decoherence-free
and which involve all the string for an even motif, while they do
not involve the central node for an odd motif, as discussed in the
case of three oscillators in ref. 74. The presence of these breathing
modes of even size allows to explain the predominance of even
NSs below the connectedness transition. Above the connected-
ness transition, Fig. 3b, we can show (Supplementary Information)
that by embedding the small motifs of Fig. 1b (and also those of
Fig. S5 of the SI) into the network with the proper symmetries in
the connections, the noiseless eigenvectors of these motifs
become noiseless eigenvectors of the whole system. This allows
us to clarify why we observe a similar structure in the NSs size
when considering very connected ER networks (Fig. 3b), where

homogeneity in the degree distribution can enable the necessary
symmetries in the couplings to be satisfied frequently. It is
important to stress that we find this peculiar even modes
dominance also for small-world networks (SI), which are com-
posed mainly by one component, and which tend to display
bigger noiseless modes than ER networks. As a further remark,
detuning is known to introduce deviation from breathing
modes,74 and this is consistent with the absence of even–odd
asymmetry for NSs shown in Fig. 4d. These decoherence-free
breathing modes also dictate the form of stationary synchroniza-
tion as shown in Fig. 6c. Finally, there is a noteworthy resemblance
between the small NSs observed here, and the compact localized
states that can be found in certain tight-binding lattices.79 Also
these localized states are often perpendicular to the c.m., and the
enabling mechanism is the proper local topology of connections
between the involved nodes and the neighboring lattice (see
illustrative examples in refs. 80–82). The exploration of the
connections between these two different contexts could consti-
tute an interesting future extension to our work.
Beyond topological features, we have considered inhomoge-

neous parameters for nodes and links as these can actually be
unavoidable in experiments.16,30 For the frequency combs plat-
form,30 this experimental analysis has not yet been reported but
the possibility to achieve identical nodes is discussed in ref. 83

through chirping of the pump optical mode. On the other hand, a
small amount of disorder has been measured in circuit QED
lattices84 and modeled as Gaussian as in our analysis. Frequency
disorder up to σω ~ 10−4 has been reported, that would
significantly hinder NSs (Fig. 4), while inhomogeneities in (small)
coupling rates are mainly induced by detunings and can be
neglected in circuit QED networks.84 We have analyzed both
frequency and couplings disorder: for small connection probabil-
ities, NSs are fragile against detuning but not against inhomo-
geneities in couplings, and the opposite trend is found for large
components (Fig. 4). This can be understood to follow from the

Fig. 6 For all the panels, we consider ER networks of size N= 30. a Probability to find at least one synchronized normal mode which is
stationary (green) or transient (purple), varying p, and with uniform parameters. b Probability to find at least one synchronized normal mode
per network as a function of the detunings spread σω: for transient synchronization when p= 0.5 (blue) and when averaging overall p’s
(purple) and for stationary synchronization when averaging overall p’s (green). c Distribution of sizes for the case of stationary and transient
synchronized normal modes, for σω= 0 and all the range of p’s. d Distribution of values of R for dissipating normal modes (avoiding
completely NSs) for all the range of p’s, and again for σω= 0

Unveiling noiseless clusters in complex quantum networks
A Cabot et al.

6

npj Quantum Information (2018)    57 Published in partnership with The University of New South Wales



fact that small decoherence-free normal modes are more sensitive
to inhomogeneity in frequencies. Motifs of two oscillators, for
instance, are NSs independently of the value of the coupling and
only if their frequencies are identical,33 while NSs for m2 motifs
appear only for special values of detunings,74 consistently with the
NSs resilience found for small p’s. For both detuning and
couplings inhomogeneities, Fig. 4, the drop in the probability at
p= 1 follows from the fact that the corresponding fully connected
network, in the case of Gaussian distributed parameters, has no
NSs. The presence of even small inhomogeneities allows also to
avoid degenerate eigenvectors particularly abundant for p ~ 0 and
p ~ 1.
Despite the fragility of NSs to inhomogeneities in parameters

observed in Fig. 4, we have seen in Fig. 5 the existence of quasi-
noiseless components up to moderate values of disorder (σω > 0).
The gap in the coupling with the environment of two sets of
normal modes allows to clearly identify quasi-noiseless subspaces
dissipating much slower than other modes. The closure of the gap
for κ ~ σω can be understood considering that in the limit of small
detuning, normal modes will deviate linearly in σω from the NSs
found for uniform ER networks. These quasi-NSs that persist in
inhomogeneous networks can be useful for practical applications:
even if manufacturing imperfections would prevent the existence
of asymptotically decoherence-free modes, the long coherence
time of quasi NSs can serve the purpose of preserving coherences
on time scales proportional to the degree of inhomogeneity of the
device.
Finally, we discuss in more detail some of the features observed

in the study of synchronization. We have seen that the probability
of transient synchronization is large and resilient in presence of
inhomogeneous detunings. Surprisingly, it can even be favored by
increasing detuning (as shown in Fig. 6b, purple line), and this
might be caused by the corresponding disappearance of
stationary synchronization. The fact that this increase is seen
when looking at the aggregated data in p, while for p= 0.5 (blue
line) is not observed, is consistent with our explanation, as for p=
0.5 there are no NSs independently of σω. We have also observed
that there is a dip in the probability to find synchronization for p
close to 1 (Fig. 6a). These dips appearing for high p both for
stationary and transient synchronization are related to the
increasing probability to find large NSs of modes in the same
network, of different frequencies, diminishing the overall synchro-
nizability of networks. As p is further increased, degeneracy also
grows and overlap between synchronizable modes is no longer
detrimental as they exhibit the same frequency, hence explaining
the final increase in the synchronization probability.
It is important to assess the generality of our findings in other

random networks. We first notice that we have considered a
dipole–dipole coupling in Hamiltonian (2). One can wonder if
similar results would hold if we consider instead systems with
spring-like coupling Hamiltonian Ĥ= 1

2

PN
i¼1 p̂2i þ ω2

0q̂
2
i

� �
+PN

i¼1

PN
j¼1 λij q̂i � q̂j

� �2
, where all the oscillators have the same

frequency, and the coupling λij can take the values λ or zero. It can
be shown (Supplementary Information) that in this case there are
always N− 1 NSs whatever is the underlying topology. We can
also consider a tight-binding model, and in this case, our results
would still hold in the case of networks with homogeneous
parameters (Supplementary Information). Finally, in presence of a
single excitation, our analysis would also apply to spin or
fermionic networks while the case of more excitations is an open
question.
An essential aspect of the model used is the equal coupling of

the nodes to the common bath, relevant in the contexts of
densely packed pigment-protein complexes,85–87 and superradi-
ance experiments.40–43 In particular, in the context of quantum
transport through biological structures, experimental evidence for
strong spatial correlations in bacterial reaction center dynamics85

and conjugated polymers86 has been obtained, and correlated

noise has also been predicted to be relevant in other photo-
synthetic complexes.87 These structures are rather large and
complex in their topology, presenting also non-homogeneous site
energies and couplings. It is to be noted that excitation transfer in
biological complexes might be governed by a dephasing model
that can present decoherence-free (instead of dissipation-free)
clusters.
Further possible extensions of this work could establish the

effects of relaxing the constant coupling to the bath through the
network: in this case another noisy channel—instead of the center
of mass—arises and new features are expected. The bath can also
be considered as an extended system,59,60 hence the nodes of the
network system will interact with different parts of the environ-
ment. This structured environment would give rise to a rich
scenario of correlated dissipations for the network. Other forms of
collective dissipation can be further explored to model bulk
systems dissipating mainly through their surface.88 Finally, our
analysis of NSs in networks is valid also in the non-Markovian
dissipation regime, as it relies on a symmetry of the full system-
environment Hamiltonian, while non-Markovian effects due to
strong coupling with the environment could be explored in the
context of quasi-noiseless modes and transient synchronization.
The possibility to shield complex networks nodes by decoher-

ence, not only in symmetric lattices, but in complex networks,
opens the way to studies of storage or transport of quantum
states, excitations or entanglement in structures with increasing
complexity. The impact of different topologies can be explored in
the mentioned contexts of quantum computation,37,49–53 metrol-
ogy,55 communications,13 and thermodynamics,56–58 and explored
for other forms of correlated dissipation. It could also help
understanding why nature has chosen some network structures as
ultra-optimized transport architectures for energy harvesting,89

and to identify strategies for quantum computing based on NSs.
These predictions can be tested in different timely platforms, both
photonic30 and in circuit QED.16

METHODS
In this section, we write down the Hamiltonian model describing the
thermal bath and the interaction with the system. Later on, we derive the
condition for a normal mode to be uncoupled from the bath and we show
how this leads to dissipation-free dynamics. The results presented in this
section have been derived in detail in ref. 32.
The thermal bath is composed by an infinite collection of harmonic

oscillators at thermal equilibrium:

ĤB ¼ 1
2

X1
α¼1

K̂2
α

Mα
þ ν2αX̂

2
α

 !
; (3)

where the position and momentum operators of the bath modes follow
the canonical commutation relations X̂α; K̂β

� � ¼ i�hδαβ . The system–bath
interaction is described by:

ĤSB ¼ � ffiffiffi
γ

p XN
n¼1

q̂nB̂; B̂ ¼
X1
α

λαX̂α; (4)

from which, we can appreciate that the system interacts with the
environment through the c.m. coordinate, q̂cm ¼PN

n¼1 q̂n . It is insightful to
write the system-bath Hamiltonian in terms of the normal modes of the
system defined as:

q ¼ FQ;Q ¼ F T q;) q̂n ¼
XN
m¼1

F nmQ̂m; Q̂n ¼
XN
m¼1

Fmnq̂m;8n (5)

where Q ¼ Q̂1; ¼ ; Q̂N
� �T

, q ¼ q̂1; ¼ ; q̂Nð ÞT and F is the rotation
diagonalizing the system Hamiltonian (2), i.e.,:

Ĥ ¼ pT
1
2
pþ qTMq ¼ PT

1
2
P þ QTDQ ¼ 1

2

XN
n¼1

P̂2n þ Ω2
nQ̂

2
n

� �
; (6)

where 1 is the identity matrix, M is the matrix containing the frequencies
and couplings as prescribed in (2), and D ¼ F TMF is the diagonal matrix
containing the system eigenfrequencies Ωn. In the normal mode basis, the
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system bath Hamiltonian reads as:

ĤSB ¼ � ffiffiffi
γ

p XN
n¼1

κnQ̂nB̂; κn ¼
XN
m¼1

Fmn; (7)

hence each normal mode is coupled to the bath with its own rate that
depends on the matrix diagonalizing the system (and thus on the topology
and parameters of the system). Importantly, if κn= 0 the mode n is
uncoupled from the bath, which can be stated equivalently as the normal
mode n being perpendicular to the c.m. (recall that Q̂n ¼

PN
m¼1 Fmnq̂m,

i.e., the scalar product with q̂cm is proportional to κn).
32,74

In the normal mode basis, the full Hamiltonian describing the system,
the bath, and their interaction, is given by adding terms (3), (6), and (7).
From this total Hamiltonian, we readily see that an immediate
consequence of κn= 0 is that degrees of freedom of the mode n, i.e., Q̂n

and P̂n , commute with the system–bath interaction term (7). Therefore, the
reduced dynamics of this mode is not influenced by dissipation, indeed it
is unitary and described just by 1

2 P̂2n þ Ω2
nQ̂

2
n

� �
. Hence the noiseless

condition stems out of a symmetry of the total Hamiltonian, and is
independent of the subsequent approach used to approximate the
dynamics of those normal modes which are coupled to the thermal bath.
The analysis of transient synchronization in the network follows ref. 32,

and is valid in the weak system–bath coupling limit under standard
Born–Markov approximations leading to the Lindblad master equation (ħ
= 1):

dρ̂ðtÞ
dt ¼ �i Ĥ; ρ̂ðtÞ� �

� i
4

PN
n¼1

Γn Q̂n; P̂n; ρ̂ðtÞ
� �� �� P̂n; Q̂n; ρ̂ðtÞ

� �� �� �
� 1

4

PN
n¼1

Dn Q̂n; Q̂n; ρ̂ðtÞ
� �� �� 1

Ω2
n
P̂n; P̂n; ρ̂ðtÞ
� �� �	 


;

(8)

with Γn ¼ κ2nγ, and Dn = κ2nγΩn coth Ωn=2kBTð Þ. In order to establish the
emergence of dissipation-induced synchronization, one can compare the
damping rates of the network normal modes focusing on the ratio R
between the two slowest (non-vanishing) rates.32
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