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Aim of the thesis

The aim of this thesis is to go a step further in the theoretical modeling of coro-
nal loops. Following that direction, our main goal is to be able to theoretically
reproduce part of the observed complexity that these structures display when a
sudden release of energy occurs in the solar corona. Since not too much time ago,
the theoretical models of these features have been rather simple. In order to have
simple solutions, these models use big approximations, such as, straight instead of
curved structures, one-dimensional/two-dimensional structures, etc.

In order to go beyond that simple models, our aim is to increase the complexity
of the theoretical models by adding what we think can be some key ingredients just
like the curvature or three-dimensionality. In this work we will adopt the approach
of increase the complexity of the model step by step to create a solid base of
knowledge that helps us understand the underlying physics. Therefore we will begin
with a well known two-dimensional problem and then we will allow perturbations
propagate in the third direction as a first step towards three-dimensionality. These
are known as 2.5 dimensional models. Afterwards, we will add more ingredients
such as a sharp model of coronal loop, different density profiles, curvature, etc.

The study of coronal loop oscillations can be done from several points of view
but in this thesis we will focus in two of them. The first one is to solve the time-
dependent MHD equations by means of a temporal code. In the first two papers
Rial et al. (2010) and Rial et al. (2013) we use this approach.

The second approach consists in solve the normal modes of the system. The
standard method to do so can be in general a difficult task because an specially
designed numerical code is needed. For that reason another goal of this thesis is
to develop a technique that allow us to find an alternative way to find the normal
modes of any system. In Rial et al. (2019) we explain how this technique works as
well as its advantages and disadvantages. .
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Abstract of the thesis

0.1 Abstract

In this thesis we will study vertical oscillations in a potential arcade under the
approximation of a zero-β plasma, when different density profiles are considered.
On one hand we will focus on the time-dependent problem to analyze the other
side of the magnetohydrodynamic oscillations coin which traditionally is given
by the normal mode analysis. We are going to study the propagation, energy
transformation and damping of the impulsively generated waves as well as its
relevant spatial and temporal scales in order to complete the picture. In order
to study the wave damping, we examine two physical mechanisms that may be
involved in the fast attenuation of the observed vertical coronal loop oscillations,
namely wave leakage through wave tunneling and resonant absorption. In this wok
whenever is possible, the time-dependent results are going to be compared with
known normal mode properties to gain knowledge of how both sides are related as
well as to test them.
On the other hand, we also will investigate the use of a new technique of obtaining
the system normal modes when the standard normal mode analysis is difficult to
be carried out. We will apply it to a straight coronal loop model and we will obtain
them with the desired degree of accuracy thanks to several criteria based on the
convergence of the method.

0.2 Resumen

En esta tesis estudiaremos las oscilaciones verticales de una arcada potencial en
la aproximación β ∼ 0 de un plasma, cuando diferentes perfiles de densidad son
considerados.
Por un lado nos vamos a centrar en la evolución temporal de este problema para
aśı analizar la otra cara de la moneda de las oscilaciones magnetohidrodinámicas,
la cual tradicionalmente se ha estudiado mediante el análisis de modos normales.
Vamos a estudiar la propagación, la conversión energética y la atenuación de ondas
generadas mediante un impulso inicial, aśı como las escalas espaciales y temporales
generadas, para de esta manera obtener una imagen lo más completa posible. Para
el estudio de la atenuación, vamos a examinar dos mecanismos f́ısicos que podŕıan
estar involucrados en la rápida atenuación de la oscilaciones verticales observadas
en bucles coronales, que son la emisión de enerǵıa mediante “wave tunneling” y
absorción resonante. En este trabajo, siempre que sea posible, se van a comparar los
resultados de las simulaciones temporales con las propiedades conocidas que han de
poseer los modos normales. Esto nos va a servir como un método de comprobación
de nuestros resultados además de ayudarnos a entender como ambas visiones están
relacionadas entre si.
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0.3. RESUM Abstract of the thesis

Por otro lado lado vamos a investigar el uso de una nueva técnica para obtener los
modos normales de un sistema cuando el método estándard es dif́ıcil de llevar a
cabo. Este método lo vamos aplicar a un modelo de bucle coronal recto y vamos
a obtener los modos normales del sistema con el grado de precisión que deseemos
mediante el uso de un criterio de convergencia.

0.3 Resum

En aquesta tesi estudiarem les oscil·lacions verticals d’una arcada potencial en
l’aproximació β ∼ 0 d’un plasma quan diferents perfils de densitat són considerats.
Per un costat ens centrarem en l’evolució temporal d’aquest problema per tal
d’analitzar l’altra cara de la moneda de les oscil·lacions magnetohidrodinàmiques,
la qual tradicionalment s’ha estudiat mitjançant l’anàlisi de modes normals. Es-
tudiarem la propagació, la conversió energètica i l’atenuació de les ones generades
mitjançant un pols inicial, aix́ı com les escales espacials i temporals generades, per
tal de ser capaços d’obtenir una imatge el més completa possible. Per a l’estudi
de l’atenuació, examinarem dos mecanismes f́ısics que podrien estar involucrats en
la ràpida atenuació de les oscil·lacions verticals observades en els bucles coronals,
que són l’emissió d’energia mitjançant “Wave tunneling” i l’absorció ressonant. En
aquest treball, sempre que sigui possible, compararem els resultats de les nostres
simulacions temporals amb les propietats conegudes que han de tenir els modes
normals. Això ens servirà com a mètode de comprovació dels nostres resultats aix́ı
com per entendre com les dues visions estan relacionades entre si.
Per altre costat investigarem l’ús d’una nova tècnica per obtenir els modes normals
d’un sistema quan el mètode estàndard és dif́ıcil de dur a terme. Aquest mètode
l’aplicarem a un model de bucle coronal recte i obtindrem els modes normals del
sistema amb el grau de precisió que desitgem mitjançant un criteri de convergència.
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Chapter 1

Introduction and basic
magnetohydrodynamics

1.1 Brief introduction to the solar corona

The upper layer of the solar atmosphere is the solar corona, which extends from the
top of the transition region to the Earth and beyond, with a density that decreases
rather rapidly with height above the solar surface. The solar corona is an extremely
hot, tenuous part of the solar atmosphere appearing in white light as streamers,
plumes and other structures extending out from the chromosphere when observing
the Sun during an eclipse or with a coronagraph. The basic plasma structures of
the solar corona related with this work are the so-called coronal loops, conduits
filled with heated plasma, shaped by the geometry of the coronal magnetic field, see
Figure 1.1. The magnetic field of these structures is anchored in the relatively dense
and highly conductive photospheric plasma and, hence, the photospheric footpoints
are forced to follow the convective motions of the photospheric plasma. Isolated
loops do not often occur and they are usually seen in active regions in coronal
arcades, made of many regularly arranged loops forming a tunnel-like structure,
see Figure 1.2. These coronal arcades are thought to be formed by stretching and
reconnection of the magnetic field after the occurrence of a flare and may last in a
stable way from days to weeks. A large variety of similar structures, with various
heights, widths and lengths, can be seen in many Yohkoh pictures, see Watari et
al. (1996) and Weiss et al. (1996). For a more extensive description of different
structures and of the solar corona in general, see Golub (1997) and, more recently,
Aschwanden et al. (2001) and Aschwanden (2005).

1.2 Coronal loops oscillations

The solar corona contains an impressively large ensemble of plasma structures that
are capable of sustaining various types of waves and harmonic oscillations. Early
observations of coronal oscillations were restricted to time series analysis with no
spatial information. Oscillations were inferred from the temporal behavior of the
intensity, width and Doppler velocity of spectral coronal lines. The situation has
recently changed due to the spatial, temporal, and spectral resolution of imaging
and spectroscopic instruments in current ground- and space-based observatories
(SST, DST, SoHO, TRACE CoMP, Hinode, STEREO, SDO, HI-C, IRIS) have
enabled us to directly image and measure motions associated to wave dynamics
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1.2. CORONAL LOOPS OSCILLATIONS CHAPTER 1. INTRODUCTION AND BASIC MHD

Figure 1.1: Coronal loop pictures taken with TRACE in 171 Å.

with increasing precision. Due to the improved temperature discrimination, high
spatial resolution, image contrast and time cadence of these instruments, obser-
vations of the solar corona have demonstrated that the existence of oscillations
in solar coronal structures are now beyond question. Also thanks to these ca-
pabilities, oscillating loops have been identified and localized in the corona and
transition region. Moreover, some of their properties have also been inferred from
these observations and among them a remarkable point is that these oscillations
are damped in both space and time.

1.2.1 Observational evidence

As nowadays a large amount oscillations, propagating and standing waves have
been reported, here we only mention some of the observed highlights to exemplify
the rich variety of these phenomena and to illustrate their position in the discovery
timeline.

One of the first observations of oscillations were reported by Nightingale et al.
(1999) using TRACE. They saw EUV brightenings in an active region of coro-
nal loops and interpreted them as compressional waves. Afterwards thanks to
SoHO/EIT, Berghmans and Clette (1999) found propagating disturbances in coro-
nal loops that were later interpreted as slow magnetoacustic waves by Nakariakov
et al. (2000). De Moortel et al. (2000) reported on the detection of outward prop-
agating oscillations in the footpoints of large diffuse coronal loop structures close
to active regions. They suggested that these oscillations are slow magnetoacus-
tic waves propagating along the loop. Since then, a great amount of observations
were interpreted as slow modes, (see Ofman and Wang, 2002; Wang et al., 2003a,b;
Terradas et al., 2004; Wang et al., 2009). For an overview of the observed longi-
tudinal oscillations and a discussion of the observed parameters see De Moortel et
al. (2002b), De Moortel et al. (2002c). Wang (2011) conducts a review of stand-
ing slow modes observed in hot coronal loops (see review by de Moortel (2009),
and references within). Understanding how the waves are generated and behave
as a function of the line formation temperature and the magnetic field structure
is essential Mariska and Muglach (2010). They describe long period oscillations
around 10 minutes observed within active regions using Hinode. As a remark, it is
important to bear in mind that observations always should be complemented with
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CHAPTER 1. INTRODUCTION AND BASIC MHD 1.2. CORONAL LOOPS OSCILLATIONS

theoretical or numerical modeling to complete the picture.
Among all the possible kinds of oscillations the solar coronal structures can hold,

the ones related with the present study are the transverse oscillations of coronal
loops which were first discovered in EUV wavelengths (171 Å) with TRACE in
1998. This phenomenon was firstly reported by Aschwanden et al. (1999); Nakari-
akov et al. (1999) and Aschwanden et al. (2002), namely as flare-excited transversal
oscillations. Since then, a large number observations of this phenomena have been
observed by Verwichte et al. (2004); Wang and Solanki (2004); Verwichte et al.
(2009, 2010); Mrozek (2011); Aschwanden and Schrijver (2011); White and Ver-
wichte (2012); Wang et al. (2012); Nisticò et al. (2013); Verwichte et al. (2013);
Hindman and Jain (2014) and Anfinogentov et al. (2015). Recently, Zimovets and
Nakariakov (2015) performed a large-scale investigation using SDO/AIA to better
understand the excitation mechanisms for kink oscillations. Pascoe et al. (2016)
examined the damping profile of a coronal loop oscillation to extract information
about the the loop structure. Goddard and Nakariakov (2016) also analyzed a big
number of event and estimated the physical parameters of a large number individ-
ual kink oscillations of coronal loops. See Aschwanden (2009) and De Moortel et
al. (2016) for an overview and analysis of transversal, flare-excited, coronal loop
oscillations and their parameters.

More general reviews of observations of various periodic and quasi-periodic
oscillations in the solar atmosphere can be found in Aschwanden (1987), Tsubaki
(1988) and more recently in Aschwanden et al. (1999), Roberts (2000), Aschwanden
(2003) and Nakariakov and Verwichte (2005).

1.2.2 Theoretical models

Even though the detection of such perturbations is quite recent because it was
necessary to wait for the high-resolution EUV imaging capabilities that can only
be obtained from space, the theory of coronal magnetohydrodynamic (MHD) os-
cillations and waves was developed more than three decades ago and was ready
for applications. The following list is not trying to be exhaustive, we only present
some of the highlights of the theoretical development of coronal oscillation models
related with the work being presented in this thesis.

The theoretical study of the normal modes of oscillation of coronal flux tubes
were firstly done using straight magnetic cylinders by Wentzel (1979), Spruit
(1981), Edwin and Roberts (1983) and Roberts et al. (1984). When flare-excited
transverse oscillations were reported, they were identified by (Nakariakov and Of-
man, 2001; Goossens et al., 2002; Ruderman and Roberts, 2002) as oscillations of
the fast kink normal mode when a straight cylindrical tube is considered. Many
other authors Poedts et al. (1985); Goossens et al. (1985); Poedts and Goossens
(1988) studied the spectrum of ideal magnetohydrodynamics (MHD) of curved
coronal magnetic configurations. Oliver et al. (1993, 1996) and Terradas et al.
(1999) obtained the eigenmodes in potential and non-potential arcades. As a step
towards more realistic structures Arregui et al. (2004a,b) considered sheared mag-
netic arcades configurations in the approximation of the zero-β plasma. The study
of normal modes in curved configurations with coronal loops represented by density
enhancements have been analyzed by (e.g., Smith et al., 1997; Van Doorsselaere
et al., 2004; Terradas et al., 2006b; Verwichte et al., 2006a,b,c; Dı́az et al., 2006;
Van Doorsselaere et al., 2009). Coronal loops with twist magnetic field have also
been modeled by several authors, see Terradas and Goossens (2012)and Ruderman
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1.2. CORONAL LOOPS OSCILLATIONS CHAPTER 1. INTRODUCTION AND BASIC MHD

(2015). Also some authors considered more complex configurations and analyzed
the collective kinklike normal modes of a system of several cylindrical loops using
the T-matrix theory Luna et al. (2009).

Although it is widely accepted that the theoretical study of normal modes sup-
plies the basis to understand the dynamics of a system, to complete the whole
picture and have an accurate description, the time-dependent problem also needs
to be solved. Čadež and Ballester (1995a,b) investigate analytically the temporal
evolution of fast waves in a potential coronal arcade when constant Alfvén speed
is considered. Using the same structure Oliver et al. (1998) inquire the properties
of fast waves that are impulsively generated. Terradas et al. (2008b) considered a
potential arcade embedded in a low β environment to study the properties of linear
waves. Del Zanna et al. (2005) analyzed the consequences of including a transition
region between the photosphere and the corona on the properties of Alfvén waves
when an arcade configuration is considered. Howson et al. (2017) computed the
temporal evolution of a three-dimensional magnetic flux tube to quantify the ef-
fects of twisted magnetic files on the development of the magnetic Kevin-Hemholtz
instability. Antolin et al. (2017) conducted three-dimensional simulations and for-
ward modeling of standing transverse MHD waves in coronal loops. Pagano et al.
(2018); Pagano and De Moortel (2019) also ran three-dimensional MHD simula-
tions of magnetized cylinder and a driver in the footpoint is set to trigger kink
modes. Brady and Arber (2005); Murawski et al. (2005); Brady et al. (2006);
Selwa et al. (2006, 2007) analyzed the consequences of the loop structure on the
characteristics of fast and slow waves in curved configurations, see Terradas (2009)
for a review.

Another phenomenon that is worthy to point out is the reported damping
of coronal loops oscillations, see Nakariakov et al. (1999) and Aschwanden et al.
(2002). Some authors believe that the wave damping can be the underlying reason
of the coronal heating (see Arregui (2015); Terradas and Arregui (2018) for a wave
heating review). Several mechanisms of wave damping have been proposed such
as phase mixing, resonant absorption, wave leakage, gravitational stratification,
magnetic field divergence, see, e.g. Aschwanden et al. (2003); Safari et al. (2007)
and Ebrahimi and Karami (2016). In general, phase mixing Heyvaerts and Priest
(1983) and more recently Soler and Terradas (2015); Pagano et al. (2018); Pagano
and De Moortel (2019), resonant absorption (Hollweg and Yang, 1988; Goossens,
1991; Ruderman and Roberts, 2002; Goossens et al., 2002; Van Doorsselaere et al.,
2004; Antolin et al., 2015, and references therein) and wave leakage by tunneling
(Brady and Arber, 2005; Brady et al., 2006; Dı́az et al., 2006; Verwichte et al.,
2006a,b,c) are shown to be the most studied physical mechanisms for damping of
the standing transverse oscillations of coronal loops. Although these are believed to
be the main mechanisms behind the coronal heating, the Kevin-Hemholtz instabil-
ity is also though to have major implications for wave heating the solar atmosphere
due to the creation of small length scales and the generation of a turbulent regime,
see Magyar and Van Doorsselaere (2016b,a); Howson et al. (2017).

The damping by resonant absorption has been studied mainly in single magnetic
slabs (Terradas et al., 2005; Arregui et al., 2007b) and single magnetic cylinders
(Ruderman and Roberts, 2002; Terradas et al., 2006a), for example. Also more
complex equilibrium models have been considered (Van Doorsselaere et al., 2004;
Terradas et al., 2006b, 2008a). More recent studies on resonant absorption are done
by Magyar and Van Doorsselaere (2016b); Howson et al. (2017)For a good review
on the resonant absorption mechanism see also Goossens et al. (2011). Concerning
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CHAPTER 1. INTRODUCTION AND BASIC MHD 1.2. CORONAL LOOPS OSCILLATIONS

the wave tunneling mechanism, a model of a semi-circular slab was considered by
Brady and Arber (2005). They excite transverse motions with a driver located at
one footpoint and the results show that there are no longer confined modes, only
modes that leak energy to the external medium by means of tunneling. Later,
Brady et al. (2006) studied a straight cylinder model with a variable tunneling
region to compare the results with the ones obtained by Brady and Arber (2005).
Verwichte et al. (2006a) also analyzed a semi-circular slab with a piece-wise density
whose shape can be modified by varying a parameter. Their results show that only
when the Alfvén speed vary linearly with the distance to the loop center, the system
can support purely trapped modes. Verwichte et al. (2006b) go beyond the study
done by Verwichte et al. (2006a) and considered models where non-trapped modes
can exist. They found that the resulting oscillation modes are damped by lateral
leakage. In this paper the authors cataloged the modes that leak energy into leaky
and tunneling. The model considered by these authors is analogous to the model
used in Chapter 3 when perpendicular propagation is not considered.

1.2.3 Coronal seismology

The study of global internal solar oscillations created the discipline of helioseis-
mology whose aim is to obtain a detailed knowledge of the physics and also of the
internal physical conditions thanks to the observation and the theoretical modeling
of the Sun oscillations as a whole. Following that idea Uchida (1970); Tandberg-
Hanssen (1995) and Roberts et al. (1984) proposed that just like in helioseismology,
coronal seismology can be used to determine physical properties of the solar atmo-
sphere which are difficult to be measured or estimated directly. This theoretical
study of the oscillatory properties of magnetic coronal structures provides us with
formulae that can be used to compare our predictions with observations and help
us to establish a feed-back which allows to reach a better agreement between the-
ory and observations as well as to extract some parameters of the coronal plasma
that cannot be easily measured by other means.

The first attempt to apply this method used transverse magneto-acoustic kink
oscillations and was done by Aschwanden et al. (1999). In this work it was demon-
strated that the fast kink mode provides the best agreement with the observed
period. Nakariakov et al. (1999) used this method for the estimation of the coro-
nal dissipative coefficients. Nakariakov and Ofman (2001) have shown the impor-
tance of the determination of coronal properties from observations, by estimating
the Alfvén speed and magnetic field strength in coronal loops. Later Wang et
al. (2007) also determine the coronal magnetic field. De Moortel et al. (2002a)
have shown that it is possible to determine the period, damping coefficient and
decay exponent of loop oscillations by means of the wavelet analysis of the time
series of those oscillations. By using data analysis techniques Terradas et al. (2004)
quantified the properties of the oscillatory motions of coronal loops by means of
two-dimensional maps of the distribution of amplitudes inside the loop structures.
Some other recent applications of coronal seismology have allowed the estimation
and/or restriction of Alfvén speed in coronal loops (Zaqarashvili, 2003; Arregui et
al., 2007a; Goossens et al., 2008), the transverse density structuring (Verwichte
et al., 2006d) or the coronal density scale height (Andries et al., 2005). All these
works are based on the detection of MHD waves in coronal structures and the ap-
plication of theoretical models to extract information on the physical parameters
of interest.
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1.2. CORONAL LOOPS OSCILLATIONS CHAPTER 1. INTRODUCTION AND BASIC MHD

The initial research in the field of coronal seismology concentrates on measure-
ments of oscillation periods, spatial displacements, damping times and temperature
and density diagnostics of individual oscillating structures. For the proper develop-
ment of coronal seismology, accurate theoretical models, good quality observations
and effective inversion techniques are needed. Following that direction, one field
that lately has addressed a lot of attention is the forward modeling, which consists
in recreating observational data from the numerical models results, see Goossens
et al. (2014); Antolin et al. (2014, 2015, 2017); Van Doorsselaere et al. (2018); Guo
et al. (2019).

The current applications of seismological techniques have allowed us to estimate
several unknown physical parameters in coronal structures. Some parameters of
coronal loops that has been observed or obtained by means of the coronal seis-
mology which are relevant for the purposes of this work are next presented. First
the static magnetic structure of a coronal loop has a lateral extend whose order
is around hundreds Mm and a radius over the half-width which range between
a/L = 0.02− 0.06. An estimation of the lower limit of the loop densities is in the
range ρi = 0.13 − 1.7 × 109cm−3 whereas the ratio between the external and the
internal densities is assumed to be ρi/ρe = 3− 4. As for the magnetic field inside
the loop, B, a value which range between 5− 20G is commonly accepted. Regard-
ing the oscillatory parameters, the amplitude values stay between 100 − 8800km
whereas the period values are of the order of a few min. Finally, the damping time
over the period is an important parameter for the present work and its value is
between τD/P = 2 − 4, see Aschwanden et al. (2002); Goddard and Nakariakov
(2016) and De Moortel et al. (2016) for more details about all these parameters.

1.2.4 Thesis contribution to coronal loop oscillations

In this thesis we explore two theoretical ways to analyze coronal loops oscillations,
i.e. solve the time-dependent problem and the normal mode problem. By doing so,
our aim is to better understand how both views are related. We will increase the
complexity of our model step by step in order to build a solid physical knowledge
of these oscillations and we will always compare with previous known results.

In Chapter 2, which is based in (Rial et al., 2010), we follow the time-dependent
approach. We have considered the propagation properties of linear fast and Alfvén
waves in solar coronal arcades in the zero-β approximation without considering
a density enhancement, i.e. a coronal loop. As long as the solution of this kind
of problem in realistic three-dimensional configurations is not easy to handle, we
have considered a simplified problem in which the magnetic equilibrium is two-
dimensional, but we allow for waves to propagate with a three-dimensional char-
acter. This can be considered as a first steep towards a full three-dimensional
model.

Two kinds of numerical experiments are carried out. On one hand, we consider
the resonant wave energy exchange between a fast normal mode and local Alfvén
waves. The results from the temporal evolution of a fast normal mode-like distur-
bance are analyzed in order to show how and where resonant absorption, due to
three-dimensional propagation of perturbations in a non-uniform medium, takes
place. It is interesting to bear in mind previous results obtained from the normal
modes of coupled fast and Alfvén waves in a sheared potential arcade by Arregui et
al. (2004a) because they can guide us to understand the temporal evolution of the
system and the energy exchange between resonantly coupled modes. On the other
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hand a more complex situation is considered by analyzing the time evolution of a
localized impulsive excitation which tries to mimic a nearby coronal disturbance.
It is important to note that this situation is more similar to what it is possible to
observe in the solar corona.

Chapter 3 is based in Rial et al. (2013). In this chapter we consider the tem-
poral evolution of impulsively generated perturbations in a potential arcade when
a new ingredient is added, i.e. a density enhancement as a model of a coronal
loop. As a first approach we model the coronal loop as sharp density profile,
which is unbounded in the ignorable direction of the magnetic structure. The lin-
earized time-dependent magnetohydrodynamic equations have been numerically
solved in field-aligned coordinates, which are considered the best coordinates to
solve a curved problem.

The eigenmodes of curved configurations with coronal loops represented by den-
sity enhancements have been analyzed by several authors (e.g., Smith et al., 1997;
Van Doorsselaere et al., 2004; Terradas et al., 2006b; Verwichte et al., 2006a,b,c;
Dı́az et al., 2006; Van Doorsselaere et al., 2009). In all these cases the propa-
gation have been constrained to the plane defined by the magnetic equilibrium.
The inclusion of three-dimensional propagation in straight loop models have been
discussed by Arregui et al. (2007b) and several important consequences emerged,
such as more spatial confinement of the modes which affect to the damping rates
as well as to the frequencies of oscillation of the loops. As a result, it looks obvi-
ous that to improve our coronal loop models it is important to include the three
dimensionality such as have been done by Terradas et al. (2006b). Following that
direction, to make reliable temporal simulations of three-dimensional oscillations
when a sudden release of energy is produced, such as happens in the solar corona,
we introduce three-dimensional propagation of waves to explore if this addition
allow the existence of trapped modes.

In Chapter 4, Rial et al. (2019), we investigate the application of a new tech-
nique to obtain the normal modes of a complex system. We already know that
to obtain the normal modes can give us very important information about the
dynamics of the system but it is also known that when we increase the complexity
of the model, to obtain the normal modes by means of the standard analysis can
be very difficult. For that reason we explore another way to obtain them by the
application of an analysis technique called complex empirical orthogonal function,
CEOF, to our time dependent solutions. This technique is an extension of the
well-known principal component analysis, to which the Hilbert transform has been
added. Terradas et al. (2004) have proved the utility of this tool to diagnostic
information for coronal seismology when the time series comes from the observa-
tions of intensity variations. In our case we have also time series but they are the
output of our temporal code. Several test are carried out to prove if this technique
can provide us useful information in our case. In order to do that in this chapter
we consider a straight equilibrium field model whose normal modes have been ob-
tained theoretically by Arregui et al. (2007b). Then, the CEOF analysis is applied
to the straight equilibrium temporal results and we compare the obtained CEOF
modes with the theoretical ones.

7
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Figure 1.2: TRACE EUV images of coronal arcades, created by arranged loops
forming a tunnel-like structure. Typical sizes of magnetic arcades are 100, 000 km
wide and 200, 000 km long.

1.3 The equations of magnetohydrodynamics

Magnetohydrodynamics (MHD) is more a physical model than a fundamental the-
ory, although it can be derived from kinetic theory by defining appropriate sta-
tistical (averaged) quantities, see Goedbloed and Poedts (2004). Following that
direction, the plasma can be described in terms of macroscopic parameters, such
as density, pressure, temperature and flow velocity. The MHD theory is accurate
as long as the time scales of interest are longer than particle collision times, and
the relevant length scales are longer than the particle mean free paths. In this work
we consider the single fluid approach of MHD, which describes an idealized plasma
treated as a continuous medium. We assume that the electromagnetic variations are
non-relativistic together with a very high electric conductivity (quasi-neutrality).
We also look upon the Ohm’s Law as the constitutive relation between E and the
electric density current j and we neglect the diffusive term in the induction equa-
tion. Although it seems we are restricting ourselves so much, it is important to
say that all these requirements are well fulfilled by the dynamic phenomena of the
solar corona that we are interested in. Having all that in mind, the ideal set of
MHD equations are

Equation of mass continuity Dρ
Dt

+ ρ∇ · v = 0, (1.1)

Equation of motion ρDv
Dt

= −∇p+ 1
µ0

(∇×B)×B + ρg, (1.2)

Equation of energy Dp
Dt

+ γp∇ · v = 0, (1.3)

Induction equation ∂B
∂t

= ∇× (v ×B), (1.4)

Solenoidal condition ∇ ·B = 0, (1.5)

8
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where

D

Dt
=

∂

∂t
+ v · ∇, (1.6)

is the material derivative.
These equations constitute a set of partial differential equations where ρ(r, t),

p(r, t) are the density and the pressure, g is the gravity and v(r, t) and B(r, t)
are the velocity and the magnetic fields. In addition µ0 and γ are the magnetic
permeability and the ratio of specific heats, respectively.

The mass continuity equation describes the evolution of the mass density, ρ(r, t),
under the influence of a velocity field, v(r, t). The evolution of the velocity in turn
is determined by the forces on the right-hand side of the equation of motion,
which are the gas pressure gradient, the Lorentz force exerted by the magnetic
field and gravity. The third of these equations is the energy equation for adiabatic
perturbations. Finally, we close this set of equations with the induction equation
and the solenoidal condition. Strictly speaking, the solenoidal condition is nothing
more than an initial condition. By taking the divergence of the induction equation
one can demonstrate that ∇ · B(r, t) will be zero at any time provided that ∇ ·
B(r, t = 0) = 0.

1.4 Magnetohydrostatic equilibria

Many solar structures of interest such as coronal loops, coronal arcades or solar
prominences are observed to essentially remain in an static state for long periods
of time, from days to weeks, so they can be modeled by static solutions to the
MHD equations. In such equilibrium state (∂/∂t = 0, v = 0), Equation (1.2) for
the momentum balance becomes

0 = −∇p+
1

µ0

(∇×B)×B + ρg. (1.7)

General solutions to this equation can only be obtained under particular cir-
cumstances and in order to simplify it, it is important to find out the relative
importance between the terms involved. Hence, at this point it is interesting to
remember that the magnetic force can be split into two parts using an elementary
vector identity and can be expressed as

1

µ0

(∇×B)×B = −∇(
B ·B
2µ0

) +
(B · ∇)B

µ0

, (1.8)

where the first term represents the magnetic pressure whereas the second term
represents the magnetic tension. Then we compare the gas and the magnetic
pressure, which leads to the definition of the plasma-β parameter as

β =
gas pressure

magnetic pressure
=

p

B2/2µ0

=
2µ0p

B2
. (1.9)

A value of β � 1 indicates that the gas pressure dominates over the magnetic
pressure (although the magnetic field is still advected by the flow) and, conversely,
a value of β � 1 implies that the magnetic pressure dominates the plasma. In
order to give a value to this parameter we use the perfect gas law for a fully
ionized hydrogen plasma which states
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p =
ρRT

µ̃
, (1.10)

with R the gas constant, T the temperature and µ̃ the mean atomic weight. The
tilde placed on µ̃ is to distinguish it from the magnetic permeability, µ0. Following
Priest (1984), for realistic coronal values, n = 5 × 10−14 m−3 (particle density),
T = 2× 106 K (temperature) and B = 10 G (magnetic field strength), we find

βcorona = 3.5× 10−21nTB−2 = 3.5× 10−3 � 1. (1.11)

Next we compare the magnitude of the gravity and the magnetic force terms
in Equation (1.7),

| ρg |
1/µ0 | (∇×B)×B |

' ρg

B2/Lµ0

=
pµ̃g/RT

B2/Lµ0

=
µ̃gLpµ0

RTB2
=
µ̃gLβ

RT
. (1.12)

Therefore, when β ' 0, the gravity force can also be neglected and the magnetic
field dominates. In these conditions, as gravity and plasma pressure terms are
negligible compared to the magnetic force, the magneto-static Equation (1.7) can
be split into two equilibrium equations, one for the pressure gradient and gravity
and another for the magnetic force. We next focus our attention on the static
solutions obtained by the last one, which becomes

1

µ0

(∇×B)×B = 0. (1.13)

As we are interested in theoretically modeling vertical oscillations of coronal
loops we are going to use two of the simplest solutions of Equation (1.13) namely
the straight field and the potential arcade solution adding y-invariance along them.
These solutions have been used to model the equilibrium fields of the coronal
structures whose oscillations we are concerned about. To obtain them we assume
that the current density is identically zero, so that Equation (1.13) becomes

∇×B = 0. (1.14)

It is well known that when a vector field satisfies the later equation we call it a
potential vector field. So that our two-dimensional equilibrium magnetic field is
potential and as a consequence it is susceptible to be expressed in terms of a vector
potential, commonly called flux function, A = A(x, z)êy. Therefore the Cartesian
components of this field can be expressed as

B = ∇A(x, z)× êy =

(
−∂A(x, z)

∂z
, 0,

∂A(x, z)

∂x

)
. (1.15)

By replacing it in Equation (1.14), we obtain the Laplace’s equation for the flux
function,

∇2A(x, z) = 0. (1.16)

Once the flux function is defined, three directions of interest can be defined.
The unit vectors in the normal, perpendicular and parallel directions, which are
related to the polarization of each wave type, are given by

ên =
∇A
| ∇A |

, ê⊥ = êy, ê‖ =
B

| B |
. (1.17)
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1.4.1 Straight slab configuration

Equation (1.14) has a trivial solution which is the straight and uniform field, for
example B = (0, 0, B), and can be expressed in terms of the flux function as

A(x, z) = Bx+ A0, (1.18)

with A0 the value of A at z = 0. Equation (1.18) indicates that magnetic surfaces
(i.e. the surfaces of constant flux function) are planes of constant z. Regarding to
the directions of interest, in this configuration using the Equation (1.17) the unit
vectors are

ên = êx, ê⊥ = êy, ê‖ = êz. (1.19)

1.4.2 Potential arcade configuration

In order to find out our second solution of interest, we solve Equation (1.16) through
separation of variables, under the conditions that the solution does not diverge at
infinity and that the resulting vertical component of the magnetic field vanishes at
x = 0 (i.e. a symmetry condition). Then, the full solution for A(x, z) is obtained
by summing over all possible solutions

A(x, z) =
∑
k

Ak cos (kx)e−kz, (1.20)

with k = nπ/2L. If we assume that only one Fourier component is taken, the one
with kB = π/2L, then the flux function is simply

A(x, z) =
B0

kB
cos (kBx)e−kBz = B0ΛB cos

(
x

ΛB

)
e
− z

ΛB , (1.21)

where B0 is the magnetic field strength at x = 0, z = 0 and ΛB = k−1
B = 2L/π

is the magnetic scale height. This quantity is related to the half-width of the
structure, L. From Equation (1.15) the magnetic field components in the xz-plane
are

Bx(x, z) = B0 cos

(
x

ΛB

)
e
− z

ΛB , Bz(x, z) = −B0 sin

(
x

ΛB

)
e
− z

ΛB . (1.22)

Finally it is worth to define the directions of interest in the potential arcade
configuration using Equation (1.17) which are

ên =
(Bz êx −Bxêz)

| B |
, ê⊥ = êy, ê‖ =

(Bxêx +Bz êz)

| B |
. (1.23)

The unitary normal and parallel orthogonal vectors together with the magnetic
field lines of the potential arcade in the xz-plane, are shown in Figure 1.3.

1.4.2.1 Equilibrium density profile

Another key ingredient of the equilibrium is the static density profile. In this thesis
two different density profiles are used when the potential arcade configuration is
considered. Each of these density profiles allow us to model two different scenarios.
One of them does not take into account the existence of a loop embedded in the
arcade, while in the other, the coronal loop is modeled by means of an enhancement
in the density.
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Without density enhancement
The first density profile considered can be obtained by combining the equation

of the hydrostatic equilibrium together with the equation of the perfect gas which
leads to

ρ(z) = ρ0e
−z
Λ , (1.24)

where ρ0 is the density at z = 0 and Λ is the density scale height. This allows us
to define a dimensionless parameter, δ, defined as the ratio of the magnetic scale
height to the density scale height,

δ =
ΛB

Λ
. (1.25)

This parameter is of relevance when considering the so-called Alfvén speed, vA,
which is defined as follows,

v2
A(z) =

| B |2

µ0ρ
= v2

A0e
−(2−δ)z

ΛB , (1.26)

where | B |= (B2
x+B2

z )
1/2 and v2

A0 = B2
0/µ0ρ0. Here it is important to note several

details. Firstly, the Alfvén speed determines the propagation speed of magnetic
waves and in this configuration only depends on z. Secondly, it is possible to select
different coronal models by means of varying this parameter and there are several
values of it that worth to be mentioned. On the one hand, when δ = 0 we choose
a coronal model of constant density, on the other hand if we fix δ = 2 we choose a
corona with constant Alfvén speed. Values of δ within the range 0 < δ < 2 model
a corona with an exponentially decreasing density and Alfvén profiles, whereas
values of δ > 2 model a solar corona with decreasing density and increasing Alfvén
speed profiles.

With density enhancement
The other density profile introduce a new ingredient which in our case is a loop

with uniform density, ρ0, embedded in a environment whose density, ρe, is also
uniform and lower than that of the loop by a factor 10, i.e. ρe = ρ0/10.

The combination of the this equilibrium magnetic field with this non smooth
density profile leads to the following piece-wise Alfvén speed distribution

vA(z) =

 vA0 exp
(
− z

ΛB

)
, inside the loop,

vAe exp
(
− z

ΛB

)
, otherwise,

(1.27)

where vA0 = B0/
√
ρ0µ0 and vAe = B0/

√
ρeµ0 are the Alfvén speed inside and

outside the loop at the base of the corona (z = 0). This formula gives vA at any
point in the xz-plane. The vertical density and Alfvén speed profile at the arcade
center is shown in Figure 1.4. Notice that the Alfvén speed varies both along and
across magnetic field lines in our curved configuration.

1.5 Linear MHD waves

Waves are always present on the Sun because it is such a dynamic body, containing
features that are continually in motion over a wide range of temporal and spatial
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Figure 1.3: Sketch of the magnetostatic configuration of a potential coronal arcade,
where the solid curves represent magnetic field lines, that are given by A(x, z) =
constant. These curves in the xz-plane become arcade surfaces in three dimensions.
In this model z measures the vertical distance from the base of the corona (placed
at z = 0) and L is the arcade half-width. The two orthogonal unit vectors defining
the normal and the parallel directions, ên and ê‖, are also shown at a particular
point.

Figure 1.4: Vertical variation along the z-axis of the density (solid line) and Alfvén
speed (dotted line) when a density enhancement that model a coronal loop coronal
is located at a certain height, z/L = 052, from the base of the corona.
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scales. In a plasma such as the solar atmosphere, there are typically four modes
of wave motion, driven by different restoring forces. The magnetic tension and
Coriolis forces can drive so-called Alfvén waves and inertial waves, respectively.
The magnetic pressure, the plasma pressure and gravity can act separately and
generate compressional Alfvén waves, sound waves and (internal) gravity waves,
respectively; but, when acting together, these three forces produce only two mag-
netoacoustic gravity modes. In the absence of gravity, the two modes are referred
as magnetoacoustic waves, and when the magnetic field vanishes they are called
acoustic gravity waves. The aim of this section is to describe the properties of two
of these modes, the Alfvén mode and the compressional Alfvén mode, also known
as fast mode. These two wave modes are the relevant ones in our work.

Throughout this work we will restrict ourselves to solutions of the wave equa-
tions in the plasma β = 0 approximation. Keeping these approximations in mind,
the basic equations for our discussion of waves are Equations (1.1)–(1.5) that now
simplify to

Dρ

Dt
+ ρ∇ · v = 0, (1.28)

ρ
Dv

Dt
=

1

µ0

(∇×B)×B, (1.29)

∂B

∂t
= ∇× (v ×B), (1.30)

∇ ·B = 0. (1.31)

The usual procedure for the study of small amplitude oscillations is to decom-
pose our variables in two parts. One of them is the equilibrium quantity and the
other represents a small perturbation of that equilibrium, in such a way that

ρpert = ρ+ ρ1, vpert = v1, Bpert = B + B1, (1.32)

with ρ and B the equilibrium density and magnetic field, and v1, ρ1 and B1 the
velocity, density and magnetic field perturbations. Note that we have assumed
v = 0, i.e. there are no flows in our equilibrium, such as corresponds to a static
equilibrium.

By inserting expressions (1.32) into Equations (1.28)–(1.31), neglecting squares
and products of the small perturbations and assuming a potential equilibrium mag-
netic field, we obtain the linear MHD wave equations in the zero-β approximation,
that read

∂ρ1

∂t
= −ρ∇ · v1 − v1 · ∇ρ, (1.33)

ρ
∂v1

∂t
=

1

µ0

(∇×B1)×B, (1.34)

∂B1

∂t
= ∇× (v1 ×B), (1.35)

∇ ·B1 = 0. (1.36)
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1.6 Examples of MHD waves

The theoretical study of small-amplitude oscillations and waves can be done with
different techniques. The first approach is to make a normal mode analysis of the
linearized MHD equations presented in the previous section which allows to obtain
the spatial distribution of the eigenmodes structure together with the dispersion
relation ω(k). An alternative approach, which is the one mainly used in this work,
is to obtain the time-dependent solution of the MHD equations.

In order to review how these approaches work, several examples based on Edwin
and Roberts (1982), Terradas et al. (2005), and Arregui et al. (2007b) when linear
waves are superimposed on a straight field and on Oliver et al. (1993), Oliver et
al. (1998), and Terradas et al. (2008b) when they are superimposed on a potential
arcade field, are presented. The presentation of these works helps to contextualize
as well as to give a starting point to the present thesis.

1.6.1 MHD normal modes and waves in a straight field

We first present some of the results obtained by Edwin and Roberts (1982), Ter-
radas et al. (2005), and Arregui et al. (2007b) who modeled a solar coronal loop by
means of a two-dimensional, line-tied, over-dense slab in Cartesian geometry. Their
equilibrium magnetic field is straight and pointing in the z-direction, B = |B|êz.
The coronal slab is then modeled using a varying equilibrium density profile in
the x-direction, by means of a density enhancement of half-width a centered about
x = 0. The density inside the slab, ρi, is constant and is connected to the constant
coronal environment, ρe, through a sharp transition. Next two different scenar-
ios are presented, first a purely two-dimensional problem and later a model which
include three-dimensional propagation of perturbations.

In order to study the small-amplitude oscillations of the previous equilibrium,
we mainly follow Arregui et al. (2007b) who obtain a set of differential equations
which can be straight forward derived from our Equations (1.34) and (1.35) when
the magnetic diffusivity is not neglected. They included the dissipative terms in the
MHD equations because they are needed to numerically compute the resonantly-
damped eigenmodes but as these terms have no physical meaning we prefer to
do not write them in the following. The obtained set of equations consist in two
for the perturbed velocity components (v1x and v1y) and three for the perturbed
magnetic field components (B1x, B1y, and B1z)

∂v1x

∂t
=
|B|
µ0ρ

(
∂B1x

∂z
− ∂B1z

∂x

)
, (1.37)

∂v1y

∂t
=
|B|
µ0ρ

(
∂B1y

∂z
− ∂B1z

∂y

)
, (1.38)

∂B1x

∂t
= |B|∂v1x

∂z
, (1.39)

∂B1y

∂t
= |B|∂v1y

∂z
, (1.40)

∂B1z

∂t
= −|B|

(
∂v1x

∂x
+
∂v1y

∂y

)
. (1.41)
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Following their theoretical procedure, when the equilibrium configuration only
depends on the x-coordinate, a spatial dependence of the form exp−i(kyy + kzz) is
assumed for all perturbed quantities, with kz and ky being the parallel and perpen-
dicular wavenumbers. The photospheric line-tying effect is included by imposing
the velocity components vanish at z = ±L and then selecting the appropriate par-
allel wavenumber which is related to the lateral extend of the magnetic arcade,
2L. The inclusion of the perpendicular wavenumber, ky, is a feature that worth
to be mentioned because although the problem is two dimensional, the previous
equations include the spatial derivative with respect the y-direction to later include
the perpendicular propagation of perturbations in the model.

Under these assumptions they calculated the normal modes of oscillation of this
equilibrium configuration considering a temporal dependence of the form exp (iωt)
for all perturbed quantities and allowing the frequency to be a complex number of
the form ω = ωR + iωI . The resulting equations found by these authors form an
eigenvalue problem which states

iωv1x =
|B|
µ0ρ

(
− ikzB1x −

∂B1z

∂x

)
, (1.42)

iωv1y =
|B|
µ0ρ

(−ikzB1y + ikyB1z) , (1.43)

iωB1x = −i|B|kzv1x, (1.44)

iωB1y = −i|B|kzv1y, (1.45)

iωB1z = −|B|

(
∂v1x

∂x
− ikyv1y

)
, (1.46)

and can be combined to give a system of two ordinary differential equations for the
normal and the perpendicular component of the perturbed velocity which becomes

[
(k2
z − ∂2

x)− ω2ρ

]
v1x = −ky

∂v1y

∂x
, (1.47)[

(k2
z + k2

y)− ω2ρ

]
v1y = −ky

∂v1x

∂x
. (1.48)

1.6.1.1 Edwin and Roberts (1982) model

Normal mode analysis
In this section we follow the procedure described by Edwin and Roberts (1982).

Therefore, if we set to zero the perpendicular wavenumber, ky = 0, our Equa-
tions (1.47) and (1.48) are decoupled and they lead to the equations obtained by
Edwin and Roberts (1982). We focus our attention on solutions of Equation (1.47),
which are the ones associated to the fast wave. They can readily be obtained, for ρ
and vA constant, by following the usual procedure of matching different solutions in
the internal and external regions and demanding the evanescence of perturbations
far away from the slab. They can be classified, according to the parity of their
eigenfunctions about x = 0, as fast kink and sausage modes. The corresponding
dispersion relations are
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Figure 1.5: Cut at z = 0 of the real part of the normal velocity component, v1x,
for the fundamental kink mode for an equilibrium configuration with kza = π/50
and ρi/ρe = 10. Two vertical dashed lines represent where the slab is located.

tanhκia = −κe
κi
, (1.49)

for the kink modes (v1x even about x = 0) and

cothκia = −κe
κi
, (1.50)

for the sausage modes (v1x odd about x = 0), where

κ2
e =

(
k2
z − ω2

v2
Ae

)
and κ2

i =

(
k2
z − ω2

v2
Ai

)
. (1.51)

Here vAi,e = |B|
√

1/µρi,e are the internal and external Alfvén speeds which are
determined by the internal, ρi, and external, ρe, densities. We have considered the
following values of density contrast, ρi/ρe = 10, parallel wavenumber, kza = π/50
and ratio of length to width of L/2a = 25. For our purposes is enough to show the
solution obtained for the fundamental kink mode. Figure (1.5) shows the spatial
distribution of a cut along the z = 0 axis of the perturbed normal velocity when
the fundamental kink eigenmode is considered. This mode has a frequency of
oscillation of ωa/vAi = 0.1779.

Time-dependent analysis
From a theoretical point of view, it is interesting to study how an initial per-

turbation excites the different normal modes of the system. This has been ac-
complished by obtaining solutions of the previous model when the initial value
problem of Equations (1.37)–(1.41) is solved by means of a temporal code. Ter-
radas et al. (2005) have solved them by taking the spatial derivative with respect
the y-direction, ∂y, equal zero.
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Figure 1.6: Several snapshots of the temporal evolution of a cut at z = 0 of the
velocity component v1x when a density contrast ρi/ρe = 10 and a perpendicular
wavenumber kya = 0 are considered. In each frame the time (in units of the Alfvén
transit time τA = a/vAi) is shown on top. The system is disturbed with the initial
perturbation presented in Equation (1.52) with x0 = 0 and b = 2a. In all figures,
two vertical dotted lines represent where the slab is located. See Movie 1 available
in the DVD.

To mainly excite the fundamental kink mode presented in the previous section,
they performed numerical simulations with an initial disturbance with its symme-
try, although it is likely that such initial disturbance will excite more than one
mode. The mathematical form of the initial perturbation is

v1x(x, z) = vx0 cos (kzz) exp−

[
(x− x0)

b

]2

, (1.52)

where vx0 is the amplitude of the perturbation and kz is the parallel wavenumber.
They selected its value in order to have one maximum along the field lines. Across
the field lines they chose a Gaussian profile, where x0 is the position of the Gaussian
centre and b its width at half-height. As for the boundary conditions they use line-
tying at zmax/a = 25 and zmin/a = −25 and flow-through at xmax/a = 200 and
xmin/a = −200.

The results of the simulation at early times are shown in Figure 1.6, where the
spatial distribution of a cut along z = 0 of the normal velocity component is plotted
at different times. The initial perturbation produces traveling disturbances to the
left and right of its initial location and these disturbances exhibit some dispersion
as they propagate. These traveling disturbances show that part of the initial energy
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Figure 1.7: Same as Figure 1.6 but for latter times. See Movie 2 available in the
DVD.

deposited in the loop is simply emitted through leaky modes, see Terradas et al.
(2005) for a detailed discussion of the leaky modes. These authors refer to this
phase as the impulsive leaky phase.

Once this phase ends, the shape of the velocity inside the slab and its near
surroundings approaches the form of the fundamental kink mode eigenfunction
which has an extremum at x = 0 and decreases exponentially outside the loop.
In order to see it clearly, latter times of the temporal evolution are shown in
Figure 1.7. In this figure we have over-plotted a dashed line which represents the
temporal evolution of the theoretical fundamental kink mode presented before.
Although the shape of the velocity has a good agreement with that of the normal
mode, several differences are observed when we move away from the centre of the
slab. These differences become smaller as the time grows which indicate the kink
mode requires some time to become established. These snapshots are taken when
the oscillation reaches to its maximum/minimum and reveals that both signals are
oscillating with the same frequency which indicates that the slab is oscillating with
this normal mode.

1.6.1.2 Arregui et al. (2007b) model

Normal mode analysis
Arregui et al. (2007b) considered the same model as Edwin and Roberts (1982)

did but adding the perpendicular propagation of perturbations, i.e. ky 6= 0. In
order to easily compare with the results of the previous section we focus our at-
tention in the fundamental kink mode when the same parameters are used. One
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Figure 1.8: Cut at z = 0 of the real part of the (a) normal velocity component,
v1x, and (b) perpendicular velocity component, v1y, of the fundamental kink mode
when an equilibrium configuration with kza = π/50, ρi/ρe = 10 and kya = 0.5 is
considered. Two vertical dashed lines represent where the slab is located.

of the most important consequences found by these authors is that both velocity
components are coupled. This becomes clear by looking at Equations (1.47) and
(1.48). Therefore, when they are solved, the normal mode spatial distribution con-
sists in the spatial distribution given by both velocity components, v1x and v1y.
Figure 1.8 shows a cut along the z = 0 axis of the perturbed normal and per-
pendicular velocities for the fundamental kink normal mode when the value of the
perpendicular wavenumber is kya = 0.5. In this case the spatial distribution of the
v1x component is much less widespread over the space when it is compared to what
is obtained when three-dimensional propagation is not considered, see Figures 1.8
and 1.5.

Regarding the frequency, Equations (1.47) and (1.48) lead to the dispersion
relations which in this case are

tanhmia = −κe
κi

mi

me

, (1.53)

for the kink modes and

cothmia = −κe
κi

mi

me

, (1.54)

for sausage modes, where

m2
e =

(
k2
y + k2

z − ω2

v2
Ae

)
and m2

i =

(
k2
y + k2

z − ω2

v2
Ai

)
. (1.55)

Solutions to Equations (1.53) and (1.54) are found by means of a simple numerical
program. Here appears another important consequence, the frequency, ωa/vAi =
0.101, of this mode is lower than when propagation is constrained to the plane of
the arcade, ωa/vAi = 0.1779. A more detailed discussion of the solutions of this
model can be found in Arregui et al. (2007b).

Next, it is possible to look for solutions to Equations (1.47) and (1.48) when
an evanescent behavior of the perturbations far away from the slab is not de-
manded. Figure 1.9 shows a cut along the z = 0 axis of the perturbed normal
and perpendicular velocities for a non-evanescent eigenmode. The frequency of
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Figure 1.9: Cut at z = 0 of the real part of the (a) normal velocity component, v1x,
and (b) perpendicular velocity component, v1y, for a non-evanescent eigenmode for
an equilibrium configuration with kza = π/50, ρi/ρe = 10 and kya = 0.5. Two
vertical dashed lines represent where the slab is located.

non-evanescent modes depends on where the limits of the domain are imposed so
that it is reasonable to assert that they are not a physical modes. Having into
account the numerical domain considered, we have found a non-evanescent mode
whose frequency of oscillation is ωa/vAi = 1.675. Here it is important to note
that there are more non-evanescent eigenmodes across the field. Here we present
this mode because it is the one with the simplest spatial distribution and if the
flow-through boundary condition is not perfectly accomplished it is likely that can
be excited. Once we know its frequency and spatial distribution if we find some
of its signatures in the temporal simulations we can be sure about its non-physical
nature.

Time-dependent analysis
In order to compare with normal mode solutions, Arregui et al. (2007b) obtain

temporal solutions of Equations (1.42)–(1.46). As we focus on the excitation of the
fundamental kink mode we present their performed numerical simulations with a
symmetric initial disturbance of the form described in Equation (1.52).

A cut along z = 0 of the spatial distribution of the normal and perpendicular
velocity components is plotted in Figure 1.10 at different times. After the impulsive
leaky phase, the spatial distribution of both components reveals two extrema at
the edges of the slab with an amplitude decreasing as we move away from them.
In this figure we have over-plotted in a dashed line the same cut but done to the
spatial distribution of the theoretical normal mode presented in Figure 1.8 which
has a frequency ωa/vAi = 0.101. Qualitatively we observe very similar results
to the normal mode both spatially and temporally which allow to state that the
fundamental kink mode has been excited. Regardless, several differences exist in
the last two snapshots at the centre of the slab between the excited modes and
the normal mode. This indicates that although the fundamental kink mode is
mainly excited, other modes also have been excited through the initial Gaussian
perturbation.

In Figure 1.11a the temporal evolution of the normal velocity component, v1x,
is presented at the loop center (x = 0, z = 0) as solid line, while the perpendicular
velocity component, v1y, is presented at the loop border (x = 1, z = 0) as a dotted
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Figure 1.10: Several snapshots of the temporal evolution of a cut along z = 0 of
the normal, v1x, and the perpendicular, v1y, velocity components when a density
contrast ρi/ρe = 10 and a perpendicular wavenumber kya = 0.5 are considered. In
each frame the time (in units of the Alfvén transit time τA = a/vAi) is shown on top.
The system is disturbed with the initial perturbation presented in Equation (1.52)
with x0 = 0 and b = 2a. The dashed line is the temporal evolution of the theoretical
fundamental kink mode presented in Figure 1.8. In all figures, two dotted vertical
lines represent where the slab is located. See Movie 3 available in the DVD.

line. At first sight the signals reveal several frequencies contributing in those points.
On one hand, the low frequency could be associated with the fundamental kink
mode whereas the high frequency’s character is not clear.

To find out which modes are excited a frequency analysis of the signals presented
in Figure 1.11a is done and then its results are compared with the theoretical
results obtained before. Indeed due to the different range of frequencies involved,
two frequency analysis are done to both signals, one in the lower and other in the
high frequency range. Figure 1.11b shows the frequency analysis done in the low
frequency range, [0, 0.2], where only a frequency with a value of ωa/vAi = 0.101
is obtained. This frequency matches the frequency predicted for the fundamental
kink normal mode in the theoretical section. Whereas the frequency analysis done
in the high frequency range, [1, 2], presented in Figure 1.11c reveals two main
frequencies with numerical values ωa/vAi = 1.59 and 1.675. From the theoretical
analysis of non-evenescent solutions we found a mode whose frequency coincides
with the value ωa/vAi = 1.675, see Figure 1.9, but the same does not apply to
the frequency ωa/vAi = 1.59 whose theoretical representation can not be found.
Notwithstanding to definitively assert if the founded frequencies ωa/vAi = 0.101
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Figure 1.11: a) Temporal evolution of the velocity component v1x (solid line) at
the center of the loop (x = 0, z = 0), and v1y (dotted line) at the border of the loop
(x = 0, z = 1). (b) Power spectra of the signals shown in (a) in the low frequency
range. (c) Power spectra of the signals shown in (a) in the high frequency range.
The vertical lines correspond to the frequencies obtained

Figure 1.12: Plot of the normal mode-like initial perturbation on v1y. The initial
perturbation, see Equation (1.61), is centered at x = 0 and z0/L = 1.

and 1.675 correspond to the theoretical modes obtained in the previous sections
some additional proofs, which will be given later, are necessary.

1.6.2 Alfvén modes and waves in a two-dimensional poten-
tial arcade

We next present another example of MHD waves superimposed to a static magnetic
structure which is the potential arcade introduced in § 1.4.2. This is a more complex
model of a coronal structure due to the introduction of field curvature and non-
uniformity of density and Alfvén speed. The main properties of MHD waves in
two-dimensional curved structures have been studied by several authors from both
a normal mode as well as a time-dependent point of view. In this section we present
some of the results obtained by Oliver et al. (1993) and Terradas et al. (2008b).

They choose a potential arcade model whose boundaries are placed at x = ±L,
z = 0 and z = 2L, with L the half-width of the potential coronal arcade. Using
this model, different density profiles produce different Alfvén speed configurations,
see Equations (1.24) and (1.26) and these authors can select different equilibria by
changing the value of the δ-parameter presented in Equation (1.26). Something
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Figure 1.13: Alfvén wave: time evolution of the velocity component, v1y, for δ = 0.
The initial perturbation in v1y is a Gaussian profile with xs = 0, zs = 1, a = 0.2L
and vs = 1. In each frame the time (in units of the Alfvén transit time t/τA =
L/vA0) is shown on top. Black solid lines represent the magnetic field lines of the
coronal arcade. See Movie 4 in the DVD.

that worth to mention is that when this equilibrium magnetic field is taken Oliver et
al. (1993) and others have proved advantageous to use the field-related components,
see Equation (1.23) and Figure 1.3, instead of Cartesian components.

Concerning the boundary conditions applied, they use the line-tying condition
at z = 0 and flow-through conditions in the rest of the domain (top and lateral
walls).

Normal mode analysis
As has been proved, it is useful to firstly study the properties of normal modes

before going for the temporal solutions. Therefore, we are going to review several
properties of the Alfvén normal modes of this system which have been obtained
by Oliver et al. (1993).

According to Oliver et al. (1993), when δ = 0 the analytic solution for the
Alfvén normal mode is given by

v̂1y = C sin kx(x− x0), (1.56)
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Figure 1.14: (a) Alfvén wave velocity at x = 0, z/L = 1 as a function of time. (b)
Power spectrum of the signal in (a). Vertical dashed lines give the frequencies of
the fundamental mode and its first harmonics coming from Equation (1.59) with
zm/L = 1.

where the wavenumber, kx, and the frequency, ω, are related by the dispersion
equation

ω = kxvA0 cos

(
x0

ΛB

)
, (1.57)

with vA0 the Alfvén speed at z = 0 and x0 the position of the magnetic field line
footpoint, i.e. the place at which the field line reaches the base of the corona
(z = 0). From Figure 1.3 it is clear that the length of the magnetic field line
depends on the footpoint position. In this figure it is also clear that the maximum
height of the field lines, zm, is related to their footpoint position. This relation is
given by

zm = −ΛB log

{
cos

(
x0

ΛB

)}
, (1.58)

and so Equation (1.57) can be written as

ω = kxvA0 exp

(
−zm
ΛB

)
. (1.59)

After imposing the boundary conditions (line-tying condition) to the solution, we
obtain the following expression for the horizontal wavenumber.

kx = nπ
2x0
, with n = 1, 2, 3 . . . (1.60)

The solutions of this problem should depend on x and z, but we have to re-
member that x and z are related via the flux function, see Equation (1.21). Also
it is important to note that these solutions have a well-defined parity with respect
to the x-direction depending if n is chosen even or odd. Therefore, the ideal two-
dimensional solution for vy(x, z) consists of a highly anisotropic solution confined
to a particular magnetic surface (described by a uniform flux function A(x, z)),
and can be written as

v1y(x, z) = v̂1y(x)δ(A(x, z)− A(x = 0, zm)), (1.61)
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Figure 1.15: The colored contours are the power spectrum of v1y at x = 0 as
a function of maximum height of the field lines, z/L, and normalized frequency,
ωL/vA0. From bottom to top different solid lines are the theoretical frequency of
the fundamental mode and its harmonics for δ = 0 given by Equation (1.59).

where zm gives the maximum height of the field line at which the normal mode is
excited. Figure 1.12 plots the shape of an Alfvén normal mode-like which consists
in a sum of several Alfvén normal modes presented in Equation (1.61).

Time-dependent analysis
Once the Alfvén normal modes are introduced, we present the temporal results

obtained by Terradas et al. (2008b). These authors initially disturb the velocity
field of the system to obtain time-dependent solutions. They considered a distur-
bance which initially has (at time t/τA = 0) the form

v1 = vs exp−
(

(x− xs)2 + (z − zs)2

a2

)
, (1.62)

where vs is the amplitude of the velocity perturbation, xs and zs are the coordinates
of the perturbation’s center, and a is the width of the two-dimensional Gaussian
profile at half height.

In this system a general perturbation can excite fast and Alfvén waves at the
same time, but in order to better understand their features they impose in the
initial velocity the dominant component of the particular MHD wave that they
are interested in, whereas all other variables are initially set to zero. Therefore
as they want to generate Alfvén waves, the Gaussian perturbation presented in
Equation (1.62) is initially set in the v1y component.

Figure 1.13 shows how the perturbation splits into two wave packets strictly
traveling along the magnetic field lines. The initial circular shape of the perturba-
tion changes as the wave packet moves towards the photosphere. This is basically
due to two effects. First, the Alfvén speed is not uniform so the different parts
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of the disturbance travel at different velocities. Second, since in this equilibrium
the magnetic field lines converge toward the photosphere, wave packets traveling
along them tend to shrink for downward-propagating waves. The opposite effect
happens for an upward-propagating wave. The conclusion is that the topology of
magnetic field lines plays an important role for Alfvén waves.

In the present case we are also able to compare the numerical results with
analytical expressions. One must take into account that for long times, waves
bouncing at the base of the corona travel back and forth along filed lines and
give rise to standing Alfvén oscillations in and around a particular field surface.
Thus, a power spectrum of the v1y component should reveal power peaks at the
frequencies given by Equation (1.59). The v1y signal at x = 0 and z/L = 1 and
its corresponding power spectrum are presented in Figure 1.14. The temporal
evolution at this point reveals a signal composed of several frequencies and this
is later confirmed by the spectral analysis, which shows three main frequencies
contributing to the signal. In Figure 1.14b also are shown the analytical frequencies
obtained by Equation (1.59) as vertical lines and a good agreement between them
has been found.

Next we repeat the spectral analysis of these oscillations for all the different
heights of the structure. The results are shown in Figure 1.15. As described by
Oliver et al. (1993), Alfvén waves are characterized by a continuous spectrum of
frequencies, with motions in the v1y component localized in magnetic surfaces with
constant flux function A(x, z). Therefore Equation (1.57) implies that different
magnetic surfaces with different footpoints have different Alfvén frequencies. In
Figure 1.15 the resulting power spectrum is compared to the Alfvén continuum
frequencies obtained by Oliver et al. (1993). The power associated with the gen-
erated Alfvén waves coincides with the theoretical normal mode frequencies of the
system at all heights and give us further confidence on the goodness of our code.
But more properties of Alfvén waves are observed. In this figure Alfvén waves stay
confined to the vertical range of magnetic surfaces that were excited by the initial
disturbing (few magnetic surfaces) since Alfvén waves being incompressible, can
not propagate energy across magnetic field lines. Also is clear how the initial per-
turbation is decomposed by the system in a linear combination of normal modes,
but keeping the even parity with respect to x = 0 of the initial disturbance, so
energy is found in the fundamental mode, the second harmonic, etc.
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ABSTRACT

We numerically investigate the excitation and temporal evolution of oscillations in a two-dimensional coronal
arcade by including the three-dimensional propagation of perturbations. The time evolution of impulsively
generated perturbations is studied by solving the linear, ideal magnetohydrodynamic (MHD) equations in the
zero-β approximation. As we neglect gas pressure, the slow mode is absent and therefore only coupled fast MHD
and Alfvén modes remain. Two types of numerical experiments are performed. First, the resonant wave energy
transfer between a fast normal mode of the system and local Alfvén waves is analyzed. It is seen how, because of
resonant coupling, the fast wave with global character transfers its energy to Alfvénic oscillations localized around
a particular magnetic surface within the arcade, thus producing the damping of the initial fast MHD mode. Second,
the time evolution of a localized impulsive excitation, trying to mimic a nearby coronal disturbance, is considered. In
this case, the generated fast wavefront leaves its energy on several magnetic surfaces within the arcade. The system is
therefore able to trap energy in the form of Alfvénic oscillations, even in the absence of a density enhancement such as
that of a coronal loop. These local oscillations are subsequently phase-mixed to smaller spatial scales. The amount of
wave energy trapped by the system via wave energy conversion strongly depends on the wavelength of perturbations
in the perpendicular direction, but is almost independent from the ratio of the magnetic to density scale heights.

Key words: Sun: atmosphere – Sun: corona – Sun: evolution – Sun: oscillations
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1. INTRODUCTION

The presence of waves and oscillations in the solar corona
is a well-known feature that has been observed for long time.
For an overview of the early observational background, see
Tsubaki (1988). Nowadays, because of the increasing spatial
and temporal resolution of the EUV instruments onboard the
Transition Region and Coronal Explorer (TRACE), the Solar
and Heliospheric Observatory (SOHO), and the Hinode space-
craft, accurate observations of oscillations in different coronal
structures are accomplished. Many authors have reported ob-
servations of transversal coronal loop oscillations from both
ground and space-based instruments (Aschwanden et al. 1999;
Nakariakov et al. 1999; Aschwanden et al. 2002; Schrijver et al.
2002). When these observations are compared with theoretical
models (Roberts et al. 1984; Nakariakov et al. 1999; Nakari-
akov & Ofman 2001), the possibility of inferring some plasma
parameters, otherwise difficult to measure, and of improving the
existing theoretical models is open; see Banerjee et al. (2007)
for a review. Magnetohydrodynamics (MHD) is the underlying
theory of coronal seismology and it is believed that all these
observed oscillations and waves can be interpreted theoretically
in terms of MHD modes of different coronal plasma structures.

The theoretical study of these oscillations and waves can be
done from several points of view. The first approach is to make a
normal mode analysis of the linearized MHD equations, which
allows to obtain the spatial distribution of the eigenmodes of the
structure together with the dispersion relation ω(k). Once the
elementary building blocks of the MHD normal mode theory
are described, the main properties of the resulting MHD waves
can be outlined. Many authors have explored the normal modes
of coronal structures, beginning with very simple cases such

as the straight and infinite cylinder (Edwin & Roberts 1983).
In the context of curved coronal magnetic structures, Goossens
et al. (1985); Poedts et al. (1985); Poedts & Goossens (1988)
investigated the continuous spectrum of ideal MHD. Oliver et al.
(1993, 1996) and Terradas et al. (1999) derived the spectrum of
modes in potential and non-potential arcades. More complex
configurations, such as sheared magnetic arcades in the zero-β
plasma limit, have been studied by Arregui et al. (2004a, 2004b).
Other authors have studied eigenmodes in curved configurations
with density enhancements that represent coronal loops (e.g.,
Van Doorsselaere et al. 2004; Terradas et al. 2006; Verwichte
et al. 2006a, 2006b, 2006c; Dı́az et al. 2006; Van Doorsselaere
et al. 2009).

An alternative approach is to obtain the time-dependent
solution of the MHD equations. Using this method, Čadež &
Ballester (1995a, 1995b) studied analytically the propagation of
fast waves in a two-dimensional coronal arcade for a particular
equilibrium, namely one with uniform Alfvén speed. Oliver et al.
(1998) studied the effect of impulsively generated fast waves in
the same coronal structure. Del Zanna et al. (2005) studied the
properties of Alfvén waves in an arcade configuration, including
the transition region between the photosphere and the corona.
Other studies have analyzed the effect of the loop structure on
the properties of fast and slow waves in two-dimensional curved
configurations (see, e.g., Murawski et al. 2005; Brady & Arber
2005; Brady et al. 2006; Selwa et al. 2006, 2007), see Terradas
(2009) for a review.

The main aim of this paper is to analyze the effect of including
three-dimensional propagation on the resulting MHD waves
as a first step before considering more realistic situations like
the one observed by Verwichte et al. (2004), where the effect
of three-dimensional propagation is clear. In our model, there
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is no density enhancement like that of a loop and the zero-β
approximation is assumed, so only the fast and Alfvén modes
are present. We focus our attention on the mixed properties
displayed by the generated MHD waves that arise due to the
coupling when longitudinal propagation is allowed. The paper
is arranged as follows. In Section 2, we briefly describe the
equilibrium configuration as well as some of the approximations
made in this work. In Section 3, we present our derivation of
the linear ideal MHD wave equations with three-dimensional
propagation of perturbations. In Section 4, the numerical code
used in our study is described, together with several checks that
have been performed by solving problems with known analytical
or simple numerical solution. Our main results are shown in
Section 5, where the linear wave propagation properties of
coupled fast and Alfvén waves in a two-dimensional coronal
arcade, allowing three-dimensional propagation, are described.
Finally, in Section 6 the conclusions are drawn.

2. EQUILIBRIUM CONFIGURATION

We model a solar coronal arcade by means of a two-
dimensional potential configuration contained in the xz-plane
in a Cartesian system of coordinates (see Oliver et al. 1993). For
this y-invariant configuration, the flux function is

A(x, z) = BΛB cos
(

x

ΛB

)
exp

(
− z

ΛB

)
, (1)

and the magnetic field components are given by

Bx(x, z) = B cos
(

x

ΛB

)
exp

(
− z

ΛB

)
,

Bz(x, z) = −B sin
(

x

ΛB

)
exp

(
− z

ΛB

)
. (2)

In these expressions, ΛB is the magnetic scale height, which is
related to the lateral extent of the arcade, L, by ΛB = 2L/π , and
B represents the magnetic field strength at the photospheric level
(z = 0). The overall shape of the arcade is shown in Figure 1.

In this paper, gravity is neglected and the β = 0 approxima-
tion is used for simplicity. Therefore, the equilibrium density can
be chosen arbitrarily. We adopt the following one-dimensional
profile:

ρ0(z) = ρ0 exp
(
− z

Λ

)
, (3)

where Λ is the density scale height and ρ0 is the density at the
base of the corona. As shown by Oliver et al. (1993), the com-
bination of magnetic field components given by Equation (2)
with the density profile given by Equation (3) leads to a one-
dimensional Alfvén speed distribution in the arcade that can be
cast as

vA(z) = vA0 exp
[
−(2 − δ)

z

2ΛB

]
. (4)

Here, δ = ΛB

Λ represents the ratio of the magnetic scale height to
the density scale height and vA0 is the Alfvén speed at the base of
the corona. The δ parameter completely determines the behavior
of the Alfvén speed profile and hence the wave propagation
properties. The case δ = 2 represents a uniform Alfvén speed
model, while δ = 0 corresponds to an exponentially decreasing
Alfvén speed in a uniform density configuration. Other values
of δ represent situations in which both the Alfvén speed and
density depend on height in a different manner.

Figure 1. Sketch of the magnetostatic configuration of a potential coronal
arcade, where the solid curves represent magnetic field lines, given by A(x, z) =
constant. These curves in the xz-plane become arcade surfaces in three
dimensions. In this model, z measures the upward distance from the base of
the corona (placed at z = 0). The three orthogonal unit vectors, ên, ê⊥, and
ê‖, defining the normal, perpendicular, and parallel directions, respectively, are
also shown at a particular point.

3. LINEAR WAVES

In order to study small amplitude oscillations in our potential
arcade, the previous equilibrium is perturbed. For linear and
adiabatic MHD perturbations in the zero-β approximation, the
relevant equations are

ρ0
∂v1

∂t
= 1

µ0
(∇ × B) × B1 +

1
µ0

(∇ × B1) × B, (5)

∂B1

∂t
= ∇ × (v1 × B), (6)

where µ0 is the magnetic permeability of free space and
the subscript “1” is used to represent perturbed quantities.
These equations are next particularized to our two-dimensional
potential arcade equilibrium. As the equilibrium is invariant in
the y-direction, we can Fourier analyze all perturbed quantities
in the y-direction by making them proportional to exp (ikyy).
In this way, three-dimensional propagation is allowed and each
Fourier component can be studied separately. As a result of
this Fourier analysis, the perpendicular perturbed velocity and
magnetic field components appear accompanied by the purely
imaginary number i =

√
−1. This is undesirable from a

practical point of view, since Equations (5) and (6) will be solved
numerically and the code is designed to handle real quantities
only. Nevertheless, by making the appropriate redefinitions,
namely v1y ≡ iṽ1y and B1y ≡ iB̃1y , it turns out that our wave
equations can be cast in the following form:

∂v1x

∂t
= 1

µ0ρ0

[ (
∂B1x

∂z
− ∂B1z

∂x

)
Bz

]

, (7)

∂ ṽ1y

∂t
= 1

µ0ρ0

[ (

Bx

∂B̃1y

∂x
+ Bz

∂B̃1y

∂z

)

+ ky (B1xBx + B1zBz)

]

, (8)
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∂v1z

∂t
= − 1

µ0ρ0

[ (
∂B1x

∂z
− ∂B1z

∂x

)
Bx

]

, (9)

∂B1x

∂t
= −kyṽ1yBx − ∂

∂z
(v1zBx − v1xBz) , (10)

∂B̃1y

∂t
= ∂

∂z

(
ṽ1yBz

)
+

∂

∂x

(
ṽ1yBx

)
, (11)

∂B1z

∂t
= −kyṽ1yBz +

∂

∂x
(v1zBx − v1xBz) . (12)

These equations constitute a set of coupled partial differen-
tial equations with non-constant coefficients that describe the
propagation of fast and Alfvén waves. As the plasma β = 0,
slow waves are excluded from the analysis. When ky = 0,
Equations (7)–(12) constitute two independent sets of equa-
tions. The two equations for ṽ1y and B̃1y are associated with
Alfvén wave propagation. On the other hand, the four equations
for the remaining variables, v1x , v1z, B1x , B1z, describe the fast
wave propagation. The basic normal mode properties of fast and
Alfvén modes in a potential arcade with ky = 0 are described in
Oliver et al. (1993), while the case ky "= 0 has been considered
by Arregui et al. (2004a). The time-dependent propagation for
ky = 0 was analyzed by Terradas et al. (2008). When longitu-
dinal propagation of perturbations is allowed (ky "= 0), the six
equations and their solutions are coupled so we may anticipate
fast and Alfvén wave propagation to display a mixed nature,
in an analogous way to the mixed character of eigenmodes ob-
tained by Arregui et al. (2004a) in their analysis of the normal
modes of the present equilibrium with ky "= 0. In the following,
the tildes in ṽ1y and B̃1y are dropped.

4. NUMERICAL METHOD AND TEST CASES

4.1. Numerical Method

The set of differential Equations (7)–(12) is too complicated
to have analytical or simple numerical solutions except for
simplified configurations and under particular assumptions. For
this reason, we solve them by using a numerical code although
comparisons with known wave properties have been carried out
whenever possible.

When considering a potential arcade as the equilibrium mag-
netic field, it is advantageous to use field-related components
instead of Cartesian components in order to characterize the
directions of interest related to the polarization of each wave
type. The unit vectors in the directions normal, perpendicular,
and parallel to the equilibrium magnetic field are given by

ên = ∇A

|∇A|
, ê⊥ = êy, ê‖ = B

|B|
, (13)

where A is the flux function given in Equation (1). These unit
vectors are related to the Cartesian ones as follows:

ên = (Bzêx − Bx êz)
|B|

, ê⊥ = êy, ê‖ = (Bx êx + Bzêz)
|B|

,

(14)

with |B| = (B2
x +B2

z )1/2. In the absence of longitudinal propaga-
tion (i.e., for ky = 0), these three directions are associated with
the three types of waves that can be excited, namely, v1n for fast
waves, v1⊥ for Alfvén waves, and v1‖ for slow waves.

Since we want to model a coronal disturbance with a localized
spatial distribution, we have considered as the initial condition
a two-dimensional Gaussian profile given by

v1 = vs exp
[
− (x − xs)2 + (z − zs)2

a2

]
, (15)

where vs is the amplitude of the velocity perturbation, xs and
zs are the coordinates of the perturbation’s center, and a is the
width of the Gaussian profile at half height. In the following,
we use v1 = v1n to excite fast waves and v1 = v1y to
excite Alfvén waves. When ky = 0, the fast mode produces
plasma motions purely normal to the magnetic field, while
the Alfvén mode is characterized by a purely perpendicular
velocity component. When propagation along the y-direction is
considered, pure fast or Alfvén modes do not exist and both
produce motions in the normal velocity component as well as in
the perpendicular velocity component (Arregui et al. 2004a). It
must be noted that the numerical code solves the time-dependent
equations in Cartesian coordinates and so the solution has to
be transformed following the expressions in Equation (14) to
the field-related coordinates. The same applies to the initial
perturbation, which must be transformed into the corresponding
Cartesian components.

The numerical code (see Bona et al. 2009, for details about the
method) uses the so-called method of lines for the discretization
of the variables and the time and space variables are treated
separately. For the temporal part, a fourth-order Runge–Kutta
method is used. For the space discretization, a finite-difference
method with a fourth-order centered stencil is chosen. For a
given spatial resolution, the time step is selected so as to satisfy
the Courant condition. As for the boundary conditions, as we
computed the time evolution of two initial perturbations, two
kinds of boundary conditions are used. First, when the initial
perturbation in v1n is the fundamental normal mode of the
ky = 0 problem, for the v1n component line-tying conditions
are chosen at all boundaries, while for the v1y component,
flow-through conditions are selected except at z = 0 where
line-tying condition is used. On the other hand, when an
initial perturbation like Equation (15) is considered, the large
photospheric inertia is accomplished by imposing line-tying
boundary conditions at z = 0. In all other boundaries, flow-
through conditions are used so that perturbations are free to
leave the system. In order to increase numerical stability, fourth-
order artificial dissipation terms are included in the numerical
scheme. In all the simulations, the effects of this artificial
dissipation have been checked to ensure that they do not affect
the obtained solution, but just contribute to eliminate undesired
high-frequency numerical modes.

4.2. Test Cases

Some preliminary tests have been performed in order to
figure out the appropriate values of numerical parameters, such
as the grid resolution or the numerical dissipation, on the
obtained results for fast and Alfvén waves. The first test we
have conducted has been to run the code with no perturbation
at all and to check that the structure remains stable. The results
of this numerical run were completely satisfactory. Then the
propagation of linear fast and Alfvén MHD waves in a potential
coronal arcade has been considered.
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4.2.1. Fast Wave

The temporal evolution of impulsively generated perturba-
tions with rather similar conditions has been accomplished by
several authors: Čadež & Ballester (1995a) obtained analytical
expressions for the temporal evolution of perturbations when
a coronal arcade is taken as the equilibrium state; Čadež &
Ballester (1995b); Oliver et al. (1998) numerically computed
such solutions when different initial perturbations are used; and
more recently, Terradas et al. (2008) showed the main properties
of the time evolution of fast and Alfvén waves in low-β environ-
ments. These works facilitate the comparison of our numerical
results with known results as well as with analytical ones.

As shown by Terradas et al. (2008), when different resolutions
are used time-dependent results reveal that the grid resolution in
our two-dimensional domain is not a critical factor for the proper
computation of fast waves and that a good representation of the
temporal evolution of perturbations can be achieved even with a
rather modest resolution of 50 × 50 grid points in the xz-plane.
As mentioned above, numerical dissipation is introduced in our
code in order to ensure numerical stability. This dissipation is
proportional to an adjustable parameter, or dissipation factor, σn.
We have conducted numerical simulations for different values of
the dissipation factor and it turns out that the temporal evolution
of fast wave perturbations is not modified.

4.2.2. Alfvén Wave

The properties of Alfvén continuum normal modes in a
potential coronal arcade described by Oliver et al. (1993) allow
us to anticipate and identify possible sources of difficulties in the
numerical computation of Alfvén wave solutions. First of all,
since they are oscillatory solutions, strongly confined around
given magnetic surfaces (both when propagating or in their
standing mode version), spatial scales quickly decrease with
time and so we can expect a rather important dependence of
the numerical solutions on the number of grid points used to
cover the area in and around the excited magnetic surfaces.
The situation becomes even worse if we take into account that
computations in a Cartesian grid do not allow us to locate all
the grid points along magnetic surfaces. This fact affects the
numerical results and adds a numerical damping. Furthermore,
when time-dependent simulations are considered the sampling
rate is no more an independent parameter. When the spatial
resolution of the grid is defined, the Courant condition gives a
maximum value for the temporal resolution which in turn sets
the maximum frequency that can be resolved.

We have first generated Alfvén waves in our potential arcade
model by considering an impulsive initial excitation of the v1y

component given by Equation (15) with zs = 1 and xs = 0. This
implies that the initial disturbance is even about x = 0 and so
odd Alfvén modes are not excited. As described by Terradas
et al. (2008), the spatial resolution of the numerical mesh
affects the obtained amplitude and frequency values. Better
resolution provides a closer value to the analytical frequency
and less numerical damping. We have also checked the influence
of numerical dissipation and the results show that only the
amplitude, and therefore the damping time, decreases when
the σn parameter is decreased. The spectral analysis of these
oscillations at different heights in the structure is shown in
Figure 2(a). The resulting power spectrum is compared to the
Alfvén continuum frequencies obtained by Oliver et al. (1993).
The frequency associated with the generated Alfvén waves
coincides with the theoretical normal mode frequencies of the

system, which gives us further confidence on the goodness of
our code. Alfvén waves stay confined to the vertical range of
magnetic surfaces that were excited by the initial disturbance,
since they cannot propagate energy across magnetic surfaces.
The initial perturbation is decomposed by the system in a linear
combination of normal modes, but keeping the even parity of
the initial disturbance with respect to x = 0, so energy is only
found in the fundamental mode, the second harmonic, etc.

In order to better isolate and show the possible numerical
artifacts that the code introduces into the numerical solution we
have considered a simpler case, the excitation of a particular
Alfvén mode around a magnetic surface. According to Oliver
et al. (1993), Alfvén normal mode solutions can be obtained
analytically when δ = 0. For this reason, we now select δ = 0.

The initial excitation could now be given by

v1y(x, z) = v̂1y(x)δ[A(x, z) − A(x = 0, zm)], (16)

where v̂1y is the regular part of the solution, A(x,z) is the flux
function defined by Equation (1), and zm gives the maximum
height of the magnetic field line in which the normal mode is
excited. It is important to note that the regular solution has a
well-defined parity with respect to the x-direction depending on
whether n is chosen even or odd. However, since a delta function
is difficult to handle from a numerical point of view, our normal-
mode-like excitation is performed by an initial perturbation of
the form

v1y(x, z) = v̂1y(x) exp
[
−A(x, z) − A(x = 0, zm)

a2

]
. (17)

For the regular part, v̂1y(x), the fundamental mode with one
maximum along the field lines has been chosen. It should be
noted that the width, a, of the initial perturbation now causes
the excitation of several Alfvén modes in a set of neighboring
magnetic surfaces. It is important to consider an initial velocity
profile which is sufficiently localized in the direction transverse
to magnetic surfaces so that only a few of them are excited.
As we concentrate on the dynamics of a restricted number
of field lines around a magnetic surface, the consideration
of other models, with different values of δ, would change
quantitatively the generated frequencies, but not the overall
qualitative conclusions shown here.

Figure 2(b) shows the temporal evolution of the excited v1y

component at a particular location as a function of time for
three different values for the width of the initial disturbance.
It is clear that three different solutions are obtained. The two
corresponding to the largest widths are rather similar, but the
one for the smaller width shows a strong damping. It must be
said that the exact solution of this ideal system should display
no time damping, hence we assert that this is a numerical effect
that cannot be attributed to a real physical damping mechanism.
This undesired effect is less important for larger widths of the
initial perturbation since, for a given number of grid points, the
initial condition is better resolved spatially.

We next fix the width of the initial disturbance, a, and
vary the spatial resolution in our domain. Figure 3 shows
several numerical simulations when an initial normal-mode-
like excitation (Equation (17)) is made at different heights. It is
clear that larger spatial resolution provides more accurately the
undamped oscillatory solution.

Also from this analysis, we conclude that the spatial resolu-
tion is not a factor that should be taken into account in an isolated
manner when considering the numerical description of Alfvén
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(a) (b)

Figure 2. (a) Shaded contours are the power spectrum of v1y at x = 0 as a function of height, z/L, and normalized frequency, ωL/vA0. In this simulation, the spatial
grid is set to 600 × 600 while the numerical dissipation is fixed to σn = 0.001. Solid lines are the theoretical frequency of the normal Alfvén modes for δ = 0, given
by Oliver et al. (1993). From bottom to top, they represent the fundamental mode and its harmonics. (b) Temporal evolution of the v1y component when the initial
perturbation is an Alfvén normal mode of the system located at x = 0 and zm/L = 0.33 (see Equation (17)). Here, δ = 0, the numerical grid has 400 × 400 points,
and σn = 0.001. Different solutions correspond to a/L = 0.01 (solid), a/L = 0.1 (dash-dotted), and a/L = 0.2 (long dashed). Time is given in units of τA = L/vA0.
(A color version of this figure is available in the online journal.)

(a) (b)

Figure 3. (a) Temporal evolution of the v1y velocity component at x = 0 and zm/L = 0.33 for an initial perturbation given by Equation (17) with a/L = 0.2 and
σn = 0.001. (b) Temporal evolution of the v1y velocity component at x = 0 and zm/L = 0.66 for an initial perturbation with a/L = 0.2 and σn = 0.001. In both
panels, solid, dash-dotted, and long dashed lines represent a resolution of 200 × 200, 400 × 400, and 600 × 600 points, respectively.

waves on given magnetic surfaces. Indeed, and because of the
Cartesian distribution of grid points in a system of curved mag-
netic field lines, low-lying magnetic lines are poorly resolved
when compared to high-lying magnetic lines for a given grid
resolution. This has implications that are worth to be taken into
account as can be seen in Figure 3. If we compare signals in
Figure 3, we can see that all parameters being the same, closer
results to the analytical solution are obtained for higher mag-
netic field lines. We can therefore assert that for the numerical
simulation of Alfvén wave properties, the resolution of the grid
is an important parameter and that it becomes more critical for
low-lying magnetic field lines than for higher ones. It should
be noted that the conclusions of these tests can also be applied
to the case in which an impulsive excitation is set as the initial
perturbation.

5. NUMERICAL RESULTS

In this section, we present the main results from our numerical
investigation. For simplicity, first, the temporal evolution of a
normal-mode-like fast disturbance is analyzed in order to show
how and where resonant absorption, due to three-dimensional
propagation of perturbations in a non-uniform medium, takes
place. It turns out that previous results obtained for the normal
modes of coupled fast and Alfvén waves in a potential arcade
by Arregui et al. (2004a) can guide us to understand the
time evolution of the system and the energy transfer between

resonantly coupled modes. Then, a more complex situation
is considered by analyzing the time evolution of the initial
perturbation given by Equation (15). It should be noted that
our first normal mode time evolution analysis has been proved
very useful to further better understand the resulting coupling
process between both velocity components when a localized
impulsive disturbance is used.

5.1. Resonant Damping of Fast MHD Normal Modes in a
Potential Arcade

In order to gain some insight into the propagation properties
of coupled fast and Alfvén waves in our configuration, we
first study the time evolution caused by an initial disturbance
having the spatial structure of a fast normal mode for ky = 0
(propagation in the xz-plane). As shown by Oliver et al. (1993),
pure fast modes in a potential arcade are characterized by a
global spatial structure determined by the wavenumbers kx and
kz, which give rise to smooth distributions with a given number
of maxima in the x- and z-directions. This results in a discrete
spectrum of frequencies. The frequencies and spatial structure
of the fast modes with ky "= 0 were computed by Arregui et al.
(2004a), who showed that perpendicular propagation produces
the coupling of the fast normal modes to Alfvén continuum
solutions, resulting in modes with mixed properties. We have
chosen as initial perturbation the velocity perturbation v1n of the
fundamental fast mode for ky = 0, with one maximum in each
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Figure 4. Several snapshots of the two velocity components, v1n and v1y , and of the total energy density in a potential arcade with δ = 2 and for kyL = 1. The initial
perturbation in v1n is the fundamental normal mode of the ky = 0 problem. For this simulation, a 600 × 600 grid is used. Magnetic field lines are represented with
white (left and middle panels) and black lines (right panels). A movie displaying the full time evolution is available in the electronic version of the journal.

(An animation and a color version of this figure are available in the online journal.)

direction in the xz-plane. When ky = 0, this produces a standing
harmonic oscillation of the system, as in an elastic membrane.
When ky "= 0, this initial perturbation is not a normal mode of
the system, but we expect that the obtained temporal evolution
will not differ very much from the actual normal mode of the
coupled solution.

Figure 4 displays the results of such simulation. The first
frame for v1n shows the initial spatial distribution of the
perturbation. Initially, v1y , the velocity component associated
with Alfvén waves, is zero. As time evolves, a non-zero v1y

component appears because of the coupling introduced by the
three-dimensional propagation. The panels for v1y in Figure 4
show that unlike v1n the excited transversal perturbations are not
globally distributed in the potential arcade, but only at preferred
locations, around a few magnetic surfaces. When the v1n and
v1y signals are measured at one of those locations, x = 0,
z/L = 0.35, it is seen that the amplitude related to the fast-
like perturbation decreases in time, while the amplitude of the
Alfvén-like component of the perturbation increases in time, see
Figure 5. This is an indication of the wave energy transfer due

35



CHAPTER 2. THREE-DIMENSIONAL PROPAGATION OF MHD WAVES

No. 1, 2010 THREE-DIMENSIONAL PROPAGATION OF MAGNETOHYDRODYNAMIC WAVES 657

Figure 5. Temporal evolution of the normal, v1n (solid line), and perpendicular,
v1y (dashed line), velocity components at x = 0, z/L = 0.35. Data taken from
the simulation shown in Figure 4.

to the resonant coupling of the excited fast normal mode to the
Alfvénic solution around the excited magnetic surface. For long
times, a decrease in the amplitude of the velocity component,
v1y , can be appreciated and is attributed to numerical damping,
for the reasons explained in Section 4.2.2.

Further confirmation of the resonant wave energy transfer
occurring between the modes can be obtained by computing the
time evolution of the total energy density in our system. This
total wave energy can be computed as

δE(r, t) = 1
2

[
ρ0

(
v2

1x + v2
1y + v2

1z

)
+

1
µ0

(
B2

1x + B2
1y + B2

1z

)]
.

(18)

The right-hand side panels in Figure 4 show the spatial dis-
tribution of this quantity as a function of time. The different
frames clearly indicate that, initially, the energy is distributed
globally around the center of the system, which corresponds to
the initial perturbation we have used. At later times, this energy
is transferred to magnetic surfaces around the particular mag-
netic field line in the arcade where the signals in Figure 5 have
been measured. The location of this energy deposition is not
an arbitrary one. As previous theoretical works on the resonant
energy transfer have shown (e.g., Wright 1992; Halberstadt &

Goedbloed 1993; Ruderman et al. 1997; Arregui et al. 2004a;
Russell & Wright 2010), global fast modes resonantly couple
to localized Alfvén continuum modes at the magnetic surfaces
where the frequency of the fast mode matches that of the corre-
sponding Alfvén mode. In our case, the spectral analysis of the
wave energy densities associated with the normal and perpen-
dicular components, plotted in Figure 6, allow us to confirm the
resonant energy transfer at the location where the fundamental
fast mode frequency crosses the Alfvén continuum, that exactly
corresponds to the magnetic surface where Alfvénic oscillations
are excited and energy transfer occurs, see Figure 6(b). Although
the fast mode frequency crosses other Alfvén continua, coupling
can only occur if the parity of the fast and Alfvén eigenfunc-
tions along the field lines is the same, see further details in
Arregui et al. (2004a). This prevents the coupling with Alfvén
continuum modes with two extrema along field lines. Even if
the coupling with Alfvén modes with three extrema along field
lines is allowed, we find no signatures of this resonant coupling
in the power spectrum analysis nor the wave energy density
evolution.

5.2. Propagation of Coupled Fast and Alfvén Disturbances in a
Potential Coronal Arcade

Oscillations in coronal magnetic structures are believed to
be generated by nearby disturbances, such as flares or filament
eruptions. It is clear that such disturbances are far from being
a normal mode of a particular structure as our potential arcade.
Therefore, we have next considered the impulsive excitation
of perturbations by means of a localized disturbance, which is
expected to be a better representation of the real phenomena
that often trigger waves and oscillations in the solar corona.
In particular, a Gaussian velocity perturbation is considered
and the response of the system is expected to be different
from the one described in Section 5.1, since now the initial
perturbation is likely to be decomposed in a linear combination
of normal modes with different frequencies that will constitute
the resulting propagating wave.

We have produced an impulsive excitation of the v1n velocity
component of the form given by Equation (15) and have con-
sidered ky != 0. Time evolution of the velocity components and
the total energy density are displayed in Figure 7, which shows
that the generated wave has both normal and perpendicular ve-
locity components. Note that v1y = 0 in the absence of ky (see
Terradas et al. 2008). It is clear in Figure 7 that the perturbed

(a) (b)

Figure 6. Shaded contours represent the power spectrum of (a) δEn and (b) δEy as a function height, z/L, at the symmetry plane x = 0, for the simulation shown in
Figure 4. Note that because of the quadratic nature of the wave energy density, the curved lines have double the frequency of the Alfvén continua given by Oliver et al.
(1993) and the horizontal lines have double the frequency of the fast normal mode.
(A color version of this figure is available in the online journal.)
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Figure 7. Time evolution of the v1n (left panels), v1y (middle panels) velocity components, and of the total energy density (right panels) in a potential arcade with
δ = 1. The initial perturbation is imposed on the v1n component with xs = 0, zs = 1, vs = 10−4vA0, a = 0.2L (see Equation (15)), and kyL = 1. For this simulation,
a 600 × 600 grid is used. Magnetic field lines are represented with white (left and middle panels) and black lines (right panels). A movie displaying the full time
evolution is available in the electronic version of the journal.

(An animation and a color version of this figure are available in the online journal.)

normal velocity component evolution is similar to the one pre-
sented by Terradas et al. (2008) for the decreasing Alfvén speed
model with constant density and ky = 0. For the normal ve-
locity component, the shape of the wavefront is not circular,
due to the fact that perturbations propagate faster toward the
photosphere. For large times, the front tends to be planar as
the initial curvature of the wave packet is lost. As for the per-
pendicular velocity perturbation that is excited because of the
three-dimensional character of the wave, its spatial distribution

is highly anisotropic, with the signal concentrated around many
magnetic surfaces. A wavefront with fast-like properties, similar
to the one present in v1n, can also be seen to propagate upwards
producing v1y perturbations until it leaves the system. At the
end, a collection of Alfvénic oscillations are generated in the
arcade. By comparing with the results presented in the previ-
ous section, we can think about them as being generated by the
resonant coupling between the fast-like wavefront and several
Alfvén continuum solutions, instead of the single resonance case
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Figure 8. Top panels: several snapshots of the spatial distribution of the normal velocity component along x = 0. The values of the longitudinal wavenumber are
ky = 0 (solid line), kyL = 3 (dotted), kyL = 7 (dashed), and kyL = 10 (dash-dotted). Bottom panels: position of the wavefront as a function of time when different
values of the delta parameter, δ = 1 (left), δ = 2 (middle), and δ = 3 (right), and longitudinal wavenumber, ky = 0 (squares) and kyL = 10 (triangles), are selected.
The solid line shows the analytical solution for the wavefront position when longitudinal propagation is not allowed (ky = 0), see Equation (19).

shown in Section 5.1. Once excited, magnetic surfaces remain
oscillating with their natural period and for large times they are
phase-mixed because of the transverse non-uniformity.

We have next analyzed in a quantitative way the effect
of ky on the properties of the generated fast-like wavefront
and the induced Alfvénic oscillations. Regarding the fast-like
wavefront, Figure 8 (top panels) shows different snapshots of
the cut along x = 0 of the v1n component for different values
of ky. These figures indicate that the larger the value of ky, the
faster the wavefront propagates. The propagation velocity can be
measured by plotting the position of the wavefront maximum as
a function of time (see Figure 8, bottom left). The time evolution
of the wavefront is followed for t ! t0 and the initial position
of the maximum is denoted by z0. For this relatively simple
case, the numerical results can be compared with the analytical
formula obtained by the integration of the local Alfvén speed
profile (see Equation (5) in Oliver et al. 1998). The resulting
expression is

z(t) = 2ΛB

2 − δ
log

[
±vA0

2 − δ

2ΛB

(t − t0) + exp
(

2 − δ

2ΛB

z0

)]
,

(19)
where the + and − signs correspond to upward and downward
propagation, respectively. Figure 8 (bottom panels) shows a per-
fect correspondence between the numerically measured speed
and the analytical expression when different models of the solar
atmosphere are considered. The increase of the travel speed of
fast-like wavefronts when ky "= 0 is an important property to be
taken into account in the three-dimensional problem.

For the Alfvénic oscillations, the power spectrum is analyzed
in a cut along x = 0, which allows us to study the power on
different magnetic surfaces. Figure 9 shows power at a large
number of magnetic surfaces, not just around a selected group
of field lines around a given magnetic surface, so a wide range
of magnetic surfaces are excited because of the coupling. Also,
not just the fundamental mode is excited, but also several higher
harmonics. All of them have even parity with respect to x = 0,
which corresponds to the parity of the v1n perturbation and the

Figure 9. Shaded contours represent the normalized power spectrum of the v1y

velocity component corresponding to the simulation shown in Figure 7 as a
function of the maximum height of field lines, z/L, and normalized frequency,
ωL/vA0. Solid lines are the theoretical frequency of the Alfvén normal mode
obtained by Oliver et al. (1993). The frequency analysis is made at the symmetry
plane, x = 0.
(A color version of this figure is available in the online journal.)

parity rule for ky "= 0 (Arregui et al. 2004a). When comparing
the power spectrum obtained from the numerical solution with
the analytical Alfvén continuum frequencies given by Oliver
et al. (1993) for the case ky = 0, we see that the signal
coincides with the analytical curves for ky = 0. As expected,
perpendicular propagation has no effect on the frequencies of
Alfvén waves generated on different magnetic surfaces in the
arcade. This is a known result since ω ∼ (k · B).

As with the normal mode case, a quantitative analysis of
the time evolution of the wave energy of the system helps to
better understand the process of energy conversion between fast
and Alfvén waves. Figure 7 (right-hand side panels) shows the
evolution of the total energy density as a function of time. At
early stages, this quantity shows a clear signature of a fast-like
wavefront propagating through the domain. For long times, the
energy deposition is spatially distributed on the whole system,
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Figure 10. Solid (δ = 1), dotted (δ = 2), and dashed (δ = 3) lines are the
normalized total energy (thick lines) and the normalized total energy associated
with the y-direction (thin lines) as a function of time for kyL = 1.

not only on a single magnetic surface, as in the previous section.
Although a large part of the energy leaves the system in the form
of fast-like wavefronts, part of the energy remains trapped in the
Alfvénic oscillations that are resonantly excited in the arcade.
The amount of energy trapped in the system can be calculated
by the integration of the total energy density (see Equation (18))
in the whole domain as a function of time. The result is shown in
Figure 10 (solid line). For short times the total energy remains
almost constant, but when the fast front reaches the boundaries
of the system a strong decrease of this quantity is seen. Resonant
wave conversion very quickly produces velocity perturbations

in the y-direction and the energy associated with these Alfvénic
components grows up to its maximum value before the fast
wavefront leaves the system. At later stages, a fraction of around
5%–10% of the initial total energy is retained in the system and
the total energy remains almost constant in the subsequent time
evolution. We must note that this energy is trapped even in the
absence of any density enhancement or wave cavity.

So far, we have used fixed values for the perpendicular
propagation wavenumber, ky, and the ratio of magnetic to
density scale heights, δ. We have next analyzed the influence of
these parameters on the obtained results concerning the energy
transfer between fast and Alfvén waves. Figure 11 shows the
total energy time evolution for different values of ky. Several
conclusions can be extracted. First, the amount of energy that
is trapped by the system in the form of Alfvénic oscillations
increases with ky and is above 40% for the largest value of this
parameter that we have considered. This can be understood in
terms of stronger resonant coupling occurring for larger values
of ky. The relation between the total energy and the energy
associated with the y-direction also changes with ky, in such a
way that, while for relatively small ky almost all the energy of
the system is stored in oscillations in the y-direction, for larger
values of ky there is a difference between the total energy and the
Alfvénic energy for large times. To understand this, we need to
mention that for ky != 0 Alfvén waves have both perpendicular
and normal velocity components and so Alfvén wave energy
is not only contained in the y-direction. Although this effect is
less visible in the simulations it can be measured, as shown in
Figure 11. Note also that for large times the two energy densities
decay. This is due to numerical damping, since when very small

(a) (b)

(c) (d)

Figure 11. Normalized total energy of the system as a function of time (solid line) and normalized energy associated with the y-direction (dotted line) for δ = 1 and
different values of the longitudinal wavenumber: (a) kyL = 3, (b) kyL = 5, (c) kyL = 7, and (d) kyL = 9.
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scales are created the spatial resolution used is not fine enough to
handle the localized Alfvénic oscillations that are phase-mixed
for large times (see Section 4.2.2).

As for the δ parameter, it controls our model atmosphere,
since it allows us to select different ratios of the magnetic
scale height to the density scale height. By repeating the
previous numerical experiments for two additional values of
this parameter, the following results are obtained (see Figure 8,
bottom panels). Depending on the value of δ, the Alfvén speed
profile in the vertical direction has a steeper or flatter profile.
This means that the time that a fast-like perturbation needs to
reach the boundaries of the system and leave, it varies with δ.
Therefore, the time at which the sudden decrease of the total
energy of the system occurs differs for different values of δ,
see Figure 10. However, the fractional amount of wave energy
that is transferred to Alfvén waves and is trapped in the system
does not depend on the model atmosphere we use. Nevertheless,
the rate at which the energy transfer occurs does depend on the
model atmosphere that can be appreciated from the different
slopes of the energy in Figure 10.

6. CONCLUSIONS

In this paper, we have studied the temporal evolution of
coupled fast and Alfvén waves in a potential coronal arcade
when three-dimensional propagation is allowed. Because of
the inclusion of three-dimensional dependence on the perturbed
quantities, fast and Alfvén waves are coupled and the resulting
solutions display a mixed fast/Alfvén character. The non-
uniform nature of the considered medium produces the coupling
to be of resonant nature, in such a way that transfer of energy
and wave damping occur in the system.

First, the nature of resonant coupling between a fast normal
mode of the system and Alfvén continuum modes has been
analyzed. It is seen that the fast mode with a global nature
resonantly couples to localized Alfvén waves around a given
magnetic surface in the arcade, thus transferring its energy to the
latter. The position of the resonant surface perfectly agrees with
the resonant frequency condition predicted by several authors
in previous studies of this kind, and with the parity rules given
by Arregui et al. (2004a).

Next, the temporal evolution of a localized impulsive distur-
bance has been analyzed. The inclusion of perpendicular prop-
agation produces an increase in the wave propagation speed for
the fast-like wavefront when compared to the purely poloidal
propagation case. As in the previous case, perpendicular prop-
agation induces the excitation of Alfvénic oscillations around
magnetic surfaces, due to the resonant coupling between fast and
Alfvén waves. Now these oscillations cover almost the whole
domain in the arcade, so that the energy of the initial pertur-
bation is spread into localized Alfvénic waves. The frequency
of the induced Alfvénic oscillations is seen to be independent
from the perpendicular wavenumber. As time progresses and the
initial wavefront leaves the system, part of the energy is stored
in these Alfvén waves which remain confined around magnetic
surfaces. Phase mixing then gives rise to smaller and smaller
spatial scales, until the numerical code is unable to properly fol-
low the subsequent time evolution. The energy trapping around
magnetic surfaces occurs even in the absence of a density en-
hancement or a wave cavity structure, and is only due to the
non-uniformity of the density profile and the magnetic structur-
ing, which lead to a non-uniform Alfvén speed distribution.

Finally, the efficiency of this wave energy transfer between
large-scale disturbances and small-scale oscillations has been
studied as a function of the perpendicular wavenumber and for
different values of the ratio of the magnetic scale height to the
density scale height. It is seen that the first factor strongly affects
the amount of energy trapped by Alfvén waves. The amount of
energy trapped by the arcade increases for increasing value of
the perpendicular wavenumber. The particular ratio of magnetic
to density scale heights determines how fast the available fast
wave energy leaves the system and, therefore, the rate at which
energy can be transferred to Alfvén waves, but not the final
amount of energy stored by the arcade in the form of Alfvénic
oscillations.

The authors acknowledge the Spanish MCyT for the fund-
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ABSTRACT

We investigate the temporal evolution of impulsively generated perturbations in a potential coronal arcade with an
embedded loop. For the initial configuration we consider a coronal loop, represented by a density enhancement,
which is unbounded in the ignorable direction of the arcade. The linearized time-dependent magnetohydrodynamic
equations have been numerically solved in field-aligned coordinates and the time evolution of the initial perturbations
has been studied in the zero-β approximation. For propagation constrained to the plane of the arcade, the considered
initial perturbations do not excite trapped modes of the system. This weakness of the model is overcome by the
inclusion of wave propagation in the ignorable direction. Perpendicular propagation produces two main results.
First, damping by wave leakage is less efficient because the loop is able to act as a better wave trap of vertical
oscillations. Second, the consideration of an inhomogeneous corona enables the resonant damping of vertical
oscillations and the energy transfer from the interior of the loop to the external coronal medium.

Key words: Sun: atmosphere – Sun: corona – Sun: oscillations – Sun: surface magnetism

Online-only material: animations, color figures

1. INTRODUCTION

A phenomenon that has attracted the attention of solar
physicists in the last years is the discovery of transverse
oscillations of coronal loops observed in EUV wavelengths
(171 Å) with the Transition Region and Coronal Explorer in
1998. The oscillatory amplitude and period are of the order of
a few Mm and a few minutes, respectively, and one of the most
interesting features of these oscillations is that their amplitude
decreases quickly with time, typically in a few periods. Some
examples of this oscillatory phenomenon, namely flare-excited
transversal oscillations, were reported by Aschwanden et al.
(1999), Nakariakov et al. (1999), and more recently by Wang
& Solanki (2004), Hori et al. (2005), Verwichte et al. (2009,
2010), Aschwanden & Schrijver (2011), White & Verwichte
(2012), and Wang et al. (2012). Extensive overviews of this
phenomenon can be found in Aschwanden et al. (2002, 2009)
and Schrijver et al. (2002).

The first theoretical studies of the oscillatory modes of coro-
nal flux tubes modeled as straight magnetic cylinders were done
by Wentzel (1979), Spruit (1981), Edwin & Roberts (1983),
and Roberts et al. (1984). Later, flare-generated transverse
oscillations were interpreted as fast kink eigenmode oscilla-
tions of straight cylindrical tubes (Nakariakov & Ofman 2001;
Ruderman & Roberts 2002; Goossens et al. 2002). In the context
of curved coronal magnetic structures, Goossens et al. (1985),
Poedts et al. (1985), and Poedts & Goossens (1988) investi-
gated the continuous spectrum of ideal magnetohydrodynamics
(MHD). Oliver et al. (1993, 1996) and Terradas et al. (1999)
derived the spectrum of modes in potential and non-potential
arcades. More complex configurations, such as sheared mag-
netic arcades in the zero plasma-β limit, have been studied
by Arregui et al. (2004a, 2004b). Other authors have stud-
ied eigenmodes in curved configurations with density enhance-
ments that represent coronal loops (e.g., Smith et al. 1997; Van
Doorsselaere et al. 2004; Terradas et al. 2006b; Verwichte et al.
2006a, 2006b, 2006c; Dı́az et al. 2006; Van Doorsselaere et al.
2009). The fact that the corona is a highly inhomogeneous and
structured medium complicates the theoretical description of

MHD waves and it is believed that this could be the underly-
ing cause of the observed wave damping. Several mechanisms
of wave damping have been proposed, the most popular being
phase mixing (Heyvaerts & Priest 1983), resonant absorption
(Hollweg & Yang 1988; Goossens 1991; Goossens et al. 2002;
Ruderman & Roberts 2002; Van Doorsselaere et al. 2004, and
references therein), and more recently wave leakage by tunnel-
ing (Brady & Arber 2005; Brady et al. 2006; Verwichte et al.
2006a, 2006b, 2006c; Dı́az et al. 2006).

Although normal modes should be seen as the building
blocks for the interpretation of coronal loop oscillations they
do not represent the whole picture, but their study provides
a basis for understanding the dynamics of the system. To
have a more complete description, the time-dependent problem
needs to be analyzed. Using this method, Čadež & Ballester
(1995a, 1995b) studied analytically the propagation of fast
waves in a two-dimensional coronal arcade with uniform Alfvén
speed. Oliver et al. (1998) studied the effect of impulsively
generated fast waves in the same coronal structure. Del Zanna
et al. (2005) studied the properties of Alfvén waves in an
arcade configuration, including a transition region between the
photosphere and the corona. Terradas et al. (2008b) used a
potential arcade embedded in a low β environment to study the
properties of linear waves. Other studies have analyzed the effect
of the loop structure on the properties of fast and slow waves
in two-dimensional curved configurations (see, e.g., Brady &
Arber 2005; Murawski et al. 2005; Brady et al. 2006; Selwa
et al. 2006, 2007); see Terradas (2009) for a review.

The aim of this work is to examine two physical mechanisms
that may be involved in the fast attenuation of the observed
vertical coronal loop oscillations, namely wave leakage through
wave tunneling and resonant absorption. Regarding wave tun-
neling, Brady & Arber (2005) considered a curved flux tube with
enhanced density at the center and excited transverse motions
of the tube with a driver located at one footpoint. Among other
results, they showed that in this model there are no perfectly
confined modes, only modes with varying degrees of leakage
by tunneling. Verwichte et al. (2006a) considered the same semi-
circular slab with a piecewise density. The density profile can

1
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(a) (b)

Figure 1. (a) Magnetostatic configuration of the potential coronal arcade described by Equations (1) and (2), where the solid curves represent magnetic field lines,
given by A(x, z) = constant. These curves in the xz-plane become arcade surfaces in three dimensions. In this model, z measures the vertical distance from the base of
the corona (placed at z = 0). The black region represents a coronal loop embedded in the arcade. The two orthogonal unit vectors defining the normal and the parallel
directions, ên and ê‖, are also shown at a particular point. (b) Same as (a) in the χψ-plane. Curved magnetic field lines in the xz-plane become straight lines in this
flux coordinate system and therefore a curved loop becomes a straight slab. The four boundaries are color-coded to show their correspondence with lines and points
in panel (a).

be modified by means of a parameter, and the authors concluded
that only for a particular value of this parameter, which leads to
an Alfvén speed linearly varying with r, can the system support
trapped wave modes. Later, Brady et al. (2006) studied a straight
slab model that includes a variable tunneling region in order to
compare the results for a straight cylinder and the semi-circular
slab considered by Brady & Arber (2005). Finally, in Verwichte
et al. (2006b) the authors extended the study done by Verwichte
et al. (2006a) by considering the models for which non-trapped
modes can be found. They concluded that the resulting modes
are damped by lateral leakage, which includes the wave tunnel-
ing mechanism. In this paper the authors classified the modes
that leak energy into leaky and tunneling. The model used by
these authors is very similar to our model when perpendicular
propagation is not considered. Damping by resonant absorp-
tion, which is caused by the inhomogeneity of the medium, has
mainly been studied in single magnetic slabs (Terradas et al.
2005; Arregui et al. 2007) and in single magnetic cylinders
(Ruderman & Roberts 2002; Terradas et al. 2006a), for ex-
ample. Nevertheless, more complex equilibrium models have
also been considered (Van Doorsselaere et al. 2004; Terradas
et al. 2006b, 2008a). Rial et al. (2010) have recently considered
the coupling of fast and Alfvén modes in a potential coronal
arcade with a three-dimensional propagation of perturbations.
This study shows that because of the inclusion of perpendicu-
larly propagating fast wave, energy can easily be converted into
Alfvén wave energy at given magnetic surfaces by means of res-
onant coupling. Our analysis aims to extend the model of Rial
et al. (2010) by including a density enhancement in a curved
magnetic configuration in order to study how three-dimensional
propagation affects the efficiency of the damping of vertical
loop oscillations by wave leakage and how the inhomogeneity
of the corona can produce coupling of modes and energy trans-
fer. Our preferred procedure to perform this investigation is to
first study the normal modes of the equilibrium configuration,
which allows us to obtain insight into its dynamics. Neverthe-
less, we lack a suitable tool for this task, and for this reason we
numerically solve the initial value problem using the linearized
MHD equations.

The paper is organized as follows. In Section 2, we describe
the equilibrium configuration as well as the approximations
made in this work. In Section 3, we present the linear ideal
MHD wave equations with three-dimensional propagation of

perturbations. In Section 4, we describe the numerical setup to-
gether with the initial and boundary conditions. In Section 5,
we will describe the linear wave propagation properties of cou-
pled fast and Alfvén waves in a two-dimensional coronal loop
including three-dimensional propagation. Finally, in Section 6
we will give the conclusions and a discussion of the results.

2. EQUILIBRIUM CONFIGURATION

The equilibrium magnetic field is a potential arcade contained
in the xz-plane (see Oliver et al. 1993 for more details). In
Cartesian coordinates the flux function is

A(x, z) = B0ΛB cos
(

x

ΛB

)
exp

(
− z

ΛB

)
, (1)

and the magnetic field components are given by

Bx(x, z) = B0 cos
(

x

ΛB

)
exp

(
− z

ΛB

)
,

Bz(x, z) = −B0 sin
(

x

ΛB

)
exp

(
− z

ΛB

)
. (2)

In these expressions, ΛB is the magnetic scale height, which is
related to the lateral extent of the arcade, 2L, by ΛB = 2L/π ,
and B0 is the magnetic field strength at the base of the corona
(z = 0). The overall shape of the arcade is shown in Figure 1(a).

In this paper, gravity is neglected and the β = 0 approxima-
tion is used. Under these assumptions the equilibrium density,
ρ, can be chosen arbitrarily. We consider a loop with uniform
density, ρ0, embedded in a corona whose density, ρe, is also
uniform and smaller than that of the loop by a factor 10, i.e.,
ρe = ρ0/10; see Figure 1(a). This density configuration is cho-
sen so as to minimize numerical problems in the time-dependent
simulations. The vertical density profile at the arcade center is
shown in Figure 2(b).

The combination of the magnetic field of Equation (2) with
this sharp density profile leads to the following Alfvén speed
distribution:

vA(x, z) =






vA0 exp
(
− z

ΛB

)
, inside the loop,

vAe exp
(
− z

ΛB

)
, otherwise,

(3)
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(a)
(b)

Figure 2. (a) Two-dimensional distribution of the Alfvén speed in Cartesian coordinates. Some magnetic field lines (black curves) have been represented. (b) Vertical
variation along the z-axis of the density (solid line) and Alfvén speed (dotted line) for the coronal loop configuration of Figure 1.
(A color version of this figure is available in the online journal.)

where vA0 = B0/
√

ρ0µ0 and vAe = B0/
√

ρeµ0 are the Alfvén
speed inside and outside the loop at the base of the corona
(z = 0). This formula gives vA at any point on the xz-plane. Note
that the Alfvén speed varies both along and across magnetic field
lines in our curved configuration; see Figure 2(a). Our choice
of the density profile leads to a plasma field structuring that is
inherently two-dimensional.

Oliver et al. (1996) and Arregui et al. (2004a) showed
that an appropriate description of normal modes in a curved
structure, such as the one considered here, can be obtained
by solving the MHD equations in flux coordinates, which are
determined by the previous selection of the equilibrium field
in Equation (2). Appropriate flux coordinates are given by the
following expressions:

ψ(x, z) = cos
(

x

ΛB

)
exp

(
− z

ΛB

)
, 0 ! ψ ! 1, (4)

χ (x, z) =
sin

(
x

ΛB

)
exp

(
− z

ΛB

)

(1 − ψ2)1/2
, −1 ! χ ! 1, (5)

where ψ and χ are the coordinates across and along the
equilibrium magnetic field lines. The normalization of the length
of all field lines to the same value is achieved by the factor
(1 − ψ2)1/2 in the denominator of Equation (5). One of the
advantages of using this coordinate system is that it enables
us to include the whole coronal arcade in the finite domain
ψ ∈ [0, 1], χ ∈ [−1, 1]. In this domain magnetic field lines are
straight and each of them is represented by a different value of
ψ . In addition, the magnetic field strength depends on both ψ
and χ . The shape of the potential arcade and the coronal loop
in these field-related coordinates is shown in Figure 1(b).

3. MAGNETOHYDRODYNAMIC EQUATIONS
AND LINEAR WAVES

In order to study small-amplitude oscillations in our potential
arcade with an embedded loop the previous equilibrium is
perturbed. For linear and adiabatic MHD perturbations in the
zero-β approximation the relevant equations are

ρ
∂v1

∂t
= 1

µ0
(∇ × B1) × B, (6)

∂B1

∂t
= ∇ × (v1 × B), (7)

where ρ and B are the equilibrium density and magnetic field
and the subscript 1 is used to represent the perturbed velocity,
v1, and magnetic field, B1.

The numerical procedure to solve Equations (6) and (7) is
first presented for a general equilibrium structure. In order to
characterize the directions of interest related to the polarization
of each wave type it is advantageous to use field-related
components instead of Cartesian ones. The unit vectors in the
directions normal, perpendicular, and parallel to the equilibrium
magnetic field are given by

ên = ∇A

|∇A|
,

ê⊥ = êy ,

ê‖ = B
|B|

, (8)

where A is the flux function, given by Equation (1), and
|B| = B0 exp (−z/ΛB) is the magnetic field strength at a
point (x, z). Using this new basis the perturbed velocity and
magnetic field are written as v1 = v1nên + v1y êy + v1‖ê‖ and
B1 = B1nên + B1y êy + B1‖ê‖. In a low-β plasma and in the
absence of perpendicular propagation, the three components are
associated with the velocity perturbation of the three types of
waves that can be excited, namely v1n for fast waves, v1y for
Alfvén waves, and v1‖ for slow waves. Note that here v1‖ = 0
because β = 0.

As the equilibrium is invariant in the y-direction, we can
Fourier analyze all perturbed quantities in the y-direction by
making them proportional to exp (ikyy), where ky is the perpen-
dicular wave number. In this way, three-dimensional propaga-
tion is introduced and each Fourier component can be studied
separately. As a result of this Fourier analysis, the perturbed per-
pendicular velocity and magnetic field components are purely
imaginary quantities and as our code is designed to handle real
quantities—it is necessary to make the appropriate redefinitions
(see Rial et al. 2010, for more details) to treat them as real. The
field-related components of the MHD wave equations can be

3
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cast in the following manner:

∂v1n

∂t
= |B|

µ0ρ
[(Ba − ψa∂ψ − χa∂χ )B1‖

+ (ψs∂ψ + χs∂χ − Bs)B1n], (9)

∂v1y

∂t
= |B|

µ0ρ
[(ψs∂ψ + χs∂χ )B1y + kyB1‖], (10)

∂B1n

∂t
= |B|(ψs∂ψ + χs∂χ + Bs)v1n, (11)

∂B1y

∂t
= |B|(ψs∂ψ + χs∂χ )v1y, (12)

∂B1‖

∂t
= − |B|[kyv1y + (ψa∂ψ + χa∂χ + Ba)v1n], (13)

where ∂ψ and ∂χ are the derivatives normal and parallel to field
lines,

∂ψ ≡ ên · ∇,
∂χ ≡ ê‖ · ∇.

(14)

Furthermore, the quantities ψs , ψa , χs , χa , Bs, and Ba, which
represent the derivatives of the flux coordinates and the unper-
turbed magnetic field strength along (subscript “s”) and across
(subscript “a”) magnetic field lines, are defined in Oliver et al.
(1996),

ψa = 1
|B|

(∇A · ∇)ψ, ψs = 1
|B|

(B · ∇)ψ,

χa = 1
|B|

(∇A · ∇)χ , χs = 1
|B|

(B · ∇)χ ,

Ba = 1
|B2|

(∇A · ∇)B, Bs = 1
|B2|

(B · ∇)B. (15)

Note that this general derivation and implementation of the
governing equations enables us to apply the scheme to other
configurations for which flux coordinates can be defined. It
is only necessary to provide expressions for the variables in
Equations (15), which in the present configuration are

ψa = (ψ2 + χ 2(1 − ψ2))1/2

ΛB

, ψs = 0,

χa = (ψ2 + χ 2(1 − ψ2))1/2ψ2

ΛB (1 − ψ2)
, χs = (ψ2 + χ 2(1 − ψ2))1/2

ΛB (1 − ψ2)1/2
,

Ba = ψ

(ψ2 + χ 2(1 − ψ2))1/2ΛB

, Bs = χ (1 − ψ2)1/2

(ψ2 + χ 2(1 − ψ2))1/2ΛB

.

(16)

Equations (9)–(13) constitute a set of coupled partial dif-
ferential equations with non-constant coefficients that describe
the propagation of fast and Alfvén waves. When ky = 0,
Equations (9)–(13) constitute two independent sets of
equations. The two equations for v1y and B1y are associated
with Alfvén wave propagation. On the other hand, the three
equations for the remaining variables, v1n, B1n, B1‖, describe
fast wave propagation.

4. NUMERICAL METHOD AND INITIAL AND
BOUNDARY CONDITIONS

The obtained set of differential equations are too complicated
to have analytical or simple numerical solutions. For this reason
we have solved them with a numerical code, called MoLMHD,

using flux coordinates. This particular choice of coordinates is
crucial for the proper computation of the solutions, and has been
overlooked in previous numerical studies. The numerical code
(see Bona et al. 2009; Terradas et al. 2008b, for details about
the method) makes use of the so-called method of lines for the
discretization of the derivatives and the time and space variables
are treated separately. For the temporal part, a fourth-order
Runge-Kutta method is used, while for the spatial discretization
a finite-difference method with a fourth-order centered stencil is
chosen. For a given spatial resolution, the time step is selected
so as to satisfy the Courant condition. Finally, a fourth-order
artificial dissipation has been added to have more robust stability.
In the simulations, we have checked that the effect of the
artificial dissipation does not affect the solution, while it is
enough to eliminate possible high-frequency numerical modes.

We try to mimic the observed vertical oscillations of coronal
loops in the corona when a sudden release of energy occurs
and perturbs the structure. Since we are concerned with the
excitation of fast waves, our initial perturbation is such that
only the normal velocity component is disturbed, whereas all
the other variables (v1y , B1n, B1y , B1‖) are initially set to zero.
To initially excite the system we have chosen a two-dimensional
profile in v1n with, respectively, a cosine function and a Gaussian
profile along and across field lines,

v1n(χ ,ψ) = v0 cos(k‖χ ) exp

[

−
(

ψ − ψ0

a

)2
]

. (17)

This expression represents an initial disturbance that perturbs a
range of field lines centered about the field line ψ = ψ0. Here v0
is the initial amplitude of the disturbance, a is related to the range
of field lines initially affected by the perturbation, and k‖ is the
wave number of the disturbance along the magnetic field. This
symmetric initial profile does not represent a general disturbance
in the solar corona, but it is selected in order to mainly excite the
vertical fundamental fast kink mode, with one maximum along
field lines. This can be achieved by an adequate choice of k‖.
Nevertheless, this initial disturbance does not ensure that only
the fundamental mode will be excited because its longitudinal
dependence is not sinusoidal.

The implementation of the appropriate boundary conditions
in the numerical code is an important issue. The reflection of
waves at the bottom boundary, due to the large inertia of the
photospheric plasma, is accomplished by imposing line-tying
boundary conditions at z = 0. This is achieved by imposing the
velocity field and the derivative perpendicular to the boundary
of the velocity and magnetic field to zero. In the rest of the
boundaries (top and lateral walls), the spatial derivative of the
velocity and magnetic field is set to zero, providing quite realistic
flow-through conditions. For the numerical scheme used here,
these boundary conditions have been shown to be in general
quite stable. As the equations are solved in flux coordinates,
one then needs to know the correspondence between the system
boundaries from Cartesian to field-related coordinates, see
Figure 1, to apply the correct boundary conditions. Although the
whole arcade can be reproduced in flux coordinates, considering
the complete range 0 ! ψ ! 1 causes numerical issues, so we
restrict ourselves to the range [0.034, 0.9] in the ψ-direction.
This implies that extremely low and extremely high field lines
are discarded in the numerical simulations.

5. NUMERICAL RESULTS

The results presented in this section have been obtained with
the numerical solution of Equations (9)–(13) after an initial
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Figure 3. Snapshot of the two-dimensional distribution of the normal velocity
component for ky = 0. Some magnetic field lines (black curves) and the edge
of the coronal loop (white lines) have been represented.

(An animation and color version of this figure is available in the online journal.)

perturbation given by Equation (17) with ψ0 = 0.41 and a =
0.05 is launched. Different values of ky have been considered
(kyL = 0, 5, 16, 60). The two-dimensional variation of v1n and
v1y for some of these simulations is presented as animations
associated with Figures 3 and 5. Time in these animations and
in subsequent plots is given in units of τA = L/vA0.

5.1. Wave Propagation in the Plane of
the Arcade—Wave Leakage

We first consider wave propagation in the plane of the arcade
(ky = 0). As can be seen in the animation accompanying
Figure 3, the initial perturbation produces traveling disturbances
across the magnetic surfaces that propagate away from the
density enhancement. After a short time (t/τA ∼ 5) the
loop contains very little energy, and so these disturbances
can be interpreted as a combination of leaky modes that
the loop structure is unable to confine. This interpretation is
also supported by the time evolution of the normal velocity
component at the center of the loop (Figure 4(a)), which displays
a strong damping such that, for t/τA ! 5, the velocity has an
almost null amplitude inside the loop.

A convenient way to quantify the wave energy leakage and
the damping is to use the total energy density computed both

in the full domain and in the interior of the loop. We use the
following formula to calculate the energy density at a given
position and time,

δE(r, t) = 1
2

[
ρ

(
v2

1n + v2
1y

)
+

1
µ0

(
B2

1n + B2
1y + B2

1‖
)]

. (18)

The total energy density in a spatial domain, D, of the xz-plane
can be computed from the spatial integration of δE(r, t),

E(t) =
∫

D

δE(r, t) dx dz. (19)

In our plots, this quantity is normalized by dividing it by the
initial energy density over the whole numerical domain, E(0).

Figure 4(b) shows the total energy density integrated over the
full domain, the interior of the loop, and the external region. We
can see that the loop is unable to trap wave energy and that, after
a little more than 5τA, it has already transferred all its energy to
the outside medium. After this time, the wave energy outside the
loop equals the energy in the full domain. Because of this wave
leakage, the total energy of the system continuously decreases
and when the last leaky waves carrying a non-negligible amount
of energy reach the domain boundaries (i.e., at t/τA ∼ 10), it is
practically zero; see also the animation of Figure 3.

These results differ from what is obtained in a line-tied
straight slab model of a coronal loop (Terradas et al. 2005),
in which the kink mode of the loop remains oscillating after the
initial leaky phase, since the density enhancement is able to trap
part of the energy of the initial perturbation. In a curved magnetic
topology in which the magnetic field strength drops with height,
the presumed density structure in and around coronal loops is
such that the Alfvén frequency above the loop is smaller than
that of the transverse modes and so the energy deposited initially
in the loop is simply radiated as a combination of leaky modes,
and thus no trapped solutions are found, as was already pointed
out by Murawski et al. (2005), Selwa et al. (2005), Selwa et al.
(2006), Brady & Arber (2005), Verwichte et al. (2006a, 2006b),
and Selwa et al. (2007).

5.2. Wave Propagation in Three Dimensions—Wave Trapping

Terradas et al. (2006b) showed that in a toroidal loop structure
wave leakage is much less effective than in slab geometry.
Following the same idea, Arregui et al. (2007) used a simple
three-dimensional straight slab model to demonstrate that in
the case of a slab, introducing oblique propagation increases

(a) (b)

Figure 4. Results for ky = 0. (a) Temporal evolution of the normal velocity component, v1n, at the loop center (x = 0, z/L = 0.56). (b) Normalized energy density
in the whole domain (solid thick line), inside the loop (dotted line), and outside the loop (dashed line) as a function of time. The two-dimensional temporal evolution
of v1n is presented in the animation associated with Figure 3.
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Figure 5. Snapshots of the two-dimensional distribution of the normal and perpendicular velocity components for kyL = 5 (top panels) and kyL = 60 (bottom panels).
Some magnetic field lines (black curves) and the edge of the coronal loop (white lines) have been represented.
(Animations and color version of this figure are available in the online journal.)

the spatial confinement of the kink mode around the loop. Van
Doorsselaere et al. (2009) have also shown that a cylindrical
tube is a more efficient wave guide than the slab model, and
less energy is allowed to leak. When a potential arcade is used
as the equilibrium structure, the oblique propagation of the
slab corresponds to perpendicular propagation, which means
the introduction of the ky wave number. If the previous results
for the kink mode with oblique propagation in a coronal slab
are also valid in the present loop configuration, we expect that
an initial perturbation will excite both leaky waves (which will
leave the system in a similar manner as found in Section 5.1)
and trapped modes (which will retain energy in the system). A
comment about the term “trapped” mode used in this paper is
in order. In our plasma configuration, the local cutoff frequency
depends on position because of the Alfvén speed inhomogeneity
and the inclusion of perpendicular wave propagation. For this
reason, an eigenfunction that is evanescent in a certain region
can change its character to propagating in another part of the
system, and so wave energy leakage can arise. For this reason
we warn that modes termed “trapped” here may actually lose
energy by this mechanism. If leakage is very small the modes
have, for all practical purposes, a trapped behavior.

As in Section 5.1, we have considered an impulsive excitation
of the normal velocity component, but now kyL = 5. The
temporal evolution of the normal and perpendicular velocity

components (see the animations accompanying the top panel
of Figure 5) illustrate that there are important differences
compared to the case ky = 0 (Figure 3). First of all, some
of the energy contained in the initial perturbation goes to
the perpendicular variables because ky != 0 implies that the
perturbed perpendicular components (v1y and B1y) are no longer
independent of the normal and parallel ones (v1n, B1n, and B1‖).
In addition, we have just discussed that for ky = 0 most energy
has left the system at t/τA ∼ 10. For kyL = 5, however, it is
apparent that some energy remains in the loop and part of the
arcade above it for much longer times. This is interpreted as a
signature of the excitation of one or more trapped modes of the
system. We next substantiate this claim with a careful inspection
of v1n.

We consider the temporal variation of the normal velocity
component near the loop center (Figure 6(a)). It displays
two distinct behaviors: for t/τA ! 5, very short periods are
prominent. They correspond to leaky modes that propagate
quickly away from the loop. After this leaky phase all that
remains is a gentle, damped oscillation. This damping will be
discussed in detail later, but let us mention that it is milder than
that of the ky = 0 case (Figure 4(a)). The power spectrum of the
v1n signal (Figure 6(b)) shows two clear peaks that, according
to the interpretation in the previous paragraph, simply reflect
the power contained in two trapped modes excited by the initial
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(a) (b)
(c)

Figure 6. Results for kyL = 5. (a) Temporal evolution of v1n near the loop center (x = 0, z/L = 0.52). (b) Normalized power spectrum of the signal of panel (a). (c)
Power spectrum of v1n at x = 0 as a function of height. The three solid lines are, from bottom to top, the frequency of the fundamental Alfvén mode and its first two
harmonics. The two dashed lines mark the limits of the coronal loop.
(A color version of this figure is available in the online journal.)

(a) (b)
(c)

Figure 7. Results for kyL = 5. (a) Temporal evolution of v1y at the points x = 0, z/L = 1.12 (solid line) and x = 0, z/L = 0.96 (dotted line). (b) Normalized power
spectrum of the signals of panel (a). (c) Power spectrum of v1y at x = 0 as a function of height. The three solid lines are, from bottom to top, the frequency of the
fundamental Alfvén mode and its first two harmonics. The two dashed lines mark the limits of the coronal loop.
(A color version of this figure is available in the online journal.)

perturbation. An evidence of this would be the presence of power
peaks at nearly the same frequency in neighboring points. To
investigate this possibility, we consider v1n as a function of t for
x = 0 and different values of z, compute their power spectra,
and stack them in a contour plot (Figure 6(c)). The result is the
presence of significant power at two horizontal contours whose
frequencies coincide with those found in Figure 6(b), each of
them with its characteristic range of heights. From Figure 6(c)
we see that the fundamental mode frequency is ωL/vA0 ∼ 0.95
and that this mode covers the range 0.5 ! z/L ! 1.15 for
x = 0. The first harmonic has ωL/vA0 ∼ 1.28 and covers the
range 0.3 ! z/L ! 0.95 for x = 0.

Hence, we conclude that two trapped modes of the system
have been excited by the initial perturbation and that this is
the reason why the normal velocity component is less strongly
attenuated for ky = 5 than for ky = 0. Both modes are spatially
distributed over the coronal loop and a large region above it,
that is, perpendicular wave propagation increases the wave
confinement in the present equilibrium configuration, although
for kyL = 5 wave energy around the loop is also found.

5.3. Mode Coupling and Resonant Energy Transfer

Additional information about the temporal evolution of the
system comes from the perpendicular velocity component. In
Figure 7(a), this perturbed variable is plotted at two different
positions at the arcade center (x = 0). In both cases v1y

displays an oscillatory behavior with a monotonically increasing
amplitude and it is evident that the oscillatory period is different
at the two positions. This is confirmed by the power spectra
of these two signals, each displaying a single peak at one of
the frequencies of the normal velocity components found in
Figures 6(b) and (c). Next, power spectra of v1y as a function of t

along the z-axis are computed and stacked together (Figure 7(c))
and it becomes clear that most of the power of this velocity
component is concentrated at two particular heights. To explain
this result we recall that in Section 5.2 we mentioned that
after the initial perturbation, trapped modes of the system
were established by a transfer of energy from v1n to the other
perturbed variables, including v1y . But a second, more efficient,
process takes place here: the resonant transfer of energy from
the trapped modes to the Alfvén modes whose frequencies
match those of the former. Figure 6(c) shows that the frequency
of the two prominent trapped modes found in Section 5.2
(ωL/vA0 ∼ 0.95 and ωL/vA0 ∼ 1.28) intersect the lowest
one of the three solid lines included in this plot. These solid
lines are the frequencies of the Alfvén continua corresponding
to the fundamental mode and its first two harmonics (Oliver
et al. 1993). Hence, we conclude that the frequencies of the two
trapped modes match that of the fundamental Alfvén mode at
two particular heights, namely z/L ∼ 1.12 and z/L ∼ 0.96,
so that these are the positions where Alfvén energy appears, in
agreement with Figure 7(c).

It should be noted that the trapped mode frequencies also
match the frequency of Alfvén harmonics, but this happens
for heights at which the trapped mode amplitude is negligible.
Arregui et al. (2004a) showed that for ky "= 0 resonant coupling
between fast and Alfvén modes can only happen for modes with
the same parity along B. As a consequence, resonant absorption
with Alfvén modes other than the fundamental one does not take
place.

So far our description of the resonant absorption process
is incomplete because it relies on the information along the
z-axis. The animation of the top panel of Figure 5 shows that
the largest amplitudes of v1y for t/τA " 10 are in two ranges of
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(a) (b)

Figure 8. Results for kyL = 5. (a) Normalized energy density integrated over the whole system (solid line), integrated over the coronal loop (dotted line), and
integrated over the region outside the loop (dashed line). (b) Normalized energy density integrated over the whole system contained in all perturbed variables (solid
line; same as the solid line of panel (a)), in the “fast” perturbed variables, Efast(t) (dotted line), and in the Alfvénic perturbed variables, EAlfven(t) (dashed line).

magnetic surfaces centered about the field lines whose apexes
are at z/L ∼ 0.96 and z/L ∼ 1.12 (i.e., at the resonant positions
in Figure 7(c)). A relevant issue is that the Alfvén frequency
varies in each of these two ranges of magnetic surfaces and
so the resulting Alfvén oscillations soon become out of phase.
For long times this phase mixing creates small spatial scales
that cannot be resolved by the grid. This leads to the numerical
dissipation of wave energy. The importance of this effect will
soon become clear.

Equation (19) gives a measure of the energy density in a do-
main of our system from the spatial integration of Equation (18).
In these definitions, δE(r, t) and E(t) contain the contribution
from both the Alfvénic perturbed variables (i.e., v1y and B1y) and
the perturbed variables characteristic of fast modes for ky = 0
(i.e., v1n, B1n, and B1‖). We denote by EAlfven(t) and Efast(t)
the spatial integral of these two contributions over the whole
system,

EAlfven(t) =
∫

1
2

(
ρv2

1y +
1
µ0

B2
1y

)
dx dz,

Efast(t) =
∫

1
2

[
ρv2

1n +
1
µ0

(
B2

1n + B2
1‖

)]
dx dz. (20)

Since these two integrals are carried out over the full arcade, it
is clear that EAlfven(t) + Efast(t) is equal to E(t) of Equation (19)
when D is the complete numerical domain.

Figure 8(a) shows the energy density in the system, inside the
loop, and outside it. The first of these three quantities presents
three phases: for t/τA ! 5 the total energy in the whole system
decreases rapidly because of the emission of leaky waves. Then,
for 5 ! t/τA ! 25 (shaded region) the rate of energy decrease
is slower, and for t/τA " 25 it becomes stronger again. To
understand the last two phases one must bear in mind the energy
loss due to the numerical dissipation of Alfvén waves. During
the phase 5 ! t/τA ! 25 there is a substantial amount of energy
in the loop (dotted line in Figure 8(a)) that is slowly transferred
to the surrounding medium (dashed line in Figure 8(a)). We
know that this process is caused by resonant absorption, by
which the energy that could not leak in the initial phase is
transferred to the two resonant positions. After t/τA ∼ 25
almost all the energy in the trapped modes has been given to
Alfvén modes, which implies that these modes can no longer
“feed” from their previous energy “reservoir.” As a result, the
numerical dissipation of phase-mixed Alfvén waves proceeds at
a faster pace. Figure 8(b) provides support to this interpretation:
at t/τA ∼ 10 almost all the energy has been converted from

the “fast”-like perturbations to the Alfvénic ones, but Efast does
not become negligible until t/τA ∼ 30. This means that some
conversion to EAlfven still takes place for 10 ! t/τA ! 30, and
so the dissipation of Alfvén waves is slower than in the later
phase.

A possible way to quantify what percentage of the initial en-
ergy is lost/transformed between leakage and resonant absorp-
tion is to evaluate the energy flux in the numerical domain by
computing the Poynting vector. Nevertheless, since both mech-
anisms are acting at the same time it is not straightforward to
calculate the individual contributions to the Poynting vector. In
addition, when perpendicular wave propagation is considered,
fast and Alfvén modes have mixed properties. As a consequence
the initial disturbance excites several modes of the system, some
of which contribute to the signal (e.g., vn or vy) at all times
while others have a transitory nature. For these reasons a clear
picture cannot be directly obtained from the present results un-
less the intervening normal modes can be isolated from our
simulations. This study is left for future works.

5.4. Wave Confinement and Resonant Absorption for Large ky

To evaluate the influence of the perpendicular wave number
on the confinement of wave energy by trapped modes of the
loop and the loss of this energy by resonant absorption to Alfvén
continuum modes, we consider kyL = 60. We first inspect the
two-dimensional temporal evolution of the perturbed velocity
components (see animations associated with the bottom panel
of Figure 5). There are obvious differences from the numerical
simulation with kyL = 5: first of all, there is a lack of wave
leakage at the beginning of the simulation, shortly after the
initial impulse is released. Second, large velocity amplitudes
are only found inside the loop structure, both for the v1n and
the v1y components. And third, since the excited trapped modes
are not spread outside the loop, there is no resonant absorption
at large heights. In summary, these animations seem to indicate
a much stronger confinement of the wave energy by the loop.
Next, let us confirm this preliminary result.

Now, we consider the temporal variation of the normal
and perpendicular velocity components along the z-axis and
compute the power spectra of these two signals, which are then
stacked to produce a contour plot of the power as a function of
height along the z-axis and frequency. Figure 9 reveals that the
power of v1n and v1y is concentrated inside the loop and that
these signals contain two frequencies around ωL/vA0 = 0.6. A
comparison of these graphs with Figures 6(c) and 7(c) gives a
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(a) (b)

Figure 9. Results for kyL = 60. Power spectrum of (a) v1n and (b) v1y at x = 0 as a function of height. The three solid lines are, from bottom to top, the frequency of
the fundamental Alfvén mode and its first two harmonics. The two dashed lines mark the limits of the coronal loop.
(A color version of this figure is available in the online journal.)

(a) (b)

Figure 10. Results for kyL = 60. (a) Normalized energy density integrated over the whole system (solid line), integrated over the coronal loop (dotted line), and
integrated over the region outside the loop (dashed line). (b) Normalized energy density integrated over the whole system contained in all perturbed variables (solid
line; same as the solid line of panel (a)), in the “fast” perturbed variables, Efast(t) (dotted line), and in the Alfvénic perturbed variables, EAlfven(t) (dashed line).

clear confirmation of the stronger wave confinement achieved
by the loop for kyL = 60, or in other words, the stronger spatial
confinement of the trapped modes of the system. Moreover,
since these modes do not extend to large heights, resonant
absorption is irrelevant in the present numerical simulation. For
resonant absorption to be possible, the trapped modes should
have power at a height z/L ∼ 1.5.

We finally turn our attention to the energetics. Figure 10(a)
shows that during the entire simulation there is almost no energy
outside the loop, in agreement with our previous findings about
the wave guiding properties of the loop for a large perpendicular
wave number. Regarding the energy transfer from the “fast” to
the Alfvén perturbed variables, Figure 10(b) indicates that while
some energy is transferred from the first to the second ones, in
the long term the “fast” components retain a larger proportion of
energy. The total energy of the system presents a decay in time
that, unlike that described in Section 5.3, is constant during the
entire simulation. There are two reasons for this difference. First,
the loop is such a good wave guide for transverse oscillations
when kyL = 60 that very little wave energy is carried out
of the system by leaky waves. Then, the initial leaky phase of
Figure 8 is not found in Figure 10. Second, for kyL = 5 resonant
absorption brings energy to Alfvénic motions at large heights,
where the spatial mesh is coarser. This enhances numerical
dissipation of Alfvén waves, which results in a strong wave
damping. For kyL = 60, however, all wave energy is retained at
small heights, where the spatial mesh is denser. Hence, although
numerical dissipation cannot be removed from our numerical
experiments, it is greatly reduced.

5.5. Realistic Three-dimensional Coronal Loop

Some authors (see, for example, Hollweg & Yang 1988) have
extended the results of slab models to cylindrical geometry by
using the equivalent of the azimuthal wave number in Cartesian
coordinates. The formula that relates both wave numbers is

ky = m

r
, (21)

where r is the loop radius and m is the azimuthal wave number.
Since we are interested in vertical oscillations, caused by the
kink mode, we take m = 1. Regarding the loop radius, it is
obvious from Figure 1(a) that it changes with height, being
largest at the apex and smallest at the feet. Since the physical
conditions at the loop top are the most determinative for the kink
mode properties, r is taken as the loop half width at the apex.
Then we obtain kyL = 16.

To study the properties of vertical oscillations for this value of
ky we first consider the temporal evolution of v1n at a point inside
the loop (see Figure 11(a)). The periodic behavior that was found
for kyL = 5 is also present in this case, although the attenuation
rate is smaller now (compare with Figure 6(a)). This suggests
a better confinement of the vertical oscillations for kyL = 16
and to quantify this effect we compute the power spectra of v1n

along the z-axis and plot them together as a contour plot, which is
presented in Figure 11(c). It is clear that two trapped modes, with
frequencies ωL/vA0 = 0.74 and ωL/vA0 = 0.88, are excited by
the initial perturbation and that they are spatially spread along a
wide range of heights. Although most of the energy is contained
in the fundamental trapped mode and, in particular, inside the
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(a) (b)

(c) (d)

Figure 11. Results for kyL = 16. (a) Temporal evolution of the v1n velocity component at x = 0, z/L = 0.61. (b) Temporal evolution of the v1y velocity component
at x = 0, z/L = 0.61 (solid line) and at x = 0, z/L = 1.2 (dotted line). Power of the normal velocity component for x = 0 as a function of z and the dimensionless
frequency. (d) Power of the perpendicular velocity component for x = 0 as a function of z and the dimensionless frequency. In panels (c) and (d), the solid lines are
the theoretical frequencies of the Alfvén continua given by Oliver et al. (1993).
(A color version of this figure is available in the online journal.)

loop, the two trapped mode frequencies match the fundamental
continuum Alfvén frequency around z/L = 1.1–1.3. This opens
the possibility of resonant absorption playing a role in the
damping of the trapped modes. To investigate this effect, we
plot the perpendicular velocity component at two points along
the z-axis (Figure 11(b)).

The first of these two signals is taken inside the loop, at its
top boundary, while the second signal is gathered at one of
the resonant positions. Their amplitude aside, these two signals
are different in that the first one has an appreciable amplitude
just after the initial leaky phase (i.e., for t/τA ! 5), whereas
the second one is initially negligible and only starts to grow
after t/τA ∼ 10, at a rate larger than that of its counterpart
inside the loop. To understand these two behaviors we plot the
power spectrum of v1y as a function of height and frequency
(cf. Figure 11(d)), which confirms the presence of large power
in the transverse velocity component both inside the loop and
in the resonant position. The power in the range z/L = 1.1–1.3
is concentrated around the Alfvén continuum frequency and we
interpret this to be the signature of resonant absorption. On the
other hand, inside the loop (i.e., in the range z/L = 0.5–0.64
there is power at the Alfvén continuum frequency but also for
ωL/vA0 ∼ 0.74, that is, at the frequency of the fundamental
mode detected in the normal velocity component. We thus
conclude that the perpendicular velocity component inside the
loop exists both as part of the trapped mode excited by the

initial perturbation and by the resonant transfer of energy from
this trapped mode to Alfvén continuum modes.

6. CONCLUSIONS

In this paper, we have studied the temporal evolution of fast
and Alfvén waves in a curved coronal loop embedded in a
magnetic potential arcade, in order to assess the relevance of
three-dimensional propagation of perturbations on the damping
of vertical loop oscillations by wave leakage and resonant
absorption.

When perpendicular propagation is not included (i.e., when
waves are constrained to propagate in the plane of the arcade),
a transverse impulsive perturbation produces a combination
of leaky modes and the loop is unable to trap energy in the
form of vertical kink oscillations. The energy deposited initially
in the loop is emitted rapidly to the external medium. This
result confirms previous findings in the sense that in a curved
coronal loop slab model damping by wave leakage is an efficient
mechanism for the attenuation of vertical loop oscillations.

When three-dimensional propagation of waves is considered,
two new effects are found. First, damping by wave leakage is less
efficient and the loop is able to trap part of the energy deposited
by the initial disturbance in transverse oscillations. The amount
of energy trapped by the structure increases for increasing values
of the perpendicular wave number. Second, the inclusion of
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the perpendicular wave number in an inhomogeneous corona
produces the resonant coupling between fast and Alfvén modes
at those positions where the trapped mode frequency matches
that of Alfvén waves. This resonant coupling produces the
transfer of energy from the fast wave components to the Alfvénic
oscillations. In our model, the loop boundary is sharp and
so there is no smooth density transition that allows resonant
absorption to happen in this position. Hence, this energy transfer
does not occur at the loop boundary, but at locations in the
external medium, in particular above the coronal loop.

The numerical simulations presented in this work show
vertical loop oscillations that are damped by a competition
between wave leakage from the slab and resonant absorption in
the environment. It would be interesting to know how much of
the initial pulse energy is lost by each of these two mechanisms,
but this is beyond the scope of this paper and will be investigated
in the future.

Let us stress that slab models of curved coronal loops in the
absence of perpendicular propagation give rise, in general, to
damping times by wave leakage shorter than those observed.
On the contrary, as we have demonstrated in this work, perpen-
dicular propagation is a way to obtain damping times compatible
with observations. It must be noted that the efficiency of wave
leakage strongly depends on the chosen Alfvén frequency pro-
file and the loop density contrast (which in turn determine the
thickness of the evanescent barrier) and observed damping times
can be reproduced for certain parameter values. In our work, we
have only examined one specific Alfvén frequency profile and
we therefore cannot come to a full conclusion on the role of
wave leakage and the external resonant absorption for our field
topology. Resonant absorption at the loop boundary should be
added to the present model to achieve a better description of
damped transverse loop oscillations.

The authors acknowledge MICINN and MINECO for the
funding provided under projects AYA2006-07637, AYA2011-
22846, and FEDER funds and the Government of the Balearic
Islands for the funding provided through the Grups Competitius
scheme and FEDER funds.

REFERENCES

Arregui, I., Oliver, R., & Ballester, J. L. 2004a, A&A, 425, 729
Arregui, I., Oliver, R., & Ballester, J. L. 2004b, ApJ, 602, 1006
Arregui, I., Terradas, J., Oliver, R., & Ballester, J. L. 2007, SoPh, 246, 213
Aschwanden, M. J. 2009, SSRv, 149, 31
Aschwanden, M. J., de Pontieu, B., Schrijver, C. J., & Title, A. M. 2002, SoPh,

206, 99
Aschwanden, M. J., Fletcher, L., Schrijver, C. J., & Alexander, D. 1999, ApJ,

520, 880

Aschwanden, M. J., & Schrijver, C. J. 2011, ApJ, 736, 102
Bona, C., Bona-Casas, C., & Terradas, J. 2009, JCoPh, 228, 2266
Brady, C. S., & Arber, T. D. 2005, A&A, 438, 733
Brady, C. S., Verwichte, E., & Arber, T. D. 2006, A&A, 449, 389
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Abstract

The purpose of this work is to develop a procedure to obtain the normal modes of a coronal loop from time-dependent
numerical simulations with the aim of better understanding observed transverse loop oscillations. To achieve this goal,
in this paper we present a new method and test its performance with a problem for which the normal modes can be
computed analytically. In a follow-up paper, the application to the simulations of Rial et al. is tackled. The method
proceeds iteratively and at each step consists of (i) a time-dependent numerical simulation followed by (ii) the Complex
Empirical Orthogonal Function (CEOF) analysis of the simulation results. The CEOF analysis provides an
approximation to the normal mode eigenfunctions that can be used to set up the initial conditions for the numerical
simulation of the following iteration, in which an improved normal mode approximation is obtained. The iterative
process is stopped once the global difference between successive approximate eigenfunctions is below a prescribed
threshold. The equilibrium used in this paper contains material discontinuities that result in one eigenfunction with a
jump across these discontinuities and two eigenfunctions whose normal derivatives are discontinuous there. After six
iterations, the approximations to the frequency and eigenfunctions are accurate to 0.7% except for the eigenfunction
with discontinuities, which displays a much larger error at these positions.

Key words: methods: numerical – Sun: oscillations – techniques: miscellaneous

1. Introduction

The solar atmosphere is the site of a diversity of
magnetohydrodynamic waves and oscillations. Transverse
coronal loop oscillations are a prominent example of such
events. They take place when a large energy deposition, usually
caused by a flare, perturbs an active region magnetic structure,
which sets some loops into oscillation (see, e.g., Aschwanden
et al. 1999; Nakariakov et al. 1999, for some early observations).
These events have been modeled with the help of slab and
straight cylindrical loop models, whose normal modes can often
be obtained by either analytical or numerical means (see
Ruderman & Erdélyi 2009, for a review). Starting with the
simplest model that considers the fundamental transverse
oscillation of a magnetic flux tube (Roberts 1981; Edwin &
Roberts 1983; Nakariakov & Verwichte 2005) several model
improvements have included other effects, such as the curvature
of coronal loops (van Doorsselaere et al. 2004, 2009; Terradas
et al. 2006), longitudinal density stratification (Andries et al.
2005a, 2005b), magnetic field expansion (Ruderman et al.
2008), departure from circular cross section of the tubes
(Ruderman 2003), or coronal loop cooling (Aschwanden &
Terradas 2008; Morton & Erdélyi 2009). These ingredients have
been seen to produce effects on the main wave properties, such
as shifts on the frequency and position of the antinodes of the
eigenfunctions. Also, the presence of internal fine structuring
(Terradas et al. 2008) and/or a continuous cross-field inhomo-
geneity in density is known to produce important effects, making
possible physical processes such as phase-mixing (Heyvaerts &
Priest 1983) and resonant damping (Hollweg & Yang 1988;
Goossens et al. 2002; Ruderman & Roberts 2002). The more
general the model, the more difficult it is to calculate the
eigenmodes of the structure, and one has to resort to the study of
time-dependent numerical simulations to study these transverse

oscillations (Selwa et al. 2006, 2007, 2011a, 2011b; Rial et al.
2013). However, a comparison between the obtained numerical
results to observed properties is not as straightforward as it is
using simple models. In these simulations, the initial disturbance
excites different oscillatory harmonics, whose presence in the
results is easily detected by a Fourier analysis of the variables
collected at different points in the numerical domain, but this
does not give information about the spatial structure of the
eigenmodes. Hence, direct comparison between the observed
wave properties and the possibly present normal modes becomes
difficult. For this reason, we have decided to devise the algorithm
described in this paper, which allows us to isolate the eigenmodes
present in a numerical simulation. Given the space required to
present the algorithm, its application to the time-dependent
numerical simulations of Rial et al. (2013), who used a model
that takes into account effects such as density stratification,
curvature, etc., is left for the second part of this work (S. Rial
et al. 2019, in preparation).
Normal modes provide a physical basis for understanding the

dynamics of a system. When the equilibrium configuration does
not allow a simple solution of the normal mode problem,
numerical techniques must be used to determine the normal
modes’ eigenfunctions and eigenfrequencies. However, general
purpose (i.e., for arbitrary equilibria) numerical codes that provide
this information cannot be readily found. On the other hand,
general purpose numerical codes to solve time-dependent
equations are much more abundant. For this reason, being able
to determine the normal modes of a system from time-dependent
numerical simulations is a practical effort. A spectral analysis of
the variables at different points in the spatial domain gives a good
indication of the frequencies present in the results, but the very
relevant spatial structure of the associated eigenmodes cannot be
easily achieved with such analysis. Hence, a means of extracting
the spatial profile of eigenfunctions together with their associated
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oscillatory frequencies from time-dependent simulations is
desirable. In this way, the results can be compared to observations
to ascertain the presence of a given normal mode in the coronal
structure under study. The Complex Empirical Orthogonal
Function (CEOF; see von Storch & Zwiers 1999; Hannachi
et al. 2007) analysis is a tool that satisfies these requirements: it
takes as its input the numerical values of one or more variables
over a spatial domain and for a given time span, and returns the
spatial and temporal information about the main modes of
variability contained in the data, which in our case will be the
main eigenmodes present in the time-dependent numerical
simulations. Thus, the aim of retrieving the normal mode features
is feasible with this procedure.

The main advance of this paper is the repeated application of
the described combination of time-dependent numerical
simulations and CEOF analysis. The latter results allow us to
determine initial conditions (for the numerical simulations) that
more accurately resemble those of the normal mode, resulting
in a numerical simulation in which the amplitude of all other
normal modes is reduced with respect to the previous iteration.
Therefore, a repetition of this process leads to successively
better approximations to a normal mode and convergence to a
prescribed accuracy can be achieved. Since our aim is to test
the feasibility of the new method, we keep our model as simple
as possible, considering a slab loop model and neglecting the
model improvements mentioned above (coronal loop curvature,
longitudinal density stratification, magnetic field expansion,
K). In the presentation of the iterative method we follow a
textbook approach: a simple test case with a known solution is
used, approximate solutions are found, the evolution of the
error with the iterations is studied, and a proxy for this error
that can be used in the stopping criterion is defined in terms of
two successive approximations to the solution.

This paper is organized as follows. The equilibrium
configuration and the equations for small amplitude perturba-
tions are presented in Section 2. Analytical expressions for the
normal modes of this system are introduced in Section 3. The
time-dependent equations are solved in Section 4 for a
prescribed initial condition and the CEOF analysis is applied
to the results of this simulation; hence, the first iteration is
complete, which allows us to give an approximation to the
normal mode eigenfunctions and eigenfrequency. We next
apply repeatedly the last two steps in an iterative process that
improves the accuracy of the normal mode approximation
(Section 6). Our conclusions are discussed in Section 7.

2. Equilibrium and Zero-β Governing Equations

We use the Cartesian coordinate system shown in Figure 1.
The equilibrium is invariant in the y-direction and consists of a
dense plasma slab of width a2 that extends between x=−a
and x=a and is embedded in a rarer environment that fills the
space �∣ ∣x a. The whole system is bounded by the two planes
z=±L/2, with L being the slab length. In the equilibrium the
magnetic field is uniform and points in the direction of the slab
axis: � ˆB eB ;z0 0 in addition, the plasma is at rest. This
configuration has been often used to study the oscillations of a
coronal loop. The x- and z-coordinates represent the directions
transverse and longitudinal to the loop, respectively.

The equilibrium density is expressed as
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with μ being the permeability of free space.
We next introduce perturbations whose evolutions are

described by the ideal MHD equations; that in the zero-β limit
(i.e., zero plasma pressure) and in the absence of gravity read
(Priest 2014)
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Here ρ, V , and B are the total (equilibrium plus perturbed)
density, velocity, and magnetic field. Assuming small ampl-
itude perturbations, Equations (3)–(5) can be linearized. The
density perturbation is only present in the first of these
equations, so that it is a secondary quantity that can be obtained
once the velocity (v) and magnetic field (b) perturbations are
known. The linearized momentum and induction equations can
be expressed as follows:
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where v and b are both functions of position and time.
Now, perturbations are assumed to propagate in the y-

direction with wavenumber ky, so the y-dependence of v and b
is of the form �( )ik yexp y . The Cartesian components of
Equations (6) and (7) then reduce to4
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4 The right side of the z-component of Equation (6) is equal to zero, so it leads
to �v 0z .
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The velocity and magnetic field perturbations in these expressions
are � �( ) ( ) ˆ ( ) ˆv e ex z t v x z t v x z t, , , , , ,x x y y and �( )b x z t, ,

� �( ) ˆ ( ) ˆ ( ) ˆe e eb x z t b x z t b x z t, , , , , ,x x y y z z.
In this paper we impose that the slab has a finite length, L, in

the z-direction (Figure 1) and that its ends are line-tied, that is,
that the velocity perturbations are zero there. Moreover, in what
follows we use the parameter values S S � 10i e , �L a50 , and
kya=0.5. Dimensionless values are obtained with the help of
the length a, the velocity vAi, and the time U � a vAi Ai.

3. Normal Modes

Given that the plasma properties are uniform along the slab, the
z-dependence of vx and vy is ( )k zcos z . Equations (8)–(12) then
reveal that the z-dependence of bz is ( )k zcos z , while that of bx and
by is ( )k zsin z . To satisfy the boundary conditions at the slab ends,
kzmust be equal to Q�( )n L1 , with n=0 for the longitudinally
fundamental mode, n=1 for its first longitudinal overtone, etc.
To study normal modes, a temporal dependence of the form

X( )i texp is also imposed, so the perturbed velocity and magnetic
field components are (the y-dependence is omitted)
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Equations (8)–(12) now reduce to
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Now, the problem is to compute the x-dependence of the
eigenfunctions v̂x, ˆivy, ˆibx, b̂y, and ˆibz, which are all real, and the
eigenvalue ω.
It is straightforward to eliminate all variables in favor of v̂x,

which leads to the following ordinary differential equation,

�
ˆ ˆ ( )d v

dx
m v , 21x

x

2

2
2

with

X
� � � ( )m k k

v
. 22y z

A

2 2 2
2

2

The parameter m takes the value mi e, when the Alfvén speed is
substituted by its value vAi e, inside and outside the slab,
respectively. After determining v̂x one can obtain ˆivy and ˆibz
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Again, κ takes the values Li e, inside and outside the slab,
respectively. The eigenfunctions ˆibx and b̂y follow from
Equations (18) and (19), and are just proportional to v̂x and
ˆivy, respectively.
To solve Equation (21) one must impose boundary

conditions in the x-direction, together with the proper jump
conditions at the x=±a interfaces, which, according to, e.g.,
Goedbloed & Poedts (2004), are the continuity of the normal
velocity component (v̂x) and of the total pressure, which in turn
leads to the continuity of ˆibz.
Because of the symmetry5 of the equilibrium and of

Equations (16)–(20) with respect to x=0, eigenfunctions are
either even or odd. For kink modes v̂x and ˆibx are even about the
slab axis, while ˆivy, b̂y, and ˆibz are odd; for sausage modes, the
parity of the five eigenfunctions is the opposite. In our
simulations only kink solutions are excited, so we restrict our
analysis to these normal modes.

3.1. Laterally Evanescent Normal Modes

Arregui et al. (2007) solved the eigenproblem of
Equations (16)–(20) for solutions that are laterally evanescent,
that is, for which the perturbations vanish as l odx ; see
their Section3 and also Roberts (1981) for the treatment of the
ky=0 case. The kink solution that satisfies these constraints
has the following x-velocity component:
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Figure 1. Sketch of the equilibrium configuration, made of a plasma slab (hatched
area) of width a2 , length L, and density Si embedded in an environment with
density Se.

5 The imposed boundary conditions in the x-direction are also symmetric: see
Sections 3.1 and 3.2.

3
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where the positive value of me is taken and

� ( ) ( ) ( )C A m a m aexp cosh . 27e i

The constant A can be arbitrarily chosen, so we set A=1. The
eigenfrequency is the solution to the dispersion relation
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2
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Figure 2 displays the eigenfunctions v̂x, ˆivy, and ˆibz for the
fundamental kink mode. They possess the parity and continuity

properties described above: v̂x is even, ˆivy and ˆibz are odd, and v̂x

and ˆibz are continuous at the interfaces x=±a. On the other
hand, ˆivy jumps abruptly at these boundaries. In addition, these
functions decay exponentially with x, as described by
Equation (26). The longitudinal harmonics have a similar spatial
structure of eigenfunctions. The frequencies for the n=0, 2, 4
longitudinal harmonics are X U � 0.1011, 0.2989, 0.4852Ai .

3.2. Laterally Confined Normal Modes

In Section 4 we solve numerically the initial value problem
made of Equations (8)–(12) with suitable initial and boundary
conditions. We consider the spatial domain - -� a x a20 20 .
Given that the boundaries are sufficiently far from the slab, the
evanescent eigensolution of Figure 2 is almost zero at the edges
of the numerical domain, so it is, in practice, a solution to the
initial value problem. Placing the boundaries at a finite distance
from the slab, however, adds new, non-evanescent eigensolu-
tions that can be excited by the initial perturbation. By
replicating the analysis of Section 3.1 with the boundary
condition �v̂ 0x at � ox Lx the laterally confined eigenfunc-
tions can be obtained. It will suffice to say that the fundamental
confined mode has X U� 1.676 Ai.

4. Time-dependent Numerical Simulations

4.1. Simulation Setup and Numerical Method

We now solve numerically Equations (8)–(12) in the region
- -�L x Lx x, - -�L z L2 2; see Figure 1. The coeffi-

cients of the system of partial differential equations can be
made real using the independent variables vx, ivy, bx, iby, and bz.
Our initial disturbance is such that the full slab is subject to an
initial transverse forcing given by

� � � �
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟( ) ( )v x z t v

x
a

z
a

, , 0 exp exp , 29x 0

2

2

2

2

while all other variables are initially zero. This initial
perturbation represents a sudden deposition of energy at the
slab center. The vx perturbation is even about x=0 and so can
only excite kink modes. Since the transverse profile of vx

resembles that of the laterally evanescent kink modes (top
panel of Figure 2), a large portion of the energy in the initial
disturbance will go to these modes. But one can expect that the
laterally confined mode of Section 3.2 will also be excited.
The simulation box is determined by the lengths �L a20x

and �L a50 , and a uniform grid of 4001×51 points in the x-
and z-directions is used. The grid is coarser along the slab
because it is sufficient to capture well the smooth sinusoidal
dependence of normal modes in the z-direction; on the other
hand, the grid is much finer across the slab because normal
modes have much more structure in this direction. The
numerical simulation is stopped at U�t 280 Ai, which is ∼4.5
and ∼75 periods of the fundamental laterally evanescent and
confined modes, respectively. The time step is U% �t 0.704 Ai.
The numerical method used to solve the linearized wave

equations is based on the method of lines. Time and space are
treated independently, using a third-order Runge–Kutta method
and a six-order finite difference method, respectively. Artificial
dissipation is included to avoid oscillations on the grid scale.
This method has been used successfully in the past (e.g., Bona
et al. 2009) and has a weak effect on the attenuation of the
physical oscillations reported in the simulations. Since the

Figure 2. Normal mode: from top to bottom, eigenfunctions v̂x , ˆivy, and ˆibz for
the fundamental evanescent kink mode. The two dotted lines correspond to the
slab boundaries.
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linear hyperbolic MHD equations are solved explicitly, the time
step is subject to the CFL condition. Note that in the linearized
MHD equations there are terms proportional to ky: these terms
are incorporated to the code as simple source terms.

Although we solve the linearized MHD equations, there are
jumps in the perturbed variables (in ivy and by) due to the
discontinuities in the equilibrium variables. We have decided to
use a simple numerical scheme that is not shock-capturing (better
suited for discontinuities) because the effect of the jump is rather
small in the temporal evolution of the different quantities.

Line-tying conditions are applied at z=±L/2, meaning that
the velocities are zero, while for the rest of variables the
derivatives with respect to z are zero. At x=±Lx we impose
that the derivatives with respect to x of all the variables are
zero. This condition does not allow a perfect outward
transmission of the waves and some reflections are produced.
A direct consequence of these reflections is the presence of the
laterally confined normal mode in our simulations.

4.2. Results

The initial condition excites a large number of longitudinal
harmonics, both evanescent and confined in the x-direction,
together with leaky waves that travel away from the slab. The
emission of these leaky waves is clear until U�t 50 Ai, after
which only the kink normal modes of Sections 3.1 and 3.2
remain. Evidence of the presence of these normal modes
comes from the spectral analysis of vx, ivy, and bz at a given
location, which is selected so that normal modes have a non-
negligible amplitude. Thus, for the transverse velocity
component, vx, we choose the point x=0, z=0, while for
the other two variables the position x=a, z=0 is preferred.
The Lomb–Scargle periodograms (Lomb 1976; Scargle 1982)
at these points are shown in Figure 3. The three panels
display the largest power peaks at O U� 0.01601 Ai (i.e.,
X U� 0.1006 Ai), O U� 0.04721 Ai (X U� 0.2966 Ai), and
O U� 0.07681 Ai (X U� 0.4826 Ai); these values are in
excellent agreement with those of the lowest three laterally
evanescent harmonics. The periodograms also show large
power above O U� 0.2 Ai caused by the excitation of laterally
confined normal modes. Indeed, the largest peak in this
frequency range is at O U� 0.2544 Ai (i.e., X U� 1.598 Ai),
again in good agreement with the value quoted in Section 3.2.
It is worth noting that the power at X U� 0.1011 Ai is 2–3
orders of magnitude higher than that at X U� 1.676 Ai for vx
and ivy, although in the case of bz the two peaks are of similar
magnitude. The reason for this is that the height of a power
peak comes from the combination of the energy deposited by
the initial disturbance in each normal mode (which is much
larger for the evanescent one) and the amplitude of each
variable (which in the case of bz is much smaller for the
evanescent normal mode than for the confined one). The
combination of these two factors results in the function bz
containing similar power in the evanescent and confined
normal modes in this numerical simulation.

5. CEOF Analysis

In this section we go beyond the normal mode frequency we
just obtained and attempt to determine the normal mode
eigenfunction structure using the CEOF analysis. We will here
give a very brief summary of this method; a detailed description
can be found in Horel (1984), Wallace & Dickinson (1972),

von Storch & Zwiers (1999), and Hannachi et al. (2007; where it
is called Complex Hilbert EOF); and an application to the study of
coronal oscillations in Terradas et al. (2004).
The CEOF analysis is a numerical method that takes as its

input a field ( )rU t, l discretized over a spatial mesh of points
� ( )r x y z, ,i j k and evaluated at the discrete times tl. Its output

is a set of CEOF modes, which are not necessarily associated
with physical modes of the system under study, each of them
described by four measures called the temporal amplitude and
phase and the spatial amplitude and phase. Together with these
measures, the CEOF analysis associates with each mode a
fraction of the total field variance. Once the CEOF code is fed

Figure 3. Numerical simulation: Lomb–Scargle periodogram of vx at position
x=0, z=0 (top), ivy at position x=a, z=0 (middle), and bz at position
x=a, z=0 (bottom). To compute the power spectra, only data for . Ut 50 Ai
are kept so as to remove the effect of the transient in the frequency estimation.
Vertical red (green) lines are drawn at the frequencies of the first laterally
evanescent (laterally confined) harmonics.
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with the input field, the “highest contributing” CEOF mode,
that is, the one associated to the largest fraction of the total field
variance, is retrieved first and other CEOF modes are
obtained next in decreasing order of their fraction of the total
field variance. The sum of the modes’ fraction of the total
field variance tends to 1 as the number of CEOF modes is
increased. The execution is stopped when the percentage of the
total field variance accounted for by all the retrieved CEOF
modes exceeds a pre-established value, here taken as 99.9%.

In our case the field U can be, for example, the velocity
component ( )v x z t, ,x i k l obtained in the numerical simulation of
Section 4. This means that the input field is a three-dimensional
data cube. As mentioned above, each of the obtained CEOF
modes has empirically computed temporal and spatial mea-
sures, called the temporal amplitude, R(tl), the temporal phase,
f(tl), the spatial amplitude, S(xi, zk), and the spatial phase, θ(xi,
zk). The spatial and temporal variability of the field described
by this CEOF mode is

G R�{ ( ) [ ( )] ( ) [ ( )]} ( )R t i t S x z i x zRe exp , exp , , 30l l i k i k

where Re denotes the real part. A CEOF mode that, for
example, represents a propagating wave, has a temporal phase

that varies linearly with tl and a spatial phase that varies linearly
with xi and zk. The CEOF modes that we expect to find when
analyzing the results of the numerical simulation, however, are
standing waves. In this case, the temporal phase also varies
linearly with tl, but the spatial phase is such that two regions in
which the difference of θ(xi, zk) is an integer multiple of 2π
correspond to in-phase oscillations, while oscillations that are
in anti-phase display a phase difference that is an odd multiple
of π. In our results we will also find that a standing wave can
have a phase that slowly varies in space, which is nothing but a
modulation of S(xi, zk) by the factor R�[ ( )]i x zexp ,i k . Section3
of Terradas et al. (2004) gives simple two-dimensional
examples of the outcome of the CEOF analysis when applied
to a synthetic signal made of the sum of a propagating and a
standing wave.
Our hypothesis is that the CEOF analysis applied to the

results of the numerical simulation of Section 4 will provide an
approximation, by means of Equation (30), to the evanescent
normal mode eigenfunctions. Given that the eigenfunctions do
not depend on time, we will ignore the temporal variation given
by the measures R(t) and f(t) in Equation (30) and will only

Figure 4. CEOF analysis: difference %vx (top row), %vy (middle row), and %bz (bottom row) between the fundamental evanescent eigenfunctions and their
approximations from the first CEOF mode. Left: two-dimensional distribution of the difference. Right: cut of the difference along z=0. Dotted lines are plotted at the
slab boundaries.
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retain the real part of the spatial measures. Let us take, for
example, the variable vx, which for a normal mode has the
eigenfunction ˆ ( ) ( )v x k zcosx z . The CEOF approximation to this
eigenfunction is

R�˜ ( ) ( ) ( ) ( )v x z S x z x z, , cos , , 31x i k v i k v i kx x

where Svx and Rvx are the spatial amplitude and phase of vx and
the tilde in ṽx indicates that this is an approximation to the
normal mode vx. A numerical comparison between the normal
mode eigenfunction and its approximation from the CEOF
analysis is obtained with the help of the difference

% � �( ) ˆ ( ) ˜ ( ) ( )v x z v x k z v x z, cos , . 32x i k x i z k x i k

An analogous expression can be built for all other eigenfunctions.
Regarding ivy, its eigenfunction for the confined mode is

ˆ ( ) ( )iv x k zcosy z , with ˆ ( )iv xy given by Equations (23) and (26).
The CEOF approximation to this eigenfunction is

R�˜ ( ) ( ) ( ) ( )iv x z S x z x z, , cos , , 33y i k iv i k iv i ky y

with Sivy and Rivy being the spatial amplitude and phase of
ivy. The case of bz requires special attention. Its eigenfunction

is ˆ ( ) ( )ib x k zcosz z , where ˆ ( )ib xz can be obtained from
Equations (24) and (26). In the numerical simulation, however,

we have not used the variable ibz but bz. For this reason, the
CEOF approximation to ibz requires inserting a factor i inside

y{ }Re of Equation (30). We then have that the CEOF
approximation to ibz is

R�˜ ( ) ( ) ( ) ( )ib x z S x z x z, , sin , , 34z i k b i k b i kz z

where Sbz and Rbz are the spatial amplitude and phase of bz.
Concerning bx and by, Equations (18) and (19) tell us that their
respective CEOF approximations can be obtained from those of
vx and ivy. Finally, approximations to ˆ ( )v xx , ˆ ( )iv xy , and ˆ ( )ib xz

can be derived by taking a cut along z=zk of Equations (31),
(33), and (34).
Before applying the CEOF method to the results of our

simulation, two more comments are in order. First, the transient
phase is excluded from the analysis by considering . Ut 50 Ai
only. Second, to reduce the memory requirements and speed up
the computation of the CEOF modes, the values of vx, ivy, and
bz are interpolated from the 4001×51 numerical grid to a grid
of qN Nx z points (here we use �N 201x , �N 25z ). To do so,
in the x- and z-directions only 1 of every 20 points and 1 of
every 2 points, respectively, from the numerical simulation are
kept for the CEOF analysis.

Figure 5. CEOF analysis: same as Figure 4, but for the second longitudinal evanescent overtone.
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5.1. Results

The CEOF method has the possibility of analyzing several
fields simultaneously, which allows a better characterization of the
physical modes because more restrictions are imposed by the
higher complexity of the combined fields. Thus, we run the CEOF
code on the fields ( )v x z t, ,x i k l , ( )iv x z t, ,y i k l , and ( )b x z t, ,z i k l
together. To do this, the three data cubes are put next to each other
and a larger data cube is created. We choose to join the three
201×25×330 cubes by attaching their xt-faces, so that the
CEOF input is a cube of 201×75×330 data values. After the
CEOF analysis is complete, we obtain a collection of CEOF
modes, each of them characterized by its temporal amplitude and
phase, R(t) and f(t), and its spatial amplitude and phase, S(x, z)
and θ(x, z), that can be split into the spatial measures Svx and Rvx of
the field ( )v x z t, ,x i k l , Sivy and Rivy of the field ( )iv x z t, ,y i k l , and Sbz

and Rbz of the field ( )b x z t, ,z i k l . These measures can in turn be
inserted into Equations (31), (33), (34) to obtain the approximate
CEOF eigenfunctions.

The first CEOF mode accounts for 64.8% of the total field
variance and corresponds to the fundamental evanescent normal
mode. Its frequency is determined by fitting the straight line
f(t)=ωt+f0 to the temporal phase, which yields X �

U0.1016 Ai. This value is in excellent agreement with the normal
mode frequency X U� 0.1011 Ai. The goodness of the CEOF
approximation to the normal mode can also be judged with the
help of the differences %vx, %vy, %bz, which are presented in

Figure 4. To make this figure, the v̂x eigenfunction is normalized
to a maximum value of 1 and the CEOF approximation ṽx is also
normalized to 1 at the position where the eigenfunction is
maximum. The conclusion from this figure is that the CEOF
analysis of the numerical simulation results allows us to recover
the normal mode eigenfunction v̂x with an error below4%. We
next turn our attention to the error of ivy and ibz. The middle row
of Figure 4 gives the difference%vy. Except for the points on the
boundaries, � ox a, the error is smaller than 10% inside the slab
( �∣ ∣x a) and practically zero outside the slab ( �∣ ∣x a). The
bottom row of Figure 4 gives the difference %bz, which also
attains its largest value, of the order of 15% of the eigenfunction
value, at the slab boundary.
The second CEOF mode accounts for 15.9% of the total field

variance and corresponds to the second longitudinal evanescent
overtone. A linear fit to the temporal phase results in the
frequency X U� 0.2969 Ai, which is very close to the
analytical value X U� 0.2989 Ai. Figure 5 shows the difference
between the normal mode and the CEOF approximation to
the eigenfunctions. We see that the error in the second
longitudinal overtone is almost a factor of 2 better than that of
the fundamental mode. When comparing the exactness of the
CEOF approximation for the fundamental and the second
overtone, we find a better agreement in the second case because
there are more periods of this normal mode in the numerical
simulation.

Figure 6. Iterative method: same as Figure 3, but for the numerical simulations of iteration #6. Left:fundamental evanescent mode. Right: second longitudinal
evanescent overtone.
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The conclusion of this section is that, while the CEOF
approximation to v̂x is acceptable, those to ˆivy and ˆibz are not too
good. This situation will be improved by the application of the
iterative method presented in the following section.

6. Iterative Method

6.1. Description of the Method

The scheme we have used so far consists of two steps: (i) a
time-dependent numerical simulation of Equations (8)–(12)
followed by (ii) the CEOF analysis of the obtained results. If
we imagine that an eigenmode is perfectly described by a CEOF
mode, then one could run a numerical simulation with initial
conditions given by the eigenfunctions and thus the obtained
temporal evolution would be that of the eigenmode. At this point,
this is not the case, but we have seen that the CEOF analysis
produces an approximation to a normal mode eigenfunctions. We
thus devise an iterative method that is made of the repeated
application of steps (i) and (ii), in which the initial conditions of
the numerical simulation of a given iteration are taken from the
CEOF method of the previous iteration. The iterations will be
stopped once a given measure of goodness is reached. The
iterative method is carried out separately for each normal mode.

We first need to determine which information is required from
the CEOF analysis to fix the initial conditions. Rather than using
the time dependence X( )i texp of Equations (13)–(15) we assume
that ( )v x z t, ,x is maximum at t=0 and so it has the form

X�( ) ˆ ( ) ( ) ( )v x z t v x k z t, , cos cosx x z . Now, Equations (8)–(12)

tell us that vx and ivy are in phase (in time) and that they are a
quarter of a period out of phase with respect to bx, iby, and bz.
This implies that ( )iv x z t, ,y is also maximum at t=0 and that
the perturbed magnetic field components vanish at the start of
the numerical simulation. Hence, the information that the CEOF
analysis must provide to repeat step (i) is the approximation to v̂x
and ˆivy provided by Equations (31) and (33).

6.2. Results

We are then ready to carry out the iterative process. Iteration
#1 consists of the numerical simulation of Section 4 and the
CEOF analysis of Section 5.1. The results we present now are a
summary of the performance of six iterations, which are carried
out independently for the fundamental evanescent mode and its
second longitudinal overtone. An excellent assessment of the
performance of the iterative method can be gained from the
power spectra of vx, ivy, and bz for the numerical simulation of
the last iteration. These power spectra are shown in Figure 6 for
the two normal modes. Whereas the numerical simulation of
iteration #1 displays power peaks at the frequencies of many
harmonics, both simulations of iteration #6 only show a power
peak for a single normal mode. The left (right) panels of
Figure 6 have non-negligible power around the maximum
O U� 0.01601 Ai (O U� 0.04721 Ai) that are identical to those
obtained from the power spectra in the first iteration. All other
normal modes are virtually absent in the numerical simulations
of the last iteration.

Figure 7. Same as Figure 4, but for the CEOF analysis of iteration #6.
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The iterative method yields another approximation to the
frequency that comes from the CEOF analysis of the numerical
simulation of iteration #6. A linear least-squares fit to
the temporal phase gives the frequency X U� 0.1016 Ai for
the fundamental evanescent mode and X U� 0.2969 Ai for the
second longitudinal evanescent overtone. These values are
identical to those of the first iteration. The errors associated
with these approximate values are 0.5% and 0.7%, so the
obtained accuracy is excellent.

6.3. Error and Stopping Criterion

We next examine in detail the error of the CEOF
approximation to the eigenfunctions. Again, we consider the
results of iteration #6 and show these errors in Figures 7 and 8.
Although their maximum values are reduced by a factor of 2,
the errors display some of the patterns of iteration#1: the error
of vx is maximum in the slab; the error of ivy has a dominant
component at the slab boundaries, but has been strongly
reduced inside the slab during the iterative process; and the
error of bz is maximum at the slab boundaries, but has become
much more confined to the slab neighborhood.

We finally analyze the evolution of the error with the
iterations.6 At the end of iteration#n, with n=1, 2, K,
Equations (31), (33), and (34) provide us with approximations

for the three main eigenfunctions; we denote these approxima-
tions with the superscript n, i.e., ṽx

n, ˜ivy
n, ˜ibz

n. For each
eigenfunction, we define a global measure of the error, ε, by
summing over the spatial domain the squares of the difference
between the normal mode eigenfunction and the CEOF
approximation. For example, for iteration #n and the variable
vx this global error is

�
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where the factor ∣ ˆ ( ) ∣v x k zmax cosi k x i z k, in the denominator
provides the right normalization that enables us to compare the
error of different eigenfunctions. The additional factors Nx and Nz

give an additional normalization that removes the dependence of
Fv

n
x
on the number of points in the CEOF analysis. The definitions

of Fiv
n

y
and Fib

n
z
are done in a similar way.

The top panels of Figure 9 present the global errors for the
first 6 iterations for the fundamental evanescent mode (left
column) and its second longitudinal overtone (right column). In
each iteration, vx has the smallest error (possibly because it is
the eigenfunction with less “contamination” from the confined
normal mode) and ivy displays the largest global error (because

Figure 8. Same as Figure 5, but for the CEOF analysis of iteration #6.

6 Before computing the errors described here we normalize the normal mode
eigenfunctions and their approximation from the CEOF analysis so that vx
equals zero at x=0, z=0.
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of the large contributions at the slab boundaries, that do not
disappear with the iterative process). We see that the biggest
improvement in the global error is obtained in iteration #2, for
which a remarkable reduction in Fvx and Fibz is found. The
subsequent variation of the three global errors is much more
moderate, so for this problem two iterations give a good
compromise between the error associated with the CEOF
approximations and the computer time spent.

The case studied in this paper allows us to compute the
global error because of our knowledge of the exact eigenfunc-
tions. In a general case, in which the eigenfunctions are
unknown and our aim is just to obtain them, a proxy for the
global error can be computed by comparing the approximate
eigenfunctions of two successive iterations. To define this new
global uncertainty measure, in Equation (35) we replace the
normal mode eigenfunction ˆ ( )v x k zcosx i z k with its CEOF
approximation in the iteration n+1. We also rewrite the
iteration indices and substitute n+1 by n. This gives the
following definition for the global difference between the vx
eigenfunction of iterations #n and #n−1:

�

E �

q � � y�⎪
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Analogous expressions can be written for Eivy and Eibz.
The variation of the global difference with the iterations is

displayed in the bottom panels of Figure 9. The convergence is
quite fast, with Eibz showing an improvement of roughly two
orders of magnitude per iteration during the first iterations, the

highest convergence rate of all variables. Evx and Eivy are reduced
at a slower pace, namely almost an order of magnitude per
iteration. We see that all variables attain a global difference
smaller than 10−5 in iteration #5 (fundamental evanescent
mode) and in iteration #6 (second longitudinal evanescent
overtone). Therefore, we adopt the iteration stopping criterion
that the global difference must be smaller than 10−5.

7. Conclusions

In this paper we have devised a method to determine the
normal modes of a physical system, i.e., its eigenfunctions and
eigenfrequencies, by the iterative application of time-dependent
numerical simulations of the equations that govern the system
dynamics and the CEOF analysis of the simulation results. We
have illustrated how the CEOF method can be applied to all the
non-redundant variables: in our case, in particular, this means
that we can avoid including bx and iby in the CEOF
computation because their eigenfunctions can be readily
computed from the other three (vx, ivy, and bz). At the end of
each iteration, the CEOF approximations to the eigenfunctions
are used as the initial conditions for the time-dependent
numerical simulation of the next iteration. Finally, we have
examined the global error of the approximate eigenfunctions as
a function of the iteration number and have established a
convergence criterion based on the global difference between
the approximate eigenfunctions of consecutive time steps.
The main disadvantage of our test case is the presence of

sharp boundaries in the equilibrium structure, which leads to
abrupt jumps of the eigenfunction ˆivy and non-derivable
eigenfunctions v̂x and ˆibz at these positions (see Figure 2).
We have found that these normal mode features result in the
presence of large errors at the slab boundary, which are quite
substantial for the approximation to ˆivy; see Figures 7 and 8.

Figure 9. Global error (top panels) and global difference (bottom panels) as a function of the iteration number. Left:fundamental evanescent mode. Right: second
longitudinal evanescent overtone.
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We have obtained an approximation to the two normal
modes of interest (the fundamental evanescent mode and its
second longitudinal overtone) with great accuracy: after six
iterations, the frequency is wrong by only 0.5%–0.7% and the
eigenfunctions v̂x and ˆibz have maximum errors of the order of
0.6% and 0.7%, respectively. The case of ˆivy is worse because
of the difficulties of recovering a function that jumps at
x=±a. If these two lines are ignored, the maximum error of
ˆivy is also of the order of 0.6%.
In the second paper of this work (S. Rial et al. 2019, in

preparation) we will apply the technique presented here to the
time-dependent numerical simulations of a loop embedded in a
coronal arcade carried out by Rial et al. (2013). The
equilibrium structure is similar to the one used in the present
paper but includes a curved slab in which both the magnetic
field strength and plasma density vary along the magnetic field.
The initial condition used by Rial et al. (2013) is analogous to
Equation (29), so various longitudinal harmonics are excited.
The present paper shows that our technique is well suited for
this task because it allows us to obtain the features of different
normal modes. Its application to the more realistic numerical
simulations by Rial et al. (2013) should produce normal mode
characteristics comparable to observed loop oscillation events.
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Chapter 5

Conclusions and future work

The conclusions of this thesis are done from several points of view. On one hand we
present a summary of the results obtained in each of the papers that compose the
thesis. On the other hand, we discuss the achieved goals and finally we point out
some future work that can be done departing from where we left our investigation.

In Chapter 2 two types of numerical experiments are carried out. On one hand,
resonant wave energy exchange between a fast normal mode-like of the system and
local Alfvén waves is analyzed. The goal of this numerical experiment is to make
an initial test to our temporal code. As the behavior of the normal modes have
been studied by many authors using equivalent models we will use their results
to guide us. The results from the temporal evolution of a normal mode-like fast
disturbance are quite satisfactory, resonant absorption phenomenon due to three-
dimensional propagation of perturbations in a non-uniform medium, takes place
at the position and with the frequency predicted.

On the other hand, we consider a more realistic situation by using as the initial
perturbation a localized impulsive excitation. This kind disturbance is a more
faithful model of what happens in the solar corona when a sudden release of energy
occurs. In this case there are several results that are worthy to mention. First as
the initial perturbation is made by the sum of normal modes, resonant coupling
between fast and Alfvén waves now happens in all the domain. One of the main
results of this experiment is that even though a part of the fast mode-like energy
is able the leave the system always a fraction of it can be retained in the system
without having a density enhancement or a cavity structure. This energy is stored
in form Alfvén oscillations which remain confined around magnetic surfaces. A
phenomenon that is observed and is worth to be mentioned is phase mixing. As
the Alfvén frequency of each magnetic line is slightly different, as time evolves they
became out of phase and it gives rise spatial scales that decrease with time until
one point where the numerical code is unable to properly follow its evolution.

In this case we can also test our numerical results following the guides of pre-
vious studies. It is a known result from Arregui et al. (2004a), that when perpen-
dicular propagation is considered, the frequency of the Alfvén oscillations should
not change from the pure poloidal case. So another result from this experiment is
that the frequency of the induced Alfvénic oscillations is seen to be independent
from the perpendicular wavenumber.

Finally, the wave energy exchange between the fast-like perturbation and the
Alfvén oscillations has been analyzed as a function of the perpendicular wavenum-
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ber and the ratio of the magnetic scale height to the density scale height. In this
case the fraction of the energy trapped by the magnetic structure increases with
the value of the perpendicular wavenumber. To end with, the ratio of magnetic
to density scale heights determines the pace at which the available fast wave en-
ergy leaves the system and also how fast this energy is converted to Alfvén waves,
but not the final amount of energy stored by the arcade in the form of Alfvénic
oscillations.

In Chapter 3, we have analyzed the time dependent solutions of impulsively
generated waves when we consider a curved density enhancement embedded in the
same static magnetic potential arcade presented in our previous chapter. We use
this configuration because we want to investigate the importance of using a realistic
three-dimensional model on the damping of vertical loop oscillations. Following
that direction, we begin by just allowing the three-dimensional propagation to
the previous two-dimensional model and analyzing its consequences on the wave
damping due to resonant absorption and wave leakage.

The results of using a pure two-dimensional model are that the initial impulsive
perturbation does not leave any energy in the form of vertical kink oscillations. It is
only able to excite a combination of leaky modes that leave the system very quickly.
Therefore, when considering pure poloidal models, damping by wave leakage is the
dominant mechanism for the attenuation of vertical loop oscillations and confirms
the results of previous studies Brady and Arber (2005) and Brady et al. (2006).

When we allow perturbations propagate in the ignorable direction, two main
results are obtained. On one hand, the initial perturbation not only excites some
leaky modes, in this case trapped modes are also excited and the density enhance-
ment is capable to store part of the energy in form of vertical kink oscillations.
The amount of energy trapped by the loop increases directly with the perpendic-
ular wave number. On the other hand, resonant coupling between fast and Alfvén
modes ocurrs at those locations where the trapped mode frequency coincide that
of Alfvén waves. As these positions can be theoretically predicted from previous
studies, this can be seen as a test to our numerical results. Is worthy to point out
that as our loop has a sharp density transition, the energy exchange between the
trapped modes and the Alfvénic oscillations does not happen at the loop boundary,
but at points located above the coronal loop, in the external medium. It will be
interesting to add to the present model an smooth transition between the loop and
the external medium to make resonant absorption happen at the loop boundary.
This addition for sure will give us a better description of the observed damped
transverse loop oscillations and it is left for future work.

The time-dependent results obtained in this chapter point out that vertical loop
oscillations that are attenuated by two mechanism that are wave leakage from the
slab and resonant absorption in the environment. Determine the fraction of the
initial pulse energy transferred by means of these damping mechanisms should also
be studied in a future work, although this is beyond the scope of this thesis.

In Chaper 4, we have investigated an alternative method to obtain the eigen-
modes of a system, i.e., their eigenfunctions and eigenfrequencies. The method
consists in iteratively solve the time-dependent problem of the system and after-
wards apply a CEOF analysis to the temporal results. After each iteration, the
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resulting CEOF modes are utilized as the initial conditions for the time-dependent
numerical simulation of the next iteration. It is important to note that we use a
model where its normal modes can be solved following the standard method, see
Arregui et al. (2007b), and comparisons can help us to determine the goodness of
our iterative method.

The results of our approach to normal modes has been quite satisfactory but
some points have to be taken into account. The main disadvantage of the method
is the presence of non smooth boundaries in the density enhancement. These
abrupt jumps leads to non-derivable eigenfunctions and we have found that these
features result in large errors at the points where they are located. Therefore the
main result is that when using sharp equilibriums, the results obtained at these
particular locations are not accurate.

A possible way to avoid the complications at the non-derivable locations, would
be to substitute the CEOF analysis in the full spatial domain by three analysis in
the three derivable domains Lx ≤ x < −a, −a ≤ x ≤ a, and a < x ≤ Lx. As
all eigenfunctions and their derivatives are smooth in each individual domain, we
may obtain an approximation to frequencies and eigenfunctions that is free from
the large errors at the sharp boundaries. Splitting the spatial domain in several
pieces when doing the CEOF analysis is somehow similar to removing the initial
time to get rid of the wave transients, such as we have done here. We have not yet
tried this improvement and leave it for a future work.

Keeping in mind the previous result, we have obtained accurate approximations
to the fundamental mode and its second longitudinal overtone after 6 iterations.
Therefore the main result of this investigation is that this method opens a new
possibility when the standard method to find normal modes of a system can not
be carried out. It is important to note that it can be applied, with the usage
restrictions above mentioned, to find the normal modes of any system because we
have not use any approximation that limits its application.

To end with, we summarize some the goals accomplished and finally we draw
some possibilities left for future work.

• We have been able to prove that we can obtain reliable time-dependent results
when several models of coronal loop oscillations are considered. This has been
one of our main aims of this thesis, begin from simple configurations where
solutions are well known and see if we can reproduce these results using the
time-dependent approach.

• Over this basis we have acquired new knowledge on the field of coronal loop
oscillations by increasing the complexity of the models step by step. In order
to reproduce the observed oscillations, we have focused in adding the three-
dimensional ingredient to our model, which we think can be a key element.

• We have investigated how the time-dependent and the normal mode approach
are related. This has been realized by taking the results of many theoretical
works done in normal modes and see how they are represented in the temporal
approach.

• We also have approached to the problem of coronal loop oscillations using
the normal mode method. We have devised an alternative method to fully
determine the normal modes of a system that can be applied in general to
any equilibrium model.
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As for the future work, it is left several investigations that will complete this
research such as

• To find the normal modes of the model presented in Chaper 3 using the
method presented in Chapter 4. In this case we do not have any theoretical
studies that can guide us. This work is in preparation as the second part of
the paper Rial et al. (2019).

• To solve the time-dependent problem of the model presented in Chapter 3
when the coronal loop have a smooth density profile. This can be a step
forward the realistic modeling of coronal loops oscillations.
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