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Summary

This PhD focuses on the operation optimisation of a hybrid power plant
which covers the demand of a district heating and cooling network (DHC).
This thesis also pursues optimal supply strategies which are a promising and
inexpensive way to improve energy efficiency and to reduce expenditure in
district network energy supply.

To achieve this, this thesis must develop an electricity price for the Span-
ish market and a thermal demand forecasting tool which works together with
an energy simulator. The simulator determines generation strategies by op-
timising the production mix that minimises the energy cost and maximises
the renewable energy fraction. This leads to an optimisation of the power
plant’s operation and integration of the solar field.

Parc Bit is the power plant under study and is in Palma of Majorca,
Spain. The power plant can generate heating, cooling and electricity. Thus,
the power plant obtains revenue by injecting electricity into the grid and
supplying thermal energy to the DHC. To maximise the plant’s revenue, it is
necessary to develop algorithms that can provide energy generation strategies
to meet generation and demand curves.

An energy management system is developed to provide the power plant
manager with optimal generation strategies. The tool is developed jointly
with Politecnico di Torino and can optimise a multi-energy node power plant
at different time horizons.

This simulator requires information such as thermal and electric demand
to fulfil, climatic conditions, power plant configuration, and machine behavior
at different generation points. As a result, the tool provides the schedule of
the generation machines, primary energy consumption, and total revenue for
the time horizon under consideration.

A two-cores forecasting tool was developed based on the ARIMAX and
neural networks models to obtain the future electricity prices of the Spanish



wholesale energy market and the DHC’s thermal demand. Those values are
fed to the optimisation tool to determine future generation strategies.

A solar generation forecaster is developed enabling solar generation to
be fed to the optimiser. Therefore, the solar fraction can be maximised by
avoiding overlaps with the CHP’s thermal generation schedule.

Heat losses in the DHC distribution are considered to be part of the ther-
mal load to be fulfilled by the power plant. Therefore, this thesis upgrades
the network to acquire reliable information from the energy consumers. The
acquired information helps the network operator to optimise supply temper-
ature. Moreover, the possibility of modifying the supply temperature allows
generators to provide energy more efficiently. Generators provide energy
more efficiently when conditions are more relaxed. In addition, these strate-
gies aim to reduce heat losses by modifying the supply temperature within its
working boundaries. Through supply temperature adjustment and network’s
thermal mass harnessing the network can be used as energy storage.



Resumen

El presente doctorado se centra en la optimizacion de la operacion de una
planta hibrida que cubre la demanda de una red de distrito de frio y calor
(DHC). Esta tesis busca estrategias de suministro energético 6ptimo, las
cuales son una forma econdmica y prometedora de aumentar la eficiencia
energética y reducir los costes de suministro en redes de distrito.

Para alcanzar estos objetivos la tesis ha desarrollado heramientas de
prediccién de precio eléctrico del mercado Espanol y de demanda térmica que
se integraran en un simulador energético. El simulador determina estrate-
gias de generacion optimizando el mix energético que minimice los costes de
energia y maximice la fraccién de energia renovable. Esto conduce a la opti-
mizacién de la operacion en la planta de cogeneracion y a la integracion del
campo solar.

La planta en la que se aplica el estudio se denomina Parc Bit y esta ubi-
cada en Mallorca, Espana. La planta puede generar calor, frio y electricidad.
Por lo tanto, la planta obtiene beneficios por la venta de electricidad a la red
y por el suministro energético a la red de distrito. Para maximizar estos ben-
eficios es necesario el desarrollo de algoritmos que proporcionen estrategias
de generacion que se ajusten a las curvas de demanda.

El responsable de la planta obtiene estrategias de generacién éptimas
obtenidas a través del sistema de gestion energético desarrollado. Esta her-
ramienta se ha desarrollado en colaboracién con el Politécnico de Torino y es
capaz de optimizar plantas multi energia en diferentes horizontes temporales.

El simulador necesita informacién como la demanda térmica y eléctrica,
las condiciones climaticas, la configuracién de la planta y el funcionamiento
de los generadores a diferentes cargas. Como resultado la herramienta pro-
porciona el programa de generacién, consumos de energia primaria y el ben-
eficio total para el horizonte temporal considerado.

Se desarrolla una herramienta de prediccion de precios eléctricos de mer-



cado y demanda térmica en la red de distrito basada en dos modelos: ARI-
MAX y redes neuronales. Esta informacién se integra en la herramienta de
optimizacién para determinar futuras estrategias de generacién.

Adicionalmente, se desarrolla un predictor de energia solar que se integra
con el optimizador. De esta forma se maximiza la fraccién solar evitando
coincidencias innecesarias con la generacion térmica de los motores de co-
generacion.

Las pérdidas térmicas en la red de distrito son consideradas parte de la
demanda a suministrar por la planta de generacion. Por ello, durante esta
tesis se mejora el sistema de comunicacion de la red para poder adquirir in-
formacion de los consumidores térmicos de manera fidedigna. La informacion
adquirida facilita al operador la optimizacién de la temperatura a suminis-
trar en la red de distrito. Ademas, la posibilidad de modificar la temperatura
de suministro permite a los generadores generar energia de una manera mas
eficiente. Los generadores energéticos mejoran su eficiencia cuando las condi-
ciones de operacion son menos restrictivas. Por otra parte, estas estrategias
persiguen reducir las pérdidas energéticas modificando la temperatura de
suministro dentro de sus limites. Utilizando conjuntamente la masa térmica
de la red de distrito y el ajuste de temperatura de suministro, la red dis-
tribucion puede ser utilizada como almacenamiento energético.



Resum

El present doctorat es focalitza en I'optimitzacié de 'operacié d’una planta
hibrida que cobreix la demanda d’una xarxa de districte de fred i calor
(DHC). Aquesta tesi busca estrategies de subministrament energetic optim,
les quals sén una forma economica i prometedora d’augmentar 1’eficiencia
energetica i reduir els costos de subministrament de xarxes de districte.

Per assolir els objectius, aquesta tesi ha desenvolupat eines de prediccio
del preu electric del mercat Espanyol i la demanda termica les quals s’han
integrat en un simulador energetic. El simulador permet definir estrategies
de generacié optimitzant el mix energetic per tal d’aconseguir minimitzar els
costos d’energia i maximitzar la fracciéo d’energia renovable. El resultat és
una optimitzacié de I'operacié de la planta de cogeneracio i la integracié del
camp solar.

La planta objecte d’estudi és Parc Bit, ubicada a Mallorca, Espanya.
La planta pot generar calor, fred i electricitat. Aixi doncs, la planta obté
beneficis de la venta d’electricitat a la xarxa i del subministrament energetic
a la xarxa de districte. Per maximitzar aquests beneficis és necessari el
desenvolupament d’algoritmes que proporcionin estrategies de generacié que
s’ajustin a les corbes de demanda.

S’ha desenvolupat un sistema de gestié energetica que proporciona al
responsable de la planta estrategies de generacié optima. Aquesta eina
s’ha desenvolupat amb la col-laboracié del Politecnic de Torino i és capag
d’optimitzar plantes multi energia en diferents horitzons temporals.

El simulador necessita informacié de la demanda termica y electrica, les
condicions climatiques, la configuracié de la planta i el funcionament dels
generadors a diferents carregues. El resultat de ’eina proporciona la progra-
macié de generacid, els consums d’energia primaria i els beneficis totals per
I’horitzé temporal considerat.

S’ha desenvolupat una eina de prediccié de preus electrics de mercat i la



demanda termica de la xarxa de districte basada en dos models: ARIMAX i
xarxes neuronals. Aquesta informacié s’ha integrat en I'eina d’optimitzacié
per determinar futures estrategies de generacio.

Addicionalment, es desenvolupa un predictor d’energia solar que s’integra
a l'optimitzador. D’aquesta manera es maximitza la fraccié solar evitant co-
incidencies innecessaries amb la generacié termica dels motors de cogeneracié.

Les perdues termiques en la xarxa de districte sén considerades part de
la demanda a subministrar per la planta de generaci6. Per aixo, 1’objectiu
d’aquesta tesi és millorar el sistema de comunicacié de la xarxa per poder
adquirir informacio dels consumidors termics de manera fiable. La infor-
macié adquirida facilita a l'operador l'optimitzacié de la temperatura de
subministrament. A més, la possibilitat de modificar la temperatura de sub-
ministrament permet als generadors, generar energia d’una manera més efi-
cient. Els generadors energetics milloren la seva eficiencia quan les condicions
d’operacié son menys restrictives. Per una altra banda, aquestes estrategies
busquen reduir les perdues energetiques modificant la temperatura de sub-
ministrament dins els seus limits. Utilitzant conjuntament ’ajustament de
temperatura de subministrament i la massa termica de la xarxa de districte,
la xarxa pot ser utilitzada com emmagatzemant energetic.
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Cost of biomass Obio €kWh!
Heat loss 0] kW
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Chapter 1

Introduction

1.1 Framework

This thesis work is part of the solar heat integration network (SHINE)
project, which is a PhD programme supported by the European Union (EU)
through the Marie-Curie scholarship at the 7th frame program (FP7), under
grant number 317085. The research work was developed within SAMPOL
ingenierfa y obras (SAMPOL), industrial partner in the SHINE project. The
student was assisted by the University of Balearic Islands (UIB), another
partner in the SHINE project. The topic of this industrial PhD focuses on
the optimisation of a pilot power plant operated by SAMPOL.

1.1.1 SHINE Project

SHINE is an international PhD education program and network for solar
thermal engineering and the follow-up to SolNet. It is coordinated by the
Institute of Thermal Engineering at the University of Kassel, Germany. This
provides the opportunity for manifold networking activities between PhD
and Master’s students in the solar thermal field.

The EU project SHINE is a PhD scholarship education program that
offers 13 PhD projects with a focus on large solar heating systems for district
heating networks and industrial processes as well as novel components such
as sorption heat stores and concentrated collectors. A map of partners is
presented on Figure 1.1. The total budget for the SHINE project is 3.46 M€
and it took place from October 2013 to April 2018. Besides research, the
network offers a set of specialized PhD courses on solar thermal engineering.
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Figure 1.1: Map of SHINE partners

The SHINE project will include detailed experiments with innovative ma-
terials, components, systems, system integration analysis, and numerical op-

timisation and chemical investigations of storage materials.

A close coop-

eration with industry will ensure fast utilization of the results. The SHINE
network gathers a critical mass of PhD students at the European level and of-
fers them a specialised and structured PhD course programme on large solar
heating systems [1]. The SHINE project is divided into three work packages:
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e WP1 - Solar District Heating
o WP2 - Solar Heat for Processes

e WP3 - Sorption Processes

This thesis addresses the topic studied in WP1.

1.1.2 Collaborating Institutions

As this PhD project and its research is conducted in an industrial company
and supervised by a public university, this PhD is considered to be an in-
dustrial PhD. The institutions involved are the company SAMPOL and the
UIB in Mallorca, Spain. During the research, the student enjoyed 4 months
at the host institution Politecnico di Torino (POLITO), Italy to improve his
knowledge on optimisation and modelling.

1.1.3 Pilot Plant

Parc Bit is a demonstration power plant located in Majorca. The power
plant is a combined cooling, heating and power (CCHP) plant that provides
electricity, heating and chilled water to the Parc Bit innovation center and
to the UIB facilities through a district heating and cooling (DHC) network.
The hot water is generated by combined heat and power (CHP) engines, a
biomass boiler, solar thermal panels, and a fuel boiler. The cooling energy is
generated by three conventional electric chillers and two absorption chillers.
The absorption and the screw electric chiller are cooled down by water and
both use the same cooling towers. The compressor electric chiller is cooled
down with a dry cooler that uses surrounding air. Energy can be stored in
hot water and cold water tanks for heating and cooling storage.

The district network was built in 2000 and used three branches to connect
the tri-generation plant to Parc Bit office buildings. In 2002, the network was
extended by connecting another branch to the university facilities, including
the student house and the sports centre. The whole network comprises four
branches of pre-isolated steel pipes. Each branch has two pairs of pipes: flow
and return for heating and cooling. The total length of a single direction of
the DHC is 4.6km.
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Parc Bit’s electric distribution system comprises an electric substation of

66/15kV, and the distribution is performed at 15kV. This distribution sys-
tem provides electricity on multiple branches. One branch connects to the
innovation Parc of the Balearic Islands, an urban waste plant and a school.
Two other branches connect to Son Espases hospital. The system feeds elec-
tricity to six large customers at medium voltage, 137 small customers at low
voltage, and to five electric vehicle charging stations in the Parc Bit parking
lot.
The distribution in Parc Bit is performed at 15kV for medium voltage and
at 400V in low voltage. The medium voltage and low voltage distribution
comprises Hkm and 6km of underground cable. The distribution system
has one transforming center at 66/15kV and 15 transforming centres at
15/0.4kV. The energy consumption depends on the customer. The dis-
tribution system operator has a base load of about 90MWh/day which in-
creases up to 150MWh/day in the summer season, the maximum power de-
mand reaches 15MW. The annual consumption on the distribution system
is around 40GWh. The different customers have different profiles, but most
of them are seasonal and increase demand during summer. The distribu-
tion system also comprises an energy generation power plant connected to
the line that feeds the innovation Parc (branch #1). The electric generation
side consists of 2 CHP diesel generators of 1.36 MW each, and a TkWp pho-
tovoltaic array. The generation power plant also has electric consumption
for pumping inside the power plant and the DHC, cooling through electrical
chillers of about 650kW, and one electric vehicle charging and discharging
point.

Figure 1.2: Frontal view of Parc Bit power plant
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1.2 Problem Approach

In the southern European countries, solar thermal energy is harnessed a few
months per year for heating. Therefore, solar cooling is a suitable option
to increase the yield of thermo-solar fields that support tri-generation power
plants. In these kinds of facilities, solar heating, and cooling integration does
not significantly increase the complexity of the district network management
strategies. These strategies depend on the decision-making system which
aims to adjust the thermal and electric production curves to the forecasted
consumption to lower the costs and maximise the benefits.

Energy generation is tied to energy consumption. Thus, the lack of infor-
mation about the load or energy generation costs may lead to sub-optimally
managed networks and energy waste. To achieve a fitting of energy between
the load and generation, information is needed about the power plant as well
as the district network and its distribution cost, primary energy cost, energy
consumption estimation, and accurate energy price forecast.

Creating an energy management system (EMS) and including forecasted
information into the model aims to assist the power plant manager to improve
the generation strategies, maximise benefits by reducing production costs,
and optimise the energy distribution through the DHC network.

1.3 Aim

SAMPOL aims to advance its analytic maturity with the help of this PhD
project. A four-stages data analytic maturity is proposed in [2]. In Figure
1.3 an adaptation from the model is depicted. Thus, the aim of the project
is to develop an EMS tool that can guide the plant manager through the
decision-making process while operating the plant. This is achieved imple-
menting more efficient generation strategies, optimising energy generation,
and obtaining a higher solar thermal fraction.
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Forecasting tools are included in a set of appropriated computer tools.
These tools work together with thermal simulation software to estimate the
energy generation strategies by determining the energy production mix that
minimises the energy cost and optimises the electricity production. This
leads to an optimisation of the plant operation and integration of the solar
field. Several inputs are required to optimise the plant generation: heating
and cooling demand, solar thermal generation, electric energy price, and the
behavior of the generation systems as well as the district network and its
heat losses under different operating conditions.

This PhD focuses on the operation optimisation of a hybrid power plant
which covers the demand of a DHC and the maximisation of solar generation.
To achieve this, this thesis must develop an electricity price for the Spanish
market and a thermal demand forecasting tool which works together with
an energy simulator. The simulator determines generation strategies by op-
timising the production mix that minimises the energy cost and maximises
the renewable energy fraction. This leads to an optimization of the power
plant’s operation and integration of the solar field. Parc Bit is the power
plant under study and is in Palma of Majorca, Spain. The power plant can
generate heating, cooling and electricity. Thus, the power plant obtains rev-
enue by injecting electricity into the grid and supplying thermal energy to
the DHC. To maximise the plant’s revenue, it is necessary to develop algo-
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rithms that can provide energy generation strategies to meet generation and
demand curves.

An EMS is developed to provide the power plant manager with optimal
generation strategies. The tool is developed jointly with POLITO and can
optimise a multi-energy node power plant at different time horizons.

This simulator requires information such as thermal and electric demand
to fulfil, climatic conditions, power plant configuration, and machine behavior
at different generation points. As a result, the tool provides the schedule of
the generation machines, primary energy consumption, and total revenue for
the time horizon under consideration.

A two-cores forecasting tool was developed based on the auto regressive
integrated moving average with explanatory variable (ARIMAX) and arti-
ficial neural networks (ANN) models to obtain the future electricity prices
of the Spanish wholesale energy market and the DHC’s thermal demand.
Those values are fed to the optimisation tool to determine future generation
strategies.

Heat losses in the DHC distribution are considered to be part of the ther-
mal load to be fulfilled by the power plant. A calculation tool is developed
in order to accurately estimate the thermal losses in a four pipes DHC sys-
tem under different working circumstances. In such a system, it is crucial to
consider the influence between heating and cooling pipes and their working
temperatures. The tool optimises the supply cost, taking into consideration
the cost of generation for the thermal loss and the electricity cost of the
pumps’ circulation of the water in the network. A solar generation fore-
caster is developed, using the two forecasting cores (ARIMAX and ANN) to
estimate the future solar thermal generation that can be expected at Parc
Bit. Using the solar thermal forecaster enables the generation to be fed to
the optimiser, included in the future generation schedule. Therefore, the so-
lar fraction can be maximised by avoiding overlaps with the CHP’s thermal
generation schedule.

To clarify the general idea of the thesis, a graphical representation is
presented in Figure 1.4. To summarise the aims, the following tasks must be
carried out:

e Design of an structured query language (SQL) data base (DB)
e Development of an energy price forecaster

e Development of a renewable energy system (RES) forecaster
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Figure 1.4: Graphical representation of thesis aims

1.4 Scope

Different computing tools are used in this thesis. The aim of the thesis is to
develop an EMS which is composed of different tools.
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This thesis covers the setting, configuration and usage of the forecasting
tools. However, it does not cover the development of new forecasting models.
The author configures and tests the best configurations but does not develop
new methodology. The forecasting models used are off-the-shelf models in-
cluded in Matlab and based on ANN and ARIMAX. In this work, these
models are also compared and studied, although they are not developed.

This thesis will develop several parts of the power plant optimiser tool.
Nevertheless, the solver used in the tool is developed by Gurobi, solving
constraint integer programs (SCIP), or Matlab; this work only configures
and uses the solver.

As part of the collaboration with POLITO, this thesis helps to develop
several aspects of the EMS, namely XEMS13. The aspects of the EMS
improved are:

e Development of the cooling node, specially the performance of cooling
generators on partial loads and the impact of cooling output tempera-
ture

e Development of condensing node, including cooling towers, dry coolers
and geothermal systems as heat sinks

e Usage of climatic data such as ambient temperature and relative hu-
midity affecting condensing power calculations

e Inclusion of thermal mass of the DHC as thermal energy storage
e Calculation of Heat Loss (HL) in thermal energy distribution

e Development of optimal energy supply considering HL, electric pump-
ing cost and supply temperature
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Chapter 2

State of the Art

2.1 Background on Energy

Worldwide energy consumption is rapidly increasing. This has led to the
consumption of more fossil fuels, whose price is increasing. This trend is also
spurring the installation of renewable energy systems, often in combination
with conventional generators [3].

The consumption of energy is increasing in general, but the demand for
different forms of energy has also proliferated as working and life standards
improve [4]. In developed countries, it is common to find simultaneous de-
mand for electricity, heating, and cooling from the same customer. These
three are the main forms of energy consumption in residential, public, and
commercial buildings and their demand has been increasing in the last few
years [5].

The separated generation of the three types of energy entails higher fuel
consumptions. Consequently, it is necessary to find an effective solution for
generating the energy required by EU targets. One of the adopted targets,
known as 20-20-20, involves an increase of efficiency by 20%, reduction of
greenhouse emissions by 20%, and the attainment of 20% of total energy
generation as renewable sources [6].

One solution that has been commonly adopted to increase efficiency in-
volves tri-generation power plants where different generators are combined
in a single system that aims to achieve primary energy consumption savings
7, 8].

Tri-generation is an extension of a CHP system including cooling and
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it is also known as CCHP [9, 8]. It is an effective way to improve energy
efficiency throughout the year and to use unique source fuel to produce the
threefold energy vector requested by the user [10, 11, 12]. Combined cooling,
heating, and power plants are an efficient option to supply heating, cooling,
and electricity to the network [13, 14]. These plants are essentially a CHP
engine coupled with a heat-driven refrigeration system that produces cooling
when requested. Therefore, the heat produced by the CHP, otherwise known
as cogenerated heat, can also be used for regular heating demand.

Usually CCHP plants use electric chillers as auxiliary cooling generators
to supply peak cooling demands when the CHP is not engaged [15]. Com-
bined cooling, heating, and power plants are a widely used configuration for
decentralised systems where the end user is close to the energy generation
point and can be connected with a DHC network [16, 9, 17].

A hybrid system includes more than one type of primary energy into a
single system to supply the demand. A polygeneration system can generate
several types of energy. In hybrid polygeneration power plants, it is common
to find tri-generation systems where the CCHP is the main generator but is
backed up with some auxiliary generators. In such cases, electric chillers are
used to improve cooling efficiency [15]. In the same way, heating auxiliary
systems are often based on renewable energy sources such as biomass or solar
thermal [18]. These hybrid systems are usually more efficient, but it is also
more difficult to manage them properly.

Out of the three different forms of energy presented, cooling is the newest
commodity requested by energy consumers. Nevertheless, cooling demand is
foreseen to increase more than ten times by 2050 and be larger than heating
demand by 2100 [19]. Centralised cooling plants have been proven to be more
environmentally friendly than individual smaller cooling units [20]. This has
created the need for distributing and transporting cooling energy efficiently
to the consumption points. This need can be fulfilled with an existing and
mature technology, such as DHC.

In warm climates, cooling consumption can be as significant of a contrib-
utor to total demand as heating consumption [21]. In centralised systems,
cooling is generated with absorption chillers or electric chillers. Both tech-
nologies require a heat sink to evacuate the excess heat from the condenser.
This excess heat can be dissipated by being disposed to the following:

e water bodies such as lakes or rivers,

e the air or environment through cooling towers or dry coolers, or
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e the underground using geothermal systems.

The dissipation of excess heat is limited to the saturation of the heat sink.
The most critical situations appear during disposals to air. When cooling
towers or dry coolers are used to eliminate excess heat from the condensing
node, the efficiency of the heat sink directly depends on the ambient condi-
tions: the wet bulb temperature for cooling towers and dry bulb temperature
for dry coolers. Therefore, the mass flow of air going through the heat sink
may reach the saturation state, where no more heat can be rejected.

To avoid critical situations during operation, the best solution is to use
heat sinks that do not depend on ambient conditions, such as geothermal
systems [22]. Nevertheless, these sinks may come with the risk of media
saturation over time.

Whenever the heat sink encounters saturation, the cooling performance
is affected because its generation requirements cannot be matched.

As cooling demand by residential, public, and commercial consumers co-
incides with high ambient temperatures, the probability of heat sink satu-
ration increases. Therefore, heat sink saturation influences the generator’s
performance by decreasing its cooling output. Ambient conditions are a main
factor to consider when operating a cooling system coupled to an ambient-
dependent heat sink.

2.2 Background on DHC

Most existing networks are used to transport a heating fluid and are com-
monly known as district heating systems (DH). The first DH system was
constructed by the US Naval Academy at Annapolis in 1853 [23]. Networks
used to transport a cooling fluid are know as district cooling systems (DC).
The first known DC was installed in Denver, Colorado (USA) in 1889. Cur-
rently, DC systems are well established in North America and are becoming
more popular in Europe [24]. The combination of a DH and DC system is
known as DHC [23].

District heating and cooling systems use a pipe network to connect the
energy users in a neighborhood, area, or city. These users can then be served
from a centralised power plant or distributed plants that provide heating and
cooling [25].

A centralised generation system uses large generation units with greater
efficiency and more advanced air pollution control methods. Moreover, a
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central power plant allows collaboration with a variety of energy sources,
easing the integration of RES [26].

In addition, energy storage may improve the performance of the whole
system [27] and provide an effective way to decouple energy production and
energy demand [28].

The development of DH and DC systems has gone through four gener-
ations. This development has improved factors such as supply temperature
and energy integration [25].

The main difference between DH and DC is the delivery temperature.
In DC systems, temperature is normally below 10°C [27]. The temperature
drop between the supply and return in DC is much lower than in DH. This
means that DC’s pipe size must be much larger to carry the same energy,
which requires more investment in DC networks [29].

As previously mentioned, DHC systems are an efficient way to supply
thermal energy to the customers, but these systems must be planned carefully
for proper performance. The planning phase needs to address features such
as pipe layout, insulation, size, underground depth, soil conductivity, and
operation strategy.

The district network may be designed using different topologies. Pipe
layout is arranged in one of the following three forms: branched, looped,
and branched-looped network. A branched network is simple but unreliable.
Looped is more reliable but has higher investment costs. Branched-looped
is a combination of both designs. Figure 2.1 is a graphical representation of
the configurations [27].
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Figure 2.1: District networks configuration

Another factor that influences DHC performance is the piping. Pipe
size, pumping consumption, and insulation thickness should be considered
to achieve the shortest payback time [30]. The selection of a single or twin
pipe is an important decision that can affect the initial investment and heat
loss of the operation and the useful life of the installation. Using twin pipes
instead of single pipes can result in significant energy savings with a minor
increase in investment [31]. Equally important is the insulation used for the
pipes, which plays an important role in the network’s cost effectiveness [32].

One method to size the pipe section in a DHC considers the pressure loss
per unit of length or target pressure loss of the network. This maximum
target pressure loss is used to size the smallest pipe diameter in the network,
and the remaining diameters are selected accordingly [30]. The selection
criteria for target pressure loss values vary amongst European DHCs, and a
review of them is depicted in [33].

In DHC network constructions, the location of the pipes varies among the
following types: overhead, aboveground, and underground. Underground is
the most common construction [34]. In such constructions, important design
parameters include the soil around the pipe and the depth at which the pipe
is placed. The soil composition and moisture are important for estimating the
thermal transmittance that the network is subjected to. In large networks,
the estimation of soil and its thermal conductivity is not easy because it
varies with time and depends on the soil composition, structure, and moisture
content [35].
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Moreover, the depth of pipe burial has a direct impact on the soil’s tem-
perature around the pipe. The temperature undergoes cyclic variations on a
daily and annual basis. The amplitude of such variations becomes damped
with depth and is dependent on thermal conductivity [36]. The mean soil
temperature at an infinite depth, where there are no temperature variations,
is equal to the mean ambient temperature. Daily variations are negligible
below 0.25m and may not be even observed at a depth of 1.0m [37].

An optimally operated DHC should consider the operation of pumps and
supply strategies. The pumping system must be able to overcome the net-
work flow resistance, including pressure losses in clients’ heat exchangers.
The study conducted by [33] indicates that operating strategies that employ
variable flow and variable supply temperatures are beneficial in all cases.

Moreover, a slight change in the network’s flow temperature can enhance
the performance of the whole system: either through the improvement of the
generation units’ efficiency or the decrease of heat loss during distribution
(38, 25, 39, 40]. Therefore, it is important to study and optimise the energy
supply parameters to avoid poor delivery quality in the network [41]. Some
studies approach the optimisation of DHC supply mainly from the design’s
point of view [42, 43]. Not much attention has been placed on the evaluation
and study of energy supply strategies in DHC, despite their importance. The
study in [44] proposes a new distribution concept based on mass flow control.
[45] proposes an optimisation method for meshed grids, and [46, 47| present a
model which takes into account the thermal inertia of the pipe. The studies
carried on by [48, 49, 50, 51] have considered the thermal inertia of the
DHC and buildings to be equal to transmission delay in terms of improving
power plant performance through the inclusion of wind power generation.
For example, in [51], the optimisation has been carried out by setting a fixed
mass flow and defining a wide range for heating supply temperature (130°C
- 50°C).

Nevertheless, the thermal mass of the fluid and pipe used to supply the
energy on the DHC networks is neglected. Despite its significant potential,
thermal load shifting in thermal networks is rarely implemented. This is
mainly due to the absence of suitable smart meters and the lack of studies
identifying thermal load shifting’s benefits [52].
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2.3 Background of Energy Markets

During the last decade, there was an increase in renewable energy power
plants. This was motivated by subsidies that promoted the construction
of green power plants [53] and the price increase of energy generated from
fossil fuels. These factors and the policies adopted by many countries to
integrate renewable energy into the energy generation mix rearranged the
energy markets [54].

Energy generation is directly tied to the energy markets in which the
power plant is playing an active role. T'wo energy markets must be considered
for the power plant under consideration. The first one is the electric market.
The power plant is connected to the grid where the energy is exchanged. The
second is the thermal energy market where the energy prices are fixed for the
customers who are demanding thermal energy in the DHC.

2.3.1 Electricity Market

The electric energy market referred to in this work is the Spanish energy
market organized by operador mercado iberico espanol (OMIE). The power
plant feeds energy into the grid generated from the CHP and may consume
electricity from the grid. The energy cost in this market varies hourly. The
variation of this market is linked with the energy mix at every hour.

The integration of energy generated by green power plants into the electric
power system is a priority. This means that this power is fed into the system
in preferential order within the energy mix. The volatility and variability
of the renewable resource makes the integration in the grid difficult. In the
Spanish energy market or pool, the aggregated electricity power production
is balanced with the demand hourly. The electricity is traded in different
markets: the daily market and the six regulation intraday market. In the
daily market, the producers release their bids at 12:00 for next day’s hourly
generation. The intraday markets take place at 17:00 for intraday market 1,
at 21:00 for intraday market 2, at 01:00 for intraday market 3, at 04:00 for
intraday market 4, at 08:00 for intraday 5, and at 12:00 for intraday market
6. The generators can release their bids that cover each hour from a few
hours after auction time till the end of the auctioned day, as long as that bid
modifies a previous bid placed in the daily market [55]. Figure 2.2 provides
a graphical explanation of the bid system.
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Figure 2.2: Electric energy market

The energy mix is the result of a counter clockwise auction: the highest
price to purchase energy matches the cheapest offers. This process goes on
until the cost of energy offered is the same as the price for purchasing from the
demand. The lower and upper boundaries in the auction are 0€/MWh and
180€/MWh, where 40€/MWHh is the annual average value. The repayment
for all the accepted generators in an hour will be the same and equal to the
last and highest accepted bid in the auction. To always ensure the acceptance
of renewable energy into the generation mix, the green energies place their
bids at the legal minimum of 0€/MWh and their return will be calculated
as the sum of the final auction price times the generated energy plus the
generation subsidy stipulated by the government. On the other hand, if the
energy generation is different from what was offered in the auction, the grid
operator may penalise the generator by charging the cost of the difference in
energy.

Therefore, the energy mix in the auction is linked to its price. The en-
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ergy mix in Spain is shared among different technologies. It is visibly divided
between new installations based on renewable technologies and existing in-
stallations that are based on fossil fuels. The power installed and the en-
ergy mix of the different technologies in 2016 can be seen in Table 2.1 [56].
Biomass, biogas, geothermal, and marine hydraulic technologies are included
under ‘Other renewable’. Currently, the total annual energy consumption
is 262.8TWh, and the maximum demanded power was 40,489MW in 2016.
The demand from renewable energy sources covered 41.1% of the total en-
ergy consumption. This generation is unsteady and changes with time, which
directly affects the energy market price.

One major drawback for technologies supplying electricity from volatile
resources is the non-continuous availability of the resource. Solar energy de-
pends critically on the variability of irradiance [57]. Typically, cloud cover
causes rapid changes in irradiance during the day [58] which brings along gen-
eration fluctuations in the same way that wind energy generation depends on
the variation of wind speed and direction [59]. This dependence on weather
conditions may lead to inaccurate bids from the generators in the energy
auction and therefore penalties from the grid operator [60].

To understand the variability of the energy market, it is necessary to
understand the variability of the green energy technologies since they have
direct implications on the economic operation of the power system. These
energy variations cause fluctuations in the hourly energy prices. These vari-
ations influence as many energy generators as consumers. Therefore, the
renewable energy contribution must be known before energy prices can be
forecast, which allows for energy scheduling at both ends [21, 61, 62]. In
this section, the main factors affecting the energy price and their causes are
described and evaluated.

2.3.1.1 Wind Generation

Wind power is a promising technology that has reached market competi-
tiveness in the Spanish market without the help of subsidies. As depicted
in Table 2.1, the installed power is equal to 23.02GW, which corresponds
to 21.9% of the total energy mix. Figure 2.3 depicts the wind installation
distribution in Spain. The map demonstrates the location and size of the
installation in a colour-size map. The maximum installed power by law is
50MW. Wind energy is completely dependent on wind speed, but when the
re- source is available, the generation is considered to be free. Therefore, the
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Table 2.1: Spanish Energy Mix on 2016

Technology | Energy [GWh] [%] | Power [MWh] [%]
Hydro power 39,053 14.9% 20,354 19.3%
Wind power 48,927 18.6% 23,020 21.9%
Photovoltaic 7,979 3.0% 4,669 4.4%
Solar thermal 5,102 1.9% 2,300 2.2%
Other renewable 3,451 1.3% 748 0.7%
CHP 25,878 9.8% 6,714 6.4%
Nuclear 55,546 21.1% 7,573 7.2%
Coal 37,038 14.1% 10,004 9.5%

Fuel oil/Gas 6,748 2.6% 2,490 2.4%
Combined cycle 29,787 11.3% 26,670 25.3%
Waste 3,324 1.3% 754 0.7%

Total 262,852 105,307

energy producer places energy bids on the market, ensuring that the energy
will be accepted and matched. As the only expense wind power incurs is op-
eration and maintenance (O&M), the strategy for bidding usually attempts
to cover such costs, which generally are under 5€/MWh. That a significant
part of the energy share is wind dependent has a significant impact on the en-
ergy grid and market prices. Wind is a highly variable resource; wind power
varies from a minimum of 250MW to a maximum of 17.3GW and reaches
peaks of production that may imply over 67% of the total injected power into
the grid. Wind power does not necessarily follow the seasons but does have
tendencies over the year. In 2016, wind power was the second energy pro-
ducer in the Spanish energy mix at 18.6% of the total market. The impact of
wind power due its variations is reduced with help of energy forecasters. The
main forecasting difficulty is the error in wind speed estimation and the lack
of information on wind farm layouts. This disables the use of wind direction
to estimate power decreases due to shadowing between turbines.
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Figure 2.3: Map of wind installations in Spain by power

2.3.1.2 Solar Generation

Solar power is a common technology in Spain due to the high amount of
irradiation in the country. Moreover, Spain led worldwide solar power devel-
opment and installation in the previous decade. As depicted in Table 2.1, the
installed total solar power is equal to 6.97GW, which corresponds to 6.6%
of the total energy mix. These figures come from the sum of photovoltaic
and solar thermal installations. Figure 2.4 depicts the solar installation dis-
tribution in Spain for both photovoltaic and thermal. The map indicates
the location and size of the installation in a colour-size map. The maximum
installed power by law is 50MW. In Figure 2.4, solar thermal installations
are easily identifiable as they are usually over 40MW. Solar energy is com-
pletely dependent on solar irradiation, but when the resource is available,
the generation is free. In the same way as wind producers, solar producers
place energy bids on the market to ensure the energy will be accepted and
matched. Their strategy for bidding usually involves the minimum energy
market price, which is 0€/MWh. Similarly to wind energy, the dependence
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on climate brings uncertainty to energy market, which can be attenuated
with energy forecasting. The importance for forecasting energy generation
lies in the marked difference in generation between stations that change from
a peak of 7.5MW in winter to a 5,600MW peak in summer and achieve a
maximum of 25% of the total power injected into the grid. It is also impor-
tant to understand that the solar electricity generation in Spain includes two
technologies that can produce electricity:

e Photovoltaic. Ground mounted or in trackers. 4, 669MW

e Solar thermal power. Based on concentrating solar power. 2, 300MW

It is important to consider that the solar electricity generation from pho-
tovoltaic is only dependent on the solar irradiation on the panel surface. On
the other hand, solar thermal plants generate electricity through a process
that is dependent on solar irradiation and temperature. Additionally, some
of these power plants come with an energy storage.

50 MW

45 MW

40 MW

F 35 MW

F 30 Mw

F 25 MW

F 920 MW

15 MW

10 Mw

5 MW

Figure 2.4: Map of solar installations in Spain by power
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2.3.1.3 Nuclear Power

Nuclear generation is continuous over time. Nuclear power plants generate on
its nominal power as long as they are running. This only changes when they
start up and shut down to re-charge fuel. As the generators cannot be stopped
(unless there is a critical situation), this technology bidding strategy is the
legal minimum of 0€/MWh. Therefore, it is certain that the offer will be
accepted and its energy will be consumed. In Spain, there are seven working
nuclear power plants. All of them are slightly over 1.00GW of nominal power,
and an extra power plant is currently out of duty at 466MW. The total
working nuclear power is equal to 7.10GW, which generates 21.2% of the
total annual demand.
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Figure 2.5: Map of nuclear installations in Spain by power

2.3.1.4 Hydro Power

The hydro power is divided in two groups. The first group comprises large
hydro power plants that were constructed years ago. Their nominal power is
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above 50MW, and the installation usually involves water storage and is fully
manageable. These plants are equipped with backwards pumping, which en-
ables the use of the pumps to charge the dam. This allows the stabilisation of
the energy demand to act as a generator during high demand periods and as
a consumer during low demand periods. The second group are smaller instal-
lations that are always below 50MW and lack dam or re-charging capacity.
The generation of this group of installations is dependent on the water flow
in the river where they are installed. Figure 2.6 depicts the hydro power in-
stallation distribution in Spain. The map shows the location and size of the
installation in a colour-size map. The total hydro power from both groups is
equal to 20.35GW and generates 14.9% of the total annual demand.

The generation strategies of the two groups are completely different. As
the first group is regulable, they generate when the energy prices are higher
to obtain higher profits. On the other hand, the second group offers energy
bids to cover their O&M expenses as they would generate anyway.
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Figure 2.6: Map of hydro power installations in Spain by power
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2.3.1.5 CHP

Combined heat and power refers to installations that transform fossil fuels
into heat and power with high efficiency. These installations are tied to a
thermal client to sell the thermal energy as the installations generate elec-
tricity. Therefore, their generation strategies depend on the client’s thermal
demand as the generation cost and the energy bid they place on the market
may differ. Figure 2.7 depicts the CHP installation distribution in Spain. The
map indicates the location and size of the installation in a colour-size map.
The maximum installed power is 50MW by law. The currently installed CHP
power is equal to 6.71GW and generates 6.4% of the total annual demand.
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Figure 2.7: Map of CHP power installations in Spain by power

2.3.1.6 Conventional Power Plants

Conventional power plants refers to an installation which produces power
using conventional generation techniques. These installations burn fuel to
produce electricity through the movement of a generator. This category
includes installations that burn fuel such as the following:
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e Coal
e Fuel oil and gas

o Waste

The technologies included here in reference to Table 2.1 are the above-
mentioned fuels plus the combined cycle. Conventional power plants can
generate energy at will because the primary energy used in the combustion
is stored near the power plant. Therefore, the generation strategies followed
depend on the energy market, and the generators generate when the energy
prices are high enough to cover expenses and create benefit.

2.3.2 Heat Market

The effect of market forces on DH production is weaker than on electricity
production because the heating network is smaller in scale and DH systems
are often owned by a single entity. There are two basic types of heating
markets [63]:

e Regulated: The energy price is government regulated.

e Deregulated: District heating competes freely with other heating op-
tions, and the DH’s price is derived from the market.

Despite that nearly 40% of all primary energy in the EU are used for
heating purposes, heating and cooling markets are not unified in a wholesale
market or under common market rules [64]. It is difficult to estimate the
figures or ratios of thermal energy supplied through DHC networks when
compared with the total thermal demand. This is because of the numerous
existing networks and the uncertainty of the total thermal energy that is
consumed globally.

There is usually an agreement between the consumer and network man-
ager on a fixed price or a price that is dependent on fuel cost. In the case
of distribution with DHC networks, several customers acquire energy from a
producer which generates the energy from a central power plant or several
plants that are distributed along the network.

The costs of DH depend on three main factors [65]:

e The connection costs for customers
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e The costs of a distribution network, which depend on the size of the
DH network and its thermal loads

e The production costs of thermal energy

The heat is mainly produced by combustion of fuels such as coal, peat,
fuel oil, natural gas, wood chips and pellets, and firewood. Electricity is also
used for all heating demands at different temperature levels. Heat pumps and
solar collectors generate small amounts of heat at a low temperature. When
possible, heat is retrieved from industrial, power, and waste incineration
processes and injected into the DHC network.

High and medium temperatures heat demands appear mainly within in-
dustry. Space heating and domestic hot water supply are the most common
low temperature demands that appear in residential, commercial, public,
and industrial buildings. The various heat supply methods provide different
amounts of primary energy supply and carbon dioxide emissions [66].

The thermal energy market referred in this work is not an open market;
instead, it refers to agreements between energy service company (ESCO)
and the clients that fix a price for the energy and supply boundaries. The
DHC network connects the power plant with the energy consumers. These
consumers may demand heating or cooling. Furthermore, there is a differ-
ence between the original clients located in the Innovation Park Parc Bit in
branches #1 to #3 and the clients added afterward at the UIB in branch
#4. Every energy consumer has its own heat substation from where the
energy is acquired. These substations must be supplied constantly with en-
ergy within the boundaries agreed on by contract. The constant supply of
energy to all the consumers entails significant heat loss in the energy sup-
ply. The DHC network currently provides heating or cooling to 25 different
clients. For district networks located in Mediterranean climates, particularly
for this network, the cooling demand may be as important as the heating
demand. One noteworthy feature of this district network is that some of the
branches provide simultaneous heating and cooling to certain users. Never-
theless, most of the users are seasonal users that demand heat in winter and
cooling summer. Moreover, according to the customer’s energy profile, they
can be split into three categories: office buildings, educational, and specific
usages (such as residential, swimming pool, and IT room). These profiles
are also differentiable between workdays and weekends. The supply of this
energy demand will bring along the supply heat loss from the pipes used for
its distribution, which will be added to the demand.
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2.4 Background of Optimisation

The increased use of renewable technologies and the spread of different types
of energy as commodities has increased the complexity of energy generation
management. The appearance of hybrid generation systems with different
technologies, fuels, and primary sources has multiplied the complexity of a
problem that must be solved with computational algorithms. Similarly, the
increase of customers demanding more than one type of energy has propelled
the installation of hybrid generation systems. Therefore, it is necessary to
develop a tool that can propose management strategies to control several
technologies when they are combined or when several energy types are gen-
erated at the same site [67]. Polygeneration plants that use several generation
technologies to match the same demand by using different fuels have different
costs, efficiencies, and constraints. In these plants, the problems of manag-
ing the energy mix and keeping the overall generation cost at a minimum
are complex. Several energy demands can be found on users connected to a
DHC where the customers usually demand heating, cooling, and electricity.
These demands are generally matched within the same power plant with a
combination of generators [68, 69, 20].

This management problem is even worse in the case of generation from
non-dispatchable energy sources as solar thermal, photovoltaic, or wind tur-
bines [70]. The energy manager or power plant operator faces the complex
problem of finding a suitable and optimum generation mix that takes into
account the physical constraints on the generators. Besides, the operator
must take into account the inertia, storage, and previous states of the gener-
ation machines if they are to operate smoothly, encounter reduced mechanical
stress, and therefore avoid extra maintenance for the power plant.

From the ESCO point of view, it is very important to have precise
knowledge of the cost of supplying the energy demand. Such cost comes
mainly from the fuel consumption, DHC pumping, the power plant’s self-
consumption, and maintenance of the generators [21]. Once the primary
energy costs and the benefits of the energy generation are known, the energy
mix must be optimised by finding the most suitable schedule for the genera-
tion machines, which respects the technical constraints and boundaries.

From the environmental point of view, it is important to understand
the different volumes of gases released to the atmosphere by the different
generators at their different working points. Including such information in
the tool aims to create environmental awareness while generating energy. It
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also allows the power plant operator to take actions to conform the plant’s
operations to the new European directives regarding emissions and energy
efficiency regulations regarding high efficiency generators [71]. An EMS aims
to solve problems to the power plant operators in three different operation
horizons:

e Daily optimisation schedules the power plant operation in a 24 hour
time horizon. Demand and energy prices forecasts are used to optimise
the future energy generation by minimising costs and maximising profit.

e Monthly optimisation schedules the power plant in the medium term.
It is useful to define the maintenance of the generation equipment and
to determine the volume of fuel that the power plant uses during that
term to improve the logistics of primary energy purchase.

e Yearly optimisation schedules the power plant in the long run. It is
useful to plan the O&M of the generators at the most convenient time
in the year and estimate the power plant’s profits.

To operate a hybrid polygeneration power plant in the most efficient way,
the plant manager requires a set of generation strategies based on variable
parameters such as the demand to fulfil, primary fuel costs, non-dispatchable
energy generation, energy market prices, ambient conditions, and knowledge
of the power plant and its generators’ performance on the different work-
ing points. There are three common techniques to obtain the generation’s
strategies:

e Thermal follower
e Rule-based management

e Optimisation—based

2.4.1 Thermal Follower Strategy

The thermal follower principle assumes that is always important to supply the
thermal demand of the user. The generation systems are ranked and ordered
in terms of generation cost. Therefore, generators are successively turned on
to fulfil the demand at a given time. Thus, the power plant manager needs to
estimate the cost of generation for each generator beforehand. The thermal
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follower principle is based on corrective control: a problem implies a response,
such as a change in a power plant’s prearranged generation order that was
established by the energy manager (e.g., low supply temperature motivates
engaging an extra generator to maintain the temperature). In the case of
boilers or auxiliary systems, the generation costs are trivial to calculate if
the efficiency along its power range is constant. This calculation relates to
the primary energy cost, maintenance cost, and machine efficiency.

The calculation of cost of energy is no longer trivial when more than one
type of energy is considered. This is the case of the CHP engines which can
simultaneously generate thermal and electric energy at different efficiencies.
These energies are sold at different prices. Moreover, electricity is sold in the
wholesale energy market at a price that varies hourly.

Furthermore, the electric energy generation needs to be scheduled on the
energy auction market 1-day ahead of its production to be acceptable by the
grid operator. This means that since the rest of generators in the power plant
depend on the CHP, the entire power plant’s generation schedule must be
defined 1-day ahead. Consequently, the power plant’s schedule assumes that
the forecasts or estimations are perfect. In many cases, these estimations are
performed with the previous day’s values for thermal demand and electric
energy prices. Therefore, the generation’s scheduling is not as optimum as
it could be. Once the estimations are assumed, the operation of the CHP
engine is scheduled. From this point on, the rest of the generators will be
added to the generation in the prearranged order. A new generator is started
when the power plant encounters difficulty in fulfilling user demand. This
situation is indicated by a low temperature in the storage or buffer tanks.
On the other hand, a high temperature in the DH and storage or buffer tanks
implies extra heating generation in the power plant: when this happens, the
costliest generator is switched off.

This means that the energy stored in the network and the storage tanks
should be considered when scheduling generators to find the most cost-
effective solution. However, this is very difficult to address with the thermal
follower principle.

The decision-making process to create the generation strategies for the
thermal follower principle also includes constraints such as maintenance and
personnel.

A power plant operated using the thermal follower principle is signifi-
cantly reliant on the knowledge of the power plant operator. The decision-
making process that should be followed by the power plant manager also
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includes the following constraints:

e Programmed maintenance of equipment
e Personnel availability
e Primary energy cost

e Approximate revenues for energy sale

Maintenance of the equipment is scheduled and is periodical in most cases.
This periodicity may depend on the number of hours of utilization of a piece
of equipment.

Generally, it is advisable to have an operator on site when the CHP
engines are running. Nevertheless, whenever the CHP is not running, the
power plant can work autonomously if it has a supervisory control and data
acquisition system (SCADA). Understanding this fact, operator’s availability
is a constrain to operate the power plant.

2.4.2 Rule-based Generation Strategy

This generation technique is based on the experience of the generators and a
detailed documentation of the possible generation situations that can occur
at the power plant. The situations are documented, as are the follow-up
actions. Power flows are managed according to a set of case-triggered rules
built from heuristic knowledge.

It is important to notice that the development of a set of triggered rules
is difficult because of the number of possibilities. Therefore, this technique
is seldom used [72]. This technique is based on detective generation, which
involves a set of conditions motivating an action.

2.4.3 Optimal Generation Strategy

To manage hybrid polygeneration systems, it is advisable to use an opti-
misation tool that can propose management strategies to the power plant
operator. Such strategies decide the generation schedule of several technolo-
gies when they are combined, generating several types of energy at the same
site [67]. This technique is based on preventive generation, which involves
the estimation and optimisation of the outcome of a pre-scheduled action.
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The wide variation in generator efficiency, working load, and ambient
conditions as well as the inherent complexity of managing a hybrid poly-
generation system creates a problem with several degrees of freedom when
finding operating strategies [73]. An optimisation-based approach can have a
significant impact on energy savings compared with the thermal follower ap-
proach and is a useful tool for power plant managers who are seeking energy
efficiency [74].

To operate a hybrid polygeneration power plant in the most efficient way,
the plant manager requires a set of generation strategies based on variable
parameters such as demand to fulfil, primary fuel costs, non- dispatchable
energy generation, energy market prices, ambient conditions, knowledge of
the power plant, and its generators’ performance at different working points.

Mathematical programming methods have been employed widely in op-
timal power plant operation. Mathematical models for optimisation usually
lead to structured programming such as linear programming, mixed integer
linear programming (MILP), non-linear programming and mixed integer non-
linear programming. If the constraints and objective function are linear, the
problem is linear. Otherwise, the problem is considered nonlinear. MILP and
mixed integer non-linear programming involves both continuous and discrete
variables which take place in many applications of engineering optimization
[75]. This thesis chooses a linear model to find a unique optimal solution in
a short time, and a MILP method is used to develop the optimisation tool
due to the inherent existence of discrete and continuous variables in a power
plant.

The information regarding climatic variables can be extracted from nu-
merical weather predictions (NWP) to be used in optimising the power plant
generation for future time intervals [17].

Primary fuel costs do not commonly vary within short optimisation peri-
ods, and their value can be obtained from the experience of the plant man-
ager.

2.5 Background of Forecasting

The different energy vectors and prices are highly variable over time. There-
fore, having reliable forecasts is critical for producers, consumers, and retail-
ers. To optimally self-schedule production units, the operator needs accu-
rate forecasts of prices before bidding time [76]. To optimally operate the
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power plant, the manager needs accurate forecasts of energy demands before
scheduling the production. Moreover, if the generation depends on renewable
energies which depend on solar irradiation or wind, forecasts are necessary
for scheduling production on the energy market.

Time series analysis is one way to approach such problems. This method-
ology of forecasting focuses on the historical behavior of a dependent vari-
able. Therefore, time series models can be used to analyse and predict future
movements based on the past behavior of the dependent variable. Several
forecasting methods have been used in the energy field, and literature sur-
veys are presented in [77, 78]. Time series-forecasting single models can be
summarised as follows [79]:

e Stochastic models
e Regression models

e Artificial intelligence based models

Stochastic models are inspired by financial literature and are widely ap-
plied to forecast of energy-related indices and variables. There are several
stochastic models which have been employed for modelling and forecasting;:
RandomWalk [80], Mean Reverting Processes [81], Brownian Motion Pro-
cesses [82], Ornstein—Uhlenbeck Processes [82], Inverse Gaussian Process [83],
and Jump Diffusion Processes [84].

Regression-type models are based on the relationship between the de-
pendent variable and the number of exogenous variables that are known
or can be estimated. The most common approaches that employ regres-
sion models are auto regressive integrated moving average (ARIMA) mod-
els [85, 86, 87] and generalized autoregressive conditional heteroskedasticity
(GARCH)-family models [80, 88].

For more than half a century, ARIMA models have dominated many areas
of time series forecasting. This regression model is fitted to time series data
with forecasting purposes. It is composed by an autoregressive model (p),
moving average model (q), and differencing degree (D). Mathematically, it
can be expressed as ARIMA (p, D, q). In an ARIMA model, the future value
of a variable is assumed to be a linear function of several past observations
and random errors. Nevertheless, stationarity is a necessary condition for
building an ARIMA model used for forecasting. A stationary time series is
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characterised by statistical characteristics such as a mean and autocorrelation
structure that is constant over time [89)].

In recent times, artificially intelligent models have been extensively used
to capture unknown or excessively complex structures in the time series.
These models are growing in popularity. Examples of such models include
ANNS, support vector regression, wavelets, and genetically evolved models.
In the past, ANNs were used extensively for oil price forecasting. Currently,
ANNSs are used across the whole energy field. Since the late 1990s, ANNs
have been used in the field of energy forecasting: different variables have
been used as inputs to an ANN to predict generation values [90]. However,
the design of ANN models that use specific sets of design constraints relies on
expertise with similar applications and is subject to trial and error processes
91].

Artificial neural networks can model richer dynamics and approximate
any continuous function of inputs. Evidence of the efficiency of these models
can be found in [92, 93, 94]. Artificial neural networks have been found to
outperform the regression models in terms of high resolutions [95, 96].

Furthermore, there is a substantial difficulty in training networks which
may require a large amount of iterations before the network could converge
[96].

nonlinear autoRegressive models with exogenous neural network (NARX)
build recurrent neural networks by adding an autoregressive model with ex-
ogenous variables (ARX). The NARX model relates the current value of a
time series to the current and past values of the exogenous series that influ-
ences the series of interest. Another common ANN approach which enables
the discovery of the relationship between the inputs and the output data is
the multi-layer perceptron network [95].

In a multi-layer perceptron, neurons are grouped in layers. Only for-
ward connections exist, which creates a structure that can learn and model
a phenomenon. To produce a forecast, a fixed number of past values are set
as inputs. The output is the forecast of the future value in the time series
[97]. In this thesis, the ANN model used is the NARX configuration, due its
proven outperformance of the multi-layer perceptron [98].

In this thesis, two different kinds of models are selected due to their high
performance in forecasting time series. Furthermore, due the proved im-
provement of the accuracy of the energy forecast, both models are supported
with an explanatory variable [99]. The specific models used and improved
by the explanatory variable are as follows:
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e Based on regression models: ARIMAX [100, 96, 101]
e Based in artificial intelligence models: ANN [102, 103]

2.5.1 Explanatory Variable

Both forecasting models accept and are improved using a time series that
is related to the one under forecast. This time series are referred to as
explanatory or exogenous variables. The correlation between these two time
series is studied by means of a Pearson or a R? correlation study. The results
of either study ranges from [1, -1], where 1 is a direct and perfect correlation
and -1 is a perfect and inverse correlation. Figure 2.8 depicts some examples.
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Figure 2.8: Examples of the correlation of two variables

The time series used as explanatory variables should have the following
features:

e Have a direct or inverse relation with the main time series
e Same data granularity as the main time series

e Have as many future values as desired forecasted values
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Chapter 3

Calculation Tools

3.1 Optimisation Tools

To manage hybrid polygeneration systems, it is advisable to use an optimisa-
tion tool that can devise management strategies for the power plant operator.
Such strategies decide the generation schedule of several technologies when
they are combined and generate several types of energy at the same site
[67]. In this thesis, an EMS tool is proposed to optimise the generation of
a hybrid polygeneration plant. The tool, XEMS13, has been developed in
the energy department of POLITO and some parts have been developed in
collaboration with the company SAMPOL. The tool can be categorised as a
simulation tool, following the classification proposed by [10], where tools are
categorised in terms of: dimensioning, simulation, research, and mini-grid
design tools.

The tool aims to help the power plant operator to schedule generation,
create operation and management strategies, maximise profit, and fulfil the
customer’s energy needs in the most efficient way. The optimisation carried
out can either be economical, environmental, or both (multi-objective) by
creating an objective function that pursues a minimum.

The optimisation tool is organised into three steps, according to the de-
scription provided in [61, 104, 105]. In the first step, the tool acquires the
time profiles of the energy demand for the different energy vectors (heat-
ing, cooling, electricity,...), the time profiles of the energy prices (electricity,
natural gas,...) and the time profile concerning the environmental condi-
tions (outdoor temperature and humidity) and renewable generation (solar
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thermal or photovoltaic). In the second step, the technical and operational
characteristics of the different components (CHP, boilers, chillers,...) are de-
fined within a library, and the connections between them are also set. Later,
control variables and constraints are created according to the plant layout
and the discretisation of the simulation’s time horizon. Extensive explana-
tion of the tool is provided in [62, 61, 106, 104, 70, 68]. A schema of the tool
is depicted in Figure 3.1.

plant
configuration

components time
database profiles

Tt —

XEMS13

operational
costs,
shares

production

profiles

Figure 3.1: Schema of XEMS13 inputs and outputs

3.1.1 Pre-processing

At this stage, all the information is sorted out to be ready for calculations.
The different types of energy are separated in energy vectors, where a load
can be matched with the different energy mix of the generation machines.
The EMS tool requires the introduction of the power plant’s configuration,
its components, the time profiles of loads, and prices before the tool can
define a case study.
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The following aspects are described in order: the different energy vectors,
the available generators already defined in XEMS13, and the optimisation
requirements.

3.1.1.1 Power Plant Configuration

The power plant is configured through a file (NetList) that contains all the
components and the information required to perform a simulation. This
information includes the solver type, the number of simulation steps, and
information about fuel costs. The XEMS13 tool can consider different energy
generators, demand profiles, several primary fuels with variable prices, non-
dispatchable energy generation, and influence by external conditions. All
this information is referred in this file and should be defined at this point.
Some information is created with accessorised tools to generate information
such as demand profiles, future energy prices, time-dependent boundaries,
and processed climatic information. The EMS creates two different sets of
equations from the components defined in this file and separated by energy
vectors:

e Balance Equations for representing the balance of each energy vec-
tors. These equations ensure feasible solutions when demand is covered
by the generation at each time interval.

e Constitutive Equations for representing the relationship between
the input and output power of a given component, as well as its oper-
ational limits and thermodynamic constraints.

In this file, the energy vectors are defined by adding generated compo-
nents and demand. Therefore, for each of these vectors, a balance between
demand and energy generation machines installed on the power plant is de-
fined. In some cases, the generation must balance the loads. In other cases,
intermediate energy conversions are defined to match the requirement of an-
other energy vector: for instance, heat may not be used as is; it must be
converted into cooling energy by an absorption chiller. The XEMS13 tool
has already defined the following energy vectors as covering most of the ex-
isting loads in power plants:

e Electricity

e Heating
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Cooling

Low-enthalpy heating

Steam

Condensing requirement

For a specific power plant’s configuration, the user’s demands always
match in the balance equations by definition: the energy load must be equal
to the energy generated at every time step. To avoid an infeasible solution,
a slack generator is included in the equation in addition to the existing gen-
erators for that vector. This slack generator is fictitious and simply implies
that the demand is impossible to fulfil at a given point with the provided
power plant configuration. Purchasing energy from this slack generator must
be the last option for the optimisation tool. To avoid the energy purchase
from the slack generator, a high price is fixed for the external energy pur-
chasing in XEMS13. The different slack generators defined in the tool and
their features are as follows:

e Electric generator. It is permitted to purchase and sell energy with the
external generator using variable prices.

e Heating generator. It is only possible to purchase energy from this
generator at a fixed price.

e Cooling generator. It is only possible to purchase energy from this
generator at a fixed price.

The heat waste is energy generated and released to the environment.
Heating, for instance, can be understood as the non-cogeneration of the CHP
fumes. Cooling can be understood as energy impulsed into the DC and
wasted as heat losses along the distribution network.

Equation 3.1 an example of a balanced equation including different gen-
erators and the slack generator.

N
Uh - Z PG@”(")t + PSlaCk’t - Pwastedt (31)
n=1

where Pgen(n), is the power produced by the n-th generator.

t
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Figure 3.2 depicts an example of an energy vector that includes the rela-
tion of the generators (CHP, boiler and solar collectors), load, and storage
within the heat vector.

o~ | A

user

— Neat

Figure 3.2: Schematic view of an energy vector configuration where heat
power flows are considered

The defined energy vectors are not always energy demands from the user.
Condensing vectors are mere requirements of the cooling generation systems;
these requirements are operative vectors and not energy demands. Therefore,
the condensing vector is required to limit the cooling vector. Thus, this vector
does not include a slack generator.
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Subsequently, the operating cost function is defined by considering the
generation cost of each of the modules.

To create an objective function for optimisation, it is necessary to define
the components and create the equations that relate generation and demand
for the different types of energy vectors and their cost. The different fuels
are defined in XEMS13 in terms of their low heating values and costs per
unit of energy. The fuel costs are fixed for the whole optimisation period,
except the cost of electricity which may be variable for each time step.

3.1.1.2 Components Definition

There are several components defined in XEMS13: these are most of the pos-
sibilities that can be found in a power plant. The components library defined
in XEMS13 mainly comprises heating, cooling, and electricity generators, al-
though it is possible to add any desired component. These components are
listed and defined on an XML file, and most of them have a different structure
since the acquisition of their data is done ad hoc.

The components are defined in a manner that considers their technical
constraints, high and low boundaries, performances, energy consumption of
primary energy, energy generation, and emissions. With this data, the defi-
nition of a component’s constitutive equations can be created.

The thermodynamic constraints of the components are expressed within
the constitutive equations. The steady state workings of the components are
considered to neglect the implications of transient status. Possible technical
constraints related to power ramp limits or minimum on or off time are
considered. Common features defined in a XEMS13 defined component are
as follows:

e Fuel used by the generator.

e P. Lvl: definition of the different power levels and working points of a
generator.

Primary energy consumption at a given power level.

Energy generation at a given power level.

e E. Atm: emissions to the atmosphere of CO,, NO,, SO, at a given
power level.
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e ESc: energy self consumption of the generator at a given power level.

e TON: minimum on time that the generator must remain working once
turned on.

e TOFF: minimum shutdown time that the generator must remain stop
once shut down.

e Maintenance cost per unit of generated energy.

e Priority: Position in which the generator is starting in relation with
generators of equal characteristics.

e Collector area: Used in solar generation to define the aperture area of
a collector.

In Table 3.1, the dispatchable energy generators from XEMS13 are defined
and matched with the different features that are configurable in the tool.

Table 3.1: Constraints considered in some power components present in the
XEMS13 library
Generator | Fuel P. Lvl E. Atm ESc T. Cnst.

CHP v v

v v

_ V4 _
v
v

v
Boiler v
Absorption v
E. Chiller | v
C. Tower -
Dry Cooler -

Geothermal -

NSSNSNNN

Heat Pump -

\

Storage -

In the same way, Table 3.2 depicts the non-dispatchable energy generators
from XEMS13 and matches them with the different features configurable in
the tool.
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Table 3.2: Data for non-dispatchable power components present in the
XEMS13 library
Generator | Climatic info Area Efficiency

Solar th. v v v
Solar PV v v v
Geothermal - - v
Hydro gen. - - v

3.1.2 Processing

Since the optimisation problem is based on a MILP formulation, all the con-
straints that describe the plant layout and its operations need to be linear or
must be linearised. For the generators, which usually can operate at different
load factors with variable efficiency, this corresponds to the implementation
of a piecewise linear approximation for the relationship between energy input
and output [68, 70, 61].

Once all the variables, boundaries, equations, relations, and constraints
are defined, they are related and merged within a unique objective function.
This function can be either economic, environmental, or a mix of both, and
the goal of the optimiser is to find a minimum value for the cost or environ-
mental function when fulfilling the user-requested demand.

The XEMSI13 tool uses a steady state power flow approach to solve the
problem. The approach divides the horizon time considered in the optimi-
sation into equal time steps where the boundary conditions are fixed and
invariable. The transient status of the generators is not considered in the op-
timisation. The generation machine schedule and the final economic result
of the considered period are given as a result once the optimisation is carried
out.

The generators can work at different points within a working range and
have different efficiencies at each point. As the optimiser is based on MILP, it
is required to linearise any equation on their domain of definition by dividing
it in intervals where the function is considered linear.

Once the problem is linearised and defined as a set of equations, bound-
aries, and constraints, a standard file MPS that condenses the information is
created and delivered to a MILP solver such as SCIP [107], GUROBI [108],
MatLab [109] solver, or another external solver that is able to solve the prob-
lem. The solver then returns the optimum solution along with the individual
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values for the variables in the problem.

Finally, the tool finds the optimal scheduling for the different components
of the plant using a solver for MILP formulation, which leads to minimum
operational costs. The solution is processed, and the generation machines’
schedule is provided in a spread sheet for use. These files present the balances
for each energy vector. The EMS also provides an XML file that contains
the Sankey diagram information and the final cost for the whole simulation
period.

3.2 Forecasting Tools

This section describes the methodology followed to forecast energy variables
such as price, thermal demand and energy generation. Accurate forecasts
can be obtained using computational models such as ANN or ARIMAX.
Both forecast model performances are improved by using an explanatory
variable. This information needs to be acquired from different data sources
and processed.

3.2.1 Data processing

This section briefly describes the process of data acquisition of the required
information. There are several data sources used in this work; these sources
and their uses are explained in further sections. However, the system operates
similarly with all of them.

3.2.1.1 Data acquisition

Even though there are several sources of information used in this work, they
can be divided in two kinds: from an existing DB or from disaggregated files.
Information coming from a DB must have a connection point arranged with
the DB manager. Once the connection point is agreed on and logging and
permissions are sorted out, the recollection of data is simple. For the second
case, where the information is scatted in different files or spread sheets, a
filter of the information is requested . After filtering this information, it is
arranged into a simple table file, including time and value for each variable.
Once the information has gone through this process, the information on the
files is ready to be included in the DB. To include this information on a central
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DB, SAMPOL developed a code requesting this information. It covers two
main functions:

e Monitor, retrieve and replicate the information of the existing DB

e Read and store the information located in the different files created on
a designed folder

This code inputs the information on the central working DB and filters
for possibly incorrect data.

3.2.1.2 Data Storage

After attaining the data from the source, this information is processed to
avoid errors and stored in the central DB. Once the information is stored,
an extra field of information is added on that pertains to the type of day:
weekday, weekend, or holiday. The used DB is a SQL and is hosted in a
virtual machine on SAMPOL’s network, which makes it easier to access.
Most of the data is acquired in hourly steps, but some variables could have
greater granularity. If that is the case, the DB can provide averages for
hourly values. The DB is also able to split the data according to different
parameters if required.

3.2.1.3 Data Retrieving

Once the data is properly stored it is ready to be used. The data is obtained
from the DB using Matlab and predefined queries stored in SQL procedures.
These procedures are defined to retrieve an amount of data with significant
information. These procedures can be configured with options such as

e data-granularity,

e type of day,

e starting and finishing date, and
e amount of values requested.

After the query requests the information, it is acquired in a suitable table
where the first column is the time and it is ready to be used in Matlab.
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3.2.2 Forecasting Models

This section describes the two forecasting models that are used in this thesis.

3.2.2.1 Time series correlations

To forecast next values of a time series it is necessary to understand which lags
(also referred as delays) are important on that time series. [110] has proposed
to use the autocorrelation function (ACF) and the partial autocorrelation
function (PACF) of the sample data as the basic tools to identify the order
of the ARIMA model [89]. Once the ACF and the PACF studies are carried
out a threshold of correlation is used to determine appropriateness of the
lags. This threshold is set in 0.7 for direct related lags and —0.7 for inverse
related lags. Omnce these parameters are fixed, the most relevant lags are
selected automatically with help of Matlab.
The selected lags can be used for both ARIMAX and NARX models.

3.2.2.2 ARIMAX

Matlab is used to configure the ARIMAX model and make it perform. This
computational software has statistical software which eases the configuration
and forecasting with this model.

The lags that were used as inputs in the configuration are extracted from
ACF and PACF studies are variable and dependent on the case. The corre-
lated lags can be distributed on the following:

e MA, stands for vector of non-seasonal moving average coefficients;

e SMA, stands for vector of seasonal moving average coefficients corre-
sponding to an invertible polynomial;

AR, stands for vector of non-seasonal auto-regressive coefficients;

SAR, stands for vector of seasonal auto-regressive coefficients corre-
sponding to a stable polynomial.

After careful consideration of the results from ACF and PACF studies,
for the time series under study in this thesis, the seasonal coefficients are

not considered relevant. Therefore, the used lags are distributed between
MA and AR. To split the selected lags between MA and AR, the lags higher
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than the forecasting horizon are placed as AR. The lags lower or equal to the
forecasting horizon are placed as MA.

Another part of the model is the derivative part, D, which stands for
integer indicating the degree of the non-seasonal differences in the time series.
This variable is defined with natural numbers. For the time series used in
this thesis the derivative part is either 0 or 1.

The data for the ARIMAX model is split as follows:
e training 95%:;

e result comparison and testing 5%

3.2.2.3 NARX

Matlab is used to configure the NARX model and make it perform. This
computational software has a specific toolbox for ANN, which eases the con-
figuration of new networks to forecast. The following parameters are used:

e Training method
e Data split method
e Maximum epochs
e Minimum gradient
e Data split:

— training
— validation to avoid over fitting

— result comparison and testing
e Number of neurons

e Activation function

The toolbox offers a list of training methods including: Levenberg-Marquardst,
Bayesian Regularization, and Scaled conjugate gradient. After running sev-
eral test, for the time series in this thesis, the most successful training method
is Levenberg-Marquardt algorithm. The data split method used is ran-
dom which gives better results when training the ANN. The data is split
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as 70/15/15 which is the one used by default in Matlab toolbox and ex-
tensively used in forecasting applications. Maximum epochs and minimum
gradient are values which stop the ANN whenever reached. To configure the
minimum gradient a low value is given where the forecasts are considered
accurate. The maximum epochs are configured to stop the ANN using the
best achieved value. The more epochs allowed the better results obtained but
the more computational time required, therefore, a time-accuracy balance is
required.

The number of neurons is variable and dependent on the case. The neu-
rons are located in input, hidden, and output layers. The amount of neurons
on the input layer is equal to twice the time steps to forecast when an ex-
planatory variable is used, otherwise, is one neuron for each time step. The
amount of neurons on the hidden layer is equal to one for each time step
to forecast. The amount of neurons on the output layer is one. There are
several activation functions for the neurons to choose for on the hidden layer
such as: linear, sigmoid, tangent, hyperbolic tangent.

The lags (or delays) used in the configuration of the ANN are extracted
from ACF and PACF studies.

Neural Network

y(t

T

1

Algorithms

Training: Levenberg-Marquardt (trainim)
Performance: Mean Squared Error  (mse)
Calculations: MEX

Figure 3.3: NARX configuration used in MatLab
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3.2.3 Error Comparison

The following error metrics are used to evaluate the forecasting methods’
performance. The first error metric is the Mean Absolute Error (MAE).
This error metric depicts the deviation of the forecast from the real value as
an absolute difference. This figure is useful to understand the accuracy of
the forecast method. The error metric is expressed in Equation 3.2 in the
forecasted unit.

The second selected metric is the mean absolute percentage error (MAPE).
This error metric divides the absolute deviation by the real value. The er-
ror metric is expressed in Equation 3.3 as a percentage and is useful for
understanding the impact of the error in further energy strategies.

The third selected metric is the mean absolute daily percentage error
(MADPE). This error metric divides the absolute deviation by the real value
of the day. The error metric is expressed in Equation 3.4 as a percentage
and is useful to understand the impact of the error for forecasts where the
values may be close to zero at some point, which may also be the case for
solar generation.

In Equations MAE, MAPE, and MADPE V, (7) is the real value, and V(%)
is the forecasted value.

MAE = |V,(i) — V;(i)] (3.2)
V(@) = V()

MAPE = Vo (3.3)

MADPE — S V(i) = Vi) (3.4)

i Veld)
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Chapter 4

Energy Management System

4.1 The Parc Bit Power Plant

The case study presented in this document is the Parc Bit power plant that
is in the city of Palma of Majorca, Spain. The power plant provides heating
and cooling through a DHC to the UIB and Parc Bit, the Balearic Islands
Innovation Park. The district network was built in 2000 and connected the
tri-generation plant to Parc Bit office buildings using three branches. In
2002, the network was extended by connecting another branch to the univer-
sity facilities, including the student house and the sports centre. Currently,
the network provides heating and cooling to 26 different customers. For dis-
trict networks located in Mediterranean climates such as Spain, the cooling
demand may be as important as the heating demand.

The whole network comprises four branches of pre-isolated steel pipes.
Each branch has two pairs of pipes: flow and return for heating and cooling.
The total length in a single direction of the DHC is 4.6km. A noteworthy
feature of this district network is that some of the branches provide simulta-
neous heating and cooling to certain users. Nevertheless, most of the users
are seasonal users that have heating demand in winter and cooling demand
in summer. Moreover, according to the customers’ energy profile, they can
be split into three categories: office buildings, educational, and specific usage
(residential, swimming pool, and IT room). These profiles are also differen-
tiable between workdays and weekends.

The power plant that generates the thermal energy to cover the demand is
placed at the beginning of the branches and is run by SAMPOL. This power
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Table 4.1: Generators installed in Parc Bit

Generator Technology | Installed figure
CHP Engine (2) Diesel 2x1.36MW,
Solar Collectors | Flat plate 864m?

Biomass Wood chip 1MWy,

Burner (2) Diesel 1.2 +0.8MW,
Absorption (2) | Single. Li-Br | 1.32 + 0.43MW,
Electric Chiller | Compressor 1.2MW,
Electric Chiller Screw 1.3MW,
Cooling Tower Open 80kg /s

Dry cooler - 118kg/s
Heating storage Water 200m?
Cooling storage Water 200m?

plant is composed of 2 CHP engines of 1.36 MW, 7T00kW of solar collectors,
1MW of biomass, two diesel burners of 2MW total on the heating side, and
two absorption chillers of 2MW total and two electric chillers of 2.5MW total
on the cooling side.

The main figures of the installed machines are depicted in Table 4.1.
Figure 4.1 depicts the schema of the power plant and the connection between
the generators.

The heated or cooled water to be pumped to the branches is taken from
water storage tanks that are used as energy buffers. There are four tanks of
100m?; two for cooling and two for heating. The thermal energy generation
from the power plant is delivered to an equilibrium collector and then straight
to the tanks. The return flow is directed to the generation plant to be heated
again. The power plant provides heated water at a maximum temperature
of 95°C, and the return temperature is fixed at 65°C. For the chilled water,
the minimum supply temperature is 6°C, and the return is fixed at 12°C.
Both the returns have fixed temperatures due a load side design, which is
achieved through a variable flow pump in the pumping station. The flow
that moves through the network is pumped with pumps which usually are
equipped with a variable frequency drives (VED). The energy consumed by
the pump is then considered linear with the movement of the flow.
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Figure 4.1: Parc Bit power plant configuration

4.1.1 Heating Generators

In this section, the technical characteristics and features of the machines
are briefly described to enhance understanding of the power plant and its
generation’s configuration. The Parc Bit’s heating system provides heating
power to a local district heating network in the form of hot water. Usually,
the supply temperature to the customer is 90°C, and the return temperature
is 60°C. The heating generators also provide heating power to the absorption
chillers installed on the power plant as forms of input power.

4.1.1.1 Combined Heat and Power

The CHP engines are supplied with diesel and provide electricity and heating
power in the form of high-enthalpy water, low-enthalpy water, and exhaust
gases. In this case, the electric production is subsidised by the Spanish gov-
ernment, and the generators receive an extra benefit per MWh generated,
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Table 4.2: CHP parametrization

Load ‘ Consumption ‘ HT ‘ LT ‘ WHB ‘ Ele
104% 3,461kW 568kWy | 235kW; | 674kW; | 1,460kW,
78% 2,622kW 459kWy | 127kW, | 509kWy | 1,095kW,
42% 1, 525kW 298kW; | 27kW, | 296kW; | 590kW,

which will always be fed into the grid. The electricity has dispatch priority
over other technologies not considered to be renewable. This extra opera-
tion revenue is provided by the generated MWh, and is added on top of the
benefits of the wholesale price. As a condition to receive the governmen-
tal subsidy for generation, the CHP engine must achieve a thermal-electric
performance of 55% as measured yearly [111]. The CHP generation is con-
strained by its performance. However, its performance is not constrained by
the consumption of primary fuel.

The thermal energy generation comes from three different sources and is
represented in Figure 4.2:

e CHP high temperature (HT) circuit that has an output temperature
of approximately 90°C, coming from the engine jacket water.

e CHP low temperature (LT) circuit that has an output temperature
of approximately 50°C, coming from the lubricant oil and charge air
cooling.

e Co-generated energy coming from exhaust gases. The temperature of
the exhaust gases at the CHP is 464°C. After passing through the waste
heat boiler (WHB), the temperature that is released to the atmosphere
is 196°C. The temperature should not be lower to avoid corrosion prob-
lems at the boiler.

In this case, the low temperature circuit cannot be harvested for any need,
and the energy is wasted because it is cooled down by dry coolers. According
to the operational data retrieved from the power plant, the amount of energy
converted from primary energy in each circuit is depicted in Table 4.2.

The generation of energy using the CHP entitles a cost per O&M. This
cost is related to the amount of energy generated and is usually expressed in
terms of MWh,. The consumption of primary energy in the CHP engine is
depicted in Table 4.2 in kW. The primary energy comes from diesel, and its
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economic cost can be calculated with the low heating value of energy, density,
and price per unit of volume.

Figure 4.2: Engine Sankey diagram

4.1.1.2 Solar Collector Field

The solar collector field in the power plant is composed of 864m? of Arcon

Solvarme HT Solar collector that is distributed in nine rows and directly
installed on the ground in concrete slabs. The tilt angle of the collector field
is a south-oriented 30° and therefore provides for greater generation during
the summer period. The total area used by the collector field is 1, 900m?, and
the distance between the rows is 4m. The fluid running inside the collectors
is a mixture of water-glycol in 60% — 40% proportions. The cost of O&M
per MW, generated in the collector field is 1€.

Table 4.3 depicts the efficiency figures used in Equation 4.19, which are
according to the European Standard EN12975 and have been rated for the
collector at the Technical University of Denmark’s testing facilities in 1993.

Py, = A(oG — a1 (T, — T,) — ao(T. — T,)?) (4.1)
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Table 4.3: Solar Collector Field

Parameter | Value Unit
Exterior Area 864 m?
Interior Area 800 m?
To 0.78 -
a 3.5 W/m?K
as 0.02 | W/m?K?

However, collector efficiency nowadays is expected to be much lower due
to aging, technical problems, and damages that arise from stagnation and
operation at high temperatures.

The collector field has two connection options, depending on whether
demand for heating or cooling is greater:

e Summer configuration, which directly feeds the absorption chillers and
is depicted in purple in Figure 4.1, or

e Winter configuration, to the equilibrium collector, which is connected
to the heating energy buffer and is depicted in orange in Figure 4.1.

Currently, the information on generation is not retrieved from the field.
The solar collector field was never connected during the duration of this PhD
research because it was decommissioned due to leakage problems. Data from
previous years was used in the studies. During this research, studies were
carried out to study the viability of fixing the field and to acquire a new solar
collector field; neither option was economically viable.

4.1.1.3 Diesel Burner

The diesel burner was installed in the original generation plant. The nominal
power of generation is 2,000kW; that is divided in two steps of 1,200kW;
and 800kW;. The burner generates thermal energy by using diesel as fuel
and provides an efficiency of 92% at nominal load. The cost of O&M in the
boiler is 1€per MW, generated. During nominal generation, the burner can
increase by AT that is not greater than 20°C, where 65°C is the minimum
return temperature to avoid corrosion problems. The burner’s minimum
technical fumes exit temperature is 140°C.
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4.1.1.4 Biomass burner

The biomass burner was installed in Parc Bit in 2013 as a renewable support
or heating generation. This installation was made as an enlargement of
the heating generation side to fulfil customer demand. The burner’s nominal
power of generation is 1, 000kW¢ and burns wood-chips as fuel. The efficiency
of this boiler reaches 90% on nominal generation. The cost of O&M in
the boiler is 3€per MW, generated. In nominal generation, the burner can
increase AT up to 15°C, where 60°C is the minimum return temperature.

4.1.2 Cooling generators

The Parc Bit power plant is providing cooling power to a local network.
Usually, the supply temperature is 7°C, and the return temperature is 12°C.
Cooling power is provided by two types of technologies: electric chillers and
absorption chillers. The electric chiller’s input energy is supplied either by
the electric grid or by the local CHP, while the absorption input energy
come from the heat produced in the power plant by the CHP, boilers, or
solar collector field.

The coefficient of performance (COP) of the cooling generators varies with
the load they work at, the temperature of the cooling output, the temperature
of return from the cooling tower [112, 113], and in absorption chillers the
temperature of the heating source. The effect of partial loads on the nominal
COP of the generator is depicted in Figure 4.3. Nominal COP is achieved at
100% load, nevertheless, the COP can be higher than the nominal at partial
loads.

The usual temperature of the cooling energy output provided by the
chillers is 7°C, and the input temperature into the absorption is usually 12°C.
The influences of the cooling output temperatures and its AT are depicted
in Figure 4.4.

4.1.2.1 Absorption chillers

The power plant generates cooling energy through absorption chillers. Both
chillers are single stage and uses as refrigerant lithium bromide (Li-Br). The
rated COP at design temperatures is 0.62 for the 1.32MW, chiller and 0.64
for the 0.43MW, chiller. The thermal energy input is provided by the thermal
generators at the power plant. The rated temperature arriving from the hot
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Figure 4.3: Influence on cooling capacity of partial loads

source is 90°C, and the return temperature is 85°C. The influences of the
thermal energy input temperatures and its AT are depicted in Figure 4.5.

Both the absorption chillers are connected to the same cooling tower for
condensation; the temperature entering to the tower is around 35°C from
both absorptions, and the return should be 29°C or lower.

4.1.2.2 Electric Chillers

Part of the cooling generation is provided by the two auxiliary electric chillers.
Therefore, cooling generation does not depend solely on the absorption chillers.
One of the electric chillers uses screw technology and is connected to the cool-
ing tower to meet condensing requirements. The cooling tower is shared with
the absorption chillers. The other electric chiller uses compressor technology
and condenses in a dry cooler. The screw electric chiller nominal power is
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Figure 4.5: Influence on cooling capacity of heating circuit temperatures

1,297kW,, the usual temperature of the cooling energy output is 6°C, and
the input temperature is usually 12°C. The COP of the machines also varies
with the load. The rated COP at design temperatures is 4.17. The condens-
ing temperature that enters the tower from the chiller is 35°C, and the return
should be 29°C for the best performance.

The compressor electric chiller’s nominal power is 1, 170kW,, the usual
temperature of the cooling energy output is 6°C, and the input temperature
is usually 12°C. The COP of the machines also varies with the load. The
rated COP at design temperatures is 3.08.

The compressor electric chiller is connected to the dry cooler, where the
temperature entering the cooler is 32°C and. For the best performance, the
return should be at 22°C.
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4.1.3 Condensing Dissipators

Cooling demand in buildings is directly related to ambient conditions, par-
ticularly to ambient temperature and relative humidity. These two variables
directly influence the calculation of the condensing capacity in cooling towers
since they influence the air’s enthalpy that enters the refrigeration system.
In the case of dry coolers, only the ambient temperature influences their
condensing capacity. Ergo, cooling demand and condensing capacity are in-
versely related. This might lead to a problem when generating cooling energy
at the power plant.

In the hybrid polygeneration power plant configuration that has been
proposed as a problem to solve in this thesis, both cooling generators are
connected to the same condensing node and thus the same heat sink. It is
assumed that the water temperature from the cooling generators entering
and exiting the condensing dissipators are equal and fixed. The water tem-
perature that is exiting the cooling tower regulates the fans that provide the
air stream through the tower.

For some environmental conditions, the cooling demand leads to condens-
ing power that is larger than the maximum defined for the condenser in the
Equation 4.2.

When this happens, the cooling demand is not satisfied, and the user’s
needs are not meet.

P., =G, (Hy, — Hy) (4.2)

where G is the maximum air flow that can be forced through the tower
or dry cooler and is defined by the rated power of the fans and design pa-
rameters such as height, and air filters. H; and H, are the entering and
exiting enthalpies of the air in the cooler. To ensure heat transfer along the
cooling tower, the exiting bulk liquid temperature must have a temperature
difference that is greater than 2.8°C with an entering air wet bulb tempera-
ture according to [114]. Otherwise, the exiting bulk liquid temperature will
be of higher temperature than desired. In a cooling tower, there is an effi-
ciency drop because the exiting bulk liquid temperature is seldom more than
0.3K above the exiting air stream temperature, which can be assumed to be
saturated for calculation purposes [115].

The temperature that enters the tower is 33°C and the return should be
29°C. If the return temperature is higher than the 29°C that is fixed as the
set point, the efficiency of the chiller will drop. On the other hand, the return
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temperature cannot be lower than 20°C to avoid crystallisation problems on
the absorption solution. The influence in cooling capacity of cooling tower’s
return temperature to chiller is depicted in Figure 4.6.
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Figure 4.6: Influence on cooling capacity of condensing return temperature

4.1.3.1 Cooling tower

The cooling tower is designed to dissipate the condensing energy requirements
from the absorption chillers and the electric chiller. The cooling tower is
open, which means that the condenser water is sprayed counter-flow with
the forced air from the ventilators at the tower; the water is recovered in a
tray at the bottom of the tower. The cooling tower comprises three modules
of fans that each have an electrical power of 16.5kW, and a total electrical
power of 49.5kW,. The mass flow of air (G;) that can move through the
tower is 315kg/s. The refrigeration occurs due to an exchange of enthalpy
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between the condenser water and the surrounding air, which is carried out
through an increase of the temperature and humidity in the incoming air. It
is generally accepted that the relative humidity of the air exiting from the
cooling tower is equal to 100%.

4.1.3.2 Dry cooler

The dry cooler is designed to dissipate the condensing energy requirements
from the electric chiller. The refrigeration occurs due to an exchange of en-
thalpy between the condenser water and the surrounding air. This exchange
is carried out only through an increase of temperature in the incoming air
since the relative humidity along the dry cooler does not vary. The dry cooler
comprises six fans that each have an electrical power of 7.5kW,, or 45kW,

in total. The mass flow of air that can be moved through the dry cooler is
118kg/s.

4.1.4 Storage

The power plant at Parc Bit also includes energy storage. This energy is
stored as hot water for heating and cold water for cooling. All the energy
generators inject their energy productions into the tanks and from there the
load is flown to the customer. Therefore, the tanks are also energy buffers.

Table 4.1 states that there is 200m? of water for heating and cooling. This
volume of water is separated into two water tanks. Consequently, there are
four identical tanks of 100m?® each that are installed at the generation site.
The tanks are cylindrical; horizontally oriented; and have a total length of
14m, a diameter of 3m, and a thickness of 12mm. The insulation material
that covers the surface is rock wool and has a thickness of 40mm. The
tanks may not be effectively stratified because there is no system to help the
phenomena and the tanks are installed horizontally. This is the reason why
the tanks are considered to be more of energy buffers than energy storage.
The maximum amount of energy stored in the tanks can be calculated using
Equation 4.3 and the minimum supply temperature and normal generation
values expressed in Table 4.4. The heat loss can be estimated with the help
of the work presented in [116].

Estored = pw‘/storedcpw (Tg - Tf) (43>
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Table 4.4: Storage installed in Parc Bit
Type ‘ Volume ‘ Generation T. ‘ Supply T. ‘ Return T. ‘ Energy

Heating | 200m? 89°C 75°C 60°C 3, 248kWhy
Cooling | 200m? 6°C 8.5°C 12°C 580kWh,

4.1.5 District Heating and Cooling Network

The DHC under analysis in this study has branched topology and provides
heating and cooling to the UIB and Parc Bit. The whole network comprises
of four branches of pre-insulated steel pipes. Each branch has two pairs of
pipes: supply and return for heating and cooling. The total length of a single
direction of the DHC is 4.6km. A noteworthy feature of this district network
is that some of the branches provide simultaneous heating and cooling to
certain users [21, 117]. The effective peak power of the network is 4.4MW),
for heating and 2.5MW. for cooling. The annual energy consumption of the
network is 4, 800MWh,, for heating and 2, 500MWh, for cooling. Heat loss
represents 29% of the annual supplied energy. A map of the DHC can be
seen in Figure 4.7.
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Figure 4.7: DHC network’s birds-eye outline

4.1.5.1 Pumping

Pumping optimisation at the power plant is achieved using VFD. The VFD
linearly adjusts the electric pump consumption with the flow. Figure 4.8
depicts the power-flow relation of the pumps installed in the DHC. As men-
tioned, the DHC is comprised of four branches. Therefore, four pump sets
for heating and four pump sets for cooling are used. For the sake of simpli-
fication, this thesis considers the regime where the pump works as having a
linear relation with flow-power, and the sets of pumps are summed up in an
equivalent pump. The equivalent pump constant is described in Equation
4.4 for heating and Equation 4.5 for cooling. The flow and electric power
depicted in the equations are the aggregation of the working pumps at the
branches.

Paep  64.5kW,
~ 660m3/h

kelerr = (4.4)
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Figure 4.8: DHC pumping power and flow

4.1.5.2 Network Description

This section describes the values used in calculations regarding the network.
The pipes’ diameters in the DHC range from 33 to 193mm in heating and
from 90 to 280mm in cooling. The pipes are pre-insulated with a carbon steel
core of 8mm thickness. The insulation used is expanded polystyrene with an
assumed thermal conductivity of 0.033W/mK, since the heat conductivity
coefficient of the insulation increases with aging [35]. The insulation thickness
varies between 13 and 106mm in heating and between 17 and 112mm in
cooling. The depth to which the pipes are buried is assumed to be 1.5m for
the whole network, and the considered distance between centre of pipes is
0.5m. The total volume of water in the pipes is 127m? for heating and 296m?
for cooling.
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Table 4.5: DHC design temperatures

Temperatures | Heating | Cooling
T fmaa 89°C 8.5°C
T frnin 75°C 6°C
T feommon 86°C 6°C
Tr 65°C 12°C

In the DHC supply, temperatures are subject to modifications, but return
is fixed by design. Table 4.5 depicts the maximum, minimum, and commonly
used supply and return temperatures. These values are determined by the
design of the DHC and its customers. For the sake of simplification, the
average pipe temperature is considered for the whole length of the network

pipe.

4.1.5.3 Heat Losses

Thermal energy losses in the distribution network are identified as heat trans-
ference from the pipes to the soil. In the DHC networks, thermal transference
is dependent on the temperature difference between the soil and the pipes.
Therefore, a lower temperature difference leads to lower heat loss. Similarly,
the thermal conductivity of the materials enveloping the heat source and
heat sink plays an important role in heat loss calculation. Generally, the
main factors that affect heat losses are as follows:

e Pipe insulation

e Pipe cross-section

e Length of pipes

e Distance between pipes

e Depth at which pipe is buried

e Thermal conductivity of the soil

e Soil temperature
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The ground surrounding the network is not in a thermally stable state,
although steady-state conditions have usually been assumed in the litera-
ture. It is important to notice that the heat loss in a DC network produces
increases of temperature of the fluid in the pipe. Thermal losses can be easily
calculated using the approximate steady-state method that is explained in
[118, 119] and summarised in Equation 4.6. This method is used to calculate
heat loss for a pair of pipes (supply and return) considering the topology of
the network, its construction, and soil properties. From the district network’s
description, an overall heat transfer coefficient or U value is calculated. This
value depends on variables that are fixed by design in a district network. An
extensive explanation of the formulas used to calculate the heat loss in a pipe
pair are explained in Annex A.

T+ 1T,
¢s + ¢r =2U ( ! _2|— - Tsoil) (46)

If the simplified method is used that considers a calculated soil tempera-
ture Ti,; and a return temperature 7). that is fixed by design, then the only
variable that influences the heat loss is the supply temperature Ts because
all the other values can be considered fixed. In the case of DH, the greater
the T, the greater the heat loss in distribution. On the other hand, in DC,
the lower the T, the greater the heat losses. Therefore, for a given case of
pipes or network with a known U value, the heat loss can be formulated as
per Equation 4.7:

¢ = (bf + ¢r = k¢>Tf + ¢r (47>

Soil Temperature Soil temperature is an important factor for calculating
heat loss as it is necessary to calculate the thermal difference to DHC pipes.
This temperature is dependent on the depth and the ambient temperature.
Simplified models are generally used to calculate soil temperature [36, 120].
The proposed model in [36] describes the annual variation of the daily average
soil temperature at different depths as a sinusoidal function. The model
assumes that at an infinite depth, the soil temperature is constant and equal
to the annual average ambient temperature. The expression that calculates
the mean daily temperature at a given depth is presented in Equation 4.8.
2n(t —ty) =z

Tooit(2,t) = T, + Age™*/sin a5 d 2 (4.8)

86



where Ty,;(z,t) is the soil temperature at time ¢ in days and depth z in
metres, Ta is the average ambient temperature difference in °C, Aq is the
annual amplitude of the surface soil temperature in °C, t; is the time lag
in days from an arbitrary starting date to the occurrence of the minimum
temperature in a year, and d is the damping depth defined in [36]. According
to [121], the model must be corrected when using air temperatures. The
model proposed by [36] consistently underestimates by about 2°C when using
air temperatures instead of measured soil surface temperatures.

The presented model calculates the soil temperature at a given depth, day,
and set of soil characteristics. The model does not consider hourly temper-
ature variations which may be considered negligible at the depth considered
[37]. The model only estimates the soil temperature based on ambient pa-
rameters and does not consider the possible influence of the DHC pipes on
operation. The soil heat conductivity coefficient A; of the surrounding soil
is difficult to estimate due to inhomogeneous and partly unknown soil com-
position and moisture content. This coefficient ranges between 0.5W /mK in
the case of dry sand to 2.5W/mK. In this case the value is 1.3W/mK [31].

Soil temperature is calculated using the soil temperature model expressed
in Equation 4.8, the parameters expressed in this section, and the climatic
conditions from the DHC site. Figure 4.9 depicts the temperatures at differ-
ent depths.
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Table 4.6: Heat loss parameters for DHC

Case | ke | Winter ¢, | Spring ¢, | Summer ¢, | Autumn ¢,
Heating 1.379 54.608 40.019 19.940 33.096
Cooling -1.459 19.557 34.998 56.247 42.324

Soil temperature - 12.7°C 18.0°C 25.3°C 20.5°C
Number of day - 24 115 205 293
i Depth Om
Depth 1.5m

— Depth 3.0m
—— Depth 4.5m

Soil Temperature (°C)

0 50 100 150 200 250 300 350
Day of the year

Figure 4.9: Soil temperatures at different depths

Heat loss from the DHC is calculated using the assumptions and informa-
tion presented. The results expressed according to Equation 4.7 are presented
in Table 4.6.
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4.1.5.4 DHC Thermal Mass

The usage of a district network to carry the energy from the generation
point to the consumption point implies a large amount of water inside the
distribution pipes. This in turn implies that there is a significant amount of
energy stored within the network that works as passive storage and inertia.

Usually, due to the covered extension and the total pipe length, the net-
work has a significant thermal mass and thus response time to changes. The
thermal mass in a DHC comes from fluid that carries the energy, pipe, and
soil. This section quantifies the thermal mass of a DHC is quantified and
studies the DHC’s usage as active storage. The energy stored in a branched
DHC thermal mass is considered invariable for fixed temperatures of sup-
ply and return. Therefore, it is unprofitable as active storage. On the other
hand, when these temperatures are variable, the energy stored in the thermal
mass can be profitable as active storage. Nevertheless, when return temper-
ature T, is considered fixed by the user’s substation and by all the users in a
district network, the only variable in the equation is the supply temperature
Ty. The supply temperature can be managed from the generation site by
either providing energy at a variable temperature or by using a three-way
valve and mixing the return water with the water from the generation.

In cases where T, is invariant, the energy stored in the thermal mass
of the DHC is referred to the supply only. As T} is considered variable
within some boundaries, this means that the energy stored in the thermal
mass on the distribution network varies and should be considered in energy
simulations. The supply temperature has higher and lower boundaries; the
higher boundary is delimited by the maximum temperature the power plant
is able to generate, and the lower boundary is determined by the district
network’s most restraining user requirement. Therefore, the energy stored in
the thermal mass is calculated in accordance with the range of temperatures
considered. In this case, such temperatures only refer to 7y. When thermal
mass is considered, the variable is included in Equation 4.9 at the n;hour.

EG @y =Unm) + 0m) + (Ernim) — Eravm-1))
= Unn) + ) + TM(Ty,m) — Tt (n-1))

The thermal mass of a DHC can be calculated considering the individual
thermal mass of fluid and pipe.

Soil thermal mass is not considered when calculating the total thermal
mass of the DHC. The energy accumulated in the soil is not suitable to be

(4.9)
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used as active storage due its lower temperature than the supply and the low
heat transference back to the pipe through pipe’s insulation [116].

Fluid Thermal Mass The thermal mass of fluid refers to the capacity of
passively stored energy in the fluid (usually water) inside the DHC. As the
return is not considered, the amount of thermal fluid to consider as active
storage depends on the half volume of fluid inside the DHC network. The
thermal mass of supply can be calculated as per Equation 4.10.

v,
TM; = c,pV = cpwwaTHc (4.10)

where Vpgce is the volume of fluid on the distribution network, p,, is the
density of the water, and ¢,,, is the specific heat capacity of water.

Pipe Thermal Mass The thermal mass of a pipe refers to the pipe’s
capacity to passively store energy in the material of the pipe that is in contact
with the fluid. The temperature of the fluid is the same as the temperature
of the material. The work by [47] has studied the delay for a metallic pipe
to reach a steady state when modifying a temperature resulting 200s, which
is negligible in hourly terms. The thermal mass of the pipe is calculated
considering the material in the DHC pipes as depicted in Equation 4.11.
7TL (Dzzmt
4
where p,, is the density of the material, ¢, is the thermal capacity of
the material, V' is the total volume of material in the pipes, L is the length
of the pipes, and D,,; and D;, are the external and internal diameters of the
pipe.

Using the same approach the thermal mass of pipe’s insulation can be
calculated. However, as the distance from the pipe within the insulation
increases, the temperature decreases [116]. Therefore, the insulation cannot
be considered as active storage because the supply temperature is always
greater than the temperature in the insulation, and no heat is transferred to
the fluid under any circumstances.

Table 4.7 presents the description of the network in terms of length and
volume through the pipes. The inertia in the network can be stored in the
flow and the return pipes by increasing the temperature for heating or de-
creasing for cooling. To achieve this, it is necessary to regulate the pumping

— D?
TM, = c,pV = CompPm in)

(4.11)
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Table 4.7: DHC network pipe information

Branch Length | Volume
Heating 1 1,103m | 16.78m?
Cooling 1 1,103m | 44.67m?
Heating 2 752m | 22.79m3
Cooling 2 752m | 51.46m3
Heating 3 1,002m | 32.29m?
Cooling 3 1,002m | 69.18m?
Heating 4 1,772m | 55.54m?
Cooling 4 1,772m | 130.65m3
Total Heating | 4,629m | 127.4m?
Total Cooling | 4,629m | 295.9m?

Table 4.8: Thermal mass calculation parameters

Energy Mass [kg| | TM [kJ/K] | TM [%]
Water Heating 63,700 267,620 81.41%
Water Cooling | 147,980 621,709 86.82%
Steel Heating 121,659 61,124 18.59%
Steel Cooling 187,848 94,378 13.18%

station in accordance with the temperatures instead of the differential pres-
sure between flow and return.

The thermal mass of the DHC is calculated by considering the fluid in
the pipes and the carbon steel core that is in contact with the fluid. The
calculation of this mass considers the specific heat capacity of carbon steel
Cpm t0 be 502.416J /kgK with a density p,, of 8,050kg/m?. The calculation
considers the specific heat capacity of water ¢, to be 4,184J/kgK with a
density p, of 1,000kg/m3. Table 4.8 depicts the main parameters and the
thermal mass of carbon, steel, and water that are considered in this DHC.

4.1.6 Primary Energy Considerations

This section explains the boundaries and considerations that are involved in
simulating the power plant. Four weeks are studied, one for each season. In
the case of stored raw material, the prices and values are fixed for the whole
optimisation period and will be kept invariable across the seasons. On the
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other hand, energy demand and electricity prices vary on an hourly basis.
The reported costs in this section are obtained from Sampol and the current
market situation.

e CHP Diesel: Lower heating value 10.4kWh/1; Cost = 0.45 €/1.

e Boiler Diesel: Lower heating value 10.4kWh/1; Cost = 0.50 €/1.

e Biomass: Lower heating value 3.2kWh /kg; Cost = 0.22 € /kg.

e Energy generation subsidy: 100 €/MWh,.

e Water cost: 3 €/m?.

e Solar power: Free O&M cost.

e Electricity: Purchasing and selling values are depicted in Figure 4.10.

e Thermal demand: Heating and cooling demand are depicted in Figure
4.10.
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Figure 4.10: Electricity price and thermal demand variation

4.2 MILP Formulation

4.2.1 Power Plant

The aim of an EMS is to create generation strategies for complex prob-
lems and to provide possible alternatives to unfeasible solutions for the en-
ergy manager, thereby broadening the view of energy operation management.
When optimising the power plant, climatic information should be taken into
consideration, especially if the heat sink or energy generators depend on the
climate. This chapter contributes to the field of energy optimisation by pre-
senting a case study of the developed EMS, which solves real operational
problems. Figure 4.11 presents a node distribution of the pilot power plan.
In this section, the technical characteristics of the generators that form
the power plant are translated into linear equations. These features and
boundaries are introduced in the optimiser as constitutive equations.
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Figure 4.11: Parc Bit Power plant’s node distribution

4.2.2 Heating Node

In the heating node, the generation side balances out the loads from the
consumers and the energy used by the absorption chillers. It is assumed that
the hot water output is generated under acceptable premises of temperature
and flow to be harvested in either load or absorption. In this EMS, the
following heat generators are modelled:

4.2.2.1 Combined Heat and Power

The main aspect to be modelled in a CHP generator is the relationship
between electricity ., and thermal Ej energy generated, and its input power
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FErn. This characteristic is expressed by the following equations:

Eh<t1> = ko(S(tZ) + klEe(t,L') (412)

E[N<ti) == Cgé(tl) —|— ClEe(ti) (413)
where the coefficients k; and C] are constant or linearised using a piece-
wise linear approach. To do so, the working range is subdivided into intervals
where those coefficients are constant. Using the therm Cj the fuel unit cost
decreases with the increase of electric power generation. To define the gen-
erator as on or off in a time interval, a binary variable 6(¢;) which is involved
in the limits of operation is defined as follows:
d(t;)E. < Eo(t;) < () E.

€min — €mazx

(4.14)

Therefore, the cost and benefits from a CHP engine are defined on basis
of the energy generation, fuel consumption, and governmental benefits:

OCHP = Z Ein(ti)0dieset + 0cupEe(ts) (4.15)
=1
Beup = Z En(t:)Be + (Be(ti) + comir(ti))Ee(t) (4.16)
i—1

4.2.2.2 Boilers

The auxiliary boilers are supplied with a primary fuel, which can be either
biomass or fossil fuel, and it provides heating in the form of hot water. The
purpose is to generate heating to match the heating demand on the node.
The relation between the fuel consumed and energy generated is explained
in Equation 4.17, where E}, is the output from the boiler, g is the efficiency,
and By is the energy used by the boiler. In Equation 4.18, the cost of the
boiler o is introduced as the cost of the fuel per unit of fuel mass (o)
times the fuel consumed added to the cost for O&M per unit (d0p) times the
boiler output.

Ey(ti) = Ernv(ti)ns (4.17)
o(ti) = Ein(t:)ovio + En(ti)op (4.18)
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4.2.2.3 Solar Thermal

Solar resource is intermittent and uncontrollable. For practical reasons, the
approach used in the EMS considers resource forecast to be ideal and without
deviations from the real generation. This energy is added into the node in
the form of heating generation. The energy is calculated using irradiation
forecasts, and the energy produced by the collector field is calculated using
the methodology explained in [70], which uses a model based on the steady
state test of the European Standard EN12975.

Py, = [n0G — ai(Ty — T,) — as(Ty — T,)*] S (4.19)

4.2.3 Cooling Node

In the cooling node, cooling generators match the cooling demand. The
cooling generators proposed in the EMS are absorption and electric chillers.
Both options work analogously by means of simulation. The input energy
E;n is converted by the generator into cooling power through the efficiency
or COP.

The different working points where the chiller can effectively generate
cooling have different COPs. These efficiencies are represented using piece-
wise approximation. A practical constraint is fixed for chillers that are unable
to generate if the load is lower than a percentage of its nominal power; such
information can be retrieved from the data-sheet. Different loads correspond
to different energy consumptions, and this relation is defined by Equation
4.20, where E, is the cooling output, E. is the input energy into the chiller,
and COP, is the efficiency at a given time.

E.(t:) = kod(t;) + COPEL(t;) (4.20)

In the case of the absorption chiller, the energy input is provided by the
thermal generators at the power plant and is therefore considered to be part
of the thermal demand at the heating node. For the electric chillers, the
energy input is obtained from the power generators at the site or from the
electric grid.

When a chiller is in operation, it generates excess heat that must be re-
jected. This excess heat is addressed as condensing power. The condensing
power balances the thermodynamic state of the chiller and can be calcu-
lated as a sum of the generation F,. and the energy used Ejy (see Equation
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4.21). The chiller absorbs energy from both E. and E;y because the cooling
generation is a subtraction of energy from the energy carrier.

Eon(ts) = Ern(t:) + E(t:) (4.21)

The condensing requirements for the chiller to generate cooling energy
are calculated with reference to the generated cooling power and the energy
consumption of the generator. Therefore, taking Equation 4.21 and Equation
4.20 into account, the condensing requirements can be expressed in Equation
4.22:

1
B —£ (1 4.99
on ( + 0()3) (4.22)

The required condensing power is calculated as depicted in Equation 4.23.
This power depends on the cooling power generated at the chillers and their

COP.

(2
Eew =Y  Ervi+ Eq (4.23)
i=1

Another source of cooling, the slack generator, is activated in case the
demand is not matched and to keep the node balanced. This generator keeps
the balance of the cooling node satisfied, but at a high cost of c..;. This
high cost is fixed to penalise the use of this peak module and thus should be
avoided by the optimiser. The energy generated by this slack generator is
defined as a shortage in cooling demand.

To solve such a problem, it is necessary to precisely calculate the power
plant generators and their capacities when working under different environ-
mental boundaries. To do so, technical specifications must considered and
simulated together to find a techno-economical solution that allows the gen-
erator to fulfil the user’'s demands. To succeed in fulfilling the demand and
finding the most optimal solution, it is necessary to retrieve information
about the load, ambient temperature, and relative humidity for every time
step. This information is fed into the optimiser to provide a solution that
fulfills the user’s request of energy, if possible.
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4.2.4 Condensing Node

In the condensing node, a balance of energies is pursued between the heat
sink and the cooling generator’s condensing requirements. The concept of a
heat sink refers to the element designed to dissipate excess heat. In this case,
the element must fulfil the rejection requirements of the cooling generators,
otherwise their generation capability is reduced. Equation 4.24 depicts the
calculation of condensing power, where m is the mass flow of the fluid, H;,
is the entering enthalpy, and H,,; is the exiting enthalpy of the fluid.

Ecn - m(Hm - Hout) (424>

There are two kinds of heat sinks that are defined in the optimisation
tool: geothermal systems and cooling towers or dry cooler.

4.2.4.1 Cooling Tower/Dry Cooler

The condensing capacity that is delivered from a condenser is constrained
technical and environmentally. Technically, this capacity depends on the
air stream moved by the fans through the machine; such air flow is limited
by the fan system’s power. Environmentally, the capacity depends on the
entrance conditions of the air stream as the exiting enthalpy from the tower
is fixed. Figure 4.12 depicts a schema of a cooling tower. The condensing
power available on a tower is calculated as the air flow multiplied by the
difference between entering and exiting enthalpies, as depicted in Equation
4.25.

Ecn = mG(HG,out - HG,in) (425>

In the pre-processing phase, enthalpy calculation is made through a cal-
culation routine based on the psychometric diagram of the air. The air
conditions are also calculated with the routine. To calculate the enthalpies
of the air exiting from the condenser, the following assumptions are made
from the required values:

e Dry Cooler: Relative humidity (RH) = Entering RH
e Cooling tower: RH = 100%

e Exiting temperature = Condensing water temperature to chiller —0.3K
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Figure 4.12: Schematic view of a cooling tower

The psychometric routine calculates the enthalpies using the following
inputs:

e Ty: Dry bulb temperature
e RH: Relative Humidity
e Pa: Air pressure

From the component list, information is retrieved regarding the T,,, that
the chiller is rated at and the desired T,,,,, for which the chiller provides
the best performance. In principle, if more than one chiller uses the same
condenser, the desired T;,,,, values should be the same.

The condenser type is modelled to understand how much electrical power
and water is consumed to condense a certain amount of condensing power.

The electric consumption from the cooling tower comes from the fan,
P.fan. The electrical power is proportional to the air flow, as expressed in
Equation 4.26.

Pefan = kC’TGs (426)
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The ker parameter can be calculated using the equipment information from
the data-sheet, as expressed in Equation 4.27.

kor = =4 (4.27)

In one plant, the same cooling tower can be shared by several cooling
modules so that the condensing power required by each machine must be
summed up with the power required by the other machines . This interaction
requires the definition of a condensing power vector and of a condensing
power node where all machine requests are summed up.

4.2.4.2 Geothermal system

This work models a closed-loop geothermal system. It is assumed that the
underground water has a constant temperature in the same way that the
water returning from underground has a fixed temperature. The maximum
temperature difference is set by the local government. Using these assump-
tions, the condensing power that can be delivered by the system is dependent
on the mass flow of water pumped from underground and is expressed in
Equation 4.28, which relates to the mass flow of water m and the difference
of temperatures with the condensing capacity.

Ccn = mwcp(T‘in - Tout) (428>

The electric consumption of the system comes directly from the pumping
efforts and is estimated to be directly proportional. The relation is under-
stood as an electric coefficient kgeo and is depicted in Equation 4.29.

E. = mykgeo (4.29)

4.2.5 Electric Node

In the electric node, the grid acts as an energy buffer that all the consump-
tions are taken from and all the generations are fed into. The proposed
generators in this case are the CHP engines and as consumers there are elec-
tric chillers, pumps and generators self-consumption. In the electric node, it
is possible to fix different prices for buying, selling, and by the hour.
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4.2.6 Thermal Storage

Thermal storage retains excess energy generation when there is no demand
for it to be released when convenient. The convention for the storage term
Ey(t;) is described as positive during the discharging phase and negative
during the charging phase. There is a maximum amount of energy to store
and an energy loss per unit of time. The status of the storage at time ¢ can
be represented as per Equation 4.30.

Pgt(ti)At = (nHLESt<ti—1> — ESt(tz')) (430)

The maximum amount of energy that can be kept on the thermal storage
depends on the range of flow temperatures T to the customer, the volume
of water stored V', the specific heat capacity of water c,,,, and it is calculated
as shown in Equation 4.31.

ESt,maac = prpV(Tfmaac - Tfmin) (431>

Heat losses are considered in the storage and are estimated using [73].
Similarly, an electric consumption of the pumps whenever there is a charge
or discharge from the storage is considered in Equation 4.32.

Ec(ti) = Br.st | Pst| (t:) At (4.32)

The Bg s introduced in Equation 4.32 represents the electricity consump-
tion per each unit of heat stored or discharged through the thermal storage
unit. This parameter is supposed to be constant and independent from the
energy accumulated or released, as a first approximation. In addition, the
thermal power during the charge or discharge phase is further constrained by
a ramp limit which avoids unrealistic solutions with extremely rapid charging
or discharging times.

4.2.7 District Heating and Cooling Network

This section introduces formulations for the DHC pumping consumption,
thermal mass and heat loss to linearly approximate the thermodynamic be-
havior of the network. The approach was presented in [117].
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4.2.7.1 Heat Loss Calculation

To simplify the calculation of heat loss in a network, it is expressed using
only one variable: supply temperature T, as already described in Equation
4.7. Equations 4.33 and 4.34 depict the linear formulation implemented in
the optimiser for calculating the heat loss at each time interval for the DH
and DC network respectively.

opnr(ti) = kg™ TPH(t:) + o5" (4.33)

Opc(ts) = kg TP (t:) + d5° (4.34)

For the sake of simplicity, but Without losing generality, the coefficients kg
and ¢p, which are the base or minimum heat loss at the distribution network
due to technical reasons, are assumed to be constant. This assumption is
derived by imposing the soil temperature T, and the return temperature
T, at a fixed value within the time horizon of the simulation. In fact, the
weekly variation of soil temperature is negligible, and the return temperature
is fixed by design condition. Finally, the variation of supply temperature 7
is bounded within an operational range from 7% ;5 t0 T'f, ez Which is based
on the design, network topology, and technical restrictions.

4.2.7.2 Network Thermal Mass

The thermal mass effects on the DH and DC are evaluated in the MILP for-
mulation in Equation 4.9. In practice, the thermal mass is added both in the
energy balance equation for the heat energy vector and in the energy balance
equation for the cold energy vector. The hot and cold balance equations are
modified in each time interval as follows:

chp abs

ZEhCHP +ZEhB +Ep,se(ti ZEhINabs i) — Dn(t:) — Un(ts)—

—¢pn(t:) | At = TMpy [TP" (t;) — TP (ti-1))

(4.35)
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Ncle Nabs

Z Ec,ele(ti> + Z Ec,abs(ti) + Ec,St(ti) - Uc(tz) - ¢DC(tl) At =
h=1 k=1

= TMDC [TfDC(tifl) - ijc(tlﬂ

The balance equations are modified to include supply temperatures for
the DH and DC networks as additional control and decision variables of the
optimisation problem, according to Equation 4.9. The sum of the energy
generated by the plant after subtraction of the demand and heat loss is sub-
stantially equal to the energy stored in the network, considering thermal mass
at a given time interval. This stored energy corresponds to the variation of
the energy content of the thermal mass for the DH and DC. Hence, the vari-
ation is calculated as the difference of temperature between two consecutive
time intervals on the right side of Equations 4.35 and 4.36.

4.2.7.3 Network Flow Distribution

The mass flow of water 71 is measured in m3/h and is used as an energy
carrier on the DH or DC network. The corresponding heat generated (EGpp)
equates the user’s heating demand for a given AT, which refers to the heat
loss and the thermal mass. Hence, can be also thermodynamically expressed
as follows:

EGpu(t;) = mpu(t:)cpwpw (T (t:) — TPT) At (4.37)

where the heat generated EGpy in the DH is also assumed to be equal to:

Nchp

Ny
EGpu(t) = Z Ewcup(t:) + Z Enp(ti) + Ensi(t;) — Eninabsy) | At
h—1 k=1

(4.38)

Equation 4.37 correlates water flow, energy generated, and supply tem-
perature. It is possible to conclude that the greater the value of AT the less
m is required to deliver the same amount of energy; therefore, the electric
consumption of the pumps will be lower. As the T, is fixed by the customer,
it is concluded that the greater T is, the lower the electricity consumption.
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4.3 Results of Optimisation

4.3.1 Generation Optimisation
4.3.1.1 Case Description

The case proposed for this optimisation is an approach to a generation prob-
lem under strict climatic conditions. The goal pursued is the optimal gener-
ation of cooling power when it is constrained due to critical environmental
conditions. In this study, five scenarios are presented that combine con-
densing constraints and storage. The condensing constraint options used are
non-constrained, cooling tower, or geothermal system as heat sink. This case
uses the descriptions of the power plant’s configurations, its components, and
constraints as well the time profiles of loads that were already presented in
previous chapters. The optimisation period is the summer week. The de-
scribed information is input to the optimising tool XEMS13 to find a feasible
generation solution.

Ambient Considerations Ambient conditions are studied due their cru-
cial importance to energy generation when using a dependent heat sink.
Relative humidity and dry bulb temperature are used to calculate the wet
bulb temperature, which directly affects cooling tower performance. Figure
4.13 depicts dry and wet bulb temperatures at the power plant site for 2015
in terms of the number of occurrence hours for a specific temperature.
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Figure 4.13: Occurrence hours for dry and wet bulb temperatures in 2015

Figure 4.13 indicates that the highest wet bulb temperature for 2015 is
25°C. If this value is considered for the incoming air stream, the desired water
outlet temperature is 28°C, the maximum air stream exiting flow is 150kg/s
, and the condensing power is equal to 2.0MW,.

The geothermal system is designed to simulate the worst-case scenario for
the cooling tower without considering its efficiency gap. As the condensing
capacity of the geothermal system is not dependent on external climatic
conditions its fixed capacity is equal to 2MWh,,,.

The cooling tower’s condensing power depends on external climatic con-
ditions. The available condensing power of the cooling tower that considers
the efficiency gap of 0.3K is calculated for a exiting air temperature that is
equal to 27.7°C. In that case, the condensing power along the study week
varies from a minimum of 1.75MW,, to a maximum of 5.5MW,,.

Proposed Configurations To determine the best solution for the de-
scribed problem, two possible variables are considered in this work and their
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combination generates the following different cases:

e Condensing mode: non-constrained, cooling tower, or geothermal sys-
tem;

e With or without cooling storage.

The configuration used for each scenario is depicted in Table 4.9.

Table 4.9: Different scenarios configuration

Case C. Tower | Geo. Sys. | C. Storage
Case 0 - - -

Case A v - -

Case B v -

Case C - v -

Case D - v v

Case 0 is a scenario where there is no condensation constraint. Therefore,
the chillers can generate freely without restriction from the condensing node.
This case does not include any thermal storage.

Case A is a scenario constrained by the condensing node. In this case,
the chosen heat sink is the existing cooling tower. This case does not include
any thermal storage.

Case B is constrained with the same condensing constraints as in case A.
In this case, cooling storage is included for 3SMWh.,..

Case C is a scenario that is also constrained by the condensing node, in
this case, the chosen heat sink is a 2MWh,, geothermal system. This case
does not include any thermal storage.

Case D is constrained with the same condensing constraints as case C.
However, in this case, SMWh, of cooling storage is included.

The five scenarios are run on the optimiser for the summer week, which
is between 27" July 2015 and 2°¢ August 2015. Climatic values such as
temperature and humidity in hourly steps are provided, as are wholesale
electric market prices as well as heating and cooling demand for the DHC
network.
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Table 4.10: Summary of results

Case 0 A B C D

Absorption Chiller 84.09% | 21.16% | 33.94% | 14.23% | 14.59%
Electric Chiller 15.91% | 68.64% | 61.57% | 74.01% | 82.68%
Slack Generator 0% 10.20% | 4.50% | 11.76% | 2.74%
Waste Cooling 19.98% | 10.25% | 0% 11.53% | 0%

Waste Heating 23.95% | 84.70% | 77.16% | 91.08% | 94.08%
Cooling Heat Losses 0% 0% 0.24% 0% 0.21%
Energy Price (€/MWh) 0.22 21.49 14.67 28.23 22.86

4.3.1.2 Results

Two kinds of heat sinks are proposed in this study: a cooling tower and
a geothermal system for condensing purposes. The principles behind the
working of these heat sinks are different. The geothermal system provides
a constant and invariant condensing power of 2MWh,,, across the day and
the year. Meanwhile, the cooling tower provides a condensing power that
is dependent on ambient conditions varying from 1.75MWh,, to 5.5MWh,.
The lower condensing power availability coincides with the higher cooling
demand and the midday: this is a major drawback for cooling towers. Once
the optimisations are carried out, the generation schedules are shown for
heating and cooling. The results from these cases are economically motivated,
and neither the impact of emissions nor energy efficiency considerations are
accounted for. A summary of the results is depicted in Table 4.10.

Case 0 The first case proposed is a base case where no condensing re-
strictions are applied in the optimisation. Therefore, the results from this
case fail to fulfil the technical constraints of condensing for a cooling power
plant. However, the results are used to demonstrate how the cooling gener-
ation would be if no condensing constraint was used. In Figure 4.14, it is
possible to see how the 84.09% of cooling demand is covered by the absorp-
tion chillers which harvest free thermal energy from the CHP engines. The
electric chillers are only switched on when the demand for power is higher
than the nominal power of the absorptions. No energy is purchased from the
slack generator. Of the total cooling generation, 19.98% is wasted due to the
minimum working point of the chillers.

This is the only case where the annual thermal-electric efficiency for the
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CHP value is met. In the rest of the cases, more heating waste comes from
the non-harvesting of the thermal energy generated by the CHP. Figure 4.14
depicts the heating optimisation. The CHP engines work a combined 234.10
equivalent hours, and 23.95% of the heating generation is unused.

The cost per unit of energy in this scenario is 0.22€/MWh.
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Figure 4.14: Heating and cooling optimisation for case scenario 0

Case A Figure 4.15 depicts how 68.64% of cooling power is generated by
electric chillers which have lower condensing requirements than the absorp-
tion chillers. It is possible to observe from the figure that whenever there is
enough condensing power available, the absorption chillers take over. How-
ever, if there is significant demand and the enthalpy of the incoming air is
high, only the electric chillers are used. The results also indicate that at
certain points it was necessary to buy energy from a fictitious generator:
16.19MWh, was purchased, which means that the power plant was unable to
generate 10.20% of the total cooling demand. Additionally, the figure indi-
cates that 16.27TMWh, of cooling is produced and wasted. This is generated
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when the demand is lower than the minimum production power and is trig-
gered by the absence of cooling storage. This represents 10.25% of the total
cooling generation.

Figure 4.15 depicts the heating optimisation. The CHP engines work a
total of 207.16 equivalent hours, and 84.70% of the heating generation is
unused. The cost per unit of energy in this scenario is 21.49€ /MWh,., which
does not consider the energy or its cost when there is a shortage of cooling
generation.
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Figure 4.15: Heating and cooling optimisation for case scenario A

Case B Analogously to case A, in case B, 61.57% of the cooling energy is
generated by electric chillers during midday when the demand and enthalpy
are high. Figure 4.16 depicts the optimisation result. It illustrates how the
storage loads in the early parts of the day and unloads in mid-day to avoid
purchasing energy from the slack generator. In the same way, the storage
completely avoids cooling waste by unloading the energy when the demand is
not enough to turn on any chiller with a load higher than 50%. On the other
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hand, the cooling storage provides 18.68% of the total demand and its heat
losses represent 0.24% of the total generation. The percentage of energy that
cannot be generated is 4.50% of the total cooling demand. Compared with
case A, this reduction is achieved through the storage. Figure 4.16 depicts
the heating optimisation. The CHP engines work 198.42 equivalent hours in
total, and 77.16% of the heating generation is unused. The cost per unit of
energy in this scenario is 14.67€/MWh,, which does not consider the energy
or its cost when there is a shortage of cooling generation.
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Figure 4.16: Heating and cooling optimisation for case scenario B

Case C Figure 4.17 depicts how 74.01% of the cooling power is generated
with electric chillers for the same reason as in case A. It is possible to see
how the maximum condensing power of the geothermal system is reached
during the central hours of the day. Once this happens, the cooling power
must be purchased from the slack generator. A total amount of 18.94MWh,
was purchased, representing 11.76% of the total cooling demand. Cooling
waste also appears due the absence of storage and the minimum load of the
chillers; this waste represents 11.53% of the total generation. Figure 4.17

110



depicts the heating optimisation. The CHP engines work a total of 190.13
equivalent hours, and 91.08% of the heating generation is unused. The cost
per unit of energy in this scenario is 28.23€ /MWh,, which does not consider
the energy or its cost when there is a shortage of cooling generation.
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Figure 4.17: Heating and cooling optimisation for case scenario C

Case D Figure 4.18 depicts the optimisation result. Again, most cooling
generation is produced by electric chillers with a share of 82.68%. The figure
depicts how the storage works identically to case B: loading in the early
day and unloading in midday to avoid cooling waste and purchasing energy
from the slack generator. The amount of energy that cannot be generated
is 3.93MWh,, which represents 2.74% of the total cooling demand. This
reduction, unlike case C , is achieved through the storage. On the other
hand, the cooling storage provides 17.56% of the total demand, and its heat
losses represent 0.21% of the total generation. The cost per unit of energy
in this scenario is 22.68€/MWh,, which does not consider the energy or its
cost when there is a shortage of cooling generation. Figure 4.18 depicts the
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heating optimisation. The CHP engines work a total of 173.06 equivalent
hours, and 94.08% of the heating generation is unused.
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Figure 4.18: Heating and cooling optimisation for case scenario D

4.3.1.3 Conclusions

An application for the optimisation tool was proposed in this section and has
been published in [61]. The problem that was studied is a current generation
problem under strict climatic conditions. The goal pursued is the optimal
generation of cooling power when it is constrained due to critical environ-
mental conditions. In this case, the optimisation tool has been applied to
five cases in the hybrid power plant of Parc Bit, which provides heating and
cooling to the DHC. In this chapter, a cooling generation problem has been
assessed, and the limitations that arise from the condensing requirements of
the generators have been discussed. Such limitations directly affect the cool-
ing generation and the strategies that the power plant manager should follow.
As can be seen from the above cases, cooling generation is preferably carried
out by generators with lower condensing requirements. Therefore, electric
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chillers usually take over the generation when the condensing availability is
low. This is motivated by a higher COP than absorption chillers and a lower
condensing power requirement for the generation of cooling power. This
means that even when the heating power is a free resource, the cooling de-
mand of the power plant should be fulfilled by electric chillers where electric
consumption is purchased from the grid. Otherwise, the cooling demand is
not covered, and the power plant fails to fulfil client demand. The geothermal
system provides condensing power that is almost as low as the cooling tower’s
worst case scenario. This motivates higher energy generation prices in the
geothermal system’s scenarios. Nevertheless, the cooling power shortages are
very similar to the scenario without storage for both condensing constraints.
Furthermore, the geothermal system outperforms the cooling tower in the
scenarios with cooling storage in terms of cooling power shortage. Another
set of scenarios is also proposed that depends on the cooling storage. One
scenario does not include cooling storage, and the other includes storage of
3MWh,. The cooling storage allows the power plant to generate more effi-
ciently. It completely avoids cooling waste due to minimum chiller operation,
partially reduces the system difficulty of generating cooling demand, and im-
proves the final economic result compared to the non-storage scenarios. On
the other hand, heat loss from cooling is attributed to the water tanks used
as cooling storage. Nevertheless, these heat losses are not as influential to the
final optimisation result as the shortages in power that the storage avoids.
To conclude, the optimisation tool can indicate generation strategies that
otherwise would have been difficult to prove and apply because they are not
straightforward. As the tool can manage several variables, including climatic
ones, and the results are more precise than any other method.

4.3.2 Energy Supply Optimisation
4.3.2.1 Case description

The case proposed in this optimisation evaluates the impact of optimising
the supply temperature in a DHC network. Thermal efficiency in distribu-
tion and generation is sought. The main issues covered in this section are
pumping optimisation, heat loss impact on the network, and thermal mass.
Two scenarios are proposed to evaluate the suggested method: a fixed supply
temperature defined by design and a variable supply temperature which is
optimised. Once the optimisations are carried out for 4 typical weeks; each
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Table 4.11: Energy KPIs

KPI Winter Spring Summer Autumn
— NoTM | TM |NoTM | TM |NoTM | TM | NoTM | TM
Heating Energy [MWh] | 248.55 | 247.11 | 102.05 | 99.82 | 31.19 | 30.07 | 64.48 | 62.78

HL Heating [%)] 11.6% | 11.1% | 25.9% | 24.2% | 73.9% | 72.9% | 39.2% | 37.5%
Heat stored TM [MWh] 0 17.42 0 4.61 0 10.71 0 15.28
Cooling Energy [MWHh] 5.32 5.01 13.80 13.48 | 150.51 | 150.24 | 39.41 39.10

HL Cooling [%] 34.1% | 30.1% | 32.0% | 30.4% | 5.3% 5.1% 14.3% | 13.6%
Cold stored TM [MWHh] 0 4.34 0 10.49 0 17.60 0 18.92

Total Energy [MWHh] 253.86 | 252.11 | 115.85 | 113.30 | 181.70 | 180.32 | 103.88 | 101.88

Table 4.12: Economic KPIs

KPI Winter Spring Summer Autumn
— NoTM | TM | NoTM | TM | NoTM | TM | NoTM | TM
Pumping Cost [€] 79 112 64 97 233 244 92 106
HL Cost [€] 1,731 1,393 1,842 | 1,114 878 647 1,556 942
Supply Cost [€] 1,810 1,504 1,906 | 1,211 | 1,110 891 1,648 | 1,049
Generation Cost [€] | 12,591 | 10,745 | 5,081 | 3,350 | 4,262 | 3,288 | 3,675 | 2,381
Total Cost [€] 14,401 | 12,250 | 6,986 | 4,561 | 5,373 | 4,180 | 5,323 | 3,429
LCOE [€/MWHh] 56.41 48.15 59.75 | 39.40 | 28.29 |21.82| 50.36 | 32.62

week represents the four seasons of the year, the generation schedules are ob-
tained for heating, cooling, and electricity. The optimisation results in these
cases are economically motivated and no environmental or energy efficiency
considerations are considered. In this section, energy economics, energy bal-
ance, and flow temperature optimisation are presented as the results. For
the sake of simplicity, no energy generation mix is depicted when comparing
the two scenarios.

4.3.2.2 Energy KPIs

In this section, the main key performance indicators (KPI) from the two
scenarios are depicted. The results are extracted from the simulations carried
out by XEMS13. Table 4.11 compares the main KPIs from scenarios that
either consider thermal mass (TM) or do not (NoTM). Heating and cooling
energy refers to the user demand plus the heat loss to supply the load. The
levelized cost of energy (LCOE) is calculated by dividing the generation cost
by the user’s total energy demand.

Table 4.11 indicates that even if the flow temperature optimisation is
focused on harvesting the thermal mass, it decreases the heat loss in the
network and the total energy consumption in the network. The heat and
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Table 4.13: Comparison and summary of most important KPIs

KPI ‘ Winter ‘ Spring ‘ Summer ‘ Autumn ‘ Average
Total Energy Savings [%)] 0.69% | 2.20% 0.76% 1.93% 1.39%
Total Cost Savings [%] 14.94% | 34.72% | 22.20% 35.58% 26.86%
Savings on LCOE [€/MWh] 8.27 20.35 6.46 17.74 13.21

cold-stored thermal mass refers to energy recovered from the network thermal
mass that has been previously stored. Table 4.11 indicates that the amount
of stored energy for both heating and cooling have similar ranges from 4MWh
to 18MWh. The amount of energy stored is not always related to the total
energy consumed in the season.

The economic KPI in Table 4.12 indicates the costs of generation, supply,
and total costs. This information indicates how the generation costs are
reduced when using thermal mass, which is the main goal of the optimisation.
It is also noteworthy that the total supply costs are also lower when using
thermal mass. The cost for pumping is higher when thermal mass is used,
but this expense is lower when compared to the savings in heat loss costs.
Similarly, Table 4.12 indicates lower total costs when thermal mass is used,
compared to the fixed supply temperature scenario.

Table 4.13 presents the economic savings of using thermal mass. The val-
ues are expressed in percentages of savings compared with the scenario where
thermal mass is not used. Generally, the use of thermal mass results in en-
ergy and economic savings, but they are not correlated because low-energy
savings correspond to high-cost savings. In fact, the economic savings indi-
cate the gains that can be achieved when the thermal mass is used as active
energy storage. Hence, generation units can overproduce with respect to the
demand and losses to store energy in the network when economic conditions
are favourable. The network is discharged later to cover energy demand in
disadvantageous economic conditions. Energy savings are instead mainly re-
lated to the reduction of power losses, whereas weekly energy generated is
substantially unchanged. Table 4.13 presents annual average energy savings
of 1.39% coming from heat loss. The annual average total cost savings are
26.86%, which represent a reduction in the LCOE by 13.21€/MWh.

4.3.2.3 Energy Balance

The energy balance indicates how the network demand is met with the help
of the thermal mass. For a better understanding of energy balancing and
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the influence of thermal mass, Figure 4.19 indicates the generation from the
power plant which is supplied to the DHC in comparison with the network
demand (which includes heat losses).
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Figure 4.19: Heating and Cooling Energy balance

Figure 4.19 illustrates how the generation has a changing pattern, unlike
the network demand. This is observable in both figures for heating and
cooling but is especially apparent when the cooling demand is low. When the
energy supplied is greater than network demand, the network is being charged
with energy, and the opposite is occurring when the demand is greater than
the supplied energy. The thermal mass is used as an energy storage in the
supply side and can be compared to thermal energy shifting or a forced
thermal demand response.
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4.3.2.4 Mass Flow and Supply Temperature Optimisation

This section compares optimal temperature harnessing thermal mass 7'M
and fixed supply temperature without harnessing of thermal mass NoT M.
Consequently, mass flow M, rates in both scenarios are compared. Figure
4.20 depicts the mass flow, temperature of supply 7%, and temperature of
return 7, in both scenarios for the four weeks that consider heating power.
Likewise, Figure 4.21 considers cooling power for the four weeks.

Figures 4.20 and 4.21 illustrate that the mass flow rate is generally higher
in the scenarios using thermal mass than the scenarios with fixed supply tem-
perature. Nevertheless, Figure 4.21 indicates that during the summer week,
the mass flows are very similar as the supply temperature is mostly the same
in both scenarios. Both graphs illustrate how supply temperature reaches the
upper boundary when the demand is high or is loading the thermal mass. On
the other hand, the temperature drops to the lower temperature boundary
during low-demand hours. This is observable from Figure 4.20, where supply
temperature is steady in the lower boundary during spring week.
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Figure 4.20: Optimal and fixed flow temperature and mass flow for heating

118



—TfDC TM
——TfDC NoTM
TrDC

12

/W i A\ l(mhﬂ‘m M

=
o
1

Temp DC (°C)
[ee]
1

3 3 3 ——MfDCTM
400 —— Mf DC NoTM

| A AR
N I J A\ J Ul A
Aaat ahnata ki a A 1 RAL AR Jn A ARARTNA NN i YR \i\ | \.\‘\mmiH'm'H’“u‘ h!l\ \'h'\lh\N\'\\'m.\\'l"mm\'\\Ht.li‘.ulln‘.lu‘.‘I

w

o

o
1

N

o

o
1

Mf DC (m3/h)

100 A

Winter Spring Season Summer Autumn

Figure 4.21: Optimal and fixed flow temperature and mass flow for cooling

4.3.2.5 Conclusions

In this case, the optimisation tool is applied to improve the supply energy
through the DHC network. More specifically, this case addressed a problem
regarding thermal mass harnessing and supply temperature optimisation.
Energetic and economic benefits for a hybrid power plant supplying thermal
energy to a DHC are presented. To compare the benefits of applying this
idea, two scenarios are compared: one in which thermal mass is neglected and
the other in which thermal mass is considered. The results presented in [117]
for both scenarios are compared in 4 typical weeks; each week represents the
four seasons of the year and their peculiarities. The main conclusions are as
follows.

The simulation results indicate that the thermal mass is used similarly
to energy storage that decouples the energy generation and demand, which
allows for more cost-effective energy generation. Generally, thermal mass
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is used to store energy, but the amount of energy stored is dependent on
the scenario. This suggest that the use of thermal mass might provide less
savings for power plants with standard energy storage. The thermal shifting
ability of thermal mass is such that during low demand weeks, most of the
energy demand is supplied to the network before its actual use. Figure 4.19
depicts a change in the heating and cooling generation pattern compared to
the network demand. Those figures graphically represent how the energy is
shifted to cheaper generation hours and the decoupling of demand and gener-
ation. A higher mass flow rate is used to achieve this energy shifting through
thermal mass; the rate supplies more energy than requested by the network.
Simulation results indicate how the supply temperature is changing along
the defined boundaries to achieve energy matching and energy optimisation.
Therefore, supply temperature boundaries are a constraint with a significant
impact on the exploitation of thermal mass. This suggests that greater sav-
ings can be achieved with broader supply temperature boundaries, but this
range is usually fixed by design.

Supply temperature optimisation enhances energy efficiency because it
lowers the heat losses in the DHC. That behavior is pronounced during low
demand seasons where the energy supply reduces heat loss. In all cases, the
total energy consumption of the DHC is greater than the cases where thermal
mass is used. The simulations indicate that regardless of the demand, ther-
mal mass and supply temperature optimisation provide substantial energy
and economic savings. These savings are presented and quantified through
the LCOE, which decreases an average of 13.21€/MWh using thermal mass.
The biggest reduction on LCOE occurs during spring and autumn, when it is
not high demand season. The most significant results are the annual average
energy and cost savings of 1.39% and 26.86% respectively. These savings are
obtained from a change of supply strategy and energy management. These
energy savings could be even greater if the return temperature was not fixed.
In such cases, the return side could be considered for thermal mass, and
energy supply strategies could be applied to both supply and return temper-
atures. In the studies presented in [49, 51|, where only the thermal inertia
of the DHC was comparable with this work, the cost savings are 7.0% and
10.38% respectively. In this work, the cost savings are 26.86%.

120



4.3.3 Smart Energy Distribution
4.3.3.1 Case Description

In this case, real life operations are used to compare the previous power plant
operation and the new strategy for supplying temperature. The new strategy
is motivated by the results obtained in Section 4.3.2. The strategy is based
on two pillars:

e Control supply temperature to lower heat loss as much as possible and

e Store excess heat from CHP in the DHC network’s thermal mass to be
used when needed.

To achieve a controllable supply temperature, a three-way valve actuator is
used and controlled from the SCADA. This valve mixes generated hot water
with DHC return water to obtain the desired supply temperature. Figure
4.22 depicts the actuator and valve.

Figure 4.22: Valve actuator to control supply temperature
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Table 4.14: Energy savings due optimal supply temperature

Energy ‘ Before ‘ After
Demand [MWh] 98.95 | 98.12
CHP generation [MWh] 89.26 | 95.29

Aux Boiler generation [MWh] | 38.24 | 14.04

4.3.3.2 Results

In this case, the supply temperature is controlled based on a set point at
the power plant. Figure 4.23 depicts a day before the supply temperature
control is applied and a similar day when the supply temperature control is
applied. The figure depicts the supply, return, and set-point temperature for
the UIB and Parc Bit branch. The day when the control is applied has lower
supply and return temperatures than the non-controlled day. The figure also
depicts how the set-point can be fixed for a temperature so high that the
power plant cannot reach it. In those cases, the return water is not mixed
with the generated hot water. Evidence of greater power plant efficiency and
auxiliary boiler generation decreases is depicted in Figure 4.24. This figure
compares two batches of 3 mid-week days in February 2018, before and after
using controlled temperature energy distribution. These two batches are
similar in terms of CHP schedule and energy demand. Table 4.14 depicts
the figures for demand, CHP, and auxiliary boiler generation. As presented,
the energy input of the auxiliary boiler is massively reduced due to a higher
cogeneration fraction, energy storage, and better energy supply strategy.
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Figure 4.23: Optimal supply temperature using three way valve
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Figure 4.24: DH thermal inertia harnessing

4.3.3.3 Conclusion

One of the goals of controlling supply temperature is to decrease heat loss in
energy distribution without failing to fulfil the customer’s demand. Decreas-
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ing heat loss in DHC is based on decreasing supply temperature in heating
and increasing supply temperature in cooling. The decrease of heat loss im-
plies lower energy requirements in power plant generation. This translates to
more energy stored in case of a day when the scheduled CHP generation is
enough to cover the demand. On the other hand, if the scheduled CHP gen-
eration is not enough to cover the demand, these lower energy requirements
are translated into a decrease in auxiliary boiler generation and savings for
primary energy consumption. Figure 4.24 provides evidence for a decrease
in auxiliary boiler generation and thermal inertia harnessing. The figure
compares similar days in terms of CHP schedule and energy demand. The
figure compares total power plant energy generation with CHP generation
and DHC demand. Another benefit to controlling supply temperature is to
store excess heat from the power plant in the DHC. Excess heat in the power
plant occurs when the energy generated by the CHP is greater than the users’
energy demand. Either this excess heat is not harnessed in co-generation,
and the exhaust gases is dumped into the atmosphere, or the exhaust gases
is harnessed and the energy is stored in the DHC network. To do so, the
supply temperature is increased only during the time when this fact takes
place. In the power plant, the control of the supply temperature is performed
with help of an hourly scheduled table that is programmed in the SCADA
where the set point is inserted. Figure 4.25 depicts the schedule table.

PID vRC-002

Hora Lunes Martes [Miércoles| Jueves | viernes | Sabado
00:00-00:53 7o00°c | 700

700°c | 720°c| 700°c | 700°c | 700-°c

01:00-01:59 7o0°c | 700 700°c | 7z20°c | 700°c | 700°c | 7o0-°c

02:00-02:59 7oo0°c | 700 700°c | 720°c | 700°c | 700°c | 700-°c

03:00-03:59 7o.0°c | 700 7o.0°c | 720+c | 7o.0°c | 7o0°c | 7o0°C

04:00-04:59 7oo0°c | 700 700°c | 7z20°c| 700°c | 700°c | 700-°c

05:00-05:59 7o0°c | 700 700°c | 7ao°c| 700°c | 700°c | 700-°c

0E:00-068:59 73.0°c | 730 73.0°c | 7z50°c | 73.0°c | 730°c | 730°C

07:00-07:59 73.0°c | 730 730°c | 750°c | 730°c | 730°Cc | 730°C

0%:00-08:59 z30°c | 730 730°c | 750°c| 730°c | 730°c | 730°C

09:00-09:59 7aoec | 730 730°c | 750°c | 730°c | 730°c | 730°C

10:00-10:59 7aoec | 730 730°c | 7s0°c| 730°c | 730°c | 720-°c

11:00-11:59 73.0°c | 730 73.0°c | 750°c | 73.0°c | 730°c | 730°C

12:00-12:59 7z3o°c | 730 750°c | 7z50°c | 720°c | 720°c | 720°C

13:00-13:59 730°c | 730 750°c | 750°c| 720°c | 720°c | 720°c

7s50°c | 750-c z20°c | 720-c I
760°c | 720°c | 720°c | 720°c | 720°C j

7z70°c | 7z20°c| 720°c | 720°c | 720°c

14:00-14:59 73o0°c | 730

15:00-15:59 73.0°c | 720

16:00-16:59 720°c | 720

17:00-17 :59 720°c | 720 750°c | 72o0°c | 720°c | 720°c | 720°C

12:00-18:59 72.0°c | 720 7s5.0°c | 720°c | 720°c | 720°c | 720°C

7zs50°c | 720°c | 720°c | 720°c | 720°C

19:00-19:59 720°c | 720

20:00-20:59 7o.0°c | 700 73.0°c | 7zoo0+c | 7o.0°c | 7o0°c | 7o.0°C

21:00-21:59 7o0°c | 700 730°c | 7zoo°c| 7o00°c | 700°c | 700-°c

22:00-22:59 7oo0°c | 700 730°c | 7o0°c| 700°c | 700°c | 700-°c

slslslststs s s la s ks lsts s s s s s s ks ks ke Ls s

23:00-23:59 7o.0°c | 700 73.0°c | 7zo0+c| 7o.0°c | 7o0°c | 7o.0°C

Figure 4.25: Supply temperature scheduling table
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4.3.4 Forecasting Optimisation Scenarios
4.3.4.1 Case Description

In this case, the simulator determines generation strategies by optimising
the production mix that minimises the energy cost and maximises revenues
using energy forecasts. The strategies obtained from the forecasted informa-
tion are compared with the strategies obtained using real information or the
ideal strategy. The deviation from the ideal strategy is the error that is due
to the forecasts. The resulting strategies that use forecasted and real val-
ues are compared to evaluate the forecasting error propagation in the final
economic result. This comparison will demonstrate the influences of each
forecasting error on the power plant revenue and the differences between the
ideal operation and the forecasted strategies.

4.3.4.2 Comparison Strategy

A strategy is proposed to compare the propagation of the forecasting error
into the final optimisation result. This strategy compares the results obtained
using forecasted or real information. In this case, there are four possible
combinations:

e Real Price — Real Demand. Ideal optimisation results. These are
the results that would be obtained if the forecast were not in any error.

e Real Price — Forecasted Demand. Optimisation results that are
influenced by a demand error. These are the results obtained using
forecasted demand. Therefore, the impact of the error can be observed
upon comparison with the ideal results.

e Forecasted Price — Real Demand. Optimisation results that are
influenced by a price error. These are the results that were obtained
using a forecasted price. Therefore, the impact of this error can be seen
upon comparison with the ideal results.

e Forecasted Price — Forecasted Demand. Forecasted optimisation
results.

Once the generation schedule of the different options is proposed, the CHP
schedule is forced in the optimiser using the real values of energy price and
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Table 4.15: MAE and MAPE forecasting errors for demand and price
Heating Cooling Price

MAE | MAPE | MAE | MAPE | MAE | MAPE
Winter 153.20 | 4.98% | 26.56 | 1.16% 6.10 3.39%
Spring 81.17 | 2.64% 6.58 0.29% 6.25 3.47%
Summer 72.78 | 2.36% | 132.95 | 5.80% 3.43 1.91%
Autumn 51.41 | 1.67% | 74.92 | 3.27% 4.03 2.24%
AVERAGE | 89.64 | 2.91% | 60.25 | 2.63% 4.95 2.75%

Season

demand. Consequently, the rest of the power plant behaves to match the de-
mand. The calculated economic result for the different scenarios is compared
with the ideal result.

4.3.4.3 Forecasted Input

The demand forecast algorithm is explained in Section 3.2, and further re-
sults are explained in Section 5.2.3. In combination, these enable the esti-
mation of hourly energy values for each customer. These values would be
aggregated to a total demand for either cooling or heating, including supply
heat loss, and compared afterward with the real demand at the power plant.
Figure 4.26 enables the comparison of the real heating or cooling demand
with the aggregated forecast. Similarly, the energy price forecast algorithm
is explained in Section 3.2, and the forecasted results as further results are
explained in section 5.2.1. In this case, the selected results are from the
ARIMAX method and a 1-day ahead forecast that uses the open market as
an explanatory variable. Figure 4.27 enables the comparison of the historical
OMIE’s energy prices with forecasted values. As may well be appreciated,
the forecast values are very similar to the real values. The results of these
forecasts are only used as one step in the optimisation process; the error is
not relevant, and only the difference between the final results should be taken
into consideration.

Table 4.15 depicts the errors in terms of MAPE and MAE for price and
demand. The MAE units used for demand and price are kWh and €/MWh
respectively.
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Figure 4.26: Thermal demand and forecast comparison

4.3.4.4 Economic Optimisation Forecasting Results

This section presents the optimisation results, which are the final results.
Energy price and demand information are used to achieve these results. De-
pending on the scenario, this information is either forecasted or real. To
compare the different forecast-based scenarios, the economic results obtained
from real values are assumed to be the ideal results. The error induced by
the forecasts is evaluated in comparison with the ideal scenario. This error
is a deviation from the ideal economic benefits and therefore a decrease of
benefits due to misleading forecasts. The difference between the ideal sce-
nario and the forecast-based scenarios is the different use of the CHP or its
generation schedule. The rest of the generators actuate accordingly to the
decision taken by the CHP because they are auxiliary or dependent. Table
4.16 depicts the results from the optimisation and compares them to the ideal
scenario. Figure 4.28 enables the comparison of the different hourly values
of the four studied cases.
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Figure 4.27: ARIMAX one-day ahead energy price and forecast comparison

4.3.4.5 Conclusions

In this section, generation strategies have been proposed and compared, and
economic benefit was used to evaluate the influence of forecasting errors. This
evaluation was achieved by using the EMS to generate energy generation
strategies with different information. The strategies were generated for 4
typical weeks that corresponded to the different seasons.

An ideal generation strategy was calculated to evaluate the accuracy of
the strategies. This strategy used real information from energy prices and
thermal demand.

Therefore, the optimisation result proved to be the best possible option.
The strategies generated using forecasted information were compared using
the real values of price and demand [122]. The results are presented in Table
4.15, which depicts the errors induced by the forecast when the economic
results are compared with the ideal scenario. The results indicate how the
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Table 4.16: Errors in optimisation due to forecasting error propagation

Scenario ‘ Winter ‘ Spring ‘ Summer ‘ Autumn ‘ MAPE
Real Price — Forecasted Demand 14€ 55€ 70€ 0€ 0.48%
Forecasted Price — Real Demand 366€ 884€ 104€ 7€ 4.74%
Forecasted Price and Demand 366€ 825€ 90€ 6€ 4.49%

Demand and Price Forecasted
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160 || —— Ideal Optimisation

iZZ W

100

80

60 +

40 4

Hourly Benefit (€/h)

20

0 -

-20 -

Winter Spring Summer Autumn
Season (h)

Figure 4.28: Comparison of hourly benefits depending on forecasts

forecasting error propagates the economic error in the optimisation. In the
case of the energy price, the average error of 2.75% had an average impact of
4.74% on the optimisation. In the case of thermal demand, an average error
of 2.91% for heating and 2.63% for cooling error had an impact of 0.48%
on the optimisation. Moreover, when combining both forecasting errors, the
average reduction of benefits was equal to 4.49%, which was even lower than
the average error from only using energy-forecasted information.

These results indicate how the most influential factor in the optimisation
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is the energy price forecasting error. This error directly propagates and
strongly affects the power plant’s hourly benefits. This fact is particularly
pronounced during the spring week, when the market prices are close to
the break-even point for running the CHP. On the other hand, the autumn
week is less affected. Demand forecasting errors were less influential in terms
of power plant optimisation, most likely due their lower influence on CHP
benefits. In fact, demand error of 2.91% for heating and 2.63% for cooling
decreased to 0.48% benefit impact.

The results depicted in Table 4.15 also indicate that error propagation
is strongly dependent on the case. Therefore, it is possible for there to be
weeks where the combined error is higher or lower than the greater individual
error. One conclusion which could be drawn here is that the error per se is
not important; what is important is the error that is close to the breakeven
point. The impact of the forecasting error in the final generation schedule
depends on may factors such as the quantity of errors in forecasts; the errors’
sign; and whether the error modifies the generation strategy, which does
not necessarily happen. Similarly, as more than one forecast is used, the
different errors may cancel each other. These considerations indicate that
a tremendous amount of possibilities could be studied. Nevertheless, as is
evident from the final results of Figure 4.28, the deviation of the forecasted
scenarios did not differ much from the ideal scenario. Therefore, forecasts
can be used to create generating strategies. The errors influenced by the
forecasts were as low as 4.49% on average.
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Chapter 5

Energy and Price Forecasting

5.1 Forecasting Methodology

5.1.1 Explanatory Variables

Section 2.5 explains how an explanatory variable can improve the accuracy
of an energy forecast. Both the ARIMAX and NARX forecasting models,
are supported with an explanatory variable based on suitable information.
As mentioned in Section 2.5.1, for the explanatory variable to be helpful, it
must be related to the time series for forecasting and should include future
observations.

5.1.1.1 OMIE Explanatory Variable

In principle, the relation between total electric demand and electric energy
price suggests that electricity demand can be an explanatory variable for
electricity price forecasting. On the other hand, and as seen in Section 2.3.1,
the demand is not the only factor related to energy price. The energy price
is built when matching the energy bids and the demand. Therefore, the price
requested in the generation bids is as important as the demand and the price
offered for it. In the energy market, it is possible to discern between two
kinds of generators: manageable and not-manageable. The first kind can
generate depending on the price and therefore match in the energy auction
whenever certain economic boundaries are met. By contrast, the unmanage-
able power plants can generate independently of the selling conditions. These
technologies are solar, wind, and nuclear power. The behaviour of the un-
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manageable power plants affects the final auction price because their energy
bids are close to 0€/MWh, so the energy is purchased. Relatedly, another
explanatory variable can be considered: the energy that will be produced
regardless of economic boundaries that are subtracted from the total energy
demand. This amount of energy is what is left for manageable generators to
match and can be defined as ‘Competitive Market” or ‘Open Market’, and is
defined in equation 5.1.

CompetitiveMarket, = Demandy, — Solar, — Windy, — Nuclear, (5.1)

In this thesis, three possibilities are studied to understand the impact of
an explanatory variable on forecasts:

1. No explanatory variable
2. Demand as an explanatory variable

3. Competitive market as an explanatory variable

A Pearson correlation study is carried out for the two explanatory vari-
ables on the historical values for 2016 to determine which one is more suitable
to be used in energy price forecasting. The results of the relation between en-
ergy price and demand are depicted in Figure 5.1 with a Pearson correlation
factor of 0.412.

The results of the relation between energy price and competitive market
are depicted in Figure 5.1 with a Pearson correlation factor of 0.719. The
relation depicted for Competitive Market and energy price is much higher
than the relation with the demand. Even the relation is not perfect and is in
fact far from being close to 1 (which means a perfect and direct relation), it
is a better support for forecasting for both methods and should improve the
forecasting accuracy.
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Figure 5.1: Explanatory variables relation to energy price

5.1.1.2 Solar Energy Explanatory Variable

The energy forecasters may use solar radiation, ambient temperature, and
cloudiness as its inputs, whereas power is given as an output [123]. As
mentioned before, the relation between irradiation and solar generation is
direct for a certain power plant. Therefore, a precise irradiation value is
presumed to have an outstanding explanatory variable. In the same way, the
cloudiness index has a negative relation with solar energy generation and is
hence presumed to be a useful explanatory variable. A generation forecast
that is based on cloudiness is deemed to be the most successful method for
long-term solar forecasting [96].

The importance for forecasting energy generation lies in the markedly dif-
ferent generation between stations that change from a 540MW peak in winter
to a 5,600MW peak in summer and achieve a maximum of 12% of the total
renewable power injected into the grid. It is also important to understand
that solar electricity generation in Spain includes two technologies that can
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produce electricity:

e Photovoltaic technology generates energy that is influenced only by the
solar irradiation on the panel surface at a certain time and is not sup-
ported with storage. The installed power of this technology is 4.16GW
[124].

e The thermo-solar power plants are able to generate electricity through
a process that is dependent on solar irradiance and temperature; ad-
ditionally, these power plants sometimes have storage systems. The
installed power of this technology is 2.3GW [124].

To provide reliable explanatory data for Spain, it is necessary to acquire
data from an NWP, which provides the cloudiness index for a certain loca-
tion. This information would help to model solar radiation by considering
of geographical information. The model is based on a clear-sky radiation
calculation and the satellite cloudiness indices in different locations in the
country. The calculation of the irradiation for a given location is performed
by subtracting the fraction blocked by the clouds from the clear-sky radiation
[125, 126]. The calculation of the average irradiation in Spain would be the
weighted irradiation with the installed power in the area under study [127].

Figure 5.2 [128] illustrates the fundamental relationship between the satel-
lite observation of the planetary albedo and ground-level irradiance. The
difference between the net incoming irradiance at the top of the atmosphere
(1;;TOA) and the net irradiance at the ground level (/g;,) must be equal to
the flux lost (either reflected, scattered, or absorbed).
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Figure 5.2: Solar irradiation reaching ground after cloud block

To obtain the irradiation with the developed method, it is necessary to
calculate the extraterrestrial hourly irradiation on a tilted surface (Gor) for
a given point and the tilt angle of a south-oriented surface [129]. This cal-
culation depends upon the location of the plant, the time of the year, and
the slope of the solar collectors. The irradiation on a tilted surface (Gor) is
calculated according to Equation 5.2:

360
Gor = Gse (1 + 0.033 cos 36;) cos O, (5.2)

Where Gsc is a solar constant (1,367W/m?), n is the day number of the
year, and O, is the incidence angle calculated in 5.3:

cos ©, = cos (¢ — a) cos § cosw + sin (¢ — a) sin d (5.3)

¢ is the latitude of the location, « is the slope of the collecting surface, ¢
is the declination or angular position of the sun calculated in Equation 5.4,
and w is the hour angle or the angle of displacement of the sun calculated in
Equation 5.5.
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284 +n
0 = 23.45sin ( 360 5.4
sin ( 65 ) (5.4)
w=(hs —12)15 (5.5)

The solar time is denoted by hy. The difference between the solar time
and the standard time is calculated through Equation 5.6, and the result is
given in minutes.

SolarTime — StandardTime = 4(Lg — Lioe) + E + DLS (5.6)

where Ly and L. are the longitudes for the standard meridian, and the
location, day light savings, and E are a values that are calculated through
Equation 5.7:

E = 229.2(0.000075 + 0.001868 cos (B) — 0.032077 sin (B)

5.7
—0.014615 cos (2B) — 0.04089 sin (2B)) (5:7)
Finally, B is calculated according to Equation 5.8.
360
B=(n-—1)— 5.8
(n-1)5 (53)

The intensity of the solar radiation that reaches the surface of the earth
decreases with increasing values of the cloudiness index or sky cover [130,
128]. Taking this hypothesis as valid, the method forecasts the irradiance
(Iy) for a given location to be dependent on the extraterrestrial hourly irra-
diance (Gor). The method also holds the irradiance to be the complement
to the forecasted cloudiness measured in [0 — 1] range (Nf). The values are
calculated hourly according to Equation 5.9.

I = Go(1 - ) (5.9)

A similar model was presented by [131], where global irradiance is ob-
tained by adding the cloud’s transmissivity to the model. The value of the
weighted explanatory variable used for Spain is calculated by considering the
forecasted time series, irradiance in the measured places, and the installed
powers in those places. Spain’s weighted averaged irradiance values (Ig) are
calculated according to Equation 5.10.
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1
Ig = o) ; I5nPay (5.10)
Where I, the forecasted irradiance on the n location, P, is the installed
solar power for a given location, and P is the total solar power accumulated

in Spain that is calculated using Equation 5.11.

50
P,=> P (5.11)
n=1

As a result, three variables are obtained for the forecast, cloudiness, ex-
traterrestrial irradiation, and irradiation. The calculated national extrater-
restrial irradiance is on a plane that is parallel to the collector aperture, and
the solar national generation in hourly steps indicate a strong relation in
Figure 5.3(a). It is important to bear in mind that the units and factors do
not match for the variables, as the irradiation is measured in [W/m?] and
its maximum value is 1, 367W /m?. Solar power is measured in [MW] and its
maximum value is 6,460MW. This relation reaches 0.86 and an R? of 0.741
when measured with the Pearson factor.

In the case of the cloudiness index, the relation with the aggregated energy
generation is less obvious in terms of indexes or graphs in Figure 5.3(b). The
Pearson factor provides a result of 0.09 and an R? of 0.008. Nevertheless,
the relation between cloudiness and solar generation is easily understandable
from the perspective of physics: the existence of clouds blocks the solar
energy generation, as depicted in Figure 5.2. For the irradiance, which is
calculated using the radiation and the cloudiness factor, the relation with
the aggregated energy generation in Figure 5.3(c) reaches the highest value.
The Pearson factor provides a result of 0.90 and R? = 0.816. Therefore, this
time series will be used as an explanatory variable for solar energy forecasts
in further calculations.
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Figure 5.3: Explanatory variables relation to solar generation

5.1.1.3 Wind Power Explanatory Variable

The capability of a wind turbine to generate power is directly related with
wind speed and direction. In the case of wind direction, it would be useful to
understand how the wind turbines shadow each other on a wind farm [132,
133] to improve the calculation of the explanatory variable. To do so, the
wind farms’ turbine distribution is required. Unfortunately, this information
is not easily accessible. Therefore, the only contribution to the explanatory
variable is the wind speed in the location. Equation 5.12 illustrates the power
delivered by a wind turbine:

1
P = 5pAv?’ (5.12)

Where p is the air density, A is the area swept by the rotor, and v is the
wind speed through the blades.

The value of the weighted explanatory variable used for Spain is calculated
by considering the forecasted time series and the wind speed in the measured
places and the installed powers in those places. Spain’s weighted average
wind speed (vg) values are calculated according to Equation 5.13.

1 50
Ve = 5 ; Vfn Pun (5.13)

Where vy, n is the forecasted wind speed in the n location, P,, is the
installed wind power for a given location, and P, is the total wind power
accumulated in Spain that is calculated using Equation 5.14.
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P, =Y Pu, (5.14)

The resulting data provides a time series for wind speed. To study the
correctness of the above-mentioned suppositions, two correlation studies were
carried out on the time series: a Pearson correlation study and an R? corre-
lation study. After wind speed and national wind generation were taken into
consideration, the results were a correlation of 5.4, a Pearson factor of 0.79,
and an R? of 0.63. In the case of wind speed, the same study is made to the
power of three (cubic wind speed, v¥) because it is related to wind power, as
seen in Equation 5.12. This study provides a Pearson factor of 0.73 and an
R? of 0.54, which is lower than the initial results. Thus, simple wind speed
should be used to forecast.
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Figure 5.4: Wind power and speed correlation
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5.1.1.4 Thermal Demand Explanatory Variable

Accurate energy demand forecasts can be obtained using simple models that
combine weather forecasts with the historical load and weather curves [134,
78]. The demand forecast model could be improved by using a sufficient data
series as an explanatory variable that would support the historical demand
values [135]. A straight approach to the problem would be to use the ambient
temperature as explanatory variable [136]. The relations between the demand
and the ambient temperature are inverse with a Pearson value of —0.51 for
heating demand and direct with a Pearson value of 0.52 for cooling demand,;
both relations are depicted in Figure 5.5.
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Figure 5.5: Thermal demand and temperature correlation

5.1.2 Data Acquisition

This section describes the process of data acquisition from different sources.
Three sources are used in this work:

e Spanish energy market
e Climatic data

e DHC Network
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Figure 5.6 depicts a graphical interpretation of the data acquisition sys-
tem.

Data Acquisition Schema
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Figure 5.6: Data acquisition schema

5.1.2.1 Spanish Energy Market Data acquisition

Energy market information is acquired from the Spanish transport system op-
erator, Red Electrica Espanola. This information is necessary to understand
the market and evaluate the energy mix at every hour and the OMIE energy
market’s price. This information is available on the Red Electrica Espanola
website and provides the demand and generation data of the Spanish energy
mix in 10-minute steps [137]. Energy price information can also be found at
the same source in hourly values and from all the different markets. This
information is acquired through recurrent queries to their DB and is stored
in SAMPOL’s SQL DB, which has been created as part of this thesis. The
information is stored with the same periodicity as acquired but it is always
used as hourly values.

The generation of solar and wind energy and market energy price is based
on the historical data acquired with this method. Moreover, the transport
system operator has been providing a demand forecast of up till 1 week ahead
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and a solar and wind power forecast of up till 3 days ahead since the summer
of 2015. These forecasted values are used in the thesis. The installed power
for solar and wind technologies that is used to calculate the explanatory
variable is provided by the Ministry of Industry [124]. Detailed informa-
tion of the installations is provided, such as location, technology, power, and
whether the installation is connected to the grid. This information is pro-
cessed and clustered according to the provincial division in Spain. In this
way, b0 aggregated installed powers are obtained.

5.1.2.2 Climatic Data Acquisition

Climatic data is required to forecast demand, solar, and wind power. This
information is acquired from an NWP and acquired from the web service in
hourly steps [138]. The NWP is based on an algorithm that analyses satellite
images and predicts the climatic data [139]. The NWP data covers 3 days
ahead. To have a homogeneous database for Spain, one station per province
is used; those stations are usually located in each province’s main city, which
results in 50 stations being selected for Spain. Stations are marked with
black dots in Figure 5.7.

The variable grid that takes the provinces as units may lead to errors
because the NWP value is given for a point and is used in the whole area
regardless of the station and the power plant’s location. The asymmetry
in the location of weather stations and the different shapes and sizes of the
provinces avoid the possibility of spatially averaging the NWP data used
in [127]. Furthermore, only the aggregation of the weighted data in the
whole country is carried out in this study. That there is only one station
per province and that station’s data is used for the whole province may
lead to errors because the station’s value is used for the whole province
without considering its exact location. The shadowing effect within wind
farms that arises due to the location of the wind turbines in the land and the
wind direction may decrease the local wind power generation, thus affecting
the aggregated generation. From this service, the following information is
retrieved:

e Cloudiness
e Wind speed

e Ambient temperature
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For the extraterrestrial hourly radiation calculation, a value of slope («)
is estimated. This value is fixed for all the solar power plants and during the
year. The most common slope value for Spain is fixed at the average latitude
value of 40°. The optimum yearly slope value for an installation is the same
as the latitude where it is located [140]. The acquisition and processing of the

information and calculations are conducted by an automatic tool designed in
Matlab®.
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Figure 5.7: Weather Stations Localizations

5.1.2.3 DHC Network Data Acquisition

Due the inherent variability of the load, it is necessary to acquire informa-
tion on energy demand. Each customer in the network is equipped with an
energy meter (Kamstrup Multical 601) that is supported by a data logger
that retrieves historical information every 2 minutes and communicates with
the SCADA in the generation plant. The data acquired with this method
are flow and return temperature, mass flow, instant power, and aggregated
energy consumed. On one hand, the energy meters were installed from the
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beginning on the client’s side and record the aggregated energy consumed.
On the other hand, the data-logger solution has been installed as part of this
PhD thesis. The equipment is depicted in Figure 5.8. The communication
of the data-logger with the SCADA is performed through GSM, which al-
lows communication even in remote points. Once the information is received,
it is stored in the DB for further use and analysis. Figure 5.9 depicts the
principles of thermal data acquisition and processing.

Figure 5.8: Datalogger + Kamstrup Multicall 601
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Figure 5.9: Substation data acquisition principle
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5.1.3 Configuration of Forecasting Methods

This section contains a brief description of the configurations used in forecast-
ing. Many configurations have been tried for the different forecast models.
The best performing set of configurations are depicted in the following sec-
tions. The main options for configuration pertain to the amount of inputs
and the values of those inputs. The amount of inputs relate to the amount
of steps needed to forecast, which is generally 24. The values of those inputs
are selected from the ACF and PACF studies, which indicate which lags have
greater impact on the time series.

5.1.3.1 ARIMAX

For ARIMAX forecasting, the data is split: 95% for the training set and 5%
for the result comparison set. The derivative part, D, is fixed as 0. The
data-set is divided between weekdays, Saturdays, and Sundays only for price
forecasting. The best performing configurations for the different variables
have been used in the studies carried out in this thesis.

5.1.3.2 NARX

For NARX forecasting, the data is split randomly in three different sets:
training 70%, validation to avoid overfitting 15%, and result comparison
and testing 15%. The training method used is the Lavenberg-Marquardt
algorithm. The attempted methods and ANN configurations that performed
the best are depicted in Table 5.1. The values of neurons per layer correspond
to input, hidden, and output layers. L stands for linear, ST stands for sigmoid
tangent, and I stands for the input layer. The proposed input and feedback
delays are different for the type of day (weekday, Saturday, or Sunday) and
for the forecasting variable.

Table 5.1: NARX Configuration

Variable Configuration
Neurons per layer 48-24-1
Activation Function I-ST-L
Gradient 5x 107
Epochs 2,000
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5.2 Forecasting Results

5.2.1 Energy Price Forecast Results
5.2.1.1 Case Description

This section compares the forecasts of energy prices using forecasting meth-
ods and the three explanatory variable options. The study covers January 1%
2016 - December 315 2016. The length of historic data used on the forecasts
starts on January 1%° 2015 and ends the previous day to the first forecast day.
Different forecasting time horizons that cover 1 to 6 days ahead are studied.
To compare both forecasting methods, several combinations of inputs, lags,
and configurations of ARIMAX and NARX models have been attempted to
obtain the most accurate results. However, only the best-performing com-
binations are presented. For both methods, a study has been conducted to
understand the influence of the explanatory variable on the quality of the
prediction. The options used were no explanatory, demand, or competitive
market as explanatory variable, as explained in Section 5.1.1.1. The method-
ology applied considers the forecasted days to be part of the historical values
when forecasting a later day. Therefore, to perform the last forecast of 6
days ahead, the target vector should use the historical values plus the last 5
days obtained from forecasts. This methodology demonstrates the impact of
forecasted days on future forecasts and enables the evaluation of the impact
on the accuracy over time [141].

5.2.1.2 Results

Table 5.2 depicts the results of MAPE for D1, which corresponds to 1-day
ahead, until D6, which corresponds to 6 days ahead. Figure 5.10 plots the
results for the MAE to visually compare how both methods perform and
compete along the forecasted time horizon. It can be observed that the ARI-
MAX method outperforms NARX method. Figure 5.10 illustrates how the
error increases with the size of the time horizon. The following explanatory
variables presented in Section 5.1.1.1 are also compared:

1. No explanatory variable
2. Demand as an explanatory variable

3. Competitive market as an explanatory variable.
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Table 5.2: MAPE figure for ARIMAX and NARX in price forecasting
Method | ARIMAX #1 | ARIMAX #2 | ARIMAX #3 | NARX #1 | NARX #2 | NARX #3

D1 2.88% 3.60% 2.65% 3.69% 3.95% 3.51%
D2 3.22% 3.73% 2.61% 3.71% 4.06% 3.51%
D3 3.36% 3.89% 2.80% 3.80% 4.07% 3.66%
D4 3.57% 3.83% 2.67% 3.79% 4.12% 3.67%
D5 3.60% 3.91% 2.75% 3.80% 4.39% 3.63%
D6 3.62% 4.26% 3.19% 3.85% 4.55% 3.70%
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5.2.1.3 Conclusion
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Figure 5.10: Forecasting MAE for both methods

This section presents the conclusions obtained from the energy market’s fore-
casting results.
in Section 5.2.1 indicate that the proposed ARIMAX method outperforms
NARX in most cases. The lower average MAE is 4.78€/MWh, which was
achieved by the ARIMAX model in the 1-day ahead forecast and using (#3)

the competitive market as an explanatory variable.
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The highest average




MAE achieved is 8.19€/MWh, which was achieved by NARX model in the
6 days ahead forecast and using demand as the explanatory variable.

The best resulting explanatory variable option is the competitive market
(#3), which is followed closely by the no explanatory variable option (#1).
Using demand as the explanatory variable (#2) would be counterproductive
because it is the worst option due to the low correlation between the variable
and the target vector (0.41). Although the competitive market is the best
option, its results are obtained with historical values, and no forecast error
is included or evaluated. In reality, the competitive market variable is a
forecasted variable that is composed of the forecasts of demand, solar, wind,
and nuclear power; these forecasts are themselves subject to errors.

Similarly, the results indicate the influence of the time horizon on forecast-
ing accuracy. The larger the time gap to the forecasted value, the higher the
error. The influence of time is different for the different forecasting methods.
When comparing the two best performing explanatory variable options, ARI-
MAX increases the MAE by an average daily base of 0.23€/MWh. However,
NARX increases the error by an average daily base of 0.06€/MWh. There-
fore, the NARX method is much less sensitive to errors for forecasted days.
Figure 5.10 depicts both error trends. For the ARIMAX method, changing
the forecast from 1 to 2 days ahead decreases the error from 4.76€/MWh to
4.69€/MWh.

5.2.1.4 Discussion

For a practical use of the 1-day ahead forecast, the no explanatory variable
option would probably be the most accurate method. This is because of the
small error difference between the no explanatory and competitive explana-
tory options (5.18€/MWh - 4.76€/MWh). The final error of the competitive
explanatory option may increase in real life operation considering the error
impact of forecasting the explanatory variable.

On the other hand, the ARIMAX method with no explanatory variable is
the method that is the most sensitive to the time horizon, with a daily error
increase of 0.27€/MWh. The results indicate that the ARIMAX method
performed better than the NARX method for all explanatory variable op-
tions. The ARIMAX method had less errors, which results in a lower annual
error average. However, both methods are accurate enough to be used as re-
liable forecasting tools. They indicate dependence on the time horizon, but
this did not have much of an effect on accuracy. In any case, even long-term
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forecasts can be useful for power generators and consumers.

5.2.2 Renewable Energy Forecast Results
5.2.2.1 Case Description

This section presents the results for solar and wind energy forecasting in
Spain. The aim of this work is to propose a comparison between the two
forecasting models for solar and wind power. Both methods are improved
with a valid explanatory variable obtained from an NWP method. This
comparison is carried out within the specific boundaries of the Spanish energy
market. The forecasts focus on the daily market, forecast for 24 hours, and
have a forecast horizon from +12 hours to +36 hours. The simulations are
carried out for a significant week during winter: 10*" January 2015 to 17"
January 2015. The week is selected for having a typical variability in RES
energy production. The results obtained for this week are similar to the
results from other weeks.

A common approach to the forecast problem over a wide region is to
calculate individual forecasts and sum the results up [142]; it can be ex-
pected that individual errors will partially cancel out when summing up the
forecasts and thus result in a more accurate prediction [57]. An aggregated
forecast approach for a country like Spain is an extremely complicated pro-
cess due to the numerous installations, the variety of technologies, and the
lack of historical generation information from each generator. Therefore, the
approach taken in this section is to forecast the aggregated power for the
Spanish peninsular market for each technology. The forecast methods are
therefore supported with a valid explanatory variable that comprises a time
series of hourly values.

Several combinations and configurations of ARIMAX and NARX models
have been attempted to obtain the most accurate results. The configuration
of each model is different for each energy source. The parameters that achieve
the best set of results are presented in this section.

Two explanatory variables that improve the forecast are used here: one for
solar forecasting, and the other for wind forecasting. To study the correlation
between variables, Pearson and R? correlation studies have been carried out
for the time series. The results for solar, where irradiation and national
solar generation are taken into consideration, indicate a strong correlation:
a Pearson factor of 0.90 and R? = 0.816 as depicted in Figure 5.3. The data
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series is depicted in Figure 5.11. The results for wind, where wind speed and
national wind generation are taken into consideration, indicate a Pearson
factor of 0.79 and an R? of 0.63 as depicted in Figure 5.4, the data series is
depicted in Figure 5.11.
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Figure 5.11: Renewable energies data series for forecasting

The errors between the forecasted values and the real data are analysed
in this section to measure the accuracy of the predictions. To validate the
forecast methods in this work, the following parameters are calculated:

e MAE, depicts the absolute deviation of the forecast. This provides
the perception of the accuracy of the method in terms of energy. This
parameter is particularly useful for market deviations.

e MAPE, depicts the same error divided by hourly generation. This pa-
rameter is useful for understanding the accuracy of the forecast method.
The percentage of error escalates when the value of generation is close
to zero.
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e MADPE, depicts dividing the sum of the daily MAE by the sum of
the daily generation: this parameter represents a relative daily error.
This parameter is useful to understand the accuracy of the method on
a daily basis and can address the MAPE drawback when generation is
close to zero.

5.2.2.2 Results

ARIMAX and NARX models for solar and wind energy generation for 1 day
ahead forecasts have been developed. Both the proposed models accept ei-
ther the hourly irradiation or the wind speed as inputs. The outputs are the
hourly values of either the solar generation or the wind generation in Spain.
After several simulations for the four proposed methods, the best configura-
tion provides the results for the evaluated representative weeks (10/01/2015
— 17/01/2015); these results are depicted in Table 5.3 and in Figure 5.12.
The best configurations are found by following the methodology presented
in Section 3.2.2. This methodology is based on selecting the most important
lags for the ACF and PACF studies. The selected lags give information about
correlation on the time series and only those which high impact are used.

Table 5.3: Renewable energy forecast error
Error D1 D2 D3 D4 D5 D6 D7 Mean
MAE 118 66 121 79 182 190 T 119.24
ARIMAX Solar | MAPE | 33.0% | 32.9% | 44.7% | 20.5% | 34.3% | 51.6% | 40.8% | 36.83%
MADPE | 12.1% | 7.3% | 14.5% | 8.9% | 24.9% | 32.7% | 11.4% | 15.98%
MAE 1054 | 1371 2377 | 1479 891 1597 | 1587 | 1479.30
ARIMAX Wind | MAPE | 25.3% | 21.9% | 36.2% | 23.4% | 15.2% | 15.4% | 14.3% | 21.67%
MADPE | 27.4% | 22.5% | 39.1% | 22.9% | 15.0% | 16.7% | 15.7% | 22.77%
MAE 179 133 116 134 61 61 95 111.04
NARX Solar MAPE | 22.2% | 32.5% | 32.3% | 36.9% | 44.3% | 43.7% | 41.7% | 36.26%
MADPE | 18.3% | 14.6% | 13.8% | 15.1% | 8.3% | 10.5% | 14.0% | 13.51%
MAE | 1121 | 1423 | 900 | 388 | 581 | 410 | 1156 | 854.31
NARX Wind MAPE | 26.1% | 24.2% | 14.8% | 5.9% | 8.9% | 4.2% | 11.2% | 13.62%
MADPE | 29.1% | 23.4% | 14.8% | 6.0% | 9.8% | 4.3% | 11.4% | 14.12%
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Figure 5.12: Renewable energy forecast results

5.2.2.3 Conclusion

This section presents the conclusions for the renewable forecast. The model
is developed to obtain 24 hourly values as results for the 1 day ahead forecast
or the main market that cover +12h to +36h. Both proposed models accept
the time series to forecast and explanatory time series as inputs to improve
the accuracy of the results. Solar power uses irradiation as the explanatory
variable, as explained in Section 5.1.1.2. Wind power uses wind speed as the
explanatory variable, as explained in Section 5.1.1.3. Once the forecasts are
compared with the error figures, the results indicate that the proposed NARX
method outperforms ARIMAX for both generation forecasts. The results also
indicate that solar forecasts are more accurate than wind forecasts.
Nevertheless, the solar generation results for the ARIMAX and NARX
methods are very close. The MAE and MAPE values are practically the same,
and there is only a slight difference for MADPE when the NARX method
(13.51%) outperforms the ARIMAX method (15.98%). This indicator is the
most reliable for generations that have low values that are close to 0MWh:
solar generation during dusk is one such example. The results are much
clearer for wind generation. The NARX method outperforms the ARIMAX
method for every error figure. In terms of MAPE, the average value for
NARX and ARIMAX are 13.62% and 21.67% respectively. The MADPE
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values are similar to MAPE in this case.

The results of the performance achieved with the NARX method for solar
and wind forecasts in terms of MADPE are very similar: 13.51% for solar and
14.12% for wind. On the other hand, the results obtained with the ARIMAX
method in terms of MADPE differ for solar and wind forecasts. The solar
forecast is 15.98%, which is similar to the result for NARX, but the result for
wind generation is much worse: 22.77%. This is the worst result from any
of the proposed forecasting methods. These error figures are for 1-day ahead
market forecasts; if the time horizon were longer, the error would escalate.

5.2.3 Thermal Energy Demand Forecast Results
5.2.3.1 Case Description

The optimal management of a DHC addresses problems such as the opti-
misation of the pumping supply energy and the minimisation of heat loss.
The variability of the load creates situations where predicted information be-
comes very useful for managing different possibilities to supply that energy.
This chapter evaluates the effect of forecasting error when optimising supply
temperature. This evaluation is carried out on the 4 typical weeks selected
for each season that were presented in Section 4.1.6.

Demand forecasts are based on historical data, and temperature is used
as the explanatory variable. This forecast uses ARIMAX because it is more
stable and has accurate forecasting values. The results of the demand forecast
are depicted in Table 5.4. Once the forecasted energy demand and supply
requirements are known, it is necessary to develop a model to calculate the
future associated heat loss in the district network. This model should accord
with the expected demand and be based on the topology of the district
network, as explained in Section 4.1.5. Energy supply heat losses are related
to distribution temperature. In this calculation, return temperature is fixed,
and the supply temperature varies with the optimisation. A network operator
that possesses information about future behavior in the DHC would be able
to manage and optimise the energy generation of the power plant as well as
minimise the cost of the pumping station and the heat loss without reducing
service quality.

Once the total supply demand is calculated, it is possible to optimise
the pumping station’s consumption, which will vary with the different flow
temperature. When energy costs are assigned to the heat loss and pumping
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requirements, it becomes possible to pursue an optimum supply temperature
to deliver energy to the customers .

The demand forecast algorithm estimates hourly energy values for each
customer. These values are aggregated to a total demand of either cooling
or heating and are compared with the real demand afterward. The demand
forecast results that were calculated in Section 4.3.4 are used in this section.
Figure 4.26 compares the real heating or cooling demand with the aggregated
forecast. Table 5.4 presents the MAE demand (in kWh) and MAPE errors
for comparison. The real demand is similar to the predicted values. Never-
theless, the results of forecasting are only used as one step in the optimisation
process. Ergo, the error is propagated, and only the difference between the
optimal real supply temperature and the optimal forecasted supply temper-
ature should be taken into consideration.

Table 5.4: MAE and MAPE forecasting errors for demand
Heating Cooling
MAE | MAPE | MAE | MAPE
Winter 153.20 | 4.98% | 26.56 | 1.16%
Spring 81.17 | 2.64% 6.58 0.29%
Summer 72.78 | 2.36% | 132.95 | 5.80%
Autumn 51.41 1.67% 74.92 3.27%
AVERAGE | 89.64 | 291% | 60.25 | 2.63%

Season

5.2.3.2 Results

Figure 4.26 depicts how demand forecast is accurate. The optimisation re-
sults are only significantly affected on those days when the forecast differs
significantly from the real demand. One example is the first day (Monday)
of the autumn week for cooling: the demand forecast values are lower than
in reality, and the forecasted optimised temperature is higher than the real
optimised temperature. Figure 5.13 depicts the ideal results of optimised
temperatures using real and forecasted results. Table 5.5 depicts the MAE
and MAPE errors for the 4 weeks that represent the seasons.
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Figure 5.13: Supply temperatures for heating and cooling in the DHC

Table 5.5: Demand forecast error
Season MAE MAPE
Heating | Cooling | Heating | Cooling

Winter 0.97°C 1.40°C 3.1% 23.3%

Spring 0.70°C 0.25°C 2.2% 4.2%

Summer 1.31°C 0.40°C 4.2% 6.7%

Autumn 0.99°C 0.57°C 3.2% 9.5%
AVERAGE | 0.99°C 0.66°C 3.2% 11.0%

5.2.3.3 Conclusions

To optimise the supply temperature, the thermal demand has been forecasted
using the explanatory variable presented in Section 5.1.1.4. The demand pre-
diction is used to optimise the supply temperature to minimise distribution
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costs. These results indicate low errors in terms of MAPE: 2.91% for heat-
ing and 2.63% for cooling demand forecasting. The higher errors can be
found in low-demand season, which means winter for cooling and summer
for heating. The error for cooling in winter is particularly high as the AT for
cooling energy is usually 6°C. Such errors are propagated to the optimal sup-
ply temperature, which achieved a much higher error rate: 3.2% for heating
and 11.0% for cooling. Besides the increase in MAPE due to error propaga-
tion, the average MAE for temperature was as low as 0.99°C and 0.66°C for
heating and cooling. This error is so low that it can be neglected, because
the temperature regulation is not always as sharp as observable from Figure
4.23. Therefore, the method and demand forecast can be used for supply
temperature optimisation.
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Chapter 6

Conclusions

6.1 Conclusions

In this thesis, parts of the EMS optimisation tool XEMS13 for hybrid power
plant generators were developed and used. The tool has proven to be suitable
for planning, studying modifications, and managing power plants [62, 105,
122]. The optimisation uses a steady-state power flow approach by dividing
the time horizon into time steps where the boundary conditions are fixed and
invariable. The results provided by the EMS are the generators’ schedules
on hourly bases, where the load is matched with a mix of energy generators
without the help of energy storage.

The EMS can work with different power plant configurations and with
different hybrid systems that provide heating, cooling, and electricity to the
customers.

The EMS has been used to find solutions to real problems in generation
and to seek improvement of day-to-day operations. As depicted in Section
4.3.1 and in [61], a real-life situation of cooling generation was optimised con-
sidering condensing boundaries. Condensing restrictions can be minimised
with the use of EMS and weather information. The selection of a proper gen-
eration strategy can avoid cooling shortages in the face of extreme climatic
conditions. An application of the EMS to improve power plant efficiency is
presented in Section 4.3.2 and in [117]. The improvement comes from con-
trolling supply temperature to decrease heat loss and harness thermal mass.
The decrease of heat loss implies lower energy requirements for power plant
generation. Thus, there is an excess of energy to be stored in the energy
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storage system and in the network’s thermal mass to avoid auxiliary genera-
tion. The EMS is also used for day-to-day scheduling of the power plant that
uses thermal demand and energy prices to provide generation and supply
strategies.

To implement these improvements in the power plant, some modifications
were carried out on the plant during this researches.

e Dataloggers were installed to establish communication between thermal
substations and the power plant’s SCADA; this enables the acquisition
of thermal demand information in real time.

e Installation of two three-way valves that mix generation and DH return
water to obtain the desired heating supply temperature.

e Include an hourly table to fix the supply temperature set point in the
power plant’s SCADA. This set point is sought for the three-way valve.

This thesis and the improvements to the power plant have assisted SAM-
POL to gain maturity and awareness in O&M, thereby achieving the aims
presented in Section 1.3. This thesis is the beginning of energy supply opti-
misation research for the company and has provided knowledge on heat loss
and smart thermal distribution. Similarly, SAMPOL has gained important
knowledge about storage, DHC networks, and improvements in energy stor-
age usage [26]. In the future, it will be necessary to use the EMS to schedule
the CHP’s operation demand forecasts and energy price forecasts.

Demand forecasts do not have a significant influence on plant scheduling
optimisation because demand does not vary significantly over weeks. More-
over, this information can only influence the CHP load. The CHP is never
scheduled in partial load for practical reasons and also because at partial
load, the efficiency of the CHP decreases compared to the nominal regimen.
Nevertheless, if the demand is higher than the CHP’s thermal generation, the
auxiliary boilers match the demand. This means than whenever the demand
is higher than the CHP generation, the demand forecast error does not influ-
ence the final power plant schedule. Thus, the thermal demand forecast does
not have a significant impact on CHP scheduling or power plant scheduling.
As Section 4.3.4 notes, an average heating error of 2.91% and an average
cooling error of 2.63% has an impact of 0.48% on the optimisation.

On the other hand, thermal forecast gains importance in terms of tem-
perature supply optimisation. The demand forecast influences the difference
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between the mass flow and temperature , which are optimised with the EMS.
Section 5.2.3 and [21] indicate that the same forecasting error has an impact
on the optimisation of 3.2% for heating and 11.0% for cooling. Despite the
increase in error for optimisation, the actual supply temperature error is
below 1°C, which is admissible.

Energy price forecasts play a more important role in energy optimisation
than thermal forecasts. Price Forecaster had a very important role during
2013, when the prices were subjected to great variability and when it made a
difference to the CHP schedule due to low prices [141]. Practically speaking,
energy price forecasts are important when the market price is close to the
break-even point of the CHP. In real operations, energy price forecasts are
used to modify (if required) the weekly pre-scheduled generation in case there
are operators available. As noted in Section 4.3.4, energy price forecasts have
a greater impact on optimisation than its error; an average error of 2.75%
has an average impact of 4.74% on the optimisation. This demonstrates that
the real goal of forecasting in this thesis is not accuracy but forecasting’s
impact on power plant optimisation.

Renewable energy forecasts were needed to obtain energy price forecasts.
As observed in Section 5.2.2 and [98, 60], although the errors achieved in the
forecasting of RES power were not very low, they were insignificant when
used for the purpose of generating the explanatory variable. Although the
RES forecast is useful, the transport system operator currently provides a
longer horizon and more accurate solar and wind forecasts. This was the main
reason to abandon this line of research within this thesis and use transport
system operator RES forecasts to forecast energy prices.

Energy price forecasting that uses a transport system operator forecast
would likely be the most accurate method for practical 1-day ahead forecast-
ing. This method is used when the energy prices are close to the cost of
starting the CHP engines, and it is possible to modify the operator’s shift.
In reality, this situation does not happen often.

This thesis was proposed as an optimisation for a solar DHC. Thus, a
solar generation forecaster was developed in expectation of a future scenario
where a solar collector field becomes a viable option. One practical outcome
of this thesis is that a hypothesis and some theoretical results are enough
to change old-fashioned strategies. It would be interesting to calculate the
starting point to evaluate the degree of improvement of the new strategy, but
it is not always easy to compare with a baseline.
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6.2 Future Research

The work and tasks developed in this thesis have been carried out as part
of an industrial PhD research. Therefore, they are naturally applicable to
real-life problems. This work has enabled the company to gain knowledge
and know-how in the field of power plant optimisation and the operational
implications of heat losses, thermal inertia harnessing, and cooling genera-
tion. This knowledge was gained from the different studies performed with
the proposed EMS, which is based on Matlab.

This line of research remains open to further development and improve-
ment. For technical reasons and to increase usability, the next step is to
upload an EMS to a web platform which all the power plant operators can
easily access. Other potential areas for research include close-real time sim-
ulations and predictive modelling. The idea of a ‘digital twin’ can also be
pursued in the near future. This digital twin can simulate real-life situations
and learn from the real power plant.

With regard to forecasting, this thesis has developed a useful forecaster of
energy prices that can forecast up to 7 days ahead. These forecasts are useful
for weekly scheduling of energy sales to the grid. One possible future research
line is to forecast market tendencies to understand when would be more
profitable to run the CHP over the year. On the other hand, the renewable
energy forecast research line is unlikely to be continued in SAMPOL due the
nonexistence of renewable energy installations.

6.3 Dissemination

The work carried out in this thesis has been disseminated in five journal
publications, presented in seven international conferences and it has obtained
three different awards.

6.3.1 Journal Publications

Optimal management of a complex DHC' plant, authored by N. Perez-
Mora, P. Lazzeroni, V. Martinez-Moll, M. Repetto, and published in Energy
Conversion and Management 145 (2017) 386-397. doi:10.1016/j.enconman.
2017.05.002.
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Solar district heating and cooling: A review, authored by N. Perez-Mora,
F. Bava, M. Andersen, C. Bales, G. Lennermo, C. Nielsen, S. Furbo, V.
Martinez-Moll, and published in International Journal of Energy Research
42 (4) (2018). 1419-1441. doi:10.1002/er.3888.

Optimal DHC' energy supply harnessing its thermal mass, authored by N.
Perez-Mora, P. Lazzeroni, V. Martinez-Moll, M. Repetto, and published in
Applied Thermal Engineering 133 (October 2017) (2018) 520-531. doi:10.1016
/j.applthermaleng.2018.01.072.

Spanish Energy Market. QOverview towards price forecast, authored by N.
Perez-Mora, V. Martinez-Moll, and published in International Journal of
Energy Economics and Policy 8 (3)(2018) 1-7. ISSN: 2146-4553.

DHC Supply and Generation Optimization towards 4" Generation, authored
by N. Perez-Mora, P. Lazzeroni, V. Martinez-Moll, M. Repetto, and pub-
lished in International EuroHeat&Power Magazine (issue IV /2018) p.17-20.
ISSN 1613-0200-22698.

6.3.2 Congress Proceedings

Short-Term Spanish Aggregated Solar Energy Forecast, authored by N. Perez-
Mora, V. Canals, V. Martinez-Moll, presented in 13th International Work-
Conference on Artificial Neural Networks, IWANN 2015, and published on
proceedings no. 07122, Springer Verlag, Palma de Mallorca (Spain), 2015,
pp. 307-319. doi:10.1007/978-3-319-19222-226.

Spanish Renewable Energy Generation Short-Term Forecast, authored by N.
Perez-Mora, V. Martinez-Moll, V. Canals, presented in ISES Solar World
Congress 2015, and published on proceedings International Solar Energy So-
ciety, Freiburg, Germany, 2016, pp. 1-12. doi:10.18086/swc.2015.07.10.

DHC' Load Management Using Demand Forecast, authored by N. Perez-
Mora, V. Martinez-Moll, V. Canals, presented in SHC 2015 International
Conference on Solar Heating and Cooling for Buildings and Industry, and
published on proceedings Energy Procedia 91 (C) (2016) 557-566. doi:10.1016
/j-egypro.2016.06.198.
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Optimal Solar District Cooling Harvesting Scenarios, authored by N. Perez-
Mora, P. Lazzeroni, M. Repetto, V. Canals, V. Martinez-Moll, presented in
EuroSun2016, and published on proceedings International Solar Energy So-
ciety, Freiburg, Germany, 2016, pp. 1-11. doi:10.18086/eurosun.2016.05.07.

XEMS13: An hybrid-Energy generation Management System, authored by
N. Perez-Mora, P. Lazzeroni, M. Repetto, presented in 2016 IEEE In-
ternational Conference on Smart Grid Communications (SmartGridComm),
and published on proceedings IEEE SmartGridComm, IEEE, 2016, pp. 20-
25. doi:10.1109/SmartGridComm. 2016.7778732.

Spanish Energy Market. Qwverview towards price forecast, authored by N.
Perez-Mora, V. Martinez-Moll, presented in 3'® International Conference
New Energy and Future Energy Systems, NEFES 2017, in Kunming, China,
and published on the conference proceedings.

Optimization of District Heating and Cooling Power Plant: the case of Parc
Bit, authored by N. Perez-Mora, V. Martinez-Moll, presented in 12" Con-
ference on Sustainable Develpment of Energy, Water and Environment Sys-
tems, SDEWES 2017, in Dubrovnik, Croatia, and published on the confer-
ence proceedings.

6.3.3 Awards

Best Oral Presentation awarded at the 3' International Conference New
Energy and Future Energy Systems, NEFES 2017, in Kunming, China on
24 September 2017.

274 place winner at 6th International DHC+ student award awarded
by DHC+ & International Energy Agency at the Global District Energy
Days in Helsinki, Finland on 26" September 2018.

Runner-up of the prize Best Energy Management for Large Enterprises VI
Premios eficiencia energética A3e - El Instalador awarded by Aso-

ciacion de Empresas de Eficiencia Energética at the IV Foro Nacional de
Eficiencia Energética (FOROGER) in Madrid, Spain on 22"¢ November 2018.
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Appendix A

Heat Loss Formulae

The following formulation is extracted from [119] Annex D.

A.1 Calculation of heat loss per pipe pair

The heat loss for supply pipe ¢, and for return pipe ¢, are calculated from:

¢s = Ul (ts - tsoil) - U2 (tr - tsoil)

Al
¢r — Ul (tr - tsoil) - U2 (ts - tsoil) ( )
The overall heat loss will be:
ts +t,

where
U, and U, are the coefficients of heat loss;
ts and t, are the supply and return temperatures;
tsoi 1s the undisturbed soil temperature at depth Z.

For symmetric pipe structures the heat loss coefficients can be calculated

from:

R, + R;
(Rs + R;)?> — R

U, = (A.3)
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Ry,

Uy =
(Rs + R;)?>— R2

(A4)

where
R, is the thermal insulance of the soil;
R; is the thermal insulance of the insulating material;
Rj, is the thermal insulance of the heat exchange between flow and return

pipe.

The thermal insulance is the specific insulation resistance.
The overall heat loss coefficient is:

1
v=U,-Uy= ——— A5
YT R+ R+ R, (4.5)

A.2 Thermal insulance of the soil

1 427,

f=5 5. D,

(A.6)

where
Z. is a corrected value of depth z, so that the surface transition insulance R,
at the soil surface is included: Z, = Z + R,\;
Z is the distance from the surface to the middle of the pipe;
As can usually be valuated at 1.5 - 2W/mK for wet soil; For dry sand A
~1.0W/mK
R, can usually be valuated at 0.0685m?K/W.

A.3 Thermal insulance of insulation material

1 | Dpyr
n R
27T)\i do

R, = (A7)

where
Dpyr is the diameter of the insulation material;
dy is the outer diameter of the service pipe;
A; is the coefficient of thermal conductivity for the PUR insulation; The limit
for \; in EN 253 is A; = 0.033W/mK. For practical calculations A\; = 0.030W /mK
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or according to the producer specification. The coefficient of thermal con-
ductivity is increasing during the course of time. In heat loss calculation the
average value of A throughout the service life of the pipe system should be
used.

A.4 Thermal insulance of the heat exchange
between supply and return pipe

1 27.\°
where

C is the distance between the centre lines of the two pipes.
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