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Abstract: Espanol

En muchos problemas, que aparecen de forma natural en diferentes campos
de la ciencia, la nocién de métrica juega un papel esencial. En ellos, dicha
nociéon se utiliza habitualmente para medir la disimilitud entre puntos u ob-
jetos. Sin embargo, en algunos casos la definicién de métrica es demasiado
restrictiva. Esto ha motivado la introduccion de diferentes generalizaciones
del concepto de métrica, entre los cuales se incluyen las casi-métricas y las
métricas parciales. En cambio, algunos problemas involucran en su propia
naturaleza cierta incertidumbre. En dichos casos, la teoria Fuzzy es més
apropiada para el tratamiento del problema. Este hecho ha promovido algu-
nas adaptaciones al contexto Fuzzy de la nocion de métrica y el estudio de
estas. Entre otras, podemos encontrar las nociones de operador de indistin-

guibilidad o el de métrica difusa.

Un tema de interés, relacionado con las generalizaciones de métrica y
sus adaptaciones al entorno Fuzzy, es el estudio de aquellas funciones que
transforman una familia de métricas generalizadas, o una sola, en una nueva
métrica generalizada. En esta tesis abordamos algunos tépicos relacionados
con dichas funciones. Ademés, proporcionamos algunas aplicaciones rela-
cionadas con algunos de los resultados teodricos obtenidos en la tesis. A

continuacion se detallan las principales aportaciones:

Damos una nueva caracterizaciéon de aquellas funciones que transforman
cualquier métrica parcial en una nueva métrica parcial. Ademas, se estu-
dia qué condiciones deben cumplir dichas funciones para preservar algunas

propiedades topoldgicas.

Caracterizamos las funciones que agregan casi-métricas, que son aquellas



funciones que transforman cualquier familia de casi-métricas definidas sobre
un mismo conjunto X en una nueva casi-métrica definida sobre X. Por otro
lado, se demuestran algunas propiedades de dichas funciones y se presentan,
de modo argumentado, dos posibles campos de aplicacién de los resultados

obtenidos.

Se demuestra una caracterizacion de aquellas funciones que generan una
métrica parcial a partir de una casi-métrica, y viceversa. Ademas se estu-
dia qué propiedades deben cumplir dichas funciones para preservar el orden
parcial y la topologia inducida, tanto por una métrica parcial como por una

casl-métrica.

Se caracterizan las funciones que agregan una casi-métrica y una métrica
parcial con el fin de obtener una nueva métrica generalizada. En dicha ca-
racterizacion se demuestra que la métrica generalizada obtenida es una casi-
métrica parcial. El resultado obtenido permite desarrollar un marco general
para el estudio simultdneo de la seméantica de lenguajes y el andlisis de com-

plejidad algoritmica.

Se proporcionan dos formas diferentes de construir una métrica difusa a
partir de una clasica. Una de ellas mediante funciones que preservan métri-
cas y la otra por medio de generadores aditivos. Se demuestran algunas
propiedades de las métricas difusas obtenidas. Ademas, proporcionamos un

método para construir una meétrica clasica a partir de una métrica difusa.

Establecemos una relacién de dualidad entre métricas difusas y métricas
modulares, una generalizacion de métrica que incluye en su definicién un
parametro. Dicha relacién motiva la introduccion de un nuevo concepto que
generaliza tanto a los operadores de indistinguibilidad como a las métricas

difusas.
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Por ultimo, establecemos una base tedrica para generar funciones de res-
puesta en el problema de asignacién de tareas en sistemas Multi-robot. Este

se basa en el uso de operadores de indistinguibilidad y preordenes difusos.

vil



Abstract: Catala

En molts problemes, que apareixen de forma natural en diferents camps de la
ciéncia, la nocié de métrica juga un paper fonamental. En ells, les métriques
s’utilitzen habitualment per a mesurar la dissimilitud entre objectes o punts.
Tot i aix0, en alguns casos el concepte de métrica es massa restrictiu, fet que
ha motivat la introducci6 de diferents generalitzacions del concepte métrica,
entre els quals s’inclouen les quasi-métriques o les meétriques parcials. Per
altra banda, hi ha alguns problemes que involucren en la seva propia natu-
ralesa una certa incertesa. En aquests casos, la teoria Fuzzy és més adequada
per al tractament del problema. Tal fet ha propiciat I'aparici6 d’algunes
adaptacions al context Fuzzy de la nocié de métrica i de 'estudi d’aquestes.
Entre altres, podem trobar les nocions d’operador d’indistinguibilitat o del

de meétrica difusa.

Un tema d’interés, relacionat amb les diverses generalitzacions de les
meétriques i de les seves adaptacions al context Fuzzy, consisteix en l'estudi
d’aquelles funcions que transformen una familia de métriques generalitzades,
0 una tota sola, en una nova meétrica generalitzada. En aquesta tesi s’aborda-
ran alguns temes relacionats amb aquest tipus de funcions. Per altra banda,
es proporcionen algunes aplicacions relacionades amb alguns dels resultats
teorics obtinguts en la tesi. A continuacié es detallen les aportacions princi-

pals:

Donem una nova caracteritzacié d’aquelles funcions que transformen qual-
sevol métrica parcial en una nova métrica parcial. A més, s’estudia les condi-
cions que han de complir aquestes funcions per tal de conservar algunes

propietats topologiques.
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Es caracteritzen les funcions que agreguen quasi-métriques, és a dir, aque-
lles funcions que transformen qualsevol familia de quasi-métriques definides
sobre un mateix conjunt X en una nova quasi-métrica definitiva també sobre
X. Per un altre costat, es demostren algunes propietats de dites funcions i

s’argumenten dos possibles camps d’aplicacié dels resultats obtinguts.

Demostrem una caracteritzacié d’aquelles funcions que generen una métri-
ca parcial a partir d’'una quasi-métrica, i viceversa. A més, estudiem les
propietats que han de complir dites funcions per tal de preservar 'ordre
parcial i la topologia induits, tant per una métrica parcial com per una

quasi-metrica.

Es caracteritzen les funcions que agreguen una quasi-métrica i métrica
parcial per tal d’obtenir una nova métrica generalitzada. Aquesta caracte-
ritzacié demostra que la métrica generalitzada que s’obté coincideix amb una
quasi-métrica parcial. FEl resultat obtingut permet desenvolupar un marc
general per a l'estudi simultani de la semantica de llenguatges i ’analisi de

la complexitat algoritmica.

Es proporcionen dues formes diferents de construir una métrica difusa a
partir d'una de classica. Una d’elles per mitja de les funcions que preserven
meétriques i l'altra a partir de generadors additius. A més, es demostren
algunes propietats de les métriques difuses obtingudes. Per altra banda, es
proporciona un métode per a construir una métrica classica a partir d'una

meétrica difusa.

Establim una relacié de dualitat entre métriques difuses i métriques mo-
dulars, una generalitzaci6 de métrica que inclou en la seva definicié un
parametre. Aquesta relacié6 motiva la introduccié6 d’un nou concepte que

generalitza tant els operadors d’indistinguibilitat com les métriques difuses.

X



Per ultim, s’estableix una base tedrica per generar funcions de resposta
en el problema d’assignacio de tasques en sistemes Multi-robot. Aquesta es

basa en I'is d’operadors d’indistinguibilitat i de preordres difusos.



Abstract

In many problems of different fields of Science, the notion of metric plays an
essential role. Such a notion is commonly used to measure the dissimilarity
between points or objects. However, the definition of metric is too restrictive
in some problems. It has motivated the introduction of different kind of
generalizations of the concept of metric, in which quasi-metrics and partial
metrics are included. Moreover, some problems involve in its nature some
uncertainty. In such cases, the Fuzzy theory is more appropriate for the
treatment of the problem. This fact has promoted some adaptations to the
fuzzy context of the notion of metric and their study. Among others, we can

find the notions of indistinguishability operator or fuzzy metric.

A topic of interest, related to the generalizations of metric and the adap-
tation of metric to the fuzzy setting, is the study of those functions that
transform a family of generalized metrics, or a single one, into a new gen-
eralized metric. In this dissertation we tackle some items related with the
aforesaid functions. In addition, we provide some applications related with
some of the theoretical results obtained. The main contributions of this

dissertation are summarized below:

We prove a new characterization of those functions that transform each
partial metric into a new one partial metric. In addition, conditions to pre-
serve some topological properties by the aforementioned functions are stud-

ied.

We characterize quasi-metric aggregation functions, which are those func-
tions that transform a family of quasi-metrics defined on the same set X into

a new quasi-metric defined on X. Moreover, some properties of such func-
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tions are proved and two possible fields of application of the obtained results

are presented.

A characterization of those functions that generate a partial metric from
a quasi-metric, and vice-versa, are proved Besides, the preservation by means
of such functions of the partial order and the topology induced by a quasi-

metric or a partial metric are studied.

Functions that merge a quasi-metric and a partial one into a new gener-
alized metric are characterized. In such a characterization it is shown that
the generalized metric obtained is a partial quasi-metric. The result ob-
tained allows us to develop a general framework to study, at the same time,

denotational semantics and complexity analysis of algorithms.

Two different ways to construct a fuzzy metric from a classical one are
provided. One of them by means of metric preserving functions and the other
one using additive generators. Some properties of the fuzzy metrics obtained
are proved. Furthermore, we give a method to construct a classical metric

from a fuzzy one.

We establish a duality relationship between fuzzy metrics and modular
metrics, a generalization of metric that include in its definition a parame-
ter. Such a relationship motivates the introduction of a new concept that

generalizes both indistinguishability operators and fuzzy metrics.

We establish a theoretical foundation to generate response functions for
Multi-robot task allocation problem. It is based on the use of indistinguisha-

bility operators and fuzzy preorders.
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Chapter 1

Introduction

1.1 Background of the study

The notion of metric or distance, as it is most commonly named in Computer
Science, plays an essential role in many problems arising in different fields
of Science. For instance, in Pattern Recognition, Image Analysis, Computa-
tional Biology, Decision Making,. .. (see [2, 14, 47, 68]). In such problems,
it is required, in a natural way, to measure the dissimilarity between two
objects, and then the concept of metric works as the tool that provides this
measurement. Nevertheless, in some cases, the axioms that define a met-
ric are too restrictive to approach the problem under consideration, and so
such a concept is not appropriate to solve it. To avoid that inconvenience,
we can find in the literature different generalizations of the aforementioned
notion, as quasi-metric (or asymmetric distance), partial metric (or non-zero
distance), pseudo-metric, etc. Moreover, in some instances, the nature of the

addressed problem involves some uncertainty to measure the dissimilarity, so



8 INTRODUCTION

in such a case, it is necessary to handle a notion of measurement framed in
the Fuzzy setting. We mean by Fuzzy setting the whole theory that begins
in 1965 when L.A. Zadeh introduced in [99] the notion of Fuzzy Set. This
concept opened a wide range of research, both from the theoretical point of
view and from its applicability to real problems. In this framework, we can
find the concept of indistinguishability operator introduced by E. Trillas in
|94| (see also |[100]), which provides a degree of how indistinguishable are two
objects. Also, in the fuzzy realm, we can find some adaptations, to this con-

text, of the different generalizations of metric as, for instance, fuzzy metrics

([500)-

In any case, we can consider all the aforementioned concepts of measure-
ment as generalizations of the notion of metric, although we divide them in
two differentiate classes: the first one, which we will refer as dissimilarity
measurement, which includes the notion of metric and all its generalizations
provided by relaxing its axiomatic. The second one, which we call similar-
ity measurements, which includes the notion of indistinguishability operator
and the concept of fuzzy metric, fuzzy quasi-metric, among the other adap-
tations to the fuzzy context of the generalizations of metric. The essential
difference between these two classes is that the members of the first one can
take values into [0, co], where 0 indicates that two elements are not distin-
guishable and greater the value, the more distinguishable are the objects.
However, indistinguishable measurements provide a value into [0, 1], where 1
means that two elements are totally indistinguishable and so they have the
maximum degree of similarity, while 0 means that the elements are totally

distinguishable.

All the concepts included in both families have been deeply studied in
the literature separately. Although some authors have treated the problem

of studying the relationship among some of them. We focus on two topics
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related to such research line. The first one has its beginning in 1981, when
J. Borsik and J. Dobo§ |7] studied the problem of characterizing the class
of functions that preserve metrics, i.e., they characterized the class of non-
negative real functions whose composition with each metric provide a metric.
Furthermore, the same authors extended such a study in [8] to the problem
of merging a family of distances into a single one. Since then, other authors
have continued Borsik and Dobo§’ work extending their results to those cases
in which are considered generalized metrics, as quasi-metric or partial metric
among others (see, for instance, |58, 55|). The second topic has been treated
in the literature for several authors (see for instance |12, 78| and references
therein) and it consists in studying the duality relationship between indistin-
guishability operators and metrics. Such a relationship consists in obtaining
an indistinguishability operator from a classical metric, and vice-versa, by
means of a real-valued functions. It can be seen as a transformation, by
means of a function, of a classical metric into an indistinguishability opera-

tor and vice-versa.

In this chapter, we make an overview on the literature about the study
of those functions that preserve, aggregate or transform a family (being able
a single distance) of generalized metrics into a different one or another of
the same type. Besides, we expose two applications in which generalized
metrics play an essential role, as to the analysis of algorithms and to the
multi-robot task allocation problem. The remainder of the chapter is di-
vided in four sections. In the first one, we attend some generalizations of
metric notion that measure the dissimilarity and some results related to the
functions that preserve or aggregate them. The second section is devoted to
some transformations of such generalizations. Then, in the third section, we
tackle some similarity measurements and their transformations. Finally, in

the fourth section we expose some details of the application to the analysis of
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algorithms and to the multi-robot task allocation problem. Throughout the
text, we assume that the reader is familiar with the fundamentals of metric
spaces ([14]).

1.1.1 Functions that preserve or aggregate dissimilarity mea-

surements

As was mentioned in the above section, the first results concerning the study
of metric preserving functions were due to Borsik and J. Dobog, who, in
particular, characterized those functions that merge a family of metrics into
a single one. We have collected their results adapting them to the notation
that nowadays is commonly used in the literature, in order to unify the

notation.

First, recall that a metric space is a pair (X, d), where X is a non-empty
set and d is non-negative real-valued function on X x X satisfying, for each

x,y, 2z € X, the following axioms:

(M1) d(z,y) =0 if and only if z = y; (Separation)
(M2) d(z,y) = d(y, ); (Symmetry)
(M3) d(x,z) <d(z,y) +d(y,z). (Triangle inequality)

If axiom (M1) is replaced by the following one

(MO) d(xz,z) =0 for each x € X,



INTRODUCTION 11

then the pair (X,d) is said to be a pseudo-metric (such a concept will be

useful in Section 1.1.3).

It is a well-known fact that, given a metric space (X,d), the function

d(z,y)
1+d(z,y)

metric on X. So, one can observe that the function f : Ry — Ry, given

dp : X x X — Ry, given by di(z,y) =

for each z,y € X, is a

by f(t) = 1L+t for each ¢t € Ry, when it is composed with d provides a new
metric on X, for each metric space (X,d). R4 denotes the interval [0, 0]
along this dissertation. However, from now on, R, and [0, co[ will be used
throughout the text in order to follow the notation, in each case, of those

previous seminal works taken under consideration.

In |7], it was approached the problem of studying those functions f which
satisfy the aforementioned property. To this end, the following concept was
introduced in such a paper. A function f : Ry — R, is said to be metric
preserving (shortly mp-function) if for each metric space (X, d) the function
df + X x X — Ry, given by df(x,y) = f(d(x,y)) for each z,y € X, is a

metric on X.

Two relevant subclasses of non-negative real-valued functions, which will

be useful in the problem under consideration, are defined below.

Let f: R4 — R4 be a function. Then, we will say that

(i) f is amenable if f=1(0) = {0}.

(i) f is subadditive if for each a,b € R we have that f(a+0b) < f(a)+f(b).

We will denote by O the class of all amenable functions.

On the one hand, each mp-preserving function is amenable and subad-
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ditive. However, in [15], the next example was introduced which yields an

amenable and subbaditive function which is not metric preserving.
Example 1.1.1. Define f: Ry — Ry as follows:

f(x) { = ifx € QN R (Q denotes the set of rational numbers)
€Tr) =

1, elsewhere .

On the other hand, every amenable, subadditive and monotone function
preserves metrics. Nevertheless, there exist mp-functions that are not mono-

tone as shows the following instance based on Example 8 in |58].
Example 1.1.2. Consider the function f: Ry — Ry given by:

0, ifx=0;
f@)=1q 2, ifz€]o,1];
1, ifxe[l,00.

It is clear that f(1/2) > f(1), but 1/2 < 1.

With the aim of introducing a characerization of mp-functions, we need
to recall the notion of triangle triplet. Such a notion was introduced by F.
Terpe in [93] and it will be crucial for a subsequent discussion. For each

a,b,c € Ry, the triplet (a,b,c) is called a 1-dimensional triangle triplet if

a<b+4+c; b<a+c and c<a-+b.

A metric provides a way to construct 1-dimensional triangle triplets. In-
deed, if we consider a metric space (X,d) and we take z,y,z € X, then the
triangle inequality ensures that (a,b,c) is a 1-dimensional triangle triplet,

where a = d(x,z), b =d(z,y) and ¢ = d(y, 2).
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Now, we are able to introduce the announced characterization of the class

of mp-functions such as it was given by Dobog in [15].

Theorem 1.1.3. Let f € O. Then the following are equivalent:

1. f is an mp-function,

2. if (a,b,c) is a 1-dimensional triangle triplet, then (f(a), f(b), f(c)) is

50,
3. if (a,b,c) is a 1-dimensional triangle triplet, then f(a) < f(b) + f(¢),

4. for each x,y € Ry we have that max{f(z) : |[x —y| < z < x4y} <
f(x)+ 1)

Borsik and Dobos also characterized in |7] those mp-functions for which
the topology induced by dy on X coincides with the topology induced by d on
X for each metric space (X, d). Such functions were called strongly metric

preserving functions (briefly smp-functions) and they are characterized as
follows (see [15]).

Theorem 1.1.4. Let f : Ry — Ry be a mp-function. Then the following

assertions are equivalent:
1. f is continuous,
2. f is continuous at 0,

3. for each € > 0 we can find x > 0 such that f(x) < e,

4. f is a smp-function.
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In 8], Borsik and Dobos continued the above study. Thus they discussed
the case in which a family, instead of a single one, of metric spaces is consid-

ered. A motivation of such a work could be the following.

Let {(X;,d;) : i € N} (N stands for the set of positive integer numbers)
be a family of metric spaces. If we denote by X the Cartesian product HXi,

€N
then the function D : X x X — Ry, given by

; di(Ti,ui)
Dxy)=) 27" —————,
% 1+ di(i, i)
is a metric on X, which is known in the literature as Fréchet metric on a

product of countable family of metric spaces.

In the light of the preceding example, it seems natural to explore those
functions which merge a collection (non-necessay finite) of metrics into a sin-
gle one. This problem was addressed by Borsik, and Dobog in [8]. Although
all the following results were given when the considered family is non-finite,
we will recall them assuming that the handled family is finite, since we are
motivated by the possible applications to real problems in which, obviously,

we would consider only the finite case.

Next we will denote by R’} the set of all vectors with n non-negative real
components. Moreover, from now on, we will denote by 0 the element of R’
given by 0; = 0 for all i € {1,...,n}. As usual we will consider the set R’
ordered by the point-wise order relation <, i. e. x <y < x; < y; for all
ie{l,...,n}

Now, we have adapted some subclasses of 1-dimensional real-valued func-

tions to the n-dimensional context.

Let F': R} — R;. We will say that
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(i) F is amenable if F~1(0) = {0}.

(ii) F is subadditive if for each a,b € R’} we have that F(a+b) < F(a)+
F(b).

(iii) F' is monotone if for each a,b € R with a < b, we have that F(a) <
F(b).

We will denote by O™ the class of all functions F': R} — Ry which are

amenable.

Based on the 1-dimensional case, for n € N, we will say that a function

F :RY — Ry is a n-metric preserving function (shortly nmp-function) if the
n

function Dp is a metric on the set X = HXi’ for every family of n metric
i=1
spaces {(X1,d1),...,(Xn,dy)}, where the mapping Dp : X x X — Ry is

defined by
DF(va) - F(d1($17y1)7 o 7dn('rn7yn))'

The following result, proved in [8], provides sufficient conditions on a

function F' to be a metric

Proposition 1.1.5. Let n € N and let F' : R} — Ry be a monotone,

subadditive and amenable function. Then F 1s an nmp-function.

One can show, adapting Example 1.1.2 to the n-dimensional case, that
there exist nmp-functions which are not monotone. Furthermore, this n-
dimensional case admits similar characterizations of those given for mp-
functions in the 1-dimensional case. So, before presenting the character-
ization of the family of mmp-functions, we must adapt the notion of 1-

dimensional triangle triplet to the n-dimensional case as follows.
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For each a, b, c € R} we will say that (a, b, c) is an n-dimensional triangle
triplet if
a<=b+c; b<a+4+c and c<a+b.

Now, we are able to introduce the aforementioned characterization of the

class of nmp-functions.

Theorem 1.1.6. Let n € N and let ' : R — Ry be a function. Then, I’
1s a nmp-function if and only if it fulfills the following properties:

(1) F e O

(2) If (a,b,c) is an n-dimensional triangle triplet, then (F(a), F(b), F(c))

1s a 1-dimensional triangle triplet.

Later on, in 2000, E. Castineira, A. Pradera and E. Trillas slightly mod-
ified the problem of merging a finite family of metric spaces into single one.
Concretely in [75] (see also [74]), they restricted the study to the case in
which all metrics of the collection to be merged are defined on the same
non-empty set X. It must be stressed that in the aforementioned papers, the
study was made for pseudo-metrics, a more general notion than the metric
one. Nevertheless, we have adapted their results to the metric case in order

to put them in our context.

With the aim of recalling the result by Castineira, Pradera and Trillas,
we will need the next notion. We will say that F': R} — R, is a metric
aggregation function (shortly ma-function) provided that, for any non-empty
set X and any collection of metrics {dy,...,d,} on X, the function Dp :
X x X — Ry is a metric, where Dp(z,y) = F(di(x,y),...,d,(z,y)) for all

x,y € X. We have renamed this concept as ma-function because of in this
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case we are “fusing” n incoming data, which come from the same structure,
to a single datum, in such a structure. The preceding fact is in tune with the

concept of aggregation function widely studied in the literature (see |28]).

According to [75|, Proposition 1.1.5 remains valid when we consider ma-

functions.

Recently, in |59], the study of the class of ma-functions has been contin-
ued. In this paper, G. Mayor and O. Valero have refined Proposition 1.1.5
and, in addition, they have provided a characterization of such a class of

functions. In both results are involved the following concepts.

Let n € N and consider function F': R} — R;. We will say that

(i) F'is positive subadditive if for each a,b €]0, co[” we have that F(a +
b) < F(a)+ F(b).

(ii) F is positive monotone if for each a,b €]0, 00[", with a < b, we have

that F'(a) < F(b).

Attending to the above introduced notions, in [59] the next proposition

was proved.

Proposition 1.1.7. Let n € N and let F' : R} — Ry be a function which
18 positive monotone, positive subadditive and, in addition, it satisfies the

following conditions:

(1) F(0) =0,

(2) If F(a) =0, then min{ay,...a,} = 0.
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Then F s a ma-function.

Furthermore, in [59] it has been observed that the positive monotony is
not a necessary condition to be a ma-function, such as the following example

shows.

Example 1.1.8. Consider the function F : R — R, given by F(0,0) =0

and

F(a,b) :{ 2 i firska;b) € 0,1)

1 if first(a,b) > 1
where (a,b) # (0,0) and first(a,b) denotes the first value of (a,b) different

from 0. It is not hard to check that I is a ma-function but it is not positive

monotone.

In order to obtain a characterization of the class of ma-functions similar

to that given in Theorem 1.1.6, the following concept was introduced in [59].

Let n € N and let a,b,c € (0,00)". The triplet (a,b,c) forms an
n-dimensional positive triangle triplet if it forms a n-dimensional triangle

triplet.

The aforesaid characterization can be stated as follows ([59]).

Theorem 1.1.9. Let n € N. Consider a function F' : R} — R,. The

following assertions are equivalent.

(1) F is an ma-function.

(2) F holds the following properties:

(2.1) F(0) =0,



INTRODUCTION 19

(2.2) If F(a) =0, then min{ay,...a,} =0,

(2.3) If (a,b,c) is a positive n-dimensional triangle triplet, then
(F(a), F(b), F(c)) is a 1-dimensional positive triangle triplet.

We will finish this subsection recalling some examples of ma-functions,
which have been included in [59].

Example 1.1.10. Let n € N. The following functions F' : R — R are

ma-functions where for all a € [0,00)":

(1) F(a) =Y, wia;, where wy, ..., w, € [0,00) withmax{wi, ..., wy} >
0. Of course, this kind of functions includes the class of weighted arith-

metic means, and thus the arithmetic mean (see [28]).

(2) F(a) = max{wiai,...,wyay}, where wy,... w, € [0,00) are such that

maz{wi,...,w,} > 0.

(8) F(a) = > i wiaq) for all wy, ..., w, € [0,1] with w; > w; for i < j
and maz{wi,...,w,} >0, where a() is the ith largest of the ay, .. ., ay.
This kind of functions includes the OWA operators with decreasing
weights (see [28, 78]).

1
(4) F(a) = O_1 (wa)?)? for given p € [1,00[ and for all wy,...,w, €
[0,00) such that max{ws,...,w,} > 0. This kind of functions includes

those root-mean-powers such that p > 1 (see [28]).

(5) F(a) = min{c, Y ;" ; wia;} for all wy,. .., wy, € [0,00) such that

max{wy,...,w,} >0 and ¢ € (0,00).
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Preservation and aggregation of generalized metrics

In this subsection we will recall the main results about the study of the
functions that preserve and aggregate, respectively, a finite family of gener-
alized metrics into a single one. Concretely, we address the case in which the

generalized metrics are quasi-metrics and partial metrics.

The notion of quasi-metric space is a well-known generalization of the
concept of metric, in which the symmetry axiom is deleted. Thus we will say
that a pair (X, ¢q) is a quasi-metric space if X is a non-empty set and ¢, the
quasi-metric, is a non-negative real-valued function on X x X satisfying for

each x,y,z € X the following:

(QM1) q(z,y) = q(y,x) =0 if and only if z = y; (Separation)

(QM2) q(z,2) < q(z,y) +q(y, 2). (Triangle inequality)

Such a concept has been used in different fields of Computer Science (see,
for instance, |22, 80, 82, 83, 88]). In particular, quasi-metrics allow, among
other applications, to introduce quantitative techniques of fixed point for
the asymptotic complexity analysis of algorithms and for the verification of
programs. In this context M.P. Schellekens introduced in [88] a methodol-
ogy, based on a quasi-metric version of the celebrated Banach Contraction
Principle, to determine the complexity class of those algorithms whose exe-
cution time satisfies a recurrence equation. Moreover, one can easily observe
that there exist several real problems in which considering symmetric dis-
tances does not make sense. For instance, if we consider two point in a city
plan, taking into account that there exist unidirectional roads, the distance

between A and B could be different to the distance between B and A.



INTRODUCTION 21

As a generalization of metric, and taking into account its applicability
to real problems, it is so natural to extend the study started by Borsik and
Dobos in metrics to the case of quasi-metrics, which was tackled in [53, 58|.

Now, we collect the main results obtained in |58].

In a similar way to the metric case, for n € N, we will say that a func-

tion F': R} — Ry is a n-quasi-metric preserving function (shortly ngmp-
n

function) if the function @ is a quasi-metric on the set X = HXZ-, for every

i=1
family of n quasi-metric spaces {(X1,q1),...,(Xn,qn)}, where the function

Qr : X x X = Ry is defined by Qr(x,y) = F(q1(x1,91); -+, @n(Tn,Yn))-

As in the metric case, amenability is a necessary condition on a function
F : R} — Ry to be a ngmp-function. Furthermore, subadditivity and
monotony are also sufficient conditions to be included in such a class, such

as it was shown in the following proposition introduced in [58].

Proposition 1.1.11. Let F € O™. If F' is monotone and subadditive, then

F is a ngmp-function.

Moreover, in |58], the next characterization of the class of ngmp-functions
was given , following the main ideas of Theorem 1.1.6, i.e., by means of

triangle triples.

Theorem 1.1.12. Let F' : R} — Ry be a function. Then F is a ngmp-

function if and only it satisfies the following properties:

(1) Feon

(2) Let a,b,c € R". Ifa < b+ c,then F(a) < F(b)+ F(c).
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In the light of Theorem 1.1.12, in [58] the fact that that every ngmp-
function is a nmp-function was pointed out. Indeed, every function F' : R} —
R satisfying condition (2) in Theorem 1.1.12 transforms n-dimensional tri-
angle triplets into 1-dimensional triangle triplets. In addition, the reciprocal

implication is not true, in general, such as the next example shows.

Example 1.1.13. Consider the function F' : R} — R given by F(0) =0

and
2 t(x) €]0,1
g ]2 et el
1 first(x) > 1
where x # 0 and first(x) denotes the value of the first term of vector x

different to 0.

In fact, the inclusion of the class of ngmp-functions in the class of nmp-
functions is strict because of, such as the result below proves, subbaditivity
and monotony on functions F € O" are also necessary conditions to be

ngmp-functions.

Theorem 1.1.14. Let F': R} — Ry be a function. Then the below state-

ments are equivalent:

(1) F is subadditive, monotone and F € O™.

(2) F is a ngmp-function.

In 1994, S.G. Mathews introduced the notion of partial metric space in
order to provide a mathematical framework to model several computational
processes that arise in a natural way in denotational semantics for program-
ming languages and in parallel processing (see [56] and [57] and, also, see [45]

for additional applications to logic programming).
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According to Matthews (|56]), a partial metric on a (non-empty) set X
is a function p : X x X — R, such that, for all z,y,z € X, the following

axioms are hold:

(P1) p(z,z) =plz,y) =ply.y) &z =1y; (Separation)
(P2) p(z,z) < p(z,y); (Monotony)
(P3) p(z,y) = p(y,2); (Symmetry)
(P4) p(z,2) < p(z,y) +py,2) — (Y, y)- (Triangle inequality)

Also, we will say that (X, p) is a partial metric space if X is a non-empty
set and p is a partial metric on X. Partial metrics are also known in the

literature as non-zero distances.

As in the case of quasi-metric spaces, the applicability of partial metric
spaces and, in addition, the growing interest in fusion methods based on the
use of numerical aggregation functions, in which the numerical values that
are merged come in many cases from measurements among several pieces of
information, motivates in a natural way the study about the possibility of
extending the merging techniques developed in the metric and quasi-metric
case to partial metric framework. Such a topic was addressed in [55] and

below, we will collect the main results in this research direction.

Recall that, for n € N, we will say that ' : R? — R, is a n-partial metric

preserving function (shortly npmp-function) if the function Pp is a partial
n

metric on the set X = HXi, for every family of n partial metric spaces
=1
{(X1,p1,w1), ..., (Xn,Pn,wn)}, where the function Prp : X x X — R, is

defined by Pr(x,y) = F(pi1(x1,y1),-- -, Pn(Tn, yn))-
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In the light of the preceding concept, the following result provides a
partial description of npmp-functions. Concretely it provides necessary con-

ditions on a function to be a npmp-function.

Proposition 1.1.15. Let n € N and let F' : R — Ry be a function. If I’

s a npmp-function, then the following statements hold:

(1) F is monotone.
(2) F is subadditive

(3) If there exists x € RY such that F(x) =0, then x = 0.

Nevertheless, in [55] it was justified that neither the monotony nor sub-
additivity are sufficient conditions. Indeed, the following example gives evi-

dence of such a fact.

Example 1.1.16. Let n € N and consider the function F': R} — R defined

F(X):{ 0 ifx=0

1 otherwise.

by

Fis monotone, subadditive and F' € O™. However, it is not a npmp-function.

Now, we recall the characterization of npmp-functions provided in [55].

Theorem 1.1.17. Let n € N and consider F' : RY — Ry. Then F is a
npmp-function if and only if it satisfies the following two properties for all
a,b,c,d € R} :

(1) F(a)+ F(b) < F(c)+ F(d) whenever a+b <c+d, b <candb <d.

(2) Ifb=<a,c=<aand F(a) = F(b) = F(c), thena=b =rc.
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In the remainder of the section, we discuss the relationship between the

classes of nmp-functions, ngmp-functions and npmp-functions.

First, observe that the condition of being amenable is not demanded in
the characterization of the class of npmp-functions, which was a necessary
condition in both characterizations of nmp-functions and ngmp-functions.
The following example, introduced in [55], provides and instance of npmp-

function, which is neither ngmp-function nor a nmp-function.

Example 1.1.18. Let n = 1. Define the function F : Ry — Ry by F(z) =
x4+ 1 forallx € Ry,

Finally, the following proposition shows that if we demand an extra con-
dition on a npmp-function, then such a function is a ngmp-function and,

thus, a nmp-function.

Proposition 1.1.19. Let n € N and let F' : R} — Ry be a npmp-function
such that F(0) = 0. Then F is a ngmp-function.

1.1.2 Transformation of dissimilarity measurements

The above section was devoted to compile results related to the problem of
merging a finite family of some dissimilarity measuments into a single one.
As was observed in such section, the seed of such studies was the work due
to J. Borsik and Dobos (|7]), in which it was studied those functions whose
composition with every metric provides a metric. Somehow, such functions
actually could be considered as a transformation of a metric. Motivated by
such an idea, one can consider the problem of studying those functions which
transform a generalized metric into another one, although the nature of the

input generalized metric can be different to the output one.
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According to the preceding argument, we focus our attention on the well-
known fact (see [14]) that, given a quasi-metric space (X, q), we always can
construct a metric on X from ¢. Indeed, on the one hand, it is clear that the
function gmax : X X X — Ry defined by g¢max(z,y) = max{q(z,y),q(y,z)}
is a metric. On the other hand, one can verify easily that the function
g+ : X x X — R4 given by ¢4 (z,y) = q(z,y) + q(y, x) is also a metric. On
account of their expressions, the metrics gmax and ¢4 are obtained by means
of an aggregation of the values ¢(z,y) and q(y,z). In fact, guax(z,y) =
Frax(q(z,y), q(y, ) and ¢+ (2,y) = Fi-(a(2,y), q(y, x)), where Frax(a,b) =
max{a,b} and Fi(a,b) = a + b for all a,b € Ry. Furthermore, note that
Fhax and Fy are, by Theorem 1.1.12, 2¢gmp-functions. However, both Fi .«

and F can be seen as functions that transform a quasi-metric into a metric.

Taking into account the ideas expressed in the above two paragraphs,
it seems natural to wonder whether there exist more ways of generating a
metric from a quasi-metric, or in other words, it is natural to ask how are
those functions that symmetrize a quasi-metric. Such a problem was tackled
in [54], and in this subsection we will collect the main results provided in the

aforementioned paper.

On account of [54], a function ® : R2 — R will be called a metric
generating function (shortly mg-function) if the function dg : X x X — Ry
is a metric on X, for every quasi-metric space (X, q), where the function dg
is defined by

do(w,y) = ®(q(,y), q(y,z))

for all z,y € X.

In [54], it was proved a characterization of the class of mg-functions in
which the following notion plays an essential role. Let a,b,c,d, f,g € R,.
We will say that the triplets (a,b,c) and (d, f,g) are mixed provided that
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the following inequalities hold:

a<bte b<a+f, c<g+ta,

d<f+g, f<d+b g<c+d.

The announced characterization is presented below.

Theorem 1.1.20. Let ® : R%— — R4 be a function. Then the below asser-

tions are equivalent:

(1) ® is a mg-function.

(2) ® holds the following properties:

(2.1) ® € O.
(2.2) @ is symmetric, i.e., ®(a,b) = ®(b,a) for all (a,b) € RZ.

(2.3) ®(a,d) < ®(b,g) + P(c, f) for all a,b,c,d, f,g € Ry such that
(a,b,c) and (d, f,g) are mized triplets.

Moreover, we have observed that both Fi . and Fy are ngmp-functions.
Inspired by this fact, J. Martin, G. Mayor and O. Valero tackled the study

on the relationship between ngmp-functions and metric generating one (see

[54]).
The next result shows that demanding an extra condition on the class of
2gmp-functions we can ensure that they are subclass of mg-functions.

Proposition 1.1.21. Let @ : Rz_ — Ry be a function. If ® is a symmetric

2gmp-function, then ® is an mg-function.
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Furthermore, in [54], the following examples of 2¢mp-function, which are

mg-functions, was provided .

Example 1.1.22. [t is clear that the below functions @ : Rf_ — Ry satisfy
statements in Theorem 1.1.12 and, in addition, they are symmetric functions.

Thus, by Proposition 1.1.21, all of them are mg-functions:

0 ifa=0b=0

1 otherwise

(1) ®(a7b) = {

(2) ®(a,b) = (w (a? + bP))» for all w € Ry \ {0}, where p € [1, 00].
(3) ®(a,b) = wmax{a,b} for all w € Ry \ {0}.

(4) ®(a,b) =w(a+b) for all w € Ry \ {0}.

However, there exist mg-functions which are not a 2¢gmp-function, such

as the next example shows.
Example 1.1.23. Let ®: R%— — R4 be the function defined by

0 if max{a,b} =0
®(a,b) = ¢ 2 if max{a,b} €]0,1]
1 if max{a,b} > 1

We finish this section with next result that describes the relationship

between 2gmp-functions and mg-functions.

Theorem 1.1.24. Let ¢ : R%— — Ry be a mg-function. Then the following

assertions are equivalent:
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(1) ® is a 2gmp-function.

(2) ® is monotone.

1.1.3 Similarity measurements and their transformations

In this subsection we compile some results appeared in the literature, in
which the relationship between similarity and dissimilarity measurements was
studied. Such a study focus on describing those functions which transform
a similarity measurement into a dissimilarity one, and vice-versa. So, we
will collect some notions of measurements framed in the fuzzy context, as
indistinguishability operator or fuzzy metric, in which we are interested in.
To this end, we begin recalling the notion of triangular norm, which is crucial

in the definition of similarity measurements considered in this dissertation.

Triangular norms

This part of the subsection is devoted to collect some concepts and properties
related to the notion of triangular norms, which will be essential in this work.

Our main reference for triangular norms is [49].

Recall that a triangular norm (briefly, t-norm) is a function 7T : [0, 1]? —

[0, 1] such that, for all z,y, z € [0,1], the following four axioms are satisfied:

(T1) T'(z,y) =T (y,z); (Commutativity)
(T2) T(x,T(y,2)) =T(T(z,y),2); (Associativity)

(T3) T'(x,y) > T(x,z), whenever y > z; (Monotony)
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(T4) T(z,1) = =x. (Boundary Condition)

When T is a continuous function (for the usual topologies in [0, 1]? and

in [0,1]) we will say that 7" is a continuous t-norm.

Notice that a t-norm can be considered as a binary operation x on [0, 1]
which satisfies the aforementioned axioms of commutativity, associativity,
monotony and the boundary condition. So, for our convenience, we refer to

a t-norm as a binary operation.

An interesting subclass of t-norms, in our subsequent study, are the so
called Archimedean. A t-norm x is called Archimedean if it satisfies the

following condition:

For each z,y €]0, 1] there exists n € N such that ™ <y, where (™ =

X k- % x n-times.

In those cases in which * is continuous, then Archimedean t-norms are
characterized by the property = x x < z for each z €]0,1[. Two well-known
examples of continuous Archimedean t-norms are the usual product, i.e.,
x*xpy = x-y, and the Luckasievicz t-norm, given by zxpy = max{z+y—1,0}.
Of course, in general, continuous t-norms are not Archimedean. Indeed, an
example of continuous t-norm which is non-Archimedean is the minimum ¢-
norm, i.e., zx)ry = min{x, y}. These t-norms are the most commonly used in
Fuzzy Logic. Finally, a well-known example of non-continuous Archimedean

t-norm is the so-called Drastic product ¢-norm, which is given by

0 if z,y €[0,1]
T*pyY =
min{z,y} otherwise

As indicated above, we focus our interest on Archimedean t-norms, which
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can be represented by means of a real function called additive generator. To
introduce this concept we recall before the notion of pseudo-inverse of a real

function.

Let [a,b] and [c,d] be two closed subintervals of the extended real line
[-00,00], and let f : [a,b] — [c,d] be a decreasing function. Then the
pseudo-inverse f=1 : [¢,d] — [a,b] of f is defined by

FD(y) = supfa € [a,b] : (f(x) —y)(f(b) — f(a)) <O}

Notice that we reserve the term (strictly) monotone for those functions being

(strictly) increasing.

In the particular case in which f is a strictly decreasing function, we

obtain the next simpler formula
FV(y) = supfz € [a,b] : f(z) >y}
If in addition, f is left-continuous at 1 the above expression is equivalent to
FEV () = £~ (min{£(0),y}) = max{0, f~(y)}. (1.1)
Using the above concept, in [49], the next theorem was proved.

Theorem 1.1.25. Let f : [0,1] — [0,00] be a strictly decreasing function
with f(1) = 0 such that

f(x) + f(y) € Ran(f) U [f(07), 0]

for all z,y € [0,1]. The binary operation * on [0,1] is a t-norm, where x is

defined by

wxy=fCV(f(2)+ f(y)), for each z,y € [0,1].
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In the preceding theorem, f(01) denotes the right-sided limit as z —
0, i.e., f(0T) = lim,_,o+ f(x). This result motivated the aforementioned

concept of additive generator.

In the light of Theorem 1.1.25, we will say that f. : [0,1] — [0,00] is an
additive generator of a t-norm x, if it is a strictly decreasing function which
is also right-continuous at 0 and satisfies f.(1) = 0, such that for z,y € [0, 1]

we have

fe(@) + fuly) € Ran(f.) U[f.(0), 0],
zxy= V(@) + fuy).

Each t-norm with an additive generator is Archimedean. The converse of
this assertion is not true in general. However, the next theorem shows that

for continuous ¢-norms the converse holds.

Theorem 1.1.26. A binary operator x on [0,1] is a continuous Archimedean

t-norm if and only if there exists a continuous additive generator f,. such that

zxy = (ful@) + fuly))

for each x,y € [0,1].

A transformation of Indistinguishability operators

In this subsection, we recall the concept of indistinguishability operator and

its relationship with classical metrics.

According to |78, 94| an indistinguishability operator on a non-empty set
X for a t-norm x, is a fuzzy set £ : X x X — [0,1] which satisfies for each
x,y, 2z € X the following:
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(E1) E(z,x) =1, (Reflexivity)
(B2) E(z,y) = E(y,); (Symmetry)
(E3) E(z,z) > E(z,y) * E(y, 2). (Transitivity)

If in addition, FE satisfies, for all z,y € X the following condition:
(E1’) E(z,y) =1 implies = = y,

then E is said to separate points.
If confusion does not arise, we can call both indistinguishability operators.

Several authors have studied the relationship between indistinguishability
operators and metrics (see [12, 25, 46, 49, 67, 78, 95]). In this direction a
technique to generate metrics from indistinguishability operators, and vice-
versa, has been developed by several authors in the literature. Concretely,
an indsitinguishability operator can be provided from a (pseudo-)metric as

follows:

Theorem 1.1.27. Let X be a non-empty set and let x be a t-norm with
additive generator f. : [0,1] — [0,00]. If © is a t-norm, then the following

assertions are equivalent:

1) x<o (ie, xxy <zoy forall x,y € [0,1]).

2) For any indistinguishability operator E on X for o, the function dP-¥+ :
X x X — [0,00] defined, for each z,y € X, by

dE’f* (l’,y) — f*(E(x,y)),

15 a pseudo-metric on X.
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3) For any indistinguishability operator E on X for o that separates points,
the function d®/* 1 X x X — [0, 00| defined, for each x,y € X, by

dE’f* (l’,y) — f*(E(x,y)),

is a metric on X.

In the light of the preceding result, we can see an additive generator of a
t-norm as a function that transforms each indistinguishability operator, for a
fixed t-norm, into a metric. Hence such a result yields a method to transform
a “generalized notion of metric” into a metric. Concretely, it transforms a

similarity measurement into a metric.

Conversely, the following theorem provides a technique to construct an

indistinguishability operator from a (pseudo-)metric.

Theorem 1.1.28. Let x be a continuous Archimedean t-norm on X with
additive generator f. : [0,1] — [0,00]. If d is a pseudo-metric on X, then
the function E% : X x X — [0,1] defined, for all z,y € X, by

Ed’f* (ZL', y) — fag_l) (d(IE, y))7

is an indistinguishability operator for x, where fi_l) denotes the pseudo-
inwverse of the additive generator fi.. Moreover, the indistinguishability oper-

ator ET+ separates points if and only if d is a metric on X.

As before, in this last case, we can affirm that the pseudo-inverse of an
additive generator of a continuous Archimedean ¢-norm is a function that

transforms each (pseudo-)metric into an indistinguishable operator.
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Fuzzy metrics and their transformations

This section is devoted to collect some results related to a fuzzy version
of the notion of (pseudo-)metric, and its relationship between generalized
metrics and transformation techniques. Fuzzy metrics were introduced by 1.
Kramosil and J. Michalek in [50], although nowadays is commonly used as

the following reformulation presented by M. Grabiec in [27].

Recall that a K M-fuzzy metric space is an ordered triple (X, M, *) such
that X is a (non-empty) set, * is a continuous t-norm and M is a fuzzy set
on X x X x [0, 00| satisfying the following conditions, for all z,y,z € X and
s, t > 0:

(KM1) M(z,y,0) = 0;
(KM2) M(x,y,t) =1 for all t > 0 if and only if z = y;
(KM3) M(z,y,t) = M(y,z,t);
(KM4) M(z,y,t)* M(y,z,s) < M(z,2,t + s);
(KM5) M(z,y, ):[0,00[— [0,1] is left-continuous.
Such a concept was slightly modified later on by A. George and P. Veera-
mani in [23] as follows, a GV -fuzzy metric space is an ordered triple (X, M, x)
such that X is a (non-empty) set, * is a continuous t-norm and M is a fuzzy

set on X x X x]0, oo satisfying (K M3), (K M4) and the following conditions,
for all z,y,z € X and s,t > O:

(GV1) M(z,y,t) > 0;
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(GV2) M(z,y,t) =1 if and only if x = y;

(GV5) M(z,y, ) :]0,00[—]0,1] is continuous.

Of course when we work with GV -fuzzy metrics we will refer to the axioms
(KM3) and (KM4) as (GV3) and (GV4), respectively.

An immediate consequence of both definitions of fuzzy metric spaces is
the next one: if (X, M, *) is a fuzzy metric space and ¢ is a continuous ¢-norm

satisfying x > o, then (X, M, o) is also a fuzzy metric space.

Taking into account the well-known fact that every GV-fuzzy metric
space (X, M,x) can be considered as a K M-fuzzy metric space, simply
putting M (z,y,0) = 0 for all z,y € X, GV-fuzzy metric spaces could be

considered as subclass of K M-fuzzy metric spaces.

Similar to the classical case, when the axiom (K M2) in the definition of

fuzzy metric is replaced by the following weaker one:

(KM2’) M(x,z,t) =1 forall t > 0.

the triple (X, M, ) is called a K M-fuzzy pseudo-metric space.

Replacing axiom (GV2) in the definition of GV-fuzzy metric space by
(KM?2') we also get the concept of GV-fuzzy pseudo-metric space.

The next notions remain valid for both notions of fuzzy pseudo-metric.

So we state them using only the term fuzzy pseudo-metric.

If (X, M,x) is a fuzzy (pseudo-)metric space, we will say that (M, %) is

a fuzzy (pseudo-)metric on X. Also, if confusion is not possible, we will say
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that (X, M) is a fuzzy (pseudo-)metric space or M is a fuzzy (pseudo-)metric
on X.

Different studies have contributed to the development of a theory of fuzzy
metric spaces. Indeed, several works have been devoted to the topological
study of fuzzy metrics (see, for instance, |23, 27, 29, 30, 31, 32, 33, 35, 36,
37,41, 79, 87|). Concretely, it has been proved that each fuzzy metric space
(X, M, *) generates a topology 7p; which has as a base the family of open
balls given by B = { By (z,7,t) : € X,r €]0,1[,t > 0}, where Bys(x,r,t) =
{ye X : M(z,y,t) >1—r} for each x € X, r €]0,1[ and ¢ > 0. Moreover,
fuzzy metrics have shown to be a significant tool in modeling engineering

problems as image filtering (see, for instance |9, 34, 60, 61, 62, 63, 64]).

Now, we recall three interesting classes of fuzzy metrics. They can be

defined in both sense of fuzzy metrics presented above.

A (pseudo-)fuzzy metric space (X, M, %) is said to be principal (or simply,
M is principal) if the family {Bs(x,r,t) : 7 €]0,1[} is a local base at
x € X, for each x € X and each ¢t > 0.

A (pseudo-)fuzzy metric space (X, M, %) is said to be strong (or simply, M

is strong) if (in addition) it satisfies the following inequality
(GV4) M(z,z,t) > M(z,y,t) * M(y,2,1),

for each z,y,z € X and each ¢t > 0.

A fuzzy (pseudo-)metric space (X, M, ) is said to be stationary if M does
not depend on t > 0, i.e., if the function M, :]0,00[—]0, 00| given by
M,,

write M (z,y) instead of M(x,y,t).

(t) = M(z,y,t) is constant for each z,y € X. In this case we can
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Note that if £ is an indistinguishability operator on a non-empty set X,
for a continuous ¢t-norm x*, then the fuzzy set M on X x X X [0, 00| given,

for each z,y € X, by

M( 9 0, ift=0
x’ y7 =
E(x,y), elsewhere,

is a stationary fuzzy pseudo-metric on X for the t-norm *. If in addition, £

separates points, then M is a fuzzy metric.

The following is a well-known example of GV -fuzzy metric space intro-
duced by George and Veeramani in [23], which we have reformulated as a

K M-fuzzy metric space.

Example 1.1.29. Let (X,d) be a metric space and let My be a fuzzy set on
X X X x [0,00] defined by

0, ift =0,

elsewhere,

Md(x7y7t) = {

¢
t+d(z,y)’

for each x,y € X.

Following [23], (X, Mg, \) is a fuzzy metric space, where N\ denotes the
minimum t-norm xy;. The fuzzy metric My is called the standard fuzzy

metric induced by d.

In the light of the above example, one can observe that such a fuzzy
metric M, can be seen as a fuzzification of a metric. So, we can see M, as a
transformation of a metric through a function ¥y : Ry x Ry — [0, 1] defined

as follows:

0, ift=0,

elsewhere.

\Ilst(a,t) = {

_t
t+a’
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By Example 1.1.29, we have that Uy, is a function that transforms each

metric into a fuzzy metric for each continuous ¢-norm.

We can find another functions with the same property as, for instance,

the following one:

Let W, : Ry x Ry — [0,1] be the function given by

0, ift=0,
U.(a,t) = { !

a
t

e t, elsewhere.

Taking into account that, given a metric space (X,d), the fuzzy set M,
defined on X x X x [0, 00| by

M( H 0, t=0;
x?y? - z,
e_d<ty)7 t > 0;

for each z,y € X, is a fuzzy metric on X. Then, ¥, is a function that

transforms each metric into a fuzzy metric.

The converse problem, i.e., the study of transformations on a fuzzy metric
in order to obtain a classical one, has been addressed for different authors
too. Some partial results to the aforementioned problem were obtained by V.
Radu in [76, 77] and T.L. Hicks in [43]|. Recently, in [10] F. Castro-Company

et al. generalized the results of Radu and Hicks in the following theorem.

Theorem 1.1.30. Let (X, M, ) be a KM -fuzzy metric space. Suppose that

there exists a function o : [0, 00[— [0, 00| satisfying the following conditions:

(c¢1) « is strictly monotone on [0, 1];

(¢2) 0 < a(t) <t forallt €]0,1] and a(t) > 1 for all t > 1;
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(¢3) (1—a(t)*(1—a(s) >1—alt+s) foralt,s e [0,1].

Then the function d,, : X X X — [0, 00[ defined as
da(l'vy) = Sup{t Z 0: M(:L'vyvt) S 1- Oé(t)},

is a metric on X such that do(x,y) <1 for all z,y € X.

If, in addition, the function a is left-continuous on ]0,1[, then
do(z,y) < € & M(z,y,t) > 1 —¢,

for all e €]0,1[. Thus the topologies, induced by (M,*) and d, coincide on
X. Moreover, (X, M, x) is complete if and only if (X, d,) is complete.

In the light of the preceding result, let us recall that, according to [23],
a sequence (Zp)nen in (X, M, x), where (X, M,x*) is a fuzzy pseudo-metric
space in any sense, is said to be a Cauchy sequence if for each e € (0,1)
and each t > 0, there exists ng € N such that M(x,,zy,t) > 1 — € for all
n,m > ng. Moreover, (X, M, ) is called complete if every Cauchy sequence
is convergent with respect to 7p;. The preceding two notions remain valid

for both type of fuzzy metrics introduced in this text.

1.1.4 Applications

In this dissertation we propose three topics of application of some general-
ized metrics presented in the previous section. Such topics are denotational
semantics of programming languages, computational asymptotic complexity
analysis and multi-robot task allocation. This subsection is devoted to detail

the aforementioned problems.
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Denotational semantics and asymptotic complexity

In Computer Science there are two fields in which generalized metrics have
been shown to be useful. Concretely, partial metrics have been applied
successfully to denotational semantics and quasi-metrics have been used in
asymptotic complexity analysis of algorithms. Let us recall briefly the role

of such dissimilarities in the aforementioned fields.

In denotational semantics, one of the aims consists in analysing the cor-
rectness of recursive algorithms by means of mathematical models of the
programming languages in which the algorithm has been written. More-
over, in many programming languages one can construct recursive algorithms
through procedures in such a way that the meaning of such a procedure is
expressed in terms of its own meaning. An easy, but illustrative, example
is the procedure which computes the factorial function. Indeed, a procedure
which computes the factorial of a positive integer number typically uses the

following recursive denotational specification:

1 ifn=1
fact(n) = { nfactin —1) ifn>1 (12)

In order to analyze whether a recursive denotational specification of a
procedure is meaningful, it is usual to make use of fixed point mathematical
techniques in which the meaning of such recursive denotational specification
is obtained as the fixed point of a non-recursive mapping associated to the
denotational specification. In the particular case of the factorial function the

aforesaid non-recursive mapping ¢ .. will be given as follows:
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1 itn=1

L3
nf(n—1) if n>1and n—1¢€ domf

¢fact(f)(n) = {

where ¢4 is acting over the set of partial functions. Of course, the entire
factorial function is given by the unique fixed point of the non-recursive
mapping ¢rqe¢- For a detailed treatment of the set of partial functions and

its applications to denotational semantics we refer the reader to |13 and |90].

With the aim of developing quantitative fixed point techniques which will
be able to analyze the meaning of recursive denotational specification, S.G.

Matthews introduced the notion of partial metric in [56].

According to |56, let us recall that the Baire partial metric space consists
in the pair (X, pp), where X is the set of finite and infinite sequences over
a non-empty alphabet ¥ and the partial metric pp is given by pp(z,y) =
271=Y) for all x,y € Yy with I(z,7) denoting the longest common prefix of
the words x and y when it exists and [(v,w) = 0 otherwise. Of course the
convention that 27°° = ( is adopted. The success of the Baire partial metric
and the Matthews fixed point method in denotational semantics is given by
the fact that the natural order between words, the prefix order, is encoded
by pp in the sense that x is a prefix of y if and only if pp(x,y) = pp(z, ).
Notice that every partial function f can be identified with a word w/ € Nog
such that w/ = w{wg . ..w]{ with domf = {1,...,k} and wlf = f(7) for all
i € domf.

The existence and uniqueness of fixed point of ¢4 is proved by the so-
called Matthews fixed point theorem, where a mapping from a partial metric
space (X,p) into itself is said to be a contraction if there exists ¢ € [0,1]
such that p(f(z), f(y)) < ep(z,y) for all x,y € X and c is said to be the

contractive constant of the contraction f, which can be stated as follows:
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Theorem 1.1.31. Let (X,p) be a complete partial metric space and let f :
X — X. If f is a contraction from (X,p) into itself, then f has a unique

fized point xog. Moreover, p(xzg, o) = 0.

Let us recall that, according to [56], a partial metric space (X,p) is
complete if the associated quasi-metric space (X, gp,) is bicomplete, where
qp(x,y) = p(x,y) — p(z,z) for all z,y € X. We will return to this notion in
Section 2.3, where an equivalent definition of completeness will be taken into

account.

In the light of the previous result, it can be verified that ¢, is a con-
traction from the complete partial metric space (N, pp) into itself with %
as contractive constant. The fact that the partial metric space (No,pp) is

complete was proved in [66].

Often the running time of computing of the recursive algorithm that
performs the computation of the meaning of a recursive denotational speci-
fication is discussed in conjunction with the correctness of such a recursive
denotational specification. In this direction, M.P. Schellekens introduced
the so-called complexity space which allows us to develop quantitative fixed
point techniques in order to determine the complexity of recursive algorithms

whose running time of computing fulfills a recurrence equation (see [88]).

Going back to the example of the factorial function, it is clear that the
running time of computing of an algorithm that computes the factorial of a
non-negative integer number, through the recursive denotational specification

(1.2), is solution to the following recurrence equation

Troet(n) & iftn=1 (1.4)
n) = , )
Jact Trot(n —1) + ¢ if n>1
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where ¢ € Ry (¢ > 0) is the time taken by the algorithm to obtain the

solution to the problem on the base case.

In contrast to the Matthews approach, Schellekens framework is based on
the use of quasi-metrics. Concretely, the complexity space is the pair (C, qc),
. . n 1 . . .
where C = {f : N — (0,00] : > ;2 "y < oo} and ¢¢ is the quasi-metric
on C given as follows

a(f,9) = iT”max <g(1n) — f(ln)’o) :

Obviously we adopt the convention that é = 0.

The success of the Schellekens fixed point method in complexity analysis
of algorithms is provided by the fact that the running time of computing of
an algorithm can be associated to a function belonging to C. Moreover, given
two functions f,g € C, the numerical value g¢(f, g) (the complexity distance
from f to g) can be interpreted as the relative progress made in lowering
the complexity by replacing any program P with complexity function f by
any program (Q with complexity function g. In fact, if f # g, the condition
gc(f,9) = 0 can be understood as f is “at least as efficient” as g on all inputs.
Observe that ge(f,g) = 0 implies that f(n) < g(n) for all n € N, and this
is key to state an asymptotic bound of the complexity of an algorithm. Fur-
thermore, notice that the asymmetry of the complexity distance q¢ is crucial
in order to provide information about the increase of complexity whenever
a program is replaced by another one. A metric (symmetric) will be able
to yield information on the increase but it, however, will not reveal which

program is more efficient.

The Schellekens’ approach is based on next fixed point theorem. In order
to state it, let us recall the next concepts. Following [88], a mapping from

a (quasi-)metric space (X,q) into itself is said to be a contraction if there
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exists ¢ € [0,1] such that q(f(z), f(y)) < cq(z,y) for all z,y € X. Asin
the partial metric case, the preceding constant c is said to be the contractive
constant of the contraction f. Besides, a quasi-metric space (X, d) is said to
be bicomplete if the associated metric space (X,d,) is complete (see [14]),
where the metric d; on X is defined by d,(z,y) = max{q(z,y),q(y,x)} for
all z,y € X.

Theorem 1.1.32. Let (X, q) be a bicomplete quasi-metric space and let f :
X — X. If f is a contraction from (X,q) into itself, then f has a unique
fized point xg.

In view of the preceding result, Schellekens’ approach provides an upper
bound of the solution to the recurrence equation (1.4) making the following
statement. Consider the subset C. of C given by C. = {f € C : f(1) =
c}. Then it is not hard to check that the quasi-metric space (Ce,qcle,) is
bicomplete (see, for instance, [85]). Define the mapping G et : Cc— C. by

c ifn=1

G act(f)(n) = { fn—1)te fn>2 (1.5)

for all f € C.. Clearly f € C, is a solution to the recurrence equation (1.4) if
and only if f is a fixed point of the mapping G4 It can be verified that
G faet 1s a contraction from (Ce,qcle.) into itself with contractive constant
%. Moreover, if fq,,,, is the unique fixed point of Ggaet, then fg,,., < g
provided that there exists g € C. with gc|c, (G tact(9), 9) = 0 and, this allows
us to yield g as an asymptotic upper bound of the running time of computing

of the algorithm computing the factorial.

In the light of the exposed facts we have that quantitative fixed point
techniques are used in Computer Science in order to discuss the complexity
analysis of algorithms and the meaning of recursive denotational specifica-

tions for programming languages. Both techniques are independent and they
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are used separately without any relationship between them. Inspired by the
preceding fact it seems natural to consider (X x C, ®(pp,qc)), where @ is
any kind of function providing a dissimilarity by means of the aggregation
of pp and q¢, as a first attempt to develop a framework to analyze simul-
taneously, by means of fixed point methods, the running time of computing
of an algorithm that performs a computation using a recursive denotational

specification and the meaning of such a specification.

However, the previous proposal presents a handicap. Indeed, it is not
clear what kind of generalized metric is the function ®(pp,qc). It can be

easily checked that it is neither a partial metric nor a quasi-metric on >4, x C.

In Chapter 5, the problem of how to merge a partial metric and a quasi-
metric will be studied in depth and the obtained results will be used to
develop a framework which remains valid for modeling, at the same time, in

denotational semantics and in complexity analysis of algorithms.

Multi-robot task allocation problem

The distribution of a determined number of tasks among a group of agents
is a problem intensely studied in different fields, as Economics or Robotics
(we refer the reader, for instance, to [24, 97, 98] for a deeper treatment of
the topic). It consists in allocating a collection of labours on an amount of
agents in the most efficient way, i.e., in such a way that the best agent is
selected to perform each one of the labour to be carried out. This problem,
commonly referred as task allocation problem, is still an open issue in real
environments where the agents have a limited number of resources to obtain
the optimal allocation. One of those challenging environments is the formed

by two or more autonomous robots that perform cooperatively a common
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mission, from now on referenced as multi-robot systems.

Among all the methods proposed to address the task allocation problem,
this dissertation focuses on swarm methods, which are inspired by insect
colonies where an intelligent behaviour emerges from the interaction of very
simple skills running on each agent. Concretely, this work focuses on the
so-called Response Threshold Method (RTM for short). In these methods
each involved agent has associated a task response threshold and a task stim-
ulus. The task stimulus value indicates how much attractive is the task for
the agent and its threshold is a parameter of the system. Thus, an agent
starts the execution of a task following a probability function, referenced as
response function and denoted as P, that depends on both aforementioned
values. As the probability of executing a task only depends on the current
task, or state, the decision process can be modelled as a probabilistic Markov
chain. This classical probabilistic approach presents some well known disad-
vantages (see [38]), for instance problems with the selection of the probabil-
ity function (response function) when more than two tasks are considered,
asymptotic converge to a system’s stable state, and so on. Due to the incon-
veniences, in [38] it was proposed a new possibilistic theoretical formalism
for a RTM. The RTM is implemented considering transitions possibilities
(response functions) instead of transitions probabilities (response functions)
and possibilistic Markov chains (also known as fuzzy Markov chains) instead
the classical probabilistic ones. The theoretical and empirical results demon-
strated, among other advantages, that fuzzy Markov chains applied to task
allocation problems require a very few number of steps to converge to a stable

state.
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1.2 Objectives

Inspired by, on the one hand, the intense research activity on generalized
metrics and their application (as the references included in this dissertation
shown) and, on the other hand, by the usefulness of generalized metrics in
several fields of Artificial Intelligence, Engineering and Computer Science,
we have focused on continuing the study on preservation, aggregation and
transformation of the different metric generalizations detailed in the previous
section. Besides, we continue with the development of the applicability of
the generalized metrics to three different fields: denotational semantics of
programming languages, asymptotic complexity analysis of algorithms and
multi-robot task allocation. Below we detail the main objectives tackled in

this dissertation.

On the study of functions that preserve generalized metrics, we have fo-
cused on the characterization of npmp-functions (see Subsection 1.1.1). In
this direction, Chapter 2 has been devoted to refine such a characteriza-
tion for the 1-dimensional case. Besides, the preservation of some topologi-
cal properties has been treated as completeness and contractiveness. More-
over, the relationship between metric preserving and partial metric preserving

functions has been also discussed.

Regarding to aggregation of generalized metrics, we have tackled the
problem of characterizing quasi-metric aggregation functions in Chapter 3.
Moreover, a few properties of such functions have been discussed and, in
addition, a few methods to discard those functions that are useless as quasi-
metric aggregation functions have been provided. Furthermore, two possible

fields of applicability of the developed theory have been presented.



INTRODUCTION 49

Concerning transformation of generalized metrics, we have approached
different topics. Concretely, we have focused on: obtaining, by means of a
transformation function, a quasi-metric from a partial one, and vice-versa;
merging, using transformation functions, a quasi-metric and a partial one;
generating fuzzy metrics from classical ones, and vice-versa; and, finally, on
generating a fuzzy metric from a generalized one that includes in its definition
a parameter, the so-called modular metrics. Such topics have been treated in
five different chapters. Below we list all of them, detailing the study carried

out in each one of them.

Chapter 4 has been devoted to characterize those functions that are able
to generate a quasi-metric from a partial metric, and conversely, in such a
way that Matthews’ relationship between both type of generalized metrics
is retrieved as a particular case. Besides, it is studied the preservation of
the partial order and the topology induced by a partial metric or a quasi-
metric, respectively. Furthermore, we discuss the relationship between the
new functions and those families introduced in the literature, i.e., n-metric
preserving functions, n-quasi-metric preserving functions, n-partial metric

preserving functions and metric generating functions.

In Chapter 5 we have attended the problem of merging a quasi-metric
and a partial one by means of a transformation function. Concretely, we
have characterized such functions and, in addition, we have discussed the
relationship between them and partial metric preserving functions and quasi-

metric preserving functions, respectively.

Chapter 6 has been devoted to introduce a method to construct fuzzy
metrics from classical ones by means of mp-functions. Moreover, some topo-

logical properties of the fuzzy metrics constructed has been studied.
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The problem of obtaining a fuzzy metric from a classical one has also
been treated in Chapter 7. But in this chapter we has tackled the reciprocal
problem too. In fact, it has been provided a duality relationship between

fuzzy metrics and classical one based on Theorems 1.1.27 and 1.1.28.

Finally, in Chapter 8 we have approached the study of a duality relation-
ship between fuzzy metrics and modular metrics, a dissimilarity measurement
that includes in its definition a parameter. Such a study have motivated the
introduction of new concept which generalizes both indistinguishability op-

erators and fuzzy metrics.

Regarding applications, on the one hand, in Chapter 5, a framework
which remains valid for modeling, at the same time, in denotational semantics
and in complexity analysis of algorithms has been developed. On the other
hand, Chapters 9 and 10 have been devoted to address the multi-robot task
allocation problem. In particular, given a collection of tasks and robots, we
focus our effort on how to select the best robot to execute each tasks by means
of the so-called response threshold method and using indistinguishability
operators and fuzzy preorders (asymmetric indistinguishability operators) to

model response functions.



Chapter 2

On partial metric preserving
functions and their

characterization

In 1981, J. Borsik and J. Dob0s characterized those functions that allow us
to transform a metric into another one in such a way that the topology of
the metric to be transformed is preserved. Later on, in 1994, S.G. Matthews
introduced a new generalized metric notion known as partial metric. In
this chapter, motivated in part by the applications of partial metrics, we
characterize partial metric preserving functions, i.e., those functions that
help to transform a partial metric into another one. In particular we prove
that partial metric preserving functions are exactly those that are strictly
monotone and concave. Moreover, we prove that the partial metric preserving
functions that preserves the topology of the transformed partial metric are

exactly those that are continuous. Furthermore, we give a characterization

o1



ON PARTIAL METRIC PRESERVING FUNCTIONS AND THEIR
52 CHARACTERIZATION

of those partial metric preserving functions which preserve completeness and
contractivity. Concretely, we prove that completeness is preserved by those
partial metric preserving functions that are non-bounded, and contractivity is
kept by those partial metric-functions that satisfy a distinguished functional
equation involving contractive constants. The relationship between metric
preserving and partial metric preserving functions is also discussed. Finally,

appropriate examples are introduced in order to illustrate the exposed theory.

2.1 The new characterization of partial metric pre-

serving functions

In this section we provide a new characterization of partial metric preserv-
ing functions (briefly, pmp-functions). To this end, we begin making some
observations on metric preserving functions (briefly, mp-functions) and pmp-

functions.

The next propositions provide some partial information of mp-functions.

Proposition 2.1.1. Let f : [0,00) — [0,00) be an mp-function, then f is

amenable.

Proposition 2.1.2. Let f: [0,00) — [0,00) be an amenable, monotone and

subadditive function, then f is an mp-function.

Proposition 2.1.3. Let f : [0,00) — [0,00) be an amenable and concave

function, then f is an mp-function.

Now, we focus on the characterization of n-partial metric preserving func-
tions given in [55] (see Theorem 1.1.17) when we are restricted to the 1-

dimensional case.
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Theorem 2.1.4. Let f : [0,00) — [0,00). The below assertions are equiva-

lent:

(1) f is a pmp-function.

(2) f holds the following properties for all a,b,c,d € [0,00):

(2.1) f(a)+f(b) < f(e)+f(d) whenever a+b < c+d and b < min{c, d}.
(2.2) If max{b,c} <a and f(a) = f(b) = f(c), thena=0b=c.

From the preceding result one can derive the following corollary.

Corollary 2.1.5. Every pmp-function is monotone and subadditive.

Now we are able to approach the aforementioned aim. First, we prove

the following lemmata which will be essential.

Lemma 2.1.6. Let f : [0,00) — [0,00) be a pmp-function. Then f is strictly

monotone.

Proof. Assume for the purpose of contradiction that f is not strictly
monotone. Then, there exist a,b € [0,00), with a < b, such that f(a) > f(b).
Consider the partial metric space ([0,00), py,), where p,,(z,y) = max{z,y}
for each x,y € [0,00). Since f is a pmp-function we deduce that ([0, 00),py)
is a partial metric. Moreover, pf(a,a) = f(max{a,a}) = f(a) > f(b) =
f(max{a,b}) = p¢(a,b) and so ps(a,a) = ps(a,b). Furthermore, ps(b,b) =
F() = f(max{a,b}) = py(a,b). Then py(a,a) = ps(b,b) = py(a,b) and,
thus, a = b which contradicts the fact a < b. |
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Observe that Lemma 2.1.6 refines part of the information provided by
Corollary 2.1.5 about pmp-functions.

Lemma 2.1.7. Let f : [0,00) — [0,00) be a strictly monotone function
and let a,b,c,d € [0,00). If max{b,c} < a and f(a) = f(b) = f(c), then

a=>b=c.

Proof. Clearly the thesis is derived from the fact that every strictly

monotone function is injective.

The next result provides a particular method to generate new strictly

monotone, concave and pmp-functions from old ones.

Lemma 2.1.8. Let f,g:[0,00) — [0,00) be two functions such that g(a) =
f(a) — f(0) for all a € [0,00). Then the following assertions are hold:

(1) If f is strictly monotone and concave, then g is strictly monotone and
concave.
(2) If f is a pmp-function, then g is a pmp-function.

Proof. (1). Obviously g is strictly monotone. Next we prove that g is
concave too. To this end, let a,b € [0,00) and A €]0,1[. Then,

gAa+ (1 =)p) = f(Aa+ (1 =XA)b) = f(0) = Af(a) + (1 = A)f(b) = f(0) =

Af(a) = Af(0) + (1 = A)f(0) = (1 = A)f(0) = Ag(a) + (1 — A)g(b).

It follows that ¢ is concave.
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(2). By assertion (1) in Lemma 2.1.8 we have that g is strictly monotone.
So, by Lemma 2.1.7, g satisfies condition (2.2) of Theorem 2.1.4. It remains
to prove that g satisfies condition (2.1) of Theorem 2.1.4 in order to see that
g is a pmp-function. With this aim, let a,b, ¢, d € Ry such that a+b < c+d,
b<cand b<d. Then,

g9(a)+g(b) = f(a)=f(0)+f(b)—f(0) < f(c)—f(0)+f(d)—f(0) = g(c)+g(d),

since f is a pmp-function. Therefore, by Theorem 2.1.4, g is a pmp-function.
|

Following similar arguments we can obtain the next lemma whose proof

we omit.

Lemma 2.1.9. Let o € [0,00) and let f,h: [0,00) — [0,00) be two functions
such that h(a) = f(a) + « for all a € [0,00). If f is strictly monotone and

concave, then h is strictly monotone and concave.

The next result was proved in [15, Theorem 2 in Chapter 1].

Lemma 2.1.10. Let f : [0,00) — [0,00) be an amenable function. Then the

following assertions are equivalent:

(1) f is concave.

(2) If a,b,c € [0,d] with d € (0,00) and a +d = b+ ¢, then f(a) + f(d) <
f(®) + f(c).

The next result states a relationship between condition (2.1) in Theorem
2.1.4 and condition (2) in Lemma 2.1.10 when strictly monotone functions

are under consideration.
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Lemma 2.1.11. Let f : [0,00) — [0,00) be a strictly monotone function.

Then the following assertions are equivalent:

(1) If a,b,c € [0,d] with d € (0,00) and a +d = b+ ¢, then f(a) + f(d) <
f(®) + f(c).

(2) If a,b,c,d € Ry, then f(a)+ f(b) < f(c)+ f(d) whenever a+b < c+d,
b<candb<d.

Proof. (1) = (2). Let a,b,c,d € Ry such that a +b < c+d, b < c and
b<d Taket=c+d—b. Since b < c and b < d we have that ¢t € [0, 0).
However if ¢ = 0, then an easy computation shows that a =b=c=d =0
and, thus, condition (2) is hold. So we can assume that ¢ > 0. Clearly,
b,c,d € [0,t] and, in addition, b +¢ = ¢+ d. So, by (1), we have that
f(b)+ f(t) < f(c) + f(d). Moreover the facts that a < c+d—b=1tand f
is strictly monotone give that f(a) < f(t). Thus we conclude that

fla)+ f(b) < f(b) + f(t) < f(c) + f(d).

(2) = (1). Let d € (0,00) and consider a,b,c € [0,d] such that a + d =
b+ c. Assume that a > c¢. Then a+d >c+d > c+b = a+ d, which is a
contradiction. Whence we deduce that a < ¢. Similarly one can prove that
a < b. Therefore a < ¢ and a < b. Then f(a) + f(d) < f(b) + f(c) as we

claimed. [ |

In the light of the exposed results we are able to prove the promised new

characterization of pmp-functions.

Theorem 2.1.12. Let f : [0,00) — [0,00) be a function. Then the following

assertions are equivalent:
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(1) f is a pmp-function.

(2) f is strictly monotone and concave.

Proof. Define the function g : Ry — Ry given by g(a) = f(a) — f(0)
for all a € [0, 00).

(1) = (2). By assertion (2) of Lemma 2.1.8 we have that g is a pmp-
function. Lemma 2.1.6 warrantees that ¢ is strictly monotone. Since g is a
pmp-function g satisfies condition (2.1) in Theorem 2.1.4 and, thus, Lemma
2.1.11 guarantees that, given d € (0,00), g(a) + g(d) < g(b) + g(c) whenever
a,b,c € [0,d] with d € (0,00) and a +d = b+ ¢. This last condition, by
Lemma 2.1.10, is equivalent to the concavity of g, since g is amenable. Now,
by Lemma 2.1.9, f is concave and strictly monotone, since f(a) = g(a)+ f(0)
for all a € [0, 00).

(2) = (1). By assertion (1) in Lemma 2.1.8 we have that g is strictly
monotone and concave. On the one hand, Lemma 2.1.10 gives that, given
d € (0,00), g(a) + g(d) < g(b) + g(c) whenever a,b,c € [0,d] with d € (0, c0)
and a+d = b+ c. It follows that, given d € (0,00), f(a)+ f(d) < f(b)+ f(c)
whenever a,b,c € [0,d] with d € (0,00) and a +d = b+ ¢. From Lemma
2.1.9, we deduce that f is strictly monotone. Then Lemma 2.1.11 yields that,
for each a,b,c,d € Ry, f(a) + f(b) < f(c) + f(d) whenever a +b < ¢+ d,
b < cand b < d. Whence we obtain that f fulfills condition (2.1) in Theorem
2.1.4. Moreover, by Lemma 2.1.7, f satisfies condition (2.2) in Theorem

2.1.4. Therefore, the aforesaid theorem warrantees that f is a pmp-function.

It must be stressed that, when comparing with Propositions 2.1.2 and
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2.1.3, Theorem 2.1.4 shows great differences between mp-functions and pmp-

functions.
Taking into account Theorems 1.1.5 and 2.1.12 we can unify both inde-
pendent characterizations of pmp-functions.

Corollary 2.1.13. Let f :[0,00) — [0,00) be a function. The the following

assertions are equivalent:

(1) f is a pmp-function.
(2) f is strictly monotone and concave.

(3) f holds the following properties:

(3.1) fla)+f(b) < f(e)+f(b) whenever a+b < c+d and b < min{c, d}.

(3.2) If max{b,c} <a and f(a) = f(b) = f(c), thena=0b=c.

In [15, Theorem 1 in Chapter 1|, the next result for mp-functions was

proved.

Proposition 2.1.14. Let f : [0,00) — [0,00) be an amenable function. If f

is concave, then f is an mp-function.

From Proposition 2.1.14 and Theorem 2.1.12 we derive the next interest-

ing relationship between pmp-functions and mp-functions.

Corollary 2.1.15. Let f : [0,00) — [0,00) be an amenable function. If f

pmp-function, then f is an mp-function.
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Notice that the preceding result is consistent with the fact that the same
conclusion can be obtained from Corollary 2.1.5 and Proposition 2.1.2. More-
over, the following example shows that the converse of Corollary 2.1.15 is not

verified.

Example 2.1.16. Consider the function f :[0,00) — [0,00) defined by

f(a):{ 0 ifa=0

1 otherwise

It is clear that f is amenable, monotone, subadditive and concave. Never-
theless, f is not a pmp-function. Indeed, set a =3, b =2 and ¢ = 1. Then
b<aandc<aand f(a) = f(b) = f(c) =1 but a #b. By (2.2) in Theorem
2.1.4, [ is not a pmp-function.

Finally, it must be pointed out that amenable pmp-functions match up
with those functions named metric transforms in the sense of L.M. Blumen-
thal (see [4]).

2.2 Strongly partial metric preserving functions

In this section we focus our attention to discern if pmp-functions are able to
preserve the topology in the spirit of strongly metric preserving functions, i.e.,
the topology induced by the transformed partial metric space is equivalent
to the topology induced by the partial metric space to be transformed. So
the main target of this section is to get a version of Theorem 1.1.4 in the

framework of partial metric spaces.

Recall that, each partial metric p on X induces a Ty topology 7, on X
which has as a base the family of open balls {B,(z;¢) : x € X, e > 0}, where



ON PARTIAL METRIC PRESERVING FUNCTIONS AND THEIR
60 CHARACTERIZATION

By(xz;€) = {y € X : p(z,y) < p(x,x) + €}. Taking this fact into account,
it can be proved easily that two partial metrics p; and po on a set X are
topologically equivalent (induce the same topology) if and only if for each

x € X and each € € (0,00) there exists § € (0,00) such that

By, (x;0) C By, (z;€) and By, (z;0) C By, (x;€).

It seems natural to wonder whether always a pmp-function preserves
topologies, that is, the topology induced by the transformed partial met-
ric space coincides with the topology induced by the partial metric space to
be transformed through the pmp-function. Nevertheless, as in the classical

metric case, this is not the case such as the next example shows.

Example 2.2.1. Consider the function f :[0,00) — [0,00) given by

B 0 ifa=0
f(a)—{ rayifa € (0,00)

2+a
It not hard to check that f is strictly monotone and concave. So, by Theo-
rem 2.1.12, f is a pmp-function. Moreover, consider the partial metric space
([0,00), pm ), where pp,(x,y) = max{x,y}, for each x,y € X. Furthermore,

the partial metric py, 1s gwen by

1) { 0 ifr=y=0
Pm T, Y) = I4+max{z,y} .
24_%{‘;5} otherwise

Obviously Bpmf(O;%) = {0} and B,,, (0;0) = [0,0) for each 6 € (0,00).
Consequently, the topologies T, and Tpm, aT€ not the same. Whence we

conclude that the partial metrics pm, and pp,, are not equivalent.

Since pmp-functions do not preserve, in general, topologies it makes sense

that we introduce the following notion.
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Definition 2.2.2. A partial metric preserving function f : [0,00) — [0, 00)
is said to be strongly if for each partial metric space (X, p) the partial metrics

p,ps are topologically equivalent.

Similarly to the classical metric case, the pmp-function introduced in
Example 2.2.1 fails to be continuous at 0. So apparently the continuity will
play a fundamental role so that a pmp-function to be strongly. Inspired by

this fact we discuss the continuity of a pmp-function in the result below.

Lemma 2.2.3. Let f : [0,00) — [0,00) be a pmp-function. The following

assertions are equivalent:

(1) f is continuous.

(2) f is continuous at 0.

Proof. (1) = (2). Clearly if f is continuous, then f is continuous at 0.

(2) = (1). We will distinguish two possible cases:

Case 1. f is amenable. Then, by Corollary 2.1.15, f is an mp-function

continuous at 0. Then the continuity of f follows from Theorem 1.1.4.

Case 2. f is not amenable. Then, by assertion (2) in Lemma 2.1.8, the
function g : [0,00) — [0, 00), given by g(a) = f(a)— f(0), for all a € [0, 0) is
a pmp-function. Clearly g is amenable and continuous at 0. Then, by Case

1, g is continuous and so, obviously, f is continuous. |

The next theorem characterizes strongly pmp-functions extending Theo-

rem 1.1.4 to the new context under consideration.
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Theorem 2.2.4. Let f : [0,00) — [0,00) be a pmp-function. Then the

following assertions are equivalent:

(1) f is strongly.
(2) f is continuous.

(3) [ is continuous at 0.
Proof. By Lemma 2.2.3, (2) < (3). So it remains to prove (1) < (2).

(1) = (2). Consider the partial metric space (Ry,d.), where d.(x,y) =
|x — y| for each z,y € Ry. Since f is strongly we have that the partial
metrics dey and d are topologically equivalent. Next we show that f is
continuous at 0. To this end, fix € € (0,00). Then, taking into account that
de and d.y are topologically equivalent, there exists § € (0,00) such that
By, (0;6) € By, ,(0;€). Thus, given y € By, (0;9) then y € By, ,(05¢), i.e.,
de(0,y) < de(0,0) + ¢ implies f(de(0,y)) < f(de(0,0)) + €. Therefore, for
each y € [0,4[, we have that f(y) < f(0) +e. Whence f is continuous at 0.

Hence f is continuous by Lemma 2.2.3.

(2) = (1). Consider a partial metric space (X,p). Let 2 € X and
e € (0,00).

First we show that can find §; € (0, 00) such that By(z;61) C By, (z;¢).
With this aim, set ag = p(z,x) € [0,00). The continuity of f at ag gives the
existence of d; € (0,00) such that for each b € (ag — d1,a9 + 1) N[0, 00) we
have that |f(a) — f(ao)| < €. Take y € By(z;61). Then p(z,y) < p(x, x) + 01
and so p(z,y) € [ag,ap + 61[. It follows that |f(p(z,y)) — f(p(z,2))| < e
Since f is strictly monotone we have that f(p(z,y)) < f(p(z,z))+e. Whence
By(x;01) € By, (w5¢).
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Next we show that there exists do € (0,00) such that By (x;02) C
By (z;€). The strictly monotony and continuity of f provides that f([0, c0)) is
the interval either [f(0), 00) or [f(0),b] with b € (0, 00). Moreover, there ex-
ists the inverse f~1 of f which is continuous. Let cq = f(p(z,z)) € £(]0,00)).
By continuity of f~! at ¢y there exists d € (0,00) such that for each
¢ €]cg — b2, co + 62[Nf([0,00)) we have that |f~1(c) — f~1(co)| < e Take
y € By, (z;02). It follows that f(p(x,y)) €]co — d2,co + 2[Nf([0,00)) and,
thus, that [f~1(f(p(x,y))) — f~1(f(p(x,2)))| < e. Whence we deduce that
Ip(x,y) — p(x, )| < e. Hence By, (x;02) C By(w;e).

Therefore, taking § = min{dy, d2}, we have that By(x;0) C By, (z;€) and
By, (z;6) € By(z;€). So, we conclude that f is strongly.

The next example provides instances of strongly pmp-functions.

Example 2.2.5. Let o, € (0,00). The following functions f, : [0,00) —
[0,00) are strongly pmp-functions, where for all a € [0,00) they are defined

as follows:

(1) fala) = (a+a)® with B € (0,1].
(2) fola) =aa+ B.

(3) fala) = 135

(4) fala) = 3toe.

(5) fala) =logg(a + a) with a, B € (1,00).

(6) fala) =1— e—0c.
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Observe that in the preceding example the instances from (1) until (5)
are strongly pmp-functions that are not mp-functions. Moreover, the in-
stance (6) is a strongly pmp-function that is, at the same time, strongly
metric-preserving. This last fact inspires the next result which discusses the

relationship between strongly pmp-functions and strongly mp-functions.

Corollary 2.2.6. Let f : [0,00) — [0,00) be an amenable strongly pmp-

function. Then f is a strongly mp-function.

Proof. By Corollary 2.1.15 we have that f is an mp-function. Moreover,
by Theorem 2.2.4, we obtain that f is continuous. Theorem 1.1.4 gives that

is a strongly mp-function. |
/ gly mp

The converse of the preceding result is not satisfied as shows the following

example.

Example 2.2.7. Consider the function f :[0,00) — [0,00) given by f(x) =
3z — 2|z — 1| + |z — 2| for all x € [0,00). According to [15] (see also [7]),
f is an amenable, monotone, subadditive and continuous function. So, By
Theorem 1.1.4, we deduce that f is strongly mp-function. However, it is not
hard to check that f is not concave and, thus by Theorem 2.1.12, f is not a

pmp-function.

2.3 Completeness, contractions and partial metric

preserving functions

The objective of this section is twofold. On the one hand, we are interested

in stating those conditions that a pmp-function f must satisfy in order to
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guarantee that, given a complete partial metric space (X, p), the new induced
partial metric space (X, py) is, again, complete. So we want to study when a
pmp-function preserves completeness. On the other hand, we focus our efforts
on getting those conditions about pmp-functions that help us to induce a new
partial metric from an old one in such a way that the contractivity condition

of a self-mapping is kept.

2.3.1 Preserving completeness

We begin this subsection recalling that a partial metric space (X, p) is com-
plete if every Cauchy sequence (z,)nen is convergent with respect to 7, and
that, a sequence (zp)nen is Cauchy if there exists a € [0,00[ such that
limy, 4, p(Tn, Tm) = a. Notice that this notion of completeness is equivalent

to that given in Subsection 1.1.4 (see [56]).

In order to discuss when pmp-functions preserve completeness, the next

result will play a crucial role.

Lemma 2.3.1. Let f : [0,00) — [0,00) be a strictly monotone continuous

function. The following assertions are equivalent:

(1) f is surjective on [f(0),00).

(2) f is non-bounded (f([0,00)) = [f(0),00)).

Proof. (1) = (2). The strictly monotony and continuity of f provides
that f([0,00)) is an interval. Clearly the sujectivity of f gives that such
an interval is [f(0),00). Indeed, let M € (f(0),00). Then there exists
apr € (0,00) such that f(aps) = M. Notice that the strictly monotony of f
guarantees that aps # 0 whenever M > f(0).
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(2) = (1). Let M € (f(0),00). Then there exists aps € (0,00) such that
f(ap) > M. Thus we have that f(0) < M < f(ap). Since f is continuous
the Darboux’s theorem provides the existence of by € (0,aps) such that
f(bar) = M. Therefore f is surjective on [f(0), c0). [

The next result fixes the condition that must be taken under consideration

in order to guarantee that a pmp-function preserves completeness.

Theorem 2.3.2. Let f : [0,00) — [0,00) be a non-bounded strongly pmp-
function and let (X,p) be a partial metric space. The following assertions

are equivalent:

(1) (X,p) is complete.

(2) (X,py) is complete.

Proof. (1) = (2). First of all we show that every Cauchy sequence in
(X, py) is a Cauchy sequence in (X, p). Let (2, )nen be a Cauchy sequence in
(X,pf). Then there exists by € [0,00] such that limy, oo Pf(Zn, Tm) = bo.
Next we prove that there exists ag € [0,00] with f(ag) = bg. Indeed,
the fact that limy, y—o0 (@, m) = by gives that, for each e € (0,00),
we can find ng € N satisfying [p¢(zn, zm) — bo| < € for all n,m > no.
Thus by — € < pf(an,xm) < by + € for all n,m > ng. Whence we de-
duce that f(0) < f(p(xn,2m)) = pr(Tn,xm) < by + € for all € € (0,00).
It follows that f(0) < bp. By Lemma 2.3.1, there exists ap € [0,00[ with
f(ag) = bg. Since f is strictly monotone and continuous we have war-
ranted the existence of the inverse f~! of f which is continuous. The
continuity of f and the fact that limg, ;e Df(@n, Tm) = f(ao) yield that
it oo £ (F (P 2m))) = £ ((a0))- 0 Tt gm0 pln, 70) = a0
and, hence, the sequence (x,)nen is Cauchy in (X, p).
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It remains to prove that the sequence (z,)nen converges to a point
x € X such that pr(x,z) = lmy moeo Pf(Tn, Tm) = limy oo (2, 2n).
Since (X,p) is complete we have the existence of z such that p(z,z) =
limy, ;00 P(Zn, T) = limy, o0 p(x, 2,,). The continuity of f gives immedi-

ately the desired conclusion.

(2) = (1). The proof runs following similar arguments to those given for

(1) = (2). |

In view of the preceding result, one can pose the question whether the
result remains true when the non-bounded character of the strongly pmp-
function is deleted from its statement. The next example shows that the

answer to the posed question is negative

Example 2.3.3. Consider the complete partial metric space ([0,00), pm)

1+a
2+4+a”

Clearly f is bounded because f([0,00)) = [5,1). Take the sequence (zn)nen

and the strongly pmp-function f : [0,00) — [0,00) given by f(a) =

in ([0,00),pm, ) with xn, = n for alln € N, which is Cauchy in ([0,00), pm,).
Indeed, limn,mﬁmpmf(mn,mm) = limn,mﬁoopmf(n,m) = 1 because, given
€ € (0,00), there ezists ng € N (ng > 1=2¢) such that for all n,m > ng we
have that

1+ max{n,m} - 1
2 + max{n,m} ~ 2+ ng
However, (xn)nen 18 not convergent with respect to Tpm, and, thus, we have

that ([0,00), pm,) is not complete. Notice that 1 ¢ f([0,00)) and, thus, by

1—pmf(xn,xm):1 <e.

Lemma 2.3.1, f is not non-bounded.

According to [81], a sequence (zy)nen in a partial metric space (X, p)

is said to be O-convergent to z € X provided that it converges to z with
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respect to 7, and p(x,x) = 0. Besides, (2, )nen is called 0-Cauchy whenever
limy, 1100 P(Zn, Ty,) = 0. Furthermore, a partial metric space (X, p) is said to
be 0-complete if every 0-Cauchy sequence (z,)nen 0-converges, with respect
to 7,, to a point x € X. Of course, every complete partial metric space is

0-complete but the converse is not true in general.
Following similar arguments to those given in the proof of Theorem 2.3.2
one can obtain the next surprising result.

Theorem 2.3.4. Let f : [0,00) — [0,00) be an amenable strongly pmp-

function. The following assertions hold:
(1) If (X,p) is a partial metric space then (X,p) is 0-complete if and only
if (X,py) is 0-complete.

(2) If (X,d) is a metric space then (X,d) is complete if and only if (X,dy)

18 complete.

2.3.2 Preserving contractivity

Before starting the study provided in this subsection, recall that given a
partial metric space (X,p), we will say that a self-mapping 7' : X — X is
contractive if there exists k €]0, 1[ such that

p(T'(x), T(y)) < kp(z,y), for each z,y € X.

To discern what conditions allow pmp-functions to keep contractivity of

self-mappings, let us introduce the following pertinent notion.
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Definition 2.3.5. Let f : [0,00) — [0,00) be a pmp-function. We will say
that f is contraction-preserving provided that, for each partial metric space

(X, p), every p-contraction is also a ps-contraction.

Instance (4) in Example 2.2.5 is an example of pmp-function which is
not contranction-preserving. Nonetheless, the function f : [0,00) — [0, 00)
defined by f(a) = aa for all a € [0,00) and with o € (0,00) is an example

of pmp-function which is, in addition, contraction-preserving.

The next result gives a characterization of those pmp-functions which

preserve contractive mappings.

Theorem 2.3.6. Let f: [0,00) — [0,00) be a pmp-function. The following

assertions are equivalent:

(1) f is contraction-preserving.

(2) For each k €]0, 1] there exists ¢ €]0,1[ such that f(ka) < cf(a) for all
a € [0,00).

Proof. (1) = (2). For the purpose of contradiction, suppose that there
exists ko €]0, 1] such that for each ¢ €]0, 1] we can find a. € [0, oo satisfying
f(koac) > cf(ac). Next we show that f is not contranction-preserving. In-
deed, consider the partial metric space ([0,00), py,) and define the mapping
T:Ry — Ry by T(z) = kox for all x € Ry. Then

pm(T(2), T (y)) = max{kox, koy} = ko max{z,y} = kopmax(z,y)

for all z,y € Ry and, hence, T is a ppax-contraction. However,

Pmy (T(ac)v T(O)) = f(max{koam 0}) >
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> Cf(ac) = cf(max{a& 0}) = CPmy (am 0)
and, thus, we have seen that for each ¢ €]0,1[ we can find z,y € R4 such
that

Py (T(2), T(y)) > cpm, (2, ),

which contradicts the fact that f is a contraction-pressrving.

(2) = (1). Let (X,p) be a partial metric space and let T': X — X be a
p-contraction. Then there exists ko €]0, 1] such that

p(T(x),T(y)) < kop(z,y)

for all z,y € X. Then there exists ¢y €]0, 1] such that f(ka) < cof(a) for all
a € [0,00). Taking in mind that f is strictly monotone, it follows that

pr(T(x),T(y)) = f(p(T(x),T(y))) < f(kop(x,y)) < cof(p(x,y)) = copy(x,y)

for all z,y € [0,00). Therefore, T" is a pg-contraction and so f is contraction-

preserving. |

The previous result allows us to find non-trivial examples of pmp-functions

which are contraction-preserving.
Example 2.3.7. Let o € (0,00). Define the function f :[0,00) — [0,00) by
f(a) =va? + aa for all a € [0,00). It is not hard to check that f is strictly
monotone and concave. Then, by Theorem 2.1.12, f is a pmp-function.
Now, let k €]0,1[ and take ¢ = k. Then we have that
f(ka) = Vk2a? + aka < V/c2a? + acta = e/ a® + aa = cf (a)

for all a € [0,00). Therefore, by Theorem 2.5.6, f is contraction-preserving.
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It is worthy to stress that Example 2.3.7 clarifies that pmp-functions
being contraction-preserving do not reduce to those that are homogeneous.
Recall that, according to [42], a function f : [0,00) — [0, 00) is homogeneous
provided that f(aa) = af(a) for all a,a € [0, 00).

It seems natural to wonder if there exists any relationship between those
pmp-functions that are contraction-preserving and strongly. The next result

makes clear such a question.

Corollary 2.3.8. Let f : [0,00) — [0,00) be a pmp-function. If [ is

contraction-preserving, then the following assertions hold:

(1) f is amenable.
(2) [ is a strongly pmp-function.

(3) f is a strongly mp-function.

Proof. (1). From Theorem 2.3.6 we deduce that f(0) = 0. Then the
fact that f is strictly monotone gives that f(a) =0« x = 0.

(2). Next we show that f is continuous at 0. To this end, fix k£ € (0,1).
Then there exists ¢ € (0,1) such that f(ka) < cf(a) for all a € [0,00). It
follows that f(k) < c¢f(1) and that f(k") < ¢"f(1) for all n € N. Suppose for
the purpose of contradiction that f is not continuous at 0. By Corollary 2.10
in |7], every mp-function g which is discontinuous at 0 satisfies that there
exists € € (0,00) such that € < g(a) for all a € [0,00). By Proposition 2.1.2
we have that f is metric preserving. Then there exists € € (0, 00) such that
e < f(a) for all a € (0,00). Moreover, there exists ng € N with ¢"f(1) < e
for all n > ng. Whence we obtain that e < f(k™) < " f(1) < € for all n. > ny,
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which is a contradiction. Therefore f is continuous at 0. By Theorem 2.2.4

we conclude that f is a strongly pmp-function.

(3). Since f is an amenable a strongly pmp-function Corollary 2.2.6

guarantees that f is a strongly mp-function. |

The function introduced in Example 2.3.3 is an instance of strongly pmp-

function which is not contraction-preserving.

In the light of Theorem 2.3.6 and the proof of Corollary 2.3.8 we derive

the next result whose easy proof we omit.

Corollary 2.3.9. Let f :[0,00) — [0,00) be a contraction-preserving pmp-
function. If (X,p) is a partial metric space and T is a p-contraction with
contractive constant k, then there exists ¢, € (0,1) such that T is a py-

contraction with contractive constant ¢ and, in addition, f(k) < ¢, f(1).

In view of the preceding result, it seems natural to ask for those conditions
that allow contraction-preserving functions preserve the contractive constant,
that is, T is a pg-contraction with contractive constant & whenever T' is
a p-contraction with contractive constant k. The next result clarifies this

situation.

Corollary 2.3.10. Let f : [0,00) — [0,00) be a contraction-preserving pmp-

function. The following assertions are equivalent:

(1) f preserves the contractive constant of every p-contraction.

(2) f(ka) =kf(a) for all k € (0,1) and a € [0, 00).

Proof. (1) = (2). Consider the partial metric space ([0,00), p;,) and



ON PARTIAL METRIC PRESERVING FUNCTIONS AND THEIR
CHARACTERIZATION 73

k € (0,1). Define the mapping Ty : [0,00) — [0,00) by Tx(x) = kx for
all x € [0,00). It is clear that T" is a p,,-contraction with k as contractive
constant. Since f preserves the contractive constant we have that T} is a

Pm,-contraction with k as contractive constant. Then

f(ka) = f(max{ka,0}) = pm,(Tk(a), T(0)) < kpm,(a,0) = kf(a)

for all a € Ry. Moreover, by Theorem 2.1.12, we have that f is concave. Thus
kf(a) < f(ka+ (1 —k)0) = f(ka). Whence we conclude that f(ka) = kf(a)
for all k € (0,1) and a € [0, c0).

(2) = (1). It is obvious. |

It is clear that replacing, in Definition 2.3.5, pmp-functions and partial
metric spaces by mp-functions and metric spaces respectively, we obtain a
contraction-preserving notion for the classical metric case. From now on,
this type of functions will be called metric-contraction-preserving. The next

result states a surprising relation between both type of functions.

Theorem 2.3.11. Let f : [0,00) — [0,00) be a pmp-function. The following

assertions are equivalent:

(1) f is contraction-preserving.

(2) [ is metric-contraction-preserving.

Proof. (1) = (2). By Corollary 2.3.8 f is a strongly mp-function. Then,
given a metric space (X, d), dy is again a metric on X. By Theorem 2.3.6 we
have that for each k €]0, 1] there exists ¢ €]0, 1[ such that f(ka) < cf(a) for

all a € [0,00). Next consider a d-contraction 7' : X — X with contractive
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constant ky. Then, there exist ¢y € (0, 1) such that
dy(T(x), T(y)) = f(d(T(2), T () < f(kop(z,y)) <

< C()f(d(!l?,y)) = C()df(l',y)
for all z,y € [0,00). Therefore, T is a ds-contraction and so f is metric-

contraction-preserving.

(2) = (1). Assume that f is not contraction-preserving. By Theorem
2.3.6 we have that there exists ko €]0, 1] such that for each ¢ €0, 1[ we can
find a. € [0,00[ satisfying f(koac) > cf(ac). Consider the partial metric
space ([0,00), py,) and define the mapping 7' : Ry — R by T'(z) = kox for
all x € Ry. Then it is clear that T is a p,,-contraction. Define the mapping
dy : [0,00) x [0,00) = R4 by

pu09) = { P
pm(zy) ifz#y
It is easy to see that dy,, is a metric on Ry (compare [44|) and that T is a
dp,,-contraction. Since f is a metric-contraction-preserving function we have

that T'is a d,, -contraction. Hence, there exists k; € (0,1) such that

dpy, (T(2). T()) < 1y, (2.9)

for all z,y € Ry. Concretely, we have that

Pmy (T(l‘), T(y)) < klpmf (:Uv y)

for all z,y € R with z # y. It follows that

f(koag,) = Pmy (T'(ar, ), T(0))) < klpmf (aky,0) = k1 f(ag,).
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Nevertheless k1 f(ag,) < f(koar,) < ki1 f(ax, ), which is a contradiction. Con-

sequently f is contraction-preserving. |



Chapter 3

Characterizing quasi-metric

aggregation functions

As stated before, the study of n-metric preserving functions, those functions
that merge a family of metric spaces into a single one, was initiated by J.
Borsik and J. Dobos in 1981. In particular they obtained a characterization
of such functions in terms of triangle triplets. In 2000, E. Castineira, A.
Pradera and E. Trillas explored in depth the particular case in which each
metric of the family of metric spaces to be merge through a function, now
called metric aggregation function (briefly, ma-function), is defined on the
same set ([74, 75]). They yielded sufficient conditions in order to guarantee
that a function is a ma-function and, in addition, they introduced techniques
to construct such type of functions. Recently, in 2019, G. Mayor and O.
Valero have continued the work in this direction (|59]). Concretely, they
have provided a new characterization of ma-functions in terms of positive

triangle triplets and they have also discussed techniques to construct them.

76
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Inspired by the fact that, in 2010, Mayor and Valero extended the original
work of Borsik and Dobo§ to the quasi-metric context in such a way that
a characterization of those functions that merge a family of quasi-metric
spaces into a single one, known as n-quasi-metric preserving functions, was
given in terms of (triangle) triplets, in this chapter we focus our attention on
exploring the possibility of extending the work of Mayor and Valero about
ma-functions to the quasi-metric framework. Thus, we characterize those
functions that allow us to combine a family of quasi-metrics, defined all of
them on the same set, into a single one and, in addition, we discuss a few
of their properties. Moreover, a few methods to discard those functions that
are useless as quasi-metric aggregation functions are introduced. Finally, two

possible fields where the developed theory can be useful are exposed.

3.1 Quasi-metric aggregation functions and their

characterization

As pointed out above we are interested in extending the characterization
of metric aggregation functions, given by Theorem 1.1.9, to the context of
quasi-metric spaces. Moreover, motivated by the fact that every n-quasi-
metric preserving function is a n-metric preserving one, we discuss the rela-
tionship between quasi-metric aggregation functions and metric aggregation
functions. In addition, the link with n-quasi-metric preserving functions is
also explored. All this is illustrated with appropriate examples. To this end,
we first introduce the notion of quasi-metric aggregation function following

the spirit of |59].

Let n € N. A function F : [0,00)" — [0, 00) will be called a quasi-metric
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aggregation function (briefly, gma-function) if, for each non-empty set X and
each family of quasi-metrics {q1,...,¢,} on X, the function Q% : X x X —

[0, 00[ is a quasi-metric on X, where

Qp(z,y) = Flqi(z,y), .-, qn(z,y))

for each z,y € X.

The next example gives a simple, but illustrative, instance of a gma-

function.

Example 3.1.1. Let n € N and fiz a collection of coeficients {aq, ..., an}
such that o; € (0,00) for alli =2,...,n. Define the function F : [0,00)" —
[0,00) given, for each a € [0,00)", by Fs(a) = > 1 5 a;-a;. A straightforward

computation shows that Fy is a gma-function.

Observe that every gma-function is a ma-function. Indeed, let n € N and
let F': [0,00)™ — [0,00) be a gma-function. Consider a non-empty set X and
a family of metrics {dy,...,d,} on it. By our assumption, the function Q%
is a quasi-metric on X, where Q% (z,y) = F(di(x,y),...,dn(z,y)) for each
z,y € X. Besides, Q%(z,y) = Q(y, ) and so Q' is a metric on X, since
di(z,y) = d;(y,z) for each i € {1,...,n}. Therefore, F is an ma-function.

With the aim of getting a characterization of gma-functions we introduce

the following lemmata which will be crucial later on.

Lemma 3.1.2. Let n € N and let F : [0,00)" — [0,00) be a gma-function.
Then, F(a) < F(b) + F(c) for each a,b,c € [0,00)" with a <b +c.

Proof. Consider a set X = {x,y, z} with all elements different. Next we

show that for every a,b,c € [0,00)" with a < b + ¢, there exists a family of
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quasi-metrics {qi”b, . ,qub} such that qf’b is defined on X and, in addition,
qf’b(x,z) = a, qg’b(z,y) = b; and qg’b(y, z) = ¢ foral i e {1,...,n}. To
this end, given a, b, c € [0,00)", we distinguish two possible cases when each

coordinate of b and c is considered:

Case 1. max{b;,¢;} = 0. Then we consider the quasi-metric qf’lb defined
as follows:
)b b b b b b
qzl (z,y) = q;l(l‘,z) = qzl(y,z) = qzl(l‘,l‘) = qzl (v, y) :qzl (z,2) = 0;
a,b a,b a,b
41 (y,z) = 41 (z,2) = 41 (z,y) = 1.
Case 2. max{b;,c;} # 0. Then we consider the quasi-metric qg’zb defined

as follows:

qzz(l"l‘): @z(y y)—QZf(z,Z)ZO;

qu( )= qu (Z r) = max{b;, ¢;};

qu(x,y) = 415(2,9) = bi;
5 (v, 2)

= z 2 (y7 ) = Ci.
Since F'is a gma-function, then the function Q% : X x X — [0, 00) given,
for each u,v € X, by
b
QF(u,v) = F(g7" (u,0), ..., 43" (u,v))
is a quasi-metric on X, where

ab qf’lb(u,v) if max{a;,b;} =0
u,v) = :

q , foreach i € {1,...,n}.
! qZ’Qb(u,v) if max{a;,b;} # 0 t J

It follows that
F(a) = QF(r,2) < Qp(z,y) + QF(y,2) = F(b) + F(c)

as we claimed. [ ]

The next results follow immediately from the preceding one.



80 CHARACTERIZING QUASI-METRIC AGGREGATION FUNCTIONS

Corollary 3.1.3. Letn € N and let F : [0,00)" — [0,00) be a gma-function.

Then the following assertions hold:

(1) F is subadditive.

(2) F is monotone.

Proof. By Lemma 3.1.2 we have that F(a) < F(b) + F(c) for each
a,b,c € [0,00)", with a < b+c. Taking a = b+c in the preceding inequality
we obtain the subadditivity of F' and taking ¢ = 0 we deduce the monotony
of F. |

The below property will paly a central role in our subsequent discussion.

Lemma 3.1.4. Let n € N and let F : [0,00["— [0,00] be a subadditive

function. Then the following assertions are equivalent:

(i) There exists ig € {1,...,n} satisfying the following: for each a €
[0,00)™ with F(a) = 0 we have that a;, = 0;

(1) If a € [0,00)" such that F(a) =0, then min{ay,...,a,} =0.

Proof. It is obvious that (i) = (#). So we only need to show that
(74) = (). To this end, suppose for the purpose of contradiction that for each
i € {1,...,n} there exists a’ € [0,00)" such that F(a’) = 0 but a! > 0. Since
F is subadditive we obtain that F(al +---+a") < F(al)+---+ F(a") = 0.
Thus, there exists ¢ € [0,00)" with ¢ = al--. 4+ a” such that F(c) = 0 and,
however, ¢; > 0 for each i € {1,...,n}, which contradicts (ii). [

In the particular case of gma-functions we have the following.
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By Lemma 3.1.4 and Corollary 3.1.3 we obtain the following result.

Lemma 3.1.5. Let n € N and let F : [0,00)" — [0,00) be a gma-function.

Then the following assertions are equivalent:
(i) There exists ig € {1,...,n} satisfying the following: for each a €
[0,00)"™ with F(a) = 0 we have that a;, = 0;

(1) If a € [0,00)" such that F(a) =0, then min{ay,...,a,} =0.

In the light of the previous results, we are able to prove the promised

characterization of gma-functions.

Theorem 3.1.6. Let n € N and let F : [0,00)" — [0,00) be a function.

Then the following assertions are equivalent:

(1) F is a gma-function;
(2) F satisfies the following conditions:

(2.1) F(0) = 0;
(2.2) If F(a) =0, then min{ay,...,a,} = 0;

(2.8) F(a) < F(b) + F(c) for each a,b,c € [0,00)" with a < b + c.
(8) F satisfies the following conditions:

(3.1) F(0)=0;
(3.2) If F(a) =0, then min{ay,...,a,} =0;

(3.3) F is monotone and subadditive.
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Proof. (1) = (2). By Lemmas 3.1.2 and 3.1.5 we have that F' satisfies
conditions (2.2) and (2.3). Next we show that F'(0) = 0. Indeed, consider the
quasi-metric space ([0, 00), g, ), where ¢, (z,y) = max{y—x,0}. The fact that
F is a gma-function gives that the function Q)% is a quasi-metric on X, where
Qr(z,y) = Flqu(z,y),...,qu(z,y)) for all z,y € X. It follows that, fixed
z €[0,00), F(0) = F(0,...,0) = F(qu(z,2),...,q(z,2)) = Qp(x,z) = 0.

(2) = (1). Consider a non-empty set X and a family {qi,...,q,} of
quasi-metrics on X. We will show that the function Q% : X x X — [0, 00) is

a quasi-metric.
Suppose that, given z,y € X, Q% (z,y) = Q% (y,z) = 0. Then,

F(Ql(xvy)v <o 7Qn(x7y)) = F(q:l(yvx)? <o 7qn(y7'r)) =0.

Since F satisfies condition (2.3) we deduce that F'is subadditive. In addition
F fulfills condition (2.3) and, thus, Lemma 3.1.4 guarantees that there exists
ip € {1,...,n} such that g;,(z,v) = ¢i,(y,x) = 0. Thus z = y, since g, is a
quasi-metric on X. Besides, Q% (z,x) = 0 for each x € X, since F' satisfies

(2.1). So Q} satisfies condition (¢1) required for quasi-metrics.

Next we prove that Q% satisfies condition (¢2) for quasi-metrics. With

this aim consider z,y,z € X and take a, b, c € [0,00)" such that

a= (Q1(ZL',Z), ce aQn(x7Z))7
b= (Q1('r7y)7 cee 7Qn(x7y))7
C — (q1(yaz)7 cee ,qn(y,z)).

The fact that ¢; is a quasi-metric on X for each i € {1,...,n} provides that
a = b+ c. Then condition (2.3) yields that

Qr(z,2) = F(a) < F(b) + F(c) = Q(z,y) + Qr(y, 2).
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Therefore, Q% is a quasi-metric on X and, thus, F'is a gma-function.

(2) & (3). It is enough to take into account that F' is monotone and
subadditive if and only if F' satisfies condition (2.3). [

Theorem 3.1.6 allows us to provide a few examples of gma-functions.

Example 3.1.7. Let n € N. The following functions F : [0,00)" — [0, 00)

are gma-functions where for all a,w € [0,00)":

(1) F(a) = Y I, wia; with max{wi,...,w,} > 0. Notice that weighted
arithmetic means, and thus the arithmetic mean, belong to this class of

functions (see [28]).
(2) F(a) = max{wiay, ..., wpa,} with max{ws,...,w,} > 0.

(8) F(a) = > wiag) with w; > w; for i < j and maz{wy,...,w,} >0,
where a; 15 the ith largest of the ay, . .., an. Notice that OWA operators
with decreasing weights belong to this class of functions (see [28, 78]).

1
(4) F(a) = (3 (wia)?)? for all p € [1,00[ with maz{wi,...,w,} > 0.
Notice that root-mean-powers with p > 1 belong to this class of functions

(see [28]).
(5) F(a) = min{e, Y ;" ; wia;} with max{wy,...,w,} >0 and ¢ € (0,00).

0 if min{aq,...,a,} = with ¢ € (0, 00)

(6) F(a)Z{

¢ otherwise

It is worth mentioning that Aumann functions are instances of gma-

functions. Let us recall that, according to [72], an Aumann function is a
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monotone and subadditive function F' : [0, co["— [0, co[ such that

for all a € [0,00). Clearly, by Theorem 1.1.9, positive Aumann functions are
ma-functions. Let us recall that the concept of positive Aumann function
was introduce in [59] by replacing the monotony and the subadditivity by
positive monotony and positive subadditivity, respectivaly, in the definition
of Aumann function. We can conclude that positive Aumann functions are
not gma-functions. Indeed, it is easy to verify that the function provided
in Example 3.1.10 below is a positive Aumann function which is not a gma-

function.

In the light of Theorems 1.1.12, 1.1.14 and 3.1.6 we immediately obtain
that every n-quasi-metric preserving function is a gma-function. Neverthe-
less, the converse is not true. Certainly the function Fy introduced in Ex-
ample 3.1.1 satisfies all assumptions in the statement of Theorem 3.1.6 and,
hence, it is a gma-function. However, Fy(1,0,...,0) = 0 and so Fy is not
amenable. Consequently, Theorem 1.1.12 provides that F'is not an n-quasi-

metric preserving function.

We have pointed out before that each gma-function is a ma-function.
The next example shows that the converse of such affirmation is not true, in

general.

Example 3.1.8. Consider the function F : [0,00)% — [0,00) given by

(

0  ife=0,yel01]
Y ifx =0,y € [1,00)
F(z,y) = 0 ifrel0,1,y =0
0 ifx €[l,00),y =0
r+y ifx,y €]0,00)
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1t is clear that F verifies all conditions in statement of Theorem 1.1.9 and,
thus, that F is an ma-function. Nevertheless, I’ does not satisfy condition

(2.3) in Theorem 3.1.6. Indeed, (1,0) =< (1,0) + (3,0) but

F(1,0)=1> O:F(;,O> + <;,0>.

So, F is not a gma-function.

The following example shows another instance of an ma-function, which

is not a gma-function.

Example 3.1.9. Let F : [0,00[— [0,00) be the function given by F(0,0) =0

and

1 if first(a,b) € [1,00]
where (a,b) # (0,0) and first(a,b) denotes the first value of (a,b) different
from 0. According to [59], F is an ma-function. Clearly F is not positive
monotone (and so it is not monotone) because (3,3) =< (1,1) but F(3,3) =
2> F(1,1) = 1. Thus, F does not satisfy condition (3.2) in Theorem 3.1.6

and, hence, F' is not a gma-function.

F(a,b) :{ 2 if first(a,b) €]0,1]

In view of the characterization of gma-functions provided by Theorem
3.1.6, one can wonder whether new equivalent conditions to those given in
the aforementioned result are obtained when either the monotony is weakened
to positive monotony or subadditivity is weakened to positive subadditivity
and, in addition, the remaining conditions continue the same. Nonetheless,

the answer to the posed question is negative such as the next examples show.
Example 3.1.10. Consider F : [0,00[>— [0,00) given by

y ifx=0,y€[0,00)
Flz,y)=< 2z ifzel0,00,y=0
TV if 2,y €)0,00)
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It is mot hard to check that I is positive monotone, subadditive and, in
addition, it satisfies conditions (2.1) and (2.2) in Theorem 3.1.6. Howewver,
F'is not monotone, since (0,7) < (1,7) but F(0,7) =7 > 4 = F(1,7).
Whence, by Theorem 3.1.6, we deduce that F is not a gma-function.

Example 3.1.11. Let F : [0,00)% — [0,00) be the function given by
(@+y)? ifzyel0,5][,2=0
(x+2)% ifz,z€[0,3[,y=0

F(z,y,2) =
(y+2° fyzel0,5[,2=0

r4+y+z otherwise

One can easily verify that F is monotone, positive subadditive and, in

addition, it satisfies conditions (2.1) and (2.2) in Theorem 3.1.6. However,

F is not subadditive, since if we take a="b = (%, %,O) we obtain

11 11 1 1 1\? /1 1)\?
F(a+b)—F<2,2,O)—2+2 1>2_<4+4) +<4+4) — F(a)+F(b).

Thus, F is not an ma-aggregation function by condition (3.3) in Theorem

3.1.6.

Taking into account the characterization, provided by Theorem 1.1.6, of
n-metric preserving functions,; it seems natural to discuss the relationship
between this kind of functions and the gma-functions. In this direction,
Example 3.1.9 provides a 2-metric preserving function (compare Example
8 in [58] and Example 10 in [59]) which is not a gma-function. Moreover,
Example 3.1.1 gives an instance of gma-function that it not amenable and,

hence, it is not metric preserving.
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On account of [14], given a quasi-metric space (X, ¢q), a quasi-metric ¢~!

and a metric d; can be induced on X from ¢ as follows: ¢~ !(z,y) = q(y, )
and dy(x,y) = max{q(x,y),q(y,x)} for all x,y € X. Notice that, given a
family of quasi-metrics {q1,...,¢,} on X, one can get, on the one hand,
the quasi-metric induced by aggregation of {q1, ..., ¢y} and the quasi-metric
induced by aggregation of {¢;*,...,q¢;'}. Moreover, every quasi-metric ag-
gregation function is always a metric aggregation function and, thus, one
can try to discern what is the relationship between the metric induced by
the aggregation of the family {dg,,...,d,,} and the metric induced on X by
the quasi-metric obtained via aggregation of {qi,...,qn}. The next result

clarify the posed questions.

Proposition 3.1.12. Let n € N and let F : [0,00)" — [0,00) be an quasi-

metric aggregation function. Then the following assertions hold for all x,y €

X:

(1) (Qp) Ha,y) = Flay "(2,9), ..., q; (z,y)).

(2) dap(z,y) < F(dg, (2,y), .- ., dg, (2, y)) < 2dgp (2,y)-

Proof. (1). Let 2,y € X. Then

(Q%‘)_l('r7y) = Q%(yvr) =

F(ai(y,2),..,qn(y,2)) = Flay ' (2,9), ..., ¢, (2,y))

(1). Let x,y € X. On the one hand, the monotony of F' gives that
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dQ}(x7y) = maX{F(Q1($7y)7 cee 7Qn($7y))7F(q1_1($7y)7 cee ,qgl(l‘,y))} <

F(dgy (2, y), - s dg, (2,y)).

On the other hand, the subadditivity of F' yields that

F(d(h (:L'vy)? e 7dQn($7y)) S

Flai(,9),- - an(@,9) + Flar (2,9), - a7 (2.9)),
since dy, (z,y) < gi(z,y) +q; ' (z,y) forall i € {1,...,n}. Moreover, we have
that

F(Ql(l'vy)" B 7Qn(x7y)) +F(Q1_1(x7y)v cee 7q;1($7y)) S 2dQ?(x7y)

We end this section discussing another question that arises in a nat-
ural way. When we consider a quasi-metric space (X,q) and the family
of quasi-metrics {q1,...,¢,} on a non-empty set X such that ¢; = ¢ for
all i € {1,...,n}, then it seems interesting to know what is the relation-
ship between the quasi-metric generated by aggregation of {q1,...,¢,} and
q. In order to give an answer to such a question, let us recall two ap-
propriate notions following [28]. A function F : [0,00)" — [0,00) has
p € [0,00) as an idempotent element provided that F(p,...,p) = p. As
usual, we will say that F' is idempotent if each element of [0, 00) is an idem-
potent element of F. Moreover, F' : [0,00)" — [0,00) is called internal if

min{ay,...,a,} < F(a) < max{ay,...,a,} for all a € [0,00)".

The next theorem clarifies the issue under discussion.
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Theorem 3.1.13. Letn € N and let F' : [0,00)" — [0,00) be a gma-function.

Then the following assertions are equivalent:

(1) F is internal.

(2) F is idempotent.

(3) q(z,y) = F(q(z,y),...,q(x,y)) for every quasi-metric space (X, q) and
forall x,y € X.

(4) d(z,y) = F(d(z,y),...,d(z,y)) for every metric space (X,d) and for
al 2,y € X.

Proof. (1) < (2)Theorem 3.1.6 gives that every quasi-metric aggrega-
tion function is monotone. Proposition 2.63 in [28] warranties that every

monotone function is idempotent if and only if it is internal.

(2) = (3) Let (X, q) be a quasi-metric space and z,y € X. Obviously if
F is idempotent, then g(z,y) = F(q(z,y),...,q(x,y)).

(3) = (4). Let (X,d) be a metric space and z,y € X. Since every metric
d is a quasi-metric we deduce that d(z,y) = F(d(z,y),...,d(z,y)).

(4) = (2). It is clear that every quasi-metric aggregation function is an
metric aggregation function. According to [59, Theorem 19|, a metric aggre-
gation function such that d(z,y) = F(d(x,y),...,d(z,y)) for every metric
space (X, d) and for all z,y € X is indempotent. [ |
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3.2 Discarding functions as quasi-metric aggrega-

tion functions

In this section we explore a little more about gma-functions in such a way
that a few useful methods to discard those functions that are useless as gma-

functions are presented.

Next we discuss whether a gma-function can have absorbent elements.
To this end, recall that, given n € N, a function F' : [0,00)" — [0,00) has
u € [0,00) as an absorbent (or annihilator) element in its ith coordinate

provided that

F(ay,...,aq;—1,U,0i41,...,0p) =

foreach ay,...,a;—1,ai41,...,a, € [0,00) (see [28]). The next results provide
information about the matter under consideration when the function has

idempotent elements.

Proposition 3.2.1. Let n € N and let F : [0,00)" — [0,00) be a gma-
function. Then F has not u € [0,00) as an absorbent element in at least two

variables whenever F has an idempotent element p € (0,00) with p > 2u.

Proof. Suppose, without loss of generality, that I’ has an absorbent
element u € [0, 00) in the first two variables. By Theorem 3.1.6 we have that

F' is subadditive. Then we deduce that
2u=F(u,p—u,p—t,....,p—u)+ F(p—u,u,u,...,u) > F(p,...,p) > 2u,

which is impossible. |

As a consequence of the preceding result we obtain the following property.
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Corollary 3.2.2. Let n € N. If F: [0,00)" — [0,00) is an idempotent
gma-function, then F has not u € [0,00) as an absorbent element in at least

two wvariables.

The preceding results assure that those functions with an absorbent el-
ement in at least two variables are not useful to be gma-functions when

idempotency is enjoyed.

On account of [59, Proposition 20|, Proposition 3.2.1 and Corollary 3.2.2
are just true for ma-functions whenever u € (0,00). This fact shows, one
more time, that gma-functions and ma-functions enjoy, in general, different

properties.

In the particular case in which the quasi-metric aggregation is not idem-
potent we have that 0 can not become an absorbent element. Indeed, on the
one hand, we have that every gma-function is always a (subaddtitive) met-
ric aggregation function. On the other hand, in [59, Proposition 23| it was
proved that every subadditive ma-function has not 0 as an absorbent element.
This reasoning allows us to discard all functions having 0 as an absorbent
element as quasi-metric aggregation functions. Moreover, in |59, Proposition
22|, it was proved that every conjunctive metric aggregation function has
0 as an absorbent element in at least two variables. So we conclude that
any gma-function cannot be conjunctive. Recall that, following [28], a func-
tion F' : [0,00)" — [0,00) is conjunctive whenever F'(a) < min{ai,...,a,}
for each a € [0,00)™. This reasoning allows us to discard all conjunctive

functions as gma-functions.

Now, we focus our attention on the analysis of the existence of neutral
elements of gma-functions. According to [28], given n € N, a function F :

[0,00)™ — [0,00) has e € [0,00) as a neutral element if F'(aje) = a; for each
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a; € [0,00[ and each i € {1,...,n}, where aje denotes the element of [0, co[”
that consist of a; in the ith coordinate and e in the rest of coordinates. In
|59, Proposition 26|, it was proved that every subadditive metric aggregation
function has not any neutral element in (0, 00). Whence we deduce that any
gma-function has not neutral elements in (0,00). Hence we can discard as

gma-function all functions with neutral elements in (0, 00).

Notice that the unique possible neutral element of a quasi-metric aggre-
gation function is 0. However, the class of those gma-functions with 0 as
neutral element matches up with Aumann functions. Furthermore, in [59] it
was proved that every subadditive and monotone ma-function F' with 0 as
neutral element is disjunctive, where, following [28], a function F': [0, 00)" —
[0, 00) is said to be disjunctive provided that max{ay,...,a,} < F(a) for all
a € [0,00)"™. Moreover, the aforementioned ma-functions are always ma-
jorized by a disjunctive function and, in addition, they always majorize a
conjunctive function. In particular, 23" 1 a; < F(a) < 3 a; for all
a € [0,00)". Consequently, every gma-function with 0 as neutral element
enjoys all the previously indicated properties. So those functions with 0 as
neutral element that do not satisfy any of the previously listed properties

must be rejected as gma-function.

Finally, taking into account the exposed facts we have the next surprising

result.

Proposition 3.2.3. Let n € N and let F : [0,00)" — [0,00) be a gma-

Sfunction with O as a neutral element. Then, F fulfills the following inequality
for all a;b € [0,00)":

max{F(a) — F(b),0} <> max{a; — b;,0}. (3.1)
=1
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Proof. Leta,b € [0,00)" and take ¢ € [0, 00)™ with ¢; = max{a; —b;,0}
for each i € {1,...,n}. Then a < b+ c. Thus, by Theorem 3.1.6, we have
that

F(a) — F(b) < F(c) = F(max{a; — b1,0},...,max{a, — by, 0}).

Since F(max{a; — b1,0},...,max{a, — b,,0}) < > max{a; — b;,0} we
deduce that F'(a)— F(b) < > " ; max{a; —b;,0}. The last inequality implies
the next one max{F'(a) — F(b),0} <>, max{a; — b;,0}. [ |

Notice that inequality (3.1) is a quasi-metric Lipschitz condition with

constant 1, since g;(a,b) = max{a — b,0} is a quasi-metric on [0, 00).

In the light of Proposition 3.2.3 those functions with 0 as a neutral ele-

ment which do not satisfy inequality (3.1) cannot be selected as gma-function.

From Proposition 3.2.3 we get the following:

Corollary 3.2.4. Let n € N and let F : [0,00)" — [0,00) be a gma-function
with 0 as a neutral element. Then, F fulfills the following inequality for all
a,b e [0,00)":

|F(a) = F(b)| < |ai — bil . (32)
=1

Proof. By Proposition 3.2.3 we have that
n
max{F(a) — F(b),0} <> max{a; — b;,0}
i=1
and

max{F(a) — F(b),0} < Zmax{bi — a;,0}.
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It follows that

|F'(a) — F(b)| = max {max{F(a) — F(b),0}, max{F(a) — F(b),0}} <
max {> - max{a; — b;,0},> " ; max{b; — a;,0}} <

Z?:l la; — bil .

3.3 Two possible fields for applications

We end the paper describing two scenarios, that arise in applied fields, where
the exposed theory could be helpful. Concretely we illustrate that in many
cases the distances used in Asymptotic Complexity Analysis of algorithms
and in Location Analysis can be constructed as an aggregation of quasi-
metrics defined all of them on the same non-empty subset. So the use of
quasi-metric aggregation functions could be useful to construct a mathe-
matical framework under which many of the specific cases exposed in the
literature can be unified under the same general framework and, in addition,
the new approach could allows us to discern what method of quasi-metric

aggregation is the most appropriate in each problem under study.

3.3.1 Asymptotic Complexity Analysis

In 2003, L.M. Garcia-Raffi et al. introduced the theory of polynomial com-

plexity spaces with the aim of developing a general mathematical framework
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suitable for asymptotic complexity analysis of algorithms (|21]). Let us re-
call that, fixed a polynomial P(n) such that P(n) > 0 for all n € N, the

polynomial complexity space is the quasi-metric space (C P(n)s ch(n))’ where

“+o00o
Cpny ={f :N—=[0,+00) : Z2‘P(”)f(n) < 400},

n=1

and the quasi-metric ch(n) is given by

+o0o
de(n) (f7 g) = Z 2—P(n) max{g(n) - f(n)v O}
n=0

The utility of the polynomial complexity space in asymptotic complex-
ity analysis of algorithms is based on the fact that the numerical value
dep, (f,g) can be understood as a measure of the progress made in low-
ering of complexity when an algorithm with running time represented by g

is replaced by another one with running time represented by f. Indeed,
dep (f,9) =0 g(n) < f(n) foralln e N

and, hence, the running time of computing represented by g is more “efficient”
than the algorithm whose running time of computing is represented by f on
inputs size when f # g. Thus when the running time of computing of
an algorithm, represented by g, is not known with precision, the fact that
dep (f,g) = 0 guarantees that f provides an asymptotic upper bound of
g and, thus, that the algorithm under consideration will take at most f(n)
time, when the size of the input is n, to solve the problem for which it has
been designed. Observe that the asymmetry of ch(n) is crucial in order to
get f as an asymptotic upper bound of g. Indeed, a pseudo-metric will be
able to provide information about the efficiency but it would be useful to

state which algorithm is more efficient of both.
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The applicability of the complexity space Cp(y) to the asymptotic anal-
ysis of algorithms has been illustrated providing new techniques, by means
of fixed point techniques, to specify asymptotic upper bounds for those algo-
rithms whose running time of computing satisfies a recurrence equation. We
refer the reader to [19, 52, 83, 84, 86| for a detailed treatment of the topic. In
[20], a variant of the polynomial complexity space was introduced in order to
provide a mathematical framework to perform an appropriate description of
the running time of computing of exponential time algorithms and, thus, to
develop suitable fixed point techniques to provide asymptotic upper bounds.
In this case the new complexity space was called supremum polynomial com-
plexity space and it was given as the quasi-metric space (Cp(n),dooycpm)),

where

Qoo o (,9) = sup {277 maxc{g(n) — f(n), 0}}.

neN

According to [22], the asymptotic behaviour of the running time of algo-
rithms can be discussed through finite approximations d¢ P(ﬂ)(f, g) of the

numerical value dc,, (f,g), where

de,, i (1:9) =Y 27" max {g(n) — f(n),0}
i=1

for any m € N. Observe that de,, ., is a quasi-metric on Cin,p(n), Where
Cin,p(n) denotes the set all functions belonging to Cp(,) whose domain is

restricted to {1,...,m}. Moreover, notice that
dep,, (f19) =0 dc,, o, (f,9) =0 for all m € N,

Therefore, the fixed point techniques developed to specify asymptotic upper
bounds for those algorithms whose running time of computing satisfies a

recurrence equation can be rewritten in terms of non-asymptotic criteria
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involving fixed point arguments based on the use of the quasi-metrics d¢,, ,, ()"
Of course, the same happens for the case of doo,cpm), where now the finite

approximations are yielded by the quasi-metrics diyax,m.c,, pny 81VEN by

Ay (F:9) = max {2770 max{g(n) = f(n), 0} } .

0<i<m

It is clear that the quasi-metrics de,P(n) and deax,m Pmy CAIL be obtained
by aggregation, through the gma-functions given by (1) and (2) in Example
3.1.7, of the family of quasi-metrics {q1,...gmn} on [0,00), where ¢; = ¢, and

w; =27P0 for all i € {1,...,m}.

In the light of the preceding fact, it seems natural to incorporate quasi-
metric aggregation functions in the asymptotic complexity analysis of algo-
rithms via developing general polynomial complexity spaces in such a way
that the exposed mathematical frameworks can be retrieved as particular case
and, in addition, with the aim of, on the one hand, exploring what quasi-
metric aggregation function is the most appropriate for developing measures
of the progress made in lowering of complexity and, on the other hand, de-
veloping non-asymptotic criteria fixed point methods best adapted to each

family of recurrences that (may) arise in the study of algorithms.

3.3.2 Location Analysis

A location problem consists in looking for a new facilities of a company to
provide a service for a set of customers. So this is a relevant topic in Logistics
because of location of facilities and allocation of customers to the facilities
provide constraints in the distribution process and its cost and efficiency.

Thus the main problem in Location Analysis is a Decision Making problem
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in which the company wants to decide how to place new facilities, taking
into account the customers allocation, in such a way that the facilities are
placed in an optimum way, i.e., reducing the cost or maximizing the customer

satisfaction. For a fuller treatment of the topic we refer the reader to [91].

Two typical problems in Location Analysis are the Weber problem (or
minsum problem) and the Rawls problem (or minmax problem). In the first
one, the target is to place n (n € N) facilities in n locations minimizing the
global cost, which is usually described in terms of time, money, number of
trips, etc. Of course, the demand of the customer is associated to each facility
location and, thus, each location contributes to the objective in a different
way or with a different weight. Examples where this kind of problem arises
in a natural way are those where the facility to be located is a distribution
center or a center for energy production. The target for the second problem
is again to place n facilities but this time minimizing the maximum cost.
Typical examples of this problem are those where the facility to be placed is

an emergency service like fire or police station and an ambulance service.

From a mathematical viewpoint, the exposed problems can be stated as

follows:

We have to choose a location for a facility among a collection of them
X (the set of facilities X can be discrete or continuous) in such a way that
the selection of a facility is influenced by the cost of the interaction between
the facility and a collection of destinations (that represent the customers)
normally finite A = {ay,...,a,}. The aim is to determine the location that
minimizes the global cost interaction C. Normally, the cost is measured as
a function of the distance between the facility and the destination. Hence,
given a location x € X, the interaction cost between x and destination i is

provided as a function ¢;(x,a;) = ¢;(d(z,a;)). This kind of cost functions are
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known as transportation cost functions. According to |16, 69, 70, 71, 92| in
many real problems the transportation cost depends on quasi-metrics. This is
the case when we consider problems where there are involved one-way paths,
rush-hour traffic, navigation in presence of wind, fuel cost, time travel, etc.
Observe that the global transportation cost can be understood as a global

distance from the facility to all destinations.

A typical cost is proportional to the distance, that is ¢;(x, a;) = w;q(z, a;)
forall i € {1,...,n}, and the global cost is obtained by means of aggregation
of each individual transportation cost. Thus the problem under consideration

is reduced to the following optimization problem:

MinmEXC(x)a

where

C(z) =" wiq(z,a;) for the Weber problem,

C(z) = max{wiq(x,ay),...,wyq(z,a,)} for the Rawls problem.

Notice that in the expression of the global transportation costs can be
used, at the same time, different quasi-metrics depending on the nature of

the cost under consideration and, thus, one would obtain:

MinmEXC(x)a

where

C(z) = 3", wigi(x,a;) for the Weber problem,



100 CHARACTERIZING QUASI-METRIC AGGREGATION FUNCTIONS

C(z) = max{wiqi(x,a1),...,wyqn(z,a,)} for the Rawls problem.

In [65], it has been pointed out that the both preceding problems are a
particular case of a more general one where the aggregation of costs is made
by means of an OWA operators. Thus a unified framework based on OWAs
is presented and a deep discussion about how solve such problems is carried

out in [65].

In the light of the exposed facts, it appears natural to consider gma-
functions in Location Analysis with the aim of finding out what they can
contribute to develop best adapted global transportation costs functions and

new optimization criteria.



Chapter 4

On Matthews’ relationship
between quasi-metrics and
partial metrics: an aggregation

perspective

As explained before, J. Borsik and J. Dobog studied the problem of how to
merge a family of metric spaces into a single one through a function. They
called such functions metric preserving and provided a characterization of
them in terms of the so-called triangle triplets. Since then, different papers
have extended their study to the case of generalized metric spaces. Con-
cretely, in 2010, G. Mayor and O. Valero provided two characterizations of
those functions, called n-quasi-metric preserving functions, that allows us
to merge a collection of quasi-metric spaces into a new one (|59]). In 2012,

S. Massanet and O. Valero gave a characterization of the functions, called

101
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n-partial metric preserving function, that are useful for merging a collection

of partial metric spaces into single one as final output (|55]).

Inspired by the preceding work, in 2013, J. Martin, G. Mayor and O.
Valero addressed the problem of constructing metrics from quasi-metrics, in
a general way, using a class of functions that they called metric generating
functions (|54]). In particular, they solved the posed problem providing a
characterization of such functions and, thus, all ways under which a metric
can be generated by a quasi-metric from an aggregation viewpoint. Following
this idea, we propose the same problem in the framework of partial metric
spaces. So, we characterize those functions that are able to generate a quasi-
metric from a partial metric, and conversely, in such a way that Matthews’
relationship between both type of generalized metrics is retrieved as a par-
ticular case. Moreover, we study if both, the partial order and the topology
induced by a partial metric or a quasi-metric, respectively, are preserved by
the new method in the spirit of Matthews. Furthermore, we discuss the rela-
tionship between the new functions and those aforesaid families introduced
in the literature, i.e., n-metric preserving functions, n-quasi-metric preserv-
ing functions, n-partial metric preserving functions and metric generating

functions.

4.1 A general method for generating quasi-metrics

from partial metrics

This section is devoted to provide a general method to generate a quasi-
metric from a partial metric in such a way that the technique introduced by
Matthews in |56| can be retrieved as a particular case. Recall that, given a

partial metric p on a non-empty set X, then a quasi-metric g, can be induced
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on X by ¢p(x,y) = p(z,y) —p(x, x) for each xz,y € X. Moreover, a technique
for the construction of a partial metric from a quasi-metric was also given
in |56]. In order to introduce such a technique let us recall that a weighted
quasi-metric space is a tern (X, g, wy), where ¢ is a quasi-metric on X and

wy is a function wy : X — R4 satisfying, for each z,y € X, that

q(z,y) + wq(x) = q(y, ) + wy(y).

The mapping w, is known as the weight function associated to the quasi-
metric g. Thus, given a weighted quasi-metric space (X, q,w,), a partial

metric pg ., on X can be defined, for each x,y € X, by

Paw, (T,Y) = q(7,y) + wy(z).

To get our proposed aim, D will denote the subset of R%— given by D =
{(a,b) € R% : a > b}.

The next notion will be crucial in order to get the solution to the posed

problem from the aggregation perspective.

Definition 4.1.1. We will say that a function ® : D — Ry is a quasi-
metric generating function (briefly, a gmg-function) if for each partial metric
space (X, p) the function gg, : X x X — Ry is a quasi-metric on X, where

qap(z,y) = ®(p(x,y),p(z,z)) for each z,y € X.

The next example shows that the Matthews’ technique is a particular

case of the exposed approach.

Example 4.1.2. Let &_ : D — Ry given by ®_(a,b) = a —b. Then, ®_
is a gqmg-function. Indeed, given a partial metric space (X,p) we have that
qo_p(z,y) = p(x,y) — p(z,z) for each x,y € X, which is the well-known

weighted quasi-metric g, induced by the partial metric p.
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The next example provides an alternative way of generating a quasi-

metric from a partial metric which is based on the use of ¢gmg-functions.

Example 4.1.3. Let &_ 1 : D — R, given by
2

0, ifr=y=0

2 r— 4, otherwise

D_ ;(x,y) = {

Then, ®_ 1 is a gmg-function. Indeed, given a partial metric space
2
(X,p), it is not hard to check that qp | p is a quasi-metric on X with
-3

qq),,%m(l'v y) = p(:n, y)_w

0 for each x € X.

foreachz,y € X withx # vy, andqep | p(x,x) =
-3

Proposition 4.1.7, below, also yields a way of building quasi-metrics from

partial metrics which differs from the Matthews technique.

The next concept will be play a central role in order to characterize those

functions ® : D — R which are ¢gmg-functions.

Definition 4.1.4. We will say that (x1,x9,23) € R‘i is a quadrangular
triplet on (y1,y2,ys3) € Ri if the following conditions are satisfied:

(i) z1 > max{y1,ys}, with 1 > y1 or &1 > y3, and z1 + Yy < x9 + x3;
(ii) o > max{ys,y1}, with x9 > ys or z9 > y1, and x9 + y3 < 3 + 27;
(iii) z3 > max{ys,y2}, with x3 > y3 or x3 > yo, and z3 + y1 < x1 + 9.

It is not hard to check that (2,1,2) is a quadrangular triplet on (0,1,2).
Notice that (0,1,2) is not a quadrangular triplet on (2,1, 2).
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The next theorem provides a characterization of gmg-functions by means
of quadrangular triplets and, thus, a general method to generate a quasi-

metric from a partial metric.

Theorem 4.1.5. Let ® : D — Ry be a function. Then the following asser-

tions are equivalent:

(1) ® is a gmg-function.
(2) ® satisfies:

(i) ©7'(0) = {(z,y) €D :a =y},
(ii) @(ml,yl) < @(wg,yl) + @(acg,yg), whenever (xl,xg,xg) € Ri 18 a
quadrangular triplet on (y1,y2,ys3) € R‘i.

Proof. (1) = (2). Let ® : D — Ry be a gmg-function.

Next we show that ® satisfies condition (7). Suppose that ®(z,y) = 0 for
some z,y € D. Consider (R,p,) the partial metric space where py(a,b) =
|a — b] +y for each a,b € R, where R stands for the real number set. Taking
into account that ® is a gmg-function, then qgp, : R X R — Ry is a quasi

metric on R, where g p, (a,b) = ®(py(a,b),py,(a,a)) for each a,b € R.

Since x > y we have that py(y,z) = py(z,y) = [zt —y|+y = 2. In
addition, py(z,z) = |z — z[+y =y and py(y,y) = [y —yl +y = v.

Attending to the above observations and taking into account our as-
sumptions, we have that gs,,(z,y) = ®(p,(z,y),py(z,7)) = ®(2,y) = 0.
Moreover, qgp,(y, ) = ®(py(y, z),py(y,y)) = ®(z,y) = 0. Thus, (QM1)

implies x = y.



ON MATTHEWS’ RELATIONSHIP BETWEEN QUASI-METRICS AND PARTIAL
106 METRICS: AN AGGREGATION PERSPECTIVE

Next we show that ® satisfies condition (iz7). To this end, suppose that

(z1,22,23) € R3 is a quadrangular triplet on (y1,y2,y3) € RY.

In the following we construct a partial metric space in order to show that
Q(z1,y1) < (w2, y1) + (23, 42)-

Let X ={a,b,c} be a set of three points. We define p: X x X — R, as

follows:

p(a,c) = p(c,a) = x1 and p(a,a) = y1;
p(a,b) = p(b,a) = xo and p(b,b) = yo;

p(bv C) = p(C, b) = x3 and p(C, C) = Y3

It is not hard to check that (X, p) is a partial metric space, since (z1, z2, x3)

is a quadrangular triplet on (y1,y2,ys3).
By our hypothesis, ¢p 5, : XXX — R is a quasi-metric, where go p(u,v) =
@ (p(u,v),p(u,u)) for each u,v € X. Then
q2.p(a,¢) < qap(a,b) + qo (b, ¢),
which is equivalent to
®(p(a,c),p(a,a)) < ®(p(a,b), p(a,a)) + (p(b, c), p(b, b)).
Therefore, by definition of p, we have that

O(z1,91) < (22, y1) + P23, ¥2).

(2) = (1). Assume that ® : D — Ry is a function satisfying conditions
(¢) and (i7). Let (X,p) be a partial metric space, we will show that g ,, is a
quasi-metric on X, where ¢ ,(z,y) = ®(p(x,y), p(x,x)) for each z,y € X.
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First we suppose that go p(z,y) = 0 = ¢ap(y,x) for some z,y € X.

Then,

(p(z,y),p(x, ) = qap(,y) =0,
and

(p(y, ), p(y,y)) = qop(y,z) = 0.
Condition (i) implies that p(z,y) = p(z,x) and p(y,x) = p(y,y). Taking
into account that p is a partial metric on X we have that p(z,y) = p(z,x) =
p(y,y), and so = y. Since ® satisfies (i) we deduce that go p(z,y) =0 =
4o p(y, ) provided that x = y. Thus ¢, satisfies axiom (QM1) of quasi-

metrics.

It remains to prove that gs, fulfils the triangle inequality, i.e., axiom
(QM?2) of quasi-metrics. With this aim, let x,y,z € X. We sill show that
9ap(z,2) < qop(x,y) + go p(y, z). Observe that the cases x =y, y = z or
x = z are obvious. So, we assume that x # y, x # z and y # 2. In such a
case we obtain:

p(z,2) > p(x,x) or p(x,z) > p(z,2) and p(z,z) > max{p(z, z),p(z, 2) };
p(z,y) > p(z, ) or p(z,y) > p(y,y) and p(z,y) = max{p(z,z),p(y,y)};
p(y,z) > p(y,y) or p(y, z) > p(z,2) and p(y, z) > max{p(y,y),p(z,2)}-
Moreover, by axiom (P4) of partial metrics, we have that
p(x,2) +p(y,y) < p(z,y) + p(y, 2);
p(z,y) +p(z,2) < p(x,2) + p(z,9);
p(y,z) + p(z, ) < py, ) + p(z, 2).

Then, (p(=, 2), p(z,y),p(y, 2)) € RY is quadrangular triplet on (p(z, @), p(y, ), p(2, 2)) €
R3 . Thus, by condition (i), we have that

O(p(z, 2),p(x, 7)) < (p(7,y),p(z,7)) + 2(p(Y, 2), P(¥, y)),
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and so
qo.p(7,2) < qap(2,Y) + qa (Y, 2)-

According to [26], given a quasi-metric sapce (X, q), then ¢ induces a
partial order <, on X given by z <, y < ¢(z,y) = 0. In [56], Matthews
showed that given a partial metric space (X, p), then p also induces a partial
order <, on X given by z <, y < p(z,y) = p(z,z). Moreover, in the same

reference, it was proved that <, ==.

In the light of the preceding facts, it seems natural to discuss whether,
given a gmg-function ® : D — Ry and a partial metric space (X,p), the
partial orders <, ~and =, are exactly the same on X, i.e., whether a gmg-
function preserves the order induced by the partial metric that it transforms.

The next result gives a positive answer to the questions under consideration.

Proposition 4.1.6. Let ® : D — R be a gmg-function and let (X,p) be a

partial metric space. Then jqq),p:jp.

Proof. Let z,y € X .On the one hand, we have that z <, y < p(z,z) =
p(z,y). On the other hand, we have that v =4, ¥ © qap(r,y) = 0.
Theorem 4.1.5 guarantees that ®~1(0) = {(z,y) € D : z = y} and, thus,
that © <), y & x 24, , y as claimed. |

Following [26], each quasi-metric ¢ on X induces a Ty topology 7(q) on
X which has as a base the family of open balls {B,(z;€) : € X,e > 0},
where By(z;¢) = {y € X : q(z,y) < €}. Moreover, according to [56], each
partial metric p on X induces a Ty topology 7(p) on X which has as a base
the family of open balls {B,(z;€) : € X,e > 0}, where By(z;¢) = {y €
X : p(x,y) < p(x,z) + €}. As in the case of the partial order, Matthews
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proved that the topology induced by a partial metric p and by the associated

quasi-metric g, coincide, i.e., 7(p) = 7(gp).

Similarly to the partial order case, it seems natural to ask if the same
situation happens in our context, i.e., if a gmg-function ® preserves the
topology induced by the partial metric p which it transforms and, thus,
7(p) = 7(qap). Nevertheless, the behaviour of gmg-functions regarding the
preservation of the topology is slightly different. In fact, the answer to the

question posed is negative such as Example 4.1.8 reveals.

The next proposition will be crucial to show, by means of Example 4.1.8,
that the topology induced by a partial metric p on a set X does not coincide,

in general, with the topology induced by the generated quasi-metric g .

Proposition 4.1.7. Let &3 : D — R, be the function given by ®(0,0) =0
and ®o(x,y) = “Y for each (x,y) € D\{(0,0)}. Then ®y is a gmg-function.

Proof. First of all, we observe that ®9(x,y) > 0, for each (z,y) € D.
Now, we show that & satisfies conditions (i) and (i7) in the statement of

Theorem 4.1.5.

Clearly, by definition, ®(0,0) = 0. Next suppose that ®o(x,y) = 0 for
some (z,y) € D\ {(0,0)}. Then *_¥ = 0. The last equality is held if and
only if 2 = y. Thus the aforesaid condition () is satisfied by ®.

In order to prove that ® fulfils condition (i7), assume that (z1,z9,z3) €
Ri is a quadrangular triplet on (y1,y2,y3) € Ri. It remains to show
that ®o(z1,11) < Po(z2,y1) + Po(x3,y2). First, observe that, by defini-

tion of quadrangular triplet (z1,22,23) # (0,0,0). So, ®a(z1,41) = “. %,
za—y1

Po(m2,y1) = ZH and Po(23,y2) =

cases:

r3—Yy2
x3

Now, we distinguish two possible
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Case 1. x1 > max{zy,x3}. On the one hand, we have that

Iy —y Iy —y
Dy (x = <
2(@1,41) r1 T max{zy, w3}
and
T2 —Y1 T3 — Y2 T2 — Y1 €T3 — Y2
Dy (x Dy (x = > .
2(2, y1)+ (23, 42) 9 + r3  max{ze, w3} max{wo,x3}

On the other hand x1 — y1 < z9 — Y1 + T3 — Yo, since (x1,x2,x3) is a

quadrangular triplet on (y1,y2,ys3). It follows that

L1 — Y1 L2 — Y1 T3 — Y2
max{zo,r3} ~ max{xe,r3} max{xry, x3}

and, hence, that
Po(x1,91) < Po(wa,y1) + (w3, y2).

Case 2. z1 < max{xe,z3}. Put 2] = max{ze,2z3}. It is a routine
to check that (2, z2,x3) is a quadrangular triplet on (y1,y2,ys3), since
) > z1 > max{y;,y3} and 2} + y2 < xg + x3. Therefore, by Case
1, we deduce that ®y(a],y1) < Pa(x2,y1) + Po(3,y2). Moreover, we

observe that, for each a,b,a € Ry with a < b, we have that § < Z“_t—g

Letting o = max{x2,z3} — x1 and x| = max{xs, z3} we obtain that

Ti—h iyt a max{ra, 23} — y1

= = &y (2 .
1 Tt max{xs, x3} 21, 41)

Oy (x1,91) =

Thus, ®o(x1,y1) < Pa(x2,y1) + Pa(xs, y2).

Consequently @ fulfils condition (i7) in Theorem 4.1.5. Hence, we deduce

that & is a gmg-function. |

As announced before, the next example shows that, in general, a gmg-
function ® does not preserve the topology induced by the partial metric p

which it transforms and, thus, that 7(p) # 7(¢sp) in general.
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Example 4.1.8. Let (R, py,) be the partial metric space such that py,(x,y) =
max{z,y} for each x,y € Ry. It is not hard to verify that, for each x € R,
and € > 0, the open ball centred at x with radius € is given by By, (x;€) =

[0,z + €.

It is clear that the quasi-metric generated by means of the function ®o
(introduced in Proposition 4.1.7) from py, is given by qa,p,,(0,0) = 0 and

max{z,y}—z

@2 pm (2, Y) = “max{zy} Jor each (z,y) € D\ {(0,0)}. Then qo,,p,,(0,y) =
1, for each y €]0,00[ and, hence, By, , (0;e) = {0} for each e €]0,1].

Hence, B%Mm (0s€) & T(pm) and, therefore, T(pm) # T(qayp,.)-

On account of the above example, we focus our effort on seeking con-
ditions on gmg-functions ® in order to ensure that, for each partial metric

space (X,p), 7(p) = 7(qap). To this end, we introduce the next concept.

Definition 4.1.9. Let ® : D — R be a gmg-function. We will say that
® is a strongly quasi-metric generating function (sgmg-function for short) if

for each partial metric space (X, p) we have that 7(p) = 7(¢ap)-

It must be stressed that the name of strongly quasi-metric generating
function has been inspired by strongly metric preserving functions introduced
in [15].

In the light of the preceding definition, an instance of sgmg-functions is

given by the function ®_ introduced in Examples 4.1.2.
The next result will be essential for getting a characterization of those
gmg-functions that are sgmg-functions.

Lemma 4.1.10. Let @ : D — Ry be a gmg-function. Then, ® is monotone
in the first component, i.e., ®(x,z) > ®(y, z) whenever x > y.
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Proof. Let (z,2),(y,z) € D with > y. It is clear that if x = y, then
O(x,2z) = P(y, z). So we assume that x > y. Moreover, we can consider that
y > 0 because otherwise we have that y = z = 0 and, thus, that ®(z,z) >
®(y,z) = ®(0,0) = 0. Consider the terns (y,z,z —y), (2,2 — y,0) € R3. It
is not hard to see that (y,z,z — y) is a quadrangular triplet on (z,z — y,0).
Therefore, by Theorem 4.1.5, we have that

(y,z) < @(z,2) + ®(z —y,x —y) = B(x, 2).
Thus, ® is monotone in the first component.

Although gmg-functions do not preserve the topology of the partial met-
ric that they transform, we have always that the topology induced by the
quasi-metric g¢ j generated from a gmg-function @ is finer than the topology
induced by the partial metric p from which it is constructed. Let us recall
a topology 71 is said to be finer than a topology 7 provided that each open
set in 7 it is so in 71 (see, for instance, [1]). From now on, the fact that a

topology 71 is finer that a topology 7 will be denoted by 79 C 7.

Theorem 4.1.11. Let ® : D — Ry be a gmg-function and let (X,p) be a
partial metric space. Then, T7(p) C 7(qa p)-

Proof. Consider x € X and the real number € > 0. Put 6 = ®(p(z,z)+
&, p(z,x)). Then § > 0. Next we prove that By, (z;9) C By(z;e). Indeed,
let y € Byg,(2;6). Then ®(p(z,y),p(x,2)) < d = ®(p(z,r) + €,p(z,1)).
Assume for the purpose of contradiction that p(z,y) — p(z,z) > e. By
Lemma 4.1.10 we obtain that ®(p(z,z) + €,p(z,x)) < ®(p(x,y),p(z,x)) <
®(p(x,x)+¢€,p(x, x)) which is not possible. It follows that p(z,y)—p(z, x) < €
and, hence, that y € By(x;€). Therefore, 7(p) C 7(ga,p) as claimed. [ |
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The next theorem characterizes sqgmg-functions.

Theorem 4.1.12. Let ® : D — Ry be a gmg-function. Then the following

assertions are equivalent:

(1) ® is a sgmg-function.

(2) For each a € Ry, the function @, : Ry — Ry is continuous at 0, where
O, () = ®(x + a,a) for each x € Ry,

Proof. (1) = (2). Suppose for the purpose of contradiction that there
exists ap € Ry such that ®,, is not continuous at 0. Next we see that ® is

not a sgmg-function.

Since ®,, is not continuous at 0, then there exist ¢y > 0 such that for
each 6 > 0 we can find x5 € [0, satisfying ®,,(zs5) > €o (observe that
®,,(0) =0).

Consider the partial metric space (R4, py,) introduced in Example 4.1.8
and take z = ag. Clearly, for each 6 > 0 we have that ys = zs + ag ¢
B

4oy, (T3 €0), Since

qq),pm(x?y(S) = q)(pm(l'vy(;)vpm{l'vm}) = <I>(:g5 + a07a0) = (I)ao(x5) > €0.

It follows that 7(p) # 7(qa ) because B
tion, B,

(x;€0) € T(gp,p) and, in addi-

4% ,pm

4o.p,, (T3€0) & T(p). Indeed, for each § > 0, we have that p,,(z,ys) —
pm(z,2) = x5 + a9 —agp = x5 < 0 and, thus, ys € B, (z;0) but ys ¢
Bos (z;€0). Consequently, ® is not a sgmg-function which is a contradic-

tion.

(2) = (1). By Theorem 4.1.11 we have, for each partial metric space
(X,p), that 7(p) € 7(ga,p). It remains to prove that 7(ge,) C 7(p). With
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this aim we show that, for each x € X, given € > 0 there exists § > 0 such that
By(x;0) C Byg ,(z;€). Indeed, by the continuity of @, .y at 0, there exists
d > 0 such that, for each o € [0,9], we have that @, ,)(a) < e. It follows
that By(z;0) C By, (7;¢€). Hence if y € By(x;9), then p(x,y) — p(z,7) <6
and so p(z,y) — p(z,z) € [0,0[. Whence, g p(z,y) = @(p(z,y),p(z,z)) =
Qp(2,2)(P(2,y) — p(z,7)) < € and, therefore, y € By, (w;¢). This ends the
proof. |

As a consequence of the previous theorem, we can show that the func-
tion ®_ 1 introduced in Example 4.1.3 also constitutes an instance of sqmg-
2

function. Indeed, on the one hand,

B (x):{ 0, ifx=0

5, otherwise

and, on the other hand, for each a €]0, 0o, @(_7%%(%) = x + 5. Then, for
each a € R, we have that <I>(_7%)a is continuous at 0 and so, by Theorem
4.1.12, we conclude that <I>_7; is a sgmg-function. However, the function
®y, given in Proposition 4.1.;, is not a sgmg-function because ®y, is not

continuous at 0.

We finish this section exploring the relationship between gmg-functions,
n-(quasi-)metric preserving functions, n-partial metric preserving functions

and metric generating functions, whenever all of them are defined on D.

Recall that Theorems 1.1.6 and 1.1.12 states that 2-metric preserving
functions and 2-quasi-metric preserving functions belong to . Proposition
4.1.7 shows that there are ¢gmg-functions that are neither 2-metric preserv-
ing functions nor 2-quasi-metric preservings functions because ®5 ¢ O. By
Theorem 1.1.20 we know that metric generating functions also belong to O,

and thus, Proposition 4.1.7 gives an instance, namely ®o, of gmg-functions
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which does not belong to O and, in addition, it is not a 2-metric gener-
ating function. By Corollary 1.1.15, 2-partial metric preserving functions
are monotonemonotone and, therefore, gmg-functions are not, in general, 2-
partial metric preserving functions. Indeed, the aforesaid mapping ®5 is not

monotone, since (2,1) < (2,2) and 1 = ®5(2,1) £ 5(2,2) = 0.

Reciprocally we analyze if 2-(quasi-)metric preserving functions, 2-partial

metric preserving functions and metric generating functions are gmg-functions.

The next example shows that there are 2-metric and 2-quasi-metric pre-

serving functions that are not gmg-functions.
Example 4.1.13. Consider the function ®¢; : D — Ry defined by

0 ifa=b=0

1  otherwise.

<I>071(a, b) = {

Since ®g 1 is monotone, subadditive and ®o1 € O we have, by Theorems
1.1.6 and 1.1.12, that it is a 2-metric and 2-quasi-metric preserving function.

However, ®91(1,1) = 1 and thus, by Theorem 4.1.5, it is not a gmg-function.

Next we show that there are 2-partial metric preserving functions that

are not gmg-functions.

Example 4.1.14. Consider the function ®11 : D — Ry defined by ®11(a,b) =
a+b+1 for all (a,b) € D. It is clear that the function ®q fulfills conditions
in the statement of Theorem 1.1.17 and, thus, it is a 2-partial metric pre-
serving function. Nevertheless, ®11(1,1) = 3 and thus, by Theorem /.1.5, it

s not a gmg-function.

The next example gives an instance of 2-metric generating function which

is not a gmg-function.
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Example 4.1.15. Consider the function ®,,.q : D — Ry given by ®ppeq(a, b) =
“T'H’ foralla,b. It is not hard to check that ®,.q satisfies Theorem 1.1.20 and,
1

hence, that it is a 2-metric generating function. However, ®p0q(1,1) = 5

and, therefore, by Theorem 4.1.5 it is not a gmg-function.

Despite the above exposed facts, surprisingly, gmg-functions can be use-
ful to construct (quasi-)metric preserving functions, i.e., one dimensional

n-(quasi-)metric preserving functions, such as the next result shows.

Proposition 4.1.16. Let ® : D — Ry be a gmg-function. Then, for each
a € Ry, the function ®, : Ry — Ry is a quasi-metric preserving function,
where ®,(z) = ®(x + a,a) for each v € Ry

Proof. Fix a € Ry. Since & : D — Ry is a gmg-function we have that
®,1(0) = {0} Lemma 4.1.10 ensures that ®, is monotone. So, we only need
to show that ®, is also subadditive. To this end, consider z,y € Ry with
x # 0 and y # 0 (the case x = 0 or y = 0 is obvious). It is not hard to check
that (z +y + a,x + a,y + a) is a quadrangular triplet on (a,a,a). Then, by

Theorem 4.1.5, we deduce that
Po(z+y) =P +y+aa) <P(z+a,a)+ 2y +aa) = Pu(r) + Pa(y).

Thus, by Theorem 1.1.12, we obtain that ®, is a quasi-metric preserving

function. |

Since every quasi-metric preserving function is a metric preserving func-
tion (see Theorems 1.1.6 and 1.1.12) we obtain immediately from Proposition

4.1.16 the next consequence.

Corollary 4.1.17. Let ® : D — R, be a gmg-function. Then, for each
a € Ry, the function &, : Ry — Ry is a metric preserving function, where
O, (z) = ®(x + a,a) for each v € Ry
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Examples 4.1.2 and 4.1.3 provide instances of gmg-functions that, by
Proposition 4.1.16 and Corollary 4.1.17, allow us to induce (quasi-)metric

preserving functions.

Observe that Proposition 4.1.16 does not allows us to generate, in gen-
eral, partial metric preserving functions (one dimensional n-partial metric
preserving functions). To clarify this assertion it is sufficient that we con-
sider, again, the function ®9 given in Proposition 4.1.7. Then ®9,(z) = 1
for all x € R. By Theorem 1.1.17 we have that ®5 is not a partial metric
preserving function because 1 < 3, 2 < 3 and ®y,(3) = Py, (1) = P9, (2).

4.2 A general method for generating partial metrics

from quasi-metrics

The aim of this section is to introduce a general method to generate a partial
metric from a quasi-metric in such a way that the technique introduced by
Matthews can be recovered as a particular case. With this objective, we
introduce the next concept which will be essential for tackling the posed

problem.

Definition 4.2.1. We will say that a function ¥ : Rﬁ_ — R, is a partial
metric generating function (briefly, pmg-function) if for each weighted quasi-
metric space (X, ¢, wq) the function py g, : X x X — Ry is a partial metric

on X, where py g, (7,y) = V(q(z,y),wy(z)) for each z,y € X.

The Matthews technique is a particular case of the exposed approach, as

shows the next example.

Example 4.2.2. Let U, : R2 — Ry given by ¥ (a,a) = a+ « for each
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a,ac € Ry. Then, Y is a pmg-function. Indeed, given a weighted quasi-
metric space (X, q,wq) we have that py, qw,(2,y) = q(x,y) +wy(z) for each
x,y € X, which is the well-known partial metric pq v, mduced by the weighted

quasi-metric space q.

The next example provides an alternative way of generating a partial met-
ric from a quasi-metric which is based on the use of partial metric generating

functions.

Example 4.2.3. Define U1 :R2 — Ry by Uyq(a,) = a+a+1. It is not
hard to check that W1 is a pmg-function. Indeed, given a weighted quasi-
metric space (X, q,wy), an easy verification shows that py. | 4w, 5 a partial

metric on X with py., g.w,(®,y) = q(x,y) + we(x) + 1 for each x,y € X.

The so-called upper quasi-metric space will be crucial in order to achieve
our target. Although previously introduced, let us recall that the upper
quasi-metric space is the weighted quasi-metric space given by the tern
(R4, qu,wg,) such that ¢,(z,y) = max{y — z,0} for each z,y € X and

wg, () = x for each z € R

The next result will be crucial in order to yield a characterization of

pmg-functions later on.

Lemma 4.2.4. Let U : Rﬁ_ — Ry be a pmg-function and o € Ry. Then ¥

is monotone in the first component.

Proof. Fix a € R;. Since V is a pmg-function we have that, given

(R4, qu, wg, ), the function py 4, w,, is a partial metric on R%—' Let a,b € Ry

Way,

and assume that a < b. Then, ¢,(o,a+a) = a, gu(a,a) =0, gu(a,b+a) =b
and ¢q,(b+ a,a + «) = 0. So, on the one hand, we have that
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U(a,a) + ¥(0,b+ ) =
U(gy(o,a+ a),wg, (@) + U(gu(b+ o, b+ o), wg, (b+ a)) =

DPu,qu,wq, (a7 a+ a) + Py ,qu,wq, (b +a,b+ a)’

On the other hand, we have that

U(b,a) + ¥(0,b+ ) =
U(qu(a, b+ a),wg, (@) + U(qu(b+ a,a + a),wy, (b+ a)) =

DPu,qu,wq, (a7 b+ Oé) + PY,qu,wq, (b +tao,a+ a)’

Now, since py g, w,, 15 a partial metric on Ry we have that
DU, quwg, (O GF+C)FDPW g, g, (00, 0+) < D g, 0y, (@ b+Q) +DY g 0, (DT, atar).
It follows that
U(a,a) +¥(0,b+a) <U(b,a)+ ¥(0,b+ a).

This last inequality implies ¥(a, o) < W(b, ), as we claimed. |

The next theorem provides a characterization of the class of pmg-functions
and, thus, a general method to generate a partial metric from a (weighted)

quasi-metric.

Theorem 4.2.5. Let VU : Rf_ — R4 be a function. The the following asser-

tions are equivalent:
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(1) ¥ is a pmg-function.
(2) U satisfies, for each a,b,c,a, B € Ry, the following conditions:

(i) ¥(a,a) = V(a+ a—f,5), whenever a + a > f3;

(i1) ¥(c,a) + ¥(0,8) < ¥(a,a) + V(b,B3), whenever ¢ < a + b and
B<a+a;

(113) If U(0,a) = ¥(a,a) = V(0,5) and a + o > B, then a = 0 and
a=p.

Proof. (1) = (2). Let a,b,c,a, 5 € Ry.

In order to prove (i), consider that a+ « > 3. Notice that the case a =0

and the case a = [ are obvious. So, we suppose that a > 0 or a # f.

Consider the set X = {x,y, 2z} and define the function ¢ on X x X as

follows:
q(z,y) =a; qly,z)=a+a—p8; q(z,2)=2a+a—7p

q(z,x) =2a+2a -3 qy,z)=at+a—P3; qzy) =ata

q(x,z) = q(y,y) = q(z,2) = 0.

It is not hard to verify that ¢ is a quasi-metric on X. Besides, if we define

the function w, on X given by

we have that
q(z,y) +twy(r) =a+a=a+a—B+8=qy,r)+wyy);

q(z,2) twy(z) =2a+a—-B+a=2a+2a— 0 =q(z,z)+wyz)
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and

q(y,2) +we(y) =a+a— B+ =a+a=q(zy) +wz)

Therefore, (X, q,w,) is a weighted quasi-metric space.

Now, by hypothesis, py 4,4, is a partial metric on X, where py g, (u,v) =
U (q(u,v), wqy(u)) for each u,v € X. Then, py gu, (U, v) = pw guw,(v,u), for

each u,v € X. Hence

U(a, o) = V(g(z,y), wy(x)) =
PV .q,wq (x,y) = PY,qwq (y,x) =

V(q(y, ), wy(y)) = ¥(a+a— B, B).

Next we show that ® fulfils (iz). To this end, let a,b,c,a, 8 € Ry with
c<a+band g < a4+ «a Lemma 4.2.4 ensures that the inequality under
consideration is hold for the case a = 0 and o = 3, and for the case b = 5 = 0.
So, we suppose that a > 0 or a # 3, and b > 0 or § > 0. First, we will prove
that the next inequality is fulfilled

U(a+b,a)+¥(0,5) < U(a,a)+ V(b P).

With this purpose we consider the set X = {x,y, z}. Define the function ¢
on X x X by:

qz,y) =a; qly,z)=a+a—PF; qly,z)=b; qz,y) =b+p;

q(x,z) =a+b; q(z,x) =a+b+ q;

and

q(z,z) = q(y,y) = q(z,2) = 0.
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Then one can verify that ¢ is a quasi-metric on X. Even more, if we define

we(x) = a, wy(y) = f and wy(z) = 0, then
q(z,y) +we(r) =a+a=a+a—PB+pF=qyz)+wy);

gz, z) +we(z) =a+b+a=q(z,x) +wyz)

and
q(y,2) +we(y) = b+ B = q(2,y) + we(2).

Therefore, (X, q,wy) is a weighted quasi-metric space.

Since ¥ is a pmg-function we have that py 4., is a partial metric on X,
where py g, (u,v) = ¥(q(u,v),wy(u)) for each u,v € X. From this fact we
deduce, on the one hand, that

U(a+b, ) +9(0, 8) = W(g(z, 2), wy(x)) + V(g(y,y), wy(y)) =

PU.gwy (T5 2) + Pw g, (Y5 Y)s

and, on the other hand, that

U(a,a)+¥(b, B) = V(q(x,y), we(x))+¥(q(y, 2), w(y)) = pwq(®, y)+pw (Y, 2).

Since py ¢(z, 2) + Pw,g(y,y) < pw.q(z,y) + pwg¢(y, z), we obtain that

U(a+b,a)+¥(0,5) < U(a,a)+ V(b ).

Thus, by Lemma 4.2.4, we conclude that

U(e,a) +0(0,8) < ¥(a+b,a) +V(0,8) < ¥(a,a)+ V(b f).

It remains to prove condition (7i7). Suppose that ¥(0,a) = ¥U(a,a) =
U(0,58) and a + o > 3.
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Consider the weighted quasi-metric space (R, qu,wq, ). Then, py g, w,.,

is a partial metric on Ry, where py 4, w,, (7,y) = ¥(qu(z,y), wq, (z)) for each

x,y € Ry.

First, we will see that o = . Suppose that a > /3 (the proof for the case

B > « runs following similar arguments). In such a case,
PY,qu,wq, (a7 a) = \P(qu(av a)? Wq, (a)) = \I](Ov a);

PV,qu,wq,, (/87/8) = W(Qu(ﬂ:ﬂ)vw% (/8)) = \I](OHB);
pwg. (@, 8) = ¥(qu(a, B), wg, (@) = ¥(max{f — a,0},a) = ¥(0, ).

Since py.g,.w,, 18 @ partial metric then py g w,, (@, 8) = Pw.gu,w,, (B, @) and,

hence,
ququwq'u (a7 a) - quvQﬂUQu (O[, 6) = p‘I/7q7'quu (/87 /8)7

and so a = 5.

Now, for the purpose of contradiction, we assume that a > 0. Consider
the set X = {x,y, 2z} with z # y. Define the function ¢ on X x X by:

a(z,y) =q(z,y) = q(y,2) =q(y,2) = a;  q(z,2) = q(z,7) = 2a;
and
a(z,z) = q(y,y) = q(z,2) = 0.

One can verify that ¢ is a quasi-metric on X. Moreover, if we define wy(x) =
wq(y) = wy(2) = o, we have that

q(z,y) +wy(r) =a+a=a+a=q(y,z) +w(y);

q(z,2) + wy(z) =20+ a = q(z,x) + wy(2)
and

q(y, 2) +we(y) = a+a = q(2,y) +wy(2).
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Therefore, (X,q,w,) is a weighted quasi-metric space. Then, py g, is a
partial metric on X, where py g, (u,v) = ¥(q(u,v), wq(u)) for each u,v €

X . Furthermore we have

pq!,q,wq(xyx) = \P(Q($v$)7wq($)) = \I/(0,0();
Pv,q,wq ($ay) = \IJ(Q($7y)7wq(x)) = \IJ(CL’O‘);

and

Pw.gw, (U, y) = U(a(y,y), we(y)) = ¥(0,q).
Since ¥(0, ) = ¥(a, ) we obtain that
P,q,wq (wv x) = P¥,q,wq (.1,’, y) = P¥,q,wq (yv y)

and, thus, that x = y, which is a contradiction.

(2) = (1). Let (X,q,wq) be a weighted quasi-metric space. Define
P.qw, (T, y) = Y(q(x,y), wy(x)) for each z,y € X. Next we show that

PW,qw, 18 @ partial metric on X. To this aim, let z,y,z € X.

Suppose that py g.w,(T,2) = Pv.gw,(T,Y) = Pw.guw,(y,y). By construc-

tion of py ¢w, we have that

U (0, we(2)) = W(g(z, ), wq(x)) = U(g(z,y), we(x)) =

V(q(y,y), we(y)) = ¥(0,wq(y))

Besides q(x,y) + wq(x) > wy(y), since ¢(z,y) + we(x) = q(y,x) + wq(y)-
Whence we deduce that ¢(x,y) = 0 and wy(x) = wy(y), because of ¥ sat-
isfies (4i¢). Moreover, in such a case we have that wy(z) = q(y, ) + we(y),

which implies that ¢(y,xz) = 0. Thus, ¢(x,y) = q(y,x) = 0 and so = = y.
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Obviously, if x = y we have that py g.w, (2, %) = P guw, (T, Y) = Pw.q.w, (Y, V)

We conclude that py g, satisfies axiom (P1) of partial metrics.

The definition of W gives that py ¢, (2, 2) = ¥(0,we(z)) > 0. Moreover,

Lemma 4.2.4 guarantees that

PO, (T, ) = U (0,wy(x)) < V(q(,y), we(T)) = Pw,gw,(T,Y)-

It follows that py g, satisfies axiom (P2) of partial metrics.

Since q(z,y) + wq(xz) > we(y) and q(z,y) + wy(z) = q(y, ) + wy(y) we

obtain from condition (¢) that

p\p,q,wq(w,y) = \Il(q(w,y),wq(w)) = \I/(q(ywr)qu(y)) :p\I/,q,wq(wa)-

S0 Py g,w, fulfils axiom (P3) of partial metrics.

Finally we show that py ¢ ., satisfies axiom (P4) of partial metrics. On

the one hand,

PYqwe (T 2) + P .gw, (Y, y) =
U(g(z, 2), wq(x)) + ¥(q(y,y), we(y)) =
U(q(w, 2), wg(x)) + (0, wy(y))-

On the other hand,

p\I/,q,wq ('r7 y) +p\I/,q,wq (y7 Z) = \P(Q('r7 y)? wq('r)) + \I](Q(yv 2)7 wq(y))

Since ¢(z,z) < q(z,y) + q(y, z) and wy(y) < q(z,y) + wy(z), we deduce

from condition (i) that
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V(q(z,2), we(x)) + ¥ (0,wy(y)) < ¥(q(z,y), we(x)) + ¥ (q(y, 2), wq(y)).

Hence we conclude that

p\Ijquwq (w7 Z) + p\Ij7q7wlI (y7 y) S p\Ijquwq (w7 y) + p\Ij7q7wlI (y7 Z)'

Therefore py g, is a partial metric on X, and this ends the proof. |

An immediate consequence of the above characterization is given by the

following result which will be key in our subsequent discussion.

Corollary 4.2.6. Let VU : Ra_ — Ry be a pmg-function and let o,a € R
If ¥(a,a) = (0, ), then a = 0.

Proof. Suppose that ¥(a,a) = ¥(0,a). Set a + a = §. By condition
(7) in the statement of Theorem 4.2.5 we have that U(a,a) = ¥(0,a + «).

aforesaid theorem we deduce that a = 0. |

Similar to the case of quasi-metric generating functions one can explore
whether, given a pmg-function ® : Ri — R, and a weighted quasi-metric
space (X, q,wy), the partial orders 2P0, and =<, are exactly the same on
X, i.e., whether a pmg-function preserves the order induced by the quasi-
metric that it transforms. The next result gives a positive answer to the

posed inquiry.

Proposition 4.2.7. Let ® : R2 — Ry be a pmg-function and let (X, q,w,)

a weighted quasi-metric space. Then qul,q,wq:jq'

Proof. Let z,y € X. Suppose that x <, y. Then ¢(z,y) = 0 and, thus,
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we have that

P, (T y) = V(a(@,y), we(x)) = V(0 wy(x)) =
\I](q(xvx)qu(x)) = p‘If#qu(x?x)'

Whence we get that x =

PY,q,w —PY,q,w,

, Y- Next assume that x < . Y- Then

PU.quwy (T, Y) = P¥.gw, (7, 2). Hence we have that

\I/(q(xvy)va(x)) = \I](q(wvx)qu(x)) = \IJ(vaQ(x))’

Corollary 4.2.6 ensures that ¢(z,y) = 0 and, thus, that z <, y. [ |

Similarly to the the gmg-functions, it seems natural to wonder if a pmg-
function ® preserves the topology induced by the weighted quasi-metric ¢
that it transforms and, hence, 7(q) = 7(py,q,w,). However, the next example

shows that this is not the case.

Example 4.2.8. Define U1 : R2 — Ry by ¥1(0,0) = 0 and ¥q(a,a) =
a+ a+ 1 otherwise. A straightforward computation gives that ¥y is a pmg-
function. Consider the weighted quasi-metric (Ry,qy,,wg,). It is not hard
to check that, for each x € Ry and € > 0, the open ball centered at x with
radius € 1s given by By, (x;€) = (0,2 + €. However, By, . . (0;¢) = {0}
for each € €]0,1[. Hence, By, g e, (0;€) & 7(qy) and, therefore, T(q,) #

T(pq)l,quywqu ) .

In the light of the preceding example we focus our effort on characterizing
those pmg-functions which preserve the topology of the weighted quasi-metric

that it transforms. With this aim we introduce the notion below.

Definition 4.2.9. Let ¥ : Ri — R, be a pmg-function. We will say
that W is a strongly partial metric generating function (spmg-function for

short) if for each weighted quasi-metric space (X, g, w,) we have that 7(¢q) =

T(p\ll,q,wq)'



ON MATTHEWS’ RELATIONSHIP BETWEEN QUASI-METRICS AND PARTIAL
128 METRICS: AN AGGREGATION PERSPECTIVE

It is easily seen that Examples 4.2.2 and 4.2.3 provide instances of spmg-

functions.

Similar to gmp-functions, we have that the topology induced by the par-
tial metric py g0, generated from a pmg-function W is always finer than the
topology induced by the weighted quasi-metric ¢ from which it is constructed.

The next result states such an affirmation.

Theorem 4.2.10. Let ¥ : R2 — Ry be a pmg-function and let (X, q,w,)

be a weighted quasi-metric space. Then, 7(q) C T(Pw,q,uw,)-

Proof. Consider € X and the real number € > 0. Put § = (e, wy(z))—
U(0,wg(x)). Corollary 4.2.6 guarantees that 6 > 0. Next we show that
qu,,qywq(ac;é) C By(z;e). Let y € B,

Pv,q,wq (l', CU) + 6. Then

\I,yq,wq(a;;é). Then, py gw,(z,y) <

U(g(,y), we(x)) < ¥(0,wq(x)) +0 = W(e, wy(x)).
Now, by Lemma 4.2.4, we deduce that ¢(z,y) < e. Therefore, y € By(x;€).

The next theorem characterizes spmg-functions.

Theorem 4.2.11. Let VU : ]R%_ — R be a pmg-function. Then the following

assertions are equivalent:

(1) ¥ is a spmg-function.

(2) For each o € Ry, the function ¥V, : Ry — Ry is continuous at 0,
where ¥, (a) = Y(a,a) for each a € Ry.
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Proof. (1) = (2). Suppose for the purpose of contradiction that there
exists ag € Ry such ¥, is not continuous at 0. Next we show that ¥ is not

a spmg-function.

Since W,, is not continuous at 0, then there exist ¢g > 0 such that for
each § > 0 we can find a5 € [0, [ satisfying ¥, (as) — ¥u,(0) > € (observe
that W, (0) < Wy, (as) by Lemma 4.2.4).

Consider the weighted quasi-metric space (Ry, gy, wg,). Take x = «p.
Then 7(qu) # T(Pw,qu.w,, ), since we have that By, , . (%;€0) € T(Pw,qu,wq, )
but Bpy ;. . (z;€0) € 7(qu)- Indeed, for each § > 0, put ys = as + op. Then
Ys € By, (x;0), since qu(z,ys) = max{ys — z,0} = a5 < 0. Nevertheless, we

have that Y5 & Bpy,, 4, .wq, (T €0) because

PU.guwg, (T,U5) = V(qu(2,Ys), wq, (1)) = ¥(as, a0) = Yaolas) =
W, (0) + €0 = W(0, wg, (a0)) + €0 = Pw.gu.,, (T, 7) + €0.
Therefore, ¥ is not a spmg-function which is a contradiction.

(2) = (1). Let (X,q,w,) be a weighted quasi-metric space. Suppose
that, for each o € Ry, the function ¥, is continuous at 0. By Theorem
4.2.10 we deduce that 7(¢) € T(pw,quw,)- So we just need to show that
T(pw,qw,) € T(q). Next we prove that, given 2 € X we have that, for each
real number € > 0 there exist a real number § > 0 such that By(z;d) C
B

D0 (x;€). Since W, (z) 18 continuous at 0, there exists 6 > 0 such that,

for each a € [0,6[ we have that ¥, ,)(a) — ¥, (2)(0) < €. In such a case,
By(z;9) C B, z;€). Indeed, if y € By(z;6), then ¢(z,y) < 0 and,
in addition, p\Il,q,wq(l'ay) - p\Il,q,wq(:L'vl') = \ijq(m)(Q(l'ay)) - \ijq(a:)(o) < €

\Il,q,wq(
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Therefore y € B, T;€). [ |

\I/,q,wq(

Note that the pgm-function ¥y introduced in Example 4.2.8 fulfils that
the function ¥ is not continuous at 0, which agrees with the fact that ¥y is

not a spgm-function.

We conclude this section discussing the relationship between pmg-functions,
2-(quasi-)metric preserving functions, 2-partial metric preserving functions

and 2-metric generating functions.

Example 4.2.3 shows that there are pmg-functions that are neither 2-
(quasi-)metric preserving functions nor metric generating functions because
the function Wy; introduced in Example 4.2.3 fulfils that U4 ¢ O. Let
us recall that Theorems 1.1.6, 1.1.12 and 1.1.20 state that 2-(quasi-)metric

preserving functions and metric generating functions belong to O.

Nevertheless, the next result shows that every pmg-function is always a

2-partial metric preserving function.

Proposition 4.2.12. Let U : Rﬁ_ — Ry be a pmg-function. Then V is a

2-partial metric preserving function.

Proof. We prove that W satisfies (1) and (2) in Theorem 1.1.17. To
this end, assume that (z1,22), (y1,y2), (21, 22), (w1, w2) € R2, with (z1,22)+

(y1,y2) = (21, 22) + (w1, w2), (y1,y2) < (21,22) and (y1,y2) = (w1, wz). Next

we show that

U(z1,22) + V(y1,y2) < ¥(z1, 22) + ¥(wi, wo).

Set c=x1+x2, a=21+20, b =w1+ws—y1 —y2, « =0and 5 = y; +yo-
Then, ¢,a,b,a,5 € Ry, ¢ <a+band a+ «a > 5. So, by (ii) in Theorem
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4.2.5, we have that
U(zy +22,0) + V(0,1 +y2) < V(21 + 22,0) + V(wi + w2 — y1 — y2,y1 +¥2).

Besides, by (i) in Theorem 4.2.5, we have that ¥(z; + z2,0) = ¥(xy, z2),
V(0,51 +vy2) = VU(y1,y2), V(21 + 22,0) = U(z1, 22) and ¥(wy, we) = ¥(w; +
we — Y1 — Y2,Y1 + y2). Therefore we obtain that W(xi,xe) + V(y1,y2) <
U(z1,29) + W (wy,ws) and, thus, that (1) in Theorem 1.1.17 is satisfied.

Next we show that W satisfies (2) in Theorem 1.1.17. Take the elements
(r1,22), (y1,Y2), (21, 22) € R%r, with (z1,x9) < (21, 22) and (y1,¥y2) =X (21, 22),
such that ¥(z1,22) = U(y1,y2) = Y(z1,22). We claim that (x1,z9) =
(Y1, y2) = (21, 22)-

Consider @ = z1 + 20 —x1 — 22, @ = x1 + x2 and 5 = y; + y2. Then
a,a, 8 € Ry and a+« > . By (i) in Theorem 4.2.5, we have that ¥(0, ) =
V(0,21 +x2) = VU(x1,22), V(a,a) = V(21 +20— 21 — 22,21 +x2) = V(2z1, 22)
and ¥ (0,8) = V(0,y1 +y2) = ¥(y1,y2). Then ¥ (0,a) = ¥(a,a) = ¥(0, ).
Hence, by (i4i) in Theorem 4.2.5, we obtain that z1 + 29 = 21 + x2 = y1 + yo.
Moreover one can show easily that z; = x1 = y; and zo = x2 = yo, since z1 >
max{x1,y1} and zo > max{xs,yo}. Therefore, (x1,22) = (y1,vy2) = (21, 22)

as we claimed. |

Conversely we analyze if 2-(quasi-)metric preserving functions, 2-partial

metric preserving functions and metric generating functions are pmg-functions.

The next example shows that there are 2-metric and 2-quasi-metric pre-

serving functions that are not gmg-functions.
Example 4.2.13. Consider the function W 1 :Ri — R defined by

0 fa=0b=0

1 otherwise.

111071 (CL, b) = {
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Clearly o1 is monotone, subadditive and Wo; € O. By Theorems 1.1.6
and 1.1.12 we have that it is a 2-metric and 2-quasi-metric preserving func-
tion. However, Wy 1 is not a pmg-function. Indeed, ¥(1(0,1) = ¥o1(2,1) =
U 1(0, %) =1 and, in addition, % <142 but2#0. So, g1 does not satisfy

condition (iii) in the statement of Theorem 4.2.5.

Next we show that there are 2-partial metric preserving functions that

are not pmg-functions.

Example 4.2.14. Consider the function \I/% : R2 — Ry defined by \D%(a, b) =
a—l—% for all (a,b) € R%—' 1t is clear that the function \IJ% fulfils the conditions

in the statement of Theorem 1.1.17 and, thus, it is a 2-partial metric preserv-

ing function. However, \IJ% does not satisfies condition (iii) in the statement

of Theorem 4.2.5 and, hence, it is not a pmg-function. Notice that 0 < 141

and that \Ilé(l, 1) # \II%(2,0).

The next example gives an instance of metric generating function which

is not a pmg-function.

Example 4.2.15. Consider the function V., : Rf_ — Ry defined by
Uz (a,b) = max{a,b} for all a,b € Ry. It is not har to check that V4,
satisfies Theorem 1.1.20 and, hence, that it is a metric generating function.
Moreover, 0 < 141 and Vi (1,1) # Uinax(2,0). This Upax does not satisfy

condition (iii) in Theorem 4.2.5 and, therefore, it is not a pmg-function.

Similar to the (quasi-)metric preserving approach, a method for generat-
ing partial metric preserving functions from pmg-functions can be obtained

such as the next result shows.

Theorem 4.2.16. Let ¥ : Ry — Ry be a pmg-function. Then for each
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a € Ry, the function ¥, : Ry — Ry is a partial metric preserving function,
where ¥, (a) = ¥Y(a,a) for each a € R

Proof. Fix a € Ry. First we show that ¥, satisfies condition (1) in
statement of Theorem 1.1.17. Let z,y,z,w € Ry such that 2 +y < z 4+ w
and y < min{z,w}. Set a =2, b=w—y, c=x and 8 =y + a. It follows
that that ¢ < a+ b and 8 < a + « and, by condition (i) in Theorem 4.2.5,
that ¥(0,5) = ¥(y,a) and ¥(b, 8) = ¥(w, «). By condition (i) in Theorem
4.2.5 we deduce that

Vo) + Valy) = ¥(c,a) + (0, 8) < ¥(a,a) + ¥(b, B) = Va(z) + Ya(w).

Next we prove that ¥, satisfies condition (i7) in statement of Theorem
1.1.17. Let z,y,z € Ry, with x > max{y, z}, and suppose that ¥, (z) =
Uu(y) = Vu(2). Seta=z -y, =y+«aand 8 = z+ «. In such a case,
we have that ¥(a,a’) = ¥(z,a), ¥(0,a/) = ¥(y,a) and ¥(0,5) = ¥(z, )
because of U satisfies condition (i) in Theorem 4.2.5. Then we obtain that
U(a,a') =¥(0,0') = ¥(0,8) and a + o' > 8. So, a =0 and o/ = 3 due to
U satisfies condition (éi7) in Theorem 4.2.5. Hence, x = y = z. This ends

the proof. |

As an immediate consequence of Theorem 4.2.16 and Proposition 1.1.19
we obtain a method for generating (quasi-)metric metric preserving functions

from pmg-functions.

Corollary 4.2.17. Let ¥ : R2 — Ry be a pmg-function such that 1(0,0) =
0. Then for each o« € Ry, the function ¥, : Ry — Ry s a quasi-melric
preserving function and, thus, a metric preserving function, where ¥, (a) =

U(a,a) for each a € Ry.

Notice that Example 4.2.3 gives an instance of pmg-functions that allows
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us to induce, following Theorem 4.2.16, a partial metric preserving function.
In addition, Examples 4.2.2 and 4.2.8 yield instances of pmg-functions which
are able to generate, according to Corollary 4.2.17, partial metric preserving

functions that are at the same time (quasi-)metric preserving functions.



Chapter 5

What is the aggregation of a
partial metric and a

quasi-metric?

Generalized metrics have been shown to be useful in many fields of Com-
puter Science. In particular, partial metrics and quasi-metrics are used to
develop quantitative mathematical models in denotational semantics and in
asymptotic complexity analysis of algorithms, respectively (see Subsection
1.1.4). The aforesaid models are implemented independently and they are
not related. However, it seems natural to consider a unique framework which
remains valid for the applications to the both aforesaid fields. A first natural
attempt to achieve that target suggests that the quantitative information
should be obtained by means of the aggregation of a partial metric and a
quasi-metric. Inspired by the preceding fact, we explore the way of merging,

by means of a function, the aforementioned generalized metrics into a new

135
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one. We show that the induced generalized metric matches up with a partial
quasi-metric. Thus, we characterize those functions that allow to generate
partial quasi-metrics from the combination of a partial metric and a quasi-
metric. Moreover, the relationship between the problem under consideration
and the problems of merging partial metrics and quasi-metrics is discussed.
Examples that illustrate the obtained results are also given. Finally, an ap-
plication of the exposed theory to develop a framework which remains valid,
at the same time, for modeling in denotational semantics and in complexity

analysis of algorithms has been also given.

5.1 Partial quasi-metric generating functions and

their characterization

In [51], the notions of partial metric and quasi-metric were generalized.
Specifically, H.-P.A. Kiinzi et al. introduced the concept of partial quasi-
metric. Let us recall that a partial quasi-metric space is a pair (X, pq),
where X is a non-empty set and pqg : X x X — R, is a function satisfying
for all z,y,z € X the following:

(PQ1) pq(z,z) < pq(z,y) and pg(x,z) < pq(y, x);
(PQ2) pq(x,2) +pqe(y,y) < pq(z,y) + pq(y, 2);

(PQ3) =z =y <« pg(z,z) = pq(z,y) and pq(y,y) = pqe(y, ).

With the aim of providing a solution to the problem stated in the pre-

ceding section we introduce the notion of partial quasi-metric generating
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function. Thus, we will say that a function ¢ : Ri — R, is a partial quasi-
metric generating function (pgmg-function for short) provided that for each
partial metric space (X,p) and each quasi-metric space (Y, q), the function
PQs : (X xY) x (X xY) — Ry is a partial quasi-metric on X x Y, where
PQos((z,y), (u,v)) = ®(p(z,u),q(y,v)) for each (x,y), (u,v) € X x Y.

Later, Proposition 5.1.4 and Example 5.1.8 will provide non-trivial in-
stances of pgmg-functions. Furthermore, an instance of a function that is
not a pgmg-function, and that arises in a natural way in aggregation opera-

tor theory, will be given by Example 5.1.10.

Before, we yield a characterization of pgmg-functions. To this end, recall
that Ri becomes a partial ordered set when we endow it with the point-
wise partial order <, ie., (a,a) <X (b,5) & a < band o < . Moreover, a
function ® : R2 — R, is monotone provided that ®(a, a) < ®(b, ) whenever

(a, ) 2 (b, B).

The following result will be useful in our subsequent work.

Lemma 5.1.1. If & : Rf_ — Ry us a pgmg-function, then it is monotone.

Proof. Let a,b, o, § € Ry such that (a,a) < (b, 3). Consider the partial
metric space (Ry,py,) and the quasi-metric space (R, gq,), where p,,(z,y) =
max{a, b} for all a,b € Ryand q,(z,y) = max{y — x,0} for all x,y € R. By
our assumption, the function PQg : (R; x R) x (R4 x R) — R4 defined
by PQo((x,y), (u,v)) = ®(pm(z,u),qu(y,v)) is a partial quasi-metric on
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R4 x R. Then, for each (z1,y1), (z2,92), (x3,y3) € Ry x R, we have that

P (pm (21, 23),45(y1,y3)) + P(pm (22, 22), 45 (y2, y2)) =
PQo((z1,y1), (x3,93)) + PQo((2,y2), (¥2,92)) <
PQa((z1,91), (v2,92)) + PQa((z2,y2), (z3,y3)) =
D(pim(w1,72), ¢s(y1,92)) + P(Pm (22, 3), 45 (Y2, ¥3))-

Taking in the preceding inequalities 1 = a, 9 = b, 3 = 0, y1 = 0, yo =
f and y3 = a we obtain that ®(a,a) + ®(b,0) < ®(b,8) + ®(b,0), since
pm(T1,23) = a, pm(T2,72) = pm(T1,22) = Pm(@2,73) = b, ¢s(v1,¥3) = «,
qs(y1,y2) = B, qs(y2,y2) = 0 and ¢5(y2,y3) = 0. So ®(a,a) < @(b,5). N

The next theorem provides a characterization of those functions ® : Ry x

R+ — R, which are a pgmg-functions.

Theorem 5.1.2. A function ® : Rz_ — Ry s a pgmg-function if and only
if for each a,b,c,d, o, 8,7 € Ry the following assertions hold:

(i) If b > a, then ®(a,0) < ®(b, «);

(1) If ¢ > max{a,b}, ®(a,0) = ®(c,a) and (b,0) = ®(c,3), thena =0b=
cand a==0;

(111) If b < min{c,d}, a+b<c+d and o <+, then ®(a,a)+ P(b,0) <
®(c, ) + @(d, 7).

Proof. Assume that @ : Rﬁ_ — Ry is a pgmg-function. Next we show
that @ satisfies (i), (i7) and (ii7).

(i) It is fulfilled by Lemma ?7.

(ii) Let a,b,c,a, 8 € Ry such that ¢ > max{a,b}, ®(a,0) = ®(c,«) and
®(b,0) = ®(c, B). We will show that a =b=c and a = = 0.
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On the one hand, consider the set X = {a,b,c} and we define the

function px on X x X as follows: px(a,b) = px(b,a) = px(a,c) =

px(c,a) = px(b,c) = px(c,b) = ¢ and, px(a,a) = a, px(b,b) = b and

px(c,c) = c¢. By our assumption on a,b,c¢ € Ry, one can verify that

px is a partial metric on X.

On the other hand, we will distinguish two cases on «, 8 € Ry

Case 1.

Case 2.

Suppose that & = § = 0. Then the function PQg : (X X
R) x (X x R) — Ry given, for each (z,y),(u,v) € X x R,
by PQas((z,y), (u,v)) = ®(px(z,u),de(y,v)) is a partial quasi-
metric, where d. denotes the euclidean metric (note that every

metric is a quasi-metric). Moreover,

PQo((a,0), (a,0)) = ®(px(a,a),dc(0,0)) = ®(a,0),
PQs((a,0),(b,0)) = ®(px(a,b),de(0,0)) = ©(c,0),
PQo((b,0),(b,0)) = (px(b,b),dc(0,0)) = (b, 0),

PQo((b,0), (a,0)) = (px (b, a),de(0,0)) = ®(c,0).

Since ®(a,0) = ®(c,0) and ®(b,0) = P(c,0) we deduce that

PQ@((CL,O), (CL, 0)) = PQ@((CL,O), (b,O)) and
PQCI)((bv 0)7 (b7 0)) - PQCI)((bv 0)7 (a,O)).

Therefore, by axiom (PQ3), we deduce that (a,0) = (b,0) and so
a = b. Furthermore, if we repeat the above process using now a

and ¢, we deduce that a = ¢ and so, a = b = ¢ as we claimed.

Suppose that either o # 0 or 5 # 0. We will show that this
case cannot be given. Consider the partial metric space (X,px)
introduced in Case 1 and the quasi-metric space (Y, qy), where
Y ={1,2,3} and the quasi-metric gy on Y is given by ¢y (1,2) =
qv(2,3) = qv(1,3) = o, qv(2,1) = ¢v(3,2) = ¢v(3,1) = B and
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gy (i,7) = 0 for all 7 € {1,2,3}. Then the function PQg : (X X
Y) x (X xY)— Ry given by

PQq)((l‘,y), (U7U)) = (I)(px(l',u),qY(y,U)),

for each (z,u), (y,v) € X xY, is a partial quasi-metric. Moreover

PQos((a,1),(a,1)) = ®(px(a,a),qy(1,1)) = ®(a,0),
PQo((a,1),(b,2)) = ®(px(a,b),qv(1,2)) = ®(c, a),
PQo((b,2),(b,2)) = ®(px(b,b),qv(2,2)) = (b,0),

PQo((b,2),(a,1)) = ®(px(b,a),qv(2,1)) = ®(c, B).

Since ®(a,0) = ®(c, @) and (b,0) = ®(c, 8) we deduce that

PQ@((% 1)7 (av 1)) = PQ@((% 1)7 (b7 2)) and
PQ@((bv 2)7 (bv 2)) = PQ@((bv 2)7 (a7 1))
So, by axiom (PQ3), (a,1) = (b,2) which gives a contradiction.

Thus, such a case cannot be given.

Hence, we have shown that a =b=cand a = =0.

(iii) Let a,b,c,d,c, B,y € Ry, with b < min{¢,d}, a +b < ¢+ d and
a<fB+7.
First, we will show that ®(c+d — b, ) + ®(b,0) < ®(c, 3) + ®(d,~,).

To this end we distinguish two cases:

Case 1. a = =+ =0. Set X = {x1,x9,23} with 1 = a, o = b and
x3 = ¢ and, besides, define the partial metric p’y on X as follows:
Px(z1,23) = py(23,21) = c+d = b, py (w1, 22) = Py (v2,71) = ¢,
Px(22,23) = px(23,22) = d, px(v1,21) = px(23,23) = 0 and
Py (22, x2) = b. Then the function PQg : (X XxR)x (X xR) — R4
defined, for each (z,y), (u,v) € X x R, by PQs((x,y), (u,v)) =
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Case 2.

O (p'y(x,u),de(y,v)), is a partial quasi-metric. By axiom (PQ2),
we have that
O(py (21, 23), de(0,0)) + @(plx (22, 22),de(0,0)
PQo((21,0), (x3,0)) + PQa((x2,0), (22,0)) <
PQo((21,0), (x2,0)) + PQa((x2,0), (x3,0))
O (p'y (z1,22),de(0,0)) + (py (w2, x3),de(0,0)).
So ®(c+d—5b,0)+ P(b,0) < P(c,0) + D(d,0). Thus, in this case,
O(c+d—b,a) + P(b,0) < P(c, B) + P(d, 7).
The condition o« = f = v = 0 does not hold, i.e., at least one
element of {a, 3,7} is different of 0. Notice that « < 8 + «v
and, thus, that either 8 # 0 or v # 0. Suppose, without loss of
generality, that £ # 0.
Consider the quasi-metric space (Y, ¢} ) such that ¥ = {1,2,3}

) =

and the quasi-metric ¢}, is defined as follows:

ay(1,3) = @, ¢y(1,2) = ¢4(3,1) = ¢(3,2) = B, ¢v(2,3) =
¢ (2,1) = v and ¢ (7,7) = 0 for each ¢ € {1,2,3}.

Then the function PQg : (X X Y) x (X xY) — R4 defined
by PQa((z,y), (u,v)) = (py(x,u),dy (y,v)), is a partial quasi-
metric. Here (X, p'y) is the partial metric introduced in the pre-
ceding Case 1. By axiom (PQ2) we have that

\)

) =

’

O(px (21, 73), 4y (1,3)) + @(ply (w2, 22), gy (
PQa((21,1), (z3,3)) + PQa((22,12), (2,2)
PQa((x1,1), (22,2)) + PQa((2,2), (x3,3)

O(px (21, 72), 4y (1,2)) + S (ply (2, 23), 4y (2, 3))-
Thus, ®(c+d—b,a)+ ®(b,0) < &(c, B)+ P(d,y) in this case too.

IN

2
)
) =

Now, taking into account that a < ¢+ d — b, we have, by Lemma 5.1.1,
that ®(a,a) < ®(¢c +d — b,a) and so ®(a,a) + ®(b,0) < P(c+d —
b,a) + ®(b,0) < ®(c, B) + ®(d, ), as we claimed.
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Hence, we have proved that if ® is a pgmg-function then it satisfies (i), (i)

and (7).

Next we assume that ® : R — R satisfies (i), (ii) and (iii). We will
prove that ® is a pgmg-function. To this end, (X,p) be a partial metric
space and let (Y,q) be a quasi-metric space. Define the function PQg :
(X xY)x (X xY) = Ry by PQo((x,y), (u,v)) = ®(p(x,u),q(y,v)) for
each (z,y), (u,v) € X xY. We will prove that PQg is a partial quasi-metric
on X xY.

(PQ1). Let (x1,y1), (x2,y2) € X x Y. Since p is a partial metric on X, we
have that p(x1,z2) = p(z2,21) > p(x1,z1). The fact that & fulfills (7)

gives ®(p(x1,x1),0) < ®(p(x1,22),9(y1,y2)). Thus

PQo((x1,91), (x1,91)) = ®(p(x1,21),9(y1, 1)) = (p(21,21),0) <
®(p(z1,22),9(y1,92)) = PQa((21,y1), (T2,92)).

Similarly we can show that

PQo((z1,y1), (z1,y1)) < PQa((22,¥2), (21,91)),
since ®(p(x1,21),0) < @(p(z1,22),9(y2, y1))-

(PQ2). Let (z1,41), (z2,y2), (z3,y3) € X xY . Then we have that p(z2, z2) <
min{p(l‘l,xQ),p(l‘g,xg)}, p(x17x3) +p($2,$2) < p(l‘l,l‘2) +p(l’2,$3)
and q(y1,y3) < q(y1,y2) + q(y2,y3). Since ® satisfies (iii) we obtain

that
®(p(z1,73),9(y1,93)) + ®(p(22,22),0) <

(p(z1,72),q(y1,92)) + P(p(z2,23), 4(Y2, Y3))-

Therefore,

PQo((z1,y1), (73,93)) + PQa((22,92), (x2,72)) <
PQo((x1,91), (v2,2)) + PQa((22,92), (73, ¥3))-
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(PQ3). Obviously if (z1,y1) = (z2,y2), then

PQo((21,91), (z1,41)) = PQa((w1,v1), (72, Y2))

and

PQo((z2,92), (v2,y2)) = PQa((72,¥2), (z1,91))-

Conversely, suppose that

PQo((x1,91), (z1,91)) = PQa((w1,v1), (72, Y2))

and, in addition, that

PQo((72,92), (T2,y2)) = PQa((72,y2), (1,91))

for some (x1,y1), (z2,y2) € X x Y. It follows that ®(p(x1,21),0) =
(p(x1,21),q(y1,91)) = (p(x1,72),q(y1,92)) and D(p(x2,22),0) =
(p(z2, 22), q(y2, y2)) = ®(p(w2, 1), q(y2,y1))- Since pis a partial met-
ric on X we have that max{p(x1,x1), p(x2,x2)} < p(1,22) = p(w2, 21).
The fact that ® satisfies (i¢) yields that

p(w1,21) = p(x1,22) = p(22, 22) and q(y1,y2) = q(y2,y1) = 0.

Whence we conclude that ;1 = 9 and y; = w2 and, hence, that

(x1,91) = (72,92)-

Therefore PQg is a partial quasi-metric on X x Y. [ |

The following result will be crucial in order to provide examples of pgmg-

functions.

Lemma 5.1.3. Let a,b,c,d € Ry with a +b < ¢+ d and b < min{c, d}.
Then, a-b<c-d.
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Proof. First, we will show that (c+d—0)-b < c¢-d. To this end, we
can suppose, with out loss of generality, that d > ¢. Then,

0<(c—b?<(c—b)-(d=b)=c-d—c-b—d-b+b*=c-d—(c+d—Db)-b.
Therefore, (c4+d—0)-b < c-d. It follows that a-b < (¢c+d—10b)-b < c-d,

since0<a<ec+d-—b.

The next result provides instances of pgmg-functions.

Proposition 5.1.4. Let M,N,L € Ry. Then the following functions ® :

R%— — R are pgmg-functions:

1) ®(z,y) = Mz + Ny + L for each (z,y) € R%;

2) ®(x,y) = /Mx+ Ny + L for each (z,y) € R ;

3) ®(z,y) =log (Mxz+ Ny + L) for each (z,y) € R% and L > 1.

Proof. 1) Consider the function given by ®(z,y) = VMx + Ny + L.
Next we show that it fulfills (¢), (é¢) and (¢é¢) in Theorem 5.1.2.

(i) Suppose that b > a. Then, ®(a,0) = Ma+L < Mb+L < Mb+ Na+
L=9%(0,aq).

(ii) Now, suppose that ¢ > max{a,b}. Then, on the one hand,
®(a,0) =Ma+L=Mc+Na+L=%(c,a) a=cand a =0,
and, on the other hand,
®(b,0) =Mb+L=Mc+Np+L=>®(c,5) < b=cand g=0.

Therefore ®(a,0) = ®(c, o) and ®(b,0) = P(c,[) implies a = b = ¢
and o = 3 = 0.
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(iii) Finally, suppose that b < min{c,d}, a+b < c+dand a < f++. Then

®(a,a) + ®(b,0) = Ma+Na+L+Mb+L=»Ma+b)+Na+2L
<M(c+d)+ NB+~v)+2L=Mc+ NB+L+Md+ Ny+ L=
®(c, B) + @(d,").

2) Consider the function given by ®(z,y) = vMz + Ny + L. We will
only prove that ® satisfies condition (ii¢) in Theorem 5.1.2, since the
fact that @ satisfies conditions (i) and (i7) can be proved following

similar reasoning to those given in statement 1) in this result.

Suppose that b < min{c,d}, a+b < c+d and o < 5+ . Then,
®(a,a) + @(b,0) < O(c, B) + @(d, ),

if and only if

VMa+Noa+L+VMb+L<+/Mc+NB+L++/Md+ Nvy+1L,

which is equivalent to

(VMa+ Na+ L+ VMb+1L)’ <

(VMc+ NF+L+/Md+ Ny +1L)°,

since

VMa + Na+ L,vMb+ L,\/Mc+ NB +L,\/Md+ Ny+LcR,.
Therefore, we need to prove that

Ma+Na+L+Mb+L+2- (m) . (m) <

Mc+N5+L—|—Md~|—N7—I—L+2-<\/Mc +NG+L)(VMd+Ny+L).
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We have shown that Ma+ Na+ L+ Mb+L < Mc+ NS+ L+ Md+
N~ + L in the proof of 1). So it remains to prove that

(Ma+ Na+L)- (Mb+L) < (Mc+NB+L)- (Md+Nvy+1L),
or equivalently,
M?ab+ MaL + NaMb+ NoL + LMb+ L* <

< M?cd+ McNy+McL+NBMd+ N?By+ NBL+ LMd+ LN~y + L2,

It is clear that
MaL+ LMb= ML(a+b) < ML(c+d) = McL + LMd,

NaMb= NMba < NM min{c,d}(8 +v) < McN~vy+ NBMd,
NaL = NLa < NL(f +v) = NBL + LN~.

By Lemma 5.1.3, we have that M?ab < M?Z?cd, and so the proof is

concluded.

Consider the function given by ®(z,y) = Mz + Ny + L with L > 1.
We will only prove that & satisfies condition (i7i) in Theorem 5.1.2,
since the fact that ® satisfies conditions (i) and (i) can be proved
following similar reasoning to those given in statement 1) in this result.
It is clear that ®(a, a)+®(b,0) =log (Ma+ Na+ L) - (Mb+ L)) and
O(c,B) + @(d,y) = log(Mc+ NS+ L) - (Md+ Ny+ L)). Suppose
that b < min{c,d}, a+b < c+d and o < f+ . Then, in statement

2) in this result we have shown that
(Ma+Na+L) - (Mb+ L)< (Mc+Np+L)- (Md+Nvy+1L).

Since log is a monotone function we have that ®(a,a) + ®(b,0) <
®(c, B) + ®(d, 7).
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The proof is finished. |

In the light of Proposition 5.1.4 we immediately obtain the following
instances of partial quasi-metrics. The example below is relevant because of
the lack of instances of partial quasi-metrics in the literature which limits its

applicability.

Example 5.1.5. Let (X,p) be a partial metric space and let (X,q) be a
quasi-metric space. If M, N, L € R, then the following functions are partial

quasi-metrics on X X Y.

1. PQ@ (('rvy)v(uvv)) - M-p(ac,u) +N’Q(yvv) + L.

2. PQ@ (('rvy)v (uvv)) = \/M -p(a;,u) + N - Q(yvv) + L.

3. PQs ((x,y), (u,v)) = log (M - p(z,u) + N - q(y,v) + L) provided that
L>1.

Notice that the preceding example shows that the partial quasi-metric
induced by a pgmg-function is not, in general, neither a partial metric nor
a quasi-metric. Indeed, consider the partial metric space (Ri,p,,) and
the quasi-metric space (R,q,). Then we have that PQgs((x,y), (u,v)) =
max{z,u} + max{v — y,0}. Now take the pgmg-function ®(a,a) = a + a.
Clearly PQgs((1,1),(1,1)) =1 and, thus, PQg is not a quasi-metric. More-
over, we have that PQg¢((1,0),(0,1)) = 2 and PQ4((0,1),(1,0)) = 1. So

PQg is not a partial metric.

Observe that this is the reason for which the addition of the Baire partial
metric and the complexity quasi-metric, pg + q¢, is neither a partial metric

nor a quasi-metric. This fact will be crucial later on in Section 5.2.
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In [55], the functions that merge a collection of partial metrics into a
new one were characterized. Such functions were called n-partial metric
preserving functions (npmp-functions for short) and their characterization is

given by the next theorem.

Theorem 5.1.6. A function ® : Rz_ — Ry is a 2pmp-function if and only
if it satisfies the following two properties for all a,b,c, o, 8,7v,5 € Ry

1) ®(a,a) + ®(b,B) < ®(c,y) + ®(d,d) whenever (a + b,a+ B) =2 (c+
d,y+46), (b,8) = (¢,7) and (b, 8) = (d,9).

2) If (b,B8) = (a,a), (¢,v) = (a,a) and ®(a,a) = ®(b, ) = ®(c,7), then
(a,a) = (b, 8) = (¢,7)-

Note that, the preceding characterization was presented for a collection of
partial metrics in [55] (see Subsection 1.1.1). However, we have stated such a
result only for two partial metrics with the aim of studying the relationship
between 2pmp-functions and pgmg-functions. In the next proposition we
show that each 2pmp-function is a pgmg-function. To this end, let us recall
that, according to Proposition 9 in [55], every 2pmp-function is monotone

with respect to <.

Proposition 5.1.7. Let ¢ : R%— — Ry be a 2pmp-function. Then ® is a
pgmg-function.

Proof. We will show that ® satisfies conditions (7), (¢4) and (i) in
Theorem 5.1.2.

(i) Suppose that b > a. Since (a,0) < (b, ) and ® is monotone we obtain
that ®(a,0) < ®(b, a).
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(ii) Now, suppose that ¢ > max{a,b} and, ®(a,0) = ®(c, ) and ®(b,0) =
®(c, f). The monotony of & gives that ®(¢,0) < (¢, a) = P(a,0) <
®(c,0). It follows that ®(a,0) = ®(c, o) = ®(c,0) with (a,0) < (¢, @)
and (c,0) = (¢, ). By assertion 2) in Theorem 5.1.6 we deduce that
(a,0) = (¢,a) = (¢,0). Thus @ = ¢ and o = 0. Analogously, we can

prove that b = c and g = 0.

Thus,a=b=cand a =5 =0.

(iii) Suppose that b < min{e,d}, a +b < ¢+ d and a < 4 v. Then
(a,a) + (b,0) < (¢, B8) + (d,7), (b,0) = (¢,8) and (b,0) = (d,7). Since
& satisfies assertion 1) in Theorem 5.1.6 we deduce that ®(a,a) +
O(b,0) < P(c,B) + ®(d, ).

The following example shows that there are pgmg-functions which are

not 2pmp-function.

Example 5.1.8. Consider the function @ : Rﬁ_ — R given by

(a0, 0) a, if a=0
a,o) = .
’ a+1, if a#0

It is not hard to check that ® is a pgmg-function. Nevertheless, ® is not a
2pmp-function. Indeed, (1,1) < (1,3), (1,2) < (1,3) and ®(1,3) = ®(1,1) =
®(1,2) =2 but (1,3) # (1,2). Therefore, ® does not satisfy assertion 2) in

Theorem 5.1.6 and, hence, it is not a 2pmp-function.

In |58], the functions that merge a collection of quasi-metrics into a new
one were characterized. Such functions were called n-quasi-metric preserving
functions (ngmp-functions for short) and their characterization is given by

the next theorem.
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Theorem 5.1.9. Let a,b,c,, 8,7 € Ry. A function & : ]R%_ — Ry is a
2qgmp-function if and only it has the following properties:

1) @71(0) = {(0,0)}.

2) If (a,a) = (b, B) + (¢,7), then ®(a,a) < ®(b,5) + P(c,).

Asin the partial metric case, the preceding characterization was presented
for a collection of quasi-metrics in [58] (see Subsection 1.1.1). However, we
have stated such a result only for two partial quasi-metrics with the aim of

studying the relationship between 2gmp-functions and pgmg-functions.

Concerning the relationship between 2¢gmp-functions and pgmg-functions,
the situation is different. Indeed, we will show that both classes of functions
are not comparable. The next examples show that there are 2¢gmp-functions

that are not pgmg-functions and vice-versa.

Example 5.1.10. Consider the function & : R%— — R4 given by ®(a,a) =
max{a,a}. By Corollary 13 in [58], ® is a 2gmp-function. However, it
is not a pgmg-function. Indeed, take a = b = c =2, a =1 and § = 2.
Clearly ®(a,0) = ®(c,a) =2 and ®(b,0) = ®(c,f) =2 but a =1 # 2 = .
Thus, ® does not fulfill assertion (ii) in Theorem 5.1.2. Hence, it is not a

pgmg-function.

Example 5.1.11. According to Proposition 5.1.4, the function ® : Ri — R4
given by ®(a,a) = a+ a + 1 is a pgmg-function. Nevertheless it is not a

2gmp-function, since ®(0,0) = 1 and so ® does not satisfy assertion 1) in
Theorem 5.1.9.

The next result provides a sufficient condition that ensures that a pgmg-

function is a 2¢gmp-function.
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Proposition 5.1.12. Let & ]R%_ — R4 be a pgmg-function such that
®(0,0) =0. Then, ® is a 2gmp-function.

Proof. We will see that & fulfills assertions 1) and 2) in Theorem 5.1.9.
Let a,a € R4 such that ®(a,) = 0. By Lemma 5.1.1 we deduce that
®(a,5) = 0, since 0 = ®(0,0) < ®(a,5) < ®(a,a) = 0. Whence we
have that ®(a, ) = ®(0,0) and ®(a, §) = ®(0,0). Then, by assertion (i) in
Theorem 5.1.2, we obtain that a = 0 and that o = 0. Thus ®~1(0) = {(0,0)}.

Let a,b,c,a, 5,y € Ry such that (a,a) < (b,5) + (¢,7). It follows that
a < fB+4+7 a+0 <b+cand that 0 < min{b,c}. By assertion (iii) in
Theorem 5.1.2 and the fact that ®(0,0) = 0, we have that ®(a, o) +P(0,0) <
O(c,B) + O(d, ).

Hence, by Theorem 5.1.9 we have that ® is a 2¢gmp-function. |

Example 5.1.10 shows that the converse of Proposition 5.1.12 is not true,

in general.

Notice that, by Proposition 5.1.12, every pgmg-function such that ®(0,0) =

0 is a 2-metric preserving function (see [58]).

5.2 An application to analysis of algorithms

As exposed in Subsection 1.1.4, partial metrics have been applied success-
fully to denotational semantics and quasi-metrics have been used in asymp-
totic complexity analysis of algorithms via fixed point methods, which have
been developed independently without establishing any relationship between

them. At first glance it seems difficult to combine two different approaches so
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that we can build a unique framework which allows us to carry out formally,
via fixed point methods, the two aforementioned tasks at the same time.
However, taking into account the theory exposed in the aforementioned sub-
section, in the following we show that the aggregation is an appropriate

framework for such an objective.

It seems natural to consider (oo XC, ®(pp(v,w), qclc.(f,g))), where @ is
a pgmg-function, as a first attempt to develop a framework to analyze simul-
taneously, by means of fixed point methods, the running time of computing
of an algorithm that performs a computation using a recursive denotational

specification and the meaning of such a specification.

Next, with the aim of achieving our objective, we introduce a fixed point
theorem in such a way that the contraction is defined using partial quasi-
metrics obtained through the aggregation of a partial metric and a quasi-
metric. To this end, let us recall, on account of [51], that a partial quasi-
metric space (X, pq) is said to be complete provided the metric space (X, dp,),
where dp, is the metric on X defined by d,q(z,y) = max{qpe(z,y), ¢pq(y, )}
for all z,y € X with gpe(z,y) = pg(z,y) — pg(x, x) for all z,y € X. Notice
that a partial quasi-metric space (X,pq) is complete if and only if the as-
sociated quasi-metric space (X, ¢pq) is bicomplete. Observe that this notion
retrieves the notion of completeness, introduced in Subsection 1.1.4, for par-
tial metrics and quasi-metrics as a particular case. Besides, following again
[51], a mapping from a partial metric space (X, pq) into itself is said to be a
contraction if there exists ¢ € [0, 1] such that pq(f(z), f(y)) < epg(x,y) for
all z,y € X. The preceding constant c is said to be the contractive constant
of the contraction f. Again this notion of contraction recovers those given
in the quasi-metric and partial metric context and which have been exposed

in Subsection 1.1.4.
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The announced result is based on the following fixed point theorem in

partial quasi-metric spaces which was proved in [51].

Theorem 5.2.1. Let (X,pq) be a complete partial quasi-metric space and
let f: X — X. If f is a contraction from (X, pq) into itself, then f has a

unique fized point xo. Moreover, pq(xg,xo) = 0.

Since every quantitative fixed point theorem needs an appropriate notion
of completeness, for the dissimilarity under consideration, in order to guar-
antee the existence and uniqueness of fixed point we will need the next result,
whose easy proof we omit, for the partial quasi-metric obtained via aggre-
gation. In order to state it, let us recall that, according to [42], a function
@ : R?2 — Ry is called 2-homogeneous provided that ®(ta, tar) = t®(a, ) for
all (a,a) € R% and t € R,

Lemma 5.2.2. Let ® : Ri — Ry be a 2-homogeneous pgmg-function. Let
(X,p) be a complete partial metric space and let (Y,q) be a bicomplete quasi-

metric space. Then the partial quasi-metric space (X XY, PQg) is complete.

With the help of the previous result we can prove the next theorem which
provides the existence and uniqueness of fixed point for contractions from the

partial quasi-metric space obtained through aggregation into itself.

Theorem 5.2.3. Let O : Rz_ — Ry be a pgmg-function. Let (X,p) be
a complete partial metric space and let (Y,q) be a bicomplete quasi-metric
space. If F is a contraction from (X X Y, PQg) into itself, then F has a

unique fized point xy. Moreover, PQg(xq,zo) = 0.

Proof. By Lemma 5.2.2 we have that the partial quasi-metric space
(X X Y,PQg) is complete. If F is a contraction from the partial quasi-
metric space (X X Y, PQg) into itself, then Theorem 5.2.1 guarantees the



WHAT 1S THE AGGREGATION OF A PARTIAL METRIC AND A
154 QUASI-METRIC?

existence and uniqueness of a fixed point g € X x Y of F' and, in addition,
that PQs (g, o) = 0. [ |

According to what is stated in Subsection 1.1.4, we consider a recursive
algorithm which computes the factorial of a positive integer number and it

uses the following recursive denotational specification:

1 ifn=1
faci(n) = { nfactin—1) ifn>1 (5-)

The running time of computing of such an algorithm is the solution to
the following recurrence equation
& ifn=1
Tfact(n) = . , (52)
Tract(n —1) +c if n>1

where ¢ € Ry (¢ > 0) is the time taken by the algorithm to obtain the

solution to the problem on the base case.

Consider the non-recursive mapping ¢4+ given as follows:

1 itn=1

, (5.3)
nf(n—1) ifn>1and n—1¢c domf

Pfact(f)(n) = {

where ¢4 is acting over the set of partial functions. Of course, the entire

factorial function is the unique fixed point of ¢ fqe-

As stated in Subsection 1.1.4, every partial function f can be identified
with a word w/ € Ny such that w/ = w{wg . ..w,{ with domf = {1,... k}

and wlf = f(i) for all i € domf. So, hereinafter, we will work with N.

Next consider the mapping Gfact : Cc— Ce by

c ifn=1
Gfact(f)(n) = { f(n— 1) T £ n 2 9 (54)
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for all f € C.. Clearly f € C. is the solution to the recurrence equation (5.2)
if and only if f is the unique fixed point of the mapping G rqet-

At first glance it seems difficult to combine the two preceding approaches,
(Noo, pB) and (Ce, gc, ) so that we can build a unique framework which allows
us to carry out formally, via fixed point methods, the meaning of the re-
cursive denotational specification and the running time of computing of the
algorithm which performs the computation of such a meaning. However, in
the remainder of this section, we show that the aggregation approach is an

appropriate framework for the aforementioned target.

To this end, we consider the pair (No, X C., PQg), where ® is the pgmg-
function given by ®(a,a) = a + « for all (a,a) € R2. Clearly ® is 2-

homogeneous and we have that

PQa((v, f), (w,9)) = ®(pa(v,w),qcle.(f,9)) = pB(v,w) + qcle.(f, 9)

for all v,w € Ny and f, g € C..

In order to discuss the meaning of the recursive denotational specification
(5.1) and the running time of computing of the algorithm performing it via

(5.2), we need to apply Theorem 5.2.3.

Next we check if the conditions of Theorem 5.2.3 are hold. According
to Subsection 1.1.4, the partial metric space (X0, pp) is complete and the
quasi-metric space (C., gclc,) is bicomplete. It follows, by Lemma 5.2.2, that

(N % Ce, PQg) is a complete partial quasi-metric space.

Next consider the mapping F': Ny, X C. — Ny X C.. defined by

F(wvf) = (¢fact(w)7Gfact(f))

for all (w, f) € Ny x Ce.
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It is clear that pp(@fact(v), Pfact(w)) = %pg(v,w) for all v,w € Ng.
Then

pB(Fl(Ua f)a Fl(w7g)) = pB((bfact(’U), (bfact(w)) — 9—l(v,w)+1 <

1027w gele (f,9))
for all (v, f), (w,g) € Ny x C.. Moreover, we have that

qcle. (Fa(v, f), Fo(w, 9)) = qcle.(Gract(f), Gract(9)) =
S22 27D (A ) < Laele (f,9) < 30 (v, W), acle. (£,9))

for all (v, f), (w,g) € No X Cc. Therefore

PQa(F(w, 1), F(v,9)) < 5 PQal(w. /), (v,9))

and, thus, F' is a contraction from (N, x C,., PQg) into itself with contraction

constant % .

Applying Theorem 5.2.3 we deduce the existence of a unique fixed point
(wfaet, ffact) of F such that (waet, fract) € Noo x Ce.

By construction of F' the fixed point (wf“t, [ffact) satisfies that wlaeet ig
the unique fixed point of ¢4 and that fr.e is the unique fixed point of
G fact- Whence wfeet ¢ N, satisfies that w{ad =1 and w,{aCt = n! for all
n > 2 and fyqe is the solution to the recurrence equation (5.2). Consequently
wfet represents the meaning of the denotational specification (5.1), that is
the meaning of the factorial function fact, in such a way that frace(n) is
the time taken by the algorithm to compute the factorial of the non-negative
integer number n which is provided by the numerical value wgad.

To finish our analysis we need to give an asymptotic upper bound of

ffact- To this end, we assume that there exists (w,g) € Ny x C. such
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that PQs(F(w,g),(w,g)) = 0. Then, on the one hand, we have that
qcle.(Gract(9), g) = 0 and, hence, that qclc.(ffact:9) = 0. So fraee € O(g),
where f € O(g) means that there exist nyp € N and ¢ € Ry such that
f(n) < cg(n) for all n € N with n > ny.

On the other hand, we have that PQg¢(F(w, g), (w,g)) = 0 implies that
PB(Pfact(w), w) = 0. Then it can be easily seen that w must be an infinite

word and that w = wfact,

Finally, a straightforward computation shows that
PQa(F(w!™, go), (w*!, g)) = 0

taking g. € C. with

en ifn>1

c ifn=1
ge(n) = { . (5.5)
Whence we conclude that frace € O(ge)-

It seems natural to wonder whether there are another function h € C,. such
that PQg(F(w/® h), (w/*! h)) = 0 and, thus, ffact € O(h) but h < g..
Nonetheless, an easy computation shows that PQg(F(w/®t, 1), (wfet, h)) =
0, implies that g. < h. Therefore, g. is the least asymptotic upper bound of
ffact- Whence we conclude that the asymptotic upper bound of the running
time of computing of the algorithm computing the factorial is O(g.). This

fact is in line with what is stated in the literature (see, for instance, [6]).



Chapter 6

A technique for fuzzitying
metric spaces via metric

preserving functions

In this chapter we develop a new technique for constructing fuzzy metric
spaces, in the sense of George and Veeramani, from metric spaces and by
means of the Lukasievicz t-norm. In particular such a technique is based
on the use of metric preserving functions in the sense of J. Dobos. Besides,
the new generated fuzzy metric spaces are strong and completable, and if we
add an extra condition, they are principal. Appropriate examples of such
fuzzy metric spaces are given in order to illustrate the exposed technique.
Throughout this chapter the fuzzy metrics are understood as GV -fuzzy met-
rics. Moreover, usual t-norms are denoted following the tradition in the

research field of fuzzy-pseudo metric spaces.

158
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The structure of the chapter is organized as follows. In Section 6.1, we
introduce the notion of uniformly continuous mapping between stationary
fuzzy metric spaces and metric spaces, and vice-versa. Thus we define when
they are equivalent. Based on such a notion, we present a technique that
allows to construct stationary fuzzy metric spaces from a metric space by
means of metric preserving functions with values in [0,1]. Moreover, it is
showed that the new constructed stationary fuzzy metric spaces are com-
pletable provided that the used metric preserving function is a strongly met-
ric preserving function (in the sense of Dobos). In addition, it is proved that
the new stationary fuzzy metric spaces are complete if and only if the metric
spaces from which are generated are also complete. Section 6.2 is devoted
to generalize the construction presented in Section 6.1 to the non-stationary
case. Thus fuzzy metric spaces are generated from metric spaces by means of
a family of metric preserving functions that satisfy a distinguished condition
which will be specified later on. These fuzzy metric spaces are always strong
and, in addition, they are complete if and only if the metric spaces from
which are generated are also complete. Furthermore, they are principal and
completable whenever all metric preserving functions belonging to the family

under consideration are strongly metric preserving functions.

6.1 A technique for inducing stationary fuzzy met-
ric spaces from metric spaces via metric pre-

serving functions

First of all, we introduce two continuity notions that we will need in our

subsequent discussion.

Definition 6.1.1. Let (X, M, %) be a stationary fuzzy metric space and let
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(Y, p) be a metric space. A mapping f : X — Y is said to be M-p uniformly
continuous if given € > 0 we can find ¢ €]0, 1] such that M(z,y) > 1—¢

implies p(f(2), f(y)) <e.

Definition 6.1.2. Let (X,d) be a metric space and let (Y, N,¢) be a sta-
tionary fuzzy metric space. We will say that the mapping f: X — Y is d-N
uniformly continuous if given € €]0, 1] there exists 6 > 0 such that d(x,y) < ¢

implies N(f(x), f(y)) >1—e.

The following examples illustrate the preceding definitions.

Example 6.1.3. 1. Let (X, M, £) be the stationary fuzzy metric space,

where £ stands for the Luckasievicz t-norm g, X = [0,1] and
M(‘Tvyvt) =1- "T _y‘

for each x,y € X and t > 0. Also, let (Y, p) be the metric space where
Y =R? and

p((z1,91), (T2, 92)) = \/(iL”l —22)% + (y1 — y2)?
for all (z1,y1), (x2,92) € R2. Define the mapping f : X — Y by
f(z) = (42,32 4+ 1)
for all x € X. Next we will see that f is M-p uniformly continuous.

To this end, fiz € > 0 and consider § < min{e/5,1}. Then, for each
x,y € X satisfying M(x,y) > 1 — &, we have that p(f(x), f(y)) < e.
Indeed, if 1 =6 < M(x,y) =1— |z —yl, then |z —y| < < €/5 and so

p(f(x), f(y)) = p((4z, 3z + 1), (4y, 3y + 1)) =

V#@r —4y)?2+ Bz +1-3y—1)2=

V16(z —y)?2 +9(z —y)2 =5 |z —y| <5 £ =«
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Therefore, f is M-p uniformly continuous.

2. Let (X,d.) be the metric space such that X = [0,1] and de(x,y) = |z—y|
for all z,y € X. Also, let (Y, N,-) be the stationary fuzzy metric space
with Y = [1,2] and
for all x,y € Y. Notice that the t-norm xp has been denoted by -.
Define the mapping f : X — Y by f(x) =x+ 1 for all x € X. Next

we will see that f is de-N uniformly continuous.

With this aim, fiz € > 0 and consider § < €. Then, for each x,y € X
satisfying de(z,y) < 6, we have that N(f(x), f(y)) > 1 — €. Indeed, let
x,y € [0,1] such that de(z,y) < 6. Since max{x + 1,y + 1} > 1 we
have that

[z —y|

0> |z —y|> .
2 =yl max{z + 1,y + 1}

Furthermore,
N(f(@), f(y)) = petysill —

lz—y|
1—m>1—5>1—6

Obviously, note that if fis M-p ( d-N ) uniformly continuous then it is
continuous. With the above terminology we can prove the next proposition

which will be crucial in the development of our new technique.

Proposition 6.1.4. Let (X, M, x) be a stationary fuzzy metric space and
let (Y,p) be a metric space. Let f: X —Y be an M-p uniformly contin-
wous mapping. If (xn)nen is an M-Cauchy sequence then (f(xy))nen is a

p-Cauchy sequence.
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Proof. Let € > 0, and consider a sequence (z,)nen in X which is M-
Cauchy. Since fis M-p uniformly continuous we can find 0 €]0, 1] such that
M(z,y) > 1 — ¢ implies p(f(z), f(y)) < e. Now, since {z,} is M-Cauchy
we can find ng € N such that M (z,,x,,) > 1 — 9§ for all n,m > ng, and so
o(f(zy), f(zm)) < € for all n,m > ng. Hence (f(x,))nen is p-Cauchy. [ |

Applying a similar reasoning to that given in the proof of Proposition

6.1.4 we can prove the next one.

Proposition 6.1.5. Let (X,d) be a metric space and let (Y, N, ) be a sta-
tionary fuzzy metric space. Let f : X =Y a d-N uniformly continuous
mapping. If (zp)nen is a d-Cauchy sequence then (f(zy,))nen is an N-Cauchy

sequence.

From now on, if no confusion arises, we will omitt the metric and the
fuzzy metric when we refer to a mapping f as uniformly continuous (in the

sense of Definitions 6.1.1 and 6.1.2).

In the light of the introduced notions, the next result shows that the
composition of uniformly continuous mappings among metric spaces and sta-

tionary fuzzy metric spaces is uniformly continuous.

Proposition 6.1.6. Let (X, M,x) be a stationary fuzzy metric space, and
let (Y,p) and (Z,d) be two metric spaces. Suppose that f : X — Y and
g:Y = Z are two uniformly continuous mappings. Then go f is a uniformly

continuous mapping.

Proof. Let € > 0. Since g is uniformly continuous we can find §; > 0
such that p(a,b) < 6; implies d(g(a), g(b)) < e. Since f is M-p uniformly
continuous then, given §; > 0, we can find 6 €]0, 1 such that M (z,y) > 1—4¢
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implies p(f(x), f(y)) < d1. Therefore, for each x,y € X such that M (z,y) >
1 — ¢ it is satisfied that p(f(x), f(y)) < d1 and so d(g(f(z), f(y)) < €, hence

g o fis M-d uniformly continuous. u

In an analogous way we can prove the next proposition.

Proposition 6.1.7. Let (X, M,x) be a stationary fuzzy metric space, and
let (Y,p) and (Z,d) be two metric spaces. Suppose that f : Z — X and
g:Y = Z are two uniformly continuous mappings. Then fog is a uniformly

continuous mapping.

Taking into account Propositions 6.1.4 and 6.1.5 we extend the classical
concept of uniformly equivalent metric spaces to our framework as follows.
Let us recall that two metrics d and p on X are called uniformly equivalent
if both identity mappings 7 : (X,d) — (X,p) and i : (X,p) — (X,d) are

uniformly continuous.

Definition 6.1.8. Let d and (M, %) be a metric and a stationary fuzzy metric
on X, respectively. Then d and (M, *) are called uniformly equivalent if both

identity mappings are M-d and d-M uniformly continuous, respectively.

Observe that if a metric d is uniformly equivalent to a fuzzy metric (M, )
on X, then 7); = 74, where 74 denotes the topology induced by the metric d.

Moreover, every d-Cauchy sequence is an M-Cauchy sequence and vice-versa.
The next examples provide instances of metric and fuzzy metric spaces
that are uniformly equivalent.

Example 6.1.9. Assume that (X,d) is a bounded metric space, i.e., there
exists K > 0 such that d(x,y) < K for all x,y € X. On account of [33], we
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have that (X, M, £) is a stationary fuzzy metric space, where

d(z,y)

M =1-

for all x,y € X. Neat we show that (X,d) and (X, M, L) are uniformly
equivalent. Indeed, it is not hard to check that, given € > 0, then d(z,y) < &

provided that M(x,y) > 1 —§ whenever § is taken as follows:

e e<K

HLK ife > K

Hence the identity mapping is M-d uniformly continuous. Moreover, given
e €]0,1[, then M(z,y) > 1 — e provided that d(x,y) < & whenever ¢ is taken
as 0 = (1 + K)e. Thus the identity mapping is d-M uniformly continuous.
So (X,d) and (X, M, L) are uniformly equivalent. Of course, it follows that

TM — T4-

Example 6.1.10. Assume that (X, M, £) is a stationary fuzzy metric space.
According to [33], the mapping dp; defined on X x X by

dy(z,y) =1— M(x,y)

for all x,y € X is a metric on X. A straightforward computation shows
that the identity mapping s M-dpy;s and dy-M uniformly continuous. So
(X, M, £) and (X,dpr) are uniformly equivalent. Of course, it follows that

TM = Tdy, -

Inspired by the preceding examples we will introduce the promised tech-
nique for generating stationary fuzzy metric spaces from metric spaces by
means of metric preserving functions which, besides, preserves the spirit of

the aforementioned examples. To this end, we will denote by M! and by
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./\/léw the class of metric preserving functions and strongly metric preserving
functions (see Subsection 1.1.1), respectively, satisfying in both cases that

f(z) <1 for each x € [0, 0.

First, recall the following result proved in [15].

Proposition 6.1.11. Let f be a metric preserving function and let (X, d) be

a metric space. Then,

(1) If (X,d) is not uniformly discrete, then dy and d are uniformly equiv-

alent if and only if f is a strongly metric preserving function.

(1) If (X,d) is uniformly discrete, then dy and d are uniformly equivalent.

The next result gives a method of obtaining stationary fuzzy metrics
deduced from classical metrics and a sufficient condition in order to the
topology induced by the stationary fuzzy metric coincides with the topology
induced by the metric.

Proposition 6.1.12. Let (X,d) be a metric space and let f € M. Then:

(i) (X, My, L) is a stationary fuzzy metric space, where My(x,y) = 1 —
dy(w,y) for all z,y € X. Moreover, Tar, = 74,

(ii) If, in addition f € MY, then (Mg, £) and d are uniformly equivalent

and, thus, Ta, = T4-

Proof. Let (X,d) be a metric space and consider f € M1

(i) It is straightforward.
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(ii) Suppose that f € ./\/léw Then, from the previous theorem we obtain
that d and dy are uniformly equivalent, and so the identity mapping
i1 : (X,dy) = (X,d) is uniformly continuous. Next we show that
the identity mapping is : (X, My) — (X,dy) is uniformly continuous.
To this end, we can consider e €]0, 1], since the metric dy is bounded
with dy(z,y) < 1 for all z,y € X. Then, Ms(xz,y) > 1 — € if and
only if 1 —d¢(x,y) > 1 — €, or equivalently, if and only if ds(x,y) <
e. Therefore iy : (X, M) — (X,dy) is uniformly continuous. Thus,
by Proposition 6.1.6, the identity mapping ¢ : (X, M) — (X,d) is
uniformly continuous, since i = i10io. Following similar arguments, but
now with the help of Proposition 6.1.7, we can show that i : (X,d) —
(X, M) is uniformly continuous. Therefore My and d are uniformly

equivalent and, thus, T™; = Td-

The next example shows that the condition “f € Mg” cannot be relaxed

in the assertion (ii) in the statement of Proposition 6.1.12.

Example 6.1.13. Consider f : [0,00[— [0, 00[ given by
0, ife=0
2427 Zfl' > 0.

Obuviously, f is monotone. We will see that it is also subadditive. Let a,b €
[0, 00[. If one of them is 0 the subadditive condition is obvious. Suppose that
a,b €]0,00[. Then,

a+b+1< _atl b+1
a+b+2 “a+2 b+2

fla+b)= fa) + f(b).

Therefore, f is a monotone and subadditive function such that f € O, so

f is metric preserving. Moreover, f(x) < 1 for each = € [0,00] and it
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is clearly not continuous at 0. Then, by Theorem 1.1.4, [ is not strongly
metric preserving, i.e., there exists (X, d) which is not topologically equivalent
to (X,dy). Then, by assertion (i) in the statement of Proposition 6.1.12,

™ = Td; but e 18 not equivalent to 7.

Since every stationary fuzzy metric space is always principal we have the

following result as a consequence of Proposition 6.1.12.

Corollary 6.1.14. Let (X,d) be a metric space and let f € M. Then the
fuzzy metric space (X, My, £) is principal, where My(x,y) =1 —ds(x,y) for
all v,y € X.

Attending to Proposition 6.1.12, we introduce the next definition.

Definition 6.1.15. Let f € M! and (X,d). The stationary fuzzy metric
(My, £) defined on X by M¢(x,y) =1 —ds(z,y) for all z,y € X, will be
called the stationary fuzzy metric induced by f and (X, d) or, simply, induced

by f if no confusion arises.

In the following example we show that some well-known instances of
stationary fuzzy metric spaces can be obtained applying the technique in-
troduced in Proposition 6.1.12. Observe that such an example illustrates
Definition 6.1.15 and, in addition, complementes the examples furnished by
Examples 6.1.9 and 6.1.10 about fuzzy metric spaces uniformly equivalent to

metric spaces.

Example 6.1.16. Let (X, d) be a metric space and let K > 0. Consider the
functions f,g and h defined for all x € [0, 00[ by

1. f(x) = min{lfK, %},
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2. 9(z) = %55

3 h(z)=1—exp K.

Note that the preceding functions are monotone, subadditive and belong to
O, so they are metric preserving. Moreover, it is not hard to see that they
are continuous and, thus, by Theorem 1.1.4, we have that they are strongly
metric preserving. Since, in addition, they take values into [0,1] we have

that, in fact, they belong to ./\/l};

The corresponding stationary fuzzy metrics (My, £), (Mg, £) and (Mp,, £)
induced by f,g and h and (X,d) are given, respectively, by

d(z,
1. My(z,y) =1—ds(z,y) = rnax{l - 1(+I??7 HLK}’

2. My(z,y) =1 —dg(2,9) = gramy)

d(z,y)

3. Mh(l'vy) =1- dh(l'vy) =exp K ,

for each z,y € X.

Once the technique for generating stationary fuzzy metric spaces have
been introduced we are able to discuss their completion. To this end, we recall

the pertinent notions and results concerning the fuzzy metric completion.

In the study of completion of fuzzy metric space the notion of isometry
introduced by V. Gregori and S. Romaguera in [36] plays a central role. It

is recalled below.

Definition 6.1.17. Let (X, M, 1) and (Y, N, x9) be two fuzzy metric spaces.
A mapping f from X to Y is called an isometry if for each z,y € X and
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each t > 0, M(x,y,t) = N(f(x), f(y),t). Moreover if f is a bijective isome-
try, then (X, M, %) and (Y, N, *9) (or simply X and Y') are called isometric.
Thus a fuzzy metric completion of (X, M, x) is a complete fuzzy metric space
(X*, M*, o) such that (X, M, %) is isometric to a dense subspace of X*. Fur-
thermore, (X, M, x) (or simply X) is called completable if it admits a fuzzy

metric completion.

In [37], the following characterization about completion of a fuzzy metric
space is given, such a characterization will be useful when we discuss the

completion of those fuzzy metric spaces induced by our new technique.

Theorem 6.1.18. Let (X, M, x) be a fuzzy metric space, and let (a,)nen and
(bp)nen be two Cauchy sequences in (X, M, ). Then (X, M,x*) is completable

if and only if it satisfies the following conditions:

(C1) The assignment t — lim,, M (a,,by,t) is a continuous function from
10, 00| into 10, 1].

(C2) If limy, M(ay,by,s) =1 for some s > 0 then lim,, M (ay,by,t) =1 for
allt > 0.

Remark 6.1.19. Obviously, a stationary fuzzy metric space (X, M,x*) is

completable if and only if lim,, M (a,, b,) > 0 for every two Cauchy sequences

(an)nEN and (bn)nEN-
Taking into account the preceding notions Gregori and Romaguera proved
in [36] the following useful result.

Proposition 6.1.20. If a fuzzy metric space has a fuzzy metric completion

then it is unique up to isometry.
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Remark 6.1.21. Attending to the last proposition, let us recall the con-
struction of the completion of a fuzzy metric space given in [37]. Suppose

(X*, M*,0) is a fuzzy metric completion of (X, M, ). Then we have that:

1. X C X*, where X™ is the quotient set on the set of M-Cauchy se-

quences induced by the equivalence relation ~ defined by

($n)n€N ~ (yn)nGN <~ hmM(:Umymt) =1forall ¢ > 0.
n

2. ¢ can be assumed to be .
3. M* is defined on X* by
M*(x*,y*,t) = Um M (2, Yn, t)
n

for all z*,y* € X* and for all ¢t > 0, where {z,,} € 2* and {y,} € y*.

Now, we are able to approach the study of the the completion of the

generated stationary fuzzy metric spaces constructed above.

Theorem 6.1.22. Let (X,d) be a metric space and let f € MY. The fol-

lowing assertions hold:

(1) (X, My, L) is complete if and only if (X,d) is complete.

(i1) (X, My, L) is completable and the completion of (X, My, £) is (X*, M}, £),
where M; s the stationary fuzzy metric given by M;(a*,b*) =1-
d}i(a*,b*) for each a*,b* € X* and, in addition, (X*,d*) is the com-
pletion of (X,d).

Proof. Let (X,d) be a metric space and let f € My. Consider the
stationary fuzzy metric My induced by f and (X, d).
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(i)

By Proposition 6.1.12 d and My are uniformly equivalent. Hence 77, =
74 and, by Propositions 6.1.4 and 6.1.5, a sequence in X is M -Cauchy
if and only if it is d-Cauchy.

First, we will show that (X, My) is completable. With this aim, let
(an)nen and (by)nen be two Mp-Cauchy sequences. By assertion (i)
in the statement of Proposition 6.1.12 and by Proposition 6.1.4, they
are d-Cauchy. Consider a*,b* € X* such that {a,} € a* and {b,} € b*.

By Theorem 1.1.4 f is continuous and so we have that
li7ILn M¢(an,by) = li7ILn(1 —ds(an,by)) =1— li7ILn fld(an,bn))
=1- f(ligld(an,bn)) =1— f(d*(a™,b")).
Since f € M! we have that
1111111 M¢(an,by) =1— f(d*(a",b%)) > 0.
Therefore, by Remark 6.1.19 we have that (X, My) is completable.

Next suppose that (X, Mz, £) is the completion of (X, My, £). We will
see that X = X*.

By Proposition 6.1.12, d and My are uniformly equivalent and, thus,
(n)nen is an My-Cauchy sequence in X if and only if (z,)nen is a
d-Cauchy sequence in X. On the other hand, given two d-Cauchy

sequences (Tn)nen and (Yn)nen in X we have that
i d g (2n,yn) = lim f(d(2n,yn) = f(limd(zn, yn)),
because, by Theorem 1.1.4, f is continuous. Hence
li}bn M¢(zp,yn) =14 li7ILn d¢(Tn,yn) =0 & li7ILn d(xp,yn) =0,

since f € O. Thus, X = X*.
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Finally, consider a*,b* € X* such that {a,} € o and {b,} € b"
Attending to Remark 6.1.21, we have that

MF(a®, 0", t) = ligle(an,bn,t),
for each t > 0. Since M¢(an,bp,t) = Ms(an,by,) for each t > 0 and

limy, M¢(an,by,) =1 —lim, d¢(an, by) =

1— f(limy d(an, ba)) = 1 — f(d*(a*,b%)) = 1 — df(a*,b"),

we conclude that
M}‘(a*,b*,t) =1- d}(a*,b*)

for all {a,} € a* and {b,} € b* and ¢t > 0.

Remark 6.1.23. Notice that the notion of uniformly discrete metric space
can be adapted to the stationary fuzzy metric context in the following easy
way. Indeed, a stationary fuzzy metric space (X, M, x) will be said to be
uniformly discrete provided that there exists € €]0, 1] such that M(x,y) < €
for all z,y € X such that x # y. Of course we have omitted the ¢ in the

expression of M because of its stationary nature.

Taking into account the preceding notion we have the following reasoning

regarding the completion of the stationary fuzzy metric (X, My, £).

If the metric preserving function f in the statement of Theorem 6.1.22 is
assumed to be discontinuous, then, by (i7) in Proposition 6.1.11, the metric
dy is uniformly discrete and, consequently, the stationary fuzzy metric My

induced by f and (X,d) is also uniformly discrete. Therefore, the unique
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M ¢-Cauchy sequences on X are the eventually constant sequences and so
(X, My, £) is complete.

In the light of Theorem 6.1.22 and Remark 6.1.23 we can assert that for
each f € M! and each metric space (X, d) the stationary fuzzy metric space
(X, My, £) induced by f and (X,d) is always completable.

6.2 A technique for inducing non-stationary fuzzy
metric spaces from metric spaces via metric pre-

serving functions

In Section 6.1, we have provided a technique which is able to induce sta-
tionary fuzzy metric spaces from classical metric spaces by means of metric
preserving functions and, in addition, we have studied the completion and
completeness of such fuzzy metric spaces. In this section we will extend the
aforementioned technique in order to construct non-stationary fuzzy metric
spaces induced by classical metric spaces and, now, by a family of metric
preserving functions. Moreover we will study the completion and complete-
ness of such fuzzy metric spaces. We begin such a study introducing the next

concept.

Definition 6.2.1. Consider a family F' = {f; : ¢ > 0} of real functions
defined on [0, 00[. We will say that F'is decreasing if ¢ < s implies f(z) >
fs(z) for each = € [0, 0o].

Example 6.2.7 gives a few instances of decreasing families of functions in

the sense of Definition 6.2.1.
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In order to introduce the announced technique let us recall a few known

facts. According to [33] we have the following:

Proposition 6.2.2. Let {(X, M;, £) : t > 0} be a family of stationary fuzzy
metric spaces associated to a strong fuzzy metric space (X, M, ). Then the

following assertions hold:

(1) The real function d, defined by d(x,y) = 1— A\, My(x,y) forallz,y € X,
is a metric on X such that 74 O \/, Tm, = T, where )\, My is the real
function defined on X x X by N\, My(x,y) = inf{M;(x,y) : t > 0} for
all 2,y € X,

(11) The real function dy, defined by dy(x,y) = 1— My(x,y) for all x,y € X,
is a metric on X for all t > 0. Moreover, d(z,y) = \/, di(x,y) for all
z,y € X, where \/, di(z,y) = sup{di(z,y) : t > 0} for all x,y € X, is

a metric on X and 74 D 74, for all t > 0.

Taking into account the preceding proposition we introduce the new tech-

nique in the following result.

Theorem 6.2.3. Let (X,d) be a metric space and let F = {f; : t > 0} be
a decreasing family of functions included in M such that the function f* is
continuous on |0,00[ for each x € [0,00[, where f*(t) = fi(x) for all t > 0.

Then the following assertions hold:

(i) (X, Mp,£) is a fuzzy metric space, where Mp(z,y,t) = 1 —dy,(z,y)
for each x,y € X and each t > 0.

(i1) (X, Mp, L) is strong.

(1)) v = V{mmg, =t > 0F = \{rq, : t > 0}, where Mp,(z,y) =
Mp(z,y,t) for each z,y € X and t > 0.
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(iv) The function dr is a metric on X, where dp is defined by dp(z,y) =

1= A\ Mg, (z,y) for all x,y € X. Besides, dp(z,y) = \/,dy,(x,y) for
all z,y € X and 74, 2 Ty -

(v) If F C MY, then (X, Mp, £) is principal and T4, O Ta, = Ta.

Proof. Consider a decreasing family F' = {f; : ¢ > 0} of functions in
M such that for each = € [0,00[ we have that f* is continuous on ]0, col.

Define Mp(z,y,t) =1 —dy,(z,y) for each z,y € X and each t > 0.

(i) Next we will see that (X, Mp, £) is a fuzzy metric space.
It is obvious that M satisfies axioms (GV'1),(GV2) and (GV3). Fur-

thermore, the assumption that the function f* is continuous on |0, co[
for all z € [0,00] ensures that (GV'5) is fulfilled. We will show that
(GV4) is satisfied too.

First, note that for each x,y € X we have that Mg, , is a monotone
function on ]0, co[, where MF, ,(t) = Mp(z,y,t) for each ¢ > 0. Indeed,
since the family {f; : ¢ > 0} is decreasing, given 0 < t < s then

Mny(S) = Mp(z,y,s) =1—dy, (z,y) >

1 —dy,(z,y) = Mp(z,y,t) = Mny(t)

Moreover, on the one hand, Mp(x,2,t) = 1 —dy,(x,2) > 0, since
fi € My. On the other hand, since for each ¢ > 0 we have that
dy, is a metric on X, then for each z,y,2z € X and each ¢ > 0 we
have that Mp(z,2,t) = 1 —dy(x,2) > 1 —dys,(x,y) — df,(y,2) =
1 —dy(z,y) +1—dy,(y, 2) — 1. Therefore,

Mp(l‘,z,t) > Mp(l',y,t)SMF(y,Z,t). (61)
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Finally, given z,y,z € X and t,s > 0, by these two last observations

we have

Mp(z,z,t + s) > Mp(z, z,max{t,s}) >

Mp(z,y, max{t, s}) SMp(y, z, max{t, s}) = M(z,y,t) €M (y, 2, 5)

and so (GV4) is fulfilled. Therefore, (X, M, £) is a fuzzy metric space.

The inequality (6.1) shows that the fuzzy metric space (X, Mp, £) is
strong, i.e., that it holds the condition (GV4').

Since (X, Mp, £) is strong we deduce, by Remark 6.2.9, that 757, =
VATuy, ot > 0}, where Mp,(z,y) = Mp(z,y,t) for each ,y € X and
¢t > 0. Proposition 6.1.12 guarantees that 7y7,, = 74, for each ¢ > 0. It
follows that 7ar, = \{Tmp, 1t > 0} = V{7, : t > 0}.

By assertion (i) in the statement of Proposition 6.2.2 we have that the
function dp is a metric on X. By assertion (i) in the statement of
the aforesaid proposition we obtain that dp(x,y) =\, dy, (z,y) for all

z,y € X is also a metric on X and that 74, 2 7.

Next we see that (X, Mp,£) is principal provided f, € My for all
t > 0. By assertion (i) in the statement of Proposition 6.1.12 we
have that 7ar,, = 7(dt) = 7(d) for each t > 0. Whence we have
that 7ar, = V{7g, : t > 0} = 7(d). Thus, 7a, = 7arp, for each
t > 0. By Remark 6.2.9 we conclude that (X, Mp,£) is principal.

Hence 74, 2 77 = 74
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The next example shows that the condition “f* is continuous on ]0, 0o[
for each x € [0,00[” cannot be deleted in the statement of Theorem 6.2.3 in

order to guarantee the introduced technique induces a fuzzy metric.
Example 6.2.4. Consider the family F = {f; : t > 0}, where

if0<t<1andzel0 o0,
ift >1 and z € [0, 00][.

fu(a) ={ e

Al
It is easy to verify that F is a decreasing family of functions included in M*.
Besides,
if0<t<1
ift>1,

@
x _ t+x?
fr)y =9 "
2t+a?
for each x € X, which, obviously, is not continuous at t = 1.

Let (X,d) be a metric space, if we define the fuzzy set Mp on X X

X x]0,00] as in assertion (i) in the statement of Theorem 6.2.3, i.e.,

m7 2f0<t§1andx,y€X,
MF(:vavt) =
ﬁa,y)’ th>1and:L‘,y€X,

it 1s easy to wverify that Mg does not satisfy axiom (GV'5) in definition of
fuzzy metric space.

The next example shows that the assumption “F C Mé” cannot be
deleted in the statement of Theorem 6.2.3 in order to guarantee that the

induced fuzzy metric is principal.

Example 6.2.5. Let (X, d) be a metric space. Consider the family of func-
tions F = {f; : t > 0} defined on [0,00[ by
0, if £ =0;
fz) =8 1— 22 if x €]0,00[,t €]0,1];

X
e elsewhere.
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Note that f; € M* for each t € [1,00[. Now, we will see that f; € M* for
each t €]0,1[. To this end, note that f; € O and fi(x) < 1 for each x € [0, 00]
and each t €]0,1[. Besides, it is easy to see that f; is monotone for t €]0,1].

Nezxt, we will see that f; is also subadditive for each t €]0,1].
With this aim, we fiz t €]0,1].

If a =0 or b=0, then it is obvious that f(a +b) < f(a)+ f(b). Now,
suppose that a,b €]0,00[. Then it is easy to verify that
t t t
> . .
t+a+b " t4+a t+0b

So
2 2 12

> .
t+a+b " t+a t+5b’

, tj—_2a7 ti-_zb € [0,1] and taking into account that x-y >

xLy for each x,y € [0,1], we have that

since t €]0,1[. Moreover

t2 t2 t2 t2 t2
> iy > —1
t+a+b " t+a t+b_t+a+t~|—b
Whence we deduce that

t2 12 t2
L 11— = b).
P i SR ORIV

Therefore, f; is subadditve and so f, € M.

fla+b)=1-

It is not hard to check that f* is continuous on |0, 00| for each x € [0, 00|,
since fO(t) = f1(0) = 0 for each t €]0,00[ and, for each x €]0, 0|, we have
that
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L5, iftelon]
frt) =
T if t € [1, 00].
Clearly the family F satisfies all hypothesis in the statement of Theorem
6.2.8. Thus (X, Mp, L) is a strong fuzzy metric on X, where M is given by

(

L, if v =y;
Mp(z,y,t) =1—fi(d(z,y)) = %, if ¢,y € X with x #y and t €]0, 1;
m’ if x,y € X withx #y and t € [1,00[.

According to [30], (X, Mp, L) is not a principal fuzzy metric space. Be-
sides, notice that fy is not continuous at 0 for any t €)0,1[ and, thus, by

Theorem 1.1.4 we have that f, ¢ MY for any t €]0,1].

The following notion has been inspired by Theorem 6.2.3.

Definition 6.2.6. Let (X, d) be a metric space and let F'= {f; : t > 0} be a
decreasing family of functions included in M? such that for each x € [0, 00|
we have that f* is continuous on ]0,00[, where f*(¢t) = fi(x) for all ¢ > 0.
Then the fuzzy metric space (X, Mp, £), where Mp(x,y,t) = 1—dy,(z,y) for
each z,y € X and each t > 0, will be called the fuzzy metric space induced
by the family F' and the metric space (X, d). We will also say that (Mg, £)
is the fuzzy metric induced by F' and (X, d).

In the next example we show that some well-known instances of strong
and principal fuzzy metric spaces can be obtained applying the technique

introduced in Theorem 6.2.3. Such examples illustrate Definition 6.2.6.
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Example 6.2.7. Let (X,d) be a metric space. Consider the three families
of functions F = {f; :t >0}, G={g; :t >0} and H = {h; : t > 0} defined
on [0, 00[ by:

1. fi(z) = min{liﬂ, ﬁt},
2. gi(v) = 75,

9 hy(x)=1—expr.

It is not hard to check that these families of functions fulfill all hypothesis,
even that they are included in ./\/lév, i the statement of Theorem 6.2.3. The
corresponding strong and principal fuzzy metric spaces induced by F,G and

H and the metric space (X, d) are given, respectively, by

d b
1. MF(x,y,t) = max{l _ %7 HLI}’

_ dzy) _ t
2. MG(:vavt) =1- t+daExy7y) T otd(xy)’

—d(z,y) —d(z,y)

3. My(z,y,t)=1—(1—exp™ ¢ )=exp ¢

for each x,y € X and each t > 0. Observe that (Mg, £) is the standard fuzzy

metric induced by the metric d.

After introducing the technique for generating non-stationary fuzzy met-
ric spaces we end the paper focusing our discussion on their completeness
and their completion. Before, we give two observations on the class of strong

fuzzy metrics that will be useful in our work.
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Remark 6.2.8. In [32], it was shown that the assignment in condition (C'1),
in the statement of Theorem 6.1.18, is always a continuous function whenever
M is strong. So, as it was pointed out in Theorem 4.7 of the cited paper,
a strong fuzzy metric space (X, M, x) is completable if and only if for each

pair of Cauchy sequences (ay,)nen and (b, )nen in X the following conditions
are fulfilled:

(c1) lim,, M(an,by,s) = 1 for some s > 0 implies lim,, M (a,, b,,t) = 1 for
all t > 0.

(c2) lim,, M(an,by,t) > 0 for all t > 0.

Remark 6.2.9. Observe that if (X, M, *) is a non-stationary fuzzy metric
space, then we can define the family of fuzzy sets {M; : t > 0} where, for
each t > 0, M; : X x Xx]0,00[—]0,1] is given by M;(x,y,s) = M(x,y,t)
for all z,y € X and for all s > 0. According to [32], (X, M, *) is strong if
and only if (X, My, *) is a stationary fuzzy metric space for each ¢ > 0. In
this case the family {M; : t > 0} is called the family of stationary fuzzy
metrics associated to M. Note that if (X, My, %) is a stationary fuzzy metric
space, then we can identify the value M;(x,y,s) with the value M;(x,y).
Moreover, 7oy = \/{7a, : t > 0} provided that (X, M, ) is strong (see [33]).
Furthermore, if M is strong and 73y = 7y, for all t > 0, then M is principal.

Now, we are able to tackle the completeness of the fuzzy metrics con-

structed by the introduced technique.

Proposition 6.2.10. Let (X, d) be a metric space and let F = {f, : t > 0}
be a decreasing family of functions included in ./\/lls such that f* is continuous
on |0,00][ for each x € [0,00[, where f*(t) = fi(x) for all t > 0. Then the
fuzzy metric space (X, Mp,£) induced by F and (X,d) is complete if and
only if (X,d) is complete.
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Proof. Let (M, £) be the fuzzy metric induced by F and (X, d). We first
note that a sequence (z,,)nen in X is Mp-Cauchy if and only if it is d-Cauchy.
Indeed, since Mp is strong, then a sequence (zp)nen is Mp-Cauchy if and
only if it is Mp,-Cauchy for all ¢ > 0. Moreover, d-Cauchy sequences coincide
with Mp,-Cauchy sequences for each t > 0, since d and M, are uniformly
equivalent by assertion (i¢) in the statement of Proposition 6.1.12. Thus, Mp-
Cauchy sequences coincide with d-Cauchy sequences. Furthermore, assertion

(v) in the statement of Theorem 6.2.3 gives that 7y = 7(d).

Therefore, every Mp-Cauchy sequence converges in 7y, if and only if
every d-Cauchy sequence converges in 74. Thus (X, Mp, £) is complete if
and only if (X, d) is complete. [ |

Theorem 6.2.11. Let (X,d) be a metric space and let F = {f; :t > 0} be
a decreasing family of functions included in ./\/l}g such that % is continuous
on |0,00][ for each x € [0,00[, where f*(t) = fi(x) for all t > 0. Then the
fuzzy metric space (X, Mp, L) induced by F and (X,d) is completable and
(X, My, £) is its completion, where M. (z*,y*,t) =1 — dj, (x*,y*) for each
x*,y* € X* and each t > 0 and, in addition, (X*,d*) is the completion of
(X,d).

Proof. Consider the fuzzy metric space (X, Mg, £) induced by F and
(X,d). Let (X*,d*) be the completion of (X,d). We begin showing that
(X, Mg, £) is completable. To this end, let ¢ > 0 and, in addition, let
(an)nen and (by)nen be two Cauchy sequences in X, where (a,)neny € a*

and (b,)nen € b*. Then taking into account that FF C ML, we have that

lim, Mg (an,bp,t) = limy, (1 — dy,(an, by)) =

1— fo(lim, d(an, by)) = 1 d}, (a*,b%) > 0.
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By Remark 6.2.8 we deduce that assertion (C'1) in the statement of Theorem
6.1.18 is fulfilled.

Next, suppose that lim,, Mp(an,, by, s) = 1 for two Mp-Cauchy sequences
(an)nen and (by)nen in X and for some s > 0. Then, by continuity of f,, we
have that

1 =lim Mp(an,by,s) = lim(1 — dy, (an,by)) =1 — fs(limd(an, by)).

So limy, Mg (an, by, s) = 1if and only if fs(lim, d(a,,b,)) = 0. Since f; € M}
we have that fs(lim,, d(an,b,)) = 0 if and only if lim,, d(ay, b,) = 0.

Therefore if lim,, M (ay, by, s) = 1 for some s > 0, then f;(lim,, d(ay,,b,) =
0 for each ¢t > 0. Hence lim,, Mp(an,by,,t) = 1 for each t > 0. Therefore,
assertion (C2) in the statement of Theorem 6.1.18 is fulfilled. Consequently,
Theorem 6.1.18 yields that (X, Mg, £) is completable.

Next, we will construct the completion of (X, Mg, £). Suppose that
X, M%, £) is the completion of (X, Mg, £).
F

First we will see that X = X*. The set of Mp-Cauchy sequences in X
coincides with the set of d-Cauchy sequences in X, as we have seen in the
proof of Proposition 6.2.10. Then, given two Cauchy sequences (x,)nen and
(Yn)nen in X, we have that lim, Mp(z,,yn,t) = 1, for each ¢ > 0, if and
only if lim,, dy, (z,, yn) = 0, for each ¢ > 0. So, lim,, d(xy,y,) = 0 if and only
if limy, dy, (2, yn) = 0, for each ¢ > 0, since f; € M} for each t > 0. Thus,
X =X*

Finally, given z*,y* € X* and ¢ > 0, on account of Remark 6.1.21, we
have that

Mp(z*,y*,t) = 1111111 Mp(zp, yn,t) =1 — h,{n ds,(Tn,yn)
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=1- ft(lirlgld(xn,yn)) =1 fi(d* (=", y")) =1 = d}, (2", y"),

where (z,,)nen € * and (yn)nen € y*.



Chapter 7

A duality relationship between

fuzzy metrics and metrics

Based on the duality relationship between indistinguishability operators and
(pseudo-)metrics exposed in Subsection 1.1.3, we address the problem of
establishing whether there is a relationship between the last ones and fuzzy
(pseudo-)metrics in this chapter. We give a positive answer to the posed
question. Concretely, we yield methods for generating fuzzy (pseudo-)metrics
from (pseudo)-metrics and vice-versa. The aforementioned methods involve
the use of the pseudo-inverse of the additive generator of a continuous Archi-
medean t-norm. As a consequence we get a technique to generate non-strong
fuzzy (pseudo-)metrics from (pseudo-)metrics. Examples that illustrate the
exposed methods are also given. Finally, we show that the classical duality
relationship between indistinguishability operators and (pseudo)-metrics can
be retrieved as a particular case of our results when continuous Archimedean

t-norms are under consideration. Throughout this chapter the fuzzy pseudo-
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metrics are understood as K M-fuzzy pseudo-metrics.

The structure of the chapter is as follows: in Section 7.1, we introduce the
method for inducing fuzzy (pseudo-)metrics from (pseudo)-metrics using the
pseudo-inverse of the additive generator of a continuous t-norm. Moreover,
in the same section, we discuss conditions under which our method gives as
a result non-strong fuzzy pseudo-metrics. Furthermore, we give examples
in order to illustrate the introduced method. Finally, in Section 7.2, we
study the converse of the aforesaid method. Thus we generate (pseudo-
Jmetrics from fuzzy (pseudo-)metrics by means of an additive generator of

the continuous ¢-norm under consideration.

7.1 A method for generating fuzzy pseudo-metrics

from pseudo-metrics

In this section we will construct a fuzzy metric space from a given metric
space (X,d). Our method will be based on the pseudo-inverse of a contin-
uous Archimedean t-norm preserving the spirit of the construction given in

Theorem 1.1.28.

First, we will try to motivate the way of constructing our fuzzy metric

from the classical one.

Given a fuzzy (pseudo-)metric space (X, M, x), the value M(z,y,t) can
be interpreted as the degree of nearness or similarity between x and y, with
respect to a positive real parameter . Under this interpretation if we con-
sider a (pseudo-)metric space (X,d) we can consider the parameter ¢ as a

threshold from which x and y would be indistinguishable, and so the degree
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of nearness between them will be 1. Before that threshold, the degree of
nearness is fuzzified, taking values in [0, 1) smaller as t decreases, since M, ,
is a decreasing function on ]0, oo[ (the fact that M, , is a monotone function

was proved in [23]).

The following fuzzy metric illustrates the aforementioned idea. Notice
that it is a generalization of a well-known example of probabilistic metric

space introduced in [89].

It is not hard to see that, given a (pseudo-)metric space (X, d), (X, M9, A)

is a fuzzy (pseudo-)metric space, where M? is given by

0, if0<t<d(z,y)

M%(x,y,t) =
( ) {1, ift > d(z,y)

Observe that the preceding example constitutes a drastic fuzzification of
the classical (pseudo-)metric from which it is defined. Indeed, the degree
of nearness between two points M (x,y,t) is 0, = and y are totally distin-
guishable before a threshold parameter value ¢ (¢t = d(x,y)) and, in addition,
x and y are indistinguishable from the threshold, i.e., M (z,y,t) = 1 when
t>d(x,y).

Taking into account the method of construction of indistinguishability
operators given in Theorem 1.1.28 and the fact that every indistinguishability
operator, for a continuous and Archimedean ¢-norm, can be considered as a
stationary fuzzy pseudo-metric, we introduce a method to fuzzify a classical
pseudo-metric in such a way that the spirit of the construction of the fuzzy

metric M? is preserved.
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Theorem 7.1.1. Let (X,d) be a pseudo-metric space and let * be a contin-
uous t-norm with additive generator f.. Then, (Mg, ,*) is a fuzzy pseudo-

metric on X, where My, is the fuzzy set defined on X x X x]0, 00 as follows:

Md,f* ('r7 y7t) - f(_l) (ma“x{d('r7 y) -, 0}) )

for all x,y € X and for all t €]0,00[. Furthermore, (Mgy,,*) is a fuzzy

metric on X if and only if d is a metric on X.

Proof. Let (X,d) be a pseudo-metric space and let * be a continuous
Archimedean t-norm with additive generator f.. We define, for each z,y € X
and each t €]0, oo[, the mapping

Md7f* (l‘, Y, t) = f(_l) (max{d(x, y) —t, 0}) :
We will see that (M y,,*) is a fuzzy pseudo-metric on X.

First, note that the axiom (K M3) is obviously fulfilled by definition of
Mg s, and by the fact that d(z,y) = d(y, ) for all z,y € X. So, we only
need to see that, for each x,y € X and each t €]0,00], the fuzzy set My f,
also satisfies (K M2), (KM4) and (KM5).

Next we show that M, s, satisfies (K M2). To this end, let x € X and
t €]0, 00]. Since (X,d) is a pseudo-metric space we have that d(z,z) = 0 and

S0
Mgy, (x,x,t) = £ (max{0 — ¢,0}) = fEY(0) for each ¢ €]0, o0l

Since f(-1(0) = 1 we deduce that M(z,z,t) = 1 for each t €]0,00[ and
(K M?2) is hold. In order to show that Mg ¢, satisfies (KM4), let z,y,2 € X
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and t,s €]0,00[. First, note that d(z,z) —t — s < d(z,y) —t +d(y,z) — s,

since d is a pseudo-metric on X. Then,
max{d(z,y) — t,0} + max{d(y, z) — s,0} > max{d(z,z) —t — s,0}.
Hence, we obtain that
Mgy (2,2, t +5) = fV (max{d(z,z) — t — 5,0}) >

f=D (max{d(z,y) — t,0} + max{d(z,y) —t,0}) ,

since f(=1 is decreasing.

Moreover, we have that

Md,f* ('r7 Y, t) * Md,f* (y7 Z, S) =
Y (max{d(z,y) —t,0}) = fV (max{d(z,y) — 5,0}) =

FED(f (FEY (max{d(z,y) —t,01)) + £ (f (max{d(z,y) — 5,0}))) ,

since f, is an additive generator of x.

Since

fED (max{d(z,y) — t,0} + max{d(z,y) — s,0}) >

FEU(F (FED (max{d(z,y) — t,0})) + f (F© (max{d(x,y) — 5,0})))

we deduce that
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Mgy (z,z,t+5) > Mgy, (x,y,t)* Mgy (y,z5).

Thus, (K M4) is satisfied.

Next we show that (K M5) is hold. Fix z,y € X and consider the function
M, :]0,00[— [0,1] given by M, ,(t) = Mgy, (x,y,t) for all t €]0,00[. Then,

Mx,y(t) =

FEV (d(a,y) —t), 0 <t <dz,y)
1, if t > d(z,y)

An straightforward computation, and taking into account that f(=1 is
decreasing and continuous, gives that M, , is continuous on ]0,00[ and so

left-continuous on ]0, col.
Therefore, (Mg, ,*) is a fuzzy pseudo-metric on X.

It remains to prove that My s, is a fuzzy metric on X if and only if, d is
a metric on X. To this end, note that My y, satisfies (K M2') if and only if
Mg ¢(z,y,t) =1 for all t €]0, 00] implies = y. Moreover, My ¢, (z,y,t) =1
for all t €]0, 00[ is equivalent to f(-V (max{d(z,y) —t,0}) = 1 for all t €
10, 00[. Since F1 s the pseudo-inverse of an additive generator of %, then
fY(a) = 1if and only if a = 0. Therefore, M (z,,t) = 1 for each t €]0, 00|
if and only if max{d(z,y) —¢,0} = 0 for each ¢ €]0, cc[, or equivalently, if
and only if d(z,y) = 0. Thus, the fuzzy pseudo-metric (Mg ¢, ,*) is a fuzzy

metric on X if and only if d is a metric space on X.
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In the following two corollaries, we specify the method given in Theorem

7.1.1 for the case of the usual product *p and the Luckasievicz t-norm .

Corollary 7.1.2. Let (X,d) be a pseudo-metric space. Then, (Mdyf*P’*P)
1s a fuzzy pseudo-metric on X, where Md’f*p 1 the fuzzy set defined on

X x X x]0,00[ as follows:

et=d@y)  ift < d(z,y)

M * x?:y?t -
tep (0 8:0) {1, ift > d(z,y)

for all z,y € X and for all t €]0,00[. Furthermore, (May. ,,*p) is a fuzzy

metric on X if and only if d is a metric on X.

Corollary 7.1.3. Let (X,d) be a pseudo-metric space. Then, (Md7f*L,>kL)

1s a fuzzy pseudo-metric on X, where Md’f*L 1s the fuzzy set defined on

X x X x]0,00[ as follows:

May, (z,y,1) =q 1+t—d(z,y) ifdxy) —1<t<dxy) .
L, ift = d(z,y)

for all z,y € X and for all t €]0,00[. Furthermore, (May, ,*1) is a fuzzy

metric on X if and only if d is a metric on X.

7.1.1 Stationary fuzzy metric spaces and indistinguishability

operators

In this subsection, we will show that the method yielded in Theorem 1.1.28
can be retrieved as a particular case of our construction provided in Theo-
rem 7.1.1. The following result, that gives a method to construct an indis-
tinguishability operator from a given fuzzy pseudo-metric, will be crucial to
this end.
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Lemma 7.1.4. Let (M, %) be a fuzzy pseudo-metric on X and let Ep be the
fuzzy set defined on X x X as follows:

Ey(z,y) = /\ M (x,y,s) for each xz,y € X.
5>0
Then, Epz s an indistinguishability operator for x on X. Moreover, Fys

separates points if and only if (M, %) is a fuzzy metric on X.

Proof. First of all, we note that the numerical value A, , M (z,y,s)

exists. Indeed, the set {M(z,y, s)}se]0,00] is bounded below by 0.

Next we show that the fuzzy set Ejs satisfies axioms (E'1), (E2) and (E3).
Clearly, (E2) is fulfilled by definition of Ej; and the fact that M (z,y,s) =

M(y,z,s) for all x,y € X and for all s €]0, c0].

In order to show that Fj satisfies (E1), let € X. Since (M, %) is a
fuzzy pseudo-metric on X we have that M(z,z,s) = 1 for each s €]0,00[
and so Ey(x,x) = \;o9M(z,2,5) = 1. Thus, (E1) is hold.

With the aim of showing that E); satisfies (E3), let z,y,z € X. Since
(M, ) is a fuzzy pseudo-metric on X it is hold that

M(z,2,8) > M(z,y,s/2) * M(y, z,s/2),for each s €]0, 00].
Then,

Ey(z,z) = /\ M(z,z,s) > /\ (M(x,y,s/2) « M(y,z,5/2)) .
>0 >0

Since A,oqM(u,v,5/2) < M(u,v,t/2) for all u,v € X and t €]0, co[ we
have that

(/\ M(x,y, 8/2)) * (/\ M(y, z, 5/2)) < M(z,y,s/2) « M(y,z,s/2)

s>0 s>0



A DUALITY RELATIONSHIP BETWEEN FUZZY METRICS AND METRICS 193

for all s €]0, co[ and, hence, that

( N\ M.y, s/2>) . ( A M(y,z,s/m) < N\ (M(x,y,5/2) * M(y, 2, 5/2)) .

s>0 s>0 s>0

Whence we deduce that

Eyn(z, 2) > (/\ M(:L",y,s/2)> * (/\ M(y, z, 5/2)) = En(z,y) * En(y, 2).

s>0 s>0

Therefore, E)s satisfies axiom (E3) too and so F)y is an indistinguisha-

bility operator for x on X.

Finally, it remains to prove that Ejs separates points if and only (M, *)
is a fuzzy metric space on X. It is easy to check that, given z,y € X,
Ey(z,y) =14 M(z,y,s) =1 for each s €]0,00[. Whence we immediately
obtain that Fy/(xz,y) = 1 < x = y if and only if M(z,y,s) = 1 for each
s €]0,0[& = 1y.

In the light of Lemma 7.1.4 and Theorem 7.1.1 we are bale to achieve
our promised target, i.e., that the method given in in Theorem 1.1.28 can be

retrieved from the method provided in Theorem 7.1.1.

Corollary 7.1.5. Let (X,d) be a pseudo-metric space and let * be a contin-
uous Archimedean t-norm with additive generator f, :[0,1] — [0,00]. Then,
the fuzzy set Eq 5, :+ X x X —[0,1] is an indistinguishability operator for x
on X, where Eqy. (z,y) = fCV(d(z,y)) for each x,y € X. Furthermore,

Eg 5, separates points if and only if d is a metric on X.
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Proof. Let (X,d) be a pseudo-metric space and let * be a continuous

Archimedean t-norm with additive generator f,.

On the one hand, Theorem 7.1.1 ensures that (Mg, , *) is a fuzzy pseudo-

metric, where My ¢, is given by

Mgy, (x,y,t) = f(_l) (max{d(x,y) —t,0}), for each z,y € X,t €]0, c0].

On the other hand, we define the fuzzy set E, , on X x X x given by

By, (x,y) = /\ Mgy, (x,y,s), for each z,y € X.
s>0

Then, by Lemma 7.1.4, we have that Ey, , is an indistinguishability opera-
tor for * on X. In addition, Eyy, , separates points if and only if (Mg, g, ,*)

is a fuzzy metric on X.

Now, observe that for each x,y € X we have that

EMd,f* (Jf,y) - /\ Md,f* (a;,y,s) = /\ <f(_1)(d($,y) - S)) = f(_l)(d('r7y))7

s>0 s>0

since f(=1 is a decreasing function. Thus, the fuzzy set Egy,, given by
Ey(z,y) = fCV(d(z,y)) for each z,y € X, matches up with By, on X x X
and, therefore, it is an indistinguishability operator for x on X. Furthermore,
B, ,, separates points if and only if (Mg, ,*) is a fuzzy metric on X. By
Theorem 7.1.1 we have that (Mg y,,*) is a fuzzy metric on X if and only if
d is a metric on X. Therefore we conclude that Ey . separates points if and

only if d is a metric on X.
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7.1.2 Non-strong fuzzy (pseudo-)metric spaces

Many examples of fuzzy pseudo-metrics that can be found in the literature
are strong (see Subsection 1.1.3). So, taking into account that each stationary
fuzzy pseudo-metric on a non-empty set X is an indistinguishability opera-
tor, each strong fuzzy pseudo-metrics can be seen as a parametric family of

indistinguishability operators.

Fuzzy metric spaces satisfying the property of being strong constitute a
large class. In fact, in the literature it is very difficult to find examples of non-
strong fuzzy (pseudo-)metrics. Inspired by this handicap a few authors have
focused their efforts on finding examples of non-strong fuzzy (pseudo-)metrics
(see, for instance, [31, 41]). As an instance of this kind of fuzzy pseudo-
metrics we have the fuzzy pseudo-metric (Md, A) introduced in Section 7.1.
Indeed, it is easily seen that (M9, A) is a non-strong fuzzy metric on R when

d is taken as the Euclidean metric.

Based on the preceding observation and motivated by the fact lack of
examples of non-strong fuzzy pseudo-metrics, our purpose in this subsection
is, on the one hand, to show that the method given in Theorem 7.1.1 does
not yield in general strong fuzzy pseudo-metrics and, on the other hand, to
provide conditions that guarantee when our construction gives a strong fuzzy

pseudo-metric.

The next example gives an instance of non-strong fuzzy pseudo-metric

which is obtained by means of Theorem 7.1.1.

Example 7.1.6. Consider the Fuclidean metric d. on R. Attending to Corol-

lary 7.1.2 we have that Mde,f*P 18 a fuzzy metric on R, where recall that
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Mdevf*p 18 given by

el=lv=el ifo <t <|y—zl

Mde7 * ($7y7t) =
T 1, if t >y —a|

Nezt we show that My, f. (0,2,1) < Mg, 1, ,(0,1,1) xp Mg, . ,(1,2,1).
Indeed, it is clear that |1 — 0| =1, |2—1| =1 and |2 — 0| = 2. Thus we have
that

M., (0,2,1) = el l=el<cl=el"lupelt =

Mde,f*P (0, 1, 1) *p Md67f*P (1, 2, 1).

Thus, the fuzzy metric (Mde,f*P,*p) 15 not strong.

The next result ensures that our method, given by Theorem 7.1.1, allows
always to construct non-strong fuzzy pseudo-metrics when we consider that

the metric fulfills an extra condition.

Theorem 7.1.7. Let x be a continuous Archimedean t-norm with additive
generator f. and let (X,d) be a pseudo-metric space such that there exist
a,b,c € X and ty €]0,00[ satisfying d(a,c) €]to, f«(0)] and d(a,b),d(b,c) €
[0,t0]. Then (Mgy,,*) is a non-strong fuzzy pseudo-metric on X, where
Mgy, is the fuzzy set defined on X x X x]0,00[ as follows:

Md,f* ('r7 y7t) - f(_l) (ma“x{d('r7 y) -, 0}) )

forallx,y € X and for allt €]0,00[. Furthermore, (Mg y,,*) is a non-strong

fuzzy metric on X if and only if d is a metric on X.
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Proof. By Theorem 7.1.1 we have that (Mgy,,*) is a fuzzy pseudo-
metric space on X. Furthermore, (Mg, ,*) is a fuzzy metric on X if and

only if d is a metric on X.

Now, we will see that in both cases the fuzzy (pseudo-)metric is not
strong. With this aim, we will show that (K M4') is not fulfilled. Indeed, let
a,b,c € X and ty €]0,00[ such that d(a,c) €]ty, f«(0)[ and d(a,b),d(b,c) €
[0, o). Since f(=1 is strictly monotone on [0, f,(0)] then

Mgy (a,c ty) = F=n (max{d(a,c) —to,0}) =

FED(d(a, ) — to) < FED(0) =1
and

Mgz, (a,b,to) x My, (b, c,tg) =
fEY (max{d(a,b) — to,0}) * fCV (max{d(b,c) — t,0}) =

= FED(0)  FD(0) = 1.

Whence we conclude that
Mdyf* (a, c, to) < Md7f* (a, b, to) * Mdyf* (b, c, to)

and, thus, that My, is non-strong, as we claimed. |

In [41], two examples of non-strong fuzzy metrics were provided, one for
the product ¢-norm and another one for the Lukasievicz t-norm. Besides they
posed the question of finding examples of non-strong fuzzy metrics when
the continuous t-norms that are under consideration are greater than the
product but different from minimum. It must be stressed that they posed

the aforesaid question in the framework of GV-fuzzy metrics (fuzzy metrics in
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the sense of George and Veeramani, see [23]). Motivated by the fact that GV-
fuzzy metrics are closely related to the fuzzy metrics studied in the present
paper, we introduce in the following example an instance of non-strong fuzzy
pseudo-metric when the considered continuous ¢-norm is greater than the

product t-norm and different form the minimum.

Example 7.1.8. Consider the Hamacher t-norm sy defined by a xpg b =
#Iiab for each a,b € (0,1] and 0% 0 = 0 (see [49] for more information
about the family of Hamacher t-norms). It is clear that xg is a continuous

Archimedean t-norm.

Moreover, it is easy to check that for each a,b € [0, 1] we have that axpb >

axpb, soxg 1s greater than *p.

An additive generator of =g is given by the function fi, :[0,1] — [0, o]
given by ., (x) = I_TI for all x € [0,1]. Hence an easy computation shows
that the pseudo-inverse fﬁ;l) of fsy 15 given as follows:

_ 1
igl)(y) = m, for each y € [0, 0].

Furthermore, note that fs,(0) = co.

Now, consider the Euclidean metric d, on R. Takingx =0, y=1, 2 =2
and ty = 1 we have that the condition in the statement of Theorem 7.1.7 is

hold, since |2 — 0| €]1,00[, |1 — 0] € [0,1] and |2 — 1] € [0, 1].

By Theorem 7.1.1, (Mde,f*m*H) 1S a fuzzy metric on R, where the fuzzy
set Mg, 1., on R x Rx]0, 00l is given by

1 ) .
Md f ('r7y7t) - W’ th S de(l‘,y%
esJ* 1, th > de(x7 y)
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Similar arguments to those given in Example 7.1.6 remain valid to show

that (Ma,.y. . »*m) is non-strong.

7.2 A method for generating pseudo-metrics from

fuzzy pseudo-metrics

The problem of obtaining metrics from fuzzy metrics has been treated in
the literature by several authors. Some approaches to the aforementioned
problem have been obtained in [43, 76, 77]. Recently, the aforementioned
results given in the cited references have been generalized in [10]. In all
results given in the aforesaid references, a metric is constructed from a fuzzy
metric using an additional function which is not related to the continuous

t-norm under consideration and must satisfy many constraints.

Taking into account the mentioned results, we continue the study on
the duality relationship between pseudo-metrics and fuzzy pseudo-metrics in
this section. Thus our goal is twofold. On the one hand, we have inter-
ested in generating pseudo-metrics from fuzzy pseudo-metrics by means of
the pseudo-inverse of an additive generator of the continuous ¢-norm under
consideration. On the other hand, we aspire to retrieve the method provided
in Theorem 1.1.27 as a particular case when stationary fuzzy pseudo-metrics

are under consideration.

Our method, in contrast to those mentioned before, presents the advan-
tage of needing only to consider the pseudo-inverse of an additive generator
of the t-norm under consideration. Despite the aforesaid benefit, it must be

pointed out that our method should be restricted to take under considera-
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tion only Archimedean continuous t-norms which excludes, for instance, the

minimum ¢-norm.

The next result provides a method to obtain a pseudo-metric from a fuzzy
pseudo-metric. The theorem is proved following similar arguments to those
used in the proof of Theorem 1.1.30 which was proved in [10]. First we point

out a comment on the notation that we use, which is inspired by [49].

Remark 7.2.1. In a lattice (L, <), the meet (the greatest lower bound) and
the join (the least upper bound) of a subset A of L are denoted by inf A and
sup A, respectively. Observe that each element of L is both an upper and a
lower bound of the empty set (), so inf () and sup () depend on the underlying
set L. In particular, in the lattice (Ja,b[, <) (with [a,b] C [—o0, 0] and
where < is the usual order on the (extended) real line) we obtain inf() = b

and sup () = a.

Now, we are able to show the announced theorem.

Theorem 7.2.2. Let (M, %) be a fuzzy pseudo-metric on X, where x is a
continuous Archimedean t-norm. Then the function dys ¢, : X x X — [0, 0]
defined as

darg. (2,y) = sup{t €]0, f(0): M(z,y,1) < TV (D)},

18 a pseudo-metric on X, where f, is an additive generator of x. Moreover,

d is a metric on X if and only if (M, x*) is a fuzzy metric on X.

Proof. First we show that dy s, (z,2) = 0. To this end, let z € X.
Since (M, ) is a fuzzy pseudo-metric on X we have that M (z,z,t) = 1 for
all t €]0, £.(0)[. Tt follows that M (z,z,t) > f(=1(¢) for all t €]0, f.(0)[, since
FED(@) € [0,1] for each t €]0, £, (0)[. Thus, das g, (z,2) = 0.
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The symmetry of dy s, is obvious attending to its definition and the fact
that M(xz,y,t) = M(y,z,t) for all x,y € X and ¢ €]0, o0].

Next we show that das,r, (2, 2) < darf. (2, y) + dar g, (y, 2) for all z,y, z €
X. To this end, we will assume that dps, s, (z,y) < f«(0) and daz s, (v, 2) <
f+(0) because otherwise the triangle inequality is hold trivially.

By definition of dys,r, we have

M(‘TvyvdM,f* (‘Tvy) + 6) > f(_l)(dM,f*(xvy) + 6)

and

for each x,y,z € X and for each € €]0, K|, where

K= mln{f*((]) - dM7f* (IL‘,y), f*(o) - dM7f* (y7 Z)}

Then, for each € €]0, co[, we have that

f*(M('r7y7dM,f* (x,y) + 6)) < dM,f* (J?,y) +e€ (71)

and

f*(M(y7 Z7dM,f*(y7 Z) +E)) < dM,f*(yaz) + €, (72)
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since f, is a strictly decreasing function and (f. o f(=Y)(a) < a for each

a € [0,00].

Attending to axiom (K M4) and taking into account that f, is an additive

generator of x, we have

Mz, z,dry, (2, y) + darg, (y, 2) + 2€) >

M(z,y, dary. (2,y) + €) * M(y, z,d g, (y, 2) + €) =

FOD (fo(M (2, y,dar g, (,9) + €) + fo(M(y, 2,dpr 5. (y, 2) + €))) >
FO(dar g, (@, y) + €+ dar g, (v, 2) + €)).

Thus, by definition of dy f, (x, 2), it is hold that
dar, g, (2, 2) < dagy, (2,y) + dagg (y, 2) + 2e.
Taking into account that e €]0, co[ is arbitrary, we obtain

darg, (7, 2) < darg, (7, y) +dar g, (Y, 2)-

In the following two corollaries, we specify the method given in Theorem

7.2.2 for the case of the usual product *p and the Luckasievicz t-norm .

Corollary 7.2.3. Let (M,xp) be a fuzzy pseudo-metric on X. Then the
function dary, , + X x X —[0,00] defined as

dar, ., (€, y) = sup{t €]0,00[: M (x,y,t) < e '},



A DUALITY RELATIONSHIP BETWEEN FUZZY METRICS AND METRICS 203

1s a pseudo-metric on X. Moreover, def*p 15 a metric on X if and only if

(M, *p) is a fuzzy metric on X.

Corollary 7.2.4. Let (M,x*1) be a fuzzy pseudo-metric on X. Then the
function dyry, + X x X — [0,00] defined as

dar g, (x,y) = sup{t €]0,1[: M(z,y,t) <1 —t},

s a pseudo-metric on X. Moreover, dM’f*L 15 a metric on X if and only if

(M, *r1) is a fuzzy metric on X.

Next we are able to show that the method given in Theorem 1.1.27 can

be retrieved from the method provided in Theorem 7.2.2.

Corollary 7.2.5. Let X be a non-empty set and x a continuous Archimedean
t-norm with additive generator f, : [0,1] — [0,00]. If E is an indistinguisha-
bility operator for x on X, then the function dg : X x X — [0,00] is a
pseudo-metric on X, where dp(z,y) = f(E(x,y)) for each x,y € X. In

addition, dg is a metric on X if and only if E separates points.

Proof. Define the mapping Mg(z,y,t) = E(x,y) for each z,y € X
and each t €]0,00[. Then (Mg, *) is a fuzzy pseudo-metric on X, where
Mpg(z,y,t) = E(x,y) for each z,y € X and t €]0, co].

We will show that sup{t €]0, f.(0)[: Mg(z,y,t) < fEV#)} = fu(E(z,y))
for each z,y € X.

Fix 2,y € X. Since (f(=Y o f)(a) = a for all a € [0, 1] then
SV B, y)) = B, y) = Mis(z, ,1), for all £ €]0, o

Thus we deduce that fV(f,(E(x,y)) = E(z,y) = Mg(z,y, fo(E(z,y)) and
fe(E(z,y)) € {t €]0, f(0)[: Mp(z,y,t) < fCV(t)}. The fact that f1 is
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an strictly decreasing function on ]0, f.(0)[ guarantees Mg (z,y,t) > £ (1)
for all t > f.(E(z,y)). Therefore

sup{t €]0, £.(0)[: Mp(z,y,t) < fCV(0)} = fu(E(2,y)),

as we claimed.

Since dps,,. ¢, (2, y) = de(x,y) for all 2,y € X, by Theorem 7.2.2, we have
that the function dg : X x X — [0, c0] defined by

dp(z,y) = sup{t €]0, f.(0): Mp(z,y,t) < fTV()} = fu(E(x,y)),

is a pseudo-metric on X. In addition, applying the aforementioned theorem,
we have that dg is a metric on X if and only if (Mg, *) is a fuzzy metric on
X. [ |

According to Theorem 7.2.2 we infer that the pseudo-metric dps f, will
not take the value co whenever the ¢-norm is nilpotent (notice that the t-
norm is continuous and Archimedean). Contrarily, dys s, can take the value
oo, when a continuous Archimeden ¢-norm x is strict because in that case
each additive generator f, satisfies f.(0) = oo. In order to guarantee the
finiteness of the pseudo-metric we provide a necessary condition through the

next result.

Corollary 7.2.6. Let (M,x) be a fuzzy pseudo-metric on X such that for
each x,y € X there exists tg €]0,00[ satisfying M (x,y,to) > 0, where * is a
strict continuous Archimedean t-norm. Then the function dyry, : X x X —
[0, 00] defined as

dM7f* (l‘,y) = Sup{t 6]07 OO[: M(:vavt) < f(_l)(t)}a

is a pseudo-metric on X such that dyy ¢, (z,y) < oo for each x,y € X, where
fx is an additive generator of x. Moreover, dyr s, is a metric on X if and

only if (M, ) is a fuzzy metric on X.
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Proof. By Theorem 7.2.2 de deduce that dy s, is a pseudo-metric on
X. Then we only need to show that dps r, (x,y) < oo for each z,y € X. To
this end, consider z,y € X and we will see that sup{t €]0,c0[: M(z,y,t) <
FEV@)) < oo

On the one hand, by our hypothesis, given z,y € X there exists tg €
10, 0o[ such that M (x,y,tg) > 0. Furthermore, since M, , is monotone then
M(z,y,t) > 0 for all t € [tg, 00].

On the other hand, f(=1) is decreasing and continuous. Then, for each
€ €]0, 0o there exists t. €]0, 00| such that f(=Y(t) < e for all t € [t., 00[. In
particular, if we take e = M(x,y,tg) €]0, 00| there exists t. €]0, co[ such that
FEV() < M(x,y,to) for all t € [te, 0o|.

Therefore, M (z,y,t) > ("D (t) for all t € [t;, 00[, where t; = max{to, t.}.
So
sup{t €]0,00[: M(z,y,t) < fCV(1)} <.

Hence, dp 1, (z,y) < 0o as we claimed. [ |

The following example shows that we cannot delete the additional condi-
tion on the fuzzy pseudo-metric imposed in the preceding corollary to con-

struct a pseudo-metric which does not take the value oc.

Example 7.2.7. Define the fuzzy set My on R x Rx]0,00[ as follows

0, fz#y
MO(l'ayvt):{ 1 fo_y )

for all t €]0,00[. It is not hard to check that (Mo, *p) is a fuzzy metric on
R and, obviously, the additional condition imposed in Corollary 7.2.6 is not

fulfilled. Notice that *p is a continuous Archimedean t-norm which is strict.
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Next we show that def*p can take the value co. Indeed, let x,y € R with
x #y. Then M(x,y,t) =0 for all t €]0,00[ and so

0= M(z,9,1) < f V(1) =&
for all t €]0,00[. Therefore,

dur g, (2,y) = sup{t €)0,00[: M(,y,t) < e} = oo.



Chapter 8

On indistinguishability
operators, fuzzy metrics and

modular metrics

The notion of indistinguishability operator was introduced by E. Trillas, in
1982, with the aim of fuzzifying the crisp notion of equivalence relation ([94]).
Such operators allow us to measure the similarity between objects when there
is a limitation on the accuracy of the performed measurement or a certain
degree of similarity can be only determined between the objects being com-
pared. Since Trillas introduced such kind of operators, many authors have
studied their properties and applications. In particular, an intensive re-
search line is focused on the metric behavior of indistinguishability operators
(|12, 25, 46, 49, 67, 78, 95|). Specifically, it has been explored the existence
of a duality between metrics and indistinguishability operators. In this direc-

tion a technique to generate metrics from indistinguishability operators, and
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vice-versa, has been developed by several authors in the literature. Nowa-
days, such a measurement of similarity is provided by the so-called fuzzy
metrics when the degree of similarity between objects is measured relative to
a parameter. The main purpose of this chapter is to extend the notion of in-
distinguishability operator in such a way that the measurements of similarity
are relative to a parameter and, thus, classical indistinguishability operators
and fuzzy metrics can be retrieved as a particular case. Moreover, we dis-
cuss the relationship between the new operators and metrics. Concretely,
we prove the existence of a duality between them and the so-called modular
metrics which provide a dissimilarity measurement between objects relative
to a parameter. The new duality relationship allows us, on the one hand, to
introduce a technique for generating the new indistinguishability operators
from modular metrics and vice-versa and, on the other hand, to derive, as a
consequence, a technique for generating fuzzy metrics from modular metrics
and vice-versa. Furthermore, we yield examples which illustrate the new re-
sults. Throughout this chapter the fuzzy pseudo-metrics are understood as

K M-fuzzy pseudo-metrics.

8.1 Modular indistinguishability operators

As mentioned above, we are interested in proposing a new type of opera-
tor that unifies the notion of fuzzy (pseudo-)metric and indistinguishability
operator in such a way that a unique theoretical basis can be supplied to
develop a wide range of applications. To this end, we introduce the notion

of modular indistinguishability operator as follows:

Definition 8.1.1. Let X be a non-empty set and let * be a t-norm, we will
say that a fuzzy set F': X x X x]0,00[— [0,1] is a modular indistinguisha-
bility operator for « if for each x,y,z € X and t,s > 0 the following axioms
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are satisfied:

(ME1) F(z,z,t) =1;
(ME2) F(z,y,t) = F(y,z,1);

(ME3) F(z,z,t+s)> F(z,y,t) * F(y,2,s).

If in addition, F' satisfies for all z,y € X, the following condition:

(ME1’) F(z,y,t) =1 for all t > 0 implies x = y,

we will say that F' separates points.

Moreover, we will say that F is stationary provided that the function
Fy 3]0, 00[— [0,1] defined by Fj ,(t) = F(z,y,t) is constant for each x,y €
X.

Notice that the numerical value F'(x,y,t) can understood as the degree
up to which x is indistinguishable from y or equivalent to y relative to the
value t of the parameter. Moreover, the greater F'(z,y,t) the more similar
are x and y relative to the value t of the parameter. Clearly, F(z,y,t) =1
for all £ > 0 when z = y.

It is worth mentioning that the classical notion of indistinguishability
operator is recovered when the modular indistinguishability operator F' is
stationary. Besides, it is clear that a modular indistinguishability operator
can be considered as a generalization of the concept of fuzzy (pseudo-)metric.
However, there are examples of modular indistinguishability operators that

are not fuzzy (pseudo-)metrics such as the next example shows.
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Example 8.1.2. Consider a metric d on a non-empty set X. Define the
fuzzy set Fy on X x X x]0,00[ as follows

0, if 0<t<d(x,y);
Lo aif t>d(z,y).

Fd(x7y7t) = {

It is easy to check that Fy is a modular indistinguishability operator for the
product t-norm xp. Nevertheless, (Fy,xp) is not a fuzzy (pseudo-)metric
because the function Fy,  :]0,00[— [0,1], defined by Fy,  (t) = Fy(z,y,t) is

not left-continuous.

The concept of modular indistinguishability operator also generalizes the
notion of fuzzy (pseudo-)metric in another outstanding aspect. Observe that
in Definition 8.1.1 it is not required the continuity on the ¢-norm. Naturally
the assumption of continuity of the t-norm is useful from a topological view-
point, since the continuity is necessary in order to define a topology by means
of a family of balls in a similar way like in the pseudo-metric case. However,
such an assumption could be limiting the range of applications of such fuzzy
measurements in those case where (classical) indistinguishability operators
works well. In this direction, modular indistinguishability operators present
an advantage with respect to fuzzy (pseudo-)metrics because the involved

t-norms are not assumed to be continuous.

The following example illustrates the preceding remark providing an in-
stance of modular indistinguishability operator for the Drastic t-norm xp
which is not a modular indistinguishability operator for any continuous t-
norm.

Example 8.1.3. Let ¢ be the function defined on 10, 00[ by p(t) = 1%—75 We
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define the fuzzy set Fp on [0,1[x[0,1[x]0, 00| as follows

o 9 1, foreacht >0, if x=y
D\Z,Y,t) =
max{z,y,p(t)}, foreacht>0, if x#y

First of all, note that for each z,y € [0,1] and t > 0 we have that
Fp(z,y,t) € [0,1], since x,y,o(t) € [0,1]. Hence, Fp is a fuzzy set on
[0, 1[0, 1[x]0, ool.

Now, we unll see that Fp is a modular indistinguishability operator on

[0, 1] for xp. To this end, let us recall that xp is defined a by

{0, if a,b € [0,1];
a*Db:

min{a, b}, elsewhere.

It is clear that Fp satisfies azioms (M E1) and (ME2). Next we show
that Fp satisfies (M E3), i.e.,

FD(IIZ',Z,t + S) > FD(yvzvs) = FD(IIZ’,y,t) *D FD(y,Z,S)

for all z,y,z € [0,1] and t,s > 0.

Notice that we can assume that x # z. Otherwise the preceding inequality

1s hold trivially. Next we distinguish two cases:

1. Case 1. x # y and y # z. Then Fp(z,y,t) = max{z,y,¢(t)} < 1
and Fp(y, z,s) = max{y, z, p(s)} <1, since x,y,z € [0,1] and p(t) <
1 for each t > 0. Thus, Fp(x,y,t) xp Fp(y,z,s) = 0 attending to
the definition of xp. It follows that Fp(x,z,t + s) > Fp(x,y,t) *p
Fp(y, z,s).
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2. Case 2. © =y ory = z (suppose, without loss of generality, that
x=1y). Then Fp(z,y,t) =1 and so

Fp(x,z,t+5) = Fp(y,2,t + s) = max{y, z, o(t + s)} =

> max{y, z,(s)} = Fp(y, 2, ),

since @ is a monotone function. Thus

FD('r727t + S) > FD(y7Z7S) = FD(Z’,y,t) *D FD(Z/,Z,S)-

Furthermore, the modular indistinguishability operator Fp separates points.
Indeed, let z,y € [0,1] and t > 0. Since z,y,¢(t) € [0,1] for each t > 0
we have that if x # y then Fp(x,y,t) = max{zr,y,o(t)} < 1. Thus,
Fp(z,y,t) =1 implies © = y.

Finally, we will prove that Fp is not a modular indistinguishability opera-
tor for any continuous t-norm. To this end, we will show that aziom (M E3)

is not fulfilled for any t-norm continuous at (1,1).

Let x be a continuous t-norm at (1,1). Then, for each € €]0,1] we can

find § €]0,1] such that 6 *§ > 1 —e.
Now, consider x =0, z = % andt = s =1. Then,

1 2 2
Fp(z,z,t+s) = maX{O, 2 3} =3

Taking € = & we can find & €]0,1[ such that 6 x 6 > 2. Note that, in this
case, § > % Therefore, if we take y = § we have that

1 11
FD('rvy?t) *FD(y727S) - ma‘X{O,y7§} * max {%575} -
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2
:y*y>§:FD(CE,Z,t+S)~

Thus, (M E3) is not satisfied.

We end the section with a reflection on axiom (KM1). When such an
axiom is considered in the definition of fuzzy (pseudo-)metric (i.e., the fuzzy
(pseudo-)metric is considered as a fuzzy set on X x X x [0, oo instead on X x
X x]0, 00[), one could wonder whether modular indistinguishability operators
would be able to extend the notion of fuzzy (pseudo-)metric in that case. The
answer to the posed question is affirmative. In fact, in order to define a new
indistinguishability operator for that purpose we only need to include in the

axiomatic in Definition 8.1.1 the following axiom:
(MEO) F(z,y,0) =0 for all z,y € X.

Notice that even in such a case there exist modular indistinguishability op-
erators which are not fuzzy (pseudo-)metrics. An example of such a kind of
operators is given by an easy adaptation of the fuzzy set Fy introduced in
Example 8.1.2. Indeed, we only need consider such a fuzzy set defined as
in the aforesaid example and, in addition, satisfying Fy(z,y,0) = 0 for all
x,y € X. Of course, it is easy to check that Fj; is a modular indistinguisha-
bility operator for the product t-norm *p which satisfies (MEQ) but (Fy, xp)

is not a fuzzy (pseudo-)metric.

8.2 The duality relationship

This section is devoted to explore the metric behavior of the new indistin-

guishability operators. Concretely, we extend, on the one hand, the technique
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through which a metric can be generated from an indistinguishability oper-
ator by means of an additive generator of a t-norm (in Subsection 8.2.1)
and, on the other hand, the technique that allows to induce an indistin-
guishability operator from a metric by means of the pseudo-inverse of the
additive generator of a t-norm (in Subsection 8.2.2). The same results are
also explored when fuzzy (pseudo-)metrics are considered instead of modular

indistinguishability operators.

8.2.1 From modular indistinguishability operators to (pseudo-

)metrics

In order to extend Theorem 1.1.27 to the modular framework we need to
propose a metric class as candidate to be induced by a modular indistin-
guishability operator. We have found that such a candidate is known in the
literature as modular metric. Let us recall a few basics about this type of

metrics.

According to V.V. Chytiakov (see [11]), a function w :)0,00[x X x X —
[0, 00] is a modular metric on a non-empty set X if for each z,y,z € X and

each A\, > 0 the following axioms are fulfilled:

(MM1) w(\ z,y) =0 for all A > 0 if and only if z = y;
(MM2) w(,z,y) = w(A,y,2);

(MM3) w(A + p,z, 2) < w(\ z,y) +w(p,y, 2).

If the axiom (M M1) is replaced by the following one
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(MM1’) w(\, z,z) =0 for all A >0,

then w is a called modular pseudo-metric on X.

Of course, the value w(\, x,y) can be understood as a dissimilarity mea-

surement between objects relative to the value A of a parameter.

Following [11], given z,y € X and A > 0, we will denote, from now on,

the value w(\, z,y) by wy(z,y).

Notice that, as was pointed out in [11]|, a (pseudo-)metric is a modular
(pseudo-)metric which is “stationary”; i.e., it does not depends on the value A
of the parameter. Thus (pseudo-)metrics on X are modular (pseudo-)metrics
w :]0,00[xX x X — [0,00] such that the assignment w; , :]0,00[— [0, 0],

given by w, ,(A) = wx(x,y) is a constant function for each z,y € X.

The following are well-known examples of modular (pseudo-)metrics.

Example 8.2.1. Let d be a (pseudo-)metric on X and let ¢ :]0,, co[—]0, 00|
be a non-decreasing function. The functions defined on ]0,00[xX x X as

follows

(i) wiu,y):{”’ vorEy

0, if x=vy

0o, if 0<A<d(z,y) and d(z,y) >0
(i) wi(z,y) =9 0, if A>d(z,y) andd(z,y) >0  ;
0, if d(z,y)=0

d(z,
(i) w3 (w,y) = 2.,
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are modular (pseudo-)metrics on X.

Next we provide an example of modular metric that will be crucial in

Subsection 8.2.2.

Proposition 8.2.2. Let (X,d) be a metric space. Then the function w :

10, 00[xX x X — [0,00] is a modular metric on X, where

2 €T
w)\(l'vy) = a ()\’y)

for each x,y € X and \ €]0,00[ (in the last expression, d*(x,y) denotes
(d(x,y))?, as usual).

Proof. 1t is clear that axioms (MM1) and (M M2) are satisfied. It
remains to show that axiom (M M3) is hold. Let z,y,z € X and A, u €]0, o[-
Note that

2
P(.2) < (dz.y) +d(y.2)) = (@) + 2@, y)d(y, =) +d(y,2),

since d is a metric and satisfies the triangle inequality.

From the preceding inequality we deduce the following one:

Ploy) | P2 | @@z | pOrd @) IO () A (e.z) _
A I A Ape( A1)

pAd? (2,y)+p2d? (2,y)+ X2d? (y,2) +Aud? (y,2) —Apd? (@,2)
Ap(A+p) =

P (2,y)+p° d (2,) + X2 d (y,2) +Apd? (y,2) = Au(d? (z,y) +2d(2,y)d(y,2) +d* (y,2)) _
An(A+p)

P2 (2,y) 4 X2 (y,2) =22 pd(z,y)d(y,2) _ (pd(z.y)-Ad(y,2))* -
Ap(A+p) A1) =Y
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Therefore,
w xT,2) = =wy(z w z).
Ap\bs A+ wo 2\ [ NI, Y u\Y,
Hence w satisfies (M M3). [ |

After a brief introduction to modular metric spaces we are able to yield

a modular version of Theorem 1.1.27.

Theorem 8.2.3. Let X be a non-empty set and let x be a continuous t-
norm with additive generator f. : [0,1] — [0,00]. If © is a t-norm, then the

following assertions are equivalent:

1) * <o (ie., xxy <zoy foral x,y € [0,1]).

2) For any modular indistinguishability operator F on X for o, the func-
tion (wF+) :]0,00[x X x X — [0,00] defined by

(wF’f*)A('r7 y) - f*(F(.I, Y, A))v
for each x,y € X and A > 0, is a modular pseudo-metric on X.
3) For any modular indistinguishability operator F' on X for ¢ that sep-
arates points, the function (wf/*) :]0,00[xX x X — [0,00] defined

by
(waf*)A('r7y) - f*(F('r7y7 )\))7

for each x,y € X and X\ > 0, is a modular metric on X.
Proof.

1) = 2) Suppose that x < ¢ and let F' be a modular indistinguishability
operator on X for o. We will see that (w’>/*) is a modular pseudo-

metric on X.
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(MM1’) Let x € X. Since F(z,z,A) = 1 for each A > 0, then
(W) \(x,2) = fo(F(z,2,))) = f.(1) = 0 for each A > 0.

(MM2) It is obvious because F(z,y,\) = F(y,z,\) for all z,y € X
and A > 0.

(MM3) Let x,y,z € X and A, u > 0. We will show that the following

inequality

(W )iz, 2) < ()N (@ y) + (0),u(y, 2)

is hold. Firs of all, note that F'is also a modular indsitinguisha-
bility operator for * on X due to ¢ > x. Then, it is satisfied the

following inequality

F(z, 2, \ 4+ p) > F(z,y,\) * F(y, z,p) =

-1
S (R F g, 0) + £(F (9. 7.0) -
Taking into account that f, is an additive generator, and thus a

decreasing function, we have that
Fo(P@yz A+ ) < fo (£ (PP @,y 0) + L (Fy2,0)))

Now, we will distinguish two different cases:

(a) Suppose that fo(F(x,y,\)) + f«(F(y,z,1)) € Ran(f).

Since f, is an additive generator of the t-norm * we have that

fxo fﬂg_l)|Ran(f*) = Z.d|Rcm(f*)' Then
Fo (F7V FF @,y 0) + £ (B, 2, 0))) =
It follows that

(waf*))\-‘ru(x’ Z) = f*(F(l‘, 2y A+ :u)) <

f*(F(J?,y,)\)) + f*(F(y,z,,u)) - (wF’f*)A('r7y) + (wF’f*)M(yvz)‘
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(b) Suppose that fu(F(z,y, N))+ f+(F(y 2 1)) ¢ Ran(f.). Since
f+« is an additive generator of the t-norm * we have that f,(a)+

f«(b) € Ran(fs) U [f«(0), 0] for each a,b € [0,1]. Then

F(F(z,y,N) + fo(F(y, 2, 1)) > f4(0).

So we obtain

Jo(F(z,2, A+ p) < fo(0) < fulF(2,9,A) + fo(F(y, 2, 1))

Whence we have that

(W™ )xiu(@,2) < (@) (@,9) + (@5F),u(y, 2),

as we claimed.

Therefore, (wf/*) is a modular pseudo-metric on X.

2) = 3) Let F' be a modular indistinguishability operator on X for ¢
that separates points. By our assumption, (w>/*) is a pseudo-modular

metric on X. We will see that (w’>/*) is a modular metric on X.

Let x,y € X such that (wf/*)\(x,y) = 0 for all A > 0. By definition,
we have that f.(F(z,y,A)) =0 for all A > 0. Then, F(z,y,\) =1 for
all A > 0, since f, is an additive generator of . Therefore x = y. since
F' is a modular indistinguishability operator on X for ¢ that separates

points.

3) = 1) Suppose that for any modular indistinguishability operator
F on X for o that separates points the function (w!>/*) is a modular
metric on X. We will show that ¢ > *. To this end, we will prove that
aob > axbprovided a,b € [0,1[. Note that the preceding inequality

is obvious whenever either a =1 or b = 1.

Let a,b € [0,1]. Consider a set constituted by three distinct points
X ={x,y, z}. We define a fuzzy set F' on X x X x]0, 00 as follows:
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1, ifu=wv

aob, ifu=zxandv=z
F(’UJaU’t):F(U?u’t): )

a, ifu=xand v=y

b, ifu=yandv=2z

for all £ > 0.
It is easy to verify, attending to its definition, that F' is a modular in-

distinguishability operator on X for ¢ that separates points. So (wF’f*)

is a modular metric on X. Therefore, given A > 0 we have that

fulaob) = (W )ax(x,2) < (WH)A(2,y) + (WH)A(y, 2) =

fela) + £ (b).

Notice that for each ¢ € [0, 1] we have that ( Dy fo)e) =c,axb=
fi_l) (f<(a) + f«(b)) and that ff_l) is decreasing, since f, is an additive
generator of the t-norm *. Taking into account the preceding facts and

from the above inequality we deduce that

aob= I (fulaob)) > £V (fula) + fo(b) = axb,

as we claimed.

This last implication concludes the proof. |

In order to illustrate the technique introduced in the above theorem, we
provide two corollaries which establish the particular cases for the Luck-
asievicz t-norm and the usual product. With this aim we recall that an

additive generator f,, of xr, and f,, of p is given by

f*L(a) = l-a
f*P(a) - _log(a)
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for each a € [0, 1], respectively. Of course, we have adopted the convention

that log(0) = —oc.

Corollary 8.2.4. Let X be a non-empty set. If o is a t-norm, then the

following assertions are equivalent:

1) *xr, < 0.

2) For any modular indistinguishability operator F' on X for o, the func-
tion (w/+L) 3]0, 00[x X x X — [0, 00| defined by

(W e (@, y) = 1= F(z,y,)),
for each x,y € X and A > 0, is a modular pseudo-metric on X.

3) For any modular indistinguishability operator F' on X for ¢ that sep-
arates points, the function (w™7*r) :]0,00[xX x X — [0,00] defined
by

(w7 o)y (z,y) =1 — F(x,y, \),

for each x,y € X and X\ > 0, is a modular metric on X.

Corollary 8.2.5. Let X be a non-empty set. If © is a t-norm, then the
following assertions are equivalent:
1) xp < 0.

2) For any modular indistinguishability operator F' on X for o, the func-
tion (wr) :]0,00[x X x X — [0,00] defined by

(e ) (2, y) = ~log(F(x,y, A)),

for each x,y € X and X\ > 0, is a modular pseudo-metric on X.
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3) For any modular indistinguishability operator F' on X for ¢ that sep-
arates points, the function (w™/*P) :)0,00[xX x X — [0,00] defined
by

(WPl r)\(a,y) = ~log(F(z,y, ),

for each z,y € X and X\ > 0, is a modular metric on X.

Theorem 8.2.3 also gives a specific method to generate modular metrics
when we focus our attention on fuzzy (pseudo-)metrics instead of modular

indistinguishability operators in general.

Corollary 8.2.6. Let X be a non-empty set and let * be a t-norm with
additive generator fi : [0,1] — [0,00]. If ¢ is a continuous t-norm, then the

following assertions are equivalent:

1) x <o.

2) For any fuzzy pseudo-metric (M, o) on X, the function (wM-+) :]0, oo[x X x
X — [0, 00] defined by

(wM7f*))\(x7 y) - f*(M('rv Y, A))v
for each x,y € X and A > 0, is a modular pseudo-metric on X.

3) For any fuzzy metric (M,o) on X, the function (wM7/+) :]0,00[x X x
X — [0,00]| defined by

(™) (2,9) = fu(M(2,y, 1)),

for each x,y € X and X\ > 0, is a modular metric on X.

As a consequence of the preceding result we obtain immediately the fol-

lowing one.
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Corollary 8.2.7. Let X be a non-empty set and let x be a continuous t-norm
with additive generator f, : [0,1] — [0,00]. Then the following assertions are

equivalent:

1) For any fuzzy pseudo-metric (M, x) on X, the function (w™f+) :]0, co[x X x

X — [0, 00] defined by

(wMJ*))\(xvy) - f*(M('r7y7 )\))7

for each x,y € X and X\ > 0, is a modular pseudo-metric on X.

2) For any fuzzy metric (M,*) on X, the function (wM7+) :]0,00[x X x
X — [0,00]| defined by

(W) (2,9) = fu(M(2,y, 1)),

for each z,y € X and X\ > 0, is a modular metric on X.

It is clear that when we consider stationary modular indistinguishabil-
ity operators in statement of Theorem 8.2.3 we obtain as a particular case
Theorem 1.1.27 and, thus, the classical technique to induce a metric from an
indistinguishability operator by means of an additive generator. Clearly, if
we replace modular indistinguishability operators by stationary fuzzy met-
rics we obtain a more restrictive version of the classical technique, provided

by Theorem 8.2.3, because it only remains valid for continuous ¢-norms.

8.2.2 From modular (pseudo-)metrics to modular indistin-

guishability operators

The main goal of this subsection is to provide a version of Theorem 1.1.28

when we consider a modular (pseudo-)metric instead of a (pseudo-)metric.



ON INDISTINGUISHABILITY OPERATORS, FUZZY METRICS AND MODULAR
224 METRICS

Thus we give a technique to induce a modular indistinguishability opera-
tor from a modular (pseudo-)metric by means of the pseudo-inverse of the
additive generator of a t-norm. To this end, let us recall the following rep-
resentation result for continuous ¢-norms (|49]), which will be crucial in our

subsequent discussion:

Theorem 8.2.8. A binary operator x in [0,1] is a continuous Archimedean

t-norm if and only if there exists a continuous additive generator f,. such that

vxy=f0(ful0) + L), (8.1)
where the pseudo-inverse fi_l) 18 given by
170 (w) = § (min{£.(0),4}) (8.2)

for all y € [0, o0].

In the next result we introduce the promised technique.

Theorem 8.2.9. Let x be a continuous t-norm with additive generator fy :
[0,1] — [0,00]. If w is a modular pseudo-metric on X, then the function
Fuls o X x X x]0,00[— [0,1] defined, for all x,y € X and t > 0, by

Fwts (r,y,t) = fi_l)(wt(m, v))

1s a modular indistinguishability operator for x. Moreover, the modular indis-
tinguishability operator F-T+ separates points if and only if w is a modular

metric on X.

Proof. Let x be a continuous Archimedean ¢t-norm with additive gen-

erator fy :[0,1] — [0, 00] and consider w a modular pseudo-metric on X.

We define the function Ff* : X x X x]0, 00[— [0, 1] as follows

Fol(z,y,t) = £ (wi(x, ),
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for all z,y € X and t > 0. We will see that F*-/* is a modular inidistin-

guishability operator for *.

(ME1) Let z € X. Since w is a modular pseudo-metric on X we have that
wi(x,x) = 0 for all t > 0. Therefore, F"f*(x, 2,t) = f*_l) (we(z,x)) =
F0) =1 for all t > 0.

(ME2) Ts a consequence of the definition of F™/* since w is a modular
pseudo-metric and so it satisfies that we(z,y) = w(y, x) for each x,y €
X and t > 0.

(ME3) Let x,y,z € X and t,s > 0. On the one hand, by (8.2), we deduce
that

FOF (204 8) = £ (wea(@,2)) = £ (min{£(0), wis(w,2)))
Now, since w is a modular pseudo-metric on X, then
wits(w,2) < wi(w,y) +ws(y, 2)
and, hence,
FOF (2, 2,t 4 8) > £ (min{ £(0), wi(, y) +ws(y, 2)}) -
On the other hand, we have that

Pt (z,y,t) * Fw’f*(% z,8) =
PV (B0 (@) + fo (FOF (. 209))) =

f*_l (mln {f*(0)7f* (Fw’f*(xvyvt)) + f* (Fw7f*(y7273))})

Moreover, by (8.2), we obtain that

fo (F 5 @y ) = £ (A7 (wila.y))) = min{£.(0), w(, )}
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and
£ (P (0,2,9)) = £ (£7 (ws(9,2))) = min{ £.(0), wy (5, 2)}.
To finish the proof, we will see that
min{f(0), we(z,y) + ws(y, 2)} =

= min{f.(0), min{f.(0), wi(z,y)} + min{£.(0), ws(y, 2)} }-

To this end, we will distinguish three cases:
Case 1. f.(0) < wy(z,y) and f.(0) < ws(y, z). Then we have that
min{ f,(0), wi(z,y) + ws(y, 2)} = f+(0)
and
min{f.(0), min{f.(0), w:(z,y)} + min{f.(0), ws(y, 2)}} =
= min{f.(0), £+(0) + f+(0)} = £.(0).

Case 2. f.(0) > wi(z,y) and f.(0) < ws(y, z) (the case f.(0) <
wy(z,y) and f,(0) > ws(y, z) runs following the same arguments).

Tt follows that
min{f.(0), we(x,y) + ws(y, 2)} = £.(0)
and
min{ f.(0), min{£,.(0),w;(z, y)} + min{£,(0),ws(y, 2)}} =
= min{f(0), we(w,y) + f.(0)} = f.(0).
Case 3. £.(0) > w;(z,y) and f,(0) > w(y, z). Then we have that
min{ f,(0), min{£,.(0),w;(z, y)} + min{£,(0),ws(y, 2)}} =

= mln{f*((]), wt(l', y) + wS(yv Z)}
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Therefore,

FUl (a2, ts) 2 £ (min{ £.(0), fo (F (2,9,0)) + £ (F*F (5, 2,9)) })
= FOJ(z,y,t) « FU(y, 2, 5).

Whence we deduce that F*»/* is a modular indistinguishability operator for

*on X.

Finally, ir is clear that F"»/*(x,y,t) = 1 for all z,y € X and ¢t > 0 if, and
only if, ff_l)(wt(x,y)) = 1forall z,y € X and ¢t > 0. Since ff_l)(wt(x,y)) =
1 for all z,y € X and ¢t > 0 if, and only if, wi(x,y) = 0 for all z,y € X
and t > 0 we immediately obtain that F*»/* is a modular indistinguishability

operator that separates points if, and only if, w is a modular metric on X.
|

Next we specify the method given in Theorem 8.2.9 for the t-norms x*p,
and xp. Note that the pseudo-inverse of the additive generator f,, and f,
is given by

i;”(b)z{ 1—b ifbelo,1]
0, it b € [1, 0]

and

170 =€
for each b € [0, oo, respectively, where we have adopted the convention that
e =0.

Corollary 8.2.10. If w is a modular pseudo-metric on X, then the function
FYdo 0 X x X x]0,00[— [0,1] defined, for all x,y € X and t >0, by

1 —we(z,y) if w(z,y) €10,1]

Fw,f*L =
(z,y,1) { 0. if wy(w,y) € [1,00]
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15 a modular indistinguishability operator for xp. Moreover, the modular
indistinguishability operator F'f*1 separates points if and only if w is a

modular metric on X.

Corollary 8.2.11. Ifw is a modular pseudo-metric on X, then the function
Fwlep o X x X x]0,00[— [0,1] defined, for all z,y € X and t > 0, by

Flor(z,y,t) = et @),

1§ a modular indistinguishability operator for xp. Moreover, the modular
indistinguishability operator F-JT*L separates points if and only if w is a

modular metric on X.

In the light Theorem 8.2.9, it seems natural to ask if the continuity of the
t-norm can be eliminated from the assumptions of such a result. The next
example gives a negative answer to that question. In particular it proves that
there are fuzzy sets F¥-/ given by Theorem 8.2.9, that are not modular
indistinguishability operators when the t-norm * under consideration is not

continuous.

Example 8.2.12. Consider the Fuclidean metric d. on R. By Proposition

8.2.2, the function w® is a modular metric on R, where

(de(z,1))?

w(a,y) = 242

for all z,y € R and X\ > 0. Consider the additive generator f., of the

non-continuous t-norm xp. Recall that f., is given by

] 0, ifx=1;
fo ) _{ 2—xz, ifxel0,1]

An easy computation shows that its pseudo-inverse is given by
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1, if v € [0, 1];
fi;l)(x) =4 2—z, ifz€]l,2;
0, if x €]2,00].

Next we show that we always can find x,y,z € R and A\, p €]0,00] such

that
FY5Fn (2,2, A+ p) < FYF0 (2,4, \) xp F¥"F0 (y, 2, ).

Let x =0, y=1 and z = 2, and consider A = = 1. Then,

(de(@,2))® 22 _

Wi, 2, A) = X+ p 2

and
(de(y,2))* _ 17
= =—=1
w)\(y7 Z) ILL 1
Therefore,

0 _ fi;l)(2) — Fwe7f*D (w727)\ +M) <
< FYn @,y \) xp P Fn (y,2,0) = £50 (1) 0 £557 (1) = 1.
Since the continuity is a necessary hypothesis in the statement of Theorem

8.2.9 one could expect that the following result would be true.

“Let % be a continuous Archimedean t-norm with additive generator

fe [0,1] — [0,00]. If w is a modular pseudo-metric on X, then the
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pair (M%7« ) is a fuzzy (pseudo-)metric, where the fuzzy set M®/+ :
X x X x]0,00[ is given, for all z,y € X and t > 0, by

MY (z,y,t) = ff_l)(wt(x, Y))-

Moreover, (M™/* %) is a fuzzy metric if and only if w is a modular metric
on X.”

Nevertheless the following example proves that such a result does not
hold. In fact the technique provided by Theorem 8.2.9 does not give in
general a fuzzy (pseudo-)metric.

Example 8.2.13. Let d be a metric on a non-empty set X. Consider the

2

modular metric w* on X introduced in Example 8.2.1, that is,

oo, if 0<t<d(x,y) andd(z,y) >0
wi(r,y) =14 0, if t> d(z,y) and d(z,y) > 0
0, if d(z,y)=0
for all x,y € X and t > 0. Then it is not hard to check that the pair
(sz’f*P,*p) is not a fuzzy (pseudo-)metric, where the fuzzy set MW fep
is given by MY fp(z,y,t) = i;l)(wf(w,y)) for all z,y € X and t > 0,

where
0, if 0<t<d(z,y) andd(z,y)>0
CO@2(,y) =4 1, if t>d(zy) and d(z,y) >0
1, i d(z,y)=0
for all x,y € X and t > 0. Notice that (M“’Z’f*P,*p) fails to fulfill axiom
(KM5), i.e., the function MEZ’f*P :]0, 0o[— [0, 1] is not left-continuous.

The preceding example suggest the study of those conditions that a mod-
ular (pseudo-)metric must satisfy in order to induce a fuzzy (pseudo-) metric
by means of the technique exposed in Theorem 8.2.9. The following lemma,

whose proof was given in [11], will help us to find it.
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Lemma 8.2.14. Let w be a modular (pseudo-)metric on X. Then, for each

x,y € X we have that ws(z,y) > wi(x,y) whenever s,t €]0, 00 with s < t.

Taking into account the preceding lemma, the next result provides a

condition which is useful for our target.

Proposition 8.2.15. Let w be a modular pseudo-metric on X. The function

W :)0,00[x X x X — [0, 00] given, for each x,y € X and t >0, by

wA(l'vy) = Oi?£)\wt($7y)

1§ a modular pseudo-metric on X such that for each x,y € X the function
Wy :]0,00[—]0,00[ is left continuous, where Wy (X) = wy(x,y) for each
A €]0,00[. Furthermore, w is a modular metric on X if and only if w it is

S0.

Proof. It is obvious that w satisfies axiom (M M2). Next we show that
W satisfies axioms (M M1") and (M M3).

(MM1’) Fix € X and let X\ €]0,00[. Since w is a modular pseudo-metric
on X then wy(z,z) =0 for each t > 0. Therefore,

wy(z, ) = Oirtli)\wt(:ﬂ,m) =0.

(MMB3) Let z,y,z € X and A, pu €]0, 00[. Next we prove that
TI))\+/$("E7 2) < UN))\('r7 y) + TI)M(y, Z)'

With this aim note that, given u,v € X and « €]0, 00|, we have that for
each € €]0, 0o[ we can find t €]0, of satisfying w¢(u,v) < Wq(u,v) + €.
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Fix an arbitrary € €]0, oo[, then we can find ¢ €]0, \[ and s €]0, u[ such
that w(z,y) < Wx(x,y)+€/2 and wy(y, z) < W, (y, z)+€/2. Therefore,

TI))\+#("L‘,Z) < U)H_S(.I,’,Z) < U}t(w,y) +w5(y72) < "LD}\(IIZ‘,y) +11~)N(y72) +e,

since w is a pseudo-metric on X. Taking into account that e €]0, ool is

arbitrary we conclude that

Wagp(x,2) < wr(z,y) + Wu(y, 2).

Thus w is a modular pseudo-metric on X.

We will continue showing that for each x,y € X the function w,, :
10, 00[—]0, o] is left continuous. Fix z,y € X and consider an arbitrary

Ao €]0,00[. Then given € €]0, co[ we can find ¢ €]0, o[ such that

ﬂ))\(l’vy) - w/\o(x7y) <e

for each A €]A\g—09, Ao| (note that wy(x,y) > Wy, (x,y) for each X €]Xg—0, \o]
by Lemma 8.2.14). Indeed, let € €]0,00[. As before, we can find t €]0, \g]
such that

wi(z,y) < Wy (x,y) +€

and, again by Lemma 8.2.14, we have that ws(x,y) < wx,(x,y) + € for each
s €]t, A\o|. Therefore, taking 6 = Ao — ¢ we have that

UN))\(%y) - TI)AO(%Z/) S U})\(.r,y) - UN)AO(%Z/) < €,

for each X €]Ag—9, Ao|, as we claimed. Thus, 0, , is left-continuous on |0, co[

since g is arbitrary.

Finally, it is easy to verify that @ is a modular metric on X if and only if

w it is so. Indeed, w is a modular metric on X if and only if wy(z,y) = 0 for
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each A €]0,00[ implies x = y, but wy(x,y) = infocr) wi(z,y) = 0 for each
A €]0, o0 if and only if wy(z,y) = 0 for each ¢ €]0, 00|, which concludes the
proof. |

Observe that in the preceding result @ coincides with w, whenever w,

is a left-continuous function, for each z,y € X.

Proposition 8.2.15 and Theorem 8.2.9 allow us to give the searched method

for constructing a fuzzy pseudo-metric from a modular pseudo-metric.

Theorem 8.2.16. Let x be a continuous t-norm with additive generator
fe +[0,1] — [0,00]. If w is a modular pseudo-metric on X, then the
pair (M7 %) is a fuzzy pseudo-metric on X, where the fuzzy set M™J*
X x X x [0,00][ is defined, for all x,y € X, by

MO (2, y,t) = £ (i, y))

where W (x,y) = infoerer wi(x,y). Moreover, (MW, %) is a fuzzy metric

on X if and only if w is a modular metric on X.

Proof. By Proposition 8.2.15 we deduce that w, , is a modular pseudo-
metric on X. Theorem 8.2.9 guarantees that M¥- is a modular indistin-
guishability operator for * on X. Moreover, continuity of ff_l) and the
left-continuity, provided by Proposition 8.2.15, of the function w,, guar-
antee that axiom (KM5) is fulfilled. Thus the pair (MY %) is a fuzzy
pseudo-metric on X. Finally, by Proposition 8.2.15 and Theorem 8.2.9, it is
obvious that (M™-f* %) is a fuzzy metric on X if and only if w is a modular

metric on X. |



Chapter 9

Indistinguishability Operators
Applied to Task Allocation
Problem in Multi-Agent

Systems

This chapter addresses the multi-robot task allocation problem. In partic-
ular, given a collection of tasks and robots (agents), we focus on how to
select the best robot to execute each task by means of the so-called response
threshold method. In the aforesaid method, each robot decides to leave a
task and to perform another one (decides to transit) following a probability
(response functions) that depends mainly on a stimulus and the current task.
The probabilistic approaches used to model the transitions present several
handicaps which will be detailed later on. To solve these problems we intro-

duced the use of indistinguishability operators to model response functions

234
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and possibility theory instead of probability. In particular, we propose this
kind of operators to represent a response function when the stimulus only
depends on the distance between the agent and a determined task, since we
prove that two celebrated response functions used in the literature can be
reproduced by appropriate indistinguishability operators when the stimulus
only depends on the distance to each task that must be carried out. Nowa-
days there is not a systematic method to generate response functions in the
literature, this chapter provides, for the first time, a theoretical foundation
to generate them and study their properties. To validate the theoretical re-
sults, the aforementioned indistinguishability operators have been used to
simulate under MATLAB the allocation of a set of tasks in a multi-robot
system with fuzzy Markov chains instead of probabilistic Markov chains.
Such simulations show how the possibilistic Markov chains outperform their

probabilistic counterpart.

9.1 Swarm task allocation and the Response Thresh-
old method

In this section we will introduce the main concepts of classical (probabilistic)
Response Threshold Method (RTM) and we will motivate that the involved
response functions can be assimilated to indistinguishability operators. It
must be recall that the classical RTM is modelled using probabilistic Markov

chains.

As it was mentioned in Subsection 1.1.4, one way to model the probability
transition function of the Markov chain is by means of the so-called stim-
ulus and response thresholds. Concretely, the stimulus expresses the need

perceived by the agent to develop a task and the threshold determines the
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tendency of an agent to respond to an stimulus intensity and, therefore, to
make the task. In [5], it was proposed a method, based on response functions,
to model the aforesaid probability when the response threshold is fixed over
time. In the aforesaid reference, the so-called semi-logarithmic probability

response function P(s,f) can be defined by

Sn

P(s,6) = s" 4 6n’

(9.1)

where s denotes for each agent the intensity of a stimulus to carry out a
particular task and 6 denotes the threshold for each agent and task. Notice
that, according to [5], » > 1 (with n € N) determines the steepness of
the threshold. Of course, the numerical value P(s,f) can be interpreted
as follows: On the one hand, values of the stimulus intensity much smaller
than threshold (denoted by s << 6), implies response values (probabilities of
engaging task perfomance) close to 0. On the other hand, stimulus intensity
much greater than the threshold (denoted by s >> ), means probability of

engaging task performance close to 1.

Other authors have used response functions of type (9.1) in order to model
probability of engaging tasks performance in multi-robot task allocation. We
can find an instance in [48], where it was proposed a mathematical model to
assign particular events to individual robots in such a way that each robot is
limited to one task at time. Concretely, they assume that each robot senses
the need to handle the closest task. In this direction, the stimulus produced
by a task e for a robot r was taken as the inverse of the distance between the

1

task and the robot, i.e., s = o(r,e) = o Then, the probability response

function is formulated as follows:
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o(r,e)”
a(r,e)” + 6
After exploring different thresholds, As was pointed out in [48], the best

P(s,0) = (9.2)

performance was achieved with the inverse of the expected distance between
tasks D, ie., 0 = %. In this case, s << 6, or equivalently d(r,e) >>
D, implies low response to engage the task and s >> 0, or equivalently

d(r,e) << D, implies high motivation to take on the task.

A straightforward computation yields that (9.2) can be transformed into

the response function

Dr
P(s,D) = m, (9.3)

Notice that expression (9.3) maintains the essential properties of the re-
sponse function (9.2). It must be stressed that this kind of response functions
have been recently applied to possibilistic multi-robot task allocation prob-
lems (see [38] for more details, although the possibilistic multi-robot task

allocation problem will be exposed in Sections 9.3 and 9.4).

Expression (9.3) has motivated this chapter, since as we will show in

Section 9.2, P(s, D) is an indistinguishability operator.

9.2 T-indistinguishability operators, distances and

response functions

In this section we will apply Theorem 1.1.28 for some particular ¢-norms in

order to construct two indistinguishability operators that allow to reproduce
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two celebrated response functions that appear in [5], in particular the semi-
logarithmic one. In this direction we first provide a few examples of T-
indistinguishability operators that separate points with the aim of illustrating

such a technique, due to the lack of this sort of examples in the literature.

9.2.1 Examples

We begin applying the aforesaid construction to the Luckasievicz t-norm 77,

which is continuous and Archimedean.

A xp-indistinguishability operator

Let d be a distance on a nonempty set X and consider the Luckasiewicz
t-norm. It is clear that the function f,, : [0,1] — [0, 00], given by f,, (z) =
1 —x for all z € [0,1], is an additive generator of %7. Applying (1.1),
as pointed out before, an easy computation shows that the pseudo-inverse

fﬁ;l) of the additive generator f,, is given by

50 (y) = max{0,1 - y}

for all y € [0,00]. Then, using the construction of Theorem 1.1.28, i.e.
E,, (z,y) = (_1)(d(aj, y)) for all z,y € X, we obtain a *-indistinguishability

*L

operator on X that separates points, which has the following expression:

1—d(z,y), if0<d(zy)<]I;

0, elsewhere,

E*L (:va) = {

for all z,y € X.

A xp-indistinguishability operator
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Let d be a distance on a nonempty set X and consider the product t-
norm. It is clear, as exposed before, that the function f,, : [0,1] — [0, o0],
given by f.,(z) = —log(x) for all z € [0,1], is an additive generator of *p.

The pseudo-inverse ff;l) of fip is given by

) =ev

for all y € [0,00]. Then, using the construction of Theorem 1.1.28; i.e.,
E. (z,y) = fi;l)(d(l‘, y)) for all z,y € [0, 1], we obtain the following expres-

sion:

E*p (:Uv y) = e—d(a}7y)

for all z,y € X. As in the above example, Theorem 1.1.28 ensures that E,,

is a xp-indistinguishability operator on X that separates points.

After presenting these two easy, but illustrative, preceding examples,
which are constructed by means of the most commonly continuous Archi-
medean t-norms used in Fuzzy Logic, we will continue showing that the
semi-logarithmic response function P, given by (9.3), is an indistinguisha-
bility operator which opens a wide range of potential applications from a
mixed framework based on indistinguishability operators and distances to

task allocation problems in multi-agent systems.
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9.2.2 The semi-logarithmic response function as an indistin-

guishability operator

Consider the family of t-norms (*)bom))\e[opo] due to Dombi (see [49]). Recall,

according to [49], that such a family of ¢-norms is given by:

*p(z,y) it A=0
s (2, y) if A\ =00

- elsewhere,

A

Dom 18 continuous and Archimedean for

According to [49], the t-norm x

each X\ €]0, 00]. Moreover an additive generator of */\D om 18 given by

o A
fam@= (3"

for all z € [0,1] and for each A €]0,00[. It is not hard to verify that the

pseudo-inverse of this additive generator f (;1) is given by
*Dom
-1 1
ISV ) = ——
Dom 1 —+ YN

for all y € [0, 00] and for each X\ €]0, 00].

Taking into account the preceding facts we are able to prove that P is
in fact an indistinguishability operator constructed from a Dombi ¢-norm.
To this end, assume that d is a distance on X and let *i‘)om be a Dombi

t-norm for an arbitrary A €]0,00[. By Theorem 1.1.28 we obtain a *)bom—
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indistinguishability operator E*)b that separates points by means of

Ea (wy) =57 (d,y)),

om Dom

for all z,y € X. It follows that

for all z,y € X.

Next fix n € N and take A = % Then we have that f 1 is also an

>kDom’e
1

.-, ;
additive generator of *p_ . where

n
>kDom70 *D

for all x € X and for each 6 €]0, oo|.

Now, we will apply Theorem 1.1.28 through f FR Since the pseudo-
*Dom>
inverse f(il) of fa1 is given by
*Bom70 *Bom’
1) 1) (¥ 1 0"
50 w=r5"(5) = - .
S S C A ea I L e

1
Therefore, £ 1 is a *p -indsitinguishability operator with
*n

Dom

By @)= 15" (o) = e (9.4

Dom *Bom’e

for all z,y € X. Since P, given by (9.3), matches up with the preceding
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expression, given by (9.4), we conclude that the response function P is a
1

*1om-indsitinguishability operator that separates points.

9.2.3 An exponential response function and indistinguisha-

bility operators

In [73] (see also |5]) an exponential response function was introduced in
order to model honey bee division of labour by means of response thresholds.
In particular, the exponential response function of an agent taken under

consideration was the following:

P.p(s,0) =1 —e75, (9.5)

where s denotes the intensity of the stimulus for an agent to carry out a task
and 6 is the threshold. Note that, as in the case of response function (9.1),
the probability of engaging task performance is small for s << 6, and is close

to 1 for s >> 0.

Our final goal of this section is twofold. On the one hand, we provide
an example of indistinguishability operator which exhibits a behavior similar
to response function (9.5) and, thus, it could be used in task allocation
problems. On the other hand, we are able to retrieve exactly, from the
generated indistinguishability operator and through the technique stated in
the statement of Theorem 1.1.27, the response function (9.5) when it depends

on the distance between an agent and a task.

Next consider the family of t-norms (% ,) A€[0,00] Introduced by Aczél and

Alsina. Recall, according to [49], that such a family is given as follows:
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xp(x,y) ifA=0
alzy) =< *u(z,y) ifA=o00 .
1
e_((_logm)A’L(_logy)A)A elsewhere.

Following [49], for each A €]0,00[ we have that %% , is continuous and

Archimedean. Moreover, an additive generator of *2 4 1s given by

fo (@) = (= log())*

AA

for all z € [0,1]. A straightforward computation shows that the pseudo-

. -1 .
inverse f (A ) of fo is given as follows:
*AA AA

>

f<;”<y>=e‘(y ),

*AA

for all y € [0, 00] and for each X\ €]0, 00|.

In the light of the exposed facts we are able to introduce the announced
indistinguishability operator. To this end, assume that d is a distance on
a nonempty set X and let %, be an Aczél-Alsina t-norm for A €]0, ocl.
Applying Theorem 1.1.28 we obtain the *ﬁ -indistinguishability operator
E*i; B given by

En (w,y)=e (te?)

*A

for all x,y € X. Notice that E*I)&A separates points.

Now, following similar arguments to those given in Subsection 9.2.2 we
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obtain, for each n € N and 0 €]0, o[, the following indistinguishability op-

erator from the preceding one:

d(z,y)"

By (zy)=e o . (9.6)

*AA

Of course, one can observe that the last operator presented involves the
same elements of function (9.3). Indeed, this operator depends simultane-
ously on the distance d(z,y), on a threshold parameter # and it contains the
non-linearity constant n. Besides, the nature of this indistinguishability op-
erator is an exponential function as response function (9.5). Nevertheless, a
slightly difference between them must be stressed with the aim of interpret-
ing the operator given in (9.6) as a response function. It is clear that in (9.6),
s must be considered as the inverse of the distance win order to interpret the
indistinguishability operator in (9.6) as a response function. Indeed, s must
be understood as the inverse of the distance in order to preserve the essence
of the impact of the stimulus s in the expression of a response function. Thus
we have that the operator given by (9.6) acts as response function, since it
satisfies the following: d(x,y) >> 6 implies probability response close to 0
and d(z,y) << @ returns a probability response close to 1. It follows that the

idea of “an agent is high motivated for performing closer tasks” is preserved.

The fact that the operator in (9.6) can be interpreted as a response func-
tion inspires that several families of indistinguishability operators can be
proposed and tested with a large number of experiments in order to be com-
pared with previous response functions used in the literature and, thus, to
determine if indistinguishability operators are an appropriate mathematical

tool for task allocation problems.

Finally, we show that, in addition, the indistinguishability operator given
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(9.6) allows to retrieve exactly the response function (9.5). Hence, indistin-
guishability operators can still be used for generating response function even
in those cases in which the stimulus s cannot be understood as the inverse
of the distance. Indeed, note that x; < *,14A = xp and, thus, Theorem
1.1.27 guarantees that the function given by dE*}4A = f*L(E*fam) =1-E.
is a distance on X. But such a function matches up with the exponential

response function given by (9.5).

9.3 Possibilistic Markov chains: theory

As was proved in |38], possibilistic Markov chains provide a lot of advantages
and outperform its probabilistic counterpart when they are applied to task
allocation problems. This section summarizes the main theoretical concepts

of possibilistic (fuzzy) Markov chains.

Following [3, 101], we can define a possibility Markov (memoryless) pro-
cess as follows: let S = {s1,...,s,} (m € N) denote a finite set of states. If
the system is in the state s; at time 7 (7 € N), then the system will move to
the state s; with possibility p;; at time 74+ 1. Let 2(7) = (21(7), ..., xm (7))
be a fuzzy state set, where x;(7) is defined as the possibility that the state
s; will occur at time 7 for all ¢ = 1,...,m. Notice that \/[", z;(7) < 1 where
V stands for the maximum operator on [0,1]. In the light of the preceding

facts, the evolution of the fuzzy Markov chain in time is given by

m
xi(1) = \/ pji N (T —1),
j=1

where A stands for the minimum operator on [0, 1]. The preceding expression

admits a matrix formulated as follows:
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z(r)=x(t—1)oM =2(0) o M7, (9.7)

where M = {pij}%‘:l is the fuzzy transition matrix, o is the matrix product
in the max-min algebra ([0,1],V,A) and z(7) = (21(7),...,2m,(7)) is the

possibility distribution at time 7.

Taking into account the preceding matrix notation and following [3], a
possibility distribution z(7) of the system states at time 7 is said to be
stationary, or stable, whenever z(7) = x(7) o M. During the experiments,
explained in Section 9.5, each state will be a task to execute and, therefore,

m will stand for the number of tasks.

One of the main advantages of the possibilistic Markov chains with re-
spect to their probabilistic counterpart is given by the fact that under certain
conditions, provided in [17] by J. Duan, the system converges to a stationary

possibility distribution in at most m — 1 steps.

9.4 Possibilsitic multi-robot task allocation

In this section we will see how to use possibilistic Markov chains for devel-
oping a RTM in order to allocate a set of robots to tasks using the afore-
mentioned indistinguishability operators (see (9.1) and (9.6)). Although the
implementation proposed in this section only considers robots, it can be eas-

ily extended to more generic multi-agent scenarios.

Formally, the problem to solve could be defined as follows: Let [,m € N.
Denote by R the set of robots with R = {r1,...,7;} and by T the set of tasks
to carry out with 7' = {¢,...,t,,}. Both, tasks and robots are placed in an
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environment.

According to the classical RTM (see Section 9.1), for each robot r; and
for each task t;, a stimulus s, ¢, € R that represents how suitable ¢; is for ry
is defined. Besides, a threshold value 0 is assigned to each robot r,. Thus, a
robot 7y, allocated at task ¢;, will select a task t; to execute with a possibility
E 1 (ti,tj) according to a fuzzy Markov decision chain. In the following,
théD stimulus of each robot ), to transit from task t; to task ¢; only depends

on the distance between the tasks which will be denoted by d(t;, ;). So, the

stimulus of each robot rj to transit from ¢; to task t; is given as follows:

00 if d(rg,t;) =0

St (98)

ity —

This stimulus sy, ¢, allows us to obtain, by means of the indistinguisha-
bility operator (9.4), the following semi-logarithmic possibilistic transition

function (response function),

en

T d(t, )" (6.9)

pij =E 1 (ti,t;)

*Dom
If the same stimulus (distance) is applied to the indistinguishability op-
erator (9.6), then the following exponential possibilistic transition function

(response function), is obtained:

1 (ti,tj) =e€ o (9.10)

> _d(tgt)"
Pij =
*¥AA

From now on, we will reference the response function given by (9.10)
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as Exponential Possibility Response Function (EPRF for short) and the
response function given by (9.9) as Semi-Logarithmic Possibility Response
Function (SLPRF for short). Furthermore, as the transition functions EPRF
and SLPRF are indistinguishability operators, we will use both terms, tran-

sition possibility and indistinguishability operator equally.

As was proved in |39] (see also |38]), when the response function (or indis-
tinguishability operator), (9.9) or (9.10), is used as a possibility transition,
the obtained fuzzy Markov chain holds the Duan’s convergence requirements
(we refer the reader to [17] for a detailed treatment of the topic), that is col-
umn diagonally dominance and power dominance conditions. Therefore, we
can ensure that the system converges to a stationary state in at most m — 1
steps. It must be recall that, in general, the convergence of the probabilistic

Markov chains is only guaranteed asymptotically.

9.5 Experimental results: probabilistic/possibilistic

Markov chains

In this section we will show the experiments carried out to compare the num-
ber of steps required to converge to a stationary state using probabilistic and
possibilistic Markov chains induced from the indistinguishability operators
given in (9.4) and (9.6).

The robots must perform the task according to the stimulus defined in
Section 9.4 under different configurations of the system: different position
of the objects, parameters of the possibility response functions (f and the
power n) and number of tasks. All the experiments have been carried out

using MATLAB with different synthetic environments. Figure 9.1 shows an
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example of the 3 types of environment used during the experiments depending
on the position of the tasks: randomly placed (Figure 9.1(a)), tasks grouped
into 2 clusters (Figure 9.1(b)) and grouped into 4 clusters (Figure 9.1(c)).
This section extends the previous work given in [39] in order to considering

clustered tasks.

&
:

00f * i . . ’ 200

-300 - * -3
R e
B B
(a) Tasks placed randomly. (b) Tasks arranged into 2 clusters.
O e
.
o
20 e
£ #

(c¢) Tasks arranged into 4 clusters.

Figure 9.1: Environments with 100 tasks used for the experiments. Blue dots

represent the position of the tasks or objects.

As pointed out in Section 9.1, the threshold value 6 must depend on the
position of the tasks. During the performed experiments the 6 will depend

on the maximum distance between tasks as follows:

dmaaz
- 9.11
TH’ (9.11)

where d,,q; is the maximum distance between two objects and nTH is a
parameter of the system which allows us to generate thresholds. In our
simulations d,,q, is constant and equals to 800.5 units. In order to see the

impact of the parameter nT H on the transition possibility (p;;) from a task ¢;
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to the task ¢;, Figure 9.2 shows the values of p;; using the indistinguishability
operators SLPRF (Figure 9.2(a)) and EPRF (Figure 9.2(b)) with nTH =
2,4, 8 and the power value n = 2. It should be noted that, if the distance is

equal to 0 (d(t;,t;) = 0) then t; = t; and p;; = pj; is the possibility of remain

in the current task.

Transition Possibility (pij)

Transition Possibility (pij)

Figure 9.2:

n = 2.
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Distance (d(ti,tj))
(a) pi; with the the indistinguishability operator SLPRF.

1

0.8
0.6
0.4
0.2
0 | She e Tiuas . . -
0 100 200 300 40 500 600 700 800

Distance (d(ti,tj))

(b) pi; with the the indistinguishability operator EPRF.

Transition possibility p;; with nT'"H = 2,4,8 and power value

Whichever possibility response function is used, (9.9) or (9.10), the pos-

sibilistic transition matrix for each robot, M, must be transformed into a
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probabilistic matrix in order to be able to compare the possibilistic and
probabilistic Markov chains results. To make this conversion we use the
transformation proposed in [96], where each element of M is normalized (di-
vided by the sum of all the elements in its row) meeting the conditions of a

probability distribution.

9.5.1 Experiments with randomly placed objects

This section focuses on experiments with tasks placed randomly, as can be
seen in Figure 9.1(a). All the experiments have been performed with 500
different environments, with different number of tasks (m = 50,100) and
different values of the power n in the expression of the indistinguishability
operators (9.9) and (9.10). The threshold # values under consideration are
obtained from (9.11) setting nTH = 2,4, 8.

In 39|, it was shown that SLPRF and EPRF in these randomly generated
environments needed the same number of steps to converge. This number of
steps does not depend on either 6 or the power value n. These simulations
also show that only a 50% of the 500 environments could converge to a
stationary state when probabilistic Markov chains are used. In contrast,
with fuzzy Markov chains all the experiments converge and they required less
than 25 steps. This shows that fuzzy Markov chains with indistinguishability
operators always outperform their probability counterpart. Figure 9.3 shows
the mentioned percentage of experiments that, using probabilistic Markov

chains, do converge with 100 randomly placed tasks.
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Experiments with 100 tasks

Figure 9.3: Percentage of experiments that converge with 100 tasks using

probabilistic Markov process.

9.5.2 Clustered environments

This section shows the results obtained using environments with the tasks
arranged in the groups or clusters, shown in Figures 9.1(b) and 9.1(c). As
occurred in Subsection 9.5.1 the obtained results are very similar whichever
indistinguishability operator is applied, SLPRF or EPRF. Therefore, even
if the tasks are arranged into clusters, both indistinguishability operators

present an equivalent behavior and they are not affected by its parameters.

Figure 9.4 shows the number of iterations required to converge with fuzzy
Markov chains with 2 and 4 clusters of tasks and different number of tasks
(m = 20,40, 60,80,100,120). As can be observed, the number of clusters
have a great impact on the system. For all cases, the environment with
4 groups needs a lower number of iterations to converge compared to the
environment with 2 clusters. From these results, we can see that, with fuzzy
Markov chains, the number of steps to converge to stable state depends only

on the placement of tasks and not on the parameters of possibility transition
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Number of iterations

Number of tasks

Figure 9.4: Number of iteration required to converge with fuzzy Markov

chains for environments with 2 and 4 cluster (groups) of tasks.

function. Recall that the number of iterations required to converge is the

same whichever indistinguishability operators is under consideration.

Figure 9.5 shows the number of steps required to converge with several
number of tasks (m = 20,40, 60, 80,100, 120), a single environment with 2
clusters of tasks, nT'"H = 2 and probabilistic Markov chains. When the num-
ber of iterations is equal to 500 means that the chain does not converge.
Figure 9.5(a) shows this number of steps with the indistinguishability oper-
ator SLPRF and Figure 9.5(b) with the indistinguishability operator EPRF,
when the evolution of the process is modelled as a probbilistic Markov chain.
These results show that the value n has a great impact on the results and
that, in general, the exponential transition requires a greater number of steps
to converge compared to its original counterpart. Furthermore, the indistin-
guishability operator has a great impact on the number of steps required
to converge when probabilistic Markov chains are considered. It must be
recalled that with possibilistic Markov chains both indistinguishability op-
erators provide very similar results and it must be stressed that with pos-

sibilistic Markov chains, in general, the convergence is not guaranteed in a
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finite amount of steps.
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(a) Results obtained from SLPRF indistinguishability operator.

Number of iterations
- N N w
o o o
o o o
T —
L L

o
S
T

o

150 - I q
IH | | | |
20 4

1
0 60 80 100 120
Number of tasks

(b) Results obtained from EPRF indistinguishability operator.

Figure 9.5: Number of iteration required to converge with probabilistic
Markov chain with different values of n power (n = 1,2), nTH = 2, several

number of tasks and 2 clusters of tasks. 500 iterations means no convergence.



Chapter 10

On the use of fuzzy preorders
in multi-robot task allocation

problem

In Chapter 9 we have introduced the use of indistinguishability operators and
possibility theory to model response functions in response threshold RTM for
allocation problem. Concretely, we have proposed this kind of operators to
represent response functions when the stimulus of the agent only depends
on the distance between the agent and a determined task. In this chapter
we extend the previous work in order to be able to model response functions
when the stimulus under consideration depends on the distance between tasks
and the utility of them. Thus, the resulting response functions that model
transitions in the Markov chains must be asymmetric. In the light of this
asymmetry, it seems natural to use fuzzy preorders in order to model the

aforementioned response functions and, thus, the system’s behaviour. The

255
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results of the simulations executed in MATLAB validate our approach and
they show again how the possibilistic Markov chains outperform their prob-

abilistic counterpart.

10.0.1 The asymmetric response function and fuzzy preorders

As pointed out before, in the modeling of the task allocation problem, the
probability of executing the next task (referenced as response function) de-
pends strongly on the current task (state). Therefore, from the classical
viewpoint, the decision about the next task to be executed is a memoryless
process that holds the conditions of a probabilistic Markov chain. Such classi-
cal probabilistic approach presents a huge number of inconveniences, such as
problems with the selection of the probability response function when more
than two tasks are under consideration, asymptotic converge, and so on (see
[38]). In order to overcome the aforementioned problems, we have proposed
a new possibilistic theoretical formalism for implementing the RTM algo-
rithms based on the use of indistinguisability operators in Chapter 9, which
allows us to introduce a formal method for generating possibilistic response

functions.

Let us recall, with the aim of incorporating asymmetric response functions
in the RTM algorithm, that one of the main advantages of the possibilistic
Markov chains (incorporating indistinguisability operators as response func-
tions) with respect to their probabilistic counterpart is given by the fact that
under certain conditions, Duan’s convergence requirements provided in [17],
the system converges to a stationary distribution in a finite number of steps.
Contrarily, the convergence of probabilistic Markov chains is, in general, only

guaranteed asymptotically.
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Next we construct a new response function in order to model those situ-
ations in which the stimulus of a robot depends on two factors, the distance
between tasks and the utility associated to them. Thus we will show that
this new possibilistic response function will be able to reflect that, in general,
the robot will perceive as more attractive those tasks with better associated
utility. First, we recall the following possibilistic response function, which

has been provided in Chapter 9.

01’),
j) = —————————. 10.1

Notice that the response function (10.1) can be modeled by the next

indistinguishability operator:

o" 9
E(x,y) = b+ di(z.y) for each z,y € R (10.2)
where d denotes the Euclidean metric on R? and z and y denotes the coor-

dinates of the allocation t; and t;, respectively.

To achieve the target, let us fix, for the shake of simplicity, a few aspect of
the mission under consideration. From now on, we will assume that the tasks
are randomly placed in an environment and the robots are initially randomly
placed too. Besides, each robot is always assigned to a task and only one
robot per task can be assigned at the same time. Moreover, each task ¢;
has associated an utility, U; € R4 which indicates how useful is the task for
that robot. Hence each task ¢; can be identified with a triple (Uj,z;,y;),
where the first coordinate represents the utility task and, in addition, the
remainder two coordinates denotes the allocation of the task. Furthermore,

each robot stimulus depends on both, the distance between the robot (current
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task allocation) and the task to perform and the improvement made in utility.

In order to construct the response function the tasks distance, will be
measured via the Euclidean distance d((x;,v;), (z;,y;)), where (z;,y;) and
(x,y;j) denotes the allocation coordinates of tasks t; and ¢; respectivaly. In
addition, the utility improvement will be measure via the upper quasi-metric

qu(Ui, Uj), where qu(Ui,Uj) = maX{UZ- — Uj,O}.

Clearly q,(U;,Uj) = 0 provides that the task ¢; is more attractive than
the task ¢;. However, positive values of ¢,(U;,U;) (which means U; < Uj)
measures the improvement in utility made when the task ¢; is leaved by the

robot and it starts to perform the task ¢;.

Since the stimulus must depend on the Euclidean distance and the upper
quasi-metric we merge both information in oder to obtain a global mea-
sure between tasks that incorporates the information coming from both
different sources. Such an information fusion is provided by the function
®: (Ry)? — R, given by ®(x,9) = oy, - * + y, where o, will be a system’s
parameter that, on the one hand, makes that the utility value has the same
dimension and scale as the distance and, on the other hand, indicates how
important is the utility with respect to the distance (see Subsection 10.1.3 for
a detailed discussion). Since ® is a quasi-metric preserving function we have,
by Theorem 1.1.12, that the non-negative real valued function Q¢, given by
Qo (Ui, xi i), (Uj,zj,y;)) = o - qu(Us, Uj) + d(z4,5), is a quasi-metric.

Under this considerations, the decision process of a robot r; will follow a
possibilistic Markov chain in such a way that it will leave the task ¢; (where is
allocated) in order to perform the task t; according to the transition p(ry,ij)

given by
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0n
i) = 10.3
p(re,i7) 07 + Q. (Ui, 24, yi), (Uj, 5, 95)) 1

Notice that the expression (10.3) is obtained by replacing in the expres-
sion of (10.1) the Euclidean distance by the quasi-metric Q.

Next we prove that the following fuzzy set £, is a fuzzy preorder on

R3, where

01’),

Eg = f h 2,y € R3. 10.4
Q<I>7Dom('r7y) gn +Qg(w,y) or each =,y ( )

Clearly the possibility p(rg,ij), given by (10.3), matches up with the value
En

Bom (@, y), where z and y denotes the coordinates (utility and allocation)

of tasks ¢; and ¢; respectively.

Let us recall that the family of Dombi t-norms {*}, }, is given as follows:

0, ifa=0o0rb=0
A _
*Dom(a, b) = 1 elsewhere . (105)

)

>

—b
b

Taking into account the exposed information we have the next result.

Proposition 10.0.1. Let n € N and let q be a quasi-metric on a non-empty

set X. The fuzzy set E i, on X x X, defined by Egpom(x,y) = m,

1
15 a xp . -preorder that separates points.

Proof. Next we show that I} satisfies (E1), (£2) and (£3) when the
1
t-norm xp _ is considered.
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(i) E(’;Dom(a;,a;) = m = 1, since ¢ is a quasi-metric on X and so

q(z,x) = 0. Moreover, Ej'

,Dom

also satisfies (E1'), since ¢(z,y) =
q(y,2) = 0 & x = y and, thus, B, (v,y) = E7 p,,.(y,7) = 1 &

T =1y.

(iii) Let z,y,z € X. We will show that

1
E;L,Dom(:nv Z) > *[n)om (E(?,Dom(x7 y)v E;L,Dom(y7 Z)) .

First, observe that, for each x,y € X, we have that

- _ 1 (a(zy)"
L= B pon (@) 1~ Ty _ Tra@a)® _ (g(z,9))"
n 1 1 ’ '

Eq,Dom (:U’ y) 1+(g(z,y))™ 1+(q(z,y))™

It follows that

1
n _ 1 1 _
*Dom (EZDom(x’y)’Eg,Dom(y’ Z)> = @) Hawa)" = T -

E(ZDom(x7 Z)?

since ¢ is a quasi-metric on X and, so, it satisfies q(x,z) < q(z,y) +

q(y,2).

In the light of the preceding result we obtain immediately that Ef)_ 5,
1
is a *p, -preorder and, thus, that the transition value p(ry,ij), given by

(10.3), can be understood as a fuzzy preorder. Clearly, the response function
provided by (10.3) is asymmetric. Moreover it must be stressed that if we
take o, = 0 in (10.3), then indistinguishability operator given by (10.2)
is retrieved as a particular case of the fuzzy preorder given by (10.4). So
this new framework allows to model the new situations and those explored
in [38, 40|. Furthermore, observe that the obtained transition possibilities

does not fulfill equality Z;nzl p(rk,ij) = 1 that is assumed for probability
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distributions. So, as claimed, the new transitions does not meet the axioms

of the probability theory.

Finally it must be pointed out that if the asymmetric response function
given by (10.3) is incorporated in the RTM algorithm which implement a
possibilistic Markov chain in order to describe the evolution of the decision
process, then the conditions that ensure the finite convergence of the chain,
Duan’s convergence requirements given in [17], are hold. Therefore, the
possibilistic Markov chain whose transition possibilities are given by (10.3)
converges to a stationary distribution in at most m — 1 steps, where m is the

number of tasks.

10.1 Experimental Results

In this section we will analyze the results of experiments executed to study
the number of steps needed to converge to stationary possibilistic distribution
with the fuzzy Markov chains induced from the transitions possibilities (10.3),

or equivalently by the fuzzy preorder (10.4).

10.1.1 Experimental framework

The experiments have been carried out with different positions of the objects
in the environment (placement of tasks). We assume that the power value n
will always be equal to 2. All the experiments have been carried out using
MATLAB with different synthetic environments following a uniform distri-
bution to generate the position of the tasks. Figure 10.1 represents one of

these environments, where each blue dot represents a task. Furthermore, all
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the environments have the same dimension (width=600 units and high=600
units), the threshold value 6, will always be equal to d”}%, where dpqq 18
the maximum distance between two tasks. In our case d,,,. is equal to 800.5
units of distance. Moreover, all the experiments have been performed with

500 different environments, all of them with 100 tasks (m = 100).

300
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Figure 10.1: An example of environment.

Finally, each task has a randomly utility generated following an uniform
distribution between 100 and 200. In order to aggregate the distance and
the utility in the possibilistic response function (10.3) (that is to obtain
the asymmetric distance Qg), the parameter «, has been split into two

components as follows:

Qo = Q¢+ Q-

In the preceding expression, a, is a weighting factor that makes the utility
component of Q¢ has the same dimension and scale as the Fuclidean distance

component. Thus, a, is the same for all the experiments and is equal to

dmaa:

)
Umaaz

Qe =

where U,,uq, is the maximum value of the utility, i.e. 200, and d,,q, is the
aforesaid maximum distance (800.5 units of distance). The second parameter,
Quy, 18 a weighting factor that indicates how important is the improvement

made in utility with respect to the distance during the allocation process.
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The impact of this value on the system’s performance will be evaluated in

the following sections.

10.1.2 Results: probabilistic/possibilistic Markov chains

This section analyses the number of steps required, during the allocation
process, to converge to a stationary distribution when possibilistic and prob-
abilistic Markov chains are under consideration. In order to transform the
possibilitic transition matrix M (see Section 9.3) obtained from the transi-
tions possibilities given by (10.3), we again make use of the transformation
proposed in |96], where each element of the matrix (M) is normalized (di-
vided by the sum of all the elements in its row). Obviously, the resulting

matrix meets all the conditions of a probability distribution.

Along the experiments we assume that if the convergence is not reached

after 500 steps, the system does not converge.

Table 10.1 shows some results related to the number of steps that the
possibilistic and probabilistic Markov chains required to converge to station-
ary distribution for several values of the parameter «,. The first table’s
column shows the percentage of experiments that does not converge in the
probabilistic case. The number of steps required to converge, when the prob-
abilistic system converges, are shown in the second column. As can be seen,
the percentage of experiments that do converge stays stable (it is similar in
all considered cases) when the value of ay, is low (a,, < 10) and dramatically
decreases when «y, is high. Actually, if «,, is greater than 400 there are not
any experiment that converge for the probabilistic approach. Likewise, when
the system converges, the number of steps is clearly increases. Thus, we can

conclude that, for the experiments carried out in this paper, the parameter
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oy, (the importance of the improvement made in utility with respect to the
distance between tasks) has a great impact on the probabilistic Markov chain
behaviour. The third column of Table 10.1 shows the percentage of simula-
tions that do converge with possibilistic Markov chain. As was pointed out
before, the convergence of these chains is always guaranteed and, therefore,
in all cases this percentage is 100%. The last column of Table 10.1 shows
the number of steps that possibilistic Markov chains need to converge to
stationary distribution. As can be seen, contrary to its probabilistic counter-
part, possibilistic Markov chains require a lower number of steps to converge
when the parameter a,, is higher. Moreover, in all cases, possibilistic Markov
chains need much lower number of steps to converge than the probabilistic

ones.

Table 10.1: Steps required to converge for probabilistic/possibilistic Markov

chains.

ay | % Conv. Prob. | Steps Prob. | % Conv. Fuzzy | Steps Fuzzy
0 32,6% 274,30 100% 23,28

2 41,6% 319,03 100% 22,17

10 30,04% 313,52 100% 25,34

40 13,8% 402,72 100% 927 56
100 0,2% 499 100% 28

400 0% _ 100% 11,17

10.1.3 More on possibilistic Markov chains results

In this section we analyze in a more detailed way the impact of the parameter

Q, on the system’s behaviour for the possibilistic case.

Figures 10.2 and 10.3 show the mean number of steps required to converge



ON THE USE OF FUZZY PREORDERS IN MULTI-ROBOT TASK ALLOCATION
PROBLEM 265

N
®

N
]
T

Number of Steps
N
S

0.25 0.5 0.75 1 1,25 1.5 1.75 2
Value of oy

N
N

[N)
o

(a) 0 < ay < 2.

N
o
5

Number of Steps
N N
[ T XY
(4] ES (5, (&2}

N
w
T

N
I
&)

5 7 9
Value of oy

(b) 3 < aw < 9.

Figure 10.2: Number of steps to converge to stationary possibilistic distribu-

tion for 0 < vy, < 9.

to stationary distribution for possibilistic Markov chains with respect to the
parameter «,,. As this number of steps clearly depends on the value of the
parameter q,, the results have been split into 4 figures: Figure 10.2(a) shows
the results when 0 < «a,, < 2; in Figure 10.2(b) can be seen the number of
steps if 3 <, < 9; Figure 10.3(a) shows the values when 10 < ay, < 50;
and, finally, Figure 10.3(b) shows the number of steps required to converge
when 100 < a, < 500. In the shake of improving the visualization of the
results, the minimum value of the Figures 10.2(a), 10.2(b) and 10.3(a) is 20
and the minimum value for the Figure 10.3(b) is 10 steps. As can be seen, if
the value of the parameter o, is lower than 50, the number of steps required

to converge increases slightly with respect to the increments of the value
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Figure 10.3: Steps to converge to stationary possibilistic distribution for

10 < o, < 500.

aqw- When «,, is greater than 100, the number of steps start to dramatically
decrease. It must be stressed that, as was said in Subsection 10.1.2, the

probabilistic Markov chain show the opposite behaviour.



Chapter 11

Discussion of the obtained

results and Conlusions

In this dissertation we have tackled some topics in the study of those func-
tions that transform a finite family of generalized metrics, the same class
of different, (including a single one) into a new generalized metric. Below
we discuss the results obtained in each of the chapters and the conclusions

extracted from them.

In Chapter 2 it has been proved a new characterization of those func-
tions that transform a partial metric into another partial metric, the so-
called partial metric preserving functions. Such a characterization shows that
the aforementioned functions coincide with the functions which are strictly
monotone and concave. It makes easier to check if a function is a partial
metric preserving, since monotony or concavity are properties widely studied
in the literature. In addition, it has been established the conditions that

a partial metric preserving function must satisfy to preserve the topology,

267
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completeness and contractivity. Taking into account the lack of examples of
partial metrics in the literature, the results obtained in this chapter allow
to construct new examples of partial metrics from the known ones. It can
extend the applicability of partial metrics to new problems arising in applied

sciences.

In Chapter 3, we have continued the study of the problem of aggregation
of distances. Concretely, we have introduced the notion of quasi-metric ag-
gregation function and we have provided a characterization of such a notion
in terms of (triangle) triplets. Besides, the relationship with metric aggrega-
tion functions has been also discussed and a few differences have been shown.
Moreover, we have analyzed some properties fulfilled by the functions under
consideration which play a central role in order to discard those functions
that are useless as quasi-metric aggregation functions. Appropriate and il-
lustrative examples have been given. Finally, two possible fields where the

developed theory can be useful have been exposed.

Chapter 4 has been devoted to generalize Matthews’ methods to con-
struct a partial metric from a quasi-metric and vice-versa, by means of real
functions. Besides, it has been characterized, in both cases, when the topol-
ogy and the order are preserved. According to the method introduced by
Matthews in [56], given a partial metric space (X,p), the function g, is a
quasi-metric on X where ¢,(z,y) = p(z,y) — p(z,x) for each z,y € X.
Clearly, the induced quasi-metric g, is weighted with weight function wy,
given by wg, () = p(z,z). Of course, the preceding method has been gen-
eralized in Section 4.1 by means of gmg-functions and, in addition, a char-
acterization of such functions has been given in the same section. However,
such a general method does not produce in general weighted quasi-metrics.
Indeed if we consider the mapping Wq introduced in Proposition 4.1.7 and the

partial metric space (R, p,,), then it is not hard to verify that the induced
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quasi-metric space (R, ¢a,p,,) is not weighted. Therefore, it remains, as
an open question, to characterize those gmg-functions that generate always

weighted quasi-metrics.

Partial metrics and quasi-metrics have been shown to be useful to develop
quantitative mathematical models in denotational semantics and in asymp-
totic complexity analysis of algorithms, respectively. The aforesaid models
are implemented independently and they are not related. A first natural
attempt to develop a framework which remains valid, at the same time, for
modeling in denotational semantics and in complexity analysis of algorithms
suggests to construct a generalized metric by means of the aggregation of a
partial metric and a quasi-metric. Inspired by the preceding fact, in Chapter
5 we have studied the way of merging, by means of a function, the aforemen-
tioned generalized metrics into a new one. We have shown that the induced
generalized metric matches up with a partial quasi-metric. Thus, we have
characterized those functions that allow to generate partial quasi-metrics
from the combination of a partial metric and a quasi-metric. Moreover, we
have explored the relationship between the problem under consideration and

the problems of merging partial metrics and quasi-metrics.

In Chapter 6, we have provided a technique to construct fuzzy metric
spaces, in the sense of George and Veeramani, from a classical metric space.
The fuzzy metrics are obtained by means of preserving metric functions and
they are defined for the Lukasievicz t-norm. We have proved some properties
of the fuzzy metrics constructed, as they are strong and completable. As
pointed out in Subsection 1.1.3, fuzzy metrics have shown to be useful in
engineering problems. So, the provided technique allows to construct new
examples of fuzzy metrics to increase the applicability of fuzzy metrics to

more fields.
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In Chapter 7 we have addressed the problem of establishing whether
there is a relationship between pseudo-metrics and fuzzy (pseudo-)metrics,
inspired by the duality relationship between indistinguishability operators
and (pseudo-)metrics. Thus, we have yielded a method for generating fuzzy
(pseudo-)metrics from (pseudo)-metrics and vice-versa. In such methods we
have made use of the pseudo-inverse of the additive generator of a continuous
Archimedean t-norm. From our new methods we have derived a new tech-
nique to generate non-strong fuzzy (pseudo-)metrics from (pseudo-)metrics.
We have illustrated the aforementioned methods by means of appropriate
examples. Finally, we have shown that the classical duality relationship be-
tween indistinguishability operators and (pseudo)-metrics can be retrieved
as a particular case of our results when continuous Archimedean ¢-norms are

under consideration.

In the literature there are mainly two tools that allow to measure the de-
gree of similarity between objects. They are the so-called indistinguishability
operators and fuzzy metrics. The former provide the degree up to which two
objects are equivalent when there is a limitation on the accuracy of mea-
surement between the objects being compared. The fuzzy metrics provide
the degree up to which two objects are equivalent when the measurement
is relative to a parameter. Motivated by the fact that none of these type
of similarity measurements generalizes the other one, in Chapter 8 we have
introduced a new notion of indistinguishability operator which unifies both
notions, fuzzy metrics and indistinguishability operators, under a new one.
Moreover, we have explored the metric behavior of this new kind of opera-
tors in such a way that the new results extend the classical results to the
new framework and, in addition, allow to explore also the aforesaid duality
relationship when fuzzy metrics are considered instead of indistinguishability

operators. The fact that new notion of indistinguishability operator does not
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involve the continuity on the f-norm in their axiomatic presents an advan-
tage with respect to the fuzzy metrics. The assumption of continuity could be
limiting the range of applications of fuzzy metrics in those case where (classi-
cal) indistinguishability operators work well. As a future work remains open
to study which properties of classical indistinguishability operators are also
verified in the new framework. Besides, the utility of the new operators in

applied problems must be explored.

In Chapter 9 we have shown that the two most famous response func-
tions given in literature, are retrieved as a particular cases from appropriate
indistinguishability operators. This fact opens a wide range of potential ap-
plications from a mixed framework based on indistinguishability operators
and distances to task allocation problems in multi-agent systems. We have
applied the aforementioned indistinguishability operators to allocate tasks to
a group of robots according to a fuzzy Markov chain. We have shown that
the results are very similar whichever indistinguishability operator is applied
and, thus, that both present an equivalent behaviour. The simulations ex-
tend the results previously obtained in [39] to analyze environments where
the tasks are arranged in groups or clusters. The results show that the num-
ber of iterations to converge with fuzzy Markov chains only depend on the
placement of tasks in the environment and that they are not affected by the
remainder of parameters of the system, whichever indistinguishability opera-
tor is applied. In contrast, when probabilistic Markov chains were used, this
number of steps also depends on the indistinguishability operator. The the-
oretical and empirical obtained results in this chapter open a wide range of
potential applications from a mixed framework based on indistinguishability
operators and distances to task allocation problems in multi-agent systems

when fuzzy Markov chains are under consideration.

As a future work, we plan to propose several families of indistinguishabil-
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ity operators to perform a large number of experiments in order to compare
the new results with those provided by the task allocation methods that im-
plement the two aforesaid response functions. An implementation of these

methods on real robots is also under consideration.

For the first time, Chapter 10 applies the concept of fuzzy preorders to
implement a multi-robot task allocation method. The task allocation algo-
rithm implemented in this work is based on the Response Threshold method
(RTM), where a robot selects the next task to execute according to a proba-
bilistic Markov chain. Chapter 9 shows that the possibilistic Markov chains
outperform their probabilistic counterparts when the possibility of transition
only depends on the inverse of the Euclidean distance between tasks. This
chapter also considers the utility of a task as a criteria to make the task al-
location. Therefore, the utility value of the tasks has been included into the
possibility transition function. The new resulting function is asymmetric and
has been shown to be a fuzzy preorder with respect to a t-norm belonging
to the Dombi family. The results of the simulations show that, in all cases,
the possibilistic Markov chains converge in a lower number of steps than its
probabilistic counterpart. Moreover, the weight of the utility (parameter ay,)
has critical impact on the system’s behavior. In the light of these first re-
sults new challenges and questions arise. For example, a deeper study of the
impact of the utility on the system, different ways of aggregating the utility
and distance component in the construction of the response function and the
implantation of these methods on a physical multi-robot simulator are under

consideration for a future work.

The results presented in this dissertation have been published (or sub-
mitted) either as papers in international journals or as papers in proceedings

of peer-reviewed conferences. Below, we list them:
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1. J.J. Minana, An Overview on Transformations on Generalized Metrics,
Proceedings of the Workshop on Applied Topological Structures 2017,
WATS’17; Valencia; Spain; 11-12 July 2017, pages 95-102, Editorial

Universitat Politécnica de Valéncia

2. J. Guerrero, J.J. Minana, O. Valero, A Comparative Analysis of In-
distinguishability Operators Applied to Swarm Multi-Robot Task Al-
location Problem, Lecture Notes in Computer Science 10451 (2017),
21-28.

14th International Conference on Cooperative Design, Visualization,
and Engineering, CDVE 2017; Mallorca; Spain; 17-20 September 2017
(Listed in CORE Conference Ranking 2017: CORE C)

3. J.J. Minana, O. Valero, On Indistinguishability Operators, Fuzzy Met-
rics and Modular Metrics, Axioms 6:4 (2017) 1-18 (Listed in Emerging

Sources Citation Index - Clarivate Analytics)

4. J. Guerrero, J.J. Miniana, O. Valero, G. Oliver, Indistinguishability Op-
erators Applied to Task Allocation Problems in Multi-Agent Systems,
Applied Sciences-Basel 7:10 (2017) 1-16 (Listed in Journal Citation
Reports 2017-Clarivate Analytics: Q3)
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spaces via metric preserving mappings, Fuzzy Sets and Systems 330

(2018) 1-15 (Listed in Journal Citation Reports 2018-Clarivate Ana-
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