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Abstract
The ability of regional climate models (RCMs) to accurately simulate current and future climate is increasingly important 
for impact assessment. This is the first evaluation of all reanalysis-driven RCMs within the CORDEX Australasia framework 
four configurations of the Weather Forecasting and Research (WRF) model, and single configurations of COSMO-CLM 
(CCLM) and the Conformal-Cubic Atmospheric Model (CCAM) to simulate the historical climate of Australia (1981–2010) 
at 50 km resolution. Simulations of near-surface maximum and minimum temperature and precipitation were compared 
with gridded observations at annual, seasonal, and daily time scales. The spatial extent, sign, and statistical significance 
of biases varied markedly between the RCMs. However, all RCMs showed widespread, statistically significant cold biases 
in maximum temperature which were the largest during winter. This bias exceeded − 5 K for some WRF configurations, 
and was the lowest for CCLM at ± 2 K. Most WRF configurations and CCAM simulated minimum temperatures more 
accurately than maximum temperatures, with biases in the range of ± 1.5 K. RCMs overestimated precipitation, especially 
over Australia’s populous eastern seaboard. Strong negative correlations between mean monthly biases in precipitation 
and maximum temperature suggest that the maximum temperature cold bias is linked to precipitation overestimation. This 
analysis shows that the CORDEX Australasia ensemble is a valuable dataset for future impact studies, but improving the 
representation of land surface processes, and subsequently of surface temperatures, will improve RCM performance. The 
varying RCM capabilities identified here serve as a foundation for the development of future regional climate projections 
and impact assessments for Australia.
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1  Introduction

Climate change is a global phenomenon with impacts that 
manifest at regional and local scales (IPCC 2013). Assess-
ing how these changes will impact physical, ecological, 
and socio-economic systems and planning response strat-
egies requires robust, high-resolution regional climate 
projections (IPCC 2012; Rummukainen 2016; Xue et al. 
2014). Global climate models (GCMs) provide a basis for 
this information, however, their coarse resolution lacks the 
fine-scale details required by the assessment and adapta-
tion planning community (Fowler et al. 2007; Hattermann 
et al. 2011; Maraun et al. 2010). An effective approach for 
producing high-resolution climate projections at regional 
scales is to use regional climate models (RCMs) to dynam-
ically downscale coarse-resolution outputs from GCMs or 
reanalyses (Giorgi 2006; Laprise 2008; Wang et al. 2004). 
RCMs use these outputs as initial and lateral boundary 
conditions to generate projections that better resolve the 
complex surface characteristics and mesoscale atmos-
pheric processes that are important drivers of regional cli-
mate (Di Luca et al. 2012; Giorgi and Bates 1989; Torma 
et  al. 2015). With increased spatial resolution, RCMs 
can also better resolve convective phenomena and thus 
improve the simulation of extreme events, such as sub-
daily precipitation extremes (Olsson et al. 2015). Accurate 
simulation of climate extremes by RCMs is increasingly 
important for climate impact assessment (Halmstad et al. 
2013; Sunyer et al. 2017).

The Coordinated Regional Downscaling Experiment 
(CORDEX) is an initiative of the World Climate Research 
Programme (WCRP) that aims to improve both the gen-
eration and evaluation of downscaled regional climate 
information (Giorgi et  al. 2009). Under the CORDEX 
framework, regional climate projections based on CMIP5 
(Coupled Model Intercomparison Project Phase 5) GCM 
projections have been produced for 14 regions world-
wide. An important stage in RCM development and the 
production of future regional climate projections is the 
evaluation of the models’ skill in simulating present-day 
climatological conditions (Di Luca et al. 2016; Diaconescu 
et al. 2015; Garcia-Diez et al. 2015). In this capacity, an 
essential component of CORDEX is the evaluation of mul-
tiple RCMs over recent decades using lateral boundary 
conditions from re-analysis products such as ERA-Interim 
(Dee et al. 2011).

Evaluations of historical CORDEX RCM simulations 
forced by ERA-Interim reanalysis have been completed 
for several regions. These assessments generally show 
that RCMs capture the main climatological features of 
the target domain; however, deficiencies are present which 
vary depending on the model, sub-region, and season. 

For example, when simulating observed precipitation in 
Africa, Nikulin et al. (2012) found that RCMs showed 
marked regional variation, and displayed shortcomings 
in arid and semi-arid regions. Furthermore, Panitz et al. 
(2014) reported a dry bias in regions affected by the pas-
sage of the West African Monsoon, warm biases in arid 
regions, and a cold bias over Guinea. RCMs showed rea-
sonably high model accuracy over most of the Middle East 
and North African domain at annual timescales (Bucchig-
nani et al. 2016). However, a warm summertime bias over 
North Africa and Saudi Arabia, and a cold bias over the 
majority of the domain during the boreal winter were also 
apparent. Evaluations of the EURO-CORDEX domain 
showed that RCMs simulated the basic spatiotemporal 
patterns of the European climate. However, model defi-
ciencies included cold and wet biases during most seasons 
over the majority of Europe and warm and dry summer 
biases over southern and south-eastern Europe (Kotlarski 
et al. 2014). Although the general climatological features 
of South America were reproduced by RCMs, marked wet 
and cold biases were evident over several regions (Solman 
et al. 2013).

To date, no evaluation of CORDEX-Australasia has 
been performed and there is limited information available 
regarding the capability of ERA-Interim driven RCMs in 
simulating the Australian climate. While several studies 
have used RCMs driven with various reanalyses to pro-
duce regional climate hindcasts for different regions of the 
Australian continent (e.g., Evans et al. 2012; Andrys et al. 
2015), no intercomparison study has evaluated the relative 
performance of different RCMs in simulating the Austral-
ian climate. Consequently, this paper has three main aims: 
(1) to evaluate the ability of the CORDEX-Australasia 
ensemble to simulate the historical temperature and pre-
cipitation characteristics of Australia, identifying regions 
where model biases are common and statistically signifi-
cant; (2) to assess the relative strengths and weaknesses 
of individual RCMs; and (3) to assess the possible rea-
sons for deficiencies in model performance. Model evalu-
ation focuses on the entire CORDEX-Australasia ensem-
ble which consists of four configurations of the Weather 
Research and Forecasting (WRF) model (Skamarock et al. 
2008), the COSMO-CLM (CCLM) model (Rockel et al. 
2008), and the Conformal-Cubic Atmospheric Model 
(CCAM; McGregor and Dix 2008). We evaluate the ability 
of this RCM ensemble to simulate near-surface maximum 
and minimum air temperature and precipitation at annual, 
seasonal, and daily time scales over Australia. These vari-
ables were chosen because they are often used for impact 
studies and are well-represented in high-quality gridded 
observational data sets for the Australian continent (King 
et al. 2013).
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2 � Data and methods

2.1 � Model configurations

The RCMs were driven by ERA-Interim boundary condi-
tions with a spatial resolution of approximately 80 km for 
a 29-year period from January 1981 to January 2010. The 
WRF RCM configurations used the Advanced Research 
WRF (ARW) solver which uses a fully compressible, 
Eulerian and non-hydrostatic equation set. It uses terrain-
following, hydrostatic-pressure for the vertical coordi-
nate, which has constant pressure surface at the top of 
the model. The horizontal grid uses Arakawa C-grid stag-
gering. Its time integration scheme uses the third-order 
Runge–Kutta scheme, with a smaller time step for acous-
tic and gravity-wave modes. Further information on WRF 
can be found in Skamarock et al. (2008). All WRF con-
figurations used a domain with quasi-regular grid spac-
ing of approximately 50 km (0.44° × 0.44° on a rotated 
coordinate system) covering the CORDEX-Australasia 
region. Model performance was evaluated for Australia 
only (Fig. 1). The four configurations of the WRF RCM 
(UNSW-WRF360J, UNSW-WRF360K, UNSW-WRF360L, 
and MU-WRF330) used different parameterisations 
for planetary boundary layer physics, surface physics, 
cumulus physics, and radiation (Table 1). The UNSW-
WRF360J, UNSW-WRF360K, and UNSW-WRF360L 
configurations were selected from a larger ensemble of 
WRF RCMs that accurately simulated the south-eastern 
Australian climate, whilst retaining as much independent 
information as possible (Evans et al. 2012, 2014; Ji et al. 
2014). Parameterisations selected for MU-WRF330 were 

based on results from a prior sensitivity analysis of WRF 
to different physics and input data over southwest Western 
Australia (Kala et al. 2015). The MU-WRF330 simulation 
(Andrys et al. 2015) was conducted using WRF version 
3.3, whereas the three other WRF simulations were con-
ducted using version 3.6.0.

CCAM is a non-hydrostatic, variable-resolution global 
atmospheric model that includes a number of distinctive fea-
tures. It uses two-time level, semi-implicit time differenc-
ing and semi-Lagrangian horizontal advection with bi-cubic 
horizontal interpolation. It also incorporates total-variation-
diminishing (TVD) vertical advection (McGregor 1993) and 
reversible staggering (McGregor and Dix 2008). CCAM 
(version 1209) was run with a global uniform grid configura-
tion at 50 km resolution and used the setup shown in Table 1. 
When forced with ERA-Interim data, the model setup was 
similar to the setups described in Katzfey et al. (2016) and 
Thevakaran et al. (2016), except that a scale-selective filter 
(i.e., spectral nudging, Thatcher and McGregor 2009) with 
a scale of 9000 km was used every 6 h for temperature, 
winds above approximately 900 hPa, and surface pressure. 
In addition, CCAM used ERA-Interim sea surface tempera-
tures (SST) rather than the bias and variance corrected SSTs 
developed for CCAM by Hoffmann et al. (2016).

The COSMO model in CLimateMode (‘CCLM’) is a 
non-hydrostatic RCM developed from the Local Model 
(LM) of the German Weather Service. It solves the 
thermo-hydrodynamic equations for compressible flow 
in a moist atmosphere on an Arakawa-C grid which is 
defined on a rotated coordinate system. The vertical grid 
uses a hybrid coordinate that is terrain-following near the 
surface and flat near the top of the model. The standard 
land surface model (LSM) used by CCLM is TERRA-ML 

Fig. 1   Topographic varia-
tion across the study domain, 
Australia. Approximate location 
of the Great Dividing Range is 
delineated in white. NT North-
ern Territory, QLD Queensland, 
NSW New South Wales, ACT​ 
Australian Capital Territory, 
TAS Tasmania, VIC Victoria, SA 
South Australia, WA Western 
Australia. Inset a shows natural 
resource management (NRM) 
climate regions (MDB Murray 
Darling Basin). Inset b shows 
the CORDEX Australasia 
domain
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(Schrodin and Heise 2001). Further information on the 
dynamics and physical parametrisations in COSMO-CLM 
can be found in Doms and Baldauf (2015). For the pre-
sent simulations, CCLM used a domain with quasi-reg-
ular grid spacing of approximately 50 km (0.44° × 0.44° 
on a rotated coordinate system) covering the CORDEX-
Australasia region. Initial ‘trial’ simulations using the 
standard version of CCLM (CCLM4.8_clm17) were 
conducted using a number of different model configura-
tions. These initial simulations showed large temperature 
overestimates over Australia in comparison to observed 
near-surface temperature from the CRU TS 3.10 data set 
(Harris et al. 2014). Subsequent simulations conducted 
using CCLM coupled to the community land model 
version 3.5 (CLM3.5, Dickinson et al. 2006) showed a 
substantial reduction in temperature overestimation. We 
therefore ran the simulations using the coupled model 
CCLM4.8_clm17-CLM3.5 (CCLM4-8-17-CLM3-5 in the 
CORDEX archive nomenclature). The model parameteri-
sations used for CCLM are shown in Table 1.

The namelists used for all simulations evaluated by this 
study are provided in Online Resource 1. All RCM data 
were interpolated from the models’ native grid to a com-
mon regular 0.5° grid for comparison and analysis using 
a nearest-neighbour algorithm.

2.2 � Observations

Australian Gridded Climate Data (AGCD; Jones et al. 2009) 
were used to evaluate RCM performance. This daily grid-
ded maximum and minimum temperature and precipitation 
data set has a spatial resolution of 0.05°, and is obtained 
from an interpolation of station observations across the Aus-
tralian continent (Jones et al. 2009). Observations include 
temperature minima and maxima only; hence, the ability of 
RCMs to reproduce mean temperature was not assessed. The 
majority of these stations are located in the more heavily 
populated coastal areas with a sparser representation inland, 
and there are more precipitation stations than temperature 
stations (refer to Fig. 2 of Jones et al. 2009). Cross-validated 
root mean squared errors (RMSEs) for monthly maximum 
and minimum temperatures over Australia for 2001–2007 
are typically between 0.5 and 1 °C, and 10–25 mm month−1 
for monthly precipitation (Jones et al. 2009). In order to 
compare models with slightly different spatial resolutions 
with gridded observations of a higher resolution, two dif-
ferent approaches can be adopted. One is that model output 
can be interpolated to match the higher resolution of the 
gridded observations such that the latter remain unchanged 
(see for example Vautard et al. 2013 and; Zollo et al. 2016). 
However, in our case, the resolution of the observations is 
approximately 10 times higher than that of the models (5 by 
5 km as compared to approximately 50 by 50 km). A major 
issue with using the native resolution of the observations as 

Fig. 2   Probability density functions of mean daily maximum near-surface air temperatures (K) across Australia. a–f The PDF of a specific RCM/
RCM configuration relative to that of Australian Gridded Climate Data (AGCD) observations
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the common grid when evaluating lower resolution model 
output is that statistics with a strong dependence on the spa-
tial scale (particularly extremes) will not be well evaluated. 
That is, a perfect model at 50 km would disagree with the 
observations at 5 km resolution, e.g. due to missing small-
scale features. Moreover, interpolating the model output to 
the much higher resolution of the observational grid pro-
vides no additional information than the models’ original 
50 km grid. Of course, when interpolating the observations 
to a lower resolution the spatial scale mismatch has also 
to be taken into account. Here, this is handled by using a 
conservative re-gridding approach. The AGCD data were 
therefore re-gridded to correspond with the RCM data on 
a common 0.5° regular grid using the conservative area-
weighted re-gridding scheme of the Iris version 2.1 library 
(Met Office 2018) for the Python version 3.6 programming 
language. Given AGCD observations are terrestrial data with 
no coverage over the ocean, only land points were evaluated.

2.3 � Evaluation methods

We calculated annual and seasonal means for maximum 
and minimum temperature and precipitation using monthly 
averages for each variable. Mean diurnal ranges and 5th 
and 95th percentiles were calculated for maximum tem-
perature using daily values. The performance of the RCMs 
in reproducing the observations over these timescales was 
assessed by calculating the model bias, defined as model 
outputs minus AGCD observations. The statistical signifi-
cance of mean annual and seasonal biases compared to the 
AGCD observations was calculated for each grid cell using 
t-tests for maximum and minimum temperature (α = 0.05) 
assuming equal variance. The Mann–Whitney U test was 
used for precipitation given its non-normality. Results on 
ensemble mean statistical significance were separated into 
three classes following Tebaldi et al. (2011). Specifically, 
statistically insignificant areas are shown in colour, denoting 
that fewer than half of the models are significantly biased. In 
these areas model bias is generally small; the most desired 
outcome. In areas of significant agreement (stippled), at least 
half of RCMs are significantly biased and at least 66% of 
the RCMs that show a significant difference agree on the 
direction of bias. In these regions, ensemble bias tends to 
be in one direction; an undesirable outcome. Areas of sig-
nificant disagreement are shown in white, where at least half 
of the models are significantly biased and fewer than 66% 
of significant models agree on the bias direction. The 66% 
threshold was selected because it allowed for a single model 
to disagree with the consensus.

Model performance against observations was also 
assessed using the RMSE of simulated fields relative to 
observations. To evaluate the spatial agreement between 
RCM outputs and observations, we calculated the pattern 

correlation between simulated and observed fields (Walsh 
and McGregor 1997). The RMSE and pattern correlation 
were calculated for each RCM using the annual and seasonal 
means for each variable of interest.

We also examined the ability of the RCMs to simulate 
observed temperature and precipitation at daily time scales 
by comparing the probability density functions (PDFs) for 
AGCD daily mean observations versus those of the RCMs. 
PDFs were calculated for the whole study domain and for 
each natural resource management (NRM) climate region 
shown in Fig. 1. For the PDFs only, all daily values of pre-
cipitation below 0.1 mm were omitted from the RCM output, 
as rates below this amount fall below the detection limit of 
the stations used to produce the AGCD data. Additionally, 
the daily rainfall observational network used to produce the 
AGCD has large gaps in several areas of central Australia; 
hence, RCM output was masked over these areas. Daily 
PDFs were compared by calculating the Perkins Skill Score 
(PSS; Perkins et al. 2007), which measures the common area 
between two PDFs whereby a PSS value of 1 indicates that 
the distributions overlap perfectly.

3 � Results

3.1 � Maximum temperature

All RCMs overestimate the frequency of lower than average 
temperatures, as shown by the PDFs of mean daily maxi-
mum temperatures across Australia, and underestimate the 
observed peaks (Fig. 2). The RCMs differ in their simula-
tion of the frequency of warmer than average events, with 
the four configurations of the WRF RCM underestimating 
higher temperatures, whereas CCAM and CCLM overes-
timate occurrences of maximum temperatures higher than 
312 K and 314 K, respectively. Overall, MU-WRF330 and 
CCLM show the best agreement with observations (see 
PSS scores in Table 2), while the performance of UNSW-
WRF360L is comparatively poor. This is generally consist-
ent for the seven NRM climate regions, although the magni-
tude of the error varies between regions (Fig. 1 and Online 
Resource 2: Figs. S1–S7).

Ensemble annual mean maximum temperature shows 
a statistically significant cold bias over most of Australia, 
which is most intense over the eastern regions (Fig. 3b). 
Mean bias shows few areas of significant disagreement 
(white) across Australia, with the majority occurring along 
portions of the northern and south-eastern coastlines. 
Additionally, the ensemble mean shows a significant warm 
bias along sections of the north-western coastline. In terms 
of individual RCMs, the statistically significant cold bias 
is the largest for UNSW-WRF360L, which exceeds − 5 K 
over south-eastern Australia (Fig. 3e). UNSW-WRF360L AQ1
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is exceptional in this regard because other WRF configu-
rations display a substantially smaller cold bias. CCAM 
shows a significant warm bias over a larger area as com-
pared to the other RCMs, being 0.5–2.0 K warmer than 
observations in the semi-arid areas of central and northern 
Australia. Overall, CCLM has the lowest bias.

Cold biases are reflected in the spatial variation of 
RMSEs for simulated maximum surface temperatures 
(Online Resource 2: Fig. S8). For example, UNSW-
WRF360L shows a large area of RMSEs > 5  K over 
south-eastern Australia, whilst RMSEs are lower for 
CCLM and MU-WRF330 over the most of the continent. 
Mean pattern correlations and RMSEs are also consistent 
with these results, with CCLM having the lowest RMSE 
(0.97 K, versus the ensemble mean of 1.63 K; Table 3) and 

MU-WRF330 having the highest mean spatial agreement 
between observed and simulated fields.

At seasonal time-scales, the cold bias tends to be lower in 
intensity and spatial extent during summer (DJF, Fig. 4) rela-
tive to during winter (JJA, Fig. 5). This change is the most 
apparent for UNSW-WRF360L, which shows a large cold 
bias over south-eastern Australia on an annual time-scale 
that is greatly reduced during DJF (Fig. 4e). Areas of closer 
agreement between simulated and observed temperatures 
are also evident across several other regions during DJF, 
particularly for the WRF RCM configurations (Fig. 4c–f). 
In contrast, most RCMs display larger and more widespread 
statistically significant cold biases during the cooler months. 
This is most apparent during JJA (Fig. 5); however, CCLM 
and to a lesser extent MU-WRF330, do not follow this 

Table 2   Perkins skill scores 
(PSS) for the six RCMs 
for daily minimum and 
maximum temperature, 
diurnal temperature, and daily 
precipitation

Bold values indicate the RCM with the highest PSS

RCM Temp. max. Temp. min. Diurnal range Precipitation

UNSW-WRF360J 0.94 0.98 0.56 0.76
UNSW-WRF360K 0.94 0.98 0.57 0.69
UNSW-WRF360L 0.88 0.91 0.64 0.72
MU-WRF330 0.95 0.91 0.68 0.76
CCAM 0.90 0.94 0.62 0.76
CCLM 0.95 0.90 0.17 0.78

Fig. 3   Annual mean near-surface atmospheric maximum tempera-
ture bias with respect to Australian Gridded Climate Data (AGCD) 
observations for the RCMs. Stippled areas indicate locations where 
an RCM shows statistically significant bias (P < 0.05). b Significance 
stippling for the ensemble mean bias follows Tebaldi et  al. (2011). 
Statistically insignificant areas are shown in colour, denoting that less 
than half of the models are significantly biased. In areas of significant 

agreement (stippled), at least half of RCMs are significantly biased, 
and at least 66% of the significant RCMs agree on the direction of the 
bias. Areas of significant disagreement are shown in white, which are 
where at least half of the models are significantly biased and less than 
66% significant models agree on the bias direction—see main text for 
additional detail on the stippling regime
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pattern. The poor annual performance of UNSW-WRF360L 
can be attributed to errors during MAM and JJA because 
RMSEs for the model are markedly higher as compared to 
other RCMs during these seasons (Table 3).

Figure 6 shows the biases of the 5th and 95th percen-
tiles of daily maximum temperature. CCLM shows the 
closest agreement with observed 5th percentile tempera-
tures. Whereas the RCMs clearly differ in terms of their 
representation of annual and seasonal mean maximum 
temperatures, some similarities are apparent in their simu-
lation of 95th percentile maximum temperatures. Spatial 

patterns of 95th percentile temperature bias are remarka-
bly similar among the four WRF configurations (Fig. 6i–l), 
and CCAM and CCLM also share very similar patterns of 
bias (Fig. 6m, n). MU-WRF330 shows the lowest bias of 
all WRF RCMs in simulating the 95th percentile across 
the heavily populated south-eastern coastline. Performance 
improves slightly for the WRF RCM configurations when 
simulating 95th percentile maximum temperatures relative 
to annual mean maximum temperatures (i.e. mean RMSEs 
are 1.32 K and 1.85 K respectively; Tables 3, 4).

Fig. 4   Summer (DJF) maximum temperature bias with respect to AGCD observations with stippling as per Fig. 3

Fig. 5   Winter (JJA) maximum temperature bias with respect to AGCD observations with stippling as per Fig. 3
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3.2 � Minimum temperature

Daily minimum temperature PDFs for UNSW-WRF360J and 
WRF360K match observations more closely as compared 
to the other simulations (Fig. 7) and produce the highest 
PSS scores (both scoring 0.98; Table 2). As compared to 
maximum temperatures, these two RCMs show a reduced 
tendency to over (under) estimate the occurrence of tem-
peratures at the lower (upper) ends of the distribution. 
MU-WRF330, CCAM, and CCLM underestimate the fre-
quency of colder than average events and overestimate the 
occurrence of warmer than average temperatures. Results 
over specific regions can differ substantially as compared 
to those over the whole of Australia (Online Resource 2: 
Figs. S11–17). For example, in contrast to the Australia-
wide distribution, both UNSW-WRF360J and WRF360K 
show larger overestimates of the observed peak over the East 
Coast region as compared to the other RCMs.

The ensemble annual mean minimum temperature shows 
a statistically significant warm bias for several central and 
eastern regions (Fig. 8b). In contrast to the simulation of 
maximum temperature, all RCMs display significant warm 
bias over larger areas of the topographically complex eastern 
coastline. However, there were some prominent areas of sig-
nificant disagreement over sections of western and northern 
Australia (Fig. 8b). This can be attributed to MU-WRF330, 
CCAM, and CCLM having significant warm biases across 
most of Australia (Fig. 8f–h), while UNSW-WRF360J-K-
L show significant cold biases over Western Australia, and 
several northern and eastern regions (Fig. 8c–e). Notably, 
UNSW-WRF360J and WRF360K show closer agreement 
with observed minimum temperatures as compared to the 
other RCMs, with biases typically in the range of ± 1.5 K 
(Fig. 8c, d), and their performance is considerably improved 
relative to maximum temperatures. These two RCMs have 
the lowest mean RMSEs and low RMSEs across the domain 
(Table 3; Fig. S18).

Seasonally, the spatial variation of the signs and mag-
nitudes of the biases for each RCM are fairly similar to 
their corresponding performance at the annual time-scale 
(Figs. S19–22). We note that while UNSW-WRF360J and 
UNSW-WRF360K are fairly consistent across seasons in 
terms of mean RMSEs (Table 3), RMSE magnitudes are 
much higher during MAM and JJA for the remaining mod-
els and in most cases start increasing in March (Online 
Resource 2 Fig. S23). Similar to maximum temperatures, 
the poor annual performance of UNSW-WRF360L can be 
attributed to difficulties in simulating temperatures during 
MAM and JJA (Table 3).

3.3 � Diurnal temperature range

All RCMs show relatively poor skill in simulating the 
observed distribution of mean diurnal ranges (Fig. 9). 
Models overestimate the frequency of smaller temperature 
ranges and underestimate the observed peak and occur-
rence of larger diurnal ranges. UNSW-WRF360L and MU-
WRF330 perform marginally better than the other RCMs, 
whereas CCLM has the poorest performance (Table 2).

The ensemble mean diurnal range bias shows wide-
spread areas of significant agreement (Fig. 10b); how-
ever, simulated ranges are generally smaller as compared 
to observed ranges (Fig. 10c–h). The magnitude of this 
negative bias is the largest over eastern Australia; however, 
bias decreases in a westerly direction and in some cases 
its sign is reversed. The ensemble bias shows the largest 
disagreement over southwest Western Australia. Similar 
to seasonal maximum and minimum temperatures, most 
RCMs tend to simulate diurnal ranges more accurately 
during DJF–SON as compared to during MAM–JJA (Figs. 
S24–27).

Fig. 6   Biases in 5th percentile (a–g) and 95th percentile (h–n) mean maximum temperatures simulated by the RCMs, relative to AGCD with 
stippling (P < 0.05)
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3.4 � Precipitation

The PDFs for mean daily precipitation show that UNSW-
WRF360J and MU-WRF330 simulate the occurrence of 
light rainfall events up to 0.5 mm day−1 fairly accurately 
(Fig. 11). UNSW-WRF360J, MU-WRF330, and CCLM 
simulate the frequency of precipitation events of ≥ 3 mm 
day−1 more accurately than the other models. However, 
the PSS for these models are only marginally higher 
as compared to the other RCMs with the exception of 
UNSW-WRF360K (Table 2). There are some interesting 
differences in RCM performance between regions (Figs. 
S28–34). For example, light rainfall events (up to 0.5 mm 
day−1) are overestimated by several RCMs over the East 
Coast, while they are simulated more accurately over the 
Murray Darling Basin, which is adjacent to the East Coast 
and further inland.

The ensemble bias for annual mean precipitation shows 
significant agreement across the eastern, southern, west-
ern, and central regions of Australia (Fig. 12b), with areas 
of significant disagreement occurring mainly over north-
ern Australia and a narrow strip along the eastern coast-
line. With the exception of MU-WRF330, RCMs show 
wet biases across large areas of the eastern, central, and 
southern regions. Some dry biases are also apparent; for 
example, UNSW-WRF360K, CCAM, and CCLM under-
estimate rainfall over the monsoonal north, whereas the 
remaining RCMs display a wet bias in this region. RMSEs 
are also comparatively high along the northern coastline 
for all RCMs (Fig. S35). MU-WRF330 displays a wet bias 
along the eastern coastline, and a dry bias over the low-
lands to the west of the Great Dividing Range (Fig. 1) and 
across the southern half of Australia. Furthermore, MU-
WRF330 overestimates rainfall over much of the northern 
half of Australia and as such, the spatial variation of its 
bias is an approximate mirror-image to that of CCAM. 
CCLM has the lowest annual mean RMSE of 15.58 mm 
month−1 as compared to the ensemble mean of 20.62 mm 
month−1 (Table 3).

Seasonally, many RCMs remain significantly wet-biased 
over much of eastern Australia, albeit with some regional 
variations in the sign of the bias. For example, several 
RCMs show a dry bias over northern regions during DJF, 
which subsequently switches to a wet bias during MAM, 
JJA, and SON (Figs. S36–39). The majority of RCMs are 
better able to capture the spatial pattern of precipitation 
during DJF, as compared to other seasons or annually, 
as evidenced by the mean pattern correlations (Table 3). 
Conversely, when RMSEs are considered, RCMs are most 
inaccurate during DJF, while accuracy is highest during 
JJA (Table 3). The strong seasonality of RCM skill is sum-
marised by the RMSE annual cycles in Fig. S40.
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4 � Discussion

In summary, RCMs were generally cold-biased for maxi-
mum temperature, warm-biased for minimum tempera-
ture, and overestimated precipitation. However, model 

performance varied considerably between seasons and 
the different RCMs and RCM configurations. The fol-
lowing sections discuss potential mechanisms for these 
differences.

Fig. 7   Probability density functions of mean daily minimum near-surface air temperatures across Australia

Fig. 8   Annual mean minimum temperature bias (K) with respect to AGCD observations for the RCMs with stippling as per Fig. 3
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4.1 � WRF

Cold biases were more widespread and typically larger 
for the four WRF configurations as compared to CCAM 
and CCLM. The unified Noah LSM used by all the WRF 
configurations is a potential source of this bias. Previous 
studies have demonstrated that use of this LSM can result 
in cold biases over European snow-covered regions during 

winter and overestimations of soil moisture and evapo-
ration during summer (Garcia-Diez et al. 2015). While 
snow occupies a small proportion of the land surface in 
south-eastern Australia during cooler months, an excess of 
soil moisture is a potential explanation for the simulated 
cold bias. To investigate this hypothesis, the temporal 
correlation of the 29-year time series between monthly 
biases in precipitation and monthly biases in maximum 

Fig. 9   Probability density functions of mean diurnal ranges across Australia

Fig. 10   Bias in the mean diurnal ranges simulated by RCMs relative to observed mean diurnal ranges
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temperature was calculated (Fig. 13). A strong negative 
correlation between mean monthly precipitation biases and 
mean monthly maximum temperature biases was apparent 
over most of Australia. Pearson’s r values averaged across 
Australia for the four WRF configurations ranged from 
− 0.44 to − 0.18. These associations also displayed strong 
seasonal variability; negative correlations between biases 
were larger and more widespread during DJF as compared 

to during JJA (e.g. for UNSW-WRF360J mean r = − 0.60 
versus r = − 0.18, respectively; see Online Resource 2: 
Figs. S41–S42). These findings support the hypothesis 
that precipitation overestimation is a likely cause of the 
large maximum temperature cold bias in the WRF simula-
tions. This is consistent with previous studies which have 
identified Australia as a soil moisture–atmosphere cou-
pling “hot spot” for maximum temperature (Hirsch et al. 

Fig. 11   Probability density functions of mean daily precipitation

Fig. 12   Annual mean precipitation bias of the RCMs with stippling as per Fig. 3
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2014). Importantly, this negative correlation was reversed 
for biases in minimum temperature and precipitation (Fig. 
S43). Moreover, the more accurate simulation of 95th per-
centile maximum temperatures than annual mean maxi-
mum temperatures by the WRF RCM configurations may 
also be linked to this precipitation bias. Hot extremes in 
Australia often occur during dry conditions and are hence 
less affected by the mean precipitation overestimate. 
Future studies will investigate the drivers of the maxi-
mum temperature cold bias using soil moisture observa-
tions. Furthermore, since soil moisture is influenced by the 
LSM, it would also be informative to trial several LSMs 
with WRF with the aim of improving the representation of 
land surface processes, and subsequently, the simulation 
of near-surface temperatures.

The cold bias was more intense for UNSW-WRF360L as 
compared to other WRF configurations. UNSW-WRF360L 
was the only configuration to use CAM3 radiation schemes, 
suggesting that the strong cold bias can be partially attrib-
uted to the radiative scheme. This is supported by Katragkou 
et al. (2015) who also found that using CAM3 resulted in 
large cold biases.

The WRF configurations showed significant warm biases 
along portions of the north-western coastline, which were 
consistent with dry biases over this region. The spatial pat-
terns of 95th percentile maximum temperature bias were 
also remarkably similar over this region for the four WRF 
RCM configurations. This consistent north-western bias 
must be viewed in the context of the relative sparseness of 
meteorological stations in this region, and the fact that many 

Fig. 13   a Temporal correlations between observed mean monthly maximum temperature (tasmax) and precipitation (pr), b, c biases in modelled 
versus observed tasmax and pr, d–i temporal correlations between mean monthly biases in maximum temperature and precipitation
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stations are located near the coastline where temperatures 
are lower than further inland. These issues increase the 
uncertainty of the AGCD observations relative to areas with 
denser station coverage. The strong relationship between sta-
tion density and AGCD errors over the north-west and the 
western interior was noted by Jones et al. (2009), with these 
regions showing much larger cross-validated RMSEs than 
elsewhere (see their Figs. 2, 5). Given that other physical set-
tings varied between the different WRF RCMs, it is difficult 
to identify a specific physical parameterisation that underlies 
this bias. However, it could also be partially inherited from 
the ERA-Interim lateral boundary conditions (Moalafhi 
et al. 2016).

UNSW-WRF360J and WRF360K both showed close 
agreement with regards to observed minimum temperatures 
with fairly small biases. This may partially stem from their 
use of the Mellor-Yamada-Janjic local PBL scheme, which 
was found to contribute to an accurate simulation of mini-
mum temperature over Southern Spain (Argueso et al. 2011). 
These two RCM configurations differed only in terms of the 
cumulus scheme used (UNSW-WRF360J—Kain-Fritsch; 
UNSW-WRF360K—Betts-Miller-Janjic). Previous sensi-
tivity studies for eastern Australia found that in WRF, these 
cumulus schemes do not have a large influence on minimum 
temperature (Evans et al. 2012).

In terms of precipitation biases, similarities between the 
WRF configurations included dry biases over parts of West-
ern Australia and wet biases over the topographically com-
plex terrain of south-eastern Australia. This south-eastern 
wet bias changed to a dry bias during winter, which coin-
cides with a substantial improvement in model performance. 
Rainfall over south-eastern Australia is typically more fre-
quent during the cooler months due to cold fronts moving 
across southern Australia. These wet biases may be partially 
inherited from the ERA-Interim lateral boundary conditions, 
which has a positive precipitation bias over eastern Aus-
tralia as compared to the Global Precipitation Climatology 
Centre version 7 observed precipitation (Tuinenburg and de 
Vries 2017). Most of the model wet biases observed in the 
present evaluation were largest over eastern Australia. How-
ever, despite the fact that the RCMs assessed were driven by 
ERA-Interim, in many respects they showed quite different 
patterns of precipitation biases, suggesting that other fac-
tors also contributed to this bias. For example, precipitation 
biases demonstrated by ERA-Interim-forced WRF models 
over Germany were linked to the models’ cumulus scheme 
not being tuned to European conditions (Warrach-Sagi 
et al. 2013). While Australia and Germany are very differ-
ent regions, the cumulus scheme employed by Warrach-
Sagi et al. (2013; Kain Fritsch) was used in three of the 
WRF configurations in the present study. As was the case 
in Germany, this cumulus scheme was not tuned for Aus-
tralian conditions. Future work should assess whether using 

a higher resolution, such as the 20 km resolution selected 
for CORDEX2, together with more recent cumulus physics 
schemes, such as Grell-Freitas (Grell and Freitas 2014) and 
multiscale Kain-Fritsch (Zheng et al. 2016), will yield pre-
cipitation simulations over Australia that are more accurate 
than the current results.

4.2 � CCLM

CCLM simulations have been performed over several COR-
DEX domains (e.g. Africa—Panitz et al. 2014, the Middle 
East North Africa—Bucchignani et al. 2016 and Europe—
Kotlarski et al. 2014). Given that CCLM is based on the 
COSMO weather forecast model, it has been developed to 
provide good results for the European domain. For other 
CORDEX domains, the optimal setup differs from that of the 
European domain, and also between the various domains. 
A comparison of results between regions should therefore 
be performed with caution. The CCLM setup for COR-
DEX Australasia was based on CORDEX Africa simula-
tions with two major differences. Firstly, the Bechtold et al. 
(2008) convection scheme was used instead of the Tiedtke 
(1989) scheme. The former was chosen due to the findings 
of Lange et al. (2015) who compared both schemes over 
South America and found that the Bechtold scheme resulted 
in an improved representation of precipitation. Tests during 
the setup phase of the present CCLM simulation confirmed 
that these findings also applied to Australia. Secondly, as 
described above in Sect. 2.1 Model configurations, the 
standard LSM, TERRA-ML (Schrodin and Heise 2001), 
was replaced by CLM3.5 (Dickinson et al. 2006) in order 
to obtain a better representation of land surface processes.

Although generally cold biased, CCLM resulted in the 
most accurate representation of maximum temperatures in 
terms of mean annual and seasonal RMSEs. CCLM showed 
a maximum temperature bias that was also low, i.e. ±2 K 
across most of Australia. The reasonable results for annual 
and seasonal mean maximum temperature are partially due 
to the change of the LSM as described above, which is con-
sistent with previous results for CCLM simulations (e.g. 
Panitz et al. 2014). Furthermore, we compared the surface 
solar radiation intensity simulated by CCLM with Surface 
Radiation Budget (SRB) data (SRB Science Team 2012). 
This revealed that CCLM simulated lower global radiation 
(i.e. direct + diffuse solar radiation) and lower net radiation 
as compared to the SRB data values, a tendency that would 
lead to lower simulated maximum surface temperatures. 
However, attribution of the radiation bias shown by CCLM 
to an overestimation of cloud cover and/or aerosols has not 
been established. This is because a comparison of observed 
and modelled cloud cover is not straightforward and requires 
a tool such as the International Satellite Cloud Climatol-
ogy Project (ISCCP) data simulator. Hence, an analysis of 
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cloud cover using satellite measurements of this type merits 
future investigation. Furthermore, Zubler et al. (2011) and 
Kothe et al. (2014) found major deficiencies (over Europe 
and Africa, respectively) when using the aerosol climatology 
of Tanré et al. (1984) which is the default aerosol climatol-
ogy used in CCLM. However, both of these studies changed 
the CCLM program code to accommodate alternative aero-
sol climatologies to that of Tanré et al., and therefore used 
unofficial CCLM versions. The Tanré aerosol climatology is 
the only aerosol scheme implemented in the official released 
CCLM version 4.18_clm17 used in the CORDEX-Austral-
asia simulations. Therefore, it is not currently possible to 
conduct sensitivity tests to assess the relationships between 
different aerosol climatologies and uncertainties in the radia-
tion components. However, in the most recent official ver-
sion of CCLM (version 5.0), an alternative aerosol clima-
tology can be selected via a namelist setting. An analysis of 
the influence of aerosol climatology on radiation bias over 
Australia will therefore be possible for future simulations.

CCLM overestimated the occurrence of warmer than 
average mean daily minimum temperatures, and overes-
timated annual mean minimum temperatures by approxi-
mately 3–4 K over most of Australia. A comparison of the 
simulated terrestrial radiation budget to SRB data (SRB Sci-
ence Team 2012) showed that CCLM overestimated night-
time downward fluxes and also net fluxes, both factors which 
would contribute to an overestimation of minimum surface 
temperatures. The combined underestimation of maximum 
temperatures together with an overestimation of minimum 
temperatures is one explanation for CCLM’s estimates of 
small diurnal temperature ranges.

CCLM showed fairly close agreement with observed rain-
fall across the semi-arid inland regions of Australia, whereas 
it underestimated precipitation across northern Australia and 
along most of the coastline. This dry bias over coastal areas 
and tropical Northern regions is consistent with findings by 
Panitz et al. (2014). The precipitation intensity simulated by 
CCLM shows a steep gradient between the northern Austral-
ian peninsulas and the adjacent ocean areas (not shown). 
Panitz et al. (2014) stated that “CCLM seems unable to fully 
transport inland the moisture from the ocean”. This may not 
only affect the water vapor transport, but also the transport of 
cloud and precipitable water. More recently, Li et al. (2018) 
observed that precipitation biases shown by CCLM over the 
CORDEX-East Asian domain were closely linked to biases 
of water vapor transport. Although the model versions and 
domains of these studies are different to those of our study, 
inaccuracy in simulating water vapor transport processes is 
a possible reason for the precipitation biases observed over 
some Australian regions. Further investigation is required to 
understand the causes of the precipitation biases shown by 
CCLM over Australia, and in particular to test whether they 
are related to biases in water vapor transport.

4.3 � CCAM

In contrast to the other models, the CCAM simulation was 
conducted on a global even/uniform grid and spectrally 
nudged towards the ERA-Interim data using a scale-selective 
filter. Hence, the parameterisations were selected to perform 
well globally and not for a particular region or resolution. 
In addition, the filter settings used to force the ERA-Interim 
data were not restrictive (i.e. mainly forcing features with 
scales larger than 9000 km). Furthermore, CCAM was not 
constrained by lateral boundary data.

CCAM overestimated occurrences of maximum tem-
peratures at both the lower and upper ends of the observed 
distribution and was similar to CCLM in this regard. CCAM 
overestimated maximum temperatures across large regions 
of northern and central Australia at an annual timescale and 
during most seasons. Conversely, it was generally cold-
biased over the southern half of the country, particularly 
over the temperate regions of south-western and eastern 
Australia. Similar to the WRF results, the regions of maxi-
mum temperature bias correspond strongly with those of 
precipitation bias, which suggests that maximum tempera-
ture underestimation is related to excessive soil moisture and 
evaporation and vice versa.

CCAM simulated minimum temperatures more accu-
rately than maximum temperatures. In their evaluation of the 
current climate of Vietnam, Katzfey et al. (2016) found that 
CCAM simulated maximum temperatures less accurately 
than minimum temperatures, which is consistent with our 
findings. Notably, these results are consistent across very dif-
ferent domains. Although more detailed analysis is required, 
the CABLE LSM used by CCAM may have some inaccu-
racies related to the simulation of prescribed soil surface 
albedo and parameterised vegetation albedo (Wang et al. 
2011), issues which would primarily affect the simulation 
of maximum temperatures.

CCAM’s diurnal temperature range PDF, like the 
observed PDF, has only one major peak, though this peak 
is shifted slightly towards the lower values. In contrast, the 
PDFs of the other models show bimodal peaks. The seasonal 
biases in diurnal temperature are also smaller than those of 
the other models, except possibly during JJA. Consequently, 
the CCAM results show a general temperature offset, but a 
fairly accurate simulation of the diurnal cycle, which could 
be informative for impact modelling and assessment studies 
in fields such as agriculture (e.g. Lobell 2007) and human 
health (e.g. Lambrechts et al. 2011).

CCAM was generally dry-biased over northern regions 
and wet-biased over the southern half of Australia. How-
ever, this northern dry bias was only associated with the 
wetter seasons (DJF and MAM) because it was reduced 
during JJA and switched to a wet bias during SON. The 
CCAM version used by the present study (version 1209) 
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also underestimated precipitation during the Vietnamese 
wet season (summer) and overestimated precipitation dur-
ing the dry season (winter) (Katzfey et al. 2016). Similar 
to the results reflected in the daily precipitation PDFs of 
the present study, CCAM also accurately simulated daily 
observed light rainfall events over Vietnam for a threshold 
rate of 1 mm day−1 (Nguyen et al. 2014). Initial experiments 
that tested different convection scheme settings showed that 
simulated rainfall over tropical regions was sensitive to the 
profiles and rates of entrainment and detrainment, which 
are configured by various settings in the kuonml namelist 
options (see Online Resource 1). As described below, exper-
iments that have used updated convection scheme settings 
have substantially improved the simulation of rainfall as 
compared to the results noted here.

The CCAM code evaluated by the present study used a 
new prognostic aerosol scheme which overestimated the 
concentration of SO2. This overestimation of SO2 concen-
trations would affect CCAM’s cloud microphysics (indirect 
effects), shortwave radiation (direct effects) and rainfall (via 
the number of condensation nuclei). Subsequent refinements 
to the CCAM code (version 3355) have alleviated the SO2 
overestimation issue. Furthermore, additional refinements 
have been made to the convective parameterisation and 
explicit cumulus scheme, as well as to the CABLE LSM. 
More recent simulations that incorporate these refinements 
show substantial improvements in the simulation of maxi-
mum and minimum temperatures and precipitation over 
Australia (i.e. the magnitudes of biases are substantially 
reduced). These model refinements and new results will be 
discussed in a future paper.

5 � Conclusions

This study evaluated the ability of six reanalysis-driven 
RCMs/RCM configurations within the CORDEX Australasia 
framework to simulate maximum and minimum tempera-
ture and precipitation over Australia at daily, seasonal, and 
annual time scales. In doing so, we address an important 
knowledge gap because no such RCM evaluations currently 
exist for Australia. RCMs were generally cold-biased when 
simulating maximum temperatures over Australia, behaviour 
that was particularly characteristic of the WRF RCM con-
figurations. Negative correlations were observed between 
mean monthly biases in precipitation and maximum tem-
perature which supports the general conclusion that RCM 
cold bias is associated with precipitation overestimation. The 
configurations of CCAM and CCLM were quite different to 
those of the WRF models. Taking this into account, CCAM 
and CCLM performed quite well and offer useful comple-
ments to the WRF configurations assessed. Future refine-
ments to model configurations in the CORDEX Australasia 

ensemble that reduce overestimation of precipitation, and 
subsequently soil moisture and evaporation, would improve 
model performance for this region. Since soil moisture is 
influenced by the LSM, it would also be beneficial to test 
different LSMs with the aim of improving the representa-
tion of land surface processes, and subsequently of surface 
temperatures. Overall, the CORDEX Australasia ensemble 
is valuable for use in further studies. The RCM configu-
rations assessed here are currently being used to perform 
future climate change projections for Australia, forced by 
GCM outputs from CMIP5. Our assessment of the abilities 
of these RCMs/RCM configurations to simulate Austral-
ian temperature and precipitation, particularly over heavily 
populated regions, can thus help inform decision-making by 
the adaptation community. Furthermore, the varying model 
capabilities reported here can also help guide experiment 
design and model configuration for climate change impact 
studies over Australia.
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