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linear transformations.

1



2 J. Llibre and A.E. Teruel

1. Introduction and main results

Due to the facility with they arise in the applica-
tions (control theory [Lefschetz, 1965] and [Naren-
dra & Taylor, 1973], design of electric circuits [Chua
& Lin, 1990], neurobiology [FitzHugh, 1961] and
[Nagumo et al., 1962], etc...) piecewise linear dif-
ferential systems were early studied from the point
of view of the qualitative theory of the ordinary dif-
ferential equations [Andronov et al., 1987]. Nowa-
days, a lot of papers are devoted to these differential
systems.

Also in mathematics piecewise linear differen-
tial systems appear in a natural way between linear
differential systems (whose qualitative behavior is
“well known”) and non–linear differential systems
(whose study is very difficult and the knowledge
about them is poor, mainly in high dimension).
With the advantage that, “the richness of dynam-
ical behavior found in piecewise linear differential
systems seems to be almost the same of general
non–linear systems”, (see [Freire et al., 1998], [Lli-
bre & Sotomayor, 1996] and [Teruel, 2000] for di-
mension 2 and [Carmona, 2002] for dimension 3)
while some dynamical conclusions can easily be ob-
tained from their linear parts. Nevertheless, the
analysis of the corresponding dynamics is far from
being trivial.

In this paper we emphasize a deep relationship
existing in piecewise linear differential systems be-
tween the algebraic notion of proper system, the
geometric existence of contact points and the dy-
namical existence of Poincaré maps.

Consider the n–dimensional piecewise linear
(differential) systems in the Lure’s form

dx
ds

= ẋ = Ax + ϕ
(
kTx

)
u + v, (1)

where A is an n × n real matrix, k, u, v ∈ R
n, k

and u different from 0 and

ϕ (σ) =




1 if σ > 1,
σ if |σ| ≤ 1,

−1 if σ < −1.

As it is proved in Lemma 7 of [Carmona et al.,
2002], a long class of piecewise linear systems can
be written in this form. In fact, the assumption
that ϕ is symmetric with respect to the origin is
irrelevant for the results of this paper. We assume

it because the details of the proofs are simpler and
easier to write.

Function ϕ splits the phase space into the three
regions S+ =

{
kTx > 1

}
, S− =

{
kTx < −1

}
and

S0 =
{∣∣kTx

∣∣ < 1
}

separated by the hyperplanes
L+ =

{
kTx = 1

}
and L− =

{
kTx = −1

}
, in such

away that the differential system becomes linear in
each of these regions. More precisely ẋ = Ax+v+u
if x ∈ S+ ∪L+, ẋ = Ax+v−u if x ∈ S− ∪L− and
ẋ = Bx + v if x ∈ L− ∪ S0 ∪ L+, where

B = A + ukT . (2)

Given v1,v2, . . . ,vn ∈ R
n, we denote by

(v1,v2, . . . ,vn) the matrix whose columns are the
components of the vectors v1,v2, . . . ,vn. Following
[Komuro, 1988] and [Wu & Chua, 1996], a differen-
tial system (1) is said to be proper if the n × n
matrix

OA =
(
k, ATk,

(
A2

)T k, . . . ,
(
An−1

)T k
)T

,

has rank n. Other authors (see for instance [Car-
mona et al., 2002] and [Llibre & Ponce, 1999]) call
such systems observable ones.

Take p ∈ L+ (respectively, L−), the point p
is said to be a contact point of order k of the
flow of system (1) with L+ (respectively, L−) if
kT Bj−1 (Bp + v) = 0 for j = 1, 2, . . . , k and
kT Bk (Bp + v) �= 0, where B0 denotes the identity
matrix. When kT Bj (Bp + v) = 0 for any j ≥ 0,
the point p is said to be a contact point of order
∞.

Under the assumption of the existence of at
least a zero e of Bx + v = 0 we transform sys-
tem (1) into the following one

ẋ = Ax + ϕ∗ (
kTx

)
u, (3)

where

ϕ∗ (σ) =




1 − z if σ > 1 − z,
σ if − 1 − z ≤ σ ≤ 1 − z,
−1 − z if σ < −1 − z,

and z = kTe.
If the flow of differential system (3) defines a

Poincaré map, Π++, when we take as a transversal
section the hyperplane L+, then Π++ is defined ei-
ther by the flow of the linear system ẋ = Bx and we
refer it by ΠB

++, or by the flow of the linear system
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ẋ = Ax +
(
1 − kTe

)
u and we refer it by ΠA

++. In
a similar way we consider the Poincaré maps ΠA−−
and ΠB−−.

When the flow of differential system (3) defines
a Poincaré map Π+− taking as a transversal sec-
tions the hyperplanes L+ and L−, we refer it by
ΠB

+−. In a similar way we consider the Poincaré
map ΠB−+.

In our main results we obtain dynamic proper-
ties of the flow from the existence of a contact point
of order n − 1.

Theorem 1.1. Consider a piecewise linear differ-
ential system (3) without singular points in L+ ∪
L−.

(a) The differential system is proper if and only if
there exists exactly one contact point of order
n − 1 of the flow with L+ (respectively, L−).

(b) If the differential system is proper, then the
Poincaré maps ΠA

++, ΠA−− (or ΠB
++ and

ΠB−−), ΠB−+ and ΠB
+− are defined.

(c) If the Poincaré maps are defined, then there
exists a (n − 2)–dimensional vector subspace
of L+ (respectively, L−) formed by the contact
points of order greater than or equal to 1.

When n = 2, Theorem 1.1 characterizes the ex-
istence of the Poincaré maps by using the existence
of exactly one contact point. This result can be
found in [Teruel, 2000].

If p+ and p− are contact points of order n − 1
of the flow of differential system (3) with L+ and
L−, respectively, then

{
Bjp+

}n−1

j=1
and

{
Bjp−

}n−1

j=1

are bases of L+ and L−, see Lemma 3.6. Let πM
jk be

the parametrization in such bases of the Poincaré
maps ΠM

jk , for j, k ∈ {+,−} and M ∈ {A, B}.

Theorem 1.2. Under the assumptions of Theorem
1.1, if system (3) is proper, then the Poincaré maps
πM

jk for j, k ∈ {+,−} and M ∈ {A, B} are invariant
by linear changes of coordinates.

As a consequence of Theorem 1.2, for studying
the behavior of the maps πM

jk for j, k ∈ {+,−} and
M ∈ {A, B} it is enough to consider matrices A and
B in the canonical Jordan form. These arguments
have been used to study completely the Poincaré

maps of differential system (3) when n = 2, see
[Teruel, 2000] and in particular cases when n = 3,
see [Carmona et al., 2002].

The paper is divided in three sections. In Sec-
tion 2 we present some results about the differen-
tiability of the flow in a neighborhood of a contact
point. Section 3 contains a discussion of the re-
lationship between contact points and proper sys-
tems. In Section 4 we prove Theorems 1.1 and 1.2.

2. Differentiability of the flow at contact
points

In the next result we present a characterization of
the contact points of the flow of system (3) with L+

or with L− in terms of the matrices A and B.

Lemma 2.1. (a) Let p be a point in L+, p is a
contact point of order k of the flow with L+ if
and only if Bj (Bp + v) = Aj (Ap + u + v)
for j = 0, 1, ..., k and Bk+1 (Bp + v) �=
Ak+1 (Ap + u + v) .

(b) Let p be a point in L−, p is a contact
point of order k of the flow with L− if
and only if Bj (Bp + v) = Aj (Ap − u + v)
for j = 0, 1, ..., k and Bk+1 (Bp + v) �=
Ak+1 (Ap − u + v) .

Proof: (a) From expression (2) and since kTp = 1
we obtain Bp + v = Ap + u + v and

B (Bp + v) = A (Ap + u + v) + ukT (Bp + v) .

Thus, if p is a contact point of order k,
then B (Bp + v) = A (Ap + u + v). Assum-
ing Bj (Bp + v) = Aj (Ap + u + v) to hold for
0 ≤ j < r where r ≤ k, we will prove it
for r. Since Br (Bp + v) = BBr−1 (Bp + v) =
BAr−1 (Ap + u + v), from (2) it follows that

Br (Bp + v) = Ar (Ap + u + v)
+ukT Br−1 (Bp + v) ,

where kT Br−1 (Bp + v) = 0 and kT Bk (Bp + v) �=
0. Therefore, Bj (Bp + v) = Aj (Ap + u + v)
for j = 0, 1, ..., k and Bk+1 (Bp + v) �=
Ak+1 (Ap + u + v) . Reciprocally, if Bj (Bp + v) =
Aj (Ap + u + v) for j = 0, 1, ..., k and
Bk+1 (Bp + v) �= Ak+1 (Ap + u + v) using
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expression (2) we have

Bj (Bp + v) = Aj (Ap + u + v)
+ukT Bj−1 (Bp + v) ,

for j = 1, 2, ..., k + 1. Then, kT Bj−1 (Bp + v) = 0
for j = 1, 2, ..., k and kT Bk (Bp + v) �= 0; that is,
p is a contact point of order k.

Statement (b) follows in a similar way. �

Using the characterization of a contact point of
order k showed in Lemma 2.1, in the next result
we establish the relation between contact point and
differentiability.

Lemma 2.2. Let p be a point in L+ (respectively,
L−) and x (s) be the solution of the differential sys-
tem (1) through p at s = 0. If p is a contact point
of order k, then x (s) is k + 1 times continuously
differentiable at s = 0.

Proof: If x (s) is locally contained in one of the
regions limited by L+, then x (s) is infinitely many
times continuously differentiable at s = 0.

Suppose now that x (s) crosses L+ at p. In
this case there exits ε > 0 such that x (s) is in-
finitely many times continuously differentiable in
(−ε, 0) and infinitely many times continuously dif-
ferentiable in (0, ε). From Lemma 2.1 we have
lims↗0 x(j) (s) = lims↘0 x(j) (s) for j = 0, 1, ..., k+1
and lims↗0 x(k+2) (s) �= lims↘0 x(k+2) (s), there-
fore, x (s) is k + 1 times continuously differentiable
at s = 0. �

Proposition 2.3. Let p be a point in L+ (respec-
tively, L−) and x (s) be the solution of the differen-
tial system (1) through p at s = 0.

(a) The point p is a contact point of order k =
2r+1 if and only if x (s) is locally contained in
S+ (respectively, S−) or in S0, in such a case
x (s) is infinitely many times continuously dif-
ferentiable at s = 0.

(b) The point p is a contact point of order k = 2r
if and only if x (s) crosses L+ (respectively,
L−) at s = 0, in such a case x (s) is k+1 (but
not k +2) times continuously differentiable at
s = 0.

Proof: From Lemma 2.2 if p is a contact point
of order k, then x (s) is k + 1 times continuously
differentiable. Expanding x (s) at s = 0 we have

x (s) − p =
k∑

j=1

x(j) (0)
sj

j!
+ x(k+1) (ξ)

sk+1

(k + 1)!

with |ξ| < |s|. From this and noting that x(j) (0) =
Bj−1 (Bp + v) for j = 1, 2, ..., k + 1 it follows that

kT (x (s) − p) = kTx(k+1) (ξ)
sk+1

(k + 1)!
. (4)

Since kT Bk (Bp + v) �= 0, for s small enough we
obtain that kTx(k+1) (ξ) �= 0 and hence the sign of
kT (x (s) − p) depends on k is even or not. There-
fore, if k even then x (s) crosses the hyperplane at
s = 0 and if k odd, then x (s) is locally contained
in the regions limited by the hyperplane.

Respectively, if x (s) is locally contained in one
of the regions limited by L+, where the system is
linear, then kT (x (s) − p) = kTx(1) (ξ) s does not
change the sign in a neighborhood of s = 0. This
implies that kT (Bp + v) = 0 and p is a contact
point of order k greater than or equal to 1. There-
fore, we obtain again the expression (4), which
shows that k has to be a odd number. Similar ar-
guments apply when x (s) crosses the hyperplane
L+. �

3. Contact points and proper systems

Proposition 3.1. Consider a piecewise linear dif-
ferential system (1).

(a) The order of any contact point is a number in
the set {1, 2, . . . , n − 1,∞} .

(b) If the differential system is proper, then p is a
contact point of order ∞ if and only if p is a
singular point.

Proof: (a) Let pB (x) = d0+d1x+· · ·+dn−1x
n−1+

xn be the characteristic polynomial of B. By the
Cayley–Hamilton Theorem we have

Bn (Bp + v) = −d0 (Bp + v) − d1B (Bp + v)
− · · · − dn−1B

n−1 (Bp + v) .

Thus, if kT Bj−1 (Bp + v) = 0 for j = 1, . . . , n,
then p is a contact point of order ∞.
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(b) Singular points belonging to L+ or to L−
are clearly contact points of order ∞ with L+ or L−,
respectively. Reciprocally, if p is a contact point of
order ∞ we have

OA (Ap + u + v) =




kT

kT A
...

kT An−1


(Ap + u + v)

=




kT (Bp + v)
kT B (Bp + v)

...
kT Bn−1 (Bp + v)


 (5)

=




0
0
...
0


 .

Since OA has rank n it follows that Ap + u + v = 0
and p is a singular point. �

Using the relationship between the rank of the
matrix OA and the order of the contact point p
that appears in expression (5), in the next result
we characterize the proper differential systems.

Lemma 3.2. Differential system (1) is proper if
and only if there exists exactly one contact point of
the flow with L+ (respectively, L−) of order greater
than or equal to n − 1.

Proof: The existence of exactly one contact point
p of order greater than or equal to n−1 is equivalent
to the existence of exactly one solution of the linear
system OAp = b, where

b =
(
1,−kT (v + u) , . . . , − kT An−2 (v + u)

)T
.

Similar arguments prove the statement when we
consider L−. �

We remark that non–singular solutions of a
proper differential system (1) crossing the hyper-
plane L+ or L− are at most n−1 times continuously
differentiable, see Lemma 3.2 and Propositions 2.2
and 3.1.

Proposition 3.3. Differential system (1) is proper

if and only if the n × n matrix

OB =
(
k, BTk,

(
B2

)T k, . . . ,
(
Bn−1

)T k
)T

,

has rank n.

Proof: From Lemma 3.2, if system (1) is
proper, then there exists exactly one contact
point p of order greater than or equal to n − 1
with L+; that is, kT Bj−1 (Bp + v) = 0 for
j = 1, 2, . . . , n − 1. The linear system OBp = b,
where b =

(
1,−kTv, . . . ,−kT Bn−2

)T has exactly
one solution. Thus, OB has rank n. Reciprocally,
if the matrix OB has rank n, then system (1) is
proper. �

In [Carmona et al., 2002] the authors prove that
proper piecewise linear systems (1) can be trans-
formed by a linear change of coordinates into the
canonical form ẋ equal to


−c0 1 0 · · · 0

−c1 0 1
. . .

...
...

...
. . . . . . 0

−cn−2
...

. . . 1
−cn−1 0 · · · · · · 0




x + ϕ
(
eT

1 x
)
w + aen,

called the generalized Liénard’s form. Here ek de-
notes the k–th element in the canonical base of R

n.
Clearly, the first column in the matrix of the system
is formed by the coefficients of the characteristic
polynomial of A and

w = (c0 − d0, c1 − d1, . . . , cn−1 − dn−1)
T ,

where di for i = 0, . . . , n − 1 are the coefficients of
the characteristic polynomial of B.

Proposition 3.4. A piecewise linear differential
system can be written in the generalized Liénard’s
form if and only if it is proper.

Proof: Here we prove the direct implica-
tion, the reverse one can be found in Propo-
sition 16 of [Carmona et al., 2002]. Let c
be the vector (−c0,−c1, . . . ,−cn)T . Hence,
A = (c, e1, . . . , en−1) and by induction we ob-
tain Aj = (s1, s2, . . . , sj−1, c, e1, . . . , eT

n−j) for
j = 2, . . . , n − 1, where sk are adequate vectors
of R

n. Therefore, since k = e1, OA is a lower
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triangular matrix with 1’s on the diagonal. �

A restricted version of Proposition 3.4 for ho-
mogeneous linear system (v = 0) can be found in
Theorem 1.19 of [Carmona, 2002].

From now on we suppose that there exists at
least a zero e of Bx + v = 0. The change of co-
ordinates x −→ x − e transforms system (1) into
piecewise linear system (3).

For simplicity of notation, we continue writing
L+ and L− for the hyperplanes after translation;
i.e. L+ =

{
x ∈ R

n : kTx = 1 − kTe
}

and L− ={
x ∈ R

n : kTx = −1 − kTe
}
, and S+, S0 and S−

for the translated regions. In S0 system (3) becomes
the homogeneous linear system ẋ = Bx, where B
satisfies again equation (2).

Lemma 3.5. (a) Differential systems (3) with a
contact point of order n − 1 satisfy that
det (B) �= 0.

(b) Proper differential systems (3) with no singu-
lar points on L+ (respectively, L−) has exactly
one contact point of order n− 1 with L+ (re-
spectively, L−).

Proof: (a) Let p be a contact point of order
n − 1; that is kT Bjp = 0 for j = 1, 2, . . . , n − 1
and kT Bnp �= 0. Let dj from j = 0, 1, . . . , n − 1
be the coefficients of the characteristic polynomial
of B, by the Cayley–Hamilton Theorem it follows
that kT Bnp = (−1)n−1 det (B)kTp. Therefore,
det (B) �= 0.

(b) From Lemma 3.2 it follows that there exists
exactly one contact point p of order greater than or
equal to n− 1. Since the differential system has no
singular points in L+ ∪ L− and singular points are
the unique ones with order greater than n − 1, see
Proposition 3.1, the contact point has order equal
to n − 1. �

Lemma 3.6. Let p ∈ L+ (respectively, L−) be a
contact point of order n−1 of the flow of a differen-
tial system (3) without singular points in L+ ∪L−.
The vector set B =

{
Bjp

}n−1

j=1
is a base of L+ and

B̃ = {p} ∪ B is a base of R
n.

Proof: Since kT Bjp = 0 for j = 1, 2, . . . , n − 1,
these vectors are parallel to L+. Thus, it is enough
to prove that all vectors in B̃ are independent.

From Lemma 3.5(a), we obtain det (B) �= 0.
Suppose that there exists n real numbers
λ0, λ1, . . . , λn−1 such that λ0p +

∑n−1
j=1 λjB

jp = 0.
Multiplying by kT we obtain λ0kTp =
λ0

(
1 − kTe

)
; i.e λ0 = 0, because kTe �= 0,

otherwise 0 would be a singular point in L+.
Hence, 0 =

∑n−1
j=1 λjB

jp. Multiplying by kT B−1

yields λ1kTp = 0 and then λ1 = 0. Iterating n − 2
times this procedure we conclude that λj = 0 for
j = 0, 1, . . . , n − 1. �

For a contact point p ∈ L+ of order n − 1 of
system (3) we have

Bjp = Aj−1
(
Ap+

(
1 − kTe

)
u
)

for j = 1, 2, . . . , n − 1. Hence, a base of L+ is{
Aj−1

(
Ap+

(
1 − kTe

)
u
)}n−1

j=1
.

One dynamical consequence of the existence of
exactly one contact point of order n − 1 with L+

is that the hyperplane cannot be parallel to any
subspace invariant by the flow. A similar result is
proved in [Chen, 1984].

Lemma 3.7. Let p ∈ L+ (respectively, L−) be a
contact point of order n−1 of the flow of differential
system (3). If E is a m–dimensional subspace of R

n

such that kTz = 0 for every z ∈ E, then E is not
invariant by the flow.

Proof: Let z �= 0 be a vector of E such that
z ∈ S0 and suppose that E is invariant by the flow.
From Lemma 3.5(b) we obtain det (B) �= 0 and then
Bz ∈ E. By Lemma 3.6, since E is orthogonal to
kT it follows that z =

∑n−1
j=1 λjB

jp and therefore,

Bz =
n−1∑
j=1

λjB
j+1p. (6)

On other hand, if dj for j = 0, 1, . . . , n − 1 are
the coefficients of the characteristic polynomial of
B, by the Cayley–Hamilton Theorem yields Bnp =
−d0p−d1Bp−· · ·−dn−1B

n−1p. Substituting Bnp
in expression (6) yields

Bz = −d0λn−1p − d1λn−1Bp

+
n−1∑
j=2

(λj−1 − λn−1dj) Bjp.

Taking into account that d0 = (−1)n det (B) we
obtain λn−1 = 0.
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Again, Bz belongs to E and E is invariant by
the flow, so we get B2z ∈ E and previous argu-
ments can be repeated to prove that λj = 0 for
j = 1, 2, . . . , n − 1. Therefore z = 0, in contradic-
tion with the assumptions. Thus, E cannot be a
subspace invariant by the flow.

If z ∈ S+ or z ∈ S−, then we consider on E the
base

{
Aj−1

(
Ap+

(
1 − kTe

)
u
)}n−1

j=1
. Similar argu-

ments proves the statement in those cases. �

4. Contact points and Poincaré maps

Define on L+ the half–hyperplanes LI
+ ={

q∈L+:kTBq<0
}

and LO
+ =

{
q∈L+:kTBq>0

}
,

and on L− the half–hyperplanes LI− ={
q∈L− : kTBq>0

}
and LO− =

{
q∈L+ : kTBq<0

}
.

Orbits intersecting with L+ (respectively, L−) at a
point in LO

+ (respectively, LO−) goes from S0 to S+

(respectively, S−), and orbits intersecting with LI
+

(respectively, LI−) goes from S+ (respectively, S−)
to S0.

Suppose that differential system (3) is proper
and has not singular points in L+∪L−. Then, from
Lemma 3.5, there exist contact points p+ ∈ L+ and
p− ∈ L− of order n − 1 and det (B) �= 0. Further-
more, since there are no singular points in L+ ∪L−
we have kTe �= 1 and kTe �= −1. In the next result
we characterize the half–hyperplanes LI

+, LO
+, LI−

and LO− depending on the sign of det (B)
(
1 − kTe

)
and det (B)

(−1 − kTe
)
.

Proposition 4.1. Consider a proper differential
system (3) without singular points in L+ ∪ L−.
(a) If det (B)

(
1−kTe

)
> 0, then LI

+ is equal to
{
p+ +

n−1∑
j=1

ajB
jp+ : aj ∈ R

n and (−1)nan−1 > 0
}
,

and LO
+ is equal to

{
p++

n−1∑
j=1

ajB
jp+ : aj ∈ R

n and (−1)nan−1 < 0
}
.

(b) If det (B)
(
1−kTe

)
< 0, then LI

+ is equal to
{
p++

n−1∑
j=1

ajB
jp+ : aj ∈ R

n and (−1)nan−1 < 0
}
,

and LO
+ is equal to

{
p+ +

n−1∑
j=1

ajB
jp+ : aj ∈ R

n and (−1)nan−1 > 0
}
.

(c) If det (B)
(−1−kTe

)
> 0, then LI− is equal to

{
p− +

n−1∑
j=1

ajB
jp− : aj ∈ R

nand (−1)nan−1 > 0
}
,

and LO− is equal to
{
p− +

n−1∑
j=1

ajB
jp− : aj ∈ R

n and (−1)nan−1 < 0
}
.

(d) If det (B)
(−1−kTe

)
< 0, then LI− is equal to

{
p−+

n−1∑
j=1

ajB
jp− : aj ∈R

nand (−1)nan−1 <0
}
,

and LO− is equal to
{
p−+

n−1∑
j=1

ajB
jp− : aj ∈ R

n and (−1)nan−1 > 0
}
.

Proof: (a) From Lemma 3.6 it follows that
L+ =

{
p+ +

∑n−1
j=1 ajB

jp+ : aj ∈ R

}
. Hence, if

q ∈ L+, then Bq = Bp+ +
∑n−1

j=1 ajB
j+1p+

and kT Bq = an−1kT Bnp+. Applying the
Cayley–Hamilton Theorem we have kT Bnp+ =
(−1)n−1 det (B)

(
1 − kTe

)
, see the proof of Lemma

3.5(a) for more details. Statement follows straight-
forward.

The remainder statements follows in a similar
way. �

Lemma 4.2. (a) Given a proper differential sys-
tem (3) without singular points in L+ ∪ L−,
the sets LI

+, LO
+, LI− and LO− are non–empty.

(b) If LI
+ and LO

+ (respectively, LI− and LO−) are
non–empty sets, then there exists a (n − 2)–
dimensional vector subspace of L+ (respec-
tively, L−) formed by the contact points of
the flow with L+ (respectively, L−) of order
at least 1.

Proof: Statement (a) is a consequence of Propo-
sition 4.1.

(b) Take q1 ∈ LI
+ and q2 ∈ LO

+. Function
f (λ) = kT B ((1 − λ)q1 + λq2) satisfies that
f (0) < 0 and f (1) > 0. Thus, there exists
λ0 ∈ (0, 1) such that p+ = (1 − λ0)q1 + λ0q2 is a
contact point of order greater than or equal to 1;
i.e. kTp+ = 1 − kTe and kT Bp+ = 0. Therefore,
the hyperplanes L+ and kT Bx = 0 intersects at
a (n − 2)–dimensional vector subspace formed by
contact points of order greater than or equal than
1. �
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Suppose that the flow of system (3) defines a
Poincaré map Π++ when we take as a transversal
section the hyperplane L+. There exist two possi-
bilities.

(i) Π++ transforms points of LI
+ into points of LO

+.
Thus, Π++ is defined by the flow of the homo-
geneous linear system ẋ = Bx and we refer to
it by ΠB

++.

(ii) Π++ transforms points of LO
+ into points of

LI−. Thus, Π++ is defined by the flow of the
non–homogeneous linear system ẋ = Ax +(
1 − kTe

)
u and we refer to it by ΠA

++.

In a similar way we consider the Poincaré maps
ΠA−− and ΠB−−.

Let Π+− be the Poincaré map which trans-
forms point of LI

+ into points of LO−, and Π−+ the
Poincaré map which transforms points of LI− into
points of LO

+. Since both maps are defined by the
flow of the linear system ẋ = Bx, we refer to them
by ΠB

+− and ΠB−+.

Proof of Theorem 1.1: (a) The statement fol-
lows immediately from Lemmas 3.2 and 3.5(b).

(b) From Lemma 3.5(b), there exists exactly
one contact point p+ ∈ L+ of order n − 1. Hence,
the orbit γp+ through p+ satisfies the following lo-
cal behavior.

If n even, from Proposition 2.3(a), then γp+

does not cross the hyperplane L+, see Figure 1. We
can consider a tubular neighborhood U of γp+ con-
tained in a flux box surrounding a piece of γp+ in a
neighborhood of p+. According to the Continuous
Dependence Theorem of the solutions of a differen-
tial equation with respect to the initial conditions U
intersects with LI

+ and LO
+. Take q1 ∈ LO

+∩U . The
orbit through q1, γq1 , crosses L+ from S0 to S+.
Since γp+ does not cross L+, γq1 has to intersect
with LI

+∩U at a point q2. Therefore, we can define
the Poincaré map ΠA

++ or ΠB
++ depending if γp+ is,

locally contained in S0 or in S+, respectively.
If n odd, from Proposition 2.3(b), then γp+

crosses L+ at p+, see Figure 2. Define again a
tubular neighborhood U of γp+ contained in a flux
box surrounding a piece of γp+ in a neighborhood
of p+. Clearly U intersects with LO

+ and LI
+. Let

q1 be a point in U ∩ LO
+, the orbit γq1 through q1

is contained in U . Thus, after intersecting with LO
+

Fig. 1. Existence of the Poincaré map ΠA
++ in a

neighborhood of the contact point p+ when n = 2.

at q1 the orbit γq1 has to intersect with LI
+ at q2,

see Figure 2. Therefore, the Poincaré map ΠA
++ or

ΠB
++ is defined depending on γp+ crosses L+ from

S+ to S0, or from S0 to S+, respectively.
Suppose now that no orbit starting at LI

+ in-
tersects with LO−. Then, orbits remains inside S0

when s tends to +∞, this implies the existence of
a subspace invariant by the flow contained in S0, in
contradiction with Lemma 3.7. Therefore, ΠB

+− is
defined. The existence of ΠB−+ follows in a similar
way.

(c) If the Poincaré maps are defined, then
LI

+, LO
+, LI− and LO− are non–empty. The state-

ment follows from Lemma 4.2(b). �

Take q1 ∈ LI
+ and q2 ∈ LO

+ such that
q2 = ΠB

++ (q1). By Proposition 4.1, q1 =
p+ +

∑n−1
j=1 ajB

jp+ and q2 = p+ +
∑n−1

j=1 a∗jB
jp+.

We denote by πB
++ the Poincaré map given by

πB
++ (a1, a2, . . . , an−1) =

(
a∗1, a∗2, . . . , a∗n−1

)
. In a

similar way we define the Poincaré maps πB−−, πA
++,

πA−−, πB
+− and πB−+.

Proof of Theorem 1.2: The change of coor-
dinates y = Mx transforms system (3) into the
system

ẏ = A∗y + ϕ∗ (
k∗Ty

)
u∗, (7)

where A∗ = MAM−1, k∗T = kT M−1 and u∗ =
Mu.

From Theorem 1.1(a) there exists exactly one
contact point p+ of order n − 1 with L+. It
is easy to check that p∗

+ = Mp+ is the con-
tact point of order n − 1 of the flow of sys-
tem (7) with the hyperplane L∗

+ = ML+ =
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Fig. 2. Existence of the Poincaré map ΠA
++ in a

neighborhood of the contact point p+ when n = 3.

{Mq : q ∈ L+}. Consider on L∗
+ the half–

hyperplanes L∗I
+ and L∗O

+ . If det (B)
(
1 − kTe

)
> 0

(when det(B)
(
1 − kTe

)
< 0 arguments are simi-

lar), then det(B∗)
(
1 − k∗Te∗

)
> 0, where B∗ =

MBM−1. According to Proposition 4.1(a), LI
+ =

{
p+ +

n−1∑
j=1

ajB
jp+ : aj ∈ R

n and (−1)nan−1 > 0
}

and L∗I
+ = {p∗

+ +
∑n−1

j=1 ajB
∗jp∗

+ : a∗j ∈ R
n and

(−1)nan−1 > 0} = {Mp+ +
∑n−1

j=1 ajMBjp+ :
aj ∈ R

n and (−1)nan−1 > 0}, which implies that
L∗I

+ = MLI
+. Similarly, L∗O

+ = MLO
+.

Consider the Poincaré map πA
++. The argu-

ments are the same if we consider another Poincaré
map. Since ΠA

++ transforms points of LO
+ into

points of LI
+, the flow of system (7) defines a

Poincaré map ΠA∗
++ which transforms points of L∗I

+

into points of L∗O
+ .

Set q1 ∈ LO
+ and q2 ∈ LI

+ such that
q2 = ΠA

++ (q1). Thus q1 = p+ +
∑n−1

j=1 ajB
jp+,

q2 = p+ +
∑n−1

j=1 bjB
jp+ and πA

++ (a1, . . . , an−1) =
(b1, . . . , bn−1). Since q∗

1 = Mq1 = Mp+ +∑n−1
j=1 ajMBjp+ = p∗

+ +
∑n−1

j=1 ajB
∗jp∗

+ and
q∗

2 = Mq2 = p∗
+ +

∑n−1
j=1 bjB

∗jp∗
+ we obtain

πA∗
++ (a1, . . . , an−1) = (b1, . . . , bn−1). Therefore,

πA
++ = πA∗

++. �
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