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Abstract

In this thesis we study the dynamics of vegetation patterns in Posidonia oceanica
meadows. The first introductory chapter presents a review of vegetation patterns
in different ecosystems, the methodologies used in the literature to study each case,
and the previous works of Posidonia oceanica with implications in the description of
the meadows growth.
In the second chapter of the thesis, based on previous knowledge of clonal-growth
plants, we develop a coarse grained model that describes the evolution of the mead-
ows. We show that long-range competition is the mechanism responsible for the
formation of patterns and we are able to infer the interaction distance. The model
allows to reproduce the spatial features of vegetation approaching to the coast, where
mortality increases. Additionally, we study the relevance of the dependence on the
angle of the model in the spatiotemporal dynamics. We conclude that the density of
apices in different directions of growth homogenizes with time, only being enhanced
those particular directions growing at the front facing outwards the meadow.
The third chapter presents a systematic derivation of a simplified equation from the
original model, reducing substantially the difficulty of the problem. We discuss the
different approximations made and the validity of the equations derived.
The fourth chapter focuses on an intermediate equation obtained from the derivation,
that provides quantitative agreement with the original model. We study in detail its
bifurcation diagram characterizing different patterns and localized structures. In the
last part of this chapter we study the dynamics of vegetation fronts in the simplest
one dimensional case.
The last chapter tries to determine if the presence of hydrogen sulfide in the sedi-
ment, result of the spreading of organic matter due to water movement that later
decomposes, is a valid long-range competition mechanism able to explain the for-
mation of patterns. We conclude that patterns form as a result of this interaction.
Furthermore, the model predicts an oscillatory instability of the homogeneous solu-
tion which creates a very rich phase diagram with different dynamical behaviors still
to explore.
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Resumen

En esta tesis se desarrolla el estudio de la dinámica de los patrones de vegetación
en las praderas de Posidonia oceanica. El primer caṕıtulo presenta diferentes casos
de formación de patrones de vegetación en diferentes ecosistemas, las metodoloǵıas
utilizadas para el estudio de dichos patrones y de forma más concreta se presentan
los trabajos sobre Posidonia oceanica relevantes para el crecimiento de la pradera. El
segundo caṕıtulo, se basa en el conocimiento previo sobre plantas clonales para de-
sarrollar un modelo continuo que describe la evolución del crecimiento de la pradera.
En este se muestra que el mecanismo necesario para la formación de patrones es
la competición de largo alcance. Además, el modelo reproduce las caracteŕısticas
principales de las praderas a medida que nos acercamos a la costa. En la última
parte del caṕıtulo estudiamos la relevancia que tiene la dependencia con el ángulo
de crecimiento para la dinámica espacial. Se concluye que la densidad de ápices
creciendo en diferentes direcciones tiende a homogeneizarse con el tiempo, de tal
forma que solo en los bordes de la pradera hay más plantas creciendo hacia fuera que
hacia dentro de la misma. El tercer caṕıtulo presenta la derivación de una ecuación
sin dependencia angular a partir del modelo original reduciendo sustancialmente la
dificultad del problema. Seguidamente se analizan las aproximaciones y la validez
de las ecuaciones derivadas. En el caṕıtulo cuatro se analiza con más detalle una
ecuación intermedia de la derivación del caṕıtulo anterior, la cual proporciona resul-
tados cuantitativamente similares al modelo original. La última parte del caṕıtulo se
centra en el estudio de frentes de vegetación en la versión unidimensional del modelo.
Finalmente, en el último caṕıtulo se intenta determinar si la presencia de sulfuro de
hidrógeno en el sedimento, resultado de la difusión de materia orgánica más tarde
descompuesta, es un mecanismo válido para explicar la formación de patrones. Con-
cluimos que este mecanismo puede generar patrones de vegetación pero además el
modelo predice que la vegetación homogénea es susceptible a desarrollar oscilaciones
temporales, dando lugar a nuevos reǵımenes dinámicos que explorar.
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Resum

Aquesta tesi conté l’estudi de la dinàmica de patrons de vegetació a les praderes
de Posidonia oceanica. El primer caṕıtol presenta diferents casos de formació de
patrons de vegetació a diferents ecosistemes, les metodologies emprades per l’estudi
d’aquests patrons i els treballs sobre Posidonia oceanica directament relacionats amb
el creixement de les praderes. El segon caṕıtol, es basa en el coneixement previ
sobre plantes clonals per desenvolupar un model continu que descriu l’evolució de
la pradera. A continuació es mostra que el mecanisme necessari per a la formació
de patrons de vegetació és la competició a llargues distàncies. A més el model és
capaç de reproduir les caracteŕıstiques principals de les praderes a mesura que ens
aproximem a la costa. La darrera part del caṕıtol intenta clarificar el paper que
té la dependència del model amb la direcció de creixement en la dinàmica espacial.
Essencialment s’arriba a la conclusió que la densitat en diferents direccions tendeix
a homogenëıtzar-se amb el temps, de tal manera que només als ĺımits de la pradera
hi ha més plantes creixent cap a l’exterior de la pradera que cap a l’interior. El
tercer caṕıtol presenta la derivació d’una equació simplificada sense dependència
en la direcció de creixement a partir del model original reduint substancialment
la dificultat del problema. Seguidament s’analitzen les aproximacions realitzades i
la validesa de l’equació derivada. El quart caṕıtol està dedicat a una anàlisi més
detallat d’una equació intermèdia de la derivació del caṕıtol previ que proporciona
resultats quantitativament similars al model original. La darrera part es centra en
l’estudi de la propagació de fronts de vegetació en la versió unidimensional del model.
Finalment el darrer caṕıtol pretén determinar si la presència de sulfur d’hidrogen en
el sediment, resultat de la difusió de matèria orgànica més tard descomposta, és
un mecanisme vàlid que explica la formació de patrons. Es conclou que aquest
mecanisme és compatible amb la formació de patrons i a més preveu que la pradera
homogènia és susceptible a desestabilitzar i desenvolupar oscil·lacions temporals les
quals són l’origen de nous règims dinàmics encara per explorar.
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and Edgar Knobloch. Vegetation dynamics in a simplified model of clonal
growth. In preparation.
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CHAPTER 1
Introduction

The emergence of order in nature is a puzzling phenomenon that immediately cap-
tures the attention of the observer. Non equilibrium is the key to understand a
process that seems to violate the second law of thermodynamics. The work of Alan
Turing in the fifties [1] introduced the essential mechanism to provide spatial dif-
ferentiation. In this way, similar geometrical patterns in very different systems can
be understood by the same theoretical framework. Although not all systems are
equivalent and the interactions may be specific of each case, pattern formation is
a ubiquitous phenomenon, being present from lasers dynamics, chemical reactions,
convection in fluids to morphogenesis. Thus, pattern formation is a universal phe-
nomenon that can only be explained as a result of interactions [2, 3].

Vegetation is not an exception. On long time scales vegetation self-organizes
driven by different mechanisms in different habitats. Thus, vegetation forms spatial
patterns which generally cover large extensions, modifying not only the landscape but
the fluxes of nutrients and ecosystem functionality. From this perspective the plants
act as ecosystem engineers that modify the fluxes of matter and energy improving
the growth conditions and increasing their resilience [4–6]. As a consequence, spatial
heterogeneity of vegetation coverage is a key factor in the diagnostic of ecosystem
health. In fact, spatial distribution has been proposed as an early indicator of crit-
ical thresholds which may lead to sudden losses producing desertification [4, 6, 7].
However, the transition to the desert state can be less abrupt due to the adaptation
of the wavelength as the environmental conditions change [8, 9]. One thing is clear,
the spatial distribution provides critical information for monitoring desertification
processes.
The pronounced effect the spatial redistribution of vegetation can have on the ecosys-
tems may remain unnoticed to the observer on the ground, however, the availability
of satellite images in the last decades has produced a drastic improvement of the
scientific study of vegetation at the landscape scale, facilitating the analysis and as
a way of identifying new ecosystems exhibiting vegetation patterns.
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Chapter 1. Introduction

1.1 Terrestrial ecosystems

Figure 1.1: Vegetation patterns in arid ecosystems. From left to right top to bottom:
Tiger bush in Niger, image from Google maps image (13◦07’11.3”N 2◦12’41.6”E). Spotted
pattern in Sudan, image from Google maps (11◦34’57.5”N 27◦54’55.8”E. Fairy circles in
Namibia, image from ArcGIS Living Atlas (24◦57’12.3”S 15◦56’12.8”E). Fairy circles in
Australia, image from Bing maps (23◦27’12.7”S 119◦50’57.9”E).

In the last three decades different models have been proposed to explain the
origin of extended patterns. One of the first works is the study of tiger bush in
Niger. Banded vegetation forms, which adapt its curvature to the terrain morphol-
ogy, 50 m wide and extending over hundreds of meters to kilometers. The mechanism
explaining its formation is based on plant competition by water availability and dif-
ferent approaches have been used to model the evolution of vegetation [10–18]. Some
descriptions are simpler, accounting just for vegetation [11] while others describe wa-
ter and vegetation coevolving simultaneously [13]. Discrete models have also been
considered [19], although theoretical work has been more developed for continuous
approaches. Not only, theoretical studies have been developed, Fourier analysis of
satellite images have been mainly used to characterize the spatial properties of the
patterns in relation with climatic variability and anthropogenic pressure [20].
Another important example is formed by different patterns in Sudan [21] where the
slope and water availability have a determinant factor in the emergence of each par-
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1.1. Terrestrial ecosystems

ticular spatial distribution. Gapped, banded, labyrinthine or spotted patterns cover
large areas of land. The mechanism is not different from the one in Niger, nev-
ertheless, the emergent patterns are much varied. Mathematically the description
is equivalent although different interactions have been considered, some based on
second and fourth spatial derivatives which are common in vegetation models. Oth-
ers are based on integral terms with exponential or Gaussian kernels describing the
strength of the interaction. More examples of ecosystems exhibiting pattern form-
ing phenomena have been found around the globe, particularly interesting are those
where the spatial distribution adapts to the slope of the terrain and the pattern
changes according to the topography [22].
At a very different spatial scale, the same patterns have been shown to appear in
water limited ecosystems in the Negev desert [23]. Spatial interactions are described
in this case explicitly with water diffusion and plant uptake from the soil creat-
ing a positive feedback for regions with vegetation. Reduced infiltration rate due
to lack of vegetation is another positive feedback considered as the explanation of
long-range interactions [24]. Other alternative explanations have been considered in
terms of porous convection [25]. Spatial interactions are the key, although numerous
reasons may hinder their identification: Multiple mechanisms may lead to the same
effective spatial interaction, different mechanisms can act simultaneously, and the
measurement of the interaction is not absent of difficulties, to mention a few. Re-
cently, important scientific discussions about the origin of the well known Namibian
fairy circles reached the news. The controversy was precisely about the responsible
mechanisms. On one side termite activity was argued to be the responsible of bare
circles [26–28] while, other works argue self-organization of vegetation by itself due
to competition for water is the responsible mechanism [29–32], mainly because it is
the explanation that better explains its dynamic behavior [33] and spatial features
of the meadows. Fairy circles in Australia, have been shown to not correlate with
termite presence supporting self-organization of vegetation [34].
A common feature of pattern formation is long-range competition mechanisms and
the particular sequence of patterns to desertification [35]. According to the theory
of pattern formation increasing stressing factors leads homogeneous coverage to de-
velop circular holes arranged in a hexagonal lattice, banded vegetation or stripes,
and patches arranged in a hexagonal lattice, which have been claimed as a general
path to desertification.

Apart from the fundamental interest in determining the involved mechanisms con-
tinuous models have the advantage of being able to predict new behavior. From this
perspective vegetation models in arid ecosystems have been widely investigated from
the theoretical point of view. Essentially, models allow to investigate the response of
the system to different conditions, which allow the identification of critical thresh-
olds or the ranges of parameters in which different spatial distributions are stable,
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Chapter 1. Introduction

for example localized structures. Primarily numerical simulations and continuation
techniques have been used to determine stationary solutions and its stability against
perturbations [15, 36–40]. Other possible applications include for example more ap-
plied approaches using time periodic forcing to reproduce seasonal variability [28],
secondary instabilities have been shown to reverse desertification [41], response of
patterns to environmental change and their resilience features [8, 9] or front propa-
gation of different spatial distributions as recolonization strategy [42].

Totally different from arid ecosystems, peatlands also exhibit large self-organized
patterns [43, 44]. Obviously, the mechanisms here are qualitatively different from
those acting in arid ecosystems, nevertheless, long-range negative feedbacks are also
involved in the spatial arrangements. The spatial distributions are rich, although
banded vegetation and holes appear, common patterns exhibit less regular distri-
butions with intricate shapes extending over big areas. Different mechanisms have
been hypothesized as the cause of this phenomenon [45–48], peat accumulation in
vegetated areas increases acrotelm layer improving local conditions, water ponding
by hummocks upslope and nutrient accumulation where vegetation grows are impor-
tant mechanisms driving self-organization. As a matter of fact, there are different
approaches in the literature which account for different mechanisms with a partial
reproduction of the physical features. Important efforts have been done to identify
the contribution of different processes [49]. Interestingly different mechanisms pro-
duce different spatial distributions which allows the identification of the predominant
mechanism from numerical simulations [50]. In fact, an important feature that allows
to discriminate between different mechanisms is the sign of the correlation between
vegetation pattern and other ecosystem variables, such as nutrient concentration.
Some mechanisms may lead to a configuration where the two patterns are in phase
while others may lead to out of phase patterns, which allow to discard hypothe-
sis. Peatlands have a relevant impact in climate change mitigation. Considered as
an important carbon sink its spatial distribution is very relevant to determine the
environmental effects of these habitats with presence in different continents [51, 52].

1.2 Marine ecosystems

Pattern formation in marine ecosystems has attracted less attention than its ana-
log phenomenon in terrestrial ecosystems. Different examples have been reported
in the literature, although the mechanisms involved and the development of math-
ematical models describing its origin have not been extensively studied. Patches in
bare seascape called ”leopard skin” [53] and stripes of vegetation [54, 55] have been
identified in different seas frequently associated to hydrodynamism. Expanding rings
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1.2. Marine ecosystems

Figure 1.2: Examples of Fairy circles in Posidonia oceanica. Top-Left: Aerial
view of a Fairy circle embedded in a homogeneous meadow close to the coast in
the Adriatic sea (44◦05’37.2”N 14◦55’37.0”E). Image reproduced with permission from
http://www.dugiotok.hr. Top-Right: Photography of a Fairy circle in Cabrera national
park in the Balearic sea (39◦08’49.3”N 2◦56’07.6”E). Different fairy circles along the coast
in the Adriatic sea from Google maps (44◦07’18.4”N 14◦53’38.0”E).

of vegetation of Zostera marina in the Danish Kattegat, instead where found to be
correlated with hydrogen sulfide in the sediment, a pythotoxin inhibiting the growth
of a broad variety of seagrasses [56]. Fairy circle-like structures also have been found
in the Mediterranean coast [57, 58]. In the Adriatic sea similar structures have also
been found. This particular case had an important impact on the news because of
its supposed mysterious origin. In the national park of Cabrera island, as it can be
seen in the Fig. 1.2, a fairy circle-like structure remains barely unchanged from the
fifties when first aerial pictures were taken.
It is clear that the technical difficulty of the scientific study of seagrasses coverage
is not comparable to terrestrial ecosystems. Neither aerial nor satellite images are
completely effective in the characterization of spatial coverage, mainly because reflec-
tions on the surface or the depth of seagrasses avoids its identification. Nevertheless,
new advances in cartographic technologies for underwater environments have allowed
mapping of seagrass coverages. In particular side-scan sonar technology allows to cre-
ate cartographic data from seagrass coverage with high resolution and covering large
regions of the seabottom. LIFE Posidonia project in 2001 was a good example of
that, where cartographic data from the Balearic Islands was created and is available
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Chapter 1. Introduction

online 1. In a revision of this data we explain the spatial distribution of vegetation as
a result of a pattern formation phenomenon [59]. Thus, to the best of our knowledge
patterns in the Balearic Islands are the most important example of vegetation pat-
terns by extension found in marine ecosystems. Primarily produced in the meadows
of Posidonia oceanica but affecting other species like Cymodocea nodosa, the patterns
extend over regions of kilometers at the seabottom, where Pollença Bay and Alcudia
Bay are the locations with patterns covering the largest extension. Circular holes of
vegetation are predominant but elongated shapes like stripes and also patches are
easily found.

Figure 1.3: Side-scan image of a seagrass meadow in Pollença bay (Mallorca Island,
Western Mediterranean) from LIFE Posidonia showing different patterns in meadows of P.
oceanica and C. nodosa.

Further study is needed in the context of pattern formation in marine ecosys-
tems, however, it is clear that interactions determining spatial distribution are also
crucial for seagrasses. Thus, the spatial mechanisms need to be properly described to
understand the implications they will have in the growth and stability of seagrasses

1http://lifeposidonia.caib.es
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1.2. Marine ecosystems

and therefore its implications globally. Seagrasses, with a global presence, provide
valuable ecosystem services [60] both globally and locally for nearby communities.
They support a great biodiversity [61], thousands of fish and invertebrate species
have their habitat in seagrass ecosystems, nevertheless, not only those species are
benefited since many others, such as birds or animals living at the coastline also take
profit of the presence of seagrasses. Ecosystem services also contribute to produce
important economic benefits for local communities, supporting commercial fisheries
which produce as much as $3500 ha−1yr−1 or an estimated $1.9 trillion in the form
of nutrient cycling annually [62]. Moreover, the role of seagrasses in the stabilization
of sediment [63] and reduced particle resuspension [64], the biogenic contribution of
sediment to the beaches in the form of bivalves and other dead organisms [65], and
shoreline protection by wave mitigation [66] create paradisical environments with
clear water, which are the basis of the economic activity of many local communities
based on tourism.
Seagrasses are considered an important carbon sink [67]. Nutrient ratio of carbon in
the tissue is elevated [68, 69]. In addition, an important part of seagrasses remains
buried in the sediment or below new layers of seagrass. This important amounts of
carbon is not accessible to heterotrophic organisms being preserved for centuries to
millennia. Estimates of carbon pools associated with seagrass lie between 4.2 − 8.4
Pg globally [70]. These numbers are comparable to the amounts captured by terres-
trial ecosystems such as forests, whose reforestation and conservation is considered
as a useful strategy for climate change mitigation. It has been suggested that the
elevated cost of restoration projects is fully recovered by the total CO2 captured
in countries which apply carbon taxes [71]. Thus, seagrass conservation have been
claimed as a viable strategy to mitigate the effects of climate change [72], mainly
due to the capability of carbon sequestration and to prevent the carbon release of
the important actual loss of seagrass coverage around the globe. However, carbon
sequestration is not the only reason. The expected increase of sea level, associated
to an increment of frequency and strength of storm surges and as a result of flooding
and erosive processes, can be importantly damped by the presence of seagrasses,
which have been shown to mitigate wave action [73, 74].
Unfortunately, seagrasses are one of the most threatened ecosystems globally. An-
thropogenic factors such as direct physical damages and reduced water quality [75, 76]
have important effects on seagrass growth. As a matter of fact, since 1980 seagrasses
disappear at a rate of 110 km2yr−1. The rate of loss has increased from around 0.9
%yr−1 before 1940 to 7 %yr−1 since 1990 [62]. Posidonia oceanica has also been
affected, leading to a loss of 6.9% per year over the past 50 years [77–79]. With its
particular slow growth these losses are essentially irreversible. Considering the impli-
cations of the negative effects of these losses at different scales it is not surprising that
big efforts have been dedicated to restoration projects [80–82]. The reintroduction
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Chapter 1. Introduction

Figure 1.4: Schematic representation of a clonal-growth plant.

has been shown to be an effective way to recover ecosystem functions. Nevertheless,
restoration is a hard task. The previous removal of threads, water quality and the
recovery of neighboring meadows can enhance success [83]. In addition, it has been
shown that there is a critical mass for recovery. This minimum threshold in the num-
ber of replanted individuals points to facilitative feedbacks acting as self-protection
mechanism. This threshold is usually associated to a bistability regime between the
populated and the unpopulated state. Although, less investigated the spatial distri-
bution also can be a relevant factor in the recovery rate.

Posidonia oceanica is a clonal-growth plant endemic of the Mediterranean. It is
characterized by a very slow horizontal growth of a few centimeters per year. Over
long time scales it forms large underwater meadows which support important bio-
diversity. It is often considered as a bioindicator of healthy ecosystems due to its
sensitivity to environmental factors. Salinity, turbidity, pH have been found to affect
the development of the meadows [84, 76, 85]. Temperature plays also an impor-
tant role, increasing mortality and accelerating organic matter decomposition [86]
with increasing temperature [87], which can lead to considerable losses under global
warming [88]. Irradiance is another important factor influencing the growth, mainly
determining the depth limit of establishment of the meadow [89]. However, it can
also be relevant in the presence of poor water quality conditions. Otherwise, the limit
close to coast for the establishment of the meadow is given by high wave exposure,
leading to an increase in mortality close to the coast [74].
Although the studies are carried out in different places of the Mediterranean, they
usually have the limitation that census measurements of shoot density are taken in
small squares, typically 20− 40 cm in size. Thus, data of density of shoots generally
misses landscape scale features. On the contrary, studies based on meadow cover-
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1.2. Marine ecosystems

Figure 1.5: Example of a numerical simulation of the evolution of meadow clonal growth
plants in space (in meters) from [90] with permission of the author.

age are not usually related to particular effects determining the spatial distribution.
From this perspective there is a gap of knowledge between these two approaches.
Hence, it is very important to consider the previous knowledge about spatial colo-
nization of clonal growth plants in any spatially extended approach describing the
meadow at long spatial scales. Thus, it becomes necessary to introduce previous
works of clonal growth.

As a matter of fact, there have been strong efforts to characterize the essential
mechanisms of growth of this clonal plant, as well as many other clonal species.
In this context the modelization of the growth can provide important guidelines to
orient future research.

Clonal plants develop by means of asexual reproduction, where the elongation of
the rhizome generates new shoots. The apex, which is the last part of the rhizome,
and it is leading the growth, eventually branches generating a new rhizome growing
in a different direction. Thus, clonal plants colonize space without the need of seeds.
Posidonia oceanica in particular has the ability to produce seed, however, the growth
is dominated by clonal reproduction. Fig. 1.4 shows a schematic representation of
clonal-growth plant.
An important number of studies have been devoted to characterize the rates of each
step of clonal spreading. Moreover, different models have been considered in the
literature in order to reproduce clonal-growth colonization of space [91–93]. In fact,
different approaches have been used, such as models based on lattices, or random
walks, sometimes with many parameters which difficult the relation with experimen-
tal measurements. In particular the three main mechanisms determining the growth
have been identified in [90, 94]. The model, based on limited diffusive aggregation,
uses a few features of the plant to characterize the growth. Branching rate and
branching angle, spacer length between shoots, rhizome elongation rate, mortality
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Chapter 1. Introduction

rate and radius of exclusion area are enough to show nonlinear features of the growth
such as maximum density of plants or the evolution of patch radius with time. Fig.
1.5 shows an example of a numerical simulation of the model in [90]. In general,
these discrete agent based models account for each individual shoot, as a result they
are not suitable for large spatial descriptions.
From this point of view questions about the ecological implications on a large spatial
and time scales of local effects on the plant require a more interdisciplinary approach
that integrates the intrinsic mechanisms of growth in more extended description.
This thesis aims to contribute to this challenge.
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CHAPTER 2
Pattern formation in Posidonia oceanica

meadows

Spatial organization of vegetation is driven by mechanisms operating at large dis-
tances compared to the development spatial scale of the plant. Pattern formation
is the manifestation of this fact. P.oceanica meadows are a remarkable example of
vegetation patterns which extend over regions of kilometers where the responsible
mechanism remains to be clarified. The large scale of these patterns makes it clear
that an appropriate description of the growth of the meadow can not account for
shoots individually but for the density of shoots for extended regions instead. How-
ever, the growth of the individuals will determine the growth of the meadow. Hence,
a better approach to the modelization of clonal-growth plants like P.oceanica is a
coarse grained description. In this chapter we aim to develop a model describing the
evolution of clonal plants based on the main mechanisms of growth. Previous models
based on individual shoots development [90, 94], have shown that three mechanisms
drive the growth of the plant. First, the apex of the plant grows in the horizontal
plane elongating the rhizome at velocity ν. As it grows new shoots appear separated
by a typical distance ρ between them. The shoots remain rooted at the same position
while the apex continues to grow colonizing new space. Second, the apex can de-
velop new branches at a certain rate ωb, where the new rhizomes grow in a direction
forming an angle φb with the original one. Finally, all shoots have a typical lifetime,
which translates into a mortality rate ωd. In general, the value of the parameters can
depend on the density of plants or on the position since environmental factors can
have an important influence in plant development. Different clonal plants are char-
acterized by different values of the parameters with some variability due to genetic
and environmental conditions [90]. P.oceanica in particular has a very slow growth
of a few centimeters per year, nevertheless, with clones living extended time periods
[95] large meadows are formed in long time scales, over centuries to millennia [96, 92].
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Chapter 2. Pattern formation in Posidonia oceanica meadows

The chapter is organized as follows: In the first section we derive a model based on
clonal-growth mechanisms. Section two is devoted to the analysis of the model. The
third section parametrizes the model to describe the growth of Posidonia oceanica.
In the fourth section we apply the model to more realistic conditions to reproduce
features of vegetation patterns close to the coast. Finally, the last section analyzes
the angular dependence of the model on the growth direction of apices.

2.1 Advection-Branching-Death model: A model

for clonal growth

Based on the three previous mechanisms driving the growth of the plant we de-
velop a partial differential equation (more precisely an integro-differential equation)
describing the evolution of the density of apices and shoots. Thus, the density of
apices at position ~r = (x, y) with a growth direction given by the angle φ at time
t is described by na(~r, φ, t) and the density of shoots at position ~r and time t by
ns(~r, t). By convenience, in the derivation, apices are considered to carry a shoot,
so the total density of shoots is given by the sum of apices in all directions and
shoots nt(~r, t) = ns(~r, t) +

∫ 2π

0
na(~r, φ, t)dφ. Additionally, one should realize that

while other parameters are scalar quantities, the velocity of growth has a direction
and it can be written as a vector ~v(φ) = (ν cosφ, ν sinφ). Thus, considering the
contributions of the three main mechanisms of growth to the number of shoots in
infinitesimal portion of space with area dxdy, one can write two equations describing
the evolution of shoots and apices respectively. First, the number of apices growing
in direction φ at t + dt in an infinitesimal surface of area dxdy located at ~r will be
the sum of two contributions: (i) the apices that remain alive coming from ~r−~v(φ)dt
due to rhizome elongation and (ii) new apices developed because of branching from
directions of growth φ + φb and φ − φb, which are the only directions contributing
to the growth in direction φ. Note that those apices that go away due to rhizome
elongation are contributing to position ~r + ~v(φ)dt. Then, we obtain

na(~r, φ, t+ dt)dxdy = (1− ωddt)na(~r − ~vdt, φ, t)dxdy

+
ωbdt

2
(na(~r, φ+ φb, t) + na(~r, φ− φb, t)) dxdy. (2.1)

Making a Taylor expansion of Eq. (2.1) and neglecting second-order terms and
higher, we obtain
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2.1. Advection-Branching-Death model: A model for clonal growth

na(~r, φ, t) + ∂tna(~r, φ, t)dt = (1− ωddt)na(~r, φ, t)− ~vdt · ~∇na(~r, φ, t)

+
ωbdt

2
(na(~r, φ+ φb, t) + na(~r, φ− φb, t)) , (2.2)

where it is possible to simplify (2.2) to obtain an equation that describes the
evolution of na(~r, φ, t).

∂tna(~r, φ, t) = −ωdna(~r, φ, t)− ~v(φ) · ~∇na(~r, φ, t)
+

ωb
2

(na(~r, φ+ φb, t) + na(~r, φ− φb, t)) , (2.3)

where ~∇ = (∂x, ∂y).

Similarly one can apply the same procedure to obtain the evolution of ns(~r, t).
Two contributions to the number of shoots are considered: (i) shoots remaining alive
at the same position and (ii) surviving apices that go away in any direction leaving
a shoot behind.

ns(~r, t+ dt)dxdy = (1− ωddt)ns(~r, t)dxdy

+
ν

ρ
dt(1− ωddt)

∫ 2π

0

na(~r, φ, t)dxdydφ, (2.4)

Again doing a Taylor expansion and keeping first order terms, one obtains

ns(~r, t) + ∂tns(~r, t)dt = (1− ωddt)ns(~r, t) +
ν

ρ
dt

∫ 2π

0

na(~r, φ, t)dφ, (2.5)

where its possile to obtain the equation for the temporal evolution of ns(~r, t)

∂tns(~r, t) = −ωdns(~r, t) +
ν

ρ

∫ 2π

0

na(~r, φ, t)dφ. (2.6)

Eqs. 2.3 and 2.6, describe the evolution of a meadow, accounting for shoots and
apices. We name this model Advection-Branching-Death (ABD) model according to
terms derived from the main mechanisms of clonal growth. The first two terms in
Eqs. (2.3) and (2.6) are death terms representing the mortality of shoots and apices,
which are both considered to occur with the same rate ωd. The second terms in Eqs.
(2.3) and (2.6) are the result of the elongation of the rhizome. In Eq. (2.3) an ad-
vection term describes the movement of apices in the respective directions given by
~v(φ), while in Eq. (2.5) an integral term accounts for all shoots left behind from all
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Chapter 2. Pattern formation in Posidonia oceanica meadows

directions of growth. Finally the last term in Eq. (2.3) accounts for the contribution
of apices growing in adjacent directions separated by the branching angle φb that
contribute to the direction φ. The parameters of the model are susceptible to change
due to different reasons. Genotypic differences within the meadow are an intrinsic
source of variability of the parameters, nevertheless mean values of the parameters
characterizing the growth such as ν, ρ or φb are representative of each species. Exter-
nal environmental conditions or the presence of plants in the neighborhood are other
important sources of variability where not all parameters are affected equivalently.
Mortality is indeed considerably affected by all these factors. Thus, for the sake of
simplicity, we consider that the mortality rate encompasses all these dependencies.
More specifically, three terms contribute to the total mortality

ωd[nt(~r, t)] = ωd0 + bn2
t (~r, t) +

∫ ∫
K(~r − ~r′)(1− e−ant(~r′,t))d~r′ (2.7)

On the one hand, the intrinsic mortality rate, ωd0 > 0, of an individual shoot
at a particular position in the landscape is the contribution to the mortality ωd(nt)
which depends only on environmental factors. On the other hand, the mortality
ωd(nt) depends on two density-dependent terms: local saturation and nonlocal in-
teraction. The nonlinear term bn2

t corresponds to local saturation representing high
mortality conditions when shoots are very close and the density increases excessively.
Thus, the environmental carrying capacity is controlled by the parameter b which
determines the maximum density of shoots. On second place, the integral term ac-
counts for nonlocal interactions where shoots at a given position ~r interact with its
neighbors carrying the kernel K(~r − ~r′) the strength and length of the interaction.
Nonlocality allow that regions with high density of shoots can affect the growth of
its neighbors. Thus, nonlinearity and spatial interaction, known components leading
self-organization are included in the model.

The terms contributing to death rate are consistent with previous knowledge of
seagrass development. External factors such as temperature, salinity and irradiance
regimes have important effects on the intrinsic mortality ωd0 [97]. The local satura-
tion of the density is the result of self-shading which explains the decline of biomass
with depth as less light is available [98, 89]. Moreover, depletion of other resources
can influence mortality leading to an additional limited net growth. Nonlocal interac-
tion encompass different facilitative and competitive process which have been shown
to contribute to spatial organization, however, its specific influence with distance
have been poorly quantified. Dissipation of wave energy by neighboring plants is an
important facilitative mechanism, which reduces stress and prevents shoot removal
contributing to trap and stabilize sediments [99, 100]. Other multiple facilitative ef-
fects have been argued to contribute to spatial organization [101, 102]. Competitive
mechanisms, are for example the result of the spreading of organic matter decompo-
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2.1. Advection-Branching-Death model: A model for clonal growth

sition by sulfate-reducing bacteria, increasing sulfide concentration in the sediment
leading to the appearance of fairy rings [56]. Additionally, the depletion of nutri-
ents by plants up-current [103] can also contribute to negative interactions. The
evidences suggest both competitive and facilitative nonlocal effects are important in
the development of the meadow, driving the process of self-organization. Hence, we
consider a kernel K with two terms of Gaussian shape

K(~r) = κG(σκ, ~r)− µG(σµ, ~r) (2.8)

where κ > 0 is the strength of the competitive interaction with width σκ, and µ > 0
is the strength of facilitation with width σµ, where the widths of the Gaussians cor-
respond to the spatial extension of each interaction. Both interaction terms in Eq.
(2.8) are considered to have a Gaussian shape G(σ,~r) = e−r

2/(2σ2)/(σ22π), where
r2 = x2 + y2. Other kernels have been considered in the literature in different con-
texts [104], although qualitatively, the pattern formation feature does not depend
strongly on the precise shape of the kernel [105, 106], provided it decays faster or
equal than exponential [107]. The term (1−e−ant) can be expanded for low densities
as (1−e−ant) ' ant, leading to the usual nonlocal term in Lotka-Volterra-like models
[108]. The exponential has been introduced to saturate the interaction strength for
high densities, such that the mortality rate ωd cannot become negative because of
the facilitative interaction leading to the local creation of plants, which is unreal
because a new shoot can be created only through the growth of the rhizomes or a
branching event. Note that we should have µ ≤ ωd0 to guarantee positive mortality.
For simplicity, in the following, we take µ = ωd0. For low densities, then, parameter
a multiplies the strength of the nonlocal interaction. However, the larger the pa-
rameter a, the faster the saturation of the interaction as the density grows. Varying
a and κ, one can change the relative strength between competition and facilitation.
As a result of the two Gaussians with different widths and signs, the kernel has the
shape of an inverted Mexican hat, and the interaction is stronger at short distances,
decaying very fast with |~r|. The balance between facilitation and competition de-

Competition

Facilitation

Figure 2.1: Schematic representation of the spatial dependence of the kernel composed
by the sum of two Gaussian functions representing facilitation and competition.

termines the coexistence between the populated and the unpopulated states, being

15



Chapter 2. Pattern formation in Posidonia oceanica meadows

globally facilitative when there is coexistence. As a result of the difference of the
two Gaussians with different strengths κ and ωd0 and extensions σκ and σµ, the
kernel can take positive and negative values at different distances depending on the
parameters. However, long-range competitive interactions are responsible for the
formation of patterns [109] sometimes simultaneously with facilitative interactions
[6]. It is important to clarify that competition and facilitation are treated in this
description independently of each other, while sometimes facilitative and competitive
interactions can be the result of a single process, leading to a simultaneous change
in the intensity of both. This assumption is justified by the lack of knowledge about
spatial interactions for seagrasses.

Thus, observation of spatial patterns suggests the existence of nonlocal compet-
itive interactions. Selecting σκ > σµ results in a kernel that is weakly competitive
at large distances, yielding to a suitable nonlocal interaction for pattern formation
similarly to [6].

2.2 Analysis of the ABD model

Leaving aside the nonlocal part of the model for the moment, the two equations
describing clonal growth are interesting by itself and we devote some time to their
analysis. First of all, while the equation for the density of shoots has nothing par-
ticular, the equation of the density of apices accounts instead for the direction of
growth, in such a way we can track the density of apices growing in each direction.
These two equations resemble a set of coupled two dimensional fields but since φ is
a continuous variable, taking values between 0 and 2π, the field for the density of
apices is actually three dimensional. The coupling between the densities of apices
growing in each direction is given by the branching process and by the mortality
through the total density nt. The branching is a nonlocal term in the angle φ, where
adjacent directions separated by the branching angle φb couple one to each other.
The mortality affects all directions equivalently. The other particularity of the model
is the advection term. This term produces a displacement given by ~v(φ) of the den-
sity of apices growing in the direction φ which is different for each direction. This
can be confusing to the reader because this does not imply a drift of the meadow in
any direction. In fact this mechanism allows the expansion of the meadow colonizing
new space. Branching is also important in this process, mainly because one can begin
only with apices growing in a particular direction and quickly branching will popu-
late other directions leading to a radial growth of the meadow. Both terms together
are responsible for the spreading of vegetation in a way different to the traditional
diffusion usually considered in vegetation models. From the mathematical point of
view the term ~v(φ) · ~∇na(~r, φ, t) is non-variational term. Moreover, it is not possible
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2.2. Analysis of the ABD model

to integrate the angle and write a single equation for the total density. Regarding
numerical integration one usually considers the minimum set of directions compatible
with the branching, in the case of P.oceanica where φb = 49.0o ≈ 45o, eight directions
are enough to reproduce the dynamics. The advection term does not dampen high
wavenumber modes so it can be problematic for computational integration, however,
nonlocal interactions resolve this problem damping high wavenumbers. With the sim-
ulation shown in Fig. 2.2 one can gain intuition about the explained growth where
the density of apices growing in different directions is represented. As the reader
will appreciate apices tend to have maximum density in the direction outwards the
meadow, showing a directional growth which produces a radial spreading.

Figure 2.2: Representation of the growth of a meadow in arbitrary units. In the center
the shoots density in greenscale where maximum density is represented in white and zero
density in black. And the apex density in each direction in the other panels, from left to
right φ = 270o, 180o, 90o, 0o according to yellowscale where black represent zero density
and white the maximum density.

Section 2.5 is devoted entirely to studying the dependence of the results on the
angle discretization. However, it is necessary to have an intuition of the behavior
of these terms before trying to understand the complex dynamics resulting from
nonlocal interactions.

The unpopulated solution n∗t = n∗s = n∗a = 0 is obviously a stationary solution of
the model existing for all parameter regimes. When branching ωb exceeds intrinsic
mortality ωd0 the unpopulated solution becomes unstable and the density grows with
time to form a homogeneous meadow. The homogeneous stationary solution given by
n∗t , n

∗
s and n∗a, where the total density of apices is N∗a = 2πn∗a, satisfy the stationary

condition of branching rate equal to total mortality ωb = ωd(n
∗
t ), implying there is a

balance between the two processes. This condition leads to an implicit equation for
n∗t and parameters, however, instead of having a closed form for n∗t one can write

ωd0 =
ωb − κ(1− e−an∗t )− bn∗2t

e−an
∗
t

, (2.9)

where it is possible to draw the curve nt(ωd0) numerically. The values of n∗s and N∗a
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Chapter 2. Pattern formation in Posidonia oceanica meadows

are just fractions of the total density n∗t determined by the parameters ωb, ρ, ν.

N∗a =
ρωb

ν + ρωb
n∗t , n∗s =

ν

ν + ρωb
n∗t , N∗a =

ρωb
ν
n∗s. (2.10)

The ratio between apices and shoots is essentially determined by the ratio of the
birth rates of each one, where the birth rate of apices is ωb and the birth rate of
shoots is ν/ρ. Thus, the ratio is ussually small for different species leading to a small
number of apices as compared to the total, which is in agreement with experimental
measurements.

The transition to the populated state becomes subcritical when κ < ωb and the
populated solution coexist with the unpopulated solution for a range of values of
ωd0 > ωb until a saddle node bifurcation at ωd0,SN1 . In the bistability regime and
leaving apart nonlocal interactions an homogeneous initial condition with density
above a threshold will grow, while those with less density will die. The threshold
determining the survival of the homogeneous meadow is determined by the unstable
branch of the solution given by Eq. (2.9). Facilitation is the responsible mechanism
for this effect, only those values of the density in which facilitative effects overcome
mortality can thrive while those with low density are highly exposed and end up in
the unpopulated solution. One can find, easily the saddle node bifurcation looking
for the relative maximum of ωd0(nt),

∂ωd
∂nt∗

= 0⇒ n∗t,SN1,2
= −1

a
±
√

1

a2
+
ωb − κ
b

. (2.11)

One obtains two Saddle-node bifurcations, one has negative density while the other
is positive as long as κ < ωb, we are only interested in the second since negative
solutions are not physical. Thus, for a given value of competition strength κ and
increasing mortality the homogeneous density persist for values of mortality beyond
ωb until ωd0,SN , where there is a sudden loss of vegetation. After this transition it is
necessary to decrease mortality below ωb to recover vegetation. In the opposite case,
when κ > ωb, the transition to the populated case is supercritical and the density
increases gradually when decreasing mortality below ωb.

Nonlocal interactions have important effects on the dynamics of the system. A
linear stability of the homogeneous solution reveals there is a finite wavelength insta-
bility, known as Turing or modulation instability (MI). In the extreme cases, where
ωd0 >> ωb or ωd0 << ωb, bare soil or the populated state prevail. On the contrary,
when both parameters are similar nonlocal competition plays an important role.
Thus, perturbations with higher density compete stronger than vegetation in the
neighborhood leading to a decrease in the density. Consequently the perturbation
can grow at the expense of the surrounding meadow, generating a feedback process
where modulations of the density are amplified and due to nonlinearity, end up form-
ing a regular pattern. The linear stability shows that there is a modulation of the
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2.2. Analysis of the ABD model

homogeneous stationary solution at a finite wave number qc, which has maximum
growth Re[λ(qc)] and becomes positive at the MI for the critical value of mortality
ωd0,c as shown in Fig. 2.3. The linear stability analysis does not ensure the forma-
tion of a pattern as it only gives information about the growth of small-amplitude
perturbations around the homogeneous solutions but gives important information
about the evolution of the system.
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Figure 2.3: Growth rate of perturbations with wavenumber (qx, qy = 0) close to the MI.
Three different values of mortality are shown, the yellow curve corresponds to a stable case,
the green one to the critical point, and finally the blue line corresponds to the unstable case.
Here ωb = 0.06 year−1, ν = 6.11 cm/year, ρ = 2.87 cm, φb = 45◦, b = 1.25 cm4year−1,
κ = 0.048 year−1, σκ = 2851.4 cm, a = 27.38 cm2, and σµ = 203.7 cm.

The critical value of ωd0,c determining the onset of the instability has a compli-
cated dependence with parameters. For decreasing values of κ below ωb, the critical
value approaches to the saddle node bifurcation SN1, creating a window of instabil-
ity of the populated solution to patterns from ωd0,c to ωd0,SN1 . Differently, for higher
competition strengths κ > ωb, where the populated is supercritical, the instability
region broadens, extending to lower values of mortality. Additionally a second mod-
ulation instability appears for larger values of mortality. Thus, increasing mortality
the homogeneous meadow becomes unstable to patterns and for further mortality it
stabilizes again, producing a region of instability between two Turing bifurcations.
Fig. 2.4 shows the region of instability to patterns of the homogeneous populated
solution.

After the onset of instability, regular patterns form, different pattern are possi-
ble for different values of mortality. Nevertheless, these patterns are not accessible
with linear calculation due to nonlinearities in the equations. Numerical simulations
instead allow to study the dynamics in the nonlinear regimes. A pseudo-spectral
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Figure 2.4: Phase diagram of the ABD model for P. oceanica. Here ωb = 0.06 year−1,
ν = 6.11 cm/year, ρ = 2.87 cm, φb = 45◦, b = 1.25 cm4year−1, σκ = 2851.4 cm, a = 27.38
cm2, σµ = 203.7 cm. We represent the region where the populated solution is stable in blue
(region 1), where the unpopulated solution is stable in white (region 2), the region where
populated and unpopulated coexist is shaded (region 3), and finally the region where the
populated solutions is unstable to patterns in yellow (region 4). Note that the patterns
arising from the MI extend beyond this region and may coexist with the populated or
unpopulated solutions. T stands for the transcritical bifurcation at ωd0/ωb = 1, and SN1

for the saddle-node bifurcation where the subcritical populated solutions ends.

method is used to integrate the time evolution of the Eqs. (2.3) and (2.6). Notice,
the model is effectively three dimensional, two spatial dimensions (x, y), and one
angular dimension (φ) corresponding to the direction of growth of the apices. In the
pursuit of computational efficiency we use the minimum number of grid points in φ
space compatible with the branching angle, mainly because we are interested in the
spatial distribution of the population densities. Thus, we consider angles multiple of
π/4 = 45◦, which approximates well the branching angle both for P. oceanica as for
C. nodosa [90, 94], which we will use later. This means that we deal with then nine
two-dimensional fields: one for the density of shoots and 8 for the density of apices
growing in each corresponding direction. The nine fields, that depend on (x, y),
are coupled through the branching and the total density in the nonlocal term. The
pseudospectral method described in Appendix C is used to integrate the evolution
of each one of the nine two dimensional fields. Typical simulations start with the
homogeneous solution with a superimposed small random perturbation. In stable
regions of parameter space perturbations decay, and the solution remains, while in
regions where the homogeneous solution is unstable, perturbations grow, and the
nonlinear dynamics send the system to a different stable solution. In order to study
the stability of the different spatial patterns changing mortality we have performed
simulations continuing ωd0. We start with an initial condition of a pattern, we add
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2.2. Analysis of the ABD model

small white noise, and we change the mortality a small amount, letting the system
evolve to reach a new stationary state. We use then, the final state as initial con-
dition for the next parameter step. Repeating this procedure we can generate the
stable branches shown in the bifurcation diagrams, where the average densities of
each final state is plotted (Fig. 2.5).
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Figure 2.5: Mean shoot density n̄t (total number of shoots divided by area) as a function of
normalized mortality ωd0/ωb for five different solutions of the ABD model for the subcritical
case on the left panel and the supercritical case on the right panel. Homogeneous populated
and unpopulated states (red), hexagonal arrangement of fairy circles in yellow, stripes in
green, and hexagonal arrangement of spots in blue. Solid (dashed) lines indicate stable
(unstable) solutions. The insets show the vegetation patterns in the inhomogeneous cases.
Only the stable parts of the pattern branches are shown, as obtained from direct numerical
simulations of the model. MI corresponds to the modulational instability of the populated
state, and T corresponds to the transcritical bifurcation of the bare soil. Parameter values
ωb = 0.06 year−1, ν = 6.11 cm/year, ρ = 2.87 cm, φb = 45◦, b = 1.25 cm4year−1,
σκ = 2851.4 cm, a = 27.38 cm2, σµ = 203.7 cm, µ = ωd0 for both panels. κ = 0.048 year−1

for left panel and κ = 0.072 year−1 for right panel.

Increasing mortality a particular sequence is observed, first circular holes without
vegetation arranged in an hexagonal pattern (negative hexagons), second stripes
of vegetation, and third circular spots arranged in an hexagonal pattern (positive
hexagons). The sequence between different solution is general for different vegetation
models [3, 35] as predicted by the theory of pattern formation. However, the ranges
of stability and its coexistence may be different in each model. As can be seen
in Fig. 2.5, for different values of κ in the subcritical and the supercritical case,
the branches associated to different patterns change its domain of stability. An
important aspect is that independently of the parameters, the formation of patterns
makes the meadow much more resilient, where patches are the last landscape before
desertification, persisting for larger values of mortality. Thus, when desertification is
reached, mortality has to be reduced until ωb to recover the meadow. Alternatively,
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Chapter 2. Pattern formation in Posidonia oceanica meadows

it is possible to plant a spot of vegetation overcoming a threshold density given
by the unstable branch in order to recover vegetation. Moreover, the presence of
different patterns for different levels of stress is a very useful diagnostic tool which
allows to infer the health conditions of the meadow based on the spatial distribution
of vegetation, which is accessible by aerial images, side scan sonar maps, or in a few
special cases, from direct view from the coast.

As an additional proof of the formation of patterns and the sequence leading
to desertification we provide images of numerical simulations of the discrete model
described in [90] introducing the same nonlocal interactions. As we can see in Fig.
2.6 patterns of negative hexagons, elongated shapes resembling stripes, and positive
hexagons appear in the same order increasing mortality.

Figure 2.6: Population density for the discrete model showing the standard sequence of
patterns for increasing mortality. The density of plants is shown using greenscale where
high density is represented in green and zero density in black. We thank T. Sintes for
kindly providing these images.

Localized structures are also a result of pattern formation. In particular, isolated
spots of vegetation surrounded by bare soil and circular holes without vegetation
embedded in an homogeneous meadow are typical examples (Fig. 2.7). The first case
appear for large values of mortality usually around the end of the branch of positive
hexagons. This spatial distribution is the last step before desertification being the
most resilient spatial distribution. This compact forms allow plants to profit from
the effects of facilitation and the lack of density in the close proximity. On the
second case, appearing for lower mortalities and consist of isolated holes embedded
in an homogeneous meadow. These are also stable solutions of the model. They
correspond to the circles without vegetation shown in pictures of the Adriatic sea,
and the Cabrera Island in the Balearic Sea, which are the marine analog of terrestrial
fairy circles. These spatial configuration is frequently characterized by a maximum
of density in the perimeter of the circle that profit from the lack of vegetation in the
center, moreover, new plants are prevented to grow in the central region because of
high competition due to the surrounding density of plants. The formation of isolated
holes is generally produced in a particular regime, namely where the solution of
negative hexagons is subcritical and coexist with the homogeneous solution. In this
region of bistability one can find usually a subrange of mortalities in which isolated
holes, are stable [110–113]. These localized structures are an example of dissipative

22



2.3. Parametrization for Posidonia oceanica

soliton. The bifurcation structure of such solutions is known as homoclinic snaking
[114]. We will devote more efforts in chapter 4 to characterize these structures in
detail. It is important to highlight the fact that the degree of bistability of the
pattern with the homogeneous solution, understood as the length of the interval
of coexistence between the two solutions, promotes the formation of this localized
states, and this at the same time is affected by the degree of bistability between the
populated and the unpopulated solution.
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Figure 2.7: Spatial distribution of the shoot density for localized structures (high densities
are represented in dark green and low ones in bright yellow). The fairy circle, or dissipative
soliton, is clear in the density profile (b) along the transverse cut shown in panel (a) by
a dashed line. Here, ωd0 = 0.057year−1. The isolated patch is shown in panel (c) where
panel (d) shows a transverse cut of the shoot density. Here ωd0 = 0.162year−1. Other
parameters are the same as in Fig. 2.5 with κ = 0.048 year−1.

2.3 Parametrization for Posidonia oceanica

We have shown different results that help to understand the dynamical behavior
of the model. However, we have not justified the parameters used neither if they
represent the growth of P.oceanica meadows. Our aim was to provide the necessary
understanding of the model necessary to facilitate the explanation of the choice of
parameters.

We can distinguish two groups of parameters, first ωb, φb, ωd0, ν, ρ which are the
parameters associated to clonal-growth rules and are well known in the literature
[90, 94]. For P.oceanica in particular ωb = 0.06 year−1, φb = 45◦, ν = 6.11 cm/year,
ρ = 2.87 cm, where ωd0 is considered here as a control parameter which varies from
zero to three fold ωb. As one may notice the rates are small leading to time scales
which extend from decades to millenia, which is the expected lifetime for this plant.
The values of the second set of parameters, a, b, κ, σκ, σµ are unknown but they can
be estimated based on observations and data. The parameter b, which fixes the scale
of the density of shoots, is determined using typical values of the density of shoots, in
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Chapter 2. Pattern formation in Posidonia oceanica meadows

particular we choose the homogeneous density to be around 800 shoots/m2 [90, 94].
However, the homogeneous density depends additionally on ωd0, κ and a, and we have
to fix them first. In order to have isolated holes, we need κ < ωb to have bistability
of the two homogeneous solutions and of patterns and the populated solution. We
choose κ = 0.8ωb = 0.048 year−1. The parameter a controls the degree of bistability,
so choosing a = 27.38 cm2 (which in the adimensional units presented in the appendix
corresponds to a = 6) gives a finite range of bistability which facilitates the presence
of isolated holes. Thus, we choose b such that given κ and a for ωd0/ωb = 1.4, which
is close to the saddle node and the Turing, we have the homogeneous stationary
solution around 800 shoots/m2, which gives b = 1.2457 ∼ 1.25 cm4year−1.

The only missing parameters are those related to the spatial extension of the
nonlocal interaction, σκ and σµ. The extension of the facilitation σµ does not play
an important role in the formation of patterns. In fact, changing the value of this
parameter one quickly reaches to the conclusion, based on the results of the lin-
ear stability analysis, that the mechanism behind pattern formation is competition.
Basically looking at the linear stability analysis one can see that the negative con-
tribution of long-range competition to the eigenvalues damps short wave numbers,
while facilitation can not produce a maximum at finite wavelength. Thus, the value
of this parameter is quite irrelevant, one may change nonlocal by local facilitation
without affecting the results. Even so, we have preserved this term with a small
value of σµ = 203.7 cm (in adimensional units σµ = 2). Otherwise, σκ is a relevant
parameter, in fact it determines the wavelength of the pattern. As a matter of fact, it
is possible to infer the competition distance based on the wavelength of the pattern.
The side-scan cartography of the LIFE Posidonia project in 2001 provides a good
data set to measure the typical wavelength. Side-scan cartography shows P.oceanica
coverage in different places of the Balearic Islands. We have taken samples of the
data with ordered patterns, most of them in Pollença and Alcudia bays where the
patterns are more abundant and we have performed Fourier transform of these im-
ages. The maximum amplitude gives the predominant spatial scale, which is directly
related to the wavelength of the pattern. We have removed the homogeneous con-
tribution and we have taken the wave number with maximum amplitude. In Fig.
2.8 we show an example of the Fourier transform of one of the picked samples that
clearly shows a typical scale with a clear maximum at |k| ≈ 0.017m−1 , specially
visible in the ky direction. The coordinates location of the left-top corner and right
bottom corner of each sample as well as the wave number with maximum amplitude
are presented in Table 2.1. We conclude the average wave number is 0.016 ± 0.003
m−1 corresponding to typical wavelength of 62.9± 12.7 m.

Next, we use the linear stability analysis to compute the predicted wavelength
of the pattern as a function of σκ. We use the wavelength with maximum growth
rate. Although it is clear that the wavelength of the pattern will be affected by
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2.3. Parametrization for Posidonia oceanica

Figure 2.8: Fourier transform of a side-scan cartography image of a rectangular region
of a meadow of P. oceanica. Panel (a) shows the presence (absence) in green (yellow) of
Posidonia in a portion of a meadow. Panel (b) shows the Fourier transform of panel (a).
Panels (c) and (d) are cuts at ky = 0 and kx = 0 respectively of panel (b) showing clear
peaks at |k| ≈ 0.017.

nonlinearities, the linear calculation provides a good estimation. As we can see in
Fig. 2.9, the wavelength depends almost linearly with σκ, facilitating the inference
of the competition length. Thus, this result allows us to conjecture a competition
length around 20− 30 m, which points to mechanisms related with water movement
as the responsible of mediating this competition. We select then σκ = 2851.4 cm
(σκ = 28 in adimensional units).

As a result of the selected interaction distances, the kernel has the shape of an
inverted mexican hat, being cooperative for short distances and competitive for large
distances. Since the strength of competition and facilitation are determined by ωd0

and κ and the two Gaussians are normalized, only the contribution of facilitation
is noticeable, on the contrary competition that spreads over large distance has a
minor amplitude in each location. Although the effect of competition is small at
each position the integrated contribution is not negligible, as can be seen in Fig.
2.10. One can also notice using the Fourier transform of the kernel the important
effect of competition damping small wave number amplitudes, which has a direct
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Table 2.1: Coordinates of analyzed regions and measured wave number. The table shows
the coordinates of the vertices of the rectangular regions used to measure the characteristic
wave length of patterns in Posidonia meadows an the associated wave number.

Lat0 Lon0 Lat1 Lon1 Wave number (m−1)

39◦52’58.5”N 3◦07’43.2”E 39◦52’25.2”N 3◦08’26.2”E 0.017
39◦53’31.8”N 3◦05’33.9”E 39◦52’58.6”N 3◦06’16.9”E 0.018
39◦53’31.8”N 3◦06’17.0”E 39◦52’58.5”N 3◦07’00.1”E 0.015
39◦49’55.6”N 3◦09’52.1”E 39◦49’22.4”N 3◦10’35.1”E 0.016
39◦48’49.2”N 3◦10’13.4”E 39◦48’15.9”N 3◦10’56.4”E 0.015
39◦47’09.6”N 3◦09’08.6”E 39◦46’36.4”N 3◦09’51.6”E 0.020
39◦47’09.6”N 3◦09’51.7”E 39◦46’36.3”N 3◦10’34.6”E 0.019
39◦47’11.0”N 3◦10’34.7”E 39◦46’36.2”N 3◦11’17.7”E 0.019
39◦45’46.4”N 3◦11’39.1”E 39◦45’13.1”N 3◦12’22.0”E 0.011
39◦45’29.7”N 3◦12’22.1”E 39◦44’56.4”N 3◦13’05.0”E 0.010
39◦45’46.3”N 3◦12’22.1”E 39◦45’13.0”N 3◦13’05.0”E 0.015
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Figure 2.9: Wavelength of the maximum growth rate as a function of the competition
range σκ for five different values of the intrinsic mortality ωd0. The parameters are ωb = 0.06
year−1, ν = 6.11 cm/year, ρ = 2.87 cm, φb = 45, b = 1.25 cm4year−1, κ = 0.048 year−1,
a = 27.38 cm2, and σµ = 203.7 cm.

effect in the dispersion relation of the system and hence in the critical wave number.
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Figure 2.10: Shape of the kernel K(~r) in real space (left) and Fourier space (right). A
cut in the x and qx directions for y = 0 and qy = 0 is shown respectively. Here κ = 0.048
year−1, ωd0 = 0.042 year−1, σκ = 2851.4 cm, and σµ = 203.7 cm.

2.4 Landscapes of patterns aproaching to the coast

Posidonia oceanica forms meadows between depth limits of 5 − 40 m. Close to
the shoreline high hydrodynamism prevents the growth of new shoots while the
limitation of the growth in deep regions is due to a decrease in the availability of
light, which reduces photosynthetic activity [89]. Thus, in intermediate regions the
meadow develops in suitable conditions. In relation with the model, high mortality
regimes are found close to the shore and for deep waters. Hence, smooth increase
of mortality close to the coast is expected to explore different regions of the phase
diagram where different patterns are expected to appear. We introduce this mortality
dependence and perform numerical simulations in order to reproduce the observed
landscapes in the meadows. Two elements are necessary to reproduce the spatial
distribution of vegetation approaching the coast. First, a mortality profile ωd0(x, y)
where x represents the distance to the coast and y the parallel direction. In order to
introduce a mortality profile properly in the simulations we have to take into account
two things: i) we have to introduce a matrix with the values of mortality at each
position, and ii) since the pseudospectral method needs periodic boundary conditions
the introduced profile must be periodic. In the center the profile can have the desired
shape but opposite boundaries must connect smoothly. The easiest way to produce a
profile is to design it using straight lines and apply a filter to smooth out the corners.
For the last step we use a diffusion operator in Fourier space. We apply the Fourier
transform to our array and we multiply each component ~q by the diffusion operator,
given by e−q

2t, where t controls the softness level. After that we anti-transform to
real space. The resulting profile will preserve the initial qualitative shape, but it
will be smooth and periodic. The second element to introduce in the simulations is
spatial randomness that mimics irregular spatial variability of the parameters due
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to the variable conditions at the sea bottom. Spatial noise prevents perfect circular
holes or spots to be formed reproducing in a better way the landscapes observed in
nature. The generation of spatial noise is done according to the following expression:

χ(x, y) = F−1

{
e
−q2s2

2 e−i2πu
}

(2.12)

where F−1 is the inverse Fourier transform, q is the modulus of the wavevector
of each Fourier component, and u is a random number between 0 and 1 with a flat
probability distribution. The parameter s controls the typical spatial scale of noise.
The Gaussian shape in Fourier space inhibits long wavelength contributions, in such
a way the noise is reasonably smooth. In our simulations we take s = 101.83m. Fig.
2.11 shows the spatial variability of the noise that is added to the mortality profile
with a certain amplitude in each case. The colored noise generated in this way shows

Figure 2.11: Example of the noise distribution used in the numerical simulations. We
take s = 101.83 m and the number of grid points used in each direction is Nx = 1024,
Ny = 128.

a variability closer to expected one for the seabottom as compared to white noise.
As a result of including a mortality profile reproducing the mortality increase

approaching the coast, the numerical simulations reproduce quite accurately the ob-
served features of the spatial distribution. Notice, that patterns in small domains
develop a perfect spatial order, on the contrary large domains present more irreg-
ular arrangements of the pattern (Fig. 2.12). Elongated vegetation gaps near the
shore are present indicating that gaps are close to become unstable to stripes before
the sudden increase of mortality very close to the shore. Moreover, scattered gaps
close the homogeneous meadow, where there is coexistence of the homogeneous with
the hexagonal gaps, are compatible with the formation of localized structures, or
fairy cicles. Fig. 2.12 shows a comparison of side scan cartography with numerical
simulations.

Another important feature the model can reproduce is the variability of the den-
sity measurements approaching the coast observed in meadows along the littoral of
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Figure 2.12: Comparison of numerical simulations with patterns in real meadows in
absence of noise in the profile (left) and with noise (right). Panel (a) shows the final
spatial density distribution of shoots obtained from a numerical simulation of the model in
the presence of the mortality profile plotted in panel (b) with the same parameters as in
Fig. 2.5. (c) Observed coverage of P. oceanica from LIFE Posidonia side-scan cartography
in the Balearic coast area limited by the following coordinates: 39◦ 45’54.1”N 3◦ 09’49.5
E; 39◦ 47’25.6”N 3◦ 11’48.7 E; 39◦ 47’48.6”N 3◦ 11’19.0 E; and 39◦ 46’17.1”N 3◦ 09’19.9 E.
Panel d) shows the mean depth of the water in this region averaged over the y direction.

the Balearic Islands (Fig. 2.13d). Scuba divers measured shoot density at random
positions in the meadows without previous knowledge of their spatial distribution.
The results consistently showed low shoot density variability at depths > 10 m com-
pared to high variability at shallower depths (< 10 m), which range from close to 0
to 2000 shoots/m2, a variability much larger than in deeper regions (thick blue dots
Fig. 2.13d). The model suggests that the variability associated to density of shoots
in shallow waters is a consequence of the presence of complex spatial patterns near
the coast. Numerical simulations using as previously noisy and depth-dependent
mortality, capture the dispersion of the density close to the coast where patterns
form. An additional spatially dependent b(x, y) (see Fig. 2.13c) is considered in
these case to account for the decrease in shoot density with depth.

The model also reproduces complex patterns in meadows of Cymodocea nodosa,
such as the transition from holes to patches observed in one of the meadows (Figs.
1.3, and 2.14c). Because this transition occurs parallel to the coast, that is, at
a uniform depth, we infer this pattern to be derived from a sudden increase in the
mortality rate along the shore (see Fig. 2.14b). The resulting simulated pattern (Fig.
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Figure 2.13: Comparison of a numerical simulation with field density measures: (a)
Spatial density distribution of P. oceanica as obtained from numerical simulations with
a custom spatially dependent mortality [orange line in (c)), left scale] and a profile of
the saturation strength b(x, y) [blue line in (c), right scale]. (b) Cut of (a) at y = 102.
(d) Observed P. oceanica density measured by scuba divers as a function of depth for
different locations spread over the coastline of the Balearic Islands and the density in
random locations of the numerical simulation shown in (a) (gray). Parameters as in Fig. 2.5.

2.14a) reproduces very well the observed features of the real meadow, being particu-
larly interesting the effects of the time evolution in the resultant pattern. Holes form
from a homogeneous initial condition, while the region with high mortality loses all
vegetation at the beginning. From the created front new patches start to develop
creating a front that advances covering all the available space with patches and elon-
gated shapes aligned with the direction of growth. Elongated patches are also visible
in the cartography giving validity to the model and describing how colonization of
this region occurred.

The calibration for C. nodosa is equivalent to one presented for P.oceanica. The
parameters related to clonal growth are well determined in the literature [90, 94]
ωb = 2.3 year−1, ν = 160 cm/year, ρ = 3.7 cm, φb = 46◦ ∼ 45◦. Those related
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Figure 2.14: Comparison of a numerical simulation with patterns observed by side-scan
sonar in a region of coexistence between holes and patches in a meadow of C. nodosa in
Mallorca Island (Fig.1.3). The set of model parameters for Cymodocea nodosa is ωb = 2.3
year−1, ν = 160 cm/year, ρ = 3.7 cm, φb = 45◦, b = 112.71 cm4year−1, κ = 2.76
year−1, σκ = 2226.1 cm, a = 21.0 cm2, σµ = 139.1 cm, and the area modeled (a subset
of that shown in Fig. 1.3) is bounded by the coordinates: 39◦ 53’16.4”N 3◦ 05’12.7 E;
39◦ 51’52.0”N 3◦ 06’15.7 E; 39◦ 51’43.1”N 3◦ 05’55.6 E; 39◦ 53’07.5”N 3◦ 04’52.6 E. (a)
Final spatial density distribution of shoots from a numerical simulation of the ABD model
using the mortality profile shown in (b). (c) Observed coverage of C. nodosa from LIFE
Posidonia side-scan cartography in the Balearic coast.

to the homogeneous solution and nonlocal interactions are as follows. b = 112.71
cm4year−1 is chosen to have shoot density around 1000 shoots/m2. There is no
particular reason, apart from having a similar wavelength, to choose different values
of the other three parameters, as similar results are expected for different values.
Then, we take κ = 2.76 year−1, σκ = 2226.1 cm, a = 21.0 cm2, σµ = 139.1 cm. It is
important to chose the mortality values on the spatial profile in order to select the
appropriate patterns in each region.
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2.5 Distribution of growth directions

The ABD model, as explained in the previous sections, describes not only the spa-
tial distribution but the distribution of apices in the angle of growth φ. Effectively
the model is 3D and numerical simulations with fine discretization are computation-
ally costly. For this reason we choose the minimal discretization compatible with
the branching angle. Nevertheless, this situation is artificial and can not describe
properly the situation in which the branching angle is not an integer fraction of 2π,
neither fluctuations in the direction of growth. Not to mention solutions which have
heterogeneous density of apices in the angle, which the angular discretization is not
capable of resolving. Here we investigate heterogeneous growth direction distribu-
tions in the apices density. We analyze the problem for different branching angles
using the linear stability analysis, whereas we perform numerical simulations focusing
primarily on φb = 49◦ ∼ 45◦, which corresponds to the case of P.ceanica but it is not
limited to this species [94]. Usually most of them range between 30◦ - 60◦. Hence, in
this case the minimal discretization is with eight growth directions only. Neverthe-
less, this minimal discretization is not compatible with solutions modulated in the
angle with an azimuthal wave number qφ > 4. From this perspective, understanding
the dynamics in the angle is necessary to determine if heterogeneous solutions can
emerge from the intrinsic growth of the plant or on the contrary it is justified to use
a minimal approach to describe the growth in space.

2.5.1 Distribution of growth directions in the spatially ho-
mogeneous solutions

Two terms depend explicitly on the angle: the branching and the advection. The
main parameter that determines the behavior of the system from the perspective of
the angular distribution is the branching angle φb. In other words, φb is the main
scale of the problem in the angle. This fact has its manifestation in the stationary so-
lutions. On the one hand, the stationary homogeneous solutions in space determines
the value of the total density n∗t given by Eq. (2.9). Moreover, the value of n∗s and N∗a
are also fixed according to the relations in (2.10). On the other hand, stationary so-
lutions heterogeneous in the angle can be found, where one can distinguish two cases.
When the branching angle is commensurable with 2π, φb = 2π/m (m = 8 in the case
of 45◦), the stationary solutions take the form n∗a(φ) = N∗a/2π+

∑
n bqφ,ne

iqφ,nφ, where
qφ,n = nm with n = 1, 2, 3.... Consequently, these solutions can have any distribution
of apices in the angle as long as the density of apices is periodic with φb and the
total density of apices is fixed to N∗a . On the contrary, for the incommensurable case
the only stationary solution is the homogeneous in the angle n∗a(φ) = N∗a/2π. Thus,
a linear stability analysis of the stationary solutions homogeneous in space against
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Figure 2.15: Linear stability. Panel a) shows the growth rate λ (blue line) of modula-
tions of the density of apices in the angular dimension with wavenumber qφ for solutions
homogeneous in space. Dashed lines indicate modes compatible with the system size 2π.
The solid orange and red points correspond to the neutral modes shown in panels b) an c)
respectively.

perturbations of the form eiqφφ with qφ = 1, 2, 3... and qφ 6= 0, leads to the following
growth rate, for both the unpopulated and the populated solutions

λ(qφ) = cos(qφφb)− ω∗d, (2.13)

where λ(qφ) corresponds to the eigenvalue of the mode with azimuthal wavenum-
ber qφ expressed in adimensional units. ω∗d corresponds to the stationary and homo-
geneous value ω∗d = ωd(n

∗
t )/ωb. For the unpopulated solution ω∗d = ωd0/ωb, and for

the populated one ω∗d = 1.

For the stability around the unpopulated solution nt = 0, on the one hand, if the
branching rate is smaller than the mortality rate, all modes have negative real eigen-
values and any small perturbation decays. On the other hand, in the case (ωb > ωd0),
we distinguish between two cases. First, if the branching angle is incommensurable
with 2π, the unpopulated solution becomes unstable at ωb = ωd0 being the homoge-
neous mode with eigenvalues λ = −ω∗d,1 − ω∗d the first one that becomes unstable,
leading after the transition to a homogeneous solution where all directions of growth
have the same density. Modulated perturbations have cos(qφφb) < 1, and therefore
growth rates smaller than the growth rate of the homogeneous mode. On the con-
trary, if the branching angle is commensurable with 2π, φb = 2π/m, at ωb = ωd0

all modes with qφ,n = n2π/φb, with n = 1, 2, 3 . . . become simultaneously unsta-
ble. Thus, above threshold, the solution bifurcating at ωb = ωd0, can be written as
n∗a(φ) = N∗a/2π+

∑
n bqφ,ne

iqφ,nφ which is homogeneous in space but not necessarily in
the angle. Any arbitrary combination of amplitudes bqφ,n will be a solution provided
the total density of apices N∗a , given by b0, takes the proper value determined by n∗t .
In Fig. 2.15b,c we can see two of these modulations. We impose also that not na

33



Chapter 2. Pattern formation in Posidonia oceanica meadows

nor ns can take negative values, which limits the amplitudes bqφ,n . This degeneracy
can be understood easily considering sets of m directions separated by the branching
angle φb. Since the only coupling in the angle is introduced by the branching process
any set is uncoupled from the other, hence, any arbitrary combination of these sets
is a valid solution provided the total density Na is fixed. In other words, if one con-
siders the density between φ and φ+ φb where each position correspond to the first
direction of a different set, the density of apices must repeat after φ+φb because the
second direction of the sets is separated φb. As a result, since the density between φ
and φ+ φb is free, the distribution of apices in the angle is not fixed as long as it is
periodic with φb. Depending on the initial condition and if the system is determin-
istic, the populated solution homogeneous in space appearing above threshold will
not necessarily be homogeneous in the angle. The effects of noise can have, however,
important consequences which will be considered later.

The distinction between the incommensurable and commensurable case is also
necessary when looking at the stability of the populated homogeneous solution. In
the first case, all perturbations around the homogeneous solution, which is the only
solution in this case, have negative eigenvalues and decay with time. The growth in
all directions is equivalent and as a result the populated solution is stable.

In the commensurable case instead, the solution may not be necessarily homoge-
neous in the angle. Nevertheless, the linear stability analysis (2.13) is independent
of the particular stationary solution. Thus, both homogeneous and heterogeneous
solutions in the angle are stable. However, there is set of neutral modes, which do
not grow nor decay (Fig. 2.15). These modes are precisely those with an azimuthal
wavenumber multiple of 2π/φb (qφ,n = n2π/φb where n = 1, 2, 3...). For P. ocean-
ica qφ,n = 8, 16, 32.... It is not surprising that perturbations that belong to the
eigenfunctions of the stationary solution are neutral since a stationary solution plus
a perturbation of this kind is also a stationary solution. Giving a more physical
interpretation, one can redistribute the density of apices among the different sets
of m directions of growth at no cost, as long as the sum remains constant and the
final distribution has the periodicity given by the branching angle. The presence of
neutral modes, which appear due to the breaking of the rotational symmetry, have
important consequences under the effect of noise.

2.5.2 The role of noise

The effect of noise on the neutral modes has an important role in restoring the
symmetry and leading the meadow to the homogeneous configuration in the angle.
We explore these effects in the commensurable case where neutral modes are present.
The complete model including spatial dynamics is highly demanding, for this reason
we focus on the homogeneous case in space preserving the dependence with the angle,
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2.5. Distribution of growth directions

in such a way that we can increase the resolution in this dimension with a reasonable
computational cost. The ABD model with no space and with noise takes the form:

∂tna(φ, t) =
ωb
2

(na(φ+ φb, t) + na(φ− φb, t))
−ωdna(φ, t) +

√
εξ(φ, t) (2.14)

∂tns(t) = −ωdns(t) +
ν

ρ

∫ 2π

0

na(φ, t)dφ (2.15)

ωd(nt) = ωd0 + (κ− ωd0)(1− e−ant) + bn2
t , (2.16)

where ξ(φ, t) represents a white Gaussian noise with zero mean, variance one, and
delta correlated in the angle and in time. ε is the strength of the noise. Fluctuations
in the dynamics can be the result, for example, of the variability of the branching,
leading to an additional multiplicative noise term, which we do not consider for
simplicity. Additive noise is justified in the regimes where average density is large
and fluctuations are small, which is the case in all the cases we consider, as we analyze
the evolution close to the populate homogeneous solution. We have not considered
noise in the equation of the shoots (2.15) since shoot population is derived directly
from the density of apices.

We perform numerical simulations with N = 16 and N = 256 directions starting
from two initial conditions, a non-uniform and a uniform distributions. The first
consists of the homogeneous stationary solution, whereas for the second we add a
modulation with qφ = 8 in the growth direction, as the one shown in Fig. 2.15b.
Average densities and standard deviations are computed from 1000 realizations of
the noise for each growth direction and for the real part of the Fourier modes. The
amplitude of each mode is computed using the discrete Fourier transform. In Figs.
2.16 and 2.17 we represent the time evolution of the standard deviations and average
values respectively. It is important to notice the discrete Fourier transform encom-
passes the amplitude of bn and b−n in the last mode for technical purposes, therefore,
it is necessary to correct by a factor of two the amplitude of the last mode which
is represented in Fig. 2.16. Equivalently, since we use a pseudospectral method,
fluctuations in real space are also affected, being the effect more pronounced in Fig.
2.16a, where the major contribution to the fluctuations in real space is due to the
fluctuations of the last mode. Consequently we have corrected the prediction for the
fluctuations in real space.

Starting with an homogeneous initial condition facilitates the analysis of the
evolution of the fluctuations. The standard deviation of the amplitude of all Fourier
modes grow initially with time, quickly damped modes saturate following an Ornstein-
Uhlenbeck process with zero mean and variance ε

2π
1−e2λt
−2λ

, where λ corresponds to the

eigenvalue. On the contrary, the variance of the neutral modes grows in time as εt
2π

following a diffusive process of zero mean. Essentially, fluctuations in real space are
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Figure 2.16: Evolution of the standard deviation of the density fluctuations in real and
Fourier space. Panel a) corresponds to a numerical discretization N = 16 directions, while
panel b) N = 256, using in both cases 1000 realizations of the noise to compute averages.
The standard deviations of the fluctuations in each direction na(φ) are represented in gray.
The real part of the amplitudes of the Fourier modes is shown in dark blue for the neu-
tral modes and in light blue for the damped modes. The orange curve is the theoretical
prediction of a diffusive process, while the black line corresponds to the theoretical predic-
tion accounting for all the Fourier modes, neutral and damped. Parameters are ωb = 0.06
year−1, ωd0 = 0.03 year−1, ν = 6.11 cm/year, ρ = 2.87 cm, φb = 45◦, b = 1.25 cm4year−1,
κ = 0.048 year−1, a = 27.38 cm2 and ε = 1.728 · 10−12 cm−4year−2

the sum of the fluctuation of all modes, which is clearly dominated by the diffusive
process of the neutral modes. As a result of the constraint of positive density, the

fluctuations deviate from a perfect diffusive process saturating at σ =
√

∆φ
3
N∗a
2π

, where

∆φ = 2π/N . This limit can be understood considering each growth direction expe-
riences a random walk in a finite interval, where the amplitude is bounded between
[−N∗a

2π
, N
∗
a

2π
]. Therefore, the probability distribution changes in time from a Gaussian

to a flat distribution, thus fluctuations are determined by the size of the interval.
Fig. 2.16 shows the time evolution of the standard deviation for both discretiza-
tions. Note the time scale of the saturation is different for the two discretizations.
The fluctuations of each pixel diverge when ∆φ goes to zero while the integral of all
the noise is independent of the discretization. Thus, fine discretizations have larger
fluctuations at each pixel, this together with the constraint of positive density gives
as a result a faster saturation of the fluctuations for the case of N = 256, mainly
because trajectories reach faster to the boundary.

More interestingly is the case starting with a non-uniform initial condition. For
N = 16 a modulation with qφ = 8 as initial condition around the homogeneous
stationary solution is equivalent to a set of eight directions with density above the
average and another set with density below the average. For N = 256 instead the
modulation is well resolved being a continuous distribution in the growth direction
with directions with densities above and below the average. Both cases behave
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Figure 2.17: Time evolution of the distribution of growth directions. Panel a) and
b) correspond to the numerical discretization of N = 16 directions of growth. In a)
the evolution of the average values of < na(φ) > over 1000 realizations are shown for
each direction of growth. Two black curves are visible corresponding to the two sets of
8 directions. The blue curve shows the average of the real part of b8. Panel b) shows
< na(φ) > of each direction, where the colormap indicates the time evolution. Panel c)
and d) show the same as in a) and b) for N = 256. Parameters as in Fig. 2.16.

similarly. The differences in the densities with φ in average vanish with time reaching
an homogeneous stationary state. Fig. 2.17 shows the average density for each
growth direction as well as the average of the real part of b8. The figure shows
the homogenization of the density with φ and accordingly the decay of the mean
amplitude of b8 to zero. Notice the difference between the density in growth directions
belonging to the same set are almost null, since these differences are a consequence
of the excitation of damped modes. The explanation of the temporal decay of the
amplitude of the modulation, which leads to the homogeneous solution, can be given
in terms of the fluctuations. Initially the neutral modes follow a Gaussian distribution
with a mean around the initial condition, as expected for a diffusive process. As time
increases, trajectories in different realizations reach the maximum amplitude allowed
by the condition of positive density. Thus, the probability distribution changes to a
flat distribution with zero mean. Hence, there is a transient in which the mean value
decay to zero from the initial value, as can be seen in Fig. 2.17 for the amplitude
b8. As expected, other neutral modes with initial zero mean remain with this value
along the time evolution. These results show how the homogeneous configuration is
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Chapter 2. Pattern formation in Posidonia oceanica meadows

Figure 2.18: Critical eigenmode. Eigenstate corresponding to the critical wave number
qx,c = 0.1357 m−1 showing an angular dependence with periodicity 2π. Parameters are
ωb = 0.06 year−1, ωd0 = 0.0846, ν = 6.11 cm/year, ρ = 2.87 cm, φb = 45◦, b = 1.25
cm4year−1, κ = 0.048 year−1, σκ = 1629.3 cm, a = 27.38 cm2, σµ = 203.7 cm.

restored by the presence of noise where perturbations vanish on average due to the
presence of neutral modes.

2.5.3 Distribution of growth directions in patterns

For the case of pattern formation it is not possible to obtain an analytical expression
of the eigenvalues, mainly because the advection term couples the angular part with
the spatial part. However, the linear stability can be performed numerically. As we
already know a modulation instability at finite wavenumber qx,c appears. The critical
eigenmode not only has a modulation in space but also in the angle. The periodicity
does not correspond to any of the neutral modes qφ = 8, 16, 32..., as in the previous
case, but to the periodicity of the system qφ = 1, as it can be seen in Fig. 2.18. The
critical mode presents a clear correlation between the pattern and the modulations
in the angle φ. As explained at the beginning of the chapter, apices growing in the
x direction (φ = 0) are shifted to the right, while apices growing in the −x direction
(φ = π) are shifted to the left, and equivalently in all the other directions. Although,
we can not obtain a closed expression for the eigenvalues it is possible to demonstrate
the presence of neutral modes in the case with patterns in space. More precisely one
can demonstrate that solutions written as n∗a(~x, φ)(1 + δna(φ)), where n∗a(~x, φ) is
the stationary pattern, are neutral provided δna(φ) is a superposition of modes with
qφ,n = 2πn/φb, and n∗a(~x, φ)δna(φ) does not change the total density of apices in a
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Figure 2.19: Stable solution showing a pattern of stripes with wavenumber qx,c =
0.1357rad/m. The total density nt is shown. The orange line indicates the transect at
y constant used in other figures. Parameters as in Fig. 2.18

given position (see Appendix A).

It is straightforward to show this using numerical simulations. We focus in the
commensurable case for the solution of stripes pattern, although similar results can
be found for positive and negative hexagons. We use the pattern of stripes shown in
Fig. 2.19, where in this section a different value of the competition distance has been
used for convenience in the numerical simulation. We use the minimal discretization
N = 16 which allows for the existence of the first neutral mode, in particular the
mode with azimuthal wave number qφ = 8. We design three initial conditions using
the pattern in Fig. 2.19 with an extra modulation in the angle qφ = 8, this allow
to determine if these modulated solutions in the angle decay or on the contrary, the
modulated distribution is a stationary solution meaning that the density can be re-
distributed in different directions due to the presence of a neutral mode.

The first initial condition has the intrinsic modulation given by qφ = 1 associated
to the growth of the critical mode above threshold. A transverse cut at y-constant,
represented in orange in Fig. 2.19, of the density of apices growing in all directions
is shown in Fig. 2.20. As shown previously for the critical eigenmode the maximum
of the density is shifted for each growth direction, however the effect is even more
pronounced due to nonlinear effects. The second initial condition consists of all the
apices redistributed in only one set of 8 growth directions, leaving the densities of
the other 8 directions empty. Such initial condition remains stable as shown in Fig.
2.20. Since the branching is not coupling the two sets of 8 directions, no new apices
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Figure 2.20: Growth direction distributions. All panels show the distribution of growth
directions for the patterns of Fig. 2.19, particularly for the cut y constant shown in orange.
Panel a) and b) correspond to an initial conditions where all directions of growth have the
same density of apices. Panel c) and d) correspond to an initial condition where 8 of the
16 directions of growth have zero density while the other set of eight directions all have the
same density of apices. Finally panel e) and f) correspond to an initial condition where
one set of 8 directions have 1/4 of the total density of apices and the other set the other
3/4 of the density. The same parameters as in Fig. 2.18 have been used.

appear in the empty directions. Finally we study an initial condition with different
densities in both sets of 8 directions, specifically 3/4 and 1/4 of the total density
respectively. Such configuration is also a neutral steady state.

The final solutions shown in Fig. 2.20 corroborate the presence of neutral modes
which make possible to redistribute the densities of apices in different directions of
growth respecting the periodicity of the branching. It is expected that, analogous
to the previous section noise will wipe out all modulations in the angle except the
modulation inherent to the pattern qφ = 1 which is robust against noise.

2.6 Conclusions

Along this chapter we have studied vegetation patterns in clonal-growth plant mead-
ows, mainly P.oceanica. More precisely we have derived a model from the main
mechanisms of growth in clonal behavior based on measured parameters widely ac-
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cepted for clonal growth. Introducing long range competitive interactions the model
explains the formation of regular patterns as result of Turing or Modulation insta-
bility. We have shown that in agreement with pattern formation theory a particular
sequence of patterns appears when increasing mortality of the meadow. Being more
concrete, patterns of circular holes without vegetation arranged in an hexagonal pat-
tern, stripes and patches arranged in an hexagonal pattern emerge from nonlocal
competition. Moreover, isolated circular holes, frequently called fairy circles are ex-
plained by the same competitive mechanisms originating pattern formation. In this
chapter we have estimated the length of this interaction based on the analysis of
LIFEPosidonia cartography giving a competition length around ∼ 20− 30 m, which
points to mechanisms mediated through water movement as the explanation of long-
range competition. Beyond, explaining pattern formation in P.oceanica meadows
the model reproduces landscape features of meadows when approaching the coast.
As a matter of fact, much higher density variability close to the shore is also com-
patible with the formation of a pattern. In the last part we have focused in a more
technical question regarding the distribution of growth directions. Independently of
the branching angle the systems reaches the homogeneous configuration either be-
cause of φb being incommensurable with 2π, or because external fluctuations and
the presence of neutral modes lead to homogenization. Interestingly the only hetero-
geneity in the growth direction is associated to the formation of a pattern, leading
to maximum density of apices in the direction facing outwards the meadow. Hence,
the model only needs the minimal discretization compatible with the branching to
reproduce properly the spatial distributions of vegetation in large regions. From this
perspective the model is specially suitable for landscape prediction and as a diagnos-
tic tool based on cartographic data. Beyond that, the description presented in this
chapter provides a useful framework to study the effects of environmental changes
in the growth of the meadows. Similarly to the analysis of the spatial distribution
close to the coast, the model can be used to explore the effects of climatic change
on the spatial configuration of the meadows, it can be expected to find a shift of the
patterns to different depth due to the increase of sea level. Additionally, tempera-
ture rise may lead to an increase in mortality having an important effect on plant
development. From this perspective the model opens new possibilities of research.
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CHAPTER 3
Derivation of a simplified model for clonal

growth

The ABD model provides a description of the growth of clonal plants with great de-
tail, accounting explicitly for the density of apices in different directions and shoots.
With this model it is possible to explore the dynamics of the system, find station-
ary states with heterogeneous spatial distribution and determine the response of the
meadows in realistic condition. However, the model has important disadvantages
when trying to address more theoretical questions. Both from the numerical and
analytical perspective the complicated form of the model limits the possible results.
Being more precise, the linear stability analysis, one of the easiest calculations one
can perform, does not have an analytical expression already, not to mention using
more advanced methods. Moreover, continuation methods which allow the numeri-
cal tracking of stationary solutions to obtain unstable parts of the solution branches,
which are very important for the dynamics, are also inaccessible. These methods rely
on the calculation of the Jacobian, which grows as N2 being N the number points
used for describing the field. For the ABD model the Jacobian needs huge amounts
of memory, which slows down the computation dramatically. The ABD model is a
big improvement regarding landscape prediction, however, better performance is ex-
pected for approaches which do not have to account for apices in different directions
[13, 23, 15, 115]. Besides, in the previous chapter we have shown the minor effect
the angular part has in the process of pattern formation, where the typical evolution
is reaching a homogeneous distribution in the growth direction. The only relevant
aspect appears when a pattern in space forces a modulation in the angle generally
producing more apices growing outwards the meadow than inwards. Thus, it seem
feasible to find a simpler model which only accounts for the total density of apices in
space. Immediately, one thinks in integrating the angle na(~r, φ, t) to obtain Na(~r, t)
and sum it to shoot density ns(~r, t). However, the integral of the advection term can
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not be expressed in terms of the total density of apices Na(~r, t), so this fact prevents
obtaining straightforwardly a closed equation for nt(~r, t). In this chapter we attempt
to derive an equation for the total density that captures all the relevant dynamics of
the full model.

The chapter is organized as follows: In the first section the derivation of a sim-
plified model is presented. This section is separated into two parts, the first part
devoted to the derivation regarding clonal-growth mechanisms and the second to the
moment expansion. In the second section the simple model is analyzed with the lin-
ear stability analysis of the homogeneous solution and using continuation techniques
to obtain the branches of localized structures in one dimension and patterns.

3.1 Systematic derivation of a simplified equation

Two different kinds of approximations can be done in order to simplify the model.
The first approximation focuses on the simplification of the directional growth given
by the advection term to end up with one equation for the total density and avoid
the dependence on φ. Second, the kernel which accounts for interactions is approx-
imated using a moments expansion. While the first approximation affects the part
of the model which is based on the experimentally validated mechanisms of growth,
the second one affects only the part of interactions across space where the leading
mechanism remains to be clarified.

3.1.1 Simplification of clonal-growth terms

In order to discard the dependence on the angle and describe only the total density
one must write first the density of apices as a Fourier series in the angle φ ∈ {0, 2π}:

na(~r, φ, t) =
a0(~r, t)

2
+
∞∑

n=1

an(~r, t) cos(nφ) + bn(~r, t) sin(nφ), (3.1)

where πa0(~r, t) = Na(~r, t) given that an(~r, t) = 1
π

∫ π
−π na(~r, φ, t) cos(nφ)dφ and bn(~r, t) =

1
π

∫ π
−π na(~r, φ, t) sin(nφ)dφ by definition. Thus, using Eq. (2.3) one can find the evo-

lution equations for all amplitude modes an, bn. This gives a hierarchy of infinite
coupled equations between them in such a way that modes n are coupled to the
modes n+ 1.
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3.1. Systematic derivation of a simplified equation

∂ta0 = (ωb − ωd(nt))a0 − ν∇ · (a1, b1), (3.2)

∂tan = (ωb cos(nφb)− ωd(nt))an
− ν

2
~∇ · (an+1 + an−1, bn+1 − bn−1), (3.3)

∂tbn = (ωb cos(nφb)− ωd(nt))bn
− ν

2
~∇ · (bn+1 + bn−1, an−1 − an+1). (3.4)

From numerical simulations and the linear stability analysis one can see that
modes with n > 1 are not contributing much to the dynamics, meaning that a2

a1
, b2
b1
<<

1 as can be seen in Fig. 3.1, and these terms can be neglected. We define at this
stage the vector ~a = (a1, b1) in terms of the amplitudes of the first mode. The first
approximation is then to neglect terms higher than the first order in such a way that
we reduce an infinite set of coupled partial differential equations to four describing
ns, a0, a1, b1, where the second one can be transformed easily to an equation for Na

using πa0 = Na.
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Figure 3.1: Density of apices of a circular front invading the unpopulated solution for
the ABD model with ωd0 = 0.072 year−1 (left) and ωd0 = 0.038 year−1 (right). Other
parameters are the same in both panels, ωb = 0.06 year−1, ν = 6.11 cm/year, ρ = 2.87 cm,
φb = 45◦, b = 1.25 cm4year−1, κ = 0.048 year−1, σκ = 0 cm, a = 27.38 cm2, σµ = 0 cm,
µ = ωd0. The inset in green represents the density in space of apices growing right where
the dashed line represents the plotted cut. Green line represents the mean density of apices
in the angle (Na/2π). Dashed lines represent apices growing right and left according to
the legend. Red and blue lines shows the amplitude of the first mode and second mode
respectively.

As a second approximation one can make the assumption that the relation in
(2.10) between apices and shoots for the homogeneous stationary case is valid for all
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~r and t. Since mortality rate is equivalent for both densities and advection does not
create plants, it is reasonable to think that the relation between apices and shoots
will be given by the respective rates of birth, which imply precisely the relation in
2.10 and we rewrite as Na(~r, t) ≈ ηnt(~r, t) where η = ρωb

ν+ρωb
. It is clear that this

relation is not exact, however, one can check the accuracy of this approximation
using numerical simulations. The maximum error is small compared to the total
density of apices as can be seen in Fig. 3.2.
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Figure 3.2: Deviations from the proportionality relation Na = ηnt. In orange the exact
relation is represented while in blue the values of shoots and apices density obtained for
the numerical simulation shown in the right panel of Fig. 3.1.

This way, Eq. (3.2), (3.3) and (3.4) can be simplified as three two dimensional
equations for nt, a1, b1 that can be written as

∂tnt = (ωb − ωd(nt))nt −
νπ

η
∇ · ~a (3.5)

∂t~a = (ωb cosφb − ωd(nt))~a−
νη

2π
~∇nt. (3.6)

Eq. (3.6) can be written in terms of the modulus A = ‖~a‖ and the angle θ =
arctan(b1/a1)

∂tA = (ωb cosφb − ωd(nt))A−
νη

2π
‖~∇nt‖ cos(θ − γ), (3.7)

∂tθ =
νη

2π

‖~∇nt‖
A

sin(θ − γ), (3.8)

where γ = arctan(∂ynt/∂xnt) is the angle that the gradient of the total density forms
with the x-axis. Now it becomes clear from equation (3.8) that the evolution of the
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3.1. Systematic derivation of a simplified equation

system will drive the angle θ to the stable fixed point θ = γ + π. This means that
the gradient and the vector ~a have opposite directions, in other words they must be
proportional, ~a = −C~∇nt or A = C‖~∇nt‖ where the constant C in principle can
depend on nt and its derivatives, as it can be seen from Eq. (3.7). Thus, if one
introduces this result in the truncated Fourier series, the density of apices takes the
following form:

na(~r, φ, t) =
Na(~r, t)

2π
+ A(~r, t) cos(φ− γ(~r, t)− π). (3.9)

Essentially the density of apices is driven mostly by the total density of apices plus
small modulations that appear in the borders of the meadow. On the one hand, for
regions where the density is homogeneous A is zero. Then densities of apices growing
in different directions are equal. On the other hand regions where ~∇nt 6= 0 the
modulation contributes and due to the cosine term, those apices growing outwards
the meadow (normal to the front) have a maximum density while those growing
inwards have a minimum as it can be seen in Fig. 3.1.

It is important to notice that starting with arbitrary distributions in the angle
the system will spend a finite time to reach the configuration given by (3.9) and in
this sense the approximation is only valid after this transient.

The value of C related with amplitude of the modulation A will in general be a
function C = C(nt, ~∇nt, ...). This relation will be the result of the evolution of A

with time given by Eq. (3.7). In general C(nt, ~∇nt, ...) can have a very complicated
function, but we can consider the most simple expansion with explicit dependence
of nt.

~a = −(c0 + c1nt)~∇nt. (3.10)

Then introducing this expression in (3.5) one obtains a closed equation for the
total density nt.

∂tnt = (ωb − ωd(nt))nt +
νπ

η
(c0∇2nt + c1nt∇2nt + c1‖~∇nt‖

2
). (3.11)

We notice that parameters c0 and c1 are unknown, however, it is possible to
determine its value in the limit in which Eq. (3.6) is equal to zero. This corresponds
to assuming that the evolution of ~a has different timescale than the evolution of
nt, in such a way it reaches quickly its stationary state. Thus, substituting the
approximation for ~a in this limit one can write

{
(ωb cosφb − ωd(nt))(c0 + c1nt)−

νη

2π

}
~∇nt = 0. (3.12)

The easiest way to obtain the two parameters is using the previous equation
substituting a moving front connecting the populated solution with the unpopulated
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Chapter 3. Derivation of a simplified model for clonal growth

solution. The problem is that the front profile is not known a priori, however, what
we do know is that the front connects the populated solution with the unpopulated
solution. Thus, considering the one dimensional case for simplicity, at each side one
can write the front solution as nt = n∗t + εeλx where λ is the spatial eigenvalue and
∂xnt = λεeλx, which leads to

{
(ωb cosφb − ωd(n∗t )

−(2bn∗t + (κe
(σκλ)

2

2 − ωd0e
(σµλ)

2

2 )e−an
∗
t a)εeλx)(c0 + c1n

∗
t + c1εe

λx)− νη

2π

}
= 0.

(3.13)

At the lowest order in ε

(ωb cosφb − ωd(n∗t ))(c0 + c1n
∗
t )−

νη

2π
= 0, (3.14)

which is essentially Eq. (3.12) evaluated at the fixed point n∗t . Finally, if one sub-
stitutes the unpopulated solution n∗t = 0 one can find c0 and using the populated
solution n∗t one obtains:

c0 =
νη

2π(ωd0 − ωb cosφb)
(3.15)

and

c1 =
νη

2πn∗t

(
1

ωb cosφb − ωd0

− 1

ωb cosφb − ωb

)
. (3.16)

The factor η/π disappears when introducing the coefficients in Eq. (3.11), so we
can rewrite it as follows:

∂tnt = (ωb − ωd(nt))nt + d0∇2nt + d1nt∇2nt + d1‖~∇nt‖
2
, (3.17)

d0 =
ν2

2(ωd0 − ωb cosφb)
(3.18)

and

d1 =
ν2

2n∗t

(
1

ωb cosφb − ωd0

− 1

ωb cosφb − ωb

)
. (3.19)

d1 depends on parameters through n∗t which is the solution of (2.9). In particular,
it is not surprising the approximation is more accurate at the Maxwell point, where
the front is stationary. In the following we are going to test the validity of the
approximations. We are going to consider two approaches. First, we consider the
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3.1. Systematic derivation of a simplified equation

values of d0 and d1 vary with the other parameters. And second, we are going to
consider both constant using the value at the Maxwell point d0,m and d1,m. For
the second approach the Maxwell point is calculated using numerical simulations as
illustrated in Fig. 3.3. In particular we set σκ = σµ = 0 to avoid the formation
of patterns and simplify the calculation, while other parameters are the same as in
chapter 2. Essentially, doing that, we compute d0,m and d1,m as the result of clonal
growth only, which is reasonable since other interaction mechanisms have not been
calibrated using experimental measures. Using the adimensional units defined in the
appendix A where ωb, ν, b = 1, the mortality at the Maxwell point is ωd0,m = 1.3194
and n∗t,m = 0.3855, as a result d0,m = 0.8166 and d1,m = 2.3101 (or in more intuitive
units d0,m = 508.1 cm2year−1 and d1,m = 6560.6 cm4year−1).

In order to give a quantitative description, the model must reproduce different
important aspects. It is important to have the same velocity and smoothness of the
front representing the advance or recession of a meadow. Using the parameters d0

and d1 derived, these two features are well reproduced as can be seen in Fig. 3.3.
We use numerical simulations of a homogeneous front in the ABD model and the
simplified equation (3.17). We set σκ = σµ = 0 to prevent the formation of patterns
and we compute the velocity of the homogeneous front for different values of the
mortality. As one can see the constant value of d0,m and d1,m reproduce better the
velocity of the front for different values of mortality. We notice the other approach
fails outside the bistable region mainly because both parameters diverge close to
ωd0 = ωb cosφb.

Another important aspect for reproducing the quantitative behavior of the sys-
tem is the preservation of the position of the MI in the phase diagram, in other words
for which parameters the homogeneous meadow becomes unstable to patterns. As
a result of the linear stability analysis of the complete model and the approximated
equation given by (3.17), represented in Fig. 3.4 the MI matches almost exactly con-
sidering the full dependence with parameters of d0 and d1, having small discrepancies
for large competition strength κ, which does not correspond with typical values used
for P. oceanica. We perform the linear stability of Eq. (3.17) in chapter 4 in more
detail, however, we notice the linearization in Fourier of the new terms leads to
−(d0 + d1n

∗)q2, with (d0 + d1n
∗) = ν2/(2ωb(1 − cosφb)). On the contrary when d0

and d1 are considered constant (d0 + d1n
∗) depends on the value of n∗t and the linear

stability analysis has bigger discrepancies with the original one specially for large κ.

Summarizing, none of the two approaches produces the best results in all cases,
however, for κ < ωb which is the case, which we are interested in, considering con-
stant the values of d0 = d0,m and d1 = d1,m the calculations are much more simpler
and the divergence is avoided. In the following we are going to use this approach
instead of the full dependence of d0 and d1.
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Figure 3.3: Left: Front velocity of the populated solution invading the unpopulated one
as a function of the ratio between mortality and branching rates for the ABD model and the
simplified version. the results with constant d0 and d1 are shown in green, and considering
them parameter dependent in blue. Right: Density profile of the density of shoots nt for
the ABD model and the simplified for ωd0 = 0.072 year−1, green and blue equivalently to
left panel. The parameters used are ωb = 0.06 year−1, ν = 6.11 cm/year, ρ = 2.87 cm,
φb = 45◦, b = 1.25 cm4year−1, κ = 0.048 year−1, σκ = 0 cm, a = 27.38 cm2, σµ = 0 cm,
µ = ωd0 and for the simplified model d0 = 508.1 cm2year−1 and d1 = 6560.6 cm4year−1.

Focusing on the different terms present in the resultant equation for the total
density one can identify the contribution of the different mechanisms to each term.
First, it is clear that mortality appears in all terms. Branching instead has become
a birth term independent of the growth direction of course. More interesting are the
terms coming from the advection of apices in combination with branching and nonlin-
earity. Three terms appear in the derivation: a diffusion term, a nonlinear diffusion
and a modulus square of the gradient, where the last two have the same coefficient
determining its intensity. These three terms are the result of apices growing in all
directions giving a contribution beyond diffusion and nonlinear diffusion, which are
terms present in other vegetation models of pattern formation [115, 15, 41]. Thus,
this new description of clonal growth accounts for the usual terms but it predicts a

new contribution, d1‖~∇nt‖
2
, distinctive of clonal growth which is very interesting

from the theoretical point of view. It has been shown that this term can displace
the Maxwell point favoring the advance of the populated solution [116], which is
compatible with the interpretation of this term as a spreading term.

At this stage we have simplified the complete 3-dimensional model with two equa-
tions to one equation in 2 dimensions. This description provides accurate quantitative
results providing a simpler description for the modelizations of P. oceanica. In prin-
ciple, other species of clonal plants can be well described with this approach although
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3.1. Systematic derivation of a simplified equation

Figure 3.4: Comparison of phase diagram of the complete model and the simplified
equation (3.17). In green d0 = d0,m and d1 = d1,m are considered constant, and in blue
the dependence of d0 and d1 with parameters is considered. The parameters are ωb = 0.06
year−1, ν = 6.11 cm/year, ρ = 2.87 cm, φb = 45◦, b = 1.25 cm4year−1, σκ = 2851.4
cm, a = 27.38 cm2, σµ = 203.7 cm. We show the region where the populated solution
is stable in bright blue, where the unpopulated solution is stable in white, the region of
coexistence between the populated and unpopulated in blue, and finally the region where
the populated solutions is unstable to patterns in yellow. T refers to the transcritical
bifurcation at ωd0/ωb = 1, and SN for the saddle-node bifurcation where the subcritical
populated solutions ends. Green and blue dots correspond to the modulation instability
curve of the simplified equation in each case.

the validity of all approximations remains to be investigated. The simplified model
in equation (3.17) approximates quantitatively good the ABD model. In chapter 4
we devote more effort to study the results with the simplified model preserving the
interaction terms described by the kernel. Now we analyze further the derivation of
the simple model. In [117] a more simple description based on symmetry arguments
for the growth of clonal plants is proposed. Here we can derive this equation giving
a relation between parameters performing a moment expansion of the kernel. The
disadvantage of the next steps in the derivation is that the quantitative agreement
is lost. In particular, the spatial scale of the pattern, the density of shoots for the
homogeneous solution or the position of the MI are not well reproduced. The advan-
tage is that one can tune the parameters for each particular case and use it to realize
numerical simulations and more important to understand the qualitative behavior of
the growth.
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Chapter 3. Derivation of a simplified model for clonal growth

3.1.2 Moment expansion of the kernel

In order to reach the simplest description we approximate the nonlocal interactions
in ωd(nt) as follows. First of all, the exponential term can be expanded at first order
such that (1−e−aent) ∼ aent then extracting ae out of the integral, the nonlocal term
reads:

I(nt(~r, t)) =

∞∫

−∞

∞∫

−∞

K(~r − ~r′)nt(~r′, t)d~r′. (3.20)

The integral term can be expanded using a moment expansion as in [118, 105, 106]
which is equivalent to a Taylor expansion of the kernel in the Fourier space. The
moment expansion allows to write the integral in terms of the derivatives in space
where only even derivatives contribute given the symmetry of the kernel K(~r) =
K(−~r):

I(nt(~r, t)) =
∞∑

j=0

M2j

(2j)!
∇2jnt(~r, t), (3.21)

where the coefficients correspond to the moments of the kernel.

M2j = (−1)j
d(2j)K̃(q)

dq2j

∣∣∣∣
q=0

= 2π(−1)jJ
(2j)
0 (0)

∞∫

0

r2j+1K(r)dr. (3.22)

Considering terms until fourth order provides the simplest description of the integral
leading to patterns. Although the critical wave number is not well captured the
qualitative behavior is well reproduced. Hence, replacing the integral term by the
expansion until fourth order in Eq. (3.17) one can write the following equation
describing the evolution of the total density.

∂tnt = (ωb − ωd0)nt − ae(κ− µ)n2
t − bn3

t

+ (d1 −
ae(κσ

2
κ − µσ2

µ)

2
)nt∇2nt −

ae(κσ
4
κ − µσ4

µ)

8
nt∇4nt

+ d0∇2nt + d1‖∇nt‖2. (3.23)

At this level the approximation is too rough to provide a quantitative correspon-
dence. Essentially the approximation of the exponential removes the saturation of
the interaction with nt and leads to values of the stationary density which are very
different from the original model. In addition, the moment expansion does not have
enough terms to reproduce the shape of the kernel for large wavenumbers. In Fig.
3.5 we show the moment expansion in Fourier space with different orders of the
expansion to clearly show that fourth order is not sufficient.
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Figure 3.5: Representation of the kernel in Fourier space together with different moment
expansions truncated at different orders as well as a fourth order polynomial in blue chosen
to have the maximum at the same wave number than the kernel. Parameters are ωd0 = 0.08
year−1, κ = 0.048 year−1, σκ = 2851.4 cm, σµ = 203.7 cm.

3.2 Analysis of the simplified equation

Hence, the alternative approach is to recalibrate the model to resemble quantitatively
the complete model. In the following for simplicity in the notation, n ≡ nt

∂tn = (ωb−ωd0)n+a(κ−ωb)n2−bn3−αn∇2n−βn∇4n+d0∇2n+d1‖∇n‖ 2, (3.24)

where now a, b, α and β are chosen to satisfy some constraints. The first one has been
already introduced. In order to have the saddle node bifurcation and the transicritical
bifurcation intersecting at κ = ωb, as in the ABD model, we need to impose µ = ωb.
This can be done without loss of generality and it facilitates the comparison between
the ABD model and its most simplified version. We choose a = 100.41 cm2year−1

and b = 12.5 cm4year−1 imposing that for κ = 0.048 year−1 the mortality of the
saddle node is close to ωd0/ωb = 1.5, which corresponds to the value in the original
model. The values of the shoot density are similar too. In other words we choose both
parameters to have a similar bifurcation diagram, as can be seen in Fig. 3.8. The
parameters α = 8.642 · 107 cm6year−1 and β = 3.585 · 1013 cm8year−1 are chosen for
κ = 0.048 year−1 in order to have a the modulation instability at the same value of
mortality and with the same critical wavenumber than the ABD model. This can be
easily done because in this model the dispersion relation has an analytical expression
which can be obtained considering perturbations of the type n = n∗+ eλt+iqx, and it
is given by:
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λ(q) = ωb − ωd0 + 2a(κ− ωb)n∗ − 3bn∗2 + αn∗q2 − βn∗q4 − d0q
2, (3.25)

where q = ‖~q‖ is the wavenumber of the perturbation and n∗ the stationary
solution which can be zero for the stability of the unpopulated solution and

n∗± =
a(κ− ωb)

2b
±
√(

a(κ− ωb)
2b

)2

− ωb − ωd0

b
, (3.26)

for the populated solution. Thus, the critical wavenumber is given by qc =√
αn∗+−d0

2βn∗+
, while there is not an analytical expression for the threshold.

Figure 3.6: Phase diagram of the simplified model in (3.24). The parameters are ωb = 0.06
year−1, a = 100.41 cm2year−1, b = 12.5 cm4year−1, α = 8.642 · 107 cm6year−1, β =
3.585 · 1013 cm8year−1, d0 = 508.1 cm2year−1 and d1 = 6560.6 cm4year−1. We show the
region where the populated solution is stable in bright blue, where the unpopulated solution
is stable in white, the region of coexiestence between the populated and unpopulated
in blue, and finally the region where the populated solutions is unstable to patterns in
yellow. T refers to the transcritical bifurcation at ωd0/ωb = 1, and SN for the saddle-node
bifurcation where the subcritical populated solutions ends.

In Fig. 3.6 we show the phase diagram computed with 3.25. Structurally the
phase diagram is equivalent to the one of the full model (Fig. 3.4), in the sense
that the same phases can be found. Similarly, the modulation instability reproaches
to the saddle node bifurcation when decreasing the strength of competition in the
subcritical case. On the contrary, in the supercritical case, when κ > ωb there is
again a window between two modulation instabilities where the solution is unstable
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Figure 3.7: Dispersion relation for the populated solution n+ (left) and n− (center) for
different values of the mortality. Right: Marginal stability curve for n+ in yellow and n− in
dashed yellow. In black the maximum of the dispersion relation is representes respectively.
The parameter set are ωb = 0.06 year−1, κ = 0.048 year−1, a = 100.41 cm2year−1,
b = 12.5 cm4year−1, α = 8.642 · 107 cm6year−1, β = 3.585 · 1013 cm8year−1, d0 = 508.1
cm2year−1 and d1 = 6560.6 cm4year−1.

to patterns. Essentially the qualitative features of the model have not been modified,
however, the results are quantitatively different. Fig. 3.7 shows the finite wavelength
instability of the populated solution for different values of the mortality in the su-
percritical regime. Additionally, we show the dispersion relation for the unstable
branch which is unstable for q = 0 for all values of the parameters. However, for a
certain value of the density n∗− close to the transcritical bifurcation the maximum of
the dispersion relation changes to a finite wavelength. Finally, we show the marginal
stability curve for the two branches together with the maximum of the dispersion
relation.

As a result of the modulation instability a pattern forms, here we study the
bifurcation diagram of patterns and localized states using numerical continuation
techniques (see Appendix D, thus we can find stationary solutions, including the
unstable parts which are not available using numerical simulations. In Fig. 3.8 we
show the results in one dimension. The stripes solution with the critical wavenum-
ber emerges from the Modulation Instability (MI) subcritically and folds for lower
values of mortality. The branch stabilizes at the fold. Thus, increasing mortality the
branch continues after the saddle node of the homogeneous solutions folding again at
another saddle node, where the stability changes and continues decreasing mortality
until it connects with the solution n− very close to zero density where the critical
mode bifurcates. Thus, the stable pattern extends for larger values of the mortality
coexisting with the unpopulated solution. This solution persist beyond mortality
values where the homogeneous solution does not exist. When the stripes solution
is subcritical and coexists with the homogeneous solution the so called homoclinic
snaking region appears [111, 112, 114]. In this region there are localized solutions,
which from the perspective of spatial dynamics are connections of the periodic or-
bit formed by the pattern with the homogeneous solution. These are homoclinic
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Figure 3.8: Bifurcation diagram of the simplified equation in one dimension. Left panel
shows the average density for different solutions while right panel shows the maximum
and minimum of the density. In red the homogeneous populated solution n± (P ) and
the unpopulated (U). In purple isolated holes, stripes (S) in green and localized spots in
orange. Continuous (dashed) line indicates the sable (unstable) solutions. MI refers to
the modulation instability, T to the transcritical, and SN to the saddle node. In gray the
homogeneous solution of the ABD model for comparison. The parameter set are ωb = 0.06
year−1, κ = 0.048 year−1, a = 100.41 cm2year−1, b = 12.5 cm4year−1, α = 8.642 · 107

cm6year−1, β = 3.585·1013 cm8year−1, d0 = 508.1 cm2year−1 and d1 = 6560.6 cm4year−1.

connections where interpreting space as the analog of time the solution starts from
the homogeneous solution does a cycle around the periodic orbit and returns to the
homogeneous solution. This solution in particular corresponds to a hole without veg-
etation embedded in a dense meadow or a fairy circle. Equivalently two oscillations
are also a solution which corresponds to two holes. In fact an arbitrary number of
them is possible in this region. The bifurcation diagram shows all these solutions.
The branch bifurcates from the modulation instability subcritically, after the first
fold the localized structure with one hole stabilizes. The curve snakes and after every
two folds an additional hole is created at each side until all the domain is filled and
the branch connects with the periodic orbit or a stripes pattern. For larger values
of mortality, and as the last state before desertification, a different set of localized
structures exist. Localized patches, emerge from the solution n− at a distance from
the transcritical determined by the system size. A single peak grows from a modu-
lation with a wavelength equal to the system size when increasing mortality. After
a fold, where stabilizes, continues decreasing mortality until a second fold where the
solution splits in two peaks and becomes unstable, which later decrease in size fol-
lowing the curve and reaching again to the solution n−. In chapter 4 we devote more
efforts to analyze localized structures and their bifurcation diagram in the model
with the kernel in 3.17 which are very similar to the ones presented here.

In Fig. 3.9 we present the bifurcation diagram including positive hexagons
(spots), stripes and negative hexagons (gaps) in order to show, in fact, that the sim-
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Figure 3.9: Bifurcation diagram of the simplified equation in two dimensions. Left panel
shows the average density for different solutions while right panel shows the maximum
and minimum of the density. In red the homogeneous populated solution n± (P ) and
the unpopulated (U). In yellow negative hexagons (H−), in bright yellow mixed mode
connecting stripes and negative hexagons, in green stripes (S) computed in one dimension
and finally in blue positive hexagons (H+). Continuous (dashed) line indicates the sable
(unstable) solutions. MI refers to the modulation instability, T to the transcritical, and
SN to the saddle node. The parameter set are ωb = 0.06 year−1, κ = 0.048 year−1,
a = 100.41 cm2year−1, b = 12.5 cm4year−1, α = 8.642 · 107 cm6year−1, β = 3.585 · 1013

cm8year−1, d0 = 508.1 cm2year−1 and d1 = 6560.6 cm4year−1.

plified model presents the same patterns than the ABD model. Negative hexagons
bifurcate subcritically and fold at a saddle node where they acquire stability. In the
middle of the branch a mixed mode bifurcates connecting with the solution of stripes
and precisely at this value the solution loses stability. The branch finishes close to
the transcritical bifurcation after the fold as previously. Positive hexagons perform
a similar path reaching higher values of the mortality. This branch bifurcates su-
percritically in agreement with the general theory of pattern formation. However,
the unstable branch folds twice before stabilizing and remains stable until the last
fold. Interestingly, the bifurcation diagram shows that positive hexagons are the
most persistent solution for high values of mortalities. Note that stripes are unstable
to hexagons close to their fold. In general the three solution change similarly when
increasing mortality, the parts without vegetation increase in such a way the average
density decreases for larger mortality, which is consistent with the ABD model and
the fact of approaching desertification. Notice the standard sequence of patterns,
negative hexagons, stripes, positive hexagons when increasing mortality appears.
Moreover, different ranges of stability of the stationary solutions are present, which
in certain cases coexist. In fact, it is possible to find values of the mortality in
which all the solutions are stable simultaneously, including the homogeneous, hence,
it is expected to find a very rich spatiotemporal dynamics due to these ranges of
coexistence.
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3.3 Conclusions

We have derived a simplified 2-dimensional equation describing the total density
in space from the complete ABD model consisting of one 2-dimensional and one
3-dimensional equations describing shoots and apices. This derivation makes a con-
nection between the terms appearing in the simplified equation with the mechanisms
of clonal growth involved in the ABD. Consequently we have given a relation be-
tween parameters of both models allowing to realize numerical simulations with the
simplified equation corresponding to real conditions. It is important to notice that
the new equation has a new term no present before in previous models. The term
d1‖∇n‖ 2 is new, and it is a specific feature of clonal growth. This term adds an ex-
tra contribution to the spatial spreading, increasing the velocity of the front. Thus,
the exploration of the additional effects this term can introduce in the growth will
have an important impact on the understanding of clonal growth from the spatial
colonization perspective.
The approximations made are well justified and in accordance with numerical simula-
tions. Moreover, we have shown that the simplified equation reproduces the velocity
and profile of the front in the subcritical region providing a good quantitative de-
scription of the colonization of space due to clonal-growth rules. The phase diagram
and the position of the MI is maintained as well, when considering constant d0 and
d1 the curve can change with respect to the ABD model, however, it not changes is
qualitative shape. Even so, the approximation remains valid specially in the subcrit-
ical domain. Furthermore, we show that when approximating the kernel term by a
Taylor expansion the qualitative behavior is reproduced but the quantitative agree-
ment is lost. For instance, we have shown the equivalence of the phase diagram and
MI, the presence of the same patterns and its sequence of appearance with mortality.
Localized structures are also present as the analog of fairy circles. Isolated patches
have been found too.

Clonal-growth plants are present in many different ecosystems where the condi-
tions of growth can also change. From this perspective not all the approximations
will hold for different species. However, the fact that one has a procedure to simplify
the complete model of clonal growth allows to choose different levels of approxima-
tion according to the conditions we want to reproduce. A good example of this is
the moment expansion of kernel.
The approximation using the moments of the kernel is equivalent to a Taylor expan-
sion of the kernel in Fourier space. This way it is very easy to test the accuracy of
the approximation. For the particular case of P.oceanica the competition length is
large and as a result when one considers the moment expansion until fourth order
the maximum of the kernel in Fourier space is not well captured, which will give a
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wrong critical wave number or patterns with different characteristic wavelength than
the original model. The immediate solution of considering more terms of the expan-
sion, or expanding around the maximum of the dispersion relation, do not provide
a more simple description. The disadvantages of this approximation can be avoided
in two ways. The first option is to consider the complete kernel which we are going
to develop in chapter 4, and it gives very good results compared to the complete
model in terms of numerical efficiency. The other possibility, if one wants to use the
most simplified equation, is changing the parameters to fit the bifurcation diagram
the mortality of the modulation instability and the wavenumber of the ABD model.

Other species instead will have interaction across space which will be well re-
produced with the kernel moment expansion, however, it may be possible to have a
different branching angle which will make some of the previous approximation less
appropriate. Given the generality of the model, it would be useful to learn from
the derivation which approximations are good for each particular species which is
something to be investigated in the future.
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CHAPTER 4
Simplified model with long-range

interactions

The previous chapter focuses on the derivation of a simplified equation from the
ABD model. As a result of different approximations the quantitative agreement is
lost and parameters need to be fitted in order to obtain reasonable results from the
quantitative point of view. There is an intermediate point in the derivation in which
the quantitative agreement holds. In particular Eq. (3.17). Changing for simplicity
the notation to n ≡ nt it reads

∂tn = (ωb − ωd(n))n+ d0∇2n+ d1n∇2n+ d1‖∇n‖ 2, (4.1)

where the mortality term accounts for the nonlocal interactions described by the
integral term

ωd(n) = ωd0 +

∫ ∫
K(~r − ~r′)(1− e−an(~r′))d~r′ + bn2. (4.2)

Keeping the full nonlocal term Eq. (4.2) preserves all the features of the full
model. Thus, there are two important reasons to study this intermediate equation.
First, it is a better approximation to the ABD model. Second, the influence of the
nonlocal interaction in the dynamics and the spatial profiles have been less stud-
ied. Most studies use equations representing spatial coupling with derivatives up
to fourth order. Thus, the interaction represented with the integral term gives an
additional interest to the problem. The aim is to provide a deeper characterization
of the model, in particular the stationary states, their stability and their coexistence.

This chapter is organized as follows: The first section focuses on the linear stabil-
ity analysis of the model. The second section on the bifurcation diagram in one and
two dimensions. Finally, the last section focuses on the dynamics of fronts between
two stationary states in the one dimensional case.
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Chapter 4. Simplified model with long-range interactions

4.1 Linear stability analysis

The homogeneous stationary solution n∗ of Eq. (4.1) is given by (2.9). It is the same
stationary solution of the ABD model for the total density. Both the populated and
zero states are solutions of this equation. The stability of these stationary states
is determined with a linear stability analysis. One considers the evolution of small
perturbations around the stationary states of the form n = n∗ + eλt+i~q·~r to obtain
the dispersion relation λ(~q). For the unpopulated case it reads

λ(q) = ωb − ωd0 − d0q
2, (4.3)

where q = ‖~q‖ . Essentially there is a change of stability at q = 0 for ωb = ωd0

where the homogeneous solution bifurcates. Above this transcritical bifurcation the
unpopulated state is stable and perturbations decay, below the threshold perturba-
tions grow until the saturation term limits the growth and the systems reach the
stationary populated state.
Around the populated solution the dispersion relation has the following form

λ(q) = −(2bn∗ + ae−an
∗K̃(q))n∗ − (d0 + d1n

∗)q2, (4.4)

where K̃(q) is the Fourier transform of the kernel. In analogy to the previous chapter
we call n+ the part of the populated solution which is stable for q = 0 and n− the
part that is unstable, these two branches emerge from a saddle node bifurcation.
Thus, one can study the stability of the two branches independently as it can be
seen in Fig. 4.1. For n+ the maximum of the dispersion relation becomes positive
at ωd0,c/ωb = 1.345 with the critical wavenumber qc = 0.094 rad/m. Although
nonlinearities can play an important role, the maximum of the dispersion relation
generally determines the wavenumber of the emerging pattern. The solution n−,
close to the transcritical has a parabolic dispersion relation with maximum at q = 0.
However, when moving along n− increasing ωd0, the maximum displaces to finite
wavenumbers. The marginal stability curve summarizes the dependence of the two
solutions with ωd0. After the onset of the modulation instability at ωd0,c a bandwidth
of finite wavenumbers becomes unstable, which reaches to zero at the saddle node.
Following the branch decreasing n−, now the homogeneous mode is unstable and
the band widens. Finally close to zero density the bandwidth diminishes and the
maximum of λ(q) moves to q = 0, or to very large wavelengths.

It is not possible to obtain an exact expression of the critical wave number qc, how-
ever, in the limit σµ → 0 one can obtain the following expression for the wavenumber
with maximum growth rate as a function of the stationary density n∗

q2
m =

2

σ2
κ

ln

(
κσ2

κae
−an∗n∗

2(d0 + d1n∗)

)
(4.5)
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Figure 4.1: Dispersion relation for the populated solution n+ (left) and n− (center) for
different values of the mortality. Right: Marginal stability curve for n+ in yellow and n− in
dashed yellow. In black the maximum of the dispersion relation is represented. Finally the
value of ωd0/ωb of the saddle node bifurcation is indicated with a blue line. The parameters
are ωb = 0.06 year−1, κ = 0.048 year−1, a = 27.38 cm2, b = 1.25 cm4year−1, σκ = 2851.4
cm, σµ = 203.7 cm, d0 = 631.2 cm2year−1, d1 = 4842.1 cm4year−1.

which is a good approximation since σµ is small compared with σκ.

The phase diagram in Fig. 4.2 using adimensional mortality ωd0/ωb and adimen-
sional strength of the interaction κ/ωb, shows essentially the same as in Fig. 3.4.

Figure 4.2: Phase diagram of Eq. (4.1). Here ωb = 0.06 year−1, b = 1.25 cm4year−1,
σκ = 2851.4 cm, a = 27.38 cm2, σµ = 203.7 cm, d0 = 631.2 cm2year−1, d1 = 4842.1
cm4year−1. We represent the region where the populated solution is stable in bright
blue, where the unpopulated solution is stable in white, the region where populated and
unpopulated coexist in blue, and finally the region where the populated solution is unstable
to patterns in yellow. Note that the patterns arising from the MI extend beyond this region
and may coexist with the populated or unpopulated solutions. T stands for the transcritical
bifurcation at ωd0/ωb = 1, and SN for the saddle-node bifurcation where the subcritical
populated solutions ends.
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Chapter 4. Simplified model with long-range interactions

For small values of κ/ωb, in the bistable regime, the region stable to patterns extend
until the saddle node. On the contrary, for larger values of κ/ωb there is a limited
window between two modulation instabilities. The modulation instability extends
for larger values of κ/ωb due to the constant values of d0 and d1, being this the only
difference with previous cases.

4.2 Continuation of nonlinear states

The pattern that forms after the onset of the instability emerges as a result of long-
range competition and nonlinearity. As shown previously, different patterns emerge
from the modulation instability according to the theory of pattern formation, and
nonlinearity plays an important role in the relative stability of different stationary
solutions. Using continuation techniques it is possible to track these nonlinear states
in parameter space.

We focus first on the one dimensional case. The pattern with critical wavenumber
bifurcates at the modulation instability subcritically. The solution which emerges
as an harmonic function is unstable. Decreasing mortality the nonlinearities be-
come important and modifies the pattern profile to a non-harmonic function. After
the saddle node the pattern stabilizes, the spatial profile here is characterized by
maximum density at the borders of the meadow (Fig. 4.4). At difference with the
simplified Eq. (3.24) where the profiles are quasi-harmonic, here the integral term
couples a broader region of space, in such a way plants at the border can benefit from
the lack of density in the vicinity. The stripe pattern persists until large values of the
mortality. Increasing mortality the pattern changes in a continuous way decreasing
the value of the average density, as can be seen in Fig. 4.3 and 4.4. The regions with
non-zero density shrink and the maximum density grows, leading to a more compact
distributions of vegetation in harmful growth conditions.

In the region of bistability between the pattern and the homogeneous solution
localized structures form. In this interval there is a subdomain in which an arbitrary
number of localized holes embedded in the homogeneous solution is stable. In Fig.
4.5 we show the bifurcation structure of these stationary states. At the modulation
instability two branches bifurcate subcritically, which fold for a lower value of the
mortality forming respectively a localized structure with one and two holes. Both
solutions have oscillatory tails, the first oscillation moderately increases its amplitude
as one follows the curve. At the fold this oscillation starts to increase considerably
and at the next fold two extra holes have been created at both sides of the first
localized structure. This process is successively repeated for next folds until the full
domain is filled and the branches connect with a branch of stripes with the wavelength
selected the front between the pattern and the homogeneous solution. The parts
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Figure 4.3: Bifurcation diagram as a function of the ratio ωd0/ωb. The maximum and
minimum value of the density for different stationary solutions is plotted in the left panel
and the integral of the solution divided by the system size in the right panel. Continuous
(dashed) lines represent the stable (unstable) solutions. In red the homogeneous solutions
are represented, the populated (P ) and the unpopulated (U). In purple localized structures
of holes embedded in the homogeneous solution. In green the stripes pattern (S) and orange
represents the localized structures of patches. MI refers to the modulation instability, T
to the transcritical, and SN to the saddle node. The parameters are: ωb = 0.06 year−1,
b = 1.25 cm4year−1, κ = 0.048 year−1, σκ = 2851.3 cm, a = 27.38 cm2, σµ = 203.7 cm,
d0 = 631.2 cm2year−1, d1 = 4842.1 cm4year−1.
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Figure 4.4: Different stable stationary solutions of stripes pattern for ωd0/ωb =
1, 1.5, 2.45, 3.1 from left to right. The other parameters are: ωb = 0.06 year−1, b = 1.25
cm4year−1, κ = 0.048 year−1, σκ = 2851.3 cm, a = 27.38 cm2, σµ = 203.7 cm, d0 = 631.2
cm2year−1, d1 = 4842.1 cm4year−1.

of the branches where new holes are created is unstable while the other parts are
stable. These localized structures are the result of the existence of an heteroclinic
orbit in the spatial dynamics framework. This heteroclinic orbit is precisely the front
connecting the pattern (periodic orbit) with the homogeneous solution (a saddle in
the spatial dynamics). This scenario is associated to spatial chaos giving rise to all
possible spatial profiles as combination of arbitrary sequences of localized structures
separated by the homogeneous solution.

The formation of stable localized structures has dramatic effects on the dynamics.
From a different perspective, a localized structure can be interpreted as two fronts
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Chapter 4. Simplified model with long-range interactions

locked, both connecting the pattern and the homogeneous solution. Hence, the
snaking region correspond to the region where the front connecting the two stationary
solutions is also stationary. Thus, it is said the front is locked or pinned in this region
also called the pinning region. Outside this region the front moves as we will see in
the next section.

A different set of localized structures appears for higher values of mortality. In-
terestingly these are the last solution that persists before the only solution is bare
soil. An isolated peak or patch is stable for high values of the mortality. As can
be appreciated in Fig. 4.6, the branch bifurcates from the transcritical bifurcation
in the limit of infinite system size. For a finite domain of size L, the solution bi-
furcates from the solution n− when λ(q = 2π

L
) = 0 as an harmonic function with

the wavelength L. Very quickly the width around the maximum shrinks along the
branch to form the solution of one peak, which grows in amplitude until the saddle
node around ωd0/ωb ∼ 3.55. After the saddle node the solution stabilizes and grows
in size while the maximum value diminishes as decreasing mortality. At a certain
moment the central value becomes a relative minimum, which after the second fold
splits the localized structure in two peaks. Later after the third fold all the structure
diminishes in size and continues until very close to the transcritical bifurcation, more
precisely to n− when λ(q = 22π

L
) = 0, where the solution with a wavelength of half

the system size bifurcates. In particular it is not clear if this branch bifurcates from
the homogeneous branch or from the branch of two peaks, which clearly bifurcate
from the homogeneous as it can be seen in Fig. 4.6. The numerical precision is
insufficient to determine this connection with the chosen discretization. From the
bifurcation of the two peaks solution an equivalent curve emerges where the solu-
tions along the curved are the same than the previous case but formed by two peaks
separated the system size. Each one of the peaks follows the same change in shape
along the curve than the solution of one peak, both solutions have equivalent sta-
bility as shown in the panels in Fig. 4.6. Localized structures of isolated patches
have been shown to be present in other vegetation models applied to arid ecosystems
[119, 120] and in similar models applied to completely different topics [121]. In all
cases the bifurcation diagram is similar and the work presented in [42] is particularly
interesting as they show the connection of the two types of localized structures at
the Maxwell point for a different parameter regime.

In the same way we did in the one dimensional case, the stationary solutions
in two dimensions can be followed changing the mortality. We continuate negative
hexagons and positive hexagons (Fig. 4.7). The pattern of stripes is equivalent to
the one dimensional case. The solution of negative hexagons bifurcates from the
modulation instability subcritically and the consecutive fold extends beyond the fold
of the stripes. At this fold the solution stabilizes and generally remains stable until
high values of mortality close to the next fold. Here, the solution jumps to an other
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Figure 4.5: Bifurcation diagram as a function of the ratio ωd0/ωb using the norm of the
difference to the homogeneous populated solution n∗ (P ) to better show the homoclinic
snaking of the localized structures. Dark purple represents solutions with odd number
of localized structures. Bright purple represents solutions with even number of localized
structures. In green stripe patterns (S) with different wavenumber. One corresponds to
the critical wavenumber while the other corresponds to the wavelength selected by the
front between the pattern and the homogeneous solution. The solutions in the top panels
correspond to the points indicated in the branches. Continuous (dashed) lines represent
the stable (unstable) solutions. MI refers to the modulation instability. The parameters
are: ωb = 0.06 year−1, b = 1.25 cm4year−1, κ = 0.048 year−1, σκ = 2851.3 cm, a = 27.38
cm2, σµ = 203.7 cm, d0 = 631.2 cm2year−1, d1 = 4842.1 cm4year−1.
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Figure 4.6: Bifurcation diagram as a function of the ratio ωd0/ωb using the average
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Figure 4.7: Bifurcation diagram as a function of the ratio ωd0/ωb for two dimensional
patterns. The maximum and minimum of the solution is used in the left panel while the
average density is used in the right panel. In red the homogeneous populated solution
(P ) and the unpopulated (U). Yellow represents the branch of negative hexagons (H−).
Green represents the branch of stripes pattern (S) computed in one dimension. And
blue represents the branch of positive hexagons (H+). The dots indicated with roman
numerals are represented in Figs. 4.8 and 4.9. Continuous (dashed) lines represent the
stable (unstable) solutions. MI refers to the modulation instability, T to the transcritical,
and SN to the saddle node. The parameters are: ωb = 0.06 year−1, b = 1.25 cm4year−1,
κ = 0.048 year−1, σκ = 2851.3 cm, a = 27.38 cm2, σµ = 203.7 cm, d0 = 631.2 cm2year−1,
d1 = 4842.1 cm4year−1.

pattern depending on the relative stability of the different solutions. Along the
branch the pattern changes similarly to the one dimensional case. The populated
part of the solution shrinks and the maximum value grows. Thus the average density
decreases while increasing mortality. After, the instability the unstable part of the
branch folds. At the fold the holes have become big enough to touch between them
leaving triangles in the middle (see Fig 4.8). After the fold the triangles become
round and in a second fold the solution transforms in a pattern of patches located at
the vertices of an hexagon. Later, after the last fold, the density decrease maintaining
the spatial arrangement and finally connects with the homogeneous branch n− close
to transcritical. The different spatial distribution can be seen in the Fig. 4.8.

The solutions of positive hexagons has a similar behavior when changing mortality
(Fig. 4.9). It is stable for high values of the mortality and loses stability after the fold
at ωd0/ωb ∼ 3.25. After the fold the unstable branch follow until its bifurcation close
to the transcritical bifurcation of the zero solution. Equivalently to previous cases,
higher values of the mortality lead to more compact distributions and higher values of
the maximum density. When decreasing mortality the solution loses stability and it
jumps to a different pattern. Similarly to the previous case the branch continues, and
the spots in the hexagonal lattice become big enough to touch between them. They
form triangles that after the fold become round and after the next fold form spots
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Figure 4.8: Different stationary solutions of the branch of negative hexagons. The panels
correspond to the dots indicated in Fig. 4.7. The mortalities are ωd0/ωb = 1.2, 2.11,
2.97, 2.48, 2.22, 3.01 n the order specified by the numerals and the other parameters are
ωb = 0.06 year−1, b = 1.25 cm4year−1, κ = 0.048 year−1, σκ = 2851.3 cm, a = 27.38 cm2,
σµ = 203.7 cm, d0 = 631.2 cm2year−1, d1 = 4842.1 cm4year−1.

arranged in the vertices of an hexagon. Two extra folds follow, the first is for higher
values of mortality than those for the stripes pattern and the negative hexagons. The
second fold is very close to the modulation instability where the branch bifurcates
supercritically as expected from the theory of pattern formation. In Fig. 4.7 the
branch of negative hexagons with indicated solutions represented is shown in Fig.
4.9. These atypical configurations are for the two branches are in all cases unstable
solutions, which means they will not be observed. From the theoretical point of view
it is interesting the bifurcation structure of the mode. It is possible that the high
number of folds can be attributed to the highly nonlinear regime, different number of
folds have been found in a Swift-Hohenberg equation with high order nonlinearities
[122].

Beyond the three patterns analyzed more spatial structures are expected to be
stable. Localized structures are an example. Holes and spots with radial symmetry
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Figure 4.9: Different stationary solutions of the branch of positive hexagons. The panels
correspond to the dots indicated in Fig. 4.7. The mortalities are ωd0/omegab = 1.38, 1.74,
1.32, 2.17, 3.11, 3.24 in the order specified by the numerals and the other parameters are
ωb = 0.06 year−1, b = 1.25 cm4year−1, κ = 0.048 year−1, σκ = 2851.3 cm, a = 27.38 cm2,
σµ = 203.7 cm, d0 = 631.2 cm2year−1, d1 = 4842.1 cm4year−1.

are expected to be found in similar regions than its one dimensional analogs. Rings
of vegetation have been found in similar models [123, 121] and other more complex
structures lacking radial symmetry. The difficulty associated to computing these
structures is the large arrays that must be considered, essentially the tails can not be
neglected and large domains are necessary. At difference with the case of patterns,
where only the Brillouin zone is considered, localized structures are more compu-
tationally demanding. Radial structures have the advantage that with the proper
change of variables the solution can be computed in one dimension, describing only
the radial profile. From this perspective more work is needed to fully characterize
the bifurcation diagram for two dimensional solutions and its stability.

The bifurcation diagram is not only a compact summary of the stationary solu-
tions of the model but it also provides information about the dynamics. The stability
of the solutions gives important information about the evolution of the system for
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Chapter 4. Simplified model with long-range interactions

all values of ωd0/ωb. The extensions of different branches determine the thresholds
under which the meadow may experience sudden transitions. Moreover, the recovery
of vegetation is determined by the unstable branches which act as barriers between
growth or decay, giving valuable information for reforestation projects. Finally the
relative stability between stationary solution may determine the evolution of differ-
ent patterns one close to the other. In other words, a front connecting to stationary
solutions may move according to the relative stability of the two confronted solutions
[124]. This dynamics is studied in the next section.

4.3 Vegetation fronts

The two dimensional case has multiple connections between different stationary solu-
tions. Fronts between stripes and positive hexagons, stripes and negatives hexagons,
positive and negative hexagons are the simplest combinations one can imagine. How-
ever, more complicated scenarios accounting for the orientation of the patterns with
respect to the front or connections involving three stationary solutions, in the cases
in which there is tristability, are also valid possibilities. The difficulty of the analysis
in the two dimensional case is considerable and it will not be tackled here. Instead,
we focus in the one dimensional case in order to gain understanding on the relevant
factors determining the evolution of these spatial profiles.

Multiple solutions simultaneously present for the same parameter values allow
the formation of fronts. The homogeneous populated solution (P), the unpopulated
solution (U) and the stripes pattern (S) coexist in different regions making possible
the existence of different fronts in different ranges. We study the front connecting
the populated solution with the unpopulated solution (P-U), the front connecting
the populated solution with the stripes pattern (S-P) and the front connecting the
stripes pattern with the unpopulated solution (S-U). The fronts, according to the
stability of the solutions involved, can be classified in two types. Those involving
two stable states are called pushed fronts while those involving a stable state and an
unstable state are called pulled fronts. The motion of the first is driven by the relative
stability between the two solutions which is determined by nonlinear mechanism. On
the contrary pulled fronts are driven by linear mechanisms. Basically, perturbations
that grow on the edge of the fronts drive the evolution, being the motion determined
by the eigenvalues of the unstable solution. Thus, being the evolution of the front
determined by linear mechanisms it is possible to compute the velocity of propagation
using a linear calculation, as we will do in the next pages. On the following we
perform numerical simulation with the pseudospectral method explained in Appendix
C using periodic boundary conditions with n = 16384 number of points, which allows
to simulate big domains that allow the propagation of the front for long distances.

72



4.3. Vegetation fronts

Studying in first place the front P-U, we can distinguish two cases, when ωd0/ωb >
1 the front is a pushed front and there should be a Maxwell point where the velocity
goes to zero. The presence of modulation instability hides the Maxwell point since
the homogeneous populated solution becomes unstable after the MI. Besides, when
ωd0/ωb > 1 the pushed front and the pulled fronts exist simultaneously being the one
with bigger velocity the one that prevails. This crossover of the velocity is usually
noticeable when representing the velocity of the front as a function of the control
parameter. In our case there is a change of tendency of the velocity as a function
of mortality, however it is barely unnoticeable (see Fig. 4.10). Interestingly, the
velocity of the P-U front is not well predicted by the linear calculation. To clarify
the reason, we have performed a numerical simulation without the term d1‖∇n‖ 2,
which is nonlinear and is not considered the linear calculation (blue dot in Fig. 4.10).
However, the effect is very small and we can not attribute the discrepancy to this
term. A second simulation has been done also removing long-range competition,
more precisely with σκ = 0 (black dot in Fig. 4.10). The velocity removing this
term coincides accurately with the analytical prediction. Hence, the long-range com-
petition can inhibit the growth of the unpopulated solution, basically because the
homogeneous solution compete at a distance ahead of the front, which limits the
growth of new plants. Closer to the Turing instability the homogeneous front loses
stability against modulations in the populated part. There is a small coexistence
range between the fronts P-U and S-U, where the two fronts are possible. Thus, we
see the front S-U appears for ωd0/ωb > 1.263 − 1.291 and the homogeneous front
exist until ωd0/ωb < 1.333, both before the Maxwell point of the front P-U. In Fig.
4.10 we can see a space time representation of the evolution of the front with the
only particularity of having a maximum at the interface of the front produced by
long-range interactions. Moreover, Fig. 4.10 (right) shows the dependence of the
front velocity with ωd0/ωb.

In second place, the front S-U which prevails for ωd0/ωb > 1.263−1.291 is a pushed
front and it is present until ωd0/ωb = 2.207 where the pinning region begins. The
pinning region corresponds to the range of mortalities where the velocity of the front
is zero, and the front is locked, which coincides with region of existence of localized
structures as expected and as it can be seen in Figs. 4.5 and 4.11. The connection
of the unpopulated solution with the pattern in the central part of the front is quite
similar to the connection between the unpopulated and populated solutions. May
be that is the reason why the dependence of the velocity with mortality is so similar
in the two fronts. This particular shape, which can be seen in Fig. 4.11, resembles
the P-U front propagating leaving stripes behind. Moreover, we note this interface
produces phase slips as it moves, where the first patch expands and changes its
wavelength until two patches are created from the division of the first.

The last front we study is the pattern of stripes connecting with the homogeneous
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Figure 4.10: Left: Space time representation of the front connecting the two homogeneous
solutions populated and unpopulated P-U for ωd0 = 0.0679 year−1. Right: Velocity of the
front P-U for different values of mortality. In both panels the parameters are: ωb = 0.06
year−1, b = 1.25 cm4year−1, κ = 0.048 year−1, σκ = 2851.3 cm, a = 27.38 cm2, σµ = 203.7
cm, d0 = 631.2 cm2year−1, d1 = 4842.1 cm4year−1.

populated solution (S-P). In this case the distinction pulled and pushed fronts can
be made again in terms of the relative position to the Turing instability. Before the
onset of the Turing instability ωd0c/ωb = 1.345 the only possible front is the pushed
front, which persist until the beginning of the pinning region ωd0/ωb = 1.294 where
the velocity goes to zero and the front is locked. Beyond the Turing instability, again,
the front with bigger velocity prevails, as it can be seen in Fig. 4.12 the pushed front
goes beyond the Turing until the velocity of the pulled front overcomes the velocity
of the pushed front. The pulled front S-P exist until the saddle node bifurcation.

The prediction of the velocity v of the pulled front can be obtained according
to [125–127, 127] considering perturbations with the form eikx+λ(k)t which in the co-
moving reference frame x′ = x − vt are eikx

′+Λ(k)t where Λ(k) = ikv + λ(k). Thus,

applying the marginal stability criteria, Re [Λ(k)]=0 and dΛ(k)
dk

= 0 one can obtain
three coupled equations from which the velocity v and the real and imaginary part
of the wave number, kr, ki, representing the wavenumber of the front and the spa-
tial decay of its envelope can be computed. Thus, the equations are v = Re[λ(k)]

ki
,

Re
[
dλ(k)
dk

]
= 0 and v = −Im

[
dλ(k)
dk

]
, which written in in terms of kr, ki, and v read

vki = −2bn∗2 − (d0 + d1n
∗)(k2

r − k2
i )

−an∗e−an∗
(
κe−(k2r−k2i )

σ2κ
2 cos

(
krkiσ

2
κ

)
− ωd0e

−(k2r−k2i )
σ2µ
2 cos

(
krkiσ

2
µ

))
.

(4.6)
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Figure 4.11: Left: Space time representation of the front connecting the stripes pattern
with the unpopulated solution S-U for ωd0 = 0.0837 year−1. Right: Velocity of the ho-
mogeneous front S-U for different values of mortality. In both panels the parameters are:
ωb = 0.06 year−1, b = 1.25 cm4year−1, κ = 0.048 year−1, σκ = 2851.3 cm, a = 27.38 cm2,
σµ = 203.7 cm, d0 = 631.2 cm2year−1, d1 = 4842.1 cm4year−1.

The second condition is

0 =
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And finally the third
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2 sin
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2
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)σ2
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2

)
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(4.8)

The three equations can be solved numerically to find kr, ki, and v for each param-
eter set. Notice the solutions of the problem can be multiple, since the trigonometric
functions are multivalued. However one can analyze the three conditions to reach the
conclusion that the solution with maximum velocity dominates. In Fig. 4.12 one can
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Figure 4.12: Left: Space time representation of the front connecting the stripes pat-
tern with the populated solution S-P for ωd0 = 0.0846 year−1. Right: Front velocity as a
function of ωd0/ωb. Dots correspond to numerical simulations while the continuous line rep-
resents the linear prediction. The parameters are: ωb = 0.06 year−1, b = 1.25 cm4year−1,
κ = 0.048 year−1, σκ = 2851.3 cm, a = 27.38 cm2, σµ = 203.7 cm, d0 = 631.2 cm2year−1,
d1 = 4842.1 cm4year−1.

see the linear velocity and the agreement with numerical simulations. One can follow
the same procedure to compute the velocity of the pulled front P-U using 4.3 which
gives kr = 0, ki =

√
(ωb − ωd0)/d0 and v = 2

√
d0(ωb − ωd0) and it is represented in

Fig. 4.10.

4.4 Conclusions

In this chapter we have focused on the analysis of the simplified equation introduced
in Chapter 3 preserving the full nonlocal interactions. Through a linear stability
analysis, continuation techniques of stationary solutions, and numerical simulations
of fronts, we have characterized the dynamics in the one dimensional case and ob-
tained some results in the two dimensional case. The linear stability reveals the
presence of a Modulation Instability in agreement with previous chapters. As a re-
sult, the standard sequence of patterns increasing mortality emerges. However, more
complex patterns appear along the branches with different spatial distributions. This
fact leads to the question of where the branches of hexagons end up, having in mind
the results in [35], where the branches of patterns emerge from a Turing instability
and end in a second Turing instability one could expect to have a similar behav-
ior. In the one dimensional case we have analyzed in more detail the bifurcation
diagram, focusing mainly in the structure of the branches of localized structures.
More precisely, we have shown the structures associated to fairy rings are the result
of bistability between the homogeneous populated solution and the pattern, which
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give rise to the formation of the snaking region. On the other side of the bifurcation
diagram, localized structures in the form of spots have different bifurcation diagram
where successive number of peaks emerge from n− very close to the transcritical bi-
furcation. In the last part, we have shown how the formation of localized structures
determines the dynamics of fronts between the different stationary states. Outside
the pinning regions the fronts move with velocity different from zero which changes
with mortality. In the cases where fronts are pulled we predict the velocity using
linear theory. For pushed fronts more involved calculations are necessary which are
not possible in our case due to the particular form of the equation. Instead we have
used numerical simulations in large domains to simulate the evolution. In the light of
these results we aim to devote more effort to the stability and the evolution of fronts
of the two dimensional case. The results obtained here allow to understand more
deeply the dynamics of vegetation. In particular, the formation of patterns in the
ABD model can be studied quite accurately using the simplified version of the model
preserving full nonlocal interactions. Thus, the bifurcation diagram and the numer-
ical simulations presented address important questions from the biological point of
view. For instance, the unstable branches of patterns are important information
from the reforestation point of view, since they provide the value of the density that
has to be planted in order for the plant to succeed, but more importantly, they also
give information about the spatial distribution that has to be used in reforestation
projects. Obviously, reforestation will be more complicated than arranging plants
in a certain distribution, but the model can provide important insights. Bistability
between different solution also can have important consequences for seagrasses, es-
sentially the evolution of fronts is of certain importance when the ecosystem is under
the influence of changing environmental factors. Thus, under external changes, the
meadow will experience a change in spatial distribution, which will occur through
a front. Thus, the time scale evolution of the ecosystem will be determined by the
relative stability between different patterns, which is a result very difficult to predict
without a model. In essence, the theoretical prediction from bifurcation theory can
be of important relevance for the evolution of the ecosystem.
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CHAPTER 5
Sulfide concentration as a mechanism for
pattern formation and complex dynamics

Spatial heterogeneity of vegetation affecting different habitats globally has important
implications for the functionality of the ecosystem. Primarily, the distribution of re-
sources changes completely according to the prevalence of homogeneous vegetation or
heterogeneous coverage [128]. Beyond that, the effects are profound because different
factors of the trophic chain are susceptible to the changes vegetation may experience.
From this perspective vegetation, which is really the basis of the ecosystem is better
understood as a dynamic part rather than a fixed scenario where other organisms
are developing. Nevertheless, the dynamics of the spatial distribution of vegetation
is poorly understood mainly because the mechanisms which drive the evolution op-
erate at a certain distance, making the measurement of these interactions difficult.
Self-organization is an important manifestation of the presence of long-range interac-
tions. When there is a balance between growth and death, interactions can become
important enough to drive the evolution of the system. Thus, spatial interactions
give rise to the formation of regular patterns of vegetation, creating a striking view
that shapes all the landscape. Namibian fairy circles are an important example of
this phenomenon [31, 28, 26] but many other ecosystems exhibit the same process.
Fairy circles in Australia, patchy vegetation in Sudan, bands in Niger, labyrinths in
northern Negev [34, 24, 23, 32, 13, 129] are different examples. Pattern formation is
usually associated with the presence of stressing conditions to the plants, however,
from the academic point of view, it is really convenient since it allows to extract more
knowledge of the interactions mechanisms, mainly because the typical length of the
pattern is directly related with the length of operation of the leading mechanism. In
arid ecosystems the diffusion of rainfall water is the main explanation for the forma-
tion of these vegetation patterns, however, other hypotheses have been considered
being an important topic of scientific discussion.
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In marine ecosystems, vegetation patterns have been less studied, at least from
the theoretical point of view [55, 130, 131]. Mainly experimental studies of spatial
heterogeneity have been reported, not always clarifying the responsible mechanisms.
Banded vegetation associated to sand dunes due to wave exposure [132, 55], leopard
skin [53], stripped patterns [54], rings of vegetation in Zostera marina in the Danish
Kattegat [56] and Posidonia oceanica in the Corsican coast [58]. Above all, the
largest patterns found in marine habitats are those formed by Posidonia oceanica
around the Balearic Islands. Patterns of mainly bare circular holes extending over
regions of kilometers in both Pollença and Alcudia bays [59].

No matter terrestrial or marine vegetation patterns have a common feature, long-
range competition mechanisms are necessary for the formation of these regular struc-
tures, as shown in chapter 1. For the case of Posidonia oceanica, there is not a known
mechanism explaining the nature of the interactions. Different explanations are pos-
sible, however, the interaction length around σ ∼ 30 m points to mechanisms related
to water movement, which makes from our perspective two hypotheses the most
plausible explanations. The first hypothesis is based on hydrodynamics, basically,
vegetation would adapt its distribution modifying the dissipation of wave energy
in such a way that the probability of survival is enhanced. The second hypothe-
sis compatible with the typical distance of interaction corresponds to the diffusion
of organic matter produced by the plant, whose decomposition produces sulfides in
the sediment. Sulfides in the sediment have been reported to be toxic to the plant.
In fact, it is possible that both mechanisms play an important role simultaneously.
Nevertheless, as a first step, the last hypothesis is the one we are going to explore in
this chapter, while the first will be addressed in future works.

The production of hydrogen sulfide is part of the sulfur cycle, a predominant
biogeochemical process in marine environments with important implications on the
conditions of growth of different species of seagrasses. Although its ubiquity and
the large efforts in the study of the process, not all mechanisms involved are clear
yet. One thing is clear, sulfides in the sediment have been reported to be extremely
toxic to seagrasses [133], where intrusion through the roots inhibits the growth of the
plant. As a matter of fact, in the Danish Kattegat the reported rings of vegetation
were the result of increased shoot mortality in the center due to sulfide invasion.
Thereby, the formation of this vegetation structure points to sulfide dynamics as an
important factor driving spatial organization. From this perspective, there seems to
be a strong coupling between the evolution of the seagrass and the evolution of this
phytotoxin. This is in fact the case, the presence of seagrass increases sedimentation
of organic matter in the surroundings, thus this organic carbon is oxidized by sulfate-
reducing bacteria, which reduce sulfates (S02−

4 ) into hydrogen sulfide (H2S). Then,
the latter can be absorbed by the plant and reach different parts, starting from the
invasion of roots, through the meristem to the leaves, and finally the invasion of
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the plant tissue inhibits the growth leading to prone mortality. In this fashion, all
the necessary ingredients are present to have a long-range competitive interaction.
However, it becomes necessary to consider the process from a quantitative point of
view. Therefore, one needs to account for four different things: the rate of production
of sulfides, the rate of removal, the diffusion in space of organic matter and the effect
of a given concentration in shoots mortality.

First of all, Sulfate Reduction Rates (SRR) measure the production of sulfides,
however, this flux can not be associated directly to the net production mainly because
these sulfides are oxidized back again to sulfates if oxygen is present in the upper
layer of the sediment. Furthermore, seagrasses introduce oxygen into the soil as a
protection mechanism against sulfide intrusion, which increases reoxidation. Thus
in a cyclic way sulfates are available to be reduced again. Hence if one wants to
consider the net production of sulfide it is necessary to consider the balance of these
two quantities. SRR and sulfide and sulfate concentrations are common measures in
the literature [134–138, 56] ranging between 100−500 µM/d, 1−300 µM , and ∼ 30
mM respectively. However, there are fewer estimations of the reoxidation process
[134]. Luckily, the time evolution of sulfides has been measured for Zostera marina
giving a better estimation of the time scale, which is of the order of months to one
year, rather than the rate provided by SRR.

Second, regarding the removal of sulfides, two processes are possible. On the
one hand hydrogen sulfide combines with iron to form pyrite (FeS2). On the other
hand, hydrogen sulfide is directly absorbed resulting in intoxication of the plant
[139]. The contribution of each process to the total removal it is not clear, moreover,
it can depend on the properties of the substrate. For instance it is known carbonate
sediments characterized by low iron availability make seagrasses like P.Oceanica more
sensitive to sulfide intrusion [136, 135, 140–143].

Third, various studies about fish farming effects on the surroundings have quan-
tified in terms of organic matter spreading the distribution of different chemical
components with distance, including sulfides and its effects on P. oceanica [144–
147]. These results show how the production of organic matter in a given position
can affect the growth at important distances, as far as hundreds of meters away.

Finally, direct measurements of demographic activity of P.oceanica in presence
of different sulfide concentrations indicate a clear relation of the effects of sulfides on
mortality, reducing the growth up to 15%yr−1 for moderate sulfide concentrations
around 30µM [135].

The previous evidence indicates sulfur cycle as a plausible explanation of pattern
formation in seagrass ecosystems. However, the scales of the involved process are
crucial in order to clarify if this mechanism can explain a long-range competition.

In this chapter, we aim to develop a quantitative model based on the work on
clonal growth developed in the previous chapters in combination with a simple equa-
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tion describing the dynamics of sulfide concentration. We are going to explore the
consequences of the coevolution between seagrass and sulfides and try to answer the
questions related to the mechanism behind the formation of patterns in P.oceanica
and other species.

The chapter is organized as follows: In Section 5.1 we propose the model and
perform the mathematical analysis. Section 5.2 is devoted to parametrize the model
for P.oceanica. Section 5.3 the model is parametrized for Z.marina. Finally some
conclusions and remarks are given in Section 5.4.

5.1 Model for coupled vegetation and sulfide con-

centration

For the sake of simplicity, we use here the simplified version of the ABD model
rather than the full description. The model has some limitations but this simplifies
the understanding of the phenomena in a first approach to the problem. Since we
want to explain the origin of long-range interactions we exclude the kernel term from
the equation. Thus the evolution of the density of vegetation n ≡ n(~x, t) is described
by

∂tn = (ωb − ωd(n, S))n+ d0∇2n+ d1n∇2n+ d1‖∇n‖2, (5.1)

where ∇ = (∂x, ∂y), and now the mortality rate does not depend only on the local
density but also on the concentration of porewater hydrogen sulfide S in µM . We
consider a linear dependence of the mortality on S [135]:

ωd(n, S) = ωd0 − an+ bn2 + γS, (5.2)

where the parameter γ measures the increment of the mortality rate for each unit
of concentration. The evolution of the sulfide concentration is dominated by three
processes, the diffusion of organic matter produced by the plant, production of sul-
fides due to decomposition and sulfide removal. In fact, it is possible to describe the
evolution of both organic matter and sulfides with two equations similarly to [131],
where organic matter diffuses to the surroundings and generates sulfides. However,
we prefer to use a simpler description accounting only for sulfide concentration, thus,
effectively, sulfides are produced proportionally to death plants csωd(n, S)n and its
diffusion encompasses not only diffusion of sulfides in the sediment but diffusion of
organic matter on the water column due to the flow. Thus, the evolution of the
concentration of sulfide S ≡ S(~x, t) is described by

∂tS = csωd(n, S)n− δsS +Ds∇2S, (5.3)
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5.1. Model for coupled vegetation and sulfide concentration

where cs accounts for the increment of concentration for each dead shoot, δs is rate
of removal of sulfides and Ds is the effective diffusion of sulfides. We consider all
parameters to take only positive values. Thus with the previous equations, we are
able to reproduce the coupled dynamics between vegetation and sulfide concentration
and determine the effect of this toxic compound on the growth of the meadow. These
two equations describe the main processes explained above and schematized in Fig.
5.1

Figure 5.1: Sketch of the diffusion of organic matter produced by the plant which is
accumulated in the soil increasing sulfide concentration on the sediment and inhibiting the
growth. This generates an effective long-range competition mechanism which can be the
explanation of the formation of vegetation patterns under the sea.

The stationary homogeneous solution given by n∗ and S∗ corresponds to the case
in which there is a balance between branching and mortality, ωb − ωd(n∗, S∗) = 0.
In this regime the concentration of sulfide is proportional to the stationary density
S∗ = csωb

δs
n∗ and so n∗ is the solution of a second order polynomial.

n∗± =
a− γcsωb

δs

2b
±
√(

a− γcsωb
δs

2b

)2

+
ωb − ωd0

b
. (5.4)

We do not consider negative values of the vegetation density since they do not
have any physical meaning. Thus two regimes can be distinguished: On the one
hand, when a < γcsωb

δs
the populated solution only exist for ωd0 < ωb, otherwise the

only possible solution is bare soil n∗ = S∗ = 0. This is the transcritical bifurcation
(T ) of the unpopulated solution. On the other hand, when a > γcsωb

δs
the populated

solution exists beyond the critical value ωd0 = ωb until the value of the mortality

ωd0SN = ωb +

(
a− γcsωb

δs

)2

4b
, (5.5)
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where a saddle-node bifurcation (SN) occurs. In this regime the transition from
the populated to the unpopulated solution is subcritical, and this range corresponds
to the bistability domain where there is a coexistence of the populated and the
unpopulated solution. The presence of sulfides is proportional to the density of
vegetation, hence there is a negative effect for the plant when the vegetation is
denser, as a result, there is a competition between local facilitation given by a and the
presence of sulfides, when facilitation overcomes this negative effect the homogeneous
solution is bistable and vegetation persist for values of mortalities above the limit
ωd0 = ωb.

5.1.1 Pattern formation

The stability of the homogeneous solutions can be analyzed with a linear stability
analysis. We consider small perturbations around the homogeneous solution with the
form n = n∗+δnei~q·~x and S = S∗+δSei~q·~x, which yields to the following characteristic
polynomial

λ2 − λ((a− 2bn∗)n∗ + csγn
∗ − δs − ((d0 + d1n

∗) +Ds)q
2)

−(a− 2bn∗)n∗δs + csωbγn
∗

+(−(a− 2bn∗)n∗Ds − (d0 + d1n
∗)csγn

∗ + δs(d0 + d1n
∗))q2

+Ds(d0 + d1n
∗)q4 = 0, (5.6)

where q ≡ ‖~q‖ and λ corresponds to the temporal eigenvalues. Analyzing first the sta-
bility of the unpopulated solution n∗ = 0 the eigenvalues are λ = ωb−ωd0−d0q

2 and
λ = −δs −Dsq

2. There is a change of stability of the first eigenvalue at q = 0 which
correspond to the transcritical bifurcation. Second, the stability of the populated
solutions is not so simple, the analytical expressions have a complicated dependence
on parameters as can be seen in Appendix B, so we represent the changes of stability
in the phase diagram in Fig. 5.2. Different analytical relations can be obtained but
they are not insightful given the complicated dependence with parameters.

The populated solution is stable when mortality is low, meaning vegetation under
low stress can resist the presence of sulfides. When increasing mortality, at a certain
point vegetation can not resist anymore and becomes unstable. The populated solu-
tion is susceptible to become unstable in two different ways. On the one hand, it can
experience an homogeneous oscillatory instability, also known as Hopf bifurcation
where vegetation experience periodic cycles. This can be understood easily if one
considers the vegetation growing and producing sulfides as time goes. At a certain
point the concentration of the toxin is so high that the vegetation can not handle it
and starts to decrease. If vegetation decreases the production of sulfides decreases

84



5.1. Model for coupled vegetation and sulfide concentration

Figure 5.2: Phase diagram using the adimensional sensitivity of the plant γ′ = γ cs√
ωbb

and mortality ω′d0 = ωd0/ωb as control parameters. The white region corresponds to the
unpopulated solution being the only stable solution. Blue regions correspond to the popu-
lated solution being stable, where dark blue correspond to the region of bistability between
the populated and the unpopulated states. Yellow corresponds to pattern forming insta-
bility while pink region to oscillatory instability. These two regions are represented with
semitransparent colors in order to see the superposition of both, light orange corresponds
of pink and yellow. Finally in dark orange corresponds to the excitable region. Dashed
black lines correspond to the values of γ′ used in different bifurcation diagrams or simula-
tions shown later. The red vertical dashed line corresponds to the condition in 5.8. The
other fixed parameters are ωb = 0.06 year−1, a = 1.62 cm2year−1, b = 12.5 cm4year−1,
d0 = 508.1 cm2year−1, d1 = 6560.6 cm4year−1, cs = 75 µMcm2, δs = 0.047 year−1,
Ds = 4.21 · 106 cm2year−1.

as well until the concentration of sulfides is low enough to allow the growth of the
plant again, generating a periodic oscillation of the density.
On the other hand, the homogeneous solution can experience a Turing instability
where spatial modulations appear leading to the formation of a pattern. In this case
the explanation is different. Regions with higher density produce higher concentra-
tions of sulfides than those produced by their neighbors. Due to diffusion, an effective
long-range competition takes place, where those regions with higher density compete
stronger than its neighborhood reducing vegetation in the surroundings. Thus, there
is a feedback mechanism where regions with more vegetation can grow against those
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Figure 5.3: Left: Vegetation pattern from a numerical simulation starting with the
homogeneous stationary solution plus noise as initial condition. The density of shoots n is
represented according to the green scale on top. Right: Transversal cut of the vegetation
pattern indicated in the figure on the left. Shoot density in green and associate sulfur
concentration S in orange. Parameters are ωb = 0.06 year−1, ωd0 = 0.0864 year−1,
a = 1.62 cm2year−1, b = 12.5 cm4year−1, d0 = 508.1 cm2year−1, d1 = 6560.6 cm4year−1,
cs = 75 µMcm2, γ = 4.3·10−3 µM−1year−1, δs = 0.047 year−1, Ds = 4.21·106 cm2year−1.

with less density, giving rise to spatial modulations, which after some time will form
a regular pattern. The order of the appearance of these two instabilities can change
according to the parameters, being possible to find regions of the parameter space
with only oscillatory instability, with only Turing instability, or instability to oscilla-
tions and patterns at the same time. Generally, the window of instability broadens
when increasing γ, being able to destabilize the homogeneous solution for all values
of mortality. This broadening is not rare, since this parameter is interpreted as the
sensibility of the plant to the concentration of sulfides. Given the close relationship
between the strength of the competition κ from previous chapters and the parameter
γ, we show the phase diagram using γ and ωd0 as control parameters which allows
comparing with previous models including the interaction kernel (compare Fig. 5.2
with 2.4). The parameters are chosen to obtain a phase diagram where it is pos-
sible to find different instabilities together and separately as it can be seen in Fig.
5.2. Observing the line of Turing instability, we can see how the line approaches
the saddle-node bifurcation when reducing γ, as in previous versions of the model.
Contrary to previous versions, however, including the interaction kernel, the range
of mortalities where the system is unstable broadens for high values of γ instead of
closing as in 2.4. Inside the region indicated by Turing bifurcation, a homogeneous
initial condition is unstable to patterns and one expects different patterns emerging
from a Turing bifurcation to coexist, similarly to the ones shown in previous chap-
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ters. We have performed numerical simulations to examine the patterns of negative
hexagons (Fig. 5.3) and an isolated hole or localized structure (Fig. 5.4) in relation
with the associated distribution of sulfide concentration in the sediment. These two
cases clearly exemplify how the mechanism described by this model is able to explain
the formation of regular patterns as well as circular holes of bare soil embedded in
the homogeneous meadow. One interesting thing about the numerical simulations is
the spatial profile of the concentration of sulfides on the sediment in relation to the
shoot density. Generally, sulfides increase with the presence of vegetation, which at
the end is quite reasonable since it corresponds to the place where they are produced.
These profiles offer an opportunity to measure experimentally the relation between
these two quantities, however, the variability of sulfide concentration is low, being
at the limit of error measurement in some cases.

0 200 400
x (m)

0

200

400

y
(m

)

0 200 400 600
n (shoots/m2)

0 100 200 300 400 500
x (m)

0

200

400

600

800

1000

n
(s
h
oo
ts
/m

2
)

0

2

4

6

8

10

S
(µ
M

H
2
S
)

Figure 5.4: Left: Localized structure or circular hole embedded in a homogeneous
meadow. Starting from a circular hole in the homogeneous meadow with a discontinu-
ous jump in density, the evolution reaches the shown stationary profile. The density of
shoots n is represented according to the greenscale on top. Right: Transverse cut of the
vegetation pattern indicated in the figure on the left. Shoot density in green and associate
sulfur concentration S in orange. Parameters are ωb = 0.06 year−1, ωd0 = 0.078 year−1,
a = 1.62 cm2year−1, b = 12.5 cm4year−1, d0 = 508.1 cm2year−1, d1 = 6560.6 cm4year−1,
cs = 75 µMcm2, γ = 4.3·10−3 µM−1year−1, δs = 0.047 year−1, Ds = 4.21·106 cm2year−1.

When the region of instability to patterns overlaps with the region of oscillatory
instability the dynamics become more complex [3]. An example of this regime is
shown in Fig. 5.5. Starting with the homogeneous solution as initial condition,
the system develops oscillations of the homogeneous solution but the limit cycle is
unstable to patterns. Thus, spatial heterogeneities are amplified along the oscillations
forming a pattern which stops the oscillatory dynamics. Other more complicated
evolution can emerge, in particular spatiotemporal chaos or turbulence as shown in

87



Chapter 5. Sulfide concentration as a mechanism for pattern formation and
complex dynamics

Fig. 5.6. These regimes require more theoretical study in order to characterize their
appearance.
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Figure 5.5: Temporal evolution in the regime simultaneously unstable to patterns and
oscillations. Left-top: Temporal evolution of the shoot density of the orange cut indicated
in the right panel according to its greenscale. Left-bottom: Temporal evolution of the
density of shoots n in green and sulfide concentration S in orange at the position indicated
by the blue dashed line on the left-top panel and the blue dot in the right panel. Right:
Final shoot density in space according to the greenscale on the right. The numerical
simulation starts with an homogeneous initial condition with small added noise. Parameters
are ωb = 0.06 year−1, ωd0 = 0.06 year−1, a = 1.62 cm2year−1, b = 12.5 cm4year−1,
d0 = 508.1 cm2year−1, d1 = 6560.6 cm4year−1, cs = 75 µMcm2, γ = 0.0115 µM−1year−1,
δs = 0.047 year−1, Ds = 4.21 · 106 cm2year−1.

5.1.2 Oscillatory dynamics

In order to characterize how the oscillatory dynamics affects the spatial dynamics
it is useful to study the cycle independently from spatial coupling, so we perform
numerical simulations of equations (5.1), (5.2) and (5.3) removing the spatial deriva-
tives. Thus it is possible to see the appearance of a limit cycle just above the Hopf
bifurcation when mortality is increased. For large values of γ (γ′ > 1), increasing
mortality the cycle grows in amplitude deforming its shape due to nonlinearity. At
a certain point the amplitude of the cycle diminishes with mortality until its disap-
pearance in a second Hopf bifurcation, which is usually very close to the saddle node,
as seen in Fig. 5.7. Different time evolutions for different mortalities are shown in
Fig. 5.8. The change of the amplitude and its deformation when changing mortality
can be observed. The increase of the period of the oscillation is also clear.

For lower values of γ (Fig. 5.9) the behavior of the cycle changing mortality
can be different. Initially the amplitude grows as previously, however, in this case
the amplitude of the cycle can be large enough to collide with the unstable branch
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Figure 5.6: Temporal evolution in the excitable region for small sulfide diffusion. Left-
top: Temporal evolution of the shoot density of the orange cut indicated in the right panel
according to its greenscale. Left-bottom: Temporal evolution of the density of shoots n in
green and sulfide concentration S in orange at the position indicated by the blue dashed
line on the left-top panel and the blue dot in the right panel. Right: Stationary shoot
density in space according to the greenscale on the right. The numerical simulation starts
with a Gaussian initial condition. Parameters are ωb = 0.06 year−1, ωd0 = 0.069 year−1,
a = 1.62 cm2year−1, b = 12.5 cm4year−1, d0 = 508.1 cm2year−1, d1 = 6560.6 cm4year−1,
cs = 75 µMcm2, γ = 0.0092 µM−1year−1, δs = 0.047 year−1, Ds = 2.86 · 103 cm2year−1.
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Figure 5.7: Bifurcation diagram of the homogeneous solution as a function of adimen-
sional mortality. Left: Stationary homogeneous vegetation density in green and maximum
and minimum of n on the limit cycle in yellow. Right: Stationary homogeneous sulfide
concentration in orange and maximum and minimum of S on the limit cycle in yellow.
Parameters are ωb = 0.06 year−1, a = 1.62 cm2year−1, b = 12.5 cm4year−1, d0 = 508.1
cm2year−1, d1 = 6560.6 cm4year−1, cs = 75 µMcm2, γ = 0.0115 µM−1year−1, δs = 0.047
year−1, Ds = 4.21·106 cm2year−1. Numerical simulations of the limit cycles are performed
in the system without space.

n∗−. At this point the cycle is destroyed and for larger mortalities the cycle does
not exist. This transition is called homoclinic bifurcation, a global bifurcation that
changes the dynamics of the system. One of the important features is the divergence
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Figure 5.8: Different time evolutions of the homogeneous solutions showing the approxi-
mation to the limit cycle in the model without space. Left column represents the evolution
in phase space in yellow, nullclines are represented in dashed lines in green and orange for
shoots and sulfides respectively. Right column represents time evolution of shoots in green
and sulfide concentration in orange. Different rows correspond to different values of mortal-
ity from top to bottom ωd0 = 0.036, 0.045, 0.055, 0.064 year−1. Parameters are ωb = 0.06
year−1, a = 1.62 cm2year−1, b = 12.5 cm4year−1, d0 = 0 cm2year−1, d1 = 0 cm4year−1,
cs = 75 µMcm2, γ = 0.0115 µM−1year−1, δs = 0.047 year−1, Ds = 0 cm2year−1.
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of the period as one approaches the homoclinic transition. Moreover, as can be
seen in Fig. 5.10 the dynamics is slow for low densities close to n∗− and accelerates
with a sharp pick for high densities. When the homoclinic transition is crossed
and there is no limit cycle the dynamics becomes excitable. n∗− acts as a threshold
of vegetation density. Below the threshold vegetation will decrease exponentially to
zero, instead above the threshold vegetation will grow producing a lot of sulfides until
a certain point in which it can not resist and vegetation will decrease to zero. In
this excitable regime the final state is bare soil independently of the initial density,
but if the vegetation is dense enough to overcome the threshold then the system
does a large excursion before ending up in the unpopulated solution. This excitable
behavior has important implications for the spatial dynamics, mainly because adding
spatial coupling it makes possible that a region experiencing this excursion of growth
and decay can excite its neighbors producing pulses that travel in space. Hence,
determining the region bounded by the homoclinic bifurcation is very useful for the
understanding of the dynamics. Nevertheless, the homoclinic bifurcation can not be
characterized by linear calculation, since it is dominated by nonlinear mechanisms.
It is only accessible with numerical simulations or continuation techniques. We use
the first for simplicity. In Fig. 5.2 we represent the homoclinic bifurcation with an
orange line. The part inside corresponds to the excitable regime. One can see that
increasing mortality a homoclinic transition appears but close to the saddle node
there is another homoclinic bifurcation where the cycle reappears again as it can be
seen also in the bifurcation diagram in Fig. 5.9.
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Figure 5.9: Bifurcation diagram of the model as a function of adimensional mortality
showing two homoclinic bifurcations. Left: Stationary homogeneous vegetation density in
green and maximum and minimum of n on the limit cycle in yellow. Right: Stationary
homogeneous sulfide concentration in orange and maximum and minimum of S on the
limit cycle in yellow. Parameters are ωb = 0.06 year−1, a = 1.62 cm2year−1, b = 12.5
cm4year−1, d0 = 508.1 cm2year−1, d1 = 6560.6 cm4year−1, cs = 75 µMcm2, γ = 0.0103
µM−1year−1, δs = 0.047 year−1.

91



Chapter 5. Sulfide concentration as a mechanism for pattern formation and
complex dynamics

0 200 400 600 800 1000 1200
n (shoots/m2)

0

2

4

6

8

10

12

S
(µ
M

H
2
S
)

0 1000 2000 3000 4000 5000
t (years)

0

200

400

600

800

1000

1200

n
(s
h
oo
ts
/m

2
)

0

2

4

6

8

10

S
(µ
M

H
2
S
)

0

2

4

6

8

10

S
(µ
M

H
2
S
)

0

2

4

6

8

10

S
(µ
M

H
2
S
)

0

2

4

6

8

10

S
(µ
M

H
2
S
)

0 200 400 600 800 1000 1200
n (shoots/m2)

0

2

4

6

8

10

12

S
(µ
M

H
2
S
)

0 1000 2000 3000 4000 5000
t (years)

0

200

400

600

800

1000

1200

n
(s
h
oo
ts
/m

2
)

0

2

4

6

8

10

S
(µ
M

H
2
S
)

0

2

4

6

8

10

S
(µ
M

H
2
S
)

0

2

4

6

8

10

S
(µ
M

H
2
S
)

0

2

4

6

8

10

S
(µ
M

H
2
S
)

0 200 400 600 800 1000 1200
n (shoots/m2)

0

2

4

6

8

10

12

S
(µ
M

H
2
S
)

0 1000 2000 3000 4000 5000
t (years)

0

200

400

600

800

1000

1200
n
(s
h
oo
ts
/m

2
)

0

2

4

6

8

10

S
(µ
M

H
2
S
)

0

2

4

6

8

10

S
(µ
M

H
2
S
)

0

2

4

6

8

10

S
(µ
M

H
2
S
)

0

2

4

6

8

10

S
(µ
M

H
2
S
)

0 200 400 600 800 1000 1200
n (shoots/m2)

0

2

4

6

8

10

12

S
(µ
M

H
2
S
)

0 2500 5000 7500 10000 12500 15000 17500
t (years)

0

200

400

600

800

1000

1200

n
(s
h
oo
ts
/m

2
)

0

2

4

6

8

10

S
(µ
M

H
2
S
)

0

2

4

6

8

10

S
(µ
M

H
2
S
)

0

2

4

6

8

10

S
(µ
M

H
2
S
)

0

2

4

6

8

10

S
(µ
M

H
2
S
)

Figure 5.10: Different time evolutions of the homogeneous solutions approaching the limit
cycle of the model without space and the crossing of two homoclinic bifurcations. Left col-
umn represents the evolution in phase space in yellow. Nullclines are represented in dashed
lines in green and orange for shoots and sulfides respectively. Right column represents time
evolution of shoots in green and sulfide concentration in orange. Different rows correspond
to different values of mortality from top to bottom ωd0 = 0.0608, 0.0642, 0.0645, 0.0675
year−1. Parameters are ωb = 0.06 year−1, a = 1.62 cm2year−1, b = 12.5 cm4year−1,
d0 = 0 cm2year−1, d1 = 0 cm4year−1, cs = 75 µMcm2, γ = 0.0103 µM−1year−1,
δs = 0.047 year−1, Ds = 0 cm2year−1.
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The dependence on parameters of this excitable region can be difficult to char-
acterize but one can obtain some insight using the knowledge of bifurcation theory.
An homoclinic transition unfolds from a higher codimension point called Takens-
Bogdanov (TB), which is a point in parameter space where the Saddle-node bifurca-
tion and the Hopf bifurcation meet. So one can look at the linear stability analysis
around the saddle-node bifurcation, Eq. (5.5). At this point one of the two eigenval-
ues is zero while the other changes value according to parameters. Precisely at the
Takens-Bogdanov the second eigenvalue must change sign. Imposing this condition
it is possible to obtain the values of γ of the Takens-Bogdanov:

γTB =
δsa

2csωb
±
√

(δsa(δs + ωb))2 − 8ωb(δs + ωb)δ3
sb

2csωb(δs + ωb)
. (5.7)

Two Takens-Bogdanov points are created when the radicant becomes zero, or
δs = −a2ωb

a2−8ωbb
, which emerge from γ = δsa

2csωb
and separate along the Saddle-node curve

when the parameters are changed properly. The curve of the homoclinic transition
starts in one of these two high codimension points and ends up in the other, form-
ing a closed region in parameter space associated to the excitable region. Of course,
these conditions do not fully determine the presence of an homoclinic transition since
they only give us information about the point where this bifurcation emerges. How-
ever, what it is possible to determine with these conditions is, given an homoclinic
bifurcation if there will exist a second homoclinic bifurcation or, on the contrary, the
excitability region will reach up to the saddle node bifurcation.

One of the important advantages of this model is its simplicity, it allows to per-
form numerical simulations with a reasonable computational cost and obtain certain
analytical results, however, it has an important disadvantage. For certain param-
eters the oscillatory dynamics can lead to negative sulfide concentration, which is
unreasonable from the physical point of view. One can understand the source of this
problem by analyzing Eq. (5.3) with Ds = 0, focusing in the oscillatory regime. The
concentration will become negative if the right hand side of Eq. (5.3) is negative
when S = 0, in other words, S = 0 represents a boundary that won’t be crossed
only if ∂tS > 0 when S = 0. Thus, the sign of ωd(n, 0) determines this behavior,
which only is negative when starting with initial conditions between the two values

of n =
a±
√
a2−4bωd0

2
. So in order to avoid the possibility of having trajectories in

phase space that become negative the system needs to be in the range of parameters
in which these values of n are not real, in other words, the range between the two
values closes, which leads to

ωd0 >
a2

4b
. (5.8)

Above this limit S is guaranteed to always remain positive and below this limit the
system is susceptible to having trajectories crossing S = 0, however, even in this

93



Chapter 5. Sulfide concentration as a mechanism for pattern formation and
complex dynamics

case, not all trajectories become necessary negative as one can see in Fig. 5.11.
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Figure 5.11: Streamplot showing the appearence of trajectories crossing S = 0. The
nullclines are represented in green and orange for the equations of shoots and sulfides
resprectively and the red curve represents ωd(n, 0) = 0. The red dots represent the limits
where there are trajectories crossing to the negative side. The right panel shows a detail of
the left one close to S = 0. Parameters are ωb = 0.06 year−1, ωd0 = 0.042 year−1, a = 1.62
cm2year−1, b = 12.5 cm4year−1, d0 = 0 cm2year−1, d1 = 0 cm4year−1, cs = 75 µMcm2,
γ = 4.3 · 10−3 µM−1year−1, δs = 0.047 year−1, Ds = 0 cm2year−1.

This problem of the model appears because the model is an oversimplification.
Basically the mortality without sulfides ωd(n, 0) can become negative due to the
facilitative term an creating plants and removing sulfides. When one describes the
evolution of only n, like in chapter 3, there is no need to distinguish between mortality
and birth and ωb − ωd(n, 0) accounts for the balance, however, here we include dead
plants into the production of sulfides and the distinction between mortality and birth
terms must be explicit, ensuring ωd(n, S) > 0. This can be easily implemented using
a mortality dependence with density like in Chapter 2, however, this complicates the
problem, so for now we have not included this improvement.

5.2 Parametrization for Posidonia oceanica

Now that we have a better understanding of the dynamics of vegetation when sul-
fides are included in the picture, we are going to calibrate the model using different
measures for P.oceanica. We are going to explore the dependence of the thresholds
of instability with the variability of the measures csωbn

∗, csωb
δs

, γ and Ds
δs

in order to
clarify the presence or absence of the different instabilities. The values of the pa-
rameters regarding clonal growth ωb = 0.06 year−1, d0 = 508.1 cm2year−1, d1 = 2.0
cm4year−1 are those used in previous chapters. The difference is in a and b, which
are now different since we have removed the interaction kernel. Thus, we chose their
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value in order to have a quantitatively similar bifurcation diagram of the homo-
geneous solution shown in Chapter 3. The parameter b controls the values of the
stationary shoots density, while a− γcsωb

δs
controls the degree of bistability, therefore,

b = 12.5cm4year−1 and a is determined such that a− γcsωb
δs

= 1.205 cm2year−1, where
γ, cs, and δs are to be determined together with Ds. There are direct measures which
provide γ = 4.3 ·10−3µM−1year−1 [135] but not of the other three. However one can
use the relation between shoots and hydrogen sulfide in the sediment S∗ = csωb

δs
n∗

for the homogeneous stationary solution in order to determine the ratio csωb
δs

= 385

µMshoots−1cm2 from the slope in Fig. 5.12. The available data does not allow to
have a precise value of this quantity but at least gives an order of magnitude.
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Figure 5.12: Representation of sulfide concentration as a function of vegetation density
for different locations in the Balearic Island courtesy of the athours in [135]. Slope of the
least square linear fit: 385.0± 216.0 µMshoots−1cm2, r = 0.666

The value of the net production of sulfides csωbn must be a fraction of Sulfide Re-
duction Rate (SRR) due to reoxidation. In [134] net production is around 10−1SRR.
For Posidonia oceanica the values of production given in [136] are quite big in com-
parison with stationary concentrations indicating that an important fraction being
reoxidated. For example, there is a factor 10−3 between the concentrations of sul-
fates and sulfides, suggesting the net production of sulfides is much smaller than
SRR. Hence, on the following we are going to consider the net production csωbn in
the range 10−3−10−1SRR, from which we can obtain cs using an average shoot den-
sity of 800 shoots/m2 [94, 148] and SRR ∼ 10 mmol/m2/d = 3.65 · 104 µM/year,
considering the concentration below 10 cm depth is negligible [135] . We will use
later different values of this range to see the effects of this variability on the results.
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As a result, having an estimation of cs and using the ratio csωb
δs

one can obtain δs.
Finally, there are no direct measurements of Ds, however, it is possible to obtain
an estimation of its value. First, from chapter 2 we know the interaction distance
is σκ ∼ 30 m. The diffusion equation for sulfides gives an effective interaction with
distance that we can compare with. Following this idea we can consider Eq. (5.3)
being linearly dependent on the density of shoots n as an oversimplification:

∂tS = αn− δsS +Ds∇2S, (5.9)

where α is an arbitrary constant determining the value of sulfides production.
The solution S̃(q, t) can be obtained exactly in Fourier space as

S̃(q, t) = e−(δs+Dsq2)t

(
S0 + αñ(q, t)

e(δs+Dsq2)t − 1

δs +Dsq2

)
. (5.10)

Considering the initial concentration S0 = 0 and the limit in which δs and Ds are
large, which corresponds to the sulfide concentration reaching its stationary state
faster than the evolution of vegetation, the exponential term can be neglected and
the sulfide concentration can be written in terms of the convolution of an interaction
kernel K(x) and the density of vegetation n.

S(~x, t) =

∫∫ ∞

−∞
K(~x− ~x′)n(~x′, t)d~x′, (5.11)

where the kernel is the inverse Fourier transform of the Lorentzian α
δs+Dsq2

. In the

one dimensional case the kernel correspond to an exponential kernel α
2
√
Dsδs

e
−
√

δs
Ds
‖x‖

,
while in two dimensions the kernel is given in terms of the modified Bessel function

of second kind α
2πDs

K0(
√

δs
Ds
‖x‖). In both cases the kernel corresponds to decaying

functions where the scale of the interaction is given by
√

Ds
δs

. Thus, imposing this

interaction length must be ∼ 30 m the parameter Ds can be obtained.
Alternatively it is possible to obtain this characteristic length using measurements

of organic matter spreading due to fish farm activity. Considering the production
αδ(~x) instead of αn(~x, t) we can use Eq. (5.11) and obtain the stationary distribution
of sulfides with distance for constant production in a given position, which is basically
the expression given by the kernel. The variability of these measurements in [144–

147] is large,
√

Ds
δs

= 5 − 200 m, which is compatible with the interaction length

considered above.
The precision of these values is clearly low, giving just an order of magnitude.

Hence different results can be obtained within the range of possible values. From
this perspective we aim to quantify how the results depend on the values we choose
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for the quantities γ, cs,
csωb
δs

,
√

Ds
δs

. Initially we consider γ = 4.3 · 10−3µM−1year−1,

cs = 7.6 · 103 µMcm2, δs = 1.18 year−1 and Ds = 1.07 · 107 cm2year−1 as the refer-
ence set of parameters, which corresponds to taking csωbn = 10−3SRR, csωb

δs
= 385

µMshoots−1cm2,
√

Ds
δs

= 30 m. We consider the production of sulfides a small frac-

tion of sulfate reduction rate csωbn = 10−3SRR for two reasons. First it does not
seem plausible that a concentration of sulfides ∼ 10µM is produced by a SRR =
3.65 ·104 µM/year. The net production considering reduction and oxidation process
should be smaller than SRR. The second reason is based on the fact that, taking
the correction fraction 10−3SRR, the resultant removal rate of sulfides is compara-
ble to the one we obtain from temporal evolution of the concentration of sulfides in
meadows of Zostera marina, which gives a temporal scale of removal of the order of
months to one year. Next, we will change the factor 10−3 to see the consequences.
Thus, we are going to use the phase diagram (Fig. 5.13) to characterize this de-
pendence with the variability of the parameters changing one keeping the others
fixed.

For the reference set of parameters we can see the changes in the phase diagram in
Fig. 5.13 with respect to Fig. 5.2. There are no significant changes in the qualitative
shape of the phase diagram with this set of parameters, however the values of the
parameters have changed significantly, being γ the most affected. There is not a
qualitative change of the Turing instability as compared to the previous results, where
the critical wavelength was ∼ 30m. The big difference is in the Hopf bifurcation,
which extends much further in mortality and for lower values of γ. As a result,
the Hopf bifurcation touches the Saddle node bifurcation at two Takens-Bogdanov
codimension-2 points. Hence, the presence of the two TB’s indicates the existence of
an excitable region. However, almost all this region is susceptible to develop negative
densities.

All the following cases present the same problem. The oscillatory regions are
susceptible to become negative. Only regions with patterns are guaranteed to remain
positive.

The first parameter used for the calibration that we are going to change is γ.
We are going to consider changes according to error measurement in [135] γ =
4.3 ± 1.4 · 10−3µM−1year−1. We show the phase diagrams for the two cases in Fig
5.14. The most important effect is the presence of the two TB points. For bigger
values of the calibration parameter the Hopf bifurcation moves slightly to higher
mortality expanding the distance between the TB points, on the contrary decreasing
its value the Hopf bifurcation moves to lower mortalities, not intersecting with the
saddle node. The Turing bifurcation moves down increasing the parameter without
experiencing important qualitative changes. The critical wavelength is barely affected
when increasing γ, while for γ = 5.7·10−3 µM−1year−1 the critical wavelength moves
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Figure 5.13: Same as in Fig. 5.2 for a = 2.86 cm2year−1, cs = 7.6 ·103 µMcm2, δs = 1.18
year−1, Ds = 1.07 · 107 cm2year−1.

to ∼ 20 m.

Second, we change the factor of sulfate reduction rate, considered as net sulfide
production as explained previously, using 10−2SRR and 10−1SRR respectively. Com-
paring with the reference set of parameters in Fig. 5.13, where we take 10−1SRR, the
phase diagrams of the three cases are qualitatively equivalent (Figs. 5.13 and 5.15).
Essentially, there is a scaling factor between axis of the phase diagrams of the three
cases being the regions of coexistence not affected. Neither the wavelength varies
significantly, changing to ∼ 20 m for both cases (10−2SRR and 10−1SRR). The
important changes occur on the parameters cs, δs and Ds, which basically increase
proportionally to the considered factor. The interpretation is simple, increasing the
production of sulfides, in order to maintain the same stationary concentration con-
trolled by S∗ = csωb

δs
n∗, the rate of removal must increase proportionally. As a result,

the diffusion must increase in the same way to maintain the interaction distance

given by
√

Ds
δs

, in other words since the removal rate increases the sulfides must dif-

fuse faster to preserve the wavelength of the pattern. The problem is the removal
rate and diffusion reach values which are unreasonable. There is a substantial change
in the temporal scale of sulfides given by the inverse of δs, from ten months, to one
month, to 3 days, and the distance of spreading due to diffusion changes from 30
m/year, to 100 m/year, to 300 m/year.
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Figure 5.14: Same as in Fig. 5.2. Parameters of left panel changing the calibration value
to γ = 5.7 · 10−3 µM−1year−1 are a = 3.4 cm2year−1, cs = 7.6 · 103 µMcm2, δs = 1.18
year−1, Ds = 1.07 · 107 cm2year−1. Parameters of right panel changing the calibration
value to γ = 2.9 · 10−3 µM−1year−1 are a = 2.32 cm2year−1, cs = 7.6 · 103 µMcm2,
δs = 1.18 year−1, Ds = 1.07 · 107 cm2year−1.

Figure 5.15: Same as in Fig. 5.2. Parameters of the left panel changing to csωbn =
10−2SRR are a = 2.86 cm2year−1, cs = 7.6·104 µMcm2, δs = 11.84 year−1, Ds = 1.07·108

cm2year−1. Parameters of the right panel changing to csωbn = 10−1SRR are a = 2.86
cm2year−1, cs = 7.6 · 105 µMcm2, δs = 118.44 year−1, Ds = 1.07 · 109 cm2year−1.

Third, we change the ratio csωb
δs

= 385±216 µMshoots−1cm2 within its error (Fig.

5.12). We also take csωb
δs

= 61 µMshoots−1cm2 where the effects of changing the
previous ratio are more pronounced to better see the changes of the phase diagram.
This ratio corresponds to the relation between the stationary concentration of sulfides
and the shoot density. This case has important implications from the dynamical point
of view, mainly because this ratio controls the level of superposition between the
unstable regions to patterns and to oscillations. As one can see in Fig. 5.16 increasing
this ratio the oscillatory domain touches the saddle node creating the two TB points
as previously. On the contrary, decreasing the ratio, the oscillatory domain moves
to lower mortalities, generating regions with only oscillatory instability, regions with
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only Turing instability, and regions with the two instabilities simultaneously. The
wavelength of the pattern increases when decreasing the ratio reaching ∼ 50 m for the
lowest value considered. Interestingly the ratio csωb

δs
= S∗

n∗
has an important impact

on the dynamical behaviors present in the phase diagram, which is an important fact
from the diagnostic point of view.

Figure 5.16: Same as in Fig. 5.2. Parameters of left panel changing to csωb
δs

= 601

µMshoots−1cm2 are a = 3.79 cm2year−1, cs = 7.6 · 103 µMcm2, δs = 0.76 year−1, Ds =
6.83·106 cm2year−1. Parameters of the right panel changing to csωb

δs
= 169 µMshoots−1cm2

are a = 1.93 cm2year−1, cs = 7.6 · 103 µMcm2, δs = 2.70 year−1, Ds = 2.43 · 107

cm2year−1. Parameters of the bottom panel changing to csωb
δs

= 61 µMshoots−1cm2 are

a = 1.47 cm2year−1, cs = 7.6 · 103 µMcm2, δs = 7.48 year−1, Ds = 6.73 · 107 cm2year−1.

Finally, we change the quantity
√

Ds
δs

to 5 and 100 m. As expected for the lower

value the domain of instability to patterns diminishes starting to resemble the shape
found in previous chapters for the model with kernel 2.4, besides the oscillatory
domain is not affected. Is not surprising that the wavelength of the pattern changes

accordingly to
√

Ds
δs

being ∼ 10 m and ∼ 50 m respectively.

As said previously all previous parameterizations are susceptible to develop neg-
ative values of S, which is a problem because impose limitations to the model for
studying P.oceanica. We do not expect the results to change significantly changing
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Figure 5.17: Same as in Fig. 5.2. Parameters are a = 2.86 cm2year−1, cs = 7.6 · 103

µMcm2, δs = 1.18 year−1, Ds = 1.18 ·108 cm2year−1 for the left panel and Ds = 2.96 ·105

cm2year−1 for the right panel taking
√

Ds
δs

= 100 and 5 m respectively.

the mortality term ωd(n, S) to prevent negative values as done in chapter 1. As we
have seen, the relation of the unstable regions with parameters is complex, however,
the region unstable to patterns exist for a broad range of values of γ. This fact is
important because variable conditions found in nature like the increase in mortality
approaching the coast will explore the phase diagram making reasonably probable
observing pattern formation. The same can be applied to the excitable region, al-
though being more limited, there is an important range of values of γ in which the
natural exploration of mortality will make the plants exhibit excitable behavior in
some locations. In fact, it seems to be the case, vegetation patterns are more easily
found in nature while excitable dynamics is rare. However, in the Corsican coast the
evolution of a ring of vegetation compatible with excitable behavior was reported in
[58]. We expect to be able to reproduce such behavior with numerical simulations
in the excitable region when including the saturation of the facilitative term, which
avoids the appearance of negative values of sulfide concentration.

5.3 Parametrization for Zostera marina

Similar to the formation of rings in the Corsican coast for P.oceanica, rings of vege-
tation were found in the Danish Kattegat. In this work measurements of porewater
sulfides were taken along the radial direction of the ring, showing a correlation be-
tween the presence of sulfides in the sediment and the lack of vegetation. We aim to
calibrate the model for these seagrass species in order to show the possibility of the
formation of rings due to the presence of the excitable region in the phase diagram.
Equivalently to the case of P.oceanica it is possible to calibrate the model using the
same procedure as before. From [94] we take the branching rate ωb, the branching
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angle φb and the elongation velocity of the rhizome ν. Using the previous values
and according to chapter 3, we compute d0 = 232.67 cm2year−1 and d1 = 1164.57
cm4year−1. The parameter a is calculated to have the same degree of bistability
while b is calculated to have around 1000 shoots/m2 for the homogeneous density
at mortality ωd0/ωb = 1.273. Regarding the parameters of sulfide evolution γ, cs,
δs and Ds, there are no systematic measurements of γ, however, we can obtain an
estimation using measurements of sulfide concentration and mortality. From [149]
γ = 2.92 · 10−2 µM−1year−1 while in [150] γ = 2.58 · 10−3 µM−1year−1. We also
obtain the value of csωb

δs
= 2847.46 µMshoots−1cm2 from density measurements and

sulfide concentrations in [137], and csωb
δs

= 1347.55 µMshoots−1cm2 from [56]. The
removal rate can be estimated from the time evolution of sulfide concentration in
Fig. 2 of [137]. The maximum production of sulfides is in summer and after that
there is a decay of the concentration with time, being the time of removal between
half year and a year, hence we take δs = 1 − 2 years−1. The removal rate can be
computed using the same procedure used for P.Oceainca, however one needs to con-
sider the production of sulfides a fraction of SRR. In this case we can compare the
resultant δs using both ways, and there is agreement when the fraction is between
10−4 − 10−3SRR. Finally the diffusion parameter is considered the same as in the
previous case due to the lack of measurements in the Danish Kattegat.

We use the following parameters in the calibration, γ = 8.315 ·10−3 µM−1year−1,
csωb
δs

= 2·103 µMshoots−1cm2, δs = 1.2 years−1 as a reference, which are in the ranges
determined by the values presented before and allow the formation of rings as we will
show below. Next, we are going to change the parameters in order to study how the
phase diagram changes for different values used in the calibration as in the previous
section. But first, we analyze the phase diagram for this set of values. Basically,
instabilities to patterns and oscillations are present. The two regions of instability
are superimposed and are present for the chosen value of γ (Fig. 5.18). The two
Hopf bifurcations touch the saddle node at two Takens-Bogdanov creating a region of
excitability. As one can see the region where the sulfide concentration is guaranteed
to be positive is limited but not inexistent like previously. The critical wavelength
of the pattern is around 15m.

The first parameter used in the calibration we change is δs to 1 and 2 year−1

showing its phase diagrams in Fig. 5.19. The oscillatory region moves creating a
broader excitable region in the first case and a smaller one in the second. Other
changes are minor, even in the critical wavelength.

Second, we change the ratio csωb
δs

to 2847.46 µMshoots−1cm2 and 1347.55 µMshoots−1cm2.
In Fig. 5.20 we can see in the first case that the saddle node bifurcation moves to
higher mortalities and the two TB separate creating a bigger excitable region, how-
ever a big part of this region is susceptible to develop negative concentrations. In the
second case, the excitable region is smaller but this limit is on top on the transcritical
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Figure 5.18: Same as in Fig. 5.2. Parameters are ωb = 1.587 year−1, a = 42.13
cm2year−1, b = 211.6 cm4year−1, d0 = 232.67 cm2year−1, d1 = 1164.57 cm4year−1,
cs = 1512.29 µMcm2, δs = 1.2 year−1, Ds = 1.08 · 107 cm2year−1.

Figure 5.19: Parameters are ωb = 1.587 year−1, a = 42.13 cm2year−1, b = 211.6
cm4year−1, d0 = 232.67 cm2year−1, d1 = 1164.57 cm4year−1, cs = 1260.24 µMcm2,
δs = 1 year−1, Ds = 9.0 · 106 cm2year−1. Parameters are ωb = 1.587 year−1, a = 42.13
cm2year−1, b = 211.6 cm4year−1, d0 = 232.67 cm2year−1, d1 = 1164.57 cm4year−1,
cs = 2520.48 µMcm2, δs = 2 year−1, Ds = 1.8 · 107 cm2year−1.

bifurcation, leaving a broader safe region. In the first case the wavelength changes
to around 10 m while in the second remains around 15 m

In the third case, represented in Fig. 5.21, we show a similar dependence changing
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Figure 5.20: Parameters with calibration parameter csωb
δs

= 2847.46 µMshoots−1cm2 are

ωb = 1.587 year−1, a = 49.18 cm2year−1, b = 211.6 cm4year−1, d0 = 232.67 cm2year−1,
d1 = 1164.57 cm4year−1, cs = 2153.1 µMcm2, δs = 1.2 year−1, Ds = 1.08 ·107 cm2year−1.
Parameters with calibration parameter csωb

δs
= 1347.55 µMshoots−1cm2 are ωb = 1.587

year−1, a = 36.7 cm2year−1, b = 211.6 cm4year−1, d0 = 232.67 cm2year−1, d1 = 1164.57
cm4year−1, cs = 1018.94 µMcm2, δs = 1.2 year−1, Ds = 1.08 · 107 cm2year−1.

the value of γ used in the calibration to γ = 2.92 · 10−2 µM−1year−1 and γ =
2.58 · 10−3 µM−1year−1. For the first value, the distance between the two TB points
increases dramatically but all the region becomes susceptible to develop negative
concentrations. On the second case this limit moves in mortality as well as the Hopf
bifurcation, which in this case does not meet the saddle node. This similar change of
the phase diagram when increasing the values of csωb

δs
and γ used for the calibration

(compare Fig. 5.20 and 5.21) is basically due to the movement of the saddle node
bifurcation.

One can see from the previous cases, that for these parameter ranges the excitable
region appears easily, however, the problem is that in many cases the excitable region
coincides with the region susceptible of developing negative sulfide concentrations.
If one performs numerical simulations with these parameter sets one can see the
formation of rings with negative sulfide concentration in the front, which is physically
unreasonable. However, the initially chosen parameter values have regions in the
phase diagram where one can ensure positive concentration and being inside the
excitable region. Additionally, there is one more requirement for a ring to be formed.
The diffusion of sulfides must not exceed the diffusion of plants in order to maintain
the front of vegetation and sulfide concentration one in front of the other. Thus
we show that for much smaller diffusions than those giving patterns, Ds = 214.95
cm2year−1, one can find expanding rings of vegetation. In Fig. 5.22 we show the
phase diagram with this value of diffusion. As we can see the Turing instability is
not present. For higher values of Ds on can recover gradually this instability, but the
ring is influenced by this fact developing much more complex structures in space.

104
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Figure 5.21: Parameters with calibration parameter γ = 2.92·10−2 µM−1year−1 are ωb =
1.587 year−1, a = 83.94 cm2year−1, b = 211.6 cm4year−1, d0 = 232.67 cm2year−1, d1 =
1164.57 cm4year−1, cs = 1512.29 µMcm2, δs = 1.2 year−1, Ds = 1.08 · 107 cm2year−1.
Parameters with calibration parameter γ = 2.58 ·10−3 µM−1year−1 areωb = 1.587 year−1,
a = 30.68 cm2year−1, b = 211.6 cm4year−1, d0 = 232.67 cm2year−1, d1 = 1164.57
cm4year−1, cs = 1512.29 µMcm2, δs = 1.2 year−1, Ds = 1.08 · 107 cm2year−1.

Figure 5.22: Parameters are ωb = 1.587 year−1, a = 42.13 cm2year−1, b = 211.6
cm4year−1, d0 = 232.67 cm2year−1, d1 = 1164.57 cm4year−1, cs = 1512.29 µMcm2,
δs = 1.2 year−1, Ds = 214.95 cm2year−1.

Fig. 5.23 shows the time evolution of a ring of vegetation that expands. Starting
with an initial condition of a Gaussian spot of vegetation, the accumulation of sulfides
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Figure 5.23: Spatiotemporal evolution of an expanding ring of vegetation. Left: Vegeta-
tion distribution of a numerical simulation starting with a Gaussian spot of vegetation as
initial condition. The density of shoots n is represented according to the right greenscale.
Right: Transversal cut of the vegetation pattern indicated in the figure on the left. Shoot
density in green and associate sulfur concentration S in orange. Parameters are ωb = 1.587
year−1, ωd0 = 2.301 year−1, a = 42.13 cm2year−1, b = 211.6 cm4year−1, d0 = 232.67
cm2year−1, d1 = 1164.57 cm4year−1, cs = 1512.29 µMcm2, δs = 1.2 year−1, Ds = 214.95
cm2year−1.

opens a hole in the center poisoning the vegetation, thus once the ring is formed it
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increases its size with time remaining the circular band of vegetation with the same
width. Vegetation is fast enough to grow escaping the diffusion of sulfides which
remain just behind killing all left plants, thus forming an excitable pulse, which
grows indefinitely until colliding with another pulse. The formation of this expanding
ring and the sulfide concentration behind resembles those fairy rings reported in the
Danish Kattegat for Zostera marina [56], (Fig. 5.24).

Figure 5.24: Fairy rings of Zostera marina in the Danish Kattegat. Image from [56]

5.4 Conclusions

The model presented in this chapter helps in the understanding of the mechanism
involved in the formation of patterns of vegetation in marine ecosystems. It explains
from a mechanistic point of view the processes leading to spatial organization. More-
over, the sulfur cycle is an important geochemical process present in very different
ecosystems around the globe, hence, this mechanism is expected to have important
implications not only for P.oceanica but for other seagrasses. Thus, the long-range
competition introduced previously with a kernel is well explained in terms of the
spreading of this phytotoxin. As a matter of fact, the interaction kernel can be
recovered for certain limits of parameters. In this limit, however, the oscillatory dy-
namics is not present, showing the limitations of using an effective kernel to describe
the interaction. Additionally, the model shows that bistability is necessary to make
possible the formation of rings, which will not be created without an excitable region.

The presence of oscillatory behavior is a significant change in the study of the
problem from different perspectives. On the one hand, it adds a new level of com-
plexity to the study of the dynamics. The number of possible dynamic regimes is
increased as we have shown, giving rise not only to patterns and oscillations but to
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mixed behaviors like the formation of rings, oscillatory patterns or turbulence. On
the other hand, from the measurements, diagnostic and predictive points of view not
considering this possible behavior can lead to wrong interpretations of the state of a
meadow and obviously wrong predictions of its future development.

This simple approach, which allows to obtain analytical expressions and simplify
the calculations, has important advantages in the understanding of the dynamics.
However, as we have seen, the model also has some limitations. In particular, some-
times it develops negative sulfide concentrations when describing oscillatory regimes.
This can be easily solved by introducing a saturation of the facilitative term. Even so,
the variability of the data used for parametrization introduces stronger uncertainties
in the results obtained with the model. In other words, although the obtained results
point to the presence of pattern forming and oscillatory instabilities, some values of
the parameters used in the parametrization require unreasonably large values of the
diffusion. Moreover, changes in these parameters produce big shifts in the threshold
of the oscillatory instability. Thus, the experimental measurements are not accurate
enough to determine which are the dynamical regimes present. Notice also that not
all measurements are taken in the same location neither measure the appropriate
quantity, thus introducing more variability in results.

A number of open questions arise from the results in the chapter. For instance,
which is the importance of this mechanism structuring spatial organization in sea-
grass ecosystems? Are oscillations of biomass or spatio-temporal chaos present in
seagrass ecosystems? Is it a common phenomenon independent of species? Or some
of them can be expected to be more susceptible?

As future perspectives, there are three important aspects which require more
efforts. First, precise measurements in a single location of the parameters of the
model. Second, an improvement of the model to guarantee positive sulfide concen-
tration, and third, a deeper exploration of the dynamical regimes that emerge in the
region of coexistence of the oscillatory instability and the Turing instability.

108



CHAPTER 6
Conclusions

Along this thesis different chapters address different questions in the context of theo-
retical ecology using tools which traditionally belong to physics. In particular, a big
part of the thesis is focused on Posidonia oceanica due to its key importance for the
Mediterranean, although other clonal plants have been considered. The ABD model,
derived to describe the growth of clonal plants is a continuous model based on intrin-
sic mechanisms of growth which are measured experimentally and well quantified in
the literature. Thus, the model describes properly clonal growth and it is applicable
to many clonal species.
As it has been shown, long-range competitive interactions are the necessary ingre-
dient for a meadow to develop vegetation patterns. An interaction distance around
20−30 m is inferred from the analysis of spatial patterns in the cartography data from
LIFE Posidonia project, which points to mechanisms related with matter movement
as the most plausible explanation of the competitive interaction. With this ingredi-
ents the landscape features of the meadow are well reproduced by the model. More
precisely an hexagonal pattern of holes without vegetation appears close to the coast.
The pattern shows more elongated shapes at the shoreline while for deeper waters,
closer where the homogeneous meadow prevails, isolated holes appear consistently
with the existence of localized states predicted by pattern formation theory. More-
over, the formation of patterns explains high variability of density measurements
close to the coast. Besides, the model has potential applications to identify critical
thresholds after which the spatial configuration changes, which for extreme cases
lead to complete desertification. As a result, the different landscapes appearing at
different mortalities are useful as a diagnostic tool which allows to identify the envi-
ronmental condition the meadow experiences.
From a more technical perspective we showed that the minimal numerical discretiza-
tion for the modelization of the growth of Posidonia oceanica accounts only for eight
directions of growth compatible with the branching angle. Through the study of the
dependence on the angle we have reached the conclusion that the density of apices in
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different directions of growth evolves towards an homogeneous configuration. When
the branching angle is incommensurable with 2π the homogeneous configuration is
the only possible solution, while in the commensurable case neutral modes allow the
redistribution of plants in different directions of growth without cost, however, under
the influence of noise differences in the angle wipe out with time. In the presence of
patterns, or in fact when the gradient of the density is nonzero a preferred direction
appears facing outwards the meadow. The associated modulation in the angle has
the periodicity of 2π which is well described by eight directions of growth, justifying
this minimal approach.
Although the ABD model provides a detailed description of clonal growth, it is
computationally limited by the fact of being effectively 3 dimensional. In order to
overcome this difficulty we have derived a simplified equation that describes the to-
tal density of shoots and reproduces the formation of patterns without taking into
account for the direction of growth. In particular, the relation between the intrin-
sic growth parameters with the parameters in the simplified equation adds an extra
value to the derivation. Mainly because the global effect of different mechanisms
of growth like branching and elongation of the rhizome is reflected in the effective
terms in the resultant equation through the dependence of the coefficients. This fact
allows a better understanding of its role in the spatial colonization of the meadow.
In particular the contribution of the term d1‖∇n‖ 2 is new, not appearing in other
well know vegetation models and in this sense intrinsic of clonal growth. In fact
more work is necessary to really determine the effects of this non-variational term in
important features of the growth, like the velocity of vegetation fronts or the stability
of stationary solution against drift.
The derivation of a simple equation describing the growth at different levels of sim-
plification allows a deeper study of pattern formation. The simplification allows
to apply more sophisticated numerical methods to track stationary solutions, which
provide very important information about the dynamics of the meadows and the pos-
sible configurations that can be found at the seabottom. Specially important is the
characterization of localized structures and its regimes of existence, which determine
the evolution of vegetation fronts. In this direction the study of fronts dynamics in
two dimensions is much more involved than the one dimensional case. The number
of possible fronts increases substantially and multiple regions of coexistence between
patterns exits, thus a very detailed characterization of the stability of vegetation
fronts is necessary to understand the dynamics of the meadows. Moreover localized
structures in two dimensions will play a very important role, in particular localized
structures with radial symmetry are accessible with continuation techniques and
would provide valuable knowledge to understand the propagation of fronts. How-
ever, more efforts are needed in this direction.
The last part of the work, presents a possible specific mechanism to explain the
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formation of patterns in Posidonia oceanica meadows with applicability to other
seagrasses. Using a simple description for the growth of the meadow we couple
the equation describing the dynamical evolution of the shoot density to a diffusion
equation describing the spreading of hydrogen sulfide concentration. Sulfides in the
sediment generated due to decomposition of organic matter from dead plants in the
surrounding produces an effective long-range competition that generates spatial pat-
terns. Surprisingly, the consequences of introducing this mechanism go beyond the
formation of patterns. The homogeneous meadow becomes also unstable to periodic
oscillations. This fact together with the spatial dynamics give raise to a very reach
set of dynamical behaviors. Particularly interesting is the presence of an homoclinic
bifurcation which creates excitable dynamics. As a result pulse solutions, which
form expanding rings like those found in the Danish Kattegat for Zostera marina,
can be also explained by this mechanism. We have parametrized the model for two
species Z. marina and P. oceanica considering the variability of the experimental
measurements. The results show that the considered mechanisms is in fact a plau-
sible explanation of pattern formation, however, the variability is broad and more
precise measurements are necessary to corroborate the hypothesis. Clarifying if this
mechanism is determining the evolution of the meadows can have important conse-
quences for the study of these ecosystems, mainly because many works of monitoring
and long-term forecasting rely on the assumption that no oscillatory dynamics are
taking place. In this direction, the models can guide the measurements to determine
which quantities are going to be the most relevant. For instance, the measurement
of shoots density and sulfide concentration profiles in the radial direction of both
localized structures, holes and patches can provide important information about the
parameters of the model and, consequently, to confirm or discard the hypothesis.
The model used for the description of the growth of the meadow is a modified version
of the simplified equation. The simplicity is very useful to understand general dy-
namical behaviors, nevertheless, it has important disadvantages in certain parameter
regimes, in particular is unable to avoid the generation of negative values of sulfide
concentration. Therefore, a more sophisticated version is needed to avoid that effect
which we plan to develop in the future.
As a matter of fact, sulfur cycle is a geochemical process present in many seagrass
ecosystems. It would not be surprising that many other marine ecosystems behavior
can be explained by these or similar equations. In this sense new application of this
work to other ecosystems would be an interesting topic of future research.

Other questions not explored in this thesis remain to be answered in the future.
For example, fluctuations as a result of demographic noise can have important effects
on the dynamics. In particular, demographic noise can shift critical transitions or
prevent extinctions [151, 152]. From this perspective a stochastic version of the mod-
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els presented in this work can provide important information about the evolution of
vegetation.
From a more applied perspective, the model is a practical tool with the potential to
study evolutionary features of the plant to improve spreading strategies. Moreover,
more research is necessary to understand how the spreading of the meadow is affected
by the different growth parameters associated to different species.
Besides different effects, like the role hydrodynamism, need to be analyzed to deter-
mine its contribution to spatial self-organization. In fact there is a big need to include
vegetation dynamics in oceanographic models applied to coastal zones. Mainly be-
cause the change of the coastline due to the hydrodynamics is importantly affected
by the presence of vegetation and vice versa. Another important question to ad-
dress is the effects on the meadows of the expected raise in temperature for the next
century. Regarding the oscillatory dynamics of the homogeneous solutions when the
presence of sulfide is included, it would be very interesting from the mathematical
and ecological point of view to include seasonal forcing and determine the effects on
the oscillation. From a more ecological perspective, there is a big concern about the
effect of invasive species in the growth of endemic meadows. Some of these proposals
need to include new levels of description. In this sense the simplified equation is
really appropriate to address these questions.

Summarizing, we have developed different models useful in different regimes of
applicability, which give a theoretical framework to study pattern formation in clonal-
growth plants. We have applied these tools mainly to Posidonia oceanica but other
species are expected to be well modeled by this approach. We have contributed to
answer specific question using these models but many other challenges remain to be
solved.
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APPENDIX A
Linear stability analysis of the ABD model

First we adimensionalize the ABD model scaling time, space and the density of
plants, t = τT , ~r = χ~R and n′s,a = η

χ2ns,a. The branching rate fixes the temporal
scale. Once we have the temporal scale the spatial scale is determined by the velocity
of the rhizome elongation. Finally the scale of the number of shoots is influenced, as
expected, by the saturation through the parameter b:

τ =
1

ωb
, χ =

ν

ωb
, η =

√
ωb
b

ν2

ω2
b

. (A.1)

Thus we can write the new parameters in terms of the old ones:

ω′d0 =
ωd0

ωb
, κ′ =

κ

ωb
, a′ =

√
ωb
b
a, ρ′ =

ρωb
ν
, σ′i =

ωbσi
ν
. (A.2)

In the new units ω′b = ν ′ = b′ = 1. In the following we drop the primes for simplicity
in the notation.

In order to study the stability of the homogeneous solutions we consider pertur-
bations of the form ns = n∗s + nsp, na = n∗a + nap. The linearized systems reads:

∂Tnap = −
[
ωd0 + (κ− ωd0)(1− e−an∗t ) + n∗2t

]
nap

+

[
−2n∗tntp − ae−an

∗
t

∫ ∫
K(~R− ~R′)ntp(~R

′)d~R

]
ρ

2π(1 + ρ)
n∗t

−v̂(φ) · ~∇nap +
1

2
[nap(φ+ φb) + nap(φ− φb)] (A.3)

∂Tnsp = −
[
ωd0 + (κ− ωd0)(1− e−an∗t ) + n∗2t

]
nsp

+

[
−2n∗tntp − ae−an

∗
t

∫ ∫
K(~R− ~R′)ntp(~R

′)d~R

]
n∗t

(1 + ρ)

+
1

ρ

∫
nap(φ)dφ, (A.4)
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where ntp = nsp+
∫ 2π

0
nap(~R, φ, t)dφ and v̂(φ) is a unit vector in direction φ. Since

the advection term is periodic in φ [v̂(φ) = (cosφ, sinφ)], Eqs. (A.3)-(A.4) are a set
of linear differential equations with periodic coefficients of periodicity 2π. Because
the dependence in φ should be periodic, perturbations can be written in the following
form:

nap(~R, φ, t) =
∑

qφ

∫ ∫
ñap,qφ(~q, t)ei~q·

~Reiqφφd~q (A.5)

nsp(~R, t) =

∫ ∫
ñsp(~q, t)e

i~q·~Rd~q, (A.6)

where i is the imaginary unit, and qφ = . . . ,−1, 0, 1, 2 . . . . Introducing Eqs.
(A.5)-(A.6) in (A.3)-(A.4) we obtain the following set of coupled linear ordinary
differential equations for the components ñap,qφ , ñsp :

∂T ñap,qφ = −
[
ωd0 + (κ− ωd0)(1− e−an∗t ) + n∗2t

]
ñap,qφ

−iq+

2
nap,qφ+1 −

iq−
2
nap,qφ−1 + cos(qφφb)ñap,qφ (A.7)

∂T ñap,0 =
[
1− ωd0 + (κ− ωd0)(1− e−an∗t ) + n∗2t

]
ñap,0

+
[
−2n∗t − ae−an

∗
t K̃(~q)

] ρ

2π(1 + ρ)
n∗t ñtp

−iq+

2
ñap,+1 −

iq−
2
ñap,−1 (A.8)

∂T ñsp = −
(
ωd0 + (κ− ωd0)(1− e−an∗t ) + n∗2t

)
ñsp

+

(
−2n∗t − ae−an

∗
t K̃(~q)

)

(1 + ρ)
n∗t ñtp +

2π

ρ
ñap,0, (A.9)

where q± = qx ± iqy.
Eqs. (A.7)-(A.9) describe the linear evolution of the perturbation of the homoge-
neous solutions. The rsh of this system of equations can be written in a matrix form
of infinite dimension. We truncate the matrix operator at order qφ = ±4 (neglecting
contributions with |qφ| > 4), which is equivalent to the numerical discretization of φ
that has been used for the numerical simulations. Then, diagonalizing numerically
we find the growth rate of perturbations with wavenumber ~q = (qx, qy). The diago-
nalization leads to 10 eigenvalues for each ~q. The solution is stable if all eigenvalues
λj(qx, qy) have negative real part. On the contrary, if the real part of the eigenvalue
for a given wave number ~q becomes positive, the homogeneous solution becomes
unstable to perturbations with the corresponding spatial periodicity, and a spatial
patterns forms.
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A.1 Neutral modes for stationary patterns

The content of this appendix is devoted to demonstrate the existence of neutral
modes when a pattern in space is formed. Essentially in the commensurable case,
given a stationary solution of the model, which can be heterogeneous in space, like a
pattern, due to the presence of neutral modes one can redistribute density of apices
in different directions provided the total density in a given position does not change.

Let n∗s(~r), n
∗
a(~r, φ) be the stationary solution of Eqs. (2.1) and (2.2), as for in-

stance the ones represented in Fig. 2.20. We propose the following ansatz ns(~r, t) =

n∗s(~r), na(~r, φ, t) = n∗a(~r, φ)(1+δna(φ, t)), with the condition that
∫ 2π

0
n∗a(~r, φ)δna(φ, t)dφ =

0. Thus the contribution of δna(φ, t) to the total density at position ~r is zero, and
it can only redistribute density in different directions of growth. Hence, introducing
the ansatz in Eqs. (2.1) and (2.2) we obtain:

n∗a(~r, φ)∂tδna(φ, t) =

−ωd(n∗t )n∗a(~r, φ)− ~v(φ) · ~∇n∗a(~r, φ) +
ωb
2

(n∗a(~r, φ+ φb) + n∗a(~r, φ− φb))

−ωd(n∗t )n∗a(~r, φ)δna(φ, t)− ~v(φ) · ~∇n∗a(~r, φ)δna(φ, t)

+
ωb
2

(n∗a(~r, φ+ φb)δna(φ+ φb, t) + n∗a(~r, φ− φb)δna(φ− φb, t)) (A.10)

0 = −ωd(n∗t )n∗s(~r) +
ν

ρ

∫ 2π

0

n∗a(~r, φ)dφ. (A.11)

The first three terms in the rhs of Eq. (A.10) correspond to the stationary condition
and they cancel each other. The fourth and fifth terms are equal to

− ωb
2

(n∗a(~r, φ+ φb) + n∗a(~r, φ− φb)) δna(φ, t), (A.12)

according to the stationary condition. Eq. (A.11) corresponds to the stationary
condition for Eq. (2.2). Thus one obtains the following expression:

n∗a(~r, φ)∂tδna(φ, t) = −ωb
2

(n∗a(~r, φ+ φb) + n∗a(~r, φ− φb)) δna(φ, t)

+
ωb
2

(n∗a(~r, φ+ φb)δna(φ+ φb, t) + n∗a(~r, φ− φb)δna(φ− φb, t)) . (A.13)

One can write na(~r, φ) =
∑

qφ
bqφ(~r)eiqφφ and δna(φ, t) =

∑
q′φ
δbq′φ(t)eiq

′
φφ as a

Fourier series and substitute in Eq. (A.13). Rearranging terms with the same expo-
nential term q = qφ + q′φ one obtains a set of ordinary differential equations labeled
by q ∈ Z of the following form:

∑

q′φ

bq−q′φ(~r)∂tδbq′φ(t) =
∑

q′φ

ωb(cos(qφb)− cos
(
(q − q′φ)φb

)
)bq−q′φ(~r)δbq′φ(t) (A.14)
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The eigenvalues of the problem are difficult to obtain from the previous expression,
and they may not have an analytical closed form, however, a more simple strategy is
to impose the condition that the modes of the perturbation are those with q′φ,n = 2π

φb
n,

which makes the rhs of (A.14) zero. Hence, these modes are neutral independently of
the stationary solution, meaning one can redistribute density in different directions
as long as it is periodic with φb and does not change the total density of apices.

A.2 Time dependence of the fluctuations

In this part we present and derive some expressions which are necessary in chapter 2
to understand the evolution of the size of the fluctuations. The fluctuations of white
noise given by the Dirac delta diverge locally, to implement it numerically one has
to consider the coarse-grained noise defined as

ξcgj (t) =
1

∆φ

∫ (j+1)∆φ

j∆φ

ξ(φ, t)dφ. (A.15)

The average is < ξcgj (t) >= 0 and the fluctuations are given by

< ξcgj (t)ξcgj′ (t
′) > =

1

∆φ2

∫ (j+1)∆φ

j∆φ

∫ (j′+1)∆φ

j′∆φ

<
√
εξ(φ, t)

√
εξ(φ′, t′) > dφdφ′

=
ε

∆φ
δj,j′δ(t− t′). (A.16)

As a result one can compute the noise in Fourier space just applying the discrete
Fourier transform f̃n = 1

N

∑
j fje

−i 2π
N
nj where fj are the values of the field and f̃n

the amplitude of the n Fourier mode.

< ξ̃n(t)ξ̃n′(t
′) > =

1

N2

∑

j,j′

e−i
2π
N

(nj+n′j′) < ξcgj (t)ξcgj′ (t
′) >

=
1

N2

∑

j,j′

e−i
2π
N

(nj+n′j′) ε

∆φ
δj,j′δ(t− t′)

=
1

N2

∑

j

e−i
2π
N

(n+n′)j) ε

∆φ
δ(t− t′)

=
ε

2π
δn,−n′δ(t− t′). (A.17)

The fluctuations of the real part of ξ̃n(t), which we represent in Fig. 2.16 can be
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computed as previously

< Re[ξ̃n(t)]Re[ξ̃n′(t
′)] > =

1

N2

∑

j,j′

cos

(
−i2π

N
nj

)
cos

(
−i2π

N
n′j′
)
< ξcgj (t)ξcgj′ (t

′) >

=
1

N2

∑

j,j′

cos

(
−i2π

N
nj

)
cos

(
−i2π

N
n′j′
)

ε

∆φ
δj,j′δ(t− t′)

=
εδ(t− t′)
4N2∆φ

∑

j

e−i
2π
N

(n+n′)j) + ei
2π
N

(n+n′)j)

+e−i
2π
N

(n−n′)j) + ei
2π
N

(n−n′)j)

=
ε

4π
δ(t− t′)(δn,n′ + δn,−n′). (A.18)

In the Fourier space the linear dynamics can be written as dbn
dt

= λnbn + ξ̃n(t).
Damped modes follow an Ornstein-Uhlenbeck process with zero mean and variance
1−e2λnt
−2λn

. While neutral modes will follow a diffusive process with variance εt
2π

and zero
mean. Thus, since we know the evolution of the fluctuations of all modes in Fourier,
for the linear regime we can compute the fluctuation in real space. The discretized
field can be written in terms of the Fourier amplitudes na,j =

∑
n bn(t)ei2πnj/N where

bn(t) =
∫ t

0
ξ̃n(s)ds for neutral modes and bn(t) = eλnt

∫ t
0
e−λnsξ̃n(s)ds for damped

modes. The fluctuations in real space are the result of products between modes,
neutral with neutral, damped with damped, and neutral with damped. Notice the
third group does not contribute mainly because from (A.17) opposite index n is
needed. Thus, written in terms of the sums between neutral modes and between
damped modes it follows

< na,j(t)
2 > = < b0(t)2 > +

∑

n,n′
neutral

ei
2π
N

(n+n′)j

∫∫ t

0

< ξn(s)ξn′(s
′) > dsds′

+
∑

n,n′
damped

ei
2π
N

(n+n′)je(λn+λn′ )t

∫∫ t

0

eλns+λn′s
′
< ξ̃n(s)ξ̃n′(s

′) > dsds′

= < b0(t)2 > +
∑
n

neutral

εt

2π
+
∑
n

damped

ε

2π

1− e2λnt

−2λn
. (A.19)

The homogeneous mode is not an eigenmode of the linear system, therefore the
fluctuations are a combination of the contribution of apices and shoots. Consider the
vector space formed by vectors ~n = (n1, n2) where the first component corresponds
to shoot density and the second to the homogeneous mode of apices density. Essen-
tially, the solution to the linear problem is a linear combination of the eigenvectors
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and b0(t) = a1(t)A21 + a2(t)A22 is the second component of this linear combination
which corresponds to apices. Aij are the matrix elements of the basis change ma-
trix with the two eigenvectors written in columns, and ai(t) the amplitude of each
eigenvectors which we are going to obtain in the next lines. The linear problem
can be written in the form ∂tai(t)n

i
j = Jjkai(t)n

i
k + ξ̃0(t)δ2,j, where nij is the ith

eigenvector and Jjk the elements of the Jacobian evaluated around the homogeneous
solutions. Thus, applying A−1 to change to the diagonal basis and projecting on
each eigenvector one obtains the equation for the time evolution of the amplitudes
∂tai(t) = λiai(t) + A−1

i2 ξ̃0(t) , which again leads to ai(t) = eλit
∫ t

0
e−λisξ̃0(s)ds where

λi are the eigenvalues of the Jacobian. As a result one can compute the fluctuations
of the homogeneous mode in terms of the basis change matrix and its inverse, which
at the end are computed numerically since they depend on the homogeneous solution
which does not have an analytical expression.

< b0(t)2 > = (a1(t)A21)2 + (a2(t)A22)2 + 2(a1(t)a2(t)A21A22)

= (A21A
−1
12 )2e2λ1t

∫∫ t

0

e−λ1(s+s′) < ξ̃0(s)ξ̃0(s′) > dsds′

+(A22A
−1
22 )2e2λ2t

∫∫ t

0

e−λ2(s+s′) < ξ̃0(s)ξ̃0(s′) > dsds′

+2(A21A22A
−1
12 A

−1
22 )e(λ1+λ2)t

∫∫ t

0

e−λ1s−λ2s
′
< ξ̃0(s)ξ̃0(s′) > dsds′

=
ε

2π

(
(A21A

−1
12 )2 1− e2λ1t

−2λ1

+ (A22A
−1
22 )2 1− e2λ2t

−2λ2

+2(A21A22A
−1
12 A

−1
22 )

1− e(λ1+λ2)t

−(λ1 + λ2)

)
. (A.20)

According to Eq. (A.19) the size of the fluctuations in real space depends on
the number of modes considered in the integration, or equivalently on ∆φ. This
essentially is a result of the numerical implementation of the noise. For an appropri-
ate numerical implementation of the noise instead of describing na(i∆φ), the stan-
dard procedure requires describing the average density in the interval ∆φ as na,i =∫ (i+1)∆φ

i∆φ
na(φ)dφ/∆φ. Thus, assuming the variance of the field is σ[na(φ)]2δ(φ− φ′)

the variance of the discretized field reads
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A.3. Pseudospectral integration with noise

< na,ina,i > =
1

∆φ2

∫ (i+1)∆φ

i∆φ

∫ (i+1)∆φ

i∆φ

< na(φ)na(φ
′) > dφdφ′

=
1

∆φ2

∫ (i+1)∆φ

i∆φ

∫ (i+1)∆φ

i∆φ

σ[na(φ)]2δ(φ− φ′)dφdφ′

=
σ[na(φ)]2

∆φ
. (A.21)

which explains the dependence on the number of modes in Eq. (A.19). We plot in
Fig. 2.16 σ[na(φ)] =

√
< na,ina,i > ∆φ.

The real Discrete Fourier transform due to technical details stores in the last
mode n the sum of the amplitudes bn and b−n which are equal between them as
DFTn = bn + b−n. When we represent the last mode we apply a correction factor
1/2 such that bn = DFTn/2 and we compute averages and standard deviations.
It is easy to prove that the standard deviation has the correction factor σ[bn] =√

2σ[DFTn
2

] =
√

2σ[ bn+b−n
2

].

A.3 Pseudospectral integration with noise

According to Eq. (C.3) one can obtain a simpler algorithm for the integration of
Eqs. (2.5), (2.6) and (2.7) which account for the noise.

Ã(q, t+δt) = e−α(q)(t+δt)

(
Ã(q, t)eα(q)t +

∫ t+δt

t

Φ̃(q, t)eα(q)sds+

∫ t+δt

t

ξ̃(q, t)eα(q)sds

)
.

(A.22)

Similarly to the procedure in appendix C with t = nδt and q = k∆q (notice
∆q = 1 in this case) and f(q = k∆q) = fk. One has that

Ãk(n+ 1) = e−αkδtÃk(n) +
1− e−αkδt

αk
Φ̃k(n) +Wδt,k(n), (A.23)

whereWδt,k(n) is not white noise because of the integrating factor. Thus, the average
value <Wδt,k(n) >= 0 and the variance is computed as follows:
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Appendix A. Linear stability analysis of the ABD model

<Wδt,k(n)Wδt,k′(n) > = e−2αk(n+1)δt

∫∫ (n+1)δt

nδt

e(αk+αk′ )(s+s
′) < ξ̃k(s)ξ̃k′(s

′) > dsds′

= e−(αk+αk′ )(n+1)δt

∫ (n+1)δt

nδt

e(αk+αk′ )s < ξ̃kξ̃k′ > ds

=
1− e−(αk+αk′ )δt

2αk
< ξ̃kξ̃k′ > . (A.24)

In order to generate a term with such variance, taking into account the fact that ξ̃k is
the Fourier transform of the coarse grained noise. The noise term can be computed

Wδt,k(n) =

√
1− e−2αkδt

2αk

ε

∆φ
νk(n) (A.25)

where νk(n) = F [ui(n)] are the amplitudes of the Fourier transform of the set of
uncorrelated Gaussian random numbers ui(n) at each iteration n.
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APPENDIX B
Supplementary analytical expressions of

the model for coupled vegetation and
sulfide concentration

B.0.1 Linear stability analysis

In this appendix we provide some of the expression that can be obtained from the
linear stability analysis. In the first place we focus on the Hopf bifurcation which
is determined by the eigenvalues at q = 0 given by the solution of the second order
polynomial:

λ2 − λ((a− 2bn∗)n∗ + csγn
∗ − δs)

−(a− 2bn∗)n∗δs + csωbγn
∗ = 0, (B.1)

which has the form λ2 − τλ + ∆ = 0 and the solutions will be λ = τ±
√
τ2−4∆
2

.
The Hopf bifurcation needs τ = 0 and ∆ > 0, if one considers n∗ = n∗+ the second
condition is immediately satisfied. The first imply

(a− 2bn∗+)n∗+ + csγn
∗
+ − δs = 0 (B.2)

Substituting n∗+, and after some steps of calculation, one obtains a second order
polynomial with solutions:

γHopf =
a(δ2

s + 3δsωb + 2ωb(ωb − ωd0))± (δs + 2(ωb − ωd0))
√
a2(δs + ωb)2 − 4bδs(δs + 2ωb)ωd0)

2cs(δs + 2ωb)ωd0

(B.3)
For the Turing instability one checks when the eigenvalue of the wavenumber with

maximum growth rate becomes positive. We haven’t found an analytical expression
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Appendix B. Supplementary analytical expressions of the model for coupled
vegetation and sulfide concentration

for the Turing bifurcation but we can obtain the critical wavenumber. To do so we
derive implicitly Eq. (5.6) and introduces the conditionRe[λ(qc)] = 0 and ∂λ(q)

∂q
|q=qc =

0. Thus one can easily obtain

q2
c =

(a− 2bn∗)n∗Ds + (d0 + d1n
∗)csγn

∗ − δs(d0 + d1n
∗)

2Ds(d0 + d1n∗)
(B.4)

B.0.2 Adimensionalization

It can be helpful in the analysis to remove some parameters performing an adi-
mensionalization of the equations. We have used one similar to the presented in
chapter 1 for convenience, where n′ = η/χ2n, S ′ = σS, x′ = χx, t′ = τt being
η =

√
ωb
b
ν2

ω2
b
, σ = cs

√
ωb
b

, χ = ν2

ω2
b
, τ = 1

ωb
. Thus the new set of parameters is ω′b = 1,

ω′d0 = ωd0
ωb

, a′ = a√
bωb

, b′ = 1, d′0 = d0
ωb
ν2

, d′1 = d1
ωb
ν2

√
ωb
b

, δ′s = δs
ωb

, D′s = Ds
ωb
ν2

, c′s = 1,

γ′ = γ cs
ωb

√
ωb
b

.
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APPENDIX C
Pseudospectral integration method

In this thesis we integrate different partial differential equations, and integro-differential
equations. In this appendix we describe the integration method used, which is
adapted from [153]. All equations in the thesis can be written in the following
form using the Einstein summation convention,

∂tAi(~x, t) = L̂jiAj(~x, t) +Ni(A,∇(k)A), (C.1)

where A is the vector formed by all fields Ai(~x, t), with ~x ∈ Rn being n = 1, 2.
Generally L̂ji is a linear differential operator and Ni a nonlinear function of A and
its derivatives. The pseudospectral method solves Eq. (C.1) in Fourier space with
periodic boundary conditions,

∂tÃi(~q, t) = −αji (~q)Ãj(~q, t) + Φ̃i(~q, t), (C.2)

where Ãi(~q, t) = F [Ai(~x, t)], −αji (~q) is the Fourier transform of the linear operator
Lji , where the minus sign is taken for convenience and Φ̃i(~q, t) is the Fourier transform
of Ni computed in real space. For those equations with convolution terms in the
nonlinear part we use the convolution theorem to compute the integral integral in
real space. First, we do the product of the field with the analytical expression of
the kernel in Fourier space and we antitransform to real space. Finally we compute
the resultant nonlinear term and transform to Fourier space again. Nonlinear terms
with derivatives are also computed in this fashion. We use Fast Fourier transform
from Intel math kernel libraries to compute Fourier transforms. Except one of the
equations studied in this thesis, all have only diagonal terms in the linear term, so we
consider for simplicity αji = 0 for i 6= j and αii = αi. The model which has off-diagonal
can be integrated with the same method including these terms in the nonlinear part.
Equation (C.2) is integrated with a two-step method. For convenience the time step
in each iteration is defined as 2δt. Thus, the linear part can be integrated effectively
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Appendix C. Pseudospectral integration method

using the exact formal solution obtained multiplying by the integrating factor eαi(~q)t

at both sides and in integrating in time.

Ãi(~q, t) = e−αi(~q)t
(
Ãi(~q, t0)eαi(~q)t0 +

∫ t

t0

Φ̃i(~q, s)e
αi(~q)sds

)
(C.3)

where the following expression can be obtained.

Ãi(~q, t+ δt)

e−αi(~q)δt
− Ãi(~q, t− δt)

eαi(~q)δt
= e−αi(~q)t

∫ t+δt

t−δt
Φi(~q, s)e

αi(~q)sds (C.4)

The rhs can be approximated with a Taylor expansion around s = t to give

Φi(~q, t)
eαi(~q)δt − e−αi(~q)δt

αi(~q)
+O(δt3) (C.5)

Substituting in Eq. (C.4) and replacing t = nδt one obtains

Ãi(~q, n+ 1) = e−2αi(~q)δtÃi(~q, n− 1) +
1− e−2αi(~q)δt

αi(~q)
Φi(~q, n) +O(δt3) (C.6)

Eq. (C.6) is the so called slaved leap frog [154] which is unstable and a corrective
algorithm must be applied. The correction expression can be determined following
steps similar to the previous case.

Ãi(~q, n) = e−αi(~q)δtÃi(~q, n− 1) +
1− e−αi(~q)δt

αi(~q)
Φi(~q, n− 1) +O(δt2) (C.7)

Eqs. (C.6) and (C.7) constitute the two-step method, where the error is O(δt3)
although the intermediate step has error O(δt2). The algorithm follows the following
steps:

1. Compute Ãi(~q, n− 1) and Φi(~q, n− 1) as the Fourier transform of Ai(~x, n− 1)
and Ni(A(n− 1),∇(k)A(n− 1)) computed in real space.

2. Obtain Ãi(~q, n) using Eq. (C.7).

3. Using the inverse Fourier transform of Ãi(~q, n) compute Ni(A(n),∇(k)A(n))
and obtain Φi(~q, n) with the direct Fourier transform.

4. Obtain Ãi(~q, n+ 1) using Eq. (C.6).

With the previous four steps one iteration is performed where the time increment
is 2δt.
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APPENDIX D
Continuation methods

D.1 Newton-Raphson method

The method explained here is a generalization of Newton’s method designed to find
the solution u of a nonlinear problem F [u] = 0. We use it to find stationary solutions
of a nonlinear partial differential equation of the form

∂tu(~x, t) = F [u(~x, t)], (D.1)

where F is a nonlinear function of the field u(~x, t) and its derivatives. Therefore,
we are interested in finding the solution of F [u(~x, t)] = 0. Considering u(0) the first
estimate of the solution we can use a first order Taylor expansion to write

F [u] = F [u(0)] +DF [u(0)](u− u(0)) +O(2), (D.2)

where DF [u(0)] is the functional derivative of F with respect to the field u evaluated
at the estimate u(0). Thus, realizing that F [u] = 0 one can find a new estimate u as
the solution of the linear problem

u = u(0) −DF [u(0)]−1F [u(0)] +O(2) (D.3)

Applying recursively this relation one can refine the estimate to be arbitrary close
to the stationary solution. The recurrence relation can be written

u(n+1) = u(n) −DF [u(n)]−1F [u(n)] +O(2). (D.4)

Numerically the field u(~x) is discretized in space uj = u((jx−1)∆x, (jy−1)∆y) where
j = jx+(jy−1)Nx, jx = 1, ..., Nx and jy = 1, ..., Ny. Thus, the field can be considered
a vector u of components uj in a N = NxNy dimensional space. Equivalently there is
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Appendix D. Continuation methods

a vector F[u] = 0 with components Fk[u1, ..., uN ] = 0. Including that the algorithm
reads

u
(n+1)
j = u

(n)
j −DF [u(n)]−1

jl Fl[u
(n)]. (D.5)

In this way the problem is reduced to a linear problem, which can be solved with
standard libraries. After a number of iterations the approximation converges to the
solution u, such that F[u(n)] < ε.
The effectiveness of the method is clear when one considers the dependence of the
stationary solution with a parameter µ. Thus, using the solution uk for a given value
of the parameter µk as first estimate we can compute the solution uk+1 for the value
of µk+1. In other words, as long as we are close enough to the original solution we
can use uk+1 = uk as initial seed and make it converge with the Newton-Raphson
method.
Following this procedure it is possible to continue the solution for all values of the
parameter µ in which the solution exists. In general, this allows to reconstruct the
parametric curve u(µ) in ∈ RN+1, which is the solution of F[u, µ] = 0. Unfortunately,
the method fails when the curve folds, basically because du

dµ
=∞.

D.2 Keller’s pseudo-arclength continuation

The alternative method to avoid the limitations of the Newton-Raphson method is
to reparametrize the curve u(µ) with arclength parameter s defined by the condition

∥∥∥∥
du

ds

∥∥∥∥
2

+

(
dµ

ds

)
= 1. (D.6)

The aim is to continue the curve starting with an initial stationary solution
vk(sk) = (u0(sk), µ(sk)) to reach vk+1(sk+1) = (uk+1(sk+1), µ(sk+1)). However,
introducing the arclength parameter the problem needs an additional constrain in
order to have a unique solution. The standard condition is written as follows

Q[uk+1, µk+1,∆s] = (uk+1 − uk) · u̇k + (µk+1 − µk)µ̇k −∆s = 0, (D.7)

where v̇k = (u̇k, µ̇k) is the tangent vector to the curve at vk. The condition
essentially imposes that the new solution vk+1 must be in an hyperplane perpendic-
ular to the tangent vector v̇k at a distance ∆s of the original solution vk. If the
increment ∆s is small enough the intersection of the hyperplane with the curve v(s)
is guaranteed. We usually consider a more general condition given by:

Q[uk+1, µk+1,∆s] = θ(uk+1 − uk) · u̇k + (2− θ)(µk+1 − µk)µ̇k −∆s = 0, (D.8)
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D.2. Keller’s pseudo-arclength continuation

which for θ = 1 recovers the condition in Eq. (D.7). Essentially this allows to
modify the orientation of the plane to enhance the importance of the parameter or
the field, which can be useful when the convergence is difficult.

As a result we have to find the solution of the following system

G[v] =

[
F[v]

Q[v,∆s]

]
=

[
0
0

]
, (D.9)

which can be solved applying an improved Newton-Raphson method.
In the first iteration of the field the tangent vector to the curve v̇0 is computed
solving the linear problem.

DF[u0, µ0]
u̇0

µ̇0

= −∂µF[u0, µ0], (D.10)

µ̇0 =
1√(

u̇0

µ̇0

)2
+ 1

. (D.11)

Once we have v0 and v̇0 we can compute the following solutions along the curve
with the following procedure. We use a predictor-corrector method, in particular the
Euler predictor as the first step to obtain an approximation of the next solution

vk+1
(0) = vk + v̇k∆s. (D.12)

The second step makes use of the Newton-Raphson method as corrector

[
DF ∂µF
δuQ ∂µQ

]

(uk+1
(n),µ

(n)
k+1)

[
∆uk+1

(n)

∆µ
(n)
k+1

]
= −

[
F[uk+1

(n), µk+1]
Q[uk+1

(n), µk+1,∆s]

]
, (D.13)

which in a more compact form can be written

DG[v
(n)
k+1]∆v

(n)
k+1 = −G[v

(n)
k+1], (D.14)

where the next approximation n + 1 to the solution can be found in terms of the
increment ∆v

(n)
k+1, which is the solution of the previous linear problem.

v
(n+1)
k+1 = v

(n)
k+1 + ∆v

(n)
k+1. (D.15)

After a number of iterations the approximation converges to the solution vk+1, such

that G[v
(n)
k+1] < ε. Finally, the last step computes the tangent vector to the curve at

the obtained solution with the following linear problem.
[
DF ∂µF
u̇k µ̇k

]

(uk+1,µk+1)

[
u̇k+1

µ̇k+1

]
=

[
0
1

]
(D.16)
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Appendix D. Continuation methods

And the vector is rescaled to be unitary.

v̇k+1 =
v̇k+1

‖v̇k+1‖
(D.17)

Thus, iteratively, the process can be repeated starting from Eq. (D.12). Further
information can be found in [155–159].
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[141] M. Holmer, C. M. Duarte, N. Marbà, Iron additions reduce sulfate reduction
rates and improve seagrass growth on organic-enriched carbonate sediments.
Ecosystems 8, 721–730 (2005).
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