
Tr
eb

al
lF

in
al

d
e

G
ra

u

GRAU D’ENGINYERIA INFORMÀTICA

Chatbot API: A service to develop
text-based interfaces

LUIS FOMINAYA

Tutor
Isaac Lera

Escola Politècnica Superior
Universitat de les Illes Balears

Palma, June 28, 2017

CONTENTS

Contents i

Acronyms iii

Prologue v

1 Introduction 1
1.1 Project requirements . 3

1.1.1 Notation . 3
1.1.2 Requirement definition . 3
1.1.3 Requirement validation . 3

1.2 Technical requirements and methodology 4
1.2.1 Language and platform . 4
1.2.2 Style . 5
1.2.3 Tools . 6

1.3 Tasks . 7
1.4 Planning . 7

2 Overview of the history of chatbots 9

3 Implementation 17

4 Named Entity Recognizer 21
4.1 Requirements . 22
4.2 Validation . 23
4.3 Design . 23

4.3.1 Tokenizer . 23
4.3.2 Recognizer . 24

4.4 Entity types . 25
4.4.1 Numbers . 25
4.4.2 Times and dates . 25
4.4.3 Custom types . 26
4.4.4 Free text . 27

4.5 Data sources . 27

5 Chatbot 31
5.1 Chatbot API . 31
5.2 Chatbot middleware . 35

i

ii CONTENTS

5.3 Other chatbot-building APIs . 35

6 Use-case: HotelBot 39
6.1 Example conversation . 42

7 Conclusions 43
7.1 Future improvements . 43
7.2 Participation in the Whenhub hackathon 44
7.3 Personal valoration . 45

Bibliography 47

ACRONYMS

AIaaS Artificial Intelligence as a Service

API Application programming interface

FaaS Functions as a Service

GUI Graphical User Interface

HTTP Hypertext Transfer Protocol

JSON Javascript Object Notation

NER Named Entity Recognizer

REST Representational State Transfer

UI User Interface

UIB Universitat de les Illes Balears

NLP Natural Language Processing

iii

PROLOGUE

This document describes the design and implementation of an API to process natural
language commands and translate them into structured data that can be used to build
interfaces based on natural language (either written or spoken). In contrast to other
existing similar projects, here the focus is on improving developer experience to make
the process of building any application as simple as possible.

An application built using this API won the “Best overall” prize in an online hackathon1

held during the month of May, 2017 by Whenhub2, earning a 5000$ cash prize. The
application consisted in a web application that allowed users to create schedules and
events by speaking or writing text, using Whenhub’s API.

1https://whenhub.devpost.com/
2https://www.whenhub.com/

v

C
H

A
P

T
E

R

1
INTRODUCTION

The program implemented in this project is a chatbot-building API. A chatbot is "a
computer program that conducts a conversation via auditory or textual methods"[1].
This is the common definition for this type of program, except for this particular im-
plementation the main purpose is to extract user commands from raw text. User
commands are sentences in natural language intended to carry out actions such as
seeing a list of available hotel rooms, booking a flight, ordering takeout food and so on.

This chatbot is meant to serve as replacement or support for graphical user inter-
faces on web applications. Therefore, it is designed to be used as a service over internet,
which developers can use in their own applications.

It has also been designed to simplify developer tasks through a simple process: they
only need to configure the API by defining the actions their application has in order to
use it. These “actions” refer to user commands that are of interest, such as “show me
the hotels”, which could trigger the action “show hotels” if the developer defined it to
do so.

Once the API is set up, they can connect it to a chat, so that user sentences will be
sent to the API, which will respond with structured information about which action the
user is trying to carry out, and with which parameters. For example, in a hotel booking
application, a user could say “show me hotels in Madrid”, and the API would interpret
that sentence as “action = show hotels, location = Madrid”.

In my opinion, natural language interaction has advantages over graphical interac-
tion, both economically and from the point of view of usability and accessibility.

Graphical user interfaces, specially the most usable ones, require large amounts
of development time without ensuring usability issues will fully disappear. There
is also the problem of making the application accessible, which can vastly increase
development time and cost, making many companies discard the option, and which
when implemented could lead to several versions of the same interface.

This area is where chatbots excel, as they inherently follow the principles of univer-
sal design. A chatbot accurate enough to recognize text and speech equally could be
used both by the impaired and the average user in the exact same way.

1

1. INTRODUCTION

Another advantage of conversational UIs is that they free developers of designing,
building and testing graphical interfaces, which may take up a lot of resources to build
and maintain. With a chatbot-based application, a generic chat interface suffices to
conduct all the actions, which can be copied from any chat interface template, and
easily adapted.

This project is not so ambitious as to claim that it will provide a universally usable
chatbot-building application. It will, however, allow developers to create alternative
interfaces that offer the mentioned advantages over graphical user interfaces.

To provide some motivation as to why chatbots are useful, it is important to observe
that there are many web applications for flight and hotel booking, restaurant ordering,
and in general, carrying out CRUD operations for some domain. All these applications
have a similar interaction structure:

1. Create something (e.g. a food order, a request, a flight booking, . . .).

2. Read one or multiple things (e.g. the user’s social media posts, pending orders,
all songs by a certain artist), sort and filter them.

3. Update something (e.g. the user’s profile, one of the user’s social media posts/sta-
tus/tweets).

4. Delete something (e.g. a hotel/flight/restaurant reservation, a subscription to
something, an email).

5. Ask a question (e.g. “what can the application do?”, “are you a person?”).

The goal of the project is to be able to carry out all these actions using an AI instead
of a graphical interface. Because there is a large number of domains user sentences
can refer to, developing a program that automatically knows all of them is not feasible.
Instead, the developer creates the domain by specifying what users will talk about,
mostly using the five categories of user interactions mentioned above.

Since the API is configurable, the developer can describe any action a user could
be interested in performing. Using the hotel booking example, users may first book a
hotel, then regret it and immediately want to undo the action. The developer needs
only specify what are the keywords the user must say for the chatbot to trigger the
actions it has been given, how the actions affect the application state and what calls to
the backend are in order.

The user will be able to give voice or text commands to the chatbot and interpret
the response as though it were a human conversation. If a user wants to book a room in
a hotel in Madrid, there will be no need to try to understand what the interface does,
but simply ask for it: “Can I book a room in Madrid?”, and the chatbot would ask for
more details, such as the number of nights, a maximum price or the minimum number
of stars the hotel should have.

This hotel-booking chatbot would then return a list, which could contain text and
potentially also images for the user to see and select. The application could store user
preferences and payment information to simplify the process, making interaction as
effortless as possible.

2

1.1. Project requirements

Throughout this report, the example of a hotel booking application called "Hotel-
Bot" will be used to illustrate the exposed concepts. The present chapter has already
used example sentences that belong to the HotelBot application.

To sum up, the goals of this project are:

1. Develop an API that converts text into structured information

2. Provide enough flexibility to be able to develop any application

3. Make this service as easy as possible to use and integrate

1.1 Project requirements

1.1.1 Notation

RX will denote requirement “X” and VX will denote validation of requirement “X”.

1.1.2 Requirement definition

The project’s requirements are the following:
R1. The chatbot must be able to detect the action and parameters a user sentence

intends to carry out according to what the developer has defined.
R2. The chatbot must be able to detect ambiguities in language that could lead to

different parses of a user sentence, solve them whenever possible, and inform of their
presence when they are unavoidable.

R3. The chatbot’s response time must be below a certain threshold that makes in-
teraction with the chatbot responsive, using usability research to provide the threshold.

R4. The chatbot must allow developers to create deterministic conditions for the
actions in their application to trigger.

R5. The chatbot must allow developers to use their preexisting data schemas to
validate the action parameters.

R6. The chatbot API must be RESTful [2] and functional: The input is processed
without modifying any local state, so that multiple identical queries can be cached.
The system must also be able to work as a Function as a Service, or FaaS [3], to reduce
operational costs.

1.1.3 Requirement validation

In order to validate the requirements, the following metrics and thresholds will be used:
V1. To validate this particular requirement, user interaction is required. It is impor-

tant to notice, however, that the quality of the interaction will be directly proportional
to the time spent creating actions to model different possible conversational paths.

V2. This requirement can be satisfied through unit tests that show the chatbot
properly captures ambiguities in language such as “2017” referring to a quantity or a
date.

V3. The maximum time to output a response must be within the 10 second window,
according to a study conducted by Jakob Nielsen [4]. This can be validated by measuring

3

1. INTRODUCTION

the time it takes for the chatbot to respond. It is not possible to be below the 1-second
window due to Internet delay times.

V4. This condition will be validated if every sentence that triggers some action
continues to do so in separate executions under different circumstances.

V5. It suffices to verify that the application specification format allows users to
define the validation using some data validation standard such as JSON schema1.

V6. The API will be proven to be functional if it can be accessed via a FaaS provider
such as the Google Cloud Platform2 or Amazon Lambda3. In order to be RESTful, it
suffices to send multiple, identical requests and verify that the output is the same.

1.2 Technical requirements and methodology

1.2.1 Language and platform

The project to develop is going to be used mainly by web applications. Some of the code
written for the API could be possibly moved to these applications to allow developers
to further customize their chatbot. Thus, a language that could be executed by the
browser would be preferable to others that cannot.

Also, requirement R6 establishes that the system must operate as a single function,
not a stateful server. This will bias the choice of programming language and environ-
ment to one that can be easily used to create functional systems. The basic requirement
is not that the language is fully functional, but that it supports first-order functions.

Although there are many natural language processing libraries in languages like
Java and Python such as the Stanford CoreNLP4, and NLTK5 respectively, neither of
these languages are a good fit. Java forces the use of classes, which create overhead to
store some state. This makes sense if the application resides in memory a long time, but
in a serverless environment, the lifetime of a class would be limited to the invocation,
therefore incurring in overhead to define a class whose methods will only be called
once.

Furthermore, Java requires a Java Virtual Machine to boot and load to memory each
invocation [5], creating an unnecessary delay and consequent increase in expenses.

Three languages that fulfill these requirements are Javascript with Node.js, Golang6

and Clojure7. Of these three, the first allows writing isomorphic javascript modules,
which work both in a Node.js server and the browser, and there are more FaaS providers
that offer their services in Node instead of Golang and Clojure, such as Google Cloud
Functions8.

Therefore, the implementation will use Javascript as its language and will be de-
ployed to a FaaS provider.

1http://json-schema.org/
2https://cloud.google.com/
3https://aws.amazon.com/lambda/
4http://stanfordnlp.github.io/CoreNLP/
5http://www.nltk.org/
6https://golang.org/
7http://www.clojure.org/
8https://cloud.google.com/functions/

4

1.2. Technical requirements and methodology

1.2.2 Style

The time it takes to adapt a codebase to new changes is critical in a production system,
as new, unforeseen requirements can and will surface during its lifetime. Thus, it is
desirable to make maintainable code that can adapt quickly to these changes.

Other important aspect to consider is the time it takes for a person to understand
what the code does. The clearer the names of the functions, modules and even variables,
the easier it is for a developer contributing to the codebase to read and edit a module.

However, making the system resilient to changes can be difficult, especially if they
not only add but also modify existing parts of the system. Then, a new change can
cause new bugs completely unrelated to the implemented functionality.

To address these and many other problems, some professional software engineers
[6] recommend a series of principles or guidelines to follow. The most relevant for this
project are the following:

1. Descriptive names. If there is a variable that represents the number of items, it
should be called itemCount, instead of abbreviations such as ic, itCount, itCnt, or
any other shortened form that forces the developer to figure out what the variable
means.

2. Consistency. The name of variables, functions and modules should follow similar
principles. Also, if there are several ways to declare a function or initialize a
module, it is mandatory to choose one and use that for all cases, so long as there
are no differences with the expected functionality.

3. Unit testing. To ensure that a new change does not break the existing code, it is
paramount to develop unit tests for the different functions in the system. Doing
so also removes the need to manually debug functions in most cases, especially if
there is a lack of shared state.

Of these aspects, it is important to dwell on the last, as it is the one with the most
relevance. A strong test suite that encompasses all the system allows developers working
on the system to add code without fear of introducing bugs, as the code can be tested
and most issues detected during development.

Unit tests also act as documentation for other developers, as they show what output
is expected given a certain input. This benefit can be lost if the system relies heavily on
modifying some shared state, because writing unit tests for functions depending on
global variables becomes increasingly harder and requires complex setup.

Therefore, the approach to writing functions in this particular project is to make
them as self-contained as possible; that is, as close as possible to pure functions [7]. By
using pure functions and keeping state local to each function, anyone reading a function
only needs to know about that function and the other functions it calls. No variable it
uses will be unexpectedly modified by another function, making it self-contained and
easily testable.

There are, however, some clear problems with this approach. The first one is that
certain features require state. For example, it would be useful that the chatbot takes
into account previous conversation information, such as whether or not the user has
answered the question the chatbot asked, which action is the user currently trying to

5

1. INTRODUCTION

do, etc. In this case, state is unavoidable. Still, it is relevant how this state is handled.
For this particular use-case, all the chatbot state will be handled by modules that
encapsulate how the state is stored and modified, and allow the bulk of the application
logic to access and modify this state only through an interface. This way, it is easier
to see how the state is handled, as the modules abstract and encapsulate the state’s
implementation.

The second one is the time for writing unit tests, executing them and making sure
they are correct is very time-consuming. It can be argued that the time cost is worth the
aforementioned advantages. But that does not change the fact that writing unit tests
effectively increases the amount of time to produce code when compared to untested
code, even if the latter may become riddled with bugs.

1.2.3 Tools

Out of the many tools that can be used to develop Javascript software, the following
have been chosen:

1. Visual Studio Code9: The first and foremost tool to write code is a program to
write. This tool in particular was picked because it is developed precisely for
Javascript and provides powerful Intellisense (useful information about the code),
cutting down time when writing code.

2. Git10: Git is an open-source distributed version control system with the benefit
of easily handling different versions or branches of the codebase simultaneously.
Its main advantage is the low amount of disk space that the different versions of
a file require.

3. Gitlab11: In addition to a local code repository, a remote repository where code
is stored is also useful for increased redundancy and protection against poten-
tial data loss. It was preferred over other popular alternatives such as Github12

and Bitbucket13 as it allows developers to create unlimited private projects with
unlimited collaborators.

4. Git-bash14: This tool provides Windows users with the ability to execute both git
commands and Unix commands, used during development.

5. Google Chrome15: In order to develop a UI, or use one to manually interact with
the system, a program capable of rendering a web is necessary. It was chosen for
being the most used browser [8] and providing excellent developer tools.

As the entire project is written in vanilla Javascript, no transpilers or compilers are
required other than the ones mentioned before. The development cycle consists in

9https://code.visualstudio.com/
10https://git-scm.com/
11https://gitlab.com/
12https://github.com/
13https://bitbucket.org/
14https://git-for-windows.github.io/
15https://www.google.com/chrome/

6

1.3. Tasks

writing the functions and their unit tests, then running the tests and making any appro-
priate changes to fix the tests that do not pass.

1.3 Tasks

The main tasks in general terms for this project are the following:

1. Produce a chatbot API that lets developers create chatbot applications using it.

2. Create a working chatbot based on this API that serves as a real application.

3. Provide documentation of the API for developers.

1.4 Planning

Due to the lack of any real time constraint other than finishing the project within the
second semester of the 2016-2017 academic course, there has been no attempt to plan
the development of the different modules, nor will there be. Development will take the
time it needs, so long as the final product must be tested and polished.

7

C
H

A
P

T
E

R

2
OVERVIEW OF THE HISTORY OF CHATBOTS

The history of chatbots starts shortly after that of artificial intelligence, which is consid-
ered to have originated as a field in 1956, during a workshop at the Dartmouth College
[9]. The first chatbot was created in 1966 by Joseph Weizenbaum, and it was called
ELIZA. It was a program to mock a rogerian psychiatrist [10]. The program identified
keywords in user text to then generate simple responses.

Eight years later the program PARRY was developed by Kenneth Colby, a psychiatrist,
to simulate a paranoid individual. It passed a variation of the Turing test where 33 judges
voted 52% of the time that it was an actual human [11]. In 1972, PARRY and ELIZA
were connected via ARPANET and carried out the first conversation without human
interaction recorded in history.

Later chatbots began to be accessible through internet, such as Jabberwacky1 devel-
oped in 1988, Albert One 2 deployed in 1995, A.L.I.C.E 3 by Richard Wallace also created
the year 1995, and Mitsuku 4 in 2005. A.L.I.C.E and Mitsuku were both written in AIML 5,
an XML dialect also developed by Wallace with open-source support to create chatbots,
and which is still in use today.

In 2000, SmarterChild came about. It was able to respond to queries such as "what
was the Yankee’s score last night" [12], and could be reached through popular messaging
platforms at the time as AIM 6.

Nevertheless, it was not until the year 2010 that chatbots began to be endorsed by
large companies, when Apple developed Siri 7, an intelligent personal assistant that
interpreted natural language queries, performed online search and even gave users
voice control over the phone’s applications (dialing, texting, alarm clock, calendar, and

1http://www.jabberwacky.com/
2https://en.wikipedia.org/wiki/Albert_One
3http://www.alicebot.org/
4http://www.mitsuku.com/
5http://www.alicebot.org/TR/2001/WD-aiml/
6https://www.aol.com/aim
7https://www.apple.com/ios/siri/

9

2. OVERVIEW OF THE HISTORY OF CHATBOTS

Figure 2.1: An example conversation with ELIZA.

others). It could be accessed purely through voice, and allowed iOS users to carry out
actions without having to type or interact with a GUI.

Siri was followed by other natural language understanding software from industry
titans such as Google Now 8 in 2012, Amazon’s Alexa 9 in 2015, and Microsoft’s Cortana
in 2015.

However, these are not projects to create artificial intelligence as earlier chatbots.
The focus, instead, is on carrying out useful actions, and they are extensible platforms
where developers create their own chatbots, which can then be accessed by users of
these platforms (iOS, Windows, Google, Amazon’s Echo, and other IoT devices that
are now being connected to them). In 2016, Facebook launched a platform for their
Messenger application, currently at 1.2 billion monthly users 10, where developers can
create chatbots that users interact with to order food, buy cinema tickets, and many

8https://www.google.com/search/about/
9https://developer.amazon.com/alexa

10https://techcrunch.com/2017/04/12/messenger/

10

Figure 2.2: An excerpt of the conversation between PARRY and ELIZA.

Figure 2.3: An example conversation with SmarterChild.

11

2. OVERVIEW OF THE HISTORY OF CHATBOTS

Figure 2.4: An example conversation with Siri.

other actions. Other platforms where the chat is a key feature, such as Telegram 11 and
Slack 12, also provide developer tools to create chatbots that reside in their platforms.

Apart from these popular platforms, several APIs provide developers with the tools
to create chatbots using abstractions over how natural language is processing, and are
mentioned below, in the Chatbot chapter, under the "Other chatbot-building APIs"
section, where they are compared to this project.

11https://telegram.org/
12https://slack.com/apps

12

Figure 2.5: An example conversation with a Facebook Messenger chatbot.

13

2. OVERVIEW OF THE HISTORY OF CHATBOTS

Figure 2.6: API.ai’s dashboard when creating a chatbot.

14

C
H

A
P

T
E

R

3
IMPLEMENTATION

The chatbot’s requirements make two components necessary for its implementation:

1. A Named Entity Recognizer, or NER [13]. This subsystem will be in charge of
extracting entities from unstructured text. For example, in the sentence “I want
one”, the NER would identify the word one as the integer 1.

2. The chatbot logic. In order to carry out a natural conversation, this system will
map entities to actions and their parameters, as well as identify conversational
sentences without entities such as “Hello!”, or “how are you?”.

It is relevant to remark that the NER is necessary for the application to work properly, but
its uses surpass those of the application. It is useful for different information extraction
and information retrieval tasks, such as sentiment analysis [14] and question answering
[15].

Due to this reason, and its interest as a standalone API, it has been designed to serve
as an independent service to the rest of the application, which could also be used for
other, more general-purpose applications where developers send sentences and the
API returns structured information with the entities it identified within them, useful for
digital libraries, email information extraction or profile information extraction[16].

Additionally, the application will require a static data store such as Amazon S31 for
the configuration of each chatbot. The next figure shows the high-level organization of
the software components.

The idea is that the system follows the microservices architecture [3], separating
the concerns of the different system modules into self-contained services that inter-
act with each other using RESTful APIs. This design principle allows for improved
modularization and reusability.

In this sense, the NER could be improved without having to worry about collateral
effects on the rest of the application, so long as the output of the service maintained

1https://aws.amazon.com/s3/

15

3. IMPLEMENTATION

Figure 3.1: Three main components of the architecture: data store, NER, and Chabot
logic.

its expected structure and format. In order for the chatbot logic to be a RESTful API,
however, it must store no state.

That means the API alone would not be able to handle the conversation flow, as it
must not keep a state to be RESTful. This functionality has been separated from the
chatbot API, which itself simply maps user sentences to parameters according to the
application specification.

All state handling will instead be a responsibility of either the client or a middleware
server. In either case, the code will be almost exactly the same, in charge of:

1. Handling chatbot state: Keeping track of which action the user is trying to carry
out, which parameters have been fulfilled so far and with which values, and other
contextual information useful to generate appropriate responses.

2. Handling user conversation: Either responding to smalltalk such as “what is
your name?” or asking for the missing parameters of an action. In both cases, the
developer can customize the responses.

This middleware will be written in Javascript, and therefore will be usable either by the
browser or in a middleware server. This setup covers different possible use cases:

1. For applications with very little compute power, such as IoT devices, the whole
application can be in the cloud, and the IoT device simply takes the input, makes
a call to the middleware endpoint which does all the work.

2. For applications built with technologies that cannot interoperate with Javascript,
the middleware server can contain the chatbot logic, and accept text as input and
return text or JSON as output, to be processable by any programming language.

3. Web applications can take full advantage of the RESTful API and manage the chat-
bot’s state with an open-source library that will be provided. This way, developers
can fully customize their chatbot having much of the boilerplating work done.

In fact, developers can use the services provided at different levels, depending on how
much customization they need:

1. The most basic level is using exclusively the RESTful NER API to recognize entities
in text. This allows for the most flexibility, but also requires the most work.

2. Using the chatbot API provides mapping from entities to parameters, basic dis-
ambiguation and conversational action detection.

16

3. With the state-handling library, used either as middleware or as a library inside the
application, even more work and time is saved, at the expense of some flexibility.

4. Finally, using a template application which only requires specifying the applica-
tion actions and connecting to the developer’s API endpoints provides almost all
the work needed for an actual application at a fraction of the cost.

Because all the code except the NER and the core chatbot logic will be open-source,
developers will have flexibility at all levels to adapt the libraries to their specific needs.
The advantage is that a person who has never programmed will be able to create a
fully functional chatbot following simple steps to define the actions it can perform and
what responses it should give to which questions, effectively creating an accessible
application in hours without writing a single line of code.

17

C
H

A
P

T
E

R

4
NAMED ENTITY RECOGNIZER

Some current and potential applications depend on information extraction processes.
Its most relevant use is in question answering, a technique used by search engines
such as Google and Bing to answer user queries such as “who invented the internet” by
extracting information from documents. In this case, for example, Google automatically
detects and extracts the names Robert E. Kahn and Vint Cerf as the answer.

Entity recognition is also useful for tasks such as recognizing the names of brands
or companies in unstructured text along with sentiment analysis to know if a particular
review or comment is hostile or favorable to them[17].

The named entity recognizer is in charge of identifying words that refer to relevant
concepts or things. Entity refers to person names, dates, numbers, monetary values,
locations, any custom entity type related to the application domain, as well as other
useful concepts such as languages or telephone numbers [18]. The rest of the system
depends on its output, so it is crucial to provide high levels of precision and accuracy to
ensure that the rest of the application can depend on it.

Following the principles of the microservices architecture, the NER will have all the
relevant information it needs contained within its own data store. Each of the NER’s
client applications will have a set of developer-defined entities associated, so that a
take-out ordering application which uses the NER could use the entity “beverage” with
“coke, water, soda” as its possible values.

Therefore the NER system must be able to detect entities, the values of which may
take different forms. Going back to the example, instead of “coke”, it could be interesting
to find “Coca Cola, Coca-Cola, cocacola”, and any other variation, and identify it as a
variant of the value “coke” for the entity “beverage”. Specifying this list of synonyms
will be a responsibility of the developer building a chatbot application, as it needs
information specific to the application that the chatbot cannot know.

The list of predefined entities that the NER will recognize is the following:

1. Dates and times

2. E-mails

19

4. NAMED ENTITY RECOGNIZER

3. Telephone numbers

4. Numbers

5. Prices and currencies

6. Languages

7. Locations

8. Custom entities

In order to identify them, hand-made rules based on regular expressions will be coded.
The reasons for choosing this approach are the following:

1. There is no available labeled data that could be used to train a supervised machine
learning system [19].

2. Hand-crafted rules are easily maintainable, extensible and comprehensible [20].

3. As the system grows and acquires more labeled training samples, some data min-
ing technique will perform increasingly better against plain rules alone. However,
these rules will still be useful to find features that serve as the input for the future
machine learning algorithms.

4. Regular expressions, as opposed to machine learning, are deterministic in that
the developer can be assured that a certain user sentence will be recognized a
certain way. Using only machine-learning techniques that change throughout
time makes the system’s output change with the same input as the machine
learns.

4.1 Requirements

• R1. The NER must be able to reliably recognize entities from unstructured text.

• R1.1. The NER must be able to recognize system entities such as times, dates,
costs, and others that are found to be of general purpose.

• R1.2. The NER must be able to recognize user-defined entities and their syn-
onyms or possible values specified by the user.

• R2. The entities identified must be normalized to a value usable by a computer,
when relevant. This applies, for example, to dates and times, which must be
transformed to another format representing the date using some standard.

• R3. Whenever possible, the values returned must comply with international
standards, such as those created by the IEEE1 and the ISO2.

1https://www.ieee.org/index.html
2https://www.iso.org/home.html

20

4.2. Validation

4.2 Validation

R1, R2, R3. A comprehensive documentation of the recognized entities and their value
formats, indicating the different formats that are accepted and which standards they
follow.

4.3 Design

The NER will be a system that takes as input a sentence and produces as output a data
structure that indicates what entities there are and which positions they occupy. To
indicate the boundaries of each entity, the position of their starting character and the
string that matched the entity will be used, in a similar fashion to what the SUTime [21]
library does, which is used for time expression recognition and normalization.

The system will try to identify each type of entity in the provided sentence, iterating
over all the identified tokens, first finding features for each of them and then predicting
an entity type. This way, the algorithm resembles other sequence labeling techniques,
and the extracted information from regular expressions can be used to feed a more
complex classifier such as a CRF [22] or a neural network [23] changing the minimum
amount of code: a single, self-contained module.

For each entity, the algorithm will proceed by first identifying the entity type and
then normalizing its value. This way, a word such as “yesterday” should be first identi-
fied as a “date” entity, and then normalized to its corresponding value according to the
ISO 86013, for example, “2017-03-04T17:23:43.307Z”.

In order to be as error-tolerant as possible, the entity identification process will
be case-insensitive. On a related note, it is important to mention spell checking and
potential error correction. The original implementation of the system will use no spell
checkers or correctors due to several reasons:

1. Mobile phones and browsers already incorporate spell checking.

2. Implementing a spell checking system means two things: a time cost to develop
the program, and increased storage requirements and execution time for each
user sentence, which will require spell correction.

3. The spell checker will necessarily make errors, and even though a corrector with
above 90% accuracy is currently easy to implement[24], it will still sometimes
cause the correction to change the meaning of the user sentence, which will
frustrate the user.

The high-level architecture is shown in the figure below. There are two main subsystems
in the NER: the tokenizer and the recognizer.

4.3.1 Tokenizer

This module takes as input raw text and finds the substrings that match the regular
expressions for time and date expressions, numbers, as well as non-entity types such as

3https://www.iso.org/iso-8601-date-and-time-format.html

21

4. NAMED ENTITY RECOGNIZER

Figure 4.1: High-level architecture of the NER.

sentence separators (“.”, “,”, etc.), and assigns them their corresponding features, which
are useful information to classify tokens as entities.

There can be features that are very strongly correlated to a single entity type, e.g. a
token with the pattern 01-05-2017 is very likely a date, as well as features that are more
general, such as capitalization, which could be useful to finding names, but is not a
sufficient condition, as seen by the example "Can it be today?", where the word "can" is
only capitalized because it is at the start of the sentence.

The features are assigned by the feature identifier module, which contains the
functions that given text and its already-found tokens finds features and assigns them
to existing tokens or creates new tokens if they have not yet been found. Once this
module finishes, featureless tokens are created with the words in the sentence that have
not been assigned a feature. These tokens will be used by the merger module later.

Once all features have been found, the merger joins together tokens that form part
of the same entity. For time periods such as “between today and tomorrow”, the merger
takes the tokens “today” and “tomorrow”, and joins them in a composite token that
indicates the semantic structure: today is the starting date and tomorrow, the ending,
due to the words that precede each of them.

The whole process is explained with an example:

1. The sentence “between today and tomorrow” is passed to the tokenizer.

2. Four tokens are identified: “between”, with potentially several features, among
them the starting date keyword feature, “today”, with the relative date feature,
“and”, with the ending date keyword feature among others, and “tomorrow”, again
with the relative date feature.

3. The merger finds two successive dates preceded by starting and ending keywords,
and joins them together forming a composite token where “today” is the start
and “tomorrow”, the end.

22

4.4. Entity types

4.3.2 Recognizer

The recognizer takes the tokens extracted in the tokenizer as its input and is in charge
of classifying and normalizing the value of the entities. Classification of tokens is
performed on the basis of the features they have. The classifier is therefore the afore-
mentioned module that could be modified to introduce machine learning techniques.

Currently, it is mostly a straightforward mapping function from features to entity
types: if, for example, a token has the relative date feature (tomorrow, yesterday), its
entity type is set to date, regardless of other conditions (tomorrow could refer to the
name of a book or a music band).

Although this approach works for many entity types, it does not for names of people,
brands and other more complex types that cannot be fit into a simple regular expression.
It is for these techniques that machine learning provides better results.

The recognizer uses the entity type found by the classifier to call the normalizer.
This module contains a large portion of the NER’s logic, as it is in charge of converting
arbitrarily complex tokens such as “between today and tomorrow” into values process-
able by a computer, in this case a JSON object with two fields, start and end, the first
with the ISO 8601 string value corresponding to “today” and the second with the value
for “tomorrow”, relative to the current date.

There are certain entity types (location, email) that do not need to be normalized,
and instead their string value suffices. The normalizer is also in charge of detecting
ambiguities: parts of the sentence that could refer to several potential entities. For
example, the string “2017” could refer either to the year or the number. It is a responsi-
bility of higher levels to determine how to disambiguate depending on other factors
such as conversation context.

4.4 Entity types

The table in the following figure shows the currently identified entity types, as well as
the format of their output.

It is important to notice that even though continents and countries have standard
ISO codes, they are returned as a string because that way a developer using the API can
process all location entities in the same way.

Also, the boolean type is very useful with parameters such as “has views to the ocean”
in a hotel booking application, or “includes beverage” in a food takeout application.

Next, additional information is provided about some of the entity types.

4.4.1 Numbers

Currently, two types of numbers are recognized: cardinal and ordinal integers. More
particularly, the following numerical expressions are recognized:

1. Any digit or combination of digits, e.g. 0, 1020, 12345.

2. Cardinals written as words up to quintillions, e.g. four, five hundred, six thou-
sand, four hundred ninety nine, and so on.

3. Ordinals written as digits ending with “st”, “nd”, “rd”, “th”, e.g. 1st, 45th, etc

23

4. NAMED ENTITY RECOGNIZER

Figure 4.2: Entity types, their format and output.

24

4.4. Entity types

4. Ordinals written as words up to quintillions, optionally followed by the word
“one”, e.g. first one, twenty second, nine thousand ninetieth.

4.4.2 Times and dates

The list of recognized date expressions is the following:

1. Week days and their abbreviations, e.g. tuesday, thurs.

2. Month names and their abbreviations, e.g. march, aug.

3. Years expressed as digits or their names, e.g. 2017, two thousand seventeen.

4. Time adverbs, e.g. today, tonight, yesterday.

5. Date idioms, e.g. the day after tomorrow.

6. Dates relative to time quantifiers, e.g. in two weeks, seven months from now.

7. Absolute dates[25] with and without the preceding week day name. The following
formats are identified and normalized:

8. MM_DD_YYYY

9. DD_MM_YYYY

10. YYYY_MM_DD

11. YYYY_DD_MM

12. MM_YYYY

13. YYYY_MM

14. Combinations of the previous dates to create date periods, e.g. between today
and tomorrow.

As it can be deduced, absolute dates with formats 7.a and 7.b as well as formats 7.c and
7.d can be ambiguous, as dates such as 1/2/2017 can refer to either the first of February
or the second of January. These entities are detected as ambiguities, and it is up to the
caller to decide how to interpret the date.

There are other possible date references that have not been implemented, such as
known holidays (e.g. Christmas, or Hanukkah) and relative references to months and
years (e.g. last year, or next month). These are left as future improvements.

The following are the recognized time expressions:

1. 24-hour clock formatted digits with and without seconds, e.g. 18:15, 10:25:00.

2. 12-hour clock with either a.m or p.m, e.g. 12 pm, six a.m.

3. 12-hour clock expressions, e.g. quarter past five, seven to ten, nine o’clock.

4. Parts of the day, e.g. noon, morning, evening.

25

4. NAMED ENTITY RECOGNIZER

Furthermore, any combinations of the accepted times and dates are properly mapped to
either dates or periods, depending on how they are formulated. For example, “tuesday
evening” will be mapped to the next tuesday from the current date at 6 pm. On the
other hand, “between now and this evening” will become a date period, even though
its members are times.

4.4.3 Custom types

Custom types are defined entirely by the user using one of two ways: lists and regular
expressions. Either one can be specified using JSON schemas, so that developers can
directly import their current custom types. An example JSON specification would be
the following:

{
"name": "tour",
" systemType ": "enum",
" validationSchemaFile ": " url_of_the_schema_file .json"

}

The schema file would be loaded once, and the resulting entity specification would
then be:

{
"name": "tour",
" systemType ": "enum",
" validationSchemaFile ": {

"enum": [
"tour",
"visit"

]
}

}

4.4.4 Free text

The free text parameter is used to capture free form text, such as the text used to describe
an event. In order for it to work the developer must specify triggers such as “description”,
so that from the text “the description is a party with friends”, the extracted free text is
“is a party with friends”, which can be easily processed to remove the leading verb "is".
This work will for now be carried out by the API caller.

An example of an entity with the free text type is in the following specification:

{
"name": " description ",
" systemType ": " freeText ",
" triggers ": [

" description "
]

}

26

4.5. Data sources

Figure 4.3: Entity types, their format and output.

Here the entity has been defined using a schema file, but it could also have been
specified directly.

4.5 Data sources

The NER needs lists to map entities such as countries, capitals or currencies to their
corresponding standard value, and also lists of known names, such as province and
city names. For some of these entities, a static list may suffice, such as area unit names,
which are a fixed standard (e.g. metres, pounds, litres, etc.). However, for other entities
such as the most populated provinces and cities, which are more volatile and prone to
change, an API that is periodically called to retrieve such information is better suited.

The next table presents a list of such sources of information:

27

C
H

A
P

T
E

R

5
CHATBOT

The chatbot is in charge of handling user conversations with the purpose of performing
actions in the context of a certain application. In contrast to the NER, this system has
different separated components to carry out its function. These components can be
used from either server or client, thanks to Javascript’s isomorphism [26].

The two main modules have been outlined before, and now will be explored in
more detail:

1. The RESTful chatbot API: A program in charge of finding entities in user sen-
tences and mapping them to the parameters defined in the application specifica-
tion.

2. The state-handling library: A bundle of functions, mainly, keeping the context
of the user conversation, asking the user for the missing parameters necessary
to complete an action, and generating responses to user sentences taking into
account the conversational context.

5.1 Chatbot API

This service will provide developers with the ability to find the parameters and actions
they define inside unstructured text. It will require an application specification, that is,
a configuration file with all the actions the application has and the parameters each
accepts.

The API will be RESTful because that way requests and their responses are cacheable
both client and server-side, thus reducing the overall cost and execution time. The
idea is that when a request arrives at the API, it is determined whether the sentence
is a conversational action, e.g. “What is your name?”, which have fixed, predefined
answers, or an application action.

If it is a conversational action, then it is not necessary to call the NER and the
conversational action name is returned. Instead, if it is an application action, then

29

5. CHATBOT

entity extraction and mapping to parameters is necessary, which are then returned
along with the name of the action the user is trying to execute.

So, for example, if the user says “I want to see hotels in Madrid”, the chatbot would
not recognize the sentence as a conversational action and would thus try to map it to
an application action with its parameters. In this case, it could be mapped to the action
“show hotels” with parameter “location = Madrid”.

But the chatbot cannot possibly have the contexts for every single domain an
application may belong to. Therefore, as mentioned before, a specification of the
application’s actions is necessary for it to work. In this simple case, the specification
could be as follows:

{
"name": " Hotelbot ",
" actions ": [

{
"name": "show hotels ",
" parameters ": [

{
"name": " location ",
" systemType ": " location "

}
],
" conditions ": [

{
" systemType ": "enum",
" validationSchemaFile ": " somePath /show.json"

},
{

" systemType ": "enum",
" validationSchemaFile ": " somePath /hotel.json"

}
]

}
]

}

Now, show.json and hotel.json would contain a simple enum following the JSON
schema “enum” type containing the alternatives, which could be the following:

show.json:

{
"enum": ["show", "see", "list", " display ", "view"]

}

hotel.json:

{
"enum": ["hotel", " hostel ", " resort "]

}

30

5.1. Chatbot API

If the user introduced a sentence including both one of the verbs in the show.json
file and one of the hotel synonyms in the hotel.json file, then the action “show hotels”
would be returned, and if the sentence also contained some parameter, in this case the
location, it would be returned as well, along with the value.

As mentioned before, sometimes the NER detects ambiguities it cannot solve, which
are passed to the caller for disambiguation. At this level some disambiguation can take
place. When a user is trying to perform an action that has one of the alternatives but
not the others, then the ambiguity is solved in favor of that alternative.

For example, in the previous action “show hotels”, if the user could set the maximum
number of results saying “show me up to 2017 hotels in Madrid”, the number 2017
would be identified as an ambiguity by the NER, as it could refer to either a number or
a date.

However, as the “show hotels” action takes no date as a parameter, it would be
interpreted as a number by the API. Disambiguation at this level cannot be complete,
as there are certain cases that cannot be solved automatically. For example, if the “show
hotels” application has a maximum and a minimum price and the user says “show me
hotels for five hundred euros a night”, the chatbot cannot distinguish whether “five
hundred euros” refers to minimum or maximum price.

These ambiguities must be solved by the caller of the API, either automatically
using some heuristic, or by asking the user which alternative they meant. It would be
interesting, however, to give some hints to the API about the semantics of having a
“minimum price” and a “maximum price”, which is why the API lets developers specify
triggers for parameters that help during disambiguation.

For example, the parameters for minimum and maximum price could be specified
as follows:

{
"name": " minimum price",
" systemType ": " currency ",
" triggers ": [

" minimum ",
"above",
" starting from",
"from"

]
},
{

"name": " maximum price",
" systemType ": " currency ",
" triggers ": [

" maximum ",
"up to",
"below",
"under"

]
}

31

5. CHATBOT

This way, a sentence such as “show me hotels above five euros” would be interpreted
as having the “minimum price” parameter with value “five euros”. Finally, regarding the
output format, the goal was to have a format that could be directly usable by most web
applications. Because the output represents actions and their parameters, the most
natural and widely used format is Flux Standard Action1, which is directly consumable
by applications using the Flux2 architecture.

The output format, ambiguities included, for the sentence “show me hotels for five
hundred euros in Madrid”, would be the following:

{
"type": "show hotels ",
" payload ": {

" location ": " Madrid "
},
"meta": {

" payload ": {
" location ": {

"at": 42,
"text": " Madrid "

}
},
" ambiguities ": [

{
"text": "five hundred euros",
"at": 20,
" alternatives ": [

{
" minimum price": {

"value": {
" amount ": 500,
"type": "EUR"

}
},
" maximum price": {

"value": {
" amount ": 500,
"type": "EUR"

}
}

}
]

}
]

}
}

1https://github.com/acdlite/flux-standard-action
2https://github.com/facebook/flux

32

5.2. Chatbot middleware

5.2 Chatbot middleware

In order to solve the remaining ambiguities, generate responses to user sentences and
ask for missing parameters, some logic is necessary. Each of these three functions can be
implemented as separate, composable modules, so that a developer can specify which
he wants to use. For now, however, all three are included in the current middleware
stateful API.

In order to handle conversational context, some state will have to be stored in the
middleware, namely variables to indicate if the user answered the question the chatbot
asked, if the user filled all the required parameters of an action, and other similar useful
variables. Taking into account this contextual information can make the interaction
more natural.

The ideal option when handling this state would be to use a standardized, compos-
able pattern, so that the chatbot’s state can be incorporated easily into the rest of the
state. This follows the Flux pattern, where the state is centralized and managed from a
single source of truth.

There is one particular state-handling library, redux.js3, which implements the Flux
state handling pattern. It has been chosen for being the most popular Flux implementa-
tion and for its composability: a developer already using redux.js can easily incorporate
the chatbot code into his existing codebase with ease.

Additionally, it is simple enough that a user looking to create an application from
scratch will be able to take the chatbot middleware as is and add to it the application’s
logic. The middleware takes as input the actions and parameters returned by the
chatbot API, modifies its internal state, then creates a text response for the user and if
the user has finished an action, it also returns the name of the action and the parameters
with their values.

5.3 Other chatbot-building APIs

Many Artificial Intelligence as a service platforms, or AIaaS, have sprung up during
the last few years. Among them, the most prominent are API.ai4, acquired by Google,
Wit.ai5, acquired by Facebook, and LUIS.ai6, created by Microsoft [27].

All of these products are based on machine learning: the developers specify sen-
tences and how to interpret them into “intents” and “entities”. Wit.ai and API.ai also
offer the developer the possibility of connecting webhooks to generate the response
dynamically, or call some API when a user triggers a certain intent.

Other platforms, such as pandorabots.io7 are based on AIML8, the Artificial Intel-
ligence Markup Language, and require hand-crafting the conversation flow using a
descriptive language. But the main, distinguishing trait of all these services is that they
are based on learning by example, usually with machine learning algorithms.

3http://redux.js.org/
4https://api.ai/
5https://wit.ai/
6https://www.luis.ai/
7https://developer.pandorabots.com/
8http://www.alicebot.org/aiml.html

33

5. CHATBOT

Developers have to specify examples of sentences and what their “meaning” for
the application is. For example, they have to label sentences like “I want to see hotels
in Madrid” with the intent “see hotels”, and use any entities the algorithm finds as
parameters, in this case, Madrid.

In order to add new functions (usually called intents) to the bot, new examples
specific to that intent are necessary. And although some services, specially API.ai, pro-
vide good generalization with only a few examples, to understand the user consistently,
the developer needs to add examples representative of how end users will actually use
their chatbot, which is very hard to do without user feedback and a large number of
examples for certain complex questions.

Furthermore, these services have very low maintainability. Each intent has com-
pletely separate and independent examples that have been added by hand, and it is the
developer’s task to make sure these examples are not contradictory, that is, that there
are not multiple similar or equal sentences the developer indicated should be handled
differently. This can become a daunting task if an intent has two hundred and even
more examples and there are multiple collaborators adding examples.

Using example training also makes the chatbots rigid and not reusable: whenever
a developer wants to create a new action, he cannot reuse the examples from other
intents. If the original requirements only impose that there is a “show hotels” intent,
but then the new intent “show rooms” is added, new examples have to be added from
scratch, no matter how similar the two are syntactically.

Could this inefficiency have been prevented? Yes, for example if the developer had
created a generic “show X” intent and then specified that he had rooms and hotels. But
not all chatbot APIs allow developers to do this, and it is still not maintainable, because
now if through usage analytics it is discovered that most users try to see the available
rooms saying “give me the rooms”, or a synonym of the verb give, then only the “show
X” intent can be modified, affecting also the “show hotels” intent.

This example was merely used to illustrate the underlying problem: that the de-
veloper is forced to handle entities and intents (foreign to the realm of applications)
instead of parameters and actions. The user must first understand what entities and
intents represent, which is not that well documented, then manually map intents to
actions and entities to parameters. In some cases, there are ambiguities which the
platform creates, due to its inability to provide context.

Take the sentence “show hotels between fifty and two hundred euros a night”. If
there is no way to specify that “between” makes fifty the minimum price, there is
an ambiguity the user has already solved, and asking “is fifty the minimum price?”
will make the user see the chatbot as having no intelligence, shattering the veil of
intelligence it may have had.

This project takes a different approach to the existing tools in the way applica-
tions with it are built and how the conversation is handled. Instead of having a non-
deterministic black box that needs to be trained with examples, the user must define
conditions for actions to trigger. These conditions are independent and composable to
ensure maximum reusability.

Returning to the “show hotels/rooms” example. The developer could use two
conditions: the presence of a “show” verb and the presence of a “hotel” synonym in the
sentence. Because conditions are independent from each other, they can be created
and maintained separately. If requirements change and the developer needs to make

34

5.3. Other chatbot-building APIs

the “show rooms” action also look for synonyms of “give”, then it suffices to create
a composite condition made up of either a synonym of give or a synonym of show,
without changing the “show hotels” action in the least.

Writing and labeling examples of sentences by hand turns out to be a time-consuming
task, which many developers do not have the time to do. As mentioned before, it cre-
ates a pile of data tied to the platform used to develop the chatbot that cannot adapt
to changes in the requirements. And with a chatbot, there is almost a guarantee of
changes in the requirements, as a group of developers can hardly correctly model user
interaction without any user feedback, which is the entire reason for user centered
design[28].

Instead, it will be thanks to the user interaction collected by usage analytics tools
that the chatbot will be able to improve and adapt to how users actually use the ap-
plication. Developers of a hotel-booking chatbot may think that most users will say
“show me the hotels in Madrid”, or a similar sentence to see the hotels, but a large
fraction of users may actually say “what are some nice hotels in Madrid?”, which is
radically different and will hardly be captured as the same if the chatbot was trained
from examples.

Apart from the problems with the way popular framework’s chatbots are currently
trained, one more problem has already been pointed to by others: that “The APIs
learn only from example and do not provide ways to take advantage of additional
domain knowledge”, quoted from an article by a chatbot-building startup named
Conversate[27].

The same article also points out to a problem this project has tried to solve: that NLP
and chatbot APIs provide only basic text-to-entity or text-to-intent mapping. The rest
of the development work: building the UI, handling the state, keeping a conversational
context is left entirely up to the developer, and they provide no optional libraries or
services to carry that burden.

And it is precisely those things which take up a lot of developer time and prevent
users without coding knowledge from creating chatbots. Other important matters that
are seldom handled or even considered by currently used APIs is “Failure management”,
as the Conversate article says, which is how the chatbot deals with failure to understand
the user.

As a summary, these are the main differences in approach or execution between
the present program and the currently popular AIaaS platforms:

35

5. CHATBOT

Figure 5.1: Entity types, their format and output.

36

C
H

A
P

T
E

R

6
USE-CASE: HOTELBOT

The present chapter will show a possible use-case for the chatbot API that has been
used to better introduce some of the concepts so far: HotelBot. It will show how a
developer can create a chatbot application that allows users to book hotel rooms using
this chatbot API. The steps to create an application are the following:

1. Define the requirements

2. Create a valid application specification

3. Provide the specification

4. Create or adapt an interface that calls the API

The first thing the developer would do is to create a specification for the HotelBot
that contains the actions his users will do. For simplicity purposes, it will be assumed
there are only two actions: "show hotels" to see available hotels in a certain area or
price range and "book hotels", which allows the user to make the reservation.

A possible application specification that defines both actions is the following:

{
"name": " Hotelbot ",
" actions ": [

{
"name": "show hotels ",
" parameters ": [

{
"name": " location ",
" systemType ": " location "

},
{

"name": " minimum price",

37

6. USE-CASE: HOTELBOT

" systemType ": " currency ",
" triggers ": [

" minimum ",
"above",
" starting from",
"from"

]
},
{

"name": " maximum price",
" systemType ": " currency ",
" triggers ": [

" maximum ",
"up to",
"below",
"under"

]
}

],
" conditions ": [

{
" systemType ": "enum",
" validationSchemaFile ": "show.json"

},
{

" systemType ": "enum",
" validationSchemaFile ": "hotel.json"

}
]

},
{

"name": "book hotel",
" parameters ": [

{
"name": "room count",
" systemType ": " number "

}
],
" conditions ": [

{
" systemType ": "enum",
" validationSchemaFile ": "book.json"

},
{

" systemType ": "enum",
" validationSchemaFile ": "hotel.json"

}

38

]
}

]
}

Once the application is validated using the JSON schema provided in the docu-
mentation of the API, and it has been uploaded, the developer is provided with an
id to uniquely identify calls to his application. Using a provided interface template
(which would already contain the API call) or a custom solution, the users can now
begin talking to the chatbot API, which would respond with structured text.

When the HTTP call hits the API, it loads the application specification created by the
developer from either cache or the storage server. Once loaded, it extracts the entities
from the sentence. Because the developer has only specified actions, conditions and
parameters, these first need to be mapped to entities. Each parameter and condition
is mapped to a custom entity type during the import process, so that they can be
identified during extraction.

Entity extraction is a process made up of multiple steps. To illustrate each step, the
processing of the sentence "book me one room there" will be used:

1. Tokenization: The sentence is divided into substrings or "tokens", typically cor-
responing to a single word. The sentence would be separated into "book", "me",
"one", "room" and "there".

2. Feature extraction: Tokens are assigned the features corresponding to the regular
expressions they fit. The tokens "book" and "room" would be assigned the feature
custom also indicating which custom entity it has matches, "one" would be
assigned the feature cardinal, and "me" and "there" would not be given any
features.

3. Classification: Tokens are classified into entity types depending on their features.
"room" and "book" are assigned the custom entity type, "one" is assigned the
cardinal type, and finally "me" and "there" are given the "any" type, as they have
no features.

4. Normalization: Tokens are given an appropriate value based on their type. The
only token that is normalized in the sentence is "one", which is assigned the
numerical value 1. The rest have as value the string they match, e.g. the token
book has the value "book" and the token room has the value "room".

5. Entity building: Entities are created from the entity types and the values found
for each token. At this point, tokens with features that are not enough to constitute
an entity are discarded, such as "me" and "there". If tokens have multiple entity
types, they are considered ambiguities, to be dealt with at a later stage.

After entities are extracted, the chatbot API tries to find an action in the application
whose conditions can all be matched with the available entities. Then, using either
the action found, or the action specified by the developer, the chatbot will find which
parameters in the action can be fit by the entities. If there is no action in progress,

39

6. USE-CASE: HOTELBOT

the possible parameters are returned as an ambiguity, indicating the actions they can
belong to.

Once the response reaches the caller, it can be dealt with in several ways. One
simple pattern is to maintain some local state to keep track of the progress of each
action. This way, when the user says "can you show me some hotels", the application
receives a response indicating the user wants to "show hotels", and can consequently
make a call to its backend, retrieve the hotel information, and show it to the user with
any combination of text, voice, image and video.

Subsequent actions will modify the conversational state, so that the user can specify
filters like "I only want to see those in Madrid". In this case, the chatbot API recognizes
"Madrid" as a location parameter, and the application can use this information to show
only those hotels which are in Madrid.

The more variables the developer decides to keep in his application, the richer the
conversation context will be, offering an experience as akin to human conversation as
possible.

6.1 Example conversation

This section will show an example interaction between a user and the HotelBot. The
user is trying to find and book a hotel. For simplicity purposes, it will be assumed that
the user already has a bank account linked to his HotelBot account.

User: "i want a hotel for today" HotelBot: "Where do you want the hotel?" User:
"in madrid" HotelBot: "Ok, there are sixty-four hotels in Madrid available today" User:
"show me only those above fifty euros" HotelBot: "Looks like there are twelve hotels
in Madrid starting at fifty euros available today" User: "Tell me more about them"
HotelBot: "The first one has four stars. The price is 74 euros a night. Do you want to
know more?" User: "no, show me the next" HotelBot: "The second one has three stars.
The price is fifty-six euros a night. Do you want to know more?" User: "yeah" HotelBot:
"It’s located in Plaza del Callao. The description reads ’The best hotel to spend the night
in the heart of Madrid’. User ratings give it an average of four stars." User: "does it have
a room with three bedrooms?" HotelBot: "Yes" User: "k, I want to book it" HotelBot:
"How many rooms?" User: "only one" HotelBot: "Do you want to use your regular
payment method?" User: "Yes" HotelBot: "Your room is ready. Register at the hotel to
receive your key. Have a great stay!"

In this example, the application uses an additional action not defined here, "know
more", to show the user information. This action would need code in the application to
create the response based on the returned information from the hotel booking backend
or third-party API used.

40

C
H

A
P

T
E

R

7
CONCLUSIONS

The three project goals set at the start have been fulfilled: the chatbot API has been
successfully developed and used in a contest, proving an application built using it works,
and the documentation to use the API is currently publicly available1. Additionally, the
API fulfills all the requirements.

This is an ambitious project that has just begun. There are yet many tasks to do
before it is ready for production, as mentioned in the future improvements section.

These initial results show that it will soon be possible to build and deploy smart
applications in a few hours, specifying only the minimum necessary. Building usable
chatbots, however, is not so simple, and requires monitoring user feedback and making
changes to adapt to how people truly interact with the application. Most likely, this or
other project will provide the tools to make that possible.

7.1 Future improvements

There are many things to improve moving forward. Some of these have been men-
tioned throughout this document, others have been left out. The following is not a
comprehensive list of future features and goals, but rather a summary of the most
relevant:

1. Available in other languages. Currently the application works only with english.
Writing a NER for other languages is an unsustainable endeavor. Instead, the
more viable choice is to have a translation service convert those other languages
to english. Because the responses are generated by an independent module,
these can be generated directly in other language if the developer wishes to do so.

2. Improve the NER: From adding support for non-regular types such as names to
adding new date entity patterns, the NER can be greatly improved to make sure
the most entities are recognized and normalized correctly.

1https://github.com/fpluis/chatbot-docs

41

7. CONCLUSIONS

3. Create the public chatbot libraries: Making the developer’s life easier is the entire
goal of this project. Therefore, new and existing libraries will try to be as easy to
use and interoperate as possible.

4. Develop the platform to sell this program as a service: So far the API is ready
to accept incoming requests and let developers specify applications. However,
there is no website to create an account, set up billing, and define the application
without having to manipulate the JSON file.

5. Add machine learning to improve recall: Some entities such as names or locations
can only be reliably recognized using machine learning techniques. However,
in order to both take advantage of machine learning and have a deterministic
system, the developer will be able to fix the way certain sentences are interpreted,
and even to disable machine learning altogether.

6. Add machine learning to provide developers with user feedback. Knowing the
sentences most often used, and the usual interaction routes for users can be very
helpful to improve the chatbot. Information about usage can also be used to
know if there are certain sentences that users commonly use but the application
fails to recognize or recognizes them incorrectly.

7.2 Participation in the Whenhub hackathon

The application2 submitted to the Hackathon contest organized by Whenhub3 was
awarded the “Best overall” prize. Whenhub is a company that provides services to
create schedules and events that can be shared with others, being useful for events like
conferences. These schedules are stored as data without style, and can be seen with
any of the visualization they provide.

Because they are a new company, they wanted front end developers and designers
to supply them with ideas for these visualizations and also backend developers to build
products with their API. And those were the three categories they created: backend,
frontend and designers, the latter two submitting visualizations.

The chat UI was in part developed by Artem Rudenko, a colleague and current
student at the UIB. The rest, including the application’s logic and state-handling, as
well as part of the UI was developed by me. The entry was submitted to the backend
category, although it used a new visualization Whenhub did not have: text-based, which
is more accessible than others based on images.

The application allowed the user to create, list, update and delete schedules and
events. Additionally, the functionality of “time-shift” was added, which allowed users to
shift events forward or backward in time by simply saying a sentence such as “timeshift
it forward two weeks”. Me and my colleague found this useful for use-cases where a
series of events are rescheduled but their relative position in time remains constant.

The entire application, as well as the deployment of the API and testing, took a total
of 45:44h between the first and eighth of May, 2017. Artem Rudenko and I have already
received the 5000$ prize.

2The contest entry can be found at https://devpost.com/software/whenbot
3https://www.whenhub.com/

42

7.3. Personal valoration

7.3 Personal valoration

When I decided I would build a chatbot API, in mid-February, I did not even know what
natural language processing was, or how long it would take me to build a system that
would parse human language into actionable data, provided some context. Not even if
the result would be acceptable.

But at the time of writing this documentation, four months and over 450h of work
later, I have learned many things about language and how to process it, although
there remain much more to learn. I have seen just how different it is to develop an
application using only a chatbot versus creating a responsive UI, and the experience
was very positive.

The very reason I started this project was so people who have not written a line
of code, not just developers, could build useful applications without having to worry
about how to make UI elements responsive, positioning them on the screen and making
sure the application works on different browsers or operating systems. In part because
I do not want to do all those tasks, but I still want to build web applications.

Developing the Whenhub application was much like developing any “backend”
application. All I had to do was think about which functions I had, how state was
handled, and how to connect what users said to the backend calls I had. When I wanted
to add a new action, I simply modified the API configuration file and added a new
handler to the chatbot API response.

I still intend to improve this experience and provide as much information to the
developer as possible about how users really use their application, because that is key
to making the app useful and usable. As I developed the Whenhub application, one of
the people whom I asked to test it tried to change the description of an event using a
combination of words I had not thought about, which was immediately added.

Just like user interfaces, chatbots need user feedback because developers can hardly
imagine all the possible ways a user will interact with their application.

43

BIBLIOGRAPHY

[1] B. A. Shawar and E. Atwell, “Using dialogue corpora to train a chatbot,” in Proceed-
ings of the Corpus Linguistics 2003 conference, 2003, pp. 681–690. 1

[2] R. T. Fielding and R. N. Taylor, Architectural styles and the design of network-based
software architectures. University of California, Irvine Doctoral dissertation, 2000.
1.1.2

[3] M. Fowler and J. Lewis, “Microservices,” ThoughtWorks. http://martinfowler.
com/articles/microservices. html [last accessed on February 17, 2015], 2014. 1.1.2, 3

[4] J. Nielsen. Response times: The 3 important limits. [Online]. Available:
https://www.nngroup.com/articles/response-times-3-important-limits/ 1.1.3

[5] M. Roberts. Serverless architectures. [Online]. Available: https://martinfowler.
com/articles/serverless.html 1.2.1

[6] R. C. Martin, Clean code: a handbook of agile software craftsmanship. Pearson
Education, 2009. 1.2.2

[7] E. Elliott. Master the javascript interview: What is a pure
function? [Online]. Available: https://medium.com/javascript-scene/
master-the-javascript-interview-what-is-a-pure-function-d1c076bec976 1.2.2

[8] Usage share of web browsers. [Online]. Available: https://en.wikipedia.org/wiki/
Usage_share_of_web_browsers 5

[9] M. Negnevitsky, Artificial intelligence: a guide to intelligent systems. Pearson
Education, 2005. 2

[10] J. Weizenbaum, “Eliza—a computer program for the study of natural language
communication between man and machine,” Communications of the ACM, vol. 9,
no. 1, pp. 36–45, 1966. 2

[11] Phrasee. Parry: The a.i. chatterbot from 1972. [Online]. Available: https:
//phrasee.co/parry-the-a-i-chatterbot-from-1972/ 2

[12] A. Rodrigues. A history of smarterchild. [Online]. Available: https://motherboard.
vice.com/en_us/article/jpgpey/a-history-of-smarterchild 2

[13] D. Nadeau and S. Sekine, “A survey of named entity recognition and classification,”
Lingvisticae Investigationes, vol. 30, no. 1, pp. 3–26, 2007. 1

45

https://www.nngroup.com/articles/response-times-3-important-limits/
https://martinfowler.com/articles/serverless.html
https://martinfowler.com/articles/serverless.html
https://medium.com/javascript-scene/master-the-javascript-interview-what-is-a-pure-function-d1c076bec976
https://medium.com/javascript-scene/master-the-javascript-interview-what-is-a-pure-function-d1c076bec976
https://en.wikipedia.org/wiki/Usage_share_of_web_browsers
https://en.wikipedia.org/wiki/Usage_share_of_web_browsers
https://phrasee.co/parry-the-a-i-chatterbot-from-1972/
https://phrasee.co/parry-the-a-i-chatterbot-from-1972/
https://motherboard.vice.com/en_us/article/jpgpey/a-history-of-smarterchild
https://motherboard.vice.com/en_us/article/jpgpey/a-history-of-smarterchild

BIBLIOGRAPHY

[14] S. Batra and D. Rao, “Entity based sentiment analysis on twitter,” Science, vol. 9,
no. 4, pp. 1–12, 2010. 3

[15] D. Mollá, M. Van Zaanen, and S. Cassidy, “Named entity recognition in question
answering of speech data,” in Proceedings of the Australasian Language Technology
Workshop, 2007, pp. 57–65. 3

[16] J. Tang, M. Hong, D. Zhang, B. Liang, J. Li et al., “Information extraction: Method-
ologies and applications,” Emerging Technologies of Text Mining: Techniques and
Applications, 2007. 3

[17] M. Souza and R. Vieira, “Entity-centric sentiment analysis on twitter data for the
potuguese language,” in Proceedings of the 9th Brazilian Symposium in Informa-
tion and Human Language Technology, Fortaleza, CE, Brazil, 2013, pp. 21–23.
4

[18] G. Zhou and J. Su, “Named entity recognition using an hmm-based chunk tag-
ger,” in proceedings of the 40th Annual Meeting on Association for Computational
Linguistics. Association for Computational Linguistics, 2002, pp. 473–480. 4

[19] S. B. Kotsiantis, I. Zaharakis, and P. Pintelas, “Supervised machine learning: A
review of classification techniques,” 2007. 1

[20] L. Chiticariu, Y. Li, and F. Reiss, “Rule-based information extraction is dead,” Long
Live Rule-Based Information Extraction Systems, 2013. 2

[21] A. X. Chang and C. D. Manning, “Sutime: A library for recognizing and normalizing
time expressions.” in LREC, vol. 2012, 2012, pp. 3735–3740. 4.3

[22] A. McCallum and W. Li, “Early results for named entity recognition with conditional
random fields, feature induction and web-enhanced lexicons,” in Proceedings of
the seventh conference on Natural language learning at HLT-NAACL 2003-Volume
4. Association for Computational Linguistics, 2003, pp. 188–191. 4.3

[23] R. Collobert and J. Weston, “A unified architecture for natural language process-
ing: Deep neural networks with multitask learning,” in Proceedings of the 25th
international conference on Machine learning. ACM, 2008, pp. 160–167. 4.3

[24] T. Weiss. Deep spelling. [Online]. Available: https://medium.com/@majortal/
deep-spelling-9ffef96a24f6 3

[25] Date format by country. [Online]. Available: https://en.wikipedia.org/wiki/Date_
format_by_country 7

[26] J. NR. What is an isomorphic application? [Online]. Available: https:
//www.lullabot.com/articles/what-is-an-isomorphic-application 5

[27] Conversate. A review of natural language apis for bots. [Online]. Available: https:
//medium.com/@Conversate/natural-language-apis-for-bots-e791f090e32f 5.3

[28] C. Abras, D. Maloney-Krichmar, and J. Preece, “User-centered design,” Bainbridge,
W. Encyclopedia of Human-Computer Interaction. Thousand Oaks: Sage Publica-
tions, vol. 37, no. 4, pp. 445–456, 2004. 5.3

46

https://medium.com/@majortal/deep-spelling-9ffef96a24f6
https://medium.com/@majortal/deep-spelling-9ffef96a24f6
https://en.wikipedia.org/wiki/Date_format_by_country
https://en.wikipedia.org/wiki/Date_format_by_country
https://www.lullabot.com/articles/what-is-an-isomorphic-application
https://www.lullabot.com/articles/what-is-an-isomorphic-application
https://medium.com/@Conversate/natural-language-apis-for-bots-e791f090e32f
https://medium.com/@Conversate/natural-language-apis-for-bots-e791f090e32f

	Contents
	Acronyms
	Prologue
	1 Introduction
	1.1 Project requirements
	1.1.1 Notation
	1.1.2 Requirement definition
	1.1.3 Requirement validation

	1.2 Technical requirements and methodology
	1.2.1 Language and platform
	1.2.2 Style
	1.2.3 Tools

	1.3 Tasks
	1.4 Planning

	2 Overview of the history of chatbots
	3 Implementation
	4 Named Entity Recognizer
	4.1 Requirements
	4.2 Validation
	4.3 Design
	4.3.1 Tokenizer
	4.3.2 Recognizer

	4.4 Entity types
	4.4.1 Numbers
	4.4.2 Times and dates
	4.4.3 Custom types
	4.4.4 Free text

	4.5 Data sources

	5 Chatbot
	5.1 Chatbot API
	5.2 Chatbot middleware
	5.3 Other chatbot-building APIs

	6 Use-case: HotelBot
	6.1 Example conversation

	7 Conclusions
	7.1 Future improvements
	7.2 Participation in the Whenhub hackathon
	7.3 Personal valoration

	Bibliography

