
B
ac

h
el

o
r

F
in

al
T

h
es

is

GRAU D’ENGINYERIA ELECTRÒNICA INDUSTRIAL I
AUTOMÀTICA

Vehicle data acquisition and display system
applied to motorcycles

MIQUEL FONT MAS

Tutors
Gabriel Oliver Codina Miquel Massot Campos

Escola Politècnica Superior
Universitat de les Illes Balears

Palma, September 8, 2017

To my family, for their unconditional love.

ABSTRACT

The automotive industry, increasingly focused on intelligent driving, requires systems
able to obtain data from the vehicles in order to perform data analysis.

This trend does not appear with the same strength in the world of motorcycling,
where analogue systems and non-standard communication networks are frequent in
the industry, which prevents users and amateurs from studying and understanding
their own transport machines. Furthermore, it should be taken into account that most
motorbikes do not have proper displays to visualise parametric values of the vehicle
such as speed, acceleration, inclination, motor, wheel and ambient temperatures, and
so many others.

Some products can be found in the market, but the high cost of these solutions
makes them non-viable for limited budgets. As it can be seen, there is a need for
affordable and easy-to-use data acquisition devices, which could be used to modernise
old machines or to obtain data for amateur competitions.

The main goal of this project is the study and design of a data acquisition system
based on Arduino, ready to be installed in any vehicle, regardless of its date of manu-
facture. The project will be focused on motorcycles, so systems based on gyroscopes
and accelerometers will be used to obtain the vehicle tilt. This projects also includes
a real-time viewing system based on Android, that offers the user a intuitive graphic
interface.

iii

SUMARI

La industria automobilística, cada vegada més centrada en sistemes de conducció
intel·ligent, requereix de sistemes de presa de dades dels vehicles per al seu tractament
i anàlisi.

No obstant, aquesta tendència no apareix en el món del motociclisme aficionat, on
els sistemes analògics i les xarxes de comunicació no estandaritzades són habituals i
dificulten als usuaris del motociclisme esportiu l’estudi del seu mitjà de transport. A
més, cal remarcar que moltes motocicletes no compten amb sistemes de visualització
de paràmetres del vehicle, tals com puguin ser la velocitat, l’acceleració a l’hora de
frenar, la temperatura del motor, de les rodes o de l’ambient, entre altres.

Els productes que es troben al mercat són de cost elevat, dificultant l’accés a per-
sones amb recursos limitats. Ja sigui per actualitzar i modernitzar vehicles antics, com
per oferir noves dades de conducció per competició amateur, queda palesa la necessitat
de cobrir aquesta veta de mercat.

El principal objectiu d’aquest document és l’estudi i disseny d’un sistema de recol-
lida de dades basat en Arduino que es pugui instal·lar a qualsevol vehicle, amb inde-
pendència de la seva data de fabricació. Aquest projecte es centrarà en motocicletes, i
per tant es farà ús de sistemes basats en giroscopis i acceleròmetres per determinar la
inclinació del vehicle, entre altres sensors. A més, es desenvoluparà un programa per
dispositius mòbils, que permeti visualitzar les dades del vehicle en temps real amb una
interfície gràfica intuïtiva.

iv

RESUMEN

La industria automovilística, cada vez más centrada en sistemas de conducción in-
teligente, requiere de sistemas de toma de datos de los vehículos para su tratamiento y
análisis.

No obstante, esta tendencia no aparece en el mundo del motociclismo aficionado,
donde los sistemas analógicos y las redes de comunicación no estandarizadas son
habituales y dificultan a los usuarios del motociclismo deportivo el estudio de su
medio de transporte. Además, hay que remarcar que muchas motocicletas no cuentan
con sistemas de visualización de parámetros del vehículo, tales cómo puedan ser la
velocidad, la aceleración a la hora de frenar, la temperatura del motor, de las ruedas o
del ambiente, entre otros.

Los productos que se encuentran en el mercado son de coste elevado, dificultando
el acceso a personas con recursos limitados. Ya sea para actualizar y modernizar
vehículos antiguos, como para ofrecer nuevos datos de conducción para competición
amateur, queda patente la necesidad de cubrir este nicho de mercado.

El principal objetivo de este documento es el estudio y diseño de un sistema de
recogida de datos basado en Arduino que se pueda instalar a cualquier vehículo, con
independencia de su fecha de fabricación. Este proyecto se centrará en motocicletas,
y por lo tanto se hará uso de sistemas basados en giroscopios y acelerómetros para
determinar la inclinación del vehículo, entre otros sensores. Además, se desarrollará
un programa para dispositivos móviles, que permita visualizar los datos del vehículo
en tiempo real con una interfaz gráfica intuitiva.

v

CONTENTS

Abstract iii

Sumari iv

Resumen v

Contents vii

Acronyms ix

1 Introduction 1
1.1 Motivation . 1
1.2 Aims and scope . 2
1.3 Outline . 2

2 State of the Art 5
2.1 ECU and OBD-II . 5
2.2 Historical development of motorcycles 6
2.3 Market solutions . 6

2.3.1 Bosch mySPIN . 6
2.3.2 Midas Connect . 7
2.3.3 Bicycle solutions . 7
2.3.4 DIY . 8

2.4 Project grounds . 9

3 Framework 11
3.1 Introduction . 11

3.1.1 System description . 11
3.1.2 Requirements and limitations . 12

3.2 Telematics System . 13
3.2.1 Data Acquisition Device . 13
3.2.2 Sensors . 14

3.3 HMI . 15
3.4 Data Logging . 15
3.5 Component selection . 15

3.5.1 Telematics System . 16
3.5.2 HMI . 17
3.5.3 Data Logging . 18

vii

viii CONTENTS

4 Implementation 21
4.1 Introduction . 21
4.2 Telematics system and data logger . 21

4.2.1 HC-06 configuration . 25
4.2.2 IMU calibration . 25
4.2.3 RTC adjustment . 27
4.2.4 Sensor data acquisition . 27
4.2.5 Bluetooth messages . 27
4.2.6 SD implementation . 31

4.3 HMI . 31
4.4 Hardware arrangement . 33

4.4.1 Background . 33
4.4.2 Arduino Nano Circuit . 34
4.4.3 Arduino Mega Shield . 34
4.4.4 Arduino Mega Enclosure . 34

4.5 Considerations . 35
4.5.1 Libraries issues . 35
4.5.2 Android development platform 35
4.5.3 Broken components . 35
4.5.4 I2C address collision . 35
4.5.5 Flash storage usage . 36

5 Experimental Results 43
5.1 Laboratory tests . 43

5.1.1 Calibration . 43
5.1.2 Data reliability . 44
5.1.3 Value drifting . 46
5.1.4 Conclusions . 48

5.2 Field trials . 48
5.2.1 Lineal movement . 48
5.2.2 Curved movement . 52

6 Financial Analysis 55

7 Conclusions 57
7.1 Experience . 57
7.2 Work done . 58
7.3 Further research and development . 58

A Enclosure plans 61

Bibliography 65

ACRONYMS

ABS Anti-lock Braking System

bps Bits per second

BT Bluetooth

CCTV Closed-circuit Television

CES Consumer Electronics Show

CoM Centre of Masses

DAD Data Acquisition Device

DIY Do It Yourself

DMP Digital Motion Processor

DoF Degree of Freedom

ECU Electronic Control Unit

EDR Event Data Recorder

EoF End of frame

FPGA Field-Programmable Gate Array

GPRS General Packet Radio Service

GPS Global Positioning System

HMI Human Machine Interface

I/O Input/Output

IoV Internet of Vehicles

OBD On-Board Diagnostics

OEM Original Equipment Manufacturer

RPM Revolutions Per Minute

RTC Real Timer Clock

ix

x ACRONYMS

RX Reception

SoF Start of frame

SPP Serial Port Profile

TS Telematics System

TX Transmission

UART Universal Asynchronous Receriver/Transmitter

UI User Interface

YPR Yaw, pitch and roll

C
H

A
P

T
E

R

1
INTRODUCTION

Each passing day vehicles are equipped with more technology: ABS, air-bags, traction
control, collision avoidance systems, and so on. To measure and control the different
parameters of the vehicles a huge amount of sensors have been designed [1]. These
improvements have made our transport means to be more reliable, assisting the driver
through passive and active safety systems, whose purpose is the assistance and avoid-
ance of accidents and reducing its consequences.

Furthermore, the current trend of connecting all the devices has also affected the
vehicle industry, named as Internet of Vehicles (IoV). The main goal of IoV is to use the
data acquired from a huge amount of vehicles and road devices (such as CCTV cameras,
road conditions sensors and traffic lights) in order to manage traffic with more ease [2].

1.1 Motivation

To achieve the goal of IoV, all vehicles should have a data logging system connected
to the cloud. This arises some problems, not only because most vehicles do not have
internet connection, but old vehicles do not even have any accessible data to the user,
either because of not having electronic control unit (ECU) and sensors or because the
diagnosis interface does not follow any standard.

Besides, this constraints the development of accessories only to the original equip-
ment manufacturer (OEM), reducing the aftermarket. Imagine that our vehicle’s speed-
ometer is broken, then the only solution is to buy a new one from the manufacturer;
but if the manufacturer doesn’t have (because it is a very old vehicle, the manufacturer
is bankrupt and no longer exists or even because there is no technical assistance in the
area) the user will have no means to update and replace the component.

To avoid these issues, the On Board Diagnostics II (OBD-II) and Controller Area
Network bus (CAN) standards have been adopted in the car industry. However, not all
the automotive industry has followed this path, specifically the motorcycle industry has
several diagnosis and interfaces standards depending on the OEM or even the product.

1

1. INTRODUCTION

Some brands, such as Harley Davidson (since 2013), fully support CAN and OBD-II.
But the majority of the brands support CAN standard but with proprietary wiring and
electric signals schemes, and their own diagnosis port (instead of OBD-II). This is the
case of BMW [3], Yamaha [4] and Honda [5].

The main issue about current motorcycles lies on the inaccessibility of data and the
poor use of sensors. Solving this problem is the first step to enhance bikes’ dashboards,
providing better information to the rider. Furthermore, if the data is stored, it can be
used in case of accident to analyse the causes and even simulate what happened. This
last use is known in the automotive industry as event data recorders (EDR), or black
boxes.

1.2 Aims and scope

As mentioned in the introduction, the goal of this thesis is to develop a system to
acquire vehicle data for its later display and storage. Taking into account the context of
the project, we will focus our research in motorcycles. Nevertheless, our development
should also be suitable with some modifications to any type of vehicle.

It is possible to divide this general goal into more specific objectives as follows:

• Research about available technologies: A primary study of the solutions avail-
able in the market is required in order to develop a system up to date. It is also
of our interest to analyse the approaches adopted in different branches of the
automotive industry and the implementation of these in competitions.

• Development of a Telematics System: Design a platform composed by a given
number of sensors and a data acquisition device (DAD), which is the core of the
project.

• Design a Human Machine Interface (HMI): Develop a real-time viewer for key
performance indicators following safety measures, not to disturb the driver but
to give at-a-glance information, to be installed next to the motorcycle dashboard.

• Create a storage service: Being able to record trips is the key to analyse driving
behaviour and use the system as a black box. The goal pursued is to storage the
data for later access.

1.3 Outline

The different topics introduced in this thesis are distributed in six chapters, structured
as follows.

Chapter 2: State of the Art. This focuses on the study of the state of the art in
telemetry systems for vehicles. Firstly, common schematics will be introduced
and then uses of the information obtained will be presented. To finish this chapter,
some competitors alternatives will be shown and analysed.

Chapter 3: Framework. Technologies available at the current time will be intro-
duced, in order to explain the component selection and configuration of our
product. Later on, the electric and mechanical schematics will be shown.

2

1.3. Outline

Chapter 4: Implementation. In this chapter, the implementation of our system
will be discussed. Mainly we will focus on three topics: the telemetry device, the
dashboard unit and the storage service.

Chapter 5: Field Trials. This presents all the experiments performed throughout
this thesis. Additionally, the results obtained and the lessons learned will be
explained.

Chapter 6: Financial Analysis. In this chapter the viability of the project will be
evaluated. The cost of the prototype and the market price will be calculated.

Chapter 7: Conclusions. This section summarises the results achieved and its
future development.

3

C
H

A
P

T
E

R

2
STATE OF THE ART

Since the early development of the automotive industry, new technologies have been
introduced in order to improve the driving experience, safety and reliability of vehicles.
The IoV has pushed the limits of vehicles’ connectivity allowing an easy access to the its
information.

In order to accomplish this goal, new technologies have been developed. In this
chapter we will introduce them and study how they are being implemented in motorcy-
cles.

2.1 ECU and OBD-II

To improve the performance of internal combustion engines, some device able to
control key functions had to be developed. These devices, called electronic control
unit (ECU), substituted the old mechanical and pneumatic means that dynamically
controlled ignition and idle speeds.

Nevertheless as time has passed, the increasing number of sensors used in other
tasks has established ECU as the controller of almost all parts of the vehicle, such
as brake and steering system. This evolution from engine control to a global vehicle
control, introduced a new definition of ECU: an embedded system that controls one or
more of the electrical system or subsystem in a transport vehicle.

In order to simplify diagnosis and viewing of the data, OBD-II network was de-
veloped. OBD-II network connects the main sensors and the ECU, and outputs the
information through the interface from Fig. 2.1. The OBD-II is an standard that can
be used with different communication protocols, the most important of them is CAN.
Since 2008 in EU, USA and almost all Asia have adopted CAN and OBD-II as the standard
in cars.

Having such a connector allows any user to link his own vehicle with another device
(a smartphone, for instance), which can be used to diagnose the vehicle, driving analysis
or to send information to IoV.

5

2. STATE OF THE ART

Figure 2.1: Data Link Connector: OBD-II port

2.2 Historical development of motorcycles

The earlier stages of motorcycle series production began at the end of the 19th century.
With First and Second World War, motorcycles production ramped up in order to replace
horse riding couriers, making it a very popular mean of transport [6].

In order to meet emission standards in the United States and in Europe at the very
early 1980s, manufacturers had to improve engines’ performance. The carburetors that
were being used could not handle the combination of performance and emissions at
their then-current state of development. To fulfil the new requirements, OEM began
using electronic fuel injection systems (EFI). At this stage, EFI were very simple systems,
in order to be cheap and easy for their mechanics to learn. The introduction of EFI
meant the introduction of ECU to control it [7].

Despite having motorcycles with ECU since the beginning of the 80s, there is no
standard data link connector adopted by the industry, as opposed to the car industry
where OBD-II is used by all new cars. As mentioned in the introduction chapter, this last
decade (2010) some brands started using OBD-II as the diagnostic port. Nevertheless,
it is not very common to find this scenario.

2.3 Market solutions

To solve some of these problems, aftermarket solutions have been proposed. In this
section the most important ones will be analysed.

2.3.1 Bosch mySPIN

At the beginning of 2017, Bosch (one of the pioneers to develop stability and control
systems and ABS for motorcycles and so many more) introduced at CES [8] a connecti-
vity suite for motorcycles. This system interconnects the motorcycle’s onboard brain to
the bike’s digital dashboard and also the user’s smartphone with a technology called
mySPIN [9].

This connectivity suite with the Bosch two-wheeler technology [10] is the most
advanced consumer product available in order to obtain bike’s data.

6

2.3. Market solutions

Figure 2.2: Schematic of two motorcycles with Bosch sensor technology

As it can be seen in the figure 2.2, the different sensors from the Bosch two-wheeler
technology suite are connected in order to provide an accurate reading of the state of
the vehicle. Then, this data is sent to the display and to the smartphone.

Nevertheless, this technology is only available in a limited amount of new and
expensive motorcycles. Furthermore, this technology is installed in the factory by the
OEM at the manufacturing process, so it is only available for new motorcycles. And due
to this system high cost, manufacturers only install it in high-end machines.

2.3.2 Midas Connect

Another similar approach is the one adopted by the american chain of automotive
services Midas. This company has developed a system that can be used in any car,
connecting its OBD-II connector to a proprietary device, which obtains the data from
the CAN bus and external sensors (such as GPS) and sends it to a smartphone with the
Midas Connect app [11]. Currently, the price of this product (installation included) is
affordable for the consumer, around 60AC.

The main issue of the Midas system is how to collect the data. Given that the
principal source of information is the OBD-II, it is not suitable for most motorcycles.

2.3.3 Bicycle solutions

As we have seen previously, the common problem with the solutions studied is the use
of information from the OBD-II. For this reason, it is interesting to evaluate solutions
proposed in vehicles with no ECU or OBD-II: bicycles.
Recently, a lot of start-ups have come up with different ideas to connect the bicycles
with the smartphones, which can be used as a dashboard as well.

COBI One of the most important exponent of this trend is COBI [12], a product that
consists of a phone holder with integrated lights with a wireless connection to some
other devices (such as tail light, turn indicators and a controller). Basically, the phone

7

2. STATE OF THE ART

Figure 2.3: Screenshot of the KDS dashboard developed by Thomas Riebmann

is running an application that controls the external devices, while obtaining speed,
position and slope from the phone sensors. Despite of being a simple device, the cost
of the system is around 300AC.

Connected Cycle Anther approach is the one used by the french company Connected
Cycle [13], which is based on a phone as a dashboard and getting the data from the
GPS, accelerometer and GPRS from a pedal that it is installed in the bike.

2.3.4 DIY

In the last decade, the interest in solving problems through technology by hobbyist
and amateurs has increased, creating a phenomenon known as Maker Culture. Makers
have also came up with different solutions to obtain data from vehicles.

OBDuino OBDuino is an open source on-board electronic gauge based on Arduino.
This project uses the OBD-II interface to get the data, and then it displays the infor-
mation requiered by the user, such as speed, RPM, fuel consumption, trip and more
[14].

KDS to Bluetooth This project goal, based on OBduino, is to submit the data from a
Kawasaki Diagnostic System (KDS) via Bluetooth in order to record videos with driving
information, as in MotoGP [15]. A screenshot of the recorded video with the KDS
information can be seen in the figure 2.3.

Chippernut Shift Light Tachometer The open-source sequential shift light devel-
oped by Chippernut is one of the most known projects in the hobbyist world. It has
been used in cars and driving simulators to display RPM, due to its simple installation:

8

2.4. Project grounds

only a connection between the RPM Input wire to the ECU or aftermarket ignition
system is needed [16].

2.4 Project grounds

The solutions available in the market do not satisfy our needs. On the one hand, most
systems are designed for specific models of motorcycles, with new technologies (CAN
and OBD-II for instance). Moreover, the systems available are usually proprietary and
not expandable, not allowing easy data access to the user. Imagine, that we want to
have in our dashboard a tachometer or a light sensor. With these kind of systems we
are limited to what the company offers. Lastly, these solutions are very expensive.

It is clear the need to develop an open-source project with a reduced cost, accessible
to everyone, expandable and suitable any motorcycle.

9

C
H

A
P

T
E

R

3
FRAMEWORK

This chapter will be focused on the framework used to accomplish the objectives from
section 1.2. First of all, the structure and requirements of our system will be presented.
And then the selection of components will be discussed.

3.1 Introduction

As stated in previous chapters, the goal of this project is not to gather data from the
ECU, but to complement it with new sensor information. Thus, by not depending on
the ECU data, the solution to develop should be suitable for any kind of vehicle: cars,
motorcycles, bicycles, etc.

Nevertheless, this project will be focused on the development of a system for mo-
torcycles. To do so, data will be obtained from a given number of sensors: at minimum
we should have data about the inclination, temperature and position of the vehicle.
This data will be processed by the acquisition device and then it will be saved in the
available storage and, if possible, uploaded into a server. Simultaneously, this data will
be displayed in the HMI, providing to the rider useful information of the bike.

3.1.1 System description

As explained in section 1.2 three main components of the project are defined: a telem-
atics system, a HMI and a data logger. This structure can be seen in Fig. 3.1, where the
telematics system is composed by the DAD and the sensors.

In the block diagram we find the so called cloud services, these are all the services
that are provided over the internet, which comprises cloud storage, analysis of riding,
emergency assistance, and many more. As this is not the object of the project, it will be
left for further research and development.

Nevertheless, we will have two different configurations depending on the complex-
ity of the system:

11

3. FRAMEWORK

Telematics
System

Cloud
Services

HMIStorage

Figure 3.1: Block diagram of the system

Basic configuration It includes the telematics system and the HMI, but not the data
logger. This configuration has a lower cost and it is intended for the day to day driver,
who is not interested in saving riding data nor its analysis.

Extended configuration In this configuration all three parts are present, so we are
dealing with a more complex product whose cost is expected to be higher.

3.1.2 Requirements and limitations

The proposed system needs to address a number of constraints. As seen in section 2.3,
telemetry systems available in the market are normally proprietary and designed for a
specific vehicle. Nevertheless, DIY projects have in mind a more global use, providing
general solutions that can be adapted to the specific requirements of each case. This is
the adopted approach in this project, where the adaptability of the system is a priority.
It has to be expandable and even modular.

Another factor to consider is the cost of the whole product, which should be afford-
able for motorcycle owners. This not only affects the cost of the components used, but
also the installation. In order to accomplish that, the product should be easy to install
for any customer, so no technical service will be required.

Given the low storage capacity of motorcycles, the last limitation is found in the
size of the device.

12

3.2. Telematics System

3.2 Telematics System

The telematics system (TS) is composed by the sensors and the DAD. Its main task is
the gathering of vehicle information. It will be installed in a fixed location of the vehicle,
and connected to a power supply, which can be the battery of the vehicle. Thus, the
power consumption should be as low as possible.

3.2.1 Data Acquisition Device

The DAD is the core of the whole system: it receives data from the sensors and trans-
forms the signals to a comprehensive measurement to the user. Then it sends this data
to the HMI and to the data-logging system. There are several platforms to carry out this
task, of which the most important ones are:

Smartphone application

Smartphones are devices widely adopted and used, due to its portability and large
amount of convenient features. Smartphones are very capable devices, with a high
computing power and great connectivity, supporting a large amount of communication
standards, such as WiFi, Bluetooth (BT), NFC, GPRS, 4G... They are also equipped with
a wide number of sensors.

The main advantage of smartphones is the cost, because the customer does not
need to buy an extra device, as he can use his day-to-day phone.

Nevertheless the biggest issue regarding smartphones is the difficulty to add peri-
pherals. This restricts its configuration to the default one, not being able to increase the
number of sensors. Another problem of using smartphones is the battery consumption,
which is very high. Also, turning on and off is very slow given that the whole operating
system must load.

As we can see, smartphones are not very well suited to develop the task of a DAD,
specially for the issues regarding to expansion of peripherals.

Raspberry Pi

Raspberry Pi is a tiny low-cost computer, with most common ports: USB, Ethernet,
HDMI, audio, MicroSD slot and GPIO header [17]. The main advantage of a Raspberry
Pi is its computing power, and its expandability. Moreover, the community support is
very notorious, and a lot of projects already developed are open source. The boot up
time is very short, and the power consumption is relatively small (circa 400-500 mA,
2.5W [18]).

We consider this device very appropriate to perform as a DAD.

Arduino

According to Massimo Banzi, co-founder of the Arduino platform and author of Getting
Started with Arduino [19], Arduino is an open source physical computing platform
based on a simple input/output (I/O) board and a development environment. Arduino
boards are microcontrollers, to which external modules can be added depending on
the project. The low price and the fact that they are open source hardware have makes

13

3. FRAMEWORK

these boards market competitive. Despite not being very powerful devices (compared
to smartphones or Raspberry Pi), Arduino boards are very reliable and very good at
obtaining data from sensors. Its energy consumption is very low: according to the
Arduino webpage [20], when active, Arduino boards consume around 20mA.

In addition, the size is not an inconvenience because from the several boards avail-
able there are very small ones, and they can be added easily to homemade electronic
boards (due to its DIY philosophy).

Finally, a competitive advantage of Arduino is that they are real-time control sys-
tems.

FPGA

A field-programmable gate array (FPGA) is an integrated circuit designed to be config-
ured by a customer. Despite being very popular in the industry due to its performance,
the difficulties to program them make them not very suitable for projects where adapt-
ability is a key feature [21].

3.2.2 Sensors

The data processed by the DAD will come from a given number of sensors. In this
section we gathered information about sensors that could match the purpose of the
project, as they provide extra information about the state of the motorcycle.

IMU

An inertial measurement unit (IMU) is an electronic device that combines accelerome-
ters and gyroscopes in order to measure the angular rate and forces, and thus angular
position and lineal acceleration.

In our project, an IMU will be used in order to obtain the tilt of the motorcycle and
the slope, and also to obtain the deceleration when braking.

In the market there is a wide range of IMU, whose prices can be either low or even
cost thousands of Euros, depending on their characteristics.

Magnetometer

Magnetometers are electronic devices that measure magnetic fields, normally used as
compasses. In our project a magnetometer could provide an extra degree of freedom
(DoF). Combining it with the IMU we can achieve the 3D orientation model of the
vehicle.

Barometer

A barometric pressure sensor will be used to obtain the pressure and the altitude of the
vehicle.

14

3.3. HMI

GPS

Global Positioning System (GPS) is a global navigation satellite system that provides
geolocation and time information to a GPS receiver. It can be used to obtain not only
the vehicle position, but also the speed, orientation and time.

Thermometers

On the one hand, having knowledge of the DAD’s temperature will provide feed of the
proper operation of the device.

On the other hand, it is also from our interest to obtain wheel temperature. Knowing
the wheel temperature provides interesting feedback as the vehicle behave changes: the
grip of tire depends directly on the temperature of the rubber. Nevertheless, a regular
temperature sensor can not be used because the wheel is always turning and no contact
can be done. Therefore an infrared (IR) temperature sensor should be used.

3.3 HMI

The HMI is the bridge that allows communication between the user and the TS. We
need a bidirectional communication.

In one hand, the HMI should provide feedback about the current status of the vehi-
cle, displaying the information obtained by the TS. We should notice the importance of
the safety measurements to adopt, in order to avoid any kind of distraction to the user
while riding. For this reason, the data provided has to be understandable at a glance,
and the interface has to be very user-friendly.

On the other hand, the HMI should allow some user input in order to perform the
calibration when installing.

To accomplish both tasks, a display fixed next to the dashboard and some input
device are required. These can be two different components, but also a single one: for
instance a touchscreen.

3.4 Data Logging

Being able to record the information gathered by the DAD can be very useful to perform
riding analysis and to have a black box in case of accident, to name some of the many
possible applications.

The data logger should store the information from the TS, and a time stamp as well.

3.5 Component selection

After the study of the the components that conform our project we will proceed to the
selection of each of them.

As it will be explained with more detail, in this project we will make use of a Arduino
as the DAD. This Arduino will be wirelessly connected to a smartphone, which will be
used as the HMI and will provide some sensor data as well. Some other sensors will be
attached to the Arduino.

15

3. FRAMEWORK

3.5.1 Telematics System

DAD: Arduino Nano and Mega

A very easy solution for our project would be using a smartphone as the core of the
system. Nevertheless, being not able to expand the number of sensors easily (to add
engine temperature for instance) and the high power consumption makes them not
the very best system to be used.

FPGA on the other hand are very difficult to setup, limiting the use cases of our
system.

The best platforms to be used as the core of our system are Arduino or Raspberry
Pi. The main advantage of Raspberry Pi is its computer power, which at the same time
makes it to drain more energy. Moreover, Arduino are very well suited to perform easy
tasks such as receive data and process it.

We decided that an Arduino board will be the controller used, due to the previous
reasons and the cost of it.

Due to limitations of flash storage and size, the controller will very depending on
the configuration from section 3.1.1.

For the basic configuration, we decided to use use an Arduino Nano, whose size
suits the space limitation of motorcycles. Nevertheless, as it will be explained in Chapter
4 the flash storage is rather short, being only 30 kB accessible to the user.

Figure 3.2: Arduino NANO

For the extended configuration, more storage is required since more tasks will be
performed. We decided that the Arduino Mega is well suited, not only because of the
storage but also the large number of I/O, which can be used for further development.
Being one of the most used and accessible Arduino boards, it is very easy to find it for a
very affordable price.

GY-87 Breakout Board

The GY-87 breakout board will be used. This inexpensive breakout board combines an
IMU, a magnetometer and a barometer providing 9 DoF. The components used are the:

16

3.5. Component selection

Figure 3.3: Arduino Mega

MPU6050 This IMU from Invensense is one of the most popular in the hobbyist
world. It combines a 3-axis gyroscope and a 3-axis accelerometer with an on-
board Digital Motion Processor (DMP) capable of processing complex 9-axis
motion fusion algorithms. The gyroscope full-scale range of ± 2500 to ± 2000º/s,
while the accelerometer’s goes ±16g.

HMC5883 This surface mount chip from Honeywell is designed for low field
magnetic sensing. It is used by the MPU6050’s DMP to improve the results
obtained.

BMP180 The digital barometric pressure sensor of Bosch Sensortec is the barom-
eter used. In addition to the pressure, it is also capable of obtaining the tempera-
ture; which will be used to know the DAD’s temperature.

This breakout board uses the Inter-Integrated Circuit (I²C) communication bus.

Wheel Temperature Sensor

Given the high cost of the IR temperature sensors available in the market, we decided
not to include one in our TS in order to maintain the price to the minimum.

GPS

After doing a lot of research, there is no affordable GPS in the market: all of them cost
more than the expected price of our product. To overcome this inconvenience, we
decided to use the one already available on the HMI. This limits the acquisition of
geolocation data to only when the phone is connected to the system. We accepted this
drawback in order to keep our product as a low-cost system.

3.5.2 HMI

The problem with displays (specially touchscreens) is the cost, which is very high in
comparison to the overall cost of the project. For this reason a smartphone will be used
as a HMI. Smartphones are devices more than capable of handling graphics, and given

17

3. FRAMEWORK

that almost everyone has one, the cost of it can be considered null because it won’t be
used exclusively for the motorcycle dashboard purpose.

The platform of development is Android, currently the most used mobile operating
system. An application will be developed to be the portable motorcycle dashboard.

TS-HMI connection: Bluetooth

As stated previously, we will use an Android device as a display, which will receive data
from the TS. Therefore a connection should be established. To simplify the wiring, a
wireless communication will be used. Several wireless protocols could be used, which
are supported and available in the Android ecosystem: GPRS, WiFi, Bluetooth and NFC.

The distance between both devices is very short, around 1 or 2 meters, depending
on the vehicle. The GPRS is not intended for this use and is more expensive because an
extra phone plan has to be used. As NFC is intended for shorter ranges and low traffic
data will not be useful either. Bluetooth and WiFi are both good solutions. Nevertheless,
the communications will be done through Bluetooth, because when a WiFi connection
is established in Android, it is expected to receive and send data through it instead of
4G or GPRS, which we may want to use for other tasks.

The interface used in the TS is the HC-06 module, a very affordable breakout board
that supports Bluetooth class 2 with a low power consumption. This model it can be
used only as slave, if we needed to use it as master we would use the HC-05. The module
will be connected to the Arduino board using Serial communication.

3.5.3 Data Logging

Given that Arduino have a very limited memory we will use an external SD to record the
information. We will use a SD breakout board which uses the Serial Peripheral Interface
bus (SPI). It is important to emphasise the advantages of using the Arduino as the data-
logger instead of the Android device: it is not mandatory to have the phone connected
all the time, being able to work as black box. Moreover, having this configuration makes
very easy to develop HMI applications in other platforms, such iOS, Windows or even
for a Raspberry Pi.

Furthermore, in order to have a data-logging system we do not only have to store
the sensor information, but also add a time-stamp to this data. Arduino boards can
not provide a time stamp, because their internal clock is initialised to 0 each time the
controller boots. In order to overcome this shortcoming, a Real Time Clock module
(RTC) will be used together with the datalogger.

In this project the DS1307 module will be used. This affordable RTC communicates
to the Arduino via I²C.

18

3.5. Component selection

DAD: Arduino Battery

GY-87:
IMU, barometer,
magnetometer

and thermometer

RTC DS1307

Android:
HMI + GPS

HC-06 BT
module

Bluetooth

SD Storage

Serial

SPI

I2C

Figure 3.4: System overview

19

C
H

A
P

T
E

R

4
IMPLEMENTATION

This chapter is divided in four different main parts. Firstly the implementation of
the DAD will be discussed. Later on, the development and structure of the Android
application will be introduced. The hardware configuration will then be presented. At
the end of the chapter some considerations regarding the implementation and issues
found during the whole process will be explained.

4.1 Introduction

One aspect that was taken into account when considering the different implementation
options was the ease of use by the customer. Therefore, when the user starts using our
platform, he should not be concerned about technical issues or even having to program
anything. So, only one Arduino sketch must be load into the end product and it must
include all the functions to satisfy the customer requirements. The same happens with
the Android application, which must be unique and easy to install. This fact implies
that despite having two platform configurations, as stated in 3.1.1, only one Android
application should be available and compatible with both products.

4.2 Telematics system and data logger

Despite having two configurations available, both of them are very similar and so
the core code is the same. For instance, the structure of the code, the variables and
functions must be as similar as possible, making easy to maintain and update both
products. Having a similar structure also makes possible to use the same HMI version,
as the data received will have the same structure.

Before going into further detail, let’s stop to name and explain the main features and
functionalities the TS should have to ensure a proper user experience: the main objec-
tive of the TS is to gather data from the IMU and other sensors. Nevertheless, to do so the
IMU must be calibrated so the data obtained is meaningful under our frame of reference.

21

4. IMPLEMENTATION

Motorcycle
and Arduino

on

Setup system

Create logging
file*

Receive BT
message and

perform
requested actions

Reboot
system?

Yes

Obtain data from
sensors

No

BT paired?

Send BT
message

Yes

No

Update logging
file*

Start new
session?

No

Yes*

Figure 4.1: Arduino SDL diagram
overview

This calibration should only be done once
when the TS is installed on the bike, or after
changing the placement of the DAD in the ve-
hicle. Despite the sporadic use of it, to simplify
the user experience it will be an option avail-
able at any moment to the user. Therefore, a
calibration function will be found in the sketch
installed in the DAD.

To use the Bluetooth module, it must be
previously configured. Nevertheless, this con-
figuration should not be available to the user,
and it should be done only before assembling
all the modules together. For this reason we
have developed an independent sketch to per-
form this single task (see 4.2.1).

These and the other features will be dis-
cussed in more detail in their corresponding
sections.

Now let’s elaborate upon the structure of
the program. The following diagram (Fig. 4.1)
presents a basic concept of the task-flow car-
ried by the DAD. Note that the asterisk (*) sym-
bolises those tasks related to the data logger
feature, and so to be performed only by the ex-
tended configuration.

As it can be seen, the system boots when
the motorcycle is on, so the maximum amount
of data is obtained. To achieve so, it is recom-
mended to use the vehicle battery through the
main switch as the power supply (with a 12V to
5V converter in between) when installing the
TS.

Then, the system will setup. If the extended
version is being used, a logging file will be cre-
ated in the appropriate folder path. In case this
path does not exist, it will automatically create
the folders required. The date and time will be
obtained from the RTC module. If we are using
the basic version, this step will be omitted.

Once created the logging file, it will be
check if any new income BT message has been
received. If so, it will proceed as stated in the
extended Specification and Description Lan-
guage (SDL) diagram (Fig. 4.2). In this diagram
we can see something called Cmd, as it will be
later explained in section 4.2.5, it is a variable

22

4.2. Telematics system and data logger

that informs the user about the current state of the controller, which is sent to the HMI
(for debugging purposes for instance).

Depending on the message received (see section 4.2.5), the program will:

• Pair BT: Indicates that a new connection has been successfully established. Once
the device is paired the system will suppose that remains paired. The only way to
unpair the device is to reboot the system.

• Reboot the system: This feature is very useful for debugging purposes and to
reset the machine in case of failure. Before reseting the Android, a message
will be sent to the user, and after the reset another message will be send as a
confirmation of the successful procedure.

• Update GPS data: Gets the latitude, longitude and speed information from the
GPS module, which is the Android device. Is only available in the expanded
version, due to the lack of interest of knowing this data if it is not stored.

• Calibrate IMU: Performs a calibration of the IMU (see 4.2.2). During the calibra-
tion the IMU should be still, because any slight movement will interfere in the
result of the calibration. To inform the user, a message will be sent to the HMI
pointing the beginning of the calibration. When the calibration is performed,
another message will be send. This last message will be send with the new data
gathered, so it will wait until the next programmed sending. Notice that in the
following loop a new logging session will be created in order to preserve accurate
and consistent measurements during the whole logging session.

• RTC synchronisation: Receives the timestamp from the HMI in order to update
the registers from the RTC (see 4.2.3). Take into account that the DS1307 IC
accuracy is not very high due to time drifting, which can be as high as 5 seconds
per day. So if we want to have an accurate time-stamp when logging it is recom-
mended to perform a weekly clock synchronisation. Notice that in the following
loop a new logging session will be created in order to preserve accurate and con-
sistent measurements during the whole logging session. It is only available in the
extended version, because no time-stamp is required in the basic configuration.

• Create a new session: It creates a new logging session after finishing this last
loop. Only available at the extended version, because no logging sessions are
available in the basic configuration.

• Empty message: Does nothing. It has been created for debugging purposes only.

After that the DAD will proceed to gather all the data from the IMU and the barom-
eter (see 4.2.4). Then all this data will be send to the HMI (see 4.2.5) and stored to the
SD logging file (see 4.2.6). Finally, depending on the received BT message we will create
a new log file or repeat the loop from the receiving BT message point.

23

4. IMPLEMENTATION

Variables
initialization

Communications
initialization

Sensors
initialization

Send BT
message

Motorcycle and
Arduino on

Create logging file*

Receive BT
message

New data?

ID?

Yes

4

Cmd = Reset
confirmation

Cmd = Reset
request

Send BT
message

0 61

BT
paired

5

Update GPS
information*

2

Cmd = IMU
calibration
requested

Send BT
message

Calibrate
IMU

Cmd = IMU
calibration done

3

Syncronize
RTC*

Cmd = RTC
sync done*

Cmd = New
session*

Start new
session

Obtain data
from sensors

BT paired?

Send BT
message

Yes

No

Update logging file*

Start new
session?

Yes*

No

No

Figure 4.2: Detailed Arduino SDL diagram

24

4.2. Telematics system and data logger

4.2.1 HC-06 configuration

As explained, before being able to use the BT module, it must be configured. In order to
do so, a setup sketch has been developed.

This BT module (HC-06) communicates to the Arduino through serial communica-
tion. Using this type of communication we can send AT commands to the module. It is
important to notice that depending on the breakout board, the HC-06 could respond
differently to our instructions.

The AT commands that we use to configure the BT module are [22]:

• "AT": Starts the configuration mode of the module. After this message, the mod-
ule will expect to receive AT commands.

• "AT+NAME": After sending this command a character array of maximum 10 bytes
will be sent (remember that in Arduino, 1 char occupies 1 byte). This array must
contain the desired name of the BT device, which will be seen for the others BT
devices around. In our case we chose to name the BT module PONIZ.

• "AT+BAUD": After this command we will send a byte with the baud rate that we
want the BT device to operate. The baudrate specifies how fast data is sent over
the serial line, and it is expressed in units of bits-per-second (bps) [23]. 8 different
baud rates can be setup: 1200 bps (the content of the byte is 1), 2400 bps (2), 4800
bps (3), 9600 bps (4, which is the default one in the BT module), 19200 bps (5),
38400 bps (6), 57600 bps (7) and 115200 bps (8). As we want to send data as fast
as possible because our HMI is very capable of receiving and processing data
at high speeds, we will use the maximum baud rate supported by the module:
115200 bps, so we will send a byte containing the character 8.

• "AT+PIN": It expects a 4 byte array containing the PIN to connect with the module.
We are using the PIN "0000".

For proper operation it is recommended to wait 1 second between AT commands,
but not between command and operator. After a couple of seconds without command,
the BT module will leave the configuration mode.

4.2.2 IMU calibration

When placing the IMU we will make sure that the y axis is fixed facing the direction of
the movement. We want to achieve a system as the one shown in Fig. 4.3, nevertheless
we must notice that the position of the IMU does not require to be in the origin of the
motorcycle’s coordinate system, because due to being a solid, the yaw, pitch and roll
(YPR) will be the same, which are the data we want to get. The acceleration in the 3
directions is also a interesting value to obtain, and because of the previous reason it
does not matter where we place the IMU (notice that we simplify the analysis supposing
that the vehicle it is not subjected to any flexure).

Nevertheless, we need to make sure that in rest position the values obtained from
the YPR are zero, or very close. To do so, a calibration algorithm has been designed.

25

4. IMPLEMENTATION

Figure 4.3: Motorcycle’s coordinate system

Calibration
required

Set new
sensor offsets

Get measure

Is it the
100th

measure?

Get mean
values

No

Yes

Are all of
them in

the
deadzone?

Calibration
performed

Yes

No

Figure 4.4: IMU calibration algorithm

This algorithm (see Fig. 4.4) is designed to
find the offset of the gyroscope and accelerom-
eter by iteration means. It starts setting the 6-
axis offsets at certain values. Then it obtains
the mean of 100 measurements. If the mean
of these values are all in the deadzone (close
enough to zero to suppose it is zero) we finished
the algorithm and the last offsets used are the re-
quired. Else other offset values will be used and
the process is repeated until we get the desired
offsets. The iteration values are picked follow-
ing the recommendations from Luis Ródenas
and Jeff Rowberg, developer of the MPU6050
library and the I2Cdev library as well [24].

This process can take as much as 30 sec-
onds. To avoid any movement it is send a re-
minder to not touch the vehicle from the still
position while the algorithm is running, as ex-
plained in section 4.2.

Once the calibration has been successfully
performed we will store the values of it to the
EEPROM of the Arduino. When initialising the
controller and the sensors, we will access to
these registers to set the offsets of the IMU.
Given the fact that the bike and TS are not going
to change after the installation, no more cali-
brations are required. In case we change the
vehicle or place the TS in another position of
the vehicle we should perform another calibra-
tion, whose new offset values will replace the
previous from the EEPROM.

26

4.2. Telematics system and data logger

4.2.3 RTC adjustment

As explained before, the main issue with the DS1307 RTC is time drifting, which after
several month or even years can distort greatly our results. To avoid this problem, an
easy synchronisation function has been developed. Android devices have their own
internal clock, which is updated constantly through the network, therefore it is very
accurate and reliable. When connected as HMI, the user will see the option of updating
clock. If selected, a new BT message will be sent from the Android to the Arduino. This
message will contain a time stamp which will be updated to the RTC.

Notice that a small delay between both devices will be introduced during the syn-
chronisation. This delay is the result of the time required to obtain the time stamp
from the Android (which is not 100% accurate), the time to transmit the frame, the time
required to process it by the Arduino (which is variable) and the time needed to update
the DS1307. Nevertheless, as this delay is very small (from the order of milliseconds at
maximum) we will neglect it.

4.2.4 Sensor data acquisition

To interact with all the sensors from the GY-87 breakout board, a library has been
designed. This library includes a function which is in charge of gathering all the data
and store it in a register.

This register contains the last readings of the sensors, therefore it is checked to
send the BT messages and update the logging file. This register is an array of 11 floats.
In previous versions, the YPR was transformed from radians to degrees, in order to
store a meaningful value, but this conversion took too long and slow the whole Arduino
program. For this reason, we decided to use the default format which is radians stored
as floats, so no operations are required.

The function to obtain the data first gets 32 values from the buffer of the MPU6050
DMP, to obtain the YPR and acceleration in the 3-axis. Then a low-pass filter is used in
order to remove the noise from the measurements, which are mostly caused by motor
vibrations. The low-pass filter used is an average of 32 values. This introduce a little
bit of delay, so the resulting value does not represent the current state but a past one.
The values obtained will be stored in the register according to the structure shown in
Fig.4.5.

Then the temperature from the IMU will be stored as well, after converting the value
obtained to Celsius degrees as stated in the MPU6050 datasheet.

The next step is gathering the data from the pressure sensor, from which the tem-
perature, pressure in hPa and Atm and the altitude will be obtained. Notice that the
temperature must be always the first value requested, to avoid issues with the sensor
which calculates the pressure relying on the temperature.

4.2.5 Bluetooth messages

In this section we will discuss how the incoming messages are addressed and the process
to send a BT message to the HMI. We will focus on the structure of these messages. For
more information about the processing of the data contained in incoming messages
refer to section 4.2. For the outgoing messages processing see section 4.3.

27

4. IMPLEMENTATION

Yaw Pitch Roll X Acc Y Acc TempTempZ Acc
Pres
(hPa)

Pres
(atm)

Alt (m)

MPU6050 BMP180

0 1 2 3 4 5 6 7 8 9 10

Figure 4.5: Structure of the sensor library data register

Before going into greater detail, we should clarify some concepts. The Bluetooth is a
wireless technology that comprises a series of protocols that operate under a common
protocol frame. These protocols build upon the basic Bluetooth standard are called
profiles and they define what application is geared towards [25]. The BT profile used in
this project is the Serial Port Profile (SPP). The SPP goal is to replace a serial communi-
cation interface, such as RS-232 or UART. To use SPP, the devices should be connected
to the Serial RX and TX lines, and regular serial communication should be used.

Nevertheless, the data frame of serial communications can vary from device to
device [23]. To avoid issues regarding configurations a data frame structure has been
developed. This new protocol is a layer build upon the existing SPP. Depending on the
direction of the message, into or from the Arduino, the length of the message will differ,
as it will be explained briefly. Nevertheless, all the messages consist of a array of bytes
that contain a start and end of frame (SoF and EoF, respectively), and a fixed structure.
We will use little endian, which is the endianess used in Arduino and Android platforms.
So, each variable will be stored from the least significant bit to the most significant bit.

Lastly, we have to remind that some variables type may change from platform to
platform. In Arduino a character is 1 byte, an integer is 2 bytes and a float is 4 bytes.
Whereas in Android a character is 2 bytes, and integers and floats are 4 bytes long. As
the core of our project is the DAD we will use the variables format from Arduino, and
therefore this issue has been addressed in the HMI, which transforms the data received
and sent to the Arduino format.

Incoming messages

As explained before the data will be received in packages of fixed structure, as it can
be seen in Fig. 4.6. This is very useful in order to dismiss corrupted messages. This
incoming package is an array of 11 bytes.

Basically, once every operation cycle we will look if any data has been received
during the loop. If so, it will save to a buffer the data between the SoF and EoF. If no SoF
or EoF are found (in its proper place), the message will be rejected.

Then, the first byte of the buffer will be evaluated, which identifies the type of
message and its content. The possible identifiers are the following (introduced in
section 4.2):

0 Empty message: All the content bytes are empty. See Fig. 4.6a.

1 Handshake: To confirm successful BT pairing. The content of the message is
empty (Fig. 4.6a).

28

4.2. Telematics system and data logger

SoF Id Content

0 1 2...10 11

EoF

(a) Generic message

SoF Id Latitude Longitude Speed EoF

0 1 2...5 6...9 10 11

(b) GPS message

SoF Id Year Month Day Hour

0 1 2 3 4 5

Minute Second ...

6 7 8...10

EoF

11

(c) Clock message

Figure 4.6: Structure of the incoming BT messages

2 IMU calibration: Request to perform a calibration of the IMU. The content is
empty (Fig. 4.6a).

3 Adjust time: Request the adjustment of the RTC registers. 6-byte timestamp is
send as content and rest of the bytes are empty, as it can be seen in Fig. 4.6c.
Notice that in one byte only 256 different values are possible, for this reason is
not possible to send the year in a byte. Nevertheless, the content of this byte is
the years passed from 1970 (following the UNIX time criteria [26]): we can send
years from 1970 until 2225. Rest of values require less than 256 values.

4 Reset Arduino: A reset of the controller is being requested. No more data is
required apart from the id (4.6a).

5 GPS: The data from the GPS receiver is received. This data consist on the latitude
(as a float, so 4 bytes long), the longitude (as a float) and the speed (one byte).
The structure of this type of message can be seen in Fig. 4.6b.

6 Create a new session: Request of create a new logging file, so no more data is
required (4.6a).

As it can be seen, the efficiency of the transmission is very low because as maximum
only 9 out of 12 bytes contain data, and in a lot of cases there is only 1 useful byte out of
12. Therefore, the efficiency oscillates between 75% and 8.3%.

The performance could be increased using a flexible frame length. Nevertheless,
having a fixed structure is easier to implement and the transmission time is marginal
for our requirements (at 115200 bps, to send 12 bytes we need 104µs). Moreover, most
frames contain GPS data. So the efficiency is closer to 75% than 8.3%, but will vary
depending on how many commands are sent from the HMI.

In addition, only the meaningful bytes will be processed because of the identifier,
so we can say that the time lost in the transmission is compensated in the processing

29

4. IMPLEMENTATION

speed. Moreover, this message structure is very robust and the transmission is very fast
due to buffer small size.

Outgoing messages

The outgoing messages contain useful at-a-glance data for the user. The data which
concerns to the user is the pitch, roll, acceleration in the direction of the movement
(y-axis) and the temperature of the TS (from the barometric sensor). The structure of
the message will be always the same, which is shown in Fig.4.7. To simplify message
construction, the register from the library (see section 4.2.4) will be used, as it already
contains all the data to be sent. As explained before, this register used to be from integer
in previous versions, but now it contains float values. Thus, the outgoing buffer will
contain float values. Hence, the frame is an array 19 bytes long, including SoF and EoF.

Unlike incoming frames, the outgoing messages will always contain the same data,
so no identifier is required. However, in this case a control byte will be used. This
variable was introduced before in section 4.2 when in the extended diagram (Fig. 4.2)
appeared something called Cmd. This is a control variable that can provide useful
information to the developer in case of debugging or even for control the status of the
TS. The possible values of cmd are:

0 Empty: System working as expected.

1 IMU calibration requested: To let the user know when the calibration has begun
in order not to interfere during the calibration process.

2 IMU calibration finished: Let the user know when is safe to ride the bike.

3 Time adjustment requested: Report time change synchronisation.

4 Time adjustment finished: Notify when the time has been updated.

5 Reset requested: Acquaintance about a reset request.

6 Reset finished: To report every time that DAD is turned on.

7 New session created: Notify a successful file creation.

For debugging purposes, the developer can introduce new commands, for instance
to control the current state of the DAD, errors and so on. This case scenarios are not
implemented because it was decided not to, but could be easily imported if desired.

SoF Cmd Pitch Roll Y-Acc Temp

0 1 2...5 6...9 10...13 14...17

EoF

18

Figure 4.7: Structure of the outgoing BT messages

30

4.3. HMI

4.2.6 SD implementation

The SD is a very important extra feature of the project, allowing to record all the data.
However, it is important to log this information in a comprehensive way, being easily
understandable and classify it in following a stablished criteria. If we take these objec-
tives in mind, the logging system obtained will enable performing quick searches (find
the session from a certain date), easy analysis (the data will be saved always following
the same layout) and exportation to other platforms and programs.

To achieve this goals, we decided to store the data in comma separated values files
(.csv) which are easy to import to spreadsheet software. The values will be separated by
semicolons (";") and the decimal separator mark is a dot ("."), despite according the
International System is recommended to use a comma (","). Data will always be stored
in the same column, so no identifier is required (the position is he identifier). In each
operation cycle all data will be saved to the logging file, without prejudice to different
sensor acquisition frequencies.

Create file

In order to have all the files well classified, all the files will be named according to the
time of creation (as "hhmmss.csv"), in a folder path from the date ("/Year/Month/Day/".
This system makes very handy to back up files in batch and look for specific logging
files.

Essentially, the algorithm used firstly obtain the timestamp. Then it performs a
search of the path, and if some of the folders is missing, creates it. Then it creates the
file in the path, as it is not expected to have two files created during the same second,
and if so the first one will be overwritten.

Update file

As explained before, the data will be separated according to type (in different columns,
in between semicolons) and by time (in different lines, so in spreadsheets it will be seen
as rows).

The structure will be always the same and it is shown in Fig. 4.8. These values have
been obtained from the RTC module, from the sensor library register (see Fig.4.5), from
the Android device (GPS information) and some internal values. Notice that there is
a boolean record (1 if true, 0 if false) which point the BT pairing status. If no device is
paired, then it will not save the GPS data, else it will store the last value obtained.

There is a developer register as well, which for ease of configuration it is set to be
the same as the cmd value from the BT outgoing frames (see 4.2.5).

4.3 HMI

The HMI consists of a graphic interface that displays the data received from the TS,
through a BT connection. The BT code is based on the Bluetooth example provided by
Google [27].

When opening the application, the main screen will appear, which can be seen in
Fig. 4.9a. At the top of the screen there is the application name and the status of the BT

31

4. IMPLEMENTATION

year; month; day; hour; minute; second;

rot_x; rot_y; rot_z; acc_x; acc_y; acc_z; temp;

temp; pressure; atm; altitude;

paired; speed_km/h; latitude, longitude;

cmd;

Timestamp:

MPU6050:

BMP085:

Android:

Developer:

Figure 4.8: Structure of the logging line in the SD

connection. To pair the TS, the BT icon at the top right should be pressed. Then the list
of the available BT devices will appear, from which the TS will be selected, as it can be
seen in Fig. 4.9b. If the connection is successful a pop message will appear and it will
return to the main screen, where the connection status will be updated.

Below the BT status, we have the control buttons, that perform the tasks of: IMU
calibration, RTC synchronisation, create a new logging session and reset the DAD. Below
there are two motorcycle figures (a lateral and a back view) that rotate accordingly to
the angle of pitch and roll, respectively. The centre of rotation is the rear wheel, as
expected.

At the bottom of the screen we have two bars. The bar on the top shows the posi-
tives values of the Y-axis acceleration in red. The blue bar displays the module of the
acceleration values when braking. The HMI also displays the TS temperature and the
GPS coordinates.

32

4.4. Hardware arrangement

(a) Main screen (b) List of available BT devices

Figure 4.9: Android application layout

4.4 Hardware arrangement

In this section, main schematics of the project will be shown and it will be explained
the details. If needed, theoretical concepts will be presented.

4.4.1 Background

Before introducing the electronic schematics, we should address some topics related to
the assembling of the DAD with the sensors.

On the one hand, the operating voltage of the BT module is 3.3V, instead of the 5V
from the Arduino. Therefore the serial input and output from this devices should work
at this voltage. Thus, we must transform the signal from the Arduino TX pin from 5V to
3.3V, and the RX pin the other way around. To do so different solutions are possible,
from using a voltage regulator to using diodes. We think that the best solution is the
use of 2 MOSFET transistors as level shifter (one for each line). The schematics of the
configuration used to obtain a correct level shifting are shown in Fig. 4.10.

On the other hand, it is important to notice that the GY-87 breakout board (IMU,
barometer and magnetometer) and RTC DS1207 are not connected to the same bus,
despite both of them supporting I2C. This is due to an address overlap, that will be
explained in section 4.5. Therefore, the GY-87 will be connected to the hardware I2C
pins, while the RTC will be connected to a software simulated I2C bus.

Both circuits will be printed only on one layer in order to reduce the cost of the
whole product. the schematics and the board files Eagle CAD [28] software has been

33

4. IMPLEMENTATION

.%%���

0
�

1
�

0
2

1

.%%���

0
�

1
�

0
2

1

�
�

3

�
�

3

�
�

3

�
�

3

=�=� 4
�

4
�

4
�

4
	

!:21!:�1�4:�1� 4:21

8�A� �%&�B���

Figure 4.10: Level Shifter

used. For more information about the design process refer to the Aaron Eiche [29] and
Open Electronics [30] guides.

To design the Mega enclosure the TinkerCAD [31] and SolidWorks [32] software
have been used. The process will be explained later on in section 4.4.4

4.4.2 Arduino Nano Circuit

In the basic configuration, the Telematic System consists of an Arduino Nano (acting as
the DAD), the GY-87, the BT module and its level shifter. The connections can be seen
in the schematic from figure 4.11.

The Arduino Nano configuration was the first to be developed, and during the
implementation process a prototype was used.Once the prototype was functional, a
printed circuit was developed. After some versions and modifications, the final design
is the one from Fig. 4.12.

4.4.3 Arduino Mega Shield

For the extended version, the controller is an Arduino Mega. Besides the GY-87 and the
BT module, there is the datalogger which consist of the SD module and the RTC. The
schematics can be seen in Fig. 4.14 and 4.15.

During the implementation of the data logger a prototype on a breadboard has
been used. The Fig. 4.13 show the configuration used during the testing.

The result of the printed circuit is shown in Fig. 4.16 and in Fig. 4.17 with the sensors
attached.

4.4.4 Arduino Mega Enclosure

A enclosure has been designed with SolidWorks from scratch to contain the Arduino
Mega with the shield. The plans of the enclosure are attached in the annex of this
document (see Appendix A).

Some aspects of the design should be highlighted. This enclosure is a box formed
by two pieces. The bottom part is a flat surface with indents for the nuts. The Arduino
will be attached to this part. On the other hand, the top piece is a 5 walls box. This part,
has two holes in order to access to the power plug and the SD slot. Furthermore, it has
reinforcements where the nuts will be placed.

34

4.5. Considerations

Notice that the placement of the screw holes are given by the Arduino design, whose
plans are accessible at the official webpage [20]

The rest of the design considerations are for aesthetic reasons.
The result of the print is shown in Fig. 4.18

4.5 Considerations

To end this chapter some major issues found during the implementation process will
be outlined, and it will be explained how this problems have been addressed.

4.5.1 Libraries issues

At the beginning of the implementation we had to try different libraries for the MPU6050,
because the available ones have some downsides such as few documentation and bugs.
Finally, we decided to use the library developed by Jeff Rowberg, but some modifications
had to be done in order to be suited for our project.

4.5.2 Android development platform

Regarding the HMI implementation, it was clear from the start of the project that it
would be done with Android devices. Nevertheless, different programming environ-
ments have been used until achieve the final results. The first versions of the HMI were
developed using the AppInventor platform from MIT, because it was very easy to use
and no experience in Android development was required. However, when adding new
features it was clear that it was not powerful enough for our requirements. Then we
start programming using Processing. At the begging we developed a java application
for Windows that was able to receive the IMU data and create a 3D model in real-time.
Once it was finished, we tried to port it to Android. Despite being Processing adapted
for Android development as well, we encountered a lot of issues during the migration
because Google changed the Bluetooth API in 2012, and the existing processing libraries
were not updated for Processing v.3 and Processing v.2 was not stable in Android. There-
fore, we decided to use the Android Studio suite. Despite being a more complex and
difficult platform, it was much more powerful than the other two and best suited for
our needs.

4.5.3 Broken components

It is also important to comment, that during the implementation stage some sensors
were damaged. For instance, while testing a bad connection on the breadboard burned
the RTC module. Luckily, it was easy to replace as it is one of the most used RTC modules
on the market.

4.5.4 I2C address collision

Nevertheless, the biggest issue encountered is the problem of the I2C addresses. As
explained in previous sections, when the TS implementation was completed, the data
logger development begun. Once all the example code were operational, we start to

35

4. IMPLEMENTATION

combine the TS and the datalogger. Nevertheless, we faced a lot of unexpected errors:
the SD did not store correctly the IMU values, and the time stamp obtained seemed to
be corrupted, the time did not advanced as expected and so on. After a lot of debugging,
we found that the problem was that both MPU6050 and DS1307 used the same I2C
address: 0x68. As stated in the MPU6050 documentation, it is possible to change the
address of the sensor to 0x69. Nevertheless, in our breakout board (GY-87) this is not
possible because the pin that selects the address (if this pin is low then the address is
0x68, if it receives a high voltage the address is 0x69) is directly connected to the ground,
and we had no means to short it to a high voltage, due to physical limitations. On the
other hand, it is not possible to modify the DS1307 address because it is not supported
by the manufacturer.

Some solution had to be found in order to obtain a timestamp for the logging
files. Firstly we thought that it would be possible to control the module in use (or the
MPU6050 or the DS1307) by powering them independently. A demo sketch was develop
which at the begging of the program the MPU6050 was turned off and the RTC on. Then
a timestamp was obtained and the inner Arduino clock begun. After that, the RTC
module was disabled and the MPU6050 was enabled. Then it would start to record the
IMU data with the correct timestamp (the combination of the first timestamp and the
Arduino clock). Nevertheless, this sketch was a complete failure. After some research,
we found the root of the problem: according to the I2C characteristics, if a module
connected to the bus is not turned on, then the whole Serial Data Line is shorted to
ground. Therefore, all the modules must be turned on in order to use the I2C bus.

4.5.5 Flash storage usage

Then another solution was found: using a multiplexer on the I2C bus. This configura-
tion allows us to have as many virtual I2C busses as we want to. But it was too late to
buy the multiplexers, as we needed immediately to resume the project development.

The best solution found was to simulate by software another I2C bus. There are a
couple of different libraries that accomplish this goal. The most used library to simulate
a I2C bus is not compatible with the standard SD library: to use this library I2C emulated
pins must be defined as macros, but they are already defined in the configuration file of
the SD library. Finally, we were able to find a useful library for our case.

After solving this issue with the I2C addresses, we resumed the regular development
of the extended version. At that moment, the extended version had an Arduino Nano
as the core of the system. This had to be changed, because the use of the software
I2C library and the new features occupied more flash storage than the available in the
Arduino Nano (32kB). After some days trying to optimise the code, we notice that it
was not possible to use less than the 30kB available (as 2kB are already used by the
bootloader). At that moment we decided to change the Arduino Nano for the Arduino
Mega, which has 4 times more Flash storage. This boost of storage is very positive for
our interests, because further development can be done as more features can be added.

All the schematics from the previous extended configuration (using the Arduino
Nano) are attached in the Annex.

36

4.5. Considerations

.
#
#
�
�
/

&
�

 &�

0
1
'

0
�
'
�

0�'�

01'

 &�0
1
'

.
#
#
�
�
/

0�'�

01'

��2

��2

��2

��2

0�'�

#���3
!4�

56
!4�

�6
!4�

 &�
!47

'

!41

3&
!48

'

'

&
�

&
�

#

9

#

9

#
�
�

#
�
�

�
'
�

�
'
�

�
#
:
&

�
#
:
&

�
5
�
:

�
5
�
:

;&
�

;&
�

�
+�
'

�
5
3
�

�
6
�

5
6
�

5
#
�
�

&
�
�

�
�

�
�

�
7

�
1

�
8

�
�

�
/

�
�

5
�
<

&
�

5
#
�

1
+1
'

�
�
�
�
�
�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�
8
�
1
�
7

�
�*
�
��
�
�&
�
�
�

=
�

>!
�

�
�

�
7

1
8

=
�

5�

5�

5�

57

#

9

#

9

�
6
1
'

�
6
1
'

#
�
�

#
�
�

�6�'�

�
6
�
'
�

#
?
@
#
;

#

2

?
;#
@

5
6
�
'
�

56�'�

5
6
1
'

5
6
1
'

 :A/�;� �?!�

�

B

1
C

.
��
�
��
�
�$

�
�*
�
��
�
�&
�
�
�

9
�
C
�
��
#
$
�(
��
�

;?
�

Figure 4.11: Schematics: Arduino Nano platform

37

4. IMPLEMENTATION

B
S
S
1
3
8

B
S
S
1
3
8

Q
1

Q
2

1
2

3

x

y

ITG/MPU

JP
1

R
3

R
1

R
2

R
4

1
0
K

1
0
K

1
0
K

1
0
K

Figure 4.12: Board overview: Arduino Nano platform

Figure 4.13: Mega prototype

38

4.5. Considerations

.
%

%
�

�
�

"
/

�

0�1�

021

"/�

.
%

%
�

�
�

0�1�

021

"/�

��3

��3

��3

��3

0�1�

�
4

�
�

5/
6

)
(

7
"

�
)

4
�

�
�

8
8

"/�0
2

1

0
�

1
�

"/�

0
2

1

%!�!7
#9�

4:
#9�

!:
#9�

"/�
#9	

1��
#92

7/
#9;

1
�

�
1

�
�

"
/

�
"

/
�

%
�

8
%

�
8

%
�

�
%

�
�

�
1

�
�

1
�

�
%

<
/

�
�

%
<

/
�

�
4

�
<

�
4

�
<

5/
!

5/
!

=
�

%
�

� � � 	 2 ; �

=
�

4�

4�

4�

4	

.
� 2

1
2

1
>

�

4
7

%
7

!
4

7
%

7
!

2
1

2
1

>
�

�
�

,4
:

�
-

�
�

�
�

,!
:

�
-

�
�

�
�

�
�

�
�

�
�

�
	

�
	

�
2

�
2

�
;

�
;

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

	
�

�
	

�
�

2
�

�
2

�
,!

:
�

-
�

�
�

�
�

	
	

2
2

;
;

�
�

�
�

�
�

�
�

�
�

"
/

�
"

/
�

>
	

�
;

,!
:

�
-

�
;

�
�

,4
:

�
-

�
�

�
�

,!
:

�
-

�
�

�
�

�
�

�
�

�
�

�
	

�
	

�
2

�
2

�
;

�
;

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
	

�
	

�
2

�
2

�
;

�
;

�
�

�
�

�
�

�
�

	
�

	
�

�
�

�
�

	
�

	
�

	
�

	
�

	
�

	
�

	
	

	
	

	
2

	
2

	
;

	
;

	
�

	
�

	
�

	
�

�
�

�
�

�
�

�
�

�
�

�
�

�
2

,4
:

�
-

�
2

�
	

,!
:

�
-

�
	

"
/

�
"

/
�

>
�

"
/

�
"

/
�

>
�

"
/

�
"

/
�

>
�

"
/

�
"

/
�

>
�

2
�

2
�

2
�

2
�

2
�

2
�

2
�

2
�

	
�

	
�

2
1

2
1

>
�

�
+�

1
�

+�
1

�
4

7
�

�
4

7
�

�
�

,%
�

8
-

�
�

�
�

,%
�

�
-

�
�

�
�

,4
:

�
-

�
�

1
5/

1
5/

�
,4

:
�

-
�

4
!

�
�

���	2

%
�

8

%
�

8

!
:

2
1 !
:

2
1

"
/

�

%
�

�
%

�
�

!:�1�

!
:

�
1

�

�
%

�
%

(
6

%
5

(
6

%
5

%
�

3

%
�

3

(
5%

6

(
5%

6

4
:

�
1

�

4:�1�

4
:

2
1

4
:

2
1

%
�

8
�

%
�

8
�

%
�

�
�

%
�

�
�

2
1

�

2
1

�

2
1

�

"<?��5!"�(#�

�

@

2
A

4
!

�

.
 �

�
��

�
�&

�
�*

�
��

�
�(

�
�

�

8
�

A
�

 �
%

&
�B

��
�

%
�

5(
�

Figure 4.14: Schematics: Arduino Mega platform

39

4. IMPLEMENTATION

B
S
S
1
3
8

B
S
S
1
3
8

Q
1

Q
2

x

y

ITG/MPU

S
D

R
3

R
1

R2

R4

RTC1

1
0
K

1
0
K

10K

10K

Figure 4.15: Board overview: Arduino Mega platform

Figure 4.16: Printed circuit: Arduino Mega platform

40

4.5. Considerations

Figure 4.17: Final result: Arduino Mega platform

Figure 4.18: 3D print result

41

C
H

A
P

T
E

R

5
EXPERIMENTAL RESULTS

In this chapter we are going to analyse the data obtained by the TS and stored in the SD.
First we are going to perform a series of tests under controlled conditions in order to
ensure the proper operation of the device. Later on, we will perform field trials and the
data resulting from this experiments will be studied.

It is important to notice that the acceleration in the Z-axis has the gravity compo-
nent removed.

5.1 Laboratory tests

The following tests are performed under controlled conditions in the laboratory. The
movements have been performed by manual means and vibration from hand shaking
can be expected.

5.1.1 Calibration

Firstly, TS has been placed in a flat surface and the IMU offsets have been set to zero
to ensure that the sensor it is not calibrated. Then we values acquired at rest will be
measured. After some time, a calibration will be performed and the same process will
be repeated.

The values obtained before calibrating the sensor are shown in Fig.5.1. As it can be
seen, the sensor is in a transient state at the beginning, and finally it ends in a steady
state. The values obtained do not match with the position of the sensor, as it should
have zero roll and pitch, and the roll of 69º and pitch of 16º are measured.

Then a calibration is performed, requiring a total time of 68 seconds. Next, offsets
obtained from calibration are set and the test is repeated, obtaining the results from Fig.
5.2, where both roll and pitch are zero. After calibration, the transient state has been
disappeared. This test has been repeated, and the results have always been consistent.

43

5. EXPERIMENTAL RESULTS

Figure 5.1: Calibration test: YPR before calibration

Figure 5.2: Calibration test: YPR after calibration

5.1.2 Data reliability

Now we have to ensure that the data is reliable when the system is dynamic. To do so, a
number of tests will be performed, ensuring that values of angular position and lineal
acceleration are good.

Acceleration

We are going to start from rest. Then, a gentle shaking in the X, Y and Z axis is going to
be performed. The results can be seen in Fig. 5.3.

44

5.1. Laboratory tests

Figure 5.3: Reliability test: X, Y and Z accelerations

We can see that the results are the expected: after a acceleration it comes a deceler-
ation of the same magnitude.

We must comment that the Z-axis movement was done by hand with no support,
while the other two a table was using as a reference. Therefore, during the Z-axis
movement we can see vibrations in the other axis as well.

Roll

The goal of this experiment is to check the proper acquisition of the roll values. From
rest we are going to perform a 90 degree roll to the left of the sensor (negative roll
direction) and return to the initial position. Then we repeat the same process but
leaning to the right (positive roll). The results can be seen in Fig. 5.4.

We observe that the values meet with the dynamic behaviour performed. Neverthe-
less we must notice a implementation detail. In the peak of 90º we get 3 unexpected
changes of direction of the roll (ergo two peaks). Nevertheless, as we only change the
direction once, only one peak is expected instead of two.

This data behaviour is due to a implementation consideration: the sensor can not
differentiate two symmetrical inclinations. Therefore, it understands 80º and 100º as
the same value: 80º.

Then, if we take this consideration into account, we realise that we actually per-
formed a roll of 100º, instead of 90º.

Pitch

We repeat the same process as last section but in this case we are going to perform a
pitch rotation, first pointing to the sky and then to the ground. The results are available
in Fig. 5.5

In this case we can see very clearly how the sensor is moving as expected.

45

5. EXPERIMENTAL RESULTS

Figure 5.4: Reliability test: Roll

Figure 5.5: Reliability test: Pitch

5.1.3 Value drifting

In this test we want to analyse if the results drift after experiencing a high amount of
force in different directions.

To do so, we will place the sensor in a flat surface. After some time in steady state, the
sensor will be subjected to a rough shaking, which will originated by moving randomly
the sensor with rush. Next, we will place the sensor in the same position as before.

In Fig. 5.6 we can see the angular position of the sensor, while in Fig. 5.7 we can see
the accelerations.

46

5.1. Laboratory tests

Figure 5.6: Reliability test: YPR evolution during turbulence

Figure 5.7: Reliability test: Acceleration evolution during turbulence

Once sensor is in stationary state after being shaked, we observe that the roll and
pitch return to their original positions. Therefore there is no drift in these two directions.
Nevertheless, there is a 5º drift at the yaw. Despite not being desired, this is very
common in affordable IMU, as the gyro experiences a high drift. This effect can be
removed using the magnetometer.

47

5. EXPERIMENTAL RESULTS

5.1.4 Conclusions

After performing these tests, proper proper operation of the device in a controlled
environment has been checked.

5.2 Field trials

In this section we are going to analyse the data obtained when the TS is already installed
on the vehicle. To perform the following tests, the IMU has been placed in a flat surface
of the vehicle and with the Y-axis pointing to the movement direction. The setup can
be seen in Fig. 5.8

Then, a new calibration has been done in order to obtain accurate results.

Figure 5.8: Testing Mega unit

Figure 5.9: Initial motorcycle
position

At the beginning of all the tests, the vehicle is going
to rest in a steady position as it is shown in Fig. 5.9. So
the roll and pitch angle should be 0.

5.2.1 Lineal movement

In this series of tests we are going to study the be-
haviour of the motorcycle when it is moving in a
straight line. All these tests consist in performing a
acceleration until a certain speed is reached, and brak-
ing until the motorcycle stops.

Low speed test

The first experiment has been be done at low speed.
The maximum speed reached is 40 km/h. In this test
our interest is mainly focused in the YPR, but also on
the acceleration.

48

5.2. Field trials

Figure 5.10: Straight line at low speed: YPR

Figure 5.11: Straight line at low speed: lineal accelerations

We can see that we start accelerating at the 12th second. At this moment a positive
acceleration in Y axis is experienced as we are increasing the speed of the motorcycle.
We can observe that the pitch angle also increases from 0º to 10º. This behaviour is
explained by the fact that a force is applied to the wheels in the direction of the y-
axis. The force vector is not aligned with the centre of masses (CoM) of the vehicle,
and therefore the resulting momentum pushes the vehicle up, expanding the front
suspension.

At second 17, we change to second gear, experiencing a negative acceleration as the
vehicle reduces the speed in a short time. In the Z-axis a negative acceleration peak is
experienced as well. As the motorcycle reduce its speed, the front suspension absorbs

49

5. EXPERIMENTAL RESULTS

the forces and the pitch angle is reduced.

We accelerate until the second 20, when we brake. When braking, the same be-
haviour as in acceleration is experienced: a force acts on the contact surface of the
wheel, pushing the vehicle backwards. As this force is not aligned with the centre of
masses of the motorcycle, we obtain a resulting momentum, which in this case tends
to decrease the pitch angle.

Furthermore, when braking, motorcycles tend to use much more the front brake
than the rear one, contributing to the reduction of the pitch angle.

Once the forces do not act anymore, the suspension recovers its original position.

Nevertheless, we obtain a unexpected result when analysing the Y-axis acceleration.
Despite reducing the speed of the vehicle until full stop, we see in the graph a positive
acceleration instead of a negative one. This result will be clarified later on in section
5.2.1.

If we now analyse the yaw and roll values we can say that they are the expected,
because of its closeness to zero. The variations around this value are because of the
road conditions, wind and other physical factors.

We performed the same test four times and the results were always similar.

High speed test

A similar test as before is going to be performed but at a higher speed. In this case the
bike will accelerate from 0 to 120 km/h, and once the top speed is achieved, the vehicle
will slow down until its complete stop.

Notice that the road where this test was done is not a perfect straight line, as it has a
small curvature to the left. This condition can bee seen in the yaw evolution from Fig.
5.12. In the same figure, we can also see that the roll values are very close to 0º.

On the other hand we obtained the same yaw evolution as in the low speed test:
first the motorcycle has a positive pitch, which gets its maximum at 22º (almost 10º
more than previously), and when braking the pitch becomes negative, with a minimum
of -16º (4º more than before).

Looking at Fig. 5.13, the peak acceleration in the y-axis is at the beginning, experi-
encing an acceleration of 0.91G. The minimum is -0.65G, value obtained when shifting
gear and at the start of the braking. In this experiment, we obtain the same unexpected
acceleration values when braking as in previous tests. To ensure the reliability of the
data, this experiment has been repeated three times and the results are analogous.

Now we will focus the analysis on the relation between the pitch and the accelera-
tion when going from 0 to 120km/h. In figure 5.14 this relation can be appreciated.

The first thing to notice is the delay between the acceleration and the pitch. This is
because the pitch is a result of the acceleration.

It is noticeable when gear shifting has been performed. The vehicle starts in first
gear, which has the most acceleration as the sprocket is the smallest.

At second 6, a gear shifting is performed: when clutching, the vehicles decelerates
drastically. Next the new gear is engaged to the engine, and we experience a new
acceleration. The result of this process is a peak followed by a valley. We can observe
that the gear shifting is performed at seconds 6, 7.5, 10, 12 and 13.5: from first to sixth
gear.

50

5.2. Field trials

Figure 5.12: Straight line at high speed: YPR

Figure 5.13: Straight line at high speed: Y-axis acceleration

Moreover, the figure shows that as higher the gear, the lower the acceleration. Which
is due to the size of the sprockets: torque decreases with size.

As it can be seen in the figure, the suspension expands until the second 10, and
then it starts to compress despite the pitch is still positive.

Acceleration analysis

As stated before, some Y-axis acceleration values are unexpected. For instance, when
decreasing speed a negative acceleration should be seen. Nevertheless, just before
complete stop, acceleration is positive. This behaviour can be seen in Fig. 5.13 and in

51

5. EXPERIMENTAL RESULTS

Figure 5.14: Straight line at high speed: pitch and Y acceleration from 0 to 120km/h

Fig. 5.11.

In Fig. 5.14, the acceleration is negative despite the speed and pitch are increasing.
Positive acceleration is expected, while its magnitude decreases with time.

All the tests have been performed several times and the results are always the same
when testing on a motorcycle.

Therefore, the dynamics of other types of vehicles have also been tested. These
tests have been performed attaching the TS to a car. Nevertheless, the results regarding
acceleration match with the obtained on the motorcycle. Thus, these issues are not
caused mainly by the behaviour of the vehicle, despite it can contributes a little.

A possible root of the problem resides in the way data is sampled. On the one hand,
we sample accelerometer data at a rate of 160Hz (5 averaged values, containing 32
samples each). Due to the possible loose of data when acquiring the data, a higher
sampling rate could be used to obtain more reliable results. On the other hand, the way
data is averaged acts as a low pass filter.

This data sampling indeed reduces the effect of non-homogeneous values. But it
should affect the same way to positive and negatives values. To see so, when drawing
the trend line of the acceleration from all the tests performed, the value is very close to
0. Which is expected, as we start and finish at rest.

Another cause can be noise due to physical factors, such as air force, vibrations and
inertial force. This behaviour should be studied in detail in further research.

5.2.2 Curved movement

In this section the motorcycle response when leaning will be studied. Two different
types of test will be performed, depending on the sense of rotation. These experiments
consists on performing a 540º rotation (one turn and a half) in a 3 meters radius long
circumference. The rotation speed should be as constant as possible.

52

5.2. Field trials

Clockwise rotation

To perform this experiment the motorcycle will lean to the right. The results obtained
are shown in Fig. 5.15.

Figure 5.15: Evolution of YPR in a clockwise rotation. For better understanding of the
information, the yaw values correspond to the secondary axis.

Looking to the yaw data, it is clear that a 540º rotation has been done, ending the
the movement at 180º from the initial orientation.

Studying the roll data, we performed a positive lean (rotation to the right of the
Y-axis), of an approximate mean value of 15º during the whole rotation. It should
be underlined the flatness of the curve during the rotation, which is affected by the
rider’s technique. Notice that the leaning of the bike from 0º to 12º and vice versa are
performed in less than a second.

It is important to notice that, during the rotation, pitch is positive, as the vehicle
counteracts the effects of the centripetal force, through a constant acceleration in the
Y-axis. When going out of the curve, the pitch decreases constantly as the speed is
acceleration is decreasing. At second 30 we see how pitch returns to the initial value, as
the suspension retrieves.

Anticlockwise rotation

The results obtained in this test are the opposed as the previous one, according to the
Fig. 5.16.

Nevertheless, when leaning it is observed the following: a turn into the opposite
direction of in order to enter cornering in a tangent line to the curve radius. It can be
seen in the yaw and roll values from second 10 (when entering to the curve) and second
23 (when exiting).

53

5. EXPERIMENTAL RESULTS

Figure 5.16: Evolution of YPR in an anticlockwise rotation. For better understanding of
the information, the yaw values correspond to the secondary axis.

54

C
H

A
P

T
E

R

6
FINANCIAL ANALYSIS

In this chapter, a study of the cost of the material involved in the prototype production
will be done. In this analysis, research and work costs are not taken into account. Nor
the unit cost during mass production, as factors of scale have to be studied.

Firstly the cost of each individual component at European retailers will be studied.
Notice, that some boards are not available, thus individual components should be
bought separately.

The subtotals depend on the configuration of the prototype, and the price is calcu-
lated by all the products required. Note, that if a product is sold in batches, we have to
buy the whole batch, even if only one unit is used.

Product RS Reference Price per unit (AC) Units Total Price (AC)

Arduino Mega* 715-4084 43.51 1 43.51
Arduino Nano 696-1667 18.36 1 18.36

MPU-6050 883-7948 9.31 1 9.31
BMP-X80 849-6187 3.55 (x2) 1 3.55

HC-06 N/A N/A N/A N/A
8GB SD + Adaptor* 695-7334 9.27 1 9.87

DS1307* 540-2726 2.92 1 2.92
BSS138 671-0324 1.35 (x10) 2 1.35

Basic configuration 32.57
Extended config.* 70.51

In comparison, here are the prices from Chinese retailers. These retailers offer a
bigger range of products at a lower cost, at the expense of a lower build quality.

55

6. FINANCIAL ANALYSIS

Product Reference (Aliexpress ID) Price per unit (AC) Units Total Price (AC)

Arduino Mega Clone* 1757110-32314375219 6.10 1 6.10
Arduino Nano Clone 1948124-32574307428 1.84 1 1.84

GY-87 615778-32612550940 6.50 1 6.50
HC-06 1948124-32501958088 2.47 1 2.47

SD reader* 343255-32478403262 0.42 1 0.42
8GB SD* 2961147-32804711976 6.02 1 6.02

RTC DS1307* 1950989-32530897478 1.06 1 1.06
BSS138 1087309-32422423954 0.76 (x50) 2 0.76

Basic configuration 10.91
Extended config.* 23.33

The products are 3 times more expensive at European retailers than at Chinese.
Other material costs must be considered. This is the case of products developed

at the university facilities, which are funded to the student. Nevertheless, if these
products had to be ordered to external companies, the cost would increase highly. This
is situation is the same in case of the software used, as we can see in the following table:

Product Source Price (AC)

1-layer board UIB Free
3D print UIB Free

M3 screw (x6) UIB Free
M3 nut (x6) UIB Free

Testing facilities UIB Free

Microsoft Office Educative license Free
ShareLatex Free version Free

Android Studio Free
PlatformIO Free
EagleCAD Educative license Free

56

C
H

A
P

T
E

R

7
CONCLUSIONS

The project was proposed, in this case by the student, to address a clearly unattended
market niche. With this work a solution to this situation has been proposed.

The research presented covers not only a market review, but also the component
selection of both the TS and the HMI in a simple, affordable and effective way. The
solution shown can be installed in any kind of vehicle, and its clearly modular and
expandable, fulfilling the objectives listed in Chapter 1.

The states of this project have been:

1. Research of platforms and sensors: As seen in chapters 2 and 3, a deep insight
into developments on the automotive industry and the technologies used has
been provided.

2. Design of the device: This stage has involved programming the different plat-
forms, as well as designing the schematics and assembling of device, as it has
been seen in chapter 4.

3. Experimentation: Performing laboratory and field tests and its analysis, ensur-
ing the proper operation of the device and obtaining data about the vehicle
performance and behaviour, as stated in chapter 5.

4. Writing the thesis: The elaboration of this document has the goal to recap all the
basic information about the work developed.

In conclusion, the solution meets the initial objectives as a fully functional prototype
has been designed.

7.1 Experience

Developing a project of such a great scope has been a opportunity to improve our skill
set:

• learn about historical evolution and operation of motorcycles,

57

7. CONCLUSIONS

• understand the task of sensors in automotive applications and how they work,

• acquire a deeper knowledge on Arduino controllers and their uses,

• understand the role of open source,

• improve C, Java and CAD (SolidWorks and Eagle) skills,

• learn how to do a good design and understand the consequences of not to,

• understand all the phases involved in product development: time management
and design for instance,

• acquire experience in the research field,

• write a technical document,

• overcome problems and constraints.

7.2 Work done

This project was developed using tools from external sources and own resources.
The initial idea is original as it emerges from a personal desire. The main Arduino

code is developed from scratch, and the sensor library as well, which is in charge of
managing the data gathering. To obtain this data, external libraries have been used
but never modified preserving the original source code. If some modifications were
required, they have been done through managing internal registers through the sensor
library.

The calibration algorithm is based on the recommendations from the creator of the
MPU6050 library, as mentioned in its section.

The Bluetooth protocol layer and data logging structure are designed and imple-
mented by ourselves. The Android code is developed from the Bluetooth example from
Google [27], but the UI and data processing are created from scratch. The BT example
has been modified in order to suit our BT messages structure.

The design of all the electronics schematics, the soldering and assembling, as well
as the enclosure design and print are done by own means, assisted when required by
the university staff.

The tests were performed with our vehicle and the data has been analysed by
ourselves. Same applies to the writing of this document.

This work has been developed thanks to the guidance of Miquel Massot, who
provided assistance and consulting during all the stages of the project, specially during
the implementation. Also the council of Dr. Gabriel Oliver, from who I learned to look
to the great scope, while being able to focus on simpler tasks.

7.3 Further research and development

The development of this project opened different future lines of research and develop-
ment, such as:

58

7.3. Further research and development

• Continue the data analysis, studying the dynamics and kinematics of motorcycles
and how its behaviour in non-controlled environments.

• Connect the data-logger to the cloud. Update a server with the data from the SD,
allowing remote access to the motorcycle data. This could be used to track the
state of the bike in real time.

• Develop a assistance tool in case of accident. This tool can use the already
available data and the BT message structure, using a new command identifier.

• Improve the Android functions and develop an application for iOS devices.

• Create a cloud service, to which we will dump the SD data (by manuals means or
through the cloud synchronisation proposed). This service will provide instant
data graphs and useful information, while it will display this data using a map
service (using the GPS data).

• Extend our project through the combination of the OBDuino [14].

• Study the market and viability of launching the device.

• Use IMU information to enhance motorcycle stability, traction, launch, wheelie
and cornering light control. As this is current topic of research in the industry
[33].

59

A
P

P
E

N
D

I
X

A
ENCLOSURE PLANS

61

 1
10

 1
8

 1
5.

80

 1
9.

30

 5.50

 R3

 9.30

 5
2.

10

 3
2.

22

A A

 3

 63

 6x6

 3.20x6

 2

 24.50

 10.60

SE
C

TIO
N

 A
-A

06
/0

9/
20

17
Re

vi
sio

n:
N

am
e:

D
W

G
 N

O
.

SC
A

LE
:1

:1
SH

EE
T 1

 O
F

1

A
4

Bo
tto

m
M

iq
ue

l F
on

t M
as

A
A

B
B

C
C

D
D

66

55

44

33

22

11

A. ENCLOSURE PLANS

62

 4
3 2

5

 R
1

 1
04

 1
7.

30

 30

 R
3

 3
0

 12

 10 47

C
en

tu
ry

 G
ot

hi
c

bo
ld

He
ig

h
=

10
m

m

3.2

0x
3

 28.10

 7
3.

16

 R
3.

50
x3

 1
9.

30

 7
4.

90

 1
.3

0

E E

 3

 5

 10 47

 1
8

 R
3

 R
1

 9.30 48.20

SE
C

TIO
N

 E
-E

M
iq

ue
l F

on
t M

as To
p

A
4

SH
EE

T 1
 O

F
1

SC
A

LE
:2

:3

D
W

G
 N

O
.

N
am

e:
Re

vi
sio

n:

06
/0

9/
20

17
A

A

B
B

C
C

D
D

66

55

44

33

22

11

63

BIBLIOGRAPHY

[1] C. Patsakis and A. Solanas, “Privacy-aware event data recorders: cryptography
meets the automotive industry again,” IEEE Communications Magazine, vol. 51,
no. 12, pp. 122–128, dec 2013. [Online]. Available: http://ieeexplore.ieee.org/
document/6685767/ 1

[2] T. T. Dandala, V. Krishnamurthy, and R. Alwan, “Internet of Vehicles (IoV) for traffic
management,” in 2017 International Conference on Computer, Communication
and Signal Processing (ICCCSP). IEEE, jan 2017, pp. 1–4. [Online]. Available:
http://ieeexplore.ieee.org/document/7944096/ 1

[3] “CAN bus - technology in detail | BMW Motorrad.” [On-
line]. Available: https://www.bmw-motorrad.co.za/en/engineering/detail/
comfort-ergonomics/canbus.html 1.1

[4] “MOTORCYCLE DEALERS Multiple Models YAMAHA DIAGNOSTIC TOOL
(YDTv3.1) ESSENTIAL SERVICE TOOL SHIPMENT AND USAGE APRIL 2016 M16-
017.” [Online]. Available: https://www.yamaha-dealers.ca/yec/en/advertising/
docs/M16-017.pdf 1.1

[5] “Honda Motorcycle Communication Interface (MCI) Kit.” [Online]. Available:
https://honda.snapon.com/HondaCycle/ItemDetail.aspx?itemId=47541382 1.1

[6] E. Abdo, Modern motorcycle technology, 2nd ed. Clifton Park N.Y. ;Andover:
Delmar Cengage Learning, 2013. [Online]. Available: http://www.worldcat.org/
title/modern-motorcycle-technology/oclc/758983882 2.2

[7] A. Wade, Motorcycle Fuel Injection Handbook. St. Paul, MN, USA: Motorbooks
International, 2004. 2.2

[8] “Smartphone integration: Bosch connects motorcycles - Bosch Media Ser-
vice.” [Online]. Available: http://www.bosch-presse.de/pressportal/de/en/
smartphone-integration-bosch-connects-motorcycles-74692.html 2.3.1

[9] “mySPIN for two-wheelers - Bosch SoftTec.” [Online]. Available: http:
//www.bosch-softtec.com/myspin_2w.html 2.3.1

[10] B. Corporation, “Two-wheeler & Powersports - Riding innovation: Com-
prehensive system solutions and passion for two-wheelers.” [Online].
Available: http://www.bosch-motorcycle.com/media/ubk_zweiraeder/related_
content/downloads/Two-wheeler_folder_EN_292000P1I5.pdf 2.3.1

65

http://ieeexplore.ieee.org/document/6685767/
http://ieeexplore.ieee.org/document/6685767/
http://ieeexplore.ieee.org/document/7944096/
https://www.bmw-motorrad.co.za/en/engineering/detail/comfort-ergonomics/canbus.html
https://www.bmw-motorrad.co.za/en/engineering/detail/comfort-ergonomics/canbus.html
https://www.yamaha-dealers.ca/yec/en/advertising/docs/M16-017.pdf
https://www.yamaha-dealers.ca/yec/en/advertising/docs/M16-017.pdf
https://honda.snapon.com/HondaCycle/ItemDetail.aspx?itemId=47541382
http://www.worldcat.org/title/modern-motorcycle-technology/oclc/758983882
http://www.worldcat.org/title/modern-motorcycle-technology/oclc/758983882
http://www.bosch-presse.de/pressportal/de/en/smartphone-integration-bosch-connects-motorcycles-74692.html
http://www.bosch-presse.de/pressportal/de/en/smartphone-integration-bosch-connects-motorcycles-74692.html
http://www.bosch-softtec.com/myspin_2w.html
http://www.bosch-softtec.com/myspin_2w.html
http://www.bosch-motorcycle.com/media/ubk_zweiraeder/related_content/downloads/Two-wheeler_folder_EN_292000P1I5.pdf
http://www.bosch-motorcycle.com/media/ubk_zweiraeder/related_content/downloads/Two-wheeler_folder_EN_292000P1I5.pdf

BIBLIOGRAPHY

[11] “Midas Connect: la primera APP que actualiza tu coche | Midas.” [Online].
Available: http://www.midas.es/midas-connect?utm_source=interno{&}utm_
medium=banner_midasconnect{&}utm_campaign=midasconnect 2.3.2

[12] “Product | COBI.” [Online]. Available: https://cobi.bike/product 2.3.3

[13] “Connected Cycle - The Connected bike enabling solution.” [Online]. Available:
http://connectedcycle.com/ 2.3.3

[14] “OBDuino Project.” [Online]. Available: http://obduino.ca/ 2.3.4, 7.3

[15] “OBD II Bike Connector - Pass via bluetooth.” [Online]. Available: https:
//forum.arduino.cc/index.php?topic=334778.0 2.3.4

[16] “Chippernut Electronic Kits - Chippernut DIY Automotive.” [Online]. Available:
http://www.chippernut.com/ 2.3.4

[17] MagPi, The Official Raspberry Pi Projects Book, Russell Barnes, Ed. London: Liz
Upton, 2015. [Online]. Available: https://www.raspberrypi.org/magpi-issues/
Projects_Book_v1.pdf 3.2.1

[18] “Power Consumption | Raspberry Pi Dramble.” [Online]. Available: https:
//www.pidramble.com/wiki/benchmarks/power-consumption 3.2.1

[19] M. Banzi, Getting Started with Arduino, 3rd ed. Sebastopol, CA: Make:Books,
2014. 3.2.1

[20] “Arduino Platform Webpage.” [Online]. Available: https://www.arduino.cc/ 3.2.1,
4.4.4

[21] R. Cayssials, Sistemas embebidos en FPGA. Alfaomega, 2014. 3.2.1

[22] Prometec, “Módulo Bluetooth HC-06.” [Online]. Available: http://www.prometec.
net/bt-hc06/ 4.2.1

[23] Sparkfun, “Serial Communication.” [Online]. Available: https://learn.sparkfun.
com/tutorials/serial-communication/rules-of-serial 4.2.1, 4.2.5

[24] Luis Rodenas and I2Cdevlib Forums, “Calculate MPU6050 off-
sets.” [Online]. Available: https://www.i2cdevlib.com/forums/topic/
96-arduino-sketch-to-automatically-calculate-mpu6050-offsets/ 4.2.2

[25] Sparkfun, “Bluetooth Basics.” [Online]. Available: https://learn.sparkfun.com/
tutorials/bluetooth-basics 4.2.5

[26] “Unix Time Stamp - Epoch Converter.” [Online]. Available: https://www.
unixtimestamp.com/ 4.2.5

[27] “Bluetooth | Android Developers.” [Online]. Available: https://developer.android.
com/guide/topics/connectivity/bluetooth.html 4.3, 7.2

[28] “PCB Design & Schematic Software | EAGLE | Autodesk.” [Online]. Available:
https://www.autodesk.com/products/eagle/overview 4.4.1

66

http://www.midas.es/midas-connect?utm_source=interno{&}utm_medium=banner_midasconnect{&}utm_campaign=midasconnect
http://www.midas.es/midas-connect?utm_source=interno{&}utm_medium=banner_midasconnect{&}utm_campaign=midasconnect
https://cobi.bike/product
http://connectedcycle.com/
http://obduino.ca/
https://forum.arduino.cc/index.php?topic=334778.0
https://forum.arduino.cc/index.php?topic=334778.0
http://www.chippernut.com/
https://www.raspberrypi.org/magpi-issues/Projects_Book_v1.pdf
https://www.raspberrypi.org/magpi-issues/Projects_Book_v1.pdf
https://www.pidramble.com/wiki/benchmarks/power-consumption
https://www.pidramble.com/wiki/benchmarks/power-consumption
https://www.arduino.cc/
http://www.prometec.net/bt-hc06/
http://www.prometec.net/bt-hc06/
https://learn.sparkfun.com/tutorials/serial-communication/rules-of-serial
https://learn.sparkfun.com/tutorials/serial-communication/rules-of-serial
https://www.i2cdevlib.com/forums/topic/96-arduino-sketch-to-automatically-calculate-mpu6050-offsets/
https://www.i2cdevlib.com/forums/topic/96-arduino-sketch-to-automatically-calculate-mpu6050-offsets/
https://learn.sparkfun.com/tutorials/bluetooth-basics
https://learn.sparkfun.com/tutorials/bluetooth-basics
https://www.unixtimestamp.com/
https://www.unixtimestamp.com/
https://developer.android.com/guide/topics/connectivity/bluetooth.html
https://developer.android.com/guide/topics/connectivity/bluetooth.html
https://www.autodesk.com/products/eagle/overview

Bibliography

[29] “A Beginner’s guide to making an Arduino Shield PCB |
Aaron Eiche.” [Online]. Available: https://aaroneiche.com/2010/06/24/
a-beginners-guide-to-making-an-arduino-shield-pcb/ 4.4.1

[30] “How to make an Arduino shield with Eagle CAD - Tutorial |
Open Electronics.” [Online]. Available: https://www.open-electronics.org/
how-to-make-an-arduino-shield-with-eagle-cad-tutorial/ 4.4.1

[31] “Tinkercad | Create 3D digital designs with online CAD.” [Online]. Available:
https://www.tinkercad.com/ 4.4.1

[32] “3D CAD Design Software | SOLIDWORKS.” [Online]. Available: http://www.
solidworks.com/ 4.4.1

[33] Bosch, “Inertial measurement unit for motorcycles.” [Online]. Available:
http://www.bosch-motorcycle.com/en/de/fahrsicherheit_fuer_zweiraeder/
sicherheitssysteme_fuer_zweiraeder/schraeglagensensor_1/lean_angle_sensor.
html 7.3

67

https://aaroneiche.com/2010/06/24/a-beginners-guide-to-making-an-arduino-shield-pcb/
https://aaroneiche.com/2010/06/24/a-beginners-guide-to-making-an-arduino-shield-pcb/
https://www.open-electronics.org/how-to-make-an-arduino-shield-with-eagle-cad-tutorial/
https://www.open-electronics.org/how-to-make-an-arduino-shield-with-eagle-cad-tutorial/
https://www.tinkercad.com/
http://www.solidworks.com/
http://www.solidworks.com/
http://www.bosch-motorcycle.com/en/de/fahrsicherheit_fuer_zweiraeder/sicherheitssysteme_fuer_zweiraeder/schraeglagensensor_1/lean_angle_sensor.html
http://www.bosch-motorcycle.com/en/de/fahrsicherheit_fuer_zweiraeder/sicherheitssysteme_fuer_zweiraeder/schraeglagensensor_1/lean_angle_sensor.html
http://www.bosch-motorcycle.com/en/de/fahrsicherheit_fuer_zweiraeder/sicherheitssysteme_fuer_zweiraeder/schraeglagensensor_1/lean_angle_sensor.html

	Abstract
	Sumari
	Resumen
	Contents
	Acronyms
	1 Introduction
	1.1 Motivation
	1.2 Aims and scope
	1.3 Outline

	2 State of the Art
	2.1 ECU and OBD-II
	2.2 Historical development of motorcycles
	2.3 Market solutions
	2.3.1 Bosch mySPIN
	2.3.2 Midas Connect
	2.3.3 Bicycle solutions
	2.3.4 DIY

	2.4 Project grounds

	3 Framework
	3.1 Introduction
	3.1.1 System description
	3.1.2 Requirements and limitations

	3.2 Telematics System
	3.2.1 Data Acquisition Device
	3.2.2 Sensors

	3.3 HMI
	3.4 Data Logging
	3.5 Component selection
	3.5.1 Telematics System
	3.5.2 HMI
	3.5.3 Data Logging

	4 Implementation
	4.1 Introduction
	4.2 Telematics system and data logger
	4.2.1 HC-06 configuration
	4.2.2 IMU calibration
	4.2.3 RTC adjustment
	4.2.4 Sensor data acquisition
	4.2.5 Bluetooth messages
	4.2.6 SD implementation

	4.3 HMI
	4.4 Hardware arrangement
	4.4.1 Background
	4.4.2 Arduino Nano Circuit
	4.4.3 Arduino Mega Shield
	4.4.4 Arduino Mega Enclosure

	4.5 Considerations
	4.5.1 Libraries issues
	4.5.2 Android development platform
	4.5.3 Broken components
	4.5.4 I2C address collision
	4.5.5 Flash storage usage

	5 Experimental Results
	5.1 Laboratory tests
	5.1.1 Calibration
	5.1.2 Data reliability
	5.1.3 Value drifting
	5.1.4 Conclusions

	5.2 Field trials
	5.2.1 Lineal movement
	5.2.2 Curved movement

	6 Financial Analysis
	7 Conclusions
	7.1 Experience
	7.2 Work done
	7.3 Further research and development

	A Enclosure plans
	Bibliography

