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al grau de Doctor en Informàtica, ha estat realitzada sota la seva direcció i
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Chapter 1

Introduction

The first part of this chapter introduces some basic concepts of the robotics field. To be more
precise, we first define the term mobile robot (section 1.1), afterwards, we explore the different
types of mobile robots (section 1.2), and, at last, we describe the paradigms of control that
are most commonly used to achieve autonomous navigation in a mobile robot (section 1.3).

In the second part of this chapter, we outline the objectives and the structure of this
dissertation (section 1.4).

1.1 Basic Terminology

The term robot comes from the Czech word robota, meaning drudgery or slave-like labour.
It was first used to refer to the artificial workers made in a factory in a science fiction play
produced by Karel Capek in 1921 called Rossum’s Universal Robots (R.U.R.). This general
idea has, however, evolved over the years in line with the advances in the robotics field.
Nowadays, according to [1], a robot is defined as:

“a machine able to extract information from its environment and use knowledge
about its world to act safely in a meaningful and purposive manner”;

or in other words, a generally autonomous physical system which can both sense its envi-
ronment and act on it with the ultimate aim of achieving some user-defined goals.

By extension, robotics is the discipline that involves:

⋄ the design, manufacture, and control of robots through programming to solve problems,

and

⋄ the psychological and biological study of the behavior of human beings and animals as
well as the application of the resulting models to the design, manufacture and control
of robots.

1.2 A Classification of Mobile Robots

Mobile robots are broadly classified into three types: ground, underwater, and flying vehicles
(figure 1.1 gives an example of each of them). In the next lines, only the general aspects of
the two first types of robots will be briefly discussed (the reason for excluding flying robots
from the discussion is that this dissertation only reports experiments with ground and under-
water robots).

1
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Figure 1.1: An example of ground (a), underwater (b), and flying (c) robot.

Figure 1.2: An example of wheeled (a), tracked (b), and legged (c) robot.

1.2.1 Ground Vehicles

The simplest case of ground vehicle is a wheeled robot, as illustrated in figure 1.2(a). These
robots comprise at least a driven wheel having optional passive/caster wheels and maybe even
steered wheels. Most designs require two motors for driving and steering the mobile robot.
Figure 1.2(a) shows a good example in that respect called differential drive, where two driven
wheels allow the robot to go straight, to follow a curve, or to turn on the spot.

One important disadvantage of all wheeled robots is that they need some sort of flat
surface for moving. In this sense, tracked robots are more flexible because of their capability
to successfully navigate over rough/rocky terrains (look at figure 1.2(b)). To gain stability,
these robots exert high-friction turns, as a consequence of the multiple points of contact of the
tracks with the surface. As a last comment, notice that the large majority of tracked robots
move along two parallel tracks, each driven by a separate motor.

Just like tracked vehicles, legged robots are also able to navigate through rough surfaces:
for instance, climbing up and down stairs. Many different designs have been proposed for
this kind of robots whose main difference is the number of legs. As a generally-accepted fact,
the problems of making these robots balance and walk simplify as more legs are available,
although at the expense of a higher cost, weight, and power consumption. Figure 1.2(c), by
way of example, depicts one of the most advanced humanoid robots called ASIMO by Honda.
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Figure 1.3: Operational setting for an ROV (a) and an AUV (b).

1.2.2 Underwater Vehicles

Several types of underwater vehicles are in use today. Among them, the two following deserve
to be highlighted: the Remotely Operated Vehicle (ROV) and the Autonomous Underwater
Vehicle (AUV)1. Their main features are summarized next (see also figure 1.3):

⋄ An ROV is an unmanned underwater robot whose control is the responsibility of an
operator who typically remains on a support vessel. An umbilical cable links the vehicle
to a remote control console managed by the operator. Both electric power and control
commands are sent down this cable, whereas data from the vehicle’s sensors, such as
video cameras and sonars, are sent up. In most cases, the robot is fitted with one or
two arm manipulators in order to let it act on the environment.

The first ROV was built in the late 1950s. However, commercial use of this technology
did not start until the mid 70s; shortly after, its use was commonplace. Several thou-
sands of vehicles have been built since then and are currently put into use by scientific,
military and commercial organizations. Recently, an ROV owned by the Japanese Ma-
rine Science Technology Center has reached the bottom of the Challenger Deep in the
Mariana Trench, the deepest part of the ocean (approximately 11033 metres).

⋄ As compared to an ROV , an AUV is also an unmanned but self-sufficient underwater
robot. In essence, this means that the vehicle carries its own energy source —batteries—
and is programmed with a set of instructions that enable it to perform a mission without
the assistance from an operator on the surface. These instructions include, among
others, procedures for navigating between predetermined geographic positions while
safely avoiding obstacles, as well as actions to be taken in case of equipment breakdown.

In the past 30 years, nearly two hundred AUVs have been built, being, most of them,
experimental. Despite this fact, they have achieved impressive results which is currently
creating a demand for their use.

1The term Untethered Underwater Vehicle (UUV) is also used to refer to this kind of vehicles
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Figure 1.4: The problem of navigation consists of safely moving from point A —or
the starting point— to point B —or the destination point.

1.3 Paradigms in Robot Control and their Application

to Navigation

Let us start with two definitions:

⋄ Robot control is the process of acquiring information about the environment —through
the vehicle’s sensors, or by using an a-priori model of the environment, or by combining
both of them—, processing it as necessary to decide how to act, and then executing
those actions by means of the available effectors to achieve, in an autonomous way,
the set of goals corresponding to a user-specified mission.

⋄ Navigation is the process of moving the robot from one place to another without colliding
with any obstacle (see figure 1.4).

Presently, as claimed in [2, 3, 4, 5, 6], there are three major paradigms for autonomously
controlling a robot that is intended to perform a navigation task like that of figure 1.4.
Specifically, these paradigms are widely-known under the names of deliberative , reactive, and
hybrid. Next, the essentials, as well as the strengths and weaknesses, of the afore-listed
paradigms are examined.

The deliberative/sense-plan-act paradigm. In the early days of robotics, it was thought
that the most effective manner to intelligently control a robot was by means of a continu-
ous process of sense-plan-act (SPA). Concisely, such a process consisted of the following
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steps: (1) collect the information provided by the robot’s sensors and use these data to
construct, or modify, a global model of the environment; (2) make a plan based on that
internal model; and (3) send the planned actions/commands to the robot’s actuators.
These three steps were repeated until the robot did reach its final destination.

Through experimentation, the SPA paradigm has been shown to have some requirements
to be actually successful in navigating a robot: on the one hand, its internal model of
the world should be rather complete and highly accurate; on the other hand, changes
in the real world should not occur more rapidly than the time needed to execute
one sense-plan-act cycle.

As can be easily guessed, the above-mentioned requirements of the SPA paradigm are
not necessarily satisfied in real-world environments (as is well-known, the large majority
of existing environments are inherently dynamic and unstructured —and, hence, difficult
to model). This fact explains why the SPA paradigm is not in widespread use today.

The reactive/sense-act paradigm. In the 1980s, Rodney Brooks, in view of the limitations
that the deliberative/sense-plan-act paradigm had experienced in real-world scenarios,
introduced the concept of reactive control. As literally said by Brooks, “reactive control
is a technique for tightly coupling perception and action, typically in the context of motor
behaviors, to produce timely robotic response in dynamic and unstructured worlds”.
Or in other words, reactive control advocates for using the real world as its own model;
i.e., under this technique, there is a direct connection between perception and action,
mediated neither by representation2 nor by reasoning/planning3. That is why reactive
control is also known as the sense-act /SA paradigm.

A control architecture that relies upon the SA paradigm is fundamentally composed
by a set of independent modular components called behaviors, which are performed
in parallel. As illustrated in figure 1.5, each behavior receives inputs from part or all
the robot’s sensors and sends commands to a subset of the robot’s actuators. Multiple
behaviors may take input from the same sensor as well as may generate commands for the
same actuator. At this point, it is important to note that the latter observation leaves
open the possibility that conflicting commands are sent to the same actuator. In order to
solve this problem, a SA-based control architecture includes a coordination mechanism
per actuator. Such a mechanism is in charge of deciding the specific command that will
finally be executed by the corresponding actuator. As can be observed in figure 1.6,
two distinct types of coordination mechanisms are essentially distinguished, namely
competitive and cooperative. A competitive coordination mechanism makes the actuator
execute one of the commands issued by the behaviors —and the rest of the commands
are simply ignored. Alternatively, a cooperative coordination mechanism merges all
the behavioral commands into one representing their consensus, and then gives it to
the actuator for execution.

In the last three decades, a large number of approaches has been proposed following
the SA paradigm4. By analyzing all these approaches, one can realize that there are two
slightly different ways of understanding the SA paradigm, named pure and non-pure.
Specifically, the term pure is used to refer to those approaches that fall under the

2The reliance on maintaining an internal model of the environment is eliminated
3The large amounts of time preparing plans are avoided
4In chapter 2, much of the work done in this field will be extensively reviewed
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classical definition of the SA paradigm given by Brooks. As an essential requirement in
this definition, recall that behaviors are only allowed to compute their output commands
on the basis of the (local) information being currently gathered by the robot’s sensors.
Comparatively speaking, non-pure approaches are characterized by somewhat relaxing
the above requirement. To be precise, in a non-pure context, behaviors can compute
their commands by considering, in addition to the current local sensory information,
a limited amount5 of global information about the environment.

Through experimentation, the SA paradigm has been demonstrated to enable robots to
move autonomously in real-world scenarios —that is to say, in scenarios where unknown
and moving obstacles do exist. Such experimentation, however, has also served to
reveal the major drawbacks of that paradigm. Moreover, it has been seen that these
drawbacks are different depending on whether the SA paradigm is adopted in its either
pure or non-pure form. In this respect, notice that: (1) robots that navigate according
to the pure form of the SA paradigm —or equivalently said, robots that are purely
reactive— are known to have difficulties for managing complex scenarios (these robots
get frequently trapped in concave obstacle configurations, such as the typical U-shaped
canyon); (2) robots based on the non-pure form of the SA paradigm —or in fewer words,
robots that are non-purely reactive— exhibit a more intelligent way of navigation, in
the sense that they are able to successfully operate in complex scenarios, although at
the cost of increased memory and processing demands.

Before concluding, it should also be stressed that there is one more drawback now shared
by both purely and non-purely reactive robots: as a direct consequence of the exclusive
/almost-exclusive handling of local information, reactive robots do perform poorly in
terms of path length —i.e. these robots move usually along quite suboptimal paths to
reach its destination.

The hybrid/plan, sense-act paradigm. Many modern approaches to robotic control
attempt to combine the planning capabilities of deliberative systems with the respon-
siveness of reactive systems. Such a combination is the essence of the so-called hybrid
paradigm. While the deliberative paradigm relies on a sense-plan-act perspective and the
reactive paradigm follows with sense-act, the hybrid paradigm typically takes the form
of plan, sense-act (with the comma meaning parallel execution). A hybrid approach, in
its basic structure, is composed by two layers, one deliberative and the other reactive,
which work as follows: the reactive layer performs a set of sense-act behaviors, and
the deliberative layer observes the progress of such behaviors and suggests direction
based on reasoning, planning, and problem-solving.

In this section, we have provided an introductory overview of the most outstanding
paradigms in robot control, including deliberative systems, reactive systems, and hybrid
systems. As a general conclusion, we can state that, while each system is appropriate in
selected contexts, hybrid approaches are very adaptable for accommodating a large variety of
robotic control scenarios with sufficient planning and reactive capabilities.

5of the order of a few bytes
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1.4 Objectives and Structure of the Document

The overall objective of this dissertation is to develop a set of improved reactive and deliber-
ative/path-planning methods which can be used as basic components to build new advanced
hybrid control architectures for mobile robot navigation. In this respect, it is especially impor-
tant to remark that the task of building new hybrid systems with the methods here developed
is considered to be outside the scope of this dissertation, and, hence, it is left for future work.

Going deeper into the above, this dissertation establishes some particular objectives to
be achieved by the reactive and path-planning methods being proposed. Specifically, these
objectives are:

⋄ Regarding the reactive methods. Along the past years, a large number of purely
reactive methods has been reported. Broadly speaking, each of these methods is known
to be best-suited to perform successful navigation in different contexts: some of them
are characterized by safely moving the robot through very small spaces by taking into
account the shape, dynamic, and kinematic constraints of the robot, others, however,
are able to navigate through outdoor rough terrains, etc. It seems thus, that one can
(almost) always find a purely reactive method that suits one’s needs. Nevertheless, to
be fair, not all needs can actually be met, since purely reactive methods suffer from
an important weakness that severely limits their application: as is well-documented,
purely reactive robots get usually stuck in dead-end obstacle configurations.

This dissertation is not focussed on proposing a specific purely reactive method with
the added advantage of avoiding the aforementioned stuck situations. Our objective goes
one step forward than this by defining a generic way to transform several of the current
purely reactive methods into equivalent methods not having the stucking problem or,
what is more, into equivalent methods able to ensure completeness.

⋄ Regarding the path-planning methods. This dissertation is intended to put forward
various global path-planning methods that work effectively in time-constrained scenarios,
i.e. in scenarios where the time available for planning is variable and limited.

To cope with these scenarios, we will propose methods whose quality of the planned path
degrades/grows gracefully as computation time decreases/ increases. Or more strictly
speaking, we will propose new path-planning methods of type anytime.

With the preceding objectives in mind, the rest of the document is organized as follows:

Chapter 2: State of the Art in Reactive Navigation. This chapter surveys current approaches
to reactive robot control for navigation.

Chapter 3: Traversability and Tenacity: Two New Concepts for Improving Navigation of
Purely Reactive Control Systems under Limited Sensing Capabilities. This chapter
describes a novel framework for purely reactive navigation in highly complex scenarios.
This framework, concisely known as T 2, gives robots the ability to avoid getting stuck
when facing troublesome obstacle configurations (or in other words, under the T 2 frame-
work, robots turn out to be immune to the so-called local minima problem [7]).

The T 2 framework is ultimately conceived as a means to enhance existing purely reactive
approaches; that is to say, such a framework, when applied to a current state-of-the-art
technique in the field of purely reactive navigation, allows this technique to successfully
carry out more complex navigation tasks than originally.
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Any technique to which the T 2 framework is applied does become rid of stuck situations,
but it is not actually prevented from generating endless cyclic trajectories. In short,
this means that there is no guarantee that the robot will always reach its destination.

Chapter 4: Achieving a Better Path Length Performance for the Algorithm Bug2. This
chapter succeeds in improving one of the non-purely reactive approaches with best
trade-off between simplicity —in terms of computational demands— and performance —
in terms of the length of the path traveled by the robot—, called Bug2. To be more exact,
this Bug-like approach6 is modified in such a way that: (1) all the original outstanding
properties of Bug2 are maintained (we are especially referring to its simplicity as well
as its capability to ensure the completion of any feasible navigation task); (2) a better
performance is achieved (i.e. the robot is able to find shorter paths to its destination).

Chapter 5: T 2-based Reactive Navigation with Global Proofs. This chapter extends the
T 2 framework of chapter 3 by giving it the property of completeness. In this way,
a robot based on this framework is now proved to globally converge to its destination
—whenever a path exists.

The global convergence criterion that is incorporated into the T 2 framework is inspired
by how completeness is accomplished by the algorithm Bug2 (recall that this algorithm
is the one that is improved in chapter 4).

Chapter 6: The Use of Different Bug-like Strategies for Building Efficient Deterministic Any-
time Path Planners. This chapter presents two new algorithms for deterministic global
path planning that are aimed at real-time domains because of their anytime nature.
These algorithms, briefly named ABUG and vABUG , are constructed on the basis of
distinct Bug-like strategies. To be precise, ABUG is based on the enhanced version
of the algorithm Bug2 proposed in chapter 4, whereas vABUG relies on the classical
strategy VisBug. Both planners efficiently provide a series of increasingly better paths
in problems of low dimensionality, such as those planning problems typically concerned
with low-cost robotics applications. Through experimentation, ABUG and vABUG are
shown both to plan better paths and to perform much faster than the most popular
current anytime approaches.

Chapter 7: Conclusions and Future Work. The last chapter concludes this dissertation by
summarizing the work done and presenting all the contributions made, including all
the publications arising from this Ph.D. work. To end with, some recommendations for
future work are also given.

6As will be seen in section 2.6, Bug-like strategies do represent a family of non-purely reactive approaches
mainly characterized by imitating the biological behavior of some bugs / insects
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Figure 1.5: Mapping from sensor inputs to actuator commands through the behavior concept.

Figure 1.6: Different methodologies of coordinating behavioral commands for conflict resolu-
tion: (a) competitive methods; (b) cooperative methods.





Chapter 2

State of the Art

in Reactive Navigation

This chapter is intended to give a general overview of the most popular techniques that have
been devised to solve the navigation problem in a reactive way. These techniques are described
after a brief introduction to the related theory, when necessary.

2.1 Artificial Potential Fields

A potential field is a differentiable real-valued function U : R
m → R, whose value can be

seen as energy, being hence its gradient a force. The gradient ~∇U(X) —X denotes a robot
configuration— is a vector which points in the local direction that maximally increases U .
Additionally, a gradient vector field assigns the gradient of some potential function to each
point on the m-dimensional space.

The Potential Fields Method (PFM), as originally proposed in [8], directs a robot as if
it was a particle moving in a gradient vector field. Gradients can be intuitively understood
as forces acting on a positively charged particle which is attracted to the negatively charged
goal. Obstacles also have a positive charge which forms a repulsive force field around them
causing the robot to go away. The combination of repulsive and attractive forces is expected
to guide the vehicle from the starting location to the target while avoiding obstacles.

By way of example, assuming that m = 2 and X in U(X) represents the robot’s position on

the corresponding plane
(

R
2
)

, figures 2.1(a) and (b) depict a typical gradient vector field for,

respectively, the attractive and the repulsive potential functions. Moreover, the superposition
of both fields is illustrated in figure 2.2 together with a possible trajectory of the robot.

Figure 2.3 shows the block diagram of a reactive control system as suggested by the
original/classical potential fields approach. As can be observed, the control architecture con-
sists of two behaviors named GoTo and AvoidObstacles, which are responsible for, respectively,
generating the attractive and the repulsive forces at the current robot’s location1 on the basis
of the local sensory information. Besides, a cooperative coordination mechanism based on
vector addition is used in order to merge the behavioral responses. Notice that the addition
is weighted according to gains Gi, which encode the relative strength of each behavior.

1For a faster processing, the entire potential fields are never computed. Only each field’s contribution at the
instantaneous position where the robot is currently located is calculated. The whole potential field is simply
represented for the reader’s edification

11
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Figure 2.1: The attractor-repeller paradigm: potential fields for a goal (a) and an obstacle (b).

Figure 2.2: (a) linear combination of the potential fields depicted in figure 2.1, with (b)
exemplifying a path for a robot moving within this simple scenario.
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Figure 2.3: Scheme of the classical potential fields approach.

Next, let us finish the introduction to the basic principles of potential fields by remarking
the most important shortcomings that are inherent2 to the approach (see [9] for a further
explanation):

1. Possible existence of local minima in the resultant potential field, where the robot may
get indefinitely stuck. The potential fields approach can be imagined as a gradient
descent method which ensures the convergence to a minimum in the field. Unfortunately,
there is no guarantee that this minimum is the global minimum located at the goal point.

2. Lack of an oscillation-free motion when the vehicle navigates among very close obstacles
at high speed.

3. Impossibility to go through small openings.

Among the above shortcomings, the first one is the best-known and most-often cited prob-
lem with PFMs, limiting the applicability of the strategy to straightforward navigation tasks.
In that respect, figures 2.4 (a) and (b) show two simple scenarios where such a problem
does arise, preventing thus the robot from reaching its target. As can be seen, in the former
scenario, the vehicle is initially attracted to the goal as it approaches the U-shaped obstacle.
The goal continues attracting the robot, but the lower wall of the obstacle deflects the vehicle
upwards until the local detection of the upper wall begins also to influence the robot’s path.
At this moment, the combined effect of the lower wall and the upper wall of the obstacle
keeps the robot halfway between these walls. The vehicle continues making progress towards
its target until it, ultimately, achieves a position in the environment where the effect of the
obstacles counteracts the attraction of the goal. In other words, the robot has got to a point q
where ‖ ~∇U(q) ‖= 0, not being q the goal. The same occurs in figure 2.4 (b) where the
repulsive force balances out the attractive one.

In the rest of the section, several PFM -based navigation strategies are deeply discussed.
As expected, they try to alleviate some of the above-listed shortcomings.

2These problems are independent of the particular implementation
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Figure 2.4: The local minima problem with concave (a) and convex (b) obstacles.

2.1.1 The Generalized Potential Fields Method

Author(s): Bruce KROGH [10]

Reference(s): [10] 1984

Description: The magnitude of a repulsive force (Fr,o) calculated by the classical potential
fields approach [8] exclusively depends on the distance to the corresponding obstacle (do).
Nevertheless, the Generalized Potential Fields Method (GPFM) additionally considers
the relative velocity between the robot and the obstacle in the computation of such
a magnitude. More exactly, the repulsive potential field is defined to be inversely pro-
portional to the so-called avoidance period, which means the time difference between the
minimum deceleration of the vehicle on the remaining distance to the obstacle following
the current direction of motion, and the maximum deceleration. Equation 2.1 formalizes
this idea, where α represents the maximum deceleration of the robot and v the velocity
component in the obstacle direction. As can be observed, an infinite repulsive force
is generated when the estimated time to collision coincides with the minimum time
required to stop the vehicle.

‖ Fr,o ‖=
αv

2doα− v2
. (2.1)

This approach was combined with a global planner in [11].

2.1.2 The Virtual Force Field

Author(s): Johann BORENSTEIN [12] and Yorem KOREN [12]

Reference(s): [12] 1989

Description: The novelty of this approach, entitled the Virtual Force Field (VFF), lies in
the integration of two already-known concepts: “Certainty Grids” [13, 14] for obstacle
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Figure 2.5: The histogram grid world model.

representation, and “Potential Fields” for navigation. More precisely, the VFF method
works as follows:

1. A histogram grid (C) is updated by firing 24 ultrasonic sensors distributed around
the robot. It is specifically done in accordance with the next two steps exemplified
in figure 2.5:

– For each range reading, the cell that lies on the acoustic axis and corresponds
to the measured distance d is augmented, increasing thus the certainty value
(CV) of the cell.

– A histogramic pseudo-probability distribution is obtained by a continuous and
rapid sampling of the sensors while the robot is moving.

2. A virtual window moves with the vehicle and overlays a square region of the his-
togram grid. The cells which are covered by this window are called active cells.

3. Each active cell exerts a virtual repulsive force Fr,c[i,j] on the robot. The magnitude
of this force is proportional to the CV of the cell, and inversely proportional to r2,
where r denotes the Euclidean distance between the cell and the vehicle.

4. Next, all virtual repulsive forces generated from the active cells are added up to
yield the resultant repulsive force vector Fr.

5. A constant-magnitude virtual attractive force Fa is also applied to the robot by
the target. The addition of Fr and Fa produces the final force vector F . Afterwards,
the steering of the vehicle is aligned with F to avoid the obstacle.

This strategy has demonstrated to be specially well-suited for the accommodation of
inaccurate sensor data as well as for sensor fusion, enabling, at the same time, the
continuous motion of the robot without stopping in front of obstacles.
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2.1.3 The Vector Field Histogram

Author(s): Johann BORENSTEIN [15, 16, 17], Yorem KOREN [15] and Iwan ULRICH [16, 17]

Reference(s): [15] 1991, [16] 1998, [17] 2000

Description: The strategy VFF described in section 2.1.2 is known to suffer from three main
problems which are briefly pointed out in the following:

• Difficulty for generating smooth trajectories (drastic changes between two succes-
sive responses may occur).

• Impossibility of passing among closely spaced obstacles such as doorways.

• Tendency of the robot to oscillate in narrow corridors.

The Vector Field Histogram (VFH) [15] is, precisely, an approach which was developed
with the intention of remedying these shortcomings based on the next observation:
carefully analyzing the aforementioned problems, it was concluded that they were caused
by the excessive data reduction occurring when the individual repulsive forces from the

histogram grid cells
(

Fr,c[i,j]

)

were added up to compute the resultant force vector (Fr).

Notice that, in this way, the information about the local distribution of the obstacles is
mostly lost.

VFH extends the VFF method by using an intermediate data structure known as
the polar histogram (H), which is essentially an array composed of 72 angular sectors
5-degree wide. In short, the strategy involves the next two steps:

1. A window moves with the robot overlaying a square region of cells in the his-
togram grid. The content of each active cell is mapped into the corresponding
angular sector of the polar histogram, as exemplified in figure 2.6(a). As a result,
each sector k holds a value hk representing the obstacle density in the range of
directions which consists of.

2. Later, a threshold on the polar histogram determines the candidate directions

of motion
(

look at figures 2.6(b) and (c)
)

. Finally, among all the candidates,

the algorithm selects the one that most closely matches the direction to the target.

Some improvements to the VFH strategy can be found in [16] (VFH +) and [17] (VFH ∗).
Concisely, the former enhances the original method in several aspects which result in
a greater reliability, an easier parameter tuning, and the generation of smoother paths.
On the other hand, VFH ∗ abandons the reactive character of the approach by using
a planner based on an A∗ algorithm, which verifies that a particular candidate direction
guides the robot around an obstacle.

2.1.4 Motor Schemas

Schema theory appeared in the 18th century as a model motivated by the biological sciences
for the explanation of the behavior as well as the mechanisms of memory and learning. In 1981,
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Figure 2.6: The polar histogram: (a) mapping of active cells; (b) histogram building for the
scenario depicted in (c).

Michael Arbib adapted for the first time such theory to a robotic system. To be more exact,
a simple schema-based model inspired by the behavior of a toad was put forward to control
a robot [18]. Since then, numerous methodologies have been proposed for both specifying and
designing behavioral/ reactive control architectures based on schema theory. In that respect,
one of the most outstanding proposals is named Motor Schemas (MS). It was suggested in [19]
by Ronald Arkin and differs from other behavioral approaches in several significant ways,
which are briefly summarized next:

• Behavioral responses are all given in a single uniform format, namely vectors generated
using potential fields.

• Coordination is accomplished through cooperative means by vector addition.

• Behaviors can be either instantiated or deinstantiated at any time on the basis of per-
ceptual events.

• Each behavior can contribute in varying degrees to the robot’s overall response according
to the concept of gain.
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Figure 2.7: A schema-based control system.

Figure 2.8: The Noise and the Avoiding the Past motor schemas: (a) integration into a basic
navigational control system; (b) random potential field linked to the former.

• Abstraction can be used to construct high-level behaviors from simpler ones by taking
advantage of the so-called behavioral assemblages. Fundamentally, an assemblage is
a package composed by a set of primitive behaviors and, optionally, other assemblages,
which are cooperatively coordinated.

Figure 2.7 illustrates the generic structure of a schema-based control system. At this point,
it is important to note that, like the classical potential fields approach [8], MS is not immune
to the local minima problem. In the following, two different strategies called Noise and
Avoiding the Past are discussed, trying to address this problem. In short, both of them consist
in incorporating a specific motor schema /behavior, named as the corresponding strategy,

into a control architecture composed by the GoTo and AvoidObstacles behaviors
(

look at

figure 2.8(a)
)

.
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2.1.4.1 Noise

Author(s): Ronald ARKIN [1]

Reference(s): [1] 1998

Description: Injecting randomness into a schema-based control system is a technique used
to deal with local minima. To this end, a Noise-type behavior is simply added to
the control architecture. This behavior generates a random potential field like the one
depicted in figure 2.8(b), which helps to ensure the robot’s progress.

2.1.4.2 Avoiding the Past

Author(s): Ronald ARKIN [20] and Tucker BALCH [20]

Reference(s): [20] 1993

Description: The Avoiding the Past motor schema repels the robot from locations which
were already visited. With this purpose, a local map of the environment implemented
as a two-dimensional grid is stored in memory, where a different value is assigned to
visited and non-visited locations. As the robot visits an area more times, the values of
the corresponding cells in the grid increase and, consequently, the resultant repulsive
force exerted by such cells increases as well. In this way, it is intended to favor the
continuous exploration of new regions of the navigation environment, avoiding thus,
at least apparently, the robot gets stuck into a local minimum. See algorithm 2.1 for
further details.

2.1.5 Micronavigation

Author(s): Alessandro SCALZO [21], Antonio SGORBISSA [22, 21, 23] and Renato ZAC-
CARIA [21, 23]

Reference(s): [22] 2000, [21] 2003, [23] 2004

Description: This approach named Micronavigation (µNAV) tries to solve the problem
of autonomous robot navigation from a minimalist point of view. Based on artifi-
cial potential fields, µNAV uses a handful of bytes for generating a path to the goal.
Successful results are reported in complex scenarios such as maze-like environments.
Nevertheless, it is important to stress that the mission completion cannot be always
guaranteed.

Specifically, the motion law of the robot at position x is defined according to equation 2.2,
where vref is a reference value for the speed, Ur(x) denotes the repulsive potential field,
wg, wf and wt represent three weighting functions and, finally, g, f and t are three unit
vectors oriented as shown in figure 2.9. As can be observed, g points towards the target,
while f corresponds to the sum of the repulsive forces exerted by the obstacles, and
the direction of t is tangential to the equipotential line passing through x.
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Algorithm 2.1 Computation of the output vector for Avoiding the Past

{Initial settings for the component vectors X —XVec— and Y —YVec— as well as a global
counter of the number of visits}
XVec.mag = 0;
XVec.dir = 90;
YVec.mag = 0;
YVec.dir = 0;
Visits = 0;

{Computing the magnitude of the component vectors based on the robot’s visits to a local
square region centered in RobotPos —the current robot’s position— and whose size is given
by the PastHorizon parameter. M represents the up-to-date 2D map of visited locations
(accordingly, M[i,j] denotes the precise number of visits of the robot to the cell ij)}
for i = (RobotPos.X − PastHorizon) to (RobotPos.X + PastHorizon) do

for j = (RobotPos.Y − PastHorizon) to (RobotPos.Y + PastHorizon) do
if i < RobotPos.X then

XVec.mag = XVec.mag + M[i,j];
else if i > RobotPos.X then

XVec.mag = XVec.mag − M[i,j];
end if
if j < RobotPos.Y then

YVec.mag = YVec.mag + M[i,j];
else if j > RobotPos.Y then

YVec.mag = YVec.mag − M[i,j];
end if
Visits = Visits + M[i,j];

end for
end for

{Obtaining the direction of the output vector from XVec and YVec}
TempVec = SumVector(XVec, YVec);
PastVec.dir = TempVec.dir;

{Determining the magnitude of the output vector in accordance with the total number
of visits carried out to the aforesaid local region}

PastVec.mag = PastGain ∗

(

Visits /
(

(2 ∗ PastHorizon + 1)2 ∗ MaxVisitsPerCell
)

)

;

return PastVec;
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Figure 2.9: Robot’s trajectory of the µNAV algorithm in a simulated environment.

v(x) =
(

wg(Ur(x)) · g(x) + wt(Ur(x)) · t(x) + wf (Ur(x)) · f(x)
)

· vref . (2.2)

Different behaviors can be obtained by establishing different weighting functions in
equation 2.2. This fact is exploited by µNAV to provide the robot with a hierarchy
of five simple behaviors designed for smooth obstacle avoidance, and for detecting and
escaping from deadlock situations.

2.1.6 Harmonic Potential Fields

Author(s): Brian BURNS [24], Chris CONNOLLY [24], Daniel KODITSCHEK [25], Elon
RIMON [25], Richard WEISS [24]

Reference(s): [24] 1990, [25] 1992

Description: A Harmonic Potential Field (HPF) refers to a special type of artificial potential
function whose generation is constrained by the use of Laplace’s equation. As a main
feature, these functions do not exhibit spurious local minima, as opposed to PFMs.
However, this advantage is accomplished at the cost of greatly increasing the computa-
tional demands, which turns HPF into a less performance-oriented/ less-suited method
for reactive navigation. Finally, it is important to note that, as claimed by the authors,
the computational drawback of HPF can be alleviated by exploiting the intrinsically-
parallel formulation of Laplace’s equation. In this way, a solution to this equation is
expected to be quickly obtained by operating with several processors.
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2.2 Learning of Behavioral Parameters

2.2.1 GA-Robot

Author(s): Ronald ARKIN [26, 27], Gary BOONE [27], Michael PEARCE [26, 27] and
Ashwin RAM [26, 27]

Reference(s): [26] 1992, [27] 1994

Description: This strategy called GA-Robot explores the application of genetic algorithms
(GA) to the off-line and unsupervised learning of the behavioral parameters of a reactive
control architecture made up of three motor schemas: GoTo, AvoidObstacles, and Noise.
The method is used for reducing the effort required to configure such navigation system
by learning parameter settings that optimise performance metrics of interest such as
safety, speed or distance in various kinds of environments, named ecological niches by
its authors. The resultant sets of parameters can be applied to similar scenarios which
were not presented in the learning phase. The approach has been exclusively evaluated
through computer simulations.

2.2.2 Learning Momentum

Author(s): Ronald ARKIN [28, 29, 30], Russell CLARK [28], James LEE [29, 30] and Ashwin
RAM [28]

Reference(s): [28] 1992, [29] 2001, [30] 2003

Description: The approach Learning Momentum (LM) can be considered a crude form of
reinforcement learning, where, if the robot is working well, it keeps doing the same and
even a bit harder. Conversely, if the vehicle is not working properly, it tries something
different. With this purpose, two tasks are sequentially carried out: on the one hand,
the identification of the robot’s performance and, on the other hand, the adaptation of
the robot’s behavior according to both such performance and the current environmental
conditions. As for the former task, LM relies on recent experience and a set of heuristic
rules for determining when good progress to the goal is being made. The alteration of
the vehicle’s behavior, nevertheless, is performed by altering the gain values as well as
other parameters of a reactive control system composed by three motor schemas: GoTo,
AvoidObstacles, and Noise.

LM can be actually implemented in two different ways named ballooning and squeezing.
Specifically, these strategies consist of, respectively, increasing/decreasing the sphere of
influence (SOI) around the robot3 when it makes little or no progress towards the target.
In short, ballooning works better when facing obstacles such as box-shaped canyons,
while squeezing allows the vehicle to suitably navigate through environments built with
small and closely spaced obstacles. The choice between both options must be taken in
an off-line manner.

Algorithm 2.2 describes the LM approach in pseudocode.

3The SOI is a region that limits the influence of the obstacles on the robot motion to those located inside
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Algorithm 2.2 Learning Momentum

{A call to this routine is inserted at the end of the robot’s cycle. On the other hand,
the value of Steps is initially zero}

{Nothing is done until the robot has taken a certain number of steps}
Steps = Steps + 1;
if Steps == HistoryInterval then

Steps = 0;

{Updating some relevant information from the data collected during the last HistoryIn-
terval steps}
Calculate the average movement and progress of the robot as well as the number of
obstacles which have been detected

{Identifying the current situation}
if AverageMovement < M then

Situation = NoMovement;
else if AverageProgress > P then

Situation = Progress;
else if ObstacleCount > O then

Situation = NoProgressWithObstacles;
else

Situation = NoProgressWithoutObstacles;
end if

{Altering the behavioral parameters}
for each behavioral parameter do

Modify its value by adding it a number selected in a random way within a specific range,
which depends on both the parameter and the given current situation

end for
end if
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Figure 2.10: Interaction between the reactive control system and the CBR unit. Each behavior
supplies to the coordination mechanism, in addition to its vectorial response Ri, the multi-
plicative gain Gi currently assigned by the CBR module.

2.2.3 Case-based Navigation

Author(s): Ronald ARKIN [31, 32, 33, 34, 35], Russell CLARK [31], Michael KAESS [33],
Zsolt KIRA [35], James LEE [34], Maxim LIKHACHEV [32, 33, 34], Kenneth MOOR-
MAN [31] and Ashwin RAM [31]

Reference(s): [31] 1997, [32] 2001, [33, 34] 2002, [35] 2004

Description: These papers put forward, in a progressive way, a complex strategy, based on
the use of Case-Based Reasoning (CBR), for conducting autonomous navigation tasks by
selecting and learning optimal behavioral parameterizations at runtime. More precisely,
the proposal consists in the integration of a CBR unit into a specific schema-based
control system, just as shown in figure 2.10. Such a unit continually chooses, from
a library of cases, the set of behavioral parameter values that is best suited to the current
environmental situation. After its application, the performance of the selected set —
or case, from now on— is assessed in terms of the progress achieved towards the robot’s
target. What is more, if the analysis of performance concludes that no progress or
little progress has been made, the case is revised so as to improve the navigation results
to be obtained in future applications of that case.

2.3 Fuzzy Logic Control Systems

Many fuzzy logic control systems have been proposed in the framework of mobile robot nav-
igation. They possess an inherent skill in managing uncertain and imprecise information
using linguistic rules, which are defined on the basis of human knowledge and experience.
The generic block diagram of a fuzzy controller is depicted in figure 2.11. As can be observed,
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Figure 2.11: Main components of a fuzzy logic control system.

first of all, sensor signals are translated into linguistic values in the context of the so-called
fuzzification process. Afterwards, the fuzzy inference step takes place evaluating the set of
if-then rules which describes the system’s behaviors. Besides, this module also identifies the
most suitable rules to be applied according to the current situation and computes the values
of the output linguistic variables. Finally, a process named defuzzification is executed which
converts the linguistic values into real values such as, for instance, velocities /accelerations of
the robot’s wheels.

The pieces of work presented in [36, 37, 38] are three representative examples of fuzzy-based
reactive control systems. All of them address the navigation problem in a quite similar way.
Essentially, the inference mechanism of these controllers is made up of rules defining two
basic behaviors: GoTo and AvoidObstacles. On the other hand, an additional module is
incorporated into the system for identifying trapping situations caused by the local minima
problem. Such an identification is based on recognizing the repeated traversal of the robot
through the same environment by recollecting some real landmarks. Once the vehicle is known
to be trapped, a ContourFollowing behavior is activated to escape from the trapping area.

2.4 Restricted Optimisation in the Velocity Space

2.4.1 The Dynamic Window Approach

Author(s): Oliver BROCK [39], Wolfram BURGARD [40, 41, 42], Dieter FOX [40, 41],
Oussama KHATIB [39], Naomi LEONARD [43, 44], Petter OGREN [43, 44], Cyrill
STACHNISS [42] and Sebastian THRUN [40, 41]

Reference(s): [40] 1995, [41] 1997, [39] 1999, [42, 43] 2002, [44] 2005

Description: The Dynamic Window Approach (DWA) [40, 41] is a popular strategy for
reactive collision avoidance that considers both the kinematic and dynamic constraints
of a synchro-drive robot4.

4This technique can also be applied to differentially steered robots, and many non-holonomic vehicles
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Kinematic constraints are taken into account by directly searching the velocity space
consisting of the set of tuples (v,w) of translational v and rotational w velocities which
are achievable by the vehicle. As a side note, each pair (v,w) defines a circular trajectory.

Among all velocity tuples, those that allow the robot to come to a stop before hitting
an obstacle are selected, given the current position and the maximum deceleration of
the vehicle. The resultant set of velocities is generically called admissible.

Afterwards, a dynamic window is defined restricting the admissible velocities to those
that can be reached within a short time interval, given the current velocity and, once
again, the maximum acceleration/deceleration capabilities of the robot. Notice that
these capabilities for translation and steering are independent in a synchro-drive vehicle,
which results in a dynamic window with rectangular shape.

Finally, in order to determine the next motion command, among all admissible velocities
within the aforementioned dynamic window, the one that maximises the progress to-
wards the target, the distance to the obstacles as well as the forward velocity of the robot
is chosen.

Some enhancements to DWA can be found in [39, 42, 43, 44]. Essentially, these ap-
proaches integrate different forms of path-planning into the reactive collision avoidance
technique so as to achieve global convergence.

2.4.2 The Curvature-Velocity Method

Author(s): Javier BENAYAS [45], Amador DIEGUEZ [45], Joaquin FERNANDEZ [45],
Nak KO [46], Rafael SANZ [45] and Reid SIMMONS [47, 46]

Reference(s): [47] 1996, [46] 1998, [45] 2004

Description: The Curvature-Velocity Method (CVM) [47] is a strategy which was developed
independently of DWA. Both approaches, however, fundamentally share the same prin-
ciples. In short, CVM , under the assumption that the robot travels along arc of circles,
finds a point in the velocity space 〈v, w〉 satisfying some physical and environmental
constraints, and maximizing an objective function that trades off speed, safety, and
goal-directness. As compared to DWA, CVM does have the advantage of not requiring
the discretization of the velocity space; that is to say, in CVM , the search is performed
over a continuous 〈v, w〉 space.

Some improvements to CVM can be found in [46] (the Lane-Curvature Method , LCM )
and [45] (the Beam-Curvature Method , BCM ). Specifically, these methods generate
motion commands in two separate steps. In the first one, a desired goal heading is
determined, whose direction can be different to that of the target point. Afterwards,
the best steering command yielding a motion in the desired local direction is obtained
by applying the original CVM approach.
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2.5 The Nearness-Diagram Navigation Method,

and Some Related Extensions

2.5.1 The Nearness-Diagram Navigation Method

Author(s): Javier MINGUEZ [48, 49], Luis MONTANO [48, 49] and Javier OSUNA [49]

Reference(s): [48, 49] 2004

Description: The Nearness Diagram method (ND) addresses navigation in dense, complex,
and difficult scenarios by adopting a divide and conquer strategy based on situations.
In essence, this approach relies on a complete set of mutually exclusive situations that
describe the relative state of some relevant entities of the navigation problem such as,
for instance, the position of both the robot and the target, the distribution and the
proximity of the obstacles, and the location and the width —just differentiating between
wide and narrow— of all obstacle-free/navigable regions5. At each time step, ND uses
the available sensory information to identify the current situation of the robot within
the above-mentioned set, and then the motion law —action— linked to the situation
that has been finally recognized is suitably performed. Generally speaking, actions try
to avoid the most dangerous obstacles around the robot, while keeping moving towards
the target point.

See figure 2.12 for a better understanding of how ND works. This figure depicts the pre-
cise action which is taken by the method in a low-safety situation where several obstacles
are found very close to the robot —inside the so-called security zone.

2.5.2 The Obstacle-Restriction Method

Author(s): Javier MINGUEZ [50]

Reference(s): [50] 2005

Description: The Obstacle-Restriction Method (ORM) arises with the purpose of achiev-
ing better paths/results than the strategy ND (see section 2.5.1) when navigating in
open spaces. ORM , like ND , is well-suited to safely move a robot to a given location —
the target— in a troublesome scenario, typically characterized by complex and cluttered
distributions of obstacles. Nevertheless, in face of simpler environments with only a few
sparse obstacles, ORM produces shorter and more natural trajectories than ND . To be
precise, in the latter kind of environments, the enhanced behavior of ORM comes from
computing the final action/motion command by taking into consideration all the ob-
stacle information that is locally available for the robot —and not just a part of it, as
it is put forward by ND , which restricts the motion of the robot based on exclusively
the two obstacles that define the so-called free-walking area6.

5 These regions are also known as gaps
6 As evidenced in figure 2.12, the free-walking area refers to the navigable region that is closest to the target
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Figure 2.12: Illustrating with an example the situation/action scheme employed by ND
to cope with the navigation problem.

At each iteration of the control cycle, ORM tackles the problem of obstacle avoidance
/navigation in the two following steps:

1. There is a local procedure that calculates a set of subgoals —X = {x0, . . . , xn}—
according to the distribution of the obstacles in the scene, and the current location
of the robot —xrobot— and the target —x0. Later, the resultant set X is filtered
by removing those subgoals whose achievement inevitably involves a collision be-
cause the robot does not fit in their corresponding passages. To this end, ORM
builds the configuration space (C-space) by growing all the detected obstacles by
the shape of the robot, which is supposed to be circular with radius R (notice
that the robot is also assumed to consist of a holonomic/omnidirectional base).
After this growing process, each subgoal xi ∈ X is checked against the existence of
a non-blocked path connecting xrobot to xi. In case of success, xi is added to the
new set Xf . Otherwise, xi is discarded. ORM finishes its first step by choosing,
from Xf , the closest subgoal to the target.

Figures 2.13(a) and (b) highlight, in a scenario containing three main obstacles,
the tasks linked to the subgoal-selector procedure described above.

2. Let xclosest be the subgoal provided by step 1. In this second step, ORM deter-
mines θsol, i.e. the most promising collision-free direction of motion towards xclosest.
By way of example, figure 2.13(c) shows the computation of θsol for the same sce-
nario of figures 2.13(a,b).
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Figure 2.13: The two procedural steps of ORM : (a,b) subgoal selection and (c) motion
computation.

2.5.3 The Smooth Nearness-Diagram Navigation Method

Author(s): Francesco BULLO [51] and Joseph DURHAM [51]

Reference(s): [51] 2008

Description: As can be guessed by the name, the Smooth Nearness-Diagram method (SND)
constitutes a direct evolution of the obstacle-avoidance technique briefly referred to
as ND which was outlined in section 2.5.1. As compared to the ND navigation scheme,
SND essentially stands out by proposing a single motion law that is general enough to be
applied to all possible configurations of surrounding obstacles7, or equivalently, using
terminology of ND , to all possible situations (remember that ND suggests dealing with

7 The Smooth Nearness-Diagram method takes into account all nearby obstacles, not just two as done
by ND . Consequently, this makes SND a safer and more robust strategy for navigation in tight spaces
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separate motion laws for different scenarios). This change, away from being a mere
unification of rules for obstacle-avoidance, has as a main advantage the removal of
abrupt transitions in behavior when the robot navigates near obstacles, which necessarily
leads to smoother trajectories.

Before concluding, it is worth to also cite the recently published work appearing in [52]
(the Closest Gap, CG), which improves the safety of the paths generated by SND
by considering the ratio of obstacles —threats— on the two sides of the robot, as well
as by providing stricter deviation against the closest obstacles.

2.6 Sensory-based Motion Planning with Global Proofs

2.6.1 Bug1

Author(s): Vladimir LUMELSKY [53, 54] and Alexander STEPANOV [53]

Reference(s): [53] 1987, [54] 1991

Description: Essentially, the algorithm Bug1 formalises the common sense idea of moving
towards the goal unless an obstacle is found, in which case the vehicle circumnavigates
the obstacle until the motion to the goal is once again allowable. The robot is assumed
to be a point equipped with a perfect positioning system and contact sensors that can
detect an obstacle boundary if the robot “touches” it.

The starting and the target points of the mission are labeled as S and T , respectively. On
the other hand, let L0 = S and the Main Line (m-line) be the line segment connecting
Li to T . Initially, i = 0. The Bug1 strategy exhibits two different behaviors: motion-
to-goal and boundary-following. The former moves the robot along the m-line towards
T until either the goal or an obstacle is encountered. Assuming this last situation,
let H1 be the point where the vehicle first finds the obstacle and let us call this point
a hit point. Under these circumstances, the boundary-following behavior is adopted by
circumnavigating the obstacle until the robot returns to H1. Next, the closest point to
T on the perimeter of the obstacle is determined. This point is named leave point and
is denoted as L1. Finally, the vehicle traverses to L1 and, from that location, it heads
straight towards the goal again by reinvoking the motion-to-goal behavior. The previous
procedure is repeated until the target is attained or the algorithm concludes that it is
unreachable. Look at figure 2.14 and algorithm 2.3 for further details.

2.6.2 Bug2

Author(s): Vladimir LUMELSKY [53, 54] and Alexander STEPANOV [53]

Reference(s): [53] 1987, [54] 1991

Description: Like its Bug1 sibling, the algorithm Bug2 also presents two behaviors: motion-
to-goal and boundary-following. The former moves the robot towards the target point
over the m-line which, contrary to Bug1, connects all the time S and T —notice that
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Algorithm 2.3 Main steps for Bug1

0) Initialise i = 1 and L0 = S.

1) From point Li−1, move along the straight-line segment ST until one of the following
occurs:

a) T is reached. The algorithm stops.

b) An obstacle is found. As a result, the hit point Hi is defined and step 2 is executed.

2) Follow the boundary of the obstacle to the left taking into account the next two possible
situations which can arise:

a) T is reached. The algorithm stops.

b) The robot returns to Hi completing thus a loop around the obstacle contour.
In this case, determine the point Q on the perimeter of the obstacle that has
the shortest distance to T . Additionally, go to Q following the shortest way along
the boundary. Finally, execute step 3.

3) If the line connecting Q and T intersects the current obstacle, then there is not a path
to T , stopping, in consequence, the algorithm. Otherwise, several actions are taken:
define the leave point Li = Q, set i = i + 1 and, lastly, go to step 1.

Figure 2.14: Robot’s trajectory according to the algorithm Bug1.
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Figure 2.15: Path generated by the algorithm Bug2.

we use the same notation as in section 2.6.1. Regarding the boundary-following behavior,
it is invoked when the robot finds an obstacle which impedes progress. In such a case,
the vehicle goes around the sensed obstacle until reaching a point on the m-line closer to
T than the initial point of contact with the obstacle —i.e. than the most recently defined
hit point (Hi). At that moment, the robot proceeds to the goal again, repeating the
circumnavigation process when another obstacle is detected on its way. See section 4.1
for a deeper description of the strategy Bug2 and figure 2.15 for an illustrative example.

2.6.3 VisBug

Author(s): Vladimir LUMELSKY [55] and Tim SKEWIS [55]

Reference(s): [55] 1990

Description: Going beyond the so-called “tactile” algorithms, mainly represented by Bug1
and Bug2 (refer to sections 2.6.1 and 2.6.2, respectively), the motion planner VisBug
achieves improved navigation results by exploiting range data. The mobile robot is here
assumed to be equipped with a vision sensor, which mimics a typical range finder in
the sense that it provides the vehicle with the coordinates of those obstacle boundary
points lying within a limited field of vision around the robot. In a few words, VisBug
uses this —local— information to calculate shortcuts on a reference path generated by
the algorithm Bug2. Specifically, the strategy first reconstructs in the current field of
view of the robot the path which would be produced by Bug2. Later, VisBug moves
the robot one step forward in the direction pointing to the farthest endpoint of such a
Bug2 path. These two stages operate iteratively until either converging to the target
(T ) or realizing that T is definitely not reachable. By way of example, figures 2.16(a),
(b), and (c) shows how the algorithm VisBug performs its first iteration in a scenario
with just one obstacle. Additionally, figure 2.16(d) depicts the whole path that would
be obtained.
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2.6.4 DistBug

Author(s): Ishay KAMON [56] and Ehud RIVLIN [56]

Reference(s): [56] 1995

Description: The algorithm DistBug differs from the Bug1 and Bug2 approaches in, funda-
mentally, the two following aspects:

• The strategy assumes that the vehicle is equipped with finite range sensors instead
of contact —zero range— sensors for the detection of obstacles.

• The behavior of the robot changes from boundary-following to motion-to-goal when
range data guarantees that the next hit point will be closer to the goal than the
previous one.

In this way, like Bug1 and Bug2, DistBug also ensures the mission completion whenever
possible as well as the detection of those situations where the target is not reachable.
Algorithm 2.4 gives the details.

Algorithm 2.4 Main steps for DistBug

{S and T represent, respectively, the starting and the target points of the mission}

0) Initialise i = 1 and L0 = S.

1) Move along the straight-line segment Li−1T until one of the following occurs:

a) T is reached. The algorithm stops.

b) An obstacle is found. As a result, the hit point Hi is defined and step 2 is executed.

2) Follow the contour of the obstacle in the direction given by applying a minimum turn
criterion. At the same time, take into account the next three possible situations which
can arise:

a) T is reached. The algorithm stops.

b) The robot returns to Hi completing thus a loop around the obstacle boundary. In
this case, the target cannot be achieved —it is unreachable— so that the algorithm
is also stopped.

c) By means of the robot’s range sensors, a free-obstacle path in direction to T is
detected guaranteeing that the next hit point (Hi+1) will be closer to the target
than Hi. Under these circumstances, several actions are taken: define the leave
point Li in coincidence with the current robot position, set i = i + 1 and, lastly,
go to step 1.
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Figure 2.16: VisBug as an iterative three-stage algorithm: (a) sensing of the surrounding
obstacles; (b) reference path generated by the strategy Bug2; (c) taking a shortcut on (b);
(d) resultant trajectory.
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Figure 2.17: The TangentBug approach: (a) points of discontinuity of ρR(x, θ); (b) basic
behaviors.

2.6.5 TangentBug

Author(s): Ishay KAMON [57], Elon RIMON [57] and Ehud RIVLIN [57]

Reference(s): [57] 1998

Description: TangentBug constitutes an improvement of the Bug2 algorithm (see section
2.6.2) by generating shorter paths to the goal using a range sensor with a 360 degree
infinite orientation resolution. This range sensor is modelled with the so-called saturated
raw distance function ρR : R

2 × S1 → R. Considering a mobile robot located at x ∈ R
2

with rays radially emanating from it, for each θ ∈ S1, the value ρR(x, θ) represents
the distance to the closest obstacle along the ray from x at an angle θ. No obstacles are
detected beyond a distance R according to the limited range of this kind of sensors.

The strategy TangentBug assumes that the robot can detect discontinuities in ρR. Fig-
ure 2.17(a) shows an example where the points Oi correspond to such losses of continuity,
either as a result of one obstacle blocking another or the sensor reaching its range limit.
On the other hand, notice that the sets of points on the boundary of the free space
between O1 and O2, O3 and O4, O5 and O6, and O7 and O8, highlighted with gray thick
solid curves, are the intervals of continuity.

Just like the other Bug approaches, TangentBug iterates between two behaviors: motion-
to-goal and boundary-following. Initially, the former guides the vehicle. Consequently,
the robot progresses along a straight line towards the target until it senses an obstacle
in the goal direction. This means that the line segment connecting the robot and
the goal intersects an interval of continuity [Oi, Oi+1]. Next, the vehicle moves to
the point Oj , j ∈ {i, i + 1} that maximally decreases the heuristic distance function
d(x,Oj) + d(Oj , T ), where d is another function that computes the Euclidean distance
between two points and T denotes the target of the mission. The interval of continuity is
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continuously updated as the robot moves to a particular Oj . The vehicle undergoes the
motion-to-goal behavior until it can no longer decrease the heuristic distance to the goal
or, in other words, until it finds a point that is like a local minimum of d(·, Oj)+d(Oj , T )
restricted to the path that motion-to-goal dictates.

When the robot switches to boundary-following, it moves in the same direction as if it
was in the motion-to-goal behavior (see figure 2.17(b)). While performing this motion,
the algorithm also updates two values: dfollowed and dreach. The former is the minimal
distance from the target along the followed obstacle’s boundary. The value dreach is, on
the other hand, the minimal distance from the target within the line of sight of the robot.
When dreach < dfollowed, the vehicle finishes the boundary-following behavior.

To conclude, algorithm 2.5 completes the description of the TangentBug strategy.

Algorithm 2.5 Main steps for TangentBug

{Let CT be the point where a circle centered at x of radius R intersects the straight segment
connecting x and T . Notice that this is the point on the periphery of the sensing range that
is closest to the target when the robot is placed at x. On the other hand, the endpoints of
the interval of continuity in ρR(x, θ) located in the goal direction, if any, are denoted as Oi

and Oi+1}

while T is not reached and T is not known to be unreachable do

{Motion-to-goal behavior}
repeat
{Notice that an infinite cost is associated to the function d when an obstacle is known
to intersect the line segment defined by its two parameters}
Move towards the point n ∈ {CT , {Oi, Oi+1}} which minimises d(x, n) + d(n, T ).

until T is reached or
the direction that minimises d(x, n) + d(n, T ) begins to increase d(x, T )

{Boundary-following behavior}
Define the contour following direction in line with the most recent motion-to-goal
direction.
repeat

Update dfollowed, dreach and {Oi, Oi+1}.

Move towards the point n ∈ {Oi, Oi+1} that is in the chosen boundary direction.
until T is reached or

dreach < dfollowed or
the robot completes a cycle around the obstacle, meaning that T cannot be achieved

end while
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2.6.6 CBug

Author(s): Yoav GABRIELY [58] and Elon RIMON [58]

Reference(s): [58] 2005

Description: This algorithm called CBug is an interesting extension of the Bug1 approach
presented in section 2.6.1. More precisely, given a start S and a target T , the strategy
defines a virtual ellipse with focal points S and T , and area A0 where the robot should
afterwards look for the goal. The search is specifically carried out according to Bug1
(see algorithm 2.3), considering the boundary of the ellipse as an obstacle. As a result,
if the target is achieved, the algorithm stops. Otherwise, the robot repeats the process
on larger ellipses with areas 2iA0 for i = 1, 2, . . . until T is finally reached or determined
to be inaccessible from S. The main feature of CBug is that the resultant path length is
at most quadratic with regard to the optimal trajectory, bounding thus the maximum
difference between both solutions. To conclude, algorithm 2.6 describes the strategy
in depth.

Algorithm 2.6 Main steps for CBug

0) Initialise i = 1, Si = S and A(i) = A0, where A0 is the initial area of an ellipse with
focal points S and T . This ellipse is considered by the algorithm as a virtual obstacle.

Repeat

1) Search for T according to algorithm 2.3 (Bug1 ) and starting from Si.

2) If T is reached, the process stops.

3) Else {T is determined not to be reachable}

3.1) If the ellipse is not part of the current obstacle boundary

T is definitely unreachable. In consequence, the process stops.

3.2) Else

Define Si+1 as the point where the algorithm Bug1 finished

4) Set i = i + 1 and A(i) = 2A(i − 1).

5) Compute the new ellipse.

End Repeat
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Figure 2.18: Solving a three-dimensional navigation problem with 3DBug (a) solid view;
(b) wired view.

2.6.7 3DBug

Author(s): Ishay KAMON [59, 60], Elon RIMON [59, 60] and Ehud RIVLIN [59, 60]

Reference(s): [59] 1999, [60] 2001

Description: The algorithm 3DBug studies the problem of Bug-type three-dimensional nav-
igation. Concisely, 3DBug is able to effectively move a point-shaped robot equipped
with a sensor with infinite detection range in a three-dimensional unknown environment
populated by stationary polyhedral obstacles. Moreover, this is achieved while ensuring
global convergence to the target. The algorithm uses two modes of operation, generi-
cally named motion-to-goal and obstacle-surface-traversal. During the former, the robot
follows an estimation of the locally shortest path to the target8. Alternatively, after find-
ing a blocking obstacle, the mode of operation of obstacle-surface-traversal is adopted.
If so, the robot looks for a suitably exit point on the obstacle surface from where it can
resume its motion towards the target. Figures 2.18(a) and (b) provide different views of
the path generated by the algorithm 3DBug in a scenario consisting of a closed box with
a small hole near one of its corners —the target (T ) is within the box, as opposed to
the starting point (S) whose location does not allow the robot to see the box entrance.
As can be observed, for comparison purposes, the globally shortest path is also repre-
sented in the figures. In quantitative terms, the solution given by 3DBug is 1.67 times
longer than the optimal one.

8 The locally shortest path means the shortest free-obstacle path, from the current location of the robot to
the target, that can be computed by only considering the currently visible obstacles



Chapter 3

Traversability and Tenacity :
Two New Concepts for

Improving Navigation of

Purely Reactive Control Systems

under Limited Sensing Capabilities

The ability of a purely sensor-based/reactive control system for successfully solving a given
navigation task depends on several factors, the most obvious being the technique adopted for
avoiding obstacles. However, it is important to note that the particular features of the sensors
mounted on the robot are also a critical factor influencing navigation. As an example of such
an influence, changes are expected in the length and the smoothness of the resultant path,
the risk of collision, and the likelihood of reaching the target point, when applying the same
obstacle-avoidance technique on robots which differ in both the range and the resolution of
the obstacle-detection sensors. As it seems clear, the less anticipation —meaning a shorter
maximum detection range— and the less precise the robot’s sensors estimate the position of
the surrounding obstacles, the more significant/detrimental the changes will be in the three
aspects mentioned above, typically used as descriptors of the quality of the navigation.

This chapter puts forward a novel framework for conducting complex maze-like navigation
tasks, while wholly relying on local information —as it corresponds to a purely reactive
control system— coming from low-cost proximity sensors (for instance, sonar/ultrasonic and
infrared/IR sensors). Generally speaking, these sensors, beyond their inexpensive nature, are
characterized by providing short and poor range measurements in non-controlled scenarios,
mainly when compared to other usual sensors in mobile robotics such as laser range-finders.
The key reason for facing the reactive navigation problem in an imprecise data context is
to be able to devise robust strategies. As one can intuitively imagine, any strategy capable of
efficiently and safely moving a robot equipped with low-cost sensors to the intended target,
should similarly —or even better— behave when having wider and more accurate information
about the environment.

In the following, as pointed out before, a generic framework is developed to help purely
reactive control systems with the achievement of more difficult navigation tasks, while per-
ceiving the environment —obstacles— through low-cost sensors. The proposal is based on two

new concepts, named Traversability and Tenacity
(

T 2
)

. These concepts derive from the iden-

tification of the underlying causes that make the robot fall into a local minimum —in short,
this represents a location, not corresponding with the one of the global target, where the robot
gets stuck indefinitely (figure 2.4 illustrates this well-known problem, commonly referred to as

39
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local minima). As repeatedly claimed in the related literature, local trapping situations are
the most limiting factor for successful navigation under the purely reactive control paradigm.
In this sense, the concepts T 2 arise with the aim of being an effective method for eliminating
such undesirable situations, while keeping the exclusively local character which distinguishes
the indicated paradigm from all others. So, with no doubt, the suggested T 2-based framework
is going to noticeably increase the complexity of the navigation tasks that a purely reactive
control system is expected to perform.

Before concluding this overview of the content of chapter 3, let us highlight the inherent
generality of the concepts T 2. To this respect, these concepts can be plainly incorporated into
many of the currently-existing purely reactive approaches. As an evident proof of such gen-
erality, this chapter additionally describes the way in which two popular, and quite different,
navigation techniques can become non-susceptible to the local minima problem on the basis
of T 2. More precisely, the enhanced techniques are the classic Potential Fields Method (PFM)
and the Dynamic Window Approach (DWA) (see sections 2.1 and 2.4.1 for a brief introduc-
tion to both strategies). Observe that, despite PFM and DWA rely on different principles1,
the same benefits —meaning the overcoming of all local trapping situations— result from
embedding T 2 within these two strategies.

The rest of the chapter is organized as follows: section 3.1 looks at the concepts of Travers-

ability and Tenacity
(

T 2
)

, while presenting them as a part of the so-called navigation filter ;

afterwards, in section 3.2/3.3, the navigation filter is used to construct the local-minima free
version of PFM /DWA; and, finally, section 3.4 discusses the points in favor and against T 2

as a new purely reactive framework for robot navigation.

3.1 The Navigation Filter

The inability to move the robot away from the target direction in a non-momentary and
strategic manner is the main reason causing local trapping situations in the purely reactive
control paradigm. By way of example, taking the Dynamic Window Approach as a rep-
resentative case of a purely reactive navigation method, figure 3.1 evidences how a robot
adopting DWA does fail in overcoming an L-shaped obstacle. As can be observed, the robot
is not able to escape from the obstacle concavity by moving back, i.e. by moving in the
direction opposite to the target. Along this section, a solution is given to this problem by
means of the navigation filter. This new module is purposely designed to guide the robot out
of any local minimum, irrespective of both the shape and the size of the obstacle/s creating
the corresponding potential trapping situation.

3.1.1 About Inputs and Outputs

Let θtarget denote the direction from the current position of the robot to the target location,
just as depicted in figure 3.2(a). Then, at each iteration of the robot control cycle, θtarget

is provided as an input to the navigation filter. On the other hand, regarding the outputs,
the navigation filter generates the result of transforming θtarget into a more promising direction
of motion, referred to as θsol. Figure 3.2(b) summarizes the single-input/single-output scheme
of the navigation filter.

1 According to the widely-accepted classification given in [61], PFM is a directional method while DWA is
a velocity-space method
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Figure 3.1: Identifying what is lacking in purely reactive control systems to avoid the robot
to be trapped due to local minima (in the experiment above, DWA is tested in a troublesome
scenario using a Pioneer 3-DX robot).

Figure 3.2: The navigation filter at first glance: (a) meaning of θtarget; (b) θtarget and θsol

as input and output, respectively.



42 T 2: A Reactive Framework for Tackling Complex Navigation Tasks

3.1.2 Basic Principles

The fundamental task of the navigation filter is the appropriate alteration of its input θtarget

—this is assumed to be the default/ the most desired direction of motion for the robot.
Such change on θtarget is carried out only when becoming aware of the detection of obstacles
in that precise direction. If so, the output θsol is computed in accordance with the principles
of Traversability and Tenacity, jointly called T 2 (see footnote 2). Concisely, the first one
suggests banning those directions where an obstacle has been found as well as choosing
some obstacle-free directions near the desired one —i.e. θtarget— when it has been banned.
In this last case, the tenacity principle ultimately determines what obstacle-free direction
will be selected among all the available alternatives. Next, both principles are described
in depth.

3.1.2.1 Traversability

The application of the traversability principle requires the division of the space of directions
around the robot into K identical angular regions as it is illustrated in figure 3.3(a). Each
region comprises a disjoint range of directions which can be classified as allowed or banned.
Specifically, a region is said to be allowed when all the directions in its range are obstacle-free.
On the contrary, when this condition is not satisfied, the region is alternatively classified
as banned.

Based on the previous information, this principle is intended to forbid the robot’s move-
ment in directions where the presence of obstacles has been recently determined, avoiding
thus unnecessary and unsuccessful displacements in the task of looking for a feasible path
to the target point. With this purpose in mind, the viability of the input θtarget is studied
according to the above-mentioned premise. Changes are required only if such direction of mo-
tion lies in a banned region (otherwise, the navigation filter does not act, producing as output
the same input direction —θsol = θtarget). More exactly, in the non-trivial case where θtarget

results to be banned, two alternative motion directions, generically labeled as left and right,
are obtained as the outcome of a double searching process, clockwise and counterclockwise,
for the first allowed region starting from θtarget (see figure 3.3(b) for a clarifying example).
The final decision about choosing one direction or another as θsol absolutely depends on
the principle of tenacity, which will be explained next.

3.1.2.2 Tenacity

Taking figure 3.1 as an example, the trajectory of a robot that has been trapped can be seen,
in broad terms, as the result of an endless sequence of forward and backward movements.
These movements alternate each time the vehicle moves either excessively away from the tar-
get direction (θtarget) or very close to the obstacles blocking θtarget. The tenacity principle
precisely tries to give a solution to that oscillating and hesitant behavior by preventing the
robot from abruptly changing its direction of motion. Besides, in this manner, progress is
always ensured, removing thus the major cause of local trapping situations. As for the imple-
mentation details, remember that two alternative motion directions labeled as left and right

2 Notice that concepts roughly related with the principles of traversability and tenacity can be separately
found in several studies in the field of obstacle avoidance such as, for instance, in [16] and [48]. These concepts,
nevertheless, have never been combined —to the author’s best knowledge. The proper definition and combina-
tion of the principles T 2 makes the robot behave in such a way that it gets never trapped into a local minimum.
Conversely, [16, 48] suffer from the local minima problem
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Figure 3.3: Understanding the traversability principle: (a) division of the space of directions
into K regions (R0, . . . , RK−1), which are labeled as allowed or banned ; (b) selection of two

obstacle-free motion directions, named left and right
(

in a few words, each of these directions

corresponds to the midpoint of the range of the counterclockwise (left)/clockwise (right)

allowed region that is closest —angularly speaking— to θtarget

)

.

are found when θtarget lies in a banned region. Under these circumstances, one of such direc-
tions has to be selected as output of the navigation filter —θsol. To this end, the principle
of tenacity is applied, which consists in choosing left or right in coincidence with the last
decision made. Despite the obvious simplicity of the concept, it has proven fully effective.

3.1.2.3 Temporarily Remembering the Obstacles

As was mentioned in section 1.3, purely reactive approaches react directly to the world as it
is sensed, avoiding the need for intervening any kind of abstract representational knowledge.
The sentence “what you currently see is what you get” faithfully sums up this idea. Therefore,
in this context, only the use of the local information provided, at the current time instant,
by the robot’s sensory equipment is permitted for solving the intended navigation task. On
a practical implementation, however, this constraint is, in general, slightly relaxed by allowing
that these methods can make their decisions based upon a small memory/buffer containing
all the environmental information collected by the robot’s sensors during a configurable time
window —an example of a purely reactive control system, namely the Nearness Diagram
method (ND) (refer to section 2.5.1), with such an implementation pattern can be found in the
widely-employed Player/Stage software. In this way, the aforementioned sentence describing
the inherent meaning of purely reactive navigation can be rewritten, from an implementation
point of view, as “what you have recently seen is what you get”.

Adopting this practical perspective, our navigation filter considers information regarding
the obstacles beyond the current robot’s field of view, by memorizing the approximate location
of those obstacles that have been freshly detected. This information is used, after a change
in position of the robot, to recalculate the type —banned or allowed— of the regions that
conform the whole space of directions. By way of example, figure 3.4 clearly illustrates the two
following related facts: on the one hand, the capability of the navigation filter for remembering
the existence of obstacles in directions where, presently, an obstacle-free space is perceived by
the robot’s sensors; on the other hand, the up-to-date type of the regions which consistently
reflects all the recently-obtained obstacle information.
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Figure 3.4: Short-term buffering of the location of the obstacles which are sensed as navigating.

As expected from a local framework, the navigation filter holds (obstacle) data, but just
temporarily. To this respect, nevertheless, it is important to note that such a temporality is
not achieved by the simple definition of a time window of fixed length, where each data point
remains in memory during a fixed time horizon —being later removed—, as actually done,
for instance, in ND . On the contrary, the navigation filter accumulates environmental data
for some variable time —once this time is over, all data previously accumulated is discarded.
To be more precise, this accumulation process is constrained to a time window whose length
varies depending on the specific characteristics —basically, shape and size— of the obstacles
that are impeding, at a given time, the progress of the robot towards the target. In short,
the navigation filter does not get rid of any data until ensuring that the currently block-
ing obstacles have been overcome. Further details about this subject will be explained in
section 3.1.3.

Finally, relating to the above, let us highlight that the adaptive temporary storage of data
is a necessary feature for the navigation filter in order to cope with the pursued goal of
escaping from all local minima —regardless of both the shape and the size of the obstacles
causing these potentially trapping situations, as well as the maximum detection range of
the robot’s proximity sensors— while requiring, at the same time, an amount of memory
continuously fitted to the recently-experienced environmental circumstances.

3.1.3 Analyzing the Induced Robot’s Behavior

A robot moving in the direction given by the navigation filter, referred to as θsol —notice
that this T 2-compliant direction is continuously updated to accommodate for both the new
environmental data acquired by the robot’s sensors, and the changing location of the robot—,
exhibits the next three behavioral traits:

1. When the robot is navigating far from obstacles, it heads for the target point fol-
lowing a straight-line path. During this period of time, the navigation filter remains,
in some sense, inactive by generating as output the same input motion direction, which
means that θsol = θtarget.

2. After the detection of an obstacle, the robot follows its contour in a certain direction.
This contour following process emerges as a direct consequence of the changes performed
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by the navigation filter on θtarget according to T 2. Let us now focus on the first time that
θsol is going to differ from θtarget. In this particular case, once having obtained the left
and right traversability-based choices, the principle of tenacity cannot be subsequently
applied due to the lack of a previous decision about the convenience of selecting either
the left or right choice as the output θsol. A set of different criteria to make this
first/undefined decision will be discussed later, however, for now, it is important to
know that such a decision does determine the specific direction taken by the robot to
move along the boundary of the involved obstacle.

3. Lastly, the robot realizes that the obstacle has been suitably circumnavigated when
the direction to the target becomes free of obstacles, or in other words, when θtarget

lies in an allowed-type region. At that moment, the filter is reset losing thus all the
previously kept information —i.e. the up-to-now perceived part of the obstacle—, which
is no longer needed in the assumed context of local navigation.

These stages are sequentially executed in the order specified as many times as obstacles
the robot finds on its way towards the target point (look at figure 3.5 for a simple example).

3.1.4 Some Relevant Considerations

Once the fundamentals of the navigation framework T 2 have been examined, more specific
details about it are considered in the following:

• As clearly pointed out in section 3.1.3, after the detection of a new obstacle, the first
computation of θsol cannot be properly made just in accordance with the principles T 2.
This is essentially due to the fact that the principle of tenacity, because of relying on its
own previous decisions, is not able to solve the problem of choosing, for the first time,
between either the left or right alternative motion directions which derive from applying
the traversability principle (see figure 3.5(b) where it is revealed the lack of answer of
the tenacity principle at step 3). Therefore, it seems evident that an additional criterion
is required to deal with such left-out situations. With this aim, let us, first of all,
emphasize the repercussions that come from selecting one of the two —left and right—
traversability-based choices in the given context of first-time computations of the output
θsol. Specifically, each of these decisions ultimately determines the resultant following
direction of the contour of the corresponding new obstacle that is impeding the robot’s
advance. Next, keeping this in mind, an analysis is presented with regard to the pros
and cons of three common-sense criteria that could help the navigation filter decide
the precise direction in which the robot would have to move along the boundary of
the detected obstacles. Briefly stated, these criteria are as follows:

The minimum-turn criterion. In this case, the contour following direction to be taken
by the robot coincides with the one that involves the smallest/minimum turning
angle. As most important advantages of this criterion, we can mention a slightly
reduced energy consumption and a lower risk of collision with obstacles because of
performing a simpler robot’s maneuver. As for the drawbacks, the minimum-turn
criterion unfortunately favors that some parts of the boundary of an obstacle are
traversed more than once, as shown in figure 3.6(a). What is worse, such a repeated
traversal may easily lead to cyclic behaviors, preventing thus the robot from con-
verging to the target point (refer to figure 3.6(a) again).
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Figure 3.5: Pattern behavior of a T 2-based purely reactive navigation method while escaping
from a large U-shaped obstacle: (a) direct path to the target; (b) following the contour of
the obstacle to the robot’s left (observe that this direction is defined in step 3 by supposedly
choosing the option labeled as left between the two alternatives that result from the application
of the traversability principle); (c) reset of the navigation filter returning, later, to (a) again
where the target point is definitely reached.
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Figure 3.6: Exemplification of three alternative criteria to decide on the contour following
direction: (a) minimum turn; (b) and (c) fixed beforehand —set to left, in both cases—;
(d) random. As a general remark on the figure, it is important to stress that all the trajectories
have been drawn by hand according to the known —as described by section 3.1.3— way
of acting of a robot that adopts the principles T 2. Additionally, going deeply into some
particular cases, notice that in (a)/(c), after step 3/2, the second step is executed again
giving thus rise to a cyclic behavior.
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The fixed-beforehand criterion. Based on this criterion, the direction to follow the
boundary of the obstacles is always the same. Moreover, such a constant direc-
tion should be explicitly defined by means of a parameter prior to conducting
the navigation task. As it seems obvious, this is one of the simplest ways of
facing the problem of selecting one contour following direction or another —i.e.
either left or right—, since the decision does not require any calculation, just take
the value given to the aforesaid parameter (notice that, in computational terms,
the formerly explained minimum-turn criterion is plainly more demanding than
the fixed-beforehand criterion, due to the need for estimating the angle in which
the robot approaches the obstacle surface). On the other hand, the second main
benefit of the fixed-beforehand criterion is its remarkable tendency to elude cyclic
behaviors. By way of example, figure 3.6(b) illustrates how a fixed-beforehand-type
robot gets a global and continuous progress to the target, while avoiding to revisit
all previously traversed obstacle boundary segments. To conclude, however, it is
important to highlight that cyclic behaviors may actually appear under the fixed-
beforehand criterion, but merely in less natural environments with very intricate
obstacles such as the one of figure 3.6(c).

The random criterion. As can be guessed by the name, in this context, the spe-
cific direction taken by the robot to circumnavigate the contour of a new detected
obstacle is randomly chosen. Among the most interesting features that come with
this criterion, the two following stand out: first of all, simplicity; and, secondly,
the so-called probabilistic resolution of cyclic behaviors, which essentially means
that the probability of interrupting such repeated patterns converges to 1 as time
goes to infinity. Regarding this last feature, figure 3.6(d) exhibits the ability of
a robot based on the random criterion to end up getting to the target point after
looping several —three— times around the boundary of the G-shaped obstacle.
Finally, observe that the same figure also explains the major inconvenient in the
use of the random criterion. As can be seen, quite lengthy trajectories may result.

Table 3.1 provides a summary of the key points in favor and against of the three criteria
discussed earlier. As can be inferred from the table, minimum-turn is manifestly the
worst criterion that has been considered, because of having a high computational cost
—as compared to the other suggested criteria—, and not preventing the robot from
frequently getting stuck in behavioral cycles. Both of these problems are significantly
reduced under the fixed-beforehand criterion, and under the random criterion as well.
Accordingly, now let us find out which of these two advantageous criteria should be
finally adopted by the navigation filter. In this sense, by observing table 3.1, one can
rapidly conclude that there is not a clear choice between the fixed-beforehand criterion
and the random criterion on the basis of their distinguishing benefits/drawbacks. Such
an impossibility to make a decision is essentially due to the fact that the preference in
the use of one criterion or the other depends on the particularities of the environment
in which the robot is going to navigate. To be more exact, when assuming a navigation
environment just consisting of non-intricate obstacles3, the fixed-beforehand criterion
is generally better suited than the random criterion, since the former is expected to
successfully guide the robot to the target point through a shorter path. In the rest of

3 Here, the term intricate is employed to refer to an obstacle that encircles the target point, such as the one
of figure 3.6(c) (see also figure 3.6(a) for an example of a non-intricate obstacle)



3.1. The Navigation Filter 49

Table 3.1: A comparison of the minimum-turn, fixed-beforehand, and random criteria from
the viewpoints of both their associated computational cost and their effectiveness in avoiding
cyclic behaviors.

Criterion Relative Capacity for

Computational Demands Avoiding Endless Cycles

minimum-turn High In general, bad

fixed-beforehand Low Good in most of

the typical environments

random Low In general, good

but at the cost of long paths

scenarios, however, the random criterion is a preferably choice, with the main aim of
increasing the likelihood of converging to the target.

From above, it seems evident that, among the three proposed criteria for choosing
the contour following direction, the minimum-turn criterion stands out for being the
least promising solution. As for the two remaining criteria, namely fixed-beforehand
and random , it is well-known that none of them is going to fully outperform the other
on a heterogeneous set of scenarios. Concisely, such a heterogeneous set includes three
different environmental settings: on the one hand, those exclusively involving either
intricate or non-intricate obstacles; and, on the other hand, the special setting which
mixes both types of obstacles. In a few words, the most outstanding conclusion that
issues from comparatively analyzing the fixed-beforehand and random criteria is that
they offer quite different trade-offs between completeness and path length performance.
Bearing this in mind, in the forthcoming sections —particularly referring to sections 3.2
and 3.3 where some T 2-based experimentation is carried out—, the navigation filter
will be tested by using both criteria. The reason for this double testing is to demonstrate
that, irrespective of the criterion —or trade-off— definitely adopted, the navigation
filter does achieve reasonable results in environments where conventional purely reactive
methods distinctly fail.

• A special consideration requires the situation illustrated in figure 3.7(a). As can be seen,
after step 5, the robot is not allowed to head for the target point because it is known
there are obstacles in that direction, although they are really far away. Consequently,
this mission will never be successfully completed. In order to properly solve this problem,
the obstacle information maintained by the navigation filter is partially contrasted with
the immediate/ local reality of the environment in the next way: once having applied
both the traversability and the tenacity principles, the banned region that is closest to
θsol is checked for feasibility so that its state is changed to allowed if no obstacles are
detected in its vicinity for the corresponding range of directions. Figure 3.7(b) depicts
the path of the robot after incorporating this control logic for the mission initially taken
as example.
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Figure 3.7: Removal of the obstacle information gathered by the navigation filter which
unnecessarily restricts the motion of the robot.

• The navigation filter is able to properly identify and act on the so-called potential dead-
lock situations. In brief, these situations are essentially due to obstacle concavities
and may result in temporal, or even permanent, cyclic behaviors. To be more precise,
a potential deadlock situation arises when the robot, while moving along the contour
of an obstacle, makes a back loop which finishes facing the target point, as depicted
in figure 3.8(a). By analyzing such a figure, it seems clear that the robot, at step 6,
should decide between continuing following the boundary of the obstacle, or directly
progressing towards the target. To this respect, keeping in mind the general aim of
decreasing the chances for cyclic behaviors, there is no doubt that the former choice
is more suitable/ less risky than the latter one (observe that, under the second choice,
steps 3 to 6 will be repeated again if the robot, after reaching/detecting the bottom
wall of the obstacle on its straight-line way to the target, chooses left as the new
contour following direction4). In closing, the preceding discussion definitively supports
the fact that the navigation filter adopts the conservative strategy of not abandoning
the contour following process in the face of potential deadlock situations (accordingly,
figure 3.8(a) provides a multiple-line-segment representation of the trajectory that would
be performed by the navigation filter after step 6).

In the next lines, further details are given about the range of different potential deadlock
situations that can be feasibly managed by the navigation filter. In this regard, let us
redefine what the navigation filter actually considers as a potential deadlock situation
—in essence, these situations are characterized by significantly favoring the generation
of behavioral cycles. Before redefining the concept, however, remember that a po-
tential deadlock situation was first stated to be caused by obstacles having a simple

4 Either the fixed-beforehand criterion or the random criterion will determine the precise direction —
left / right— taken to follow the wall
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Figure 3.8: Distinguishing (a) simple and (b) nesting potential deadlock situations (notice that
in both exemplifying cases, the navigation filter is conveniently assumed to choose the left
contour following direction at step 2).
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back-loop form, as illustrated in figure 3.8(a). To be fair, the navigation filter goes far
beyond this limited perspective by generally understanding a potential deadlock situa-
tion as being produced by obstacles that are looping back according to a spiral pattern.
So, based on this broader perspective, the obstacle of figure 3.8(b) certainly constitutes
a potential deadlock situation because of its double-loop spiral-like shape (additionally,
notice that the obstacle of figure 3.8(a) keeps still labeled as potentially deadlocking,
since it is a degenerate/one-loop case of a spiral). In short —and as will be seen later—,
the navigation filter prevents the robot from getting stuck in all spiral-inspired potential
deadlock situations.

Now, once having clarified the meaning of the concept of potential deadlock situation, the
(so-far omitted) issue of how the navigation filter recognizes these troublesome situations
is carefully addressed. Nevertheless, prior to focussing on this subject, let us classify
all potential deadlock situations into two groups. Specifically, this classification is made
on the basis of the spiral-like form that is supposed for any deadlock-type obstacle.
Furthermore, the number of loops in the spiral is the particular feature used for classifi-
cation purposes. In view of that, the two following groups are defined: on the one hand,
the so-called simple group, which includes those potential deadlock situations/obstacles
resembling a spiral with exclusively one loop; on the other hand, the group referred to as
nesting, which comprises every multi-loop spiral-shaped obstacle. At this point, it is im-
portant to highlight that the navigation filter employs different methods for identifying
simple and nesting potential deadlock situations. Next, these methods are separately
studied:

Concerning simple spiral-shaped obstacles. In a few words, the navigation filter
knows that the robot is currently circumnavigating the contour of an obstacle
with simple spiral-like shape when the space of directions is almost fully banned
(take figure 3.8(a) as an example).

Concerning nesting spiral-shaped obstacles. First of all, let us discuss an addi-
tional characteristic of the navigation filter named multi-layer. In practical terms,
this feature is exhibited only when having a space of directions entirely banned.
Specifically, in such circumstances, the navigation filter exploits the concept of layer
to provide a conceptual separation between the obstacle information that was
previously accumulated and the one that is going to be gathered in the future
(notice that, in essence, a layer corresponds to a representation of a subset of the
available obstacle information in the form of a 360-degree/polar-like space, which
ultimately designates both feasible/allowed and unfeasible/banned directions of
motion for the robot). By way of example, figure 3.8(b) shows clear evidence of
the multi-layer feature in a rather difficult scenario with a multi-loop obstacle. As
can be seen, the space of directions becomes fully banned at step 6 —i.e. after
completely traversing the outer loop of the spiral-shaped obstacle. As a direct
consequence of this fact, the navigation filter acts as follows: on the one hand,
the current space of directions —obviously, this includes all data causing its fully-
banned state— turns into layer 1; on the other hand, a further layer is defined,
namely layer 2, with the definitive intention of being used for representing/allow-
ing for the motion restrictions imposed by the obstacle data to be collected from
step 6 onwards (to this respect, observe, by looking at figure 3.8(b) again, that
layer 2 is properly updated from step 6 to 14 in accordance with the newly as
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well as the early gained obstacle information5 —remember that data removal also
occurs during navigation, as indicated by the ruled lines that, from time to time,
appear in the space of directions).

Leaving momentarily aside the example of figure 3.8(b), let us now generally de-
scribe the two most relevant functional aspects —particularly referring to the
creation and destruction of layers— of the multi-layer feature. To begin with,
assume that X denotes the number of currently existing layers —X ≥ 1. Then, the
navigation filter will create layer X+1 when becoming aware of a fully-banned state
on layer X. In contrast, regarding the destruction of layers, the navigation filter
will remove layer X when both of the following conditions are satisfied: (1) the
robot’s heading should point to the target; in addition, (2) the space of directions
associated with layer X should be less than half banned.

In order to clarify the previously stated layer-removal criterion, consider figure 3.8(b)
at step 6, where layer 2 is created (hence, X = 2). From that moment on, only
steps 10 and 14 comply with condition 1 since, in these steps, the precise angle
that the robot is facing —as given by θsol— coincides with θtarget. Alternatively,
relating to the second condition claimed, step 6, and steps 11 to 14, visibly fulfill it.
In short, under X = 2, conditions 1 and 2 are jointly met at step 14 for the
first time. Finally, it is important to remark that, after removing layer X = 2
at step 14 (consequently, now X = X − 1 = 1), the navigation filter continues
following the contour of the obstacle on the basis of layer X = 1, as made clear
by step 15.

As can be deduced from above, in the face of a multi-loop spiral-shaped obstacle,
the navigation filter, by applying the multi-layer feature, will create as many layers
as loops the spiral has. Each layer will be associated to a different loop; moreover,
layer Y (1 ≤ Y ≤ X) will contain the obstacle information locally collected while
traversing —in counterclockwise direction— the Y -th —from outer to inner— loop
of the spiral-like obstacle. Taking advantage of all this information, the navigation
filter will revert every loop traversal back —i.e. in clockwise direction—, with
the aim of certainly avoiding the underlying nesting potential deadlock situation
(in figure 3.8(b), this way of acting is revealed by steps 1 to 15, as well as by the
subsequent straight-line segments connecting step 15 with the target point, which
represent the rest of resultant robot’s trajectory).

To conclude, let us explicitly put in words the trivial fact that the navigation filter
knows that the robot is currently circumnavigating the boundary of an obstacle
with nesting spiral-like shape when there exists more than one layer —or equiva-

lently, when X > 1
(

to this respect, notice additionally that any nesting potential

deadlock situation becomes simple when, due to the removal of layers, X reaches

its default value of 1, just as occurring at step 15 in figure 3.8(b)
)

.

Summarizing, as a handy principle for decreasing/ increasing the chances of cyclic be-
haviors/global convergence, the navigation filter, under the detection of either a simple
or a nesting potential deadlock situation, does oblige the robot to keep performing
the contour following process on the corresponding obstacle.

5 As a special case, it is important to note that there is not early obstacle information at step 6. Moreover,
in this step, layer 2 is exclusively feeded with the new data that ‘overfull’ layer 1
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As a final point, algorithm 3.1 describes, step by step, how the navigation filter operates
(observe that, with the main aim of making algorithm 3.1 reasonably clear, the pseudo-code
associated with the handling —i.e. identification and avoidance— of nesting-type potential
deadlock situations has been wholly omitted).

3.2 The Classical Potential Fields Method with

no Local Minima

Broadly speaking, along this section, the Potential Fields Method (PFM) will be extended
to properly avoid those trapping situations caused by the local minima problem. Specifically,
such an improvement will be accomplished by merely incorporating the previously developed
navigation filter into the typical control architecture of a PFM . As a final part of this section,
the proposed PFM -based strategy will be widely tested in both simulated and real scenarios
with the intention of clearly demonstrating the achievement of the local minima-free property.
What is more, the aforesaid experimentation will also serve to show the appearance of two
additional properties, not found in the original/classical PFM , which namely are: on the one
hand, the capacity for successfully solving complex navigation tasks even when the detection
of obstacles relies on low-cost sensors; and, on the other hand, the capability of producing,
in general, shorter trajectories in comparison to other well-known techniques in the currently-
concerned field of purely reactive navigation.

Next, before going into the description and the experimental evaluation of the proposal,
two alternative formulations of the potential fields method will be deeply discussed. Concisely,
the first formulation corresponds to the one of the classical approach put forward in [8] —and
also briefly introduced in section 2.1—, while the second formulation is new and constitutes
a further development of the previous one, in the sense of producing smoother and safer paths
to the target —but without preventing the robot from being trapped into a local minimum,
just like occurs with the classical formulation. Table 3.2 brings together the formal terms that
will be shared by both formulations.

Finally, regarding the above, it is important to point out that one of these two formulations
of a PFM —to be exact, the second one because of its distinctive advantage of generating
better trajectories in terms of smoothness and obstacle clearance— will be later used in
this section for building, in combination with the navigation filter, the intended PFM -based
strategy with no local minima.

3.2.1 Going Deeply into the Classical Potential Fields Method

The classical potential fields approach computes the motion of the robot on the basis of two
simple behaviors: GoTo and AvoidObstacles. More precisely, the former generates an attrac-
tive force in direction to the target, while the latter considers obstacles as repulsive surfaces.
The robot follows the negative gradient of the resulting potential field towards its minimum,
whose position is expected to coincide with the target point. In the following lines, this method
is initially formalized for the case of one obstacle, being, afterwards, generalized.

3.2.1.1 Considering a Single-Obstacle Scenario

The artificial potential function applied to the robot has the form shown in equation 3.1, where
Ua(X) and Ur,o(X) denote, respectively, the attractive/repulsive potential field induced by the
target/obstacle in X. The attractive potential field is, on the other hand, defined according
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Algorithm 3.1 Steps of the navigation filter at each control loop iteration

{For a greater clarity, the scope of the variables DeadlockSituation, NewObstacle, and CFD —the latter
stands for Contour Following Direction— is considered to be global. Additionally, observe that both Dead-
lockSituation and NewObstacle denote a boolean-type variable that is globally initialized to false and true,
respectively}

Get the up-to-date value of θtarget {Input}

{New state for the space of directions}
Acquire the local data provided by the onboard robot’s sensors for obstacle detection

Merge the new obstacle information with that one previously collected

Compute the state —banned /allowed— of the angular regions based on the current robot’s position

{Recognizing the beginning and the end of a simple-type potential deadlock situation}
if an almost fully banned space is detected then

DeadlockSituation = true;
else if the current robot’s heading / orientation matches θtarget then

DeadlockSituation = false;
end if

if θtarget lies in an allowed region and DeadlockSituation is false then

{The robot directly goes to the target point}
θsol = θtarget;
Remove, if any, all the obstacle information {This step resets the navigation filter}

NewObstacle = true; {In subsequent iterations, a new obstacle may be found}

else {The robot follows the boundary of an obstacle}

{Dealing with simple-type potential deadlock situations}
if θtarget lies in an allowed region then

{The robot should be forced to continue following the contour of the obstacle. To this end, the intended
direction of motion of the robot, typically defined by θtarget, is now supposed to be given by θbanned,
which represents one of the directions in space whose state is banned}

Look for a banned region in the space of directions

Set the midpoint direction of the region resulting from the preceding search as θbanned

end if

{Concerning the Traversability principle}
if θtarget lies in an allowed region then

Obtain for θbanned the two alternative motion directions labeled as left and right
else

Obtain for θtarget the two alternative motion directions labeled as left and right
end if

{Concerning the Tenacity principle}
if NewObstacle is true then

Choose either left or right by applying a fixed-beforehand / random criterion

Modify the variable θsol accordingly

Keep the label of the direction which has been finally selected in CFD

NewObstacle = false;
else

Choose either left or right in accordance with the content of CFD

Modify the variable θsol accordingly
end if

{Removing progressively the information about obstacles which is no longer useful to navigate}
Select the banned region next to θsol {Henceforth, such a region is referred to as rcheck}

if no obstacles are locally detected in the range of directions linked to rcheck then

{Notice that here, the term locally means the exclusive use of the robot’s sensors}
Change the state of rcheck to allowed

Forget those obstacles whose location led to the prohibition of rcheck

Set the midpoint direction of rcheck as θsol

end if

end if

return θsol; {Output}
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Table 3.2: Terminology involved in the formalization of the potential fields method.

Term Meaning

X = (x, y) Current robot position

Xt = (xt, yt) Target point

Xo = (xo, yo) Location of a certain obstacle O

dt =
√

(x− xt)2 + (y − yt)2 Distance to the target

do =
√

(x− xo)2 + (y − yo)2 Distance to the obstacle

−∂dt

∂X
= −

(

(x−xt)
dt

, (y−yt)
dt

)

Unit vector determining

the direction of the attractive force

∂do

∂X
=

(

(x−xo)
do

, (y−yo)
do

)

Unit vector determining

the direction of the repulsive force

Ka, Kr Gain factors for

the attractive and repulsive forces

to equation 3.2. As can be observed, it is a positive quadratic function whose first derivative
is continuous and its only minimum is located at X = Xt. The corresponding force expression
derived from Ua(X) is also given by equation 3.3. As for the repulsive potential field, it was
selected so as to keep the resultant potential function U(X) positive, continuous and derivable
with a minimum at the target point. The details for Ur,o(X) are found in equation 3.4.
Notice that the influence of the obstacle is restricted to a neighborhood by means of the
constant dmax. In this way, it is intended to prevent the alteration of the global minimum
defined by the attractive potential function. Finally, equation 3.5 shows how the repulsive
force is calculated.

U(X) = Ua(X) + Ur,o(X). (3.1)

Ua(X) =
1

2
Ka d2

t . (3.2)

Fa(X) = −~∇Ua(X) = −Ka dt
∂dt

∂X
. (3.3)
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Ur,o(X) =
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(3.4)

Fr,o = −~∇Ur,o(X) =
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∂do

∂X
,

otherwise
0.

(3.5)

3.2.1.2 The General Case

Once both Fa(X) and Fr,o(X) have been characterized, the computation of the latter will be
generalized for a set of obstacles surrounding the robot. Assuming that the number of obstacles

which have been detected by the robot’s sensors is n, the resultant repulsive force
(

Fr(X)
)

is simply determined by equation 3.6. Such a force is, afterwards, added to the attractive one
in order to obtain the output of the method (see equation 3.7). Finally, this output should
be translated into a control command through an appropriate algorithm. To this end, several
control techniques are possible according to, mainly, the robot type, its kinematic constraints
as well as the control choice.

Fr(X) =

n
∑

i=1

Fr,oi
(X). (3.6)

F (X) = Fa(X) + Fr(X). (3.7)

3.2.2 A New PFM-type Formulation for Generating Smoother

and Safer Trajectories

Our new formulation of the potential fields method computes the motion of the robot by means
of a GoTo and an AvoidObstacles behavior just like the classical approach. However, there are
important differences with the latter regarding the way how these behaviors are defined and
their responses are coordinated in order to generate the control method’s output. As a result
of these changes, the trajectory of the robot is smoothed and the risk of collision with obstacles
is almost negligible. Next, a description of both behaviors together with their corresponding
coordination mechanism is given. Additionally, several results obtained by simulation showing
the above-mentioned properties of the new formulation are finally presented.

3.2.2.1 The GoTo Behavior

By analyzing the role of the GoTo behavior in the context of the potential fields approach,
one can easily guess that it is fundamentally responsible for the definition of an ideal path
to the target point. This path is, afterwards, slightly modified by taking into account the
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particular features of the environment —obstacles— where the robot is navigating. These
changes, which are specifically carried out by the AvoidObstacles behavior, generally result in
the loss of the path optimality from the point of view of its length, smoothness and danger6.
In short, it seems clear that there is not a significant influence of the GoTo behavior on
the causes of such lack of optimality in the trajectory followed by the robot. Consequently,
new formulations for this behavior will not lead to relevant path improvements in the sense
previously stated. Therefore, our effort should be focused on the rest of components of
the control system.

Bearing in mind the previous discussion, an existing formulation suggested in [62] has
been adopted for the GoTo behavior. This formulation possesses some differences with re-
spect to the one originally put forward in the classical approach. Specifically, the attractive
potential field which is defined produces, contrary to the latter, a force whose intensity is not
proportional to the distance between the robot and the target point. The potential function,
to be exact, has a quadratic behavior at the target neighborhood and an asymptotic one away
from it. In this way, the robot is intended to behave in the same way with regard to a given
obstacle configuration irrespective of its proximity to the target. Equations 3.8 and 3.9 show,
respectively, the expressions for Ua(X) and Fa(X) where R is a positive constant value char-
acterized by equation 3.10. Finally, in this last equation, Fref and dref are two parameters
which have to be set. To this end, notice that the former determines the norm of the force
Fa(X) precisely at distance dref (dt = dref ). The typical shapes of both Ua(X) and ‖ Fa(X) ‖
are depicted in figure 3.9.

Ua(X) =
√

d2
t + R2. (3.8)

Fa(X) = −~∇Ua(X) = −
dt

√

d2
t + R2

∂dt

∂X
. (3.9)

R = dref

√

1

F 2
ref

− 1. (3.10)

3.2.2.2 The AvoidObstacles Behavior

Most of the proposed repulsive potential fields appearing in the literature depend exclusively
on the distance to the obstacles. In consequence, any obstacle has influence on the robot
motion even if it is moving in a parallel direction, which, in general, leads to more irregular
trajectories. A repulsive potential function that modifies the intensity of the force according to
the relative angle (α) between the robot heading (~vθ) and the obstacle position is put forward

next to counteract this effect
(

see figure 3.10(a)
)

.

As can be observed in figure 3.10(b), two regions are defined around the robot, determining,
each of them, a different way of computing the force intensity. They are called influence and
safety areas. Regarding the former, it is intended to limit the influence of the obstacles
on the robot motion to those inside the region. Its shape, which is elliptical, pays special

6Notice that the closer to the obstacles, the riskier is the trajectory
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Figure 3.9: The GoTo behavior: (a) attractive potential field; (b) norm of the derived force.

Figure 3.10: The α-dependent repulsive potential field: (a) computation of the angle α;
(b) normalized influence and safety areas.
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attention to obstacles located in front of the robot due to the greater difficulty to avoid them.
Equation 3.11 expresses the distance from the robot position to the boundary of the region
as a function of α, representing d⊥ the normalized length of the semiminor axis of the ellipse
(

d⊥ = dmax(π
2 )/dsr, 0 ≤ d⊥ ≤ 1

)

and dsr the maximum range of the on-board sensors used

for obstacle detection. Finally, notice that the condition which has been added to the equation
prevents the robot from considering obstacles behind itself.

dmax(α) =



































if 0 ≤ α ≤ π
2

(

√

(

1− 2α
π

)

(1− d2
⊥) + d2

⊥

)

dsr,

otherwise
0.

(3.11)

The force intensity in the influence area is initially evaluated on the basis of the distance do

between the robot and the obstacle. Afterwards, the resultant value is weighted according to
a cosine function. As a result, the robot experiences the repulsive force at its full magnitude
when it frontally approaches the obstacle (α = 0). On the contrary, as the robot turns towards
a direction alongside the obstacle’s boundary the force is weakened, achieving its minimum
intensity with α = π

2 .
As for the safety area, it is characterized by a circular shape of radius rsa and is intended

to counteract an immediate risk of collision. Under these circumstances, a quick response
is required irrespective of the angle α. Hence, the force is computed following the classical
method where only do is taken into account.

Equation 3.12, in line with the preceding descriptions, provides the force expression Fα
r (X)

for an obstacle o, where w⊥ (0 ≤ w⊥ ≤ 1) represents the weakening factor of a force for α = π
2

and the term Fmin (0 ≤ Fmin ≤ 1) denotes the minimum force intensity before the α-weighting,
if applied, when the obstacle is detected in either the safety or the influence area.

Fα
r,o(X) =























































if do ≤ rsa
(

1− (1− Fmin) do

dmax(0)

)

∂do

∂X
,

else if do ≤ dmax(α)
(

1− (1− Fmin) do

dmax(0)

)

cos
(

2α
π

arccos(w⊥)
)

∂do

∂X
,

otherwise
0.

(3.12)

To conclude, it is important to note that a force Fα
r,o(X) has to be computed for each of the

obstacles locally surrounding the robot. To this end, our AvoidObstacles behavior internally
keeps a local occupancy grid C, whose location is such that the vehicle is always at its center.
As the robot moves around, range readings are taken and projected into the grid obtaining,
for each cell C[i, j], its corresponding probability of occupancy. According to this information,
the presence of obstacles is probabilistically determined in a very easy way. More exactly, a
repulsive force is generated for those cells of the grid whose occupancy probability is higher
than a user-definable threshold. The resultant set of forces is, later, sent to a coordination
mechanism which will be explained next.
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3.2.2.3 Coordinating their Responses

In the generic context of reactive control systems, coordination mechanisms are typically
classified into two groups: competitive and cooperative. In the former, the control of the
robot is exclusively given to one behavior until the next execution cycle. On the contrary,
the latter combines recommendations from multiple behaviors to form a single control action
which represents their consensus. Both strategies offer some advantages and disadvantages.
On the one hand, competitive methods provide good robustness7 but non-optimal paths from
the point of view of their smoothness and length. Cooperative methods, on the other hand,
present opposite features. In short, it seems obvious that a hybrid methodology that is able to
make the most of both coordination strategies is desirable. With this purpose, the general idea
of a new hybrid coordinator will be described in the following, being, afterwards, formalized
for a specific case.

The intensity of a force represents, to a certain extent, the urgency of the generating
behavior for taking the control of the robot at a precise moment. The hybrid coordination
mechanism that is proposed exploits this fact to dynamically assign a priority to each of
the behaviors’ responses —remember that the AvoidObstacles behavior may generate mul-
tiple responses/repulsive forces. Two different levels of priority generically called low and
high are defined. On the other hand, an attractive/repulsive force is considered to be of
low /high priority when its intensity, whose value is bounded to the real interval [0,1] (see
equations 3.9 and 3.12 again), is below/above a user-definable threshold. It is important
to highlight that this threshold can be differently set for each behavior. Once the forces
have been properly classified, the coordinator acts competitively between priority levels and
cooperatively inside them in order to obtain the final control system response Fα(X).

Equation 3.13 formalizes the previous idea with the aim of favoring the robot’s safety.
Notice that the α-dependent repulsive forces are now denoted as Fα

r,c[i,j](X) in accordance
with the occupancy grid used by the AvoidObstacles behavior. Moreover, in the expression,
the function O(i, j) returns 1 when the occupancy probability of the cell C[i, j] is high enough
so as to assume the presence of an obstacle in that position —0 otherwise. On the other hand,
d(i, j) is equivalent to do. As can be observed, the control of the robot is exclusively given to
the AvoidObstacles behavior in situations where at least one obstacle is detected inside the
safety area. In the rest of cases, the weighted addition of the attractive and repulsive forces
is actually performed.

As a final point, let us remark that equation 3.13 inherently supposes that the priority
thresholds associated with the GoTo and the AvoidObstacles behaviors have a value of 1 and
(

1− (1− Fmin) rsa

dmax(0)

)

, respectively.

Fα(X) =















































if ∃i, j | d(i, j) ≤ rsa and O(i, j) = 1
∑

i,j | d(i,j)≤rsa

(

Fα
r,c[i,j](X) O(i, j)

)

,

otherwise

KaFa(X) + Kr

∑

i,j

(

Fα
r,c[i,j](X) O(i, j)

)

.

(3.13)

7Owing to the fact that the active behavior with the highest priority, either static or dynamic, will always
take control of the robot in competitive coordination mechanisms, a more focused response can be given to
critical situations such as the detection of a very close obstacle



62 T 2: A Reactive Framework for Tackling Complex Navigation Tasks

3.2.2.4 Identification of the Main Properties of the Proposal

The formulation which has been previously proposed for the potential fields method provides
the control strategy with two new properties: (1) the smoothness of the robot’s path is im-
proved, and (2) the risk of collision with obstacles is also reduced. These properties have
been clearly identified by comparing the results of our proposal with the ones obtained by
the classical approach for which two different versions were contemplated in order to achieve
a larger completeness. More precisely, the first version faithfully corresponds with the de-
scription given in section 3.2.1 where a cooperative coordination mechanism was employed
to combine the responses of both the GoTo and AvoidObstacles behaviors (see equation 3.7).
Distinctively, in the second version, the coordination of these two behaviors is competitive.
To this respect, remember that this competition requires the assignment of a static priority
for each behavior (as explained in section 1.3, this requirement arises because a competitive
coordination technique acts by selecting as output the response of the active behavior with
the highest priority). In the particular case considered here, the competitive version of the
classical approach prioritizes the AvoidObstacles behavior over the GoTo behavior with the
aim of increasing safety.

Under this comparative framework, two experiments were carried out on NEMOCAT [63]
by using the simulated robot GARBI (refer to appendices A and B for details about, respec-
tively, the underwater vehicle GARBI, and the simulator NEMOCAT which has been actually
developed during this dissertation). Figure 3.11(a) shows the results for the first experiment
where the robot had to overcome some obstacles progressively narrowing the free space avail-
able for navigating towards the target. As can be plainly observed, with our formulation,
the path of the robot turned out to be much smoother. On the other hand, paying attention
on safety concerns, the second experiment was intended to reveal the reluctance of the vehicle
to collide when it was trapped into a box-shaped canyon and the target point was located

on the other side of the obstacle walls
(

look at figure 3.11(b) for a precise understanding of

the environment set up
)

. With this purpose in mind, several simulations were conducted, each

of them being characterized by a different setting of the gain linked to the GoTo behavior.
To be more exact, such a gain —Ka— was ranged from 0.05 to 2.00 in 0.05 steps, resulting
thus in forty simulations (in contrast, notice that the gain of the AvoidObstacles behavior
—Kr— was always fixed to 1.00). The results coming from all these simulations are jointly
plotted in figure 3.11(c). Regarding this figure, it is important to highlight that no results
are presented for the competitive version of the classical approach. This fact is due to the
particular context of the experiment which exploits the concept of gain. As it is well known,
a PFM that adopts a competitive coordination mechanism gets rid of this concept because
of computing its output by choosing the response of a single behavior, and not by merging
the whole set of behavioral responses. In summary, the lack of the gain concept does not
permit including the competitive version of the classical approach in the comparative study
of figure 3.11(c). Despite this, there is no doubt that the robot would never collide when
navigating competitively inside the box-shaped canyon. To conclude, by deeply examining
the results of figure 3.11(c), it seems evident that our proposal guarantees the robot’s safety
against collisions.

3.2.3 The Navigation Filter as a part of the Potential Fields Method

Figure 3.12 illustrates the integration of the navigation filter into the new formulation of
the PFM previously presented. As can be observed in such a scheme, the navigation filter
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Figure 3.11: Comparison between the classical and the suggested formulation of a PFM from

two points of view: (a) smoothness of the robot’s trajectory; (c) robot’s safety
(

besides,

(b) illustrates the scenario where the safety-assessment experiment was performed
)

. In (a),

relating to both the cooperative and hybrid coordinators, observe that the contribution to
the output motion vector of the attractive and repulsive forces was specifically determined by

the gain factors Ka = 0.50 and Kr = 1.00, respectively
(

in that regard, recall that the hybrid

coordinador takes into account these gains only when behaving cooperatively, i.e. when not

finding obstacles inside the so-called safety area
)

.
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Figure 3.12: Using the navigation filter for building a local minima-free PFM .

is used in a way to change the attractive-type force that the hybrid coordinator receives
as input; specifically, the original input Fa(X) —as given by equation 3.9— is now replaced
by F

′

a(X). Comparing Fa(X) and F
′

a(X), it is important to note that these force vectors

have the same magnitude
(

therefore, |Fa(X)| = |F
′

a(X)|
)

, but a generally different direction.

In that last respect, the direction of Fa(X) is θtarget, while θsol corresponds to the pointing
direction of F

′

a(X). Being brief, θsol —which is calculated on the basis of algorithm 3.1— drives
the robot towards the target location, just like θtarget, but with the additional advantage of
avoiding any local minimum in the potential field.

3.2.4 Experimental Evaluation of the Absence of Influence of Local Minima

The purpose of this section is two-fold: on the one hand, to experimentally evaluate the ab-
sence of the local minima problem when navigating according to the new PFM -based approach
put forward in figure 3.12; and, on the other hand, to provide a comparison of such a novel
approach with other purely reactive strategies in terms of both mission completeness and path
length performance.

Next, first of all, the proposed strategy is demonstrated to achieve successful navigation in
several real scenarios containing obstacles typically causing local minima. Moreover, in order
to increase difficulty, these experiments are deliberately carried out by using a robot equipped
with sensors which offer noisy perceptions of the environment as well as just a partial coverage
of the local robot’s surroundings. After that, and closing this section, the comparative study
pointed out above is performed under simulation.

Before continuing with the intended experimentation, some discussion is needed to clarify
a functional aspect of our proposal that has been left partially open-ended so far. To this
respect, in section 3.1.4, three alternative criteria were suggested to choose the direction
—either left or right— to follow the contour of the detected obstacles. By analyzing both
the advantages and disadvantages of these criteria, one of them —named minimum turn—
was definitely discarded, while the other two —named fixed beforehand and random— were
regarded, to some extent, as complementary since they do give different trade-offs between
mission completeness and path length performance. Broadly speaking, the random criterion,
as opposed to the fixed-beforehand criterion, augments the chances of ending up reaching
the target, as well as of producing longer trajectories. At this point, it is important to remark
that the real and simulated experiments to be presented involve a set of scenarios where



3.2. The Classical Potential Fields Method with no Local Minima 65

convergence could be indistinctively accomplished by any of the two latter-referenced criteria.
In view of that, it seems clear that the decision of adopting either the fixed-beforehand criterion
or the random criterion should exclusively depend on performance issues. In short, and
contrary to what one might expect (essentially, because of selecting the choice that favors
the generation of longer/worse trajectories), the criterion finally adopted has been random.
The main reason for such a decision is to place the whole experimentation in a worst-case
context with the aim of helping us to draw more relevant conclusions from the results obtained.
As a final comment, notice that our proposal will be referred to as Random T 2 hereafter.

3.2.4.1 Tests with a Real Robot

The strategy Random T 2 was tested in two scenarios with a local minimum by using the real
robot SoccerBot (refer to appendix A for a complete description about this robot). Only
three infrared —IR— sensors distributed to the left, right, and at the front of SoccerBot
were employed to measure the distances to the obstacles. Figures 3.13 and 3.14 depict the
resultant robot’s trajectory for each of the missions considered. As can be observed, the first
experiment consisted of a typical U-shaped obstacle, while the second experiment was a slight
alteration of the former where one of its ends was extended to form what has been called
a simple potential deadlock situation (see section 3.1.4 for an explanation of the different
types of potential deadlock situations —merely, simple and nesting). In both experiments,
Random T 2 properly guided the robot SoccerBot to the target point, making thus clear the
ability of this strategy to escape from local minima, even when navigating with low-cost
sensors such as IRs.

3.2.4.2 An Extensive Comparative Study by Simulation

In this section, a study on the path length performance of the strategy Random T 2 is presented
and deeply discussed. Moreover, as a key part of this study, Random T 2 is compared against
five other algorithms from the related literature. The comparison is carried out in seven
troublesome scenarios, which are simulated by using the software MissionLab.

Integration into MissionLab

MissionLab [64, 65, 66] is an open-source C++ suite of software tools based on the AuRA
architecture [67]. From the standpoint of functionality, MissionLab allows the user/operator
to define and execute missions using simulated or real robots, as is illustrated in figure 3.15.
MissionLab has been developed and freely distributed8 by the Mobile Robot Laboratory
led by professor Ronald Arkin at Georgia Institute of Technology (Atlanta). Nowadays,
this laboratory constitutes an outstanding and active research center in the field of reactive
robotics. Many different reactive —and purely reactive— navigation algorithms have been
proposed by members of the Arkin’s lab during the last one-and-a-half decade. What is more,
most of them have been incorporated into MissionLab by their own authors.

Getting to the point, MissionLab has been chosen here as the testbed on which to conduct
the intended comparative study, with the clear aim of taking advantage of the wide set of
state-of-the-art algorithms that such a software does include. To make this choice possible,
nevertheless, the strategy Random T 2 had to be implemented on MissionLab. All details
about this implementation can be found in [68].

8The latest version of MissionLab can be downloaded from http://www.cc.gatech.edu/aimosaic/robot-lab
/research/MissionLab/
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Figure 3.13: The robot SoccerBot escaping from a U-shaped obstacle: (a) trajectory generated
according to the strategy Random T 2 (here, the following observations apply: on the one hand,
the aforesaid strategy randomly decided to follow the boundary of the obstacle to the right;
on the other hand, observe that there is an evident orientation error in the dead-reckoning
estimation of the robot’s path due to the Soccerbot’s tendency to wheel slippage); (b) the
environment set up built by means of several wood boards.

Figure 3.14: The robot SoccerBot overcoming a simple-type potential deadlock situation:
(a) trajectory generated according to the strategy Random T 2 (observe that, on this occasion,
the boundary of the obstacle is followed to the left); (b) a snapshot during the mission.
The reader can find a ≪video≫ of this experiment in the electronic version of the document.
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Figure 3.15: The interaction of a user with MissionLab.

Strategies under Consideration

Leaving aside the strategy Random T 2, several algorithms have been considered to take part
in our comparative study. All of them were lengthily described in chapter 2. Despite this,
their main features are pointed out next:

• Avoiding the Past [20]. The robot moves to the user-specified target point while being
repelled from locations which were already visited. With this purpose, a local map of
the environment implemented as a two-dimensional grid is stored in memory, where a
different value is assigned to visited and non-visited locations. As the robot visits an area
more times, the values of the corresponding cells in the grid increase and, consequently,
the resultant repulsive force exerted by such cells increases as well. In this way, it is in-
tended to favor the continuous exploration of new regions of the navigation environment
avoiding thus, at least apparently, the robot gets stuck into a local minimum.

• Learning Momentum (LM ) [29]. This strategy adjusts the behavioral parameters of
a particular purely reactive control system at runtime instead of using static values.
A module called Adjuster is precisely responsible for this task. The operation of this
module is based on recent experience and a set of heuristic rules that identifies when
good progress to the target is being made. According to this, the gains as well as other
parameters of the three behaviors making up the control system —GoTo, AvoidObsta-
cles, and Noise— are properly altered.

• Micronavigation (µNAV ) [21]. This approach tries to solve the problem of autonomous
robot navigation from a minimalist point of view by only using, as its authors say,
a handful of bytes. Specifically, the robot is provided with a hierarchy of simple behaviors
designed for smooth obstacle avoidance through the equipotential line concept and for
escaping from concavities.
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• A case-based reasoning (CBR) technique for the automatic selection and learning of
behavioral parameters has also been taken into consideration [33]. At the start, an empty
library of cases is available, where each case defines a complete set of parameters for the
particular behavior-based control system used by the robot. New cases are created and
optimized as the result of an automatic experimental procedure. On the other hand,
their selection is based on the current environmental features. Notice that in order to
obtain a good performance, a training stage is recommended to be carried out before
trying to solve the desired navigation tasks. Once the training is over, the case library
which has been learned can be employed with better chance of success.

• Bug2 [53]. This is a well-known member of the family Bug, which is one of the
most popular families of algorithms for path planning with incomplete information.
The target achievement guarantee whenever possible is a key common characteristic of
the Bug-like algorithms (refer to section 2.6 for further information).

As for the specific strategy Bug2, two basic behaviors, GoTo and ContourFollowing,
alternate the control of the robot. Initially, the GoTo behavior is active. Moreover,
this behavior keeps active until the detection of an obstacle. At that moment, the Con-
tourFollowing behavior starts a contour following process on the just detected obstacle.
Such a process is left by the robot when it cuts the virtual line connecting the starting
and the target points, also called Main Line.

Concerning the algorithms previously summarized, it is worth to explicitly mention that
the first four of them do make the robot navigate towards the given target in a purely reactive
manner, just like the strategy Random T 2. On the other hand, as compared to this first set
of algorithms, the fifth —and last— method named Bug2 involves a conceptually different
way of doing navigation, which is also referred to as reactive but without the qualifying
adverb ‘purely’. Going further into this point, Bug2 is considered to be a reactive navigation
scheme because of computing the resultant robot’s path on the basis of exclusively local plans.
In addition, within such a reactive context, Bug2 is not regarded as of pure type due to the fact
that it keeps and uses certain global information —to be exact, the so-called hit points— in
order to guarantee convergence to the target position.

Generally speaking, common sense suggests that the comparison of different types of
techniques is inherently unfair. This situation, nevertheless, is going to be actually found
in the present study when comparing the algorithm Bug2 against the strategy Random T 2

(in such a comparison, Bug2 will be clearly favored since, as described above, it employs richer
—global— information about the navigation environment, which means more a priori chances
to obtain better results in terms of path length performance). To this respect, notice that there
is a special reason for the ‘unfair’ inclusion of the algorithm Bug2 in this comparative study.
More exactly, such a reason obeys to the need imposed by a forthcoming chapter —specifically,
by chapter 5— to identify the real, and not just the theoretically expected, relative advantages
of Bug2 and Random T 2, with the ultimate intention of mixing both algorithms in a way that
making the most of each of them. In closing, the comparison between the two aforesaid
algorithms that our study is next going to provide will be exploited at a later stage.

Results for a Representative Set of Missions

Different tests of increasing complexity have been performed in MissionLab, simulating a
holonomic robot equipped with several range finders and wheel encoders to calculate its
position by means of dead-reckoning.
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On the one hand, the first three missions were devised to show the main weaknesses of
the Avoiding the Past, LM , and CBR algorithms versus Random T 2. As can be observed
in figure 3.16, in the first mission, walls of different length impede the progress of the robot
towards its target. The second environment, on the other hand, corresponds to a very deep
box-shaped canyon. Finally, the third one represents, in a simplified way, an office where
several rooms and corridors can be easily distinguished. It is important to highlight that
this last mission was put forward in [69] to evaluate the behavior of a particular hybrid control
system with deliberative capabilities. This fact allows getting a general idea of its difficulty.
As for the results, none of the aforementioned algorithms with the exception of Random T 2

was able to successfully carry out the whole set of missions considered, which shows their
poor effectiveness to escape from large trapping areas. These results were obtained by fixing
a maximum time to complete a mission equal to twice the one of Random T 2. Once this time
was over, the simulation was stopped. In the following, some specific comments are given for
each algorithm:

• Avoiding the Past. Important difficulties have been encountered so as to configure the
numerous parameters of this algorithm, since small modifications of their values have
generally resulted in big changes of the robot’s behavior. Figure 3.16(a) depicts how the
robot solved two of the three missions proposed by applying the best set of parameters
which was found. Specifically, the typical U-shaped obstacle was the only environment
not overcome, which makes evident the inability of the approach to move the robot in
a direction opposite to the target.

• LM . As was already pointed out in section 2.2.2, this strategy can be implemented in
two different ways called ballooning and squeezing. More exactly, the former works bet-
ter when facing obstacles such as box-shaped canyons, while the latter allows the robot
to suitably navigate through environments built with small and closely spaced obstacles.
Our choice based on the mission features was finally ballooning favoring thus the best
LM ’s performance. Despite this effort for an appropriate tuning, none of the missions

was accomplished within the available time
(

look at figure 3.16(b)
)

. In this regard,

notice, nevertheless, that successful results could have been obtained for this algorithm
by prolonging the corresponding simulations due to the existence of a wander/random
behavior into its control architecture. The same reasons, on the other hand, do not
permit establishing an upper bound to such extension, limiting thus the practical use-
fulness of the approach in complex scenarios. Lastly, as for the robot’s trajectory, it has
shown to be quite irregular in all the experiments as a result of the abrupt changes in
the robot’s heading caused by the above-mentioned inherent wandering process.

• CBR. MissionLab brings with it an empty library of cases for this learning unit. Under
these circumstances, however, the performance of the whole control system is expected
to be very low because of, precisely, such lack of prior knowledge. To avoid this problem,
a preliminary training stage was carried out before obtaining the final results. This stage
was intended to learn optimal behavioral parameterizations —that is to say, optimal
cases— to overcome the most usual obstacle configurations that the robot might find.
The same three missions previously explained were used in this training process, defining
thus the CBR’s case library according to the specific navigation tasks to be solved.
Figure 3.16(c) shows the path produced by the robot in each of the missions after
a training of several hours. As can be observed, the target position was not reached on
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Table 3.3: Comparing the path lengths of Random T 2 and µNAV . In the adopted notation,
the term LCi

represents the length of case i, that is, the length of one of the possible paths that
may be generated by the strategy Random T 2 (the long-dash symbol is used in those missions
where the total number of cases is less than four).

Mission

Algorithm Type

Random T 2 µNAV

LCA
LCB

LCC
LCD

APL

4 143.24 63.67 — — 103.45 120.96

5 297.78 — — — 297.78 1364.13

6 522.93 558.66 548.53 582.93 553.26 1020.54

7 101.00 312.41 458.70 — 296.13 156.02

Total (m) 1250.62 2661.65

any occasion. Similar conclusions to those of LM can be drawn for CBR relating to
both the possible late target achievement and the generation of erratic trajectories.

• Random T 2. As its name suggests, this is a non-deterministic strategy, which means
that, at exactly the same scenario, different paths may be obtained in different runs of
the MissionLab’s simulator. In order to manage this outcome variability, a stochastic
analysis on the average length of all possible paths that Random T 2 could generate in

each of the seven missions involved in this comparative study was performed
(

refer to

appendix C for details about the calculation of such an average path length (APL)
)

.

The results of this analysis for missions 1 to 3 can be found in figure 3.16(d).

Continuing the study, four extra missions were considered so as to evaluate and compare
the performance of the µNAV algorithm against Random T 2 (notice that these missions are
a representative subset of those appearing in [21], which were specifically designed for show-
ing the navigation skills of the former/competing method). The results that were obtained
through the simulations are graphically illustrated in figure 3.17, being also presented in tables
3.3 and 3.4 from the quantitative viewpoint of the length of the paths. As can be observed
in table 3.4, the strategy Random T 2 produced, on average, trajectories between the starting
and the target points 2.03 times shorter than µNAV . Broadly speaking, this difference in per-
formance comes from the fact that µNAV allows the robot to head for the target as soon as it
is faced without any immediate obstacle on its way, while Random T 2 limits the applicability
of such a rule to situations where neither simple nor nesting-type concavities are detected.

To finish, the theoretical/ ideal path of the algorithm Bug2 for the whole set of missions
earlier defined was drawn by hand in accordance with the steps described in procedure 4.19.
Figure 3.18 depicts such handy drawing paths, while tables 3.5 and 3.6 provide the compara-
tive data with respect to our proposal. As indicated in table 3.6, Bug2 generated, on average,
trajectories 1.15 times longer than Random T 2. On this occasion, the strict condition linked to
the end of the contour following process is the leading cause of the lower performance of Bug2.
In this regard, remember that the robot should wait for the crossing of the so-called m-line

9 Unfortunately, Bug2 is not implemented on MissionLab so that no simulations could be carried out with it
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Figure 3.17: Confrontation of µNAV and Random T 2 in four scenarios where concavities
appear forcing the robot to face the target point.
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Table 3.4: Relative performance of Random T 2 and µNAV .

Mission 4 5 6 7 Average

µNAV
Random T 2 1.17 4.58 1.84 0.53a 2.03

aThis result simply confirms a common-sense remark made by Vladimir J. Lumelsky in [54]. He essentially
stated that, when comparing algorithms based on different principles, a scenario can be always constructed to
exploit the strengths of just one of the algorithms under consideration. At this point, the reader should recall
that missions 4 to 7 had been expressly designed for testing the µNAV strategy. Despite this, it is important
to realize that, in mission 7 —which is the only unfavorable mission—, the best path found by Random T 2

was 1.54 times shorter than µNAV (see table 3.3 again).

Table 3.5: Comparing the path lengths of Random T 2 and Bug2.

Mission

Algorithm Type

Random T 2 Bug2

LCA
LCB

LCC
LCD

Average

1 88.56 98.26 109.52 99.48 98.96 123.00

2 113.78 — — — 113.78 118.00

3 infinite number of cases 382.38 352.86

4 143.24 63.67 — — 103.45 155.42

5 297.78 — — — 297.78 318.00

6 522.93 558.66 548.53 582.93 553.26 601.21

7 101.00 312.41 458.70 — 296.13 351.05

Total 1845.74 2019.54

to be able to abandon the ContourFollowing behavior (consult section 2.6.2 for a deeper insight
into the algorithm Bug2 ).

3.3 The Dynamic Window Approach with no Local Minima

In this section, the Dynamic Window Approach (DWA), briefly discussed in chapter 2, will be
extended to properly avoid those trapping situations caused by the local minima problem —
as was previously done with PFMs. Specifically, such an improvement will be accomplished by
incorporating our navigation filter into the advanced scheme for robot control used by DWA.
As a final part of this section, the new resulting DWA-based strategy will be widely tested in
both real and simulated scenarios with the purpose of clearly demonstrating the achievement
of the desired local minima-free property. What is more, the aforesaid experimentation will
also serve to show the presence of two additional properties, not found in the original DWA,
which namely are: on the one hand, the ability to solve complex navigation tasks even when
the detection of obstacles relies on low-cost sensors; and, on the other hand, the easiness
to find a suitable setting of the algorithm’s parameters for the specific mission at hand (as
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Figure 3.18: Expected results for the algorithm Bug2 from mission 1 to 7.

Table 3.6: Relative performance of Random T 2 and Bug2.

Mission 1 2 3 4 5 6 7 Average

Bug2
Random T 2 1.24 1.04 0.92 1.50 1.07 1.09 1.19 1.15

a justification for this last advantage, notice that it essentially comes from the fact that
the values given to the configuration parameters of the herein-proposed strategy never —
or minimally— compromise/put at risk critical navigation issues such as safe and predictable
robot motion).

3.3.1 Going Deeply into the Dynamic Window Approach

Under the name of the Dynamic Window Approach (DWA), there is a very popular obstacle
avoidance technique that achieves high-speed and safe navigation of a synchro-drive robot
by taking into account its kinematic and dynamic constraints. DWA was first introduced
in [41] and later extended in [39, 43, 44, 70]. As a general idea, the original DWA involves
directly searching in the velocity space for the motion command which maximizes a certain
objective function.

Entering into further details, the search space —Vp— is given by the set of tuples (v,w)
that results from combining all possible translational —v— and rotational —w— velocities of
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the robot, as suggested by equation 3.14 (in this equation, vmax and wmax denote, respectively,
the maximum translational and rotational velocities; additionally, observe that v is restricted
to exclusively positive values, which means that the robot is never allowed to move backwards).
Here, it is important to note that not every tuple in Vp is actually considered during the search
performed by DWA. More exactly, DWA significantly reduces the initial search space Vp by
removing from it those tuples that are not classified as both reachable and admissible. In that
regard, a tuple (v,w) is said to be:

• reachable if the robot can accomplish such a velocity (v,w) within the next control loop.
Or in more formal words, if the tuple (v,w) belongs to the set Vr defined by equation 3.15,
where vc and wc are the current translational and rotational velocities of the robot,
v̇max and ẇmax represent the maximum translational and rotational accelerations —or
decelerations with a minus sign—, and, at last, ∆t is the duration of the control loop.

• admissible if the robot can come to a complete stop without hitting any obstacle over

the trajectory inherently associated with the regarded tuple (v,w).
(

As made evident

in figure 3.19(a), in synchro drive-type robots, a velocity (v,w) implies a movement on

a circular trajectory/arc with constant curvature —to be precise, this curvature is w
v

)

.

Rewriting the above in formal terms, the admissibility of a tuple (v,w) does demand
to be part of the set Va (see equation 3.16). As can be observed, this set of admissible
velocities is essentially computed by means of the function Dist(v,w) that evaluates
the distance to the nearest obstacle along the circular arc determined by its parameters
v and w (for the sake of clarity, figure 3.19(b) shows how the function Dist works).

In short, the search space of DWA is characterized by the expression Vr ∩ Va (from now on,
such a definitive search space will be referred to as Vd). By way of example, figure 3.19(d)
illustrates the calculation of Vd for the situation presented in figure 3.19(c).

Vp =
{

(v,w) | v ∈ [0, vmax], w ∈ [−wmax, wmax]
}

. (3.14)

Vr =
{

(v,w) | (v,w) ∈ Vp,
v − vc

∆t
∈ [−v̇max, v̇max],

w − wc

∆t
∈ [−ẇmax, ẇmax]

}

. (3.15)

Va =
{

(v,w) | (v,w) ∈ Vp, v ≤
√

2 ·Dist(v,w) · v̇max, w ≤
√

2 ·Dist(v,w) · ẇmax

}

. (3.16)

As a final step, DWA applies a process of optimization which consists in finding the velocity
tuple in Vd that provides the highest utility on the basis of an objective function named G.
Broadly speaking, this function includes terms that trade-off driving the robot at a fast speed,
oriented to the target, and far away from obstacles. Equation 3.17 reveals more details about
function G. To this respect, first of all, notice that µ1, µ2, and µ3 are the weighting factors

for the three aforementioned terms
(

to be more exact, they satisfy the following conditions:

µi > 0 ∀i = 1, 2, 3 and
∑3

i=1 µi = 1
)

. Secondly, with regard to the components of G,

the Speed function is used to strongly favor high-speed navigation, as can be deduced by
examining equation 3.18. On the other hand, the Align function measures the angular error
between the target direction and a look-ahead estimation of the heading that the robot would
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Figure 3.19: More about DWA: (a) circular arcs corresponding to different values of v and w;
(b) the Dist function and the α angle; (c) a particular navigation environment with a certain
robot pose; (d) Vr, Va, and Vd in (c).
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have by moving with a constant rotational velocity w during the interval of time of the next
control loop. Moreover, to say the obvious, the bigger the angular error, the larger the penalty
imposed by the Align function on the velocity tuple under consideration (see equation 3.1910

—and also figure 3.19(b) for a graphical interpretation of the involved angle α). To conclude,
concerning the Dist function, no explanation is really needed since it has been previously
described in the context of the DWA’s search space.

After calculating the maximum of the objective function G over Vd, the corresponding
tuple becomes the new motion command for the robot. This calculation is repeated every ∆t.

G(v,w) = µ1 · Speed(v) + µ2 ·Align(w) + µ3 ·Dist(v,w). (3.17)

Speed(v) =
v

vmax
. (3.18)

Align(w) = 1−
(

Norm(α−w ·∆t)
)

. (3.19)

3.3.2 The Navigation Filter as a part of the Dynamic Window Approach

As explained in section 3.1, the navigation filter provides as output θsol, which is a direction
that enables the robot to escape from any local minimum found while pursuing the target
configuration. Keeping this in mind, a local minima-free (LMF ) version of the Dynamic
Window Approach can be gained by simply establishing θsol —and not θtarget, as originally
done in DWA— as the preferred direction of motion for the robot. To this end, a change is
required on the Align component of the objective function that is used to evaluate how good
a velocity command/tuple (v,w) actually is. As formally defined by equation 3.20, our sug-
gested align-type function named AlignLMF assigns the highest utility to the velocity tuple(s)
expecting to produce the perfect alignment of the robot’s heading along the θsol direction
(or in other words, the closer a tuple gets from such an alignment, the higher is the value
returned by AlignLMF ). Equation 3.21 shows the whole expression for the objective function
of the new DWA-based strategy being proposed (in GLMF , the Speed and Dist functions,
and the weighting factors µi correspond to the ones of the classical DWA previously described
in section 3.3.1).

To close, figure 3.20(a) presents a basic block scheme of the proposal discussed above,
while figure 3.20(b) illustrates the angle α′ that measures the current alignment error between
the robot and θsol (notice that this angle is included in the equation for AlignLMF ).

AlignLMF (w) = 1−
(

Norm(α′ − w ·∆t)
)

. (3.20)

GLMF (v,w) = µ1 · Speed(v) + µ2 · AlignLMF (w) + µ3 ·Dist(v,w). (3.21)

10In that equation, the auxiliary Norm function computes the normalized value of an angle, which is
the equivalent angle in the range (−π, π]
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Figure 3.20: The use of the navigation filter for building a local minima-free Dynamic Window
Approach: (a) as a fundamental modification to the original DWA, those velocity tuples
moving the robot in the direction of θsol are now favored by the new objective function GLMF ;
(b) exemplification of the α′ angle involved in the calculation of the AlignLMF function.
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3.3.3 Experimental Evaluation of the Absence of Influence of Local Minima,

as well as of an Additional Feature Gained over DWA

The aim of this section is two-fold: first of all, to perform a set of both real and simulated
experiments that clearly exhibits the absence of the local minima problem when navigating
according to the new DWA-derivative approach put forward in figure 3.20(a); and, secondly,
to demonstrate how easy is the choice of the weighting factors —µ1, µ2, and µ3— that are
included in the objective function of such a novel approach (see equation 3.21).

Before proceeding with the above, however, some discussion is needed to clarify a func-
tional aspect of the key component of our proposal. We are referring to the navigation filter,
and more exactly, to the criterion that it adopts for choosing the direction —either left or
right— to follow the contour of the detected obstacles. Recall that this criterion was left
partially open-ended when explaining the navigation filter at the beginning of the chapter.
Further in that respect, in section 3.1.4, three alternative criteria were established to auto-
matically select the aforesaid contour following direction. Specifically, they were described
under the names of minimum-turn criterion, random criterion, and fixed-beforehand criterion.
Getting to the point, in all the forthcoming tests, it is assumed that the navigation filter uses
a mixture of the first- and last-listed criteria to make the type of decision being considered.
In short, this assumption means that, in the event of the finding of a new blocking obstacle,
the navigation filter forces the robot to follow its contour in the same direction as the one
taken for the previously detected obstacle. Besides, in the special case of the detection of
the first obstacle11, the navigation filter chooses the left or right contour following direction
according to the minimum turning angle that locally aligns the robot’s heading with the
obstacle boundary. As a final comment, notice that the term Unvarying T 2 will hereafter be
employed to designate the purely reactive strategy of figure 3.20(a) in the particular context
of deciding about the contour following direction as it has just been stated.

3.3.3.1 Tests with Real Robots

The strategy Unvarying T 2 was tested in three scenarios containing some of the obstacle
configurations that typically lead to the trapping of the robot —always under the context
of purely reactive navigation. From such a set of experiments, the first two were conducted
using a Pioneer 3-DX robot, while the last one involved the miniature robot Soccerbot (refer to
appendix A for a detailed description of these robots).

Figures 3.21(a) and (b) show the characteristics of the environment where the first test was
carried out. As can be seen, the scenario essentially consisted of many small obstacles partially
enclosing the target point. Furthermore, this point was only reachable through an entrance
situated in the opposite side of the initial robot location. The resultant trajectory of about
18 meters long is plotted in figure 3.21(a).

In the second test, various cardboard-type boxes were employed to build two canyons —
one U-shaped and the other L-shaped— and a wall, which were distributed in the environment
in a way that the robot was forced to overcome, one by one, these three main obstacles

to attain the desired target
(

look at figures 3.21(c) and (d) for a whole understanding of the

mission set up
)

. In this challenging scenario, the Unvarying T 2-based robot did navigate along

the path that is depicted in figure 3.21(c) (notice that, on this occasion, such a successful path
was 28 meters in length).

11 This case is special because there is not a previous obstacle on which to base the decision whether to move
the robot in the left or right contour following direction
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Figure 3.21: Testing the strategy Unvarying T 2 on a Pioneer-type robot in two scenarios of
increasing complexity. Regarding the first/second experiment: (a)/ (c) resultant trajectory
reconstructed with the odometry data; (b)/(d) several views of the navigation environment.
As an extra material, a ≪video≫ of the second experiment can be found in the electronic
version of the document.
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The third —and last— test was performed in an office-like environment, as it is illustrated
in figure 3.22. To be precise, the mission consisted in going out from one end of the office to
the central corridor. With the aim of further increasing the difficulty of the navigation task,
several obstacles were artificially created by means of planks, such as, for instance, a box-
shaped canyon. What is more, the corridor was crowded with people, meaning that there was
a high possibility that the robot might find some of such dynamic obstacles when trying to
achieve the target position. As for the results obtained, the mission was successfully completed
by the robot by following the 9-meter path represented in figure 3.22(a). As can be observed,
the robot, after getting to the corridor, had to avoid an unexpected walking person which was
impeding its final progress towards the target.

3.3.3.2 Tests under Simulation

After having just demonstrated the feasibility of the strategy Unvarying T 2 for being both
implemented and executed on a real robotic platform, we focus now on evidencing, through
simulations, two key aspects —one functional and the other related to configuration issues— of
such a new purely reactive navigation method. In a few words, the first aspect to be examined
is the effective avoidance of local minima in complex scenarios, while the second one refers
to the lack of effort that is generally required to choose appropriate values for the internal
parameters of Unvarying T 2.

In the following, the testing for the above aspects of the strategy Unvarying T 2 is per-
formed by using the so-called MobileSim simulator, which is a free software developed by
Adept MobileRobots. More to the point, among the various models of robots that MobileSim
currently supports, a Pioneer 3-DX vehicle is simulated in all the forthcoming tests —see
appendix A for a detailed description of this specific two-wheel drive robot.

Navigation among Troublesome Obstacles

A series of experiments was carried out so as to exhibit the built-in ability that a robot nav-
igating in accordance with the strategy Unvarying T 2 has to escape from intricate obstacle
configurations. As can be observed in figures 3.23 and 3.24, eight different environments were
considered for experimentation (as a way of confirming the difficulty of these environments,
notice that, in most of them, the algorithm DWA would certainly lead the robot to an
undesirable trapping situation). Such environments are similar —moreover, some of them
identical— to those which were used to test the previously proposed PFM -derivative strategy
named Random T 2 (see figures 3.16 and 3.17 for comparison).

Moving on the results, the Unvarying T 2-based robot was able to successfully reach
the given target in each of the above-mentioned environments (figures 3.23 and 3.24 show,
in red, the set of trajectories followed by the robot). Regarding these results, it is important
to stress that, to complete some of the experiments/missions, the robot had to overcome
several local minima —for instance, three in Mission 5—, or to circumnavigate a spiral-like
obstacle from its most inner loop —Mission 6—, or even to find the exit of a maze —Mission 7.
In addition to this potential for solving complex navigation tasks, it should also be said that,
across all missions, the average linear velocity of the robot was 78 cm/s, and maximum ve-
locities of up to 1 m/s were achieved. This feature of the strategy Unvarying T 2 for driving
the robot at a high speed is directly inherited from DWA.
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Figure 3.22: Testing the strategy Unvarying T 2 on the low-cost robot Soccerbot: (a) resultant
path reconstructed with the odometry data; (b) partial views of the office-type environment.
Besides, a≪video≫ of this experiment can be found in the electronic version of the document.
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Figure 3.23: Testing the strategy Unvarying T 2 over scenarios where purely reactive robots
get typically trapped in local minima.
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Greatly Simplifying the Task of Parameter Tuning

The Dynamic Window Approach and our novel variant Unvarying T 2 are two strategies which
require the setting of exactly the same parameters. Specifically, they choose the next ve-
locity command for the robot based on the use of an objective function that is defined as
a weighted sum of three terms, namely Speed, Align/AlignLMF , and Dist (see equations 3.17
and 3.21). Accordingly, it seems clear that there is a weight factor associated with each of
the aforementioned terms. From a practical point of view, these weights, generically de-
noted as µi with i ∈ {1, 2, 3}, determine the trade-off that the corresponding strategy makes
among navigation speed, θtarget-directness/θsol-directness, and robot safety. In this respect,
in the following, we are intended to find out how difficult is the achievement of a suitable
trade-off by means of the modification of the µ-weights in both DWA and Unvarying T 2;
or in other words, we focus on revealing how much influence the µ-weight values do actually
have on the resultant trajectory generated by the DWA and Unvarying T 2 algorithms.

In keeping with the above purpose, a test was conducted by simulation with DWA and
Unvarying T 2 for each possible value of the µ-weights. The particular environment that was
set up for this testing is depicted in figure 3.23 under the name of Mission 1 (notice that
such an environment permits evaluating the effectiveness of the aforesaid strategies in cir-
cumnavigating long obstacles/walls). Regarding the µ-weights —µ1, µ2, and µ3—, their set
of potential values was reduced by advancing in steps of 0.1 over the real range (0,1]; that is
to say, we assumed that µi ∈ {0.1, 0.2, . . . , 1.0} ∀i = 1, 2, 3. Besides, these weights were
forced to satisfy the equality

∑3
i=1 µi = 1. Getting to the point, the DWA and Unvarying T 2

algorithms were executed in mission 1 using a total of 36 different values of the µ-weights.

Figures 3.25(a) and (b) present in a single plot the 36 mission 1-solution paths which
resulted from configuring the µ-weights of, respectively, DWA and Unvarying T 2 as suggested
above. Additionally, table 3.7 shows the best and worst values as well as the average and the
standard deviation (σ) of three important attributes of the paths that appear in each plot of
figure 3.25. In short, the length attribute, by simply observing σ, gives us a clear idea about
the length variability of the paths. The time-to-completion attribute, on the other hand,
allows us to know if the robot got temporarily stuck in certain areas of the environment for
some settings of the µ-weights. Lastly, how safe were the paths can be determined by the
remaining attribute named virtual collisions. This attribute refers to the number of times
that the robot moved inside the so-called safety area of an obstacle while navigating to the
target (as shared by DWA and Unvarying T 2, the locally sensed obstacles were mapped in
the configuration space, or C-space, by growing them by the robot’s shape plus a safety area;
consequently, the location of the robot in that area plainly means to be very close to an
obstacle, or equivalently, to be in the event of a significant risk of collision).

By observing/deeply analyzing the contents of figure 3.25 and table 3.7, it seems ob-
vious that the strategy Unvarying T 2 is largely insensitive to the value of the µ-weights.
Under the change of these values, our strategy provides almost the same solution in terms of
path length, navigation speed, and safety from obstacles. Furthermore, this solution broadly
coincides with the one found by DWA when using its best setting of the µ-weight parameters.
In essence, all the above means that the tuning of parameters is not really a necessary task for
Unvarying T 2, since this strategy does inherently achieve a good trade-off among path length
performance, robot’s speed, and robot’s safety, quite regardless of the µ-weights. Finally, it
is important to note that this simplicity of the parameter tuning is not shared with DWA
(as experimentally evidenced in figure 3.25(a), the DWA algorithm may generate widely dif-
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Figure 3.25: Visual assessment of the influence of the value of the µ-weights on the trajectory
produced by (a) DWA and (b) Unvarying T 2.

Table 3.7: Quantitative assessment of the influence of the value of the µ-weights on
the trajectory produced by DWA and Unvarying T 2.

Length Time to Completion Virtual Collisions

(m) (number of (number of

robot cycles) risky situations)
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Average 40.99 745 6

Standard Deviation 0.59 17 3
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ferent paths by varying the µ-weight values, so that one should be very careful in the setting
of these parameters in order to obtain good navigation results).

3.4 Pros and Cons

There are several significant advantages (A), and also some disadvantage (D), derived from do-

ing navigation on the basis of the new concepts of Traversability and Tenacity
(

T 2
)

. They all

are briefly discussed next.

A1. T 2 are two general concepts which can be directly applied on a large variety of currently
existing purely reactive navigation methods for definitely solving the well-documented
problem of local minima. Or in other words, a T 2-based method does acquire the skill
for successfully moving the robot out of a local minimum regardless of: (1) the precise
shape and size of the obstacle/s that is/are causing such a local minimum; and (2)
the maximum obstacle detection range of the robot’s sensors (as a way of exemplifying
the non-influence of points 1 and 2, notice that a robot controlled by T 2 would be
able to escape from an extremely deep and wide U-shaped canyon by merely relying on
contact/zero-range sensors).

A2. T 2 keeps the purely reactive essence of the method on which it is applied. Consequently,
the high responsiveness of a T 2-based method makes it well-suited for navigating in
both unknown and dynamic environments.

A3. T 2 provides a purely reactive method with the capacity for being used on low-cost robots,
typically equipped with sensors that offer noisy perceptions of the environment as well
as just a partial coverage of the local robot’s surroundings.

D1. T 2 may fail to detect narrow passages/gaps between obstacles where the robot actually
fits in. For some scenarios —such as the one of figure 3.26—, this gap-detection failure
entails the loss of opportunities to reach the target through a shorter path.



88 T 2: A Reactive Framework for Tackling Complex Navigation Tasks

F
ig

u
re

3.
26

:
A

d
ra

w
b
ac

k
in

th
e

ap
p
li
ca

ti
on

of
th

e
co

n
ce

p
ts

of
T
ra

ve
rs

a
bi

li
ty

a
n
d

T
en

a
ci

ty
.

A
s

ca
n

b
e

ob
se

rv
ed

,
n
on

e
of

th
e

tw
o

p
os

si
b
le

m
ot

io
n

d
ir

ec
ti
on

s
ge

n
er

at
ed

b
y

T
2

at
p
oi

n
t

Q
—

th
es

e
d
ir

ec
ti
on

s
ar

e
m

ar
ke

d
w

it
h

co
lo

re
d

ar
ro

w
s—

m
ov

e
th

e
ro

b
ot

to
w

ar
d
s

th
e

m
id

d
le

p
as

sa
ge

,
w

h
ic

h
re

p
re

se
n
ts

th
e

sh
or

te
st

w
ay

of
ge

tt
in

g
to

th
e

ta
rg

et
p
oi

n
t.

A
s

a
ge

n
er

al
re

m
ar

k
,
it

is
im

p
or

ta
n
t

to
sa

y
th

at
T

2
in

h
er

en
tl
y

fa
vo

rs
th

e
n
av

ig
at

io
n

of
th

e
ro

b
ot

ac
ro

ss
th

e
op

en
sp

ac
es

of
th

e
en

v
ir

on
m

en
t,

w
h
er

e
n
at

u
ra

ll
y

th
er

e
is

le
ss

ri
sk

of
co

ll
is

io
n
.

A
cc

or
d
in

g
to

th
is

,
in

th
e

ab
ov

e
sc

en
ar

io
,
th

e
w

h
ol

e
p
at

h
p
la

n
n
ed

b
y

T
2

w
ou

ld
b
e

on
e

of
th

os
e

la
b
el

ed
as

P
le

f
t
an

d
P

r
ig

h
t.



Chapter 4

Achieving a Better

Path Length Performance for

the Algorithm Bug2

This chapter focuses on the popular family of reactive/sensor-based algorithms named Bug,
which was partially covered in section 2.6. Informally speaking, the members of this family
mainly stand out for imitating the way in which some insects reach a certain —global— target
as moving through completely unknown environments. To be fair, these algorithms go beyond
this imitation by guaranteeing, from a theoretical point of view, the successful completion of
the navigation task whenever possible. Moreover, such a completeness property is achieved
by essentially using local knowledge coming from the immediate robot surroundings. Lastly,
notice that, precisely due to this local character, Bug-like algorithms tend to be very efficient
in terms of both processing time and memory consumption.

Through the next pages, we put forward an enhanced version of one of the members
of the family Bug with best balance between simplicity and performance, according to the
recent study presented in [71]. To be exact, we are referring to the classical algorithm Bug2,
which was described in [53] by Lumelsky and Stepanov. The new version of this algorithm,
named Bug2+, preserves the simplicity of the original approach while improving its path
length performance.

4.1 Related Work: The Algorithm Bug2

In the following, the fundamentals of the algorithm Bug2 are examined in depth.

4.1.1 Assumptions

The algorithm Bug2 makes several assumptions about the robot and the environment, which
are highlighted next:

• The mobile robot is considered to be a point equipped with a complete set of error-free
tactile sensors. This point-shaped robot is capable of moving everywhere in free space
as well as along the contour of obstacles. Finally, the problem of localization is supposed
to be solved so that the vehicle knows its current position and the one of the target.

• As for the navigation environment, it is assumed to be static, unknown, and two-
dimensional. In addition, the admissible shapes for the obstacles are conditioned by
the Jordan curve theorem [72], which forces the contour of each obstacle to define a
simple1 and closed curve of finite length. Besides, obstacles should not touch each
other.

1A curve is simple if it does not cross itself

89
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Figure 4.1: A path planned by the algorithm Bug2. The direction for following the contour
of the obstacles was supposed to be left (pCFD = left).

4.1.2 Notation

S, T ∈ R
2 are, respectively, the starting and the target points of the mission. XY (X,Y ∈ R

2

and X 6= Y ) represents the straight-line segment with endpoints X and Y . The line connecting
the starting and the target points, ST , is referred to as main line, or m-line in short. On
the other hand, Oi denotes a certain obstacle of the environment and ∂Oi its contour curve.
Finally, d(X,Y ) is a function which measures the Euclidean distance between any two points
X and Y (X,Y ∈ R

2).

4.1.3 Description

The algorithm Bug2 exhibits two different behaviors: motion-to-goal and boundary-following.
During the former, which is activated first, the robot moves towards the target (T ) along
the m-line. The boundary-following behavior, on the other hand, is invoked when the robot
encounters an obstacle (Oi) on its way. The point where this obstacle is found is called hit point
(Hj). Next, the robot follows the contour of the obstacle (∂Oi) to the left or right according
to a user-definable parameter named pCFD. During this contour-following process, it may so
happen that the robot returns to Hj meaning that a loop around the obstacle boundary has
been completed. In such a case, the target is inside the obstacle, not being thus achievable.
More usual is, however, the situation where the robot gets to a point on the m-line closer to
T than Hj. At that moment, a leave point (Lj) is defined and the motion-to-goal behavior is
invoked again. The motion-to-goal and boundary-following behaviors alternate the control of
the robot in the way explained above until either T is reached or the planner becomes aware
of the impossibility of finding a solution to the problem. Algorithm 4.1 provides a deeper
description of the strategy Bug2, and figure 4.1 shows its execution in a simple scenario.

The length of a path generated by Bug2 never exceeds the limit given by expression 4.1,
where i denotes an obstacle of the scene (Oi), ni represents the number of intersections of ∂Oi

with the m-line, and Bi refers to the Oi’s perimeter. Such an upper bound can be significantly
improved as stated by expression 4.2 when assuming that obstacles are convex.
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Algorithm 4.1 The algorithm Bug2 step by step

Params: pCFD ∈ {left, right}
Step 0: Initializations
Step 1: Motion-to-goal behavior
Step 2: Boundary-following behavior

0) Set j = 1 and L0 = S

1) Move along the straight-line segment Lj−1T until one of the following occurs:

a) T is reached. The algorithm stops

b) An obstacle Oi is found. Define the hit point Hj and go to step 2

2) Follow the contour of the obstacle (∂Oi) to the left or right according to pCFD until
one of the next three possible situations arises:

a) T is reached. The algorithm stops

b) The robot returns to Hj. The algorithm stops because the target is unreachable

c) The robot gets to a point Q satisfying condition C1. As a result, either action A1

or action A2 is taken depending on whether condition C2 is met (A1) or not (A2)

C1: Q is a point on the m-line (Q ∈ ST ) such that d(Q,T ) < d(Hj , T )

C2: the straight-line segment QT does not cross the obstacle Oi at point Q⋆

A1: define the leave point Lj = Q, set j = j + 1 and, lastly, go to step 1

A2: continue in step 2

⋆ The straight-line segment QT is considered to cross the obstacle Oi at point Q when a segment

of QT lies inside Oi in the vicinity of Q

d(S, T ) +
∑

i

ni

2
Bi (4.1)

d(S, T ) +
∑

i

Bi (4.2)

4.2 The New Algorithm Bug2+

In this section, a description of an enhanced version of the algorithm Bug2 called Bug2+
is provided. The following features of this new Bug-derivative strategy are emphasized:

� Bug2+ ensures convergence to the given target if it is reachable.

� The length of a path planned by the algorithm Bug2+ is always less or equal to the one
by Bug2.
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� As a direct consequence of the preceding fact, the length of a path produced by Bug2+
never goes beyond the limit defined by expression 4.1.

In addition, it is important to note that the strategy Bug2+ preserves both the simplicity
and the intuitive behavioral description by which the algorithm Bug2 is mostly characterized.
Next, we focus on the key differences between Bug2 and Bug2+. Besides, regarding the latter
approach, a proof is given for the three properties listed earlier.

4.2.1 Changes with respect to the Strategy Bug2

The strategy Bug2+ makes the same assumptions about the robot and the environment as
the algorithm Bug2. Moreover, Bug2+ relies on the same two behaviors as Bug2: motion-to-
goal and boundary-following.

The planner Bug2+ differs from Bug2 in adopting a special leaving condition, or in other
words, in applying a sharper criterion for deciding to invoke the motion-to-goal behavior
when the robot is circumnavigating the contour of an obstacle. Remember that, in Bug2,
this transition occurs when a point Q on the m-line nearer the target than Hj is found.
Furthermore, for really abandoning the boundary-following behavior, the point Q should
satisfy condition C2 as well, which requires the robot to be able to move along the straight-line
segment QT without immediately hitting the current obstacle (look at figure 4.2 for a better
understanding of condition C2). The strategy Bug2+, as opposed to Bug2, takes into account
the points which do not meet condition C2 in the decision associated with leaving the contour
following process (notice that, in Bug2+ terminology, condition C2 renames to condition C4,
so that hereafter C4, and not C2, will be used for referring to this condition). Let Γ denote
the set of m-line’s points not fulfilling condition C4 which have been found by the robot during
the last —and still in-progress— activation of the boundary-following behavior. Then, Bug2+
will perform a transition to the motion-to-goal behavior when reaching a point Q on ST with
Q /∈ Γ and satisfying the inequality d(Q,T ) < min{d(γ, T ) ∀γ ∈ Γ} (observe that Hj ∈ Γ
according to the definition of hit point).

A complete description in pseudocode of the strategy Bug2+ is provided in algorithm 4.2
(those changes with respect to algorithm 4.1 are marked in bold). Additionally, figures 4.3(a)
and (b) compare the trajectories generated by, respectively, Bug2 and Bug2+ in a scenario
consisting of a G-shaped obstacle. As can be seen, the path length of our proposal was
significantly better in this experiment, being, approximately, 1.35 times shorter.

4.2.2 Formal Verification of the Bug2+’s Properties

The following proves that: (1) Bug2+ converges to the target when reachable, and (2) Bug2+
is never worse and sometimes better than Bug2 in terms of path length performance.

Lemma 1. Algorithm 4.2 behaves just like algorithm 4.1 if action A4 is not taken.

Assumption/s. Both algorithms are applied to the same scenario with the parameter pCFD
set to the same value.

Proof. Algorithms 4.1 and 4.2 only differ in some details regarding the causes which de-
termine the transition from the boundary-following behavior to the motion-to-goal behavior.
This proof is precisely focussed on this aspect of the algorithms by demonstrating that such
a transition will simultaneously take place at the same point Q in Bug2 and Bug2+ under
the assumptions described above.
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Figure 4.2: Conditions imposed in Bug2 for a transition from the boundary-following behavior
to the motion-to-goal behavior: two different situations are considered where condition C1 is
met, i.e. where the robot, while following the contour of an obstacle, reaches the m-line in
a point Q which is closer to T than Hj (j = 1). In (b), contrary to (a), the point Q does
not become a leave point because the robot cannot progress towards the target by moving
along QT (or, in short, because condition C2 does not hold).
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Algorithm 4.2 Bug2+: An improvement of the strategy Bug2

Params: pCFD ∈ {left, right}
Step 0: Initializations
Step 1: Motion-to-goal behavior
Step 2: Boundary-following behavior

0) Set j = 1 and L0 = S

1) Move along the straight-line segment Lj−1T until one of the following occurs:

a) T is reached. The algorithm stops

b) An obstacle Oi is found. Define the hit point Hj, set D = d(Hj, T ) and, finally,
go to step 2

2) Follow the contour of the obstacle (∂Oi) to the left or right according to pCFD until
one of the next three possible situations arises:

a) T is reached. The algorithm stops

b) The robot returns to Hj. The algorithm stops because the target is unreachable

c) The robot gets to a point Q satisfying condition C3. As a result, either action A3

or action A4 is taken depending on whether condition C4 is met (A3) or not (A4)

C3: Q is a point on the m-line (Q ∈ ST ) such that d(Q, T ) < D

C4: the straight-line segment QT does not cross the obstacle Oi at point Q

A3: define the leave point Lj = Q, set j = j + 1 and, lastly, go to step 1

A4: update D ( = d(Q, T )) and continue in step 2

Let us suppose next a situation where both strategies are executing step 2 after defining
an identical hit point Hj. In such a case, the ongoing contour following process will be replaced
by the motion-to-goal behavior when the robot moves to a point Q satisfying conditions C1

and C2 in algorithm 4.1, and conditions C3 and C4 in algorithm 4.2. As can be observed,
there are no differences between conditions C2 and C4. On the other hand, knowing that
action A4 is never taken, the value for the distance D used in condition C3 will not change
from the one given in step 1.b), being thus equal to d(Hj, T ). Consequently, conditions C1

and C3 are also equivalent, which means that algorithms 4.1 and 4.2 will decide to abandon
the boundary-following behavior based on the same criterion, which proves the lemma.

Definition 1. Let us introduce the concepts of potential hit point (H∗) and potential leave
point (L∗). The former denotes a point where a transition from the motion-to-goal behavior
to the boundary-following behavior may occur or, in other words, where the robot may find
an obstacle while moving along the m-line. On the other hand, a potential leave point is
just the opposite, i.e. a point where a transition from the boundary-following behavior to
the motion-to-goal behavior may happen.

Both H∗ and L∗ points are located on the m-line and, more precisely, in those positions
where such a line intersects with the contour of the obstacles as illustrated in figure 4.4(a)
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Figure 4.4: Distinguishing between (a) potential hit (H∗) and leave (L∗) points, and (b) real
hit (H) and leave (L) points. In (b), the trajectory of the robot was obtained by applying
algorithm 4.2 with the parameter pCFD = left.

(notice that a special potential leave point —L∗
0— is further added at S). This figure also

shows that neither H∗ nor L∗ points are defined when the m-line tangentially intersects with
the contour of an obstacle. Remember that algorithm 4.2, like algorithm 4.1, assumes that
the robot is able to navigate over the obstacle boundaries and, consequently, through any
point of tangency between the m-line and the contour curve of an obstacle. Consider, now,
the situation where the robot reaches one of such tangent points by moving along the m-line
towards T . At that moment, it seems obvious there is no need for invoking the boundary-
following behavior and, therefore, for defining a hit point —and the subsequent leave point—
since the robot can continue its straight-line walk to the target. Because of that, no point
can be defined as both H∗ and L∗. Moreover, taking into account that all H∗ and L∗ points
appear in pairs (H∗

k , L∗
k) for values of k greater than zero —k ∈ Z

+—, the next inequality
holds: d(H∗

k , T ) > d(L∗
k, T ). Observe, finally, that the points in each pair (H∗

k , L∗
k) are located

on the contour curve of the same obstacle.

To conclude, figure 4.4(b) makes evident that just a subset of all H∗ and L∗ points turns
into real hit (H) and leave (L) points when executing algorithm 4.2.

Lemma 2. In algorithm 4.2, after performing action A4, the robot will find a point Q satis-
fying conditions C3 and C4.

Assumption/s. The target point (T ) is reachable from S, and T is not located on the
boundary of the obstacle being followed when action A4 is taken.
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Figure 4.5: An additional unpaired potential point when the target is not accessible.

Proof. Action A4 is taken when the robot, while following the contour of a certain obstacle
—referred to as Oi from now on—, finds an m-line’s point Q which fulfills d(Q,T ) < D as well
as the straight-line segment QT crosses the obstacle Oi at point Q. Such a condition, never-
theless, can be alternatively described by using the concept of potential hit point. Specifically,
we can equivalently say that the execution of action A4 is caused by reaching a potential hit
point H∗

k verifying the inequality d(H∗
k , T ) < D.

Lemma 2 supposes that action A4 has just been performed, which means, according to
the preceding discussion, the robot has got to a point H∗

k such that d(H∗
k , T ) < D. By

taking action A4, no change is carried out apart from setting the distance D to d(H∗
k , T ).

Therefore, the robot remains in step 2 continuing thus the contour following process on the
obstacle Oi. Algorithm 4.2 provides three different ways for leaving the boundary-following
behavior. However, the one associated with step 2.a) can be easily discarded due to the
lemma’s assumption requiring that T /∈ ∂Oi. Consequently, only steps 2.b) and 2.c) should
be considered. Next, we prove that, if there is a solution to the path-planning problem, before
completely covering the contour of Oi, the robot will reach a point Q satisfying conditions C3

and C4, or in other words, that the transition to the motion-to-goal behavior will be triggered
by step 2.c).

As was remarked in definition 1, all H∗ and L∗ points appear in pairs with the exception
of the potential leave point L∗

0. In fact, there is another special case for the previous general
assertion which occurs when the target point is not reachable from S, i.e. when T is located
in the interior of an obstacle. Under these circumstances, as shown in figure 4.5, the potential
hit point with the maximum subscript is not paired either. It is important to note that, in
lemma 2, this second exceptional unpaired situation cannot take place because of assuming
that the path-planning problem has, at least, a solution. Therefore, if H∗

k is the potential
hit point causing the execution of action A4, such a point is ensured to go with the potential
leave point L∗

k. Furthermore, remember that both points, H∗
k and L∗

k, are guaranteed to be
located on the boundary of the obstacle Oi.
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Let Hj denote the point where the current contour following process was initiated. Then,
we are going to demonstrate that L∗

k is not found on the portion of ∂Oi covered by the
robot from Hj to H∗

k . To this end, notice that, before getting to the potential hit point H∗
k ,

the distance D contains a value greater than d(H∗
k , T ). Additionally, d(L∗

k, T ) < d(H∗
k , T )

so that the potential leave point L∗
k clearly fulfills condition C3

(

d(L∗
k, T ) < D

)

. On the

other hand, condition C4 is satisfied by any potential leave point. In consequence, L∗
k meets

the two necessary conditions for abandoning the boundary-following behavior. Nevertheless,
this behavior is supposed to be active from Hj to H∗

k , which definitely confirms that the robot
cannot have gone through the point L∗

k while conducting the aforementioned path.

Bearing in mind the previous fact as well as L∗
k ∈ ∂Oi, it seems obvious that, by continuing

following the contour of Oi from H∗
k , the robot will arrive at the potential leave point L∗

k before
returning to Hj

2. At that moment, D will be equal to d(H∗
k , T ) and, hence, conditions C3

and C4 will be still fulfilled at L∗
k proving thus lemma 2. As a result, algorithm 4.2, by means

of step 2.c), will force a transition to the motion-to-goal behavior, which will turn L∗
k into a

real leave point.

Finally, let us allow for the up-to-now omitted situation where the robot finds a potential
hit point H∗

l which complies with the inequality d(H∗
l , T ) < d(H∗

k , T ) as moving from H∗
k to L∗

k

on ∂Oi. In this context, action A4 will be executed again and the distance D will accordingly

change its current value
(

d(H∗
k , T )

)

for d(H∗
l , T ). On the other hand, knowing that d(L∗

l , T ) <

d(H∗
l , T ) < d(L∗

k, T ) < d(H∗
k , T ) based on both our hypothesis and definition 1, it is evident

that L∗
k is never going to satisfy condition C3 after the indicated event. Moreover, considering

the pairs (H∗
k , L∗

k) and (H∗
l , L∗

l ), the only point where conditions C3 and C4 could be met is L∗
l .

Consequently, from the viewpoint of the lemma’s proof, neither H∗
k nor L∗

k are really significant
once the potential hit point H∗

l has been reached by the robot. Therefore, the situation at
hand could be equivalently described by ignoring the achievement of H∗

k , or in other words,
by assuming just one execution of action A4 —at H∗

l . Precisely, this is what was done in
the preceding proof of lemma 2 so that such a demonstration comprises this particular case
as well.

Theorem 1. Algorithm 4.2 converges to the target point.

Assumption/s. T is reachable from S.

Proof. First of all, imagine that action A4 is not taken during the whole execution of algo-
rithm 4.2. In these circumstances, lemma 1 establishes that the strategy Bug2+ will behave
just like Bug2 —algorithm 4.1—, which is known to guarantee convergence whenever possible.

In short, the proof of termination for algorithm 4.1 —and, in consequence, for algorithm 4.2
by considering the above-mentioned situation— is based on observing that the approach
monotonically decreases the distance to the target as revealed by expression 4.3. Notice
that in algorithm 4.1, every time a hit point (Hj) is defined, the robot walks around the
detected obstacle until getting to a potential leave point closer to T than Hj. Because of
that, d(Hj , T ) > d(Lj , T ). Additionally, after leaving Lj, the robot moves straight towards
the target until a new obstacle is found. Since it is assumed that obstacles do not touch

2 The robot will reach the point L∗

k if no other point is found first satisfying conditions C3 and C4. However,
in such a case, lemma 2 trivially holds
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each other, then d(Lj , T ) > d(Hj+1, T )3.

d(L0, T ) ≥ d(H1, T ) > d(L1, T ) > d(H2, T ) >

d(L2, T ) > d(H3, T ) > d(L3, T ) > · · ·
(4.3)

Now, we change the context for the theorem’s proof by assuming an execution of action A4

in algorithm 4.2. According to this, let us go to the instant, previous to performing action A4,
in which the last hit point was created and let Hj be such a point. Until that moment, keeping
lemma 1 in mind, it seems clear that the behavior of algorithm 4.2 corresponds with the one of
algorithm 4.1 since action A4 has not been taken yet. Consequently, the distance to the target
will have been progressively reduced as indicated by expression 4.4. On the other hand, the
robot, after defining Hj and later following the boundary of the sensed obstacle, is supposed
to reach a point Q which triggers action A4. To this end, it is important to note that the
point Q should fulfill condition C3, which means that D = d(Hj , T ) > d(Q,T ). As a result of

doing action A4, the distance D is updated
(

D = d(Q,T )
)

and the robot persists in applying

the contour following process. In this situation, lemma 2 ensures finding another point Q′

where conditions C3 and C4 are met4. The point Q′, therefore, satisfies that d(Hj , T ) > D =
d(Q,T ) > d(Q′, T ). When the robot arrives at Q′, this point will become the next leave
point Lj and the inequality d(Hj, T ) > d(Lj , T ) will extend expression 4.4 as an evidence
of the progress made towards T . Notice that the latter fact confirms that the execution of
action A4 constitutes a step forward regarding the convergence of algorithm 4.2. Finally,
from point Lj onwards, algorithm 4.2 will behave again as would be done by algorithm 4.1
because action A4 is not longer carried out. Without loss of generality, one can imagine such
a situation as if algorithm 4.1 were started at Lj with no change of the target point T —
additionally, observe that T is reachable from Lj

5. In view of that, algorithm 4.2 is certainly
guaranteed to converge, proving thus theorem 1.

d(L0, T ) ≥ d(H1, T ) > d(L1, T ) > d(H2, T ) >

· · · > d(Lj−1, T ) > d(Hj , T )
(4.4)

To conclude, let us consider the case in which action A4 is taken more than once while
performing algorithm 4.2. This proof is, nevertheless, a trivial generalization of the one
previously given which supposed just one execution of action A4. In order to provide the basic
background for such a generalization, let us go back to the moment when Lj was defined in
the preceding simple-case proof. Remember that this is the point where the robot abandoned
the contour following process after having carried out action A4 for the first —and last—
time. It is important to note that, in algorithm 4.2, leave points do have a special meaning
since they can be understood, in some sense, as new starting points. This idea is supported by

3 This strict inequality does have an exception for the case j = 0 owing to the fact that the distance d(L0, T )
may coincide with d(H1, T ). There is no difference between d(L0, T ) and d(H1, T ) when the starting point
(S = L0) is placed on the contour curve of an obstacle

4 Theorem 1 does not assume, as it is done in lemma 2, that the target (T ) cannot be placed on the boundary
of the obstacle being currently followed by the robot. For this reason, the robot, by walking around such an
obstacle, may find T before the point specified by lemma 2. However, if T is achieved, the path-planning task
is, by definition, successfully solved so that theorem 1 holds

5If, as assumed herein, T is reachable from S, then T is also reachable from any point of a free-obstacle
path starting at S and ending with Lj
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the fact that, after defining a leave point (for instance, Lj), algorithm 4.2 will act in exactly
the same manner as restarting it and setting S = Lj. Consequently, if, from point Lj onwards,
action A4 was taken one more time, this second execution of the action could be interpreted as
the first one of a suitably restarted algorithm 4.2. Under these circumstances, it is clear that
the proof of convergence for the so-called simple case is valid. Furthermore, knowing that,
after performing action A4, a leave point is always defined according to lemma 2, our reasoning
can be extended, in a natural way, to any number of executions of the aforementioned action,
which completes the proof of theorem 1.

Definition 2. Let us introduce the concept of state in algorithms 4.1 and 4.2 assuming
a situation where the boundary-following behavior is active. Additionally, consider Hj as
the point in which the ongoing contour following process was started.

The state of algorithm 4.1 is related to Hj, i.e. to the last-defined hit point. To be more
precise, the distance d(Hj, T ) determines the state of the algorithm that will be denoted, from
now on, as EBug2. Similarly, the state of algorithm 4.2 —EBug2+— depends on the so-called
distance D whose value is initially set to d(Hj , T ) when activating the boundary-following
behavior. This means that the states of algorithms 4.1 and 4.2 match each other at point Hj.
However, notice that, in algorithm 4.2, EBug2+, as opposed to EBug2 in algorithm 4.1, may
change during the execution of the contour following process. Specifically, EBug2+ is updated
after finding a boundary point on the current obstacle satisfying just condition C3 (and not
condition C4).

Lemma 3. If algorithms 4.1 and 4.2, while following the contour of the same obstacle, move
the robot to a point Q where the equality EBug2 = EBug2+ holds and, later, the state EBug2+

is never altered, then the above-mentioned algorithms will leave the contour following process
at the same point Lj . Besides, the resultant paths from Q to Lj will be identical for both
algorithms.

Assumption/s. Algorithms 4.1 and 4.2 share an environment where T is reachable from S.
On the other hand, about their configuration, the parameter pCFD is set to the same value.

Proof. In algorithms 4.1 and 4.2, after getting to the point Q, the boundary-following behav-
ior will remain active until finding another point Q′ that meets conditions C1 and C2 for the
former strategy, and conditions C3 and C4 for the latter one. The existence of the point Q′ is
ensured because of requiring the reachability of the target as well as by realizing that, in these
circumstances, the convergence to T is always guaranteed as stated by [53] and theorem 1.
Therefore, once Q′ is found, a transition to the motion-to-goal behavior will take place, and
the next leave point Lj will be defined.

Let Q′
Bug2 and Q′

Bug2+ represent the points where the transition from the boundary-
following behavior to the motion-to-goal behavior is going to occur in, respectively, algo-
rithm 4.1 and algorithm 4.2. From point Q to Q′

Bug2 /Q′
Bug2+, both strategies will follow

the contour of the obstacle in the same direction due to the common setting of the parameter
pCFD. This fact means that if Q′

Bug2 were equal to Q′
Bug2+, there would be no differences in

the paths generated by algorithms 4.1 and 4.2 from Q until the end of the contour following
process6. In addition, the equality Lj = Q′

Bug2 = Q′
Bug2+ would hold, proving thus lemma 3.

6 In the given context, these paths would be different if the robot, before leaving the boundary-following
behavior, could go through the point Q′

Bug2 /Q′

Bug2+ more than once, and the specific number of times getting
to the point Q′

Bug2 were distinct to the one of Q′

Bug2+. Nevertheless, the achievement of a boundary point twice
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For that reason, the proof of the lemma is focussed on demonstrating that the points Q′
Bug2

and Q′
Bug2+ should coincide each other under the assumption that EBug2 = EBug2+. First of

all, remember that Q′
Bug2 and Q′

Bug2+ are selected as leave points on the basis of conditions
C1 and C2 in algorithm 4.1, and conditions C3 and C4 in algorithm 4.2. As was discussed
in lemma 1, conditions C2 and C4 are equivalent. On the other hand, regarding conditions C1

and C3, they look for a m-line’s point whose distance to the target is less than EBug2 in case
of C1, and less than EBug2+ according to C3. Consequently, knowing that EBug2 = EBug2+,
C1 and C3 are the same condition as well. In short, algorithms 4.1 and 4.2 will use the same
criterion for deciding to abandon the boundary-following behavior so that Q′

Bug2 and Q′
Bug2+

cannot be different points.

Lemma 4. If algorithms 4.1 and 4.2, while following the contour of the same obstacle from
the same hit point Hj, find, in the given order, the sequence of m-line’s points H∗

k and L∗
l such

that d(H∗
k , T ) < d(L∗

l , T ) < d(Hj , T ), then the above-mentioned strategies will abandon the
boundary-following behavior at different locations. More precisely, the leaving will occur at L∗

l

in algorithm 4.1, and at a later point on the obstacle boundary in algorithm 4.2. Therefore,
from Hj to L∗

l , the resultant paths will be identical for both planners. This is the only situation
in which algorithms 4.1 and 4.2, when sharing Hj, will define a different leave point Lj .

Assumption/s. Algorithms 4.1 and 4.2 are performed in the same environment with T being
reachable from S. Besides, the parameter pCFD is identically set in both strategies.

Proof. In algorithms 4.1 and 4.2, the contour following process is supposed to be started
at the same hit point Hj on the same obstacle. Observe that the states EBug2 and EBug2+

are initialized to d(Hj, T ) at the moment of defining Hj. Consequently, if such an equality
—EBug2 = EBug2+ = d(Hj, T )— were satisfied during the whole activation of the boundary-
following behaviors, algorithm 4.1 and algorithm 4.2 would leave the contour of the obstacle at
an identical point Lj in accordance with lemma 3. However, this coincidence is not pursued by
lemma 4, which tries to identify the set of cases where the opposite occurs, i.e. where a different
leave point is defined by both strategies. Therefore, the situations of interest for lemma 4
are found in a context requiring that EBug2 6= EBug2+. This means that, after defining Hj,
either the state EBug2 or the state EBug2+ should change before finishing the contour following
process of any of the corresponding algorithms. Remember that EBug2 is never altered by
algorithm 4.1 being thus equal to d(Hj , T ) all the time. On the contrary, in algorithm 4.2,
EBug2+ is modified when getting to a point fulfilling condition C3 but not condition C4, or in
other words, when reaching a potential hit point H∗

k such that d(H∗
k , T ) < EBug2+ = d(Hj , T ).

In short, the preceding discussion confirms the necessity of achieving a point H∗
k with

d(H∗
k , T ) < d(Hj , T ) in order to make algorithm 4.1 and algorithm 4.2 behave different with

regard to leaving the obstacle boundary. It is important to note that the obligation for
algorithm 4.2 to pass through H∗

k is also shared by algorithm 4.1. This is due to the fact that
both planners choose the same direction —pCFD— for following the contour of the obstacle
so that their resultant paths will inevitably come together from Hj to H∗

k . At point H∗
k ,

EBug2+ will be updated by assigning it the value d(H∗
k , T ), and EBug2 will keep constant

(

= d(Hj , T )
)

. Afterwards, algorithms 4.1 and 4.2 will jointly continue the contour following

process in search of a proper place where abandoning it. As was highlighted in definition 1,

—or even more times— would necessarily involve a loop around the contour of the obstacle and, accordingly,
the execution of the corresponding algorithm would be stopped because of (mis)interpreting that the target is
unreachable. Notice that this contradicts the convergence property of algorithms 4.1 and 4.2
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the leaving of the boundary-following behavior should always arise at a potential leave point
(L∗). Accordingly, let L∗

Bug2 and L∗
Bug2+ be the points where such a leaving is going to occur

in, respectively, algorithm 4.1 and algorithm 4.2. Notice that the existence of these points is
guaranteed because of assuming that the target is reachable. Next, we are intended to analyze
the whole set of situations in which L∗

Bug2 and L∗
Bug2+ may be different.

As already said, L∗
Bug2 should meet conditions C1 and C2 to become a real leave point in

algorithm 4.1. The former condition involves the fulfillment of the expression d(L∗
Bug2, T ) <

EBug2 = d(Hj , T ), while the latter one is inherently hold by any potential leave point and,
hence, by L∗

Bug2, not being thus relevant at all. Something similar happens with L∗
Bug2+ in

algorithm 4.2 where conditions C3 and C4 need to be satisfied, which implies that d(L∗
Bug2+, T )

< EBug2+ = d(H∗
k , T ). In the context previously set out, L∗

Bug2 and L∗
Bug2+ are supposed to

be real leave points (Lj ’s) since they represent those locations where the boundary-following
behavior is going to finish in algorithms 4.1 and 4.2, respectively. Therefore, these points
comply with d(L∗

Bug2, T ) < d(Hj , T ) and d(L∗
Bug2+, T ) < d(H∗

k , T ). On the other hand, by
resuming the contour following process from H∗

k , algorithm 4.1 and algorithm 4.2 will simul-
taneously go through the same boundary points. This will remain until one of the strategies
stops from circumnavigating the obstacle, i.e. until getting to either L∗

Bug2 or L∗
Bug2+. Imagine

that L∗
Bug2+ is the first point —between the two candidates— to be reached by both plan-

ners. As a direct consequence of the preceding fact, the motion-to-goal behavior will take
control of the robot in algorithm 4.2. As stated above, L∗

Bug2+ is a point which fulfills the
inequality d(L∗

Bug2+, T ) < d(H∗
k , T ). In addition, remember that d(H∗

k , T ) < d(Hj , T ). Then,
it seems clear that d(L∗

Bug2+, T ) < EBug2 = d(Hj , T ), meaning thus that condition C1 is met
at L∗

Bug2+. Furthermore, condition C2 is also satisfied because of being a potential leave point.
Consequently, algorithm 4.1 will abandon the boundary-following behavior at point L∗

Bug2+

just like algorithm 4.2, or in brief, L∗
Bug2 = L∗

Bug2+.
Let us consider now the case where L∗

Bug2 is reached first —that is, before L∗
Bug2+—

by algorithms 4.1 and 4.2. As expected, under these circumstances, the leaving will occur
for the former strategy. With respect to algorithm 4.2, nevertheless, several things may
happen depending on the distance-to-goal relation among the points L∗

Bug2, H∗
k , and Hj.

We know that d(L∗
Bug2, T ) < d(Hj , T ) and d(H∗

k , T ) < d(Hj, T ), but no order is given between
L∗

Bug2 and H∗
k . In this sense, only d(L∗

Bug2, T ) < d(H∗
k , T ) and d(H∗

k , T ) < d(L∗
Bug2, T )

are feasible expressions based on definition 1, which states that no m-line’s point can be,
at once, a potential hit point (H∗) and a potential leave point (L∗). In this way, the equality
d(L∗

Bug2, T ) = d(H∗
k , T ) is plainly discarded.

Next, let us examine the behavior of algorithm 4.2 in face of the two possible situations
discussed earlier. First of all, assume that d(L∗

Bug2, T ) < d(H∗
k , T ) = EBug2+. In such a

case, condition C3 will be hold at L∗
Bug2, just like condition C4 which is successfully met

in all L∗-type points. As a result, the contour following process currently performed by
algorithm 4.2 will bring to an end and, accordingly, L∗

Bug2+ = L∗
Bug2. Secondly, by supposing

that EBug2+ = d(H∗
k , T ) < d(L∗

Bug2, T ), it is obvious that condition C3 will not be satisfied
at L∗

Bug2. Thus, irrespective of the fulfillment of condition C4, no action will be taken by
algorithm 4.2 which will continue following the boundary of the obstacle in search of the
potential leave point L∗

Bug2+. In view of that, notice that L∗
Bug2+ 6= L∗

Bug2.
Finally, let us summarize the line of reasoning just developed, which leads to the proof

of lemma 4. Two events should arise for making algorithm 4.1 and algorithm 4.2 define
a different leave point (L∗

Bug2 6= L∗
Bug2+) when these strategies are carrying out a contour

following process initiated from the same location (Hj). On the one hand, the achievement of
a potential hit point H∗

k with d(H∗
k , T ) < d(Hj , T ) in order to impose different internal states
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—EBug2 = d(Hj , T ) 6= EBug2+ = d(H∗
k , T )— on algorithms 4.1 and 4.2. On the other hand,

such planners should later get to a potential leave point L∗
l satisfying either condition C1 or

condition C3 but never both at the same time, allowing thus just the leaving of one of the
strategies while the other one continues circumnavigating the boundary of the obstacle. It is
important to note that no point exists where condition C3 is fulfilled alone. In consequence,

the aforementioned situation can only be found when L∗
l meets condition C1

(

d(L∗
l , T ) <

EBug2 = d(Hj , T )
)

and not condition C3

(

d(L∗
l , T ) > EBug2+ = d(H∗

k , T )
)

, or in other

words, when L∗
l turns into a real leave point in exclusively algorithm 4.1 (L∗

l = L∗
Bug2 = Lj).

This fact means that d(H∗
k , T ) < d(L∗

l , T ) < d(Hj , T ), which concludes the lemma’s proof.

Definition 3. During the activation of the boundary-following behavior, algorithms 4.1
and 4.2 traverse a portion of the contour of a certain obstacle. Next, we formalize the result
of such a circumnavigation by introducing the concept of boundary-following path in a context
where the target point (T ) is assumed to be reachable. Observe that, in these circumstances,
there is not chance for a complete loop around the obstacle boundary so that the aforesaid
boundary-following paths clearly describe open curves. Moreover, they are also simple —i.e.
without self-crossings— because of working under the Jordan curve theorem [72], which re-
stricts the shape of obstacles —and, consequently, the boundary-following paths as well—
in the way pointed out. Let I = [0, 1] mean the unit interval and ∂Oi the contour curve
of the obstacle being currently circumnavigated by the robot. Then, the boundary-following
path associated with this activation of the contour following process is given by a continuous
injective function α : I → ∂Oi. α(0) represents the last-defined hit point, while α(1) indicates
the specific location where the boundary-following behavior was finally abandoned.

By way of example, figures 4.6(a) and (b) show the trajectories generated by, respectively,
algorithm 4.1 and algorithm 4.2 in a scenario with an intricate obstacle. As can be seen, for
the former strategy, the boundary-following behavior was activated on two occasions before
converging to T . Accordingly, their corresponding boundary-following paths are denoted as

α′ and β′
(

notice that α′(0) = H ′
1, α′(1) = L′

1, β′(0) = H ′
2, and β′(1) = L′

2

)

. Regarding

algorithm 4.2, α characterizes the path that was traversed during its first and only execution

of the contour following process
(

α(0) = H1 and α(1) = L1

)

.

Hereafter, we will usually adopt an alternative way of illustrating a boundary-following
path, which differentiates from the one of figures 4.6(a) and (b) in essentially omitting the
circumnavigated obstacle. Figure 4.6(c) shows such a new representation for the boundary-
following path labeled as α in figure 4.6(b). By comparing figures 4.6(b) and (c), it seems clear
that there are more differences between both representations than just the presence/absence
of the obstacle. It is important to note that, in figure 4.6(c), all the intersections of the
m-line with α are made explicit. Remember that these intersections correspond to a subset
of the so-called potential hit points (H∗) and potential leave points (L∗) (refer to definition 1
for further details). In each H∗

k /L∗
k point, additional information is provided: on the one

hand, an arrow is traced over the m-line pointing towards the interior of the obstacle; on
the other hand, the transformation, if any, of H∗

k /L∗
k into a real hit/ leave point (Hj /Lj)

is also specified (observe that this transformation takes always place at the endpoints of a
boundary-following path); and, lastly, an update of the algorithm’s state at H∗

k is designated
by writing, in brackets, either EBug2 or EBug2+ depending on the strategy from which the
path has been obtained. As was described in definition 2, changes in EBug2 /EBug2+ can only
occur in potential hit points. Moreover, when a change arises at H∗

k , the distance d(H∗
k , T )

becomes the new state of the algorithm, i.e. EBug2 = d(H∗
k , T )/EBug2+ = d(H∗

k , T ).
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Figure 4.6: Exemplification of the concept of boundary-following path.

Definition 4. Assuming that α is a boundary-following path, let ∆α = {δα
1 , . . . , δα

n} be a
set containing those points of α such that: (1) δα

j ∈ H∗ ∪ L∗ ∀j 1 ≤ j ≤ n —n ≥ 27;

(2) α−1(δα
k ) < α−1(δα

k+1) ∀k 1 ≤ k < n8. In addition, αl,m denotes the segment of α
joining δα

l and δα
m with 1 ≤ l < m ≤ n. The curve linked to αl,m is formally described

by means of a continuous injective function αl,m : I → ∂Oi, just as was done for α in
definition 3. Accordingly, αl,m(0) = δα

l , αl,m(1) = δα
m, and the rest of the points of the

curve are given by αl,m(j) with j ∈ (0, 1). Going ahead with the definition of new terms,

∆α
l,m = {δα

l , . . . , δα
m} ⊆ ∆α —1 ≤ l < m ≤ n—, ∆α,H∗

l,m = ∆α
l,m ∩ H∗, ∆α,L∗

l,m = ∆α
l,m ∩ L∗,

and, finally, the next two conditions are satisfied by Θα
l,m = {θα

l , . . . , θα
m}: (1) Θα

l,m = ∆α
l,m;

(2) d(θα
j , T ) > d(θα

j+1, T ) ∀j l ≤ j < m. As can be observed, ∆α
l,m and Θα

l,m are the same sets.
However, it is important to note that they impose a different order on the elements through
the subscript. In more formal words, ∀δα

j ∈ ∆α
l,m, ∃! θα

k ∈ Θα
l,m | δα

j = θα
k —and, similarly,

∀θα
j ∈ Θα

l,m, ∃! δα
k ∈ ∆α

l,m | θ
α
j = δα

k . See figure 4.7 for a better comprehension of the notation
previously introduced.

Now, let αj,k and βl,m symbolize two segments of the boundary-following paths α and β,

respectively
(

observe that 1 ≤ j < k ≤ |∆α| and 1 ≤ l < m ≤ |∆β|
)

. Then, αj,k and βl,m are

said to be oml-homotopic when the following hold:

1. k − j = m− l
(

or, equivalently, |∆α
j,k| = |∆

β
l,m|
)

;

2. ∀δα
j+q ∈ ∆α

j,k, δβ
l+q ∈ ∆β

l,m

(

0 ≤ q ≤ k − j (= m − l)
)

, either δα
j+q ∈ ∆α,H∗

j,k and

δβ
l+q ∈ ∆β,H∗

l,m or δα
j+q ∈ ∆α,L∗

j,k and δβ
l+q ∈ ∆β,L∗

l,m ;

3. ∀δα
j+s ∈ ∆α

j,k, θα
j+q ∈ Θα

j,k, δβ
l+s ∈ ∆β

l,m, θβ
l+r ∈ Θβ

l,m

(

0 ≤ q, r, s ≤ k − j (= m − l)
)

,

q = r if δα
j+s = θα

j+q and δβ
l+s = θβ

l+r;

7A boundary-following path starts at a potential (real) hit point and ends at a potential (real) leave point
8α−1 indicates the inverse image /preimage of the function α : I → ∂Oi
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Figure 4.7: Understanding some notation using as an example the boundary-following path of
figure 4.6(c). In ∆α, its elements are enumerated according to the order they are found when
following α from the start to the end of the path. On the other hand, in Θα

2,4, the enumeration

is based on the distance to the target (T ). Lastly, to properly define the sets ∆α,H∗

2,4 and ∆α,L∗

2,4 ,
we need to know if a given δα

j ∈ ∆α
2,4 —2 ≤ j ≤ 4— is either a potential hit point (H∗) or

a potential leave point (L∗). In short, δα
j ∈ ∆α,H∗

2,4 if the arrow drawn at δα
j is pointing

towards T ; otherwise, δα
j ∈ ∆α,L∗

2,4 .
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4. ∀q 0 ≤ q < k− j (= m− l), there exists a continuous function h : I × I → R
2 which can

deform the segment αj+q,j+q+1 into βl+q,l+q+1. More precisely, the function h should
comply with:

4.1. ∀r 0 ≤ r ≤ 1, h(0, r) = αj+q,j+q+1(r) and h(1, r) = βl+q,l+q+1(r);

4.2. ∀s 0 ≤ s ≤ 1, the curve γs(r) = h(s, r) with 0 < r < 1 does not cross the m-line
(ST ) at any point. Besides, ∀ǫ > 0 ∃r0 ∈ (0, ǫ) and r1 ∈ (1 − ǫ, 1) | γs(r0) and
γs(r1) /∈ ST ;

4.3. ∀s 0 ≤ s ≤ 1, h(s, 0) and h(s, 1) ∈ ST \ {S, T}.

With the aim of discussing about the oml-homotopy requirements listed above, figure 4.8
considers several pairs of segments αj,k and βl,m. Notice that the segments forming each pair
are going to be part of the boundary-following paths α and β illustrated in figures 4.8(a)
and (b), respectively. Both boundary-following paths are supposed to be generated by the
algorithm 4.2 with its parameter pCFD set to right. Let α1,9 = α and β1,11 = β define
the first pair of segments to be checked for the fulfillment of the four conditions associated
with the concept of oml-homotopy. In such a pair, condition 1 is not met because k − j =
9 − 1 6= m − l = 11 − 1. Therefore, α1,9 and β1,11 are not oml-homotopically equivalent,
irrespective of the rest of conditions whose analysis is no longer needed. Now, focussing our
attention on the segments α4,6 and β3,5, it seems evident that this new pair satisfies condition 1
(k − j = 6 − 4 = m − l = 5 − 3), but not condition 2. In plain words, this second condition

involves the classification of the elements in the sets ∆α
4,6 and ∆β

3,5 into either potential hit

points
(

∆α,H∗

4,6 /∆β,H∗

3,5

)

or potential leave points
(

∆α,L∗

4,6 /∆β,L∗

3,5

)

, as shown in figure 4.8(c).

More precisely, condition 2 holds when the element with subscript 4 + q in ∆α
4,6 and the one

with subscript 3+q in ∆β
3,5 are identically classified for all q —0 ≤ q ≤ 2. Assuming that q = 0,

we can realize by observing figure 4.8(c) that δα
4 ∈ ∆α

4,6 and δβ
3 ∈ ∆β

3,5 are not in agreement
with each other, in the sense that the former element is a potential hit point while the latter
one is a potential leave point. Next, let α4,6 and β6,8 be the third pair of segments taken
into consideration. On this occasion, the pair fulfills conditions 1 and 2, but not condition 3
which forces the elements in ∆α

4,6 and ∆β
6,8 to be distributed on the m-line in the same relative

way. To this respect, the set Θα
4,6 /Θβ

6,8 provides the position that an element in ∆α
4,6 /∆β

6,8

occupies when traversing the m-line from S to T . Specifically, if δα
4+q ∈ ∆α

4,6 /δβ
6+q ∈ ∆β

6,8

and θα
4+r ∈ Θα

4,6 /θβ
6+r ∈ Θβ

6,8 represent the same point in R
2 —0 ≤ q, r ≤ 2—, then the

position of δα
4+q /δβ

6+q on the m-line is r + 1. As can be seen in figure 4.8(d), δα
4+0 ∈ ∆α

4,6 =

θα
4+0 ∈ Θα

4,6 and δβ
6+2 ∈ ∆β

6,8 = θβ
6+1 ∈ Θβ

6,8 so that the positions of δα
4+0 and δβ

6+2 (referred
to as S → T -based positions from now on) are, respectively, 1 and 2. Condition 3 demands

that the element with subscript 4 + s in ∆α
4,6 and the one with subscript 6 + s in ∆β

6,8

have the same S → T -based position for all s —0 ≤ s ≤ 2. Unfortunately, this is not true
when either s = 1 or s = 2. Just to demonstrate one of these failing cases, δα

4+1 ∈ ∆α
4,6 =

θα
4+1 ∈ Θα

4,6 and δβ
6+1 ∈ ∆β

6,8 = θβ
6+2 ∈ Θβ

6,8 for s = 1, which means that the S → T -based

positions of δα
4+1 and δβ

6+1 are certainly different (2 6= 3). Finally, α1,3 and β1,3 form the
last pair of segments to be examined. In short, all conditions are successfully met by the
above-mentioned pair with the only exception of condition 4, which imposes some restrictions
on α1,3 and β1,3 based on the idea of primitive segment. To be clear, a primitive segment

corresponds to a portion of α1,3 /β1,3 connecting two consecutive points of ∆α
1,3 /∆β

1,3 (observe
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that the preceding/ following relation of the elements in the sets ∆α
1,3 and ∆β

1,3 is given by the
subscript). Consequently, the expression α1+q,1+q+1 /β1+q,1+q+1 with 0 ≤ q < 2 characterizes
every primitive segment of α1,3 /β1,3. Condition 4 essentially requires that α1+q,1+q+1 can be
continuously deformed into β1+q,1+q+1 for all q. Besides, during such a deformation, no point
should cross the m-line (ST ) and the endpoints of all intermediate curves between α1+q,1+q+1

and β1+q,1+q+1 should remain fixed to ST —to be more precise, from one curve to another,
the position of the endpoints may change, but on condition that they do belong to ST 9.
Figures 4.8(e) and (f) try to deform, in the way explained before, α1+q,1+q+1 into β1+q,1+q+1

for each possible value of q. Particularly, when q = 0, any deformation between the aforesaid
primitive segments —α1,2 and β1,2— results in failure since the m-line is inevitably crossed
by, at least, one intermediate curve as exemplified in figure 4.8(e). In favor of a better
understanding, imagine the deformation process as if α1+q,1+q+1 were an elastic band with its
ends tied to the m-line in such a manner that they can be slipped up and down along ST .
According to this, β1+q,1+q+1 should be obtained by suitably stretching the α1+q,1+q+1-based
elastic band. On the other hand, when q = 1, α2,3 can become β2,3 through a full-compliance
deformation (see figure 4.8(f)). This fact, nevertheless, is not enough for satisfying condition 4
given that this condition requires that there is no case that fails; this requirement is, hence,
not fulfilled because of the case of q = 0.

To conclude, it is important to highlight that there are some relevant differences between
the concept of homotopy which has just been introduced and the one given in [72]. Mainly,
they differ in that we allow two curves/segments with different endpoints to be homotopic
as well as in considering the m-line as the only obstacle that restricts the deformation of one
curve/segment into the other. In order to avoid confusion with the original concept ([72]),
the prefix oml has been used for referring to our particular kind of homotopy —oml stands
for open m-line.

Lemma 5. Let α be the boundary-following path hypothesized in lemma 4 which joins Hj =
α(0) to L∗

l = α(1) and, in between, passes through H∗
k with d(H∗

k , T ) < d(L∗
l , T ) < d(Hj, T ).

Then:

1. ∆α = {δα
1 = Hj, . . . , δα

n} with n ≥ 3;

2. The segment αn−2,n is oml-homotopic to one of the curves found in figure 4.9;

3. δα
n−2 is a potential hit point (∈ H∗), δα

n−1 = H∗
k , and δα

n = L∗
l .

Assumption/s. The same assumptions as in lemma 4.

Proof. Before starting the proof of lemma 5, let us see how two of the most important
features of a primitive boundary-following path segment —hereafter, briefly referred to as
primitive segment— are related to each other. More exactly, the study is focussed on revealing
the influence that the shape of a primitive segment has on the H∗ /L∗-based labeling of its
endpoints. In this sense, notice that an endpoint is labeled as H∗ when represents a potential
hit point, while the label L∗ is used otherwise, i.e. when the endpoint denotes a potential leave
point (look at definition 1 for a complete description of the requirements that a point should
fulfill to be considered a potential hit/ leave point). On the other hand, regarding the concept
of primitive segment, let α′ be a generic boundary-following path with ∆α′

= {δα′

1 , . . . , δα′

n′ }.

9Additionally, notice that the endpoints of the entire set of curves involved into the deformation process
—including α1+q,1+q+1 and β1+q,1+q+1— are allowed to be located neither at S nor at T
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Figure 4.9: Reducing the possible shapes of the segment αn−2,n to just six different cases,
which are divided into two groups depending on the direction chosen for traversing the contour
of the obstacles —either pCFD = left or pCFD = right.
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Thus, as pointed out in definition 4, the symbol α′
q,q+1 —1 ≤ q < n′— identifies a primitive

segment of α′. Informally speaking, the pieces resulting from cutting α′ in each point where
the m-line is crossed —i.e. in each δα′

r ∈ ∆α′

such that 1 < r < n′— correspond to all
primitive segments of the partitioned boundary-following path.

Next, according to the preceding discussion, let α′
q,q+1 designate a particular primitive

segment of α′, specifically the one connecting δα′

q ∈ ∆α′

to δα′

q+1 ∈ ∆α′

. In these circumstances,
we state that if α′

q,q+1 is oml-homotopic to any curve of figure 4.10(a), then the labeling of

the endpoints δα′

q and δα′

q+1 is ensured not to coincide. Figure 4.10(b) demonstrates the
previous fact by performing an exhaustive analysis of cases, which essentially consists in
the following: one by one, α′

q,q+1 adopts the shape of the four curves shown in figure 4.10(a)
—this undoubtedly makes α′

q,q+1 equivalent/oml-homotopic to such curves; at the same time,

for each different shape of α′
q,q+1, the two possible characterizations of δα′

q as either a potential
hit point (H∗) or a potential leave point (L∗) are taken into account; finally, each of the eight
resultant cases is suitably treated, meaning that the label of δα′

q+1 is inferred and also checked

to be opposite to the one claimed for δα′

q . Regarding the above-mentioned inference process,
it is important to note that it exploits the representation given to both H∗ and L∗ points
with the already-known purpose of determining the appropriate labeling of δα′

q+1. As said by
definition 3, these points are symbolized using a directional arrow, which is always aligned
with the m-line (ST ). This arrow allows to easily distinguish between H∗ and L∗ points by
observing its pointing direction: in short, a potential hit point is recognized when the arrow is
pointing at T , while the opposite —thus, the arrow is pointing at S— suggests the existence of
a potential leave point. As one could expect, the earlier criterion for differentiating H∗ and L∗

points is not arbitrary at all, but it is based on the real essence of the terms hit and leave.
In simple words, an arrow does point at the ST -restricted direction in which the obstacle
containing the associated potential hit/ leave point lies. To this respect —and going back in
the text—, figure 4.6(c) provides several illustrative examples (see also figure 4.6(b) to know
the precise shape of the obstacle that is involved in such examples). As can be appreciated, at
any point labeled as H∗

k /L∗
k, we can get directly inside the corresponding obstacle by following

the direction specified by the arrow (or, from another point of view, we can consistently affirm
that the direction of the arrow, after a U-turn, locally moves us away from the obstacle). Once
having explained the notions needed for a well understanding of the so-called inference process,
let us discuss how it is applied. To this end, concerning the case depicted in the left-upper
corner of figure 4.10(b), we are going to find out the only feasible option for the labeling
of δα′

q+1. First of all, notice that δα′

q is supposed to be a potential hit point since its arrow

is pointing at T . Moreover, the curve joining δα′

q to δα′

q+1 —α′
q,q+1— constitutes a portion of

the boundary of a certain obstacle. Remember that, in accordance with the Jordan curve
theorem [72], the whole boundary of an obstacle is guaranteed to define a simple closed curve,

which implies that it divides the plane
(

R
2
)

into just two regions commonly referred to

as the inside and the outside. In view of that, the arrow linked to a potential hit/ leave
point can be alternatively interpreted as a graphical way of showing the direction towards
the inside region of the obstacle to which the point belongs to. Consequently, knowing the
labeling of δα′

q , we are able to identify which side of the curve α′
q,q+1 actually corresponds to

the interior /exterior of the obstacle, as done in figure 4.10(b) for the case at hand. Lastly,
keeping this information in mind, the pointing direction of the arrow at δα′

q+1 is trivially

obtained. As expected, δα′

q+1 disagrees with δα′

q because of being a potential leave point. To

conclude, observe that there is no case in figure 4.10(b) where δα′

q and δα′

q+1 are both potential



4.2. The New Algorithm Bug2+ 111

hit points/potential leave points, proving so the formulated statement.

At this moment, by following the same line of reasoning which was previously developed,
we can additionally state that:

• If α′
q,q+1 is oml-homotopic to any curve of figure 4.11(a) —these curves are characterized

by going around either S or T—, the labeling of the endpoints δα′

q and δα′

q+1 are ensured
to be identical.

• Similarly, if α′
q,q+1 is oml-homotopic to any curve of figure 4.11(b) —these curves differ

from all others in that they go first around S /T and, later, around T /S—, the labeling
of the endpoints δα′

q and δα′

q+1 are guaranteed not to coincide, just as happened for the set
of curves represented in figure 4.10(a).

By way of example, figure 4.11(c) presents some situations which clearly support the above-
mentioned conditional assertions. In each of the four settings considered, after having defined
δα′

q as either an H∗ or L∗ point, the label of δα′

q+1 is decided by means of the already-known
inference process.

As a closing remark for the preliminary concepts involved in the proof of lemma 5, it
is important to highlight that figure 4.10(a), and figures 4.11(a) and (b) illustrate all pos-
sible shapes of the primitive segment α′

q,q+1, or in other words, any valid shape for α′
q,q+1

is oml-homotopically equivalent to one of the curves shown in the aforesaid figures. Such a
reduced set of solutions results from discarding those shapes of α′

q,q+1 that fail in satisfying
the Jordan curve theorem. In this sense, α′

q,q+1 is part of the contour of an obstacle, i.e. of
a Jordan curve, and, therefore, it should be simple —without self-crossings. This requirement,
which is inherent to the idea of primitive segment, is merely fulfilled by the group of curves
found in figures 4.10(a) and 4.11(a,b). Lastly, just to give an example of a candidate shape
for α′

q,q+1 that was rejected on the basis of the Jordan curve theorem, figure 4.12(a) draws

a curve which goes, in order, around S, T , and S before defining the endpoint δα′

q+1. As can
be seen, there is no other alternative for a curve with the preceding topological description
than to cross itself at least once.

Lemma 4 contemplates a situation in which algorithm 4.1 and algorithm 4.2, while cir-
cumnavigating the contour of the same obstacle, share a path that joins the points Hj and L∗

l ,
and in-between passes through H∗

k with d(H∗
k , T ) < d(L∗

l , T ) < d(Hj , T ). In this context, Hj

is a real hit point which marks the place where such a contour following process/boundary-
following behavior was initiated in both planners. It is important to note that, prior to
performing the alluded boundary-following behavior, the other strategic component of the
algorithms 4.1 and 4.2 was active. We are referring to the so-called motion-to-goal behavior
which, as pointed out in section 4.1.3, is intended to get closer to the target (T ) by moving
along the m-line (ST ) until an obstacle definitely impedes to advance further. Consequently,
a segment of ST is traversed as a result of the operation of this behavior. Let XY mtg

generically denote one of these segments, being X and Y two different m-line’s points with
d(X,T ) > d(Y, T ). In short, XY mtg means that the related activation of the motion-to-goal
behavior did achieve progress from X to Y by following a straight-line path. Now, we are
going to characterize the XY mtg-type segment associated with the execution of the motion-
to-goal behavior that immediately precedes the aforementioned contour following process —
the one involved in lemma 4. Under these circumstances, it seems obvious that Hj defines
the point where an obstacle was found, i.e. where the progress towards T brought to an end.
Hence, Y = Hj . Additionally, observing that, in algorithm 4.1 and algorithm 4.2, the starting
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Figure 4.10: Going deeply into details on two key properties of a primitive segment: shape
versus labeling of the endpoints.
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Figure 4.11: More about two key properties of a primitive segment: shape versus labeling of
the endpoints.
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Figure 4.12: (a) an unsuitable shape for the primitive segment α′
q,q+1 because of not being

a simple curve; (b) some inquiries about how the boundary-following path linked to lemma 4
extends before reaching Hj.

of any action requiring some direct motion to the goal always lies on a real leave point as well
as the subscript of this L-labeled point can be simply obtained by subtracting one from the
subscript of Y (= Hj), then X = Lj−1. Thus, the segment Lj−1H

mtg
j constitutes the most

recent path preceding the one that connects Hj to L∗
l . Figure 4.12(b) graphically summarizes

the major issues to be kept in mind hereafter from the previous discussion. As can be seen,
the inequality d(H∗

k , T ) < d(L∗
l , T ) < d(Hj , T ) < d(Lj−1, T ) holds, making thus evident the

relative position of these points over the m-line. On the other hand, the segment (Lj−1Hj)
mtg

—notice that parentheses are used for describing an XY mtg-type segment which is fully open,
or, in plain words, a segment which does not include any of its endpoints— identifies a path
in R

2 that is ensured to be free of obstacles according to the well-known operation of the
motion-to-goal behavior.

In the following, we assume that algorithm 4.1 and algorithm 4.2 were both configured
with the parameter pCFD = right when moving from Hj to L∗

l , i.e. when producing the
boundary-following path referred to as α. The forthcoming analysis trying to infer, under
the given assumption, all possible shapes of α —and, in consequence, all possible shapes of
any part of it such as αn−2,n— can be effortlessly revised for the case being omitted which
considers pCFD = left . As required by lemma 5 and illustrated in figure 4.9(a), the concerned
pCFDright-based analysis should be focussed on determining the shape of α/αn−2,n with
respect to a portion of the m-line expressed by (Lj−1T —in line with the notation introduced
above for XY mtg-type expressions, the use of parentheses in XY -type expressions10 indicates
that the corresponding straight-line segment is open, but just partially on this occasion,
because of lacking of a closing parenthesis, which means that the segment does not contain its

10 In essence, XY and XY mtg-type expressions differ each other in that the former ones symbolize generic
straight-line segments and not necessarily paths derived from the execution of the motion-to-goal behavior
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endpoint Lj−1, but contains, however, T . Observe that, by definition, the boundary-following
path α crosses (Lj−1T in several points —to be precise, at least in Hj, H∗

k , and L∗
l . This

fact clearly guarantees the existence of the primitive boundary-following path segments α1,2

and α2,3. Accordingly, and as a first step to the proof of lemma 5, let us find out which shapes
of those ones that are feasible for a generic primitive segment designed by α′

q,q+1 continue being
valid when dealing with the particular features of α1,2. In this sense, figures 4.10 and 4.11
depict every single shape of α′

q,q+1, or in other words, they provide an initial oml-homotopy-
based model for the α1,2’s shapes. This wide set of solutions, nevertheless, can be significantly
reduced until obtaining the one shown in figure 4.13(b) by taking into account the following
specific details on α1,2: (1) α′

q,q+1(0) = α1,2(0) = α(0) = Hj, or equivalently, δα′

q = δα
1 = Hj;

(2) from Hj /α1,2(0), the contour of the detected obstacle is supposed to be followed in
right direction —remember that pCFD = right—, which implies that α1,2 should go on the
right11 side of the m-line as exemplified in figure 4.13(a), discarding thus half of the potential
solutions. Next, the suitability of each of the shapes of α1,2 suggested in figure 4.13(b) will
be discussed in depth —notice that, as required previously, these shapes are given using as
a reference the m-line’s segment (Lj−1T , and not ST :

• About cases 1 and 7. As demonstrated earlier when introducing the preliminary notions
for the proof of lemma 5, by knowing both the precise shape of a primitive segment
and the H∗ /L∗-based labeling of one of its endpoints, we are able to determine what
kind of potential point —H∗ or L∗— the other endpoint is. To this respect, but paying
special attention to α1,2, the shape of that curve is supposed to be the one of cases 1
and 7. In addition, the endpoint δα

1 = α1,2(0) belongs to H∗ because δα
1 = Hj. Hence,

the unknown H∗ /L∗-based labeling of δα
2 = α1,2(1) can be actually found out for the

cases at hand, as it is done in figure 4.13(b). Observe that, in accordance with the
aforementioned figure, the endpoint δα

2 is a potential leave point —∈ L∗— in cases 1
and 7. As said by definition 1, an L∗-labeled point such as δα

2 identifies a position
in the environment where algorithms 4.1 and 4.2 may decide to abandon an ongoing
contour following process. Specifically, the leaving arises when conditions C1 and C2 in
algorithm 4.1, and conditions C3 and C4 in algorithm 4.2 are met. Regarding the former
planner, let us see if conditions C1 and C2 hold at δα

2 in the current context. On the one
hand, condition C1 demands finding a point such that the distance to the target is less
than the one from α(0) (= α1,2(0) = Hj, denoting thus the position where the boundary-
following path α —or consistently, its first primitive segment α1,2— was started). On
the basis of figure 4.13(b), the expression d(δα

2 , T ) < d(α(0), T ) = d(Hj , T ) = EBug2 can
be inferred for cases 1 and 7, which definitely means that condition C1 is satisfied at δα

2 .
On the other hand, the same occurs with condition C2, whose fulfillment comes from the
potential-leave-point nature of δα

2 . In short, δα
2 does meet the two necessary conditions

for algorithm 4.1 to abandon, in such a point, the contour following process linked to α.
However, under lemma 5, algorithm 4.1 is assumed to fully traverse α —as pointed out
before, this boundary-following path consists, in its up-to-now realized form, of the
primitive segments α1,2 and α2,3—, and not just a part of it —α1,2. This contradiction,
without loss of generality, allows us not to be concerned about cases 1 and 7.

• About cases 2, 4, 6, and 8. As remarked in figure 4.12(b), the straight-line seg-
ment (Lj−1Hj)

mtg corresponds to a path without obstacles. In contrast, the primi-
tive segment α1,2 represents a portion of the boundary of a certain obstacle so that

11looking from S to T
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Figure 4.13: A coarse-filtered set of solutions for the shape of the primitive segment α1,2:
(a) main filtering criterion; (b) (Lj−1T -adapted results.
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it seems clear that α1,2 is not allowed to cross (Lj−1Hj)
mtg at any point. More-

over, the position of δα
2 = α1,2(1) should be out of the segment (Lj−1H

mtg
j —now,

the expression includes Hj— since the endpoints of α1,2 should differ each other, i.e.
δα
1 = α1,2(0) = Hj 6= δα

2 (this is due to the fact that, according to definition 3, every
boundary-following path/path segment defines a simple and open curve). Finally, by
looking at cases 2, 4, 6, and 8 in figure 4.13(b), we rapidly conclude that they do not
comply with the α1,2-based restriction revealed above.

• About cases 3 and 5. No line of reasoning leads to the rejection of cases 3 and 5 as
possible α1,2’s shapes.

Summarizing, as a main outcome of the preceding study, the shape of the primitive seg-
ment α1,2 is guaranteed to be oml-homotopic to one curve or another of cases 3 and 5 in
figure 4.13(b).

After exposing the two real possibilities for the topological appearance of α1,2, the shape-
based analysis which has just been presented is going to be broaden to entirely cover the
boundary-following path segment α1,3. Or, in other words, the shape of the proven-to-exist
primitive segment α2,3 will be examined by keeping in mind every constraint (cstr) that follows:

cstr1 . δα
2 symbolizes the only point that is shared between the two consecutive primitive

segments α1,2 and α2,3. Or from a simpler perspective, δα
2 refers to a position where

the m-line —ST— is crossed by α1,3. This double clarification of the meaning of δα
2

allows us to formally affirm that: ∀ǫ > 0 ∃i0 ∈ (1−ǫ, 1) and i1 ∈ (0, ǫ) such that α1,2(i0)
and α2,3(i1) are ensured to be located in different sides of ST . In essence, this statement
provides a way for determining if α2,3 goes on either the left side or the right side of
the m-line from δα

2 . With this aim, let us exploit further the recently-gained knowledge
respecting the feasible shapes of α1,2. On this matter, 3 and 5 are the two cases of interest
for α1,2. In both cases, as can be verified in figure 4.13(b), those points of α1,2 situated
in the neighborhood of δα

2 lie on the left side of ST . Consequently, making use of the
above-mentioned statement, exactly the opposite should occur with α2,3. Therefore, as
a final result, α2,3 should extend towards the right side of ST from δα

2 (see figure 4.14(a)
for an at-a-glance justification of this fact).

At this moment, it is important to highlight that α1,2 was also resolved to extend,
from its corresponding starting point —α1,2(0) = δα

1 —, to the right side of the m-line
like α2,3. The first constraint being supported takes advantage of such a coincidence by
considering the shapes given in figure 4.13(b) as a complete set of topologically-different
solutions for α2,3 —naturally, once the endpoints δα

1 and δα
2 have been replaced by δα

2

and δα
3 , respectively;

cstr2 . No intersection is permitted between α1,2 and α2,3 since both primitive segments
when taken as a whole, i.e. when being jointly represented by α1,3, are claimed to
describe a simple and open curve;

cstr3 . In view of lemmas 4 and 5, α(1)
(

= α2,3(1) = δα
3 , assuming that the boundary-

following path α merely comprises two primitive segments
)

should be a point where

the leaving arises for algorithm 4.1, but not for algorithm 4.2. Or, in more specific
terms, the point linked to α(1) should involve both an L∗-type labeling —thus, α(1)
will denote a potential leave point— as well as the exclusive fulfillment of condition C1

from algorithm 4.1 —as opposed to condition C3 from algorithm 4.2.
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Figure 4.14: A first-round selection of shapes for the boundary-following path segment α1,3

on condition that α1,2 is the curve of case 3 in figure 4.13(b).
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Figures 4.14(b) and 4.15(a) distinguish, from an oml-homotopic viewpoint, all possible
shapes of the curve α1,3, which are obtained by combining cases 3 and 5 of α1,2 with each of

the eight solutions for α2,3 that derive from the first constraint listed earlier
(

notice that, in

the two referenced figures, a solution designated by X.Y indicates that case X of α1,2 has been
merged with case Y of α2,3; moreover, such a latter case ultimately corresponds to a version of
case Y of α1,2 which, while keeping the distinctive topology of the original primitive segment,

connects different endpoints —δα
1 and δα

2 versus δα
2 and δα

3

)

. Now, the sixteen resulting shapes

for the boundary-following path segment α1,3 are checked against the remaining —second and
third— constraints:

• About cases 3.4, 3.6, 5.3, 5.4, 5.6, 5.7, and 5.8. These cases reflect situations where

the primitive segments α1,2 and α2,3 cross in, at least, one occasion
(

see figures 4.14(b)

and 4.15(a) again; observe that, for the concerned cases, α2,3 is not always entirely drawn
with the purpose of indicating that the curve extends, from the given dotted end, towards

some point of the m-line segment (Lj−1δ
α
2 ) —not including δα

1

)

. In this way, none

of cases 3.4, 3.6, 5.3, 5.4, 5.6, 5.7, and 5.8 does satisfy our second mandatory constraint,
which allows us to definitely get rid of them.

• About cases 3.1, 3.7, and 5.1. Figures 4.14(b) and 4.15(a) reveal the next three main
facts regarding cases 3.1, 3.7, and 5.1: first of all, the inferred labeling of δα

3 results to be
of type L∗, i.e. δα

3 is a potential leave point; in addition, on the basis of definition 2,
the state of algorithms 4.1 and 4.2 are, respectively, EBug2 = d(δα

1 , T ) = d(Hj, T ) and
EBug2+ = d(δα

2 ,T) at δα
3 ; finally, the expression d(δα

3 , T ) < EBug2+ < EBug2 holds.
In short, from above, we conclude that conditions C1 and C2 of algorithm 4.1, and
conditions C3 and C4 of algorithm 4.2 will be certainly met when reaching the point δα

3

once α (= α1,3) has been completely traversed. Nevertheless, this actually means that
the leaving will take place for both algorithms at δα

3 , and not only for algorithm 4.1 as
required by our third constraint.

• About cases 3.2, 3.8, and 5.2. Lemma 4 describes α as a path that goes, in order, through
the points Hj, H∗

k , and L∗
l . Besides, these points should comply with the inequality

d(H∗
k , T ) < d(L∗

l , T ) < d(Hj, T ). As clearly shown in figures 4.14(b) and 4.15(a),
cases 3.2, 3.8, and 5.2 fulfill the whole set of conditions previously mentioned. More
exactly, the success of cases 3.2, 3.8, and 5.2 resides in becoming aware of the following:

δα
1 = Hj, δα

2 is a potential hit point
(

= H∗
k

)

, δα
3 symbolizes a potential leave point

(

= L∗
l

)

, and, at last, the relative position of such points on ST —specifically, on the

m-line segment (Lj−1T— is given by d(δα
2 , T ) < d(δα

3 , T ) < d(δα
1 , T ).

After the preceding discussion, a verification of lemma 5 should be performed on each of
the three solutions for the boundary-following path α = α1,3 which have just been found.
To this end, let us start by enumerating some of the properties of α that commonly
apply to the cases at hand:

1. ∆α = {δα
1 = Hj, . . . , δα

n} with n = 3;

2. The boundary-following path segment αn−2,n = α1,3 = α is oml-homotopic to
that curve of figure 4.9(a)/(b)/(c) in case 5.2/3.2/3.8 ;

3. As said before, δα
n−2 = δα

1 = Hj ∈ H∗, δα
n−1 = δα

2 = H∗
k , and δα

n = δα
3 = L∗

l .
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Figure 4.15: A first-round selection of shapes for the boundary-following path segment α1,3

on condition that α1,2 is the curve of case 5 in figure 4.13(b).
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According to this, there is no doubt of a full agreement between the three aforelisted
α’s properties relating to cases 3.2, 3.8, and 5.2, and the ones stated by lemma 5.

• About cases 3.3, 3.5, and 5.5. Contrary to what has happened until now, no criterion
can be used for either discarding or accepting cases 3.3, 3.5, and 5.5 as solutions to
the boundary-following path α. This is essentially due to the fact that, in such cases,
α (= α1,3) lacks for potential leave points, which makes sure to prevent algorithms 4.1
and 4.2 from abandoning the supposed contour following process initiated at δα

1 = Hj.
Consequently, under these circumstances, α will necessarily consist of an additional
primitive segment —namely α3,4, being thus α = α1,4—, which results from keeping on
following the boundary of the obstacle once the point δα

3 has been reached.

Before going over the particular features of the new primitive segment α3,4, let us
consider the aim of lemma 5. In a few words, this lemma tries to characterize the
shape of a portion of the boundary-following path α. To be precise, some relevant
information is provided by lemma 5 with respect to the boundary-following path seg-
ment αn−2,n which, as can be guessed, comprises the two last primitive segments of α.
Bearing this in mind, it seems clear that, in cases 3.3, 3.5, and 5.5, α2,4 constitutes
the boundary-following path segment on which lemma 5 must be proved. Accordingly,
α2,4 will become, hereafter, our main focus of attention, which actually means that,
for the three currently analyzed cases, any other part of α —essentially, the primitive
segment α1,2— will be completely ignored.

Consistent with the above-mentioned purpose, notice, first of all, that the primitive
segment α2,3 in case 3.3/cases 3.5 and 5.5 is oml-homotopically equivalent to α1,2

in case 3/case 5 (look at figures 4.13(b), 4.14(b), and 4.15(a) for appreciating such
a correspondence). Hence, we can affirm that the formally-called shape space12 linked to
the primitive segment going after α2,3 in cases 3.3, 3.5, and 5.5 —i.e. the unknown α3,4—
will definitely coincide with the one of the primitive segment following to α1,2 in cases 3
and 5. Or, in more general words, by accounting for both the given equivalence involv-
ing α2,3 and α1,2 as well as for the common shape space of their subsequent primitive
segment, there is no doubt that no differences will exist between the corresponding
shape spaces of the boundary-following path segments α2,4 and α1,3, as derived from
cases 3.3, 3.5, and 5.5, and cases 3 and 5, respectively. In this way, remembering that
figures 4.14(b) and 4.15(a) wholly illustrate the shape space of α1,3, we are now able
to interpret these figures as also representing the shape space of α2,4 —obviously, with
the condition that the points δα

1 , δα
2 , and δα

3 are replaced by δα
2 , δα

3 , and δα
4 , in that order.

As significantly stated before, the shape space of the boundary-following path segment
α2,4 is exactly the same as the one of α1,3, which includes the sixteen cases designated
by 3.1, . . ., 3.8, 5.1, . . ., 5.8. All these cases —excepting the ongoing ones— have already
been examined in search of solutions for α/αn−2,n. Furthermore, each time a solution
has been found, lemma 5 has been checked to be satisfied on it. In conclusion, when
dealing with cases 3.3, 3.5, and 5.5, no new solutions for αn−2,n will be obtained due to
the recurrent analysis that certainly arises and leads, again and again, to the three
previously identified solutions of cases 3.2, 3.8, and 5.2. Therefore, it is plain that
cases 3.3, 3.5, and 5.5 are irrelevant under lemma 5.

12 Generally speaking, the term shape space refers to the set of all possible shapes of a curve
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Let us clarify the severe assertion finishing the last paragraph. It is important to know
that cases 3.3, 3.5, and 5.5 are, in truth, influencing lemma 5 in the sense of con-
sidering α to be a boundary-following path that may consist of more than two prim-
itive segments —if so, observe that |∆α| = n > 3. The value of n is only higher
than 3 when cases/solutions 3.2, 3.8, or 5.2 are indirectly achieved from cases 3.3, 3.5,
or 5.5. Concisely, the following properties hold for any α-compliant solution with n > 3:
(1) αn−2,n is oml-homotopic to one of the curves of cases 3.2, 3.8, and 5.2; (2) similarly,
∀q 1 ≤ q ≤ n − 3, αn−2−q,n−q is oml-homotopic to one of the curves of cases 3.3, 3.5,
and 5.5; and, finally, (3) α defines a simple curve. By way of example, figure 4.15(b)
sketches a solution for α having four primitive segments —i.e. n = 5.

Coming to an end, we have realized that cases 3.2, 3.8, and 5.2 represent the whole set
of solutions for αn−2,n. As can be verified, these solutions faithfully correspond to the ones
proposed by lemma 5 in figures 4.9(b), (c), and (a). Hence, lemma 5 is proved.

Lemma 6. Let α be the boundary-following path hypothesized in lemma 4 which is jointly
traversed by algorithms 4.1 and 4.2 from Hj = α(0) to L∗

l = α(1) passing, in between, through
H∗

k with d(H∗
k , T ) < d(L∗

l , T ) < d(Hj , T ). Then: in algorithm 4.1, once α has been completed
and the leaving of such a contour following process has occurred at L∗

l (= Lj), H∗
k will become

a real hit point (∈ H) in some time before converging to T .

Assumption/s. The same assumptions as in lemmas 4 and 5.

Proof. First of all, we insistently recommend the reader to revise every new concept that
was introduced for proving lemma 5. Specifically, we are referring to: (1) on the one hand,
the way of finding out the proper H∗ /L∗-based labeling of the endpoints of a primitive
boundary-following path segment; (2) on the other hand, the notation used for designating
both the path resulting from the activation of the motion-to-goal behavior —XY mtg—, and
a fully/partially open straight-line segment —(XY )/ (XY or XY ).

Next, the proof of lemma 6 is widely developed on the assumption that algorithm 4.1 was
configured with the parameter pCFD = right when moving from Hj to L∗

l , i.e. when produc-
ing the boundary-following path named α (remember that such a configuration keeps constant
throughout the execution of the algorithm). Under these circumstances, lemma 5 establishes
that the shape space of the boundary-following path segment αn−2,n is merely made up of
the curves shown in figures 4.9(a), (b), and (c). This valuable knowledge in conjunction with
the one issuing from lemma 4 that recognizes the interruption/abandonament of α at L∗

l in
algorithm 4.1 are going to be used as a basis for the forthcoming pCFDright-restricted proof.

Without loss of generality, the right-biased context which has just been set out for proving
lemma 6 can be seen as equivalent to the one that stems from considering the horizontally-
flipped version —around (Lj−1T— of each of the three aforesaid feasible αn−2,n’s shapes
illustrated in figures 4.9(a,b,c), as long as any future operation of the contour following process
/boundary-following behavior in algorithm 4.1 starts moving in the opposite direction to the
suggested above —as a direct consequence of the turn—, meaning thus that pCFD = left .
Figures 4.9(d), (e), and (f) reflect this different, but equivalent, context for the problem
at hand which, as can be guessed, additionally corresponds to the one that would arise from
a pCFDleft-restricted proof of the current lemma. Then, this fact allows us to affirm that
the specific setting of the parameter pCFD does not actually matter when trying to prove
lemma 6, or in more convenient words, that the ongoing pCFDright-based proof is also valid
for the —neglected— case in which pCFD = left .
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As briefly mentioned before, algorithm 4.1 stops running the boundary-following behavior
that causes the generation of α when getting to the potential leave point L∗

l . At that moment,
the other alternative behavior referred to as motion-to-goal takes control of the planner, and
L∗

l turns into a real leave point with subscript j, i.e. L∗
l = Lj

13. From this time forth, we are
going to evaluate what may happen once the motion-to-goal behavior has been initiated at Lj

in algorithm 4.1. This will be done by taking into account, one by one, all possible shapes
of the boundary-following path segment αn−2,n. More exactly, to carry out the evaluation
being proposed, we only need to consider the shape space of the primitive boundary-following
path segment αn−1,n, and not that one of the whole curve αn−2,n. According to this and
by observing figures 4.9(a), (b), and (c) again, one can rapidly realize that the shape space
linked to αn−1,n exclusively consists of the two curves appearing in figures 4.16(a) and (b).

Through the next lines, let us suppose the existence of a certain variable m initialized
to zero —m = 0—, as well as that the shape of αn−1,n is oml-homotopic to the curve of
figure 4.16(a). Under these circumstances, the list of all relevant events that may be triggered
from Lj = Lj+m in algorithm 4.1 is as follows:

e1. As seems clear, in case that no obstacles are crossing the straight-line segment (Lj+mH∗
k),

the planner will necessarily reach H∗
k as a natural result of the activation of the motion-

to-goal behavior at Lj+m.

e2. Unlike the preceding situation, let Hj+1+m be the point where an obstacle has been found
before reaching H∗

k , while performing the motion-to-goal behavior invoked at Lj+m.
Seeing that, algorithm 4.1, after defining such a real hit point Hj+1+m and setting
EBug2 = d(Hj+1+m, T ), will immediately start traversing the contour of the new de-
tected obstacle in right direction, as given by pCFD = right . Or from a different
perspective, algorithm 4.1 will generate a new boundary-following path —named βm,
hereafter—, which will extend on the right side of (Lj−1T from Hj+1+m

14. Accordingly,
let βm

1,2 denote the first primitive boundary-following path segment of βm. Notice that

the endpoints of this primitive segment are characterized by βm
1,2(0) = δβm

1 = Hj+1+m

and βm
1,2(1) = δβm

2 , being the latter certainly located in some position along ST based on
definitions 3 and 4. Now, prior to identifying the shape space of βm

1,2, we should pay
special attention to a couple of facts. On the one hand, ∀q 0 ≤ q ≤ m, (Lj+qHj+1+q)

mtg

designates a path that is ensured to be free of obstacles because an earlier execution of
the motion-to-goal behavior in algorithm 4.1 successfully accomplished to get across it.
On the other hand, by realizing —in line with the Jordan curve theorem— that obstacles
do not touch each other, we can deduce that βm

1,2 is intersecting neither αn−1,n nor βq
1,2

∀q 0 ≤ q < m15. In short, by putting the previous facts together, it seems obvious
that there is no other option for the endpoint δβm

2 apart from lying on the m-line
segment (Hj+1+mH∗

k). Furthermore, this result, added to the knowledge that any prim-
itive segment —therefore, βm

1,2— describes a simple curve, yields to the final conclusion
that the shape space of βm

1,2 contains only the curve depicted in figure 4.16(c) (see also
figure 4.16(d) where a representative set of unfeasible shapes for βm

1,2 is provided). Or
using more formal terms, we can equivalently state that every feasible shape for the

13 The rule guiding the assignation of a subscript to a new L-type point simply says that such a subscript
should agree with the one given to the most recently-defined real hit point. In particular, this last H-type point
corresponds to Hj = α(0) when algorithm 4.1 is located at L∗

l = α(1)
14 Look from X to Y for suitably determining the left / right side of a generic straight-line segment XY
15 If m = 0, the expression does not involve any curve β

q
1,2
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primitive segment βm
1,2 is oml-homotopic to the curve of figure 4.16(c). Algorithm 4.1

will traverse βm
1,2 from δβm

1 = Hj+1+m to δβm

2 . Nevertheless, once the point δβm

2

is reached, the ongoing contour following process will be replaced by the motion-to-goal
behavior —the same that happened when moving to Lj+q, ∀q 0 ≤ q ≤ m— since the two
conditions controlling the indicated transition will be met: firstly, and as it is illustrated
in figure 4.16(c), δβm

2 is known to be a potential leave point —∈ L∗— in accordance
with the so-called labeling inference method explained during the proof of lemma 5;

secondly, d
(

δβm

2 , T
)

< EBug2 = d(Hj+1+m, T ).

Following the discussion above, observe that δβm

2 will become the real leave point Lj+1+m

as a result of the last activation of the motion-to-goal behavior. Thus, our concern now
is about what may happen from Lj+1+m according to algorithm 4.1. With this aim,
recall that the variable m is assumed to be zero when referring to Lj+1+m. Consequently,
if m is incremented by one, such a point can be alternatively denoted as Lj+m. Let m
be 1. Then, events e1 and e2 reflect, once again, the whole set of situations to which
algorithm 4.1 could be confronted after defining Lj+1 = Lj+m.

Summarizing, the given description of event e2 is presented as an iterative process, where
the number of iterations to be performed —each of them operating with an increased
value of m that starts from zero— directly depends on the amount of obstacles that
algorithm 4.1 will find on (LjH

∗
k). It is important to remark here that this number of

iterations is guaranteed to be finite because the set of all obstacles in the environment
is also finite by hypothesis, and because, at the same time, the circumnavigation of
those obstacles detected on (LjH

∗
k) does always mean a step forward towards H∗

k , which
clearly discards that an obstacle that has already been overcome can be later revisited.
As can be guessed from the preceding words, algorithm 4.1, in each iteration, achieves
progress on its way from Lj to H∗

k . Moreover, the end of the iterative process arises
when no more obstacles are impeding such a progress, implying thus the triggering of
event e1 and, what is more interesting for us, the convergence of algorithm 4.1 to H∗

k .
To finish, figure 4.16(e) shows how the suggested e2 -derivative iteration process works
from a generic viewpoint.

Theorem 2. The length of the path produced by algorithm 4.2 is, at worst, equal to the length
of the path generated by algorithm 4.1.

Assumption/s. Algorithms 4.1 and 4.2 are executed on the same scenario. Additionally,
a path exists between S and T , and the parameter pCFD is set to the same value in both
strategies.

Proof. The forthcoming proof relies on the general idea that algorithm 4.2 generates ex-
actly the same path as algorithm 4.1 in all cases, except in those ones where cycles appear;
in these special cases, algorithm 4.2 does improve the path given by algorithm 4.1 by reducing
the number of resulting cycles, as it is evidenced in figure 4.17 (observe how the red-marked
cycle produced by algorithm 4.1 disappears when executing algorithm 4.2). In short, the
above allows us to alternatively imagine algorithm 4.2 as a method for removing some cycles
—if any— from a path derived from algorithm 4.1, while keeping unaltered the rest of the
trajectory. In view of that, it seems clear that algorithm 4.2 will outperform algorithm 4.1
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Figure 4.17: Understanding algorithm 4.2 as a method for removing cycles from a path
planned by algorithm 4.1. These results were obtained by configuring the two strategies to
follow the boundary of the obstacles towards the right (pCFD = right).

when being able to successfully carry out —partially or totally— the alluded removal of cy-
cles, whereas, otherwise, both algorithms will offer an identical path length performance.
This concluding remark is formally treated and used next as a guide for proving theorem 2.

After jointly starting at S, algorithms 4.1 and 4.2 are known to behave equivalently while
the circumstances described in lemma 4 do not arise. Bearing this in mind, there is not
doubt that these algorithms will provide the same solution to the path-planning problem
if lemma 4 never applies. Let us now consider the non-trivial case in which algorithm 4.1
and algorithm 4.2 converge to T in a different way. So, as pointed out earlier, this requires
working in the context of lemma 4, which means that both algorithms are going to cross
the m-line at points H∗

k and L∗
l during a supposed activation of the contour following process

initiated at Hj. Furthermore, the crossing linked to H∗
k should occur before the one of L∗

l ,
and the inequality d(H∗

k , T ) < d(L∗
l , T ) < d(Hj, T ) should hold as well. On the basis of

the concept of oml-homotopy (see definition 4 for details concerning this adapted topological
concept), lemma 5 characterizes the shape of the above-mentioned boundary-following path.
This path is generically referred to as α hereafter. Figure 4.18(a) shows the results of such
a characterization, but mainly focusing on the part of α represented by αn−1,n. Specifically,
αn−1,n denotes the last primitive segment of α, whose endpoints are αn−1,n(0) = δα

n−1 = H∗
k

and αn−1,n(1) = δα
n = L∗

l .

As already discussed, algorithms 4.1 and 4.2 traverse α together until getting to L∗
l . From

that moment, however, their paths diverge as stated by lemma 4. More precisely, no new
decision is taken by algorithm 4.2 at point L∗

l , continuing thus its ongoing contour following
process —i.e. extending α. On the contrary, algorithm 4.1 decides to abandon the boundary
of the current obstacle to try to progress towards the target by moving along L∗

l T . To this
respect, lemma 6 gives some clues about the progress that is made by algorithm 4.1 after
leaving L∗

l . In short, and as can be observed in figure 4.18(b), algorithm 4.1 surely arrives
at H∗

k —let us highlight that this will be the second time in achieving the potential hit
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point H∗
k since αn−1,n(0) = H∗

k . Lemma 6 also establishes that algorithm 4.1 defines a new
H-type point when returning to H∗

k . This is because such an algorithm detects, at H∗
k ,

an apparently new obstacle16 impeding further progress to T on the m-line. It is important to
note that there are two more consequences of hitting an obstacle at H∗

k . On the one hand, the
state of algorithm 4.1 changes to EBug2 = d(H∗

k , T ). On the other hand, the generation of an
additional boundary-following path named γ starts with the intention of circumnavigating the
obstacle which has been found. Then, according to the latter fact, let γ1,2 be the first primitive
segment of γ such that γ1,2(0) = H∗

k . As it seems obvious, to properly determine now the form
of γ1,2, we need some information on the precise shape of the contour of the detected obstacle,
essentially nearby H∗

k . Fortunately, this information can be actually gained by realizing
all of the following: (1) in line with definition 3, any boundary-following path ultimately
corresponds to a portion of the contour of a certain obstacle; (2) the boundary-following path α
passes over H∗

k —αn−2,n−1(1) = αn−1,n(0) = H∗
k— just like γ, which clearly indicates that α

and γ result from traversing the contour of the same obstacle. In conclusion, with the above
evidences in mind, we can affirm that the form of γ1,2 necessarily coincides with the one
of the primitive segment either αn−2,n−1 or αn−1,n. Moreover, the deciding factor between
these two choices depends on the direction taken by algorithm 4.1 for following the contour of
the obstacle from γ1,2(0). Remember that this direction —in broad terms, left or right— is
resolved by using the parameter pCFD. As a final point, figure 4.18(c) definitely demonstrates
that γ1,2 = αn−1,n by considering the value of pCFD intrinsically associated with each possible
shape of α. Therefore, after completing the primitive segment γ1,2, algorithm 4.1 ends up at L∗

l

in view of γ1,2(1) = αn−1,n(1) = L∗
l .

Corollary 1. The length of a path planned by algorithm 4.2 is bounded by expression 4.1.

Proof. Theorem 2 states that algorithm 4.2 never provides a path longer than algorithm 4.1.
On the other hand, as it is well-known (see [53]), no path is given by algorithm 4.1 whose
length exceeds the limit specified by expression 4.1. Consequently, such an upper bound is
also valid for algorithm 4.2, proving thus corollary 1.

16 Neither algorithm 4.1 nor algorithm 4.2 is able to distinguish whether an obstacle has already been visited
or not
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Figure 4.18: Analyzing the way in which the paths produced by algorithms 4.1 and 4.2
can differ from each other.



Chapter 5

T 2-based Reactive Navigation

with Global Proofs

Any purely reactive navigation method, and, in particular, any strategy built upon the con-
cepts of Traversability and Tenacity (T 2) —refer to chapter 3—, is not able to always ensure
convergence to the target position. This shortcoming appears due to the well-known fact that
these strategies make their decisions based solely on the (local) information about the envi-
ronment that is currently/has recently1 been supplied by the robot’s sensors.

Alternatively, as compared to the above class of techniques, reactive methods of non-pure
type generally offer a richer way of navigation by removing the requirement for the exclusive
use of local environmental information when planning the robot motion. To this respect,
nevertheless, it is appropriate to clarify that only a limited amount of global information can
be really managed by these methods —of the order of a few bytes— and, besides, an extremely
simple processing of this information should be carried out so as to avoid losing reactiveness.
As a close example, the algorithm named Bug2+, which was described in chapter 4, adopts
such a non-pure reactive paradigm. Specifically, this algorithm exploits the open possibility of
dealing with global information to guarantee the completion of the navigation task —whenever
a solution exists. In addition, notice that, as inherently demanded by its own paradigm,
the accomplishment of the property of completeness in Bug2+ just involves little reasoning
on a small set of data; to be more precise, convergence arises as the result of taking local
decisions that mainly focus on the reduction of a certain distance (D) —D is the whole set
of data to be considered on a global level—, which represents the nearest the robot has been,
until that moment, to the desired target from the m-line2.

As has previously been pointed out, non-pure methods of reactive navigation do combine
non-computationally-intensive local decisions with very limited global information to typically
attain some kind of completeness —or in other words, to move far beyond the complexity of
the tasks that are affordable by the purely reactive paradigm. As a general remark, it is
important to note that completeness necessarily requires global information. What is more,
the variety of broadly different ways in which a method that is intended to be complete
could work becomes less diverse as the amount of global information that the method is
allowed to collect and employ decreases. Keeping the last observation in mind, it seems
perfectly reasonable the fact that all non-pure reactive navigation methods exhibit the same
overall pattern of behavior to gain completeness. As one can easily deduce, such a pattern

1In practical terms, as actually discussed in section 3.1.2.3, a purely reactive robot is allowed to possess
a memory to keep track of all sensor data collected over a short period of time; although far from obvious,
the use of this memory provides the robot with a better /not-so-local understanding of its surroundings, with
the ultimate aim of increasing the global efficiency of the robot actions as well as the chances to reach the target

2As defined in section 4.1.2, this is the line segment whose endpoints are the start and target locations of
the intended navigation task

129



130 5. T 2-based Reactive Navigation with Global Proofs

is fully influenced by the minimal global understanding of the navigation environment that
these methods can get to have by construction. Going briefly into the details of this pattern,
it essentially consists of the following traits: (1) any non-pure reactive navigation method
restricts the motion of the robot to a small set of predefined actions such as, for instance,
moving straight towards the target location or moving around a specific obstacle; (2) just one
action is permitted to be performed by the robot at a time; (3) a condition is defined to trigger
the execution of each action (observe that, as stipulated by point 2, a new triggered action
definitely replaces the previous one); (4) the conditions of point 3 are chosen in such a form
that the simultaneous triggering of several actions cannot occur; (5) once again regarding
the conditions of point 3, it should be finally stressed that they used to be quite conservative,
in the strict sense that a condition is only satisfied when the taking of its associated action
is going to surely imply a step forward in the successful achievement of the navigation task.
(An example of the latter is found in the algorithm Bug2+: first of all, and as widely explained
in section 4.2, this algorithm contemplates two actions3 named motion-to-goal and boundary-
following; in relation to point 5, the conservative character of Bug2+ becomes absolutely clear
under the motion-to-goal action, since it is applied exclusively when there is a total certainty
that, by moving directly towards the target, the so-called distance D will be reduced; as an
additional comment, notice that, to a general extent, the distance D indicates the progress
that has been made to the target —the less is this distance, the greater is such progress, and,
therefore, the more are the Bug2+’s chances for promptly completing the navigation task.)

Now, before detailing the work presented in this chapter, let us rather examine the most
relevant implications that are inherently associated with point 5 of the above pattern of
behavior. First of all, it is patently obvious that being conservative in the specification
of the action-triggering conditions does help a non-pure reactive navigation method to en-
sure completeness/global convergence —recall that, when actions are treated conservatively,
they take place upon a basis of continuous global progress to the target. Unfortunately,
point 5 also brings a major disadvantage to the non-pure reactive paradigm, because of
negatively affecting its path length performance. This disadvantage derives fundamentally
from the fact that there is a late identification —and, in consequence, execution— of the
henceforth named proper action (concisely, the term ‘proper action’ refers here to the action
whose execution would currently entail a global advance in reaching the target). As gener-
ally indicated by point 5, non-pure reactive navigation methods identify the proper action by
means of the action-triggering conditions, following a predominantly conservative approach.
This approach particularly demands that the identification of the proper action is highly —or
even 100-percent— reliable. As seems evident, to gain such a high level of reliability, there is
a need for certain precise global knowledge of the navigation environment (specifically, this
necessity becomes absolutely clear when explicitly highlighting what is behind a reliable iden-
tification of the proper action; in short, it requires to accurately anticipate the effects that
each of the possible actions defined at point 1 would presently have on the progress of the
robot towards the desired target within the given navigation environment; as the final part of
this identification, the action certainly expecting to have positive effects on the robot’s progress
is chosen for being immediately carried out —exceptionally, notice that, in case that no action
appears to be definitely favoring the robot’s progress, the identification is considered to fail,
and the execution of the action which was last successfully identified as proper is maintained).
At this moment, it is important to remember that all non-pure reactive navigation methods

3In the context of the algorithm Bug2+ —and of any other Bug-like strategy—, actions are referred to
as primitive behaviors (or, simply, behaviors)
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are merely allowed to allocate very scarce memory resources for the accumulation of global
information about the environment. This limitation justifies that these methods suffer, on
many occasions while performing the navigation task, a mismatch between the real and their
global understanding of the environment. Moreover, in these methods, due to the adoption of
a conservative approach, each occurrence of the aforesaid mismatch ultimately means a failure
in the identification of the proper action, or in other words, the incapacity for knowing which
is the action that best fits the current circumstances of navigation. In closing, the preced-
ing observations explain why, in any non-pure reactive navigation method, the identification
—and execution— of an action as proper, habitually happens later than the time in which
this action began to be truly proper. This delay in suitably adapting the robot’s action
to the immediate navigation needs does inevitably lead to suboptimal final trajectories. To
further support this conclusion, figure 5.1(a) depicts, and deeply analyzes using the previ-
ously introduced concept of proper action, the far-to-optimal trajectory generated by our
non-pure reactive navigation algorithm Bug2+ in a simple scenario with an only obstacle
having a slightly deformed U-type shape. Additionally, this same figure, in conjunction with
figure 5.1(b), brings to light the general fact that the path length performance of a non-pure
reactive navigation method may be worse than the one of a method built under the (more
restrictive) purely reactive paradigm —with this mainly occurring in scenarios composed
of non-intricate obstacles. Furthermore, with specific regard to the algorithm Bug2+ and
the strategies based on the T 2 concepts, figures 5.1(a) and (b) make evident what was amply
demonstrated in the study of section 3.2.4.2 when experimentally evaluating both approaches4.
From this study, it was concluded that, in environments where a T 2-based strategy success-
fully makes the vehicle reach the target, this strategy does provide —in most of the cases—
significantly shorter resultant trajectories than the algorithm Bug2+.

In this chapter, we present a new method of reactive navigation named BugT 2, which arises
as a combination of the algorithm Bug2+ and the T 2 navigation framework. With BugT2,
we are intended to make the most of the two techniques being combined, which means
that BugT2 should be able to: (1) prove global convergence to the target destination —
when it is reachable—, just as done by Bug2+; and (2) follow a path towards such a target
similar in length to the one that would be produced in accordance with the T 2 principles.
Completing the general outline of the proposal, it is worth to mention that BugT2 is a non-pure
method that enables a robot to reactively navigate through planar environments populated
by unknown stationary obstacles.

The remainder of this chapter is organized as follows: first of all, section 5.1 includes a few
definitions and establishes the necessary notation for the subsequent sections; after that,
a geometrical description of both the algorithm Bug2+ and the T 2 navigation framework is
given in section 5.2; then, section 5.3 uses the descriptions of section 5.2 as guidelines for
devising the novel non-pure reactive navigation method called BugT 2; and, finally, section 5.4
verifies that BugT2 does really offer the best of the Bug2+ and T 2 approaches.

4 To be honest, the study of section 3.2.4.2 did conduct experiments with the algorithm Bug2, and not
with the improved version of this algorithm, called Bug2+, that was put forward in chapter 4. Nevertheless,
the reader should note that the same results would have been obtained by applying either Bug2 or Bug2+ on
the set of scenarios that such a study used as test bed (see figure 3.18 for details about the characteristics of
all these scenarios). With this in mind, it seems plainly clear that the conclusions that the study drew from
comparing the results of the algorithm Bug2 with those achieved through a T 2-based navigation —namely,
under the operation of the strategy Random T 2— are perfectly valid for describing the relative performance
between the algorithm Bug2+ and the T 2 navigation framework
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Figure 5.1: Comparison in terms of path length performance between the algorithm Bug2+
and any T 2-based strategy, assuming that both methods decide at point P0 to circumnavigate
the contour of the obstacle to the left. The forthcoming discussion just focuses on the moment
in which the trajectories produced by these methods begin to differ, i.e. at point P1. In (a),
the boundary-following action initiated at point P0 stops being really proper at point P1,
since, from there, it is plainly better to move straight towards the target (T ) by invoking
the alternative go-to-goal action; however, as can be seen, the algorithm Bug2+ conservatively
discards taking the go-to-goal action at P1 —meaning thus that the boundary-following action
remains in execution—, because of not having enough certainty that the go-to-goal action is

going to make some progress in meeting T
(

to be more precise, the underlying reasons for such

a discarding decision are revealed in the following: first of all, notice that (1) Bug2+ utilizes
the so-denoted distance D as its progress-to-target measure; besides, in Bug2+, (2) an action
is performed solely when knowing that it will doubtlessly lead to reducing D; as a last general
remark about Bug2+, it should be also stressed that (3) a reduction of the distance D involves
the achievement of a point on the m-line closer to T than all other m-line’s points previously
encountered; now looking, in particular, at case (a) of this figure, it seems clear from remarks 1
to 3 that (4) the taking of the go-to-goal action at P1 requires an absolute guarantee that
this action will cause the reaching of a m-line’s point nearer T than P0 —observe that,
when the robot is located at P1, P0 designates the earlier-visited m-line’s point which is the
closest to T ; unfortunately, (5) it is not possible to guarantee the above because Bug2+ has

no information concerning the obstacles that could find by moving straight from P1 to T
)

.

In (b), the T 2-based strategy behaves exactly like Bug2+ until arriving at P1; at this point,
the movement along the contour of the obstacle is abandoned to try to attain T by following
a straight-line path; more specifically, the T 2-based strategy recognizes P1 as a point from
where reaching T could be feasible by means of a direct path; as becomes obvious, its feasibility
depends on the absence, or not, of obstacles in the unexplored region of the environment
defined by the straight-line segment with endpoints P1 and T ; at P1, the T 2-based strategy
does not know if there exists an obstacle-free path directly joining P1 and T , but, even so,
it prefers to take the risk of moving towards T .
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5.1 Definitions and Notation

5.1.1 Definitions

Some concepts related to planar curves are reviewed here.

D1. A parameterized planar curve is a continuous mapping γ : [0, 1]→ R
2. In addition, γ is

said to be:

simple if γ(ti) = γ(tj) only when either ti = tj or {ti, tj} = {0, 1}.

closed if γ(0) = γ(1).

Jordan if it is both simple and closed. As intuitively obvious, a Jordan curve splits the plane
R

2 into two distinct connected regions having the curve as a common boundary.
One of these regions is bounded —the interior—, while the other is unbounded
—the exterior.

regular if the first derivative γ′(t) exists and is non-zero for any t ∈ ]0, 1[.

oriented if the set {γ(t) | t ∈ [0, 1]}—or, equivalently, the image set of γ— is ordered in terms
of increasing t. More informally speaking, an oriented curve defines a direction of
travel along the curve; specifically, this direction corresponds to the one going from
γ(0) —the starting point— to γ(1) —the ending point.

Figure 5.2(a) provides an example of each of the types of planar curves early explained.

D2. A supporting line of an oriented planar curve γ at a point γ(ti) with ti ∈ ]0, 1[ is
an oriented line, Slγti , that satisfies: (1) Slγti coincides with the line tangent to γ at
the point γ(ti); besides, (2) Slγti points in the direction of travel of γ at γ(ti); and,
lastly, (3) Slγti leaves the whole curve γ in one of the two closed half-planes in which

Slγti divides R
2
(

as needed for a forthcoming definition, the two closed half-planes

delimited by Slγti are distinguished by means of the labels ‘left’ and ‘right’; the left
—alternatively, right— closed half-plane is the one situated on the left —alternatively,

right— hand side of γ(ti) when looking in the direction Slγti points to
)

.

Figure 5.2(b) illustrates the concept of supporting line using the oriented-type curve of
figure 5.2(a)5.

D3. An oriented planar curve γ is referred to as convex if ∀t ∈ ]0, 1[, (1) Slγt exists and
(2) γ completely lies in the right-labeled closed half-plane of Slγt .

By way of clarification, we next analyze the three oriented-type curves of figure 5.2(c)
from the viewpoint of convexity by taking into account the proposed definition. Moving
from left to right across the figure, the first curve is not convex because there exists
at least a non-extreme point of the curve that does not have a supporting line —hence,
condition 1 is not fulfilled; likewise, the second curve is not convex either, but now due to
the fact that there exists at least a non-extreme point of the curve whose supporting line

5 Notice that such a curve, in addition to being oriented, is also regular. In the context of definition D2,
regularity is a desirable feature due to the following: as can be guessed from condition 1, a supporting line does
require the existence of the line tangent to the given curve γ at the specified point ti; regular planar curves
inherently meet this requirement, since these curves do not have singular points such as, for instance, cusps
—see the right-most plot of figure 5.2(a) for an example of a curve with singularities
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contains the entire curve in its left-labeled closed half-plane —consequently, condition 2
is not hold; and, to finish, the third curve is actually convex.

D4. Similarly to definition D3, an oriented planar curve γ is called concave if ∀t ∈ ]0, 1[,
(1) Slγt exists and (2) γ completely lies in the left-labeled closed half-plane of Slγt .

See the middle plot of figure 5.2(c) for an example of a concave curve.

D5. Let γ be an oriented planar curve, and let ti and tj designate any two values within
the interval [0,1] such that ti < tj. Additionally, γti,tj represents the oriented segment
of γ starting at the point γ(ti) and ending at the point γ(tj). Finally, ]γ(ti)γ(tj)[ means
the open straight-line segment that joins the points γ(ti) and γ(tj).

With the above in mind, a chord set of γ is defined as the connected region enclosed
by γti,tj and ]γ(ti)γ(tj)[, under the condition that γti,tj is either convex or concave
(

look at figure 5.2(d)
)

.

D6. Let γ be an oriented planar curve, and let γti,tj have exactly the same meaning as in
definition D5. Then, γ is a piecewise convex-concave curve if there exists a partition
0 = t1 < . . . < tn = 1 of the interval [0,1] such that: (1) n ≥ 2; and (2) ∀k 1 ≤ k < n,
γtk ,tk+1

is either convex or concave.

Observe that, for convenience, we do consider a convex curve and a concave curve as
(degenerate) cases of a piecewise convex-concave curve —both of them given by n = 2,
meaning thus that γ = γt1,t2 .

By way of example, figure 5.2(e) depicts a piecewise convex-concave curve with n = 4.

5.1.2 Notation

In the following, we introduce the notation used throughout this chapter.

N1. S, T ∈ R
2 are, respectively, the starting point and the target point of the robot’s intended

navigation task.

N2. Cur ∈ R
2 specifies the current location of the robot on its way from S to T .

N3. Let XY and ]XY [ —X,Y ∈ R
2 and X 6= Y — define, respectively, the closed and open

straight-line segment with endpoints X and Y (recall that a closed straight-line segment
contains both endpoints, while an open straight-line segment contains none of them).

N4. d(X,Y ) is a function which measures the Euclidean distance between any two points X
and Y —X,Y ∈ R

2.

N5. As seen from equation 5.1, sat(z) is a function which makes negative numbers to become
zero —z ∈ R.

sat(z) =

{

z if z ≥ 0
0 otherwise.

(5.1)

N6. Oi ⊂ R
2 indicates a certain obstacle of the environment, and ∂Oi its planar contour

curve that is supposed to be Jordan, regular, and piecewise convex-concave. With
respect to ∂Oi, we further define:
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• pL generically identifies a point that fulfills: (1) pL ∈ ∂Oi; and (2) the tangent
line of the curve ∂Oi at the point pL passes through T .

• I(∂Oi) symbolizes the interior region of the Jordan-type curve ∂Oi.

• ∂Oi
+,X,Y and ∂Oi

−,X,Y designate, respectively, the positively- and negatively-
oriented segment of ∂Oi joining the points X and Y —X,Y ∈ ∂Oi and X 6= Y . By
convention, a segment of ∂Oi with endpoints X and Y is considered to be positively
—alternatively, negatively— oriented if I(∂Oi) is on the left —alternatively, right—
hand side when traversing the segment from X to Y .

Additionally, it is important to mention that, as derived from the initially-assumed
geometrical properties of ∂Oi, the curve segments ∂Oi

+,X,Y and ∂Oi
−,X,Y are both

ensured to be simple, open —that is to say, not closed—, regular, and piecewise
convex-concave.

In the remaining part of this section, ∂Oi
+,X,Y and ∂Oi

−,X,Y will be regarded
as two oriented parametric curves. Therefore, as stated in definition D1, we will
exploit the fact that such curves can be described by means of a continuous mapping
∂Oi

pm,X,Y : [0, 1] → R
2 with pm being either + or −. As one can easily guess,

∂Oi
pm,X,Y (0) = X, ∂Oi

pm,X,Y (t) with t ∈ ]0, 1[, and ∂Oi
pm,X,Y (1) = Y are,

respectively, the starting point, the intermediate points, and the ending point of
the curve.

• V v ∂Oi
pm,X,Y

tj
with tj ∈ ]0, 1[ and pm ∈ {+,−} is a vector that has the point

∂Oi
pm,X,Y (tj) as its origin and points in the direction of travel of the curve ∂Oi

pm,X,Y

at ∂Oi
pm,X,Y (tj) —remember that ∂Oi

pm,X,Y is a curve with a specific direction
of travel because of being oriented; to be precise, this direction is the one that
moves along the curve from ∂Oi

pm,X,Y (0) to ∂Oi
pm,X,Y (1).

Alternatively, V v ∂Oi
pm,X,Y

tj
can also be interpreted as the velocity/tangent vector

to the curve ∂Oi
pm,X,Y at the point ∂Oi

pm,X,Y (tj). More formally,

V v ∂Oi
pm,X,Y

tj
= ∂Oi

pm,X,Y ′

(tj) = lim
h→0

∂Oi
pm,X,Y (tj + h)− ∂Oi

pm,X,Y (tj)

h
, (5.2)

where ∂Oi
pm,X,Y ′

means the derivative of ∂Oi
pm,X,Y .

• Let us consider tj, tk, and pm such that tj, tk ∈ [0, 1], tj < tk, and pm ∈ {+,−}.

Then, ∂Oi
pm,X,Y
tj ,tk

corresponds to the oriented segment of ∂Oi
pm,X,Y starting at

the point ∂Oi
pm,X,Y (tj) and ending at the point ∂Oi

pm,X,Y (tk).

• Given tj , tk, and pm under the same restrictions as above, Cs ∂Oi
pm,X,Y

tj ,tk
denotes

the chord set bounded by the curve segment ∂Oi
pm,X,Y
tj ,tk

and the open straight-line

segment ]∂Oi
pm,X,Y (tj)∂Oi

pm,X,Y (tk)[.

Lastly, in this context, it is particularly relevant to note that one should be careful

in using the term Cs ∂Oi
pm,X,Y

tj ,tk
, since it can be just applied —as clearly imposed

by definition D5— to cases where ∂Oi
pm,X,Y
tj ,tk

is either convex or concave.

• As formally expressed by equation 5.3, ϕ is a function that returns either −1 or 1

depending on whether the interior region of ∂Oi contains the chord set Cs ∂Oi
pm,X,Y

tj ,tk
or not.

ϕ
(

∂Oi, Cs ∂Oi
pm,X,Y

tj ,tk

)

=

{

−1 if Cs ∂Oi
pm,X,Y

tj ,tk
⊆ I(∂Oi)

+1 otherwise.
(5.3)
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To close, the previously introduced obstacle-related notation is graphically summarized
in figure 5.3(a).

N7. Let uX and vY be two vectors with origin in X and Y , respectively —X,Y ∈ R
2. Then,

the function θ(uX , vY ) consists of two main steps: (1) first of all, the vector uX is
translated so that its origin coincides with Y (as a result, we obtain a new vector uY );
(2) after that, θ calculates and returns the smallest angle between uY and vY in ab-

solute value
(

formally speaking, such a smallest angle is determined by the expression

arccos(ûY · v̂Y ), where ûY and v̂Y are, respectively, the unit vectors of uY and vY , and

‘·’ means the dot-product operation
)

.

See figure 5.3(b) to better understand how the function θ works.

5.2 A Geometrical View of the Two Component Methods

of BugT 2

A new non-pure reactive navigation strategy, named BugT 2, is put forward along this chapter
by properly combining both the algorithm Bug2+ and the T 2 navigation framework. Next,
these components of BugT 2 are geometrically described.

5.2.1 Regarding the Algorithm Bug2+

Section 4.2, and particularly algorithm 4.2, contains a complete geometrical description
of Bug2+. Consequently, the reader is referred directly to this section for the details.

5.2.2 Regarding the T 2 Navigation Framework

In the following, we progressively explain and exemplify the geometrical model that underlies
the T 2 navigation framework.

5.2.2.1 Description of the Model in terms of Specific Behaviors and Transitions

Like most Bug-type algorithms, our T 2 navigation framework does switch between two prim-
itive behaviors, named motion-to-goal and boundary-following. In short, the motion-to-goal
behavior is activated first and forces the robot to move straight towards the target (T ).
Moreover, this behavior remains active until finding an obstacle that impedes continuing
the intended straight-line path to T . Under such a circumstance, in addition to stopping
the motion-to-goal behavior, the boundary-following behavior is invoked so as to try to
circumnavigate the blocking obstacle. In the context of T 2, the task of circumnavigation
essentially consists in starting to follow the contour of the obstacle, and keep doing this
contour following process until the two next conditions are both satisfied: (1) the robot is
currently located at a pL-type point (refer to section 5.1.2 for information about this kind of
strategic navigation points); (2) the so-called function Ω is zero when evaluated at the portion
of the obstacle contour curve that has been traversed by the robot so far as a result of
the ongoing contour following process. At the time that both of these conditions are met,
the boundary-following behavior is replaced by the motion-to-goal behavior.

The motion-to-goal and boundary-following behaviors alternate the control of the robot
in the way explained above until T is finally reached. Algorithm 5.1 provides a wider and
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Figure 5.3: Illustration of part of the notation adopted for the geometrical description of
the new algorithm BugT 2.
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more formal description of the T 2 navigation framework. Notice that this description uses,
but does not define, the aforesaid function Ω. To fill this void, the mathematical formulation
of the function Ω is subsequently given and discussed.

5.2.2.2 A Deep Insight into the Ω Function

Parametrization

The Ω function is exactly as described in algorithm 5.2 (see at the end of the chapter).
As can be observed, this function has four input parameters —in particular, these parameters
are: ∂Oi, pm, X, and Y — which collectively specify some segment of the contour curve of
the obstacle Oi. More to this point, the segment being specified is the one formally denoted
as ∂Oi

pm,X,Y . As discussed earlier in section 5.1.2 —and graphically illustrated in figure 5.3—,
∂Oi

pm,X,Y represents the pm-oriented segment of ∂Oi with endpoints X and Y . For the sake
of clarity, notice that the expression ‘pm-oriented’ tries to emphasize the fact that the param-
eter pm allows indicating the orientation of the segment on which Ω is going to be performed
(assuming that ∂Oi is a closed planar curve, there are two segments of ∂Oi having X and
Y as endpoints; the parameter pm is used to unambiguously specify one of these segments).
Just two values, + and −, are actually considered for the parameter pm. Concisely, if pm = +
—meaning positive orientation—, ∂Oi

pm,X,Y satisfies that, when moving along the segment
from X to Y , I(∂Oi) is locally on the left-hand side; alternatively, if pm = − —meaning
negative orientation—, ∂Oi

pm,X,Y satisfies the same as above with the only difference that
I(∂Oi) is now lying on the right-hand side.

Operation

Roughly speaking, Ω is intended to calculate the total curvature —designated by tK in
algorithm 5.2— of the segment ∂Oi

pm,X,Y (as pointed out previously, this segment is uniquely
specified through the set of function parameters). Or more explicitly, Ω does provide the sum
of curvatures over all points of ∂Oi

pm,X,Y (see footnote 6).

Concerning the above, there are some important remarks to be made (these remarks reveal
special aspects of the computation of the curvature-related sum carried out by Ω; additionally,
notice that, in the text below, this sum is referred to as tK sum):

r1. The tK sum is a sum of signed curvatures. In this regard, figure 5.4 shows the two
general cases that Ω uses as guidance for determining the sign of the curvature at each
point of ∂Oi

pm,X,Y . As one could deduce from the figure, a point ∂Oi
pm,X,Y (t) with

t ∈ ]0, 1[ is understood to have negative curvature if the chord set defined by Cs ∂Oi
pm,X,Y

t−ǫ,t+ǫ

—being ǫ a positive infinitesimal value— is a subset of I(∂Oi); otherwise, the curvature
of such a point is taken as positive.

r2. Let us consider the following situation: (1) the tK sum is being calculated, but it has not

been yet completed
(

that is to say, Ω has summed the curvature values from a subset of

the points of ∂Oi
pm,X,Y

)

; besides, (2) the result of the partial tK sum in (1) is negative.

6 The curvature of a parametric curve γ : [0, 1] → R
2 at a point γ(t) with t ∈ [0, 1] is to be the reciprocal

of the radius of the circle that most closely approximates the curve near γ(t)
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Figure 5.4: The sign of curvatures as interpreted by the Ω function: (a) the specific
∂Oi

pm,X,Y -type segment on which the two opposite-sign curvature cases are illustrated
(

to be precise, the segment chosen is the one given by pm = + —or equivalently, ∂Oi
+,X,Y

)

;

(b) case of negative curvature; (c) case of positive curvature. In (b) and (c), ǫ is considered
an amount much larger than infinitesimal just for facilitating drawing.

During the computation of the tK sum, Ω is permanently checking whether the afore-
considered situation occurs. What is more, when such a situation is known to happen,
the currently computed partial tK sum is reset —i.e. set to zero.

Lastly, observe that, as a consequence of applying the preceding saturation process,
we can trivially state that any partial tK sum is lower bounded by zero (as a side note,
it should be mentioned that saturation is also applied to the result of the tK sum when
it has been fully completed; therefore, the final tK sum is ensured to be 0-lower bounded
as well).

r3. As one can easily deduce, remark r2 makes relevant the particular order in which
the curvature values are summed so as to get tK (depending on this order, the result of
the tK sum may not be the same7). In this respect, it is worth clarifying that Ω performs
the sum of curvatures following always the X-to-Y order of the points along ∂Oi

pm,X,Y .
Or expressing this formally, we can equivalently say that: if Z1 = ∂Oi

pm,X,Y (t1) and
Z2 = ∂Oi

pm,X,Y (t2) are two points of ∂Oi
pm,X,Y such that t1, t2 ∈ [0, 1] and t1 < t2,

then, in the tK sum, the term corresponding to the curvature value of Z1 comes before
the one of Z2.

7 Let us imagine a tK sum that involves adding, with saturation —in the way suggested by remark r2—,
the three values as follows: 0.7, −0.9, and 0.1. Under these circumstances, one can readily obtain different
results for the tK sum by varying the order in which the afore-specified values are summed. By way of example,
tK = 0.7 + −0.9 + 0.1 = 0.1, and tK = −0.9 + 0.7 + 0.1 = 0.8
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Implementation Issues

From an implementation viewpoint, Ω does not calculate the total curvature of ∂Oi
pm,X,Y (tK)

exactly in the manner discussed earlier, i.e. by summing/ integrating the curvatures over
all points of such a segment. Rigorously speaking, Ω computes tK by sequentially applying
the next steps:

s0. As a preliminar step, the segment ∂Oi
pm,X,Y is suitably partitioned into subsegments.

Notice that, in the previous sentence, the word ‘suitably’ is specifically used to mean
that the partition should be made in such a way that the curvatures of the points
in each subsegment have all the same sign8 (see remark r1 for details about how to
generally determine the sign of the curvature at a point of a plane curve).

s1. This first main step involves the calculation of a total curvature for each s0 -provided
subsegment of ∂Oi

pm,X,Y .

Let ∂Oi
pm,X,Y
tl,tq

—tl, tq ∈ [0, 1] and tl < tq— be one of the aforementioned subsegments

of ∂Oi
pm,X,Y . Then, the sign and magnitude of the total curvature of this subsegment

is given by:

⋄ Regarding the sign. First of all, remember that the way of partitioning ∂Oi
pm,X,Y

guarantees that there are no changes in the sign of the curvature along ∂Oi
pm,X,Y
tl,tq

.
As one can guess, this non-changing curvature sign precisely corresponds to the sign
of the total curvature of ∂Oi

pm,X,Y
tl,tq

.

⋄ Regarding the magnitude. It is obtained as the absolute angular difference
between the velocity/tangent vectors at the endpoints of ∂Oi

pm,X,Y
tl,tq

.

s2. This second/final main step simply consists of summing the subsegments’ total curva-
tures calculated in step s1. As one can clearly see, the result of this sum does reflect
the intended-to-compute total curvature of ∂Oi

pm,X,Y (tK).

In addition to the above, there are some details to be highlighted with respect to the con-
crete manner in which the aforesaid tK-related sum is actually made. Before discussing
these details, nevertheless, let us establish a general execution context for the current
step s2. Fundamentally, let us suppose that, in step s0, ∂Oi

pm,X,Y is divided into
q − 1 subsegments —q ≥ 2— according to the q-point partition 0 = t1 < . . . < tq = 1
(

as defined in section 5.1, ∂Oi
pm,X,Y is considered to be a parametric curve that takes

the form ∂Oi
pm,X,Y : [0, 1] → R

2; given this, there is no doubt that any partition of

the interval [0,1] suggests a way of dividing ∂Oi
pm,X,Y into subsegments

)

. Notice that,

as a consequence of applying the earlier mentioned q-point partition on ∂Oi
pm,X,Y ,

the following subsegments are provided by step s0 : ∀l 1 ≤ l < q, ∂Oi
pm,X,Y
tl,tl+1

. Going now
to the next step, s1 is known to be focussed on computing the total curvature of each of
the q − 1 ∂Oi

pm,X,Y ’s subsegments resulting from step s0. In this regard, let tK l —
1 ≤ l < q— symbolize the total curvature of the subsegment ∂Oi

pm,X,Y
tl,tl+1

, as determined
by step s1. With this notation in mind, it is patently obvious that step s2 receives

8 Or in other words, step s0 decomposes ∂Oi
pm,X,Y into convex and concave subsegments
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as input, from step s1, the sequence of values tK1, . . . , tKq−1. Finally, getting to
the important point here, it should be noted that step s2 does obtain tK by summing
such tK l values just as indicated below9:

• tK l values are summed in order of increasing l. This hence means that tK =
tK1 + . . . + tKq−1.

• The sum of all tK l values is made one by one following the order given above.
Moreover, each time a new tK l value is added to tK, the result of this addition
is checked for being negative. If so, the currently accumulated sum of tK l values
is forced to be zero.

To conclude, figures 5.5, 5.6, and 5.7 present a complete algorithm 5.2-based example of
how the Ω function works. The primary aim of this example is to make visually evident
the implementation details that have been previously revealed about Ω.

5.2.2.3 Exemplifying the Correctness of the Geometrical Model

Figure 5.8(b) depicts the trajectory that resulted from executing a strategy, based on the T 2

navigation framework, on a real Pioneer robot moving in the scenario of figure 5.8(a). More
specifically, in this experiment, the robot was autonomously driven through the environment
in accordance with the strategy Unvarying T 2 (see section 3.3 and pay close attention to
how this strategy chooses between the left and right contour following direction when finding
obstacles in the robot’s way). As can be observed in figure 5.8(b), the robot did have to avoid
a G-shaped obstacle so as to successfully reach the desired target.

Figure 5.9 geometrically justifies, by means of five major steps derived from algorithm 5.1,
the generation of the trajectory of figure 5.8(b).

5.3 The New Algorithm BugT 2

Algorithm 5.3 summarizes the way we propose for advantageously merging the strategy Bug2+

and the T 2 navigation framework
(

from now on, with the aim of achieving a readable writing,

we will refer to this framework as strategy T 2, or simply T 2
)

. As can be observed, our proposal

to merge such strategies is developed under the name of BugT 2. Going into details, BugT 2

exhibits the well-known motion-to-goal and boundary-following behaviors.

With respect to the motion-to-goal behavior, we merely have to say that it is exactly
as in Bug2+ and T 2; therefore, this behavior is responsible of moving the robot straight
from the current robot’s position to the desired target, as long as no obstacle is found;
notice additionally that, in the case of finding an obstacle that prevents the robot from pro-
gressing along such a straight-line path, the motion-to-goal behavior immediately deactivates,
and gives the boundary-following behavior total control over the robot’s motion.

As a first general idea regarding the boundary-following behavior, we should point out
that this behavior constitutes the key component of the new algorithm BugT 2, because being
where the merging of the Bug2+ and T 2 strategies takes actually place. As its name indicates,
the boundary-following behavior moves the robot around the currently detected obstacle

9The forthcoming two-key-point description on how Ω specifically performs the sum of tKl values
is inherently associated with remarks r2 and r3 of the previous section
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Figure 5.5: A working example of the Ω function as described in algorithm 5.2: (a) the concrete
parameter setting being considered; (b) initializations (concisely, tK is initialized to zero —
this is not really shown in the figure—, and the segment ∂Oi

+,X,Y from (a) is minimally
partitioned into convex and concave subsegments).

Figure 5.6: Continuation of the working example of Ω started in figure 5.5. The focus here
is on illustrating, step by step, the operations performed in the first main loop iteration
—j = 1— of the algorithm 5.2.
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Figure 5.8: Navigation results of a real robot using the Unvarying T 2 strategy:
(a) partial view of the environment set up with the robot placed at the starting position;
(b) trajectory followed by the robot.
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until a certain condition fulfills (in the related literature, this condition is formally known
as leaving condition, with the purpose of stressing the fact that it determines the stop of
the obstacle circumnavigation —and, consequently, it also involves reinvoking the motion-
to-goal behavior). In BugT 2, the condition for leaving the boundary-following behavior
is roughly divided into two parts: one part associated with achieving a reasonably good
path length performance10, and the other part focussing on guaranteeing global convergence
(let us here make two pertinent remarks on these parts of the BugT 2’s leaving condition: (1)
the performance-concerned part is based on the leaving condition that uses the strategy T 2,
while the convergence-concerned part stems from the leaving condition of the strategy Bug2+;
(2) a logical OR operator joins the performance- and convergence-concerned parts —this ob-
viously means that the abandonment of the boundary-following behavior occurs when any,
or both, of such parts is satisfied). Next, the two parts of the leaving condition of BugT 2 are
briefly examined:

⋄ About the performance-concerned part. In essence, this part does hold if, at
the moment the robot reaches a non-previously-visited point of type pL, the Ω function
happens to be zero (see section 5.1.2 to understand what a pL-type point signifies;
on the other hand, notice that Ω is calculated on the portion of the obstacle contour
that has been walked by the robot from the start of the boundary-following behavior
until the achievement of the aforesaid first-time-visited pL-type point).

The reader is referred to condition 2.c) of algorithm 5.3 for further information.

⋄ About the convergence-concerned part. Omitting some minor details, this part
does hold if the robot touches the open straight-line segment given by ]Lj−1T [ —that is
to say, the segment connecting the position where the boundary-following behavior
was abandoned for the last time11, and the target location.

The reader is referred to condition 2.d) of algorithm 5.3 for further information.

To end, figure 5.10 shows the path followed by a BugT 2-based robot in a scenario where
the target is surrounded by an intricately-shaped obstacle.

5.4 Analysis of the Standing out Properties of BugT 2

As outlined at the beginning of the chapter, the algorithm BugT 2 is proposed with the inten-
tion of making the most of both the strategy Bug2+ and the T 2 navigation framework. Or
more precisely, BugT 2 pursues being a complete/convergent path planner — like Bug2+ —,
as well as having a path length performance similar —in the majority of cases— to the one of
the T 2 navigation framework. In the following, BugT 2 is demonstrated to possess the two
previous valuable properties.

10 As corresponds to a reactive navigation method, BugT 2 is designed to operate in unknown environments.
In this context, notice that only a good / suboptimal path / solution can be expected to be obtained for the
navigation problem at hand

11 Lj−1 is supposed to be the starting point —Lj−1 = S— in the case that the boundary-following behavior
has never been abandoned



148 5. T 2-based Reactive Navigation with Global Proofs

Figure 5.10: The algorithm BugT 2 solving a navigation task specially designed to try
to trap the robot in an endless cyclic trajectory: (a) the environment set-up, composed
by a loop-shaped obstacle; (b) resultant trajectory (notice that this trajectory does not come
from a real test, but it has been obtained by theoretically applying algorithm 5.3, under
the assumption that such an algorithm follows the obstacle boundaries to the robot’s left);
(c) the trajectory of (b) explained step by step.
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Figure 5.11: Concept of maximal pL-type segment: (a) obstacle being considered (O1) and
its contour curve (∂O1); (b) pL-type points of ∂O1 (observe that, to be able to determine
these pL-type points, it has been necessary to fix a position for the target T ); (c) maximal
pL-type segments of ∂O1.

5.4.1 Proof of Global Convergence

Under reasonable assumptions, lemmas 1, 2, and 3, and theorem 1 prove the convergence of
the strategy BugT 2 —considering this strategy as described in algorithm 5.3.

Next, before proceeding with the statement and proof of the aforesaid lemmas and theorem,
we will discuss the assumptions being made.

5.4.1.1 A Preliminary Definition

Let ∂Oi : [0, 1]→ R
2 be a parametric curve representation of the contour of a certain obstacle

named Oi. Additionally, let us suppose that the point ∂Oi(0) = ∂Oi(1) is not of type pL.
At last, let ∂Oi tj ,tk denote the segment of ∂Oi that joins the points ∂Oi(tj) and ∂Oi(tk)
—with tj, tk ∈ ]0, 1[ and tj ≤ tk.

Bearing the above in mind, it is said that ∂Oi tj ,tk is a maximal pL-type segment of ∂Oi

if the following holds:

1. ∀t tj ≤ t ≤ tk, ∂Oi(t) is a pL-type point;

2. inf{tj − t : 0 ≤ t < tj and ∂Oi(t) is not a pL-type point} = 0;

3. inf{t− tk : tk < t ≤ 1 and ∂Oi(t) is not a pL-type point} = 0.

Finally, to illustrate the concept, figure 5.11 shows every maximal pL-type segment along
the contour curve of a 2-shaped obstacle.
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5.4.1.2 Assumptions About the Robot and the Navigation Environment

The foregoing proof of convergence of the strategy BugT 2 relies on the following assumptions:

• The ones made by the algorithm Bug2/Bug2+ (see section 4.1.1). By way of summary,
from all the assumptions of Bug2/Bug2+, the most interesting to mention are:

⋄ T is reachable from S;

⋄ The environment is bounded, which means that the perimeter of any obstacle
is finite, and the number of obstacles is finite as well;

• The contour of each obstacle is a Jordan, regular, and piecewise convex-concave planar
curve that has only maximal pL-type segments of zero length12.

5.4.1.3 Supporting Lemmas

Lemma 1. The strategy BugT2 converges to T if condition 2.c) is never satisfied13.

Proof. If condition 2.c) is not met at any time, it can actually be removed from algorithm 5.3
without changing how this algorithm works at all. As an interesting point, notice that,
after removal, the resultant algorithm appears to be identical to the one that was proposed

in chapter 4 under the name of Bug2+
(

compare algorithm 5.3 —omitting condition 2.c)— and

algorithm 4.2 to become aware that they both consist of exactly the same procedural steps
)

.

Under the hypothesis of the non-fulfillment of condition 2.c), it seems clear from above
that no difference exists between the strategies BugT 2 and Bug2+. Moreover, if, to this,
we add the fact that the strategy Bug2+ is known to be convergent, there is no doubt that
the strategy BugT 2 is convergent as well.

Lemma 2. The strategy BugT2 converges to T if condition 2.c) is satisfied a number of times
greater than zero and finite.

Proof. Prior to giving the proof, we would like to make see that: first of all, let us suppose

a situation where the control flow of algorithm 5.3 goes from step 2 to step 1
(

notice that

this step 2-to-step 1 transition reflects the moment in which algorithm 5.3 abandons the
boundary-following behavior at a point that meets either condition 2.c) or condition 2.d)14 —

herein, let Lj−1 be such a point
)

; without loss of generality, the occurrence of the aforestated

transition can be usefully understood as a restarting of algorithm 5.3 with the particularity of
considering S = Lj−1 —or in other words, it is as if algorithm 5.3 were required to plan a path
between Lj−1 and T , irrespective of the previous path followed from the initial robot’s location
to Lj−1.

In the present lemma, the study of the convergence of the strategy BugT 2 is restricted to
the case where condition 2.c) is fulfilled n times, being n a finite number greater than zero.

12 Just to put an example, a curve with a continuously changing curvature does meet the requirement of
exclusively having maximal pL-type segments of zero length

13 As recently explained in section 5.3, condition 2.c) represents the so-called performance-concerned part of
the leaving condition of BugT 2

14 As recently explained in section 5.3, condition 2.d) represents the so-called convergence-concerned part of
the leaving condition of BugT 2
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To deal with this case, let us consider the moment in which condition 2.c) is satisfied for
the last time. At such a moment, algorithm 5.3 should necessarily be executing step 2;
what is more, as a consequence of meeting condition 2.c), algorithm 5.3 will proceed to step 1.
In short, as it is obvious from the latter, the nth occurrence of condition 2.c) will imply that
algorithm 5.3 makes a transition from step 2 to step 1. In this respect, before drawing more
definitive conclusions, it is important to recall the underlying meaning that, in algorithm 5.3,
a step 2-to-step 1 transition really has. As we mentioned earlier, this transition is inher-
ently equivalent to restart algorithm 5.3 in such a manner that the current robot’s position
is regarded as the point from where to begin looking for a path to the desired target (T ).

Let L
2.c)n

j−1 denote the position of the robot at the time that condition 2.c) of algorithm 5.3

holds for the nth/last occasion. At L
2.c)n

j−1 , a transition from step 2 to step 1 is known to happen.
Furthermore, by making use of the above-discussed way of interpreting these step 2-to-step 1

transitions, we can alternatively say that the reach of L
2.c)n

j−1 causes that algorithm 5.3 does

restart its execution under the assumption that S = L
2.c)n

j−1 —and with no changes concerning
the target point (T ). Following further this line of thought, let us now examine some aspects of

the new execution of algorithm 5.3 initiated after getting to L
2.c)n

j−1 . In this regard, notice that:

1. During this new execution of algorithm 5.3, it is ensured that condition 2.c) will never
be satisfied, because the nth / last occurrence of condition 2.c) has already taken place.

2. The planning of a free-obstacle path to the intended target location is certainly possible,

because T is reachable from S = L
2.c)n

j−1

(

see footnote 15
)

.

As one can readily verify, points 1 and 2 are precisely the hypothesis under which the con-
vergence of algorithm 5.3 was proved in lemma 1. Consequently, the same proof is valid
for lemma 2.

Lemma 3. In the strategy BugT2, condition 2.c) can only be satisfied a finite number of times.

Proof. The two following facts can be directly inferred from analyzing algorithm 5.3:

f1. As an essential requirement to meet condition 2.c), the robot should be located at
a pL-type point;

f2. Condition 2.c) cannot be fulfilled at exactly the same pL-type point more than once.

Alternatively, the assumptions made in section 5.4.1.2 do clearly imply that:

f3. The number of maximal pL-type segments per obstacle is finite, since the perimeter of
each obstacle is supposed to be finite;

15First of all, with the aim of avoiding any confusion, let us consider that S⋆ represents the very initial posi-

tion of the robot

(

such a position corresponds to the first value given to S; in relation to this, recall that

there is a new value for S after each hypothetical restarting of algorithm 5.3 due to the fulfillment of

condition 2.c) —or condition 2.d)

)

. Then, in a scenario where T is reachable from S⋆ —as assumed under

section 5.4.1.2—, and where the robot has succeeded moving from S⋆ to L
2.c)n

j−1 —as being part of our

line of reasoning—, it is undeniable that T can be attained from L
2.c)n

j−1
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f4. Taking into account both the previous fact (f3 ) as well as the widely- and here-adopted
assumption that the number of potential obstacles is finite, there is no doubt that
the total number of maximal pL-type segments —as summed over all obstacles— is
also finite;

f5. As has just been revealed, the total number of maximal pL-type segments is finite. If,
along with this, we consider the additionally-adopted assumption that any maximal
pL-type segment is of zero length —and, therefore, consists of a single pL-type point—,
it seems obvious that the total number of pL-type points is finite.

When putting together facts f1, f2, and f5, lemma 3 becomes trivial.

5.4.1.4 Main Theorem

Theorem 1. The strategy BugT2 converges to T .

Proof. On the one hand, lemmas 1 and 2 prove the convergence of the strategy BugT 2

for the cases where condition 2.c) is either never satisfied or is satisfied a finite number
of times. On the other hand, from lemma 3, it is clear that condition 2.c) cannot hold for
an infinite number of times; or using different words, such a lemma reveals that there are
no remaining cases to consider —apart from the two mentioned above— in the proof of
convergence of BugT 2. This proves theorem 1.

5.4.2 BugT 2 in Every Day Scenarios: Getting the Effective Path Length

Performance of the T 2 Navigation Framework

Let us begin by defining what we understand as an every day scenario. Generally speaking,
under the label of every day, we refer to a scenario that is formed by obstacles having
non-natural/extremely-intricate shapes (notice that obstacles with unnatural/intricate shapes
are, for the most part, artificially created to exhibit the properties of the navigation meth-
ods proposed). By way of example, figure 5.12 depicts a scenario of type every day, which
corresponds to the ground floor of a grocery store located in New York. As can be seen,
the subdivision of the store into areas gives rise to obstacles of relatively simple shape. On

the other hand, figure 5.10 shows an example of a non-every day scenario
(

in this respect, it is

important to stress that the convoluted shape of the only obstacle of figure 5.10 was purposely
designed for illustrating the two situations that cause the leaving of the boundary-following

behavior in the algorithm BugT 2
)

.

When used in an every day scenario, the algorithm BugT 2 produces exactly the same path
as would result from applying the T 2 navigation framework. This fact is well substantiated
by the following four-step reasoning:

ed1. Scenarios that are not intricate, such as the so-called every day, allow the robot to choose
among numerous alternative paths to reach the desired target (just to put an example,
in the scenario of figure 5.12, there are far more than 16384 homotopically-different ways
of achieving the target from the initial location).
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Figure 5.12: Evaluation of the path length performance of the approach BugT 2,
the strategy Bug2+, and the T 2 navigation framework in a grocery-store environment:
(a) path produced by both BugT 2 and T 2; (b) Bug2+ path. (The results of (a) and (b)
are ideal paths, because they have been obtained by theoretically applying algorithms 5.3,
5.1, 4.2; notice additionally that, in all these algorithms, it has been assumed that the robot
always follows the obstacle boundaries to its right).
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ed2. The previous observation brings us to think that no matter which direction —in short,
either left or right— the robot chooses for circumnavigating the obstacles that are found
during the navigation, since such a choice will merely determine what of the huge amount
of alternative paths to the target is finally generated.

Or in more conclusive words, we can state that, in the context of every day scenarios,
decisions regarding the direction of obstacle circumnavigation do not negatively affect
the successful attainment of the target position.

ed3. As widely discussed in section 5.3, the Bug2+-based component of the algorithm BugT 2

influences the navigation of the robot just when it is clear that the robot is not making
progress towards the target. More specifically, our algorithm interprets that the robot is
not progressing in meeting the target when coming back to an earlier-visited point —or to
be precise, when returning to some pL-type point. Here, it is key to note that revisiting
pL-type points is caused by errors committed when deciding about the proper direction
of circumnavigation to take for successfully avoiding the obstacles detected by the robot.
As an example of the latter, figure 5.10 illustrates how a robot, which navigates in
accordance with the algorithm BugT 2, reaches the point pL1 twice, essentially because
of (wrongly) deciding to go around the obstacle O1 in clockwise/ left direction from
point H2; as can be seen in the figure, the direction of circumnavigation of O1 at H2

should have been counterclockwise/right to gain access to the target area.

ed4. Until now, our argumentation summarizes as follows:

• ed1 and ed2 explain that, in every day scenarios, there is not a preferable direction
to circumnavigate an obstacle that is blocking the robot’s intended path; or in
other words, whichever the chosen direction —i.e. either left or right—, the robot
will succeed in overcoming the obstacle.

• ed3 establishes the circumstances in which the Bug2+-based component of BugT 2

becomes active. Concisely, the activation of this component requires that the robot
has failed trying to avoid a certain blocking obstacle. In this respect, recall addi-
tionally that: (1) the algorithm BugT 2 recognizes that the afore-described failure
has occurred when the robot visits an already-explored point of the obstacle;
(2) the repeated visit of a point mentioned in (1) is due to having chosen a non-
proper direction to go around the obstacle (as an important issue to keep in mind,
notice that (2) suggests the existence of non-proper —and proper16— directions of
circumnavigation for —at least, one of— the obstacles populating the scenario).

From above, it is evident that the switching on of the Bug2+-based component of BugT 2

requires obstacles whose avoidance may either fail or succeed depending on the direction
taken for traveling around them. This necessity, however, directly contradicts the concept
of every day scenario; as previously introduced, under this concept, any obstacle would
have to be effectively overcome in any of the two possible directions of circumnavigation.
In final conclusion, we can say that the Bug2+-based component of BugT 2 will never
be switched on when navigating through an every day scenario. Consequently, in this

16 Of the two possible directions to circumnavigate an obstacle, one of them is always proper under
the condition that the target is reachable. In the present context, a proper direction of circumnavigation
means that it allows avoiding the corresponding obstacle with success; or similarly, that it entails a step forward
in achieving the target position
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kind of scenarios, the navigation of the robot will be exclusively controlled by the other
component of BugT 2, i.e. the one based on the T 2 navigation framework17. According
to this, there is no doubt that, in scenarios labeled as every day, no difference can exist
between the paths generated by the algorithm BugT 2 and the T 2 navigation framework
(look at figure 5.12(a) for an example of this coincidence of paths).

In closing, we wish to emphasize that, when the scenario is of type every day —as usually
happens in non-artificially created worlds—, the algorithm BugT 2 takes advantage of the
non-excessive complexity of the obstacles to plan efficient-looking paths18. What is more,
this is done by simply giving the T 2-based component of BugT 2 total control over the robot
throughout the navigation19 (comparing figures 5.12(a) and (b), one can clearly appreciate
the big difference that, in terms of achieved path length performance, exists between per-
manently granting the responsibility of the robot’s motion to one or other of the components
of the algorithm BugT 2; the performance benefits of navigating solely in accordance with
the T 2-based component are restricted to cases involving every day scenarios, that is to say,
to cases where a T 2-like navigation does not put in risk, at any moment, the final convergence
of the robot to the target position).

17 In the remainder of this section, the term T 2-based will be used as a brief reference to the component of
the algorithm BugT 2 that is rooted on the T 2 navigation framework

18 As it is obvious, what path efficiency means depends on the context of the problem being addressed.
In this chapter, we face the difficult task of autonomously navigating a robot to some final target point in an
unknown terrain. In this particular context, we consider that a path is efficient-looking if it resembles the path
that could be followed by an experienced blind person that is asked to move from the initial robot location to
the target destination

19 In BugT 2, the fact of putting the control of the robot in the ‘hands’ of the T 2-based component when
navigating around an every day scenario is fully determined by the so-called leaving condition. The manner
in which this condition is defined —see section 5.3— prioritizes performing T 2-like navigation against
Bug2+ -like navigation. Moreover, such a preference for the mode of navigation founded on T 2 is maintained
until detecting that this mode no longer helps the robot in getting closer to the desired target (notice that
this circumstance of lack of progress while navigating on the basis of T 2 never takes place in scenarios labeled
as every day)
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Algorithm 5.1 A description of the T 2 navigation framework in geometrical terms

Step 0: Initializations
Step 1: Motion-to-goal behavior
Step 2: Boundary-following behavior

0) Initialize j = 1, and Cur = L0 = S

1) Move along the straight-line segment Lj−1T until one of the following occurs:

a) T is reached. The algorithm stops

b) An obstacle Oi is found. Define the hit point Hj = Cur, and go to step 2

2) Follow the contour of the obstacle (∂Oi) to either the left —i.e. in clockwise/negative
direction— or right —i.e. in counterclockwise/positive direction— (see footnote ⋆ 1).
Set pm = − if it is decided to choose left as the direction to go around ∂Oi from Hj;
otherwise, set pm = +. Keep doing the contour following process until one of the next
three possible situations arises:

a) T is reached. The algorithm stops

b) The robot returns to Hj. The algorithm stops because the target is unreachable
(see footnote ⋆ 2)

c) The robot gets to a point —represented by Cur— that satisfies: firstly, Cur

is of pL-type; secondly, Ω
(

∂Oi, pm,Hj, Cur
)

is equal to zero; and, finally,

the straight-line segment CurT does not cross the obstacle Oi at point Cur. Under
these circumstances, define the leave point Lj = Cur, increase j by one, and go
to step 1

⋆ 1 From a generic perspective of the T 2 navigation framework, no criterion is explicitly put forward for

selecting either the left or right contour following direction when finding a new blocking obstacle.

With respect to this, nevertheless, it is important to emphasize that the way of making this selection

is intrinsically associated with each specific T 2-based strategy, such as Random T 2 and Unvarying T 2.

As widely discussed in chapter 3, the former strategy randomly chooses between left and right, while

the latter strategy always chooses left or right

⋆ 2 Condition 2.b) is triggered when the robot completes a loop around the contour of the obstacle.
Such an event certainly means that the target (T ) is located inside the obstacle, being thus not possible
to reach it.

With the above in mind, it is important to mention that condition 2.b) just allows the detection of

some, and not all, of the situations where there is not a path from S to T
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Algorithm 5.2 The function Ω described as a mathematical method

Parameters

∂Oi ∂Oi is the contour curve of a certain obstacle Oi ⊂ R2

pm pm ∈ {+,−}

X, Y X, Y ∈ ∂Oi and X 6= Y

Assumption
The function Ω assumes that ∂Oi is a Jordan, regular, and

piecewise convex-concave curve

The segment of ∂Oi given by ∂Oi
pm,X,Y is guaranteed to be

a simple, open, regular, and piecewise convex-concave curve.

Consequences of Moreover, notice that, because ∂Oi
pm,X,Y is a piecewise

the foregoing assumption convex-concave curve, there exists a partition P = {t1, . . . , tr}

of the interval [0,1] such that: (i) 0 = t1 < . . . < tr = 1; and

(ii) ∀j 1 ≤ j < r, ∂Oi
pm,X,Y
tj ,tj+1

is either convex or concave

Initialize tK = 0

for j = 1 to r − 1 do

Step #1

S
ig

n
of

tK
j

Calculate

tKj = ϕ
(

∂Oi, Cs ∂Oi
pm,X,Y

t
j
ς ,t

j
τ

)

,

where:

• tjς , tjτ are two values from the interval [tj , tj+1] —tj , tj+1 ∈ P—

satisfying: (i) tjς < tjτ ; and (ii) Cs ∂Oi
pm,X,Y

t
j
ς ,t

j
τ

is entirely either

inside or outside of I(∂Oi)

M
ag

n
it
u
d
e

of
tK

j

Calculate

tKj = tKj × supP j

∑q−1
l=1 θ

(

V v ∂Oi
pm,X,Y

t
j
l

, V v ∂Oi
pm,X,Y

t
j
l+1

)

,

where:

• P j =
{

tj1, . . . , t
j
q

}

denotes a partition of the interval [tj , tj+1]

—tj, tj+1 ∈ P—, defined by tj = tj1 < . . . < tjq = tj+1

• supP j means the supremum over all possible partitions P j

The concept of supremum is a mathematical formalism that Ω em-

ploys to ensure that the following condition holds: ∀l 1 ≤ l < q,

the total curvature of ∂Oi
pm,X,Y

t
j
l
,t

j
l+1

, in absolute value, never exceeds π.

Under this condition, such a total curvature can be well estimated by

the expression θ

(

V v
∂Oi

pm,X,Y

t
j
l

, V v
∂Oi

pm,X,Y

t
j
l+1

)

Step #2
Calculate

tK = sat
(

tK + tKj
)

end for

return tK
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Algorithm 5.3 BugT 2: A new method built upon the combination of the algorithm Bug2+
and the T 2 navigation framework

Step 0: Initializations
Step 1: Motion-to-goal behavior
Step 2: Boundary-following behavior

0) Initialize j = 1, Cur = L0 = S, and Ψ = ∅

1) Move along the straight-line segment Lj−1T until one of the following occurs:

a) T is reached. The algorithm stops

b) An obstacle Oi is found. Define the hit point Hj = Cur, set D = d(Hj, T ), and
go to step 2

2) Follow the contour of the obstacle (∂Oi) to either the left —i.e. in clockwise/negative
direction— or right —i.e. in counterclockwise/positive direction. Set pm = − if it is
decided to choose left as the direction to go around ∂Oi from Hj; otherwise, set pm = +.
Keep doing the contour following process until one of the next four possible situations
arises:

a) T is reached. The algorithm stops

b) The robot returns to Hj. The algorithm stops because the target is unreachable

c) The robot gets to a point —represented by Cur— that satisfies: firstly, Cur is of

pL-type; secondly, Ω
(

∂Oi, pm,Hj, Cur
)

is equal to zero; thirdly, the straight-line

segment CurT does not cross the obstacle Oi at point Cur; and, lastly, Cur is not
in the set Ψ. Under these circumstances, add Cur to Ψ —Ψ = Ψ∪{Cur}—, define
the leave point Lj = Cur, increase j by one, and go to step 1

d) The robot gets to a point —represented by Cur— that satisfies: firstly, Cur is
a point of the open straight-line segment ]Lj−1T [; and, secondly, d(Cur, T ) < D.
Under these circumstances, if the straight-line segment CurT does not cross the
obstacle Oi at point Cur, then define the leave point Lj = Cur, increase j by one,
and go to step 1; otherwise, give to D the value of d(Cur, T ), and continue in step 2



Chapter 6

The Use of

Different Bug-like Strategies for

Building Efficient Deterministic

Anytime Path Planners

In the previous chapters —to be exact, from chapter 3 to 5—, three novel methods of reactive
robot navigation have been formally put forward and successfully tested in both simulated
and real experiments. This chapter goes one level beyond, focussing on two new algorithms
of global path planning for environments that are completely known.

The chapter is structured as follows: first, to be clear about what was done in chapters
3–5 and what this chapter deals with, section 6.1 describes briefly the substancial differ-
ences between the problems of reactive navigation and global path planning1. Besides,
the same section reveals the major shortcomings of global path planning, and states which
of these shortcomings our algorithms do contribute to mitigate. Next, sections 6.2 and 6.3
explain in detail how our algorithms work.

6.1 Problem Definition and Objectives

6.1.1 Shift of the Focus From Reactive Navigation to Global Path Planning

A reactive navigation method is characterized by its inherent sense-and-act loop; more exactly,
at each loop iteration, the method takes the local sensing data, plans the next action by
applying simple procedures, and acts accordingly. In this way, these methods are able to
respond rapidly to changes that take place in the world; as a main disadvantage, never-
theless, it has to be noted that, due to the local nature of the data in which they base
their decisions, the successful completion of the navigation task is not necessarily guaranteed.
(As an exception to this, it should be said that there is a class of reactive navigation methods,
known as non-pure, where completeness may be actually gained, because of allowing that some
global data —which is gathered while navigating— do influence the local decisions on acting.
In this respect, however, it is appropriate to clarify that, despite the influence from global
data pointed out before, non-pure reactive navigation methods continue fundamentally being
local methods. As a last observation, notice that any local navigation method exhibits as an
important disadvantage the generation of rather suboptimal paths).

In contrast to reactive navigation methods, a global path planner relies on an accurate
global model of the robot’s environment (this model can be either directly given or incremen-
tally built during navigation). Based on this model, a global path planner is able to determine

1also known as deliberative navigation

159
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an efficient free-obstacle path between the starting position and the intended destination po-
sition of the robot. As one can easily guess, the computation of such an efficient path requires
a deep analysis of all of the available environment information. Consequently, this analysis
used to be computationally intensive. The latter fact is particularly relevant, since it is
the cause of global path planners being poorly responsive to environmental changes. When
navigating through environments that dynamically change over time, the path that is initially
planned by a global path planner may be invalidated by moving obstacles. If so, the global path
planner should provide an alternative path for the robot. To this end, first the planner should
update its world model to reflect the changes in the environment; then, a new path should
be planned by using the already-updated world model. As it is evident from the description,
these two steps are quite computationally demanding. Furthermore, because of this, it seems
reasonable to think that the environment may usually change more rapidly than the capa-
bility of the planner to perform such two steps. In short, the (relatively) high rate at which
changes occur in the environment, together with the (relatively) low rate at which the robot’s
path can be replanned/readapted, supports the idea that global path planners react late to
environmental changes.

Summarizing the above-stated advantages and disadvantages of global path planners as
compared to reactive navigation methods: a global path planner is good in producing an
optimal/near-optimal path, but poor in reacting to moving/unexpected obstacles.

6.1.2 An Overview of What is being Proposed

6.1.2.1 Main Objective

The aim of this chapter is to present several algorithms for global path planning that are more
reactive to unexpected/unplanned events than those previously reported in the literature.

The two here-presented algorithms, named ABUG and vABUG , allow defining the desired
level of reactiveness. Moreover, depending on the reactiveness level that is chosen, our al-
gorithms plan a path whose quality ranges from reasonably good to optimal/near-optimal.
To be precise, reasonably good paths are obtained when ABUG /vABUG is configured to
be highly reactive —i.e. when the time given for planning is very limited; alternatively,
ABUG /vABUG gets better and better approximations of the optimal path as it is configured
in a less reactive manner —i.e. as more time is available for planning.

6.1.2.2 More About Both the ABUG and vABUG Global Path Planners

Among the common features of the ABUG and vABUG algorithms, the following ones deserve
to be highlighted:

1. ABUG and vABUG are deterministic planners. What is more, they both are further
classified as anytime. As is well-known from the literature [73, 74, 75], a planner is said
to be anytime when it possesses the ability of generating a series of alternative paths
towards the robot’s target destination; besides, as a restriction, these planners should
guarantee that each newly-generated path in the series does represent an improvement,
typically in the sense of being shorter in length than all paths that had been previously
calculated.

ABUG and vABUG are purposely designed to be run during a user-defined amount
of time. Once this time is over, they provide as output the best/ last path that has
been found.
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2. Just like any other deterministic planner, ABUG and vABUG are constrained to be
applied to low-dimensional path planning problems. More precisely, they can be used
for finding paths in two- and three-dimensional configuration spaces. Notice, however,
that, under two and three dimensions, we can express the majority of problems of
path planning in the growing area of low-cost robotics applications, e.g. for the home
appliances, entertainment, and educational sectors.

3. ABUG and vABUG explore the configuration space by making moves that are inspired
by the biological behavior of some bugs/ insects. As is well-known, many insects employ
the direction of the sun’s rays as a sort of compass. Based on this compass, these insects
are able to maintain a correct heading; moreover, they are surprisingly able to travel
from place to place and steer around obstacles.

ABUG and vABUG plan paths by exploiting the potential that the above insects have
for navigating between fixed points while avoiding obstacles. Concisely, ABUG and
vABUG perform the task of path planning as follows: to start with, a colony of insects
is virtually created; later, the insects forming part of the new colony are placed in the
search space with the assigned task of moving from the initial robot configuration to
the target robot configuration (in this way, for each insect, an alternative2 path between
such configurations is expected to be obtained).

Finally, it should be mentioned that different types of insects are considered by ABUG
and vABUG . In ABUG , insects are supposed to perceive the world around them through
exclusively tactile sense organs. In vABUG , nevertheless, insects rely on visual sensing.
As one can imagine, the use of different senses —tactile versus visual— means to have
different views of the world; what is more, different views of the world necessarily result
in different behaviors. In this regard, it is important to note that the tactile-based
insects of ABUG behave according to the algorithm Bug2+ (see chapter 4), while the
vision-based insects of vABUG behave as described by the algorithm VisBug (refer to
section 2.6.3).

6.2 ABUG: A Fast Anytime Path Planner Inspired in

the Biological Behavior of Insects with Tactile Sensing

This section is organized as follows: section 6.2.1 briefly reviews the Bug2+ strategy presented
in chapter 4, while section 6.2.2 shows how Bug2+ can be used to construct the fast anytime
global path planner named ABUG (besides, this section formally analyzes the properties
of ABUG); section 6.2.3 reports some experimental results of our algorithm, and compares
these results with those obtained by some techniques that are well-known in the field of
path planning; and, lastly, section 6.2.4 draws some conclusions.

6.2.1 The Algorithm Bug2+

The anytime approach ABUG plans paths based on Bug2+, an enhanced version —suggested
in this dissertation— of an algorithm called Bug2 which was put forward by Lumelsky
and Stepanov in [53]. This new Bug-derivative strategy preserves the simplicity as well

2 Insects of the same type may not behave exactly the same under the same circumstances. This fact is
captured by ABUG and vABUG, where each insect provides a different solution to the path planning problem
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as the intuitive behavioral description by which the algorithm Bug2 is mostly characterized.
Furthermore, the length of a path produced by Bug2+ is always less or equal to the one
of Bug2 (in terms of path length performance, several scenarios have been constructed where
Bug2+ has behaved over 26% better than Bug2). The strategy Bug2+ is a sensor-based path
planner with proven termination conditions for environments which are static, unknown, and
two-dimensional. In the following, the proposal is summarily discussed underlining its major
points of discrepancy with regard to the classic version of the algorithm Bug2. See section 4.2
for a deeper explanation of Bug2+ as well as the formal proofs for the above-mentioned
features of the strategy.

6.2.1.1 Notation

S, T ∈ R
2 are, respectively, the starting and the target points of the mission. XY (X,Y ∈ R

2

and X 6= Y ) represents the straight-line segment with end points X and Y . The line connect-
ing the starting and the target points, ST , is referred to as main line, or m-line in brief. On
the other hand, Oi denotes a certain obstacle of the environment and ∂Oi its contour curve.
Finally, d(X,Y ) is a function which measures the Euclidean distance between any two points
X and Y (X,Y ∈ R

2).

6.2.1.2 Description

The algorithm Bug2+ exhibits two different behaviors: motion-to-goal and boundary-following.
During the former, which is activated first, the robot moves towards the target (T ) along
the m-line3. The boundary-following behavior, on the other hand, is invoked when the robot
encounters an obstacle (Oi) on its way. The point where this obstacle is found is named
hit point (Hj). Next, the robot follows the contour of the obstacle (∂Oi) to the left or right
according to a user-definable parameter called pCFD. During this contour following process,
a special situation may occur, in which the robot returns to Hj meaning that a loop around
the obstacle boundary has been completed. In such a case, the target is inside the obstacle,
not being thus achievable. More usual is, however, the situation where the robot reaches
a new point on the m-line closer to T than Hj. At that moment, a leave point (Lj) is defined
and the motion-to-goal behavior is invoked again.

Algorithm 4.2 provides a formal description of Bug2+, highlighting, in bold, the most
important changes which have been done regarding the strategy Bug2. In short, the strategies
Bug2 and Bug2+ use a different criterion to invoke the motion-to-goal behavior when the robot
is circumnavigating the contour of an obstacle. Specifically, in Bug2 (see algorithm 4.1),
this transition occurs when a point Q on the m-line nearer the target than Hj is found.
Moreover, for really abandoning the boundary-following behavior, the point Q should satisfy
an additional condition, which requires the robot to be able to move along the straight-line
segment QT without immediately hitting the current obstacle —hereafter, let this condition
be referred to as Cprogress

4. The strategy Bug2+ differs from Bug2 in considering the points
which do not meet condition Cprogress into the decision associated with leaving the contour
following process. Let Γ denote the set of m-line’s points not fulfilling condition Cprogress which
have been found by the robot during the last —and still current— activation of the boundary-
following behavior. Then, the strategy Bug2+ will perform a transition to the motion-to-goal
behavior when reaching a point Q on ST with Q /∈ Γ and satisfying the inequality d(Q,T ) <

3The mobile robot is supposed to be a point fitted with a complete set of error-free tactile sensors
4Condition Cprogress appears under the name of C2 and C4 in algorithms 4.1 and 4.2, respectively
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Figure 6.1: Comparison of the paths generated by (a) Bug2 and (b) Bug2+ in a scenario with
an intricate obstacle. In both cases, the parameter pCFD was assumed to be right.

min{d(γ, T ) ∀γ ∈ Γ} (notice that Hj ∈ Γ according to the definition of hit point). Figure 6.1
illustrates with an example the differences between the strategies Bug2 and Bug2+.

The length of a path planned by Bug2+ never exceeds the limit given by expression 6.1,
where i denotes an obstacle of the scene (Oi), ni represents the number of intersections of
∂Oi with the m-line, and Bi refers to the Oi’s perimeter.

d(S, T ) +
∑

i

ni

2
Bi (6.1)

6.2.2 The Algorithm ABUG

The algorithm Bug2+, as was described in section 6.2.1, allows us to plan a single path
in an unknown and static environment. ABUG uses Bug2+ to generate multiple paths in
an a priori known scenario just by considering both alternatives, left and right, whenever
an obstacle is found, instead of keeping the parameter pCFD constant. Such a flexibility
in the strategy Bug2+ does not jeopardize its convergence nor the rest of its properties.
Figure 6.2 illustrates the above-mentioned exhaustive search in a simple scenario where four
topologically different paths are planned.

Next, a deeper description of ABUG embedded into an A∗ framework [76] is presented.
Additionally, a fast mode of operation based on inflating the heuristic cost function of the
A∗ search is also put forward. Finally, the theoretical properties of the proposal are set out.

6.2.2.1 Description of the Planner

As can be observed at the bottom of figure 6.2(a), the algorithm ABUG makes use of
a binary tree to search for paths, where each node represents a point of the environment
in which a decision must be made regarding the direction —left or right— to be taken during
the subsequent contour following process. On the other hand, taking into account both that
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Figure 6.2: Exemplifying how the algorithm Bug2+ can be used for planning multiple paths:
(a) the search step by step; (b) planned paths.

a binary tree is a particular case of a graph and that A⋆ is a well-known and efficient method
for exploring graphs, ABUG adopts A⋆ for conducting the search of all Bug2+-compliant
solutions. To this end, we define an estimated cost function f that returns as output the
sum of two values: g and h. Specifically, given a still incomplete Bug2+ path P , g denotes
the current P length and h the expected additional distance to be traveled until achieving
the target (T ). This distance is assumed to be the Euclidean, which means that ABUG
applies an optimistic/admissible —and also consistent [77]— heuristic h, ensuring thus the
optimality of the planner (or in other words, the shortest path within the graph will be
found). Nodes/Paths are expanded/extended in the order of increasing f -values by means
of a priority queue. The search starts with a degenerated path merely containing the starting
point (S). This path is later prolonged on the basis of step 1 in algorithm 4.2, which in-
volves moving straight towards T until finding an obstacle. At that moment, the resultant
path is duplicated and, next, both are extended by following the boundary of the obstacle
in opposite directions. Finally, once for a path the contour following process has finished
(step 2 in algorithm 4.2), the path is placed into the aforementioned priority queue —qPrio—
in a position in accordance to its updated f -value. The strategy continues by taking out
from qPrio the estimated least-cost solution —the one with the minimum f -value— as well
as by applying on it the preceding actions. Algorithm 6.1 describes formally the approach.
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Algorithm 6.1 ABUG : A description in pseudocode

f(P )

1: return g(P ) + h(P )

Store(P )

2: Declare/ Initialize the static variable PShortest to NULL
3: if PShortest == NULL or g(P ) < g(PShortest) then

4: Set PShortest = P

5: output ← P
6: {a new solution P has been found; the planner continues looking for shorter paths}
7: end if

Improve(P )

8: PImproved = ShortestHomotopicPath(P )
9: Store(PImproved)

Extend(P , qPrio)

10: Motion-To-Goal(P )
11: if T has been reached then
12: Store(P ); Improve(P )
13: else {An obstacle has been found}
14: for pCFD = left to right do
15: Copy P into PNew

16: Boundary-Following(PNew , pCFD)
17: if T has been reached then
18: Store(PNew); Improve(PNew)
19: else if T is unreachable then
20: Stop search
21: else {Conditions C3 and C4 of algorithm 4.2 have been met at Q}
22: Insert PNew into qPrio
23: end if
24: end for
25: end if

Main()

26: Build a path P consisting of only the starting point (S)
27: Insert P into qPrio
28: repeat
29: Pick PBest from qPrio such that f(PBest) ≤ f(P ), ∀P ∈ qPrio
30: Remove PBest from qPrio
31: Extend(PBest, qPrio)
32: until qPrio is empty or T is known to be unreachable
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Figure 6.3: The shortest homotopic path problem: (a) a path; (b) the shortest path preserving
the homotopy class of a).

It is important to note that ABUG is an anytime approach and not a classic planner
that generates the best/shortest Bug2+ path as could be guessed so far. Anytime path
planning, as pointed out in section 6.1, requires the progressive improvement of the quality
of the solutions while time permits and the optimal path is not found. With this purpose,
the algorithm ABUG makes use of the mathematical/ topological concept of path homotopy,
which provides us with an efficient way for optimizing a given path by solving the so-called
shortest homotopic path problem [72]. Informally speaking, a path is regarded as an elastic
band joining points S and T which is tightened to shorten it (see figure 6.3 for an example).
Many methods have been proposed to compute the shortest homotopic path in R

2. Among all
of them, the one published in [78] has been finally applied because it presents the minimum
—to the best of our knowledge— algorithmic complexity (O(log2 n′) per output vertex being
n′ the number of obstacles in the environment).

The search performed by ABUG does not stop after finding and, later, improving the
best Bug2+ path. The strategy actually considers all the solutions within the graph induced
by the binary tree data structure which is built. As will be seen in section 6.2.2.3, the
number of solutions to be considered is bounded by a value that increases according to the
complexity of the mission, although it grows in a reasonable way. The main reason for
exploring the whole space of solutions is due to the fact that worse Bug2+ paths can become
better solutions after being optimized as it so happens in the scenario of figure 6.4. Finally,
observe that, each time a path is either computed or optimized by the algorithm ABUG ,
the new solution is compared with the best/shortest path found so far, and only if the
former improves the latter, the strategy provides as output the new solution —i.e. line 5
in algorithm 6.1 is executed. Otherwise, the path is simply discarded. By applying such
a filtering process, ABUG guarantees the generation of a strictly monotonically decreasing
sequence of solutions regarding path length.

By way of notation, from now on, each of the Bug2+-compliant paths found by the
strategy ABUG before being optimized will be denoted as πk, where the index k is a sequence
number that indicates the order in which the path was obtained. On the other hand, let
Π = {π1, . . . , πq}

5 be a set containing all these solutions. Notice that, as a direct consequence
of the heuristic defined by the planner, πk is shorten or equal than πl if k < l.

5Π is the empty set when there is not a solution to the path-planning problem; that is to say, when the target
point (T ) is not reachable
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Figure 6.4: An example where the worst Bug2+ path (#2) turns into the optimal solution
after optimization.

6.2.2.2 Accelerated Mode of Operation of ABUG

A⋆-based anytime approaches make frequent use of the fact that, in many domains, inflating
the heuristic values often results in a substantial speed-up at the cost of solution optimality
(see [79] for some popular examples of this kind of algorithms). Moreover, if the heuristic
h employed is consistent, then, by multiplying it by an inflation factor ǫ > 1, the strategy
produces a solution which is ensured not to cost more than ǫ times the cost of the optimal path.

The previous idea can be exploited to provide ABUG with an accelerated mode of operation
that additionally gives bounds on the suboptimality of the solutions generated. To this end,
a simple change is required in line 1 of algorithm 6.1, which consists in inflating the heuristics
by ǫ as discussed before, so that the final expression for the cost function is, therefore, f(P ) =
g(P )+ǫ·h(P ). Any finite real value larger than or equal to one can be assigned to the inflation
factor ǫ, which constitutes the first and only user-definable parameter of our approach. By
setting ǫ = 1, the strategy ABUG adopts its original and non-inflated form. In such a case,
a series of paths Π = {π1, . . . , πq} increasingly sorted by length is progressively found and
improved. On the other hand, for ǫ > 1, the same Π paths as before are computed but the se-
quence in which they are obtained does not apparently obey to any ordering (in section 6.2.2.3
—fourth property—, some restrictions will be imposed with regard to such a sequencing).

6.2.2.3 Theoretical Properties of ABUG

The most important theoretical properties of ABUG are enumerated next. Some additional
notation is, nevertheless, introduced first.
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Notation

As was already said, Π = {π1, . . . , πq} represents the set of non-optimized solutions found by
ABUG to the path-planning problem at hand. The approach improves each solution π ∈ Π
by computing the shortest path for the homotopy class to which π belongs. Consequently, let
Π∗ = {π∗

1 , . . . , π
∗
q} be the resultant set of improved solutions (π∗

k = SHP(πk) ∀πk ∈ Π, where
SHP refers to the shortest homotopic path function). On the other hand, the cost —Euclidean
length— of paths πk ∈ Π and π∗

k ∈ Π∗ is given by, respectively, σk and σ∗
k. This results in

two new sets: σ = {σ1, . . . , σq} and σ∗ = {σ∗
1 , . . . , σ

∗
q}. Additionally, σbest and σ∗

best are used
to designate the length of the shortest paths in Π and Π∗ (or in other words, σbest = min{σ}
and σ∗

best = min{σ∗}). Following the same terminology, σbest,k denotes the minimum cost for
a subset of the solutions of Π. More precisely, σbest,k = min{σl ∈ σ | l ≥ k} (observe that
σbest,1 = σbest as a particular case of the formulation). Finally, to conclude, πopt symbolizes
the optimal solution to the path-planning problem, and σopt its cost/ length.

Properties

p1. ∀πk, πl ∈ Π such that k 6= l, πk 6= πl.

p2. ∀σk ∈ σ, σk is bounded by expression 6.1.

p3. The maximum number of paths found by ABUG never goes above the limit

| Π | ≤ 2
n
2 (6.2)

where n denotes the number of intersections between the m-line and the boundary of

the obstacles in the environment
(

i.e. n =
∑

i ni

)

.

p4. When performing ABUG with an inflation factor ǫ = 1, σ = {σ1, . . . , σq} becomes
a totally ordered set under the relation ≤ (σ1 ≤ σ2 ≤ . . . ≤ σq). On the other hand,
if ǫ > 1, the following holds: assuming that the execution of the algorithm ABUG is in
a state where k paths π1, . . . , πk have been computed6, the length of the next path to be
obtained πk+1 is bounded by inequality 6.3. As can be observed, the strategy produces
a solution which is guaranteed not to have an additional cost on the best of the paths
that remain to be found (σbest,k+1) of more than ǫ− 1 times the cost of moving from S
to T by following a straight-line path (d(S, T )). In this way, we can provide bounds on
the suboptimality of the solutions generated by ABUG when applying the accelerated
mode of operation described in section 6.2.2.2.

σbest,k+1 ≤ σk+1 ≤ σbest,k+1 + (ǫ− 1) · d(S, T ) (6.3)

p5. Some scenarios, such as the one of figure 6.5(a), can be constructed where σ∗
best and

σopt do not match each other (σ∗
best > σopt), which means that the strategy ABUG

does not always end up yielding the optimal path πopt. However, there is a particular
class of problems where πopt is guaranteed to be in the set of —improved— solutions
computed by our approach (σ∗

best = σopt). First of all, assume an environment composed
of obstacles of generic shape meeting the requirements imposed by the Jordan Curve
Theorem [72] (the contour of each obstacle ∂Oi defines a simple closed curve). On

6k ∈ {0, . . . , q − 1}. In case k = 0, the set {π1, . . . , πk} is supposed to be empty
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Figure 6.5: About the optimality of our planner: (a) comparing the best solution computed by
ABUG (π∗

best) with the global optimal path (πopt); (b) illustration of the conditions required
for optimality.

the other hand, let χ denote the minimal convex subset of R
2 containing S, T , and the

contour curve points of those obstacles which intersect the m-line in only two locations

(i.e. ∂χ = Hconvex

(

{S, T}
⋃

(
⋃

i ∂Oi | ni = 2)
)

, where ∂ means the boundary of and

Hconvex represents the geometric concept of convex hull). Then, if equation 6.4 holds
—see figure 6.5(b) for a case where it happens—, the algorithm ABUG can be formally
proved to find πopt, or in other words, the set of solutions given by the strategy converges
to the optimal value when having enough time for deliberation.

χ
⋂

(

⋃

i

Oi | ni 6= 2

)

= ∅ (6.4)

6.2.3 Experimental Results

This section compares ABUG with other competing approaches. Some of the most popular
path-planning techniques have been included into the comparison by choosing from each
a representative member. More precisely, the planners considered are: NF1 [80], ARA⋆ [74]7,
and RRT [81]8. The planner NF1 represents the simplest and more efficient way of build-
ing an artificial potential function with its only minimum located at the target point T .
By applying a wave-propagation technique and a gradient-descent method, NF1 computes
the shortest collision-free path from S to T 9. On the other hand, ARA⋆ is a heuristic-based

7 In [74], the strategy ARA⋆ is favorably compared against another anytime algorithm named Anytime A⋆

[73]. Consequently, if the comparative study of this section demonstrates that ABUG is clearly more efficient
than ARA⋆, we can expect ABUG to outperform Anytime A⋆ as well

8 By including the strategy RRT into the comparative study, we are also considering, although only in part,
the anytime version of such an algorithm named ARRT [75]. The Anytime RRT approach computes its first
path / solution by growing a standard RRT without any cost considerations

9A faster version of the navigation function NF1 can be found in [39], where the propagation of the wave
was restricted to a small rectangular region containing both the current robot’s position (S) and the target
(T). Such a region was progressively widened until the search did supply a solution. It seems obvious that
avoiding to compute the navigation function for the entire space significantly reduces the computational cost of
the planner. Nevertheless —and it was not mentioned by the authors—, the resultant strategy is not optimal
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anytime strategy which operates by executing a series of A⋆ searches with decreasing inflated
heuristics. The approach provides suboptimality bounds for each successive search whose
solution is guaranteed not to cost more than ǫ times the cost of the optimal path. ARA⋆

gains efficiency by making each A⋆ search reuse the results of the previous search iterations.
Finally, regarding probabilistic/ sampling-based planners, a goal-biased version of the algo-
rithm RRT has also been taken into account. This randomized strategy incrementally builds
a search tree that attempts to rapidly and uniformly explore the free space. RRT has shown to
be extremely good in finding feasible paths but with no control on the quality of the solutions
produced.

Four different scenarios are proposed to assess the performance of ABUG against each of
the above-mentioned planners (see figures 6.6 and 6.7(a)). The first mission is intended to
test the ability of the strategies to realize that the path-planning problem has no solution.
It is important to note that sampling-based methods —and, in particular, the RRT planner—
do not assume that such a situation can happen because they were essentially conceived to be
applied to high-dimensional path-planning problems where the complete exploration of the
search space is not possible in a reasonable time. Considering, however, our work focuses
on two-dimensional Euclidean search spaces, an adapted version of the classic RRT algo-
rithm capable of becoming aware that the target is not reachable has been used for solving
mission 1 (in short, the algorithm recognizes the impossibility when the search tree cannot
grow any more). On the other hand, the second mission corresponds to a simple scenario where
no obstacles are located in the environment. Beyond this simplicity, mission 3 defines a topo-
logically complex scenario under the form of a multiply-connected maze. Finally, in mission 4,
many small obstacles are strategically spread throughout the environment. This last scenario
constitutes an important challenge for the algorithm ABUG because of the high number of
paths/solutions which the strategy finds.

All the scenarios are represented as a grid-based map with a resolution of 5cm, and a size
of 150m × 150m —9,000,000 cells— for mission 3 and 100m × 100m —4,000,000 cells— for
the rest of scenarios.

As for the configuration of parameters, the more usual settings defined by their cor-
responding authors have been used for the strategies NF1 , goal-biased RRT , and ARA⋆.
More precisely, regarding the latter, the inflation factor has been set to ǫ = 3.0, decreasing
in 0.5 steps, which leads to a succession of five A⋆ searches. On the other hand, the algorithm
ABUG has been executed in its default/non-accelerated mode of operation (ǫ = 1.0) in all the
scenarios except for mission 4 where the value for ǫ was 3.0 to speed up ABUG when dealing
with the 1024 resulting paths (|Π| = |Π∗| = 512 in this troublesome mission). Nevertheless,
for comparison purposes, the results corresponding to the execution of ABUG in its default
mode are also reported for mission 4.

Figures 6.6 and 6.7(a) present the results obtained on the four scenarios previously de-
scribed. The processing times provided correspond to a PC laptop Intel Core Duo @ 1.66 GHz
running Windows XP Media Center SP2. Observe that, in mission 2, just one solution —
and not five— is given for the strategy ARA⋆. This is because the path found with ǫ = 3.0
—the first and highest inflation factor for ARA⋆ according to the proposed parameter setting—
was already optimal being thus irrelevant the four remaining solutions.

The experimentation of figures 6.6 and 6.7(a) can be summarized as follows: in mission 1,
ABUG was 57 times faster than the best competing approach in detecting the impossibility

as opposite to the original approach. Despite this problem, which is shared with ABUG in the general case,
the results reported in section 6.2.3 regarding NF1 do really come from the speeded-up version of the algorithm
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of reaching the target; in the rest of scenarios, ABUG , on average, computed its first path
10 times more rapidly and converged to the optimal solution 38 times quicker than the other
approaches.

To conclude, figure 6.7(b) depicts the performance of the algorithms when executed on
a microcontroller (32-bit Motorola MC68332 @ 25 MHz), which is the typical computational
resource that is found in the majority of low-cost robots. The path-planning problem con-
sisted in solving mission 4 again but with a lower resolution than before, namely 50cm cells
or 40,000 cells. Concerning the anytime approaches, only the time needed for providing
the first path is given in figure 6.7(b). This is essentially due to space reasons as well as to
the high-computational cost of ARA⋆.

According to the results of figure 6.7(b), it seems clear that the only algorithm with
a reasonable response time for the involved planning task is ABUG .

6.2.4 Conclusions

A deterministic anytime path planner inspired by a Bug-derivative algorithm has been for-
mally described and, later, compared against some well-known strategies in the field, such
as NF1 , ARA⋆ (indirectly, Anytime A⋆ as well), and RRT (indirectly, ARRT as well).
The performance of the approach proposed, ABUG , is significantly better than the one
provided by the aforementioned competing planners. ABUG efficiently computes a succes-
sion of progressively better solutions —or rapidly indicates failure when the given target
is unreachable— for each of the path-planning problems considered. On the other hand,
ABUG makes planning on low-cost robots feasible since the strategy is able to accomplish
planning tasks in a reasonable time even in troublesome scenarios such as the one of mission 4.

ABUG has been defined for two-dimensional Euclidean configuration spaces. However,
the strategy can be extended to higher-dimensional problems maintaining both the efficiency
of the algorithm and some of its more relevant properties, although at the cost of not
guaranteeing convergence to the optimal solution. Such an extension, assuming a three-
dimensional configuration space, could be achieved by searching for Bug-compliant paths in
two-dimensional manifolds containing, each of them, the initial and the target configurations
(at the time of this writing, ABUG has already been extended as indicated above; as an
example evidencing this extension, figure 6.7(c) shows a path computed by ABUG in a three-
dimensional grid-based environment).

6.3 vABUG: A Fast Anytime Path Planner Inspired in

the Biological Behavior of Insects with Visual Sensing

This section extends the work presented in section 6.2 by describing an anytime path planner
based on another Bug-derivative algorithm. Such a difference provides the new strategy,
named vABUG , with enhanced control over the quality/ length of the solutions/paths that
are computed. Consequently, keeping in mind the close relationship between the time required
for calculating a solution and its corresponding quality, it seems clear that vABUG adapts
better than ABUG to the criticality of the planning task by being able to produce an initial set
of longer/worse paths when reducing the available time for deliberation —or do the opposite
in case the time restrictions are not so severe.

The rest of this section is organized as follows: section 6.3.1 discusses about a new Bug-like
strategy called VisBug+, while section 6.3.2 shows how VisBug+ can be used to construct
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the fast anytime global path planner known as vABUG (besides, this section formally analyzes
the properties of vABUG); section 6.3.3 reports some experimental results of our algorithm,
and compares these results with those obtained by some techniques that are well-known in
the field of anytime path planning; and, lastly, section 6.3.4 draws some conclusions.

6.3.1 The Algorithm VisBug+

The anytime approach vABUG plans paths by using an improved version of an algorithm
named VisBug [55]. This enhanced version, called VisBug+, has several advantages with
respect to the original approach. Among all these advantages, the most important one is that
VisBug+ produces shorter paths —or, in the worst case, the same path as VisBug— without
an increase in complexity.

Next, the key differences between VisBug and VisBug+ are highlighted, with a special
emphasis on what makes VisBug+ achieve a better path length performance.

6.3.1.1 Assumptions

The planner VisBug+ makes the following assumptions about the robot and the environment:

• The mobile robot is considered to be a point equipped with a vision sensor, which mimics
a typical range finder in the sense that it provides the vehicle with the coordinates of
those obstacle boundary points lying within a limited field of view around the robot. On
the other hand, the problem of localization is supposed to be solved so that the vehicle
can know its current position and the one of the target. Finally, the robot is capable of
moving everywhere in free space as well as along the contour of obstacles.

• As for the navigation environment, it is assumed to be static, unknown, and two-
dimensional.

6.3.1.2 Some Definitions and Notation

S, T , and C denote, respectively, the starting point of the mission, the target, and the current
location of the robot. The line joining S and T is referred to as main line, or m-line in short.
The field of view associated with the robot’s range finder is determined by a disc of radius rv

centered at C. Additionally, a point Q is said to be visible by the robot if both it is located
within its field of view and the straight-line segment with endpoints C and Q does not cross
any obstacle. On the other hand, a point Q is contiguous to another point U over the set {P},
if Q can be continuously connected with U using only points of {P}. The term contiguous
set of visible points combines the two previous definitions and means that every point in the
set {P} is visible as well as any pair of points are contiguos to each other over {P}. Finally,
Oj symbolizes a certain obstacle of the environment and ∂Oj its contour curve.

6.3.1.3 Basic Description

The strategy VisBug+ starts by placing the robot at S, i.e. C = S. Afterwards, two different
processes are sequentially applied: the first one takes care of defining a local/ intermediate
target point (Ti), while the second process moves the robot one step in the direction of Ti.
The execution of the above-mentioned processes is repeated until either C = Ti = T —
meaning the successful completion of the path-planning task— or the algorithm does realize
the target is not reachable.
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Figure 6.8: The algorithm VisBug+ step by step. Due to the reduced number of iterations
considered, a big step to Ti is assumed. Notice that the less the step size, the smoother
the planned trajectory and the larger the number of iterations needed by VisBug+ to complete
the path-planning task. On the other hand, the length of the resultant path is influenced by
the size of the robot’s field of view or, in other words, by the value assigned to the parameter rv.

In the way from S to T , local/ intermediate targets are generated as follows. First of all,
VisBug+ reconstructs, within the current field of view, the path which would be produced
by the Bug-like strategy Bug2+ (see section 6.2.1). Later, from such a path, contiguous sets
of visible points are detected and, finally, the farthest point of the contiguous set containing
the last-defined intermediate target becomes the new Ti. By way of example, figure 6.8
illustrates the two first iterations of the algorithm in a scenario with several obstacles. As can
be observed, while trying to update Ti in the second iteration, two visible contiguous segments
of the Bug2+ path are found: e3e4 and e5e6. As the current Ti is part of segment e3e4,
the endpoint e4 turns into the new intermediate target.

It is important to note that, in VisBug+, the task requiring the highest computational cost
is the detection of all contiguous sets. However, this task can be significantly simplified by
realizing that the computation of Ti is always based on the contiguous set which determined
such an intermediate target in the previous iteration of the algorithm —for the first iteration,
Ti is chosen from the visible Bug2+ path segment starting at S. Let us next use figure 6.8
as an example of the preceding fact. As can be guessed from the figure, the calculation
of Ti in the second iteration comes essentially down to the visibility-based enlargement, in
accordance with the up-to-date location of the robot (C), of the contiguous set e1e2, not being
really necessary the detection of other sets such as e5e6. Additionally, observe that the
contiguous set e1e2 is the one that was employed for deciding the new coordinates of Ti in
the first/previous VisBug+ iteration. As a final step after extending e1e2, Ti is moved to
the endpoint of the resultant contiguous set (e3e4) that involves the greatest progress along
the Bug2+ path. This simplicity for the process which provides a new intermediate target
—the most computationally-intensive part of the algorithm— makes the strategy VisBug+
much faster than others well-known Bug-like approaches that also exploit range data such as
DistBug [56] and TangentBug [57]. On the other hand, the main disadvantage of VisBug+,
with respect to these popular approaches, is its generally worse path length performance.
Nevertheless, recall that, in an anytime context, there is no point in calculating a high-quality
solution to the path-planning problem at hand if this solution is obtained once the available
time for the planner has run out.
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Figure 6.9: Illustration of the fact that the algorithm VisBug+ provides a shortcut of the path
produced by the algorithm Bug2+: (a) the Bug2+ path; (b) the path of (a) after being
shortcut by VisBug+ (as can be seen, this chart depicts the paths computed by VisBug+ under
two different parameterizations, which essentially differ in the value given to the rv parameter;
as for the step size parameter, it is assumed to be very small).

Summarizing the previous description, VisBug+ can be understood as a strategy that
finds shortcuts on the path generated by Bug2+ (this shortcutting behavior of VisBug+
is readily appreciated in figure 6.9 by comparing the whole paths that would be produced
by Bug2+ and VisBug+ in the scenario of figure 6.8). Relating the Bug2+ approach, it is
important to recall that it was put forward in chapter 4 and constitutes an improvement
of the planner Bug2 [53]10, in the sense that Bug2+ does provide a path whose length is
always shorter than or equal to that of Bug2 (look at figure 6.1 for an example where Bug2+
outperforms Bug2).

To conclude, notice that the main point of discrepancy between the strategies VisBug+
and VisBug is the path from which shortcuts are found: an enhanced Bug2-based path for
the former coming from algorithm Bug2+, and the typical Bug2-based path for the latter.
As was mentioned before, Bug2+ is a complete planner that never supplies a path longer than
Bug2 —its most-directly competing approach—, which implies that the strategy VisBug+ uses
a never-worse and usually better reference path for producing shortcuts than VisBug. As was
widely discussed in chapter 4 —and is evidenced in figures 4.17 and 6.1—, by executing Bug2+,
we obtained the path that would be generated according to Bug2 but with no cycles, if any.
The length of these cycles after shortcutting represents the additional cost that a path planned
by the strategy VisBug would have with respect to VisBug+. As a final comment, it is worth
to remark that the length of any path provided by Bug2+ —and, consequently, by VisBug+—
does not exceed the upper bound given by expression 6.1.

10see also section 4.1
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Figure 6.10: Fundamentals of the strategy vABUG : (a) running VisBug+ with different set-
tings for the parameter pCFD ; (b) multiple path search performed by vABUG.

6.3.2 The Algorithm vABUG

The algorithm VisBug+, as described in section 6.3.1, allows us to plan a single path in
an unknown and static environment. The particular features of such a path depend on how the
parameters step size, rv, and pCFD are set by the user. Among these VisBug+’s parameters,
pCFD had not been really mentioned so far. To fill this gap, notice that pCFD does determine
the direction —left or right— in which the robot will go around the contour of the obstacles.
By way of example, figure 6.10(a) presents the two solutions that would be obtained by
executing VisBug+ with pCFD = left and pCFD = right in a simple scenario.

From figure 6.10(a), it is clear that different paths can be obtained with VisBug+ by
choosing distinct obstacle contour following directions, or in other words, by varying the value
given to the pCFD parameter. The anytime approach vABUG exploits this fact to produce
multiple paths in an a priori known environment. In this respect, however, it is important to
note that vABUG is not limited to merely execute the planner VisBug+ twice by assigning left
and right to pCFD, but the strategy goes beyond by generating a wider set of topologically
different solutions, which correspond to the distinct ways of circumnavigating the obstacles
that are located between S and T . Figure 6.10(b) illustrates this exhaustive search in a mission
where four paths were successfully planned. As will be seen later, within the set of solutions
provided by vABUG , there is, in most cases, one that is, from a topological point of view,
equivalent to the global optimal path. This circumstance is taken into account in a final stage
of the algorithm to make vABUG converge to the optimal solution whenever possible.

Next, the strategy vABUG is described in more detail emphasizing its most relevant
theoretical properties.
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Figure 6.11: (a) in blue, the shortest path of the homotopy class associated with the yellow
trajectory; (b) a scenario in which vABUG does not converge to the global optimal path.

6.3.2.1 Description of the Planner

The planner vABUG searches for paths by paying special attention to the event associated
with the detection of new obstacles. The triggering of such an event means that an obstacle
is currently impeding the progress of the robot to T and, consequently, that the obstacle
has to be circumnavigated. vABUG explores all possibilities of avoiding an obstacle, which
are reduced to just two in R

2: from the branch point, follow the contour of the obstacle in
the left and right directions. With this purpose, vABUG launches an initial search based
on the strategy VisBug+ and, later, waits for the above-mentioned event to occur. Once
an obstacle is found, the search is widened by defining two instances of VisBug+: one with
pCFD = left and the other with pCFD = right. The wait and widening steps are repeated
until all the VisBug+-type processes involved into the search provide a solution to the path-
planning problem (or indicate failure if no solution can be obtained). This way of acting for
the algorithm vABUG is faithfully reflected in figure 6.10(b). Remember that the robot is
assumed to be equipped with a vision sensor so that it is able to sense obstacles at some
distance from them —rv, at the most— as can be observed in figure 6.10(b), where the points
denoted as Ci indicate the robot’s locations in which a new obstacle was detected, or in other
words, in which the widening step was executed. From the viewpoint of a VisBug+-type
process, each Ci corresponds to the definition of a hit point over the part of the reference
Bug2+ path that lies within the robot’s field of view.

Once all the VisBug+-compliant solutions have been generated, the algorithm vABUG
goes to a second stage where the quality of such solutions are intended to be improved while
time permits. To this end, vABUG makes use of the topological concept of path homotopy,
which provides us with an efficient way for optimizing a given path by solving the so-called
shortest homotopic path problem [72]. Informally speaking, a path is regarded as an elastic
band joining the points S and T which is tightened to shorten it (see figure 6.11(a) for
an example). Among the many methods that have been proposed to compute the shortest
homotopic path in R

2, vABUG makes use of the one published in [78] because it exhibits the
lowest algorithmic complexity, to the best of our knowledge.
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Finally, observe that, vABUG produces a new solution each time a path is either computed
—first stage— or optimized —second stage—, and it turns out to be shorter (better) than
the best path found so far. In this way, the strategy guarantees the generation of a strictly
monotonically decreasing sequence of solutions regarding path length.

6.3.2.2 Theoretical Properties

The most important theoretical properties of vABUG are enumerated next after the intro-
duction of some additional notation.

Notation

Π = {π1, . . . , πq} represents the set of solutions found by vABUG in its first stage on the basis
of the algorithm VisBug+ (notice that the indexes of the paths define the order in which they
were obtained). As already known, the strategy vABUG improves each solution π ∈ Π
by computing the shortest path for the homotopy class to which π belongs. Consequently,
let Π∗ = {π∗

1 , . . . , π
∗
q} be the resultant set of optimized solutions (π∗

l = SHP(πl) ∀πl ∈ Π,
where SHP refers to the shortest homotopic path function). On the other hand, the cost
—Euclidean length— of the paths πl ∈ Π and π∗

l ∈ Π∗ is, respectively, σl and σ∗
l . This

results in two new sets: σ = {σ1, . . . , σq} and σ∗ = {σ∗
1 , . . . , σ

∗
q}. Additionally, σ∗

best is used to
designate the length of the shortest path in Π∗ (or in other words, σ∗

best = min{σ∗}). Finally,
to conclude, πopt symbolizes the global optimal solution to the path-planning problem, and
σopt its cost/ length.

Properties

p1. Π = Π∗ = ∅ if and only if T is not reachable.

p2. ∀πl, πm ∈ Π such that l 6= m, πl 6= πm.

p3. ∀σl ∈ σ, σl is bounded by expression 6.1. Moreover, ∀σl ∈ σ, σ∗
l ∈ σ∗ it holds that

σl ≥ σ∗
l .

p4. The maximum number of paths generated by the strategy vABUG never goes above
the limit

| Π |=| Π∗ | ≤ 2
n
2 (6.5)

where n designates the number of intersections between the m-line and the boundary of
the obstacles (i.e. n =

∑

j nj).

As can be guessed, the maximum number of solutions provided by vABUG changes in
accordance with the complexity of the environment under consideration: in short, the
higher the number of obstacles between S and T , the higher the number of ways of
circumnavigating them and, consequently, the higher the cardinality of the Π/Π∗ sets.
This is a very interesting property not found in any other anytime approach —to the
best of our knowledge— where the desired number of solutions to be obtained must
be decided a priori (see e.g. ARA⋆ [74] and ARRT [75]). However, the only relevant
parameter in vABUG is rv which, from a practical point of view, allows trading off
running time and quality for the solutions of the Π set.
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p5. Some scenarios can be constructed where σ∗
best and σopt do not match each other

(σ∗
best > σopt), which implies that the strategy vABUG does not always end up yielding

the optimal path πopt (see the one in figure 6.11(b)). However, there is a fairly wide
class of problems where πopt is guaranteed to be in the set of —optimized— solutions
calculated by our approach (σ∗

best = σopt). In order to characterize this class, assume
an environment composed of obstacles of generic shape meeting the requirements im-
posed by the Jordan Curve Theorem [72] (essentially, the contour of each obstacle —
∂Oj— should define a simple closed curve). On the other hand, let χj denote the
minimal convex set —referred to as MCS hereafter— containing ∂Oj (i.e. ∂χj =
Hconvex(∂Oj), where ∂ means the boundary of and Hconvex represents the geometric
concept of convex hull). In addition, let ϕ be the MCS that includes S, T , and the
contour curve points of those obstacles which intersect the m-line, or more formally,

∂ϕ = Hconvex

(

{S, T}
⋃

(

⋃

j ∂Oj | nj 6= 0
))

. Then, if equations 6.6, 6.7, and 6.8

are satisfied, the algorithm vABUG can be proved to always find πopt when having
enough time for deliberation.

(

⋃

j

χj | nj 6= 0

)

⋂

{S, T} = ∅ (6.6)

(

⋂

j

χj | nj 6= 0

)

= ∅ (6.7)

(

⋃

j

χj | nj = 0

)

⋂

ϕ = ∅ (6.8)

6.3.3 Experimental Results and Brief Discussion

This section assesses the performance of the algorithm vABUG when carrying out a complex
planning task in a two-dimensional configuration space. Besides, vABUG is compared against
two of the most popular anytime approaches: ARA⋆ [74] and ARRT [75]. The former
is a deterministic strategy which operates by executing a succession of A⋆ searches with
decreasing inflated heuristics, while the latter corresponds to the anytime version of the
probabilistic/sampling-based planner RRT (Rapidly-exploring Random Trees, see [82]). ARRT
generates a series of search trees, each producing a solution that is ensured to be less expensive
than the previous ones.

Figure 6.12(a) and (b) show the planning task that was intended to be solved. Observe that
obstacles are strategically spread through the environment to define three topologically differ-
ent ways of achieving the target point. On the other hand —and although this is not evident
from the figure—, a grid-based representation of the environment was adopted, resulting in
a map of 150m × 200m with a resolution of 5cm (in total, 12000000 cells for the search space).

Figure 6.12(a) presents the first three solutions generated by vABUG in the given scenario
supposing a zero field of vision for the robot (i.e. rv = 0, which essentially means that obstacles
are detected by means of tactile sensing). These three solutions are just a subset of the paths
that were really computed in the first stage of the algorithm according to the VisBug+ planner.
More precisely, in such a stage, not three but eleven different paths were produced by vABUG .
However, the eight remaining solutions are omitted because, from a topological point of view,
they do not differ from the ones illustrated in figure 6.12(a). Lastly, in the second stage of the
algorithm, all the above-mentioned solutions were improved as indicated in section 6.3.2.1.
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Figure 6.12: Some experimentation with vABUG and other anytime path planners.
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Figure 6.12(b) depicts the result of applying this optimization/tightening process on the paths
of figure 6.12(a). Notice that these three final solutions represent the optimal way, in terms of
Euclidean distance, of performing each alternative path to the goal so that the global optimal
solution is ensured to be one of them (π∗

3 , to be precise).
Figure 6.12(c) summarizes the processing times in msec11 associated with the strategy

vABUG (top) as well as ARA⋆ and ARRT (bottom). The figure shows, for each computed
path, its normalized length li —a value of 1.00 indicates the global optimal path— and the
precise time instant ti at which the corresponding solution was provided. Four sets of results
are given for vABUG , which come from assigning a different value to the parameter rv: 0,
15, 30, and 50. As expected, better solutions were obtained as rv was increased. Specifically,
in this particular scenario, the first three solutions of vABUG improved their quality in about
22 per cent, on average, for rv = 0 to 50. Besides, the improvement was accomplished with
just a little time penalty in comparison with the execution time requirements of both ARA⋆

and ARRT . On the other hand, vABUG , at worst, produced its first path 9.87 times faster and
converged to the global optimal solution 19.69 times more rapidly than the best competing
approach.

To end with, it is important to stress that the algorithm vABUG scales well to three-
dimensional path-planning problems. By way of example, figure 6.12(d) displays one of
the trajectories planned by vABUG for a robot arm with three degrees of freedom in an envi-
ronment involving the avoidance of several obstacles (in the figure, obstacles are represented
by the six brown boxes).

6.3.4 Conclusions

A two-stage anytime path planner named vABUG which is inspired by a Bug-derivative
algorithm has been described and, afterwards, successfully compared against some well-known
strategies in the field such as ARA⋆ and ARRT . The computational savings provided by
vABUG make this approach specially suited for planning on low-cost robots typically equipped
with simple microcontrollers.

11The machine used for testing was a PC laptop Intel Core Duo @ 1.66 GHz running Windows XP SP2



Chapter 7

Conclusions and Future Work

7.1 Concluding Remarks

7.1.1 Scope of the Dissertation

This dissertation has addressed the problem of mobile robot navigation from two distinct
perspectives, namely reactive and deliberative.

7.1.1.1 The Task of Navigation as Viewed from the Reactive Paradigm

Under the reactive paradigm, the task of navigation is intended to be solved by decomposing it
into elementary steps. In each step, a new control action is computed for the robot by using
the information of the neighboring environment. As it is plain from the latter, robot’s actions
are fully determined by local knowledge. This fact has both positive and negative implications:
on the positive side, notice that, because local knowledge generally involves small amounts
of information, non-computationally intensive algorithms are required to plan each robot’s
action (this ability for planning actions quickly is the cause of the fact that robots that operate
reactively are able to be highly-responsive to changes in the environment); on the negative
side, it is important to stress that a reactively-controlled robot may fail in navigating from
an initial location to a final/ target destination, essentially because decisions about actions
are not made having a global view of the task to be performed.

7.1.1.2 The Task of Navigation as Viewed from the Deliberative Paradigm

Under the deliberative paradigm, the task of navigation is conceptually divided into two
subtasks: global path planning, and plan execution1. On the one hand, global path planning
is the process of employing a model of the environment for finding the best/near-best sequence
of actions that will allow the robot to safely achieve a desired target location —or more strictly
speaking, a desired target state. On the other hand, plan execution refers to a subtask that
is able to both execute and monitor a given sequence of actions.

When a navigation task is solved deliberatively, the process of global path planning is
carried out before the robot begins its journey towards the target location. Moreover, once
the global path planning has been completed, the output of this process is used to feed the
plan execution subtask. In consequence, from this moment forth, such a subtask will move the
robot in accordance with the sequence of actions received. During the course of these actions,
it is important to highlight that a/an special /anomalous situation may arise. Specifically,
this situation corresponds to the case in which the plan execution subtask anticipates2 that

1 To be fair, there exists a third subtask called localization
2 on the basis of the information provided by the robot’s sensors
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the robot will collide with an obstacle if the sequence of actions suggested by the global path
planning process continues being executed (as a side note, this unexpected problem can just
occur due to one, or both, of the following reasons: (r1 ) the process of global path planning
was based on a model of the environment that was not sufficiently accurate and/or complete;
(r2 ) the environment involved dynamic obstacles —i.e. some obstacles in the environment
did change their position while the robot was moving towards its target). When a collision is
anticipated by the plan execution subtask, a replanning procedure is immediately activated.
Concisely, this procedure consists of three steps: (s1 ) build a model that faithfully reflects the
observed state of the environment (this new model could be obtained by fusing the information
of the available model with the sensor data collected by the robot during navigation); (s2 )
perform the global path planning process using the previously-built model of the environment;
(s3 ) order the plan execution subtask to execute the sequence of actions resulting from step s2.

As is clear from above, once the robot has started to navigate, the process of global path
planning —as a part of the earlier-described replanning procedure— may be required to be
executed due to the finding of an obstacle blocking the robot’s intended path. When this event
takes place, the robot is usually stopped until a new sequence of actions —corresponding to
an alternative obstacle-free path to the user-defined target location— is actually computed by
the global path planning process. As one can readily imagine, the time the robot will remain
stopped is not negligible, since the aforesaid process is deliberative and, hence, inherently
time-consuming. In short, the preceding discussion brings to light the well-documented fact
that deliberatively-controlled robots can react late to unexpected events.

7.1.2 Summary of the Main Contributions

The major contributions of this dissertation in the fields of reactive navigation and global
path planning are separately summarized next.

7.1.2.1 Contributions in the Field of Reactive Navigation

This dissertation has made three relevant contributions to the field of reactive navigation:

⋄ C1. Because of exclusively relying on local sensing, purely reactive navigation methods
suffer from several limitations. Among these limitations, the most important one
refers to the problem of local minima. As is well-known, this problem may cause
that a purely reactive robot gets stuck indefinitely before reaching its target location.

In chapter 3, we have proposed two general principles, briefly named T 2, which can
be directly applied on a large variety of currently existing purely reactive navigation
methods to avoid the trapping situations that are due to the local minima problem.
On the basis of the T 2 principles, a robot does acquire the ability for successfully
moving out of a local minimum, irrespective of: (1) the precise shape and size of
the obstacle/s that is/are causing such a local minimum; and (2) the maximum
obstacle detection range of the robot’s sensors. (As a clear example of the latter
fact, notice that a robot behaving according to T 2 would be able to escape from
an extremely deep and wide U-shaped canyon by merely using contact/zero-range
sensors). As another key aspect of the T 2 principles, it should also be mentioned that
any purely reactive navigation method does keep being reactive after incorporating
such principles.
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Throughout chapter 3, the T 2 principles have been applied to two existing and very
popular purely reactive navigation methods, which are known to be susceptible to
the local minima problem. Specifically, the methods chosen for exemplifying the
application of T 2 have been the artificial potential fields [8] (PFM ) and the dynamic
window approach [40, 41] (DWA). A T 2-based version of both PFM and DWA has
been described in detail. Furthermore, these versions have been exhaustively tested
in simulated and real experiments involving increasingly complex scenarios of navi-
gation, most of them containing intricate obstacles forming local minima. In short,
all of the above has permitted to demonstrate the two essential features of T 2:
on the one hand, its effectiveness for solving the local minima problem; on the other
hand, its generality to be applied to significantly different purely reactive navigation
methods, such as PFM and DWA.

⋄ C2. As evidenced in section 2.6, there exists a broad family of algorithms for reactive
navigation generically called Bug. These algorithms stand out because they are
proved to guarantee completeness. What is more, they accomplish this by using
a very minimal global knowledge of the environment3.

In the work published in [71], the most popular Bug-like algorithms were compared
against each other by means of both the length of the path traversed by the robot,
and the computational resources4 needed to generate such a path. As a result of this
comparison, it was concluded that one of the Bug-like algorithms with best trade-off
between path length performance and computational resource usage is Bug2 (see
sections 2.6.2 and 4.1 for a detailed description of this specific Bug-like algorithm).

In chapter 4, we have proposed a new version of the algorithm Bug2 named Bug2+.
As compared to Bug2, this new version does provide a better path length perfor-
mance, with no additional computational cost. Besides, Bug2+, like Bug2, does
ensure completeness.

Finally, it is important to emphasize that, in the last part of chapter 4 —to be
precise, in section 4.2.2—, we have proved rigorously all the above-claimed properties
of Bug2+.

⋄ C3. In chapter 5, we have presented the theoretical basis of a new method of reactive nav-
igation called BugT 2. Strictly speaking, this new method emerges as a combination
of the T 2 principles (contribution C1 ) and the algorithm Bug2+ (contribution C2 ).
As a main benefit of this combination, it should be strongly stressed that BugT 2 does
possess the major advantages of T 2 and Bug2+5. Specifically, these advantages are:
on the one hand, as a result of applying the T 2 principles, BugT 2 exhibits a fairly
good path length performance; on the other hand, as inherited from the algorithm
Bug2+, BugT 2 is able to ensure, whenever possible, the convergence of the robot to
its target.

3 Notice that the fact of using some global knowledge means that these algorithms perform non-pure reactive
navigation

4 essentially, memory consumption and running time
5Comparatively speaking, observe that: (1) the T 2 principles, as opposed to the algorithm Bug2+, are not

enough to guarantee the completion of any given navigation task; (2) in cases where such principles get to
drive the robot to the target location, the resultant path generally compares favorably —in terms of length—
to that of the algorithm Bug2+
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7.1.2.2 Contributions in the Field of Global Path Planning

This dissertation has made one relevant contribution to the field of global path planning:

⋄ C4. In chapter 6, we have used distinct Bug-like strategies as a basis for developing
two deterministic anytime6 global path planners, named ABUG and vABUG . To be
precise, ABUG has been based on our strategy Bug2+ (contribution C2 ), whereas
vABUG has been derived from the classical strategy VisBug (see section 2.6.3). Both
planners have been expressly designed for efficiently finding a series of increasingly
better paths in problems of low dimensionality, such as those planning problems
typically concerned with low-cost robotics applications. The performance of ABUG
and vABUG has been extensively tested and compared with that of other popu-
lar anytime path planners —e.g. ARA⋆ [75] and ARRT [74], just to mention two
of them. Under this comparative testing, it has been clearly shown that ABUG
and vABUG do provide better paths much more rapidly than their competitors.

7.1.3 List of Publications

The publications that have been derived from the work presented in this dissertation are
enumerated below, categorized by the type of publication.

7.1.3.1 Technical and Research Reports

[1] J. Antich and A. Ortiz, “T2: An approach to robotic navigation in unknown and dynamic
environments,” Department of Mathematics and Computer Science, University of the
Balearic Islands, Tech. Rep. A-3, 2004.

[2] J. Antich, “Reactive robotics: A paradigm not limited to simple tasks,” May 2006, Re-
search Report, Department of Mathematics and Computer Science, University of the
Balearic Islands.

[3] J. Antich and A. Ortiz, “A dynamic window approach to navigate in complex scenarios us-
ing low-cost sensors for obstacle detection,” Department of Mathematics and Computer
Science, University of the Balearic Islands, Tech. Rep. A-4, 2007.

[4] J. Antich and A. Ortiz, “Bug2+: Details and formal proofs,” Department of Mathematics
and Computer Science, University of the Balearic Islands, Tech. Rep. A-1, 2009.

7.1.3.2 Refereed Conferences

[5] J. Antich and A. Ortiz, “An underwater simulation environment for testing autonomous
robot control architectures,” in proceedings of the IFAC conference on Control Applica-
tions in Marine Systems, July 2004, Ancona (Italy), pp. 509–514, ISSN 1474-6670.

[6] J. Antich and A. Ortiz, “Extending the potential fields approach to avoid trapping situ-
ations,” in proceedings of the IEEE/RSJ international conference on Intelligent Robots
and Systems, August 2005, Edmonton (Canada), pp. 1379–1384, ISBN 0-7803-8913-1.

6As a general way of working, an anytime algorithm is able to quickly plan a collision-free suboptimal path
from a given starting position to a desired target position. What is more, while the available time for planning
is not over, such an initial path is continuously improved
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[7] J. Antich and A. Ortiz, “Bug-based T2: A new globally convergent potential field approach
to obstacle avoidance,” in proceedings of the IEEE/RSJ international conference on
Intelligent Robots and Systems, October 2006, Beijing (China), pp. 430–435, ISBN 1-
4244-0259-X.

[8] J. Antich and A. Ortiz, “A convergent dynamic window approach with minimal computa-
tional requirements,” in proceedings of the 10th international conference on Intelligent
Autonomous Systems, July 2008, Baden Baden (Germany), pp. 183–192, ISBN 978-1-
58603-887-8.

[9] J. Antich, A. Ortiz, and J. Mı́nguez, “ABUG: A fast bug-derivative anytime path planner
with provable suboptimality bounds,” in proceedings of the 14th International Confer-
ence on Advanced Robotics, June 2009, Munich (Germany), pp. 1–8, ISBN 978-1-4244-
4855-5.

[10] J. Antich, A. Ortiz, and J. Mı́nguez, “A bug-inspired algorithm for efficient anytime
path planning,” in proceedings of the IEEE/RSJ international conference on Intelligent
Robots and Systems, October 2009, St. Louis (USA), pp. 5407–5413, ISBN 978-1-4244-
3804-4.

[11] J. Antich and A. Ortiz, “A rapid anytime path planner with incorporated range sensing to
improve control on solution quality,” in proceedings of the 11th international conference
on Intelligent Autonomous Systems, August 2010, Ottawa (Canada), pp. 207–216, ISBN
978-1-60750-612-6.

7.1.3.3 Journals

[12] J. Antich and A. Ortiz, “Development of the control architecture of a vision-guided
underwater cable tracker,” Intl. Journal of Intelligent Systems, vol. 20, no. 5, pp. 477–
498, 2005, ISSN 0884-8173.

[13] J. Antich, A. Ortiz, and G. Oliver, “A PFM-based control architecture for a visually
guided underwater cable tracker to achieve navigation in troublesome scenarios,” Journal
of Maritime Research, vol. 2, no. 1, pp. 33–50, 2005, ISSN 1697-4840.

[14] J. Antich and A. Ortiz, “Reactive navigation in troublesome environments: T2 strate-
gies,” Instrumentation Viewpoint, no. 6, pp. 51–52, 2007, ISSN 1886-4864.

7.1.3.4 Book Chapters

[15] J. Antich, A. Ortiz, and G. Oliver, Reactive Control of a Visually Guided Underwater
Cable Tracker. In book Robotics and Automation in the Maritime Industries published
by Instituto de Automática Industrial (CSIC), 2006, ch. 6, pp. 111–132, IBSN 84-611-
3915-1.

[16] J. Antich and A. Ortiz, Traversability and Tenacity: Two New Concepts Improving the
Navigation Capabilities of Reactive Control Systems. In book Robotics and Automation
in the Maritime Industries published by Instituto de Automática Industrial (CSIC),
2006, ch. 7, pp. 133–154, ISBN 84-611-3915-1.
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7.2 Forthcoming Work

In the near future, the following tasks are planned to be undertaken:

⋄ As a natural continuation of the work done in this dissertation, a hybrid navigation
system is going to be developed by combining one of the methods that we have put
forward for reactive control —i.e. T 2, Bug2+, or BugT 2— with one of the methods that
we have devised for global path planning —i.e. either ABUG or vABUG . This hybrid
system is expected to allow a robot to follow safe and optimal/near-optimal paths in
highly dynamic and extremely complex environments.

⋄ As a second future step, we are going to propose an anytime global path planning
method based on the concept of homotopy class. The aim of this proposal is to ensure
that all paths found by the planner are topologically different (notice that this does
not necessarily occur neither in ABUG nor in vABUG); or in more formal words, the
overall objective is that each path returned by the planner belongs to a different class of
homotopy (as a side note, two paths in the same homotopy class —i.e. two paths that
are homotopic— represent two ways of reaching the target location that wind around
obstacles in exactly the same manner).

Concisely, the new homotopy-based path planner is going to consist of two main se-
quential stages: the first stage will allow identifying all existing homotopy classes within
the search space; afterwards, in the second/final stage, the best path of each previously-
identified homotopy class will be computed. As a result of these two stages, a minimally
complete set of paths will be planned (‘minimal’ because no path will be topologically
equivalent to any other; and ‘complete’ because such a set will contain all topologically-
different paths that a robot could follow to achieve the desired target).

At the time of this writing, two versions of the above-explained homotopy-based path
planner have already been developed and published in:

[17] E. Hernández, M. Carreras, J. Antich, P. Ridao, and A. Ortiz, “A topologically
guided path planner for an AUV using homotopy classes,” in proceedings of the
IEEE International Conference on Robotics and Automation, May 2011, Shanghai
(China), pp. 2337–2343, ISBN 978-1-61284-385-8.

[18] E. Hernández, M. Carreras, P. Ridao, J. Antich, and A. Ortiz, “A search-based
path planning algorithm with topological constraints. Application to an AUV,” in
proceedings of the 18th IEEE/OES IFAC World Congress, August 2011, Milano
(Italy), pp. 13 654–13 659, ISBN 978-3-902661-93-7.



Appendix A

Robots Used for Experimentation

This work has alternatively made use of four different mobile robotic platforms to corroborate,
through experimentation, the claimed properties of the algorithms which have been devised.
In short, two of these platforms constitute ground-type robots, while the other two are specif-
ically designed for underwater applications. They all are described next.

A.1 Ground Robots

A.1.1 The Robot Pioneer 3-DX

Pioneer 3-DX is a general purpose base platform commercialized by MobileRobots Inc, which
looks as shown in figure A.1. Among its main features, the following are highlighted:

• An aluminum body of 44 cm × 38 cm × 22 cm with two 19 cm differential drive wheels.

• One DC motor per wheel that allows the robot to reach speeds of up to 1.6 metres
per second.

• The platform is highly holonomic, being able to rotate in place —by moving both wheels
at the same speed but in opposite directions— or to swing around a stationary wheel
in a circle with a radius of 32 cm.

• A rear caster to balance the robot.

• A maximum payload carrying capacity of 23 kg.

• Sixteen ultrasonic sensors arranged to provide a 360-degree coverage.

• Between 18 and 24 hours of autonomy with fully charged batteries.

• The control commands are sent to the robot via a serial connector through which
sonar readings, motor encoder data, and other information are also received.

A.1.2 A Small Robot called SoccerBot

SoccerBot is a miniature robot with functionality similar to that of larger robots employed
in research and education such as the Pioneer. It has been purposely designed to meet
the regulations for RoboCup and FIRA small size leagues. Concisely, these are two initiatives
for advanced robotics and AI research around a friendly soccer competition. Figure A.2
depicts the physical aspect of the robot and enumerates, at the same time, its more relevant
characteristics which are (refer to [100] for further details):
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Figure A.1: A Pioneer 3-DX robot.

Figure A.2: Our SoccerBot S4X robot distributed by Joker Robotics.
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• As for the robot dimensions, it fits within an 18 cm circle in diameter.

• SoccerBot has a differential drive actuator design by using two DC motors with encap-
sulated gears and encoders.

• Additionally, the robot is equipped with:

– A 32-bit microcontroller where the user control programs are executed after being
downloaded into RAM via a serial line (RS-232).

– Six infrared range sensors for the detection of obstacles.

– A digital color camera for on-board image processing.

– Two servos for panning the camera and for activating the ball kicking mechanism.

– A wireless communication module to send messages to both other soccer players
and a PC host system.

A.2 Underwater Robots

GARBI and URIS are two real underwater vehicles which can be simulated in NEMOCAT (as
widely explained in appendix B, NEMOCAT [63] is a simulation tool that allows writing and
testing new strategies for the autonomous navigation of robots in underwater-like scenarios).
Both robots have been designed and built by the ViCOROB —Visió per COmputador i
ROBòtica— research group of the University of Girona, Spain.

In the following, a brief description of the key components of the underwater vehicles
GARBI and URIS is given (for further information about these vehicles, the reader is referred
to [101, 102]).

A.2.1 The Vehicle GARBI

Generally speaking, GARBI was conceived as a low-cost AUV for exploration in water depths
up to 200 meters. In order to accomplish a low-cost design, the vehicle was built using
economic materials, such as fibre-glass and epoxy resins. The precise dimensions, in meters,
of GARBI are 1.3 × 0.9 × 0.7 (length × height × width). Furthermore, its maximum speed
and weight are 1 knot and 150 kg, respectively.

Autonomy is certainly achieved in both control and energy since GARBI is equipped
with an embedded i486 computer —running the hybrid architecture known as O2CA2 [103]
(the Object Oriented Control Architecture for Autonomy)— as well as several battery packs.
Despite such an autonomy, it is important to note that the vehicle does have an umbilical cable,
which essentially covers the safety-related necessity of performing mission supervision tasks
from a support vessel.

GARBI possesses four thrusters (see figure A.3): two for horizontal movements (X axis)
and other two for vertical movements (Z axis). Due to the distribution of weight, the vehicle
is passively stable in roll and pitch. Consequently, the number of DOFs is four, namely: surge,
sway, heave, and yaw. Nevertheless, only surge, heave, and yaw can be directly controlled by
the thrusters.

To finish, GARBI’s sensors are mainly the following: two magnetic compasses, two pressure
sensors, one water speed sensor, and one video camera.
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Figure A.3: The underwater vehicle GARBI.

Figure A.4: The underwater vehicle URIS.

A.2.2 An Easy-to-Transport Vehicle named URIS

URIS, which stands for Underwater Robotic Intelligent System, was constructed with the
intention of getting a small, light-weight, and low-cost AUV to be used as a research testbed
in a water tank testing facility. As can be observed in figure A.4, the hull of this vehicle is
composed of two stainless steel hemispheres joined with wing nuts and bolts. The sphere radius
is about 17.5 cm and the weight is approximately 35 kg. Inside the hull, URIS incorporates
some batteries that ensure up to an hour of autonomy. Additionally, a PC104 is in charge
of the control of the vehicle based on the information provided by several on-board sensors
such as, for instance, a magnetic compass, a pressure sensor, a water speed sensor, DGPS
(Differential Global Positioning System), and video cameras. Propulsion is achieved by means
of four thrusters placed equidistant on the exterior of the vehicle, as illustrated in figure A.4.
Due to the stability of URIS in roll and pitch, there are only four Degrees Of Freedom (DOFs):
surge, sway, heave, and yaw. Except for sway —lateral motion—, the other DOFs can be
controlled directly.



Appendix B

NEMOCAT : A Simulator

for Underwater Vehicles

In the field of robotics, a lot of valuable advantages derive from using simulation tools. The loss
of detail with respect to the real world, closely bound up with simulators, is compensated by
a significant reduction of the effort, risks, and monetary costs needed to carry out a series
of experiments. This, nevertheless, does not mean to substitute the experimentation with
prototypes as it is warned in [104], but simply to complement it.

A 3D object-oriented simulator briefly named NEMOCAT
1 [63] has been developed in

order to validate and tune reactive and hybrid control architectures for AUVs. Notice that
both control paradigms are suitable to deal with dynamic and unstructured environments
such as the submarine.

The design of this simulation tool (see figure B.1) has required the use of a software
engineering methodology, the Rational Unified Process (RUP) [105] to be exact, which has
been applied together with the Unified Modelling Language (UML) [106]. The latter is a
general-purpose visual modeling language that permits users to specify, visualize, construct,
and document the artifacts of any complex software system such as NEMOCAT . As for
the implementation of the simulator, it has been based on the C++ programming language
and the OpenGL graphics library.

Next, a description of the main features of the virtual underwater environment through
which vehicles navigate is provided. Additionally, the different kinds of AUVs as well as
sensory equipment that can be faithfully simulated on NEMOCAT are also discussed. As
a closing point, and by way of example, a behavior-based control architecture which has
successfully been tested in the simulator is presented.

B.1 The Underwater Environment

As can be observed in figure B.2(a), the seabed is modeled by means of a grid of points whose
extent and resolution can be configured for the mission at hand. Initially, all the points of
such a grid are onto a plane which is parallel to the one defined by the X and Y axes. Typical
elements of underwater environments such as rocks, holes, and algae can be afterwards added
to the seabed. To this end, the heights, or Z coordinates, of some grid points are altered
according to the position and shape —elliptical, in our case— of the elements incorporated.
An adaptation of the well-known computer graphics algorithm called random displacement
of the midpoint is employed so as to give to those seabed deformations a natural appearance
(

look at figure B.2(b)
)

.

1NEMOCAT stands for Navigational Environment MOdeler, Control Architecture Tester
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Figure B.1: A global view of NEMOCAT . The environment where the vehicle navigates
appears in the rightmost window, while the window at the left-lower corner shows the image
captured by an on-board camera. Finally, at the left-upper corner, some data about the state
of both the vehicle and the control architecture are displayed.

Figure B.2: (a) seabed model and (b) deformations to simulate holes, rocks, . . .
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As it seems obvious, the simulation of distance-measurement sensors —for instance, sonars—
requires the detection of the environmental obstacles that are located nearby the AUV .
In NEMOCAT , obstacles are essentially supposed to be represented by the three basic deform-
ing elements of the seabed, namely rocks, holes, and algae2. To this respect, with the aim
of facilitating the detection of obstacles by the virtual sensors, NEMOCAT approximates
the actual shapes of rocks, holes, and algae, by easy-to-compute surfaces, generically referred
to as bounding surfaces.

Besides rocks, holes, and algae, NEMOCAT does allow introducing user/application
specific elements into the underwater environment. Just to put an example, in the current
release of the simulator, cables and pipelines can also be deployed on the seabed. Moreover,
common problems with these structures such as partial concealments and free span3 can be
purposely simulated.

Lastly, the reader should note that, in the electronic version of this document, there is
a ≪video≫ that illustrates, step by step, all previous seabed-modeling concepts.

B.2 Autonomous Underwater Vehicles

AUVs are incorporated into the simulator by specifying their dynamic model, together with
their visual appearance, and their particular sensor and actuator configurations. Since there is
not a limit in relation to the maximum number of AUVs that can be simulated at once,
multi-robot control strategies can also be studied by using NEMOCAT .

B.2.1 The Dynamic Model

In accordance with [107, 108], the dynamics of an underwater vehicle are assumed to obey
the non-linear model with six DOFs summarized by equation B.1, where: MRB and MA

are the inertia and added-mass matrices, respectively; CRB and CA contain the Coriolis and
centripetal terms associated with the two preceding matrices; v is the linear and angular
velocity vector; D is the damping matrix; g represents the gravity and buoyancy forces; η
denotes the position and orientation of the vehicle; and, finally, τ defines the forces and
torques exerted by the vehicle’s thrusters.

(MRB + MA)v̇ + (CRB(v) + CA(v))v + D(v)v + g(η) = τ (B.1)

At the moment, NEMOCAT bases the simulation of AUVs on two dynamic models, which
correspond with the ones of the real underwater vehicles GARBI and URIS. These vehicles
have been designed and built by the ViCOROB —Visió per COmputador i ROBòtica—
research group of the University of Girona, Spain. Information about the precise method
followed to estimate their dynamics can be found in [109, 110].

B.2.2 The Sensory Equipment

NEMOCAT supports three different kinds of sensors —sonars, compasses, and cameras—,
which can be employed by the AUVs to suitably perform their missions. What is more,
in applications where there is a need for knowing the position of the vehicle, an acoustic

2Algae are dangerous because they can foul the vehicle’s propellers
3In a few words, free span means a portion of cable /pipeline that is not in contact with the seabed
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positioning system can also be used to determine it. A résumé of the main characteristics of
each of these sensory units comes next:

• As many sonars as desired can be attached to an AUV . The beam they generate is
supposed to be conical, and its resolution, aperture, and the minimum and maximum
distances that can be measured are specified as parameters.

• A magnetic compass is available for determining the orientation of the vehicle relative to
the Earth’s magnetic north pole.

• Generic pin-hole cameras with six DOFs are also available to be put on board. This fact
opens up the possibility of implementing computer vision algorithms with quite different
applications. As a final comment, notice that spotlights can be fixed onto the vehicle
as well to improve the quality of the images captured by the cameras.

• The acoustic positioning system being adopted in NEMOCAT is of the so-called Long
BaseLine (LBL) type. Concisely, an LBL system accurately estimates the position
of an AUV relative to an array of transponders, at least three, deployed at known
locations on the seabed. More exactly, such an estimation is done in two steps: first
of all, the distance of the AUV to each transponder is determined by using acoustic
time-of-flight measurements. Later, these distances are used to compute the position of
the vehicle by simple triangulation.

At some future time, the sensory equipment of the vehicles will be significantly extended
by means of pressure, speed, water and battery charge detection sensors, as well as inertial
measurement units.

B.3 An Experiment

With the clear intention of showing, in practice, some of the capabilities of NEMOCAT , a con-
trol architecture which has successfully been implemented and tested is presented. Specifically,
it is intended to carry out a simple task: reach a user-defined sequence of target points while
avoiding obstacles as well as getting stuck in any part of the underwater environment. In
order to cope with this task, a reactive approach relying on schema theory was developed
(see section 2.1.4 for an introduction to schema-based control systems). As can be observed
in figure B.3, the proposed approach was composed by both three primitive behaviors and
a coordination mechanism in charge of properly merging all the behavioral responses. As
for the primitive behaviors, they are called Avoid Obstacles, Avoiding the Past, and Go To.
The meaning of each behavior is outlined in the following:

• Avoid Obstacles allows the vehicle to circumnavigate navigational barriers such as rocks,
algae, or, even, other possible cooperating vehicles. To this end, this behavior gives
as output a motion vector pointing in the opposite direction to the obstacles. Moreover,
the magnitude of the vector varies depending on the distance that separates the AUV
from the obstacles ahead.

• Avoiding the Past tries to avoid the well-known local minima problem that suffers the
reactive control paradigm. For such a purpose, the most recent trajectory of the AUV
is understood as an obstacle that generates repulsive forces. In this way, the vehicle
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Figure B.3: Main components of the suggested control system.

Figure B.4: Two different views showing the resultant AUV’s trajectory.

is surely prevented from stalling. A more detailed description of this behavior can be
found in [111], and also in section 2.1.4.

• Go To drives the vehicle to a certain user-specified 3-dimensional point by generating
a vector, constant in magnitude, whose direction joins the current position of the AUV
with the target point under consideration. In fact, this behavior is a bit more complex
because it keeps a list of all those points of the environment that should be visited
during the mission, following the order in which they were provided. When the vehicle
gets sufficiently close to the ongoing target point, the next one in the list is chosen.

As can be anticipated from figure B.4, the intended mission consisted in the achievement
of six target points spread throughout a 200× 150× 50-metre scenario. Three main obstacles
were defined to make the task of the AUV rather difficult: a wall-like rock, a long and narrow
tunnel, and a box-shaped canyon. The mission was simulated using the dynamic model of
the robot GARBI. As for the results, GARBI was able to fully reach the given sequence of
target points in spite of the above-mentioned troublesome obstacles (see figure B.4 again).
Regarding the GARBI’s control system, figure B.5 depicts the activity of each behavior along
the mission.
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Figure B.5: Behavior activity.



Appendix C

Computing the Average Path

Length for Random T 2

C.1 Randomness as a Factor Affecting Results

As described in section 3.2, under the name of Random T 2, there is a novel purely reactive
navigation strategy which does not suffer from the local minima problem, in spite of being
based on the classical —and non-local minima free— artificial potential fields method [8].
Furthermore, as can be easily guessed, such a strategy has a random nature in the sense that
some navigational decisions are not made in a deterministic way. More exactly, randomness
is introduced in the choice of the particular direction —either left or right— that the robot
should take to follow/circumnavigate the contour of an obstacle that has just been detected
and is impeding the progress towards the target.

From above, it seems clear that different paths might be obtained by running Random T 2

several times under the same experimental conditions (for us, two experiments are considered
to be executed under identical conditions if they involve the same navigation environment,
as well as the same location of the starting point and the same location of the target). Next,
a stochastic analysis on the average length of the paths generated by the strategy Random T 2

is presented in order to fairly compare its results with the ones provided by other approaches.

C.2 Stochastic Analysis of the Average Path Length

Figures C.1 and C.2 show the average path length (APL) of the strategy Random T 2 in
the seven missions that were included in the comparative study of section 3.2.4.2. By observing
these figures, one can plainly deduce the general method used to determine the corresponding
APL for each of the missions under consideration. This method essentially consisted of the
following steps (the description assumes the APL analysis of a non-specific mission i): as a
first step, (1) all paths that Random T 2 could generate in mission i were identified; then,
(2) both the length and the probability of occurring of the preceding paths were calculated;
and, to finish, (3) a sum was performed over the weighted values resulting from multiplying
the probability of each path by its length.

On the practical application of the stated method, it is important to highlight that carrying
out steps 1 and 2 did entail finding the so-called random decision points. Generally speaking,
this concept is directly related to the event of detecting a new obstacle. More specifically, a
random decision point represents the necessity of randomly selecting a direction to move along
the contour of a new detected obstacle. With this in mind, in step 1, the search of paths was
solved by examining, at each random decision point, the two possible contour following direc-
tions —namely, left and right— that Random T 2 could decide to take. On the other hand,

199



200 C. Computing the Average Path Length for the Strategy Random T 2

with respect to step 2, the probability of a path was given by the expression
(

1
2

)n

, where n

means the total number of random decision points along the path.
Although it has not been mentioned up until now, among the missions appearing in figures

C.1 and C.2, mission 3 should be actually considered as a special case. Basically, this is
because such a mission did require a way of calculating the APL that significantly differed
from the one previously explained. Moreover, the underlying reason for demanding a different
APL calculation was found in the infinite number of possible Random T 2-based paths to be
exceptionally managed in that mission. In summary, an alternative method for computing
the APL had to be used to cope with the infinite set of potential solutions of the strategy
Random T 2 in mission 3. Regarding this alternative method, it consisted of three sequential
steps, which were as follows: first of all, the path of the robot was both forked and divided on

the basis of the random decision points
(

by doing so, ten path segments were obtained, labeled

as SA..J —look at figure C.1(c)
)

; afterwards, the length of each path segment Sk was multiplied

by the number of times that the strategy Random T 2 was expected, on average, to pass
over Sk; and, lastly, the resultant products were added up. Equations C.1 and C.2 formalize

the outcome that was accomplished after completing the suggested steps
(

observe that, in

these equations, the term LSk
denotes the length of the path segment Sk

)
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Figure C.1: Average path length (APL) of Random T 2 in missions 1 to 4. Observe that only
half of the possible paths/cases is depicted for those missions —1 and 2, to be precise— whose
environment is symmetric with regard to the line connecting the starting and the target points.
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Figure C.2: Average path length (APL) of Random T 2 in missions 5 to 7. Observe again that
only half of the possible paths/cases is depicted for those missions —5 and 6, to be precise—
whose environment is symmetric with regard to the line connecting the starting and the
target points.
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