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Abstract: The notion of indistinguishability operator was introduced by E. Trillas, in 1982, with1

the aim of fuzzifying the crisp notion of equivalence relation. Such operators allow to measure the2

similarity between objects when there is a limitation on the accuracy of the performed measurement or3

a certain degree of similarity can be only determined between the objects being compared. Since Trillas4

introduced such kind of operators, many authors have studied their properties and applications. In5

particular, an intensive research line is focused on the metric behavior of indistinguishability operators.6

Specifically, it has been explored the existence of a duality between metrics and indistinguishability7

operators. In this direction a technique to generate metrics from indistinguishability operators, and8

vice-versa, has been developed by several authors in the literature. Nowadays, such a measurement9

of similarity is provided by the so-called fuzzy metrics when the degree of similarity between objects10

is measured relative to a parameter. The main purpose of this paper is to extend the notion of11

indistinguishability operator in such a way that the measurements of similarity are relative to a12

parameter and, thus, classical indistinguishability operators and fuzzy metrics can be retrieved as13

a particular case. Moreover, we discuss the relationship between the new operators and metrics.14

Concretely, we prove the existence of a duality between them and the so-called modular metrics15

which provide a dissimilarity measurement between objects relative to a parameter. The new16

duality relationship allows us, on the one hand, to introduce a technique for generating the new17

indistinguishability operators from modular metrics and vice-versa and, on the other hand, to derive,18

as a consequence, a technique for generating fuzzy metrics from modular metrics and vice-versa.19

Furthermore, we yield examples which illustrate the new results.20

Keywords: Indistinguishability operator; Fuzzy (pseudo-)metric; modular (pseudo-)metric;21

continuous Archimedean t-norm; additive generator; pseudo-inverse.22

1. Introduction and Preliminaries23

Throughout this paper, we will use the following notation. We will denote by R the set of real24

numbers, and we will denote by [a, b], ]a, b], [a, b[ and ]a, b[, open, semi-open and closet real intervals,25

respectively, whenever a, b ∈ R∪ {−∞, ∞} with a < b.26

In 1982, E. Trillas introduced the notion of indistinguishability operator with the purpose27

of fuzzifying the classical (crisp) notion of equivalence relation (see [20]). Let us recall that an28

indistinguishability operator, for a t-norm ∗, on a non-empty set X is a fuzzy set E : X × X → [0, 1]29

which satisfies for each x, y, z ∈ X the following axioms:30

(E1) E(x, x) = 1; (Reflexivity)31

(E2) E(x, y) = E(y, x); (Symmetry)32

(E3) E(x, y) ∗ E(y, z) ≤ E(x, z). (Transitivity)33
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If in addition, E satisfies for all x, y ∈ X the following condition:34

(E1’) E(x, y) = 1 implies x = y,35

then it is said that E separates points.36

According to [20] (see also [18]), the numerical value E(x, y) provides the degree up to which x is37

indistinguishable from y or equivalent to y. Thus the greater E(x, y) the more similar are x and y. In38

particular, E(x, y) = 1 when x = y.39

In the light of the preceding definition, the concept of t-norm plays an essential role in the40

framework of indistinguishability operators. In fact, t-norms are involved in axiom (E3) in order to41

express that x is indistinguishable from z whenever x is indistinguishable from y and z. Throughout42

this paper we will assume that the reader is familiar with the basics of triangular norms (see [13] for a43

deeper treatment of the topic).44

Since Trillas introduced the indistinguishability operators, many authors have studied their45

properties and applications. We refer the reader to [18], and references therein, for an exhaustive46

treatment of the topic. Among the different properties that such operators enjoy, the metric behavior can47

be highlighted. In particular, it has been explored the existence of a duality relationship between metrics48

and indistinguishability operators in [2,6,12,13,17,18,21]. In this direction, a technique to generate49

metrics from indistinguishability operators, and vice-versa, has been developed by several authors in50

the literature. Concretely, an indsitinguishability operator can be provided from a (pseudo-)metric as51

follows:52

Theorem 1. Let X be a non-empty set and let ∗ be a t-norm with additive generator f∗ : [0, 1]→ [0, ∞]. If � is53

a t-norm, then the following assertions are equivalent:54

1) ∗ ≤ � (i.e., x ∗ y ≤ x � y for all x, y ∈ [0, 1]).55

2) For any indistinguishability operator E on X for �, the function dE, f∗ : X× X → [0, ∞] defined, for each
x, y ∈ X, by

dE, f∗(x, y) = f∗(E(x, y)),

is a pseudo-metric on X.56

3) For any indistinguishability operator E on X for � that separates points, the function dE, f∗ : X× X →
[0, ∞] defined, for each x, y ∈ X, by

dE, f∗(x, y) = f∗(E(x, y)),

is a metric on X.57

Reciprocally, a technique to construct an indistinguishability operator from a (pseudo-)metric can58

be given as the next result shows.59

Theorem 2. Let X be a non-empty set and let ∗ be a continuous t-norm with additive generator f∗ : [0, 1]→
[0, ∞]. If d is a pseudo-metric on X, then the function Ed, f∗ : X× X → [0, 1] defined, for all x, y ∈ X, by

Ed, f∗(x, y) = f (−1)
∗ (d(x, y)),

is an indistinguishability operator for ∗, where f (−1)
∗ denotes the pseudo-inverse of the additive generator f∗.60

Moreover, the indistinguishability operator Ed, f∗ separates points if and only if d is a metric on X.61

It must be stressed that in the statement of the preceding results, and along this paper, the62

considered (pseudo-)metrics can take the value ∞, which are also known as extended (pseudo-)metrics63

in [3].64

Recently, applications of the techniques exposed in Theorems 1 and 2 to the task allocation65

problem in multi-agent (multi-robot) systems have been given in [4,10,11]. In particular, in the66
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preceding references indistinguishabilities operators have shown to be appropriate to model response67

functions when response threshold algorithms (in swarm-like methods) are under consideration in68

order to solve the aforesaid task allocation problem.69

Nowadays, in many applications the degree of similarity is measured relative to a parameter70

(see, for instance, [9,15,16]). In this case the indistinguishability operators are not able to measure71

such a graded similarity and so a new measurement becomes indispensable instead. The aforesaid72

measurements are called fuzzy metrics and they were introduced in 1975 by I. Kramosil and J. Michalek73

in [14]. However, currently, the fuzzy metric axioms used in the literature are those given by M. Grabiec74

in [7] and by A. George and P. Veeramani in [5]. It must be pointed out that the axioms by Grabiec and75

by George and P. Veeramani are just a reformulation of those giben by Kramosil and Michalek.76

Let us recall, on account on [5,7], that a fuzzy metric on a non-empty set X is a pair (M, ∗) such77

that ∗ is a continuous t-norm and M is a fuzzy set on X×X× [0, ∞[ satisfying the following conditions,78

for all x, y, z ∈ X and s, t > 0:79

(KM1) M(x, y, 0) = 0;80

(KM2) M(x, y, t) = 1 for all t > 0 if and only if x = y;81

(KM3) M(x, y, t) = M(y, x, t);82

(KM4) M(x, y, t) ∗M(y, z, s) ≤ M(x, z, t + s);83

(KM5) The function Mx,y : [0, ∞[→ [0, 1] is left-continuous, where Mx,y(t) = M(x, y, t).84

Similar to the classical case, we will say that (M, ∗) is a fuzzy pseudo-metric on X provided that85

axiom (KM2) is replaced by the following weaker one:86

(KM2’) M(x, x, t) = 1 for all t > 0.87

Moreover, given a fuzzy (pseudo-)metric (M, ∗) on X, we will also say that (X, M, ∗) is a fuzzy88

(pseudo-)metric space.89

According to [5], the numerical value M(x, y, t) yields the degree of similarity between x and y90

relative to the value t of the parameter. Of course, it must be clarify that, according to the exposed91

interpretation, axiom (KM1) does not provide any information from a measurement framework92

because the rest of axioms are enough in order to define a fuzzy measurement. Motivated by this93

fact we will assume that a fuzzy metric (M, ∗) is a fuzzy set M on X × X×]0, ∞[ that satisfies all94

the preceding axioms except the axiom (KM1). Of course the left-continuity of axiom (KM5) will be95

satisfied for the the function Mx,y :]0, ∞[→ [0, 1].96

The following is a well-known example of fuzzy metric.97

Example 1. Let d be a metric on a non-empty set X. Let Md be a fuzzy set on X× X×]0, ∞[ defined, for each
x, y ∈ X, by

Md(x, y, t) =
t

t + d(x, y)
,

whenever t > 0. On account of [5], (Md,∧) is a fuzzy metric on X, where ∧ denotes the minimum t-norm. The98

fuzzy metric Md is called the standard fuzzy metric induced by d.99

Following [8], a fuzzy metric (M, ∗) is said to be stationary provided that the function Mx,y :100

]0, ∞[→ [0, 1] defined by Mx,y(t) = M(x, y, t) is constant for each x, y ∈ X.101

The next example gives an instance of stationary fuzzy metric.102

Example 2. Let X be a non-empty set X and let G : X× X →]0, 1
2 [ be a function such that G(x, y) = G(y, x)103

for all x, y ∈ X. Consider the fuzzy set MG on X × X×]0, ∞[ given by MG(x, y, t) = G(x, y) for all t > 0104

and x, y ∈ X such that x 6= y and MG(x, x, t) = 1 for all t > 0. According to [9], (MG, ∗L) is a stationary105

fuzzy metric, where ∗L is the Luckasievicz t-norm.106



Version December 8, 2017 submitted to Axioms 4 of 18

Notice that, as in the case of indistinguishability operators, t-norms are crucial in the definition107

of a fuzzy metric. However, now the unique t-norms under consideration are the continuous ones.108

So, it constitutes a considerable difference between indistinguishability operators and fuzzy metrics.109

Moreover, another significant difference between these two kinds of fuzzy measurement is that110

fuzzy metrics include in their definition a parameter. Therefore, none of these type of similarity111

measurements generalizes the other.112

In the light of the preceding fact, it seems natural to try to unify both notions, fuzzy113

(pseudo-)metrics and indistinguishability operators, under a new one. Thus, the aim of this114

paper is twofold. On the one hand, we introduce a new type of operator, that we have called115

modular indistinguishability operator (the name will be justified in Section 3), which provides a116

degree of similarity or equivalence relative to a parameter and retrieves as a particular case fuzzy117

(pseudo-)metrics and classical indistinguishability operators. On the other hand, we explore the metric118

behavior of this new kind of operators. Specifically, we study the duality relationship between modular119

indistinguishability operators and metrics in the spirit of Theorems 1 and 2. The new results extend the120

aforementioned results to the new framework and, in addition, allow us to explore also the aforesaid121

duality relationship when fuzzy (pseudo-)metrics are considered instead of indistinguishability122

operators.123

2. The new indistinguishability operators124

As we have mentioned before, we are interested in proposing a new type of operator that unify125

the notion of fuzzy (pseudo-)metric and indistinguishability operator in such a way that a unique126

theoretical basis can be supplied to develop a wide range of applications. To this end we introduce the127

notion of modular indistinguishability operator as follows:128

Definition 1. Let X be a non-empty set and let ∗ be a t-norm, we will say that fuzzy set F : X× X×]0, ∞[→129

[0, 1] is a modular indistinguishability operator for ∗ if for each x, y, z ∈ X and t, s > 0 the following axioms130

are satisfied:131

(ME1) F(x, x, t) = 1;132

(ME2) F(x, y, t) = F(y, x, t);133

(ME3) F(x, z, t + s) ≥ F(x, y, t) ∗ F(y, z, s).134

If in addition, F satisfies for all x, y ∈ X, the following condition:135

(ME1’) F(x, y, t) = 1 for all t > 0 implies x = y,136

we will say that F separates points.137

Moreover, we will say that F is stationary provided that the function Fx,y :]0, ∞[→ [0, 1] defined by138

Fx,y(t) = F(x, y, t) is constant for each x, y ∈ X.139

Notice that the numerical value F(x, y, t) can understood as the degree up to which x is140

indistinguishable from y or equivalent to y relative to the value t of the parameter. Moreover, the greater141

F(x, y, t) the more similar are x and y relative to the value t of the parameter. Clearly, F(x, y, t) = 1 for142

all t > 0 when x = y.143

It is worth mentioning that the classical notion of indistinguishability operator is recovered144

when the modular indistinguishability operator F is stationary. Besides, it is clear that a145

modular indistinguishability operator can be considered as a generalization of the concept of fuzzy146

(pseudo-)metric. However, there are examples of modular indistinguishability operators that are not a147

fuzzy (pseudo-)metrics such as the next example shows.148

Example 3. Consider a metric d on a non-empty set X. Define the fuzzy set Fd on X× X×]0, ∞[ as follows149
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Fd(x, y, t) =


0, if 0 < t < d(x, y) and d(x, y) 6= 0
1, if t ≥ d(x, y) and d(x, y) 6= 0
1, if d(x, y) = 0

.

It is easy to check that Fd is a modular indistinguishability operator for the product t-norm ∗P. Nevertheless,150

(Fd, ∗P) is not a fuzzy (pseudo-)metric because the function Fdx,y :]0, ∞[→ [0, 1], defined by Fdx,y(t) =151

Fd(x, y, t) is not left-continuous.152

The concept of modular indistinguishability operator also generalizes the notion of fuzzy153

(pseudo-)metric in another outstanding aspect. Observe that in Definition 1 it is not required the154

continuity on the t-norm. Naturally the assumption of continuity of the t-norm is useful from a155

topological viewpoint, since the continuity is necessary in order to define a topology by means of156

a family of balls in a similar way like in the pseudo-metric case. However, such an assumption157

could be limiting the range of applications of such fuzzy measurements in those case where (classical)158

indistinguishability operators works well. In this direction, modular indistinguishability operators159

present an advantage with respect to fuzzy (pseudo-)metrics because the involved t-norms are not160

assumed to be continuous.161

The following example illustrates the preceding remark providing an instance of modular162

indistinguishability operator for the Drastic t-norm ∗D which is not a modular indistinguishability163

operator for any continuous t-norm.164

Example 4. Let ϕ be the function defined on ]0, ∞[ by ϕ(t) = t
1+t . We define the fuzzy set FD on

[0, 1[×[0, 1[×]0, ∞[ as follows

FD(x, y, t) =

{
1, for each t > 0, if x = y
max{x, y, ϕ(t)}, for each t > 0, if x 6= y

.

First of all, note that for each x, y ∈ [0, 1[ and t > 0 we have that FD(x, y, t) ∈ [0, 1[, since x, y, ϕ(t) ∈165

[0, 1[. So, FD is a fuzzy set on [0, 1[×[0, 1[×]0, ∞[.166

Now, we will see that FD is a modular indistinguishability operator on [0, 1[ for ∗D. To this end, let us
recall that ∗D is defined by

a ∗D b =

{
0, if a, b ∈ [0, 1[;
min{a, b}, elsewhere.

It is clear that FD satisfies axioms (ME1) and (ME2). Next we show that FD satisfies (ME3), i.e.,167

FD(x, z, t + s) ≥ FD(x, y, t) ∗D FD(y, z, s)

for all x, y, z ∈ [0, 1[ and t, s > 0.168

Notice that we can assume that x 6= z. Otherwise the preceding inequality is hold trivially. Next we169

distinguish two cases:170

1. Case 1. x 6= y and y 6= z. Then FD(x, y, t) = max{x, y, ϕ(t)} < 1 and FD(y, z, s) =171

max{y, z, ϕ(s)} < 1, since x, y, z ∈ [0, 1[ and ϕ(t) < 1 for each t > 0. Thus, FD(x, y, t) ∗D172

FD(y, z, s) = 0 attending to the definition of ∗D. It follows that FD(x, z, t + s) ≥ FD(x, y, t) ∗D173

FD(y, z, s).174

2. Case 2. x = y or y = z (suppose, without loss of generality, that x = y). Then FD(x, y, t) = 1 and so

FD(x, z, t + s) = FD(y, z, t + s) = max{y, z, ϕ(t + s)} ≥ max{y, z, ϕ(s)} = FD(y, z, s),

since ϕ is an increasing function. Thus FD(x, z, t + s) ≥ FD(y, z, s) = FD(x, y, t) ∗D FD(y, z, s).175
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Furthermore, the modular indistinguishability operator FD separates points. Indeed, let x, y ∈ [0, 1[ and176

t > 0. Since x, y, ϕ(t) ∈ [0, 1[ for each t > 0 we have that if x 6= y then FD(x, y, t) = max{x, y, ϕ(t)} < 1.177

Thus, FD(x, y, t) = 1 implies x = y.178

Finally, we will prove that FD is not a modular indistinguishability operator for any continuous t-norm. To179

this end, we will show that axiom (ME3) is not fulfilled for any t-norm continuous at (1, 1).180

Let ∗ be a continuous t-norm at (1, 1). Then, for each ε ∈]0, 1[ we can find δ ∈]0, 1[ such that δ ∗ δ > 1− ε.181

Now, consider x = 0, z = 1
2 and t = s = 1. Then,

FD(x, z, t + s) = max
{

0,
1
2

,
2
3

}
=

2
3

.

Taking ε = 1
3 we can find δ ∈]0, 1[ such that δ ∗ δ > 2

3 . Note that, in this case, δ > 2
3 . Therefore, if we

take y = δ we have that

FD(x, y, t) ∗ FD(y, z, s) = max
{

0, y,
1
2

}
∗max

{
y,

1
2

,
1
2

}
= y ∗ y >

2
3
= FD(x, z, t + s).

Thus, (ME3) is not satisfied.182

We end the section with a reflection on axiom (KM1). When such an axiom is considered in the183

definition of fuzzy (pseudo-)metric (i.e., the fuzzy (pseudo-)metric is considered as a fuzzy set on184

X × X × [0, ∞[ instead on X × X×]0, ∞[), one could wonder whether modular indistinguishability185

operators would be able to extend the notion of fuzzy (pseudo-)metric in that case. The answer to the186

posed question is affirmative. In fact, in order to define a new indistinguishability operator for that187

purpose we only need to include in the axiomatic in Definition 1 the following axiom:188

(ME0) F(x, y, 0) = 0 for all x, y ∈ X.189

Notice that even in such a case there exist modular indistinguishability operators which are not fuzzy190

(pseudo-)metrics. An example of such a kind of operators is given by an easy adaptation of the fuzzy191

set Fd introduced in Example 3. Indeed, we only need consider such a fuzzy set defined as in the192

aforesaid example and, in addition, satisfying Fd(x, y, 0) = 0 for all x, y ∈ X. Of course, it is easy193

to check that Fd is a modular indistinguishability operator for the product t-norm ∗P which satisfies194

(ME0) but (Fd, ∗P) is not a fuzzy (pseudo-)metric.195

3. The duality relationship196

This section is devoted to explore the metric behavior of the new indistinguishability operators.197

Concretely, we extend, on the one hand, the technique through which a metric can be generated from198

an indistinguishability operator by means of an additive generator of a t-norm (in Subsection 3.1) and,199

on the other hand, the technique that allows to induce an indistinguishability operator from a metric by200

means of the pseudo-inverse of the additive generator of a t-norm (in Subsection 3.2). The same results201

are also explored when fuzzy (pseudo-)metrics are considered instead of modular indistinguishability202

operators.203

3.1. From modular indistinguishability operators to metrics204

In order to extend Theorem 1 to the modular framework we need to propose a metric class205

as candidate to be induced by a modular indistinguishability operator. We have found that such a206

candidate is known in the literature as modular metric. Let us recall a few basics about this type of207

metrics.208

According to V.V. Chytiakov (see [1]), a function w :]0, ∞[×X× X → [0, ∞] is a modular metric209

on a non-empty set X if for each x, y, z ∈ X and each λ, µ > 0 the following axioms are fulfilled:210

(MM1) w(λ, x, y) = 0 for all λ > 0 if and only if x = y;211
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(MM2) w(λ, x, y) = w(λ, y, x);212

(MM3) w(λ + µ, x, z) ≤ w(λ, x, y) + w(µ, y, z).213

If the axiom (MM1) is replaced by the following one214

(MM1’) w(λ, x, x) = 0 for all λ > 0,215

then w is a called modular pseudo-metric on X.216

Of course, the value w(λ, x, y) can be understood as a dissimilarity measurement between objects217

relative to the value λ of a parameter.218

Following [1], given x, y ∈ X and λ > 0, we will denote from now on the value w(λ, x, y) by219

wλ(x, y).220

Notice that, as was pointed out in [1], a (pseudo-)metric is a modular (pseudo-)metric which is221

“stationary”, i.e., it does not depends on the value t of the parameter. Thus (pseudo-)metrics on X are222

modular (pseudo-)metrics w :]0, ∞[×X × X → [0, ∞] such that the assignment wx,y :]0, ∞[→ [0, ∞],223

given by wx,y(λ) = wλ(x, y) is a constant function for each x, y ∈ X.224

The following are well-known examples of modular (pseudo-)metrics.225

Example 5. Let d be a (pseudo-)metric on X and let ϕ :]0, ∞[→]0, ∞[ be a non-decreasing function. The226

functions defined on ]0, ∞[×X× X as follows227

(i) w1
λ(x, y) =

{
∞, if x 6= y
0, if x = y

;228

(ii) w2
λ(x, y) =


∞, if 0 < λ < d(x, y) and d(x, y) > 0
0, if λ ≥ d(x, y) and d(x, y) > 0
0, if d(x, y) = 0

;229

(iii) w3
λ(x, y) = d(x,y)

ϕ(λ)
,230

are modular (pseudo-)metrics on X.231

Next we provide an example of modular metric that will be crucial in Subsection 3.2.232

Proposition 1. Let d be a metric space on X. Then the function w :]0, ∞[×X × X → [0, ∞] is a modular
metric on X, where

wλ(x, y) =
d2(x, y)

λ

for each x, y ∈ X and λ ∈]0, ∞[ (in the last expression, d2(x, y) denotes (d(x, y))2, as usual).233

Proof. It is clear that axioms (MM1) and (MM2) are satisfied. It remains to show that axiom (MM3) is
hold. Let x, y, z ∈ X and λ, µ ∈]0, ∞[. Note that

d2(x, z) ≤
(

d(x, y) + d(y, z)
)2

= d2(x, y) + 2d(x, y)d(y, z) + d2(y, z),

since d is a metric and satisfies the triangle inequality.234

From the preceding inequality we deduce the following one:235

d2(x, y)
λ

+
d2(y, z)

µ
− d2(x, z)

λ + µ
=

µ(λ + µ)d2(x, y) + λ(λ + µ)d2(y, z)− λµd2(x, z)
λµ(λ + µ)

=

=
µλd2(x, y) + µ2d2(x, y) + λ2d2(y, z) + λµd2(y, z)− λµd2(x, z)

λµ(λ + µ)
≥
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≥ µλd2(x, y) + µ2d2(x, y) + λ2d2(y, z) + λµd2(y, z)− λµ(d2(x, y) + 2d(x, y)d(y, z) + d2(y, z))
λµ(λ + µ)

=

=
µ2d2(x, y) + λ2d2(y, z)− 2λµd(x, y)d(y, z)

λµ(λ + µ)
=

(µd(x, y)− λd(y, z))2

λµ(λ + µ)
≥ 0.

Therefore,

wλ+µ(x, z) =
d2(x, z)
λ + µ

≤ d2(x, y)
λ

+
d2(y, z)

µ
= wλ(x, y) + wµ(y, z).

Hence w satisfies (MM3).236

After a brief introduction to modular metric spaces we are able to yield a modular version of237

Theorem 1.238

Theorem 3. Let X be a non-empty set and let ∗ be a continuous t-norm with additive generator f∗ : [0, 1]→239

[0, ∞]. If � is a t-norm, then the following assertions are equivalent:240

1) ∗ ≤ � (i.e., x ∗ y ≤ x � y for all x, y ∈ [0, 1]).241

2) For any modular indistinguishability operator F on X for �, the function (wF, f∗) :]0, ∞[×X×X → [0, ∞]

defined by
(wF, f∗)λ(x, y) = f∗(F(x, y, λ)),

for each x, y ∈ X and λ > 0, is a modular pseudo-metric on X.242

3) For any modular indistinguishability operator F on X for � that separates points, the function (wF, f∗) :
]0, ∞[×X× X → [0, ∞] defined by

(wF, f∗)λ(x, y) = f∗(F(x, y, λ)),

for each x, y ∈ X and λ > 0, is a modular metric on X.243

Proof. 1)⇒ 2) Suppose that ∗ ≤ � and let F be a modular indistinguishability operator on X for244

�. We will see that (wF, f∗) is a modular pseudo-metric on X.245

(MM1’) Let x ∈ X. Since F(x, x, λ) = 1 for each λ > 0, then (wF, f∗)λ(x, x) = f∗(F(x, x, λ)) =246

f∗(1) = 0 for each λ > 0.247

(MM2) It is obvious because F(x, y, λ) = F(y, x, λ) for all x, y ∈ X and λ > 0.248

(MM3) Let x, y, z ∈ X and λ, µ > 0. We will show that the following inequality

(wF, f∗)λ+µ(x, z) ≤ (wF, f∗)λ(x, y) + (wF, f∗)µ(y, z)

is hold. First of all, note that F is also a modular indsitinguishability operator for ∗ on X
due to � ≥ ∗. Then, it is satisfied the following inequality

F(x, z, λ + µ) ≥ F(x, y, λ) ∗ F(y, z, µ) = f (−1)
∗ ( f∗(F(x, y, λ)) + f∗(F(y, z, µ))) .

Taking into account that f∗ is an additive generator, and thus a decreasing function, we
have that

f∗(F(x, z, λ + µ)) ≤ f∗
(

f (−1)
∗ ( f∗(F(x, y, λ)) + f∗(F(y, z, µ)))

)
.

Now, we will distinguish two different cases:249

(a) Suppose that f∗(F(x, y, λ)) + f∗(F(y, z, µ)) ∈ Ran( f∗).250
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Since f∗ is an additive generator of the t-norm ∗ we have that f∗ ◦ f (−1)
∗ |Ran( f∗) =

id|Ran( f∗). Then

f∗
(

f (−1)
∗ ( f∗(F(x, y, λ)) + f∗(F(y, z, µ)))

)
= f∗(F(x, y, λ)) + f∗(F(y, z, µ)).

It follows that

(wF, f∗)λ+µ(x, z) = f∗(F(x, z, λ + µ)) ≤ f∗(F(x, y, λ)) + f∗(F(y, z, µ)) =

= (wF, f∗)λ(x, y) + (wF, f∗)µ(y, z).
(b) Suppose that f∗(F(x, y, λ)) + f∗(F(y, z, µ)) /∈ Ran( f∗). Since f∗ is an additive generator

of the t-norm ∗ we have that f∗(a) + f∗(b) ∈ Ran( f∗) ∪ [ f∗(0), ∞] for each a, b ∈ [0, 1].
Then

f∗(F(x, y, λ)) + f∗(F(y, z, µ)) > f∗(0).

So we obtain

f∗(F(x, z, λ + µ)) ≤ f∗(0) < f∗(F(x, y, λ)) + f∗(F(y, z, µ)).

Whence we have that

(wF, f∗)λ+µ(x, z) ≤ (wF, f∗)λ(x, y) + (wF, f∗)µ(y, z),

as we claimed.251

Therefore, (wF, f∗) is a modular pseudo-metric on X.252

2) ⇒ 3) Let F be a modular indistinguishability operator on X for � that separates points. By253

our assumption, (wF, f∗) is a pseudo-modular metric on X. We will see that (wF, f∗) is a modular254

metric on X.255

Let x, y ∈ X such that (wF, f∗)λ(x, y) = 0 for all λ > 0. By definition, we have that f∗(F(x, y, λ)) =256

0 for all λ > 0. Then, F(x, y, λ) = 1 for all λ > 0, since f∗ is an additive generator of ∗. Therefore257

x = y, since F is a modular indistinguishability operator on X for � that separates points.258

3)⇒ 1) Suppose that for any modular indistinguishability operator F on X for � that separates259

points the function (wF, f∗) is a modular metric on X. We will show that � ≥ ∗. To this end, we260

will prove that a � b ≥ a ∗ b provided a, b ∈ [0, 1[. Note that the preceding inequality is obvious261

whenever either a = 1 or b = 1.262

Let a, b ∈ [0, 1[. Consider a set constituted by three distinct points X = {x, y, z}. We define a263

fuzzy set F on X× X×]0, ∞[ as follows:264

F(u, v, t) = F(v, u, t) =


1, if u = v
a � b, if u = x and v = z
a, if u = x and v = y
b, if u = y and v = z

,

for all t > 0.265

It is easy to verify, attending to its definition, that F is a modular indistinguishability operator on
X for � that separates points. So (wF, f∗) is a modular metric on X. Therefore, given λ > 0 we
have that

f∗(a � b) = (wF, f∗)2λ(x, z) ≤ (wF, f∗)λ(x, y) + (wF, f∗)λ(y, z) = f∗(a) + f∗(b).
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Notice that for each c ∈ [0, 1] we have that ( f (−1)
∗ ◦ f∗)(c) = c, a ∗ b = f (−1)

∗ ( f∗(a) + f∗(b)) and
that f (−1)

∗ is decreasing, since f∗ is an additive generator of the t-norm ∗. Taking into account the
preceding facts and from the above inequality we deduce that

a � b = f (−1)
∗ ( f∗(a � b)) ≥ f (−1)

∗ ( f∗(a) + f∗(b)) = a ∗ b,

as we claimed.266

This last implication concludes the proof.267

In order to illustrate the technique introduced in the above theorem, we provide two corollaries268

which establish the particular cases for the Luckasievicz t-norm and the usual product. With this aim269

we recall that an additive generator f∗L of ∗L and f∗P of ∗P is given by270

f∗L(a) = 1− a
f∗P(a) = − log(a)

for each a ∈ [0, 1], respectively. Of course, we have adopted the convention that log(0) = −∞.271

Corollary 1. Let X be a non-empty set. If � is a t-norm, then the following assertions are equivalent:272

1) ∗L ≤ �.273

2) For any modular indistinguishability operator F on X for �, the function (wF, f∗L ) :]0, ∞[×X × X →
[0, ∞] defined by

(wF, f∗L )λ(x, y) = 1− F(x, y, λ),

for each x, y ∈ X and λ > 0, is a modular pseudo-metric on X.274

3) For any modular indistinguishability operator F on X for � that separates points, the function (wF, f∗L ) :
]0, ∞[×X× X → [0, ∞] defined by

(wF, f∗L )λ(x, y) = 1− F(x, y, λ),

for each x, y ∈ X and λ > 0, is a modular metric on X.275

Corollary 2. Let X be a non-empty set. If � is a t-norm, then the following assertions are equivalent:276

1) ∗P ≤ �.277

2) For any modular indistinguishability operator F on X for �, the function (wF, f∗P ) :]0, ∞[×X × X →
[0, ∞] defined by

(wF, f∗P )λ(x, y) = −log(F(x, y, λ)),

for each x, y ∈ X and λ > 0, is a modular pseudo-metric on X.278

3) For any modular indistinguishability operator F on X for � that separates points, the function (wF, f∗P ) :
]0, ∞[×X× X → [0, ∞] defined by

(wF, f∗P )λ(x, y) = −log(F(x, y, λ)),

for each x, y ∈ X and λ > 0, is a modular metric on X.279

Theorem 3 also gives a specific method to generate modular metrics when we focus our attention280

on fuzzy (pseudo-)metrics instead of modular indistinguishability operators in general.281

Corollary 3. Let X be a non-empty set and let ∗ be a t-norm with additive generator f∗ : [0, 1]→ [0, ∞]. If �282

is a continuous t-norm, then the following assertions are equivalent:283

1) ∗ ≤ �.284
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2) For any fuzzy pseudo-metric (M, �) on X, the function (wM, f∗) :]0, ∞[×X× X → [0, ∞] defined by

(wM, f∗)λ(x, y) = f∗(M(x, y, λ)),

for each x, y ∈ X and λ > 0, is a modular pseudo-metric on X.285

3) For any fuzzy metric (M, �) on X, the function (wM, f∗) :]0, ∞[×X× X → [0, ∞] defined by

(wM, f∗)λ(x, y) = f∗(M(x, y, λ)),

for each x, y ∈ X and λ > 0, is a modular metric on X.286

As a consequence of the preceding result we obtain immediately the following one.287

Corollary 4. Let X be a non-empty set and let ∗ be a continuous t-norm with additive generator f∗ : [0, 1]→288

[0, ∞]. Then the following assertions are equivalent:289

1) For any fuzzy pseudo-metric (M, ∗) on X, the function (wM, f∗) :]0, ∞[×X× X → [0, ∞] defined by

(wM, f∗)λ(x, y) = f∗(M(x, y, λ)),

for each x, y ∈ X and λ > 0, is a modular pseudo-metric on X.290

2) For any fuzzy metric (M, ∗) on X, the function (wM, f∗) :]0, ∞[×X× X → [0, ∞] defined by

(wM, f∗)λ(x, y) = f∗(M(x, y, λ)),

for each x, y ∈ X and λ > 0, is a modular metric on X.291

It is clear that when we consider stationary modular indistinguishability operators in statement of292

Theorem 3 we obtain as a particular case Theorem 1 and, thus, the classical technique to induce a metric293

from an indistinguishability operator by means of an additive generator. Clearly, if we replace modular294

indistinguishability operators by stationary fuzzy metrics we obtain a more restrictive version of the295

classical technique, provided by Theorem 3, because it only remains valid for continuous t-norms.296

3.2. From modular (pseudo-)metrics to modular indistinguishability operators297

As was mentioned above, the main goal of this subsection is to provide a version of Theorem 2298

when we consider a modular (pseudo-)metric instead of a (pseudo-)metric. Thus we give a technique299

to induce a modular indistinguishability operator from a modular (pseudo-)metric by means of300

the pseudo-inverse of the additive generator of a t-norm. To this end, let us recall the following301

representation result, which will be crucial in our subsequent discussion, holds for continuous t-norms:302

Theorem 4. A binary operator ∗ in [0, 1] is a continuous Archimedean t-norm if and only if there exists a
continuous additive generator f∗ such that

x ∗ y = f (−1)
∗ ( f∗(x) + f∗(y)), (1)

where the pseudo-inverse f (−1)
∗ is given by

f (−1)
∗ (y) = f−1(min{ f∗(0), y}) (2)

for all y ∈ [0, ∞].303

In the next result we introduce the promised technique.304
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Theorem 5. Let ∗ be a continuous t-norm with additive generator f∗ : [0, 1] → [0, ∞]. If w is a modular
pseudo-metric on X, then the function Fw, f∗ : X× X×]0, ∞[→ [0, 1] defined, for all x, y ∈ X and t > 0, by

Fw, f∗(x, y, t) = f (−1)
∗ (wt(x, y))

is a modular indistinguishability operator for ∗. Moreover, the modular indistinguishability operator Fw, f∗
305

separates points if and only if w is a modular metric on X.306

Proof. Let ∗ be a continuous Archimedean t-norm with additive generator f∗ : [0, 1] → [0, ∞] and307

consider w a modular pseudo-metric on X.308

We define the function Fw, f∗ : X× X×]0, ∞[→ [0, 1] as follows

Fw, f∗(x, y, t) = f (−1)
∗ (wt(x, y)),

for all x, y ∈ X and t > 0. We will see that Fw, f∗ is a modular inidistinguishability operator for ∗.309

(ME1) Let x ∈ X. Since w is a modular pseudo-metric on X we have that wt(x, x) = 0 for all t > 0.310

Therefore, Fw, f∗(x, x, t) = f (−1)
∗ (wt(x, x)) = f (−1)

∗ (0) = 1 for all t > 0.311

(ME2) Is a consequence of the definition of Fw, f∗ , since w is a modular pseudo-metric and so it satisfies312

that wt(x, y) = wt(y, x) for each x, y ∈ X and t > 0.313

(ME3) Let x, y, z ∈ X and t, s > 0. On the one hand, by (2), we deduce that

Fw, f∗(x, z, t + s) = f (−1)
∗ (wt+s(x, z)) = f−1

∗ (min{ f∗(0), wt+s(x, z)}) .

Now, since w is a modular pseudo-metric on X, then

wt+s(x, z) ≤ wt(x, y) + ws(y, z)

and, hence,
Fw, f∗(x, z, t + s) ≥ f−1

∗ (min{ f∗(0), wt(x, y) + ws(y, z)}) .

On the other hand, we have that

Fw, f∗(x, y, t) ∗ Fw, f∗(y, z, s) = f (−1)
∗

(
f∗
(

Fw, f∗(x, y, t)
)
+ f∗

(
Fw, f∗(y, z, s)

))
=

= f−1
∗

(
min

{
f∗(0), f∗

(
Fw, f∗(x, y, t)

)
+ f∗

(
Fw, f∗(y, z, s)

)})
Moreover, by (2), we obtain that

f∗
(

Fw, f∗(x, y, t)
)
= f∗

(
f (−1)
∗ (wt(x, y))

)
= min{ f∗(0), wt(x, y)}

and
f∗
(

Fw, f∗(y, z, s)
)
= f∗

(
f (−1)
∗ (ws(y, z))

)
= min{ f∗(0), ws(y, z)}.

To finish the proof, we will see that

min{ f∗(0), wt(x, y) + ws(y, z)} = min{ f∗(0), min{ f∗(0), wt(x, y)}+ min{ f∗(0), ws(y, z)}}.

To this end, we will distinguish three cases:314

Case 1. f∗(0) ≤ wt(x, y) and f∗(0) ≤ ws(y, z). Then we have that

min{ f∗(0), wt(x, y) + ws(y, z)} = f∗(0)
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and

min{ f∗(0), min{ f∗(0), wt(x, y)}+min{ f∗(0), ws(y, z)}} = min{ f∗(0), f∗(0)+ f∗(0)} = f∗(0).

Case 2. f∗(0) > wt(x, y) and f∗(0) ≤ ws(y, z) (the case f∗(0) ≤ wt(x, y) and f∗(0) > ws(y, z)
runs following the same arguments). It follows that

min{ f∗(0), wt(x, y) + ws(y, z)} = f∗(0)

and

min{ f∗(0), min{ f∗(0), wt(x, y)}+min{ f∗(0), ws(y, z)}} = min{ f∗(0), wt(x, y)+ f∗(0)} = f∗(0).

Case 3. f∗(0) > wt(x, y) and f∗(0) > ws(y, z). Then we have that

min{ f∗(0), min{ f∗(0), wt(x, y)}+min{ f∗(0), ws(y, z)}} = min{ f∗(0), wt(x, y)+wS(y, z)}.

Therefore,

Fw, f∗(x, z, t + s) ≥ f−1
∗

(
min

{
f∗(0), f∗

(
Fw, f∗(x, y, t)

)
+ f∗

(
Fw, f∗(y, z, s)

)})
= Fw, f∗(x, y, t) ∗ Fw, f∗(y, z, s).

Whence we deduce that Fw, f∗ is a modular indistinguishability operator for ∗ on X.315

Finally, it is clear that Fw, f∗(x, y, t) = 1 for all x, y ∈ X and t > 0 if, and only if, f (−1)
∗ (wt(x, y)) = 1316

for all x, y ∈ X and t > 0. Since f (−1)
∗ (wt(x, y)) = 1 for all x, y ∈ X and t > 0 if, and only if, wt(x, y) = 0317

for all x, y ∈ X and t > 0 we immediately obtain that Fw, f∗ is a modular indistinguishability operator318

that separates points if, and only if, w is a modular metric on X.319

Next we specify the method given in Theorem 5 for the t-norms ∗L and ∗P. Note that the
pseudo-inverse of the additive generator f∗L and f∗P is given by

f (−1)
∗L (b) =

{
1− b if b ∈ [0, 1[
0, if b ∈ [1, ∞]

and320

f (−1)
∗P (b) = e−b

for each b ∈ [0, ∞], respectively, where we have adopted the convention that e−∞ = 0.321

Corollary 5. If w is a modular pseudo-metric on X, then the function Fw, f∗L : X× X×]0, ∞[→ [0, 1] defined,
for all x, y ∈ X and t > 0, by

Fw, f∗L (x, y, t) =

{
1− wt(x, y) if wt(x, y) ∈ [0, 1[
0, if wt(x, y) ∈ [1, ∞]

,

is a modular indistinguishability operator for ∗L. Moreover, the modular indistinguishability operator Fw, f∗L322

separates points if and only if w is a modular metric on X.323

Corollary 6. If w is a modular pseudo-metric on X, then the function Fw, f∗P : X× X×]0, ∞[→ [0, 1] defined,
for all x, y ∈ X and t > 0, by

Fw, f∗P (x, y, t) = e−wt(x,y),
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is a modular indistinguishability operator for ∗P. Moreover, the modular indistinguishability operator Fw, f∗L324

separates points if and only if w is a modular metric on X.325

In the light of Theorem 5, it seems natural to ask if the continuity of the t-norm can be eliminated326

from the assumptions of such a result. The next example gives a negative answer to that question.327

In particular it proves that there are fuzzy sets Fw, f∗ , given by Theorem 5, that are not modular328

indistinguishability operators when the t-norm ∗ under consideration is not continuous.329

Example 6. Consider the Euclidean metric dE on R. By Proposition 1, the function wE is a modular metric on
R, where

wE
λ(x, y) =

(dE(x, y))2

λ

for all x, y ∈ R and λ > 0. Consider the additive generator f∗D of the non-continuous t-norm ∗D. Recall that330

f∗D is given by331

f∗D (x) =

{
0, if x = 1;
2− x, if x ∈ [0, 1[

An easy computation shows that its pseudo-inverse is given by332

f (−1)
∗D (x) =


1, if x ∈ [0, 1];
2− x, if x ∈]1, 2];
0, if x ∈]2, ∞[.

Next we show that we can find x, y, z ∈ R and λ, µ ∈]0, ∞[ such that

FwE , f∗D (x, z, λ + µ) < FwE , f∗D (x, y, λ) ∗D FwE , f∗D (y, z, µ).

Let x = 0, y = 1 and z = 2, and consider λ = µ = 1. Then,333

wE
λ+µ(x, z, λ) =

(dE(x, z))2

λ + µ
=

22

2
= 2,

wE
λ(x, y) =

(dE(x, y))2

λ
=

12

1
= 1

and

wE
µ(y, z) =

(dE(y, z))2

µ
=

12

1
= 1.

Therefore,

0 = f (−1)
∗D (2) = FwE , f∗D (x, z, λ + µ) < FwE , f∗D (x, y, λ) ∗D FwE , f∗D (y, z, µ) = f (−1)

∗D (1) ∗D f (−1)
∗D (1) = 1.

Since the continuity is a necessary hypothesis in the statement of Theorem 5 one could expect that334

the following result would be true.335

“Let ∗ be a continuous Archimedean t-norm with additive generator f∗ : [0, 1]→ [0, ∞]. If w is a
modular pseudo-metric on X, then the pair (Mw, f∗ , ∗) is a fuzzy (pseudo-)metric, where the fuzzy set
Mw, f∗ : X× X×]0, ∞[ is given, for all x, y ∈ X and t > 0, by

Mw, f∗(x, y, t) = f (−1)
∗ (wt(x, y)).

Moreover, (Mw, f∗ , ∗) is a fuzzy metric if and only if w is a modular metric on X.”336

Nevertheless the following example proves that such a result does not hold. In fact the technique337

provided by Theorem 5 does not give in general a fuzzy (pseudo-)metric.338
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Example 7. Let d be a metric on a non-empty set X. Consider the modular metric w2 on X introduced in
Example 5, that is,

w2
t (x, y) =


∞, if 0 < t < d(x, y) and d(x, y) > 0
0, if t ≥ d(x, y) and d(x, y) > 0
0, if d(x, y) = 0

for all x, y ∈ X and t > 0. Then it is not hard to check that the pair (Mw2, f∗P , ∗P) is not a fuzzy (pseudo-)metric,
where the fuzzy set Mw2, f∗P is given by

Mw2, f∗P (x, y, t) = f (−1)
∗P (w2

t (x, y)) =


0, if 0 < t < d(x, y) and d(x, y) > 0;
1, if t ≥ d(x, y) and d(x, y) > 0;
1, if d(x, y) = 0

for all x, y ∈ X and t > 0. Notice that (Mw2, f∗P , ∗P) fails to fulfil axiom (KM5), i.e., the function M
w2, f∗P
x,y :339

]0, ∞[→ [0, 1] is not left-continuous.340

The preceding example suggest the study of those conditions that a modular (pseudo-)metric341

must satisfy in order to induce a fuzzy (pseudo-) metric by means of the technique exposed in Theorem342

5. The following lemma, whose proof was given in [1], will help us to find it.343

Lemma 1. Let w be a modular (pseudo-)metric on X. Then, for each x, y ∈ X we have that ws(x, y) ≥ wt(x, y)344

whenever s, t ∈]0, ∞[ with s < t.345

Taking into account the preceding lemma, the next result provides a condition which is useful for346

our target.347

Proposition 2. Let w be a modular pseudo-metric on X. The function w̃ :]0, ∞[×X× X → [0, ∞] given, for
each x, y ∈ X and t > 0, by

w̃λ(x, y) = inf
0<t<λ

wt(x, y)

is a modular pseudo-metric on X such that for each x, y ∈ X the function w̃x,y :]0, ∞[→]0, ∞[ is left continuous,348

where w̃x,y(λ) = w̃λ(x, y) for each λ ∈]0, ∞[. Furthermore, w̃ is a modular metric on X if and only if w it is349

so.350

Proof. It is obvious that w̃ satisfies axiom (MM2). Next we show that w̃ satisfies axioms (MM1’) and351

(MM3).352

(MM1’) Fix x ∈ X and let λ ∈]0, ∞[. Since w is a modular pseudo-metric on X then wt(x, x) = 0 for
each t > 0. Therefore,

w̃λ(x, x) = inf
0<t<λ

wt(x, x) = 0.

(MM3) Let x, y, z ∈ X and λ, µ ∈]0, ∞[. Next we prove that

w̃λ+µ(x, z) ≤ w̃λ(x, y) + w̃µ(y, z).

With this aim note that, given u, v ∈ X and α ∈]0, ∞[, we have that for each ε ∈]0, ∞[ we can find353

t ∈]0, α[ satisfying wt(u, v) < w̃α(u, v) + ε.354

Fix an arbitrary ε ∈]0, ∞[, then we can find t ∈]0, λ[ and s ∈]0, µ[ such that wt(x, y) < w̃λ(x, y) +
ε/2 and ws(y, z) < w̃µ(y, z) + ε/2. Therefore,

w̃λ+µ(x, z) ≤ wt+s(x, z) ≤ wt(x, y) + ws(y, z) < w̃λ(x, y) + w̃µ(y, z) + ε,
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since w is a pseudo-metric on X. Taking into account that ε ∈]0, ∞[ is arbitrary we conclude that

w̃λ+µ(x, z) ≤ w̃λ(x, y) + w̃µ(y, z).

Thus w̃ is a modular pseudo-metric on X.355

We will continue showing that for each x, y ∈ X the function w̃x,y :]0, ∞[→]0, ∞[ is left continuous.
Fix x, y ∈ X and consider an arbitrary λ0 ∈]0, ∞[. Then given ε ∈]0, ∞[ we can find δ ∈]0, ∞[ such that

w̃λ(x, y)− w̃λ0(x, y) < ε,

for each λ ∈]λ0 − δ, λ0] (note that w̃λ(x, y) ≥ w̃λ0(x, y) for each λ ∈]λ0 − δ, λ0] by Lemma 1). Indeed,
let ε ∈]0, ∞[. As before, we can find t ∈]0, λ0[ such that

wt(x, y) < w̃λ0(x, y) + ε

and, again by Lemma 1, we have that ws(x, y) < w̃λ0(x, y) + ε for each s ∈]t, λ0]. Therefore, taking
δ = λ0 − t we have that

w̃λ(x, y)− w̃λ0(x, y) ≤ wλ(x, y)− w̃λ0(x, y) < ε,

for each λ ∈]λ0 − δ, λ0], as we claimed. Thus, w̃x,y is left-continuous on ]0, ∞[ since λ0 is arbitrary.356

Finally, it is easy to verify that w̃ is a modular metric on X if and only if w it is so. Indeed,357

w̃ is a modular metric on X if and only if w̃λ(x, y) = 0 for each λ ∈]0, ∞[ implies x = y, but358

w̃λ(x, y) = inf0<t<λ wt(x, y) = 0 for each λ ∈]0, ∞[ if and only if wt(x, y) = 0 for each t ∈]0, ∞[, which359

concludes the proof.360

Observe that in the preceding result w̃ coincides with w, whenever wx,y to be a left-continuous361

function, for each x, y ∈ X.362

Proposition 2 and Theorem 5 allow us to give the searched method for constructing a fuzzy363

pseudo-metric from a modular pseudo-metric.364

Theorem 6. Let ∗ be a continuous t-norm with additive generator f∗ : [0, 1] → [0, ∞]. If w is a modular
pseudo-metric on X, then the pair (Mw, f∗ , ∗) is a fuzzy pseudo-metric on X, where the fuzzy set Mw, f∗ :
X× X× [0, ∞[ is defined, for all x, y ∈ X, by

Mw, f∗(x, y, t) = f (−1)
∗ (w̃t(x, y)) ,

where w̃t(x, y) = inf0<λ<t wλ(x, y). Moreover, (Mw, f∗ , ∗) is a fuzzy metric on X if and only if w is a modular365

metric on X.366

Proof. By Proposition 2 we deduce that w̃x,y is a modular pseudo-metric on X. Theorem 5 guarantees367

that Mw, f∗ is a modular indistinguishability operator for ∗ on X. Moreover, continuity of f (−1)
∗ and the368

left-continuity, provided by Proposition 2, of the function w̃x,y guarantee that axiom (KM5) is fulfilled.369

Thus the pair (Mw, f∗ , ∗) is a fuzzy pseudo-metric on X. Finally, by Proposition 2 and Theorem 5, it is370

obvious that (Mw, f∗ , ∗) is a fuzzy metric on X if and only if w is a modular metric on X.371

4. Discussion372

In the literature there are two tools that allow to measure the degree of similarity between objects.373

They are the so-called indistinguishability operators and fuzzy metrics. The former provide the degree374

up to which two objects are equivalent when there is a limitation on the accuracy of measurement375

between the objects being compared. The fuzzy metrics provide the degree up to which two objects376

are equivalent when the measurement is relative to a parameter. Motivated by the fact that none377



Version December 8, 2017 submitted to Axioms 17 of 18

of these type of similarity measurements generalizes the other we have introduced a new notion378

of indistinguishability operator which unifies both notions, fuzzy metric and indistinguishability379

operator, under a new one. Moreover, we have explored the metric behavior of this new kind of380

operators in such a way that the new results extend the classical results to the new framework and, in381

addition, allow to explore also the aforesaid duality relationship when fuzzy metrics are considered382

instead of indistinguishability operators. The fact that the new notion of indistinguishability operator383

does not involve the continuity on the t-norm in their axiomatic presents an advantage with respect384

the fuzzy metrics. The assumption of continuity could be limiting the range of applications of fuzzy385

metrics in those cases where (classical) indistinguishability operators works well. As a future work386

remains open to study which properties of classical indistinguishability operators are also verified in387

the new framework. Besides, the utility of the new operators in applied problems must be explored.388
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