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1. INTRODUCTION

Inclan and Tiao (1994), referred to as IT hereafter, proposed a statistic to test for changes in
the unconditional variance of a stochastic process. This test is based on the assumption that the
disturbances are independent and Gaussian distributed, conditions that could be considered
unrealistic for financial time series given that they usually show empirical distributions with fat
tails (leptokurtic) and persistence in the conditional variance. Despite this, the test has been
extensively used for detecting changes in the volatility of financial time series such as returns
(see, among others, Wilson et al., 1996, Aggarwal, Inclan and Leal, 1999, and Huang and Yang,
2001). For instance, Figure 1 shows the changes in the unconditional variance variance detect-
ed by "Aggarwal et al. (1999)" using the IT procedure. As the figure shows, several breaks are
detected, some of them lasting few observations, which casts doubt on the real number of
changes that can be obtained by the application of the IT method.

In this paper we show that the asymptotic distribution of the IT test is only free of nuisance
parameters when the stochastic process is mesokurtic and the conditional variance is constant.
Otherwise, the distribution will depend on certain parameters, and size distortions can be expect-
ed in the test when the process is non-mesokurtic and/or there is some persistence in the condi-
tional variance. This will lead to the discovery of spurious changes in the unconditional variance.
To overcome these problems, we propose new tests that take into account both the fourth order
moment of the process and persistence in the variance. These tests have an asymptotic distribu-
tion without nuisance parameters and they belong to the CUSUM-type test family (see Andreou
and Ghysels (2002) for a discussion on recent literature). Moreover, we will also show that the
IT test diverges when the disturbances are IGARCH.

The paper is structured as follows. Section 2 considers the IT test in detail, together with its
asymptotic distribution for both mesokurtic and non-mesokurtic processes. It then presents a
new test that takes the fourth order moment of the process into explicit account. Section 3 focus-
es on processes where there is persistent conditional variance. The first tests, which do not take

Figure 1
Squared returns from the Nikkei Index and detected changes in the unconditional

variance using the Inclan-Tiao test
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this persistence into account, are shown to have asymptotic distributions which depend on nui-
sance parameters. Subsequently, a modified version of the IT is proposed and the asymptotic
behavior of the three tests is also considered for IGARCH processes. Section 5 considers the
Iterated Cumulative Sum of Squares (ICSS) algorithm suggested by Inclan and Tiao (1994) and
adapts it to the suggested new tests. Given that this procedure requires the computation of the
test for different sample sizes, we estimate response surfaces to generate critical values for any
sample size. In Section 6, a series of Monte Carlo experiments confirm that the limit results
obtained in the preceding sections are also relevant in finite samples. The main conclusion
derived from these simulations is that the  test we propose, which takes into account both per-
sistent variance and the kurtosis of the distribution, outperforms the other two tests and it should
therefore be used instead in applied research. In Section 7 we apply the ICSS procedure with the
new tests to the same series considered in "Aggarwal et al. (1999)" and we show that the changes
in variance they detect are spurious. Finally, Section 8 outlines our conclusions. The proofs of
all the paper's propositions are shown in the Appendix.

2. THE INCLAN-TIAO TEST

In order to test the null hypothesis of constant unconditional variance, Inclan and Tiao (1994)
proposed the use of a statistic given by

where 

and                    ,                     is the cumulative sum of squares of     Under the assumption
that      are zero-mean normally, identically and independently distributed random variables,  

, the asymptotic distribution of the test is given by:

(1)

where                                       is a Brownian Bridge,           is a standard Brownian motion and
stands for weak convergence of the associated probability measures. If, for a given sample,  
is greater than a specified critical value, then the null hypothesis is rejected.

The most serious drawback to the IT test is the fact that its asymptotic distribution is critically
dependent on the assumption that the random variables       have a normal, independent and iden-
tical distribution. The following proposition establishes the asymptotic distribution of the test for
the rather general case                       .

Proposition 1. If                      , and                         , then                          
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Hence, the distribution is not free of nuisance parameters and size distortions should be
expected when using the critical values of the supremum of a Brownian Bridge. Note that for
Gaussian processes,                  and                             . When                , the distribution is lep-
tokurtic (heavily tailed) and too many rejections of the null hypothesis of constant variance
should be expected, with an effective size greater than the nominal one. In contrast, when

the test will be too conservative. In Section 6 the finite-sample performance of IT in
such cases will be studied.

Proposition 1 suggests the following correction to the previous test, which will be free of nui-
sance parameters for identical and independent zero-mean random variables:

where 

and                   . Its asymptotic distribution is established in the following
proposition.

Proposition 2. If                         , and                         , then                 

Table 1 shows the finite-sample critical values for κ1. They have been computed from 50,000
replications of εt ~ iidN(0,1), t = 1, …, T. A response surface to generate critical values for a
wider range of sample sizes will be presented in Section 5.

Given that the asymptotic distribution of this statistic is free of nuisance parameters, we will
expect a correct size when the disturbances are iid. Section 6 will examine the finite-sample per-
formance for both the IT and κ1 tests. Before that, we consider the case of a conditionally 
heteroskedastic process.
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Table 1. Critical values for 1κ  and 2κ  

 1 21 

 T\α   100 200 500 1000 100 200 500 1000 

0.9 1.148 1.167 1.195 1.200 1.170 1.177 1.192 1.197 

0.95 1.268 1.300 1.328 1.330 1.269 1.294 1.317 1.329 

0.975 1.383 1.420 1.453 1.447 1.352 1.395 1.428 1.442 

0.99 1.515 1.547 1.592 1.592 1.448 1.508 1.557 1.586 

Note: Computed using 5,000 replications of εt ~ iidN(0,1), t = 1, …, T 

Table 1
Critical values for κκ1 and κκ2

κ2
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3. CONDITIONALLY HETEROSKEDASTIC PROCESSES

Both statistics IT and κ1 in the previous section are reliant on the independence of the
sequence of random variables. This is a very strong assumption for financial data, where there
is evidence of conditional heteroskedasticity. See, for instance, Bera and Higgins (1993),
Bollerslev et al. (1992, 1994) and Taylor (1986). In order to take this specific situation into
account, an estimation of the persistence may be used to correct the cumulative sum of squares.
Nevertheless, some assumptions regarding      are required.

Assumptions A1: Assume that the sequence of random variables             satisfies:

and                                for all 

for some                 and  

exists, and

is a-mixing with coefficients              which satisfy                                 .

This set of assumptions is similar to that of Herrndorf (1984) and Phillips and Perron (1988)
but here we need to impose the existence of moments of order greater than four and a common
unconditional variance for all the variables in the sequence, which is the hypothesis we wish to
test. Obviously, the existence of the fourth order moment restricts the processes we can deal
with. For instance, if    is independent and identically distributed as a t-Student with three
degrees of freedom, this sequence does not fulfil conditions 2 and 3. Note that the second con-
dition does not impose a common fourth order moment so that some sort of non-stationarity is
allowed.      can be interpreted as the long-run fourth order moment of εt or the long-run variance
of the zero-mean variable                     .2 Condition 4 controls for the degree of independence
of the sequence and shows a trade-off between serial dependence and the existence of high order
moments. In our case, by imposing the finiteness of the fourth order moment we allow for a
greater degree of serial dependence.

This leads us to propose the following statistic:

where 

and       is a consistent estimator of      . One possibility is to use a non-parametric estimator of
,3

36

2 Note that when       is a strictly stationary sequence                    , where            ,                        is the spectrum of
.

3 Another possibility is to use a parametric estimation of the long-run variance of        based on the Akaike estimator
of the spectrum. That is                                               , where                            ,     and εt are obtained from the 
autoregression:                                           . When computing the Kokoszka and Leipus (2000) test, Andreou and
Ghysels (2002) use the VARHAC estimator proposed by den Haan and Levin (1997) for ω4.
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where             is a lag window, such as the Bartlett window, defined as                                 ,
or the quadratic spectral. This estimator depends on the selection of the bandwidth m, which can
be chosen using an automatic procedure as proposed by Newey-West (1994). The consistency
of the estimator        requires that                when              but                   . Kokoszka and Leipus
(2000) proposed a test that is similar to        starting out, however, from a different set of assump-
tions. More specifically, they assume an ARCH(∞) process. As can be seen, our framework is
more general than that of Kokoszka and Leipus (2000).

Note that if                      is not correlated, then                                    . Note also that the
difference between      and      resides in the fact that the former corrects the cumulative sums
for the (square root of the) "short-run" variance of     ,                            , whereas the latter co-
rrects for the (square root of the) "long-run" variance of      given by      , and that this last co-
rrection accounts for the autocovariance structure of      . Hence, the difference between statis-
tics     and       is similar to the one between two t-ratios in a linear regression, one computed
using the (square root of the) residual variance, tsr, and the other computed with the (square root
of the) long-run variance, tlr, using, for instance, Newey-West's (1994) correction. It is well
known that the tsr statistic suffers from severe size distortions when there are autocorrelated dis-
turbances, whereas tlr is robust in this case. Thus, we may expect κ1 and also IT to have size
problems when     is autocorrelated, that is, when there is conditional heteroskedasticity.

The limit distribution of the statistics for variance-persistent processes is established in the
next proposition.

Proposition 3. Under assumptions A1,

a)                                    

b)  

c)                            .

Table 1 shows some finite-sample critical values for       computed from 50,000 replications
of                       , t = 1, …, T. A response surface to summarize the finite-sample critical values
will be presented in Section 5.

For conditionally heteroskedastic processes, one would expect the long-run fourth order
moment to be greater than its short-run counterpart              and, consequently, that IT and
κ1 would have an effective size greater than the nominal one. Let us consider some simple cases.
The ARCH(1) process (see Engle, 1982) is given by                  where                        ,and  

, conditional on    , with           and                . For                  , which is the con-
dition for the existence of the fourth order moment, we get: 

and 
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38

In these circumstances,                                   and the IT test will tend to reject the null
hypothesis of constant unconditional variance too often. Moreover, given that                               ,
we should also expect the      test to suffer an overrejection of the null of constant uncondition-
al variance. In Section 4 these findings are confirmed for finite-samples.

For the GARCH(1,1) processes (see Bollerslev, 1986), the conditional variance is given by: 

(2)

The fourth order moment exists if                             and it is given by:

with excess kurtosis: 

and long-run fourth order moment:

So, if                                 which is the condition for the existence of the fourth order moment,
we get 

and 

.

Hence, as in the ARCH(1) case, we can expect the effective size of IT and      to be greater
than the nominal one.

Similar results can be expected when dealing with higher order GARCH processes.4 To sum
up, we would expect an overrejection of the null hypothesis for the IT and the       tests when
they are applied to conditionally heteroskedastic processes.

4 The conditions for the existence of fourth order moments in the broad family of GARCH processes, where
l > 0, can be found in Ling and McLeer (2002).
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4. A NON-CONSTANT FOURTH ORDER MOMENT

As shown in the previous section, the existence of the fourth order moment, rather than its
constancy, and the finiteness of the long-run fourth order moment are both required to establish
the asymptotic distribution of the tests. This restricts the class of (G)ARCH processes we can
deal with using this theory. Nevertheless, even though the results of Proposition 3 are no longer
applicable to all situations, we can try to shed light on some special cases.

Let us consider a simple case, such as the covariance-stationary GARCH(1,1) process given
by (2) but with a non-constant fourth order moment. That is,                           and               . In
this case, as shown by Ding and Granger (1996), equation (A.16), 

tends to infinity. So, the long-run fourth order moment will also be time varying and will tend
to infinity. In consequence, according to Proposition 3, we can expect the IT test to diverge and
it will tend to detect too many changes in variance. Note that this result holds irrespective of
whether                        , the numerator of the statistic, diverges or not.

Moreover, assuming a distant starting point for the process, the autocorrelation function of
will be constant and it will be approximately given by ξt2                                                                , which will
decrease exponentially, as shown by Ding and Granger (1996). Thus,

in such a way that, according to Proposition 3, we can expect an overrejection for the      test. If
also diverges, then the distortions in the size of the test will be greater.

For the       test we may expect the numerator and          to tend to diverge, so it is difficult
to guess how the test will be affected in this case. The Monte Carlo experiments in Section 6
show that the      is not seriously affected whereas IT or       have dramatic size distortions.

Let us now consider the case of covariance non-stationary processes. We will restrict our-
selves to the case of IGARCH(1,1) disturbances, although the generalization to IGARCH(p,q)
is straightforward. The following proposition establishes the distribution of the tests for
IGARCH disturbances.

Proposition 4. If       is an IGARCH(1,1) process then:

a)                    ;

b)                    ;
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40 5 The complete set of results for the 1%, 2.5% and 10% significance levels are available from the authors upon
request. A GAUSS routine to compute the ICSS algorithm with (any of) the three tests is also available on request.
Also, OX routines implemented by Michail Karoglou and based on our GAUSS code are available.

c)                            .

where m is the bandwidth of the spectral window used to estimate      .

In consequence, provided that               , the tests will diverge, tending to reject the null
hypothesis of constant unconditional variance too often. This means that for IGARCH process-
es, one will find that the tests indicate that the variance is not constant. In this case, the correct
procedure is to estimate an IGARCH process rather than trying to model changes in the uncon-
ditional variance. The explanation for this expected result is that, like usual unit root tests, the
aforementioned test cannot distinguish between I(1) processes and those with structural breaks
(see, for instance, Perron,1990). Nevertheless, provided that                        , we can expect fewer
rejections of the null hypothesis when using the      test.

5. THE ITERATIVE PROCEDURE

The iterative procedure proposed by Inclan and Tiao (1994) for detecting multiple changes
in variance, known as the Iterated Cumulative Sum of Squares (ICSS) algorithm, can also be
used with the     and      tests. A detailed description of the algorithm can be found in Inclan and
Tiao (1994). The method entails computing the test several times for different sample sizes.
However, using a single critical value for any sample size may distort the performance of the
iterative procedure. To overcome this drawback, we fitted response surfaces to the finite-sample
critical values of the three tests. Response surfaces are widely used to approximate complex
(asymptotic) distributions and to generate finite-sample critical values for statistics that con-
verge to these distributions (see, for instance, MacKinnon, 1994, for more details on this
methodology). The idea is to fit a regression of a type such as:

(3)

where       is the quantile a of test                      for a sample size T;        ,                are a set of
parameters to be estimated and the regressors are powers of the sample size. The values of

were obtained from Monte Carlo experiments, each of them consisting of 50,000 replica-
tions of the process                       ,                 and the corresponding test and the empirical quan-
tiles were computed. The sample sizes considered were T = {15, 16, ..., 30, 32, ..., 50, 55, ...,
100, 110, ..., 200, 225, ..., 400, 450, ..., 700, 800, 900, 1,000}. Therefore, 63 experiments for
each test were carried out, obtaining 63 independent observations of      which vary with T.
Finally, response surfaces as in (3) were fitted to the empirical quantiles. Table 2 shows the final
estimates of the response surfaces for a 5% significance level,        , as well as some diagnos-
tics.5 It is worth noting that the fit can be considered quite good (R2 > 0.99 in all cases), and that
the residual standard deviations,     , and the maximum residual are very small.

This table, together with (3), allows us to compute the 5% critical value for a given sample size T.
For instance, the 5% critical value for the     statistic for a sample size T = 200 can be computed as:
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a value very close to the one reported in Table 1.

6. MONTE CARLO EXPERIMENTS

In this section we will study the finite-sample performance of the three considered tests
as well as the ICSS algorithm. Although the algorithm and the IT test have been exten-
sively applied in empirical analyses of financial time series, little attention has been paid
to the study of their finite-sample properties. One exception is the study by Andreou and
Ghysels (2002). Our simulation experiments complement the aforementioned article. More
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Table 2. Response surface for the 5% quantiles of the tests 
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based on 50,000 replications of test i = {IT, 1κ , 2κ } for a sample size T. 

63 different sample sizes were considered. White's heteroskedasticity-

consistent t-ratios between brackets. For the 2κ  test we  have used the 

quadratic spectral window with automatic bandwidth selection (Newey-

West, 1994). 

Table 2
Response surface for the 5% quantiles of the tests
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particularly, we will consider their size for iid non-mesokurtic sequences, for ARCH(1)
and IGARCH(1,1) processes, and their power when there are some breaks in the uncondi-
tional variance. Obviously, applied researchers will be interested in the iterative procedure.
Nevertheless, to shed light on the performance of this method when used with the three
tests, we begin by analyzing the size and power of the individual tests. All the rejection fre-
quencies were computed using a 5% nominal significance level.

6.1. The size and power of the tests

The first Monte Carlo experiment consisted of generating sequences of iid zero-mean ran-
dom variables with different kurtosis. More specifically, we took into account the uniform dis-
tribution U(–0.5, 0.5), and the standard normal, N(0, 1), standard logistic, standard Laplace,
standard exponential (with parameter 1) and standard Lognormal distributions. The following
table shows the rejection frequencies for the tests.

As can be seen, the IT test suffers from severe distortions for non-mesokurtic processes. As
predicted from our asymptotic results, it never tends to reject the null hypothesis of constant
unconditional variance for platikurtic distributions whereas it tends to reject the null too often
for leptokurtic sequences. The two proposed tests are not seriously affected.

The following table shows the rejection frequencies of the three tests when the data genera-
tion process is an ARCH(1) process. As expected from our theoretical analysis, all the tests
except κ2 suffer from severe size distortions, as they ignore the persistence in the conditional
variance. In contrast, κ2 seems to have good size properties, even for ARCH processes without
a constant fourth order moment (table 4)

The next table shows the rejection frequencies for IGARCH(1,1) processes. Here all three
tests tend to reject the null hypothesis of constant variance when the DGP is an IGARCH
process. This overrejection is even worse for large samples (say T = 500). For large values of    ,
say greater than 0.7, the size of κ2 is not really seriously distorted. For these values, the auto-
correlations of       given by                                    (see Ding and Granger, 1996), quickly tend
to zero. On the other hand, for small values of    , the persistence of        is high, and κ2 also
shows severe distortions (table 5).
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Table 3
Rejection frequencies for the tests. Non-mesokurtic independent sequences
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Let us now consider the power of the different tests when there is a change in the
unconditional variance of the processes. The process is an iid N(0,1) sequence for the first
half of the sample and iid N(0,1 + λ) for the second half. The parameter λ, which can be
interpreted as the percentage of change in the unconditional variance, ranges from 0.25 to
1.5. As can be seen from Table 6, κ2 is the least powerful test, although in no case is this
lack of power very extreme.
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Table 4: Rejection frequencies for the tests. ARCH(1) processes 

ARCH(1):  1.0=δ  

 T = 100  T = 500 
 γ    IT    1κ    2κ     IT    1κ    2κ   

0.1 0.083 0.083 0.036  0.105 0.095 0.054

0.3 0.256 0.172 0.039  0.346 0.203 0.040

0.5 0.489 0.296 0.035  0.692 0.338 0.044

0.7 0.643 0.359 0.036  0.902 0.426 0.033

0.9 0.765 0.393 0.024  0.963 0.480 0.022

Note: Computed using 1,000 replications of ttt hu=ε , where 

ut ~ iid N(0, 1) and 
2

1−+= tth γεδ  and h0 = δ/(1 – γ) 

Table 4
Rejection frequencies for the tests. ARCH(1) processes

j q ( , ) p

IGARCH(1,1) 

Panel A:  1.0=δ  

 T = 100  T = 500 

   IT  
1κ  2κ   IT  

1κ  2κ  

0.1 0.696 0.704 0.488  0.983 0.970 0.794

0.3 0.767 0.697 0.205  0.990 0.950 0.372

0.5 0.777 0.620 0.101  0.988 0.875 0.142

0.7 0.812 0.588 0.052  0.987 0.779 0.075

0.9 0.834 0.492 0.044  0.988 0.643 0.025

Panel B:  0=δ   

0.1 0.583 0.614 0.427  0.998 0.998 0.958

0.3 0.979 0.963 0.578  1.000 1.000 0.838

0.5 1.000 0.971 0.336  1.000 0.991 0.378

0.7 1.000 0.933 0.150  1.000 0.939 0.143

0.9 1.000 0.799 0.060  1.000 0.782 0.039

Note: Computed using 1,000 replications of ttt hu=ε , where 

ut ~ iid N(0, 1) and 1

2

1 −− ++= ttt hh βγεδ  with β + γ = 1 and 

Table 5
Rejection frequencies for the tests. IGARCH(1,1) processes
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6.2. The size and power of the iterative procedure

In this subsection, we will study the performance of the ICSS algorithm when based on one
of the three tests. Given that the empirical applications of Section 7 have a sample size of about
T = 500, this was the one considered. Similar qualitative results were obtained for T = 100 which
are available upon request.
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 Table 6: Power of the test when there is a change in the variance 

 T = 100  T = 500 

 λ    IT    1κ    2κ     IT    1κ    2κ   

0.25 0.097 0.107 0.091  0.355 0.351 0.343 

0.5 0.224 0.225 0.191  0.841 0.826 0.818 

0.75 0.425 0.389 0.330  0.982 0.982 0.982 

1 0.587 0.535 0.423  0.999 0.999 0.996 

1.5 0.824 0.770 0.639  1.000 1.000 1.000 

 Note: Rejections of the null hypothesis. Computed using 1,000 replications of εt ~ 

iidN(0,1), t = 1, …, 0.5T and εt ~ iidN(0,1+λ) for t = 0.5T+1, …, T 

Table 7. Rejection frequencies for the ICSS procedure. Non-mesokurtic independe

sequences 

 n0  n1  n2  n3  n4  n 4  
 ICSS(IT) 

Uniform 1.000 0.000 0.000 0.000 0.000 0.000 

Normal 0.949 0.047 0.004 0.000 0.000 0.000 

Logistic 0.835 0.107 0.047 0.008 0.001 0.002 

Laplace 0.604 0.186 0.122 0.058 0.025 0.005 

Exponential 0.428 0.161 0.183 0.127 0.065 0.036 

Lognormal 0.037 0.091 0.125 0.413 0.197 0.137 

 ICSS ( )1κ  

Uniform 0.958 0.036 0.006 0.000 0.000 0.000 

Normal 0.946 0.047 0.007 0.000 0.000 0.000 

Logistic 0.956 0.041 0.002 0.001 0.000 0.000 

Laplace 0.955 0.043 0.002 0.000 0.000 0.000 

Exponential 0.972 0.027 0.001 0.000 0.000 0.000 

Lognormal 0.988 0.010 0.001 0.001 0.000 0.000 

 ICSS ( )2κ  

Uniform 0.958 0.037 0.005 0.000 0.000 0.000 

Normal 0.942 0.056 0.002 0.000 0.000 0.000 

Logistic 0.953 0.044 0.003 0.000 0.000 0.000 

Laplace 0.949 0.049 0.002 0.000 0.000 0.000 

Exponential 0.968 0.030 0.002 0.000 0.000 0.000 

Lognormal 0.985 0.014 0.001 0.000 0.000 0.000 

Note: ICSS(i), i = {IT, 1κ , 2κ } , stands for the ICSS algorithm 

based on the i test; nj, j = {0, 1, …, 4, >4} stands for the relative 

frequency of detecting j changes in variance. T = 500. 

Table 6
Power of the test when there is a change in the variance

Table 7
Rejection frequencies for the ICSS procedure. Non-mesokurtic independent sequences
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As in the preceding subsection, we will begin by considering non-mesokurtic independent
random sequences. Table 7 shows the frequency of detected changes in the variances when the
ICSS procedure is used with the three tests. The more kurtosis the process has, the greater the
number of time breaks erroneously detected by the iterative procedure with the IT test. In con-
trast, few of them are found with κ1 or κ2.

For conditional variance heteroskedastic sequences, the picture is similar to that of the indi-
vidual tests: the iterative method based on IT or κ1 tends to discover too many changes in vari-
ance, as can be seen in Table 8. The procedure based on κ2 has a good performance and hardly
ever detects any spurious time break. For IGARCH processes, as can be seen in Table 9, this last
procedure also outperforms the other two, finding few spurious changes in variance except for
small values of     .

Finally, we studied the power of the ICSS procedure when there are two changes in the
unconditional variance of an independent gaussian sequence. The sample size is T = 500 and the
changes in the variance are located at T1 = 200 and T2 = 400. Two Data Generation Processes
(DGP) were considered. DGP 1 is given by et ~ iidN(0,1) for t = 1, …, T1 and t = T2 + 1, …, T
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Table 8: Rejection frequencies for the ICSS procedure. ARCH(1) processes 

 
0n  1n  2n  3n  4n  4>n  

 γ   ICSS ( )IT  

0.1 0.902 0.074 0.021 0.003 0.000 0.000

0.3 0.665 0.138 0.127 0.032 0.026 0.012

0.5 0.317 0.112 0.185 0.132 0.119 0.135

0.7 0.144 0.073 0.094 0.131 0.132 0.426

0.9 0.038 0.030 0.048 0.096 0.091 0.697

 ICSS ( )1κ  

0.1 0.904 0.073 0.021 0.002 0.000 0.000

0.3 0.789 0.128 0.063 0.014 0.004 0.002

0.5 0.677 0.154 0.104 0.042 0.017 0.006

0.7 0.583 0.148 0.129 0.065 0.047 0.028

0.9 0.464 0.145 0.197 0.078 0.066 0.050

 ICSS ( )2κ  

0.1 0.952 0.039 0.009 0.000 0.000 0.000

0.3 0.944 0.050 0.005 0.001 0.000 0.000

0.5 0.969 0.030 0.001 0.000 0.000 0.000

0.7 0.976 0.024 0.000 0.000 0.000 0.000

0.9 0.972 0.025 0.003 0.000 0.000 0.000
Note: See Table 7.  

γ  

Table 8
Rejection frequencies for the ICSS procedure. ARCH(1) processes
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and et ~ iidN(0,1+λ) for t = T1 + 1, …, T2. DGP 2 also takes into consideration a zero-mean inde-
pendent gaussian sequence with variance 1 for t = 1, …, T1, (1 + λ) for t = T1 + 1, …, T2 and (1
+ λ)-1 for T2 + 1, …, T. Table 10 reports the average number of breaks detected with the ICSS
algorithm for these two DGP and different values of λ. The procedure based on      is slightly
less powerful than the other two, although the difference is not important.

Thus, we may conclude that the procedures based on IT or     show large size distortions,
invalidating their practical use with financial time series, which are leptokurtic and show per-
sistence in the conditional variance. The procedure based on      is not affected by these distor-
tions and achieves a similar power profile (see Table 10).

7. EMPIRICAL APPLICATION

In this section we check for the constancy of the unconditional variance of the four financial
time series that have already been studied in Aggarwal et al. (1999), where several changes in
variance were detected for these series. The data consists of closing values for the stock index-
es S&P500 (USA), Nikkei Average (Japan), FT100 (UK) and Hang-Seng (Hong-Kong). The
period covers May 1985 to April 1995. We have calculated the weekly returns for Wednesdays.
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Note: See Table 7.  

Table 9: Rejection frequencies for the ICSS procedure. IGARCH(1,1) processes 

 
0n  1n  2n  3n  4n  4>n  

 γ   ICSS ( )TIT  

0.1 0.022 0.085 0.159 0.239 0.235 0.260

0.3 0.014 0.010 0.039 0.065 0.095 0.777

0.5 0.010 0.006 0.027 0.041 0.060 0.856

0.7 0.012 0.010 0.033 0.058 0.057 0.830

0.9 0.013 0.013 0.032 0.054 0.064 0.824

 ICSS ( )1κ  

0.1 0.035 0.103 0.148 0.202 0.229 0.283

0.3 0.050 0.053 0.081 0.104 0.152 0.560

0.5 0.129 0.066 0.128 0.120 0.116 0.441

0.7 0.230 0.126 0.132 0.121 0.130 0.261

0.9 0.371 0.117 0.199 0.103 0.099 0.111

 ICSS ( )2κ  

0.1 0.229 0.271 0.219 0.159 0.088 0.034

0.3 0.625 0.206 0.119 0.042 0.007 0.001

0.5 0.858 0.100 0.035 0.006 0.001 0.000

0.7 0.925 0.062 0.013 0.000 0.000 0.000

0.9 0.964 0.035 0.001 0.000 0.000 0.000
 Note: See Table 7.  

2κ  

1κ  

2κ  

Table 9
Rejection frequencies for the ICSS procedure. IGARCH(1,1) processes
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When there was no trading on a given Wednesday, the trading day before Wednesday was used
to compute the return.

Table 11 presents the descriptive statistics for each of the aforementioned series. All the series
show excess kurtosis. The Ljung-Box statistic on the squared series and Engle's Lagrange multi-
plier test (Engle,1982) for the existence of ARCH effects provide strong evidence of non-constant
conditional variance for the four series. So, as concluded from the asymptotic theory as well as the
Monte Carlo experiments, we may expect too many rejections using the Inclan-Tiao test.
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Table 10: Power of the ICSS procedure when there is a change in the variance 

 DGP 1  DGP 2 

 λ   IT  
1κ  2κ   IT  

1κ  2κ  

0.25 0.173 0.171 0.134  0.222 0.213 0.154

0.5 0.691 0.631 0.511  1.382 1.175 0.688

0.75 1.399 1.314 1.061  2.026 1.975 1.312

1 1.860 1.794 1.534  2.112 2.125 1.715

1.5 2.115 2.094 1.973  2.161 2.164 1.864
Note: Average number of breaks detected. Computed using 1,000 

replications of DGP 1: εt ~ iidN(0,1) for t = 1, …, 200, εt ~ iidN(0,1+λ)  

for t = 201, …, 400, and εt ~ iidN(0,1) for t = 401, …, 500; DGP 2: εt ~ 

iidN(0,1) for t = 1, …, 200, εt ~ iidN(0,1+λ) for t = 201, …, 400, and εt 

~ iidN(0,(1+λ)-1) for t = 401, …, 500; 

Table 11: Descriptive statistics 

 FT100 Nikkei S&P Hang-Seng 

Mean 0.00135 0.000169 0.002026 0.003259 

Min -0.17817 -0.10892 -0.16663 -0.34969 

Max 0.09822 0.12139 0.06505 0.11046 

std. dev. 0.02275 0.02940 0.02084 0.03765 

Skewness -1.54899 -0.51655 -1.45512 -2.31416 

Kurtosis 15.8642 4.78076 12.3227 19.6888 

 Q2(15) 
 

)00.0(

278.88
   

)00.0(

93.130
   

)00.0(

015.87
   

)00.0(

06.38
  

 LM(2)  
 

)00.0(

69.103
   

)009.0(

29.34
   

)00.0(

09.65
   

)00.0(

577.32
  

 LM(5) 
 

)00.0(

77.106
   

)00.0(

66.62
   

)00.0(

51.65
   

)00.0(

02.34
  

Note: Q2(15) stands for the Ljung-Box statistic on the squared returns for 15 lags 
and LM(j) for Engle’s Lagrange multiplier test for ARCH(j) effects. p-values 

between brackets. 

Table 10
Power of the ICSS procedure when there is a change in the variance

Table 11
Descriptive statistics
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Table 12 presents the results obtained from using the ICSS algorithm with these series.
The second column gives the points of structural changes in variance obtained by
Aggarwal et. al. (1999), whilst the remaining columns show the points when the iterative
procedure is implemented using the response surfaces shown in Section 4. Comparing the
four detected sets of time breaks, several conclusions can be reached. First, comparing the
second and third columns, fewer changes in variance are detected when the critical values
are adapted to the effective sample size. Second, controlling for the kurtosis of the series
(column four) reduces the number of time breaks. Finally, applying the ICSS         proce-
dure, which corrects for conditional heteroskedasticity, no changes are observed. From our
theoretical results, the Monte Carlo experiments and the descriptive analysis, we can con-
clude that the detected changes obtained by Aggarwal et al. (1999) and those obtained with
the ICSS           method are spurious and that these results might be attributable to the kur-
tosis and conditional heteroskedasticity of the series.

48

( )2κ  

( )IT

Table 12: Detected changes in variance with the ICSS algorithm 

 AIL ICSS ( )IT  ICSS ( )1κ  ICSS ( )2κ  

FT100 14-10-87 (80)    

 23-12-87 (90)    

Nikkei 17-6-87 (63) 14-10-87 (80) 14-10-87 (80)  

 18-11-87 (85) 25-11-87(86) 25-11-87(86)  

 14-2-90 (199) 14-2-90(199) 14-2-90(199)  

 23-01-91 (247) 9-1-91(245) 9-1-91(245)  

 25-3-92 (307) 25-3-92(307) 25-3-92(307)  

 30-9-92 (334) 30-9-92(334) 30-9-92(334)  

S&P 21-5-86(55) 21-5-86(55) 21-5-86(55)  

 7-10-87(127) 7-10-87(127)   

 4-11-87 (131) 4-11-87 (131)   

 10-8-88(171)  1-06-88(161)  

 1-8-90(274)  1-8-90(274)  

 13-2-91(302)  13-2-91(302)  

 22-4-92(364) 15-4-92 (363) 22-4-92(364)  

Hang-Seng 14-10-87(128) 14-10-87(128)   

 4-11-87(131) 4-11-87(131)   

 2-3-88(148) 17-2-88(146)   

 17-5-89(211) 17-5-89(211)   

 12-7-89(219) 12-7-89(219)   

 7-10-92(388) 7-10-92(388)   
Note: Dates of the detected changes in variance (position of the observation between 

brackets). AIL stands for the results of Aggarwal et al. (1999). ICSS(i), i = {IT, 1κ , 

2κ } stands for the ICSS algorithm based on the i test.  

Table 12
Detected changes in variance with the ICSS algorithm
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8. CONCLUSIONS

In this article we have proven that the test used as a basis for the implementation of Inclan
and Tiao’s (1994) ICSS algorithm has two serious drawbacks that invalidate its use for financial
time series. First, it neglects the fourth order moment properties of the process and, second, it
does not allow for conditional heteroskedasticity. The       test we propose in this paper takes
these two features into explicit consideration. Monte Carlo experiments detected extreme size
distortions for the IT test whereas       is correctly sized in almost all the considered scenarios
and it turns out to be only slightly less powerful.

These theoretical findings lead us to recommend the use of the ICSS procedure implemen-
ted with      and to be skeptical about the results obtained with the method based on the IT test.
As an example of this, we applied the ICSS method using the three tests considered in this paper
to four of the financial time series analyzed in Aggarwal et al. (1999). These authors detected
several time breaks in their financial data. The descriptive statistics show that these series are
leptokurtic and conditionally heteroskedastic, the two situations where the IT test does not work
properly. The ICSS procedure, computed using the suggested       test, does not detect any change
in the unconditional variance. Hence, given our findings, the time breaks detected by Aggarwal
et al. (1999) are spurious.

APPENDIX: PROOF OF THE PROPOSITIONS

We shall make use of the following asymptotic result:

Lemma 1. Let                    be a sequence of random variables that satisfies assumptions A1.
Define              . Then, for                                    a standard Brownian motion.

Proof. First, note that if       is α-mixing, then it is also ξt. Next, set of assumptions A1 is a
restricted case of the conditions of Herrndorf's Theorem and, hence, the limit distribution stated
in the previous lemma follows on directly from that theorem.

Note that the assumptions regarding     in Propositions 1 and 2 fulfil set of assumptions A1.

Proof Propositions 1 and 2. This proof follows most of the steps used by Inclan-Tiao, so we
will only give a brief outline. First, note that                                               , where                  ,
but only for mesokurtic random variables                    . Moreover,                                         where
→ stands for convergence in probability, and
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where                   . Thus, 

and, applying the Continuous Mapping Theorem (CMT), Proposition 1 is proven. Proposition 2
follows on immediately from the previous one.

Proof Proposition 3. In this situation, the      are no longer independent. Thus,

Provided that      is a consistent estimator,                                                               and,
applying the CMT, result c) is proven. Given that 

it follows that                                                            and 

.

Hence, applying the CMT, a) and b) are proven.

We will consider the simplest case of IGARCH(1,1) processes, although the generalization
to any IGARCH(p,q) is straightforward. The following lemma provides some intermediate
results needed to prove Proposition 4.

Lemma 2. Let                  where                      and                                  with                ,  
,                 and              , conditional on         and        Assume also that                         and

for                     and              , which ensures the existence of the fourth order
moment –see Nelson (1990) Theorem 4. Denote the long-run variance of                              as

, where                 . Define                  Then:

L1) 

L2) 

Proof. We can write:                                                                    . So,        is an invertible
MA(1) process. Recursive substitution gives:                          , where                 Moreover, it
is well-known that                                 , 

Let us now consider the cumulative sum of squares: 
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when              provided that                          . Then L1 is proven.

For result L2 note that,                                                                                   . Then, 

provided that                                                            and                                  . Hence,
and L2 is proven.

Proof Proposition 4. From L1 it follows that: 

Thus,                             and it diverges. Hence, result a) is proven. For result b) we have
, from L1, and using L2: 

and then                               so that it diverges. For result c) we have 
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Hence,                          

and                                                                 , provided that                 so that
. Thus, for the Bartlett window,                           ,

and 

so that 

Then,                                    . This completes the proof.
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