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Abstract 

 
The world faces unprecedented challenges to ensure energy security, sustainability 

and competitiveness, particularly, when the escalating demand of energy results in 

depletion of natural resources and a concomitant threat to the global climate from the 

emissions of greenhouse gases (GHG). Similarly, tourism and its sub-sectors, such as 

transport, accommodation, and attractions, constitute an increasingly important part of 

many economies, and their contribution to energy use requires more research. However, 

there is almost a total consensus among researchers that sectors such as energy and 

tourism should no longer be considered in isolation. A global approach is now necessary, 

especially that each sector evidently has its own specificities but each is an integral part of 

a whole system and can have an impact on the other. Accurate estimation of energy 

consumption on the one hand, can lead to an appropriate evaluation of the aggregated 

impact of tourism on energy use. On the other hand, contributes to considerable savings in 

energy generation along with reduction in GHG emissions when customer demand is met. 

The approach involves a time series analysis of historical energy and tourist arrivals data, 

and has been applied to the case study of the Balearic Islands (Spain). The results show that, in 

terms of electricity consumption, tourism cannot be considered a very energy-intensive sector, and 

the inclusion of daily arrivals and people stocks in model specification improves accuracy 

of forecast. This study also discusses the appropriateness of fuel tax when it is applied only in the 

high season. Finally, the analysis implemented to test periodicity and trends demonstrates that 

periodically or conventionally integrated process best captures the movements in the 

tourist arrivals and total electricity consumption series in Balearics Islands.  

  



 

 

 

Resumen 

 
El mundo afronta desafíos sin precedentes para garantizar la seguridad, 

sostenibilidad y competitividad energética, particularmente, cuando la creciente demanda 

energética causa el agotamiento de los recursos naturales y supone una amenaza para el 

cambio climático a través de las emisiones de gases de efecto invernadero (GHG). De la 

misma manera el turismo y sus subsectores, como transporte, alojamiento y atracciones, 

constituyen una parte cada vez más importante en muchas economías y su contribución al 

uso energético no está suficientemente investigada. No obstante, hay un consenso casi 

general entre los investigadores para dejar de considerar por separado sectores como el 

turismo y la energía. Ahora se necesita un enfoque global, en el sentido de que cada sector 

tiene sus propias particularidades pero a la vez es una parte integral de un sistema 

completo y puede tener un impacto sobre otro sector. Un cálculo exacto del consumo de 

energía puede conducir, por una parte, a una evaluación apropiada del impacto en el uso 

energético asociado al turismo. Por otra parte, contribuye a un ahorro considerable en la 

generación de energía y, a la vez, a una reducción en las emisiones GHG cuando la 

demanda del cliente se cumple. El cálculo incluye análisis de series temporales de datos 

históricos de llegada de turistas y consumo energético, y se ha aplicado al caso de estudio 

de las islas Baleares (España). Los resultados muestran, en términos de consumo eléctrico, 

que el turismo no puede ser considerado como un sector muy intenso energéticamente, y 

que la inclusión de llegadas diarias y stock de personas en la especificación del modelo 

mejora la exactitud del pronóstico. Este estudio también discute la conveniencia de un 

impuesto sobre el combustible cuando se aplica sólo en la temporada alta. Finalmente, el 

análisis llevado a cabo para probar la periodicidad y las tendencias demuestra que el 

proceso integrado periódicamente o convencionalmente es el que mejor captura los 



 

 

movimientos de  las series de llegadas de turistas y consumo eléctrico total en las islas 

Baleares.  
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1 General Introduction 

The close relationship that historically has been shown between energy resources 

and human activities remains in force today more than ever, since most of the 

environmental impacts, visible and invisible, are related strongly with processes using 

fossil fuels. The fact is that during recent decades, the demand for fossil fuel energy 

resources has evolved significantly, mainly by increased production and consumption of 

goods and services resulting from population growth and the accelerated economic 

progress. While energy constraints pose a threat to the global economy, continued 

extraction and combustion of fossil fuels at current, or increased, rates is now accepted to 

be the main producer of greenhouse gas emissions (GHG) and the dominant driver of 

Global Warming (IPCC, 2007, p. 136). 

Demand of energy resources and, therefore, pressure and resulting effects vary 

considerably between different areas. Different factors such as climatic conditions, 

resource availability and essentially economic level determine substantially the general 

pattern of resources consumption. Similarly, the intensity of energy use varies between 

different economic activities and especially the services sector which records, both 

directly and indirectly, the most share of global energy demand.  

Tourism sector is considered as one of the productive segments highly dependent 

on the current energy model, especially if the importance of its related activities such as 

transports, accommodation, and mobility is taken into account. It is estimated that 85% of 

the world’s energy is based on the consumption of fossil fuels (Biesiot and Noorman, 

1999), and as one of the largest industries in the world economy, the growth and benefits 
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of tourism have been fuelled mainly by is use of fossil fuels (Gössling et al., 2005). 

Because of the extensive use of energy-intensive technologies that deliver tourist 

amenities, and the substantial energy required to construct new infrastructure, 

accommodations and other facilities, energy use in tourism destinations is typically much 

greater than that associated with other similar-sized communities (Kelly et al., 2007). 

Tourism destinations also rely on substantial amounts of energy for importing food and 

other material goods, transporting water and disposing waste (Gössling el al., 2002). 

Tourist attractions, including theme parks with use of mechanised activities, also may 

generate substantial demand in destinations. Energy is used in up- and down-stream 

business functions (e.g. tour office administration, marketing and good transportation) that 

support the delivery of these activities (Becken and Simmons, 2002). GHG emissions 

from international air and sea transport are a substantial and growing component of global 

emissions. Air travel accounts for a major share of tourism-related energy use, particularly 

for developing countries and island destinations where the vast majority of tourist arrive 

by air (Gössling, 2000). 

In recognizing the confrontation between Tourism/ Hospitality and climate, many 

Internationals conferences on climate change and tourism was held as a global strategy, 

respectively in Djerba, Tunisia in April 2003, Davos, Switzerland 2007 etc... Those 

conferences were all convened to evaluate the relation between climate change and 

tourism. Since Djerba conference, or even before, several studies have examined the 

relationship between climate change and tourism (Gössling, 2002; Hall & Higham, 2004). 

Complementary to this interest, the literature on tourism-related energy issue is also 

growing, particularly as it relates tourism to its contribution to greenhouse gases, and to 

global climate change (Gössling et al., 2005; UNEP, 2003). It is estimated that 85% of the 

world’s energy is based on the consumption of fossil fuels (Biesiot and Noorman, 1999), 



Introduction 

5 

and as one of the largest industries in the world economy, tourism growth and benefits 

have been fuelled mainly by the extensive use of fossil fuels. The associated 

environmental costs of heavy reliance on fossil fuels may thus ultimately threaten the 

industry, particularly in developing countries and small islands (UNEP, 2003; WTO, 

2003). 

For this reasons several countries and even entire regions, are moving now towards 

implementing long-run comprehensive climate change mitigation policies. Mitigation 

policies related to technological, economic and socio-cultural changes that can reduce 

GHG emissions. However, such policies would add to the cost of tourism subsequent price 

rises, making tourism less attractive. The home tourism product becomes more expensive 

and hence, will have a negative impact on a country’s competitive position in the 

international tourism. In the short run, during which time firms have little scope to adapt, 

some of the cost would fall on tourism firms. In the long run, most of the impacts are 

likely to be passed on the consumers/tourists. Therefore, higher price of tourism is likely 

to lead to a reduction in its demand and competitiveness, and possibly will impact the trip 

duration, with more distant visitors opting for fewer, longer trips. 

Indeed, tourist destinations and travel patterns will be among the main areas 

affected, as the necessary reduction of GHG emissions will require the transformation of 

the generation and use of energy for transportation, increasing the cost of these items and 

modify the patterns of tourist mobility. The effects of climate change on tourism vary 

significantly by market segment and geographical locations. Climate affects a wide range 

of the environmental resources that are critical to tourism. It also influences various facets 

of tourism operations. The major types of climate change impacts projected by 

IPCC(2007) that have the greatest potential significance for tourism sector, can be 

summarized in four broad categories. First, direct impacts of changed climate include 



Introduction 

6 

geographic and seasonal redistribution of climate resources for tourism and changes in 

operating costs. Second, indirect impacts of environmental change impacts include 

induced-environmental changes such as water shortages, damage to infrastructure, etc. 

Third, mitigation policy and tourism mobility include changes in tourist flow due to 

increased prices, alteration to aviation routes and changes in the proportions of short-haul 

and long-haul flight. Fourth, indirect societal change impacts include changes in economic 

growth, development patterns, social-political stability and personal safety in some 

regions.  

Tourism official and industry leaders are now well aware of the extremely serious 

situation in many destinations. The UNEP report on a high-profile tourism seminar on 

climate change adaptation and mitigation, held at Oxford University in 2008, includes a 

comprehensive list of “tourism resort  & product vulnerabilities” due to climate change, 

reaching from sea level and temperature rises; flooding and drought, landslides; storm 

surges and wildfires; biodiversity loss and ecosystem changes; water scarcity and impact 

on food security; negative impact on health and spread of diseases; damage to 

infrastructure and impaired tourist attractions; to security and insurability issues. 

Energy is at the heart of global warming, being one of the main sources of GHG 

emissions. As it is hard to imagine tourism without travel, it is difficult to find tourism 

without energy. In tourism, energy is used for transport, accommodation and activities. 

Transport includes travel to and from the destination (Origin to Destination, or O/D 

transport), as well as travel at the destination. Tourist infrastructure (hotels, roads) is also 

energy intensive, as is its maintenance. Finally, tourists are involved in various activities 

that entail energy use. 
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The relationship between tourism, energy and climate change is complex. In fact, 

the production and use of energy is the primary cause of global warming through the 

emission of the green house gases, and tourism being one of energy-intensive sectors 

contributes in this process. In turn, climate change in addition to its direct and indirect 

impacts on tourism sector, will eventually affect (directly or indirectly) the production and 

use of energy. This thesis will focus on one direction of the “the reciprocal implications.” 

between tourism and climate change through energy use. To be precise, the impact of 

tourism on energy demand will be covered and the impact of climate policy on tourism 

will be examined. The impact that climate change will have on tourism and in particular 

on the demand for destinations will not be covered here. In addition a special attention is 

attributed to analyze seasonality present in the couple tourism and energy data.  

GHG emissions from tourism have grown steadily over the past five decades. If the 

current amount of emissions is put in relation to tourism growth forecasts, a further 

substantial increase in the sector’s total contribution to climate change can be expected. 

Results show that CO2 emissions in tourism are projected to rise by 152 % (UNWTO, 

2007a, p. 18). This development is in stark contrast with EU targets to reduce GHG 

emissions by 30 % until the year 2020 (EU, 2007) and thus very likely to interfere with 

post-Kyoto agreements. In this context, UNWTO’s Davos Declaration on Tourism and 

Climate Change recognizes the urgent need “[…] to mitigate its GHG emissions, derived 

especially from transport and accommodation activities” (UNWTO, 2007b, p. 2). One of 

the strategic areas for reducing carbon emissions in tourism sector is represented in 

reducing energy use. Reducing energy use aims at avoidance of energy consumption and 

is seen as the most essential mitigation strategy.  

In this context, Chapter 2 sheds light on the relation between tourism and 

electricity use. The background information on tourism, electricity use in the Balearics 
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islands was provided. Chapter 2 reviews the contemporary literature on the relationships 

between tourism and energy use, then assesses the electricity demand pattern and 

investigates the aggregated contribution of tourism to electricity consumption using the 

case study of the Balearic Islands (Spain).The perspective is then shifted to the future, by 

computing different simulations to evaluate the impact of the tourism as an aggregated 

sector, the implications of promoting (or discouraging) tourism during different seasons 

and to assess the marginal effect of tourism on total electricity consumption.  

The tourism sector must rapidly respond to climate change, within the evolving UN 

framework and progressively reduce its Greenhouse Gas (GHG) contribution, if it is to 

grow in a sustainable manner, this will require action in another strategic area: energy-

efficiency. In this scope, Chapter 3 focuses on the role of population stock (including 

tourists) in improving electricity forecasting in isolated territories. In this chapter, dynamic 

models such as ARMAX that includes meteorological variables and population stock are 

used for forecasting for lead times from 1 to 10 days ahead. 

Transport, which is at the heart of travel and tourism is an evident challenge, not 

only the high profile air transport with its direct interrelationship to green house gases, but 

also road and rail transport which are major factors in intraregional and domestic tourism. 

Recently UNWTO takes some policies and initiatives to concern about this transport 

pollution. However, there is no unanimity at all on the most appropriate policies to reduce 

GHG emissions in the transport sector. Mostly car use and air traffic are targeted but the 

type of policy instrument to be used remains unclear. Proposals include higher fuel taxes, 

speed limits, gas guzzler taxes on vehicles but also subsidies for mass transit. The 

intention of this study is not to survey the whole field of transport and the environment, 

rather than assessing the possibility of implementing a seasonal fuel (diesel, gasoline) tax 

in a highly touristic destination. 
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In Chapter 4, formulation and estimation of petroleum products (diesel and 

gasoline) demand functions in Balearic Islands at both level and difference for the period 

1986 to 2009 are investigated. The estimated price elasticities for both petroleum products 

diesel oil and Gasoline have been computed. Various tax scenarios have been 

implemented and their implications on growth of fuel demand were assessed. Given the 

pervasive character of energy consumption and its related impacts, assessing the relative 

effects of various energy conservation policies and strategies in tourism destinations 

represents a valuable step towards creating a more sustainable tourism industry. In many 

cases, these strategies involve the implementation of innovative planning, design, and 

management practices associated with transportation, building design and construction, 

and energy supply infrastructure to achieve reductions in energy consumption and GHG 

emissions associated with tourism destinations. However, before such initiatives are 

implemented, it is important to have tools for estimating the potential implications of 

various tourism-energy management approaches. In addition, the unique characteristics of 

energy consumption behavior in resort destinations make it difficult to assess the relative 

merits of various energy management options.  

In Chapter 5, analysis of the different trend and periodicity aspects of tourism 

arrivals and electricity demand time series in Balearic Islands is implemented. It is well 

known that most tourism destinations experience seasonal patterns of tourist visitation. 

The impact of seasonal demand variation is one of the dominate policy and operational 

concerns of tourism interests in both the public and private sector. However, it is 

interesting that while seasonality is one of the most prominent characteristics of tourism, it 

is also one of the least examined. It has been generally recognized that seasonality may 

result in severe economic and social issues such as an unstable labor market caused by 

temporal employment in a destination (Goeldner and Ritchie, 2003). Conversely, a few 
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studies found that seasonality does not always have negative effects on a destination or 

tourists. The wide array of issues related to seasonality has attracted economic research, 

which has investigated this phenomenon both in a qualitative and in a quantitative way. 

There is a wide body of research that has tried to elicit the best statistical 

techniques to be used in describing seasonality. It is worth mentioning that the Gini 

coefficient, the Peak Season’s Share and the Coefficient of Variation seem to be most 

widely used tools (Koenig & Bischoff, 2003). On the other hand, the econometric 

approach to seasonality has used the ARIMA models in order to have the possibility to 

forecast future developments of tourism demand (Lim & McAleer, 2000). Due to the non-

trivial characteristic of seasonality, models that capture movements in seasonally 

unadjusted sub-annual time series are different from those required for annual time series 

and seasonally adjusted time series. Recently, seasonal integration and the periodic 

integration have been the main approaches applied to describe most of the 

macroeconomics time series. Special attention has been attributed to the latter approach, 

where number of studies show that periodic processes can arise naturally from the 

application of economic theory to modelling decisions in an economic context, and their 

role should not be dismissed. Osborn (1988) argues that a process of this type arises when 

modelling the seasonal decisions of consumers, while Hansen and Sargent (1993) suggest 

that it could also arise from seasonal technology. 

Seasonal and periodic integration analysis is implemented using data of monthly 

tourist arrivals and sectoral energy consumption time series. Using the conventional tests 

analysis for seasonal and periodic integration, in this section the analysis is extended with 

the efficient HEGY-GLS test proposed by Rodrigues and Taylor (2007), in addition to 

nonparametric tests suggested by del Barrio Castro and Osborn (2011). In Chapter 5, the 

complete analysis is implemented using GAUSS system. 
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In the final Chapter, the results of the previous chapters are summarized, and their 

relevance to the research field of tourism and energy use, to the tourism industry and to 

policy is discussed. The general conclusions which evolved from this thesis are also 

presented in this Chapter. 

2 Balearic Islands as a case study 

In the interface between tourism, energy and climate change, it is no longer 

possible to consider each topic in isolation. Global and regional approaches are now 

necessary. Each of energy and tourism sectors evidently has its own specificities but each 

is an integral part of a whole system and can have an impact on the other. Balearic Islands 

are not an exception, being one of the most popular destinations in the Mediterranean, 

attracting 10 million tourists every year, i.e. a ratio of 14:1 to the local population. Being 

extremely dependent on tourism can be problematic because tourism revenues are 

seasonal, create uneven demands on infrastructure, cause concern about environmental 

issues and, overall, can fluctuate according to global and regional trends.  

Balearic Islands, in this general context, holding much of the energy pressure on 

the demand made by the transport sector, which is explained in part by the predominance 

of tourism, but in any case, lies heavily influenced to the particular characteristics of the 

island, which reduces access to the archipelago by air-and to a lesser extent, by sea, and 

exclude other alternative means of transport. In parallel, ensuring mobility through public 

transport services is essential in a context in which the intensive use of private vehicles, 

both by residents and by tourists, stands as one of the most important energy demanding 

sector (see Figure 1.1). 
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Figure I 1 Demand for gasoline and diesel for transportation and electricity in 

Balearic Islands 
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reach a total of 2179.34 million litres.133. The largest increases have occurred in the 

demand for diesel oil A and C items which have increased by four and ten respectively.  In 

term of sales diesel oil types have significantly increased their relative importance (47.7%; 

2006 vs. 15.4%, 1987) compared to the gasoline (16% vs. 25.5% in 2006, 1987) and fuel 

(4.3% vs. 18.2% in 2006, 1987). 

• Propane gas: Gas consumption, channeled only to Mallorca and practically 

to the entire town of Palma, has more than doubled as a result of the urban development 

process and creation of new homes over the last two decades. So, the annual turnover has 

reached a total of 427,681 kilotherm (176,441 vs. 1987), aimed mainly to domestic use 

(61, 6% 82.9% 2006 vs. 1987), although other uses, assigned mainly to the hospitality 

sector and some industries have increased significantly (38.4% vs 17.1% 2006, 1987) after 

moving, on average, at a quite dynamic annual rate (22.1% vs 4.1%, domestic use). 

In this context, the close correlation that exists between energy demand and real 

demographic load is highly significant because it illustrates and justifies, beyond questions 

of efficiency, the increasing pressure on energy resources. In addition the persistence of a 

strong seasonal pattern constrains undertaken actions in various aspects, such as 

distribution, management and control of environmental impacts (such as carbon dioxide 

emissions to the atmosphere). Moreover, despite the fact that the growth rate of the energy 

products turnover has advanced the population growth rates, per capita ratios put into 

perspective the growth rates significantly, especially during the last decade. For instance, 

during the last decade, per capita ratios relativized considerably the rate of rise, in the case 

of electricity (42.5% vs 87.6%, total), for the petroleum products (6.2% vs 39.7%, total) 

and for gas  (73.9% vs 142.4%, total). Thus, this fact must be considered because if one 

takes into account the real demographic load, the ratio of per capita consumption is 

reduced by about 20%. 
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Similarly, the seasonality of human pressure on the islands has almost an identical 

pattern of pressure on energy resources. Provided that more than ninety percent of primary 

energy consumed in the islands is imported and, therefore, is associated with a significant 

additional cost, the seasonality of human pressure plays a decisive factor of the energy 

availability in the islands. Thus, between June and September account for 46.2% of sales 

of petroleum products and 38.2% of sales of electricity, because during this period that 

coincides with the peak tourist season, the real demographic load exceeds about a quarter 

the resident population. The consumption of propane gas, for its part, is not so affected by 

the oscillation of population pressure, but also a clear seasonal pattern which accounts for 

55.6% of consumption during the winter months which largely used in heating. Balearic 

Islands being one of the most popular touristic destination and due to their geographic 

isolation convert this destination to be an excellent case of study that will be covered in 

the next chapters of this thesis. 
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Chapter 1 Estimation of tourism-induced electricity consumption 

Abstract:  

Tourism has started to be acknowledged as a significant contributor to the increase in environmental 

externalities, especially to climate change. Various studies have started to estimate and compute the 

role of different tourism sectors’ contributions to greenhouse gas (GHG) emissions. These 

estimations have been made from a sectoral perspective, assessing the contribution of air transport, 

the accommodation sector, or other tourism-related economic sectors. However, in order to evaluate 

the impact of this sector on energy use the approaches used in the literature consider tourism in its 

disaggregated way. This chapter assesses the electricity demand pattern and investigates the 

aggregated contribution of tourism to electricity consumption using the case study of the Balearic 

Islands (Spain). Using a conventional daily electricity demand model, including data for daily 

stocks of tourists the impact of different population growth rate scenarios on electricity loads is also 

investigated. The results show that, in terms of electricity consumption, tourism cannot be 

considered a very energy-intensive sector. 

 

Keywords: Daily data, electricity demand, tourism contribution. 
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1.1. Introduction 

International tourism is considered nowadays to be one of the most important 

industries in the world, with an annual volume of 900 million arrivals (UNWTO, 2008) 

and a projection that this number will continue to grow, reaching a figure of 1.6 billion 

worldwide by 2020. In terms of its economic importance, the Tourism Satellite Accounts 

drawn up by the World Travel & Tourism Council estimate that travel and tourism 

accounted for 9.9% of the World Gross Domestic Product in 2008; a percentage that is 

expected to continue rising to 10.5% by 2018 (WTTC, 2008).  

Although tourism sector is always associated to environmental degradation and 

natural resources depletion (Gössling and Hall,. 2005), only very recently literature has 

started to study energy consumption by tourist activities and the resulting greenhouse gas 

emissions that contribute to the anthropogenic component of global warming (Gössling 

and Hall,. 2005; Cárdenas and Rosselló, 2008). This research is being fueled by high 

recognition that the tourist industry is also one of the largest consumers of energy, mainly 

through the transportation of travelers and provision of amenities and supporting facilities 

at tourist destinations (Becken, 2002; Becken & Simmons, 2002, Tabatchnaia-Tamirisa et 

al., 1997).  

Energy use and its contribution to greenhouse gas (GHG) emissions have received 

particular attention, especially that tourism is itself an important contributor to 

environment degradation, as result of the large amounts of fossil fuels needed for transport 

(Price & Probert, 1995, Penner et al. 1999, Gössling and Hall. 2005, Peeters and Schouten, 

2006, Becken 2002, Macintosh and Wallace, 2009) , and accommodation sector 
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(Priyadarsini et al., 2009; Deng and Burnett, 2000; Simmons and Lewis, 2001, 

Priyadarsini et al., 2009, Karagiorgas et al 2007).  

All the studies discussed in the literature review have taken sub-sectors of the 

tourist industry to estimate tourism’s contribution to energy consumption. This 

disaggregation can be accounted for by the fact that tourism is not recognized to be an 

economic sector in the conventional economic sense, and its full consideration poses a 

problem, given the mixed nature of some of the sub-sectors that can be included in tourist 

products.1 Nevertheless, additional information can be obtained by looking at the sector as 

a whole. Such information not only leads to an improved understanding of the 

development of the energy use and emissions, but also to ascribe an environmental 

responsibility to tourism activities in the sense that they can be regionally relevant in 

promoting or discouraging tourism development policies. To derive national and 

worldwide estimates of that contribution, methodologies must be developed that are 

accurate in assessing tourism’s contribution to greenhouse gas emissions, as well as key 

areas within the field of tourism that should be the targets of mitigation strategies. 

Consequently, the main objective of this chapter is to contribute toward assessing 

the energy consumption attributable to tourism by estimating an electricity demand model 

that explicitly takes into account the presence of tourists. The Balearic Islands are taken as 

a case study, first because of the relative importance of tourism in the region (which has a 

population of 1 million inhabitants and 13 million tourists per year); second, because of 

the islands’ geographical circumstances, which make it possible to fully estimate the daily 

stock of tourists arriving at its ports and airports; and third because of the availability of 

the remaining variables that are required to conduct a study of this nature. The daily 

                                                           
1 For instance, restaurants and some specific commercial activities can have both a local and a 

tourist component that are often difficult to isolate. 
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electricity demand is modeled as an explanation of the meteorological conditions of the 

archipelago such as outdoor temperature and humidity, a set of variables relating to the 

calendar for the working year that control for working and non-working days, and the 

stock of tourists present in the archipelago that day.  

The chapter is structured as follows. Section 2 reviews literature on electricity 

demand modeling, providing the methodological cornerstones for the study. Section 3 

provides key details of the data that was used, with special emphasis on the calculation of 

the daily stock of tourists. Section 4 presents the results and a discussion of them, and this 

chapter concludes with Section 5.  

1.2. Methodology 

Electricity cannot be stored. Consequently suppliers need to anticipate the future 

demand in a very accurate way. For short-term load modeling and electricity consumption 

forecasting, several variables are taken into consideration, such as time factors, weather 

data, and other determinants, like electricity prices, social events and possible classes of 

customers. Meanwhile different approaches have been adopted to combine these variables, 

giving birth to a variety of models. 

1.2.1. Exogenous variables 

Economic time series often contain multiple periodic cycles of different lengths. In 

particular, electricity demand time series often exhibit a persistent trend and significant 

seasonal variation. In the context of high frequency data (hourly or daily), the 

predominance of the working time effect is patent and often highlighted in applied 

exercises (Pardo et al., 2002; Valor et al., 2001). 
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One of the most common ways to capture the deterministic pattern exhibited in 

electricity load data is the use of dummy variables referring to the time of day, day of the 

week or month of the year. Although different models can be estimated referring to every 

single day of the week (Cancelo et al., 2008) or separating normal days from weekends 

(Ramanathan et al., 1997), leading studies have illustrated the effectiveness of modeling 

non-working days by using dummy variables, even reducing the number of dummies to 

six (Cottet and Smith, 2003) or three (Pardo et al. 2002), or else including a simple 

dummy variable for all special days (Soares and Souza, 2006).  

Apart from time factors, weather conditions are among the most influential 

exogenous variables, especially for short-term load forecasting (Valor et al., 2001; Moral-

Carcedo and Vicens-Otero, 2005). Various variables could be considered, but temperature 

and humidity are the most commonly used load predictors (Mirasgedis et al., 2006). 

Among the weather variables that are considered, two composite weather indicators - the 

THI (Temperature Heating Index) and WCI (Wind Chill Index) - are broadly used 

(Rahman and Hazim, 1993). Yan (1998) studied electricity consumption by the residential 

sector in Hong Kong using a weather stress index, and examined how it affects the use of 

electricity for cooling. Ranjain and Jain (1999) derived separate empirical models of 

electricity use in Delhi for each of the four seasons, based on population and weather 

conditions. The influence of a considerable number of meteorological parameters on the 

electricity demand in Spain was analyzed by Cancelo and Espasa (1996), affirming that 

the most significant of them are first temperature and second humidity.  

The relationship between temperature and load is complex for two different 

reasons. First, it is suggested to be non-linear. There is an interval where the electricity 

load hardly changes with temperature variations but outside this interval, the electricity 

demand jumps with both increasing and decreasing temperatures because people will 
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increase or decrease the use of electric heating appliances or air conditioners. Second, the 

response is asymmetric, in the sense that the impact of a one-degree increase in the case of 

a high temperature is not necessarily equal to the effect of a one-degree decrease for a low 

temperature (Valor et al., 2001; Ruth and Lin, 2006).  

Finally, the effect of temperature on load is influenced by other factors. For 

example, Smith (2000) found that temperature has a different effect on the load in the case 

of working and non-working days, in the same way that the effect is different in 

workplaces as opposed to private residences.  

In models using low frequency data (monthly, quarterly or annual data), factors 

related to electricity prices can also be included in load forecasting models (Chen et al., 

2001). For non-residential, cost-sensitive industrial or institutional consumers, the 

financial incentives to adjust loads can be significant when it comes to durable goods, and 

so it can be useful to include price as a variable in medium and long-term electricity 

demand projections for these sectors. However, price as an explanatory variable for the 

short-run energy load has been revealed to be insignificant (Zachariadis et al, 2007). On 

the whole, electricity prices are therefore not expected to have a significant effect on the 

short-term demand, although they may be relevant in the case of some longer-term 

impacts associated with cost-saving efficiency measures and fuel switching, where 

feasible.  

1.2.2. The model 

Considerable attention has been given to modeling electricity consumption over the 

past fifty years, and a large variety of loading or forecasting methods have been tested 

with varying degree of success. Weron (2006) classified these methods into two broad 

categories: artificial-intelligence-based techniques and statistical approaches. Artificial-
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intelligence-based (or non-parametric) techniques mainly include artificial neural 

networks (ANN), have been compared with conventional approaches (Khotanzad et al. 

1998; Hippert et al., 2005; Taylor et al., 2006; Darbellay and Salma, 2000), however no 

clear conclusion is reached in literature about the superiority of one model over the other. 

The limitation to Artificial-intelligence-based methods is the difficulty involved in 

estimating a quantification of the relationship between the variables used in the forecasting 

exercise (Smith, 1995). 

 Statistical approaches represent the electricity load as a function of different 

factors. A basic conventional structure decomposes the observed load into four 

components: the normal load, the weather sensitive part, special events, and a random 

component. Assuming a conventional aggregated energy demand relationship (Cancelo et 

al., 2008, Considine, T, J., 2000), an expansion of a log-linear model can be analytically 

expressed as: 

 

Where Ct denotes the electricity consumption on day t taken in natural logarithm; T 

is the trend; METp are i initially considered meteorological variables; Dt and Mt are dummy 

variables that control the day of the week (n) and month of the year (l); SDk are j dummy 

variables that control other non-working days and holidays; and PPI is the variable that 

represent the pressure of the population and stand for population pressure index2; c, α, wp, 

dn, ml, sk, β1 and β2 are parameters to be determined, and ut is the error term distributed 
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normally and independently. It should be highlighted that a correct diagnosis of the ut term 

not only improves the performance of the prediction, but also increases the efficiency of 

the estimations.  

Many approaches have been applied to modeling the stochastic nature of the 

demand. Autoregressive methods are usually used as benchmarks for other methodologies, 

whereas autoregressive moving average models have been widely used in load modeling 

and forecasting. A standard autoregressive moving average analysis with explanatory 

variables (ARMAX) rests on the simplifying assumption that the mean and unconditional 

variances of time series are independent of time, i.e. the series are stationary. A plot of the 

autocorrelation function and partial autocorrelation function and some conventional tests, 

like the Augmented Dickey Fuller test (see Appendix 1 ), are used to decide whether a 

data series is stationary or not. Thus an ARMAX (p, q, b) model for the electricity load 

can be represented as:  

tttt εuqθXb Cp ++= )()(ln)( ηφ  [2] 

Where )( pφ , tXb)(η  and )(qθ  are the lag polynomials for the natural logarithm 

of the electricity demand (Ct), the exogenous variables matrix (Xt, where the variables p, s, 

CSD, and CWEA are included) and the moving average term (ut), respectively, and εt is 

white noise. 

The relative success of ARMAX processes in modeling and forecasting the short-

term electricity load is due to their capacity to generalize the time dependence and perform 

better than autocorrelation adjustment models, in addition to their flexibility in capturing a 

variety of dynamic effects (Ramanathan et al., 1997; Pardo et al., 2002; Taylor and 

Buizza, 2003). ARMA and ARMAX models are usually used for prediction purposes 
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(Chen et al., 1995; Huang and Shih, 2003; Soares and Medeiros, 2005; Juberias et al., 

1999; Cancelo et al. 2008). However, it should be added that the good forecasting 

performance of ARMAX models is intrinsically associated with a well-specified model 

that can handle different exogenous effects on the electricity load (Pardo et al 2002).  

At this point, it is important to highlight that ARMAX models assume that 

disturbances constitute a white noise sequence of identically and independently random 

variables. This assumption is violated in some economic data where small and large 

disturbance variations are observed in clusters. This suggests a form of heteroscedasticity 

in which the variance of the disturbance depends on the size of the preceding disturbance 

and hence the conditional variance is not constant over the sample period. More precisely, 

Engle (1982) showed that it was possible to model the mean and conditional variance of a 

series simultaneously; a study that was extended by Bollerslev (1986), who proposed the 

GARCH (p, q) process: 

22
1

2 )()( ttt pq εψσϑωσ ++= −  [3] 

Where, 2
tσ is the one-period-ahead forecast variance based on past information 

from equation [1], called the conditional variance; ω  is a constant term; 2
tε  is the ARCH 

term, which collects news about volatility from previous periods, measured as the lag of 

the squared residual from the mean equation; 2
1−tσ  is the GARCH term, which includes the 

last period's forecast variance; and )(qϑ  and )( pψ  are lag polynomials to be determined. 

More particularly, some works have started to show that GARCH models can 

improve on previous models. Chen et al. (2006) therefore used a GARCH class approach 

to model and forecast the electricity load, finding that it performs better than classical 



Chapter 1-Estimation of tourism-induced electricity consumption 

30 

ARMAX models. Hor et al., (2006) used GARCH to model the residuals in the student-t 

distribution and to estimate the maximum load demand that would be likely to occur in the 

short-term. 

Bearing in mind the importance of the correct specification of an electricity 

demand model that includes the role of tourism, this chapter considers a statistical 

formulation where the level of the electricity load is explained as a function of a set of 

conventional explanatory variables (including meteorological ones, holiday effects, a trend 

and seasonal components), a measure of tourism pressure is incorporated, and the 

disturbance is modeled using the ARMAX and GARCH alternatives. 

1.3. Data analysis 

The proposed electricity models developed in this chapter take the case study of 

daily consumption data for the isolated electricity network of the Balearic Islands (Spain). 

According to official statistics, the power network in the Balearic Islands is responsible for 

supplying electricity to 1 million residents and 13 million tourists annually. In the case of 

the tourist population, it is important to highlight that tourist arrivals are concentrated 

during the summer months, with 60% of all arrivals between the months of June and 

September. This period coincides with peak electricity consumption in the islands. Thus 

for policy reasons it is crucial to separate consumption associated with tourism from the 

part that corresponds to extreme temperatures. 

1.3.1. Electricity data 

Data for electricity consumption in the Balearic Islands was provided by Red 

Electrica de España, the Spanish system operator, and it spans January 1995 to September 
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2007. The data set that was used comprises the daily electricity demand (Ct) in MW h for 

the entire period under consideration. The daily demand data aggregates all sectors of 

economic activity (industrial, commercial, residential, and agriculture), since 

disaggregated sectoral data was not available for this time frequency.  

Figure 1 1 Daily electricity consumption in Balearics 
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In Figure 1.1, a strong trend can be clearly observed in the daily electricity 

demand. In applied exercises this drift is often captured by a linear trend and attributed to 

social, economic and demographic factors (Cancelo and Espasa, 1996). Previous works 

have discussed also significant seasonal daily and monthly components of electricity load 

series (Valor et al., 2001). In order to capture them, different dummy variables are often 

incorporated. Anomalous events related to holidays or special days have also been 

considered in order to capture different electricity patterns traditionally shown by the 

population on these special days. For example, electricity consumption decreases 

considerably during holidays and at weekends.  
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1.3.2. Weather data 

The historical weather data that was required for the proposed models for the 

period in question was supplied by the Centre de Recerca Econòmica and taken from the 

Balearics Meteorological Center. The available data are collected from the three airport 

weather stations; Palma de Mallorca airport; Menorca airport and Ibiza airport.  

Because of the particularly high degree of humidity that characterizes the Balearic 

Islands, a Heat Index (HI) was incorporated as an alternative to the use of the simple mean 

temperature variable. Measurements have been taken in other studies, based on subjective 

descriptions of how hot subjects feel for a given temperature and humidity, allowing for 

the development of an index where a combination of a certain temperature and humidity 

corresponds to a higher temperature in dry, non-humid conditions. Whatever the case, the 

most commonly used formulation of an HI was proposed by Steadman (1979) and it is 

also adopted in this study.3 For the measurement of the Balearic index, a population-

weighted temperature index was constructed from the mean daily temperatures measured 

separately on the different islands (Valor et al, 2001).  

TIt = ∑ ����������	  [4] 

��� = ���∑ ����	  [5] 

                                                           

3 Thus HI = -42.379 + 2.04901523T + 10.14333127R - 0.22475541TR - 6.83783·10-3T2-
5.48171710-2R2 + 1.22874·10-3T 2R + 8.5282·10-4TR2 - 1.99·10-6T2R2, with T = ambient dry bulb 
temperature degrees in Fahrenheit and R = relative humidity.  
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���� is the mean daily temperature on day t at weather station i and ��� is a 

population weight of the area assigned to each station and ��� being the total population 

(Tourists and Residents) on day t assigned to weather station i. 

The population was selected as a weighting factor because climate influences 

electricity consumption through people’s response to the weather; the larger the 

population, the greater the influence of weather conditions on the electricity demand. 

Figure 1.2 depicts the nonlinear influence of heat index on the electricity demand with a 

minimum around 15 ºC, a shape similar to that already found in Valor et al. (2001) and 

Pardo et al. (2002). 

Figure 1 2 Daily Load and Heat Index in Balearics 
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When dealing with the non-linearity of the heat index effect, the most frequent 

approach in literature is to segment temperature into HDD and CDD, which we use to 

defined HDD* and CDD* as shown below: 
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HDD�∗ = Max (HIref - HIt, 0) [6] 

CDD�∗ = Max (HIt-HIref, 0) [7] 

HIt is the heat index for day t and HIref is a reference heat index that must be 

adequately selected to separate the hot and cold branches of the demand-heat index 

relationship. In combination, these functions reflect the number of days on which the heat 

index falls below or rises above the heating and cooling thresholds and by how many 

degrees. Since there is no strict quantification of the values of the “threshold”, there can be 

many different versions of the HDD* and CDD* functions. In the context of this study, the 

selected reference heat index is equal to 20°C and 15°C for HDD* and CDD* 

respectively.  

Thus Figure 1.3 presents the daily electricity consumption in the Balearics versus 

the HDD* and CDD*, built on the basis of the HI. It is clear that the two seasonal 

branches are separated into two functions, the first one for high temperatures and the 

second for low temperatures. 

Figure 1 3 Daily electricity consumption en function of HDD* and CDD* in Balearics 
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1.3.3. The daily population stock 

The number of people present in an area or region at a given moment can be very 

different from the data collected by the census office. Such divergences are due to the 

movement of people to destinations outside the places where they normally live, including 

movements for all purposes: for family, study, work or leisure-related reasons etc. The 

Balearic Islands, with their high specialization in tourism, are considered one of the 

regions that match this special pattern. In fact, tourist population on the islands is very 

important and can equal the number of residents on some days of the year.  

Riera and Mateu (2007) developed a population pressure index called Human 

Pressure Daily Indicator (HPDI) for the Balearic Islands that captured the stock of people, 

at a daily level, on each one of the Balearic Islands, based on resident population data and 

arrivals and departures from the airports and ports. The HPDI is derived from the 

following expression: 
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Where PR0 is the resident population on the first day of each year, based on  

official statistics; Ad-Dd is the difference between arrivals and departures during day d, 

taken from airport and port statistics; and Vd stands for the natural growth of the 

population as a consequence of births and deaths. Additionally, given the special purposes 

of this study, the HPDI is divided into the daily stock of the resident population 

(HPDI_RES) and the daily stock of the tourist population (HPDI_NORES) in order to 

isolate the effect of tourism from the residential population. This separation is based on 

Familitur data, the Spanish domestic tourism survey, from which it is possible to estimate 
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how many residents in the Balearics are away on holiday. For the time period of the 

analysis, the plot for HPDI_RES and HPDI_NORES is shown in Figure 1.4.  

Figure 1 4 HPDI for the residents and for the tourists in the Balearics 
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One of the most important results that can be derived from this analysis is the fact 

that tourists count for an average of 25.08% of the total population. It is relevant to 

mention though, that HPDI variability does not differ significantly from that of the airport 

arrival. However, using HPDI index will prevent the bias that can be produced by tourists’ 

length of stay. 

1.4. Results and discussions 

1.4.1. Results 

The results of the models are reported in Table 1.1. The adjusted R2, Akaike Info 

Criterion (AIC) and Schwarz Criterion (SC) were used to select the best model to fit our 
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data, and where the GARCH model revealed a high consistency in comparison with the 

ARMAX model. In addition, the F-test was used for the overall significance of the model 

and a t-test for testing the strength of each of its individual coefficients. The main results 

that were obtained with the introduction of a dynamic structure are presented in Table 1.1, 

where the different autoregressive terms AR(p) are shown (AR for simple autoregressive 

terms and SAR for seasonal autoregressive terms, and p is the order of the autoregressive 

part). For the moving average terms MA(q), being statistically insignificant, they are not 

reported in the Table 1.1. 

The adjusted R-squared of the estimated models can be qualified as good, being 

higher than 0.96 for both models. In addition, a subset of variables in the model was tested 

for statistical significance to examine whether they could be omitted. Each of the 

insignificant variables was sequentially deleted, using the general-to-specific-model 

strategy, while significant parameters at a 1%, 5% and 10% level were retained.  

The results of the estimated coefficients for the day-of-the-week dummy variables 

reveal that electricity consumption compared to the reference day (Sunday) is more 

pronounced during the working days and falls on Friday and Saturday. Friday and 

Tuesday are consequently the working day with lowest and highest electricity 

consumption, respectively. The coefficients for dummy variables related to the monthly 

seasonality are negative and significant, except the coefficients for February; June; July 

and August that are not significant (Not reported in the Table due to lack of space). These 

results imply that January, February, June, July and August are the months when more 

electricity is used. 
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Table 1 1 Estimated models for electricity consumption in the Balearics 

  ARMAX  GARCH 
@TREND (8.68E-06) 0.000121*** (9.68E-06) 0.000116*** 
D1 (0.0056) 0.029470*** (0.0021) 0.014245*** 
D2 (0.0055) 0.033425*** (0.0025) 0.019053*** 
D3 (0.0055) 0.031681*** (0.0024) 0.018513*** 
D4 (0.0056) 0.028902*** (0.0024) 0.016060*** 
D5 (0.0051)           -  0.028211*** (0.0024) -  0.050358*** 
D6 (0.0051)           -  0.105724*** (0.0017)        -  0.131331*** 
SD05_1 (0.0119)           -  0.084873*** (0.0200)        -  0.103428*** 
SD06_1 (0.0111)           -  0.016502 (0.0119) 0.000852 
SD16_1 (0.0114)           -  0.034970*** (0.0102)        -  0.040611*** 
SD20_1 (0.0094)           -  0.017176* (0.0100)  0.006522 
SD28_2 (0.0112)           -  0.080794*** (0.0079)        -  0.089668*** 
SD01_3 (0.0103) 0.012277 (0.0104)  0.017754* 
SD30_4 (0.0121)           -  0.074209*** (0.0079)        -  0.097090*** 
SD14_8 (0.0114)           -  0.090787*** (0.0113)        -  0.094607*** 
SD11_10 (0.0110)           -  0.093382*** (0.0057)        -  0.103354*** 
SD12_10 (0.0110)           -  0.034739*** (0.0129)        -  0.018066 
SD31_10 (0.0124)           -  0.161923*** (0.0051)        -  0.164223*** 
SD01_11 (0.0110)           -  0.030237*** (0.0124)        -  0.007263 
SD05_12 (0.0118)           -  0.108315*** (0.0075)        -  0.105519*** 
SD06_12 (0.0114)           -  0.045012*** (0.0105)        -  0.022928** 
SD07_12 (0.0120)           -  0.089030*** (0.0102)        -  0.095638*** 
SD09_12 (0.0125) 0.028125** (0.0089)  0.011331 
SD24_12 (0.0137)           -  0.112713*** (0.0060)        -  0.125040*** 
SD25_12 (0.0110)           -  0.093491*** (0.0104)        -  0.101865*** 
SD31_12 (0.0139)           -  0.078890*** (0.0155)        -  0.095588*** 
SDJVS_ST (0.0099)           -  0.069747*** (0.0052)        -  0.049308*** 
CDD* 

(0.0012) 0.010488*** (0.0012)  0.005321*** 
(CDD*)^2 (0.0001) 0.000278** (0.0001)  0.000351*** 
HDD* 

(0.0012) 0.007386*** (0.0012)  0.005248*** 
(HDD*)^2 (0.0002) 0.000537*** (0.0002)  0.000392** 
C (0.0795) 8.480177*** (0.0819)  8.325717*** 
HPDI_RES (1.11E-07) 4.34E-07*** (1.11E-07)  5.86E-07*** 
HPDI_NORES (2.01E-08) 3.71E-07*** (2.36E-08)  3.93E-07*** 
AR(1) (0.0187) 0.458179*** (0.0216)  0.704687*** 
AR(2) (0.0193) 0.128453*** (0.0288)  0.061863** 
AR(3) (0.0193) 0.125815*** (0.0299)  0.115401*** 
AR(4) (0.0182) 0.095278*** (0.0244)                 - 
AR(7) (0.0171)          -   0.256688*** (0.0168)       -  

   Equation 
Statistics 

    
  Adjusted R-
Squared 

 0.971475  0.965592 

  Log likelihood  6154.008  6331.140 

  Durbin-Watson 
stat 

 1.893018  2.316683 
  AIC  -3.840886  -3.950403 
  SC  -3.751251  -3.855047 
  F-statistic  2354.644  1821.676 
  Proba(FStatistic)  0.000000  0.000000 

Standard errors are given in parentheses. The individual coefficient is statistically significant at *** 1%, ** 5% or * 

10%.SDdd_mm refers to a special day where dd is the day and mm is the month, SDJVS_ST is the Maundy 

Thursday. For example, SD06_01 is the 6th of January which is the Epiphany day. 
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With regard to weather-related parameters, the ARMAX model shows that the high 

temperature heating index and low temperature heating index are both significant at a 1% 

level. The squared term for these variables was added to the Balearic Island model in order 

to capture non–linear relationships, revealing a 5% significance level for high 

temperatures and 1% significance level for low temperatures for the ARMAX model, 

whereas in the GARCH model the said parameters were significant at a 1% level, except 

for the low temperature heating index, which was significant at a 5% level. Because of the 

non-linear relationship between electricity consumption and temperature, the obtained 

relationship between these two variables was investigated using the concept of elasticity, a 

standard measure for evaluating the sensitivity of the electricity load to temperature 

changes (Valor et al, 2001). Thus:  

HI

HI
HT

HT

Cf

C

HT

∂

∂
=

)(
ε  [9] 

HI

HI
LT

LT

Cf

C

LT

∂

∂
=

)(
ε  [10] 

Where 
HTε  and 

LTε  are the elasticities for high and low temperatures, respectively, 

expressed as a function of the heat index. Figure 1.5 plots the estimated elasticities of the 

electricity demand for high and low temperatures, using the ARMAX and GARCH 

models. For extreme temperatures, the elasticity for low temperatures can be seen to be 

higher than the elasticity for high temperatures. In other words, the population has a higher 

sensitivity to temperature in winter than in summer. Moreover, the elasticity curves in the 

GARCH model are less steep and almost equal for high and low temperatures, while in the 

ARMAX model this sensitivity is almost equal until the high and low temperatures reach 
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7CDD and 7 HDD respectively, at which point a gap is visible between the two 

temperature ranges for values higher than 8 CDD and 8 HDD respectively. 

Figure.5 Daily elasticity estimations from the electricity demand function 
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As for population stock variables, both the ARMAX and GARCH models show a 

high significance level for both residents and non-residents. As expected, positive signs 

are obtained, confirming that an increase in the population (residents or non-residents) will 

be associated with an increase in electricity consumption.  

1.4.2. Simulations 

Different approaches were taken in the sensitivity analysis of the impact of tourism 

on energy consumption. To this end, various simulations were developed for use with the 

obtained model, based on different population stock conditions. More specifically, the 

simulations can be summarized into three main effects: a marginal change in population 

stocks, a marginal seasonality effect and total tourism effect.   

The first simulation aimed to assess the contribution of population growth to 

electricity consumption, by running a constant increase in the daily amount of the non-
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residents’ population stock. Simulations were performed for two different years - 1999 and 

2006 - and 5%, 8% and 10% percentage rates were selected to simulate the mean yearly 

population growth using ARMAX and GARCH approaches.  

Table 1.2 shows that an increase in the population stock for non-residents is 

associated with an increase in electricity consumption, with annual rates ranging between 

0.5% and 1.3% for the three simulations. As for a comparison of the results of the 

ARMAX and GARCH approaches, a small difference can be observed in the growth rates 

of electricity consumption in the case of the non-resident population. To illustrate this 

difference, in the simulation with a 10% increase, the mean growth rate recorded in 1999 

and 2006 respectively passed from 1.2% and 1% in the ARMAX model to 1.3% and 1% in 

the GARCH model. 

Table 1 2 A simulation for tourist electricity consumption growth of Balearics 
  5% increase 8% increase 10% increase 

A
R

M
A

X
     

1999 0.6% 1.0% 1.2% 

2006 
0.5% 0.8% 1.0% 

G
A

R
C

H
 

    
1999 0.6% 1.0% 1.3% 

2006 0.5% 0.8% 1.0% 

 

The second simulation tries to evaluate the implications of promoting (or 

discouraging) tourism during different seasons on electricity consumption. Taking the 

number of tourist arrivals to the Balearics, three seasons were considered: the high season, 

which comprises June, July, August and September; the low season, which covers 

January, February, November and December; and the mid season, consisting of March, 

April, May and October. A seasonal analysis of electricity consumption was conducted by 

increasing the daily population stock by 3%, 5% and 10% and then computing the results 

for each season. Table 1.3 shows that, as expected, high electricity growth rates are 
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recorded for non-residents during the high season, whereas minimums are reported in the 

low season. In addition, for the ARMAX and GARCH models, the seasonal growth rates 

associated with non residents remain fairly constant, with a lower level of variation 

between seasons.  

Table 1 3 A simulation for tourist monthly electricity consumption growth of Balearics 

  3% increase 5% increase 10% increase 

ARMAX 
High 0.68% 1.14% 2.28% 
Medium 0.27% 0.45% 0.90% 
Low 0.06% 0.10% 0.19% 

GARCH 
High 0.72% 1.20% 2.42% 
Medium 0.29% 0.48% 0.96% 
Low 0.06% 0.10% 0.20% 

  

 

Finally, to estimate the marginal effect of tourism on total electricity consumption 

in the Balearic Islands, and considering the time period that ranges from January 1995 to 

September 2007, it is relevant to mention that using either ARMAX model or GARCH 

model, the marginal effect of an additional tourist in the Balearics islands is less than the 

marginal effect of an additional residents. For instance, in the case of ARMAX model the 

marginal effects for an additional tourist and additional resident are 0.371Wh and 

0.434Wh respectively. 

1.5. Conclusions 

Assessing environmental impacts is essential if the sustainability of tourism is to be 

improved. Thus it is important to ascertain the magnitude of environmental impacts and 

their associated costs as a means of determining appropriate development strategies and 

solutions. Literature reveals that the costs associated with tourism have been evaluated 

from a sectoral perspective, given the non-recognition of the tourist sector in conventional 

public economic accounting. However a need to assess the environmental costs of tourism 
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activities arises when different development policies are considered from a regional point 

of view.  

A consistent methodology is required to assess the impact of tourism on electricity 

consumption in order to determine how the current pattern of the population stock will 

affect the demand for energy. Using the case study of the Balearic Islands, bearing in mind 

the advantages of the fact that it is an isolated tourism-intensive region, a stock variable 

for tourism pressure was developed to be included in a traditional electricity demand 

model. The feasibility of applying ARMAX and GARCH models to the daily electricity 

demand was examined and a high level of significance was obtained for both resident and 

non-resident population stocks. Strong evidence was found to show that the daily 

electricity load can be characterized by GARCH models. The sum of the GARCH 

coefficients is close to one, which means a persistence of the conditional variance. It was 

also demonstrated that the GARCH model performs better than the ARMAX model in 

terms of deviation measurement criteria, although results in terms of elasticity remain very 

close. 

The findings suggest an electricity demand with an increasing sensitivity 

depending on the population stock. This increasing sensitivity is probably one result of an 

increasing number of tourists during the peak season. However, the analysis showed that 

the sensitivity of the electricity load to the population stock variable increased across the 

time period for residents and non-residents, with a higher sensitivity in the case of the 

resident population. This result coincides with the idea that residents’ financial status has 

grown at a higher level than that of tourists, implying a higher growth level in electricity 

consumption.  
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Furthermore, three different approaches were taken in the sensitivity analysis. First 

the population effect was evaluated through a hypothetical increase in absolute values in 

the non-resident populations, results in an increase of electricity consumption, with annual 

rates ranging between 1.4% and 3% for the three simulations. Second, an assessment of 

the seasonality effect showed a growth in electricity consumption by non-residents of 

between 2.3% and 2.4% during the high season in the case of a 10 % increase in the 

population stock, contrasting with a growth rate of 0.2% during the low season. Finally, 

the marginal effect of an additional tourist is found to be 6.5% lower than a marginal 

effect of an additional resident. 

These results are of considerable importance for tourism planners in helping to 

mitigate the effect of high energy consumption on the environment. The role of 

policymakers is to avoid hampering and, if possible, to facilitate the adjustment in the 

Balearic electricity market. The diversification into alternative sources of energy, such as 

solar, wind, geothermal, biomass and ethanol ect, can help to ensure a sufficient supply of 

energy in the future. Furthermore, to encourage energy conservation, the state government 

should implement educational programs that promote energy conservation by both the 

tourism and residential sector. Tax credits can be introduced for the installation of energy 

saving devices and equipment. Efficiency in energy use can be promoted by providing 

incentives for the design and the construction of energy-efficient housing and public 

infrastructure, as well as the use of more energy-efficient production equipment and power 

transmission by utility companies. Future research will have to explore evaluations of 

tourism’s share of the electricity load in other regions, by considering the intra-annual 

variability of monthly arrivals, assuming that this variable can be used for other regions. 

Results for other areas should be compared with those obtained in this study in order to 

validate them. 



Chapter 1-Estimation of tourism-induced electricity consumption 

45 

1.6. References  

Becken, S., 2002. Analysing international tourist flows to estimate energy use associated with air travel. 

Journal of Sustainable Tourism 10 (2), 114–131. 

Becken, S., Simmons, D., 2002. Understanding energy consumption patterns of tourist attractions and 

activities in New Zealand Tourism Management, 23, 343–354. 

Bollerslev, T., 1986. Generalized autoregressive conditional heteroscedasticity. Journal of Economics 31, 

302-327. 

Cancelo, J.R., Espasa, A., 1996. Modelling and forecasting daily series of electricity demand. 

Investigaciones Económicas 20, 359-376. 

Cancelo, J.R., Espasa, A., Grafe, R., 2008. Forecasting the electricity load from one day to one week ahead 

for the Spanish system operator. International Journal of Forecasting 24, 588-602. 

Cárdenas, V., Rosselló, J., 2008. Análisis económico de los impactos del cambio climático en el turismo: 

estado de la cuestión. Ekonomiaz 67 (In press). 

Chen, J. F., Wang, W.M., Huang, C.M., 1995. Analysis of an adaptive time-series autoregressive moving-

average (ARMA) model for short-term load forecasting. Electricity Power Systems Research 34, 

187-196. 

Chen, H., Canizares, C.A., Singh, A., 2001. ANN-based short-term load forecasting in electricity market. 

Proceedings for the IEEE Power Engineering Society Transmission and Distribution Conference 2, 

411-415. 

Chen, H., Wu, J., Gao, Shan.,  2006. A study of autoregressive Conditional Heteroscedasticity Model in 

Load Forecasting. Powercon 2006 - Chongqing. 

Considine, T. J., 2000. The impacts of weather variations on energy demand and carbon emissions. Resource 

and Energy Economics  22, 295–314. 

Cottet, R., Smith, M., 2003. Bayesian modeling and forecasting of intraday electricity load. Journal of the 

American Statistical Association 98, 839-849. 

Darbellay, G.A., Slama M., 2000. Forecasting the short-term demand for electricity: do neural networks 

stand a better chance. International Journal of Forecasting 16, 71–83. 

Deng, S., Burnett, J., 2000. A study of energy performance of hotel buildings in Hong Kong. Energy and 

Buildings 31,7–12. 

Engle, R., 1982. Autoregressive conditional heteroscedasticity with estimates of the United Kingdom 

inflation. Econometrica 50 (4), 987-1008. Variance of UK inflation” Econometrica, 50, 987-100. 

Gössling, S., Hall, M., 2005. An introduction to tourism and global environmental change. In S. Gossling 

and C.M. Hall (editors). Tourism and Global Environment Change. Routledge. 

Hippert, H.S., Bunn, D. W., Souza, R. C., 2005. Large neural networks for electricity load forecasting: Are 

they over fitted?. International Journal of forecasting 21 (3), 425-434 



Chapter 1-Estimation of tourism-induced electricity consumption 

46 

Hor, C.L., Watson, S.J., Majithia, S., 2006. Daily load forecasting and maximum demand estimation using 

ARIMA and GARCH. 9th International Conference on Probabilistic Methods Applied to Power 

Systems (June 11-15).KTH(Ed), Stockholm, Sweden. 

Huang, S.J., Shih, K.R., 2003. Short-term load forecasting via ARMA model identification including non-

Gaussian process consideration. IEEE Transactions on Power Systems 18, 673-679. 

Juberias, G., Yunta, R., Garcia Morino, J., Mendivil, C., 1999. A new ARIMA model for hourly load 

forecasting.  IEEE Transmission and Distribution Conference Proceedings, 1, 314-319. 

Karagiorgas, M., Tsoustsos, T., Moce-Pol, A., 2007. A simulation of the energy consumption monitoring in 

Mediteranean hotels – An application in Greece Energy and Buildings 39, 416–426. 

Khotanzad, A., Rohani, R.A., Maratukulam, D.J, 1998. ANNTLF (Artificial neural network short-term load 

forecaster-Generation three). IEEE Transactions on Neutral Networks 13, 1413-1422. 

Macintosh, A., Wallace, L., 2009. International aviation emissions to 2025: Can emissions be stabilised 

without restricting demand?. Energy Policy 37, 264-273. 

Mirasgedis, S., Sarafidis, Y., Georgopoulou, E., Lalas, D.P., Moschovits, M., Karagiannis, F., 

Papakonstantinou., D., 2006. Models for mid-term electricity demand forecasting incorporating 

weather influences. Energy 31,208-227. 

Moral-Carcedo, J., Vicens-Otero, J., 2005. Modelling the non-linear response of Spanish electricity demand 

to temperature variations. Energy Economics 27, 477-497. 

Pardo, A., Meneu, V., Valor, E., 2002. Temperature and seasonality influences on Spanish electricity load. 

Energy Economics 24, 55-70. 

Peeters, P., Schouten, F., 2006. Reducing the ecological footprint of inbound tourism and transport to 

Amsterdam. Journal of Sustainable Tourism 14 (2), 157–171. 

Penner, J., Lister, D., Griggs, D., Dokken, D., McFarland, M. (eds), 1999. Aviation and the Global 

Atmosphere. In A Special Report of IPCCWorking Groups I and III. Published for the 

Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press. 

Price, T., Probert, S. D., 1995. An energy and environmental strategy for the Rhymney Valley, South Wales. 

Applied Energy  51, 139-195. 

Priyadarsini, R., Xuchao, W., Eang, L.S., 2009. A study on energy performance of hotel buildings in 

Singapore. Energy and Buildings 41, 1319-1324. 

Rahman, S., Hazim, O., 1993. A generalized knowledge-based short-term load forecasting technique. IEEE 

Transactions on Power systems 8, 508-514. 

Ramanathan, R., Engle, R., Granger, C. W. J., Vahid-Araghi, F., Brace, C., 1997, Short-run forecasts of 

electricity loads and peaks. International Journal of Forecasting 13, 161-174. 

Ranjain, M., Jain, V.K., 1999. Modeling of electrical energy consumption in Delhi. Energy 24,351–361. 

Riera, A., Mateu, J., 2007. Aproximación al volumen de turismo residencial en la Comunidad Autónoma de 

las Illes Balears a partir del cómputo de la carga demográfica real. Estudios Turísticos 174, 59-71. 

Ruth, M., Lin, A.C., 2006. Regional energy demand and adaptations to climate change: methodology and 

application to the state of Maryland, USA. Energy Policy 34 (17), 2820–2833. 

Simmons, C., Lewis, K., 2001. Take only memories . . . leave nothing but footprints. An Ecological footprint 

analysis of two package holidays. Rough Draft Report. Best Foot Forward Limited. Oxford. 

Smith, M., 1995. Neural networks for statistical modelling. Van Nostrand Reinhold, New York. 



Chapter 1-Estimation of tourism-induced electricity consumption 

47 

Smith, M., 2000. Modeling and short-term forecasting of New South Wales electricity system load. Journal 

of Business and Economic Statistics 18, 465-478. 

Soares, L. J., Medeiros, M.C., 2005. Modeling and forecasting short-term electricity load: A two-step 

methodology. Discussion paper no. 495. Department of Economics, Pontifical Catholic University 

of Rio de Janeiro 

Soares, L.J.,, Souza, L. R., 2006. Forecasting electricity demand using generalized memory. International 

Journal of Forecasting 22, 17-28. 

Steadman, R.G., 1979. The Assessment of Sultriness. Part II: Effects of Wind Extra Radiation and 

Barometric Pressure on Apparent Temperature. Journal of Applied Meteorology  18 (7), 874-885. 

Tabatchnaia-Tamirisa, N., Loke, M.K., Leung, P., Tucker, K.A. 1997, Energy and tourism in Hawaii. Annals 

of Tourism Research 24 (2), 390–401. 

Taylor, J. W., Buizza, R., 2003. Using weather ensemble predictions in electricity demand forecasting. 

International Journal of Forecasting 19, 57-70 

Taylor, J.W., de Menezes, L., MacSharry, P.E., 2006. A comparison of univariate methods for forecasting 

electricity demand up to a day ahead. International Journal of Forecasting 22 (1), 1-16. 

UNWTO, 2008. UNWTO World Tourism Barometer January 2008. Madrid: World Tourism Organization. 

Valor, E., Meneu, V., Caselles, V., 2001. Daily air temperature and electricity load in Spain. Journal of 

applied Meteorology 40, 1413-1421. 

Weron, R., 2006. Modeling and forecasting electricity loads and prices: A statistical approach. Wiley 

Finance. 

WTTC, 2008. Tourism Satellite Accounting. World Travel and Tourism Council: London. Available in 

<http://www.wttc.org/eng/Tourism_Research/Tourism_Satellite_Accounting/ (accessed 

November 2008)>. 

Yan, Y.Y., 1998. Climate and residential electricity consumption in Hong Kong. Energy 23 (1), 17–20. 

Zachariadis, T., Pashourtidou, N., 2007. An Empirical Analysis of Electricity Consumption in Cyprus. 

Energy Economics 29 (2), 183-198. 



 

 

  



 

 49

 

CHAPTER 2  

 

IMPROVING DAILY ELECTRICITY LOADS FORECASTING IN 

TOURIST ISOLATED AREAS 

  



 

 

 
  



 

 51

Chapter 2 Improving daily electricity loads forecasting in tourist isolated areas  

 

  
Abstract  

Electricity demand forecasting is becoming an essential tool for energy management, maintenance 

scheduling and investment planning. In small and isolated electric systems like in many islands, the 

power system is usually not extensively interconnected with enough number of electric generators 

and loads, hence it provokes an electric load shedding or forces the electric utility to take control 

actions such as temporary power outage. Despite this trouble, isolated territories are fortunate to 

have the possibility of estimating the population pressure in a very accurate manner, even at a daily 

level. This is possible thanks to the fact that entries to these territories are limited to ports and 

airports which in turn facilitate keeping the record of in/out flows to/from the territory. Investigating 

this problem, using the most classical and standard prediction techniques applied to the case of 

Balearic Islands (Spain) authors demonstrate how daily arrivals and people stocks improve accuracy 

of forecast. 

Keywords: electricity load forecasting, isolated electric systems, daily models, population pressure, 

tourism 
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2.1. Introduction 

The need of having an accurate electricity load forecast is of crucial importance to 

electricity planning in both short-term and long-term. The former is relevant because the 

national grid requires a balance between the electricity produced and consumed at any 

instant of the day, in other words it is essential to balance the generation capacity with the 

system demand. The latter is important for staffing, maintenance, and capital investment 

planning. As the operation and control processes for an electric utility are quite sensitive to 

forecasting errors, their costs can be easily increased due to the presence of large 

forecasting errors. For example Hobbs et al (1999) found that a reduction of 1% in the 

average prediction error can annually save millions of dollars for a typical utility whose 

annual fuel costs amount to several hundred million dollars.  

Therefore, forecasting accuracy is a basic tool for determining the optimal 

utilization of generators and power stations, especially that electricity is not a storable item 

and some facilities are more efficient than others. In fact, overestimating the future load 

results in unused spinning reserve which is being burnt for nothing, in the other side 

underestimating future load is equally detrimental because high starting costs are incurred 

if the cold reserve has to be used. Furthermore, in situations when the option to buy at last 

minute from other suppliers remains obviously expensive; and when demand is exceeding 

power supply, electric companies may intentionally cut power partially or totally in order 

to avoid a total blackout of the power system. Technically speaking, a failure of a 

component or part of the general network causes a fixed load increase for other 
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components, then the electric system becomes more loaded and a cascading failure of 

further components becomes more likely to occur (Dobson, Carreras, & Newman., 2003).  

For small and isolated electric systems, their inability to be tapped into a 

continental transmission grid for emergency power, results in reliability and other 

economies of scale impacts. Thus, the power systems operate on the premise that the load 

is uncontrollable and that system voltage, frequency and stability are primarily maintained 

through the real-time control of the generation. Frequency is a necessary parameter for 

load control in interconnected systems, as it is considered as a measure of mismatch 

between demand and generation. Therefore, the Control systems in power plants detect 

changes in the network-wide frequency and adjust mechanical power input to generators 

back to their target frequency. However, in the great majority of islands and isolated areas 

power systems that are not extensively interconnected with many generators and loads, 

will not maintain frequency with the same degree of accuracy and therefore cause an 

automatic load shedding or other control actions such as temporary power outages. This 

scenario is more probable during heavy loads periods, when the accuracy of the system is 

hard to maintain (Qiu, Liu, Chan, & Lawrence, 2001; Trudknowski, Donelly, & Lightner, 

2006).  

Whatever the case, effective planning requires a thorough understanding of the 

prevailing electricity demand patterns. Thus, for modeling and forecasting purposes the 

existing literature has extensively analyzed the main features of demand. Actually, 

electricity consumption is subject to great cyclical and seasonal effects (daily and weekly 

cycles, holidays), special events, nonlinearity of meteorological variables and possible 

nonlinear time dependence, etc (Cancelo, 1996; Moral-Carcedo and Vicns-Otero, 2005; 

Pardo, Meneu, & Valor, 2002; Taylor and Buizza, 2003; Valor, Meneu, & Caselles, 2001). 
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However, the specificity of an open space, where the mobility of people outside and within 

a country is usually unrestrained, impedes the inclusion of an accurate variable that 

captures the daily population pressure effect. Contrastingly, this indicator can be accurately 

measured in islands and isolated territories that control their population transit. For 

instance, in the case of islands, where the only means of access and exit are ports and 

airports, it is expected that for security reasons there is a thorough control on the daily flow 

of incoming and outgoing passengers. Majority of islands have the possibility to assess the 

daily population’s weight present in their territory, which is generally characterized by its 

high fluctuations and seasonal aspects.   

A natural a priori hypothesis is that the daily electricity demand depends on the 

population stock, and most likely this dependence is very relevant in isolated territories 

where high seasonal fluctuations could easily affect the efficiency of the electrical system 

and provoke serious and costly problems. A high level of seasonality is a distinctive 

feature of coastal tourist regions, a problem that often characterizes islands too. Therefore, 

the possibility of having a daily population indicator will definitely fulfils the need of an 

accurate forecasting model that can predict future electricity demand, and provide the 

utility company with a model that reduces the gap between supply and demand and its 

concomitant cost.  

This article reports on the design and implementation of a medium-run forecasting 

model for daily system loads and an evaluation of the forecast performance of the Balearic 

Islands (Spain). An archipelago located in the western Mediterranean Sea that includes 

four inhabited islands Majorca, Minorca, Ibiza, and Formentera. The last two conform 

what is known as the Pitiüses, a special unity in terms of electricity system. The Balearic 

Islands system supplies electricity annually to 1 million residents and 13 million tourists 
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concentrated during summer months. The Balearic Islands are taken as a case study 

because of their geographical characteristics and relative importance of tourism in the 

region.  

2.2. Methodology 

Literature does not show any consensus on the best approach to electricity demand 

forecasting. The range of different approaches used recently includes classical time series 

models (Cancelo, Espasa, & Grafe, 2008; Dordonnat, Koopman, Ooms, Dessertaine, & 

Collet, 2008; Gabreyohannes, 2010; Goia, May, & Fusai, 2010; Taylor, 2008 and 2010; 

Taylor, Menezes, & McSharry, 2006), and machine intelligence framework (da Silva, 

Ferreira, & Velasquez, 2008; Hippert, Bunn, & Souza, 2005). Although within each one of 

these categories the sophistication of the applied techniques can be qualified as high, in 

this chapter, I exclusively consider the most basic time series models i.e. naive and 

exponential smoothing as benchmarks and ARMAX for the inclusion of explanatory 

variables. 

2.2.1. Benchmarks methods 

The simplest benchmark method in forecasting exercises is often known as naïve 

method, assuming that the forecasted observation is the last real observation available, and 

is also the simplest benchmark method used in this work. 

Additionally, the so called Exponential smoothing method is based on the idea of 

separating the time-series trend from its random disturbance, that is, it ‘‘smoothes” series 

behavior. It is important to remark that in this method the models are usually constructed 

based on empirical reasoning. The Winter’s method is one of several exponential 
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smoothing methods that can analyze seasonal time series directly. A very interesting 

survey for this method can be found in Gardner (2006). Examples of this method’s 

application to electric load forecasting problem can be found in Song, Ha, Park, Kweon, & 

Kim (2006), Taylor, Menezes, & McSharry (2006) and in Gould Koehler, Keith Ord, 

Snyder, Hyndman, & Vahid-Araghi (2008). 

2.2.2. Multiple regression & time series models 

A basic conventional structure decomposes the observed load into four 

components: the normal load, the weather sensitive part, special events, and a random 

component. Assuming a conventional aggregated energy demand relationship and 

following Cancelo, Espasa, & Grafe (2008) or Considine (2000), a log-linear model can be 

analytically expressed as: 

 

lnCt= pt+st+CSDt+CWEAt+ut [1] 

 

Where tC  denotes the electricity consumption on day t; pt is the trend and st (part 

of) the deterministic pattern; CSDt represents special days; CWEAt refers to the 

meteorological variables, and ut is the disturbance term. The diagnostic of the transitory 

dynamics displayed by ut term is performed using the ARMA structure. A plot of the 

autocorrelation function and partial autocorrelation function and some conventional tests, 

like the Augmented Dickey Fuller test, are used to decide whether a data series is 

stationary or not. Thus an ARMAX (p, q, b) model for the electricity load can be also 

represented as:  
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tttt εuqθXb Cp ++= )()(ln)( ηφ  [2] 

  

Where )( pφ , tXb)(η  and )(qθ  are the lag polynomials for the natural logarithm of 

the electricity demand (C), the exogenous variables matrix (X) (which is formed by  the 

variables p, s, CSD, and CWEA) , the moving average term (u) and ε is white noise. 

An extension of the equations [2] is proposed in this study by analyzing the 

inclusion of the population pressure (for residents and tourist) as an additional exogenous 

determinant. This variable can be easily obtained in isolated territories where a higher level 

of forecasting accuracy is specially appreciated. Thus, analytically, equation 1 can be 

extended, to: 

 

lnCt= pt+st+CSDt+CWEAt+Pt+ut [3] 

 

where Pt denotes the population pressure. In a similar way equation 2 can be 

rewritten as 

 

tttt εuqθXb Cp ++= )(')(ln)( ηφ  [4] 

 

where X' includes the variables p, s, CSD, CWEA and Pt. 

2.3. Data and forecasting evaluation strategy 
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2.3.1. Data 

The dataset used in this study concerns daily time series for electricity consumption 

for Majorca, Minorca and Pitiüses (Ibiza and Formentera). The Balearics are considered 

jointly from January 1995 until September 2007. This is 4655 daily observations for each 

one of the four utility systems considered. The dataset was compiled by the Spanish 

System Operator Red Electrica de España and no missing observations were present. 

Charts of the time series. in Figure 2.1. show a clear trend along the whole sample, and 

depict different seasonal cycles. In this case, it should be highlighted that for many coastal 

areas in the Mediterranean Sea, high season is characterized with high temperatures and an 

important presence of tourists. Therefore, it is important to be aware that the seasonal 

movement of electricity load is not originated exclusively by weather pattern but also from 

differences in the population that is on the islands during the year. 

Figure 2 1 Daily electricity consumption in the Balearic Islands 
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Meteorological variables were provided by the Instituto Nacional de Meteorologia, 

the Spanish official meteorological bureau, and are referred to the airport stations. From 

the experience of previous literature, the weather-related factors that can influence the 

electricity demand are temperature, humidity, wind and precipitation in decreasing order of 

importance (Engle, Mustafa, & Rice, 1992). However, the non-linear influence of 

temperature on the electricity demand (Valor, Meneu, & Caselles, 2001) suggests the use 

of two temperature derived functions: heating degree-days (HDD) and cooling degree-days 

(CDD). When dealing with the non-linearity of the temperature effect, the most frequent 

approach is to segment temperature into HDD and CDD, defined as shown below: 

HDDt = Max (Tref - Tt, 0) [5] 

CDDt = Max (Tt-Tref, 0) [6] 

 

Tt is the weighted average temperature for day t and Tref is a reference temperature 

that must be adequately selected to separate the hot and cold branches of the demand-

temperature relationship. In combination, these functions reflect the number of days on 

which the temperature falls below or rises above the heating and cooling thresholds and by 

how many degrees. Since there is no strict quantification of the values of the “threshold” 

temperatures, there can be many different versions of the HDD and CDD functions. In the 

context of this study, the selected reference temperature is equal to 17°C for high 

temperatures and 12°C for low temperatures.  

Additionally, because of the particularly high degree of humidity that characterizes 

the Balearic Islands, a Heat Index (HI) was incorporated as an alternative to the use of the 

simple mean temperature variable. Measurements have been taken in other studies, based 

on subjective descriptions of how hot subjects feel for a given temperature and humidity, 
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allowing for the development of an index where a combination of a certain temperature 

and humidity corresponds to a higher temperature in dry, non-humid conditions. Whatever 

the case, the most commonly used formulation of an HI was proposed by Steadman (1979) 

and it is also adopted in this study.4 For the measurement of the Balearic index, a 

population-weighted temperature index was constructed from the mean daily temperatures 

measured separately on the different islands. The population was selected as a weighting 

factor because climate influences electricity consumption through people’s response to the 

weather; the larger population, the greater the influence of weather conditions on the 

electricity demand. 

Finally, for the case of the population pressure, airport and port data were taken as 

reference in order to undertake two different measures. First, an estimation of the daily 

population stock of people on the islands, namely Human Pressure Daily Indicator (HPDI), 

was used as the most suitable variable from a theoretical point of view, to account the idea 

of population pressure. The HPDI was developed by Riera and Mateu (2007), and analyzed 

by Haldrup, Hylleberg, Pons, & Sansó (2007) and Bakhat, Rosselló, & Saenz de Miera 

(2010). The HPDI is an estimation of the daily people that is on each on of the islands, 

based on resident population registers and daily arrivals and departures from the airports 

and ports. Results from the HPDI estimation for our period of analysis can be seen in 

Figure 2.2, where a positive trend and a clear hard seasonal variation can clearly be 

observed. 

  

                                                           
4 Thus HI = -42.379 + 2.04901523T + 10.14333127R - 0.22475541TR - 6.83783·10-3T2-

5.48171710-2R2 + 1.22874·10-3T 2R + 8.5282·10-4TR2 - 1.99·10-6T2R2, with T = ambient dry bulb temperature 
degrees in Fahrenheit and R = relative humidity.  
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Figure 2 2 Population stock (HPDI) for the Balearic Islands 

 

The second reference measure for the population pressure was the daily airport 

arrivals. Although from a theoretical point of view this second measure exhibits different 

defects, since different tourists’ length of stay is not captured by this measure. However, in 

the Balearics islands more than 90% of arrivals are via airports (less than 10% are via 

ports) and tourists’ length of stay remains relatively similar during the year, hence the 

variability between HPDI and the airport arrival is significantly reduced. In contrast, taking 

into consideration the forecasting objective of this work, it should be noted that in practice, 

forecasts should be implemented to get either daily tourists arrivals or HPDI variable. 

Hence, prediction for airport daily arrivals are easy to undertake through the slots that 
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airport authorities have engaged, while HPDIs' prediction is comparably complicated due 

to the the presence of  other historical data  incorporated in HPDI measure. 

 

2.3.2. Forecasting evaluation strategy 

We used 84 months of daily data from 1 January 1999 to 31 December 2005 to 

estimate model parameters, and 12 months of daily data from 1 January 2006 to 31 

December 2006 to evaluate the different forecasting methods. This 12 months period gave 

365 days for evaluation period for lead times of 1 to 10 days ahead. Analysis and forecasts 

of Balearic’s electricity consumption has been undertaken for every single island 

separately and jointly, thus considering Majorca, Minorca and Pitiüses. Models were 

estimated using the multivariate regression and ARMAX models described above. Their 

forecasting performances were compared to the set of benchmark models also mentioned 

in the previous section. Table 2.1 summarizes the benchmark and the rest of models used 

in the forecasting exercise. 

Table 2 1 Models for forecasting evaluation 

Model 1 Naive 
7tt CC −=

)
 

Model 2 Holt Winters Multiplicative ( ) ( )( ) skTkt ckTbTaC −++ +=
)

 where a, b and c 

are the estimated recursive coefficients  

Model 3 
Static Model with meteorological 
variables 

From equation 1 

Model 4 
Dynamic Model with meteorological 
variables 

From equation 2 

Model 5 
Static Model with meteorological 
variables and HPDI 

From equation 3 

Model 6 
Dynamic Model with meteorological 
variables and HPDI 

From equation 4 

Model 7 
Static Model with meteorological 
variables and daily airport arrivals 

From equation 3 

Model 8 
Dynamic Model with meteorological 
variables and daily airport arrivals 

From equation 4 

 

Comparison of the different sets of forecasts was undertaken using the mean 

absolute percentage error (MAPE) summary measure, which is used extensively in the 
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electricity demand forecasting literature. It is important to highlight how the performance 

of the exercise was assessed. On the one hand it was assessed by the whole year while on 

the other hand because of the special interest for the electric system in providing good 

accuracy forecasting during the peak seasons the data base of errors was split into three 

parts: the high season, which comprises June, July, August and September; the low season, 

which covers January, February, November and December; and the mid season, consisting 

of March, April, May and October. 

2.4. Results and forecast performance 

Daily forecasts were used to set up the weekly network outage plan. They were 

computed by the middle of the week, usually on Wednesday morning, with information up 

to Tuesday, for the seven-day period beginning the following Saturday. The relevant lead 

times go from 4 to 10 days ahead, although they are some minor modifications. For 

example, the origin of the forecast changes when a public holiday falls on Wednesday. We 

ignore this for the sake of simplicity, and act as if there is a one to one relationship 

between the day of the week and the lead time. Thus, table 2.2 reports MAPE for the 

different models used in this study. Bold figures indicate which model attains the lowest 

MAPE. 
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Table 2 2 Mean absolute percentage errors (MAPE) in daily forecasting for the entire year 

   

  Naive Holt Winter Static 1 Static 2 

  Model 1 Model 2 Model 3 Model 5 

Majorca 6.024 4.784 6.297 6.209 

Minorca 6.470 5.522 7.303 5.392 

Pitiüses  6.619 5.096 9.118 7.334 

 Using HPDI Using Tourists’ Arrival 

 Dynamic 1 Dynamic 2 Static 2 Dynamic 2 

 Model 4 Model 6 Model 7 Model 8 

Majorca 2.721 2.675 6.615 2.726 

Minorca 2.942 2.958 6.719 2.899 

Pitiüses  2.319 2.336 7.854 2.309 

 

Results show how using the HPDI variable and considering the static models 

(Model 2 and 3) the forecasting errors have decreased for all the islands (Majorca; Minorca 

and Pitiüses), whereas in the case of the dynamic models (model 4 and 6) this feature is 

only observed for Majorca island and not for Minorca or Pitiüses. Secondly, the use of 

airport’s arrival as a substitute to HPDI in our case of study does not improve the MAPE in 

Majorca for neither of the static or dynamic models. However, in the case of Minorca and I 

Pitiüses, the MAPEs decrease for static and dynamic models. Particularly, in the dynamic 

models that include airport’s arrival have a better forecasting performance than their 

correspondent that include HPDI, though the values of the MAPEs are very close (2.899 

and 2.30 versus 2.95 and 2.33 for Minorca and Pitiüses respectively). Moreover, the real 

time performance of the model 6 and model 8 seems to be satisfactory, in the sense that the 

errors are within the bounds that guarantee the electricity supply security and quality, 

reflected by MAPEs below 5%, a constant limit suggested as a benchmark in the literature 

(Ranaweera, Karady, & Farmer, 1997). 



 

 

Table 2 3 Mean absolute percentage errors (MAPE) in daily forecasting for different seasons 

      Using HPDI Using Tourists’ Arrival 

  Naive Holt Winter Static 1 Static 2 Dynamic 1 Dynamic 2 Static 2 Dynamic 2 

  MODEL 1 MODEL 2 MODEL 3 MODEL 5 MODEL 4 MODEL 6 MODEL 7 MODEL 8 

Majorca 

LOW SEASON 6.483 5.048 5.688 6.649 3.142 3.118 6.660 3.145 

MED SEASON 5.502 4.374 7.385 5.840 2.583 2.569 7.631 2.588 

HIGH SEASON 6.119 4.953 5.753 6.160 2.448 2.345 5.495 2.454 

Minorca 

LOW SEASON 6.579 5.389 7.182 5.946 3.675 3.657 7.011 3.586 

MED SEASON 6.688 5.799 8.576 4.951 2.503 2.500 7.773 2.479 

HIGH SEASON 6.130 5.363 6.075 5.304 2.673 2.744 5.313 2.658 

Pitiüses  

LOW SEASON 6.871 5.885 10.444 8.305 3.014 3.010 8.406 3.013 

MED SEASON 6.641 4.944 10.529 6.893 1.983 2.080 9.704 1.970 

HIGH SEASON 6.343 4.467 6.299 6.828 1.981 1.933 5.341 1.965 
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Table 2.3 shows the results of the forecasting performance by season. For Majorca, 

the inclusion of HPDI variable in the dynamic model improves the forecasting 

performances for all seasons. However its corresponding model that includes airport 

arrivals does not perform well and their MAPEs stay practically very close to the MAPEs 

of the model 4 (Dynamic model that does not include any population stock). In other 

words, the dynamic model that incorporates HPDI performs better in all seasons than its 

correspondent that includes airport’s arrival. For Pitiüses, the same features are observed 

in low and high seasons, where the dynamic model that includes HPDI has a better 

forecasting performance than its correspondent. Particularly, the inclusion of airport arrival 

as a variable in the dynamic model improves the forecasting performances. However the 

values of MAPEs are inferior to their correspondent in the HPDI model. Finally, in the 

case of Minorca which has a different pattern, the forecasts deteriorate during high season 

when we use HPDI variable, however the use of airport’s variable in this particular case 

improves well the forecasting performances in all seasons.  

2.5. Summary and conclusions 

Many islands around the world are characterized by small and isolated electric 

systems and a high level of tourism specialization from an economic point of view. Thus, 

on the one hand, having an accurate electricity load forecast is of crucial importance to 

electricity planning in short-term and, on the other hand, variability in population stocks 

can be incorporated easily to electricity load models using data from port and airport 

control points. This chapter has investigated these special circumstances studying Balearic 

Islands as a particular case and forecasting for lead times from 1 to 10 days ahead, which 
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coincide with the forecasting system currently implemented at Red Eléctrica de España, 

the Spanish system operator.  

Using simple multiple regression and time series models, results have evidenced 

again the usefulness of including meteorological variables in daily electricity forecasting. 

However, the most significant result has been the usefulness of including daily population 

measures that is found to be relevant in improving the forecasting accuracy. Thus, the 

results have shown that the major improvement in error reduction comes from 

understanding how the load reacts to population stock variable, and integrating its effects 

together with the weather variables and other specific dummies in an extended model that 

captures the main determinants of the electricity load. In general, and depending on the 

particularity of the islands, the inclusion of either HPDI variable or airport’s arrival 

variable improves the forecasting performance of the dynamic model ARMAX.  

Use of HPDI variable in the dynamic model in the case of Majorca outperforms the 

forecasting performances in annual average and in high season. For Pitiüses the same 

model perform well in annual average and low season, but stands behind in high season, 

compared to its correspondent that uses airport’s arrival variable. Finally, in the case of 

Minorca the dynamic models that incorporate airport’s arrival variable perform better in all 

seasons and in annual average compared to their correspondent that involves HPDI 

variable. 

Inclusion of tourist variables in forecasting electricity models can be of enormous 

interest for tourism regions that can star replicating the approach presented in this chapter. 

However further research would have to consider the inclusion of this variable but using 

more advanced techniques. We, therefore, conclude that there is strong potential for the 

use of population stock variable in improving the accuracy and uncertainty assessment of 
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electricity demand forecasts for number of tourist destinations with the same 

characteristics as Balearics Islands. 
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Chapter 3 Seasonal fuel tax in tourist regions  

 

 

  
Abstract:  

This chapter formulates and estimates diesel oil and gasoline demands in a representative tourist 

region (Balearic Islands) which is characterized with a high level of seasonality. Using conventional 

fuel demand models, and including  variable to account for the human pressure, results confirm 

conventional wisdom that fuel consumption responds positively to changes in income and 

negatively to changes in prices. This study discusses the appropriateness of fuel tax when it is 

applied only in the high season. Furthermore, using estimated elasticities, different price policies are 

evaluated with special reference to a seasonal fuel tax.  

Keywords: Diesel oil demand, gasoline demand, tourism, fuel tax. 
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3.1. Introduction 

Petroleum products demand has received a great deal of attention as a research 

topic during the last decades. Initially, since the 1973 oil crisis, a growing number of 

studies modeled demand for gasoline addressing concerns about the availability of this 

non-renewable resource. Most of those studies focus on the demand for motor gasoline for 

automobiles since the segment was relatively important and represented one of the highest 

growth rates. The quantification of price and income elasticities of fuel demand was of 

paramount interest in order to project future trends of oil markets in order to plan 

infrastructures and strategic reserves. 

Whereas last late century scientific research was fueled mainly by the threat of 

energy scarcity, nowadays environmental problems like the potential global warming 

change are becoming increasingly important. Recently, studies have directed the various 

environmental consequences of petrol consumption, particularly with respect to the 

emission of greenhouse gases (Raux and Lee-Gosselin, 2010). In this new context, 

accurate estimations of petrol demand are also important because of the wide range of 

fiscal instruments that are worldwide applied.  

The need for mechanisms that promote more efficient use of transport has 

encouraged the use of fuel taxes or charges, given their considerable benefits in terms of 

the achievement of a ‘‘double dividend’’ through the improved efficiency of the tax 

system (Bovenberg and Mooijr, 1994) and efficient compliance with the ‘‘Polluter Pays 

Principle’’. These principles have led to different purposes aimed to directly tax those 

activities less environmentally respectful, being the increase of fuel prices one of the last 
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options that have recently emerged in the context of tourism policy (Tol, 2007; Mayor and 

Tol, 2010; Rothengatter, 2010; Zhang et al. 2010) and more specifically the taxation of 

gasoline and diesel oil during high season months (Aguiló et al. 2011).  

The arguments for a temporal discriminatory fuel tax during the year include the 

high exportability of the tax (an important part of the revenues from taxes come from non-

residents and, then, by non voters) and discouraging private road transport during the high 

season, one of the most important tourist externalities (Palmer et al., 2007). The key 

objective of this chapter therefore is to model and estimate diesel oil and gasoline demand 

with the aim of deriving the role of human pressure in these demands and find more robust 

estimates of price and income elasticities that could be used in the design of a fuel tax 

applied exclusively during some months.  

This study is structured as follows. In Section 2 the relationship between gasoline 

demand and their determinants is discussed, with reference to the seasonal contribution of 

tourism sector. In Section 3 methodological considerations and model specification are 

introduced Data with results and discussions are presented in Section 4. Section 5 discuss 

results and policy implications and concludes.  

3.2. Fuel demand from road transport and tourism 

Tourism sector remains a controversial issue in the sustainable development. 

Although tourism is considered an important source of foreign currency and contributes to 

the economic growth and the generations of jobs, the interest for their environmental 

consequences has been increased recently. Awareness about environmental impacts, their 

contribution to environmental degradation and climate change because of the large 
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quantities of fossil fuels that are required to operate has centered the most recent literature. 

Lundie, et al. (2007) researched an environmental measure of tourism yield by input-

output analysis showing how the major driving factor for energy input is accommodation, 

causing 16-29% of the total energy demand. Becken et al. (2003) also observed key 

tourism industry subsectors with the highest energy demand, notably transportation, 

accommodation, and activity in tourist attractions. Other studies suggested the relevance to 

research these three subsectors in terms of their onsite impact by energy consumption and 

transportation (Dubois and Ceron, 2006; Kelly and Williams, 2007). 

Air transportation is a primary form of frequent, long-distance travel and is often 

criticized for causing large quantities of greenhouse gas emissions (Becken, 2002). The 

Environment Protection Agency (EPA), estimated that 76.5% of greenhouse gas emissions 

of the tourism and recreation sector were caused by transportation (against 15% for 

lodging, 2.7% for restaurants, 1% for retail, and 4.8% that are activity-specific) for the 

United States, and this largely due to the longer air travel distance involved in attending 

conventions (EPA, 2000).  

However, recent studies on social trend showed that tourism is highly influenced 

by income-driven lifestyles that increase auto-utility and energy use for pleasure and 

leisure, and thus, people tend to be more concerned with personal convenience than with 

environmental protection (Becken, 2004). With the significant increase of non-package 

holidays tourist habits worldwide seem to favor a higher number of shorter breaks to short-

distance, short-haul destinations, which in turn leads to increased mobility. Therefore, the 

continued growth of low-cost airlines and the increasing use of the Internet will sustain 

this trend and give more extension to ‘‘self-service’’ tourism (Palmer et al., 2007).  
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New trends in tourism point towards an increase in tourist mobility in the host 

country or region, with a subsequent rise in externalities associated with the use of hire 

cars like atmospheric and noise pollution, congestion and greater numbers of accidents 

(Rosselló and Saenz-de-Miera, 2011). Consequently, transportation demand management 

strategies have become a central issue in regarding sustainable tourism policies in multiple 

destinations being the analysis of the fuel demands one of the key issues to be determined 

previous to the design of any policy.  

To our knowledge, none of the fuel demand studies or tourism studies so far has 

used monthly time-series data to capture the effect of tourism on fuel demand meanwhile 

oil and gasoline demand price elasticities are estimated. Thus, the chapter is a contribution 

to the literature, first, to formally test the relationship between tourism and the demand of 

road transportation fuels and, second, to providing a first evaluation of the effects of a 

seasonal fuel tax. 

3.3. Model and empirical specification 

The reviewed literature revealed that the demand for fuel has been modeled in 

variety of ways. The lagged endogenous model has been used extensively in the literature. 

The most common variables that have been included in the estimation of the fuel demand 

models include real income, real price of fuel type, price of substitute energy sources and 

vehicle fleet. Given data constraints on most of these variables we estimate a simple model 

of fuel demand. We specify fuel demand as function of income and the real price of fuel 

type, including the price of substitute fuel when appropriate. We do not include vehicle 

fleet because of data unavailability. Following the specifications of Bentzen (1994), Alves 
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and Bueno (2003), Ramanthan (1999), and Polemis (2006), we specify our model of fuel 

(Diesel and Gasoline) demand in log-linear form. To account in the model for the monthly 

seasonality temperature, eleven dummy variables Mjt were introduced, each representing 

one of the months in a year and taking January as the base month. Thus, j refers to 

February, March, April, May, June, July, August, September, October, November and 

December, and Mjt equals 1 if in the t observation the month j is found, and 0 otherwise. 

In this study in addition to these variables, demographic variables reflecting the human 

pressure both from residents (HP_R) and from tourists (HP_T) are also used as 

explanatory variables, since significant fluctuations over the year can be expected 

influencing fuel demand. Therefore the long-run fuel demand takes the following form: 

 

ln���� = � + � + �	ln ���� + ��ln ����� + ��ln ���_��� + � ln ���_���
+ ! "#$#�

	�

#��
+ %� 

(1) 

 

Where ln(Gt) is the natural log of the monthly fuel consumption at time t, ln(Pt) is 

the natural log of the monthly real fuel price at time t, ln(INt) is the natural log of the 

monthly real income at time t, ln(HP_Rt) and ln(HP_Tt) are the natural log of the monthly 

human pressure indicator for residents and tourists respectively, M_jt are dummies that 

capture the month of the year, T stands for the trend that could be present in the time 

series, and α, βi (1≤i≤4) λj (2≤j≤12) are parameters to be determined, and ε is a random 

error which is assumed to be white noise and normally and identically distributed. 

According to economic theory β1 and β2 are expected to be positive and negative 
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respectively. Higher real income will increase purchases of motor vehicles and hence 

increase fuel consumption. 

Assuming that the fuel demand followed the traditional in Eq. (1), the change in 

price postulated by the hypothetical question should have led to change fuel consumption. 

Because only the price changes in the hypothetical case, Eq. (1) suggest that the rest of the 

variables should have dropped out. That is, the βi (2≤i≤4) from Eq. (1) should equal zero 

given a change just in prices. However, there is a possibility that different people behavior 

would result in different responses to the proposed changes in price, making βi (2≤i≤4) 

different from zero for some variables. Thus, we propose a modification of the Eq. (1) to 

analyze the influence of annual change in explanatory variables on the annual change of 

fuel consumption: 

 

∆	�ln���� = � + �	∆	�ln ���� + ��∆	�ln ����� + ��∆	�ln ���_���
+ � ∆	�ln ���_��� + %� (2) 

 

where ∆	�= �1 − )	�� and L is the backshift operator, the model could be extended 

when appropriate with different interaction terms. 

The basic double-log model assumes that elasticities are constant over each 

analysis period. However, factors such as the level and change in fuel price as well as to 

different behavioral responses may lead to differences in price elasticity estimated during 

different periods of the year. To investigate these issues, two dummies HS (High-season) 

and LS (Low-season) are included in Equations 1 and 2 to separate the effect of price 
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changes. HS includes May, June, July and August whereas LS gather the rest of the 

months, and will have the following extended models: 

 

ln���� = � + � + �	,+, ln���� ∗ �- + �	,., ln���� ∗ )- + ��ln �����
+ ��ln ���_��� + � ln ���_��� + ! "#$#�

	�

#��
+ %� 

(3) 

∆	�ln���� = � + �	,+,∆	� ln���� ∗ �- + �	,.,∆	� ln���� ∗ )- + ��∆	�ln �����
+ ��∆	�ln ���_��� + � ∆	�ln ���_��� + %� (4) 

 

The most common form used in this chapter, is the log-log specification, largely 

used because it can reduce the potential heteroscedasticity and because it gives direct 

estimate of the relevant elasticities. We performed an initial estimation of the system using 

the log-linear form and conducted RESET tests for functional misspefication. All the 

models passed the Reset test. 

The models were estimated both individually using ordinary least squares (OLS) 

and simultaneously using the seemingly unrelated regression equations method (SURE). 

SURE provides more efficient estimates than OLS when the error terms in different 

equations are contemporaneously correlated. Specific factors associated with each country 

that are not accounted for in the model, such as cultural influences or government policies, 

could give rise to contemporaneous correlation. On the other hand, the different functional 

forms of the equations could mean that such correlation may not exist. For this reason, we 

conducted a Lagrangian multiplier test for the hypothesis that no correlation exists in 

errors across equations and we found this to be insignificant implying that OLS may be 

more efficient than SURE. However, the Lagrangian multiplier test is not definitive, 
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especially for a small sample such as the one used in this analysis. We have thus included 

both an OLS and SUR model in the results that follow, which also useful for comparative 

purposes. 

3.4. Empirical application 

The fuel (diesel oil and gasoline) demands in the Balearic Islands (Spain), a 5,000 

sq. kilometer archipelago situated in the eastern Mediterranean, are used as case study. The 

Balearic Islands can be qualified as one of the most important tourist regions in the world, 

with 1 million of inhabitants and receiving 13 millions of tourist yearly. Since beaches and 

climate are often mentioned as the most central attractors, as in other tourist areas around 

the world, a high degree of seasonality characterizes the Balearics with an 80% of tourist 

arrivals registered during the May-October semester. The suitability of the Balearic 

archipelago as a case study is also supported by the location characteristics that makes 

easy to control periodically the amount of people (tourists and residents) on the islands. 

3.4.1. Data 

The database gathered covers the monthly demand in thousands of liters for the 

automobile diesel oil from January 1986 to November 2009 and for gasoline from January 

1999 to August 2009. The data is sourced from CHL Company (Compañía Logística de 

Hidrocarburos) and provided by Economic Research Center of the Balearics islands 

(CRE). Fuel consumer prices after taxes in Euros were available from official statistics 

(MITYC, 2010) and can be downloaded free of charge. 

Figure3.1 shows the diesel prices and consumptions in the Balearics Islands 

between 1999 and 2009. During this period diesel consumption in average has increased 
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almost 4 times with a growing particularly quick between 1999 and 2006. Between 2006 

and 2009, the growth rate slowed down with a less dramatic fashion than in the period 

before. With respect to Diesel oil price there has been considerable variation between 1999 

and 2009, with a minimum value of 0.523€ per liter in February of 1999 and a maximum 

value of 1.313€ per liter in July 2008. During the period between 1999 and 2004, the diesel 

oil price was relatively stable. After 2004 the price increased till reaching its maximum in 

July of 2008, and then returned to a relative stability on 2009.  

Figure 3 1(a) Diesel oil price (Euros/liter) and monthly diesel oil consumption (thousands 

liters) between 1999 and 2009, (b) Gasoline price (Euros/liter) and monthly gasoline consumption 

(thousands liters) between 1999 and 2007 

 

Figure 3.1 depicts also the price and the consumption of gasoline in the Balearics 

islands between 1999 and 2008. The demand curve follows a negative trend with a fall of 7 

% in average during the period of analysis. As far as prices are concerned, it is shown the 

fluctuation of gasoline prices between 1999 and 2007 with the minimum value of 

0.75€/liter and the maximum value of 1.16€/liter that were reported on October 2003 and 

July 2008 respectively.  

In reference to the economic activity, since income monthly observations are not 

available at a monthly basis, quarterly data on real gross domestic product (GDP) provided 
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by CRE were taken and transformed to monthly data using the cubic spline interpolation 

method.  

For the case of the tourism impact variable, different alternatives were initially 

considered. Since tourism is not traditionally measured in public national accounts, and its 

economic situation and impact must be evaluated through satellite accounts that are often 

elaborated with significant delays and at annual level, the statistics of tourist arrivals, 

which are often used as the real tourism demand (Crouch, 1994), is presented as one of the 

most appropriate indicator to compute tourism pressure.   

Although tourist arrivals constitute a first real alternative to compute the 

contribution of tourism on fuel use, two main drawbacks should be pointed out. First, the 

presence of time lag between arrival date and the day when tourist is effectively 

consuming fuel could result in a bias, and particularly when including tourists arriving at 

the end of the month. Second, and due to tourism pattern which may change during years, 

length of stay could be affected and hence its omission in the analysis could largely affect 

the estimated results. 

In order to overcome these problems Riera and Mateu (2007) developed a Human 

Pressure Daily Indicator (HPDI) for the Balearic Islands that, based on resident population 

registers and daily arrivals and departures from the airports and ports was able to the daily 

stock of people on the islands. The daily indicator was split between residents (HP_R) and 

tourists (HP_T) using data from the Spanish domestic tourist survey (Familitur) in Bakhat 

et al. (2010). Results, on monthly averages, are presented in Figure 3.2.  
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Figure 3 2 Monthly HPDI for the residents and for the tourists in the Balearics 

 

Thus, one of the most important results that can be derived from this analysis is the 

fact that, on annual average, tourists account for a 25% of the total population pressure in 

the archipelago, although for the high season months tourist population pressure is much 

close to the resident one. Otherwise, although it should be admitted that the monthly 

average of the HP_T do not differ significantly from the tourist arrival data, the split 

between tourist and residents provides further knowledge about the presence of both 

populations that can be useful for the design and implementation of policy measures.  

3.4.2. Results and Discussions  

The results of the models are reported in the tables 3.1 to 3.6, and for each model 

the estimates of the parameters associated with the explanatory variables are given. The 

adjusted R-squared, Akaike Info Criterion (AIC) and Schwarz Criterion (SC) were also 

considered for models specification. In addition, the F-test was used for the overall 

significance of the model and a t-test for testing the strength of each of its individual 

coefficients. The Lagrangian multiplier (LM) test of order 2 has been used to check the 

presence of correlation between residuals in both static and dynamic models. Furthermore, 
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stability tests were implemented showing no distortion in the parameter estimates. Thus, 

the results obtained allow concluding that the explanatory variables considered are 

globally significant in explaining the behavior of the endogenous variable. The adjusted R-

squared of the estimated models can be qualified as good, being higher than 0.93 for diesel 

oil and gasoline models. In addition, a subset of variables in the models was tested for 

statistical significance to examine whether they could be omitted. Each of the insignificant 

variables was sequentially deleted, using the general-to-specific-model strategy, while 

significant parameters at a 1%, 5% and 10% level were retained. 

Table 3.1 presents the results of the Equation 1 estimation. Using either OLS or 

SUR models, the results indicate that resident human pressure, real price and income all 

influence the long-run demand for diesel. Both, real price and GDP are significant with an 

expected negative sign for the price parameter estimate, and both estimates are consistent 

with the economic theory. The price and income elasticity estimate of diesel demand are -

0.693 and 0.842 respectively (-0.684 and 0.834 with SURE).  
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Table 3 1Estimated models for diesel and gasoline consumption in the Balearics 

 Dependent variable Level of diesel consumption Level of gasoline consumption 

 OLS SUR OLS SUR 

LOG(HP_R) 0.469** 0.470*** 0.028 0.048 

LOG(HP_T) 0.009 0.009 -0.002 -0.003 

LOG(RP_GAS 0.038 0.030 - -

LOG(RP_DIE -0.693*** - - - 

LOG(RGDP) 0.842** 0.834*** 0.186 0.358 

C -1.876 -1.840 - -

T -  9.128** 8.002**

M2 0.107*** 0.107*** 0.036* 0.035* 

M3 0.172*** 0.172*** 0.145** 0.141**

M4 0.211*** 0.212*** 0.218** 0.215**

M5 0.329*** 0.329*** 0.303** 0.301**

M6 0.425*** 0.426*** 0.368** 0.368**

M7 0.536*** 0.537*** 0.487** 0.487**

M8 0.584*** 0.585*** 0.555** 0.556**

M9 0.439*** 0.439*** 0.369** 0.372**

M10 0.267*** 0.267*** 0.278** 0.280**

M11 0.098*** 0.098*** 0.063** 0.066**

M12 0.091*** 0.091*** 0.095** 0.097**

Equation Statistics        

Adjusted R-Squared 0.933686 0.933684 0.97561 0.97557

Log likelihood 173.3798  213.009  

Durbin-Watson stat 2.117341 2.117407 2.10665 2.10388

AIC -2.895922  -  

SC -2.473735  -  

F-statistic 95.15885  268.542  

Proba(F-Statistic) 0.000000  0.00000  

LM(13) 0.233176  0.39228  

Note: *** significant at 1%, ** significant at 5%, * significant at 10% 

 

As for population stock variables, the estimate of resident human pressure is 

significant with an expected positive sign, whereas tourist human pressure variable is not 

significant. All the coefficients for the dummy variables related to the monthly seasonality 
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are positive and significant. These results imply that July and August are the months when 

more diesel is consumed. For the disturbance terms, no presence of serial autocorrelation 

in the residuals of the dynamic model has been detected.  

Similarly, the same analysis was conducted for gasoline and the results are reported 

in table3.1. In the case of gasoline demand, GDP and resident human pressure variable are 

no more significant. As expected, and with concordance with the literature(Sterner, 1990), 

the price elasticity estimate in gasoline (-1.074 and -1.081 with OLS and SURE 

respectively) model have a negative sign and is greater in magnitude than its correspondent 

in diesel oil model, showing that consumers in the long-run are more sensitive to price 

changes of gasoline than that of diesel oil. In addition, the negative trend present in the 

gasoline models is more likely due to the adoption of the dieselization policy in Spain 

during the last decade. In other words, the numerous incentives for diesel vehicles along 

with higher fuel efficiency could have boosted sales of diesel, independently of changes in 

income. Different simulations were undertaken in order to evaluate two general alternative 

tourist policy measures related to, first, the implementation of additional fuel taxes (with 

special reference to a seasonal fuel tax) and, second, to the promotion of additional tourists 

to the destination. 

The results from Table 3.2, present the “seasonal price elasticity” for both diesel 

and gasoline. The low and high seasons price elasticities for diesel are -0.642 and -0.805, 

respectively. For gasoline, the estimates are -1.077 and -1.057, which again are consistent 

with the literature. Again, for each season demand is more price elastic for gasoline than 

diesel. In addition, price elasticities for gasoline demand are almost similar in low and high 

seasons, for diesel, as we shift from low to high season it seems that people become more 

sensitive to price changes.  
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Table 3 2 Price elasticity results of fuel demand in high and low seasons 

 Dependent variable Level of diesel consumption Level of gasoline consumption 

 OLS SUR OLS SUR 

LOG(HP_R) 0.522*** 0.528*** 0.024 0.047 

LOG(HP_T) 0.010 0.010 -0.002 -0.003 

LOG(RP_GASOLINA) 0.060 0.062   

LOG(RP_DIESEL)  -0.017 -0.013 

LOG(RGDP) 0.769** 0.760** 0.198 0.397 

C -2.447 -2.514 9.137*** 7.832*** 

T - -0.005*** -0.005*** 

M2 0.111*** 0.112*** 0.035* 0.035* 

M3 0.170*** 0.170*** 0.145*** 0.141*** 

M4 0.210*** 0.210*** 0.217*** 0.215*** 

M5 0.298*** 0.294*** 0.303*** 0.301*** 

M6 0.395*** 0.391*** 0.368*** 0.368*** 

M7 0.505*** 0.501*** 0.487*** 0.488*** 

M8 0.556*** 0.553*** 0.555*** 0.557*** 

M9 0.436*** 0.436*** 0.368*** 0.372*** 

M10 0.261*** 0.260*** 0.278*** 0.280*** 

M11 0.096*** 0.096*** 0.064*** 0.066*** 

M12 0.090*** 0.090*** 0.095*** 0.097*** 

LOG(RP_DIESEL)*LS -0.648*** -0.642***  - 

LOG(RP_DIESEL)*HS -0.793*** -0.805***  - 

LOG(RP_GASOLINA)*L - - -1.063*** -1.077*** 

LOG(RP_GASOLINA)*H - - -1.046*** -1.057*** 

Equation Statistics        

Adjusted R-Squared 0.934227 0.934209 0.975079 0.979222 

Log likelihood 174.4184  213.0381  

Durbin-Watson stat 2.110295 2.106155 2.10747 2.102903 

AIC -2.896637  -3.593298  

SC -2.449615  -3.121442  

F-statistic 90.39999  233.583  

Proba(F-Statistic) 0  0  

LM(13) 0.269502  0.398608  

Note: *** significant at 1%, ** significant at 5%, * significant at 10% 

 

Table 3.3 summarizes the results for the null hypotheses tested for analyzing 

whether price elasticity changes when we shift from high to low season. The obtained P-
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values reveal that for both diesel and gasoline, the equality hypothesis for the price 

elasticity coefficients for high and low seasons is accepted for high probability levels. 

Thus, price elasticities corresponding to low and high seasons cannot be considered 

statistically different. In addition, horizontal hypothetical tests for price elasticity equality 

have been computed by season, to compare if price elasticity in particular season differs 

statistically between fuel types. Results show that during high season price elasticity of 

diesel is statistically not different from its correspondent of gasoline, whereas in low 

season, there is uncertainty to accept the equality hypothesis for the price elasticity 

coefficients. 

Table 3 3 Results for the different seasonal elasticity homogeneity tests (variables in level) 

 Monthly elasticity 

 �0 Hypothesis F-statistic P-value 

Diesel �0,�- = �0,)-   1.747730 0.1895 

  

Gasoline ��,�- = ��,)-   0.022438 0.8813 

 12-statistic P-value 

Diesel vs Gasoline, in Low -season �0,)- = ��,)-   3.599842 0.0578 

Diesel vs Gasoline, in High -season �0,�- = ��,�-   1.142044 0.2852 

 

 

Using Equation (2), table 3.4 represents the results of the change in fuel (Diesel and 

Gasoline) consumption in Balearic Islands. The respective price elasticity estimates for 

diesel and gasoline are -0.754 and -1.097, which are consistent with the literature. Based 

on Equation (4), the results from Table 3.5, present the “seasonal price elasticity” for both 

diesel and gasoline. For diesel, the low and high seasons price elasticities are -0.725 and -

0.916, respectively. Whereas, for gasoline, the estimates are -1.074 and -1.171, again are 
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consistent with the literature. Again, for each season demand is more price elastic for 

gasoline than diesel. In addition, price elasticities for gasoline demand are almost similar 

in low and high seasons, for diesel, as we shift from low to high season (and vice versa) it 

seems that people become more sensitive to price changes.  

Table 3 4 Estimated models for diesel and gasoline consumption in the Balearics 

 Dependent variable  Change in diesel consumption Change in gasoline consumption 

 OLS SUR OLS SUR 

∆12LOG(HP_R) 0.558** 0.557** 0.007 0.007 

∆12LOG(HP_T) 0.012 0.012 -0.001 -0.001 

∆12LOG(RP_GASOLINA) 0.114 0.110 -1.097*** -1.097*** 

∆12LOG(RP_DIESEL) -0.754*** -0.752*** -  

∆12LOG(RGDP) 0.419 0.426 0.742 0.742 

C 0.804** 0.769** -0.067*** -0.067*** 

    

Equation Statistics        

Adjusted R-Squared 0.493369 0.493318 0.757343 0.757343 

Log likelihood 119.6546  151.8104  

Durbin-Watson stat 2.033304 2.039041 2.052914 2.052914 

AIC -2.346971  -3.05855  

SC -2.159987  -2.92499  

F-statistic 16.41887  75.12481  

Proba(F-Statistic) 0  0  

LM(13) 1.321293  2.294577  

Note: *** significant at 1%, ** significant at 5%, * significant at 10% 

 

Similarly, Table 3.5 summarizes the results for the null hypotheses tested for 

analyzing whether a shift from low season to high season (and vice versa) would affect 

price elasticity of fuel demand. The results from P-values reveal that for both diesel and 

gasoline, the equality hypothesis for the price elasticity coefficients for high and low 
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seasons is accepted for high probability levels. Thus, price elasticities corresponding to 

low and high seasons cannot be considered statistically different. To compare if price 

elasticity in a particular season differs statistically between fuel types, we found that 

during high season price elasticity of diesel is statistically not different from its 

correspondent of gasoline, whereas in low season, the equality hypothesis for the price 

elasticity coefficients is rejected at 5% significance level.  

In summary, using either Equation (1) or (2), demand of diesel oil is in general less 

elastic compared to gasoline demand. The long-run price elasticities range between -0.68 

and -0.75 for diesel and range between -1.08 and -1.09 for gasoline. Again, these results 

tally with the literature which shows that many gasoline consumers are price sensitive than 

diesel consumers. In addition, homogeneity tests for price elasticities show that seasonal 

fuel price elasticities estimates are statistically equal. On the other hand we found that, in 

high season, consumer price elasticity estimates are statistically not different for either 

diesel or gasoline.  
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Table 3 5 Price elasticity results of fuel demand in high and low seasons (variables in difference) 

  Diesel Gasoline 

 OLS OLS 

∆12LOG(HP_R) 0.564** 0.563** 0.015 0.015 

∆12LOG(HP_T) 0.011 0.010 -0.001 -0.001 

∆12LOG(RP_GASOLINA) 0.094 0.094 -  

∆12LOG(RP_DIESEL) - - -  

∆12LOG(RGDP) 0.710 0.710 0.794 0.793 

C 0.001 0.001 -0.068 -0.067 

∆12LOG(RP_DIESEL)*LS -0.725*** -0.725*** -  

∆12LOG(RP_DIESEL)*HS -0.916*** -0.916*** -  

∆12LOG(RP_GASOLINA)*LS -  -1.074*** -1.074*** 

∆12LOG(RP_GASOLINA)*HS -  -1.171*** -1.171*** 

Equation Statistics        

Adjusted R-Squared 0.493369 0.493318 0.757343 0.757343 

Log likelihood 119.6546  151.8104  

Durbin-Watson stat 2.033304 2.039041 2.052914 2.052914 

AIC -2.346971  -3.05855  

SC -2.159987  -2.92499  

F-statistic 16.41887  75.12481  

Proba(F-Statistic) 0  0  

LM(13) 1.612907  2.317552  

Note: *** significant at 1%, ** significant at 5%, * significant at 10% 
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Table 3 6 Results for the different seasonal elasticity homogeneity tests (variables in difference) 

 Seasonal elasticity 

 �0 Hypothesis  F-statistic P-value 

Diesel �0,�- = �0,)-   1.239864 0.2685 

 

 

 

Gasoline ��,�- = ��,)-   0.457452 0.5006 

 

  12-statistic P-value 

Diesel vs Gasoline, in Low -season �0,)- = ��,)-   3.904231 0.0482 

Diesel vs Gasoline, in High -season �0,�- = ��,�-   1.175909 0.2782 

 

 

3.5. Policy implications and conclusion 

In this study diesel oil and gasoline demands have been estimated in the context of 

a tourist region characterized by high seasonal fluctuations of population on the territory. 

The case study of the Balearic Islands is undertaken confirming that fuel consumption 

responds positively to changes in income and negatively to changes in prices, a consistent 

result with literature. In addition, results show that resident human pressure is also a 

significant factor in explaining diesel oil demand.  

Estimated elasticities have been used to analyze different price and tourist policies. 

Thus, from the tax analysis, the relatively low price-elasticity shows how the internalizing 

mechanism that could be argued for introducing the tax in order to reduce transport 

externalities does not work. Although, an increase in fuel prices should be used as an 

effective tax collection instrument, that would benefit for a high level of exportability 

(taxes would be paid in a high rate by non-residents, that is, by non-voters) the 

homogeneity tests for price elasticities in low and high seasons show that applying these 
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taxes regularly and only during the high season is an inadequate measure. Our results 

indicate that if an environmental surcharge is added to gasoline taxes, then the additional 

tax will decrease gasoline consumption only slightly and, therefore, will have little effect. 

For example, the price elasticity estimates suggest that a 17% increase in gasoline prices (a 

0.20€ per liter) would decrease gasoline consumption by only 18%., and the growth rate 

would happen if we apply the tax only in high season. Therefore, as far as this analysis is 

concerned, we think that it is not apparent that it would be worth pursuing such an 

inappropriate tax for a small improvement in the environment.   

New trends in tourism point towards an increase in tourist mobility in the host 

region. Thus, findings of this study appear to be significant policy implications for 

specialized tourist economies, particularly with respect to the way in which taxation could 

help government increase fiscal revenues and regulate the level/structure of fuel 

consumption from a temporal point of view. In any case, as a limitation of this study, it 

should be noted how price elasticities have been estimated, considering both resident and 

tourist population jointly. Although, results are valid in mean terms, future research will 

have to focus in trying to estimate if different price elasticities characterize these two fuel 

consumers groups. An additional limitation of this study arise in the fact that a complex 

relationship do exist between tourism, income and fuel demand. Changes in GDP could be 

due to the changes in the tourism activity which is the main economic sector in a tourist 

area. Thus, we assume in this study, that tourism has a direct effect on diesel oil demand, 

whereas the effect of other sectors is induced by the GDP variable in the specification 

model.  
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Chapter 4 Seasonality and trends of monthly tourist arrivals and electricity load time 

series  

 

 

  
Abstract:  

This chapter presents empirical evidence on the non-stationary seasonal patterns in several monthly 

time series related to tourist arrivals and electricity consumption in Balearics islands, Spain. The 

seasonal integration and periodic models are investigated. The analysis implemented in this chapter 

is selected on the basis of a battery of parametric and non-parametric tests. The outcome of the 

applied tests indicates that periodically or conventionally integrated process best captures the 

movements in the tourist arrivals and total electricity consumption series in Balearics islands.  

 

Keywords: tourist arrivals, electricity consumption, seasonality, periodic and seasonal integration.   
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4.1. Introduction 

The reliability of empirical studies is often endangered by the nonstationarity of the 

analyzed variables. When data of higher frequency (monthly or quarterly) are analyzed 

problems may reappear as consequence of neglecting seasonality in the series. This is 

because many time series models widely used in practice require a pre-knowledge of 

statistical properties of trend and seasonality. Treating stochastic seasonality (trend) as 

deterministic, or vice versa, is a misspecification and may have some adverse effect on the 

performance of a time series model. It is well-known that some of the macroeconomic time 

series display stochastic trends, moreover, when working with seasonally observed data 

stochastic seasonal cycles may exist as well. When these components, trend and 

seasonality, do not evolve independently, traditional differencing filters may not be 

suitable. According to periodic autoregressive time series models, a seasonally varying 

autoregressive parameters and a periodic differencing filter are proposed for that case. 

Though the latter embeds the former, the two models exhibit different characteristics, both 

univariate and multivariate. In the case of monthly data, seasonal integration is defined in 

relation to the twelve unit roots implied by the annual difference operator �1 − )	�� where 

L is the lag operator, with one underlying stochastic trend implicitly associated with each 

of these unit roots (twelve stochastic trends).  

On the other hand, for the observed series 456 ,where  7�1,2, … , 12� and  
; �1,2, … , �� refer to the season and the year respectively, the periodic approach views 

these series, as twelve separate I(1) processes with eleven cointegrating relationship 
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between them. Therefore, a process is said to be periodically integrated when it has a 

single stochastic trend. 

A number of studies show that periodic processes can arise naturally from the 

application of economic theory to modelling decisions in an economic context, and their 

role should not be ignored as unimportant. Gersovitz and Mac kinnon (1978) and Osborn 

(1988) argue that a process of this type arises when modelling the seasonal decisions of 

consumers, while Hansen and Sargent (1993) suggest that it could also arise from seasonal 

technology. 

Once it is admitted that the underlying economic driving forces such as preferences 

or technologies may vary seasonally, and then subtle periodic seasonal effects may come 

into play. The finding of Ghysels and Nerlove (1988) in investigating seasonality in 

consumer expectations, show that sometimes consumers appear to have difficulties in 

disentangling seasonal and trend patterns.The implication of periodic integration is that the 

stochastic trend and the seasonal fluctuations are not independent, in the sense that 

accumulations of shocks can change the seasonal pattern and that the time series cannot be 

decomposed in two strictly separate trend and seasonal components. Periodically 

integrated model for a univariate time series can yield a useful description of the 

correspondence that may exist between seasonal and nonseasonal fluctuations. 

On the other hand, our empirical study is motivated by the fact that in many 

international tourist destinations and particularly Balearics islands (Spain) the intra-year 

variations of tourist arrivals are evident. The islands currently constitute one of the 

Mediterranean leading destinations with an annual volume of foreign arrivals that 

represent more than 1% of world tourism. Tourists, who usually visit the Islands are often 

referred to as mass “sun and sand” tourists. In addition, they are also characterized by a 
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high repeat rate, about 75% in this category. Another characteristic that must be 

highlighted is the predominance of international arrivals with (domestic only 13% of the 

total), particularly from Germany and United Kingdom, which together represent about 

80% of all arrivals. This Balearics islands market segment has led it to an extreme 

seasonality shape, with more than 80% of total arrivals during the May-September period. 

Moreover, over the past few years, holiday preferences seem to be changing, with more 

tourists inclined to separate their holidays into several sub-periods, as this give them the 

opportunity to take summer and winter breaks (Rosselló et al., 2004). 

Although the economic benefits generated by arrivals and revenues is highly 

significant, tourism sector, unfortunately, is considered a major source of environmental 

impacts and resources consumption, particularly, energy (Becken & Simmons, 2002; 

Gossling, 2000). In this general context, the close correlation between energy demand and 

population pressure is highly significant, because it illustrates and justifies, beyond 

questions of efficiency, the increasing pressure on energy resources. For instance, between 

June and September sales of electricity account for an average of 38,2% of  the total sales 

in Balearics (Aguiló and Riera, 2009). Therefore, a better analysis of energy consumption 

will provide an opportunity to better understand the emerging trends and seasonality 

patterns of this vital sector, and thus, for better decision making in terms of overall 

regional marketing and promotion, touristic product development, investment attraction 

and infrastructure provision. 

In the present article our running example assumes data sampled monthly, for 

which a high degree of over-parameterization is likely to occur in a periodic context. The 

sample comprises 29 years of observations of monthly arrivals at the airports of Balearics 

islands, 26 years of monthly total electricity consumption in the Balearics and 18 years of 
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the disaggregated electricity consumption per sector. The data of tourist arrivals and total 

electricity consumption exhibit a strong degree of periodic variation over the months of the 

year, as well as a strong seasonal variation over the year. Similar pattern is also observed 

for electricity consumption for some economic sectors. 

Thus, the objectives of this study are to summarize the intra-year variation in the 

series and to explain long-term changes in yearly pattern of data analyzed exploring 

seasonal and periodic integration. For this purpose, stochastic seasonality is tested using 

the standard HEGY test and another efficient version called HEGY-GLS proposed by 

Rodrigues and Taylor (2007). For periodic integration, we use the test proposed by 

Boswijk and Franses (1996). However, due to the presence of high degree of 

parameterization involved in the analysis of periodic integration, and especially for 

monthly data, we extend our analysis with two additional nonparametric test proposed by 

del Barrio Castro and Osborn (2011). Finally, we apply Johansen method to the vector 

autoregressive model (VAR) to estimate the number of cointegration relations between the 

annual series (Johansen, 1988). 

It has been found that the movements in German tourist arrivals, British tourist 

arrivals, international tourist arrivals and total electricity consumption are best captured by 

a periodically integrated process, which means that for each of these series, the seasons 

share the same stochastic trend. None of the other variables exhibits periodically varying 

dynamics. The finding of periodic integration for these time series has an important 

implication. The importance of periodic integration is present in the fact that a shock to a 

season, for instance January, is transmitted to all the seasons (all the months) of the year, 

and particularly, the shocks’ effect is different in each season. Whereas, the existence of 

seasonal integration implies a varying seasonal pattern where “summer may become 



Chapter 4 - Seasonality and trends of monthly tourist arrivals and electricity load time series  

104 

winter” see Osborn (1991). In most cases, such a situation is not feasible and the finding of 

seasonal unit roots should be interpreted with care and taken as an indication of a varying 

seasonal pattern. 

The rest of the chapter is structured as follows. Section 2 describes the 

characteristic features of the dataset. Section 3 exposes the econometric methodology used 

in the chapter. Section 4 presents the results and a discussion of the empirical data, and the 

chapter concludes with Section 5.  

4.2. The dataset 

We start by presenting some properties about the data to be examined later to 

motivate some of the empirical analyses to be undertaken. The data used in the article 

comprises of German and British arrivals, international tourist arrivals, and total and 

sectoral electricity consumption in Balearic Islands. There are many explanations to 

support the suitability of the Balearics airports data. First due to locations characteristics, 

tourists arriving by boat (4%) are in a minority compared to those who come by plane 

(96%). This constitutes an advantage over other regions, which must estimate arrivals 

using road transport. Second, for many decades the islands have had a high presence of 

international sun-and-sand mass tourism and, consequently, the same typology has 

remained stable over the course of time. Finally, another factor was the certainty that the 

data had been correctly gathered, without changes in the compilation method. The data are 

taken from the official statistics for air passengers to airports to airports in the Balearics 

and it is compiled periodically by Aeropuertos Españoles y Navigación Aérea (Spanish 
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Airports and Air Navigation), whereas for electricity data it was compiled by the Spanish 

System Operator Red Electrica de España with no missing observations were present. 

The data for tourist arrivals (German, British and International) span the period 

from January 1980, to December 2008, and the period from January 1991 to December 

2008 for sectoral electricity consumption, whereas for total electricity consumption the 

data start from January 1983 and end on December 2008. This corresponds to 348 months 

(29 years) for tourist arrivals, 216 months (18 years) for sectoral electricity consumption, 

and 312 months (26 years) for total electricity consumption. 

Figure 4 1 The time series processes 
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From Figure 4.1, the yearly variation of tourist arrivals data and electricity 

consumption data is most obvious. Particularly, international tourist arrivals and total 

electricity consumption time series exhibit a strong seasonal pattern with peaks in high 

season.  

For instance, the four series of tourist arrivals in Figure 4.1 show significant 

seasonality fluctuations in addition to a trending pattern which is clearer in the case of 

international tourist arrivals.  Similarly, electricity consumption series exhibit marked 

seasonal variations, and almost all of them are trending upward except for the case of 

electricity consumption in industry. For example, total electricity consumption series show 

a clear upward trend and pronounced seasonal fluctuations during the whole sample 

period.  

A further aspect of the present dataset concerns the possibility to represent a 

process 45� in a multivariate process for the (12x1) vector  <6 containing the annual 

series 456, where  456 is the observation in season s in year ;. The annual index ;  runs from 

1 to N where N=n/12 is the number of the years in the data. As shown in the Figure 4.2 

which represents the graphs of the  456 series for German tourist arrivals; British tourist 

arrivals; international tourist arrivals and the total electricity consumption, to which we 

applied a log transformation. It can be seen that for each of the series, the patterns of the 

twelve seasons seem to evolve similarly over time. Hence, there seems to be visual 

evidence for the presence of a co-movement between the elements of <6. This property can 

indicate to the presence of periodic integration or non-periodic integration, a further insight 

to this type of series will be explained in depth in the next sections. 
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Figure 4 2 Monthly series of British/ German/ International tourist arrivals and total 

electricity consumption 
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encompassed within the periodic model for certain restrictions on the parameters, and 

hence these restrictions can be tested. Thus, the model framework is rather flexible. First 

we review some known properties of periodic models. 

It is clear that periodic models are the most general models which embed both 

seasonal integration and simple integration (or non-periodic integration), as special cases. 

The neglect of periodicity, on the other hand, not only leads to misspecification of the 

models but its hide some important information relating to periodic variation in the 

parameters of interest. Similarly, the presence of seasonal unit roots, even in non-periodic 

models, invalidates the analysis which is based on the assumption that the seasonality can 

be taken care of by simply including seasonal dummies in the relevant equations (see, 

Abeysinghe (1991,1994) and Franses et al. 1995, among others). It would be better to start 

with periodic models and then move to simpler models if the characteristic of data permit. 

This the strategy followed in the present study.  

The periodic autoregressive process of order p, PAR(p), is defined by the equation 

 45,6 = �5 + �5; + =	5 45>	,6 + =�5 45>�,6 + ⋯ + =@5 45>@,6 + A56,             
                                           7 = 1,2,3, … , 12           ; = 1,2, … , �   

(1) 

 

in which A56is white noise. Including �5 and �5 in the equation we allow for 

periodically varying intercepts and trends. Note, however, that all the coefficients in this 

process may vary over seasons  7 = 1,2,3, … , 12. The conventional (nonperiodic) AR (p) 

process is a special case where   =�5 = =� (7 = 1,2,3, … , 12) for all C = 1,2,3, … , �. 

However, in the presence of seasonality, it is important to consider the possibility that the 

process may be periodic, with at least some of the AR coefficients in (1) varying over the 

year. 
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It is more convenient to consider the notation of Boswijk and Franses (1996) to a 

PAR(p) model, assuming  45,6 is integrated of order 1, equation (1) is written as 

 �45,6 − D5 45>	,6� = �5∗∗ + �5∗∗; + ! E�,5 �45>�,6 − D5>� 45>	>�,6�
@>	

��	
+ A56,             

                                           7 = 1,2,3, … , 12           ; = 1,2, … , �   
 
 

(2) 

With D5>	�F = D5 and  ∏ D5 = 1.	�5�	  E�,5 is a nonlinear function of �5; �5 and =5.  
�5∗∗; �5∗∗  capture the varying intercepts and trends. In the special case D5 = 1�7 =
1,2, … ,12�, (2) may be a periodic I(1) process, such that the first difference is a stationary 

PAR(p-1) process. On the other hand, when ∏ D5 = 1	�5�	  but not all D5 = 1�7 =
1,2, … ,12� in  (2),  45,6 is periodically integrated, or PI(1), see Ghysels and Osborn (2001, 

pp. 153-155) for more discussions of these possibilities.  

The periodic process described by model (1) is nonstationary as the variance and 

autocovariances are time-varying within the year. For some purposes a more convenient 

representation of a PAR (p) process is given by rewriting it in a vector of seasons form (see 

Tiao and Grupe (1980), Osborn (1991), Franses (1994), among others), this utilize the 

vector <6 = �4	6, 4�6, 4�6, … 4	�6�′ and the disturbance 

process  K6 = �A	6, A�6, A�6, … A	�6�′ . The corresponding vector representation to (1) is 

given by 

LM<N = O + PN + LQ<N>Q + LR<N>R + ⋯ + LS<N>S + KN (3) 

  ; = 1,2, … , � 

where the vector autoregression (VAR) has order � = T�� + 1� 12U V + 1 and 

W. X indicates the integer part of the expression in the brackets. Including 
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O = ��	, ��, ��, … , �	��′ and = ��	, ��, ��, … , �	��′ , which  O and PN represent vectors of 

seasonal intercepts and seasonal trends respectively.  

The unit root properties of the multivariate process <N determine those of the 

monthly process 45,6. Define the matrix lag polynomial  

L�YQR� = LM − LQZQR − ⋯ − LSZQRS 

where  )45,6 =  45>	,6 (with  )4	,6 =  4	�,6>	) and  )	�45,6 =  45,6>	. When all the 

roots are of the characteristic equation [L�YQR�[ = M lie outside the unit circle, the process 

<N is stationary. It is usual to express the regression in (3) in the vector autoregressive 

(VAR) representation. The multivariate representation can be used to select among the 

different types of unit roots by means of cointegration analysis (Johansen 1991). This 

procedure was proposed by Franses (1994) for quarterly data. The same method can be 

used to test for periodic integration of monthly series. For a monthly process the model is 

expressed as 

∆	�<6 = O + PN + \<6>	 + ! L#∆	�<6># + KN
]

#>	
 

4) 

where KN~C__�0,Σ� is a white noise vector with Σ being positive definite. The 

different types of unit roots in the monthly processes are associated with different 

properties of the impact matrix \ . Following Osborn (2000), we then have the following 

three definitions: 

456 is Integrated, 456~��1� , if rank(Π) = 11 and the eleven cointegrating relations 

are 4�6 − 4	6, 4�6 − 4�6, … , 4	�6 − 4		6 i.e. the monthly changes are the cointegrating 

relations. 
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 456 is Periodically Integrated, 456~���1� , if rank(Π) = 11 and the eleven 

cointegrating relations are 4�6 − D	4	6, 4�6 − D�4�6, … , 4	�6 − D		4		6with not all 

D5 = 1�7 = 1,2, … ,12�. 

456 is Seasonally integarted, 456~-��1� , if rank(Π) = 0 which implies Π = 0. 

Hence, there is no cointegration between the series for the individual seasons. 

When \ has rank 0 ≤ a < 12, and proper restrictions on the cointegration space 

apply (see, Franses 1994), 456 is a integrated at some frequencies (see Hylleberg et 

al.1990; Ghysels and Osborn 2001; Del Barrio Castro, 2007). 

To test periodic integration Boswijk and Franses (1996) analyze the distribution of 

the likelihood Ratio with the restriction ∏ D5 = 1.,5�	  versus the alternative ∏ D5 < 1,5�	  

in (2), with this statistic defined by 

)� = � ln c�--d�--	e 

 

5) 

where  �--d and �--	 denote the sum of the squared residuals of the estimated 

PAR (p) model under the restriction of periodic integration and without this restriction 

respectively. The latter can be obtained directly from the estimated residuals of the 

regression model (1). To obtain the residuals under the null, one has to estimate the 

PAR(p) model under the nonlinear restriction of periodic integration using nonlinear least 

squares  

(NLS). As this restriction may be complex in higher order PAR models, it is more 

convenient to consider the PAR model in (2). 
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Although Boswijk and Franses (1996) consider the case of quarterly data, it is 

evident that the test can be performed to data at other periodicities, such as monthly. 

However, from a practical perspective, it may be difficult to implement for seasonal data 

with higher periodicity than quarterly, as the analysis is highly parameterized in such 

cases. In addition, estimation of (2) subject to the restriction  ∏ D5 = 1.,5�	  requires the use 

of non-linear methods. Del Bario Castro and Osborn (2011), proposed two nonparametric 

methods to test the null hypothesis of periodic integration that avoids these difficulties. 

The proposed methods are a generalization of the variance ratio test of Breitung (2002) 

and the Sargan and Bhargava (1983) test, with the latter in the modified form suggested by 

Stock (1999). 

The variance ratio statistic for a given season s is given as 

                                  f�5 = �>� ∑ gh56�i6�	∑ jk56�i6�	  7 = 1, … - 

6) 

where is the season-specific partial sum jk5	 + jk5� + ⋯ + jk56 with jk56obtained as 

the OLS residuals jk56 = 456 − l5′ m6 from a regression of observations for season 

s, 456�; = 1, . . , �� on m6 = �1, ;�′. In order to test the PI(1)/I(1) null hypothesis, the 

proposed average variance ratio statistic is f�n = ->	 ∑ f�5,5�	 where each f�5is defined 

in (6).  

In addition, for a ���1� or ��1� process the overall statistic f�n have the same 

asymptotic distribution as that in Breitung (2002). Therefore, the critical values of 

Breitung (2002, Table 5) can be used in order to implement the test based on f�n. 
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The season-specific modified Sargan and Bhargava (MSB) test statistic proposed 

by del Bario Castro and Osborn (2008) is based on the works of Stock (1999) and Sargan 

and Bhagava (1983), and is defined as 

$-o5 = p�>� ∑ jk5,6>	�i6�	qk5r s
	�   7 = 1, . . ; - 

(7) 

which requires an appropriate long-run variance estimator qk5r for the annual 

difference ∆j56 = j56 − j5,6>	 relating to season s. To obtain a consistent estimator, the 

approach of Newey and West (1994) is followed using two sets of weights, Barlett kernel 

and the quadratic spectral kernel (See del Bario Castro and Osborn, 2008). Analogously to 

the test in the previous sub-section the average MSB statistic    $-on = ->	 ∑ $-o5,5�	  is 

proposed for testing the null hypothesis of an I(1) or PI(1) process. For both ���1� and 

��1� processes, the    $-on statistic follows the same asymptotic distribution as that in 

Stock (1999). 

The HEGY regression, if we consider the seasonal dummies and deterministic 

trends, takes the following form: 

∆	�45,6 = q5∗∗ + t5∗∗; + ud∗45,6>	d + uv∗45,6>	v

+ ! uF,w∗ 4F,5,6>	w +
x

F�	
! uF,y∗ 4F,5,6>	y +

x

F�	
! =#∗∆,45,6>	

]

#�	
+ %5,6 

8) 

where P is the order of augmentation and in practice it is determined using the AIC 

and SC information criterion, for other methods used to determine the lag augmentation 

polynomial in the HEGY test regression, see del Barrio et al. (2010). and ∆	�= 1 −
)	� with L the usual backshift operator ()456 = 45>	,6�, and the auxiliary variables are 

specified as  
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45,6d =∑ 45,6>#		#�d  , 45,6v =∑ cos}�~ + 1�u� 45,6>#		#�d   , 

4F,5,6w =∑ cos}�~ + 1��F� 45,6>#		#�d  , 4F,5,6y =− ∑ sin}�~ + 1��F� 45,6>#		#�d  

�F = 2u�12 ,     � = 1, 2, … , 5, 7 = 1, . . ,12, ; = 1, … , �. 

To test the null of unit root at the zero, Nyquist and harmonic seasonal frequencies 

imply that ud∗ = 0, uv∗ = 0 and uF∗ = uF∗∗ = 0, � = 1, … ,5. Therefore, we use the usual 

regression statistics:  �̂d (left-tailed) for the exclusion of 45,6>	d ,   �̂v(left-tailed) for the 

exclusion of 45,6>	v  and ��Ffor the exclusion of both 4F,5,6>	w and 4F,5,6>	y . Multiple frequency 

unit root test is also considered, using the F-statistics, ��	,..,v, for the exclusion of 

�4#,5,6>	w �#�	
v

and �4#,5,6>	y �#�	
v

, and  ��d,..,v for the exclusion of �4#,5,6>	w �#�d
v

and �4#,5,6>	y �#�	
v

 

The overall HEGY null hypothesis of seasonal integration, 45,6~-��1� implies the 

presence of unit roots at zero frequency (captured through ud∗) and at the seasonal 

frequencies (captured through uv∗, uF∗ , uF∗∗), so that that ud∗ = 0, uv∗ = 0 and uF∗ = uF∗∗ =
0, � = 1, … ,5. 

One of the problems of Standard HEGY test is encountered in its low power, 

especially in small sample, therefore, and in order to circumvent this problem we apply the 

HEGY-GLS test proposed by Rodrigues and Taylor (2007) built upon the approaches of 

Gregoir (2006) and Elliot, Rothenberg and Stock (1996). This test is based on the 

following auxiliary regression equation, 
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∆	�4k5,6 = ud∗4k5,6>	d + uv∗4k5,6>	v

+ ! uF,w∗ 4kF,5,6>	w +
x

F�	
! uF,y∗∗ 4kF,5,6>	y + ! =#∗∆,4k5,6>	

]

#�	
+ %5,6

x

F�	
 

7 = 1, . . ,12, ; = 1, … , �. 

9) 

For more details concerning the construction of the local GLS de-trended data 

4k5,6 see Rodrigues and Taylor (2007). 4k5,6d , 4k5,6v , 4kF,5,6w  and  4kF,5,6y  are the usual HEGY 

transformations. 

 Similarly, the unit root at the zero, Nyquist and harmonic seasonal frequencies 

imply that ud∗ = 0, uv∗ = 0 and uF∗ = uF∗∗ = 0, � = 1, … ,5. Therefore, we use the usual 

regression statistics:  �̂d (left-tailed) for the exclusion of 4k5,6>	d ,   �̂v(left-tailed) for the 

exclusion of 4k5,6>	v  and ��Ffor the exclusion of both 4kF,5,6>	w and 4kF,5,6>	y . Multiple frequency 

unit root test is also considered, using the F-statistics, ��	,..,v, for the exclusion of 

�4k#,5,6>	w �#�	
v

and �4k#,5,6>	y �#�	
v

, and  ��d,..,v for the exclusion of �4k#,5,6>	w �#�d
v

and �4k#,5,6>	y �#�	
v

. 

Given the unavailability of the critical values for the F-statistics, ��	,..,v and  ��d,..,v, 

some Monte Carlo experiments were conducted for this purpose. The number of 

replications in the Monte Carlo experiment was set to 100.000, and the critical values of 

the small sample distributions are displayed for the following different combinations of 

deterministic terms: 1) zero- and seasonal frequency intercepts, 2) zero- and seasonal 

intercepts and trends. The critical values of the one-tailed t-test and the F-test statistics 

were generated for 18, 26 and 29 years of monthly observations. All in all, 0.01; 0.025; 

0.05; 0.10; 0.90; 0.95; 0.975; 0.99 percentiles were obtained for the different sample sizes 

(See Appendix 2). 
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4.4. Results and discussions 

In this section the tests will be applied to eight data series. The first set refers to 

tourist arrivals to Balearics islands represented in three series, German, British and 

international tourists respectively, and cover the period from January 1980 till December 

2008. The second set is composed of total electricity consumption in Balearics islands 

which covers the period from January 1983 till December 2008, and four series that 

represent electricity consumption in the main economic sectors of Balearics islands 

(Agriculture, industry, construction and services), which cover the period from 1991 till 

December 2008, see Figure.4.1.  

Table 4.1 displays the results of HEGY tests for the eight time series when seasonal 

dummies and trends are considered. The fourth column shows the lags that are included in 

the test equation (8), which are determined using AIC or SIC (in both cases the model is 

estimated with a maximum lag of 12). 

For tourist arrivals, we reject unit roots at the 5% level at all the seasonal 

frequencies except for German and international tourist arrivals at frequencies u 2U  , at 

which the degree of significance depend on whether the order of augmentation employed 

is selected using AIC or SIC. For agriculture, industry, services, and total electricity 

consumption, we reject unit roots at 5% level at all the seasonal frequencies, whereas for 

construction electricity consumption we reject unit roots at 5% level at all the seasonal 

frequencies except at frequency  u and frequencies  u 2U  at which the results depend on 

whether the order of augmentation employed is selected using AIC or SIC.  

 



 

 

Table 4 1 Tests for seasonal unit roots: HEGY tests 

    Seasonal and Zero frequency Unit Root Tests 

    with SD and trend 

Variable Years   Aug. �d �� ����  ��x�v ����� ����	d ��		�	� �,�� �nrr 

German 29 AIC 6 -1.940 -4.706 *** 9.165 * 14.918 *** 12.090 *** 19.813 *** 9.428 ** 15.807*** 17.261*** 

German 29 SC 5 -1.701 -4.323 *** 11.926 *** 12.774 *** 15.681 *** 17.409 *** 13.190 *** 15.816*** 16.826*** 

Brits 29 AIC 4 -3.136* -4.386 *** 5.498 14.539 *** 13.520 *** 23.395 *** 14.940 *** 14.672*** 17.091*** 

Brits 29 SC 1 -2.553 -4.355 *** 9.706 ** 23.143 *** 12.640 *** 28.083 *** 18.390 *** 20.308*** 20.339*** 

inter 29 AIC 6 -2.151 -4.923 *** 5.254 12.527 *** 14.477 *** 21.359 *** 5.682 13.349*** 15.420*** 

inter 29 SC 1 -1.915 -4.037 *** 7.132 21.212 *** 21.455 *** 19.376 *** 13.068 *** 16.942*** 16.963*** 

Agriculture 18 AIC 2 -1.8794 -3.667 ** 15.483 *** 16.187 *** 18.693 *** 15.441 *** 12.192 *** 17.072*** 18.199*** 

Agriculture 18 SC 0 -1.573 -4.303 *** 13.278 *** 16.450 *** 21.494 *** 14.122 *** 16.644 *** 21.828*** 23.638*** 

construction 18 AIC 6 -1.759 -2.272 9.640 ** 11.199 ** 10.939 ** 11.606 *** 6.312 12.024*** 12.273*** 

construction 18 SC 0 -2.214 -3.110 *** 15.904 *** 14.471 *** 14.184 *** 7.533 8.526 * 12.708*** 13.737*** 

Industry 18 AIC 0 -2.078 -3.563 ** 11.727 *** 19.533 *** 16.317 *** 13.005 *** 14.680 *** 23.712*** 23.296*** 

Industry 18 SC 0 -2.078 -3.563 ** 11.727 *** 19.533 *** 16.317 *** 13.005 *** 14.680 *** 23.712*** 23.296*** 

Services 18 AIC 7 -0.475 -4.117 *** 12.915 *** 17.701 *** 10.918 ** 4.947 6.168 14.455*** 16.970*** 

Services 18 SC 0 -0.949 -4.685 *** 17.682 *** 21.018 *** 16.755 *** 11.013 ** 19.348 *** 18.196*** 18.183*** 

Total_elec 26 AIC 0 -1.788 -5.715 *** 16.385 *** 19.459 *** 20.268 *** 26.082 *** 28.645 *** 24.570*** 24.182*** 

Total_elec 26 SC 0 -1.788 -5.715 *** 16.385 *** 19.459 *** 20.268 *** 26.082 *** 28.645 *** 24.570*** 24.182*** 

*** sig at 1%; **sig at 5%; * sig at 10%. The Critical values are obtained using a Monte Carlo 
analysis with 100,000 replications for a sample size of 18, 26 and 29 respectively. 
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According to the results of �nrr statistics, none of the series appears to be seasonally 

integrated, in addition results from �,�� and �d show that the rejection of seasonal 

integration can be assigned to the lack of evidence of seasonal unit roots. It is worth to 

mention that for the case of British tourist arrivals, the results of zero frequency unit root 

test depend on whether the order of augmentation employed is selected using AIC or SIC. 

Table 4.2 gathers the results of HEGY-GLS considering seasonal intercepts and 

trends in the deterministic components. For German tourist arrivals we reject unit roots at 

5% level at frequencies u, 5u 6U , for the frequencies u 2U  the null hypothesis is not rejected, 

and for the rest of frequencies we reject unit roots at 5% level depending on whether the 

order of augmentation employed is selected using AIC or SIC.  For British tourist arrivals 

we reject unit roots at 5% level at frequencies u, 5u 6U , and u 6U , for the frequencies u 2U  

the null hypothesis is not rejected, and for the rest of frequencies we reject unit roots at 5% 

level depending on whether the order of augmentation employed is selected using AIC or 

SIC. For international tourist arrivals we reject unit roots at 5% level at frequencies u,
u 3U  and 5u 6U , for the frequencies u 2U , u 6U  and 2u 3U  the null hypothesis is not rejected. 

For agriculture electricity consumption we reject unit roots at 5% level at all the seasonal 

frequencies except at frequency u 2U .  For construction electricity consumption we reject 

unit roots at 5% level at the seasonal frequencies 2u 3U , u 3U and 5u 6U . For industry and 

services electricity consumptions we reject unit roots at 5% level only at 

frequencies� u, u 6U � and � u, u 3U � respectively. For total electricity consumption we reject 

unit roots at 5% level at all the seasonal frequencies except at frequency u 2U  and 2u 3U . 

The  �nrr statistic rejects the overall SI null hypothesis for the all eight series, and the null 

hypothesis of a zero frequency unit root is not rejected for all the eight series



 

 

Table 4 2 Tests for seasonal unit roots: HEGY-GLS tests 

    Seasonal and Zero frequency Unit Root Tests 

    Zero-and seasonal intercepts and trends 

Variable Years   Aug. �d �� ����  ��x�v ����� ����	d ��		�	� �,�� �nrr 

German 29 AIC 12 2.926 -3.370** 0.051 2.486 5.794* 9.095*** 4.424 4.181 5.885 

German 29 SC 5 3.328 -4.472*** 0.571 6.564** 11.668*** 15.232*** 8.796*** 8.440*** 10.639*** 

Brits 29 AIC 4 
1.770 -4.317*** 

0.646 5.178 6.052* 20.738*** 10.814*** 8.255*** 10.010*** 

Brits 29 SC 1 2.917 -4.094*** 1.066 10.002*** 5.723 26.987*** 12.031*** 11.067*** 12.568*** 

inter 29 AIC 6 2.948 -5.077*** 0.516 6.086* 7.749** 17.525*** 4.028 7.038*** 9.757*** 

inter 29 SC 6 2.948 -5.077*** 0.516 6.086* 7.749** 17.525*** 4.028 7.038*** 9.757*** 

Agriculture 18 AIC 0 2.292 -3.297** 5.657 16.923*** 18.037*** 12.114*** 15.433*** 18.577*** 23.454*** 

Agriculture 18 SC 0 2.292 -3.297** 5.657 16.923*** 18.037*** 12.114*** 15.433*** 18.577*** 23.454*** 

construction 18 AIC 6 0.466 -2.540 5.812* 10.397*** 10.349*** 9.336*** 4.792 9.091*** 9.064*** 

construction 18 SC 0 0.832 -2.847* 11.359*** 10.044*** 14.037*** 7.667** 7.342** 10.703*** 11.120*** 

Industry 18 AIC 2 2.754 -3.314** 3.014 6.308* 4.741 6.354* 7.057** 5.045* 6.616*** 

Industry 18 SC 2 2.754 -3.314** 3.014 6.308* 4.741 6.354* 7.057** 5.045* 6.616*** 

Services 18 AIC 8 2.039 -5.478*** 0.599 2.891 10.184*** 3.202 2.098 3.805*** 8.025*** 

Services 18 SC 6 2.465 -4.484*** 0.260 5.368 10.865*** 5.451 3.487 5.252*** 7.434*** 

Total_elec 26 AIC 4 3.925 -4.458*** 2.387 3.534 13.860*** 9.620*** 10.879*** 7.897*** 11.283*** 

Total_elec 26 SC 2 5.447 -4.776*** 4.306 4.739 12.092*** 7.904** 13.273*** 7.894*** 13.568*** 

*** sig at 1%; **sig at 5%; * sig at 10% 
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 Further, the �,�� statistic shows the rejection of the seasonal unit roots for all the 

electric consumption series, though with low significance level (10%) for the series of 

industry electricity consumption. However, in the case of tourist arrivals series, the �,�� 

test rejects the presence of seasonal unit roots for the British tourist arrivals and 

international arrivals respectively. Whereas, the series of German depend on whether the 

order of augmentation employed is selected using AIC or SIC. As it is shown by del 

Barrio Castro and Osborn (2008), Periodic integrated processes do not contain seasonal 

unit roots. However, the transformed variables used in the HEGY seasonal unit root test 

do not remove the nonstationarity in a periodic process. Consequently, the use of these 

variables in a seasonal unit root test regression may lead to the conclusion that seasonal 

unit roots are present in the process. Thus, complementary tests are implemented and 

gathered in Table 4.3. The �i] statistics tests the null hypothesis that all the autoregressive 

coefficients of equation (1) are the same over the seasons, i.e., =#5 = =# , 7 = 1, . . ,12,   ~ ≤
�. On the other hand, and based on the same equation (1), LR test statistic is performed to 

test for the presence of periodic integration. The lag order selection is performed using 

AIC and SIC, with a maximum lag of 4.  

From the results of the �i], the nonperiodic null hypothesis is rejected at 1% for 

the German tourist arrivals, British tourist arrivals and total electricity consumption, and 

also at 5% for international tourist arrivals. However, the nonperiodicity null hypothesis is 

not rejected for agriculture electricity consumption, industry electricity consumption and 

services electricity consumption. The LR test indicates the rejection of periodic integration 

for all the series, with the exception of construction electricity consumption. However, in 

the performance of LR test, high number of parameters is required for the estimation of 

restricted and non-restricted models. Therefore, the results of LR test should be considered 

with a certain degree of caution. 
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Table 4 3 Periodicity and LR Unit Root Tests 

Variable Years   Order. �i] )� 

German 29 AIC 3 3.104*** 74.258586*** 

German 29 SC 3 3.104*** 74.258586*** 

Brits 29 AIC 2 2.780*** 29.471191*** 

Brits 29 SC 1 2.802*** 40.479471*** 

inter 29 AIC 1 2.052** 51.199776*** 

inter 29 SC 1 2.052** 51.199776*** 

Agriculture 18 AIC 1 0.953 38.934456*** 

Agriculture 18 SC 1 0.953 38.934456*** 

construction 18 AIC 1 2.915*** 9.0354829 

construction 18 SC 1 2.915*** 9.0354829 

Industry 18 AIC 2 1.292 14.37757** 

Industry 18 SC 2 1.292 14.37757** 

Services 18 AIC 1 0.841 60.335665*** 

Services 18 SC 1 0.841 60.335665*** 

Total_elec 26 AIC 2 2.137*** 151.83633*** 

Total_elec 26 SC 2 2.137*** 151.83633*** 

*** sig at 1%; **sig at 5%; * sig at 10% The Critical values are obtained 
using a Monte Carlo analysis with 100,000 replications for a sample size 
of 18, 26 and 29 respectively 

 The nonparametric tests for periodic integration developed by del Barrio Castro 

and Osborn (2011) bypass the limitations of the LR statistic which needs a nonlinear 

estimation. Using either the f�n or $-on test statistic, the null hypothesis of a (periodic or 

non-periodic) unit root is not rejected in Table 4.4 at the 1% level for any of the eight 

series, with the exception of the total electricity series with  f�n  test at 10% level, though 

the $-ontest do not reject the presence of a non/periodic  unit root.  
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Table 4 4 Table 4 Nonparametric Periodic Integration Tests 
Variable f�n $-on 

Bartlett weights 
$-on 

Quad Spectral 
weights 

German 0.009929169 0.19800857 0.20484095 

Brits 0.006898955 0.17663027 0.1795973 

inter 0.007447734 0.21152936 0.21815013 

Agriculture 0.010905806 0.26786522 0.26799491 

construction 0.008161821 0.24719495 0.25271943 

Industry 0.005870161 0.18822891 0.20380886 

Services 0.010118341 0.23358369 0.2212275 

Total_elec 0.0040442671* 0.18920834 0.20141753 

*** sig at 1%; **sig at 5%; * sig at 10% The Critical values are obtained using a Monte Carlo analysis 

with 100,000 replications for a sample size of 18, 26 and 29 respectively 

 

This test is applied to a VAR model, which is constrained with a high number of 

parameters when the VAR order increases, additionally to lose of observations for 

conditioning on the past. It is relevant to mention that using the general VAR with 12 

variables in order to capture cointegration is marked with over-parameterization as all the 

coefficient matrices in the VAR representation are of dimension 12 × 12, while the 

maximum number of years of data available for this empirical study is 29 years. Thus, to 

reduce the number of parameters in the VAR specification we consider data on four 

quarters of the year. The order � = 2 of the VAR model has been chosen according to the 

Akaike information criterion, which performs reasonably in high-dimensional systems 

(Gonzalo and Pitarakis, 2002. Table 4.5 gathers the results of trace statistic for the 

quarterly series of German tourist arrivals, British tourist arrivals, international tourist 

arrivals and total electricity consumption. When considering the equivalent seasonal 

intercepts and seasonal trends in the “vector of quarters” representation, the results 

indicate the presence of three cointegration relationship for German tourist arrivals and 

total electricity consumption, and one cointegration relationship for both British and 

international tourist arrivals. Therefore, the trace statistics point toward more evidence of 
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periodic/non-periodic integration for German tourist arrivals and total electricity 

consumption, whereas, some degree of ambiguity remains present for the two series 

British and international tourist arrivals. It is relevant to mention that though the use of 4-

diemntional VAR alleviates the problem of over-parameterization present in a 12-

dimentional VAR (Monthly data), however the number of VARs’ parameters to be 

determined is still high. Therefore, the results from the trace statistics should be taken with 

more carefulness. 

Table 4 5 Table 5 Johansen Trace test for Cointegration 

 

  

Number of 

cointegrating 

equation(s) 

International German Brit Elec_total 

With cte & trend 0 

 82.920**  99.045**  75.680**  90.884** 

  1 

 37.825  55.475**  42.665  54.403** 

  2 

 21.180  29.612**  25.975  25.970** 

  3 

 9.930  5.3097  10.265  10.139 

* for 10%,** for 5%, *** for 2.5%, **** for 1% degrees of significance  

 

 

Finally, we conclude that each of the four series is periodically integrated or non-

periodically integrated (PI (1) or I (1)), in other words, that for each quarterly series the 

four series of annual observations have the same stochastic trend, which implies that the 

series cannot have any monthly seasonal unit roots. It is relevant to mention that, for total 

electricity consumption or to international tourist arrivals series, shocks occurring on a 

particular month of the year are transmitted to the other months of the year. 
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4.5. Conclusions: 

The chapter represents evidence on the seasonal patterns of some tourist arrivals 

time series, additional to processes that reflect electricity consumption in the economic 

sectors of Balearic Islands. The methods used are parametric and nonparametric test 

procedures which allow parameters to vary over the seasons. 

In this chapter we have applied several tests for a unit root in autoregressions, first 

the seasonal integration was tested using the HEGY-test and HEGY-GLS test. 

Considering seasonal intercepts and seasonal trends in the deterministic part, the former 

test shows no seasonal integration for each of the time series considered, the latter shows 

also the same result with the exception of German tourist arrivals that depends on whether 

the order of augmentation employed is selected using AIC or SIC. Secondly, we test the 

periodic variation and applied the parametric likelihood ratio (LR) test for periodic 

integration. Thirdly, we applied the nonparametric tests proposed by del Barrio Castro and 

Osborn (2011) which have the advantage over the LR test of not requiring nonlinear 

estimation and are more appropriate for monthly data. The results revealed the presence of 

PI (1) or I (1) for the three time series of tourist arrivals and also for the total electricity 

consumption time series. Finally and using the annual vector representation, the 

application of Johansen Cointegration method reinforces the finding of PI(1) or I(1) for 

German tourist arrivals and total electricity consumption, whereas, some degree of 

ambiguity remains present for the two series British and international tourist arrivals 

which is due to the high number of parameters required for the VAR estimation.  

It worth nothing to say that the outcome of the periodic integration or conventional 

integration present in these processes is in line with the common result of the rejection of 

seasonal integration in economic time series. Moreover, an important implication of PI(1) 
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or I(1) lies in the fact that, for total electricity consumption and German tourist arrivals 

series, shocks occurring on a particular month of the year are transmitted to the other 

months of the year. For instance, a shock in Germany in January would be transmitted to 

the underlying seasonal tourist arrivals (tourist arrivals in January,.., December), in 

addition, a shock in Spain in January would be transmitted to the underlying seasonal 

electricity consumption. We believe that these finding will fill the gap of the empirical 

studies of seasonality presents in tourism and electricity demand in Balearics islands, and 

will open the door for future research in periodic autoregressive models. 
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1 Main findings and general conclusions 

The interrelationships between tourism, energy use and climate change are 

presenting a significant policy dilemma for many destinations and tourism businesses. 

Climate change is a key development issue, while tourism has potential to contribute to 

economic development. However, tourism also contributes to environmental degradation 

and is strongly affected by climate change, leading to significant challenges with respect 

to its management and regulation and long-term development prospects. At a global scale 

tourism is an extremely significant economic activity; nevertheless, there has also long 

been substantial criticism of what has been perceived as the negative impacts of tourism as 

sector. Tourism has been associated with substantial environmental change and 

degradation, in addition of being considered an energy-intensive sector. 

In order to understand the intertwined relationship between tourism, energy use 

and environment, it is important that the various elements that comprise the tourism 

marketplace must be considered. It is vital to understand the potential impacts of 

international and national climate change mitigation regimes on tourism flows and 

destinations, in parallel with the importance of environmental attributes that are significant 

in destination choice. Several influential papers have enhanced our understanding of the 

high complex and interconnected issues of tourism, energy use and green house gases 

emissions (GHG). Some authors suggested that tourism issues must be incorporated into 

the wider debate about sustainable development. However, local studies are important too, 

as the analysis of local issues are place and context specific but may have implications at a 

larger scale.  

Measuring the impacts of tourism on energy demand requires a quantitative 

appraisal of the relationship between tourism demand and energy use as well as other 
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natural attractions. In the young and the growing research on tourism and energy use, 

quantitative studies are scarce. To go some way to reduce scarcity and so improve the 

basis impact of tourism-induced energy consumption, this thesis examines how energy use 

induced by tourism sector will affect environment. The realisation of the aims of this 

thesis is summarised below.  

In chapter 2, a review of the historical evidence and the recent scientific literature 

on the importance of tourism and its concomitant contribution to GHG emissions is met. A 

review of studies shows that, despite the economic importance of tourism, the sector is a 

major source of environmental degradation and resource consumption. Contemporary 

studies show that tourism is energy intensive sector and its contribution to GHG emissions 

is highly significant. However, there are fewer studies on tourism and energy use, mainly, 

because tourism is not consider as sector in the national accounts, and due to the mix 

mature of some sub-sectors of tourism such as leisure and catering and so on. Literature 

reveals that the costs associated with tourism have been evaluated from a sectoral 

perspective, given the non-recognition of the tourist sector in conventional public 

economic accounting. However a need to assess the environmental costs of tourism 

activities arises when different development policies are considered from a regional point 

of view.  

In chapter 2, the demand for energy is posited to be function of some 

socioeconomic variables and macroeconomic indicators such as real personal income, in 

addition to weather variables. Isolated territories, such as Balearics Islands, are fortunate 

to have the possibility of estimating the population pressure in a very accurate manner, 

even at a daily level. This variable once included to the models reveals to be highly 

significant. For instance, the independent variables collectively explain more than 96% of 
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the variation of daily electricity demand in all regressions. In all the cases of electricity 

demand, both weather variables and the population stock are highly significant indicating 

their importance to determine daily electricity consumption. Strong evidence was found to 

show that the daily electricity load can be characterized by GARCH models. In addition, 

the analysis showed that the sensitivity of the electricity load to the population stock 

variable increased across the time period for residents and non-residents, with a higher 

sensitivity in the case of the resident population. This result coincides with the idea that 

residents’ financial status has grown at a higher level than that of tourists, implying a 

higher growth level in electricity consumption 

Furthermore, three different approaches were taken in the sensitivity analysis. First 

the population effect was evaluated through a hypothetical increase in absolute values in 

the non-resident populations, results in an increase of electricity consumption, with annual 

rates ranging between 1.4% and 3% for the three simulations. Second, an assessment of 

the seasonality effect showed a growth in electricity consumption by non-residents of 

between 2.3% and 2.4% during the high season in the case of a 10 % increase in the 

population stock, contrasting with a growth rate of 0.2% during the low season. Finally, 

the marginal effect of an additional tourist is found to be 6.5% lower than a marginal 

effect of an additional resident. 

In chapter 3, the models estimated in the previous chapter were used to design and 

implement a medium-run forecasting model for daily system loads, and to evaluate the 

forecast performance of the Balearic Islands electric system. It is relevant to mention that 

forecasting 10 days ahead is crucial for outage planning for any electric system operator. 

The results from chapter 03 have shown that the major improvement in error reduction 

comes from understanding how the load reacts to population stock variable, and 
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integrating its effects together with the weather variables and other specific dummies in an 

extended model that captures the main determinants of the electricity load. In general, and 

depending on the particularity of the islands, the inclusion of either HPDI variable or 

airport’s arrival variable improves the forecasting performance of the dynamic model 

ARMAX. By forecasting energy more precisely, the electricity production can more cost-

effectively and can reduce the impact on the environment, including reducing greenhouse 

gas emissions. In the spirit of Davos declaration (Davos, 2007), this result is of crucial 

importance because it permits the implementation of energy-efficiency concept at the 

energy source and not only at the end user. 

In chapter 4 quantitative relationships was established between fuel demand and 

the relevant independent variables, for a purpose to evaluate the effectiveness of a 

seasonal tax instrument, with the focus on demand for diesel and gasoline. Thus, from the 

tax analysis, the relatively low price-elasticity shows how the internalizing mechanism 

that could be argued for introducing the tax in order to reduce transport externalities does 

not work. For instance, the long-run price elasticities range between -0.68 and -0.75 for 

diesel and range between -1.08 and -1.09 for gasoline. Again, these results tally with the 

literature which shows that many gasoline consumers are price sensitive than diesel 

consumers. However, homogeneity tests for price elasticities show that seasonal fuel price 

elasticities estimates are statistically equal. On the other hand we found that, in high 

season, consumer price elasticity estimates are statistically not different for either diesel or 

gasoline.  

Tourism will continue to face a range of short- and long-term external shocks and 

challenges, as evidenced in major international reports. The main measures to raise the 

challenges of GHG emissions in tourism are included in Davos declaration, insisting on 
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the complementary role of governments and international institutions of the tourist sector 

and destinations of consumers and research and communication networks. Through 

enhancing awareness of environmental protection and sustainability, and ensuring proper 

management of natural assets, governments have the opportunity to counteract negative 

consumer perceptions and purchasing behaviors, and to gain significant economic, social 

and cultural benefits from sustainable tourism. In the short- to long-term, government 

environmental policy reforms will have associated flow through costs that will affect the 

tourism industry and broader service sectors. Governments can provide a framework to 

help businesses prepare for a carbon-constrained future and move to a low-pollution 

economy, but for this to be effective, a prior analysis of the general trends and stationarity 

of tourism demand and energy use is for essential importance.  

In chapter 5 the trends and periodicities are analyzed of tourist arrivals time series, 

additional to processes that reflect electricity consumption in the economic sectors of 

Balearic Islands. The results show that international tourist arrivals and total electricity 

consumption time series are periodically (or conventionally integrated), but not seasonally 

integrated. This means that a shock to the total electricity consumption or international 

tourist arrivals series occurred in particular season can transmit its effects to the rest of the 

seasons. For instance, a shock in Germany in January would be transmitted to the 

underlying seasonal tourist arrivals (tourist arrivals in January,.., December), in addition, a 

shock in Spain in January would be transmitted to the underlying seasonal electricity 

consumption. I believe that these finding will fill the gap of the empirical studies of 

seasonality presents in tourism and electricity demand in Balearics islands, and will open 

the door for future research in periodic autoregressive models. 
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Tourism development has considerable environmental, economic and social 

impacts at the local level. The task for tourism planning, to balance the positive and 

negative impacts of development, requires demand forecasts at local and regional levels. 

These results are of considerable importance for tourism planners in helping to mitigate 

the effect of high energy consumption on the environment. The role of policymakers is to 

avoid hampering and, if possible, to facilitate the adjustment in the Balearic energy 

market. The diversification into alternative sources of energy, such as solar, wind, 

geothermal, biomass and ethanol ect, can help to ensure a sufficient supply of energy in 

the future. Furthermore, to encourage energy conservation, the state government should 

implement educational programs that promote energy conservation by both the tourism 

and residential sector. Tourism currently contributes to roughly 5% of CO2 emissions 

(Gössling, 2002), and the bulk of this comes from emissions from transport both to and at 

the destination. Results show that energy demand will continue to grow, which implies a 

growth in gas emissions from transport and other activities. Nevertheless, the reduction on 

potential emissions will depend on the model of transport that is used for domestic 

tourism. The assessment of the impact of transport demand will be needed for both 

transport and tourism planning as well as mitigation policies. Tax credits can be 

introduced for the installation of energy saving devices and equipments. However, a prior 

analysis should be undertaken to assess its effectiveness on a specific destination. 

Efficiency in energy use can be promoted by providing incentives for the design and the 

construction of energy-efficient housing and public infrastructure, as well as the use of 

more energy-efficient production equipment and power transmission by utility companies.  

There are some limitations that need to be acknowledged and addressed regarding 

the present thesis. The main one is that available data do not always match the most 

appropriate data to perform the analysis. Further research will be aimed to explore new 
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models, at the moment; attention is addressed to periodic autoregressive models. The 

periodic regression framework points out avenues for future research for modeling and 

forecasting energy demand and tourism data. To investigate possible cointegration 

relationship between energy consumption and tourist arrivals in Balearic Islands, as well 

as exploring the possibility of extending these models to other type of resources such as 

water. Future research will also have to explore evaluations of tourism’s share of the 

electricity load in other regions, assuming that the outcome of this research can be used for 

other regions.  
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Appendix 1 Unit root test for electricity consumption series 

Null Hypothesis: “Electricity consumption” has a unit root  
Exogenous: Constant, Linear Trend, weekly dummies  
Lag Length: 2(Automatic based on SIC, MAXLAG=10) 

          
Augmented Dickey-Fuller test statistic t-Statistic   Prob. 

 -7.2201  0.0000 
Test critical values: 1% level  -3.96  

 5% level  -3.41  
 10% level  -3.13  

.  
 



 

 

Appendix 2 Simulated Critical values for HEGY-GLS test 

 
  Zero-and seasonal frequency intercepts Zero-and seasonal intercepts and trends 

Years Statistics 1% 2.5% 5% 10% 1% 2.5% 5% 10% 

18 

 

 

t(pi1) -2.9981724 -2.6980515 -2.4493314 -2.1746727 -3.6158864 -3.323408 -3.0856268 -2.8228137 

t(pi2) -2.9889444 -2.68699 -2.441476 -2.16861 -3.6124156 -3.3225257 -3.0815149 -2.819256 

F34 5.146869 4.2779345 3.6107351 2.9283597 8.3999344 7.3593526 6.5335957 5.7001705 

F56 5.2884348 4.3815894 3.7220388 3.0396027 8.6256889 7.5537689 6.7254923 5.8879069 

F78 5.3577118 4.4683843 3.7794712 3.0920987 8.7067289 7.649702 6.8439789 5.9593448 

F910 5.2380165 4.3835678 3.7144967 3.0353853 8.6063753 7.5766194 6.7411022 5.8843621 

F1112 5.2003675 4.3003628 3.6157161 2.9315096 8.3909512 7.3044483 6.5006357 5.669871 

F2-12 3.0780732 2.7746475 2.5445109 2.2828543 6.0074205 5.6401972 5.315098 4.9605721 

F1-12 3.0890912 2.7957162 2.5665597 2.3178576 5.9991983 5.621317 5.3168874 4.9742699 

26 

t(pi1) -2.8927253 -2.6025901 -2.356387 -2.0701166 -3.513301 -3.2350196 -2.9977585 -2.7345625 

t(pi2) -2.8920084 -2.606956 -2.3530475 -2.0661703 -3.5090995 -3.2356327 -3.0015452 -2.7362881 

F34 5.1550269 4.219824 3.530583 2.8320837 8.1624365 7.1387412 6.343868 5.5172036 

F56 5.2790573 4.3360376 3.6409256 2.9321552 8.4406956 7.3942964 6.5429523 5.7041461 

F78 5.3027798 4.3799629 3.6694573 2.9600825 8.4940597 7.470218 6.6467804 5.7988128 

F910 5.2308813 4.3141421 3.6212113 2.9133988 8.3868891 7.3544736 6.5357231 5.6979836 

F1112 5.0528089 4.1576666 3.5025144 2.8013322 8.1378028 7.1285272 6.3420633 5.4956612 

F2-12 2.8935759 2.6058279 2.3711503 2.122298 5.6702136 5.3049355 5.0021356 4.6781749 

F1-12 2.8735783 2.6020274 2.38109 2.139088 5.6359898 5.2838938 4.9980922 4.6793609 

29 

t(pi1) -2.884229 -2.5743558 -2.316216 -2.0333462 -3.5000966 -3.211082 -2.9745266 -2.7143066 

t(pi2) -2.8654351 -2.5620096 -2.3169314 -2.0317844 -3.4940718 -3.208962 -2.9739617 -2.7155647 

F34 5.0717964 4.1720593 3.4782542 2.7749813 8.1330367 7.0674136 6.2889612 5.4551689 

F56 5.1176918 4.2810648 3.5866572 2.8803569 8.3299431 7.2863591 6.5128818 5.6687046 

F78 5.2428675 4.3363997 3.6346072 2.9242646 8.4915691 7.4186058 6.5938586 5.7471526 

F910 5.1525518 4.2830647 3.5663199 2.8718567 8.3091437 7.2797517 6.4932149 5.6533084 

F1112 5.0953862 4.1708888 3.4905604 2.7784284 8.0761695 7.065333 6.2804523 5.4502863 

F2-12 2.8395138 2.5424293 2.3200133 2.0737375 5.5778708 5.2168927 4.9165561 4.5964842 

F1-12 2.8139159 2.5440376 2.3275753 2.0913498 5.5477768 5.1976029 4.9049551 4.5934722 
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