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The cosmological problem is considered in a five-dimensional (bulk) manifold with two time
coordinates, obeying vacuum Einstein field equations. The evolution formalism is used there, in order
to get a simple form of the resulting constraints. In the spatially flat case, this approach allows us to find out
the general solution, which happens to consist in a single metric. All the embedded Friedmann-Robertson-
Walker (FRW) metrics can be obtained from this “mother” metric (“M-metric”) in the bulk, by projecting
onto different four-dimensional hypersurfaces (branes). Having a time plane in the bulk allows us to devise
the specific curvewhich will be kept as the physical time coordinate in the brane. This method is applied for
identifying FRW regular solutions, evolving from the infinite past (no big bang), even with an asymptotic
initial state with nonzero radius (emergent universes). Explicit counter-examples are provided, showing
that not every spatially-flat FRW metric can actually be embedded in a 3þ 2 bulk manifold. This implies
that the extension of the Campbell theorem to the general relativity case works only in its weaker form
in this case, requiring as an extra assumption that the constraint equations hold at least in a single
four-dimensional hypersurface.
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I. INTRODUCTION

Since the pioneering work of Kaluza-Klein, adding extra
dimensions to the standard (four-dimensional) spacetime
has widely been adopted as an strategy in the quest for
unification. In modern particle physics, the resulting
higher-dimensional ’bulk’ spacetime is considered to be
the basic physics scenario, in which gravity acts, although
ordinary matter and fields are supposed to be confined in
four-dimensional “branes” [1–3]. This idea has also been
implemented in Cosmology, after the pioneering work of
Ponce de Leon [4] (see [5,6] for a review). Another
example is provided by the well-known superstring theory
result: the 10þ 1 M-theory encompasses the previously
known 9þ 1 theories, which can be interpreted as just
different projections of the same (unifying) theory [7].
The Kaluza-Klein work, however, unified not only forces

(gravity and electromagnetism), but also matter and geom-
etry.Matter fields in the standard four-dimensional spacetime
arise from metric coefficients in a vacuum five-dimensional
bulk manifold. This spacetime-matter (STM) unifying
approach has shown to be fruitful (see [8] for a review),
and it is also being applied to Cosmology [9–13]. In some of
these papers different projections of the same bulkmetric are
considered [9,10], so that different FRWmetrics are obtained
just by projecting onto different branes.
In this paper, we will adopt a top-down approach: wewill

consider a five-dimensional bulk manifold with three space
coordinates plus two time coordinates. We choose the 3þ 2

signature, instead of the 4þ 1 alternative, because the
explicit embedding formulae for any FRW metric into
five-dimensional Minkowski space are already known
[14]. Moreover, one can wonder why only half of the
solutions in the pioneering work of Ponce de Leon [4] where
embedded in a 3þ 2 bulk, whereas all the eight solu-
tions where embedded in the 4þ 1 alternative bulk. We
interpret this as a clear hint that the extension to the pseudo-
Riemannian case of the classical Campbell theorem [15,16]
deserves a closer look in the 3þ 2 context, where the extra
dimension is timelike.
The 3þ 2 approach implies dealing with two time

coordinates. This idea has yet been used in this context
[17–19] (see [20] for a review). The presence of two time
coordinates raised some causality concerns, after the Gödel
claims about closed timelike curves and the possibility of
time travel [21]. Although some authors extended these
concerns to more general spacetimes [22–24], it has been
shown that the possibility of closed timelike curves is not
inherent to the two-times scenario, being rather due to the
point identification involved in the compactification proc-
ess [25]. Our approach is that matter fields appear only on
the projected branes, where there is just one time coordinate
left. In this way will not require any compactification
mechanism, so we are on safe ground.
There is also a bonus for using two time coordinates: we

get a time plane instead of a time line. As we will see, this
provides extra symmetries, arising from the group of
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conformal transformations in the plane, that can be used for
solving the vacuum field equations in the bulk. Moreover,
we get additional freedom in the choice of the time
coordinate which will be actually projected onto a given
brane: it can be selected by just drawing a suitable line in
the time plane. This flexibility has been crucial in order to
obtain our results.
The paper is organized as follows: in Sec. II, we express

the cosmological problem in the language of the evolution
formalism. This is the 4þ 1 extension of the well-known
3þ 1 general relativity formalism (see for instance [26]).
We take advantage of the symmetry properties in the time
plane in order to reduce the full set of vacuum Einstein
equations to only two equations, for a generic form of the
space-homogeneous metric with two functions of the time
coordinates. In Sec. III, we focus on the spatially flat
(k ¼ 0) case, in which the above mentioned symmetries
can be fully exploited. Making use of the remaining
coordinate freedom, we obtain the general solution, which
consists (except for the trivial flat case) in a single metric,
which we will call “M-metric.” Every embedded (k ¼ 0)
FRW cosmological models can be obtained by projecting
this M-metric in a suitable four-dimensional brane. This is
the multiple projection feature already detected in [9]: the
novelty here is that a single “mother”metric can be taken as
the starting point. In Sec. IV, we show how this multiple
projection capability can be specially fruitful in a bulk with
two time coordinates. Just drawing suitable lines in the time
plane allows one to design universe models with some
specific properties. We will focus in regular models (with
no big bang), by providing many simple examples with
diverse properties. The infinite past limit can be either a big
bang singularity (just as a limit, never reaching it) or a finite
radius universe (emergent models). All cases start with an
inflationary phase, followed by a deceleration phase. Some
cases keep expanding without bound, whereas others
approach asymptotically some stationary state. Finally, in
Sec. V, we take a closer look to the modern extensions of
the Campbell theorem. We will provide explicit counter-
examples to the common belief that any four-dimensional
metric can be embedded in a five-dimensional manifold,
with (4þ 1) or (3þ 2) signature. Our results will show that
the Campbell theorem does not ensure the embedding of
every four-dimensional metric into a Ricci-flat five-dimen-
sional manifold when the extra dimension is timelike
(3þ 2 signature).

II. FIVE-DIMENSIONAL COSMOLOGICAL
FRAMEWORK: EVOLUTION FORMALISM

We will consider here five-dimensional vacuum metrics,
where the extra time coordinate is labeled by ψ. In our case,
where we assume space homogeneity and isotropy, this
“bulk” metric would read

ds2 ¼ −α2ðψ ; tÞdψ2 − N2ðψ ; tÞdt2 þ R2ðψ ; tÞγijdxidxj;
ð1Þ

where the three-dimensional metric γij is of constant
curvature, that is

ð3ÞRij ¼ 2kγij k ¼ 0;�1: ð2Þ
Let us look now at the time plane. We can take advantage

from the fact that any Riemannian two-dimensional metric
is conformally flat in order to simplify the bulk metric form,
namely,

ds2 ¼ −A2ðψ ; tÞðdψ2 þ dt2Þ þ R2ðψ ; tÞγijdxidxj: ð3Þ

In this way the symmetry in the ðψ ; tÞ plane (time plane) is
manifest. On every constant ψ hypersurface, we will of
course recover a FRW line element, namely,

−A2ðψ ; tÞdt2 þ R2ðψ ; tÞγijdxidxj ≡ gabdxadxb; ð4Þ

where a, b ¼ 1, 2, 3, 4.
We can now consider the 4þ 1 decomposition of the

vacuum Einstein equations for the bulk metric (3). It is
usually cast as a system of ten evolution equations (along
the ψ lines) for the extrinsic curvature Kab of the projected
metric (4), namely,

∂ψgab ≡ −2AKab; ð5Þ

plus five constraints (not involving ψ derivatives) of the
basic fields ðγab; KabÞ. These numbers, however, are
actually reduced by the spatial isotropy assumption. To
begin with, the extrinsic curvature can be explicitly
computed:

Kab ¼ −
R0

AR
ðgab þ uaubÞ þ

A0

A2
uaub; ð6Þ

where the primes stand for ψ derivatives and ua is the
future-pointing time unit vector (the FRW metric four-
velocity)

ua ¼ 1

A
δaðtÞ; ð7Þ

which of course verifies

∇aub ¼
_R
AR

ðgab þ uaubÞ; ð8Þ

where the dots stand for t derivatives and ∇ is the covariant
derivative operator in the projected hypersurface. This
means that the symmetric tensor Kab has only two (instead
of ten) independent components, so that the evolution
equations,
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∂ψKa
b ¼ −∇a∂bAþ A½ð4ÞRa

b þ trKKa
b�; ð9Þ

contain just two independent conditions as well.
A similar reduction occurs in the vector constraint,

namely,

∇b½Ka
b − trKδab� ¼ 0; ð10Þ

has four components, but the space direction contribution
vanishes identically due to the spatial isotropy. The only
nontrivial contribution can be written, allowing from (6), in
a very simple form,

A _R0 ¼ A0 _Rþ _AR0; ð11Þ

where the dots stand for time derivatives. The remaining
(scalar) constraint equation reads

Ka
bKb

a − ðtrKÞ2 ¼ ð4ÞR; ð12Þ

where ð4ÞR is the scalar curvature of the FRW metric, that is

ð4ÞR ¼ ρ − 3p ¼ 6

R2

�
kþ 1

A
∂t

�
R _R
A

��
: ð13Þ

At this point, we must note that the five-dimensional
Bianchi identities ensure that the constraint equations (10),
(12) are first integrals of the evolution equations (9). In our
case, as there are just two independent evolution equations
for two independent constraints, we can conclude that the
set of two conditions (11), (12) amounts to the full set of
vacuum field equations for the bulk line element (3). In
spite of that, the evolution equations (9) can still be of some
use. The space components contribution, for instance, can
be expressed in a quite simple form

ðR3Þ00 þ ðR3Þ̈ ¼ −6kA2R; ð14Þ

which can give a clue in order to solve the basic system
(11), (12).

III. GENERAL SOLUTION FOR
THE k = 0 CASE: THE M-METRIC

Let us note that the form (3) does not exhaust coordinate
freedom, as any conformal transformation in the time plane
will preserve this form of the line element. Allowing for the
fact that the conformal group in the plane has infinite
dimension, it follows that the metric coefficient Aðψ ; tÞ is
strongly coordinate-dependent. To be more specific, we can
consider any analytic function λðψ ; tÞ in the time plane in
order to get

A2ðψ ; tÞðdψ2 þ dt2Þ ¼ Ã2ðλ;ϕÞðdϕ2 þ dλ2Þ; ð15Þ

where ϕðψ ; tÞ is the harmonic conjugate of λ.

Allowing for (14), it follows that, in the spatially flat case
(k ¼ 0), the function u≡ R3 is harmonic. This means that
we can take uðψ ; tÞ, and its harmonic conjugate vðψ ; tÞ
as the time plane coordinates, that is taking1

t ¼ u ψ ¼ v: ð16Þ

in the bulk metric (3). The vector constraint (11) implies
then

A0 ¼ 0 ⇒ Kab ¼ 0; ð17Þ

so that the scalar constraint (12) reduces to

ð4ÞR ¼ ρ − 3p ¼ 0 ⇒ AR ¼ constant: ð18Þ

Putting all these results together, we get (after a constant
factor rescaling) the following form of the bulk metric (3) in
the k ¼ 0 case

ds2 ¼ −u−2=3ðdu2 þ dv2Þ þ u2=3δijdxidxj: ð19Þ

Note that, in these ðu; vÞ coordinates, all metric coefficients
are fully specified. This means that the general solution
(19) for the k ¼ 0 case is actually a single vacuum metric,
which we will call “M-metric” in what follows. A single
“mother” metric in the bulk for the full set of embedded
spatially flat FRW metrics, which can be recovered by
projecting this M-metric onto different, infinitely-many,
four-dimensional hypersurfaces (branes).
Let us note that the M-metric (19) has a timelike Killing

vector

ξ≡ ∂v: ð20Þ

This implies that the v-coordinate lines have an intrinsical
geometrical meaning, which can be extended then to the
orthogonal u-coordinate lines. From the physical point of
view, u≡ R3 is defined by the expansion factor, meaning
that the u-lines have an intrinsic meanig, which extend then
to the orthogonal v-lines. This intrinsic meaning, both from
the geometrical and the physical point of view, allows a
straightforward comparison with other forms of the same
metric. This can be even simpler if we adopt a proper-time
parametrization for the u-lines. After some rescaling,
we get

ds2 ¼ −dτ2 −
1

τ
dv2 þ τδijdxidxj: ð21Þ

1We are assuming here that u is not constant. If it is, then
equations (11), (12) are identically satisfied. Aðψ ; tÞ is then an
arbitrary function, but any brane projection of the resulting bulk
metric leads to some form of Minkowski metric. We are implicitly
excluding this trivial case in all our results.

3þ 2 COSMOLOGY: UNIFYING FRW METRICS IN THE BULK PHYS. REV. D 99, 043530 (2019)

043530-3



This shows explicitly how the extra time dimension
collapses in the bulk as the FRW radius R ¼ ffiffiffi

τ
p

increases
during cosmic evolution.
The form (21) is precisely the second solution obtained

in the pioneering work of Ponce de Leon [4] (taking
τ ¼ Aþ Bt, v ¼ Ψ), and it is also the first one (exchanging
the roles of t and Ψ). A straightforward calculation shows
that this is also isometric to the fourth one (taking
τ ¼ ΨSðtÞ, v ¼ Ψ3=2fðtÞ),2 as it should be because the
M-metric is the general (nontrivial) solution: the remaining
3þ 2 solution in this paper corresponds actually to the
trivial case that we have excluded from our analysis.

IV. TRIVIAL AND NONTRIVIAL PROJECTIONS:
REGULAR AND EMERGENT UNIVERSES

Let us consider first the trivial projection onto the v ¼
constant surfaces. This is trivial also from the geometrical
point of view, as the extrinsic curvature Kab vanishes, so
that the constraint equations (10), (12) amount to require
ð4ÞR ¼ ρ − 3p ¼ 0. The resulting four-dimensional metric
can be written as

ds2 ¼ −dτ2 þ τδijdxidxj; ð22Þ

which is the standard FRW pure radiation metric for the
spatially flat case.
Of course, we have other options for projecting onto

four-dimensional hypersurfaces. We could perform for
instance a linear transformation in the ðu; vÞ plane in the
bulk M-metric (19) and then project onto the resulting v0 ¼
constant surface. A simple calculation shows that the
resulting metric would be equivalent to (22). This amounts
to say that choosing any straight line in the ðu; vÞ plane as the
physical time coordinate (the one surviving in the projected
brane) leads to the spatially flat FRW pure radiation metric.
Another option is to select instead a nontrivial hyper-

surface in order to get completely different FRW models:
regular (singularity-free) universes. In the M-metric, the
singularity at u ¼ 0 is not just a point in a time-line, but
rather a line in the time plane. It is then quite easy to devise
alternative time-lines which do not cross the singular line.
We can select for instance hyperbolic coordinates:

u ¼ ψet v ¼ −ψe−t; ð23Þ

and project onto the hypersurfaces of the form
ψ ¼ constant > 0. It is clear that the u ¼ 0 singular line
is reached only asymptotically for t → −∞ (see Fig. 1): the

resulting (projected) FRW metric is regular for all
(finite) times.
To be more specific, let us write down explicitly the

resulting FRW model. After some constant rescaling we
get:

ds2 ¼ −e−ð2=3Þt coshð2tÞdt2 þ eð2=3Þtδijdxidxj: ð24Þ

The expansion (Hubble) factor is

H ¼ 1

3
et=3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sechð2tÞ

p
; ð25Þ

which is also finite for all times. For early times, we get an
accelerated (inflationary) expansion rate, that is,

H ∝ R4 t ≪ 0; ð26Þ

whereas for late times we get a deceleration in the
expansion rate:

H ∝ 1=R2 t ≫ 0: ð27Þ

Another example follows from the coordinate trans-
formation

u ¼ ψ ½1þ tanhðtÞ� v ¼ ψt; ð28Þ

which leads, after a constant rescaling, to the following
ψ ¼ constant projection of the M-metric:

FIG. 1. Timelines in the time plane of the bulk M-metric, each
one leading to different FRW projected metrics. The big-bang
singularity is here the u ¼ 0 line. The straight line corresponds to
the standard pure radiation model. The other two lines correspond
to FRW models without big bang, with an initial accelerating
(inflationary) phase and a final decelerating phase. In the
hyperbola case (red line), the deceleration is not apparent (see
the text for the detailed calculation). In the hyperbolic tangent
case (blue line), the inflexion point corresponds to a pure
radiation phase. A stationary state is reached asymptoticaly in
this case.

2One recovers in this way the generic case, where the
integration constant C is different from zero (we get C ¼ 1 after
a constant rescaling). The C ¼ 0 case, corresponding to the
explicit solution given in the paper, works just for the alternative
4þ 1 signature.
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ds2 ¼ −
1þ coshðtÞ−4

½1þ tanhðtÞ�−2=3 dt
2 þ ½1þ tanhðtÞ�2=3δijdxidxj:

ð29Þ

The resulting time curve is of course a shifted hyperbolic
tangent in the time plane. We can see in Fig. 1 that there is
no crossing with the u ¼ 0 singular line (this is again an
infinite past asymptote), and that there is an upper bound
for the expansion of the projected universe, which is
asymptotically approached at infinite future. Note also
that, as seen in Fig. 1, the physical time line is osculating
to a straight line at the inflexion point (v ¼ 0). As the field
equations contain metric derivatives just up to the second
order, this matching in the metric coefficients with a
radiation metric ensures that there is a radiation phase in
the transition from the accelerating (inflationary) stage to
the decelerating one.
In both cases, there is no beginning: the big bang

singularity is just in the limit t → −∞. Although the
singularity is not actually reached, the physical conditions
near the singularity can bevery close to those just after the big
bang in standard models. This past asymptotic state can be
changed by justmodifying the time-line selection in the bulk.
Instead of (23), (28) we can rather choose, respectively,

u ¼ u0 þ ψet v ¼ −ψe−t; ð30Þ

or

u ¼ u0 þ ψ ½1þ tanhðtÞ� v ¼ ψt; ð31Þ

so that the curves in Fig. 1 will get displaced upwards by the
amount u0 > 0, safely away from the u ¼ 0 singularity. The
corresponding FRW models will emerge then from a finite
radius universe. In this way, we are building different k ¼ 0
approximations to the ’Emergent Universe’ of Ellis and
Maartens [27,28].
Of course, all these are just examples obtained by simple

coordinate transformations in the bulk, leading to different
brane projections. In the general case, we can define the
projection by giving the time curve in explicit form,
namely,

τ ¼ t; v ¼ vðt;ΨÞ ð32Þ

so that the Ψ ¼ constant projection will be given by

ds2 ¼ −
�
1þ _v2

t

�
dt2 þ tδijdxidxj; ð33Þ

where

_v≡ ∂tvðt;ΨÞ: ð34Þ

V. THE COMPLETENESS ISSUE: CLARIFYING
THE MEANING OF CAMPBELL THEOREM

Equation (33) gives the brane-projected FRW metrics in
explicit form, depending only on the single function (34)
which allows us to select a specific projection of the M-
metric. The corresponding expansion (Hubble) factor can
then be computed explicitly,

H ¼
h
2t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ _v2=t

q i
−1
; ð35Þ

so that the energy density is

ρ ¼ 3H2 ¼ 3=4ðt2 þ t _v2Þ−1; ð36Þ

which can be inverted in order to get

_v2 ¼ ð3=4ρ−1 − t2Þ=t: ð37Þ

It follows from (37) that there is no solution in the asymptotic
limit t ≫ 0 for the Einstein space case (ρ ¼ Λ) nor for the
pure dust case (ρ ∝ t−3=2). Moreover, it follows from (35)
that the Hubble factor cannot diverge for t > 0, sowe cannot
get ’big rip’ singularities (see ref. [29] for a recent review).
These results go against the common belief that the

Campbell theorem ensures the embedding of any four-
dimensional metric into a five-dimensional Ricci-flat mani-
fold, where the extra dimension can be either spacelike or
timelike. In order to clarify the real meaning of the theorem,
let us point out the following:

(i) The original theorem of Campbell [15] dealt just
with Riemannian manifolds. Our counter-examples
are relevant only for the modern extensions to the
pseudo-Riemannian case (see ref. [16] for a review).

(ii) The signature of the resulting five-dimensional
manifold is left unspecified, so that the four-dimen-
sional Ricci scalar in (12) appears always multiplied
with a ϵ ¼ �1 sign. This adds some ambiguity to the
proof, as it is not clear whether the embedding works
for both signs.

The key point in the proof is that the constraint
equations (10), (12), where the D metric is considered as
an input and the extrinsic curvature as the unknown, are
under-determined. The claim is then that one should always
be able to find a solution. But the under-determination in a
given equation does not guarantee that there is a solution at
all. In order to illustrate this, let us consider for instance a
slight modification of (12), namely,

Ka
bKb

a ¼ ϵð4ÞR; ð38Þ

which is also under-determined, but which has solution
only for one of the two choices of ϵ (depending on the
curvature sign), but not for the other.
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Our results actually show that in the 3þ 2 case, where
the extra dimension is timelike, the Campbell theorem
holds only in its weak form: any four-dimensional metric
can be embedded in a five-dimensional Ricci-flat manifold
provided that the constraint equations hold at least in a
single four-dimensional hypersurface.

VI. CONCLUSIONS AND OUTLOOK

We have found the general solution for the embedding of
(spatially flat) FRW metrics in a five-dimensional (bulk)
manifold with 3þ 2 signature. Apart from the trivial case,
the solution is unique: the M-metric (19). A single “mother”
metric in the bulk for all the embedded FRW metrics.
Having a time plane in the bulk happens to be a powerful

tool for devising the evolution properties of the resulting
projected spacetimes: one only has to select a suitable time
curve, which will be kept as the physical time coordinate in
the brane. We have obtained by this method some FRW
regular solutions, evolving from the infinite past (no big
bang), that could be useful to deal with the cosmological
horizon problem. These are regular FRW models in
standard general relativity: there is no need to recur to
alternative theories in order to get these appealing cosmo-
logical models. Previous well-known cosmological solu-
tions without big bang where obtained at the price of
reducing the space symmetry group [30,31]. This is not our
case: we keep the full space symmetry group; in this sense,
our models pertain to the same class of the well-known
“emergent Universe” inflationary models [27,28].
We have fully solved here only the spatially flat case

(curvature index k ¼ 0). But note that in the general case
we have reduced the full set of embedding conditions to
just two equations (11), (12) for the two functions Rðψ ; tÞ
and Aðψ ; tÞ. Moreover, the (infinite-dimensional) con-
formal group in the time plane can still be used in order
to modify the expression for Aðψ ; tÞ. Our conjecture is that
the solution for each of the two other cases (k ¼ �1) is also
unique, that is, that the M-metric has just one counterpart
for each value of the curvature index. We will keep working
in order to confirm this conjecture.
One can wonder why we have not found a flat bulk

metric as an alternative starting point to the M-metric. After
all, FRW metrics are known to be of embedding class one,
meaning that they can actually be embedded in a flat (not

just Ricci-flat) five-dimensional manifold. Note however
that in all the explicit FRW embeddings given in the
classical review of Rosen [14] the flat five-dimensional
manifold has four space coordinates plus only one time
coordinate (4þ 1). Our results actually show that the lack
of flat metric embeddings in the 3þ 2 case is not just
because they are hard to find, but rather because they
simply do not exist (excepting the trivial Minkowski case).
This is in keeping with more recent results [32].
Having the general solution in explicit form is crucial for

solving the completeness problem: whether or not all
spatially-flat FRW metrics can actually be embedded in
a 3þ 2 bulk manifold. We have provided explicit counter-
examples showing that the answer is negative. The exten-
sion of the Campbell theorem to the general relativity case
must then be considered with caution. In our case, where
the extra dimension is timelike, the theorem works only in
its weaker form, with the strong assumption that the
constraint equations hold at least in a single four-dimen-
sional hypersurface.
This last result, of course, could in principle be con-

fronted with future findings, both from the mathematical
and from the physical point of view. From the mathematical
point of view, any successful embedding of either the
Einstein space or a pure dust spacetime (with k ¼ 0) in a
3þ 2 bulk would dismiss our counter-examples. From the
physical point of view, the timelike character of the extra
coordinate implies that the asymptotic future limit of the
universe cannot be explained by a mixture of dust and a
cosmological constant in a spatially flat geometry. It
follows that either the Universe is not spatially flat
(k ≠ 0), or that the present-epoch universe (the one sug-
gested by our current observations) must be just a transient
phase. This stresses the importance of finding the general
solution of the embedding problem for all values of k.

ACKNOWLEDGMENTS

We acknowledge support from the Spanish Ministry of
Economy, Industry and Competitiveness Grants
No. AYA2016-80289-P and No. AYA2017-82089-ERC
(AEI/FEDER, European Union). M. B. would like to thank
CONICYTBecas Chile (Concurso Becas deDoctorado en el
Extranjero) for financial support.

[1] L. Randall and R. Sundrum, Phys. Rev. Lett. 83, 4690
(1999).

[2] R. Maartens, in Reference Frames and Gravitomagnetism,
edited by J. Pascual-Sanchez et al. (World Scientific,
Singapore, 2001).

[3] R. Maartens and K. Koyama, Living Rev. Relativity 13, 5
(2010).

[4] J. Ponce de Leon, Gen. Relativ. Gravit. 20, 539 (1988).
[5] D. Langlois, Prog. Theor. Phys. Suppl. 148, 181

(2002).

BONA, BEZARES, PONS-RULLAN, and VIGANÒ PHYS. REV. D 99, 043530 (2019)

043530-6

https://doi.org/10.1103/PhysRevLett.83.4690
https://doi.org/10.1103/PhysRevLett.83.4690
https://doi.org/10.12942/lrr-2010-5
https://doi.org/10.12942/lrr-2010-5
https://doi.org/10.1007/BF00758909
https://doi.org/10.1143/PTPS.148.181
https://doi.org/10.1143/PTPS.148.181


[6] P. Brax, C. van de Bruck, and A. C. Davis, Rep. Prog. Phys.
67, 2183 (2004).

[7] E. Witten, Nucl. Phys. B443, 85126 (1995).
[8] J. M. Overduin and P. S. Wesson, Phys. Rep. 283, 303

(1997).
[9] J. Ponce de Leon, Mod. Phys. Lett. A 21, 947 (2006).

[10] M. La Camera, Mod. Phys. Lett. A 25, 781 (2010).
[11] L. M. Reyes, J. E. Madriz-Aguilar, and L. A. Urea-Lpez,

Phys. Rev. D 84, 027503 (2011).
[12] M. Bellini, Phys. Lett. B 703, 107 (2011).
[13] B. C. Georgalas, S. Karydas, and E. Papantonopoulos,

J. Cosmol. Astropart. Phys. 08 (2018) 005.
[14] J. Rosen, Rev. Mod. Phys. 37, 204 (1965).
[15] J. E. Campbell, A Course on Differential Geometry

(Clarendon, Oxford, 1926).
[16] S. S. Seahra and P. S. Wesson, Classical Quantum Gravity

20, 1321 (2003).
[17] I. Bars and C. Kounas, Phys. Lett. B 402, 25 (1997).
[18] T. Li, Phys. Lett. B 503, 163 (2001).
[19] P. S. Wesson, Phys. Lett. B 538, 159 (2002).

[20] I. Bars and J. Terning, Extra dimensions in Space and Time
(Springer, Berlin, 2010).

[21] K. Gödel, Rev. Mod. Phys. 21, 447 (1949).
[22] F. J. Tipler, Phys. Rev. D 9, 2203 (1974).
[23] J. R. Gott, Phys. Rev. Lett. 66, 1126 (1991).
[24] M. Visser, Lorentzian Wormholes (AIP Press, New York,

1995).
[25] F. Cooperstock, Found. Phys. 35, 1497 (2005).
[26] J. E. Lidsey, C. Romero, R. Tavakol, and S. Rippl, Classical

Quantum Gravity 14, 865 (1997).
[27] G. F. R. Ellis and R. Maartens, Classical Quantum Gravity

21, 223 (2003).
[28] G. F. R. Ellis, J. Murugan, and C. G. Tsagas, Classical

Quantum Gravity 21, 233 (2003).
[29] L. Fernández-Jambrina, Phys. Rev. D 94, 024049 (2016).
[30] J. M. M. Senovilla, Phys. Rev. Lett. 64, 2219 (1990).
[31] L. Fernández-Jambrina and L. M. González-Romero, Phys.

Rev. D 66, 024027 (2002).
[32] I. E. Gulamov and M. N. Smolyakov, Gen. Relativ. Gravit.

44, 703 (2012).

3þ 2 COSMOLOGY: UNIFYING FRW METRICS IN THE BULK PHYS. REV. D 99, 043530 (2019)

043530-7

https://doi.org/10.1088/0034-4885/67/12/R02
https://doi.org/10.1088/0034-4885/67/12/R02
https://doi.org/10.1016/0550-3213(95)00158-O
https://doi.org/10.1016/S0370-1573(96)00046-4
https://doi.org/10.1016/S0370-1573(96)00046-4
https://doi.org/10.1142/S0217732306020214
https://doi.org/10.1142/S021773231003286X
https://doi.org/10.1103/PhysRevD.84.027503
https://doi.org/10.1016/j.physletb.2011.06.071
https://doi.org/10.1088/1475-7516/2018/08/005
https://doi.org/10.1103/RevModPhys.37.204
https://doi.org/10.1088/0264-9381/20/7/306
https://doi.org/10.1088/0264-9381/20/7/306
https://doi.org/10.1016/S0370-2693(97)00452-8
https://doi.org/10.1016/S0370-2693(01)00215-5
https://doi.org/10.1016/S0370-2693(02)01956-1
https://doi.org/10.1103/RevModPhys.21.447
https://doi.org/10.1103/PhysRevD.9.2203
https://doi.org/10.1103/PhysRevLett.66.1126
https://doi.org/10.1007/s10701-005-6478-9
https://doi.org/10.1088/0264-9381/14/4/005
https://doi.org/10.1088/0264-9381/14/4/005
https://doi.org/10.1088/0264-9381/21/1/015
https://doi.org/10.1088/0264-9381/21/1/015
https://doi.org/10.1088/0264-9381/21/1/016
https://doi.org/10.1088/0264-9381/21/1/016
https://doi.org/10.1103/PhysRevD.94.024049
https://doi.org/10.1103/PhysRevLett.64.2219
https://doi.org/10.1103/PhysRevD.66.024027
https://doi.org/10.1103/PhysRevD.66.024027
https://doi.org/10.1007/s10714-011-1301-8
https://doi.org/10.1007/s10714-011-1301-8

